
Creating Apps
with React
Native

Deliver Cross-Platform 0 Crash,
5 Star Apps
—
M. Holmes He

Creating Apps with
React Native

Deliver Cross-Platform 0 Crash,
5 Star Apps

M. Holmes He

Creating Apps with React Native: Deliver Cross-Platform 0 Crash,

5 Star Apps

ISBN-13 (pbk): 978-1-4842-8041-6		 ISBN-13 (electronic): 978-1-4842-8042-3
https://doi.org/10.1007/978-1-4842-8042-3

Copyright © 2022 by M. Holmes He

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Creating-Apps-with-
React-Native. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

M. Holmes He
Bucklands Beach, New Zealand

https://doi.org/10.1007/978-1-4842-8042-3

iii

Chapter 1: �Start Thinking in React��1

1.1 ��Component���2

1.1.1 ��Key Takeaways��7

1.2 ��The “Hello World” App in Pieces��7

1.2.1 ��React Native Development Environment���7

1.2.2 ��JSX��12

1.2.3 ��props���15

1.2.4 ��JSX Internals���25

1.2.5 ��States��30

1.2.6 ��setState() Internals��37

1.2.7 ��Key Takeaways��38

1.3 ��Summary���38

Chapter 2: �Foundations of React���41

2.1 ��Flexbox, a Practical Guide��41

2.1.1 ��Component Size��44

2.1.2�� Case Study: Feed���45

2.1.3 ��Key Takeaways��56

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

The Path to a 05 App��xiii

iv

2.2 ��Composition vs. Inheritance, HOC��56

2.2.1 ��Case Study: Multiple Photo Feeds���58

2.2.2 ��Key Takeaways��67

2.3 ��ScrollView and FlatList��67

2.3.1 ��Case Study: Moment��68

2.3.2 ��Key Takeaways��73

2.4 ��Error Handling��74

2.4.1 ��Case Study: Moment (Reinforced)���75

2.4.2 ��Key Takeaways��87

2.5 ��Summary���88

Chapter 3: �Animation in React Native��89

3.1 ��Introduction to React Native Animation���90

3.2 ��Layout Animation���91

3.2.1 ��Presets��92

3.2.2 ��LayoutAnimation.create( )���93

3.2.3 ��Raw Animation Config���93

3.2.4 ��Android��95

3.2.5 ��Case Study, Read More��96

3.2.6 ��Key Takeaways��104

3.3 ��Value Animation���104

3.3.1 ��Animate the Animation��106

3.3.2 ��Bind the Animation Value���110

3.3.3 ��Case Study 1, Looming Animation for Image Loading�������������������������114

3.3.4 ��Case Study 2, Loading Indicators��121

3.3.5 ��Key Takeaways��133

3.4 ��Gesture-Driven Animation��134

3.4.1 ��Native Event��136

Table of Contents

v

3.4.2 ��Case Study, a Pull Down Load Experience���137

3.4.3 ��Key Takeaways��145

3.5 ��Summary���145

Chapter 4: �Native Modules and Components�������������������������������������147

4.1 ��Native Modules��149

4.1.1 ��iOS Native Module���151

4.1.2 ��Android Native Module��159

4.1.3 ��Use the Native Module in JavaScript���164

4.1.4 ��Key Takeaways��165

4.2 ��Native Components��166

4.2.1 ��iOS Native Component���167

4.2.2 ��Android Native Component��173

4.2.3 ��Use the Native Component in JavaScript��178

4.2.4 ��Children of a Native Component��180

4.2.5 ��Key Takeaways��184

4.3 ��Advanced Techniques���185

4.3.1 ��Event��185

4.3.2 ��React Tag���189

4.3.3 ��Direct Manipulation���197

4.3.4 ��Synchronous Method Call��197

4.3.5 ��Export Constants���198

4.3.6 ��Initial Properties��199

4.3.7 ��Dependency Injection��201

4.3.8 ��Key Takeaways��204

4.4 ��Exception Handling��206

4.5 ��Case Study – a Video Component��208

4.5.1 ��iOS Implementation of a Video Component���209

4.5.2 ��Android Implementation of a Video Component����������������������������������214

Table of Contents

vi

4.5.3 ��JavaScript Layer��217

4.5.4 ��Reinforced Video Component��228

4.6 ��Summary���240

Chapter 5: �Network Programming���241

5.1 ��A Very Brief Introduction to TCP/IP���243

5.1.1 ��TCP��247

5.1.2 ��HTTP/1.1�� �257

5.1.3 ��DNS��271

5.1.4 ��TLS���273

5.1.5 ��The Modern Internet��275

5.1.6 ��Key Takeaway��279

5.2 ��Network Programming on the JavaScript Layer��280

5.2.1 ��Asynchronous Operations��280

5.2.2 ��fetch( )���286

5.2.3 ��Case Study, Move Everything Online���287

5.3 ��Network Programming on the Native Layer���293

5.3.1 ��Case Study, Enable Local Caching���294

5.4 ��Exception Handling��302

5.4.1 ��Case Study, Reinforce the Network Components��������������������������������304

5.4.2 ��Case Study, Offline Mode���309

5.5 ��Summary���311

Chapter 6: �Advanced Topics��313

6.1 ��Revisit Rendering���313

6.2 ��Redux���316

6.2.1 ��Case Study, Like��321

6.3 ��Long List��330

6.3.1 ��Case Study, Apply Basic Heuristics��331

Table of Contents

vii

6.4 ��0 Crash, Design Exception Flow���334

6.4.1 ��Robustness Built in Software Architecture��338

6.4.2 ��Last Resort, Global Error Handler��340

6.4.3 ��Wrap Up���341

6.5 ��Native Modules Inside Out���342

6.5.1 ��Phase 0, Prior Bootstrap��344

6.5.2 ��Phase 1, Bootstrap��346

6.5.3 ��Phase 2, Native Module on the JavaScript Layer��������������������������������366

6.5.4 ��Execute the Bundle��379

6.5.5 ��The Two-Way Communication���380

6.5.6 ��The Native Module Metadata���382

6.5.7 ��Wrap Up���383

6.6 ��Animation Inside Out��385

6.6.1 ��Establish the Animated Node Graph��391

6.6.2 ��Bind the Event Receiver��402

6.6.3 ��Attach the Event Source��405

6.6.4 ��Native Event Transmission���412

6.7 ��Adaptive to All Screens, Layout Design��422

6.8 ��Time to Say Goodbye��423

Index��427

Table of Contents

ix

About the Author

M. Holmes He Muyang (Holmes) He is a software engineer. He spent four

years working with Tencent on hyperscale social network products. At the

time when this book is written, he is a mobile engineer with Microsoft. He

is also an active advocate and a practice leader of using React Native to

create 0 crash, 5 star apps (05 apps).

xi

About the Technical Reviewer

Akshat Paul is a technology leader and author of four books on React

Native, Ruby, and RubyMotion. He has extensive experience in mobile

and web development and has delivered many enterprise and consumer

applications over the years. In other avatars, Akshat frequently speaks

at conferences and meetups on various technologies. He has given

talks at React Native EU, Cross-Platform Mobile Summit, Devops@Scale

Amsterdam, TheDevTheory Conference India, RubyConfIndia, and

#inspect-RubyMotion Conference Brussels and was a keynote speaker

at technology leadership events at Bangkok and Kuala Lumpur. Besides

writing code, Akshat likes to spend time with his family, is an avid reader,

and is obsessive about healthy eating.

xiii

The Path to a 05 App

User experience and developer experience (U & D experiences) are

coiled double helix that spiral up a great product. React Native offers

awesomeness of both. React Native is neither as luxurious and fabricated

as other comparable frameworks, such as Xamarin and Flutter, nor as plain

and simple as a WebView. Nonetheless, it successfully reconciles the U & D

experiences on various mobile platforms by leveraging the timeworn front-

end technologies, JavaScript and React, which marks a sweet spot on the

frontier of mobile development.

No framework is perfect. React Native is no exception. The question

is whether the shortcoming can be contained, and the answer is "yes." In

the experience of the author, React Native is capable of delivering high-

quality user experiences as the market has seen a lot of apps of such kind.

Nevertheless, underoptimized apps and unsuccessful stories also shadow.

The purpose of this book is to provide you with a solid information source

to achieve the former, a 0 crash, 5 star app, a.k.a. a 05 app.

1© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_1

CHAPTER 1

Start Thinking
in React

React reflects the fractal topology (Figure 1-1) in which the whole system

and each of its parts share the same geometrical form. This topology is

found as a common phenomenon across scales spanning from a flake

to a galaxy. In that sense, every React component shares the same

programmatical form. This topology is the key factor, in the opinion of the

author, that consistently drives the growth of React-based systems and

ecosystems in an organic fashion.

It is almost intuitive for a seasoned React developer to map between

a tree of stylized components and the visual result. This ability can vastly

enhance efficiency. To help you to become a React Native developer like

this is the goal of this book. Let us start by looking at the basic building

block of React, a component.

Figure 1-1.  A fractal topology

https://doi.org/10.1007/978-1-4842-8042-3_1

2

Note  🏛 The “drag and drop” UI builder, on the other hand, offers
a tempting, painting-like development experience, ideally on a
fix-sized canvas. However, the programmatic approach for the UI has
been proven to be the putative winner when dealing with real-world
complexity. More specifically, we need logic to control the adaptation
of various dimensions and user interactions, which modern apps
desire. We can naturally express logic in code. But things very soon
become clumsy when the same logic is represented within a UI
builder. I think this is for the discipline boundary between engineering
and art.

1.1	 �Component
Components are the basic building blocks of all views. Technically, they

are the underpinnings of the XML tags that represent various UI elements.

For example, <Text/> represents a view that renders text, <Image/> is the

one that renders graphic, and <View/> represents a plain rectangle area.

Those tags are backed by their respective components encapsulating the

presentation and business logic.

A component takes props (Section 1.2.3) as input. For instance,

a <Text/> accepts attributes like fontFamily, fontSize, fontWeight,

color, etc.; a <View/> takes width, height, and borderRadius; and an

<Image/> takes source prop that indicates the image location. Most of

the presentational props are categorized as style, a special type of props

reserved by React (Section 1.2.3.1).

When a component works as a flex container (simplified as container

in the following text), it takes certain styles that handle the layout of its

children (Section 1.2.3.2). We use a technique called a flexbox to define

Chapter 1 Start Thinking in React

3

adaptive layout. Since flexbox is presentational, the flexbox-related

attributes are styles too. We are going to cover the basics as well as some

handy techniques of flexbox in Section 2.1. As we will see very soon,

the structural component tree, in conjunction with flexbox, results in

a declarative, modernized semantic that makes UI layout a breeze. This

semantic is called a JSX (Section 1.2.2).

Developers of the React Native core team and third parties have created

more than enough stock components to address almost any difficulties

and requirements for a mobile app. That said, it is essential to know how to

create custom components to encapsulate the UI and logic units that suit

our own business needs which could be very specific and specialized.

Let’s start thinking of a social network with a billion expected users;

we call it Manyface. One of the novel features of Manyface allows users

to share with friends what is happening in their life by posting a short

text along with a photo, and we call a post of this kind a Feed. On the

other hand, the user can also get to know their friends’ everyday lives by

navigating a list with their recently posted Feeds mixed and sorted, and

we decide to call this feature Moment. For the Moment list, it is nice to

encapsulate one Feed as a component. Listings 1-1 and 1-2 show what a

Feed component is like and how it is used by Moment.

Listing 1-1.  A sample component

class Feed extends React.Component {

...

 render() {

 return (

 <View style={{

 flexDirection: 'row',

 justifyContent: flex-start

 }}> // --> 1)

 <Text>...</Text> // -------------------------------> 3)

Chapter 1 Start Thinking in React

4

 <Image // ---> 2)

 source={{uri: 'https://xxx.xx'}} />

 <Image />

 </View>

);

 }

...

};

Listing 1-2.  How Feed component is used

class Moment extends React.Component {

...

 render() {

 return (

...

 <Feed/>

 <Feed/>

 <Feed/>

 <Feed/>

 <Feed/>

...

);

 }

...

};

Note  Here, the example is given for simplicity. In practice, map()
is normally used to render an array of similar components. This
technique will be used in the case study in Section 2.2.

Chapter 1 Start Thinking in React

5

Starting from the top, every component is required to inherit from

React.Component which is a template class that instructs React how to

construct, render, and deallocate itself. With that information, React can

then incorporate the component into the component tree and construct

the whole app.

Next, let’s take in some of the basics of a component by focusing on

the render() method:

	 1)	 <View> is the most basic library component in

React that simply represents a rectangle in the user

interface. It defines the attributes of the rectangle

such as background color, rounded corner, and

shadows. Since <View> does not render anything

special, a plain <View> component is normally used

as a container that lays out its children components.

As mentioned just now, the layout engine in React

is flexbox (Section 2.1). For now, we can see the

flexbox-related attributes are flexDirection and

justifyContent.

	 2)	 As a more advanced component, <Image> renders

graphic. Here, the graphic is fetched from 'https://

xxx.xx' that is indicated by the source prop.

	 3)	 As mentioned, <Text> renders text.

What is returned by the render() of a component is nothing but a tree

of other components. In the preceding case, the root node of the tree is

<View>. Those components inside render() are called subcomponents.

Each subcomponent recursively calls their render() and renders

their subcomponents to complete a subtree. Let’s now take a higher

perspective; the whole app is a cascading tree of components started from

a component named <App>, and now we can see the whole picture of the

fractal topology mentioned in the beginning.

Chapter 1 Start Thinking in React

6

Now let’s magnify the tree by looking at its leaves. Those leaf

components are backed directly by native UI entities. They are the

concrete UIViews in UIKit and one kind of Views or ViewGroups in

Android UI. The translation of the components to native UI objects is the

cutting point between React and Native; we will examine this mechanism

in Chapter 4.

One important property of a component is its life cycle (Figure 1-2).

Predefined life cycle methods are constructor(), componentDidMount(),

componentDidUpdate(), componentWillUnmount(), and

shouldComponentUpdate(). They are invoked by the React runtime at the

appropriate time during the life cycle of the component, which provides

us chances to carry out additional work. For instance, we might need to

fetch data from the network (Chapter 5) in componentDidMount() and to

carry out clean up and free in componentWillUnmount().

constructor()

componentDidMount()

render()

componentDidUpdate()

shouldComponentUpdate()

componentWillUnmount()

Active

Figure 1-2.  Life cycle methods

Note  shouldComponentUpdate() is a method used primarily for
performance optimization. We will discuss its usage in Chapter 6.

Chapter 1 Start Thinking in React

7

1.1.1  �Key Takeaways
In this section, we introduced some React basics by looking at what

a component roughly looks like. We noted some of the key concepts

of a component, such as (a) props, (b) component tree, and (c)

subcomponent, which will be used repeatedly in the following learnings.

We also introduced the unique layout system called flexbox and the

declarative syntax JSX, but we didn’t get into too much depth. Most

importantly, we now have a purpose, the Manyface as an ongoing project.

We are going to use it as a medium to learn all the mentioned concepts

and techniques in detail throughout this book.

1.2	 �The “Hello World” App in Pieces
We’ve got a rough idea of what a component looks like and how an app is

structured from a high-end perspective. But that level of understanding does

not help a lot when it comes to a real-world project. We need more in-depth

and extensive knowledge in order to accomplish Manyface. One of the good

ways to establish such knowledge is by examining the autonomy of another

real app. What we are going to examine is the “Hello world” app shipped

with any React Native projects. It contains almost everything of a runnable

app while being minimal. For now, we forget about Manyface and take a

detour on this “Hello world” app shipped with every React Native project.

1.2.1  �React Native Development Environment
The React Native development environment is a NodeJS project that

enlists several subprojects targeting native platforms such as iOS, Android,

and desktop. These subprojects represent the native facets of the main

project. React Native supports most mainstream operating systems (e.g.,

Windows, Linux, and macOS) as the development host. Nonetheless, we

need macOS if we want to target iOS.

Chapter 1 Start Thinking in React

8

For most of the time, we should work only on the main NodeJS project

which contains the business and UI logic in JavaScript. The native projects,

on the other hand, are app projects conforming to the structure of the

platform IDE. Native projects also contain the React Native runtime that

loads and executes the JavaScript code in the main project. Customized

native modules and native components (Chapter 4) are included also in

the native projects.

React Native adopts npm to manage the dependencies. So most of

the awesomeness in the npm ecosystem, like TypeScript, Jest, and linting

tools, are supported by nature. Moreover, this setting makes a React Native

project work well with Visual Studio Code.

React Native apps should be executable seamlessly on various

platforms, so should its dependencies. Just like in the main project, most

dependencies contain native facades managed by iOS CocoaPods and

Android Gradle. More specifically, npm loads all the required source code

and binaries to local storage of the host, and dependency managers on

the respective native projects load the native parts into the native IDEs for

compiling and linking to the platform specific executables.

Note  There are also React Native libraries implemented in pure
JavaScript. And sometimes we can also use libraries implemented for
the Web. Those projects do not have native facades.

In production mode, the main project produces a JavaScript bundle

which is embedded into the native projects as a plain resource file. When

the app is loaded, the React Native runtime loads the bundle file to execute

the business and UI logic.

In dev mode, the code is loaded from a metro server running on

the development host and is reloaded whenever the code is changed

locally (a.k.a. hot reload). 🏛 Hot reload is a killer feature equipped with

React Native. It gives a nearly zero compiling turnaround, which not

Chapter 1 Start Thinking in React

9

only enhances the development efficiency but also opens up developer

experience that is extravagant in mobile development. For instance, we

can have ten phones of various operating systems and screen sizes and hot

reload the code to all of them simultaneously when programming adaptive

layouts and compatible features; we can also sit side by side with designers

and product managers and fine-tune parameters together in real time for

features that require cross-disciplines such as UI and data validation and

verification.

In dev mode, we can also access various debugging tools by shaking the

device (or sending the shaking command to a simulator). For instance, we

can set breakpoints or step into the code through Chrome; we can inspect

the layout and metadata of the components in display; and we shall send

commands to reload the entire app when the states are corrupted.

Lastly, the React Native version in use is 0.63.4.

Note R educing the compiling turnaround is one of the major
demands on mobile development. On iOS, we need to resort to
advanced lldb commands to change some of the behaviors of the app
without recompiling the code base. In React Native, we can change
everything we wrote and hot reload it. All these come by nature and
free of cost.

Now let’s create a React Native project from scratch by executing the

following command:

npx react-native init Manyface

Then we can execute npm start to boot up the metro server.

Note  The original code of the “Hello world” project is modified for
demonstration purposes.

Chapter 1 Start Thinking in React

10

Let’s start the reading from the index.js which is the entry point

(Listing 1-3).

Listing 1-3.  The hello world app – index.js

import {AppRegistry} from 'react-native';

import App from './App';

import {name as appName} from './app.json';

AppRegistry.registerComponent(appName, () => App);

The only line of logic registers a component App as the root of the

entire app. Here, App is just a naming convention; feel free to rename it as,

for example, MyAwesomeAppCreatedByAwesomeMe.

Next, we look at the main body of the App (Listing 1-4).

Listing 1-4.  The hello world app – skeleton

class Section extends Component { // -------------------> 8)

 render() {

 return (

 <View style={styles.sectionContainer}> // ----------> 1)

 <Text style={styles.sectionTitle}> // ------------> 1)

 {props.title} // -------------------------------> 1)

 </Text>

 <Text style={styles.sectionDescription}> // ------> 1)

 {props.children}

 </Text>

 </View>

);

 }

}

Chapter 1 Start Thinking in React

11

export default class App extends Component {

 render() {

 return (

 <View>

 <StatusBar barStyle="dark-content" /> // -------> 3) 7)

 <SafeAreaView> // ---------------------------------> 7)

 <ScrollView // ----------------------------------> 7)

 contentInsetAdjustmentBehavior="automatic" // -> 3)

 style={styles.scrollView}> // -----------------> 1)

 <Header />

 {global.HermesInternal == null ? null : (// --> 6)

 <View style={styles.engine}> // -------------> 1)

 <Text style={styles.footer}> // -----------> 1)

 Engine: Hermes // -----------------------> 4)

 </Text>

 </View>

)}

 <View style={styles.body}>

 <Section title={'Step One'}> // ----------> 2) 8)

 Edit <Text style={ styles.highlight } > // > 1)

 App.js // -----------------------> 4) 5)

 </Text> to change this // ---------> 4) 5)

 screen and then come back to see your edits.

 </Section>

 <Section title={'See Your Changes'}> // --> 2) 8)

 <ReloadInstructions />

 </Section>

 <Section title={'Debug'}> // -------------> 2) 8)

 <DebugInstructions />

 </Section>

Chapter 1 Start Thinking in React

12

 <Section title={'Learn More'}> // --------> 2) 8)

 Read the docs to discover what to do next:

 </Section>

 <LearnMoreLinks />

 </View>

 </ScrollView>

 </SafeAreaView>

 </View>

);

 }

};

const styles = StyleSheet.create({

...

});

1.2.2  �JSX
Now it’s a good chance to examine JSX. As we have seen before,

components are used in the form of XML tags called JSX in the render()

method. This declarative way of defining a “page” is very similar to that using

HTML. The major advantage of JSX over static HTML is that JSX supports

inline JavaScript which offers runtime controls over visual outcome.

Its name could also hint at this advantage, JSX = inline JS + XML tags.

Embedding inline JavaScript to JSX is simple; just wrap the expression in

curly braces {}. Next, we look at JSX in the “Hello world” app:

	 1)	 The most common embedded expression returns a

single variable object. For instance, the expression

{props.title} returns the value props.title

and sets it as the body of the wrapping <Text>

component. {styles.engine} returns the value of

styles.engine and sets it as View’s style prop.

Chapter 1 Start Thinking in React

13

We will cover props in Section 1.2.3; for now, we

only need to know that props define the component

input and a style prop defines its visual style.

	 2)	 You can also use a constant string in an expression,

for example, <Section title={'Learn More'}>.

	 3)	 And in the above case (2) where the prop value is a

string, curly braces can be omitted, for example:

<StatusBar barStyle="dark-content"/>

	 4)	 Moreover, if the static string is under a tag, double

quotes can be omitted too. See this one:

<Section title={'Step One'}>

 Edit <Text style={ styles.highlight }

 App.js

 </Text>

 screen and then come back to see your edits.

</Section>

One interesting point here is that the complete

amalgam of string and <Text> (Edit ... your edits) is

passed down to <Section> as props.children. The real

rendering point is actually the <Text> in <Section>:

 ...

 <Text style={styles.sectionDescription}>

 {props.children}

 </Text>

 ...

Here, children is another important concept, which we

will cover very soon in the next section.

Chapter 1 Start Thinking in React

14

	 5)	 <Text> is a very versatile component as it can be

nested, and each of the nested individuals can be

applied with different styles. So a rich text box is

supported by <Text>.

Note  In general principle, the UI layer shouldn’t contain any complex
logic that normally belongs to the other software layers. In some large
scale industrial applications, business logic are carried out solely from
server-side to give the most flexibility. So it is reasonable that each
expression can only contain one line of code.

	 6)	 Since we have this one-line restriction, the ternary

expression is used in place of an if...else...:

{global.HermesInternal == null ?

 null :

 <View>...

}

This is called a conditional rendering. Here, if the

condition is false (i.e., Hermes is not detected),

the expression returns null, which will be simply

ignored and render nothing. Otherwise, it returns a

<View> with the Hermes-related information.

Note  null instead of undefined is the recommended value
to render nothing. Later, we will see expressions that are more
interesting than an if...else equivalence. For example, you shall
use map() to render a list of components based on an array or use
a component state to drive animation.

Chapter 1 Start Thinking in React

15

	 7)	 Some handy stock components, their names are

self-explained: <StatusBar> occupies the phone

status bar and defines the attributes of the area;

<SafeAreaView> places bottom and top insets

that avoid overlapping between the app content

and system items such as screen rounded corners,

sensor housing and area for home indicator. All its

children can be positioned away from those areas to

avoid occlusion or clipping; <ScrollView> makes a

<View> scrollable when its size is larger than that of

the screen.

	 8)	 Lastly, we defined a <section/> component and

reuse it in various places. This is the first custom

component we have seen. To better understand

how it works, let’s quickly move on to the next

section.

1.2.3  �props
props define the components inputs. Since React is data driven, there is

a very limited need for public methods and properties. All interfaces and

potential interactions of a component are exposed in the form of props.

So whenever you are not sure about the usage of a component, look at

its props.

Note  React has very good support of TypeScript. In fact, all code
in React can be written in TypeScript to give an explicit type and
type check in packaging time, which is way safer for large-scale
projects. A side benefit of TypeScript is that it makes the interfaces
of components crystal clear with the explicitly typed props.

Chapter 1 Start Thinking in React

16

For instance, an <Image> or a <video> could expose a source props

to indicate where to fetch the content, and a <Button> could expose an

onPress() method to define what happens when it is pressed.

There are also predefined props that are reserved for special cases.

Next, we examine two most common predefined props, style and

children.

1.2.3.1  �Style

Style is well self-explained by its name; it defines the components visual

style and layout. A style prop is no different than an ordinary prop by its

usage. In Listing 1-5, we include the style prop of the “Hello world” app.

Listing 1-5.  The hello world app – styles

const styles = StyleSheet.create({

 scrollView: {

 backgroundColor: Colors.lighter,

 },

 engine: {

 position: 'absolute', // ------------------------------> 1)

 right: 0,

 },

 body: {

 backgroundColor: Colors.white,

 },

 sectionContainer: {

 marginTop: 32, // -------------------------------------> 2)

 paddingHorizontal: 24, // -----------------------------> 2)

 },

Chapter 1 Start Thinking in React

17

 sectionTitle: {

 fontSize: 24,

 fontWeight: '600',

 color: Colors.black,

 },

 sectionDescription: {

 marginTop: 8, // --------------------------------------> 2)

 fontSize: 18,

 fontWeight: '400',

 color: Colors.dark,

 },

 highlight: {

 fontWeight: '700',

 },

 footer: {

 color: Colors.dark,

 fontSize: 12,

 fontWeight: '600',

 padding: 4, // --> 2)

 paddingRight: 12, // ----------------------------------> 2)

 textAlign: 'right',

 },

});

Most of the styles are for individual attributes and are self-explained;

Figure 1-3 gives the components’ corresponding positions on the screen

to demonstrate the visual outcome of the styles.

Chapter 1 Start Thinking in React

18

Figure 1-3.  Visual outcome when styles are applied

Note  When defining your own component, nothing stops you from
exposing all related styles as custom, first-level props. It is just
nice to group all the visual- and layout-related props into style. One
special case of using custom, first-level props for styles is when
stylizing children (Section 1.2.3.2) of subcomponents. 🏛 It is
preferred to define their styles as custom, first-level props in
order to be distinguished from the styles associated with the
component itself.

Chapter 1 Start Thinking in React

19

Apart from individual visuals, styles can be used to define the layout:

	 1)	 position: 'absolute' is used to opt out the default

flexbox layout. Instead, you indicate the absolute

position inside the component’s container. For example:

{

 position: 'absolute',

 top: 0,

 left: 0

}

lays out the component to the top-left corner:

One use case of absolute position is an overlay:

{

 position: 'absolute',

 top: 0,

 left: 0,

 + width: '100%',

 + height: '100%',

}

Chapter 1 Start Thinking in React

20

	 2)	 margin adds space outside of the component

border, so it is normally used to adjust the position

of the component itself:

while padding adds space inside; hence, it is used to

adjust the positions of its children component:

Another common style you might see in production source code is

style={{xxx1: yy1, xxx2: yy2}}. Here, the outer pair of braces is for

JSX, and the inner pair of braces is part of the JavaScript object. ❄ This

way is called an inline style, which is slightly less performant as it creates

new anonymous objects each time the render() is called. 🚀 So the static

styles variable used earlier is the best practice.

Besides a single object, you can also assign an array of objects for

style, for example, style={[{xxx1: yy1, xxx2: yy2}, {xxx3: yy3}]}.

A style array is normally used when you want some style attributes to be

dynamically defined by states. The change of those styles is driven by

setState() invocations (Section 1.2.5).

Note  ❄ stands for performance issue; 🚀 is the hint for resolving it.

Chapter 1 Start Thinking in React

21

1.2.3.2  �Children

Children are components that are wrapped inside another component.

Children are passed to the container as a special prop for custom layout

within. Listing 1-6 demonstrates their relationship.

Listing 1-6.  Container and children

...

render() {// the render method of some component

...

 <Container> // The wrapper tag is a container

 <Child1/> // The lower ordered tags are children

 <Child2/>

 </Container>

...

}

...

Another similar notion to children is a subcomponent which is

discussed in Section 1.1.1. As a reminder, if children are components

under a container geologically, a subcomponent belongs to the super-
component itself logically. In “Hello world,” <View> and <Text> are

Section’s subcomponents.

Let us continue with the “Hello world” example and look at children of

Section (Listing 1-7).

Listing 1-7.  The hello world app – children of Section

...

 <Section title={'Step One'}>

 Edit <Text style={ styles.highlight } // ---> 1)

 App.js

 </Text> to change this

Chapter 1 Start Thinking in React

22

 screen and then come back to see your edits.

 </Section>

 <Section title={'See Your Changes'}>

 <ReloadInstructions /> // ------------------> 2)

 </Section>

 <Section title={'Debug'}>

 <DebugInstructions /> // -------------------> 3)

 </Section>

 <Section title={'Learn More'}>

 Read the docs to discover what to do next: // 4)

 </Section>

...

They are as follows:

	 1)	 The nested <Text>

Edit <Text style={ styles.highlight }

 App.js

 </Text> to change this

screen and then come back to see your edits.

	 2)	 The <ReloadInstructions />

	 3)	 The <DebugInstructions />

	 4)	 The plain text “Read the docs to discover what to

do next:”

We have explored what children are like. Now it’s time to explain

props.children and where it comes from. Like styles, props.children

is another predefined prop that refers to the current children of the

component instance. This prop gives the current component a chance to

lay out its potential children.

Chapter 1 Start Thinking in React

23

Note  Figure 1-5 in the next section (Section 1.2.4) is a good place
to refer to as it illustrates how props.children works in the big
picture.

If a component omits the props.children passed through, it cannot

be used as a container at all as all its children will not be rendered.

Conversely, 🏛 when designing a component as a container, it’s

compulsory to handle props.children in render().

Note  🏛 stands for architecture and design principles.

Back to the source code (Listing 1-8).

Listing 1-8.  The hello world app – layout subcomponents of Section

class Section extends Component {

 render() {

 return (

 <View style={styles.sectionContainer}>

 <Text style={styles.sectionTitle}>

 {props.title}

 </Text>

 <Text style={styles.sectionDescription}>

 {props.children} // -----------------------------> 1)

 </Text>

 </View>

);

 }

}

Chapter 1 Start Thinking in React

24

	 1)	 Section explicitly renders its children (under one

of its <Text> subcomponents). So, whenever it is

used as a container, its children will be displayed

properly.

OK, we can say that Section is a container by design since render()

settles the positions of children. But what if it does not? Lastly, let us take a

quick counterexample where children are omitted:

 <Text style={styles.sectionDescription}>

 {props.children} // <--------------------------- remove

 </Text>

As expected, all its children (the section bodies) are dismissed as

Section does not know how to lay out them (Figure 1-4).

Figure 1-4.  Section without handling props.children

Chapter 1 Start Thinking in React

25

1.2.4  �JSX Internals

Note  Understanding how JSX works internally does not only
satisfy our curiosity as a developer but also offers insight into how
a UI update works, which is one critical point in React Native’s
performance.

If JSX is on one side of a coin, the other side would be React.

createElement(type, config, children) which is the internal

implementation of JSX. The parameters are extracted directly from what

you declared in JSX. type is the tag name, config is what you passed as

props, and children are all the children components which, in turn, are

represented as a group of createElement() invocations. We can look at

the transformed version of the Section component in the “Hello world”

app to get a practical view of how JSX is mapped into parameters of

createElement() as shown in Listing 1-9.

Listing 1-9.  The hello world app – the real form of Section

function Section(props) {

 return React.createElement(

 View, // ---------------------------------> type

 { style: styles.sectionContainer }, // ---> config

 React.createElement(// ------------------> children 1

 Text,

 { style: styles.sectionTitle },

 props.title

),

Chapter 1 Start Thinking in React

26

 React.createElement(// -------------------> children 2

 Text,

 { style: styles.sectionDescription },

 props.children

)

);

}

As shown in Listing 1-9, the cascading createElement() is actually

one line of code where the children components (also created by

createElement()) are passed as the container’s last parameters. Likewise,

deeper nested components are passed through in a similar way to their

corresponding container.

This transformation is carried out by babel. We shall use the following

command to uncover the thin veil of JSX and look at the App in its real

form. Alternatively, we can use https://babeljs.io/repl to achieve

the same.

./node_modules/.bin/babel --plugins transform-react-jsx App.js

Note  You might need to install bable-cli and babel-plugin-
transform-react-jsx if you haven’t.

Now let’s look at the whole App component (Listing 1-10).

Listing 1-10.  The hello world app – the real form of App

export default class App extends Component {

 render() {

 return React.createElement(

 View,

 null,

 React.createElement(StatusBar,

Chapter 1 Start Thinking in React

https://babeljs.io/repl

27

 { barStyle: 'dark-content' }),

 React.createElement(

 SafeAreaView,

 null,

 React.createElement(

 ScrollView,

 {

 contentInsetAdjustmentBehavior: 'automatic',

 style: styles.scrollView },

 React.createElement(Header, null),

 �global.HermesInternal == null ? null : React.

createElement(

 View,

 { style: styles.engine },

 React.createElement(

 Text,

 { style: styles.footer },

 'Engine: Hermes'

)

),

 React.createElement(

 View,

 { style: styles.body },

 React.createElement(

 Section,

 { title: 'Step One' },

 'Edit ',

 React.createElement(

 Text,

 {

 style: styles.highlight

 },

Chapter 1 Start Thinking in React

28

 'App.js'

),

 �'to change this screen and then come back to see

your edits.'

),

 React.createElement(

 Section,

 { title: 'See Your Changes' },

 React.createElement(ReloadInstructions, null)

),

 React.createElement(

 Section,

 { title: 'Debug' },

 React.createElement(DebugInstructions, null)

),

 React.createElement(

 Section,

 { title: 'Learn More' },

 'Read the docs to discover what to do next:'

),

 React.createElement(LearnMoreLinks, null)

)

)

)

);

 }

};

You might have heard about a virtual DOM tree (VDOM tree). This is

the core data structure React uses to render the UI and to drive its updates.

However, createElement() does not create the virtual DOMs. Instead, it

Chapter 1 Start Thinking in React

29

returns a blueprint that can be used by React to create the final VDOMs.

The blueprint of createElement() is also what the render() method

returns.

Note  So your render() method does not actually render anything.
It kickstarts the whole render process.

Back to the “Hello world” app, what React generates based on our

render() method is illustrated in Figure 1-5.

View render() in App

render() in SectionSafeAreaView

ScrollView

View LearMoreLinks

StatusBar

Section Section Section Section

Text

Text Text

Text

Text

Children Children Children

Children

Text

Text

Text

Text

Text

Text

Text

Reload
instruc
tions

Debug
instruc
tions

Figure 1-5.  DOM tree of app

Chapter 1 Start Thinking in React

30

1.2.5  �States
Like props, states are data that drive the behavior or, more specifically,

the UI behavior of a component. Unlike props that are passed from

outside, states are intrinsic. In other words, all moving parts of the

UI are converged in the form of states combined. Thanks to the data-

driven design of React, all the visual changes are driven by a single

function, setState(). This is true for all sources or forms of the changes,

text editing, button press, device rotation, and so forth. When you call

setState() of one component, you basically tell React to do two things:

(1) to update the component’s state and (2) to call its render() method to

refresh the UI. Next, we modify the “Hello world” a bit to demonstrate how

it works.

1.2.5.1  �State Change on the Current Component

I hope you still remember the missing Hermes-related information in the

“Hello world” app. This time, we use a state rather than a static global

variable to control its visibility (Listing 1-11).

Listing 1-11.  The hello world app with a change of state

...

export default class App extends Component {

+ constructor(props) {

+ super(props);

+

+ this.state = {

+ displayHermes: false // ----------------------------> 1)

+ };

+}

Chapter 1 Start Thinking in React

31

+ headerTouched() {

+ let display = !this.state. displayHermes;

+ this.setState({displayHermes}); // -------------------> 4)

+ }

 render() {

 return (

 <View>

 <StatusBar barStyle="dark-content" />

 <SafeAreaView>

 <ScrollView

 contentInsetAdjustmentBehavior="automatic"

 style={styles.scrollView}>

+ <TouchableOpacity

+ onPress={this.headerTouched.bind(this)} // -----> 3)

+ >

+ <Header />

+ </TouchableOpacity>

+- {this.state.displayHermes === false ? null : (// -> 2)

 <View style={styles.engine}>

 <Text style={styles.footer}>

 Engine: Hermes

 </Text>

 </View>

)}

 <View style={styles.body}>

 <Section title={'Step One'}>

 Edit <Text style={ styles.highlight }

 App.js

 </Text> to change this

 screen and then come back to see your edits.

 </Section>

Chapter 1 Start Thinking in React

32

 <Section title={'See Your Changes'}>

 <ReloadInstructions />

 </Section>

 <Section title={'Debug'}>

 <DebugInstructions />

 </Section>

 <Section title={'Learn More'}>

 Read the docs to discover what to do next:

 </Section>

 <LearnMoreLinks />

 </View>

 </ScrollView>

 </SafeAreaView>

 </View>

);

 }

};

...

	 1)	 state is nothing but an ordinary JavaScript object.

All the states of a component are required to be

declared in its constructor. 💣 Otherwise, setState()

throws an exception and could potentially crash

the app. 🛡 Again, TypeScript is extremely helpful

to avoid this kind of crash as it enforces the state

structure at a very early stage of compiling.

Note  Here, 💣 means a crash point and 🛡 is its countermeasure.
The relentless vigilance to all categories of crashes is one key to
0 crash.

Chapter 1 Start Thinking in React

33

	 2)	 We replace the global.HermesInternal with the

added state to be used to control the visibility of the

Hermes information.

	 3)	 We add a TouchableOpacity which can turn any

component into a clickable button. The onPress

prop accepts an instance method which will be

called back when TouchableOpacity is pressed.

	 4)	 Call setState() to update the UI. 🚀 Note that if the

name of the key and the value are the same, we can

take the shortcut of setState({name}) instead of

setState({name: name}).

Besides an instance method, we can also pass an arrow method to

this prop, for example, onPress={() => {...}}. ❄ Like an inline style, an

inline callback has a performance hit as a new method instance needs to

be created for every render pass. 🚀 We’d better use the instance method as

shown earlier.

1.2.5.2  �Cascading State Changes

Changing the visual of the current component is of less interest. Very

often, we need to simultaneously conduct the change to a nested

subcomponent, or more than one subcomponent, in a cascading way.

A cascading change is carried out using setState() in conjunction

with a prop which is the single point that connects a component to

the outside, its caller component. More specifically, when a prop of a

component is set with the reference of a state, the change of the state can

be replayed into its subcomponent.

Back to the “Hello world.” Now we want to change the title of the first

section to blue when the TouchableOpacity is pressed (Listing 1-12).

Chapter 1 Start Thinking in React

34

Listing 1-12.  The hello world app with a cascading change of state

class Section extends Component {

 render() {

 return (

 <View style={styles.sectionContainer}>

+- <Text style={[

+- styles.sectionTitle,

+ {color: this.props.redTitile ? 'red' : 'black'} // > 3)

+-]}>

 {props.title}

 </Text>

 <Text style={styles.sectionDescription}>

 {props.children}

 </Text>

 </View>

);

 }

}

export default class App extends Component {

 constructor(props) {

 super(props);

 this.state = {

+- redTitle: false // -------------------------------> 1)

 };

 }

 headerTouched() {

+- let redTitle = !this.state.redTitle;

+- this.setState({redTitle}); // ----------------------> 1)

+-}

Chapter 1 Start Thinking in React

35

 render() {

 return (

 <View>

 <StatusBar barStyle="dark-content" />

 <SafeAreaView>

 <ScrollView

 contentInsetAdjustmentBehavior="automatic"

 style={styles.scrollView}>

 <TouchableOpacity

 onPress={this.headerTouched.bind(this)}

 >

 <Header />

 </TouchableOpacity>

- {this.state.displayHermes === false ? null : (

 <View style={styles.engine}>

 <Text style={styles.footer}>

 Engine: Hermes

 </Text>

 </View>

-)}

 <View style={styles.body}>

 <Section

 title={'Step One'}

+ redTitle={this.state.redTitle} // ---------> 2)

 >

 Edit <Text style={ styles.highlight }

 App.js

 </Text> to change this

 screen and then come back to see your edits.

 </Section>

Chapter 1 Start Thinking in React

36

 <Section title={'See Your Changes'}>

 <ReloadInstructions />

 </Section>

 <Section title={'Debug'}>

 <DebugInstructions />

 </Section>

 <Section title={'Learn More'}>

 Read the docs to discover what to do next:

 </Section>

 <LearnMoreLinks />

 </View>

 </ScrollView>

 </SafeAreaView>

 </View>

);

 }

};

...

	 1)	 We adjust the name of the state in accordance with

the purpose of this time.

	 2)	 We associate the state of App to the prop of Section

and prepare for the cascading change.

	 3)	 We use the designated prop, that is, this.props.

redTitle, to control the text color of the title.

Chapter 1 Start Thinking in React

37

1.2.6  �setState() Internals
setState() invokes the component’s render() method with the states

that are newly set to update the UI. But this doesn’t answer the question of

how cascading state changes are carried out. To understand that part, we

need to look closer.

In fact, setState() does not only trigger the current component

render() method but all the render() methods of the subtree rooted by

the current component. Then, all the changes occurring along the subtree

are collected, and a VDOM tree is derived based on the changes. Last, the

new VDOM tree is compared with the existing one, and actual updates are

carried out on components that are changed.

This operation is expensive. The time complexity is linearly correlated to

the scale of the component tree. We have demonstrated one in Figure 1-5.

In real-world applications, the tree is much bigger, and ❄ setState()

becomes extremely heavy. In such a scenario, the user will experience

unresponsive UX. This is because most of the user interactions take place on

the same thread as setState() (Chapter 6). As such, setState() stands as

one of the most critical performance bottlenecks of React Native.

What are the cures? 🚀 The simplest trick is to keep the component
tree small by relentlessly trimming it down. Simple but not easy. In the

next chapter (Section 2.1), we will give some techniques of doing away

superfluous layers or nodes. 🚀 It’s also very crucial to avoid calling

setState() on a node with a large subtree, or, in other words, very close

to the root. Here, Redux (Chapter 6) is our friend. Please refer to Chapter 6

for more information. View f  latting introduced by Fabric is a “nice to have”

optimization that trims down the component tree. As app developers, it

is still recommended for us to be mindful about the tree size as the always

caring of performance leads to a 5 star app.

Lastly, it is worth noting that multiple invocations of setState()

are a typical antipattern. ❄ It exacerbates the rendering process as

the React runtime needs to repeat the heavy lifting work each time a

Chapter 1 Start Thinking in React

38

setState() is invoked. 🚀 In React 18, automatic batching can alleviate the

preceding issues. Nevertheless, coalescing the state updates is still highly

recommended for occasions that automatic batching cannot cover, for

example, promises, callbacks from timeout, etc. So we should keep a close

eye on it.

1.2.7  �Key Takeaways
In this section, we examined the “Hello world” app shipped with the

React Native project. All the terminology brought up in Section 1.1

were examined with concrete code. We learned how components are

composed and aggregated using JSX syntax, how to define a component’s

external input using props, how to define a component’s internal visual

state using state, and how to define the visual and conduct basic layout

using styles and flexbox. Then we modified the “Hello world” app to

demonstrate how a component can change its visual outcome in runtime

by leveraging setState() which is the key method that updates the UI and

proceeds the UX. We also peeked into the VDOM tree, the mechanism

underlying JSX and setState() that drives the UI in all React-based apps.

Besides, we also learned the concepts of children and subcomponents

which are sometimes confused with each other. We didn’t stop at the

concept level; we took a step further to illustrate the practical layout of

children in subcomponents.

1.3	 �Summary
In this chapter, we grasped some general knowledge of React. We brought

up those key concepts in the beginning and illustrated with the assistance

of real code, the “Hello world” app shipped with React Native. Knowledge

gained through “learning” and “reading” are neither sufficient nor fast

enough to make a real app, but they are enough to assist us in going on

with the rest of this book which will be emphasizing on “do.”

Chapter 1 Start Thinking in React

39

We set Manyface as the main quest to consolidate our learning. As we

proceed, Manyface will grow side by side with us. Each time we learn new

skills, advance in knowledge, and gain matching confidence, Manyface

iterates to its next version better.

We started using notion to highlight the key points, which are

summarized as follows:

	 1)	 ❄ Stands for a performance issue.

	 2)	 🚀 Stands for an efficiency boost trick.

	 3)	 💣 Stands for a crash point, an antipattern, or simply

a pitfall.

	 4)	 🛡 Stands for the approach to defend a crash or to

circumvent a pitfall.

	 5)	 🏛 Stands for a hint at app architecture, principles,

philosophy, or pattern.

Chapter 1 Start Thinking in React

41© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_2

CHAPTER 2

Foundations of React
React is built on top of very minimal theoretical concepts, and we have

covered, well, pretty much all of them in the last chapter. However, to get

things done, we need to get to know the meticulous technical details, the

various framework particularities, and hands-on, factory techniques. Some

of them are clean, well-abstracted principles that can be applied not only

to React-based applications but anywhere else in the programming world,

while others are just unspoken Konami codes.

Starting from this chapter, we are going to learn those techniques,

well documented and unspoken alike. This chapter will continue focusing

on the React part; hence, it emphasizes on the user interface in practice.

At the end of this chapter, we will complete the basic interface for the

moment screen of Manyface.

2.1  �Flexbox, a Practical Guide
Basically, flexbox assists in arranging a group of components within a

container representing a rectangle area, or a box. For each box, style

flexDirection is the general guide that indicates whether the children

should flow horizontally ('row') or vertically ('column'). Then, we can

use styles like justifyContent and alignItems to lay out the children.

In a similar way, these boxes with various layout settings are in turn put

together to fill bigger boxes, which ultimately fill the full screen.

https://doi.org/10.1007/978-1-4842-8042-3_2

42

The two most used styles for layout are justifyContent and

alignItems. Here, justifyContent determines in what order children

should occupy the available space along the mentioned flow direction

(main axis), while alignItems aligns children across the direction. For

instance, the combination of flexDirection: 'column', justifyContent:

'flex-start', and alignItems: 'center' should lay out the children, as

shown in Figure 2-1.

flexDirection
column
(to flow vertically)

alignltems
center

justifyContent
flex-start

Figure 2-1.  justifyContent: ‘flex-start’

Figure 2-2 gives the visual outcome if we change the justifyContent

to 'flex-end'.

flexDirection
column
(to flow vertically)

alignltems
center

justifyContent
flex-end

Figure 2-2.  justifyContent: ‘flex-end’

Figure 2-3 gives the result of 'space-between' for justifyContent.

Chapter 2 Foundations of React

43

flexDirection
column
(to flow vertically)

alignltems
center

justifyContent
space-between

Figure 2-3.  justifyContent: ‘space-between’

alignItems works as a supplementary means of justifyContent.

It applies alignments on the cross axis after the main flow direction is

settled. Due to this variance, some of the values for justifyContent such

as 'space-between' do not exist in alignItems. Figure 2-4 shows what

alignItems: 'center' looks like for flexDirection: 'column' and

flexDirection: 'row', respectively.

flexDirection flexDirection
column row

(to flow horizontally)(to flow vertically)

Figure 2-4.  alignItem: ‘center’ on different flow directions

Besides 'center', another common value for alignItems is

'flex-start' as shown in Figure 2-5.

flexDirection flexDirection
column row

(to flow horizontally)(to flow vertically)

Figure 2-5.  alignItem: ‘flex-start’ on different flow directions

Lastly, Figure 2-6 is the layout of 'flex-end'.

Chapter 2 Foundations of React

44

flexDirection flexDirection
column row

(to flow horizontally)(to flow vertically)

Figure 2-6.  alignItem: ‘flex-end’ on different flow directions

2.1.1  �Component Size
The component size is determined in three ways: intrinsic size, given size,

and flex size.

Intrinsic size is decided by the content size of the component. For

instance, the intrinsic size of a Text is determined by the font size and

text length combined; and the intrinsic size of an Image is the dimension

of the graphic resource in use. A more complex example is a container
component whose intrinsic size is the sum of the intrinsic sizes of all its

children plus the gap/margin among them. Intrinsic size only becomes

effective when no size is set explicitly.

Note  🏛 The intrinsic size of an image can be deduced
automatically only when it is a local resource and loaded in the
packaging phase (source={require('local-directory-to-
the-resource')}). When the graphic is loaded from the network,
we must use the given size to represent the intrinsic size of the
resource as its dimension should be fixed and known in most cases.
A more practical approach is to implement a media selection to cater
to various pixel densities.

We know that one way to set size explicitly is to use style.width and

style.height (Section 1.2.3.1). We can call sizes of this kind given size.

The value of these props can be an absolute value in points or percentage

Chapter 2 Foundations of React

45

compared to the container, for example, width: '80%'. The concept of

point might be unfamiliar to developers with non-front-end background.

Simply put, points describe the logical size regardless of the pixel density.

So, if sizes of two objects are the same in points, you see they are about the

same size in handhold.

Flex size is another kind of explicit size. Flex size is indicated with

style.flex, which dictates the relative size compared to sibling

components. In other words, it determines how the full space of a

container is distributed among children. Figure 2-7 shows what it looks

like if three components (a, b, c) style.flex is set to 1, 1, 2, respectively.

Figure 2-7.  Flex sizes

Armed with the basics explained earlier, we are now capable of a very

complex layout. Let’s get back to the Manyface. This time, we are going to

take it more seriously by composing its core component Feed.

2.1.2  �Case Study: Feed
We look at the requirements first:

	 1)	 We want the thumbnail of the user’s avatar to be

displayed on the left top of each Feed. And we want

the image to be rounded corners.

	 2)	 We want the user’s nickname to be on the right

of her avatar, aligned to the top, and we need a

reasonable margin in between.

	 3)	 We want the time right beneath her nickname. It is

aligned with a nickname to the left and aligned with

a thumbnail to the bottom.

Chapter 2 Foundations of React

46

	 4)	 Then follows the text and image.

	 5)	 If the Feed is liked, we want to show the likes and

number of comments and number of shares. We

also give control to the users so they can like,

comment, or share the Feed. In terms of the visual,

we want to list the control buttons and numbers in

the same row.

	 6)	 Lastly, the Feed should be adaptable to any length of

the content.

Figure 2-8 is what the outcome looks like.

Figure 2-8.  Feed visual outcome

Our first impression is that the main flow direction of this view is

vertical. Following this direction, we can then take a top-down approach

to divide the view into three major areas: (1) metadata area, (2) Feed body,

and (3) control panel. Now we can conquer them separately (Figure 2-9).

Chapter 2 Foundations of React

47

At this stage, all the resources are hard coded for now. They will be

aggregated in a model layer and eventually fetched from the network

(Chapter 5) as we progress.

We look at the code for the area of metadata first (Listing 2-1).

Listing 2-1.  Metadata area

...

<View style={styles.metaContainer}> // ------------------> 1)

 <Image style={styles.avatar} source={{uri: 'https://holmeshe.

me/05apps/avatar01.jpeg'}}/> // -------------------------> 2)

 <View style={styles.infoContainer}> // ----------------> 3)

 <Text style={styles.userName}>{'Marina'}</Text>

 <Text style={styles.date}>{'July 17'}</Text>

 </View>

</View>

...

Figure 2-9.  The divided mock

Chapter 2 Foundations of React

48

metaContainer: { // -------------------------------------> 1)

 width: '100%',

 flexDirection: 'row',

 marginBottom: 20,},

avatar: { // --> 2)

 width: 60,

 height: 60,

 borderRadius: 5,

 marginRight: 20,

},

infoContainer: { // -------------------------------------> 3)

 flexDirection: 'column',

 justifyContent: 'space-between'

},

userName: {

 fontWeight: 'bold',

 fontSize: 18,

},

date: {

 fontSize: 18,

},

...

	 1)	 We notice that the height of the metadata area can

be determined by the height of the image; hence, we

refrain from giving explicit height to make this view

more adaptable.

	 2)	 As said, Image can deduce its intrinsic size only

when it is loaded locally using a require(...)

expression. So we give an explicit size to the

component.

Chapter 2 Foundations of React

49

	 3)	 A subcontainer is created to give a vertical layout for

the texts.

Note  React Native does not have margin collapsing. So we
need to apply marginBottom explicitly for all the containers when
appropriate.

Next, we look at the Feed body which is relatively simpler (Listing 2-2).

Listing 2-2.  Feed body area

... // --> 1)

<Text style={styles.textPost}> // -------------------------> 2)

 Meet Joy!

</Text>

<Image style={styles.imagePost} source={{uri:

'https://holmeshe.me/05apps/post01.png'}}/> // ----------> 3)

...

textPost: { // --> 2)

 fontSize: 22,

 marginBottom: 20,

},

imagePost: { // ---> 3)

 width: '100%',

 aspectRatio: 4/3,

 marginRight: 20,

},

...

Chapter 2 Foundations of React

50

	 1)	 Since there is no change of flex direction as in

metadata (infoContainer), we decide to try not to

enlist a container for the Feed body. Rather, we let

the Feed content flow along the main flex direction.

Note  🏛 Less components reduce memory and CPU overhead, and
less code spares time and energy for the developer in the long run.
Here is one approach: try introducing a new layer only when the flex
direction changes. Though there are a few exceptional cases, this
approach can make us more vigilant by using less layers consciously.

	 2)	 We need to apply the marginBottom to make the

layout consistent.

	 3)	 🏛 width: '100%' and aspectRatio are the golden

combo styles applied for Image.

Let’s continue along with the flow direction and examine the layout for

the control panel (Listing 2-3).

Listing 2-3.  Control panel area

...

<View style={styles.controlContainer}> // -----------------> 1)

 <NumberedWidget style={{flex: 1}} type={widgetTypes.LIKE}

number={10}/> // --> 2)

 <NumberedWidget style={{flex: 1}} type={widgetTypes.COMMENT}

number={2}/> // ---> 2)

 <NumberedWidget style={{flex: 1.5}} type={widgetTypes.SHARE}

number={5}/> // ---> 2)

 <Widget type={widgetTypes.MORE} /> // -------------------> 2)

</View>

Chapter 2 Foundations of React

51

...

controlContainer: {

 flexDirection: 'row',

 justifyContent: 'space-between',

},

...

	 1)	 We encounter another flex direction change. So we

added another container here.

	 2)	 By examining the visual requirement, it is very

tempting to divide the control panel into two major

portions using two containers like this:

<View style={{flex:3}}>

 <Like/>

 <Comment/>

 <Share/>

</View>

<View style={{flex:1}}>

 <More/>

</View>

But since there is no change of flex direction, we find a

way to use flex applied for individual control buttons to

reduce another layer of container.

Next, we look at how a widget is implemented (Listing 2-4).

Listing 2-4.  Widget

...

const widgetTypes = {

 LIKE: 'like',

 COMMENT: 'commnet',

Chapter 2 Foundations of React

52

 SHARE: 'share',

 MORE: 'more',

}

function Widget(props) { // ------------------------------> 3)

 let iconName = 'thumb-up-outline';

 switch (props.type) {

 case widgetTypes.LIKE:

 iconName = 'thumb-up-outline';

 break;

 case widgetTypes.COMMENT:

 iconName = 'comment-text-outline';

 break;

 case widgetTypes.SHARE:

 iconName = 'launch';

 break;

 case widgetTypes.MORE:

 iconName = 'dots-horizontal';

 break;

 }

 return (

 <Icon name={iconName} color={'grey'} size={30} />

);

}

function NumberedWidget(props) { // -----------------------> 1)

 return (

 <View style={[{...props.style}, styles.widget]}> // ----> 2)

 <Widget type={props.type}/>

 <Text style={styles.widgetText}>{props.number}</Text>

 </View>

Chapter 2 Foundations of React

53

);

}

...

widget: { // --> 2)

 flexDirection: 'row',

 alignItems: 'center',

 justifyContent: 'flex-start',

},

widgetText: {

 marginLeft: 3,

 fontSize: 16,

 color: 'grey',

},

...

	 1)	 NumberedWidget is the composition of Widget and

Text. We will see very soon that composition is

favorable than inheritance for code encapsulation

and reusing (Section 2.2).

	 2)	 The styles of NumberedWidget are divided into two

portions. The subcomponents layout is inherent

in the NumberedWidget; hence, it is defined as

a constant style. On the other hand, the layout

of NumberedWidget itself should be defined by

its container. So the passed through styles are

expanded as is.

	 3)	 Widget is a factory component that returns an Icon

in an on-demand manner.

Chapter 2 Foundations of React

54

Lastly, we look at how components are put together to implement

Feed (Listing 2-5).

Listing 2-5.  Feed

class Feed extends React.Component {

 render() {

 return (

 <View

 style={[

 {...this.props.style}, styles.commonPadding

]}

 >

 <View style={styles.metaContainer}>

 <Image

 style={

 styles.avatar

 }

 source={

 {uri: 'https://holmeshe.me/05apps/avatar01.jpeg'}

 }

 />

 <View style={styles.infoContainer}>

 <Text style={styles.userName}>{'Marina'}</Text>

 <Text style={styles.date}>{'July 17'}</Text>

 </View>

 </View>

 <Text style={styles.textPost}>

 Meet Joy!

 </Text>

 <Image

Chapter 2 Foundations of React

55

 style={styles.imagePost}

 source={

 {uri: 'https://holmeshe.me/05apps/post01.png'}

 }

 />

 <View style={styles.controlContainer}>

 <NumberedWidget

 style={{flex: 1}}

 type={widgetTypes.LIKE}

 number={10}

 />

 <NumberedWidget

 style={{flex: 1}}

 type={widgetTypes.COMMENT}

 number={2}

 />

 <NumberedWidget

 style={{flex: 1.5}}

 type={widgetTypes.SHARE}

 number={5}

 />

 <Widget type={widgetTypes.MORE} />

 </View>

 </View>

)

 }

}

Chapter 2 Foundations of React

56

2.1.3  �Key Takeaways
In this section, we went through the usage of flexbox, namely, to lay out

and to set size. Then we took it into action by composing the Feed, the

building block of the core user experience of Manyface. This section could

set up the foundation to handle most basic layout tasks. For more complex

scenarios, we are going to learn some high-end principles and advanced

techniques for layout in Chapter 6. What? You want to own a complete

vertical feature? You will! Just read on.

2.2  �Composition vs. Inheritance, HOC
I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.

—Abraham Harold Maslow

Coming from a traditional OOP background, it could be tempting

to use inheritance for code reusing and logic encapsulation. But it

is inappropriate in React which adopts a declarative paradigm. To

understand why, let us look at the tool and the object more closely.

In traditional OOP, classes are mechanical centric, and all the logic and

properties can be accessed or overridden directly by a subclass. This makes

inheritance an efficient tool for code reusing and logic encapsulation.

On the other hand, components are presentational centric, and the

most valuable method that is worth being inherited could be the render()

method. This is what makes inheritance clumsy. There are generally three

options to use inheritance for components, to override completely, to

inherit as is, and to call super.render() in the overridden render(). Let’s

look at them separately and understand why none of them are optimal.

Chapter 2 Foundations of React

57

First, completely overriding a render() makes no sense – if a

component has its own version of render(), it is better off being a stand-

alone rather than being a subclass of any component as a superclass.

Moreover, completely overriding a render() could potentially invalidate

all the supplementary methods and states built around the original one.

Second, directly inheriting the super.render() without overriding is

less optimal as any specialization introduced in the subclass (that controls

the render() behavior of the superclass) can be achieved in a simpler and

more standard form, props in the superclass.

Third, we can also override the render() and call super.render()

to reuse the superclass’ render(). This causes an adversary called code

fragmentation and makes the render() much harder to reason or, in

other words, not scalable. 🏛 When it comes to complex layout and

animations, it’s important to ensure that all the involved elements are in

one centralized place.

In a more fundamental sense, inheritance is not applicable for

components because the specialization order of the inheritance chain

(in OOP) is reversed from that of a JSX structure in a render() method.

In inheritance, the downer a class is in the inheritance chain, the more

specialized it is. On the other hand, in the JSX structure, the deeper a

component is nested to the tag structure, it represents a more specialized

or detailed feature and layout. They are not compatible when put together

because it is not possible, or too tricky, to put a child class of a component to

be in the children position of the super component in the render() method.

As such, a composition-based technique, higher-order component

(HOC), is favored to achieve the same end result of inheritance. A HOC is

like a superclass that conforms to the previously discussed specification

order of components. Listing 2-6 gives a typical HOC example.

Chapter 2 Foundations of React

58

Listing 2-6.  A HOC example

function HOC(Subcomponent) {

 return class extends React.Component {

 constructor(props) {

 super(props);

...

 }

 Render() {

 <ComponentThatProvidesBasicFunctionality>

 <Subcomponent/>

 </ComponentThatProvidesBasicFunctionality>

 }

 }

}

Next, we look at how HOC is used in real projects.

2.2.1  �Case Study: Multiple Photo Feeds
This time, we are going to add more types of Feed (Figure 2-10). Let’s look

at the requirements first:

	 1)	 We give users the option to publish more than one

photo in one of their Feeds.

	 2)	 If the user posts more than one and less than four

photos, we want the photos to be displayed in a

2 x 2 grid.

	 3)	 If the user posts more than four and less than nine

photos, we want the photos to be displayed in a

3 x 3 grid.

Chapter 2 Foundations of React

59

Figure 2-10.  Multiple photo Feeds

We could implement three variances of Feed using a factory

component (as we did for Widget in 1.3.2.) that returns the right version in

accordance with the number of photos. And we soon find out that the code

for the control panel and metadata area has to be duplicated for each Feed.

Moreover, similar duplication could occur for other feed-related features

such as comment. So instead of applying a short-term, ad hoc solution,

let’s take one step further to solve the problem the right way.

Firstly, we need a factory component to meet the new requirement

(Listing 2-7).

Listing 2-7.  Feed factory

export default function FeedFactory(props) { // -----------> 1)

 let numOfImages = props.item.feed.images.length;

 if (numOfImages > 4 && numOfImages <= 9) {

 return <Feed3x3 {...props}/>; // ----------------------> 2)

 } else if (numOfImages > 1 && numOfImages <= 4) {

 return <Feed2x2 {...props}/>; // ----------------------> 2)

Chapter 2 Foundations of React

60

 } else if (numOfImages === 1) {

 return <Feed {...props}/>; // -------------------------> 2)

 }

 return <Feed3x3 {...props}/>; // ------------------------> 2)

}

	 1)	 This factory component simply returns another

component based on the condition derived from

the props.

	 2)	 It also sincerely passed through all the props it

received. This is achieved with a spread operator.

Note  🏛 As we mentioned in the beginning of this section, for
the purpose of easy layout (and animation as we will see very soon
in Chapter 3), it is preferred for a render() method to return a
monolithic JSX layout free of logic as much as possible. However,
there is one exception, that is, when a component works as a factory
and sincerely returns a set of homogeneous components as is, logic
such as if else or switch case is acceptable and will not cause
trouble to further layout and animation effort.

Next, we implement the HOC that adds metadata and control panels to

plain Feeds (Listing 2-8).

Listing 2-8.  HOC that adds the metadata to the feed

export default function withMetaAndControls(Feed) {

 return class extends React.Component { // ---------------> 1)

 render() {

 return (

Chapter 2 Foundations of React

61

 <View style={[

 {...this.props.style},

 styles.commonPadding

]}

 >

 <View style={styles.metaContainer}>

 <Image style={styles.avatar}

 source={{

 uri:this.props.item.meta.avatarUri // --> 2)

 }}

 />

 <View style={styles.infoContainer}>

 <Text style={styles.userName}>

 {this.props.item.meta.name} // ------------> 2)

 </Text>

 <Text style={styles.date}>

 {this.props.item.meta.date} // ------------> 2)

 </Text>

 </View>

 </View>

 <Feed {...this.props}/> // ----------------------> 3)

 <View style={styles.controlContainer}>

 <NumberedWidget

 style={{flex: 1}}

 type={widgetTypes.LIKE}

 number={ this.props.item.meta.numOfLikes } // -> 2)

 />

 <NumberedWidget

 style={{flex: 1}}

 type={widgetTypes.COMMENT}

 number={ this.props.item.meta.numOfComments }//> 2)

Chapter 2 Foundations of React

62

 />

 <NumberedWidget

 style={{flex: 1.5}}

 type={widgetTypes.SHARE}

 number={ this.props.item.meta.numOfShares } //-> 2)

 />

 <Widget type={widgetTypes.MORE} />

 </View>

 </View>

)

 }

 }

}

	 1)	 HOC returns an enhanced class of the component

passed through.

	 2)	 We start replacing all the hard-coded values with

proper props which can be dynamically customized

by the caller.

	 3)	 HOC is responsible to pass through the props to the

target component being wrapped. This is achieved

with the spread operator.

Next, we implement the three types of Feed. Listing 2-9 is how the

original one-photo Feed looks after some of the functionalities are pulled

out to the HOC.

Listing 2-9.  The original Feed

class Feed extends React.Component {

 render() {

 return (

 <>

Chapter 2 Foundations of React

63

 <Text style={styles.textPost}>

 { this.props.item.feed.text }

 </Text>

 <Image

 style={styles.imagePost}

 source={{uri: this.props.item.feed.images[0]}} // -> 2)

 />

 </>

)

 }

}

export default withMetaAndControls(Feed); // --------------> 1)

	 1)	 This is how HOC is used. Here, we export the

enhanced class returned by the HOC instead of the

Feed itself.

	 2)	 Unprotected access to array elements is error-prone.

Safer approaches and ways to handle potential

exceptions will be introduced in Section 2.4.

The two new types of Feed are implemented as in Listings 2-10

and 2-11.

Listing 2-10.  Feed2x2

class Feed2x2 extends React.Component {

 render() {

 return (

 <>

 <Text style={styles.textPost}>

 { this.props.item.feed.text }

Chapter 2 Foundations of React

64

 </Text>

 <View style={styles.gridContainer}> // ------------> 1)

 {this.props.item.feed.images.slice(0, 4).map(e =>//> 2)

 <View style={styles.cell}> // -------------------> 1)

 <Image // -------------------------------------> 3)

 style={styles.imagePost}

 source={{uri: e}}

 />

 </View>

)}

 </View>

 </>

)

 }

}

const styles = StyleSheet.create({

 textPost: {

 fontSize: 22,

 marginBottom: 20,

 },

 gridContainer: {

 flexDirection: 'row',

 flexWrap: 'wrap', // ----------------------------------> 1)

 },

 cell: {

 width: '50%', // --------------------------------------> 1)

 paddingRight: 12, // ----------------------------------> 3)

 marginBottom: 12, // ----------------------------------> 3)

 justifyContent: 'center',

 alignItems: 'flex-start'

 },

Chapter 2 Foundations of React

65

 imagePost: {

 width: '100%', // -------------------------------------> 3)

 aspectRatio: 4/3, // ----------------------------------> 4)

 },

});

export default withMetaAndControls(Feed2x2); // -----------> 5)

	 1)	 We use flexWrap: 'wrap' on the container to

enable the grid layout. Each row of the grid will

contain two cells as the width of the children is set

to '50%' of the container.

	 2)	 We use map() as the JSX expression to transform

the image URLs from the props to the list of cells

in the grid. We also use slice(0, 4) to ensure the

number of cells in the grid is less than four; hence,

the number of rows will always be less than two.

	 3)	 We use a combination of styles to maintain a

consistent horizontal and vertical margin among

the cells. Firstly, we set the width of the graphic to

be '100%' which will be offset by the padding (12)

given to the cell. Then the same amount of margin is

also given to the cell correspondingly.

	 4)	 We set the aspectRatio of the cells the same as before.

	 5)	 The HOC is applied to the Feed2x2 the same way as

to the Feed.

Listing 2-11.  Feed3x3

class Feed3x3 extends React.Component {

 render() {

 return (

Chapter 2 Foundations of React

66

 <>

 <Text style={styles.textPost}>

 { this.props.item.feed.text }

 </Text>

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 9).map(e =>//> 2)

 <View style={styles.cell}>

 <Image style={styles.imagePost} source={{uri: e}}/>

 </View>

)}

 </View>

 </>

)

 }

}

const styles = StyleSheet.create({

 textPost: {

 fontSize: 22,

 marginBottom: 20,

 },

 gridContainer: {

 flexDirection: 'row',

 flexWrap: 'wrap',

 },

 cell: {

 width: '33%', // --------------------------------------> 1)

paddingRight: 3, // ---------------------------------------> 3)

marginBottom: 3,

 justifyContent: 'center',

 alignItems: 'flex-start'

 },

Chapter 2 Foundations of React

67

 imagePost: {

 width: '100%', // -------------------------------------> 3)

 aspectRatio: 4/3,

 },

});

export default withMetaAndControls(Feed3x3);

	 1)	 We use ‘33%’ to set the grid to be 3 x N.

	 2)	 slice(0, 9) makes the grid 3 x 3.

	 3)	 We reduce the gap value to be three in accordance

with a grid of more density.

2.2.2  �Key Takeaways
In this section, we learned the fundamental difference between a React

component and an ordinary class in the traditional OOP paradigm.

2.3  �ScrollView and FlatList
One of the key mobile experiences distinguished from desktop is swipe.

Whether the swiping is smooth or not by and large determines the success

of the user experience of an app. Here is where ScrollView comes into

play. ScrollView is backed by the native scroll view and inherits all the

smoothness and fluency optimized for the mobile platform. Moreover, the

fine-tuned snapping and momentum mimicking real world physics are

sincerely relayed in React Native. So ScrollView is one key ingredient to

unlock a highly user-interactive animation experience (Chapter 3).

Chapter 2 Foundations of React

68

FlatList extends ScrollView catering for the need of a long list. In

addition to the excessive length, a long list is required to grow dynamically.

When triggered by certain user interactions, for example, scrolling to the

end, additional rows could be added. FlatList is more appropriate as

rendering everything in one shot is not optimal or not feasible for most

long list use cases. FlatList implements a concept virtual list which

renders only a necessary portion of it at any point of time. The user will

be under the impression that they are navigating a list fully populated at

all times because the component ensures that the visible area of the list is

always being covered within the portion that has been rendered. As noted,

FlatList or, more specifically, the scrolling mechanism of FlatList is

based on ScrollView; hence, FlatList also inherits all the native-level

performance and user experience merits by nature.

As you might already be figuring out, FlatList is more suitable for

Moment in Manyface. And this is what we are going to do.

Note I n the terminology of the virtual list, the visible area is
called viewport, and a rendered area is called a window. By
default, FlatList can cope with most scenarios of a long list. In
extreme cases, nevertheless, it is desirable to deeply squeeze the
performance of the component by adjusting the sizes of windows
and anticipated viewport. Such heuristics are examined in detail in
Chapter 6.

2.3.1  �Case Study: Moment
This time, we are going to complete the layout for Moment. The

requirement of Moment is simple: a scrollable list of Feeds (Figure 2-11).

Chapter 2 Foundations of React

69

Figure 2-11.  Moment

Firstly, let’s move the hard-coded Feeds content to a model layer which

could be read by the FlatList (Listing 2-12). As we progress, we are going

to gradually remove the hard-coded content and fetch everything from a

web API.

Listing 2-12.  FeedModel

class Meta {

 constructor(

 avatarUri,

 name,

 date,

 numOfLikes,

 numOfComments,

 numOfShares

Chapter 2 Foundations of React

70

) {

 this.avatarUri = avatarUri;

 this.name = name;

 this.date = date;

 this.numOfLikes = numOfLikes;

 this.numOfComments = numOfComments;

 this.numOfShares = numOfShares;

 }

}

class Feed {

 constructor(text, images) {

 this.text = text;

 this.images = images;

 }

}

class FeedModel { // --------------------------------------> 1)

 constructor(obj) {

 this.meta = new Meta(

 obj.avatarUri,

 obj.name,

 obj.date,

 obj.numOfLikes,

 obj.numOfComments,

 obj.numOfShares

);

 this.feed = new Feed(obj.text, obj.images);

 }

}

Chapter 2 Foundations of React

71

	 1)	 It is common to create a model layer to capture the

underlying data structure that the app is running

on. In practice, TypeScript is more favorable than

vanilla JavaScript used here.

Next, we fill the model with some mock data (Listing 2-13).

Listing 2-13.  Mock data

const mockData = [{

 avatarUri: 'https://holmeshe.me/05apps/avatar08.jpeg',

 name: 'Kath',

 date: 'Oct 10',

 numOfLikes: 8,

 numOfComments: 1,

 numOfShares: 1,

 text: 'My diet plan to loss 12 Kg.',

 images: [

 'https://holmeshe.me/05apps/hoc-2x2-1.jpg',

 'https://holmeshe.me/05apps/hoc-2x2-2.jpg',

 'https://holmeshe.me/05apps/hoc-2x2-3.jpg',

]

}, {

 avatarUri: 'https://holmeshe.me/05apps/avatar02.jpeg',

 name: 'Deepthie',

 date: 'Jan 12',

 numOfLikes: 11,

 numOfComments: 2,

 numOfShares: 5,

 text: 'Exciting new jorney!',

 images: [

 'https://holmeshe.me/05apps/hoc-3x3-1.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-2.jpg',

Chapter 2 Foundations of React

72

 'https://holmeshe.me/05apps/hoc-3x3-3.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-4.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-5.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-6.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-7.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-8.jpg',

 'https://holmeshe.me/05apps/hoc-3x3-9.jpg',

]

}, {

 avatarUri: 'https://holmeshe.me/05apps/avatar08.jpeg',

 name: 'Kath',

 date: 'Jan 10',

 numOfLikes: 3,

 numOfComments: 1,

 numOfShares: 0,

 text: 'Meet joy.',

 images: [

 'https://holmeshe.me/05apps/post01.png',

]

}];

let mockModel = mockData.map((obj) => { return new

FeedModel(obj); });

export default mockModel;

Lastly, we encapsulate the Moment component (Listing 2-14).

Listing 2-14.  Moment

import React from 'react';

import { FlatList } from 'react-native';

import FeedFactory from './feeds/FeedFactory';

Chapter 2 Foundations of React

73

import data from '../models/FeedModel';

const Moment = () => {

 const renderItem = (entry) => // ------------------------> 1)

 <FeedFactory meta={entry.item.meta} // ------------------> 2)

 feed={entry.item.feed}

 />

 return (

 <FlatList // --> 3)

 data={data} // --------------------------------------> 1)

 renderItem={renderItem} // --------------------------> 1)

 />

);

};

export default Moment;

	 1)	 The two essential props that FlatList requires

are (a) data which defines its data source and (b)

renderItem() which defines how to render data in

the granularity of entry. FlatList can work out of

the box with these two props set properly.

	 2)	 FeedFactory is the same one we use in our last case

study (Section 2.2.1).

	 3)	 We use FlatList to render the whole list.

2.3.2  �Key Takeaways
This section introduced the basic ScrollView and its enhanced version,

FlatList, which empower the long list experience. As the scrolling

is backed directly by the corresponding native component, it has no

Chapter 2 Foundations of React

74

difference than the native experience performance wise. Then we used

a minimal setup of FlatList to complete the core user experience of

Manyface. As mentioned, FlatList deserves some derivative optimization

when it comes to extreme scenarios. We are going to review some of the

critical performance aspects of FlatList and common optimization

approaches in Chapter 6. Moreover, as we will see in Chapter 3, ScrollView

is also the key to implement user-interactive animation.

2.4  �Error Handling
When designing systems of any kinds, it is important to understand that

every component could potentially fail. A robust system is not one that

does not have any failure, but the one that is always tolerant to setbacks

and is able to degrade gradually to the next acceptable state when a

failure occurs. Bottom line, the system in design should never quit the

game with a crash or any other kinds of undefined behaviors (e.g., blank

screen), in exception, by design. To build a system that never crashes, the

very first step is to define the boundaries for exceptions so as to confine

the exceptions inside one logic unit that causes them. As you will see very

soon in this section, a clear boundary does not only make the exceptional

behavior easier to be defined but also makes the potential issue easier to

be debugged. This technique is called exactly as an error boundary.

An error boundary is very similar to a try-catch semantic that

defines the exception flow along with the normal logic flow. Unlike the

traditional imperative programming paradigm where the logic flow is

grouped into functions, React is declarative and logic units are made up

with presentation-oriented components. An error boundary is an error

handling mechanism catering for this paradigm and is itself a component.

More specifically, an error boundary is a container component designed

Chapter 2 Foundations of React

75

with presentation and behavior for types of exception that children could

potentially throw. 🏛 In practice, an error boundary is strategically placed

on cutting points of the domain logic unit so as to, again, confine the

exceptions inside one logic unit that causes them.

As you might be thinking of right now, HOC is the fitting technique

to apply error boundaries. To be more concrete, a HOC is an ideal place

to encapsulate some of the common logic for error handling (e.g., log,

exception filtering) and to execute the custom exception presentation

or behavior of a specific component in design. Those components with

error boundaries enabled, in turn, are determined as the noted strategic

points that are embedded with the exception flow for itself and all its

children and subcomponents.

Note A stand-alone error boundary is also a common practice
that is suggested by the community. We take the approach of using
HOC to implement error boundaries as we see more merits in this
practice.

How to identify those strategic points mentioned earlier? Luckily, we

are in the middle of implementing Manyface. Let’s find out together with

real-world examples.

2.4.1  �Case Study: Moment (Reinforced)
Before we move forward, let’s slow down here and think about one

question: Is Moment production ready? No. Because it lacks an exception

flow despite the complete and seemingly bug-free functionalities. As a

result, any hidden flaws within the component logic or the data from

the model layer could cause a crash of the app. Figure 2-12 shows how

Manyface is represented in debugging mode when one metadata is

undefined. In production, it will be an instant crash.

Chapter 2 Foundations of React

76

Figure 2-12.  A crash

In practice, the flaw could come from a malfunctioning endpoint, a

bug from one of us programmers, or a premature configuration flag turned

on remotely. Nonetheless, a crash in any of the preceding cases is not

acceptable. We know that an error boundary is our friend. But how to

use it effectively? To answer this question, we firstly look at the nature of

exception flows.

Unlike the normal logic flow where each branch pinpoints a certain

expected logic case, an exception flow targets each time an undetermined

range of cases that are exceptional and could not be anticipated

Chapter 2 Foundations of React

77

beforehand. A common narrative of an exception flow is “when one

category of unexpected happened, whatever it is, what would you do?”.

Sometimes, even the error category itself is not known. In order to deal

with this uncertainty, exception flows are deployed strategically as layers of

defending lines.

We shall take a top-down approach to identify the strategic points to

place error boundaries, starting from the Moment. If anything unexpected

happens inside Moment, what should we render? Correct, an error page like

a 404. Take a step down; what if the unexpected exception happens inside

a Feed, should we block the user experience of Moment with the 404 error

page? No, right? We can simply make the Feed in problem invisible. So the

problem will not surprise the user. On the other hand, we should log the

incident with all the contexts within the exception flow predefined. We

call this technique a silent log. We now have two defending lines to make

our component robust in a way that in any case of unexpected exceptions,

it can degrade gradually to the next acceptable state. And voila, we just

defined the requirements for this case study:

	 1)	 When an exception happens inside a Feed,

the Feed should be invisible.

	 2)	 When an exception happens inside a Moment,

it should be replaced with an error page.

Firstly, let’s implement the utility component that makes our lives

better. As discussed, we are going to count on our old friend, HOC, this

time again (Listing 2-15).

Listing 2-15.  withErrorBoundary

export default function withErrorBoundary(Comp, ErrorPage,

ErrorHandler) { // --> 1)

 class Error extends React.Component { // ----------------> 2)

Chapter 2 Foundations of React

78

 constructor () {

 super()

 this.state = {

 error: undefined,

 info: undefined

 }

 }

 componentDidCatch (error, info) { // ------------------> 2)

 this.setState({ error, info })

 // Common exception related logic comes here // -----> 3)

 // e.g., log, report, etc.,

 if (ErrorHandler) { ErrorHandler(error, info); } // --> 1b)

 }

 render() {

 if (undefined !== this.state.error) {

 const { error, info } = this.state

 if (!ErrorPage) { // -----------------------------> 1a)

 return <View/>;

 }

 return (

 <ErrorPage // ----------------------------------> 1a)

 error={error}

 info={info}

 />

)

 }

 return this.props.children; // ----------------------> 2)

 }

 }

Chapter 2 Foundations of React

79

 class WithError extends React.Component { // ------------> 4)

 constructor () {

 super()

 }

 render () {

 return <Error><Comp {...this.props} /></Error> // ----> 2)

 }

 }

 return WithError; // ------------------------------------> 5)

}

	 1)	 (a) To achieve the two requirements defined earlier,

we give the protected component a chance to

define its error page in exception. If this page is

passed as a nil value, nothing will be rendered.

(b) The protected component could also define its

behavior when an exception happens. Normally,

the behavior could drive changes outside of the

component (e.g., navigation back and forward,

make a global banner (no network) visible, etc.).

Note  🏛 In order to avoid double fault (fault within the exception
handler), a rule of thumb when designing an exception flow is to be a
minimalism.

Chapter 2 Foundations of React

80

	 2)	 Error is the error boundary that can catch

exceptions thrown within its children. In normal

execution, it simply returns its children. When

such an exception occurs, on the other hand,

componentDidCatch is invoked by the React

runtime, and the ErrorPage defined in step 1 is

rendered.

	 3)	 Being in the funnel position of all exception flow,

the componentDidCatch is also an ideal place for

other common actions such as log, report, and

debugging dialog boxes.

	 4)	 WithError is the actual HOC that wraps the

protected component inside the Error defined

in step 2.

	 5)	 Lastly, the HOC is returned in place of the original

component.

Now we can enhance Feeds using the HOC defined earlier

(Listing 2-16).

Listing 2-16.  Feeds reinforced

class Feed extends React.Component {

 render() {

 return (

 <>

 <Text style={styles.textPost}>

 { this.props.item.feed.text }

 </Text>

 <Image

 style={styles.imagePost}

 source={{uri: this.props.item.feed.images[0]}}

Chapter 2 Foundations of React

81

 />

 </>

)

 }

}

const styles = StyleSheet.create({

 textPost: {

 fontSize: 22,

 marginBottom: 20,

 },

 imagePost: {

 width: '100%',

 aspectRatio: 4/3,

 marginBottom: 20,

 },

});

export default withErrorBoundary(withMetaAndControls(Feed),

undefined, undefined); // ---------------------------------> 1)

...// Feed2x2 definition

export default withErrorBoundary(withMetaAndControls(Feed2x2) ,

undefined, undefined); // ---------------------------------> 1)

...// Feed3x3 definition

export default withErrorBoundary(withMetaAndControls(Feed3x3) ,

undefined, undefined); // ---------------------------------> 1)

	 1)	 As per the requirement, when anything happens

inside the Feed, we simply return an empty view and

omit the component completely.

Chapter 2 Foundations of React

82

Next, we enhance the Moment which is a bit more complex than Feed as

it requires a default error page (Listing 2-17).

Listing 2-17.  Moment reinforced

const ErrorPage = () => { // ------------------------------> 1)

 return (

 <View style={{

 flex: 1,

 justifyContent: 'flex-start',

 alignItems: 'center',

 paddingTop: 180,

 paddingHorizontal: 60

 }}

 >

 <Icon name={'alert-circle-outline'}

 size={88}

 color={'#6c8ca5'}

 />

 <Text style={{fontSize: 28, color: '#6c8ca5'}}>

 Oops but no worries!

 </Text>

 <Text style={{

 fontSize: 20,

 color: 'darkGray',

 paddingTop: 15

 }}

 >

 �Our engineers are working hard at the moment. So please

give another try soon later!

 </Text>

 </View>

Chapter 2 Foundations of React

83

);

}

const Moment = () => {

 const renderItem = (entry) =>

 <FeedFactory item={entry.item}/>

 return (

 <FlatList

 data={data}

 renderItem={renderItem}

 />

);

};

export default withErrorBoundary(Moment, ErrorPage,

undefined);// ---> 2)

	 1)	 This is the error page we now define specifically for

Moment. Later, we shall move it to a global position

we see fit. 🏛 This page is programmed in the most

rudimentary way so as to avoid double fault as

mentioned earlier.

	 2)	 Again, we protect the Moment using the

withErrorBoundary HOC. And this time, we pass it

with the error page.

Lastly, let’s see if the whole error boundary facility works. In common

sense, the foremost presumption for a safety test is to assume it's unsafe.

So let’s inject some random errors to those protected components,

starting from Feed3x3 (Listing 2-18).

Chapter 2 Foundations of React

84

Listing 2-18.  Feed in problem

class Feed3x3 extends React.Component {

 render() {

 const errorObj = undefined;

 errorObj.error(); // ----------------------------------> 1)

 return (

 <>

 <Text style={styles.textPost}>

 { this.props.item.feed.text }

 </Text>

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 9).map(e =>

 <View style={styles.cell}>

 <Image style={styles.imagePost} source={{uri: e}}/>

 </View>

)}

 </View>

 </>

)

 }

}

...// styles

export default withErrorBoundary(withMetaAndControls(Feed3x3),

undefined, undefined);

	 1)	 This line throws. As per the discussion, an exception

thrown in a Feed will only affect the Feed itself.

Hence, the user will not sense it. The development

team, on the other hand, will know it through an

exception report (Figure 2-13).

Chapter 2 Foundations of React

85

Note  🏛 We call the technique a silent log that (1) makes the
exception transparent from the user’s perspective, while (2) it makes
it obvious to developers with meticulous logging.

Next, we give some problems to the Moment (Listing 2-19).

Figure 2-13.  Make Feed in problem invisible

Chapter 2 Foundations of React

86

Listing 2-19.  Moment in problem

// ErrorPage is defined here

const Moment = () => {

 const errorObj = undefined; // --------------------------> 1)

 errorObj.error();

 const renderItem = (entry) =>

 <FeedFactory item={entry.item}/>

 return (

 <FlatList

 data={data}

 renderItem={renderItem}

 />

);

};

//export default Moment;

export default withErrorBoundary(Moment, ErrorPage, undefined);

	 1)	 We throw the same exception here at Moment.

In reality, the exception could be of any kind.

The Moment in exception gives the error page

(Figure 2-14).

Chapter 2 Foundations of React

87

Figure 2-14.  Give error page when Moment is in problem

2.4.2  �Key Takeaways
In this section, we completed the components for Feed and Moment

which make up the core user experience of Manyface. We firstly reviewed

the nature of an exception flow in general. Then we introduced error
boundaries and the way of handling exceptions in React. We took a step

further to use HOC as the means to implement an error boundary and

apply it on Moment and Feed components.

The most valuable part of this section is the methodology to define the

critical points in a project. Through the practice, we know that the general

principle here is “least surprise to the user,” even in the case of exceptions.

Chapter 2 Foundations of React

88

To be more specific, we hide the problematic component and conduct a

silent log if possible; or we show an error page letting users know what is

going on when we have no choice. In the real scenario, navigation, alert

box, toast, and status banner are all in your utility suit. When applying

the methodology in your particular cases, you could take the practical

approach of reasoning carried out in this section as well.

The scope of an exception flow in a React Native app is more extensive

than what we see in this section. In particular, two more scenarios are not

covered in this section: (1) exceptions thrown within services that enlist

asynchronous operations and (2) exceptions thrown in native modules
and native components. The error handling of the two scenarios will

be covered in their respective chapters (i.e., Chapters 4 and 5). And we

are going to escalate our point of view by abstracting a more generalized

methodology for exception handling in Chapter 6.

2.5  �Summary
In this chapter, we established a rock-solid foundation of React

development. We started the development journey from the Feed

component with the basic understanding and skill in flexbox. We diversify

the Feed using a technique called higher-order component (HOC). Then

we put the diversified Feeds into a scrollable list using FlatList. Lastly,

we set up an exception flow for all components including categories of

Feed and Moment so the core user experience can survive the errors and

exceptions in the coming iterations.

The knowledge and skill discussed in this chapter are sufficient for you

to take charge of one user interface module of reasonable complexity. To

expand the scope to other aspects of a React Native app, read on.

Chapter 2 Foundations of React

89© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_3

CHAPTER 3

Animation in React
Native

FPS delayed is UX denied.

—Holmes

Animation does not seem to belong to the core user experience of any

apps. Not true. Conversely, it is vital to do the animation correctly. Why?

Read on.

The first key usage of animation is to avoid abrupt user interface

change. For example, when an image is just loaded from the network,

a looming animation is more optimal than a sudden popping up. This

principle applies to some other user interface changes, as we will see very

soon that the text expanding transition in Feeds is made smooth using a

React Native animation technique called layout animation.

The second one is to maintain the impression that the app is being

responsive while loading. Instances are a spinning indicator that an

individual item is being loaded, a glimmering skeleton view in app

initialization, and an animated bubble when an AI is thinking. In these

cases, the animation assures the user that the app is still active though

it is not actually responsive to any user interactions. The absence of the

animation could lead to inappropriate or incomplete experiences in the

preceding scenarios.

https://doi.org/10.1007/978-1-4842-8042-3_3

90

The last but most valuable use of animation is the instinctive touch

screen experience, which is especially critical to mobile user experience.

This type of animation should mimic real-world objects by reflecting its

velocity and inertia and by following the user’s gesture frame by frame. We

call this type gesture-driven animation to distinguish it from other simpler

playback animations discussed earlier. Gesture-driven animation is in

demand when multitouch is introduced by iPhone, and fingers become

the major means for the users to interact with apps. In today’s mobile

ecosystem, the users have already been used to smooth touch screen

experiences. Hence, doing it right, although not easy, is just the minimal

baseline.

Note  If you are looking at the home page of an iPhone, please pay
attention to (1) the smooth sliding that follows your finger when you
drag and swipe and (2) the natural momentum when you release.

3.1  �Introduction to React Native Animation
React Native contains three types of animation targeting different

scenarios. The first one is layout animation. Layout animation is bound to

a setState(). After a successful invocation, React Native will “guess” the

most reasonable animation by comparing the layout change incurred by

the setState(). This is normally used for playback animation such as view

fly-in or area expanding.

Layout animation cannot handle complicated and compounded

layout changes. When we need finer control, we shall use value animation.

Technically, those values are associated to transform or opacity of a

component’s props.style and are changed during runtime to facilitate

playback animation.

Chapter 3 Animation in React Native

91

Gesture-driven animation is different fundamentally from the first

two ways to facilitate playback animations. This is the most sophisticated

animation in that each frame needs to reflect the current position of the

user’s finger so as to give a smooth and instinctive user experience.

Animation can be powered by either native or JavaScript.

JavaScript is not slow. But the asynchronous operation and interthread

communication are. We will cover native-powered animation only in

that JavaScript-powered animations cannot meet the quality bar of

production-level apps more often than not. The good news is we don’t

need a single line of native code to facilitate a native-powered animation.

All the functionalities are well encapsulated within the React Native core

and surface out elegantly to be in pure JavaScript.

Next, we examine each type of animation. And you know the drill;

each learning section is followed by a practical hands-on section(s). And

Manyface will be enhanced in each iteration. Let’s go!

3.2  �Layout Animation
For each relayout triggered by setState(), we can opt in an animation

effect that smooths out the transition. As said, layout animation is

normally used to kick off a one-off playback animation. In some situations,

it also can facilitate looping animation such as pulsating. Layout

animation works only when the layout change introduced by setState()

is simple enough to be guessed by the runtime. That means the layout

changes should not involve correlated states nor nested components.

Chapter 3 Animation in React Native

92

3.2.1  �Presets
The easiest way to invoke layout animation is to use shortcut methods

which fire a linear or bouncing animation using predefined configurations

(Listing 3-1). Since the properties in regard to the animation, for example,

velocity, springDamping, duration, create/update/delete configs, etc.,

are all hard coded within the shortcuts, these methods are the least flexible

among other approaches to issue a layout animation.

Listing 3-1.  Shortcut methods

LayoutAnimation.linear()

LayoutAnimation.easeInEaseOut()

LayoutAnimation.spring()

Note H ere, the create/update/delete configs are not
straightforward by their names, but don’t worry, we are going
to cover their meanings very soon when we go through more
advanced APIs.

💣 The layout animation is configured for the next setState() in

code execution order. Hence, a wrongly abstracted layer of methods

could incur unwelcomed animation with layout animation configured by

accident. This kind of bug is contextual and hence is very time-consuming

to pinpoint. So 🛡 constantly revising the layer of responsibilities is vital.

🏛 Alternatively, we shall make the architecture flatten. Anyway, no

abstraction could be better and less expensive than overabstraction.

Chapter 3 Animation in React Native

93

3.2.2  �LayoutAnimation.create( )
Normally, the preset parameters are not set with the most optimal values.

If we have higher demand on the animation elegance, we shall leverage

the finer control offered by the combination of two other layout animation

methods, LayoutAnimation.configureNext() and LayoutAnimation.

create(). Listing 3-2 gives an example.

Listing 3-2.  Customize layout animation using .configureNext() +

.create()

LayoutAnimation.configureNext(

 LayoutAnimation.create(

 300,

 LayoutAnimation.Types.linear,

 LayoutAnimation.Properties.opacity

)

);

LayoutAnimation.create() is a handy utility method that helps create

the primary parameter config for LayoutAnimation.configureNext().

Usually, we don’t need to understand what is the actual format of the raw

animation config taken by LayoutAnimation.configureNext(). So the

specialization level offered by LayoutAnimation.create() is sufficient for

most use cases.

3.2.3  �Raw Animation Config
If we need finer adjustment to the animation outcome, we can create

the animation config object manually and pass it through directly to

LayoutAnimation.configureNext(). Listing 3-3 gives LayoutAnimation.

create() as a helper to assist us in understanding the exact format of the

animation config object.

Chapter 3 Animation in React Native

94

Listing 3-3.  Implementation of .create()

function create(

 duration: number,

 type: Type,

 property: Property,

): LayoutAnimationConfig {

 return {

 duration,

 create: {type, property},

 update: {type},

 delete: {type, property},

 };

}

For the example in Section 3.2.2, the actual config object created is

given in Listing 3-4.

Listing 3-4.  The result config object got created by .create()

{

 duration: 300, // ---------------------------------------> 2)

 create: { // --> 1)

 type: LayoutAnimation.Types.linear, // ----------------> 2)

 property: LayoutAnimation.Properties.opacity // -------> 3)

 },

 update: {

 type: LayoutAnimation.Types.linear // -----------------> 2)

 },

 delete: {

 type: LayoutAnimation.Types.linear, // ----------------> 2)

 property: LayoutAnimation.Properties.opacity // -------> 3)

 }

}

Chapter 3 Animation in React Native

95

	 1)	 The create subconfig defines the presenting

animation when a new component is created after a

setState(). Conversely, delete defines the dismiss

animation for the component when it got removed.

Similarly, update defines the animation when the

same component is changed in size or position.

	 2)	 The duration and type parameters passed to

LayoutAnimation.create() are applied to all

subconfig entries.

	 3)	 The property parameters, on the other hand, are

applied to create and delete subconfig only. This

is to define a symmetric behavior for these two

opposite actions of the respective component.

In particular, we want to fade in a newly created

component and to fade out the deleted one.

Note  Despite its simplicity, layout animation is also very
performant. This is because after the declaration of the animation, the
actual animation is calculated and is carried out all in the native layer.
So here only the standard performance overhead of setState()
applies.

3.2.4  �Android
Lastly before we jump into hands-on, we need to add one extra line to

enable layout animation on Android (Listing 3-5).

Listing 3-5.  Extra one line to enable layout animation on Android

UIManager.setLayoutAnimationEnabledExperimental?.(true);

Chapter 3 Animation in React Native

96

3.2.5  �Case Study, Read More
In Moment, we don’t want an excessive long feed to occupy the screen.

Instead, if the texts of a feed exceed a certain length, we fold the

text portion up so as to make the experience more fluent. The exact

requirements are as follows:

	 1)	 When the number of characters is less than 180, we

display the full message without any truncation.

	 2)	 If the number of characters is equal or greater than

180, we truncate the text to three lines and add a

three-dot symbol below. This symbol gives a visual

effect like a synopsis and also works as a button that

expands the message when clicked.

	 3)	 After a long message is expanded, we switch the

button to an up arrow that folds up the message

once again (Figure 3-1).

	 4)	 We want the user experience to be smooth; hence,

animation is desired for all the moving parts.

Chapter 3 Animation in React Native

97

Firstly, let’s implement the core component that enables the

expandable text (Listing 3-6).

Figure 3-1.  Expandable message

Chapter 3 Animation in React Native

98

Listing 3-6.  Expandable text

class ExpandableText extends React.Component {

 constructor() {

 super();

 this.state = {

 numberOfLines: 3, // --------------------------------> 2)

 displayElipsis: true, // ----------------------------> 2)

 };

 }

 render() {

 if (this.props.text.length > 300) { // ----------------> 1)

 return (

 <View style={{...this.props.style}}>

 <Text style={styles.textPost}

 numberOfLines={this.state.numberOfLines} // -----> 2)

 ellipsizeMode={'clip'} // -----------------------> 2)

 >

 { this.props.text } // ----------------------------> 5)

 </Text>

 {this.state.displayElipsis &&

 �<TouchableOpacity onPress={this.expand.

bind(this)}> // 3)

 <Icon name={'dots-horizontal'} // ---------------> 2)

 color={'grey'}

 size={30}

 />

 </TouchableOpacity>

 }

 {!this.state.displayElipsis &&

 <TouchableOpacity onPress={this.fold.bind(this)}>

Chapter 3 Animation in React Native

99

 <Icon name={'chevron-up'} // --------------------> 4)

 color={'grey'}

 size={30}

 />

 </TouchableOpacity>

 }

 </View>

);

 } else { // ---> 1)

 return (

 <Text style={[{...this.props.style}, styles.textPost]}>

 { this.props.text } // ------------------------------> 5)

 </Text>

);

 }

 }

 expand() { // ---> 3)

 this.setState({numberOfLines: null, displayElipsis:

false});

 }

 fold() { // ---> 4)

 this.setState({numberOfLines: 3, displayElipsis: true});

 }

}

const styles = StyleSheet.create({ // ---------------------> 5)

 textPost: {

 fontSize: 22,

 },

});

Chapter 3 Animation in React Native

100

export default ExpandableText;

	 1)	 This is where we return different layouts according

to text length. We have seen conditional rendering

in Section 2.2.1. Although 🏛 the render() method

should avoid fragmented JSX in that monolithic

JSX is easier to be laid out and be reasoned, this

pattern works fine only when a render() needs to

return different, complete components according to

certain conditions.

	 2)	 These props are set for the expandable text logic.

Firstly, numberOfLines is set to three initially to

truncate the text. Then we set the ellipsisMode to

'clip' to hide the ellipsis for the button. Next, we

use 'dots-horizontal' to render the button.

	 3)	 Bind the expand() method to the TouchableOpacity

to enable the pressing. In this method, we (a)

remove the restriction of three lines to fully

display the message and (b) flip the state of

displayEllipsis to hide the button.

	 4)	 The folding button is displayed only when

the state of numberOfLines is set to zero and

displayEllipsis is set to false. This button is

linked to fold() that reverses the preceding two

states and hence folds back the message.

	 5)	 The actual text set with the style is embedded in the

preceding logic.

Next, we apply the ExpandableText to the existing Feed components

(Listings 3-7 to 3-9).

Chapter 3 Animation in React Native

101

Listing 3-7.  ExpandableText applied to Feed

class Feed extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text} />

 <Image

 style={styles.imagePost}

 source={{uri: this.props.item.feed.images[0]}}

 />

 </>

)

 }

}

Listing 3-8.  ExpandableText applied to Feed2x2

class Feed2x2 extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text}

 />

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 4).map(e =>

 <View style={styles.cell}>

 <Image style={styles.imagePost} source={{uri: e}}/>

 </View>

Chapter 3 Animation in React Native

102

)}

 </View>

 </>

)

 }

}

Listing 3-9.  ExpandableText applied to Feed3x3

class Feed3x3 extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text}

 />

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 9).map(e =>

 <View style={styles.cell}>

 <Image style={styles.imagePost} source={{uri: e}}/>

 </View>

)}

 </View>

 </>

)

 }

There is still one missing piece in the puzzle, that is, to make a smooth

transition when the text is expanded or folded. Listing 3-10 gives its

implementation.

Chapter 3 Animation in React Native

103

Listing 3-10.  Add animation

...

expand() {

 LayoutAnimation.configureNext(// -----------------------> 1)

 LayoutAnimation.create(

 300,

 LayoutAnimation.Types.linear,

 LayoutAnimation.Properties.opacity

)

);

 this.setState({numberOfLines: null, displayElipsis: false});

}

fold() {

 LayoutAnimation.configureNext(// -----------------------> 1)

 LayoutAnimation.create(

 300,

 LayoutAnimation.Types.linear,

 LayoutAnimation.Properties.opacity

)

);

 this.setState({numberOfLines: 3, displayElipsis: true});

}

	 1)	 Yes, here we simply use the animation code from

Section 3.2.3, which effectively turns the setState()

invocations to layout animation.

Chapter 3 Animation in React Native

104

Note T he animation outcome is exactly what we defined. Take
expand() as an example; after the setState(), the expanding
button is faded out by the delete action, while the folding button is
faded in for create. The rest of the components move linearly to
their destined position because of the update action.

3.2.6  �Key Takeaways
In this section, we learned the layout animation. It is simple and

performant, but it cannot deal with compounded change. As the name

suggests, layout animation can automatically animate the next layout

change that is issued by setState(). We also went through ways of

invoking layout animation, from its simplest form with a single method

call to the more complex one where you can manually fine-tune the

parameters. It is worth noting again that layout animation cannot handle

complex animation tasks, which should be tackled with more advanced

techniques discussed in the following sections.

3.3  �Value Animation
Unlike layout animation that impacts on the layout of the overall user

interface, value animation targets individual components. To enable value

animation, components need to be attached with an animation value

(Animated.Value). More specifically, after the animation value is bound to

the designated component props, animation can be driven by changing

its value with APIs such as Animated.timing() or Animated.spring(). In

contrast to the coarse-grained control offered by layout animation, value

animation is capable of driving highly sophisticated and complicated

animation behavior.

Chapter 3 Animation in React Native

105

Value animation can be powered by either a native or a JavaScript

thread. Technically, animation powered by JavaScript is slow as it

requires constant involvement of the JavaScript thread and asynchronous

interthread calls. Native-powered animations are free of those overheads

as the computing is completely offloaded to a native thread and hence is

no different from pure native animation performance wise. 💣 Due to the

questionable quality of the JavaScript thread, 🛡 we are going to focus

only on native-powered animation. It is also a common practice to only

rely on native-powered animation in production.

Note  Despite its low performance, JavaScript-powered animation
provides a wider range of options of props to which the animation
value can attach. For instance, 💣 one restriction of value animation
at the native level is that the width and height cannot be attached
with an animation value.

Next, let’s go through the APIs. As said, a variable that can be used as an

animation value should be initialized as Animated.Value(). Listing 3-11

declares an animation value that controls a component’s opacity.

Listing 3-11.  Animated.Value, an example

let opacity = Animated.Value(0);

A component should be animation enabled before it can be

attached with an animation value. This is achieved using Animated.

createAnimatedComponent(). As you might expect, this method creates

a HOC based on the component passed in. The React Native animation

has already encapsulated common stock components with Animated.

createAnimatedComponent() to make them directly usable, like the View’s

animation counterpart, Animated.View. Listing 3-12 gives an example.

Chapter 3 Animation in React Native

106

Listing 3-12.  Animated.Value and Animated.View

class SomeComponent extends React.Component {

 constructor() {

 this.opacity = Animated.Value(0); // ------------------> 1)

 ...

 }

 render() {

 return (

 <Animated.View style={{opacity: this.opacity}} />

);

 }

}

	 1)	 It is suggested to put the animation value directly as

an instance variable instead of states. The reason

will be explained very soon in Section 3.3.1.4.

After this, the value could be changed in various ways to facilitate an

animation.

3.3.1  �Animate the Animation
3.3.1.1  �Animated.timing( )

Animated.timing() is the most straightforward way to start a value

animation. The first argument taken is the animation value, and the

second is a configuration object that controls the animation speed

and style.

What Animated.timing() creates is an actionable object which in

turn calls start() to invoke the animation defined. The start() accepts

a callback argument which will be called after animation completes. 🏛

Chapter 3 Animation in React Native

107

Normally, this callback is used to call setState() to forward the layout

to the next stable state post the animation. 🏛 In general principle, please

refrain from locking/unlocking touch within this callback as fluent user

interaction should be free of lock all the time. Listing 3-13 gives a typical

invocation of an Animated.timing().

Listing 3-13.  Animated.timing()

Animated.timing(this.opacity, {

 toValue: 1,

 duration: 300, --> 1)

 useNativeDrive: true, -----------------------------------> 2)

}).start(() => {

 this.setState({

 done: true

 })

});

	 1)	 The component fades in (opacity: 1) for 300

milliseconds.

	 2)	 useNativeDrive indicates that this is a native-

powered animation calculation. As said, we will

always set it to true in this book.

Animated.timing() provides other configurations such as easing and

delay for the animation. easings.net is a good place to refer to when we

want to adjust those parameters to achieve the desired outcome.

3.3.1.2  �Animated.spring( )

Animated.spring() kicks off bouncing animations. With Animated.

spring(), we do not need to provide duration in the animation

configuration (Listing 3-14).

Chapter 3 Animation in React Native

http://easings.net/

108

Listing 3-14.  Animated.spring()

Animated.spring(this.opacity, {

 toValue: 1,

 useNativeDrive: true

}).start();

The configurations provided by Animated.spring() include damping,

friction, overshootClamping, etc. Likewise, we enable native-powered

animation with useNativeDrive: true.

3.3.1.3  �Animation Cohort

Besides the methods discussed earlier, we can also combine multiple

animations together. The APIs are listed as follows:

	 1)	 Animated.parallel() combines multiple

animation objects created using Animated.timing()

or Animated.spring() and fires them all at once

using start().

	 2)	 Likewise, Animated.sequence() takes multiple

animation objects but fires them one by one in

order. This method starts the next animation only

after the previous one completes.

	 3)	 Animated.stagger() also starts multiple animations

in order. However, this method does not wait for the

completion of the previous animation to start the

next animation. Rather, it waits for an interval to fire

them one by one in order.

	 4)	 loop() takes an animation object created using

Animated.timing() or Animated.spring() and

repeats it.

Chapter 3 Animation in React Native

109

	 5)	 All the animation objects can be cancelled using

stop(). We can save the animation objects

returned by the preceding methods including

Animated.timing() and Animated.spring() as

instance variables and call stop() on it at the

appropriate time.

3.3.1.4  �setValue( )

Animation values can be updated using a direct call of setValue(), for

example, this.opacity.setValue(100). The value given to setValue()

will be updated on the user interface, but this gives an abrupt change

instead of an animation. Hence, similar to setState(), this method is

used to forward a component to the next stable state, normally after an

animation transition completes. 💣 However, you can also call this method

very fast (e.g., in a gesture callback) to mimic an animation. As explained,

this is not recommended by all means due to the inevitable low animation

quality (i.e., frame loss, shaking) at the JavaScript level.

Furthermore, setValue() uses the direct JavaScript-to-native

communication channel separated from the normal React rendering

and layout pass. Hence, it is faster than the normal update issued by

setState(). In order to reflect this distinction, 🏛 using instance variables

is slightly preferred for animation values than states as mentioned. That

said, feel free to store the animation values anywhere that makes sense

to you. 🚀 For better performance, please always rely on setValue() to

update animation value when we want to opt out the associated animation.

Chapter 3 Animation in React Native

110

3.3.2  �Bind the Animation Value
3.3.2.1  �The transform props.style

transform is another well-used props.style. We can use transform to

animate a component’s shape, size, or location. 💣 It is worth noting that

the changes taking place using transform do not respect the flex layout.

🛡 Hence, in some cases, we might need additional layout animation

in parallel to cater to a component size or position to make the general

layout in order.

transform takes an array of objects. Each element of the array takes a

predefined string as the key and expresses a transform attribute. Normally,

an animation value is set as the corresponding value to make the attributes

animatable. Nonetheless, we can use ordinary states or even const

variables for the values as well.
🏛 Anchor is an important while undocumented attribute for

transform animations. As illustrated in Figure 3-2, an anchor is the pivot

point that the animation should be carried out. For instance, scaleX and

scaleY indicate that a component should expand along the X and Y axes,

respectively. From which original point the component should expand is

defined by the anchor.

ScaleX

Sc
al

eY

ScaleX

Sc
al

eY

Figure 3-2.  Anchor of transform animation

Chapter 3 Animation in React Native

111

💣 In React Native, the position of the anchor is undocumented

and obscured, albeit predictable. Instead of an explicit parameter, the

position of the anchor is determined implicitly by how the component in

animation is attached to its container. For example, the justifyContent:

'center', alignItems: 'center' in the container puts an anchor in

the center of the animation, while the justifyContent: 'flex-start',

alignItems: 'flex-start' puts the anchor on the top-left corner.

Commonly used attributes of transform are listed as follows:

	 1)	 scaleX and scaleY: As mentioned, width and

height are not available in native-level animation.

Hence, scaleX and scaleY are normally used

instead to achieve a similar effect.

	 2)	 translateX and translateY: These two attributes

define a change in position of the component.

	 3)	 rotateX, rotateY, and rotateZ: These attributes

define the angle on which component flips.

We will see very soon in the case study section (Section 3.3.8) how

transform is used to facilitate a spinning animation in action. Next, we

start the first hands-on.

3.3.2.2  �Value Interpolation

Sometimes, an animation value cannot be mapped directly to a

transform. This is where value interpolation comes into play. For instance,

the rotateZ attribute takes a string which cannot be directly represented

by an animation value. Hence, a common practice is to use an integer as

the animation value and then interpolate it to the destined string value.

Listing 3-15 shows the interpolation from an integer animation value to the

rotate angle.

Chapter 3 Animation in React Native

112

Listing 3-15.  Value interpolation

this.rotate = new Animated.Value(0);

...

this.rotate.interpolate({

 inputRange: [0, 1],

 outputRange: ['0deg', '360deg']

})

We are going to use this technique very soon when implementing a

loading indicator that requires the rotateZ attribute in Section 3.3.8.

3.3.2.3  �Value Calculation

Sometimes, one animation value alone cannot represent the destined

transform. Rather, the attribute could be calculated from two or

more animation values combined. As we will see in Section 3.4.2, the

transparency of the loading indicator depends on two animation values:

the first one is used to represent whether the user is dragging, and the

second one indicates the current position of the scroll view.

Here is where value calculation comes into play. React Native provides

numerous functions to calculate animation values, for example, Animated.

add(). The return value of those methods is animation value as well;

hence, those methods can be invoked in a cascaded manner. See the

example in Listing 3-16.

Listing 3-16.  Cascading invocation of animation value calculation

Animated.add(new Animated.Value(6 / 7),

 Animated.multiply(

 new Animated.Value(1 / 7),

 Animated.add(

Chapter 3 Animation in React Native

113

 Animated.subtract(

 this.pivotValue,

 new Animated.Value((someVal - 1) * someVal2)

).interpolate({

 inputRange: [-bound, -threshold, 0, threshold, bound],

 outputRange: [1, -threshold, 0, threshold, 1]

 }),

 new Animated.Value(threshold)

)

)

)

Note T he preceding code is to give the form of cascading
invocation of animation value calculation. It does not have any
practical means.

In Listing 3-17, we list the value calculation methods.

Listing 3-17.  Methods for animation value calculation

Animated.add()

Animated.subtract()

Animated.divide()

Animated.multiply()

Animated.modulo()

Animated.diffClamp()

Chapter 3 Animation in React Native

114

Note  It is reasonable to question the design of those calculation
methods. Since animation values are essentially ordinary numbers,
why do we need methods to calculate their result? To answer this
question, it is important to understand that those methods are not
used to calculate animation values; instead, they are for expressing
a relationship between a pivot animation value(s) and the destined
transform attributes in a declarative fashion. We will see how this
technique is used in action in Section 3.4.1.

Declarative is not a silver bullet. It has the issue of debuggability.
The more profound reason why we need declarative animation in the
first place and the underlying mechanism of value calculation will be
discussed in Chapter 6.

3.3.3  �Case Study 1, Looming Animation
for Image Loading

The feed images in Manyface are loaded from online, but the popping in

the image loaded is abrupt (Figure 3-3). The exact requirements are as

follows:

	 1)	 Add loading animation for feed images.

	 2)	 Before the image is loaded, show a light gray

background as placeholders to make the loading

process smoother.

Chapter 3 Animation in React Native

115

Figure 3-3.  Before and after the images are loaded

Firstly, we implement the LoomingImage component (Listing 3-18).

Listing 3-18.  LoomingImage

class LoomingImage extends React.Component {

 constructor() {

 super();

 this.opacity = new Animated.Value(0); // --------------> 1)

 }

Chapter 3 Animation in React Native

116

 render() {

 return (

 <View style={[{

 ...this.props.style // ----------------------------> 6)

 }, {

 backgroundColor: 'lightgrey' // -------------------> 5)

 }]}>

 <Animated.Image // --------------------------------> 2)

 style={{

 width: '100%',

 height: '100%',

 opacity: this.opacity // ----------------------> 2)

 }}

 source={this.props.source} // -------------------> 6)

 onLoad={this.onLoad.bind(this)} // --------------> 3)

 />

 </View>

);

 }

 onLoad() { // ---> 3)

 Animated.timing(this.opacity, {

 toValue: 1,

 duration: 300,

 useNativeDriver: true // ----------------------------> 4)

 }).start();

 }

}

export default LoomingImage;

	 1)	 As described, this.opacity is initialized as an

Animated.Value.

Chapter 3 Animation in React Native

117

	 2)	 We need to use the Animated version of the Image;

otherwise, the animation we apply will not be

effective. The animation value created in the

preceding step is attached to the opacity prop of

the Animated.Image.

	 3)	 onLoad is a callback prop provided by Image that

signals a load complete of the Image. We leverage

this prop to animate the this.opacity to 1 and

hence make the Image visible.

	 4)	 We emphasize on performance throughout the

text; hence, useNativeDriver: true is here for this

purpose.

	 5)	 Use Animated.Image attached with opacity to

implement the loading animation (requirement 2).

	 6)	 🏛 Lastly but most importantly, we design the

LoomingImage compatible with Image as possible;

the props.styles that could potentially be the layout

information are passed through to the container,

while the source prop is passed through to the

Image. Soon we will see the benefit of this design.

Then we replace the ordinary Image components used in various

positions with the LoomingImage. First is the Image in Feed (Listings 3-19

to 3-21).

Listing 3-19.  LoomingImage applied to Feed

class Feed extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

Chapter 3 Animation in React Native

118

 style={styles.textPost}

 text={this.props.item.feed.text} />

 <LoomingImage // --------------------------------> 1)

 style={styles.imagePost}

 source={{uri: this.props.item.feed.images[0]}}

 />

 </>

)

 }

}

Listing 3-20.  LoomingImage applied to Feed2x2

class Feed2x2 extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text}

 />

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 4).map(e =>

 <View style={styles.cell}>

 <LoomingImage // ------------------------------> 1)

 style={styles.imagePost}

 source={{uri: e}}

 />

 </View>

)}

 </View>

 </>

Chapter 3 Animation in React Native

119

)

 }

}

Listing 3-21.  LoomingImage applied to Feed3x3

class Feed3x3 extends React.Component {

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text}

 />

 <View style={styles.gridContainer}>

 {this.props.item.feed.images.slice(0, 9).map(e =>

 <View style={styles.cell}>

 <LoomingImage // ------------------------------> 1)

 style={styles.imagePost}

 source={{uri: e}}

 />

 </View>

)}

 </View>

 </>

)

 }

}

Avatars in withMetaAndControls use Image as well. We simply need

to replace the Image with LoomingImage. Here, we omit supplementary

components and some of the code for simplicity (Listing 3-22).

Chapter 3 Animation in React Native

120

Listing 3-22.  LoomingImage applied to avatars

export default function withMetaAndControls(Feed) {

 return class extends React.Component {

 render() {

 return (

 <View style={[

 {...this.props.style},

 styles.commonPadding]}

 >

 <View style={styles.metaContainer}>

 <LoomingImage // ------------------------------> 1)

 style={styles.avatar}

 source={{

 uri: this.props.item.meta.avatarUri

 }}

 />

 <View style={styles.infoContainer}>

 <Text style={styles.userName}>

 {this.props.item.meta.name}

 </Text>

 <Text style={styles.date}>

 {this.props.item.meta.date}

 </Text>

 </View>

 </View>

 <Feed {...this.props}/>

 <View style={styles.controlContainer}>

...

 </View>

 </View>

)

Chapter 3 Animation in React Native

121

 }

 }

}

	 1)	 🏛 We design the LoomingImage with the

compatibility in mind; hence, in the refactor we

only need to replace the component’s name and

keep the rest of the props untouched. This makes

the similar refactor tasks much less error-prone. In

Chapter 6, we are going to discuss the more general

and actionable principles of designing a custom

component.

3.3.4  �Case Study 2, Loading Indicators
A loading indicator can be used in various places when the app is being

bootstrapped or loading additional resources. Although React Native

provides a default loading indicator, we need a custom one that fits the

style of Manyface better. More specifically, we need three kinds of loading

indicator:

	 1)	 A quarter circle that rotates: This could be used as

part of a placeholder view when an individual UI

element loading is prolonged (e.g., a video). In this

section, we are going to apply the loading indicator

to images. This is the variant that is the most similar

to the default loading indicator.

	 2)	 A spinning envelope: This special loading indicator

will be used by the pull down loading animation.

Chapter 3 Animation in React Native

122

	 3)	 A skeleton view of any size: This loading indicator is

used as a placeholder itself when a view (e.g., Image)

is being loaded. Unlike a loading indicator, this

loading style is applied to the whole page, so as to

make the whole loading experience integrated. We

also need a glimmering animation to assure the user

that the app is not frozen.

Note  Some of the components implemented in this hands-on will
not be used straightaway. For example, a rotating circle is mostly
useful only when the loading of a resource requires excessive time,
for example, a video; a skeleton view is normally needed during
bootstrap when the critical logical path is being blocked by network
fetching or other bootstrap steps. The practical use of the loading
indicators implemented in this section will be discussed in Chapter 5.

First, let’s implement the simplest variant, the rotating quarter circle

(Listing 3-23).

Listing 3-23.  Loading indicator – RotatingCircle

import Icon from 'react-native-vector-icons/

MaterialCommunityIcons';

const AnimatedIcon = Animated.createAnimatedComponent(Icon);// 2)

class RotatingCircle extends React.Component {

 constructor() {

 super();

 this.rotate = new Animated.Value(0); // ---------------> 1)

 }

Chapter 3 Animation in React Native

123

 componentDidMount() {

 Animated.loop(// -------------------------------------> 1)

 Animated.timing(this.rotate, {

 toValue: 1,

 duration: 1000,

 easing: Easing.linear, // -------------------------> 1)

 useNativeDriver: true // --------------------------> 1)

 })

).start();

 }

 render() {

 const size = this.props.size ?? 58;

 const color = this.props.color ?? 'white';

 return (

 <View style={[

 {...this.props.style}, styles.stablizer // --------> 5)

]}>

 <AnimatedIcon // ----------------------------------> 2)

 style={{

 transform: [{rotateZ: this.rotate.interpolate({ // 3)

 inputRange: [0, 1],

 outputRange: ['0deg', '360deg']

 })}]

 }}

 name={'loading'}

 color={color} // --------------------------------> 4)

 size={size} // ----------------------------------> 4)

 />

 </View>

Chapter 3 Animation in React Native

124

)

 }

}

const styles = StyleSheet.create({

 stablizer: { // ---> 5)

 justifyContent: 'center',

 alignItems: 'center'

 },

});

export default RotatingCircle;

	 1)	 We initialize an animation value this.rotate which

is set to loop from zero to one in a one-second

interval. Note that we set easing to Easing.linear

(the default value Easing.inOut is jumpy when

used in a loop) in order to give an even animation

transition. Again, we set useNativeDriver to true to

gain the performance point.

	 2)	 Instead of directly using the Icon from react-

native-vector-icon, we create a HOC that

enables the animation using Animated.

createAnimatedComponent. So the following

transform set in the props.style can be effective.

	 3)	 Here come our protagonists of this section,

transform + interpolate(). interpolate() takes

an animation value range as the input and output

range of values that is acceptable by the transform

attribute.

Chapter 3 Animation in React Native

125

	 4)	 We expose two props as the interface of this

component so it can be further customized by the

user, size and color.

	 5)	 Lastly, we apply another layer of components as a

stabilizer. This component becomes the container;

hence, it also accepts the layout information the

user might want to let it know using {...this.

props.style}.

Now we can apply the RotatingCircle as part of the LoomingImage

(Listing 3-24).

Listing 3-24.  LoomingImage with a loading indicator

import RotatingCircle from './loadingIndicators/RotatingCircle'

class LoomingImage extends React.Component {

 constructor() {

 super();

 this.opacity = new Animated.Value(0);

 this.state = {loaded: false}; // ----------------------> 3)

 }

 render() {

 return (

 <View style={[{

 ...this.props.style

 }, {

 backgroundColor

 }]}>

 {this.state.loaded === false && // ----------------> 3)

 <View style={styles.overlay}>

Chapter 3 Animation in React Native

126

 <RotatingCircle size={28}/>

 </View>

 }

 <Animated.Image // --------------------------------> 2)

 style={{

 width: '100%',

 height: '100%',

 opacity: this.opacity

 }}

 source={this.props.source}

 onLoad={this.onLoad.bind(this)}

 />

 </View>

);

 }

 onLoad() {

this.setState({loaded: true}); // ----------------------> 3)

 Animated.timing(this.opacity, {

 toValue: 1,

 duration: 300,

 useNativeDriver: true

 }).start();

 }

}

const backgroundColor = 'lightgrey';

const styles = StyleSheet.create({

 overlay: { // ---> 1)

 backgroundColor,

 justifyContent: 'center',

Chapter 3 Animation in React Native

127

 alignItems: 'center',

 position: 'absolute',

 left: 0,

 right: 0,

 top: 0,

 bottom: 0,

 },

});

	 1)	 We use position: ‘absolute’ to put an overlay that

populates the loading indicator.

	 2)	 The Image is put after the loading indicator to make

sure that it is on top of it when being rendered.

	 3)	 When the graphic has been loaded, we do away with

the loading indicator completely by forwarding the

state to the next phase (i.e., loaded) along with the

animation.

Next, let’s implement the spinning envelope using a similar technique

of RotatingCircle (Listing 3-25).

Listing 3-25.  Loading indicator – SpinningEnvelope

import Icon from 'react-native-vector-icons/

MaterialCommunityIcons';

const AnimatedIcon = Animated.createAnimatedComponent(Icon);

class SpinningEnvelope extends React.Component {

 constructor() {

 super();

 this.rotate = new Animated.Value(0);

 }

Chapter 3 Animation in React Native

128

 componentDidMount() {

 Animated.loop(

 Animated.timing(this.rotate, {

 toValue: 1,

 duration: 2000,

 easing: Easing.linear,

 useNativeDriver: true

 })

).start();

 }

 render() {

 const size = this.props.size ?? 58;

 const color = this.props.color ?? 'white';

 return (

 <View style={[{...this.props.style}, styles.stablizer]}>

 <AnimatedIcon

 style={{

 �transform: [{rotateY: this.rotate.

interpolate({ //1a)

 inputRange: [0, 1],

 outputRange: ['0deg', '360deg']

 })}]

 }}

 name={'email-outline'} // ----------------------> 1b)

 color={color}

 size={size}

 />

 </View>

)

 }

}

Chapter 3 Animation in React Native

129

const styles = StyleSheet.create({

 stablizer: {

 justifyContent: 'center',

 alignItems: 'center'

 },

});

export default SpinningEnvelope;

	 1)	 This implementation is similar to that of

RotatingCircle, except for (a) the rotation

that is pivoting on Y axis instead of Z and (b) an

envelope symbol.

Note  🏛 Why don’t we converging the rotating logic into a single,
generalized component if the two components are so similar? This
is to avoid overabstraction. Overabstraction could lead to a rigid
code base in that a change in one place could potentially have an
effect on the other. Moreover, you are obligated to test feature(s)
completely irrelevant to the current change. So a healthy level of
duplication could make software projects more flexible and hence
more extensible.

Chapter 3 Animation in React Native

130

Lastly, let’s start implementing the skeleton view (Figure 3-4). When

doing so, it is tempting to implement a generalized component that can

magically transform any layouts into a designated animated skeleton

view. However, this idea only sounds good but is not practical. 🏛 More

specifically, it’s neither feasible to derive the complete layout of a

component nor to orchestrate animation across placeholder components

that could be scattered within the view hierarchy. So this time again, let’s

refrain from designing a brilliant high-end abstraction, but opt in an ad

hoc, down-to-the-ground way (Listing 3-26).

Figure 3-4.  A skeleton view

Chapter 3 Animation in React Native

131

Note  🏛 The general idea of a skeleton view is to give an
expectation to the user how the view looks like when fully loaded.
The blocks in a skeleton view are not the one-to-one placeholders,
so their positions do not need to be exact. In contrast, making exact
placeholders of the real UI elements sometimes gives weird visual
outcomes. This is another reason why deriving a skeleton view from a
normal component layout is not practically feasible.

Listing 3-26.  A skeleton view

class Skeleton extends React.Component {

 constructor() {

 super();

 this.lightPos = new Animated.Value(0); // -------------> 1)

 }

 constructor() {

 super();

 this.lightPos = new Animated.Value(200); // -----------> 1)

 }

 componentDidMount() {

 Animated.loop(// -------------------------------------> 1)

 Animated.timing(

 this.lightPos, {

 toValue: -Dimensions.get('window').width,

 duration: 1200,

 delay: 500,

 easing: Easing.linear,

Chapter 3 Animation in React Native

132

 useNativeDriver: true

 }

)

).start();

 }

 render() {

 return (

 <View style={{...this.props.style}}>

 <FakeFeed/> // ------------------------------------> 2)

 <FakeFeed/>

 <Animated.View style={[styles.light, {

 transform: [

 {translateX: this.lightPos},

],

 }]}/>

 <Animated.View style={[styles.light, { // ---------> 3)

 right: -50,

 width: 30,

 transform: [

 {translateX: this.lightPos},

],

 }]}/>

 </View>

);

 }

}

const styles = StyleSheet.create({

 light: {

 position: 'absolute',

 top: 0,

Chapter 3 Animation in React Native

133

 right: 0,

 width: 60,

 opacity: 0.3,

 height: 1500,

 backgroundColor: 'white',

 transform: [

 {translateX: this.lightPos},

],

 },

});

export default Skeleton;

	 1)	 We use Animated.loop() to repeatedly move

this.lightPos that determines the position of the

reflection of light.

	 2)	 We omit the code for FakeFeed here as it is a pure

flex layout similar to that of a Feed.

	 3)	 Again, we attach this.lightPos to an Animated.

View to make the position animatable.

3.3.5  �Key Takeaways
We have examined how to create various types of animation using an

animation value. We firstly covered timing() and spring() to facilitate

animations targeting particular components. Then we learned how to

combine those animations in serial or in parallel using animation cohort

techniques. 🚀 We also explained why setValue() is more efficient

than setState() when it comes to the animation value and offered a

general practical guide for using it. Lastly, we covered the basics of value

transform, which, combined with value interpolation and calculation, can

Chapter 3 Animation in React Native

134

be used to express a very complex relationship between user gesture and

the visual outcome. This technique will be especially useful when we use

native events to implement gesture-driven animation.

We dedicated two hands-on subsections and implemented four

components for Manyface for a better coverage of aspects of animation

value usage. Some were applied straightaway to enhance the user

experience of Manyface. The rest will be integrated eventually when the

time comes.
🏛 Throughout the section, we always use native-powered animation

in order to maintain the quality bar for all animations applied. It is a

suggested practice in real projects as well.

3.4  �Gesture-Driven Animation
This is the hardest type of animation which makes mobile experience

special. Basically, we need to mimic real-world objects that do not only

give real-time response to the user touch but also display attributes such

as resistance, quality, and inertia. The goal is to conform to the user's

expectation to the physics in their subconscious to avoid attention we

don’t want.

I thought that the dream space would be all about visual but,
it’s more about the feel of it.

—Inception

Generally speaking, gesture-driven animation enlists two parts

corresponding to the two phases of a gesture, (1) gesture animation and (2)

release animation. The gesture animation reflects the current position of

the user’s gesture frame by frame. For instance, a pan gesture animation

should be able to move the UI element along with the user’s finger, and

to perform a finish off animation when the user releases the gesture. We

Chapter 3 Animation in React Native

135

normally call the user interface in a transitional stage during gesture

animation and call the user interface in a stable stage after release

animation completes. The release animation should account for the

current velocity of the swiping gesture. Moreover, it should be redirectable

whenever the user changes their mind. So release animation, as a vital link

between those two stages, is critical and hard to implement. Luckily, React
Native has provided us with the right tool, the ScrollView, to make the

whole transition natural.

Note  We don’t categorize all animations triggered by user gestures
as gesture-driven animation. When being triggered by simple
gestures, such as a tap, what gets involved is simply a playback
animation and can be implemented using the value animations or
layout animations. This kind of animation does not enlist a transitional
state, nor should it be redirectable.

As said, a release animation leads to the next stable stage. Hence, we

also need a threshold to determine what the next state is, a moving forward

or a folding back. This threshold is the key to make the gesture transition

redirectable.

Technically, React Native provides two means to carry out gesture-

driven animation, the gesture responder system and the ScrollView. The

gesture responder system relies on the JavaScript thread and is only good

for playback animation once a gesture is determined. Another common

option is provided by a third-party library, react-native-gesture-handler

which supports native event (Section 3.4.1) for gesture animation.

However, it imposes a subtle performance penalty to be used to implement

the release animation, which can be noticeable by the users with very

sharp eyes.

Chapter 3 Animation in React Native

136

Note  react-navigation is one of the mainstream third-party libraries
that relies on react-native-gesture-handler. Since react-native-
gesture-handler only accounts for the gesture animation, the release
animation is required to be implemented separately in JavaScript
(using value animation). Though both animations are implemented
using a native driver and are performant, we need to pass the
current velocity from the native to the JavaScript thread. And this
communication gives a very subtle halt in the middle of the gesture
experience.

A ScrollView, though sounds animation irrelevant, is one of the key

components in mobile ecosystems to achieve smooth gesture-based

experiences in various occasions. To better understand the reason,

read on.

3.4.1  �Native Event
Native events are designed for high-performance gesture-driven

animation. To enable the pure native-powered animation, the events are

firstly bound, in the form of an animation value, to a certain component

(event source) like a ScrollView. Then, a value calculation (Section 3.3.2.3)

is derived from the animation value, to define the animation behavior

which can be in turn executed in the native layer. Value calculation

effectively forms a native-to-native communication channel which we will

discuss in Chapter 6. Lastly, on the other side(s) of the communication

channel reside the event receivers, which are components that take the

calculation results as props.

Ideally, gesture animation must be completely offloaded to the native

level in order to give an acceptable FPS. The principle is similar to that

in value animation. Due to the high performance bar of gesture-driven

Chapter 3 Animation in React Native

137

animation, JavaScript-powered animation is not capable of this kind of

task. As mentioned before, the bottleneck is the interthread, asynchronous

communication mechanism.

Since the JavaScript thread should be excluded completely

throughout the animation procedure, the output of the native event is

made a single animation value and will not be attached with any logic

(or callback). As mentioned, value calculation and interpolation are

required as this value cannot be used directly. More specially, value

interpolation and calculation define the animation behavior by declaring

the relationship between an animation value and the destined transform.

After the animation behavior is defined completely in one go, the React
Native runtime will be able to carry out the animation purely in the

native layer.

3.4.2  �Case Study, a Pull Down Load Experience
This time, we are going to implement another feature involving

gesture-driven animation – a pull down load effect. For now, we simply

implement the animation effect only for the pull down, which will be

used for the actual content network loading in Chapter 5. Let’s look at the

requirements first:

	 1)	 When the user pulls down the list, a loading

indicator (the SpinningEnvelope we implemented

in Section 3.3.8) appears on the top blank area.

	 2)	 The opacity of the loading indicator is determined

by the position of the pull down gesture, meaning

the more the user pulls down the list, the more

opaque the loading indicator becomes.

Chapter 3 Animation in React Native

138

	 3)	 When the user releases the gesture and the current

position doesn’t exceed a threshold, the list folds

back to where it starts from.

	 4)	 When the user releases and the gesture position

exceeds the threshold, the list starts folding back

and is locked to a position for one second. Then the

list folds back to the start position.

	 5)	 When the user is pulling, we want the maximum

opacity to be 50%.

	 6)	 When the user releases the gesture, we want the

value to be 100% when it’s in phase 4 and to fade out

during the list folding back.

Figure 3-5 shows how it looks.

Chapter 3 Animation in React Native

139

Figure 3-5.  Pull down load

Listing 3-27 is the code snippet to tune up Moment. Though the

structure is the same as the old Moment, the bulk of code is added to

implement the pull down load experience. This can also give a hint on how

much effort it takes to implement proper gesture-driven animation.

Listing 3-27.  Moment

...

const LoomingSpinningEnvelope = Animated.createAnimatedComponent

(SpinningEnvelope); // ------> 3)

Chapter 3 Animation in React Native

140

...

class Moment extends React.Component {

 constructor() {

 super();

 this.pullDownPos = new Animated.Value(0);

 this.autoScrolling= new Animated.Value(0);

 this.userPulling = new Animated.Value(0);

 this.scrollViewRef = undefined;

 this.state = {

 loading: false,

 }

 }

 renderItem(entry) {

 return (

 <FeedFactory item={entry.item}/>

);

 }

 beginDrag() { // --> 4)

 this.userPulling.setValue(1);

 this.autoScrolling.setValue(0);

 }

 endDrag(evt) { // ---------------------------------------> 4)

 this.userPulling.setValue(0);

this.autoScrolling.setValue(1);

const y = evt.nativeEvent.contentOffset.y;

if (y < -loadingIndicatorOffset) { // ------------------> 5)

 this.setState({loading: true});

Chapter 3 Animation in React Native

141

 setTimeout(() => {

 this.scrollViewRef.scrollToIndex({ // ------------> 5b)

 index: 0,

 animated: true

 });

 }, 1000); // ---------------------------------------> 5a)

 }

 }

 onReset(evt) { // ---------------------------------------> 4)

 if (evt.nativeEvent.contentOffset.y === 0) {

 this.userPulling.setValue(0);

 this.autoScrolling.setValue(0);

 if (this.state.loading) {

 this.setState({loading: false}); // --------------> 5c)

 }

 }

 }

 getScrollViewRef(ref) {

 this.scrollViewRef = ref;

 }

 render() {

 return (

 <View style={{flex: 1}}>

 <Animated.FlatList // -----------------------------> 1)

 data={data}

 renderItem={this.renderItem.bind(this)}

 contentInset={{ // ------------------------------> 3)

 top: this.state.loading ? 5: 0

 }}

Chapter 3 Animation in React Native

142

 onScroll={ // -----------------------------------> 1)

 Animated.event([{

 nativeEvent: {

 contentOffset: { y: this.pullDownPos } }

 }], { useNativeDriver: true })

 }

 onScrollBeginDrag={this.beginDrag.bind(this)}

 onScrollEndDrag={this.endDrag.bind(this)}

 ref={this.getScrollViewRef.bind(this)}

 onMomentumScrollEnd={this.onReset.bind(this)}

 />

 <View style={styles.overlay}> // ------------------> 6)

 <LoomingSpinningEnvelope // ---------------------> 3)

 color={'#6291f0'}

 size={45}

 style={{

 opacity:

 Animated.add(// --------------------------> 2)

 Animated.multiply(// ------------------> 2a)

 this.userPulling,

 this.pullDownPos.interpolate({

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [0.5, 0]

 })

),

 Animated.multiply(// ------------------> 2b)

 this.autoScrolling,

 this.pullDownPos.interpolate({

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [1, 0]

 })

Chapter 3 Animation in React Native

143

),

)

 }}

 />

 </View>

 </View>

);

 }

};

const loadingIndicatorOffset = 50;

const styles = StyleSheet.create({ // ---------------------> 6)

 overlay: {

 position: 'absolute',

 top: 0,

 left: 0,

 width: '100%',

 height: loadingIndicatorOffset,

 justifyContent: 'center',

 alignItems: 'center',

 },

});

//export default Moment;

export default withErrorBoundary(Moment, ErrorPage, undefined);

	 1)	 First things first, we bind the animation value to the

scrolling position of the FlatList. In order to enable

the binding in the native level (useNativeDriver:

true), we need to use Animated.FlatList instead of

plain FlatList.

Chapter 3 Animation in React Native

144

	 2)	 This is the core logic that translates the pivot

animation value to the destined transform props.
style. We use two flags to indicate the list's current

state, being dragged or scrolled automatically.

(a) We use Animated.multiply() to simulate an

“AND” operator, so when the user is dragging (this.

userPulling), we use 0 to 0.5 as the opacity range.

(b) Likewise, after the user releases the gesture

(this.autoScrolling), we use 0 to 1 as the opacity

range. Here again, Animated.multiply() is used to

simulate an “AND” operator. Lastly, Animated.add()

is used to simulate the “OR” operator as only one of

the flags will be true at a given time.

	 3)	 The opacity value calculated earlier is attached to

LoomingSpinningEnvelope. It is worth noting that

though SpinningEnvelope contains an animation

effect, the component itself is not animatable as is.

Hence, we need to use createAnimatedComponent to

enable animation.

	 4)	 We update the preceding flags in the corresponding

events, that is, when the user starts pulling

(beginDrag), the user ends pulling (endDrag), and

after the FlatList folds back (onReset).

	 5)	 After the user ends pulling, we also want to (a) stay

to a position for one second, (b) fold back to the

beginning position, and (c) after the list folds back,

we reset the state indicating the loading is taking

place (loading).

	 6)	 Lastly, we make some space sticking on top for the

loading indicator.

Chapter 3 Animation in React Native

145

3.4.3  �Key Takeaways
In this section, we took a step deeper in native-powered animation by

applying value animation combined with native events. This gives the

gesture-driven animation as a result. To implement the task in this section,

native-powered animation becomes more essential because gesture-driven

animations have excessive demand in performance. We also examined

why animation interpolation and calculation are used in practice and how

to use those techniques in action.

In terms of Manyface, we implemented the pull down load effect for

Moment and made use of the SpinningEnvelope developed in previous

sections. In this case study, we applied in action the techniques of gesture-

driven animation.

3.5  �Summary
In this chapter, we went through the animation facilities provided by

React Native. In particular, only native-powered animations were used

to maintain a healthy level of quality bar. Nonetheless, if compromise

of quality is acceptable, for example, in a prototype phase, JavaScript-

powered animation can be used in a very similar way – we only need to set

useNativeDriver to false in some cases.

In the sense of choosing hands-on practices, we used practical

animation effects rather than fancy ones, and we emphasized on

performance all the time. We also dove into detailed requirements which

could be set by real-world product managers, and we excelled the React
Native animation techniques learned to fulfill them. As a result, we

enhanced the experience of Manyface to the next level.

Not all animation options in the React Native ecosystem are covered

in this chapter. For instance, lottie-react-native brings to React Native the

existing iOS and Android Lottie facility that offers controllable, predefined

Chapter 3 Animation in React Native

146

animations. react-native-reanimated and react-native-gesture-handler

improve the existing React Native animation and gesture response system

by leveraging native events extensively. Please refer to their respective

GitHub pages for more information.

Again and again, performance is a big deal in animation. Though we

covered some of the techniques to utilize the React Native animation,

it will be helpful to understand the underlying mechanisms of

useNativeDriver and native events, especially when you want to create a

customized, high-performance animatable component. For that matter,

we will analyze the mechanism and the performance implication of native-

level animation in Chapter 6.

Chapter 3 Animation in React Native

147© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_4

CHAPTER 4

Native Modules
and Components

React Native is to app developers as ship is to sailors. Sailors
still need to master swimming for critical tasks though they
don’t have to swim all the way through with a ship.

—Holmes

In this chapter, we are going to program majorly in the native layer

using the languages of native platforms. Wait, isn’t React Native a cross-

platform that eliminates all needs of native development? True and false.

Indeed, the React Native core bridges the native rendering system so

the UI layout can be carried out on the JavaScript layer, like what we

have accomplished in the previous chapters. Native layer programming

comes into play when our app needs to access advanced functionalities

(e.g., geolocation) or requires specialized rendering systems (e.g., SVG).

For that purpose, React Native provides two ways – native modules and

native components. A plethora of third-party projects have created native
modules and native components catering for most of the commonly

used functionalities. So in most cases, we just need to import them as

dependencies to fit our needs. And this is for free. However, it is ideal for

React Native developers to master a certain level of native programming,

preparing for very specialized requirements and challenges that haven’t

https://doi.org/10.1007/978-1-4842-8042-3_4

148

been resolved yet. In this chapter, we are going to equip you with the

technique by fully examining and discussing this native programming on

both iOS and Android.

As mentioned, React Native provides us with two means to access

the underlying native system, native modules and native components.

Native modules expose functions to the JavaScript layer, so it fits in

functionalities that are UI irrelevant. Examples are geolocation, file

downloading, and Bluetooth. After proper initialization, functions exposed

by native modules can be used as ordinary JavaScript functions. On

the other hand, native components expose UI elements to JavaScript

in the form of components which are integrated in the React life cycle

and rendering routines. Hence, they are more suitable for UI features.

Examples are video player, cached images, and specialized renderers

like SVG and Lottie. Native modules can also actively push events to

the JavaScript layer with external events for example, a new Bluetooth

connection or a push notification.

Note  In practice, the boundary of native modules and native
components is not so clear in some cases. Let’s take haptic as an
example. On iOS, haptic is exposed as an API method; on Android,
however, haptic is attached to a certain view to determine the haptic
position. So it could be reasonable to expose the functionality as both
a native module and a native component in order to cater to the
platform variance.

Native modules and native components are, as their names suggest,

programmed in native languages. And inevitably, they need to be

developed twice on iOS and Android. As such, 🏛 it is crucial to keep a

consistent interface for both platforms so the native module or native
component can be used in the JavaScript layer in a unanimous way. That

means the signature of native methods and props of native components

Chapter 4 Native Modules and Components

149

are supposed to be implemented exactly the same on both platforms. In

most cases, this is absolutely achievable. But when it is not possible due to

the disparate implementation of the two underpinning platforms, we will

need platform-specific logic in the JavaScript layer. We call this kind of

logic a “hard fork,” and it should always be our last resort and be avoided

whenever possible.

Next, we look at how to program native modules and native
components. We are going to use Swift and Kotlin for iOS and Android,

respectively, as the major programming languages in this chapter.

4.1	 �Native Modules
Native modules are used to bridge native APIs to the JavaScript layer. This

is very similar to cross-language communication technologies like JNI. A

more comparable technology is WebView which supports native APIs and

objects to be registered as JavaScript functions and variables.

Note  Cordova and Ionic are implemented based on the JavaScript-
to-native communication abilities of WebView.

Like other cross-language communications, native types of function

arguments are required to be mapped to JavaScript types. 💣 Failing to

pass the correct type across the bridge incurs an exception which leads to a

crash. An ordinary native function call in the JavaScript layer is technically

a cross-thread communication. Hence, it is asynchronous. More specifically,

all the JavaScript code is running on a JavaScript thread, while native
modules are running on another dedicated thread. And the function

calling is eventually translated to messages sent through an interthread

communication queue. 💣 So it is unsafe for direct UI manipulation or to

send notifications to UI controllers in native module functions.

Chapter 4 Native Modules and Components

150

Note T urbo module makes the native method invocation
more performance by calling it synchronously directly on the
JavaScript thread.

One of the drawbacks of native modules is singleton. As you will

see very soon, all of the native modules are singleton in both iOS and

Android, which is far from ideal in terms of the design pattern. In more

concrete words, singleton classes have intrinsic concurrent and life cycle

issues, especially when asynchronous operations are involved and when

designed as stateful. More specifically, the state of a singleton could be

messed up easily with unwanted reentrant calls and overlapped responses

from asynchronous actions. Hence, we should avoid using native modules

beyond the purpose of bridging. 🏛 When you are designing your own

native modules, it is recommended to avoid handling asynchronous

operations directly inside the native module and to make native modules

stateless as possible. If asynchronous operations and native layer states are

inevitable, it is better to delegate those out to other modules or frameworks

that can handle more sophisticated logic and states.

Now let’s see some code. We need to create a native module class

and register it along with all the methods that are required to be exported

using the React Native runtime. This native module will be available

to the JavaScript side and can be imported in a platform-agnostic way

(Listing 4-1).

Listing 4-1.  Native module on the JavaScript side

import { NativeModules } from 'react-native';

const { OurAwsomeNativeModule } = NativeModules;

Chapter 4 Native Modules and Components

151

🏛 Again, it is highly recommended to keep the consistent function

signatures exported by the native module. This is the magic that turns the

JavaScript logic that consumes native modules into fully cross-platform.

However, 💣 this could be tricky due to platform discrepancies and

particularities. And we are going to cover some of the down-to-the-ground

techniques to fulfill this principle in the hands-on.

4.1.1  �iOS Native Module
4.1.1.1  �Setup

To create the native module, we firstly open in Xcode the React Native

project (Figure 4-1). The project file (*.xcworkspace) is located at the ios/

subdirectory.

Figure 4-1.  Open the .xcworkspace in Xcode

Chapter 4 Native Modules and Components

152

Right-click the iOS project root group and click new file (Figure 4-2).

Figure 4-2.  Add a new Swift file to the project

Select Swift which is the major programming language on iOS as

mentioned (Figure 4-3).

Figure 4-3.  Add the HelloWorldManager

Chapter 4 Native Modules and Components

153

Then we change the name to HelloWorldManager. Here, xxxManager is

a naming convention of native modules both on iOS and Android.

Xcode will then prompt a message box asking to create a bridging

header file; select Create Bridging Header (Figure 4-4).

Figure 4-4.  Automatically create a bridging header file

Xcode then will automatically create a file named “ProjectName-

Bridging-Header” along with a configuration building-settings ➤

Objective-C Bridging Header. This configuration entry activates the header

file that bridges Objective-C to Swift. With this file, Swift can make use of

classes in the React Native core which is written in Objective-C.

The last file we need to create is an Objective-C file that creates the

JavaScript bridge with the native module written in Swift (Figure 4-5).

Chapter 4 Native Modules and Components

154

Figure 4-5.  Add a new Objective-C file to the project

This time, we name it HelloWorldManagerBridge (Figure 4-6).

Figure 4-6.  Add the HelloWorldManagerBridge

Chapter 4 Native Modules and Components

155

In short, we need to create three files for the native module: one Swift

file which is the main implementation, one JavaScript bridge written in

Objective-C that registers the Swift implementation to the JavaScript

layer with the React Native runtime, and an Objective-C to Swift bridging

header which is created automatically by Xcode to export Objective-C

written classes to Swift. Figure 4-7 illustrates this relationship. The

architecture applies to both native modules and native components.

ProjectName-
Bridging-Header

React Native Core
(Objective C)

RCTEventDispatcher
RCTView
RCTViewManager
etc..

xxxManager
(Swift)

xxxManager
Bridge

RCT_EXTERN_MODULE
RCT_EXTERN_METHOD
view()
etc..

JavaScript

Figure 4-7.  JavaScript and native communication

Note T he React Native core is written in pure Objective-C. The
dynamic nature of this language is essential for framework code
that emphasizes on performance and flexibility. However, Swift
suits better for application logic by providing better code quality and
readability. Additional bridge headers are required as a necessary
trade-off so we can use Swift for the better good.

Chapter 4 Native Modules and Components

156

4.1.1.2  �Implement the Native Module

Firstly, let’s see the main logic of the native module in Swift (Listing 4-1a).

Listing 4-1a.  HelloWorldManager.swift

@objc(HelloWorldManager) // -------------------------------> 1)

class HelloWorldManager: NSObject { // --------------------> 1)

 @objc(hello) // ---> 2)

 func hello() -> Void {

 print("Hello World!")

 }

}

	 1)	 To export Swift classes to Objective-C, we need

to extend the class from NSObject and decorate it

with @objc.

	 2)	 To export Swift functions to Objective-C, we need to

use @objc.

Then we look at the JavaScript bridge (Listing 4-2).

Listing 4-2.  HelloWorldManagerBridge.m

#import <React/RCTBridgeModule.h>

@interface RCT_EXTERN_MODULE(HelloWorldManager,

NSObject) // > 1)

RCT_EXTERN_METHOD(hello) // -------------------------------> 2)

@end

Chapter 4 Native Modules and Components

157

	 1)	 Use the macro RCT_EXTERN_MODULE to export the

class to JavaScript.

	 2)	 Use the macro RCT_EXTERN_METHOD to export the

function to JavaScript.

Next, let’s see how a native module looks on Android.

4.1.1.3  �Async Calls

Native method invocations discussed in this section are all asynchronous.

Hence, we need a way to communicate back (with results) when the

invocation completes. One way is callback. By passing in a parameter of

type RCTResponseSenderBlock, we can invoke the callback within the

native layer when the operation completes. RCTResponseSenderBlock

takes an array of strings as its parameter. This array will be transformed in

order to the parameters of the callback in the JavaScript layer. As a rule

of thumb, the first parameter of the callback populates the error of this

invocation, where an empty string indicates a success. See Listing 4-3.

Listing 4-3.  Use a callback to complete a native method invocation

RCT_EXTERN_METHOD(someWork:(RCTResponseSenderBlock *) cb)

...

@objc(someWork:)

func someWork(_ cb: RCTResponseSenderBlock) -> Void {

 print("Done some work")

 cb(["", "result data"])

}

A callback is hard to manage especially when deeply nested.

This scenario is commonly referred to as a callback hell. A promise

is considered a more elegant way. To make a native method

compatible with a promise chain (or its await parity), we need to pass

Chapter 4 Native Modules and Components

158

RCTPromiseResolveBlock and RCTPromiseRejectBlock as the last two

parameters. Listing 4-4 gives an implementation of such translation. We

are going to discuss in detail the promise and await in Chapter 5.

Listing 4-4.  Make native method promise compatible

RCT_EXTERN_METHOD(someWork:(RCTPromiseResolveBlock *) resolve

 rejecter:(RCTPromiseRejectBlock *) reject)

...

@objc(someWorkWithPromise:rejecter:)

func someWorkWithPromise(_ resolve: RCTPromiseResolveBlock,

rejecter reject: RCTPromiseRejectBlock) -> Void {

 print("Done some work")

 resolve (["result data"])

}

And make sure both methods are registered within the bridge

(Listing 4-5).

Listing 4-5.  Make native methods available through the bridge

RCT_EXTERN_METHOD(someWork:(RCTResponseSenderBlock *) cb)

RCT_EXTERN_METHOD(

 someWorkWithPromise:(RCTPromiseResolveBlock *) resolve

 rejecter:(RCTPromiseRejectBlock *) reject)

Note  Please try to make the method names explicit to the bridge.
💣 Please refrain from overloading methods, which confuses the
bridge and gives undefined error when the method got invoked.

Chapter 4 Native Modules and Components

159

4.1.2  �Android Native Module
Now let’s implement the Android version of HelloWorldManager.

4.1.2.1  �Setup

Firstly, we open the Android project in Android Studio. The subdirectory is

android (Figure 4-8).

Figure 4-8.  Open the Android project in Android Studio

Next, right-click the source code directory under the project; choose

new Kotlin Class/File (Figure 4-9).

Chapter 4 Native Modules and Components

160

Figure 4-9.  Create a new Kotlin class

Again, we type HelloWorldManager for the class name (Figure 4-10).

Figure 4-10.  Add HelloWorldManager

Chapter 4 Native Modules and Components

161

Next, we create a package class where all native modules are

registered. This package class is specific to Android. We name the package

MomendCardPackage (Figure 4-11).

Figure 4-11.  Add ManyfacePackage

4.1.2.2  �Implement the Native Module

Firstly, we need to export the module to the JavaScript layer. This is the

same step as the RCT_EXTERN_MODULE macro in iOS (Listing 4-6).

Listing 4-6.  Export the module to the JavaScript layer

override fun getName(): String {

 return "HelloWorldManager"

}

Next, we can go ahead and implement the hello method as in iOS

(Listing 4-7).

Chapter 4 Native Modules and Components

162

Listing 4-7.  Implement hello()

@ReactMethod

fun hello() {

 Log.d("HelloWorldManager", "Hello World!");

}

4.1.2.3  �Register the Native Module

Next, we need to register the newly created native module with the

ManyfacePackage and then register the ManyfacePackage with the

application (Listings 4-8 and 4-9).

Listing 4-8.  Register the native module with ManyfacePackage

class ManyfacePackage: ReactPackage {

 override fun createViewManagers(// ---------------------> 1)

reactContext: ReactApplicationContext):

MutableList<ViewManager<out View, out ReactShadowNode<*>>>

 {

 �return mutableListOf<ViewManager<View,

ReactShadowNode<*>>>()

 }

 override fun createNativeModules(// --------------------> 2)

reactContext: ReactApplicationContext):

MutableList<NativeModule>

 {

 �return mutableListOf(HelloWorldManager(reactContext))

// > 3)

 }

}

Chapter 4 Native Modules and Components

163

	 1)	 We return an empty list for createViewManagers.

The list will be populated very soon in Section 4.2.2.

	 2)	 createNativeModules is the method to register

native modules.

	 3)	 We instantiate the native module

HelloWorldManager and populate the list with it.

Listing 4-9.  Register the ManyfacePackage with the application

...

 override fun getPackages(): List<ReactPackage> {

 val packages = PackageList(this).packages

 packages.add(ManyfacePackage())

 return packages

 }

...

4.1.2.4  �Async Calls

The same as in iOS (Section 4.1.1.3), we can use either callbacks or

promises to resolve asynchronous native calls. Firstly, let’s see how a

callback is used by implementing the Android counterpart of someWork()

(Listing 4-10).

Listing 4-10.  Use a callback to complete a native method invocation

(Android version)

@ReactMethod

fun someWork(cb: Callback) {

 Log.d("HelloWorldManager", "Done some work");

 cb.invoke("", "success")

}

Chapter 4 Native Modules and Components

164

Next is the approach using Promise (Listing 4-11).

Listing 4-11.  Make native method promise compatible (Android

version)

@ReactMethod

fun someWorkWithPromise(promise: Promise) {

 Log.d("HelloWorldManager", "Done some work");

 promise.resolve("result data")

}

4.1.3  �Use the Native Module in JavaScript
As we deliberately make method signatures exported from iOS and

Android the same, we can call these methods in a unanimous way as given

in Listing 4-12.

Listing 4-12.  Use the native module in JavaScript

import { ..., NativeModules } from 'react-native';

const HelloWorld = NativeModules.HelloWorldManager; // ----> 1)

HelloWorld.hello(); // ------------------------------------> 2)

NativeModules.HelloWorldManager.someWork((err, res) => {

// -> 3)

 console.log('Result of the callback:' + res);

});

NativeModules.HelloWorldManager.someWorkWithPromise() // --> 4)

.then((res) => {

 console.log('Result of the promise:' + res);

});

Chapter 4 Native Modules and Components

165

	 1)	 The name of the native module will be the same as

the class name in Swift. This is guaranteed by the

RCT_EXTERN_MODULE macro.

	 2)	 This invokes the Swift implementation of the

same method.

	 3)	 The callback param could be either in the form of an

arrow method or a normal JavaScript function.

	 4)	 As discussed, the native method can be designed as

part of an ordinary promise chain.

4.1.4  �Key Takeaways
In this section, we looked at how to implement native modules that export

native methods to the JavaScript layer. We firstly listed the files required

by both iOS and Android to enable a full-fledged native module. Then

we made a dummy native module to demonstrate how exactly a method

is exposed from both platforms. Lastly, we discussed the asynchronous

nature of native method calls. Although we adopted both callback and

promise ways to implement asynchronous method calls, the promise is

always the go-to approach in practice.

We also make a checklist of files required to create native modules as

follows:

iOS

HelloWorldManager.swift

ProjectName-Bridging-Header.h

HelloWorldManagerBridge.m

Android

HelloWorldManager.kt

MomendCardPackage.kt

Chapter 4 Native Modules and Components

166

4.2	 �Native Components
Involved with the UI, native components are more complex than

native modules. Native components turn existing native UI elements

into ordinary components. For example, you may want to expose the

system AirPlay button to the JavaScript layer. For teams who want to

integrate React Native to their existing app, it is also a good practice to

expose existing battle-ironed native UI elements out in the form of native
components so as to reuse the wheel.

The native component is also the technique applied by the React
Native community to create various third-party libraries. Some of them are

the go-to component for their designated task. react-native-fast-image is by

far the best image cache library based on SDWebImage and Glide; react-

native-video is the most commonly used video library; and react-native-

vector-icons allows for using vector icons on mobile apps, which largely

enhance the development speed especially in the phase of PoC. With those

libraries in place, you don’t need to deep dive to the native layer as the

work has been done for you in most cases.

Technically, a native component is composed of two parts, a view
manager and a custom native view. The view manager works as a proxy

for the native component. The view manager defines the props and

methods and exposes them to the JavaScript layer on behalf of the native

view. The JavaScript layer can access the native view only through the

corresponding view manager. After being properly exported, native
components are no different than ordinary components; they can be set

with background color and border radius and be incorporated into the

layout with flexbox. They can also be assigned with children, which are

populated as subviews of the underlying native views of the components.

The layout and other styles of the custom view (e.g., background

color) are managed by React Native. It is worth noting that the native

view returned by the view manager is merely a blueprint, which is not

the real view rendered. 💣 So please refrain from keeping a reference of a

Chapter 4 Native Modules and Components

167

native view for further manipulation. It is also pointless to attach a gesture

handler to the native view for the same reason. 🚀 Use a react tag (Section

4.3.2) to get the correct component instance for such manipulation.

Lastly, a view manager cannot be used interchangeably as a native
module. For example, 💣 on iOS, view managers cannot be used to send

events (Section 4.3.1), while on Android, view managers cannot expose

native methods.

4.2.1  �iOS Native Component
4.2.1.1  �Setup

The files required by a native component are similar to those for a native
module. Firstly, we need a manager that exports the view to the JavaScript

layer. Likewise, we right-click the project root group and select a new file.

This time, we change its name to HelloViewManager Swift (Figure 4-12).

Figure 4-12.  Add HelloViewManager

Chapter 4 Native Modules and Components

168

We omit the bridge file for Objective-C to Swift since it has already

been created for the native module. And we continue creating the

JavaScript bridge file for the manager that has to be in Objective-C.

This time, the name should be HelloViewManagerBridge (Figure 4-13).

Figure 4-13.  Add HelloViewManagerBridge

The same as a native module, we need three files, one Swift

implementation and two bridge headers for a native component.

4.2.1.2  �Implement the View Manager

As usual, firstly, let’s see the main logic of HelloViewManager which is in

Swift (Listing 4-13).

Listing 4-13.  HelloViewManager.swift

@objc(HelloViewManager)

class HelloViewManager: RCTViewManager { // ---------------> 1)

 @objc(view)

Chapter 4 Native Modules and Components

169

 override func view() -> UIView { // ---------------------> 2)

 return UIView() // ------------------------------------> 3)

 let view = HelloView()

 view.backgroundColor = UIColor.purple

 return view

 }

}

class HelloView: UIView { // ------------------------------> 3)

}

	 1)	 Subclass the RCTViewManager.

	 2)	 Override its view() methods.

	 3)	 Create a custom view with the view manager.

Note T hough it is tempting to return a library native view as is in
the view(), it causes chaos in the context of cross-platform. This is
because native views always have different interfaces (i.e., properties
and methods) on different platforms. 🏛 Hence on iOS, it is a good
practice to always create a custom native view together with the
view manager as another layer of abstraction, so as to keep the
interface the same to the JavaScript layer. We will see it very soon in
Section 4.2.1.3.

Directly compiling the preceding source code will give an error that

RCTViewManager does not exist in the Swift realm. Again, this is where

the Objective-C to Swift bridge header (ProjectName-Bridging-Header)

comes into play. We need to expose the required React Native class

(RCTViewManager) to Swift by adding the line shown in Listing 4-14 to the

bridge header.

Chapter 4 Native Modules and Components

170

Listing 4-14.  Expose the RCTViewManager to Swift

#import <React/RCTViewManager.h>

Lastly, we bridge the component out to the JavaScript layer in

HelloViewManagerBridge (Listing 4-15).

Listing 4-15.  HelloViewManagerBridge.m

#import <Foundation/Foundation.h>

#import <React/RCTViewManager.h>

@interface RCT_EXTERN_MODULE(HelloViewManager,

RCTViewManager)//1)

@end

	 1)	 Here, we need to export the module as

RCTViewManager.

4.2.1.3  �View Property

The view manager is responsible for exporting view properties of the

native view to the JavaScript layer. More specifically, properties are

made available to the JavaScript layer with the macro RCT_EXPORT_VIEW_

PROPERTY. After the export, the properties of the native view can be passed

in with values as an ordinary prop. Lastly, the prop name exported is the

same as the name of the corresponding view property.

Now we change the view manager a bit to expose a view property

called bgColor to the JavaScript layer (Listing 4-16).

Chapter 4 Native Modules and Components

171

Listing 4-16.  Export a view property in the view manager

@interface RCT_EXTERN_MODULE(HelloViewManager, RCTViewManager)

RCT_EXPORT_VIEW_PROPERTY(bgColor, int) // -----------------> 1)

@end

Next, we make a custom native view to respond to the property change

(Listing 4-17).

Listing 4-17.  Export a view property in the native view

...

class HelloView: UIView {

 func setBgColor (color: int) { // -----------------------> 1)

 self.backgroundColor = UIColorFromInt(color) //--------> 3)

 }

 func UIColorFromInt(_ rgbValue: Int) -> UIColor { // ----> 2)

 let red = CGFloat((rgbValue & 0xFF0000) >> 16) / 0xFF

 let green = CGFloat((rgbValue & 0x00FF00) >> 8) / 0xFF

 let blue = CGFloat(rgbValue & 0x0000FF) / 0xFF

 let alpha = CGFloat(1.0)

 return UIColor(red: red,

 green: green,

 blue: blue,

 alpha: alpha)

 }

}

Chapter 4 Native Modules and Components

172

	 1)	 Here, we export the bgColor as int instead of

UIColor in order to make the interface consistent

with Android. As you will see repeatedly in this

book, 🏛 keeping the interface consistent by finding

the common factor is a good practice in the context

of cross-platform.

	 2)	 As such, we need another native method to convert

the int to UIColor. From the structure, we can see

that it extracts RGB values from different portions

of the int value and assigns them to the UIColor.

But for now, we don’t have to understand its

implementation details.

	 3)	 Lastly, we can use the preceding method to convert

the int view property to the UIColor as required by

the backgroundColor.

Note  After being exported, the native view is converted to an
ordinary component by the React Native runtime. Hence, the
background color can be set with the style props. So the bgColor
here is for demonstration purposes only. In practice, we don’t need to
export a stand-alone view property for the background color.

As mentioned before, 🏛 it is always more desirable to have a

customized native view designed with the same properties instead

of exporting the original native view as is. This is critical to provide a

unanimous JavaScript interface for different platforms. One example

is AirPlay and Chromecast. The properties of the two native views are

completely different. In our example, we use a wrapper view to reconcile

the differences. Another approach is to use the RCT_REMAP_VIEW_PROPERTY

macro to achieve the same.

Chapter 4 Native Modules and Components

173

One special type of a view property is the callback. After the export,

this property accepts a JavaScript function or closure as the input props.

The callback then is stored in the native view and gets invoked when a

certain condition is met. For instance, a video native view might need to

notify the consumer in the JavaScript layer when an exception occurs. We

can use RCTBubblingEventBlock (not the RCTResponseSenderBlock used

in the native module) as the property type to make the property callable.

4.2.2  �Android Native Component
4.2.2.1  �Setup

The files required by native components on Android are similar to

those for native modules. Here, we only need to add one additional

file, HelloViewManager.kt, for the view manager. We can reuse the

ManyfacePackage.kt created before for view manager registration

(Figure 4-14).

Figure 4-14.  Add HelloViewManager

Chapter 4 Native Modules and Components

174

4.2.2.2  �Implement the View Manager

The way of implementing the view manager is very different from that

in iOS. But the critical points are the same. To recap, we (1) export the

module to the JavaScript layer with a name, (2) we create a custom native
view for the unanimity of the API, and (3) we instantiate the native view in

the view manager. See Listing 4-18.

Note  We create a custom native view the same as in iOS to
keep these two examples more comparable. However, this cannot
be achieved easily in practice. We could add the abstract layer on
setters of view properties to maintain the unanimity of the API if that
is the case.

Listing 4-18.  HelloViewManager.kt (Android version)

class HelloViewManager: SimpleViewManager<HelloView>() {

 companion object {

 val REACT_CLASS = "HelloView" // ---------------------> 1)

 }

 var mCallerContext: ReactApplicationContext? = null

 �fun HelloViewManager(reactContext:

ReactApplicationContext?) {

 mCallerContext = reactContext

 }

 override fun getName(): String { // --------------------> 1)

 return REACT_CLASS

 }

Chapter 4 Native Modules and Components

175

 override fun createViewInstance(// --------------------> 3)

 reactContext:ThemedReactContext

): HelloView {

 return HelloView(mCallerContext)

 }

}

class HelloView: View { // -------------------------------> 2)

 �constructor(context: ReactApplicationContext?):

super(context)

 {

 }

}

Like the native module, we also need to register the native
component with the ManyfacePackage. This time, we populate the list

returned by createViewManagers in ManyfacePackage (Listing 4-19).

Listing 4-19.  Register the native component

...

 override fun createViewManagers(

reactContext: ReactApplicationContext

): MutableList<ViewManager<out View, out ReactShadowNode<*>>>

 {

 return mutableListOf(HelloViewManager(reactContext))

 }

We have already registered the ManyfacePackage with the

MainApplication, so we can omit the step here.

Chapter 4 Native Modules and Components

176

Note H ere, we need to declare the template variables View and
ReactShadowNode as out. So ViewManager<out View, out
ReactShadowNode<*>> can be compatible with the returned Simp
leViewManager<HelloView>.

4.2.2.3  �View Property

Next, we export the same bgColor property for the Android version of

HelloView. Firstly, in the view manager, we export the view property and

assign the setter with it (Listing 4-20).

Listing 4-20.  Export a view property in the view manager (Android)

@ReactProp(name = "bgColor")

fun setBgColor(view: HelloView, color: Int) {

 view.setBgColor(color)

}

Next, we implement the setBgColor in the custom native view

(Listing 4-21).

Listing 4-21.  Export a view property in the native view (Android)

class HelloView: View {

 �constructor(context: ReactApplicationContext?):

super(context)

 {}

 public fun setBgColor(color: Int) {

this.setBackgroundColor(color)

 }

}

Chapter 4 Native Modules and Components

177

Unlike iOS, we cannot simply indicate the type as Callback to make

a callback view property on Android. Rather, we need to mimic the

callback using the event system (Section 4.3.1). For example, if we want to

implement an onComplete callback view property, we need to define an

event with the same name in the view manager (Listing 4-22).

Listing 4-22.  Callback view property in the native view (Android)

...

override fun getExportedCustomBubblingEventTypeConstants() =

 mapOf(

 "onChange" to // —------------------------------------> 2)

 mapOf(

 "phasedRegistrationNames" to // —----------------> 1)

 mapOf("bubbled" to "onChange")

)

)

...

	 1)	 This is the event name that will be used in the native

layer to invoke the callback view property.

	 2)	 This is the view property name mapped with the

event name.

With this setup, the native side can invoke the callback view property

with the code in Listing 4-23.

Listing 4-23.  Invoke the callback view property (Android)

...

val event: WritableMap = Arguments.createMap()

event.putString("data ", "Data content") // --------------> 4)

Chapter 4 Native Modules and Components

178

reactContext?.getJSModule(

 RCTEventEmitter::class.java

)?.receiveEvent(// --------------------------------------> 5)

 id,

 " onChange", // --> 3)

 event

)

...

	 3)	 This is the event name registered in step 1.

	 4)	 Here, we can also put the parameters for this

callback.

	 5)	 Call the JavaScript layer to receiveEvent, which

means sending the event from the native layer.

As mentioned, we are going to make use of the callback view property

when implementing the video native component later in Section 4.5. At

that time, we are going to see some real and workable code.

4.2.3  �Use the Native Component in JavaScript
Let’s see how the native component we created can be used in the

JavaScript layer. Next, let’s see how it looks.

4.2.3.1  �The Easy Way

requireNativeComponent is the method provided by React
Native to “import” a native component. The return value of

requireNativeComponent is an ordinary component that can be used

directly inside the render() method. See Listing 4-24.

Chapter 4 Native Modules and Components

179

Listing 4-24.  A modified version of App.js

import { requireNativeComponent } from 'react-native';

let HelloView = requireNativeComponent('HelloView'); // --> 1)

const App: () => React$Node = () => {

 return (

 <SafeAreaView style={{width: '100%', height: '100%'}}>

 <HelloView

 bgColor={processColor('red')} // -----------------> 2)

 style={{width: ‘100%’, height: 50}}

 />

 </SafeAreaView>

);

};

export default App;

	 1)	 Import directly from the native component.

	 2)	 Here, we use the processColor to convert the CSS

style color values to int as defined by the view
property.

4.2.3.2  �The Right Way, Abstraction
on the JavaScript Layer

In practice, however, it causes confusion when debugging by

using requireNativeComponent directly in the user component.

More specifically, in the case where fast refresh is enabled, the

requireNativeComponent will be called whenever the user code is

changed, which eventually will give the “Tried to register two views with

the same name” error.

Chapter 4 Native Modules and Components

180

To mitigate this issue, it is better to encapsulate the native component

in its own file which will not be touched after being created in

normal cases.

This wrapper can also serve as another layer of abstraction that eases

out any potential differences on the two mobile platforms when necessary

(Listing 4-25).

Listing 4-25.  A native component in its own file

import React from 'react';

import { requireNativeComponent } from 'react-native';

let HelloView = requireNativeComponent('HelloView');

export default HelloView;

Then the view can be used unchanged. The only difference is that the

component should be imported from this file (Listing 4-26).

Listing 4-26.  Import from the isolated file

...

let HelloView = requireNativeComponent('HelloView');

import HelloView from './HellowView';

...

4.2.4  �Children of a Native Component
A native component can also be added with children (Listing 4-27).

Listing 4-27.  A native component with children

<HelloView style={{

 width: '100%',

 height: 50,

Chapter 4 Native Modules and Components

181

 flexDirection: 'row',

 bgColor={processColor('red')} // -------------> 1)

 }}

>

 <View style={{flex: 1, backgroundColor: 'green'}}/> // --> 2)

 <View style={{flex: 1, backgroundColor: 'blue'}}/>

 <View style={{flex: 1, backgroundColor: 'yellow'}}/>

</HelloView>

	 1)	 We use bgColor to dye the container component so

it’s more standout in the view inspector.

	 2)	 We add three children to the container which is

essentially a native component.

On iOS, children are added as subviews. This useful characteristic can

enable advanced visual effects such as gradient and mask to any ordinary

components with a customized native component (Figure 4-15).

Figure 4-15.  Native view with children

Chapter 4 Native Modules and Components

182

On Android, we need to adjust the view manager to support children

under the native component. This is because Android differentiates View

and ViewGroup, and only the latter can contain subviews. This is how the

newer version of the view manager looks in order to support children

(Listing 4-28).

Listing 4-28.  Support ViewGroup

class HelloViewManager: ViewGroupManager<HelloView> { // --> 1)

 companion object {

 val REACT_CLASS = "HelloView"

 }

 var mCallerContext: ReactApplicationContext? = null

 constructor(reactContext: ReactApplicationContext?):

 super() {

 mCallerContext = reactContext

 }

 override fun getName(): String {

 return REACT_CLASS

 }

 override fun createViewInstance(

 reactContext: ThemedReactContext

): HelloView {

 return HelloView(mCallerContext)

 }

 @ReactProp(name = "bgColor")

 fun setBgColor(view: HelloView, @ColorInt color: Int) {

 view.setBgColor(color)

 }

}

Chapter 4 Native Modules and Components

183

class HelloView: ViewGroup { // ---------------------------> 2)

constructor(context: ReactApplicationContext?):

super(context)

{}

override fun onLayout(changed: Boolean, // ----------------> 3)

 l: Int,

 t: Int,

 r: Int,

 b: Int) {

 }

 public fun setBgColor(@ColorInt color: Int) {

 this.setBackgroundColor(color)

 }

}

	 1)	 The view manager needs to inherit from

ViewGroupManager instead of SimpleViewManager.

	 2)	 The custom native view needs to inherit from ViewGroup.

	 3)	 The custom native view needs to override onLayout of

the ViewGroup. We don’t need to do anything for this

method as React Native will handle all the layout for us.

Note  Please always consider using ViewGroupManager first
instead of SimpleViewManager whenever possible since it is
always preferred that components can work as containers. In
practice, this is not feasible because some stock views on Android
are derived from View or SurfaceView. In such a case, we can
design the wrapper component in JavaScript (Section 4.2.3.2) if
we need it to work as a container.

Chapter 4 Native Modules and Components

184

This way, we can achieve the same view hierarchy as on iOS

(Figure 4-16).

Figure 4-16.  Native view with children (Android version)

4.2.5  �Key Takeaways
In this section, we looked into native components. At the core of each

native component are view managers. We learned that a view manager

needs three key steps to be fully functional: (1) declare a name to be

exported, (2) declare a custom native view, and (3) instantiate and return

the native view. Moreover, we can define view properties to be used in the

JavaScript layer.

We also saw how the custom native views can be used interchangeably

with other ordinary components; they can be nested as children within

components or the other way around. Moreover, to enjoy this perk on

Android, we need to use ViewGroup and ViewGroupManager. It is worth

noting again that ViewGroup and ViewGroupManager are always more

preferred to be aligned with React Native stock components.

Chapter 4 Native Modules and Components

185

Table 4-1 provides a quick summary to implement native components

on both platforms.

Table 4-1.  Summary of native components

iOS Android

Export module

name

RCT_EXTERN_MODULE override

fun getName(): String

Custom native

view

extends UIView extends View

Instantiation override

func view() -> UIView

Override

fun createViewInstance(

reactContext: Themed

ReactContext): View

View properties RCT_EXPORT_VIEW_PROPERTY @ReactProp

Callback view

properties

RCTResponseSenderBlock getExportedCustom

BubblingEventType

Constants

Work as

container

Naturally supported extends

ViewGroupManager

We have discussed all the basics in native modules and native
components. Next, let’s look at some advanced techniques.

4.3	 �Advanced Techniques
4.3.1  �Event
The JavaScript-to-native communications we saw in the previous sections

are all requests initialized from the JavaScript layer, or “pulls.” An event

allows for a “push” from a native module to the JavaScript layer. There

Chapter 4 Native Modules and Components

186

are other ways, such as retained callbacks and set properties, with which

native modules can send updates to the JavaScript layer actively. For

example, a native module can retain a callback argument and invoke it

when an event of interest occurs. Nonetheless, using explicit events is the

most intuitive way.

Note  As discussed in Chapter 3, frequent communication (e.g.,
frame by frame) between JavaScript and native is far from ideal
and should be avoided at all times. The same principle applies for
callback props (Sections 4.2.1.3 and 4.2.2.3) which virtually “push”
events from a native component. As a quick reminder, we resort to
native-to-native events for such scenarios.

4.3.1.1  �Send Events from iOS

As mentioned, only native modules can post events to the JavaScript

layer. On iOS, a native module needs to inherit RCTEventEmitter. It is

impossible for a native component to send an event in that a native
component has to inherit from RCTViewManager.

To post events to the JavaScript layer, a native module calls

[self sendEventWithName:body:] that is inherited from the base class

RCTEventEmitter. Next, let’s modify the HelloWorldManager to send back

an event (Listing 4-29).

Listing 4-29.  Send an event within hello()

@objc(HelloWorldManager)

class HelloWorldManager: RCTEventEmitter { // -------------> 1)

 @objc(hello)

 func hello() -> Void {

 print("Hello World")

Chapter 4 Native Modules and Components

187

 self.sendEvent(// ------------------------------------> 2)

 withName: "HELLO_EVENT", // -------------------------> 3)

 body: ["data": "hello() got called"] // -------------> 4)

)

 }

...

}

	 1)	 RCTEventEmitter is a special native module that can

emit events.

	 2)	 We send the event at the end of a native method.

	 3)	 We name the event HELLO_EVENT. The JavaScript

layer can in turn use this identifier to register the

listener for the event.

	 4)	 We also provide some payload as the event body.

4.3.1.2  �Send Events from Android

On Android, we use a similar way to send events to the JavaScript layer.

We can use the following line to send events from anywhere, and it does

not require a native module to inherit from a special superclass.

Next, we change the Android version of the hello() method the same

way as on iOS (Listing 4-30).

Listing 4-30.  Send an event within hello() (Android version)

@ReactMethod

fun hello() {

 Log.d("HelloWorldManager", "Hello World");

 val params = Arguments.createMap() // -------------------> 1)

 params.putString("data", "hello() got called")

Chapter 4 Native Modules and Components

188

 mCallerContext?.getJSModule<

 DeviceEventManagerModule.RCTDeviceEventEmitter

 >(

 DeviceEventManagerModule.RCTDeviceEventEmitter::class.java

)?.emit("HELLO_EVENT", params) // -----------------------> 2)

}

	 1)	 Construct the parameter for the event. This is

equivalent to the event body of the iOS counterpart.

	 2)	 Indicate the event name HELLO_EVENT as on

iOS. And pass in as payload the params constructed

earlier. This line can be used anywhere to send

events from the native side.

4.3.1.3  �Receive Events in JavaScript

To receive events in the JavaScript layer, we need to instantiate a

NativeEventEmitter from the native module. And register a callback with

the event name that is of interest (Listing 4-31).

Listing 4-31.  Receive events in the JavaScript layer

const receiver = new

NativeEventEmitter(NativeModules.HelloWorldManager); // ---> 1)

receiver.addListener('HELLO_EVENT', (params) => { // ------> 2)

 if (params['data'] !== undefined) { // ------------------> 3)

 �console.log("received event from native: " +

params['data']);

 }

})

Chapter 4 Native Modules and Components

189

	 1)	 Here, we instantiate a NativeEventEmitter based

on our HelloWorldManager.

	 2)	 Then we attach a listener to the

NativeEventEmitter for HELLO_EVENT.

	 3)	 We process the event payload when it arrives.

Here, the HELLO_EVENT and params are the first and second parameters

of the [self sendEventWithName:body:] and emit() on iOS and

Android, respectively.

4.3.2  �React Tag
As said, the view returned by the native component is not the UIView
rendered. Although it is tempting to retain the UIView instance with a

native component instance variable, it is futile to change its attributes or

to operate on it, for example, change its background color. To manipulate

the actual UIView instance, we must resort to a react tag, a unique

identifier allocated by the React Native runtime to identify a particular

UIView. We need to get a react ref before we can fetch a react tag. So let’s

start from there.

4.3.2.1  �React Refs

The beauty of React is found in its extensive adoption of composition and

unanimous way to interact with components. Nevertheless, in very rare

cases, we need to regress to the traditional Object-Oriented paradigm and

invoke an instance method. One example is ScrollView.scrollTo().

It is not straightforward to fetch the reference of the component

instance as the instantiation and life cycle are managed by React Native.

But we can retrieve a component instance from the VDOM tree in the

render() method with ref which is a special callback prop.

Chapter 4 Native Modules and Components

190

Note  💣 The ref is not supported by functional components.

Before we dive in, let’s take ScrollView as an example. Listing 4-32

demonstrates how to retrieve the react ref of a ScrollView.

Listing 4-32.  Retrieve a ref

<ScrollView ref={ref => {

 this._scrollViewRef = findNodeHandle(ref)

}}>

</ScrollView>

Then scrollTo() is ready for use as given in Listing 4-33.

Listing 4-33.  Call an instance method of a ScrollView

this._scrollViewRef.scrollTo({ x: 0, y: 0, animated: true });

ScrollView is a stock component. Eventually, scrollTo() needs to

call the native function to complete the action. This step is encapsulated

inside the ScrollView, and underneath a technique called a react tag is

used to achieve that.

Note  Sometimes, a component is wrapped within an HOC(s). This
obscures react tag fetching in that the ref obtained by the consumer
will be the react ref of the HOC instead of the real component
being consumed semantically. This issue can be resolved using ref
forwarding which we are going to apply in Section 4.5.3.4.

Chapter 4 Native Modules and Components

191

4.3.2.2  �React Tags

In the native layer, the instances of components are in the form of concrete

UIView. Again, the instantiation and life cycle of native views are managed

by React Native. As given in Listing 4-34, this time we use a react tag, a

unique identifier that is associated with a particular UIView to retrieve

the instance. A react tag can be retrieved in the JavaScript layer using

findNodeHandle passed with a react ref retrieved in the last section.

Listing 4-34.  Retrieve a react tag

import { NativeModules, findNodeHandle } from 'react-native'

<View ref={ref => {

 this._viewTag = findNodeHandle(ref)

}}>

</View>

Now in a native view manager (or a native module), we can use

this react tag to retrieve the UIView instance for further operations.

Listings 4-35 to 4-37 give the implementation on iOS.

Listing 4-35.  Manipulate UIView with a react tag

@objc(setBlue:)

func setBlue(_ reactTag: Int) {

 self.bridge.uiManager.addUIBlock({ // -------------------> 1)

 (uiManager: RCTUIManager?,

viewRegistry: [NSNumber: UIView]?) in

 l�et view = viewRegistry?[NSNumber.init(value:

reactTag)] //2)

 view?.backgroundColor = UIColor.blue // ---------------> 3)

 })

}

Chapter 4 Native Modules and Components

192

	 1)	 Use [RCTUIManager addUIBlock] to execute the

logic on the main thread.

	 2)	 Retrieve the UIView from viewRegistry which

stores all UIView in use.

	 3)	 Apply the UI operation on the UIView, for example,

set its background color.

Next, we bridge out the setBlue method in

HelloViewManagerBridge.m.

Listing 4-36.  Add setBlue in HelloViewManagerBridge.m

RCT_EXTERN_METHOD(setBlue:(int)reactTag)

Lastly, we bridge in the missing dependency Objective-C class

RCTUIManager in ProjectName-Bridging-Header.h.

Listing 4-37.  Add the Objective-C dependency in ProjectName-

Bridging-Header.h

#import <React/RCTUIManager.h>

💣 We need a completely different implementation to manipulate

a native view on Android. Unlike iOS, we don’t have an exposed

viewRegistry that keeps records of instances of native views and their

corresponding react tags. Moreover, native components lack the ability

to export methods to the JavaScript layer. Rather, we need to make use of

a command system designed on Android. Though the command system

still relies on the react tag implicitly, the use of such a system is completely

different and is less elegant compared to that on iOS when achieving the

same end purpose.

Let’s explain the command system. Basically, the commands are strings

defined in native components together with their associated procedures.

These predefined commands in turn can be sent from the JavaScript layer.

Chapter 4 Native Modules and Components

193

The command is required to be attached with a react tag to indicate

which native view it is meant for. Then the command system translates the

react tag to the view instance and passes the instance into the mentioned

procedure.

Next, we implement the same “set blue” functionality on Android to

see how this command system looks (Listing 4-38).

Listing 4-38.  Add the setBlue as a command in HelloViewManager

class HelloViewManager: ViewGroupManager<HelloView> {

 companion object {

 val REACT_CLASS = "HelloView"

 private const val COMMAND_SET_BLUE = "setBlue" // -----> 1)

 private const val COMMAND_SET_BLUE_VAL = 1

 }

...

 override fun getCommandsMap() = mapOf(// ---------------> 2)

 COMMAND_SET_BLUE to COMMAND_SET_BLUE_VAL

)

 override fun receiveCommand(// -------------------------> 3)

 view: HelloView, // ----------------------------------> 4)

commandId: String, args: ReadableArray?)

 {

 when (commandId) {

 COMMAND_SET_BLUE -> {

 view.setBlue() // ---------------------------------> 5)

 }

 }

 }

...

}

Chapter 4 Native Modules and Components

194

class HelloView: ViewGroup {

...

 public fun setBlue() { // -----------------------------> 5)

 this.setBackgroundColor(Color.BLUE)

 }

...

}

	 1)	 Declare the constant command string.

	 2)	 Export the command to React Native.

	 3)	 Declare the procedures for each command

exported. Here, we have only one command,

COMMAND_SET_BLUE.

	 4)	 The command system translates the react tag into

the native view instance and passes it in.

	 5)	 With the instance of the native view, we can

operate on it.

4.3.2.3  �Reconcile React Tag Implementation
on JavaScript

The implementation difference we have seen earlier is not well aligned. To

reconcile a platform difference, we add a JavaScript abstraction layer of

the native component. As mentioned, the common critical information

shared between iOS and Android is the react tag; hence, the arguments

taken on both platforms can be made the same. Listings 4-39 and 4-40 give

the implementation of such reconciliation.

Chapter 4 Native Modules and Components

195

Listing 4-39.  Make a wrapper of the native module

class HelloViewManager {

 static setBlue(reactTag) {

 if (Platform.OS === 'ios') {

 �NativeModules.HelloViewManager.setBlue(reactTag);

// --> 1)

 } else {

 UIManager.dispatchViewManagerCommand(// ------------> 2)

 reactTag, 'setBlue', []

);

 }

 }

};

export default HelloViewManager;

	 1)	 When the platform is iOS, invoke native method

setBlue in the ordinary way.

	 2)	 When the platform is Android, send the

corresponding command together with the

react tag.

Listing 4-40.  Call the native method using a react tag

class App extends React.Component {

 constructor() {

 super();

 }

Chapter 4 Native Modules and Components

196

 componentDidMount() {

 setInterval(() => {

 if (this._viewTag) {

 HelloViewManager.setBlue(this._viewTag); // -------> 2)

 }

 }, 1000);

 }

 render() {

 return (

 <SafeAreaView style={{width: '100%', height: '100%'}}>

 <HelloView ref={ref => {

 �this._viewTag = findNodeHandle(ref)

// -> 1)

 }}

 bgColor={processColor('red')}

 style={{width: '100%', height: 50}}

 />

...

 </SafeAreaView>

);

 }

};

export default App;

	 1)	 Fetch the react tag using findNodeHandle and react
ref as discussed.

	 2)	 Call the setBlue() method exposed from

HelloViewManager, which eventually call the

corresponding native method.

Chapter 4 Native Modules and Components

197

4.3.3  �Direct Manipulation
When carrying out UI operations that are out of scope to the React

rendering process, we want to circumvent rerendering of the component

tree. This is helpful for use cases where (1) most of the UI logic is offloaded

to the native layer and (2) smooth, continuous animation is involved. More

specifically, the updates on props of an animation component, video

states (e.g., pause/play) of a pure native video player, and content of a

TextInput are considered to belong to the preceding cases. This is where

direct manipulations come into play.

To carry out such operations, we firstly need to get the react ref of

the component as discussed in the last section. Then we can invoke

setNativeProps() of the component instance with the react ref.

Note T hough a direct manipulation is more lightweight than an
ordinary prop update (which triggers a rerender), it still imposes the
overhead for JavaScript-to-native communication. Please refrain
from using it for frequent updating which, again, better be carried out
using techniques discussed in Chapter 3.

4.3.4  �Synchronous Method Call
The invocations of a native method from JavaScript can be made

synchronous. More specifically, the binary execution of such method

calls is directly on the JavaScript thread. This technique is useful

when multiple sources of asynchronous events get involved (such as

user interaction and network events), and the results for all events are

critical to the subsequential logic flows. Using synchronous method

calls can significantly reduce complexity and makes the overall logic less

error-prone.

Chapter 4 Native Modules and Components

198

The synchronous method call is optimal in that (1) it is executed

directly on the JavaScript thread; (2) all interthread communication and

serialization for data passing between native and JavaScript layers have

been done away. As we will see in Chapter 6, all synchronous calls are

essentially made effective with a C++ method nativeCallSyncHook.

There are some caveats with using it. Firstly, it does not support

remote debugging on Chrome. Secondly, since synchronous methods are

executed on the JavaScript thread, we need to consider race conditions

when they need to share resources with other native methods running

on the native thread. Other than that, synchronous methods give lower

latency than their asynchronous counterparts.

On iOS, we use RCT_EXPORT_BLOCKING_SYNCHRONOUS_METHOD to export

synchronous methods.

On Android, we use @ReactMethod(isBlockingSynchronousMethod =

true) to export methods of such kind.

On the JavaScript layer, we can use those methods like ordinary ones

exported from native modules.

4.3.5  �Export Constants
When we want to pass some native-level configuration to the JavaScript

layer, we can export constants to do so. Those constants are determined

during the bootstrap phase and cannot be changed throughout the app

life cycle. As we will see in Chapter 6, constants are stored originally in

RCTModuleData and are gathered when the native module is referred to

for the first time. 🏛 The scope of constants is the module, so they are more

suitable to define module-specific values.

💣 The drawback of export constants is that they cannot be used to

reflect a configuration that can only be determined during runtime, for

example, fetched from remote. In the next section, 🚀 we will use initial
properties for such use cases.

Chapter 4 Native Modules and Components

199

4.3.5.1  �iOS

To export constants from a native module or a view manager, we simply

override the constantsToExport method (Listings 4-41 and 4-42).

Listing 4-41.  Export constants by overriding constantsToExport

@objc(constantsToExport)

override func constantsToExport() -> [AnyHashable : Any]? {

 return ["Version": "0.0.1"]

}

4.3.5.2  �Android

Listing 4-42.  Export constants by overriding getConstants

override fun getConstants(): Map<String, Any>? {

 return mapOf("Version" to "0.0.1")

}

4.3.5.3  �Access Constants in JavaScript

Constants exported on both platforms can be accessed using the native
module’s getConstants() method (Listing 4-43).

Listing 4-43.  Access the constants exported

const { Version } = NativeModules.HelloWorldManager.getConstants();

console.log('Version is: ' + Version);

4.3.6  �Initial Properties
As said, once determined in bootstrap, constants cannot change afterward.

Initial properties come into play when we need values that can only

be determined during runtime, for instance, feature flags fetched from

Chapter 4 Native Modules and Components

200

remote, endpoints that are determined after speed racing, and domain

configurations. 🏛 Unlike constants, the scope of initial properties is the

application, which makes it more suitable for the mentioned tasks.

On iOS, initial properties are passed from the native layer to the

RCTRootView during initialization (Listing 4-44).

Listing 4-44.  Pass initial props to the init method of RCTRootView

...

let params = ["endpoint": "holmeshe.me/debug"]

let rootView = RCTRootView(bridge: self.bridge, moduleName:

"ManyFaces", initialProperties: params)

...

On Android, we can pass the initial properties in a similar way. One

particularity here is that we use Bundle to populate the key and values

this time, and we need to perform the initial properties in MainActivity.

Next, we pass the same attributes as on iOS (Listing 4-45).

Listing 4-45.  Pass initial props to the init method of the main

activity (Android version)

class MainActivity: ReactActivity() {

 override fun getMainComponentName(): String? {

 return "ManyFaces"

 }

 override fun createReactActivityDelegate()

 : ReactActivityDelegate? {

 return object : ReactActivityDelegate(

 this, getMainComponentName()

) {

Chapter 4 Native Modules and Components

201

 override fun getLaunchOptions(): Bundle? {

 val bundle = Bundle()

 bundle.putString("endpoint", "holmeshe.me/debug")

 return bundle

 }

 }

 }

}

On the JavaScript layer, initial properties are received as the props

of the top-level component (normally, App) which is registered with the

AppRegistry. As such, using setProperties to update these properties

on the native layer is treated as a prop update, which triggers rerendering

(Listing 4-46).

Listing 4-46.  Access initial properties on the JavaScript layer

componentDidMount() {

 console.log('initial properties:', this.props);

...

}

4.3.7  �Dependency Injection
We all know that dependency injection is a million-dollar pattern. It helps

decouple the software modules and make tests much easier. This section is

not meant to explain dependency injection but to examine how to support

dependency injection of native modules and native components on the

iOS platform.

The instantiation of native modules and native components is

performed implicitly using the RCT_EXTERN_MODULE, and the life cycle

is managed by the React Native runtime ever since. This makes the

dependency injection not feasible.

Chapter 4 Native Modules and Components

202

Note  We always manually instantiate the native modules and
native components on Android; hence, the difficulty only exists on
the iOS platform.

Luckily, React Native provides a way to manually control the life

cycle of native modules and native components on iOS. In order to do

so, we need to rely on the second option of initializing the bridge, that is,

instead of initializing the bridge directly, we pass in a RCTBridgeDelegate

instance to the bridge init method. This delegate provides the necessary

information such as the location of the JavaScript bundle. Here, if we

implement extraModulesForBridge() of the RCTBridgeDelegate, this

delegate becomes responsible for provisioning extra native modules and

native components. At this point, we shall perform proper dependency

injection.

Let’s look at the implementation details to have a better

understanding. The RCT_EXTERN_MODULE (1) turns an ordinary class into a

native module and (2) registers it with React Native. Here, we only want

step 1. As given in Listing 4-47, let’s implement a macro to achieve that.

Note T he internal mechanisms of RCT_EXTERN_MODULE will be
fully examined in Chapter 6.

Listing 4-47.  Custom macro to create a module

#define CREATE_MODULE(objc_name, objc_supername) \

 objc_name: \

 objc_supername @ \

 end @interface objc_name(RCTExternModule)<RCTBridgeModule> \

 @end \

 @implementation objc_name (RCTExternModule) \

Chapter 4 Native Modules and Components

203

 RCT_EXTERN void RCTRegisterModule(Class); \

 +(NSString *)moduleName \

 { \

 return @ #objc_name; \

 }

Next, in Listing 4-48, we use the CREATE_MODULE instead of

RCT_EXTERN_MODULE for the HelloWorldModule.

Listing 4-48.  Use the new CREATE_MODULE

@interface RCT_EXTERN_MODULE(HelloViewManager, RCTViewManager)

RCT_EXTERN_METHOD(hello)

RCT_EXTERN_METHOD(setBlue:(int)reactTag)

RCT_EXPORT_VIEW_PROPERTY(bgColor, int)

@end

Lastly, we need to implement extraModulesForBridge in our

AppDelegate which is also a RCTBridgeDelegate (Listing 4-49).

Listing 4-49.  Use the new CREATE_MODULE

@objc

func extraModulesForBridge(_ bridge: RCTBridge!) -> NSArray! {

 return [HelloWorldManager()]

}

This is how we can gain full control of HelloWorldModule by

instantiating it ourselves.

Chapter 4 Native Modules and Components

204

4.3.8  �Key Takeaways
In this section, we covered some of the advanced techniques of native
modules and native components. Firstly, we introduced the event

system, a native-to-JavaScript communication mechanism. Then we

demystify how to adopt a react tag to manipulate a specific component,

which is required when designing advanced native components. We also

covered some less common practices such as direct manipulation and

synchronous method call, which are designed as an escape hatch that is

only useful in certain situations. Moreover, we examined two ways to pass

a configuration to the JavaScript layer, constants and initial properties.

The former way is simple, while the latter is more versatile when the

configuration can be determined or is required to be changed during

runtime. Lastly, we introduced how to manually manage the life cycle of

native modules and native components specifically on iOS, which is vital

to implement dependency injection on the native layer.

Despite the diverse support of those features on both platforms,

we have seen that it is always possible to make unanimous logic on the

JavaScript layer, which is the key to cross-platform. In each section, we

highlighted those differences in implementation and the best practice to

mitigate them. Table 4-2 is the summary as a reminder.

Chapter 4 Native Modules and Components

205

Ta
bl

e
4-

2.
 S

u
m

m
ar

y
of

 a
dv

an
ce

d
n

at
iv

e
te

ch
n

iq
u

es

Na
tiv

e
m

od
ul

e

(iO
S)

Na
tiv

e
m

od
ul

e

(A
nd

ro
id

)

Na
tiv

e
co

m
po

ne
nt

 (i
OS

)
Na

tiv
e

co
m

po
ne

nt

(A
nd

ro
id

)

Ev
en

ts
In

he
rit

s
fro

m

RC
TE

ve
nt

Em
itt

er

ge
tJ

SM
od

ul
e<

>

()?
.e

m
it(

)

No
t s

up
po

rte
d

ge
tJ

SM
od

ul
e<

>

()?
.e

m
it(

)

Re
ac

t

ta
g

N/
A

N/
A

Or
di

na
ry

 n
at

iv
e

m
et

ho
d

Co
m

m
an

d

sy
st

em

Di
re

ct

m
an

ip
ul

at
io

n

N/
A

N/
A

Vi
ew

 p
ro

pe
rty

+
 re

ac
t r

ef

Vi
ew

 p
ro

pe
rty

+
 re

ac
t r

ef

Sy
nc

hr
on

ou
s

m
et

ho
d

ca
ll

RC
T_

EX
PO

RT
_B

LO
CK

IN
G_

SY
NC

HR
ON

OU
S_

M
ETH

O
D

@
Re

ac
tM

et
ho

d(
is

Bl
oc

ki
ng

Sy
nc

h

ro
no

us
M

et
ho

d
=

 tr
ue

)

RC
T_

EX
PO

RT
_B

LO
CK

IN
G_

SY
NC

HR
ON

OU
S_

M
ETH

O
D

N/
A

Ex
po

rt

co
ns

ta
nt

s

Ov
er

rid
e

co
ns

ta
nt

sT
oE

xp
or

t
Ov

er
rid

e

ge
tC

on
st

an
ts

Ov
er

rid
e

co
ns

ta
nt

sT
oE

xp
or

t

Ov
er

rid
e

ge
tC

on
st

an
ts

In
iti

al

pr
op

er
tie

s

De
pe

nd
en

cy

in
je

ct
io

n

Ov
er

rid
e

ex
tra

M
od

ul
es

Fo
rB

rid
ge

Na
tu

ra
lly

 s
up

po
rte

d
Ov

er
rid

e

ex
tra

M
od

ul
es

Fo
rB

rid
ge

Na
tu

ra
lly

su
pp

or
te

d

Chapter 4 Native Modules and Components

206

Before we move on to the hands-on, the last missing piece is the

exception handling in the native layer. Let’s get straight to it.

4.4	 �Exception Handling
Like on the JavaScript layer where all errors are translated into exceptions

that need to be captured carefully, in the native layer exists a different set

of exceptions. On iOS, some of those exceptions cannot be caught locally

at all (e.g., BAD_ACCESS). Whenever occurring, they crash the app and

hence are much riskier. If we enlist a C layer using techniques such as

JNI, we also introduce another layer of exception flow. Now that we know

that exceptions occurring in each layer (i.e., JavaScript, native, C) cannot

be caught by another, we need to handle them separately and notify the

upper layer whenever possible. The fact is that inappropriately handling

exceptions in the native layer is one of the main causes of crashes.

One of the approaches is presented by react-native-exception-

handler. Basically, it provides functions that can install a replaceable

global exception handler that is responsible for all native exceptions.

However, global exception handlers are less preferred than local ones

as only the latter can maintain the current app state and can better offer

graceful degradation or recovery (the principles of exception handling will

be fully discussed in Chapter 6).

Note  react-native-exception-handler is among the
awesome third-party libraries that are not used in our case studies. We
reinvent some wheels for educational purposes. For example, rather
than using react-native-video directly, we create a simplified version
of a video component to better illustrate the critical parts of a native
component, Here we decided to implement our own solution for
exception handling so as to offer fine-grained exception boundaries.

Chapter 4 Native Modules and Components

207

Here, we escalate the responsibility of ErrorBoundary to catch not only

UI exceptions but also exceptions from the native layer. To understand this

design, let’s consider Manyface that eventually evolves into a super app. In

its ultimate form, Manyface includes not only moments but also payment,

mini apps, instant messaging, and QR code discovery. Each feature resides

in a stand-alone tab. Each tab is backed a full fledged team consisting of

front end, back end, PM, testers dedicated to the feature. The last thing we

want to see is that exceptions from one feature propagate to another. And

we shall consider ErrorBoundary as the key to avoid such cross-module

transgression. And we want to capture all exceptions within the native

layer if the corresponding module knows how to handle it.

Another way to understand this design is to look at real-time strategy

games, for example, StarCraft (Figure 4-17). One of the effective defending

strategies is called a wall-in, in which defensive facilities are placed in

the narrowed pass-throughs, a.k.a. critical points. So those reinforced,

densified defense lines (or points) can take effect regardless of which

directions or dimensions the rush is from. Here, we define ErrorBoundary

as those strategic points, and exception rushes could be from both UI

rendering in the JavaScript layer or from native.

Figure 4-17.  Wall-in in StarCraft

Chapter 4 Native Modules and Components

208

Note  In the next chapter, we will see the exception could also be
from asynchronous calls of slow operations such as network fetch.
And we are going to introduce patterns to capture those exceptions in
ErrorBoundary as well.

In the next section, we are going to apply the preceding design to the

implementation of the video component.

4.5	 �Case Study – a Video Component
We have covered pretty much everything we need to know about native
modules and native components. Now it’s good timing to get back to

Manyface. This time, we are going to support multimedia moments or

video moments. Let’s look at the requirements first (Figure 4-18):

	 1)	 Video clips are playable within the moment stream.

	 2)	 When the video card enters the viewport, the video

playback starts automatically. Conversely, when the

video card leaves the viewport, the video is paused.

Chapter 4 Native Modules and Components

209

Figure 4-18.  A video feed

We take a bottom-up approach by implementing the native
components first. For the second requirement, we rely on the react tag

(Section 4.3.2) to control the video component.

4.5.1  �iOS Implementation of a Video Component
First, let’s look at the iOS implementation (Listing 4-50).

Chapter 4 Native Modules and Components

210

Listing 4-50.  The video component

@objc(VideoViewManager)

class VideoViewManager: RCTViewManager {

 @objc(play:)

 func play(reactTag: Int) -> Void { // -------------------> 1)

 self.bridge.uiManager.addUIBlock(

{(uiManager: RCTUIManager?,

viewRegistry: [NSNumber: UIView]?) in

 guard let view =

 viewRegistry?[NSNumber.init(value: reactTag)]

 as? VideoView else {

 �print("VideoView is nil in

VideoViewManager::play()")//8)

 return

 }

 view.play()

 })

 }

 @objc(pause:)

 func pause(reactTag: Int) -> Void { // -----------------> 1)

 self.bridge.uiManager.addUIBlock(

{(uiManager: RCTUIManager?,

viewRegistry: [NSNumber: UIView]?) in

 guard let view =

 viewRegistry?[NSNumber.init(value: reactTag)]

 as? VideoView else {

 print(

 "VideoView is nil in VideoViewManager::pause()"

) // —---> 8)

Chapter 4 Native Modules and Components

211

 return

 }

 view.pause()

 })

 }

 @objc(view)

 override func view() -> UIView {

 let view = VideoView(); // ----------------------------> 2)

 return view

 }

}

class VideoView: UIView {

 var player: AVPlayer?

 var playerLayer: AVPlayerLayer?

 @objc(setSrc:)

 func setSrc(_ src: String) { // -------------------------> 3)

 guard let url = URL.init(string: src) else {

 print("url is nil in VideoView::setSrc()") // -------> 8)

 return

 }

 if player == nil { // ---------------------------------> 4)

 player = AVPlayer(url: url)

 assert(playerLayer == nil)

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

 self.layer.addSublayer(playerLayer!)

 } else { // ---> 5)

Chapter 4 Native Modules and Components

212

 assert(playerLayer != nil)

 playerLayer?.removeFromSuperlayer()

 player = AVPlayer(url: url)

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

 self.layer.addSublayer(playerLayer!)

 }

 }

 func play() { // --> 6)

 guard let player = player else {

 print("player is nil in VideoView::play()") // ------> 8)

 return

 }

 player.play()

 }

 func pause() { // ---------------------------------------> 6)

 guard let player = player else {

 print("player is nil in VideoView::pause()") // -----> 8)

 return

 }

 player.pause()

 }

 override func layoutSubviews() { // ---------------------> 7)

 super.layoutSubviews()

 guard let layer = playerLayer else {

 �print("layer is nil in VideoView::layoutSubviews()") //> 8)

 return

 }

Chapter 4 Native Modules and Components

213

 layer.frame = self.bounds;

 }

}

	 1)	 Implement both methods that take a react tag as in

Section 4.3.2.3, which in turn invoke the customer

view’s corresponding methods.

	 2)	 Return a custom view that wraps the original

native view as discussed in Section 4.1.1.2. And we

are going to do the same on Android and keep a

consistent interface and properties.

	 3)	 Implement the src property.

	 4)	 Initialize the AVPlayer and its AVPlayerLayer

counterpart when the src is set the first time.

	 5)	 Instantiate new AVPlayer and its AVPlayerLayer

and replace the old ones with them.

	 6)	 Implement the custom view’s play() and pause()

methods.

	 7)	 layoutSubviews() is invoked when the React
Native engine has completed the layout of the

native views. We use this callback to lay out the

AVPlayerLayer that is not aware of React Native.

	 8)	 We leave the exception handling as simple logs for

now. Later, they will be replaced with real handling

mechanisms.

We also need to remember exporting the native component along

with its property from the bridge file (Listing 4-51).

Chapter 4 Native Modules and Components

214

Listing 4-51.  Export the video component

@interface RCT_EXTERN_MODULE(VideoViewManager, RCTViewManager)

RCT_EXPORT_VIEW_PROPERTY(src, NSString)

RCT_EXTERN_METHOD(play:(int)reactTag)

RCT_EXTERN_METHOD(pause:(int)reactTag)

@end

4.5.2  �Android Implementation
of a Video Component

Next, let’s continue by implementing the Android counterpart

(Listing 4-52).

Listing 4-52.  The video component (Android version)

class VideoViewManager: SimpleViewManager<Video> {

 companion object {

 val REACT_CLASS = "VideoView" // ----------------------> 1)

 private const val COMMAND_PLAY = "play" // ------------> 2)

 private const val COMMAND_PLAY_VAL = 1

 private const val COMMAND_PAUSE = "pause" // ----------> 2)

 private const val COMMAND_PAUSE_VAL = 2

 }

 private var mCallerContext: ReactApplicationContext? = null

 �constructor(reactContext: ReactApplicationContext?):

super() {

 mCallerContext = reactContext

 }

Chapter 4 Native Modules and Components

215

 override fun getName(): String {

 return REACT_CLASS // ---------------------------------> 1)

 }

 override fun createViewInstance(

 reactContext:ThemedReactContext

): Video {

 return Video(mCallerContext)

 }

 override fun getCommandsMap() = mapOf(// ---------------> 2)

 COMMAND_PLAY to COMMAND_PLAY_VAL,

 COMMAND_PAUSE to COMMAND_PAUSE_VAL

)

 override fun receiveCommand(

 view: Video, commandId: String, args: ReadableArray?

) {

 when (commandId) { // ---------------------------------> 3)

 COMMAND_PLAY -> {

 view.play()

 }

 COMMAND_PAUSE -> {

 view.pause()

 }

 }

 }

 @ReactProp(name = "src") // -----------------------------> 4)

 fun setSrc(view: Video, src: String) {

 view.setSrc(src)

 }

}

Chapter 4 Native Modules and Components

216

class Video: VideoView { // -------------------------------> 5)

 private var mCallerContext: ReactApplicationContext? = null

 constructor(context: ReactApplicationContext?)

 : super(context) {

 mCallerContext = context

 }

 override fun onLayout(

 changed: Boolean,

 l: Int,

 t: Int,

 r: Int,

 b: Int

) {}

 fun play() { // ---> 6)

 this.start()

 }

 override fun pause() { // -------------------------------> 6)

 super.pause()

 }

 public fun setSrc(src: String) { // ---------------------> 6)

 val uri: Uri = Uri.parse(src)

 this.setVideoURI(uri)

 }

}

	 1)	 Export the view named VideoView, the same as on iOS.

	 2)	 Declare all the commands the native component

supports. This is the equivalent of the native

methods on iOS.

Chapter 4 Native Modules and Components

217

	 3)	 Apply the commands to the concrete custom

native view.

	 4)	 Export the src view property, the same as on iOS.

	 5)	 Create the custom native view. We name the class

Video as VideoView is used by the Android stock

view we want to inherit from. Note that the name

exported in step 1 to the JavaScript layer is still

VideoView.

	 6)	 Implement the native methods and view properties

for the custom native view, the same as on iOS.

You might have noticed here that the view manager inherits from

SimpleViewManager; 💣 hence, the component backed by the native view

exported cannot work as a container. This limitation is caused by the fact

that the Android VideoView is a SurfaceView instead of a ViewGroup. We

are going to mitigate this issue with an abstraction on the JavaScript layer

(Section 4.2.3.2). And that will be our first task when implementing the

JavaScript layer of this feature.

4.5.3  �JavaScript Layer
4.5.3.1  �Native Component Wrapper

As a reminder, a JavaScript wrapper of native components

(Section 4.2.3.2) is recommended for easing out platform discrepancies

(Listing 4-53).

Chapter 4 Native Modules and Components

218

Listing 4-53.  JavaScript wrapper of the native component

let VideoView = requireNativeComponent('VideoView');

class Video extends React.Component {

 constructor() {

 super();

 }

 render() {

 return (

 <View style={this.props.style}> // ------------------> 1)

 <VideoView

 {...this.props} // ------------------------------> 2)

 style={StyleSheet.absoluteFill} // --------------> 3)

 ref={this.props.videoRef} // --------------------> 4)

 />

 {this.props.children} // --------------------------> 5)

 </View>

);

 }

};

export default Video;

	 1)	 The container accepts styles passed from

the outside. So the consumer can lay out the

component in design.

	 2)	 VideoView accepts the specialized props, for

example, src, to work properly.

	 3)	 VideoView overrides any styles accidentally

passed down through props with StyleSheet.

absoluteFill. This makes the component a

background layer of the component in design.

Chapter 4 Native Modules and Components

219

	 4)	 Forward any refs passed in using videoRef.

	 5)	 Lay out the children as always.

4.5.3.2  �View Manager Wrapper

Next, we encapsulate the view manager (Listing 4-54).

Listing 4-54.  JavaScript wrapper of the view manager

class VideoViewManager {

 static play(reactTag) {

 if (Platform.OS === 'ios') {

 NativeModules.VideoViewManager.play(reactTag);

 } else {

 �UIManager.dispatchViewManagerCommand(reactTag,

'play', []);

 }

 }

 static pause(reactTag) {

 if (Platform.OS === 'ios') {

 NativeModules.VideoViewManager.pause(reactTag);

 } else {

 �UIManager.dispatchViewManagerCommand(reactTag,

'pause', []);

 }

 }

};

export default VideoViewManager;

Chapter 4 Native Modules and Components

220

4.5.3.3  �Video Feed

Next, we add a new feed category that is designed to populate video

content. Let’s create the feed component (Listing 4-55) first.

Listing 4-55.  JavaScript wrapper of the native component

class FeedVideo extends React.Component {

 constructor() {

 super();

 this.videoTag = undefined;

 }

 render() {

 return (

 <>

 <ExpandableText

 style={styles.textPost}

 text={this.props.item.feed.text}

 />

 <Video style={styles.videoPost} // ----------------> 1)

 src={this.props.item.feed.videoUri} // ----------> 2)

 videoRef={(ref) => { // -------------------------> 3)

 this.videoTag = findNodeHandle(ref); // -------> 3)

 }}

 />

 </>

)

 }

 onVisible() { // --> 4)

 if (this.videoTag) {

 VideoViewManager.play(this.videoTag);

 }

Chapter 4 Native Modules and Components

221

 }

 onHidden() { // ---> 4)

 if (this.videoTag) {

 VideoViewManager.pause(this.videoTag);

 }

 }

}

const styles = StyleSheet.create({ // ---------------------> 5)

 textPost: {

 marginBottom: 20,

 },

 videoPost: {

 width: '100%',

 aspectRatio: 4/3,

 marginBottom: 20,

 },

});

export default withErrorBoundary(

 withMetaAndControls(FeedVideo), undefined, undefined

);

	 1)	 Use the video component created in the

previous steps.

	 2)	 Apply a different set of props as we are creating

another layer of abstraction.

	 3)	 Hide the videoRef and carry out the actual native

method call at this layer.

	 4)	 Encapsulate the native method call here. This layer

of abstraction transfers the concerns from play/

Chapter 4 Native Modules and Components

222

pause to onVisible/onHidden ones which are

more relevant to a feed. Actually, other feeds can

implement those same methods when required.

Eventually, these two methods are called by the

Moment when appropriate.

	 5)	 The rest of the code is the same as an ordinary feed.

Note  Again, we believe that wrong abstraction is more expensive
than no abstraction at all. So we only introduce a layer of abstraction
when absolutely necessary.

And we add the provisioning logic of the newly created feed type in the

FeedFactory (Listing 4-56).

Listing 4-56.  Provisioning of a video feed

export default function FeedFactory(props) {

 let numOfImages = props.item?.feed?.images?.length;

+ if (props.item?.feed?.videoUri) { // --------------------> 1)

+ return <FeedVideo {...props}/>

+ }

 if (numOfImages > 4 && numOfImages <= 9) { // -----------> 2)

 return <Feed3x3 {...props}/>;

 } else if (numOfImages > 1 && numOfImages <= 4) {

 return <Feed2x2 {...props}/>;

 } else if (numOfImages === 1) {

 return <Feed {...props}/>;

 }

 return null;

}

Chapter 4 Native Modules and Components

223

	 1)	 Use the existence of videoUri as an indicator of a

video feed.

	 2)	 The rest logic in the FeedFactory is kept the same.

4.5.3.4  �Ref Forwarding

We hide the Video component and its corresponding native module

inside the FeedVideo. This is the correct layer of abstraction. However, this

design leads to a challenge; the method of Video cannot be called directly

in Moment. This is because of the several intermediate proxies such as

FeedFactory and HOCs (Section 2.2) that hide the actual react ref we want

to obtain.

We need to apply the technique called ref forwarding to all the

intermediate proxies to resolve this issue. The method in use is React.

forwardRef. It is worth noting that the implementation detail of ref

forwarding is slightly different for class components and functional

components working as the intermediate proxy. Let’s look at FeedFactory

first which is a functional component (Listing 4-57).

Listing 4-57.  Enhance FeedFactory with ref forwarding

+-const FeedFactory = React.forwardRef((props, ref) => {

// -> 1)

 let numOfImages = props.item?.feed?.images?.length;

 if (props.item?.feed?.videoUri) {

+- return <FeedVideo {...props} ref={ref} /> // --------> 2)

 }

 if (numOfImages > 4 && numOfImages <= 9) {

 return <Feed3x3 {...props} ref={ref}/>;

 } else if (numOfImages > 1 && numOfImages <= 4) {

 return <Feed2x2 {...props} ref={ref}/>;

Chapter 4 Native Modules and Components

224

 } else if (numOfImages === 1) {

 return <Feed {...props} ref={ref}/>;

 }

 return null;

 });

 export default FeedFactory;

	 1)	 A functional component accepts the ref directly

from React.forwardRef.

	 2)	 Pass the ref down to the product components.

Next, we look at withMetaAndControls which is a HOC based on class

components (Listing 4-58).

Listing 4-58.  Enhance withMetaAndControls with ref forwarding

export default function withMetaAndControls(Feed) {

 class ElemComponent extends React.Component {

 render() {

 return (

 <View style={[

 {...this.props.style},

 styles.commonPadding]}

 >

 <View style={styles.metaContainer}>

 <LoomingImage

 style={styles.avatar}

 source={{uri: this.props.item.meta.avatarUri}}

 />

 <View style={styles.infoContainer}>

 <Text style={styles.userName}>

 {this.props.item.meta.name}</Text>

Chapter 4 Native Modules and Components

225

 <Text style={styles.date}>

 {this.props.item.meta.date}

 </Text>

 </View>

 </View>

+- �<Feed {...this.props} ref={this.props.

innerRef}/> //>2)

 <View style={styles.controlContainer}>

 <NumberedWidget

 style={{flex: 1}} type={widgetTypes.LIKE}

 number={this.props.item.meta.numOfLikes}

 />

 <NumberedWidget style={{flex: 1}}

 type={widgetTypes.COMMENT}

 number={this.props.item.meta.numOfComments}

 />

 <NumberedWidget style={{flex: 1.5}}

 type={widgetTypes.SHARE}

 number={this.props.item.meta.numOfShares}

 />

 <Widget type={widgetTypes.MORE} />

 </View>

 </View>

)

 }

 }

+ return React.forwardRef((props, ref) => <ElemComponent

+ innerRef={ref} {...props} // --------------------------> 1)

+ />);

}

Chapter 4 Native Modules and Components

226

	 1)	 Use innerRef to avoid conflict with the ref prop of

a class component.

	 2)	 Pass the innerRef down as ref to the designated

component.

The withErrorBoundary is enabled with ref forwarding in the same

way. Hence, we omit the code here.

4.5.3.5  �Video Feed in Moment

We need to fetch the react refs of all feeds so we can control them in

accordance with their visible state as in the third requirement. With ref
forwarding explained in the last section, we can simply pass the react
ref as if there are no intermediate proxy. Technically, this is done in the

renderItem method of Moment which is in turn passed in as a prop to the

FlatList (Listing 4-59).

Listing 4-59.  Obtain the refs of all feeds

class Moment extends React.Component {

...

 renderItem = (entry) => {

 return (

 <FeedFactory

+ ref={(ref) => {

+ this.feedRefs[entry.index] = ref;

+ }}

 item={entry.item}

 />

);

 }

...

Chapter 4 Native Modules and Components

227

We use the onViewableItemsChanged of FlatList to be notified of

the visibility state of each feed. Let’s have a look at its implementation.

The logic is straightforward and hence will not be further explained

(Listing 4-60).

Listing 4-60.  Provisioning of a video feed

...

 onViewableItemsChanged = (result) => {

 let {changed, viewableItems} = result;

 for (item of changed) {

 let visible = false;

 for (i of viewableItems) {

 if (item.index === i.index) {

 visible = true;

 break;

 }

 }

 if (visible){

 if (

 typeof this.feedRefs[item.index]?.onVisible ===

 'function'

) {

 this.feedRefs[item.index]?.onVisible();

 }

 } else {

 if (typeof this.feedRefs[item.index]?.onHidden ===

 'function'

) {

 this.feedRefs[item.index]?.onHidden();

 }

Chapter 4 Native Modules and Components

228

 }

 }

 }

...

This method is passed as a prop of the same name of FlatList.

4.5.4  �Reinforced Video Component
This is a follow-up of the theoretical part of exception handling of the

native layer (Section 4.4). We are going to use the callback view properties

(Sections 4.2.1.3 and 4.2.2.3) to implement the exception flow that is across

JavaScript and native layers.

As usual, now that all visible requirements are implemented, we need

to continue with the hidden requirements. Again, let’s recall one of the

most important principles for implementing a robust exception flow: clear

boundary.

In that spirit, we can now derive the end goal. Whenever exceptions

occur in the VideoView in the native layer, we want it to trigger the

predefined exception flow of an ordinary feed, that is, to hide it. More

specifically, this design decision is because exceptions thrown in a feed

should be captured by the feed and be treated equally in regard to the

visual and UX. This is regardless of which layer the exception comes from.

After all, the feed component processes the best knowledge of the UX of

the feed. Thus, it holds the final call to what should be presented to the

user when an exception occurs within.

After we define the requirements, we need to force the native
component throws to the JavaScript layer. The best way is to add an

onException callback view property to the component (Sections 4.2.1.3

and 4.2.2.3).

Chapter 4 Native Modules and Components

229

Note  Now the key points discussed throughout the chapter seem to
come together.

4.5.4.1  �Protect the iOS Component

Let’s get into the code directly and see how a well-protected view manager

looks like.

Firstly, let’s add a utility function to throw the exception to the

JavaScript layer (Listing 4-61).

Listing 4-61.  Provisioning of a video feed

+ func throwToJS(_ e: Error) {

+ if self.onException == nil {

+ self.unThrownException = e

+ return

+ }

+ self.onException?(["exception": "\(e)"])

+ }

This method temporarily stores the exception if the onException is yet

not sent. Otherwise, it simply fires the exception to the JavaScript layer

using props. The stored value will be used in step 5 of when we further the

implementation of the VideoViewManager.

Then we can leverage this method to protect the VideoViewManager

(Listing 4-62).

Listing 4-62.  Protected view manager

+enum VideoViewManagerError: Error { // -------------------> 1)

+ case runtimeError(String)

+}

Chapter 4 Native Modules and Components

230

@objc(VideoViewManager)

class VideoViewManager: RCTViewManager {

 var player: AVPlayer?

 var playerLayer: AVPlayerLayer?

 @objc(play:)

 func play(reactTag: Int) -> Void {

 self.bridge.uiManager.addUIBlock(

 {(uiManager: RCTUIManager?,

 viewRegistry: [NSNumber: UIView]?) in

 guard let view =

 viewRegistry?[NSNumber.init(value: reactTag)]

 as? VideoView else { // -------------------> 2)

 print("VideoView is nil in VideoViewManager::play()")

 return

 }

+ do { // ---> 3)

+- try view.play()

+ } catch {

+ view.throwToJS(error) // ------------------------> 4)

+ }

 })

 }

 @objc(pause:)

 func pause(reactTag: Int) -> Void {

 self.bridge.uiManager.addUIBlock(

 {(uiManager: RCTUIManager?,

 viewRegistry: [NSNumber: UIView]?) in

 guard let view =

 viewRegistry?[NSNumber.init(value: reactTag)]

 as? VideoView else { // -------------------> 2)

Chapter 4 Native Modules and Components

231

 print("VideoView is nil in

VideoViewManager::pause()")

 return

 }

+ do { // ---> 3)

+- try view.pause()

+ } catch {

+ view.throwToJS(error) // ------------------------> 4)

+ }

 })

 }

 @objc(view)

 override func view() -> UIView {

 let view = VideoView();

 return view

 }

}

class VideoView: UIView {

 var player: AVPlayer?

 var playerLayer: AVPlayerLayer?

+ var onException: RCTBubblingEventBlock?

+ var unThrownException: Error?

+ @objc(setOnException:) // -------------------------------> 5)

+ func setOnException(

+ _ onException: @escaping RCTBubblingEventBlock

+) {

+ if let e = self.unThrownException {

+ onException(["exception": "\(e)"])

+ return

Chapter 4 Native Modules and Components

232

+ }

+

+ self.onException = onException

+ }

 @objc(setSrc:)

 func setSrc(_ src: String) {

 do { // ---> 6)

 guard let url = URL.init(string: src) else {

+- �throw VideoViewManagerError.runtimeError("url is nil in

VideoView::setSrc()")

 }

 if player == nil {

 player = AVPlayer(url: url)

 if (playerLayer != nil) {

+- �throw VideoViewManagerError.runtimeError("playerLayer

is not nil while player is in VideoView::setSrc()")

// ------> 6)

 }

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

 self.layer.addSublayer(playerLayer!)

 } else {

 if (playerLayer == nil) {

+- �throw VideoViewManagerError.runtimeError("playerLayer

is nil in VideoView::setSrc()") // --------------> 6)

 }

 playerLayer?.removeFromSuperlayer()

 player = AVPlayer(url: url)

Chapter 4 Native Modules and Components

233

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

 self.layer.addSublayer(playerLayer!)

 }

+ } catch {

+ self.throwToJS(error) // ----------------------------> 4)

+ }

 }

+-func play() throws {

 guard let player = player else {

+- �throw VideoViewManagerError.runtimeError("player is nil

in VideoView::play()") // --------------------------> 6)

 }

 player.play()

 }

+-func pause() throws {

 guard let player = player else {

+- �throw VideoViewManagerError.runtimeError("player is

nil in VideoView::pause()") // ----------------------> 6)

 }

 player.pause()

 }

 override func layoutSubviews() {

 super.layoutSubviews()

 guard let layer = playerLayer else {

+- �self.throwToJS(VideoViewManagerError.runtimeError("layer

is nil in VideoView::layoutSubviews()")) // ---------> 4)

 return

 }

Chapter 4 Native Modules and Components

234

 layer.frame = self.bounds;

 }

...

}

	 1)	 Define the Error type for this view manager.

	 2)	 Log and do nothing for now since even the native
view is not available. In practice, this is also an

unrecoverable system error when a view cannot be

retrieved using a react tag. This kind of error could

be treated the same as a BAD_ACCESS that aborts

the app.

	 3)	 Wrap every entry point of our own logic in the view
manager.

	 4)	 Call the throwToJS of the corresponding native view

whenever an exception occurs.

	 5)	 Implement the callback view property. Here, if an

exception occurs prior to this point, for example,

in the setter of other view properties, fire the

exception immediately.

	 6)	 Throw the exception whenever unexpected

conditions are met. And the logic eventually flows to

step 4 which is handled by throwToJS.

4.5.4.2  �Protect the Android Component

Next, we implement the Android version (Listing 4-63).

Chapter 4 Native Modules and Components

235

Listing 4-63.  Protected view manager (Android version)

class VideoViewManager : SimpleViewManager<Video> {

 companion object {

 val REACT_CLASS = "VideoView"

 private const val COMMAND_PLAY = "play"

 private const val COMMAND_PLAY_VAL = 1

 private const val COMMAND_PAUSE = "pause"

 private const val COMMAND_PAUSE_VAL = 2

 }

 private var mCallerContext: ReactApplicationContext? = null

 co�nstructor(reactContext: ReactApplicationContext?) :

super() {

 mCallerContext = reactContext

 }

 override fun getName(): String {

 return REACT_CLASS

 }

 override fun createViewInstance(

reactContext: ThemedReactContext

): Video {

 return Video(mCallerContext)

 }

 override fun getCommandsMap() = mapOf(

 COMMAND_PLAY to COMMAND_PLAY_VAL,

 COMMAND_PAUSE to COMMAND_PAUSE_VAL

)

Chapter 4 Native Modules and Components

236

 override fun receiveCommand(

view: Video, commandId: String, args: ReadableArray?

) {

+ try { // --> 2)

+ throw Exception()

+ when (commandId) {

+ COMMAND_PLAY -> {

+ view.play()

+ }

+ COMMAND_PAUSE -> {

+ view.pause()

+ }

+ }

+ } catch (e: Exception) {

+ view.throwsToJs(e) // -------------------------------> 3)

+ }

 }

+ override fun getExportedCustomBubblingEventTypeConstants() =

+ mapOf(// ---> 1)

+ "onException" to

+ mapOf(

+ "phasedRegistrationNames" to

+ mapOf("bubbled" to "onException")

+)

+)

 @ReactProp(name = "src")

 fun setSrc(view: Video, src: String) {

+ try { // --> 3)

 view.setSrc(src)

+ } catch (e: Exception) {

Chapter 4 Native Modules and Components

237

+ view.throwsToJs(e) // -------------------------------> 3)

+ }

 }

}

class Video : VideoView {

 private var mCallerContext: ReactApplicationContext? = null

 constructor(context: ReactApplicationContext?):

 super(context) {

 mCallerContext = context

 }

 override fun onLayout(

changed: Boolean, l: Int, t: Int, r: Int, b: Int

) {}

 fun play() {

 this.start()

 }

 override fun pause() {

 super.pause()

 }

 public fun setSrc(src: String) {

 val uri: Uri = Uri.parse(src)

 this.setVideoURI(uri)

 this.start()

 }

+ public fun throwsToJs(e: Exception) { // ----------------> 3)

+ val event: WritableMap = Arguments.createMap()

+ event.putString("exception", e.localizedMessage)

Chapter 4 Native Modules and Components

238

+ mCallerContext?.getJSModule(

+ RCTEventEmitter::class.java)?.receiveEvent(

+ id,

+ "onException",

+ event

+)

+ }

}

	 1)	 Declare the onException callback view property

(Section 4.2.2.3).

	 2)	 Wrap every entry point of the view manager

with try catch. Call the throwsToJs of the

corresponding native view to notify the JavaScript

layer that something went wrong.

	 3)	 Implement the throwsToJs using the command

system on Android (Section 4.2.2.3).

4.5.4.3  �JavaScript Layer

The last piece is the JavaScript layer. Here, we simply throw an exception

that can be caught by the ErrorBoundary with the predefined behaviors

(Listing 4-64).

Listing 4-64.  Throw the exception to ErrorBoundary

let VideoView = requireNativeComponent('VideoView');

class Video extends React.Component {

 constructor() {

 super();

 }

Chapter 4 Native Modules and Components

239

+ onException = (e) => {

+ this.setState(() => { // ------------------------------> 1)

+ throw {

+ name: 'Video Error',

+ description: e?.nativeEvent?.exception

+ }

+ });

+ }

 render() {

 return (

 <View style={this.props.style}>

 <VideoView

 {...this.props}

 style={StyleSheet.absoluteFill}

 ref={this.props.videoRef}

+ onException={this.onException}

 />

 {this.props.children}

 </View>

);

 }

};

export default Video;

	 1)	 Rethrow the native exception with the message

populated.

Chapter 4 Native Modules and Components

240

Now we have connected the exception flow from the native layer to the

JavaScript layer, and all the nice redefined behaviors of ErrorBoundary

can now be activated to also account for native exceptions. As a reminder,

for feeds, whenever an exception occurs within its boundary, the feed

card will be made invisible to not bother the user while applying the silent

logging in the meantime.

4.6	 �Summary
We have covered everything you need to know about native development.

Though a typical React Native team should work mostly on JavaScript

for business logic and UIs, the fluid part. It is still desired for you, or some

mates on your team, to dominate the hardcore mobile development and to

clear the technical blockers on the path to a 05 app.

In this chapter, we went through discrete points spanning from basics

to topics that are quite advanced. We firstly learned how to create native
modules and native components and got to know some particularities

on each platform. Based on that, we continued examining some of the

advanced topics of native modules and native components as well as the

bidirectional communication between JavaScript and native layers. Then,

with a dedicated section, we expanded our exception handling pattern

by including the native layer in the picture, and we found it a cool name,

wall-in.

And, oh! Manyface supports video feeds now. Yeah!!!

Chapter 4 Native Modules and Components

241© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_5

CHAPTER 5

Network Programming
Most modern apps would be useless without a network. This is true for

Manyface and other real-world apps alike. A network, on the other hand, is

complex and is rough at times. This is especially true for a mobile network

where even the connectivity could be nondeterministic and intermittent.

This scenario of weak connection continuously challenges mobile apps,

and the solution logic flow cannot be easily tested, verified, or validated.

A network also contributes a large bulk of waiting time, and anxiety, to the

users. This is because network latency (approximately tens to hundreds of

milliseconds for WAN RTT (round-trip time)) is by magnitude greater than

that imposed by logic or the UI (~16.6 milliseconds). Without the content

fetched from a network, any discussion on rendering time optimization is

futile. To make peace with the network, we need to understand its nature,

and this is the purpose of this chapter.

Note  Always checking using the network conditioner is a good
practice to make sure the app is working well in critical network
conditions.

Network programming is a broad topic. Covering everything in such

an area is neither the best interest of nor feasible for this book. In the

meantime, network programming is sophisticated. It’s hard to grasp the

“why” of practical techniques without the understanding of its basic

building blocks, the fundamentals. In order to make the best out of it,

https://doi.org/10.1007/978-1-4842-8042-3_5

242

we take an approach by only striking through the critical points of network

programming that are directly related to app development. In terms of

network fundamentals, we are going to emphasize two protocols, TCP and

HTTP, throughout our discussion.

This chapter is divided into four parts: (1) TCP/IP 101, (2) network

programming in JavaScript, (3) network programming on the native layer,

and (4) new updates on the modern Internet.

The first few sections start with a refreshment on the basics of network

protocols. Those have been around since the good old days. Based on that,

we discuss some of the new updates of network protocols and practices

aiming to improve performance and/or versatility. In the meantime,

we are going to equip ourselves with diagnostic tools such as tcpdump,

tcptrace, and mitmproxy. Another goal we set for this section is to help you

to fully understand some of the frequent albeit enigmatic network terms

used in various tech talks such as bufferbloat.

The second section focuses on the JavaScript layer. In particular, we

are going to focus on the asynchronous operations in JavaScript and one

of its instances, fetch, which is the major JavaScript method for fetching

network resources. We conclude the second part with a case study by

moving all the data used for Manyface online. So, from that point on,

Manyface will need to fetch feeds from an endpoint.

The third part is the native layer. Again, native programming is needed

for critical tasks such as big file downloading and connectivity detection.

For the latter task, we are going to introduce and examine another third-

party library, react-native-netinfo. This section concludes with a cross-

platform download module for videos.

Let’s march forward.

Chapter 5 Network Programming

243

5.1  �A Very Brief Introduction to TCP/IP

Note  As the name of TCP/IP implies, there are two major purposes
for network engineering: (a) to identify a node on the network (IP) and
(b) to deliver data (TCP). Combined with network types (i.e., WAN and
LAN), we can derive the metrics of protocols that are currently in use
on today's Internet.

In the sense of software engineering, a network stack is a software module,

and protocols are its submodules. From the network communication point

of view, protocols define sets of rules so that the sender and receiver can

talk to each other. It’s like you fill this field with a magic number, and I

know what you mean. So, we can think of protocols as the “black speeches”

in the network world.

A network stack is designed in layers. A network layer is an abstract

concept, and each of them is assigned with a general purpose. For instance,

layer 4 is assigned with transmitting data on WAN; layer 3 is to identify

a node on WAN; and layer 2 is designed to both identify a node and to

transmit data on LANs. The following are the layers in the TCP/IP stack:

	 1)	 Physical layer

	 2)	 Ethernet layer

	 3)	 IP layer

	 4)	 Transport layer

	 5)	 Application layer

A layer might consist of one or more protocols. A protocol defines

a concrete way or “how” to achieve the “purpose” assigned to the layer

the protocol belongs to. For instance, in layer 2, ARP is responsible for

node identifying, and Ethernet is for packet delivery. Both protocols

Chapter 5 Network Programming

244

work on LANs. In layer 3, we have a sole protocol, IP, that is used for

node identifying in WAN; and in layer 4, TCP and UDP are the two main

protocols for packet delivery in WAN. Although belonging to the same

layer, TCP and UDP achieve the purpose of data delivery in completely

different ways. TCP tries its best to deliver packets in order as a stream.

Meanwhile, it accounts for network congestion and retransition in case of

packet loss. On the other hand, UDP tries its best to send packets, and then

¯_(ツ)_/¯.

Due to the seemingly unreliability of UDP, it has been dwarfed by its

accountable brother TCP. However, everything has a flip side to it. This

time, the flip side is performance overhead. For years, the industry has

been exploring UDP for reliable connection while demanding less system

resources than TCP. And we will see soon in this chapter such an initiative

from Google.

Layers 2–4 are all general-purpose layers. Based on that foundation,

layer 5 (a.k.a. the application layer) thrives in vast diversity. The most

important one is HTTP. Based on TCP, HTTP is designed to transmit text-

based data between the server and web browsers. Due to its simplicity,

HTTP is also one of the most commonly used protocols that facilitates

traffic not only for the Web but for many apps like Manyface. Another

important application layer protocol is DNS which provides a domain

name to IP address translation. DNS is based on UDP. SSH is another

commonly used protocol based on TCP. It is designed to offer secured

communication for administrators to operate network servers and devices.

All the data transmitted on the network needs to go through the

network stack, or, more specifically, layers of protocols. So the network

stack also works as a pipeline that decorates and dismantles data that are

either received from the previous layer or sent to the next.

Each protocol is a processing unit on this pipeline. Programmatically,

protocols are defined in headers which are attached to the data payload

layer by layer. The structure and information embedded in protocol

headers varies a lot due to the different tasks each protocol is designed

Chapter 5 Network Programming

245

for. For example, an ID (MAC address) is required to identify a machine

on a LAN, so the ID is included in the layer 2 ARP header. Similarly, an IP

address, another ID, is included in layer 3 IP to identify a machine on a

WAN. Like data structures in any other program, protocol header fields can

reflect how a packet is organized and transmitted (logically and physically)

and how it is processed by each protocol.

Next, let’s follow a trip of a pseudo packet. As illustrated in Figure 5-1,

when an outbound packet is sent by an application, it goes downward to

the network stack. Each time the packet reaches a layer, it is selectively

processed by a certain protocol and is filled with the protocol header.

Then the header is attached to the packet before it is pushed down to

the next layer. All the involved protocols concatenate their respective

headers during the process and form the final outgoing data frame that is

eventually transmitted on the physical medium. To recap, the headers are

attached to the front of the packet in a top-down manner in the order of

layers. That means the header of layer 4 is attached first, and that of layer 2

is attached last.

When an inbound packet arrives, it travels from the NIC hardware

upward through layers. As depicted in Figure 5-1, protocols in each layer

(1) read the headers that are populated by the same protocol on the sender

side, (2) process them using the information extracted, (3) strip the header

that has been processed, and (4) push the packet upward to the next layer.

This occurs for every layer until the payload reaches the application layer.

L5 (Applica�on)

L4 (TCP)

L3 (IP)

L2 (Ethernet)

Payload

PayloadTCP

PayloadTCPIP

PayloadTCPIPEth PayloadTCPIPEth

L5 (Applica�on)

L4 (TCP)

L3 (IP)

L2 (Ethernet)

Payload

PayloadTCP

PayloadTCPIP

Sender Receiver

Figure 5-1.  Processing of protocol headers

Chapter 5 Network Programming

246

For each of the layers beneath the application layer, the operating

system (or libraries) is responsible for handling packets sent from/received

by the host. So the IDs in those layers are used to identify the host itself (in

different networks). In the application layer, however, there are multiple

executable instances (i.e., applications such as postfix, nginx, ssh server,

Manyface, etc.), so we need yet another ID to identify them.

In order to deliver packets meant for a specific app, that is, an

incoming email to postfix, an HTTP request to an Nginx, an ssh prompt

message to an Xshell client, and a feed to Manyface, we use port numbers

that are agreed on between the clients and servers. Because a network

stack needs to know the destination process of a packet before it reaches

the application layer (layer 5), port numbers are defined in layer 4.

There are default port numbers for common servers, and all clients

that want to talk to those servers implicitly include the predefined port

numbers in the outbound packets (dest port) sending to the server process

running in a remote host. For example, 80 is used for HTTP, 22 is used for

SSH, and 25 for SMTP (email). A process, either a server or a client, can

listen to any port number provided the number has not been bound by

another. Otherwise, a “port conflict” exception will be raised by the port

binding API so the process should fail.

Because of the ephemeral nature of client side, apps use temporal

port numbers (of very big numbers to avoid port conflict). The port is

allocated when a client process initializes and is released when the process

terminates. The client tells a server its temporal port in the first packet

(source port) on the run as all network sessions are always initialized from

the client of this kind; otherwise, there is no way for a server to know the

client’s port number.

Now we have covered some IDs that are used to indicate packets’

destination. In summary, MAC addresses in layer 2 and IP addresses in

layer 3 are used to locate machines; port numbers in layer 4 are used to

identify processes within a host. This is pretty much all the network IDs we

need to know. Easier than thought, eh?

Chapter 5 Network Programming

247

In the following, we are going to go through in detail each of the

important protocols one by one. To deepen the understanding of the core

concepts, we also prepare some hands-on experiments by inspecting

the packets. It is highly recommended to set up the tools for network

inspecting and carry on those experiments.

5.1.1  �TCP
The purpose of TCP is to provide continuous and reliable data delivery

between two nodes. Let’s take an example; the data is sent as “abc”

(in reality, it is binary instead of ASCII) from one side, and somehow

it is received as “bac.” This is a case of out-of-order packets. Another

example, the data is sent as “abc,” and it is received as “abbccc.” It is called

duplication. Last one, the same “abc,” then only “ac” is received. This is

a packet loss. Worse, all the preceding cases could compound due to the

unpredictable temperament of the network. The purpose of TCP is to

recover the received data back to “abc” regardless of the situation.

The solution of TCP is straightforward – to tag packets. In doing so,

each packet is marked with an ordered unique number, a.k.a. a sequence

number. With those numbers, TCP can recover the original data by

reordering the out of order, deduplicating the duplicates, and asking for

retransmission in packet loss. To agree on those numbers, the three-way

handshake comes into play. The sequence number is contained in the TCP

header which is attached to every TCP segment.

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 0
4 32
8 64

16 ##

Acknowledgement number (ACK)

Offset Octet 0 1 2 3

Source Port Destination Port
Sequence number (SEQ)

12 96 Data offset Reserved
… F

I
N

Window size
(Sliding window)

Checksum …

… … A
C
K

P
S
H

R
S
T

S
Y
N

…

Figure 5-2.  TCP header

Chapter 5 Network Programming

248

The TCP header is given in Figure 5-2. We have covered very briefly

what (source and destination) ports are. The other fields that are of interest

are the acknowledgment number, SYN, ACK, FIN, and Window size. We

will cover them in the following sections.

5.1.1.1  �Three-Way Handshake (Opening Connection)

The three-way handshake is the preamble of all TCP connections. As

mentioned, the major purpose of the three-way handshake is to agree

on the sequence number attached to the segments from both sides. Let’s

observe a real network request. In the process, we will also map the output

of tcpdump and the corresponding fields in the TCP header.

Firstly, we open two command-line windows and execute curl

holmeshe.me and sudo tcpdump -ntS host holmeshe.me on each

window, respectively. Listing 5-1 gives the tcpdump output.

Listing 5-1.  Three-way handshake

IP 10.10.0.194.64608 > 104.248.189.33.80: Flags [S], seq

271799524, win 65535, options [mss 1360,nop,wscale 6,nop,nop,TS

val 907211967 ecr 0,sackOK,eol], length 0 // -----------

-----> 1)

IP 104.248.189.33.80 > 10.10.0.194.64608: Flags [S.],

seq 417121955, ack 271799525, win 65160, options [mss

1336,sackOK,TS val 4054341923 ecr 907211967,nop,wscale 7],

length 0 // -----> 2)

Chapter 5 Network Programming

249

IP 10.10.0.194.64608 > 104.248.189.33.80: Flags [.], ack

417121956, win 2048, options [nop,nop,TS val 907212224 ecr

4054341923], length 0 // -------------------------------

-----> 3)

...

The first three segments are the three steps of the three-way

handshake. They are SYN, SYN-ACK, and ACK. SYN and ACK are flags in

the TCP header that mark the type of the segment. Next, we explain each

step in detail to understand the mechanism. To give a concrete idea of the

setup, we have two endpoints involved: a client, the laptop on which this

text is written, and a server which is hosting the author’s personal blog.

The three-way handshake is normally initialized from the client side:

	 1)	 The first step is called SYN. This request is issued by

the client to initialize the connection by announcing

its initial sequential number, that is, seq 271799524,

which is the sequence number filed in the TCP

header. This step is indicated by the Flags [S] in

the tcpdump output, which means the SYN flag in

the TCP header is set.

	 2)	 The second step is called SYN-ACK, a response

from the first SYN by the server. This step (a)

acknowledges the first SYN request by increasing the

sequential number by 1 (i.e., ack 271799525) and

sending it back and (b) announces the sequential

number of the server (i.e., seq 417121955). Here,

the Flags [S.] means both SYN and ACK flags have

been set in the TCP header, which indicates a SYN-

ACK segment.

Chapter 5 Network Programming

250

	 3)	 The last step is called an ACK. This is issued again

from the client to acknowledge the last SYN (from

the server). Again, this is done by increasing

the received sequential number by 1 (i.e., ack

417121956) and sending it back. This time, only the

ACK flag is set (Flags [.]).

After the exchange of sequential numbers, both sides can set the

expectation to the coming packets and, with that information, can take

action on the mentioned abnormal network behavior properly. In doing

so, the application layer can be always delivered with a reliable stream of

packets in sequential order.

Computer science is full of trade-offs. TCP is one of them, and the

trade-off for reliable delivery is latency. The operations for reordering and

deduplicating take time. The retransmission and three-way handshake

take more time due to the Internet RTT, that is, again, tens to hundreds

of milliseconds. Actually, the three-way handshake is one of the most

noticeable performance hits in that (1) it multiplies the RTT by 3, and (2) it

blocks the first screen experience. Table 5-1 lists some empirical values.

Table 5-1.  Latency and its consequences

100–200 milliseconds Noticeable

> 200 milliseconds &&

< 1 second

Lagging

> 1 second Approaching failure

❄ The three-way handshake needs to complete before everything

else can even happen. Now let’s do a simple math; within a continent, the

latency could be somewhere between 30 and 100 milliseconds. ❄ Latency

introduced by the three-way handshake alone exceeds the first threshold,

Chapter 5 Network Programming

251

which gives a lagging impression to the user instantly after they open the

app. No, not instantly, with a delay of about 90 ~ 300 milliseconds, which

doesn’t make it any better.

We have two ways in general to mitigate this performance bottleneck:

(1) optimize the protocol itself; (2) optimize the app (e.g., using offline

content). We are going to discuss some of those protocol heuristics in

Section 5.1.5. The offline mode will be implemented in Section 5.3.1.

5.1.1.2  �Sliding Window

In the tcpdump output, win is called a sliding window. Basically, a sliding

window is an indicator of the server's load; the larger this number, the

lesser the load and hence the better. A zero in win means the server is fully

loaded, and all clients should stop sending any packets.

Technically, a sliding window is the size of the available buffer. This

buffer works as an intermediate place that holds the incoming packets.

When the server process is active, it reads the packets from the buffer and

processes them. This action gradually depletes the buffer. Thus, if the

server process is under high load and cannot pick up the packet in the

buffer in time, the available buffer size will decrease. This scenario, in turn,

is reflected in the decreasing win, and clients will slow down the request

sending speed after picking up this signal in the response TCP header.

Bufferbloat is one of the common misconfigurations of the buffer

size potentially on all hops on the routes and all layers on the network

stack. This includes the TCP buffer. Sometimes, bufferbloat is a mistake

with good intention, that is, 💣 to reduce packet loss and to make the

performance data look good. Bufferbloat effectively exaggerates the

processing power which leads to overcommitment of the server. This

causes unstable latency and, sometimes worse, a complete service

collapse. Let’s elaborate a bit.

Chapter 5 Network Programming

252

We consider the server process(es) now is being overloaded with an

elephant flow, hence not being able to respond to any newly arriving

packets in time. In the setting of bufferbloat, this situation is covered by the

exaggerated buffer size; hence, the client will continue sending requests.

Some of the hardest challenges in network programming are
caused by the inconsistent perception of the same situation
between client and server.

—Holmes

This causes latency spikes. In the worst scenario, when the server is in

a very high load, at a certain point all packets in the buffer will time out,

and so are all successive requests sent from clients, causing the mentioned

service collapse which is, basically, 0 availability, the complete opposite of

our goal of 0 crash.

🛡 So if your app has any of the preceding scenarios, remind your

devops to check bufferbloat first.

5.1.1.3  �Congestion Control
It’s like reversing your car and only stopping when you hear
the collision.

—Holmes

A sliding window is designed to throttle the client request so as to avoid

overloading the server; congestion control is to throttle the client request

so as to avoid overloading the network. Technically, congestion control

adopts another window called congestion window (CWND). Unlike a

sliding window, the congestion window exists only in the algorithm, the

state of which is not reflected in the TCP header. Basically, this algorithm

(1) sends packets very slowly in the beginning, (2) increases the request

Chapter 5 Network Programming

253

speed gradually, and (3) slows down on certain signals such as packet loss,

then repeats from 1. This is how the bottleneck of the network is being

tested iteratively.

The first step is called a slow start. For a payload that is relatively large,

❄ a slow start imposes some extra RTTs for the initial few requests. We give

the congestion control in Figure 5-3.

Figure 5-3.  TCP flow under initcwnd 10

If we increase the congestion window manually by running the

following commands:

sudo ip route change default via 104.248.176.1 dev eth0 proto

static initcwnd 150

it gives a more steep curve and better initial velocity in terms of

throughput. The graph is given in Figure 5-4.

Chapter 5 Network Programming

254

Figure 5-4.  TCP flow under initcwnd 150

Besides the slow start that inflicts some initial RTTs, ❄ another

performance hit of congestion control inherits from its mechanism for

congestion detection, packet loss. This is because packet loss is a signal

of something already occurring, instead of something is about to occur.

It’s like reversing your car and only stopping when you hear the sound of

collision.

5.1.1.4  �Four-Way Handshake (Closing Connection)

A four-way handshake is the counterpart of the three-way handshake,

which severs a TCP connection. In this process, one side (a) when done

sending data should issue a FIN segment, and the other side (b) needs

to acknowledge it after receiving it. Then at some point, (b) sends FIN

when its sending also completes, and lastly (a) should acknowledge it to

completely finalize the connection. A four-way handshake is shown in

Listing 5-2.

Chapter 5 Network Programming

255

Listing 5-2.  Four-way handshake

IP 10.10.0.194.51255 > 104.248.189.33.80: Flags [F.], seq

1181238171, ack 331510598, win 2048, options [nop,nop,TS val

2437516076 ecr 4174449536], length 0

IP 104.248.189.33.80 > 10.10.0.194.51255: Flags [F.], seq

331510598, ack 1181238172, win 509, options [nop,nop,TS val

4174449792 ecr 2437516076], length 0

IP 10.10.0.194.51255 > 104.248.189.33.80: Flags [.], ack

331510599, win 2048, options [nop,nop,TS val 2437516325 ecr

4174449792], length 0

First, like SYN and ACK, FIN is also among the flags in the TCP header

to indicate the packet type.

As described earlier, the textbook version of the four-way handshake

is (1) FIN, (2) ACK, (3) FIN, (4) ACK. This leaves the option half-closed

where the passive closing side can send more data even after receiving a

FIN. However, in the real world, the tcpdump output looks something like

the ones given earlier, where the ACK and FIN are aggregated, rendering

it’s effectively a three-way handshake exactly symmetric to the three-way

handshake for opening a connection.

5.1.1.5  �Miscellanies

Next, we briefly cover some other header flags:

	 1)	 PSH means bypass the buffer and deliver the

segment directly to the receivers (could be either a

server or a client) process.

Chapter 5 Network Programming

256

	 2)	 RST is similar to FIN. The difference is that it stands

for abnormal closing of a connection. Situations

include no process listening to the port indicated,

sending packets to a closed connection, duplicated

FIN, etc.

	 3)	 Data offset means from where the payload of the

TCP segment starts.

Lastly, we look at the “stream” nature of TCP. In case you need to write

a socket in your app, please note that TCP traffic sometimes aggregates

individual segments, meaning 💣 the size each read() returns could vary

from that by send(), which could be caused by various intermediate

factors. As a result, all TCP-based application protocols are required to

indicate the length for each of its request segments, just like HTTP has

a Content-length header (HTTP headers will be discussed in Sections

5.1.2.2 and 5.1.2.3). Let’s look at one example of TCP aggregation in

Figure 5-5. Note that HTTP will be discussed in the next section.

HTTP reque st one HTTP reques t two

HTTP request one HTTP reques t two

Sent
segments:

Received
segments:

Figure 5-5.  TCP packet aggregation

In the preceding fictional example, the receiver should (1) read HTTP

request one for the first read() with the Content-length header, (2) save

the HTTP reques in the application buffer and wait for the next segment,

and (3) concatenate the saved value with t two when the last segment

arrives.

Chapter 5 Network Programming

257

5.1.2  �HTTP/1.1
Simplicity wins. It’s that simple.

—Holmes

HTTP/1.1 is an application layer built on top of TCP (in the following

section, HTTP will be used for simplicity). It was originally designed as

a plain text-based protocol for a very simple purpose – hypertext web

page presentation. Thus, it is text based and hence less performant than

binary-based network transmission such as raw TCP and Protocol Buffers.

However, due to its extreme simplicity and versatility, the use of HTTP and

its derivative protocols (HTTPS, HTTP 2.0, etc.) has been extended from

websites, its original territory, to almost all parts on today’s Internet; video

streaming, mobile, and desktop apps of all sorts are all using it.

Note  JavaScript is yet another example of primary albeit extremely
simple and flexible technology that succeeds. React Native is another.

5.1.2.1  �HTTP Is Text Based

In HTTP, the client sends requests to the server to fetch resources. In

general, there are two types of resources, static and dynamic. Texts and

images are examples of static resources that can be located with a resource

identifier, a.k.a. URI. On the other hand, dynamic resources are more

complex. They could be an HTML rendered from the server side or a JSON

response composed from a database. So a client normally needs to attach

the request with additional information, so the server can respond with the

data in demand. That additional information is called query parameters.

Let’s observe an HTTP request in action using our old friend tcpdump.

This time, we add -A to observe the full payload (Listing 5-3).

Chapter 5 Network Programming

258

Listing 5-3.  An HTTP request

... // 3-way handshake is omitted

IP 10.10.0.194.57805 > 104.248.189.33.80: Flags [P.], seq

2941389973:2941390048, ack 1652671737, win 2048, options

[nop,nop,TS val 1347624543 ecr 3297846], length 75: HTTP: GET /

HTTP/1.1

....E.....@.@. .

..h..!...P.R..b.......K......

PS._.2R6GET / HTTP/1.1 // ---------------------------------> 1)

Host: holmeshe.me

User-Agent: curl/7.64.1

Accept: */*

// --> 2)

IP 104.248.189.33.80 > 10.10.0.194.57805: Flags [.], ack

2941390048, win 509, options [nop,nop,TS val 3298098 ecr

1347624543], length 0

....E..4i.@.'..Dh..!

...P..b....R.............

.2S2PS._

IP 104.248.189.33.80 > 10.10.0.194.57805: Flags [P.], seq

1652671737:1652672135, ack 2941390048, win 509, options

[nop,nop,TS val 3298098 ecr 1347624543], length 398: HTTP:

HTTP/1.1 301 Moved Permanently

....E...i.@.'...h..!

...P..b....R.......s.....

.2S2PS._HTTP/1.1 301 Moved Permanently // -----------------> 3)

Server: nginx/1.14.0 (Ubuntu)

Date: Mon, 04 Oct 2021 11:18:48 GMT

Content-Type: text/html

Chapter 5 Network Programming

259

Content-Length: 194

Connection: keep-alive

Location: https://holmeshe.me/// --------------------------> 4)

<html> // ---> 5)

<head><title>301 Moved Permanently</title></head>

<body bgcolor="white">

<center><h1>301 Moved Permanently</h1></center>

<hr><center>nginx/1.14.0 (Ubuntu)</center>

</body>

</html>

... // 4-way handshake is omitted

	 1)	 The beginning of the HTTP header of the request.

We can see that it is a GET request under HTTP 1.1.

Note that in the TCP header, a PSH flag is set, which

means this packet needs to bypass the buffer and be

handled immediately.

	 2)	 The end of the HTTP request header. In HTTP, new

lines are used to mark the header end. We are going

to examine the HTTP request header very soon in

Section 5.1.2.2.

	 3)	 The beginning of the HTTP response header

(Section 5.1.2.3).

	 4)	 The end of the HTTP response header, which is also

marked with new lines.

	 5)	 The body of the HTTP response. We can see that it is

HTML in plain text.

Chapter 5 Network Programming

260

As shown in the preceding example, the most common HTTP request

method is called a GET. In this method, parameters are attached directly to

a resource identifier (URI). A typical HTTP dynamic request looks like this:

https://holmeshe.me/05apps/feeds?count=5&by=lily.

And let’s examine its parts:

	 1)	 https:// is called a schema.

	 2)	 holmeshe.me is the domain name.

	 3)	 /05apps/feeds is called a path, or an API.

	 4)	 count and by are the query parameters.

Another method is POST. In POST, parameters are attached in the

request body after the HTTP headers. This can effectively avoid parameters

that are too long to be populated inside a URI. Other types of HTTP

requests are PUT and DELETE that are used for requests modifying the

server’s state.

Certain characters in a URI are reserved. For instance, the new line is

used as a separator between the HTTP header and the body, / is used as

a separator for components in a path, ? is the separator between a path

and parameters, = is the connector of a parameter key and its value, & is

the separator among parameters, and so forth. So we need a way to escape

those characters when they appear in a parameter value as an ordinary

string. In JavaScript, we can use encodeURIComponent for this purpose.

It is also possible to use binary data in the request. Say, send the

content of an image in a PUT request. An easier way is to use the Base64

algorithm which can transfer a binary blob into a piece of plain text in an

efficient way. Besides Base64, HTTP by design supports using a binary

as its body, which will be briefly discussed in Section 5.1.2.3. We can also

attach the binary directly after the HTTP header which is less common

practice.

Chapter 5 Network Programming

https://holmeshe.me/05apps/feeds?count=5&by=lily

261

HTTP headers are also text based and hence are directly readable.

However, it is still a bit clumsy to read from tcpdump the HTTP payload

which is mixed with binary output. For a web developer, a browser is all

they need to inspect the traffic when debugging a web application. For us

app developers, we can use utilities such as Fiddler or Charles to proxy the

HTTP traffic in order to conveniently inspect the traffic. In this text, we are

going to use mitmproxy, an open source HTTP proxy and inspector.

Let’s observe a typical HTTP request with mitmproxy and use it to

discuss some of the header fields to better understand this protocol

(Figures 5-6 to 5-8).

Figure 5-6.  A typical HTTP request

Chapter 5 Network Programming

262

Figure 5-7.  A typical HTTP response (first part)

Figure 5-8.  A typical HTTP response (second part)

Chapter 5 Network Programming

263

From the traffic inspected, we can see that the requests and responses

are populated with key-value contents, for example, Host: holmeshe.me.

Those are HTTP headers. The values of the headers are called directives

that define certain properties of or behaviors for the traffic.

Next, we go through some of the common headers and their associated

directives.

5.1.2.2  �Common Request Headers

We look at some of the common request headers first:

	 1)	 The foremost information we should care about is

200 OK. This is called an HTTP status code, and 200

means success. We are going to discuss more about

status code very soon in Section 5.1.2.4.

	 2)	 HTTP Version HTTP/1.1 indicates the current

version of HTTP. We are going to talk about the

drawbacks of this version and introduce briefly

HTTP 2.0. in Section 5.1.5.

	 3)	 Host means the hostname being requested.

	 4)	 User-agent is the signature of the client (browser).

	 5)	 Accept is the format that this client is expecting,

such as HTML and XML.

	 6)	 Cookie is where to store the cross-request data.

These data are sent back and forth using the same

header, hence cross-requests. In common practice,

a user session is represented by the Cookie on the

client side.

Chapter 5 Network Programming

264

	 7)	 Another very common header that is not included

in this request is X-Forwarded-For, a.k.a. XFF. This

header can only be observed from the server side as it is

attached by a non-anonymous HTTP proxy (or a reverse

load balancer) to indicate the original IP address.

	 8)	 Another interesting header is Connection: keep-alive.

In the traditional HTTP paradigm, each request initiates

a new TCP connection, each of which, as said, imposes

a three-way handshake and is subject to the slow start.

By indicating Connection: keep-alive, all requests

to the same hostname will share a single connection,

which saves a few RTTs for the successive requests. For

sure, the server needs to support persistent connections

to enable this optimization. As shown in Figure 5-7,

servers declare it can accept persistent connections by

including the same header in the HTTP response.

Note H ere, if you run tcpdump at the same time, you will notice
that the FIN will not be observed even after the last response. We can
observe FIN only when killing the browser (or the nginx server). This
is the side effect of Connection: keep-alive. Note that sending
FIN on behalf of a terminated process is the behavior of major
operating systems.

5.1.2.3  �Common Response Headers

Next, we look at the HTTP response:

	 1)	 Server is the web server signature that serves the

response. Here, we are using Nginx.

Chapter 5 Network Programming

265

	 2)	 Content-type is the actual format of the response

body that conforms to one of the expecting formats

in the request header, Accept. It is also called

a MIME type. As said, HTTP is highly versatile.

Besides text/html, it even supports a binary

payload as an HTTP body as briefly mentioned. To

adopt this, we firstly set application/octet-stream

as the Content-type. Then we can use our favored

binary format, for example, Protocol Buffer, as the

payload. This way, we can enjoy the easy setup of

an HTTP server and the efficiency of a binary data

transportation. Best of the two worlds.

	 3)	 Content-encoding means the content has been

compressed using gzip so the client will know it

needs to unzip it before reading the response body.

	 4)	 We have covered Connection: keep-alive in the

last section.

	 5)	 Another interesting header is Transfer-Encoding:

chunked. This is an optimization in HTTP 1.1. to

divide a single big request into chunks. Thus, less

buffer is required for both sides when processing the

request. In an otherwise situation, the mentioned

Content-Length is required in the header.

Note  For chunked requests, the size of each chunk is included
in the HTTP request so the Content-length that is for the whole
request size can be omitted.

Chapter 5 Network Programming

266

5.1.2.4  �HTTP Status Code

We have seen the 200 that means a success. However, most of the status

codes are used to indicate the reason when something goes wrong. We

categorize the status code as follows. Here, we only list the common ones

in practice, and things related to teapot or coffee machines are omitted.

2xx series means “all good”:

	 1)	 200 Ok (seen before).

	 2)	 201 Created means “created,” a success of a PUT

request.

3xx series are a redirection:

Note  A web page can also return a JavaScript file to carry out
the redirection. So we don’t always expect a 3xx status code when
observing a redirection.

	 1)	 301 Moved Permanently means the resource

in request has been moved permanently. All

successive requests should use the new URL

indicated in the response header Location. 301

could be the most common 3xx series code that is

used for the purposes such as standardizing domain

name, forcing HTTPS, migrating old domain to a

new one, etc.

	 2)	 302 Found is less common than 301. It means the

resource in request has been moved temporarily.

Upon receipt of this status code, successive requests

could still use the old URL.

Chapter 5 Network Programming

267

	 3)	 304 Not Modified means the resource has not been

unchanged since last fetching; hence, the client

could use the cached value. We are going to discuss

cache control in detail in Section 5.1.2.5.

4xx series are client-side errors:

	 1)	 400 Bad Request means the request format failed

the sanity check.

	 2)	 401 Unauthorized means unauthorized.

	 3)	 403 Forbidden is similar to 401. It could mean the

authorized permission is not sufficient.

	 4)	 404 Not Found.

	 5)	 429 Too Many Requests means the number of

requests sent by a client exceeds the threshold.

5xx series are server-side errors:

	 1)	 500 Internal Server Error is a generic status

(error) code. All unknown exceptions occurring on

any layers of the server side could be surfaced by

this status code.

	 2)	 502 - 504 These errors are more relevant to the

server-side debugging. They occur when the worker

processes behind the proxy crash or are overloaded.

For the app side, we can only retry the failed request

after receiving this status code. We are going to

examine the retry mechanism in Section 5.4.

Chapter 5 Network Programming

268

5.1.2.5  �Cache Control

RTT is the most critical bottleneck for network performance. So, it’s

better to bring the content close to the users so as to reduce or completely

eliminate RTT. A cache is one of the most efficient ways to do so.

HTTP generally enlists two layers of caches, local and remote. The

local cache holds the data requested by the user, so successive requests

from the same user for the same data can benefit from it by retrieving the

data directly from the cache. For example, a browser cache may save an

image that has been requested before and display it directly whenever this

image is referenced from the same or other web pages.

Remote caches, on the other hand, are running on servers that are

normally deployed very close to the users. The most prominent remote

cache is CDN that is deployed on the edge network. Each CDN server

is responsible for a group of users within the same geoproximity and is

populated with data requested by any of the users in the group. So all

successive requests from all other users in the same group can benefit

from it. Besides CDN, HTTP proxies can enlist a cache that serves the users

using the same proxy. Generally speaking, a cache shortcuts the requests

which would hit on the remote server(s) in an otherwise situation.

Note  A cache gives simultaneously two benefits: (1) it reduces
latency by bringing the content closer to the users, and (2) it reduces
the server load by shortcutting the requests. For that matter, utilizing
cache systems is one of the most worthy topics in a server-side
architecture as server capacity is always a scarce resource. A
drawback of a cache is that it can only serve static content.

The cache control headers affect both local cache and CDN. It can be

included in both request and response HTTP headers. The following are

some common derivatives for cache control:

Chapter 5 Network Programming

269

	 1)	 private means the content should only be saved

in local caches and not in intermediate caches

such as CDN. Normally, this indicates privacy-

sensitive data.

	 2)	 public means the content can be saved anywhere.

	 3)	 no-cache is quite misleading by its name 💣. It does

not mean “forbid cache,” but “read from cache

but always check with the server for the validity.”

That means the request marked with no-cache is

still sent to the server which, in turn, could return

a 304 response if the content is not changed. This

can spare some RTTs for the payload of the server

response. One of the cache validity flags is ETag.

	 4)	 ETag is not a cache control directive but a stand-

alone HTTP header. This tag is given by the origin

server when the resource is fetched. And it is

changed when the resource is updated. ETag can

be used to validate the content in the cache. More

specifically, the server returns a full response with

content only when the ETag embedded in the

request and that on the server do not match.

	 5)	 no-store is the actual “forbid cache” flag. When set,

all requests will always hit the origin server. This flag

could only be of good use in the debugging phase.

	 6)	 max-age indicates how long the content will be

considered stale and must be refetched from the

origin server.

Chapter 5 Network Programming

270

5.1.2.6  �HTTP API Design

Eventually, the network tech stack is surfaced to app developers in the

form of web APIs. Technically, a web API ​​is a predefined HTTP request and

response with which the app communicates with the server. As a reminder,

the HTTP request and response are a composite of a URI, the payload, and

HTTP headers.

REST is one way to structure the HTTP-based API. The idea of REST

is to utilize the different building blocks of HTTP to further separate the

concerns in an HTTP request: the URI is used to indicate the resource

(noun); the request method (Section 5.1.2.1) is used to indicate the action

(verb). Moreover, the HTTP status code (Section 5.1.2.4) can indicate the

result by nature.

In terms of the resource, we need to use https://holmeshe.

me/05apps/feeds to indicate the resource. Adding any verb to the

URI, for example, https://holmeshe.me/05apps/getFeeds, could be

inappropriate.

On the other hand, actions should be represented by HTTP methods.

In REST, GET is used to indicate a fetch request, and POST is for creating

entry requests. DELETE and PATCH are used for deleting and updating

requests, respectively.

Instead of putting constraints on the HTTP protocol itself, GraphQL

works on only the payload to optimize the API structure. GraphQL

defines a graph query language that is comparable to SQL. The HTTP

query is categorized into query, mutation, and subscription, which

are marked in the payload. The names are self-explained. The major

improvement GraphQL gives over traditional APIs (REST or not) is its

dynamic granularity in terms of response payload. In GraphQL, the data

response is dynamically constructed catering for the requests in an on-

demand manner.

Chapter 5 Network Programming

https://holmeshe.me/05apps/feeds
https://holmeshe.me/05apps/feeds
https://holmeshe.me/05apps/feeds

271

GraphQL introduces another dimension of partition between the client

and the server, which is agnostic to how services are grouped. The layer

provides great potential in engineering flexibility as well as performance

improvements. As frequent demands can be met with GraphQL with low

cost, (1) to aggregate multiple requests into one to save RTTs or (2) to

remove unused fields by the app to save bandwidth.

Versioning is another important aspect in a web API. An HTTP

protocol gives three places where we can put version information: HTTP

header, URI path, and parameters. We shall choose one which we think is

the coolest. What’s more important in versioning is actually two scenarios,

that is, when releasing and when deprecating. Let’s examine them

one by one.

When releasing a new API support from the app side, the server side

should have the API 100% released. Then what we do is to (1) embed

supports of the two versions (current and the target) both inside the app

executable, (2) make the newer version inactive, and (3) resort to a remote

config (i.e., Firebase) to gradually release the newer version.

When deprecating an old API, the server might have been running

multiple versions simultaneously to support users who are reluctant to

upgrade. At some point, the user population of the oldest API reduces to

a threshold, and the server side decides to free the computing and devops

resource for the API. At this point, we (1) turn off the API support from

the remote config, and (2) the users running on this API will be forced to

upgrade. Then we can sunset the API from the server side safely.

5.1.3  �DNS
DNS is an application layer protocol. DNS is responsible for translating

the easy-to-remember domain name to the actual IP address. Let’s see the

DNS query in action.

Chapter 5 Network Programming

272

Firstly, we need to clear the DNS cache:

sudo dscacheutil -flushcache; sudo killall -HUP mDNSResponder

Next, we run the tcpdump on port 53:

sudo tcpdump -nt -s 502 port 53

On another terminal, visit holmeshe.me using curl:

curl holmeshe.me

Then the output is printed on the terminal running tcpdump (Listing 5-4).

Listing 5-4.  Inspect the DNS query result

IP6 2404:f801:10:102:8000::223.58923 > 2001:4898::1050:5050.53:

1001+ A? holmeshe.me. (29)

IP6 2404:f801:10:102:8000::223.56909 > 2001:4898::1050:5050.53:

60392+ AAAA? holmeshe.me. (29)

IP6 2001:4898::1050:5050.53 > 2404:f801:10:102:8000::223.58923:

1001 1/0/0 A 104.248.189.33 (45)

DNS is across the data center. This trait gives it an advantage over

other protocols when it comes to system resilience design. So it is very

useful for geolocation distribution for disaster recovery. Basically, we can

set multiple values for a DNS record and remove the ones selectively for

data centers that are malfunctioning. More specifically, data centers with

dedicated cables broken by incidents such as construction activities or

earthquakes can be inactivated using DNS. With this mechanism, clients

can fail over to the healthy data center automatically and hence survive in

those unexpected events.

DNS has three major drawbacks, ❄ initial latency similar to that in

TCP three-way handshake, 💣 DNS hijacking, and 💣 single (or very few)

point(s) of failure. The third one is the most disastrous since failure of the

DNS could lead to massive outage of Internet services.

Chapter 5 Network Programming

273

🚀 One solution in practice is to, well, do away with DNS completely

by using direct IP address(es). This is not an easy task in that we need (1)

to maintain an IP list file both in the app bundle and remotely, (2) to sync

versions of this list in the app cache and remote using certain rules, and (3)

to apply a speed racing algorithm for available data centers, so the app side

can selectively connect to the ideal data center while imposing the least

overhead to all other data centers.

We will also discuss some modern improvements on DNS in Section

5.1.5. Since most of the heavy lifting is applied on the system level for those

improvements, they are much less involved than the custom roll direct IP

mentioned earlier.

5.1.4  �TLS
TLS is on the application layer. The purpose of TLS is to encrypt the data

transition so it cannot be either read or modified by any proxy in the

middle of the two communicating endpoints. When combined with HTTP,

we get HTTPS running on port 443.

Working on top of TCP, TLS imposes more RTTs for handshakes

which are used to establish a secure communication tunnel between two

endpoints, more specifically, to agree on a secret with which all the data

transmission post handshakes can be encrypted. These handshakes are

also called a key exchange.

For performance reasons, the fast symmetric key cryptography is

used for the encryption of data itself which is in high volume and is in the

long term, while the slow asymmetric key cryptography is for the one-off

encryption of the symmetric key during the key exchange. A simplified

version of key exchange is illustrated (in roundtrips) as follows:

	 1)	 A client asks for a public key (asymmetric).

Chapter 5 Network Programming

274

	 2)	 A server sends a public (asymmetric) key to

the client.

	 3)	 A client uses the public key (asymmetric) to encrypt

a session key (symmetric) and send it to the server,

and the server uses the private key (asymmetric) to

decrypt the session key (symmetric).

Then all the successive communication can be carried out with the

session key (symmetric) agreed on.

A TLS handshake is a bit more complicated and hence more robust

and secure. For example, instead of sending the session key directly in

roundtrip 3, the client and the server can exchange some random numbers

in roundtrips 1 and 2 and generate the session key altogether based on

those random numbers.

One critical SSL step not included in the simplified version of key

exchange is authentication. The client needs to make sure the server is

who it claims to be; otherwise, important information could be sent to

malicious entities. This is achieved in roundtrips 2 and 3. In roundtrip

2, the server sends a certificate together with the public key mentioned

earlier; and in roundtrip 3, the client needs to verify the certificate with the

information embedded in the client (browser or operating system) before

any of the following steps could be carried out.

More specifically, the information embedded in the client is the

public key of a handful of root certificate authorities (CA). To verify the

information, the client needs to compare the signature generated from

the base information using the public key. This process can be chained so

signatures of trusted certificate authorities by root certificate authorities

can be verified too.

Chapter 5 Network Programming

275

5.1.4.1  �Pinning

CA pinning is a practice of embedding the server certificate in the client

side. In doing so, the client will rigidly trust only the certificate pinned.

This is not a suggested practice because 💣 certificate verification failure

causes zero availability. We don’t want this to happen regardless of the

causes whenever updating certificates intentionally or passively.

5.1.5  �The Modern Internet
In facing the physical limit, which is speed of light, the Internet keeps on

evolving on qualities like latency, resilience, continuity, and the ability

of multiplexing, which leads to better user experiences. This section will

focus on those improvements, and please make the best use of them when

making your next awesome app.

HTTP/2
HTTP/2 is the enhanced version of HTTP/1.1. Multiplexing is one of

the major optimizations in HTTP/2.

We recommended enabling Connection: keep-alive in the request

header (Section 5.1.2.2) to save some RTTs for handshakes for new

requests. However, this is at the cost of concurrency because keep-alive

has an intrinsic drawback called head-of-line blocking (HOL blocking).

For instance, when a client requests three resources, a PNG graphic, a CSS

stylesheet, and an HTML file, the requests of the latter two need to wait

for the first one to fully complete. Often than not, in the network system

design, a wait means a waste in resources such as computing power

and bandwidth. Those resources could be otherwise put in better use to

provide more responsive services (Figure 5-9).

Chapter 5 Network Programming

276

PNG

CSS

HTML

Figure 5-9.  HOL blocking in HTTP/1.1

Note T o better understand the issue, please consider you are
waiting in a queue in a fast food restaurant. And some guy in the front
takes ages to contemplate what to eat for lunch, which causes a HOL
blocking.

Alternatively, a client can initiate multiple connections simultaneously

to mitigate the HOL blocking, but at the cost of (1) the handshakes and (2)

the superfluous press on the server for those additional connections.

Note O ne way to solve the preceding HOL issue is to add more
counters. This is at the cost of the restaurant's operational expense
and of the press on the management for the additional employees. It
is a common trade-off scenario which is happening all the time.

HTTP/2 multiplexing enables the parallel processing of network

requests over a single connection. Instead of waiting for HOL blocking, the

network responses are served in an interleaved manner. This also opens

the opportunity to serve the prioritized resources such as the HTML file

first, which gives better perceived overall performance (Figure 5-10).

Chapter 5 Network Programming

277

PNG

CSS

HTML

Figure 5-10.  Multiplexing in HTTP/2

Note  Let’s get back to the fast food restaurant. Another way to
solve the HOL problem is to use a QR code which is part of an online
ordering system. Now each person is ordering simultaneously so you
don’t have to wait for the guy in front of the queue anymore. This is
a breakthrough scenario which occurs rarely only for a brilliant mind
combined with determined execution.

Other optimizations introduced by HTTP/2 include header

compression and a binary protocol, which make HTTP/2 way better than

HTTP/1.1.

Note T hey say everything is a trade-off in the world of computer
science. Nevertheless, there are exceptions that make breakthroughs.
Good designs such as HTTP/2 make use of both low overhead of
keep-alive and high throughput of parallelism. As mentioned
throughout this book, React Native is yet another good example of
breakthroughs of this kind.

Chapter 5 Network Programming

278

ECN (Explicit Congestion Notice)
As said, the existing congestion control uses packet loss as the signal to

slow down the packet sending speed. However, packet loss is both a signal

and a cost, as it causes retransmission which leads to some unnecessary

RTTs and overall latency. If congestion control is like reversing your car

and only stopping when you hear a collision, ECN is the reverse radar.

In ECN, the bottleneck gateway will notice the sender ahead of time

by setting a flag in the IP header. Moreover, gateways that enable ECN will

benefit from the more sophisticated queuing algorithm that can minimize

bufferbloat.

IPV6
IPV6 is the replacement of IPV4 on the network layer. Unlike IPV4,

IPV6 has almost unlimited address space. It gives better performance by

removing the NAT. In fact, Apple has been enforcing the support of IPV6

for many years. For servers that do not support IPV6, we can use NAT64 to

test the client’s IPV6 capacity. Nonetheless, it’s better to get both the client

and the server to support it.

Multipath TCP
In the world of mobile networks, the absence of a network is a routine

rather than an exception. Multipath TCP is a mechanism to mitigate the

issue by simultaneously establishing multiple “subflows” and sharing the

connectivity and bandwidth between both Wi-Fi and cell networks. This

is useful in scenarios where Wi-Fi is fading out such as when the user is

walking away from a Wi-Fi range. In an otherwise situation, the mentioned

DNS query, TCP handshake, and TLS handshake are imposed by network

switching, and the user will experience excessive latency.

QUIC and HTTP/3
QUIC is another level above all the optimizations based on the existing

TCP network stack. In fact, it has the potential to replace the existing TCP/

HTTP stack completely and makes the Internet much more responsive:

Chapter 5 Network Programming

279

	 1)	 QUIC is based on UDP and could be implemented

in user space.

	 2)	 QUIC aggregates the handshakes of transport and

key exchange, which were conducted by TCP and

TLS, respectively. This aggregation reduces RTTs

required and hence is faster.

	 3)	 QUIC also takes the preceding optimizations such

as header compression, explicit congestion notice,

and, more importantly, multiplexing into account.

5.1.6  �Key Takeaway
In this section, we have gone through the critical path in the network stack

that is directly related to app development. Firstly, we briefly introduced

the basic idea of TCP/IP. Then we examined in detail and by hand the

essential protocols in the network stack, namely, TCP, HTTP, DNS, and

TLS. During the discussion, we also highlighted important features of

each protocol such as congestion control, bufferbloat, keep alive, cache

control, HOL, etc. Lastly, we connected the dots by relating those textbook

protocols to today’s new updates in network engineering.

You might have noticed that we emphasized on latency and RTTs

while rarely mentioning bandwidth whenever discussing the performance

aspect of each protocol. This is because in most cases, bandwidth is not

the bottleneck, unless you are developing a service that is bandwidth

hungry like streaming. Nonetheless, it is always nice to reduce unnecessary

bandwidth consumption whenever possible.

You might also notice that we did not emphasize on concrete practice

as in other sections. This is because some of the modern Internet

attributes, such as IPV6 and HTTP/2, involve a server-side setup which is

not the best interest of this book. Moreover, some features such as QUIC

are not in production yet at the time when this book is being written.

Chapter 5 Network Programming

280

The good news is the iOS and Android ecosystems are following closely

and naturally support, from the client side, some of those. For instance,

NSURLSession supports multipath, HTTP/2, and IPV6 out of the box. As

you will see very soon (Section 5.2.2), the React Native fetch() benefits

from those features too as it is implemented on top of NSURLSession.

This section is far from a complete guide to network programming.

Rather, we have achieved three major goals: (1) to know what the building

blocks in the network stack are, (2) to understand what critical network

bottlenecks are, and (3) to leverage new Internet heuristics in network

programming.

Network programming is an interesting topic where there exist a lot of

opportunities and huge potentials to make our app more performant and

more responsive while demanding less bandwidth in the meantime. In the

background of the Internet, the best practices of network programming are

not yet defined for cross-platform mobile development. One of the major

purposes of this and the following sections is to establish the foundation

for you to explore such best practices.

Let’s be hungry and continue hunting.

5.2  �Network Programming
on the JavaScript Layer

5.2.1  �Asynchronous Operations
Generally, asynchronization has two layers of meaning: (1) unblocking

of slow operations and (2) triggering events nonlinearly. In OS terms,

the event is also called an interruption that can represent an incoming

network packet, a clock tick, or simply a mouse click. Technically, the event

interrupts the current process, puts the next CPU instruction on hold, and

calls a predefined code block (a.k.a. an event handler) “asynchronously.”

The concept is essentially the same at the application level.

Chapter 5 Network Programming

281

In a narrow sense, asynchronization solves a fundamental difficulty

in application development: blocking operation on the UI thread (mostly

I/O). No matter what kind of app (with a UI) you are working on (an

embedded system, a mobile app, a game, or a web page), there is an

underlying “loop” that is used to calculate screen rendering. If the “loop”

is blocked by a slow operation, say, a network interaction, the UI will be

frozen. So the common practice is to offload the waiting operations to

other threads. This is where asynchronous operations come into play.

5.2.1.1  �Promise

In JavaScript, asynchronous operations are carried out using an object

called a promise which literally reflects a promise of the future.

The Promise object takes as a parameter a closure which runs the slow

operation, which is in turn passed in with two closure parameters resolve

and reject. resolve and reject are called at the end of the operation

depending on whether it was a success or a failure. Listing 5-5 shows a

typical usage of Promise.

Listing 5-5.  Use the Promise object

var theFuture = new Promise((resolve, reject) => {

 setTimeout(() => { // ---------------------------------> 1)

 resolve("The future is now"); // ------------------> 2)

 }, 250);

});

theFuture.then((message) => { // --------------------------> 3)

 console.log(message); // --------------------------------> 3)

});

Chapter 5 Network Programming

282

	 1)	 Simulate a slow operation using setTimeout.

	 2)	 The callback of the timer asynchronously invokes

resolve() which effectively resolves the promise.

	 3)	 The then block is invoked and passed in with the

same parameter after the promise resolves. In fact,

then takes two callbacks instead of just one. The

second closure is linked to the reject() which

belongs to the exception flow in asynchronous

operations. Since we use a timeout in this simple

example, the exception flow is omitted for now. We

will bring this topic back in Section 5.4.

A promise provides catch() as the shortcut for reject of then().

catch() is normally attached as the end step of a typical promise chain.

Note  A traditional callback paradigm is notoriously bad. 💣 When
the logic becomes more and more complicated, it could cause a
phenomenon called a callback hell which is barely readable and is
difficult to be debugged. 🏛 A promise keeps logic linear regardless
of its complexity – so it can be always read from top down. This
technique is referred to as a promise chain.

Next, we look at a promise chain in Listing 5-6.

Listing 5-6.  Promise chain

let promiseA =

somePromise.then(() => {

 let promiseB = ...

 return promiseB

}).then(() => {

 let promiseC = ...

Chapter 5 Network Programming

283

 return promiseC

})

We can also use Promise.all() to combine multiple promises into

one that can resolve only when all of the combined ones are resolved

(Listing 5-7).

Listing 5-7.  Promise.all()

let promiseA = ...

let promiseB = ...

Promise.all([promiseA, promiseB]).then(() => {

...

})

Similar to Promise.all(), Promise.race() takes multiple Promises

and combines them into one. The difference is Promise.race() resolves

when one of the Promises resolves (Listing 5-8).

Listing 5-8.  Promise.any()

let promiseA = ...

let promiseB = ...

Promise.any([promiseA, promiseB]).then(() => {

...

})

5.2.1.2  �Await

A promise is a step forward to the linear logic flow compared to a callback.

await takes a step more.

Await is designed to mimic the programming style that is plain linear;

hence, it is highly intuitive. Even the exception flow can be achieved using

ordinary try catch blocks. In practice, the keyword await is used together

with async which is a method name decorator. The async keyword makes

Chapter 5 Network Programming

284

a method “awaitable.” Under the hood, await is built on top of a promise,

so they are completely compatible. In Listing 5-9, we use await on the

Promise object created in the last section.

Listing 5-9.  Use the Promise object in await

await theFuture;

console.log(message); // ----------------------------------> 1)

	 1)	 Please do keep in mind that the line followed by

the await keyword is executed in an asynchronous

manner, in other words, in another iteration of the

JavaScript run loop.

As you can see, this version is much simpler than the promise-based

one. await also accepts advanced promise combinations such as Promise.

all() and Promise.race() as input, which we will see very soon in

Section 5.4.1.

Note  async/await is not unique to JavaScript. A similar
programming paradigm called coroutine has been well used on
the server side for ages. A comparable async/await syntax now is
available in Swift as well.

Nonetheless, await has drawbacks too. One of those is that it is so

intuitive that sometimes programmers forget they are dealing with

asynchronous blocks when using it. Another issue is that a cancel

operation is not as explicit as in techniques such as NSOperation. Hence,

we need to manually deal with cancel semantics when multiple competing

promise chains are involved.

🏛 When using await, we need to always be clear whether the

asynchronous operation is in a critical path or not. And only operations

that are part of the critical path should be “awaited.” What is a critical path

Chapter 5 Network Programming

285

and under what criteria we can distinguish operations? A rule of thumb

is if the result of an operation is essential to the following UX, it should be

part of the critical path. For instance, fetching the feed list belongs to the

critical path, while refetching images (for speeding up UX) and telemetry

(totally UX irrelevant) do not.

Note  Similar concepts can be found in the iOS development discipline,
where QoS is defined to categorize the concurrent operations in GCD.

🏛 The same criteria should be applied to the exception flow. We only

capture the exception for critical paths and eventually reflect it to UX in

some forms. If exceptions occurred in peripheral paths (a.k.a. orphan

operations), silent logging should be applied.

Note W e can call asynchronous operations not within the critical
path orphan operations (similar to orphan processes in the operating
system terminology). They are simply “unleashed”; neither the return
value nor the exception is of interest to the main logic flow. As a
result, orphan operations need to be self-contained and take care of
the full logic including exceptions within themselves.

💣 When using await, one frequent mistake is that programmers are

not aware that exceptions will not be caught within an asynchronous

method that is not explicitly “awaited.” This happens either for orphan

operations, or the programmer simply forgot adding the await keyword.

Please do note that bugs in the exception flow (a.k.a. second fault) take

enormous time, energy, and intuition to debug, so 🛡 better to avoid such

faults beforehand in the first place with vigilance.

In the following text, we are going to use the await primarily so we can

get used to the more advanced technique.

Chapter 5 Network Programming

286

5.2.2  �fetch( )
Now it’s time to discuss fetch(), the standard way in JavaScript to make

HTTP requests. fetch() takes two parameters: the first one is the URI of

the resource; the second one is an object that can further customize the

request, such as changing the query method, adding an HTTP header,

attaching an HTTP body in the request, etc. The return value of fetch() is

a Promise object. Listing 5-10 gives a quick example.

Listing 5-10.  Fetch

let rsp = await fetch('https://holmeshe.me/05apps/

feeds'); //> 1)

let feeds = await rsp.json(); // --------------------------> 2)

console.log(feeds);

	 1)	 We fetch the feeds from remotely. In the next

section, we are going to integrate the API call and

replace all local data files.

	 2)	 In JavaScript, response.json() is also an

asynchronous operation.

Note T hough fetch() looks like pure JavaScript from the
surface, it’s actually native code that takes effect under the hood.
We have seen this pattern several times for other React Native
components, so it’s not a surprise. The good thing is that we can
upgrade to, free of cost, all the modern network improvements (e.g.,
HTTP 2.0) provided they have been supported by the platform.

Chapter 5 Network Programming

287

5.2.3  �Case Study, Move Everything Online
It’s time to get some work done for Manyface. First things first, here are the

requirements:

	 1)	 The API for all feeds is located from https://

holmeshe.me/05apps/feeds.

	 2)	 Display a loading page when the first screen (i.e.,

feed) is being loaded.

	 3)	 When the user pulls down, reload the data.

Listings 5-11 to 5-14 show a complete overhaul of Moment to support

network fetching.

Listing 5-11.  Add the state to the component

class Moment extends React.Component {

 constructor() {

 super();

 this.pullDownPos = new Animated.Value(0);

 this.autoScrolling= new Animated.Value(0);

 this.userPulling = new Animated.Value(0);

 this.scrollViewRef = undefined;

 this.feedRefs = [];

 this.state = {

 loading: false,

+ data: [] // ---> 1)

 }

 }

Chapter 5 Network Programming

https://holmeshe.me/05apps/feeds
https://holmeshe.me/05apps/feeds

288

	 1)	 First, we add a state in the constructor for the feeds.

It is now fetched from the remote API and hence

becomes a variable that affects the UI.

Listing 5-12.  Fetch the feed list in Moment

+ async loadData() { // -----------------------------------> 1)

+ try {

+ let rsp = await fetch('https://holmeshe.me/05apps/feeds',

+ __DEV__ ? { // --------------------------------------> 2)

+ headers: {

+ 'Cache-Control': 'no-cache'

+ } : undefined

+ });

+ let feeds = await rsp.json();

+ let feedsModel = feeds.map((obj) => {

+ return new FeedModel(obj);

+ });

+ this.setState({data: feedsModel}); // ---------------> 3)

+ } catch(e) {

+ // do nothing for now

+ }

+ }

	 1)	 Add a new method for feed fetching and add

an async annotation to the method name, so

loadData() can be awaited.

	 2)	 Add no-cache to the HTTP header to deprecate the

stale cache entry when debugging.

	 3)	 Invoke setState() and update the UI after the

fetching completes.

Chapter 5 Network Programming

289

Listing 5-13.  Use the loadData()

+ componentDidMount() {

+ this.loadData(); // -----------------------------------> 1)

+ }

 renderItem = (entry) => {

... // not irrelevant

 }

 onViewableItemsChanged = (result) => {

... // not irrelevant

 }

 beginDrag = () => {

... // not irrelevant

 }

+-endDrag = async (evt) => { // ---------------------------> 2)

 this.userPulling.setValue(0);

 this.autoScrolling.setValue(1);

if (

 evt.nativeEvent.contentOffset.y < -loadingIndicatorOffset

) {

 this.setState({loading: true});

+ await this.loadData(); // ---------------------------> 3)

 setTimeout(() => {

 this.scrollViewRef.scrollToIndex({

 index: 0,

 animated: true

 });

 }, 1000);

 }

 }

Chapter 5 Network Programming

290

 onReset = (evt) => {

... // not irrelevant

 }

 getScrollViewRef = (ref) => {

... // not irrelevant

 }

	 1)	 Invoke the loadData() in componentDidMount() life

cycle callback. This is the fresh fetch.

	 2)	 Invoke the loadData() in endDrag(). This fetch is

invoked by pulling down the action of the user. Note

that endDrag() is now marked with async as the

semantic is passed down from loadData().

	 3)	 The bouncing back is now invoked by the fetching

complete event, implemented with await.

Listing 5-14.  Change the conditional rendering

 render() {

 if (this.state.data.length === 0) { // ----------------> 1)

 return <Skeleton style={{flex: 1}}/>

 }

 return (// ---> 2)

 <View style={{flex: 1}}>

 <Animated.FlatList

 data={this.state.data}

 renderItem={this.renderItem}

 onViewableItemsChanged={this.onViewableItemsChanged}

 contentInset={{

 top: this.state.loading ?

 5: 0

Chapter 5 Network Programming

291

 }}

 scrollEventThrottle={1}

 onScroll={

 Animated.event([{

 nativeEvent: {

 contentOffset: { y: this.pullDownPos }

 }

 }], { useNativeDriver: true })

 }

 onScrollBeginDrag={this.beginDrag}

 onScrollEndDrag={this.endDrag}

 ref={this.getScrollViewRef}

 onMomentumScrollEnd={this.onReset}

 />

 <View style={styles.overlay}>

 <LoomingSpinningEnvelope

 color={'#6291f0'}

 size={45}

 style={{

 opacity:

 Animated.add(

 Animated.multiply(

 this.userPulling,

 this.pullDownPos.interpolate({

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [0.5, 0]

 })

),

 Animated.multiply(

 this.autoScrolling,

 this.pullDownPos.interpolate({

Chapter 5 Network Programming

292

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [1, 0]

 })

),

)

 }}

 />

 </View>

 </View>

);

 }

};

...// styles

	 1)	 Shortcut the render() and return the skeleton

view (made in Chapter 3) when fresh fetching is

undergoing.

	 2)	 Return the normal feed list UI in an otherwise

situation.

Note T he action of fetching data from online and updating the UI
is also called a side effect. Instead of componentDidMount(),
sometimes it is tempting to introduce the side effect in the
component’s constructor to save a couple of milliseconds. However,
this could lead to race conditions in theory as the network response
could be faster than componentDidMount(); in such case, the
setState() will not be effective. 💣 So in general, this practice is
considered an antipattern.

Chapter 5 Network Programming

293

5.3  �Network Programming
on the Native Layer

Now we know how to use fetch() to fetch network resources. Next, let’s

take a step more forward with two critical questions regarding UX: (1)

What if the app is offline? (2) When the app cold starts, can we display

something from the local cache instead of waiting for the initial RTTs? A

local cache is the key to answer both questions. Basically, we read data

directly from it in critical situations as mentioned earlier.

An HTTP cache can answer only partial of this question as we only

use fetch() for the feed list. Multimedia such as videos and graphics are

requested and rendered in their specific logic flows, by their respective

components, without using direct HTTP fetch(). So we need to consider

different offline strategies for each of them:

	 1)	 Feed list: HTTP cache.

	 2)	 Image: Leverage react-native-fast-image (Fast

Image), the best React Native image cache system

so far. It is based on SDWebImage and Glide on iOS

and Android, respectively.

	 3)	 Video: Enhance the VideoViewManager we created

in the last chapter by enabling the download

capability.

Note T he mechanism of an image cache is also an interesting
and sophisticated topic. In fact, SDWebImage and Glide are go-to
open source projects worth reading on their respective platforms.
However, we have to compromise on this topic to better focus on our
main goal.

Chapter 5 Network Programming

294

5.3.1  �Case Study, Enable Local Caching
Here are the requirements:

	 1)	 When the app starts offline, we display the user

content fetched last time instead of a blank

skeleton view.

	 2)	 When the user cold starts with an Internet, we

display the user content fetched last time instead of

a blank skeleton view, during the fresh fetch.

Let’s start from image cache which is a simple one. As said, we need to

install the Fast Image by executing the following two commands:

npm i react-native-fast-image

./pod install

Then we need to replace all <Image> occurrences with <FastImage>.

FastImage provides extra props for cache control (Section 5.1.2.5), so we

shall provide those props. Luckily, we have a nice encapsulation of the raw

<Image> in our LoomingImage component, so we need to change only this

place to enable an offline cache of all image contents for feeds and avatars

(Listing 5-15).

Listing 5-15.  LoomingImage with an offline cache

const AnimatedFastImage = Animated.createAnimatedComponent

(FastImage); // -------------> 1)

class LoomingImage extends React.Component {

 constructor() {

 super();

 this.opacity = new Animated.Value(0);

Chapter 5 Network Programming

295

 this.state = {loaded: false};

 }

 render() {

 return (

 <View style={[{

 ...this.props.style

 }, {

 backgroundColor

 }]}>

 {this.state.loaded === false &&

 <View style={styles.overlay}>

 <RotatingCircle size={28}/>

 </View>

 }

 <Animated.Image

+ <AnimatedFastImage // -----------------------------> 2)

 style={{

 width: '100%',

 height: '100%',

 opacity: this.opacity

 }}

 source={this.props.source} // -------------------> 3)

 onLoad={this.onLoad.bind(this)}

 />

 </View>

);

 }

 onLoad() {

 this.setState({loaded: true});

 Animated.timing(this.opacity, {

 toValue: 1,

Chapter 5 Network Programming

296

 duration: 300,

 useNativeDriver: true

 }).start();

 }

}

	 1)	 Use Animated.createAnimatedComponent() to

enable the component with the animation HOC.

	 2)	 Replace the raw Image with FastImage, well, without

any change in props. Note that cache control will

be set as a default value, FastImage.cacheControl.

immutable, which is what we want for the

offline cache.

	 3)	 Add a cache policy. Different from a general-

purpose HTTP cache, this policy is applied to and

managed by the component specific for image

contents.

Note  By running the code through Xcode, you might not be able to
browse the feed list offline. This is because the HTTP cache control is
set to no-cache for develop. Removing the cache control then you
will see the correct behaviour.

Next, we enable the offline cache for video (Listing 5-16). This time, the

task is a bit more involved because we will need to program in the native

layer again.

Chapter 5 Network Programming

297

Note T he download does not belong to the critical path; hence,
the exceptions are swallowed by the component and are not related
to the JavaScript layer. So the exception flow we set up in the last
chapter is basically unchanged. We are going to discuss the matter of
exceptions more in Section 5.4.

Listing 5-16.  VideoView with download

class VideoView: UIView {

... // unchanged code

 @objc(setSrc:)

 func setSrc(_ src: String) {

guard let doc = FileManager.default.urls(// -------------> 1a)

 for: .cachesDirectory, in: .userDomainMask

).last else {

 print("doc is nil in setSrc")

 self.setup(src)

 return

}

 guard let url = URL.init(string: src) else { // ------> 1b)

 print("Parsed url is nil for \(src) in setSrc")

 self.setup(src)

 return

 }

let dest = doc.appendingPathComponent(

url.lastPathComponent) // --------------------------------> 1c)

Chapter 5 Network Programming

298

if FileManager.default.fileExists(

 atPath: dest.relativePath

) {

 self.setup(dest.absoluteString) // ------------------> 2)

 } else {

 self.setup(src) // ----------------------------------> 3)

 self.download(url, dest, {dest in // ----------------> 5)

 }, {dest in

 // in production this should be real log uploaded

 print(dest) // ------------------------------------> 5)

 })

 }

 }

... // unchanged code

 private func setup(_ src: String) { // ------------------> 4)

 do {

 guard let url = URL.init(string: src) else {

 �throw VideoViewManagerError.runtimeError("url is nil in

VideoView::setSrc()")

 }

 if player == nil {

 player = AVPlayer(url: url)

 if (playerLayer != nil) {

 �throw VideoViewManagerError.runtimeError("playerLayer

is not nil while player is in VideoView::setSrc()")

 }

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

Chapter 5 Network Programming

299

 self.layer.addSublayer(playerLayer!)

 } else {

 if (playerLayer == nil) {

 �throw VideoViewManagerError.runtimeError("playerLayer

is nil in VideoView::setSrc()")

 }

 playerLayer?.removeFromSuperlayer()

 player = AVPlayer(url: url)

 playerLayer = AVPlayerLayer(player: player)

 playerLayer!.masksToBounds = true

 self.layer.addSublayer(playerLayer!)

 }

 } catch {

 self.throwToJS(error)

 }

 }

 private func download(// -------------------------------> 5)

_ src: URL,

_ dest: URL,

_ onSuccess: @escaping (_ dest: String) -> Void,

_ onError: @escaping (_ desc: String) -> Void)

 {

 let request = URLRequest.init(url: src) // ------------> 6)

 �let session = URLSession.init(configuration:

URLSessionConfiguration.default)

 �let task = session.downloadTask(with: request) {(source:

URL?, _, error: Error?) -> Void in

Chapter 5 Network Programming

300

 guard error == nil, let source = source else {

 �onError("Download failed with error:\

(String(describing: error)) source:\(String(describing:

source))") // -----------> 7)

 return

 }

 do {

 �try FileManager.default.copyItem(at: source, to: dest)//8)

 } catch (let error) {

 �onError("Download failed when copying file: \(error)")//7)

 return

 }

 onSuccess(dest.relativePath) // ---------------------> 8)

 }

 task.resume() // --------------------------------------> 6)

 }

	 1)	 Prepare the download by (a) fetching the document

directory; (b) convert the URL string to the URL

object; (c) combine the preceding two information

to get the cache directory.

	 2)	 Set up the video view hierarchy using the cached

video URL if it exists.

	 3)	 Otherwise, set up the video hierarchy using the

remote URL string as in the last chapter, and start

the download.

Chapter 5 Network Programming

301

	 4)	 setup() is equivalent to the old version of setSrc()

without the downloading capability. The logic

has been moved to this method to make setSrc()

more clear.

	 5)	 download() is the new method created. It takes

the source and destination URLs as inputs. The

source URL indicates the location of the video

online; and the destination URL indicates the local

file that stores the downloaded video. The two

closure parameters are called when the download

completes and fails, respectively.

	 6)	 Prepare components for the download task and start

the task.

	 7)	 Invoke the error block whenever the error occurs.

For now, we simply print a log when an error occurs.

In production code, we might need to also upload

those logs for the debugging of field failure.

	 8)	 Copy the downloaded file from the file buffer to

the destination location and invoke the block for

success.

Note T his download module is not the most optimal solution though
it can work well. For industrial-level video downloading services,
we need to employ advanced streaming technologies such as HLS
or Dash.

Chapter 5 Network Programming

302

5.4  �Exception Handling
In general, we are still going to follow the discussed wall-in strategy

(Section 4.4) for network operations. As a brief reminder, this strategy

pivots around the error boundary and converges error handling code

only on critical points where decisions can be made. Normally, those

critical points are also entry points in components from where the logic

of a submodule is entered. This time, the difficulty is another level higher

than that in Section 4.4 due to the extensive complexity introduced by the

network. Let’s analyze it before jumping to the code directly.

The scope is the first thing we need to consider. Now we have two

sources of network requests: (1) requests sent from the JavaScript layer

to fetch the feed list and (2) requests sent from the native layer to fetch

the multimedia content, that is, images and videos. We have mentioned

in Section 5.3 that image and video downloading does not belong to the

critical path. This is because Manyface can still proceed with the UX,

though degraded, in situations such as missing one or two images or the

video of one feed doesn’t load. As such, we consider the current exception

flow for the native level is sufficient.

Note  As mentioned before, it is so important that it is worth
repeating: being degradable (a.k.a. flexible) is the key to 0 crash.

We have narrowed down our scope to the JavaScript layer. The next

thing we need to consider is network connectivity. More specifically, how

should Manyface react when the user device is offline? Let’s look at what

the potential design options are:

	 1)	 Treat the offline state as an ordinary exception and

give the user a default error page. This is suboptimal

in that the mobile network is intermittent by nature,

and we don’t want the offline state to be drastic.

Chapter 5 Network Programming

303

Moreover, we just implemented the offline cache

(Section 5.3) to handle this situation, which renders

the error page even less relevant as Manyface is in

good shape when offline.

	 2)	 Always check the network state and start the

fetch() only when connectivity is assured. This

can be done using react-native-netinfo (a.k.a. Net

Info). This is actually an antipattern. The moment

we check connectivity is a couple of milliseconds

ahead when we call the fetch(), so the result is

irrelevant for this external state change could occur

in between.

	 3)	 Not to couple Net Info and network fetch(). Use

Net Info simply to trigger a UI hint to the user. The

network fetch() will throw when offline. However,

we can catch this exception within and retry the

same request later when the network is back. This

sounds like the best option so far.

Now let’s look at the request timeout. A timeout could be caused by

a weak network connection or an overloaded server that cannot respond

in time. In such a case, retry is still a plausible option. However, since the

server could be already in high load, a flood of retry could exacerbate the

problem. So we need to slow it down and set a limit counter for it.

Lastly, let's think about HTTP status code. Should we retry too for

abnormal HTTP code? Yes and no. Only for certain codes that represent

recoverable errors. For instance, 429 too many request, 500 Internal

Server Error, and other 5xx status code belong to this category. And we

definitely don’t want to retry on 400 bad request or 401 unauthorized,

etc. For those unrecoverable exception codes, we translate them into

exceptions and throw them to the error boundary which will make a final

call about the UI and logic on exceptions.

Chapter 5 Network Programming

304

5.4.1  �Case Study, Reinforce
the Network Components

Let’s make an abstract of the preceding discussion in the form of

requirements:

	 1)	 For offline fetch(), we save the request and retry

after coming back online.

	 2)	 For a request timeout (3 seconds), 401 and 5xx, we

retry at most three times. We set the first retry to be

after 3 seconds, the second to be 10 seconds, and

the third to be 30 seconds. We consider after 30

seconds the user will leave Manyface anyway, so if

all retries fail, we throw the exception.

	 3)	 For HTTP code other than the ones listed earlier, we

throw the exception representing the error.

To get started with this case study, we need to install the Net Info

package by running the following two commands:

npm install --save @react-native-community/netinfo

./pod install

Next, we create a service that encapsulates the vanilla fetch() together

with the retry logic discussed earlier (Listing 5-17).

Listing 5-17.  The network service

export default class NetWorkService {

 retryTimes = 0;

 retryIntervals = [0, 3, 10, 30];

 async robustFetch(url, config) { // ---------------------> 1)

 await this.throttle(); // -----------------------------> 2)

Chapter 5 Network Programming

305

 try {

 const controller = new AbortController();

 let timer;

 let timeout = new Promise((resolve, reject) => { // ---> 4)

 timer = setTimeout(() => {

 controller.abort();

 reject({message: 'Timed out'});

 }, 3000);

 });

 const response = await Promise.race([fetch(url, { // --> 4)

 ...config,

 signal: controller.signal

 }), timeout]);

 if (!!timer) {

 clearTimeout(timer);

 }

 if (!response.ok) {

 if (response.status === 401 || response.status > 500) {

 return this.robustFetch(url, config); // --------> 5)

 }

 �reject({message: 'Netowrk failed with HTTP code:' +

response.status}); // -----------------------------> 6)

 }

 return response;

 } catch (e) {

 if (e?.message?.includes?.('Network request failed')) { //7)

 await this.waitForNetwork()

 return this.robustFetch(url, config);

 }

Chapter 5 Network Programming

306

 if (e?.message?.includes?.('Timed out')) { // -------> 8)

 return this.robustFetch(url, config);

 }

 throw('Unkown network issue'); // -------------------> 9)

 }

 }

 async throttle() {

 return new Promise((resolve, reject) => {

 if (this.retryTimes >= this.retryIntervals.length) { //> 2)

 reject('Network Failed After 3 Retries');

 }

 const interval =

 this.retryIntervals[this.retryTimes++]; // —---------> 3)

 setTimeout(resolve, interval *1000); // -------------> 3)

 });

 }

 async waitForNetwork() { // -----------------------------> 7)

 return new Promise((resolve, reject) => {

 const unsubscribe = NetInfo.addEventListener(state => {

 if (state.isConnected) {

 unsubscribe();

 resolve();

 }

 });

 });

 }

}

Chapter 5 Network Programming

307

	 1)	 Create a robust version of fetch() with the same

signature.

	 2)	 throttle() implements the retry logic. As per the

discussion, if the retry times exceed three, the whole

fetch should simply reject.

	 3)	 Get the throttle interval based on the number

of retry times. And carry out the throttle using

this number. As per the requirement, they are 3

seconds, 10 seconds, and 30 seconds each time the

retry occurs.

	 4)	 Set up the timeout and execute the fetch() with

Promise.race(). As mentioned, this method is

passed with an array of Promises and resolves/

rejects if any of the Promises resolve/reject.

Note that a timeout throws an error with the

corresponding message which will be checked later

in the catch block.

	 5)	 Retry for recoverable HTTP status code that is

exceptional.

	 6)	 Reject for all other exceptional HTTP status code.

	 7)	 Wait for the network to reconnect when offline. And

retry straight after. Here, we use Net Info to monitor

the connectivity change.

	 8)	 Retry for a timeout.

	 9)	 Throw all other exceptions. They could be

programmatically exceptions or other network

exceptions not being accounted for explicitly.

Chapter 5 Network Programming

308

Lastly, we can modify the Moment and connect the dots and complete

the exception flow (Listing 5-18).

Listing 5-18.  Hook up the exception flow with Moment

async loadData() {

 try {

 let service = new NetWorkService();

 let rsp = await

 service.robustFetch(

 'https://holmeshe.me/05apps/feeds', // —-> 1)

 true ? {

 headers: {

 'Cache-Control': 'no-cache'

 }

 } : undefined

);

 let feeds = await rsp.json();

 �let feedsModel = feeds.map((obj) => { return new

FeedModel(obj); });

 this.setState({data: feedsModel});

 } catch(e) {

 setState(() => { throw e }); // -----------------------> 2)

 }

}

	 1)	 Replace the vanilla fetch() with our robustFetch().

	 2)	 Throw the same exception in setState() so the

exception can be caught by the well-defined error
boundary which will make the final call in terms of

the UI and behavior for all exceptions within.

Chapter 5 Network Programming

309

5.4.2  �Case Study, Offline Mode
We use Net Info as a trigger to retry the failed requests. It can be also used

to manage the user expectation when the device is offline. Basically,

we display a bar on top of the screen so the user will be less surprised if

something is not working (Listing 5-19). Note that this feature does not

affect any logic flow for network requests.

Listing 5-19.  Offline indicator for the app

class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 offline: false // -----------------------------------> 1)

 };

 }

 componentDidMount() {

 NetInfo.addEventListener(state => { // ----------------> 2)

 if (!state.isConnected) {

 this.setState({offline: true});

 } else {

 this.setState({offline: false});

 }

 });

 }

 render() {

 return (

 <SafeAreaView style={{width: '100%', height: '100%'}}>

 <Moment/>

 {this.state.offline && // -------------------------> 3)

Chapter 5 Network Programming

310

 <View style={{

 position: 'absolute',

 top: 0,

 left: 0,

 width: '100%',

 height: 60,

 backgroundColor: '#4ea4eb',

 justifyContent: 'center',

 alignItems: 'center',

 paddingTop: 20

 }}

 >

 <Text style={{

 fontSize: 16,

 fontWeight: "bold",

 color: 'white'

 }}>No Network</Text>

 </View>

 }

 </SafeAreaView>

);

 }

}

export default App;

	 1)	 Add a new state to mark the network status.

	 2)	 Use Net Info to listen to the network status. Switch

the state created earlier accordingly.

	 3)	 Display the offline tag when losing connectivity.

Chapter 5 Network Programming

311

This is how it looks after completion (Figure 5-11).

Figure 5-11.  Offline mode

5.5  �Summary
Comprehensive skills and knowledge are required to achieve 05 apps. One

of the essentials is a network. In this chapter, we went through the essential

network knowledge and techniques directly related to app development.

In the theory part of this chapter, we made a vertical trip through the

network stack and visited some of the critical points. Along the path, we

also watched the network traffic in action with various tools. Then we

conclude the theory part by introducing some of the heuristics of the

modern Internet.

For the practical part, we first introduced asynchronous programming

in JavaScript, followed by the usage of the fetch() method. Then we

enhanced Manyface with common network-related capabilities including

API calls, large file download, local cache, as well as offline mode.

Chapter 5 Network Programming

312

Lastly, we implemented a network-related exception flow in the

light of the wall-in pattern. The difficulty for a network exception is that

it is triggered externally, and we need to account for various scenarios

by respecting HTTP error code in different ways, considering the retry

strategy, and defining the behavior in offline mode.

Chapter 5 Network Programming

313© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3_6

CHAPTER 6

Advanced Topics
Believing the dots will connect down the road, will give you
the confidence to follow your heart.

—Steve Jobs

This is the last chapter of this book. In this chapter, we are going to better

fulfill our knowledge body, as well as our curiosity, in React Native, mostly

by looking back at what we have learned throughout the previous chapters.

6.1  �Revisit Rendering
React employs a virtual DOM tree (VDOM tree) to facilitate rendering

(Section 1.2.6). A virtual DOM tree is an in-memory representation of

the components being rendered with each VDOM as a component.

What is returned by render() is a blueprint (an element) that is in turn

used to construct a VDOM by the React runtime. The cascading calls of

render() eventually provide the fragment of elements that are used to

complete VDOM tree of the app. When it comes to updates, React uses a

diffing algorithm (reconciliation) on the VDOM tree to collect the changes

before any rerendering actually takes place. The diffing algorithm makes

a layer-by-layer comparison of the virtual DOM tree and (1) unmounts

and remounts the subtree if the types of the old and new versions’ root

node are different and (2) updates nodes using the new props if they are

the same.

https://doi.org/10.1007/978-1-4842-8042-3_6

314

Note  That means the setState() is heavy. When inappropriately
used, ❄ it could trigger excessive rerendering of the whole
VDOM tree.

This algorithm is expensive when the VDOM tree grows. So React

provides majorly three measures to make the algorithm more efficient

at scale: (1) 🚀 shouldComponentUpdate(), (2) 🚀 pure component, and

(3) 🚀 Redux. Technically, all three methods reduce the number of nodes

needed to be compared for the diffing algorithm. 🏛 More specifically,

the first and second methods undercut the tree by preventing the diffing

algorithm from being executed for an entire subtree, and the third

uppercuts the tree by making the diffing algorithm only to start from a

certain subtree (Figure 6-1). In this section, we are going to cover the first

two methods. Redux will be covered in Section 6.2.

P

Redux
updates

Pure component
(shouldComponentUpdate)

Figure 6-1.  Constrain the rerendering

shouldComponentUpdate() gives you a chance to decide whether a

component and the rooted subtree should be updated in the rendering

event. Again, this event could be triggered from a setState() occurring

somewhere on the upper layer in the virtual DOM tree hierarchy. 🚀 With

this method, you make a component only listen to certain props, which

Chapter 6 Advanced Topics

315

effectively reduce the number of nodes involved in the diffing algorithm.

💣 The caveat is that shouldComponentUpdate() could block valid updates

to the subcomponents unintentionally.

To make the updating flow more explicit and predictable, 🛡 a general

practice is to shallow compare all the props passed in – in other words, (1)

to compare the value of the props if they are of primitive types and (2) to

compare the reference of the props if they are objects (reference type). This

practice has been generalized into a stock component, PureComponent.

As we will see very soon, the principle of Redux (Section 6.2) is also

established around the same principle of shallow comparison.

As said, the diffing algorithm compares the VDOM tree layer by

layer. For each layer, it simply compares the nodes from left to right. This

has a bad performance implication for one layer that is rendered as a

list using map() or a FlatList (Section 6.3). ❄ More specifically, when

the list is mutated, the diffing algorithm cannot infer the corresponding

components to be compared in the new and old VDOM tree, which incurs

unnecessary rerendering. 🚀 To address this issue, it is recommended to

attach keys to each component within the list.

Note  💣 Using a list index as the key is an antipattern. This is
because using a list index is equivalent to the no-key situation, where
a list mutation could change the key of the same entry. 🚀 So always
use explicit keys for the list entries.

Chapter 6 Advanced Topics

316

6.2  �Redux
Redux is a go-to global state management framework. States are basically

view modals, which are supposed to be local. A global view modal seems

to be counterintuitive and overengineering. Nonetheless, it is a nirvana

rising from a prolonged period of confusion, turmoil, and debating. It

solves a fundamental difficulty of cross-VDOM tree communication, that

is, when an event comes from one component on the tree and the update

should be carried out on another.

To understand this difficulty, let’s consider a typical video player

component (Figure 6-2) where a click event on a play/pause button

component should change the state of a screen component which might

be located in a completely different subtree.

Play/Pause

Screen

Player

Figure 6-2.  A video player

Chapter 6 Advanced Topics

317

With the vanilla React local state management that relies purely on the

local state, we need to pass some callbacks from the screen component

all the way to the play button. When there are a lot of them, we have the

callback hell problem in the context of the VDOM tree (Figure 6-3).

Redux provides a direct way to communicate an event occurring in a

component to other arbitrary components on the VDOM tree which are

listening to the event. A successful delivery of an event could cause a state

change and rerendering of the destined component (Figure 6-4).

Figure 6-3.  Using callbacks to propagate click events

Chapter 6 Advanced Topics

318

Besides the obvious benefit mentioned earlier, Redux brings majorly

three collateral advantages:

	 1)	 Diffing algorithm efficiency: With Redux, a

change can always be sent directly to the specific

component, so a diffing only on the subtree is

required.

	 2)	 Unidirectional data change flow: This makes the

state changes more reasonable and traceable,

especially in the setting where a slice of a state

(number of likes) could be changed by multiple

sources (network fetch from the server and user

interaction).

Player

…

onClick(newState) {
callback(newState)

}

Figure 6-4.  Using Redux to propagate click events

Chapter 6 Advanced Topics

319

	 3)	 It adopts a semantic called action that aggregates

by nature the meaningless, sometimes

interdetermined, setters of individual properties

with meaningful, easier-to-manage logic units.

To summarize:

Redux is an event system hooked up with global UI state
updates.

Redux introduces basic concepts such as store, reducer, dispatcher,

action, and subscriber:

	 1)	 The global states are managed in a store which is

associated with a reducer.

	 2)	 We use a dispatcher to send actions to the reducer

modifying the states in the store.

	 3)	 Actions contain all the information (payload) to

carry out the change.

Redux follows the principle of immutability, which means, instead of

modifying the content of the global states, we need to always create new

instances of the changed state and set the modified version of the state

back to the store (much like copy on write, aye ☺). For instance, if we have

a nested state of three layers, and the field in the lowest layer got changed,

then we need to create new instances top down along the chain and

shallow copy the rest. This is how the components listening to the specific

state change got updated. 🏛 It’s better to keep the Redux state flatten and

make the state directly usable by the UI as much as possible.

Chapter 6 Advanced Topics

320

Note  Redux is a very powerful toolkit for managing global states.
Nonetheless, the local state still has its seat on the table. This is
true for UI- and animation-related states that are specific to a
single component. 🏛 So it is suggested to manage in Redux only
states that are changed/listened to by multiple entities, basically
global states.

💣 One misuse of Redux is to copy a business model or service

response directly as a store. In its essence, Redux stores define the view

model, so using a business model is not optimal as they are separate

concerns. More specifically, it could cause complex calculations during

rendering. Simply put, it is better to be simple and direct for UI logic, so

it is better to push the convolution out to the parsing and deserialization

process or a dedicated adapter layer.

Note  That said, the preceding claim is not true if the client-to-
service protocol is defined in a way that the view model is fully
respected, which means the view model is returned directly by
the service in an end-to-end manner, and the abstraction of the
view model happens on the server side. GraphQL could be a good
technical candidate to achieve that.

💣 Another misuse is to define a single reducer and object for the

whole store or to bind a state directly on the root component. This causes

an issue of thunder herding where all trivial updates hit on the complete

VDOM tree that listens to the root object. 🏛 So it’s better to spread the

reducers and its associated objects out in accordance with different

concerns. Besides the methods of separating by UI and domain logic,

which are intuitive, here are some general principles:

Chapter 6 Advanced Topics

321

	 1)	 🏛 Separation of light and heavy

	 2)	 🏛 Separation of important and trivial

	 3)	 🏛 Separation of frequent and seldom

At the end of the day, (software) architecture is about how to
converge and to separate.

—Holmes

Next, let’s see how to use Redux in action.

6.2.1  �Case Study, Like
This time, we are going to implement one of the most important features in

a social network. To focus on the client side, we are not going to send any

requests to the network and change the service state. First things first, here

are the requirements:

	 1)	 When a feed is liked, the like number should be

increased with one.

	 2)	 When a feed is liked by the user, the style of the like

button should be changed to fill.

	 3)	 When a feed is liked, it cannot be liked again and the

button will be disabled.

Before everything, we need to install Redux:

npm install redux

npm install react-redux

Chapter 6 Advanced Topics

322

6.2.1.1  �Reduxfy Feeds

We need to Reduxfy Feeds-related states by creating the three mentioned

elements, firstly, the store and reducer (Listing 6-1).

Listing 6-1.  Store and reducer

import { createStore, combineReducers } from 'redux';

const INITIAL_STATE = {

 feeds: [], // ---> 1)

};

const feedsReducer = (state = INITIAL_STATE, action) => {

 let newState = state;

 switch (action.type) { // ------------------------------> 2a)

 case 'UPDATE_FEEDS': // ------------------------------> 2a)

 if (!action?.payload?.feeds) {

 console.error(

 'action?.payload?.feeds is null in [UPDATE_FEEDS]'

);

 return state;

 }

 newState = { // -------------------------------------> 3)

 ...state,

 feeds: action?.payload?.feeds // -----------------> 2b)

 };

 break;

 case 'LIKE':

...

 default:

 break;

 }

Chapter 6 Advanced Topics

323

 return newState;

};

export default createStore(combineReducers({

 moment: feedsReducer // ---------------------------------> 1)

}));

	 1)	 Define the reducer (feedsReducer) together with its

root object (moment) in the store.

	 2)	 A reducer could encompass multiple actions. Each

action modifies the object in the store in its own way.

In the Redux paradigm, an action should include

two important aspects, the type and the payload.

The first determines its route in the logic branches;

the second contains the information to carrying out

the change.

	 3)	 In the Redux paradigm, we should always create

new instances for the store objects rather than

modifying it directly.

Next, we define actions that update the store, and we connect the

actions with the dispatch in the form of props. Again, we only implement

list updating and wait for the next section (Section 6.2.1.2) to implement

the like. The following changes are made on Moment to make it listen to

Redux (Listing 6-2).

Listing 6-2.  Actions and dispatch

const mapDispatchToProps = dispatch => (

 bindActionCreators({

 updateFeeds: (feeds) => { // --------------------------> 1)

 return {

 type: 'UPDATE_FEEDS',

Chapter 6 Advanced Topics

324

 payload: { feeds }

 }},

 }, dispatch)

);

	 1)	 Use inline closure to implement the action. If the

actions will be reused by other components, they

could be extracted into a dedicated file or folder for

action creators.

Note  💣 One caveat of using an action is not to make a side effect
in it. In general principle, actions are supposed to be pure.

This dispatch could be used within loadData() of the same

component as shown in Listing 6-3.

Listing 6-3.  Use dispatch

async loadData() {

...

--this.setState({data: feedsModel});

++this.props.updateFeeds(feedsModel);

...

}

Lastly, we connect the dispatch and the store with the props of Moment

and make it a subscriber (Listing 6-4).

Listing 6-4.  Connect subscriber

const mapStateToProps = (state) => {

 const { moment } = state

 return { feeds: moment?.feeds }

};

Chapter 6 Advanced Topics

325

const mapDispatchToProps = dispatch => (

...

);

export default withErrorBoundary(

 connect(mapStateToProps, mapDispatchToProps)

 (Moment), ErrorPage, undefined

);

6.2.1.2  �Implement Like

Let’s look at how the logic branch in the reducer for the like action looks

like (Listing 6-5).

Listing 6-5.  Reducer for like

const feedsReducer = (state = INITIAL_STATE, action) => {

 let newState = state;

 switch (action.type) {

 case 'UPDATE_FEEDS':

...

 case 'LIKE':

 if (action?.payload?.feedIndex === undefined ||

 action?.payload?.feedIndex === null ||

 action?.payload?.feedIndex < 0 ||

 action?.payload?.feedIndex >= state.feeds.length

) {

 �console.error('action?.payload?.feedIndex is not valid

in [LIKE]:' + action?.payload?.feedIndex);

 return state;

 }

 newState = { // -------------------------------------> 1)

 ...state,

Chapter 6 Advanced Topics

326

 feeds: state.feeds.map((feed, index) => { // ------> 1)

 if (index === action.payload.feedIndex) {

 feed.meta.numOfLikes += 1; // -----------------> 2)

 feed.meta.liked = true; // --------------------> 2)

 feed.meta = Object.assign({}, feed.meta); // --> 1)

 return Object.assign({}, feed); // ------------> 1)

 } else {

 return feed;

 }

 })

 };

 default:

 break;

 }

 return newState;

};

	 1)	 As discussed in the beginning of Section 6.2, Redux

follows the principle of immutability. Hence, we

create new instances for each layer that contains the

change. 💣 Without this step, the rendering will not

be triggered at all.

	 2)	 Modify the relevant fields to be properly used

by the UI.

Next, we implement the like with all the preparation of Redux.

More specifically, we are going to connect dispatch to the HOC

withMetaAndControls that contains the like button. Since we have bound

the subscriber to Moment that manages the feed list, the change carried out

in the reducer will be propagated down naturally to each Feed entry. Thus,

we don’t need to bind any other subscriber again.

Chapter 6 Advanced Topics

327

Listing 6-6 gives an enhanced version of withMetaAndControls.

Listing 6-6.  Action and dispatcher for like

export default function withMetaAndControls(Feed) {

 class ElemComponent extends React.Component {

 render() {

 return (

 <View style={[

 {...this.props.style}, styles.commonPadding

]}>

 <View style={styles.metaContainer}>

 <LoomingImage

 style={styles.avatar}

 source={{uri: this.props.item.meta.avatarUri}}

 />

 <View style={styles.infoContainer}>

 <Text style={styles.userName}>

 {this.props.item.meta.name}

 </Text>

 <Text style={styles.date}>

 {this.props.item.meta.date}

 </Text>

 </View>

 </View>

 <Feed {...this.props} ref={this.props.innerRef}/>

 <View style={styles.controlContainer}>

 <TouchableOpacity // --------------------------> 3)

 disabled={this.props.item.meta.liked} // ----> 5)

 style={{flex: 1}}

Chapter 6 Advanced Topics

328

 onPress={ // --------------------------------> 3)

 �this.props.like.bind(this, this.props.feedIndex)

 }

 >

 <NumberedWidget

 type={

 this.props.item.meta.liked ? // ---------> 4)

 widgetTypes.LIKED :

 widgetTypes.LIKE

 }

 number={this.props.item.meta.numOfLikes}

 />

 </TouchableOpacity>

 <NumberedWidget

 style={{flex: 1}}

 type={widgetTypes.COMMENT}

 number={this.props.item.meta.numOfComments}

 />

 <NumberedWidget

 style={{flex: 1.5}}

 type={widgetTypes.SHARE}

 number={this.props.item.meta.numOfShares}

 />

 <Widget type={widgetTypes.MORE} />

 </View>

 </View>

)

 }

 }

Chapter 6 Advanced Topics

329

 const mapDispatchToProps = dispatch => (// -------------> 1)

 bindActionCreators({

 like: (feedIndex) => {

 return {

 type: 'LIKE',

 payload: { feedIndex }

 }},

 }, dispatch)

);

 const ConnectedElemComponent = connect(// --------------> 2)

null, mapDispatchToProps)(ElemComponent

);

 return React.forwardRef((props, ref) =>

<ConnectedElemComponent

 innerRef={ref} {...props}

 />);

}

	 1)	 Establish the dispatch with an inline action as in

Section 6.2.1.1.

	 2)	 Connect the dispatch with the HOC ElemComponent

in production.

	 3)	 Wrap the like button with a TouchableOpacity

and attach the newly created dispatch with it. As

mentioned, the changes in steps 4 and 5 and the like

count will occur naturally after the execution of the

reducer.

	 4)	 Change the button style according to the liked state.

	 5)	 Disable the button when liked.

Chapter 6 Advanced Topics

330

6.3  �Long List
Let’s be clear, a long list is not an issue for React Native, not anymore. We

know that the official component for long lists is FlatList which is the

equivalent of TableView (iOS) and recyclerview (Android). As described

in Section 2.3, the basic idea is to always render an area (window) larger

than the viewport, while significantly smaller than the whole list. This

gives an illusion that the complete list has been completely rendered while

scrolling at a minimal cost in terms of the memory footprint.

Performance wise, it is sufficient to just go with the default

configuration in most cases. If not, FlatList exposes some parameters

which can be further fine-tuned to achieve a better perceived

performance. The official document has done a great job; here, we

summarize those optimization points and categorize them into basic and

advanced ones.

Note I n the case where FlatList eventually cannot meet the
performance bar, we have third parties like RecyclerListView in our
hands, which are designed to further increase the performance
potential.

Let’s start from the basic optimization points that can be applied

directly:

	 1)	 As mentioned in Section 6.1, adding a key to list

entries can reduce the overhead of the diffing

algorithm.

	 2)	 Use shouldComponentUpdate or a pure component

(Section 6.1) to avoid rerendering of the

complete list.

Chapter 6 Advanced Topics

331

	 3)	 Use getItemLayout to precalculate the item height

so the list doesn’t need to carry out the calculation.

	 4)	 Use an image cache such as react-native-fast-image.

Then here are the advanced ones which require some fine-tuning of

the FlatList rendering behaviors:

	 1)	 initialNumToRender defines the number of

initial items to be rendered. Those items are never

dismounted throughout the FlatList life cycle.

	 2)	 windowSize defines the window area in which items

are required to be rendered.

	 3)	 maxToRenderPerBatch and

updateCellsBatchingPeriod: These two

parameters are used to control the rendering batch

volume and frequency. Small batch and longer

batching period could give better TTI, while large

batch and lower batching period could avoid a

blank area. So it’s a trade-off on a 2 x 2 matrix.

6.3.1  �Case Study, Apply Basic Heuristics
We will apply basic optimization to the list entries: (1) adding keys and (2)

applying shouldComponentUpdate.

Firstly, let’s add keys to the list entries. Here, we can simply use

the feed ID as the key by using the built-in keyExtractor props of the

FlatList (Listing 6-7).

Chapter 6 Advanced Topics

332

Listing 6-7.  Add a key to the FlatList item

<FlatList

...

 keyExtractor={(item) => item.feed.id}

...

/>

This removes the following warning message:

ManyFaces[19949:1694125] [javascript] Warning: Each child in a

list should have a unique "key" prop.

Check the render method of `VirtualizedList`. See https://

fb.me/react-warning-keys for more information.

Next, we look at the second optimization: shouldComponentUpdate

and pure component. More specifically, we are going to implement

shouldComponentUpdate to all Feeds components, to avoid unnecessary

run passes of the diffing algorithm.

Note A pure component cannot be applied here in that the Feeds
are all encapsulated with HOC which introduces prop changes that
are not controllable.

We know that all Feeds are listening to one critical prop which is

item. So shouldComponentUpdate could compare only the item prop

to determine whether there is an actual update request for the Feed.

withMetaAndControls provides a single point of change since all Feeds are

encapsulated using the HOC. Let’s tune up the HOC (Listing 6-8).

Chapter 6 Advanced Topics

333

Listing 6-8.  Apply withMetaAndControls to the HOC

export default function withMetaAndControls(Feed) {

 class ElemComponent extends React.Component {

 shouldComponentUpdate(nextProps, nextState) {

 if (nextProps.item === this.props.item) { // --------> 1)

 return false;

 }

 return true; // -------------------------------------> 1)

 }

 render() {

 return (

...

);

 }

 like = () => {

 this.props.like(this.props.feedIndex);

 }

...

 }

}

	 1)	 Update the Feeds only when the item passed in got

changed. This gives performance gain. For example,

when the user likes a Feed, only the render() of the

component that got liked will be invoked. In an

otherwise situation, the render() of all components

got called.

Chapter 6 Advanced Topics

334

6.4  �0 Crash, Design Exception Flow
One of the vital differences between an amateur and a
professional is a systematic way of fallback.

—Holmes

Problem-solving is one of the most important qualities of a good

developer. It takes skill, intuition, and sometimes luck to pinpoint and

resolve an elusive bug. This is sometimes hard for even ACE programmers.

An exception flow is vital in system design. One that helps discover a

bug early and treat it early will definitely make your life easier even if you

are one of those ACE programmers. Unfortunately, the exception flow is

often out of focus. I have heard a few times the phrase “fail fast” and have

seen the situation where exceptions are thrown to no one knows where.

There are many ways to understand the phrase “fail fast.” In my opinion,

“fail fast” reflects the principle of reacting to bugs at the earliest possible

chance. For example, if we can unveil a potential exception in compiling

time, don’t leave it at runtime; if we can discover an exception at the arrival

of response data, don’t leave it until it causes problems at the UI layer. The

bottom line is we don’t let our app crash in front of the users.

In this section, we are going to reexamine the low-end exception

handling techniques we have learned so far and to derive general

principles out of them.

The major difference between the exception flow and the feature flow

is that the requirements of the exception flow could come from developers.

Since developers know better than anyone else what exact error could

happen, it is the developers’ responsibility to define or to propose the

exception experience. More specifically, we need to know what we want

and do not want:

Chapter 6 Advanced Topics

335

	 1)	 We want all exceptions to be properly directed to the

intended location. We don’t want exceptions being

thrown to an arbitrary upper layer of the call stack,

or being uncaught at all and crashes the app.

	 2)	 We want recoverable exceptions to be treated

silently, which has to be transparent to the user.

	 3)	 We want unrecoverable exceptions to be defined

with explicit behaviors and UI presentation, which

should find the best way to express apology to

the user.

	 4)	 We want to log all logic flows that are out of

expectation. This includes both recoverable

and unrecoverable exceptions. Even though the

exception is minor and is not even noticeable (like

Covid-19 no symptoms), it should be logged. The

logging, in turn, serves as another bug reporting

source besides bug bashing.

	 5)	 We want to know what exactly happens when a

crash occurs in the field, so we can fix it efficiently

and report it precisely to the upper chain.

With the requirements in mind, let’s take a closer look at types of

exceptions and think about ways to treat them separately. Exceptions can

be categorized in four different ways.

In terms of severity, they can be divided into recoverable and

unrecoverable exceptions. The difference is that the first one does not

block the critical path, while the latter does. Take an example from

Manyface; an exception thrown by one of the Feed components is

recoverable by simply hiding the Feed, while an exception thrown by the

Moment is not as it potentially leads to a complete blank screen.

Chapter 6 Advanced Topics

336

From another dimension, it can be categorized into controlled

exceptions and uncontrolled exceptions. Controlled exceptions are

those thrown on purpose or protective early returns with an error

indicator value. Uncontrolled exceptions are those completely out of our

expectation, basically a bug that is too vicious and noticeable and, hence,

is thrown out by the runtime.

We can also categorize exceptions into external exceptions and

internal exceptions. For instance, a network error falls into external

exceptions, and a logic fault falls into internal exceptions.

Lastly, there are global and local exceptions. Global exceptions can be

only handled with a global handler; examples are a BAD_ACCESS and a

segmentation fault. Local exceptions are those that can be captured in a

local catch block or error boundary.

Here, we give the principles to handle each exception category:

	 1)	 🚀 For unrecoverable exceptions, we need to throw

them all the way to the UI and give feedbacks to the

user, such as displaying a “something went wrong”

page, popping up a toast, or resetting the state and

jumping back to login.

	 2)	 🚀 For recoverable exceptions, we apply a technique

called “silent log.” Basically, we log it so we know,

while we make the UX flow continuous so the users

don’t know.

	 3)	 🚀 For controllable exceptions, we log them with all

information we need.

	 4)	 🚀 We minimize uncontrollable exceptions by

transferring them to controllable ones in best efforts.

This is achieved again by meticulously logging.

Chapter 6 Advanced Topics

337

	 5)	 🚀 External exceptions are not completely within

the control of client logic, so “retry” logic could be

involved to mitigate it, while we normally don’t retry

on internal exceptions.

	 6)	 🚀 Global exceptions are not recoverable by nature.

Hence, it is the last resort when all local exception

handlers fail.

Note  🏛 Intentional, controlled, and meticulous logging is generally
better than an uncontrolled crash dump. When an uncontrolled crash
dump occurs, the root cause might have been obscured. For example,
a BAD_ACCESS in sendMsg in Cocoa could be caused by a released
object which is very hard to be discovered with the information in the
crash report.

JavaScript has an inherent advantage. That is, unlike most other

programming languages like C++ and Objective-C, we can make all

exceptions local in JavaScript. That means all exceptions, including null

pointers, can be caught in the form of an exception using a catch block or

error boundary. Let’s summarize what we have done to make Manyface

maintain the minimal bar of crash free:

	 1)	 🚀 Always apply a top-level error boundary which

catches an exception from within.

	 2)	 🚀 Always apply a top-level catch block of the entry

points of the method calls. And potentially redirect

those exceptions to the error boundary.

Chapter 6 Advanced Topics

338

6.4.1  �Robustness Built in Software Architecture
To properly design the exception handling mechanism, we need to define

the bubble (think about the bubble in the context of Covid-19). More

specifically, we need to define two points that are critical. (1) The entry
points are basically the boundary of a bubble, from where the potential

risky raw data comes in hence should be transferred to data that is

absolutely legit and expectable. (2) The crash points represent the high

risky parts within the bubble that should be taken care of in particular.

Programmatically, those are the lines of code that could cause a crash.

6.4.1.1  �Entry Points

This is where external data is received and processed. In React Native,

we have two such places, that is, (1) when the data comes from the server

side and (2) when the data comes from the native layer to the JavaScript

layer. Technically, when interdomain communication is involved, we need

to deserialize a general, untyped JSON into a typed model object. At this

point, we need to carry out null checks, to gracefully fall back, and to throw

exceptions when necessary.

In this process, it’s important to be explicit about which is optional,

which is compulsory, and which is critical. The first two types are

negotiated with the server side, while the last one is decided solely by the

client side. Let’s look at one way to treat them respectively:

	 1)	 Null in optional fields: This is a logic flow rather than

an exception flow since no protocol is broken. Hence,

we can simply give the field a default value as fallback.

	 2)	 Null in compulsory fields: This time the protocol is

broken. When identifying such a case, we carry out

the same fallback by setting it with a default value and

log it so we will know some transactions are broken,

but we recover it secretly to not bother the user.

Chapter 6 Advanced Topics

339

	 3)	 Null in critical fields: This time, not only the

protocol has been broken, but also the missing field

belongs to the critical path. And the UX cannot

continue. In such cases, we throw the exception the

first chance we have. This is the only case where we

throw an exception which effectively interrupts the

whole model processing and should be handled by

the UI layer (a component).

Note  95% of crashes come from inappropriately treating illegal
responses from the server, an unofficial, empirical value.

6.4.1.2  �Crash Points

Let’s be more concrete; we should be careful of null pointer exceptions

and out of boundary exceptions, by looking at . and [].

Note O ut of bound is not an instant exception in JavaScript.
However, it should be treated explicitly in my opinion. Here, the
principle of “react at the earliest chance” comes into play.

The preceding two exceptions and any other uncommon exceptions

could occur in three places, within (1) a component, (2) a global function,

and (3) a native layer. We have seen how to use an error boundary to

deal with exceptions in a component in Section 2.4, how to channel

asynchronous exceptions to an error boundary in Section 5.4, and how

to channel native exceptions to an error boundary in Section 4.4. And we

call this approach a wall-in. When handling exceptions, we should also be

clear about recoverable and unrecoverable exceptions. And we only throw

on critical paths for unrecoverable ones where the UX cannot continue;

Chapter 6 Advanced Topics

340

other exceptions occurring in non-essential logic passes are treated as

recoverable exceptions and should be swallowed by their respective

module. Again, logging is always desired, especially when something

happens in production.

Note A gain, the last thing we want to see is that an exception of a
trivial supplementary subsystem jeopardizes the core, much like a
glitch in the stereo system crashes a car.

The only place that hasn’t been covered is the global function. A good

practice is to not put any critical path in global functions. This is because

it is too involved to communicate exceptions between a global function

and a component which should in turn reflect the exception on the UI

correspondingly. By applying only optional paths (e.g., update flow), all

exceptions should be swallowed within as discussed earlier.

6.4.2  �Last Resort, Global Error Handler
At last, exceptions could still occur even with the fully defensive code

in place. Those exceptions should be treated as failures and can be only

covered by a global error handler. There are majorly three ways of carrying

out global error handling:

	 1)	 An error boundary that wraps around the root

component of the app, which displays “something

went wrong.”

	 2)	 Install a RCTExceptionManager, and bind a delegate

with it.

	 3)	 react-native-exception-handler.

Chapter 6 Advanced Topics

341

Exceptions hit on these handlers are uncontrolled and unrecoverable

exceptions. Normally, they are uncaught exceptions in the JavaScript

layer or fatal exceptions in the native layer. Global handlers can be used

to carry out tasks such as crash reporting which could provide another

invaluable information source directly from the field. Nonetheless, it’s

much more desired to hunt down those issues early in the development

and testing phases.

Much like handrails on a cliff, it’s better not to rely on them.

6.4.3  �Wrap Up
A disaster is inevitable. In fact, experiencing a disaster, better at scale, is one

key ingredient to develop an ACE programmer. This is the next level from a

feature implementer (level 1) and a problem solver (level 2). Being exposed

to large scale system where disaster is inevitable, these programmers display

two key qualities in their everyday development activities:

	 1)	 The willingness and capability to deep dive into

problems that occur in the production phase

	 2)	 The willingness and capacity to design the system

up front to be resilient and to provide as much

information as possible in disaster to facilitate 1

Good role models are kernel programmers. Without the modern tools

discussed in this book, they can design and develop an exception flow

that defends hypercomplicated systems mostly using pure goto. So, in

the opinion of the author, it might be more important to develop such a

mindset than the excellence in tooling. Anyway, it is in our best interests to

approach a 0 crash app.

Lastly, please bear in mind that exception experience is an essential

part of user experience. We need to work closely with the product team to

work out a good plan.

Chapter 6 Advanced Topics

342

6.5  �Native Modules Inside Out
Afterall, a bridge is all we need to cross platforms.

—Holmes

In this section, we will guide you through what happens next after the

app initialization. We will first examine the Objective-C layer and the

JavaScript layer of React Native. Then we will deep dive into the C++

layer. In general, it helps you understand how pieces of React Native come

together and work as a solid unit.

The purpose of native modules is to export native functionalities.

Technically, functions written in native can be injected to the JavaScript

runtime and be used by JavaScript code directly. This is enabled by

engines such as JavaScriptCore. The exporting of native methods is built

on top of this capability with some adjustment.

Rather than concrete method invocation, calls to native modules are

translated into messages that are sent through a bridge. ❄ In the past, the

parameters passed through are required to be serialized and deserialized

when crossing the bridge, which imposes performance penalties. This was

a toll for cross-language communication. 🚀 The JSI-based optimization

removed the need for this serialization and deserialization.

Let’s have a look at the big picture (Figure 6-5). Here, we need to pay

attention to the three different dimensions for the same flow: (1) the

dimension of call hierarchy, which is the main flow of the diagram; (2) the

dimension of the thread model and lock, which is marked with rectangles

and a lock symbol; and (3) the dimension of the storage of native module

metadata, which is marked with a soft disk.

Chapter 6 Advanced Topics

343

RCT_EXTERN_MODULE

RCTRegisterModule

__attribute__((constructor)) static void RCT_CONCAT(initialize_, objc_name)()

@RCTBridge

@RCTBridgeModule

setUp
@RCTBridge

application(_:didFinishLaunchingWithOptions:) @AppDelegate

initWithDelegate:bundleURL:moduleProvider:launchOptions:

Phase 0

RCTBridge
Delegate

sourceURLForBridge
start

@RCTCxxBridge

registerExtraModules
extraModulesForBridge

RCTGetModuleClasses

JSCExecutorFactory()

loadSource

prepareBridge

Phase 1

_initializeModules

executeSourceCode

_prepareModulesWithDispatchGroup

main thread/async

JS thread

Background thread

RCTModuleClasses

_moduleDataByID
_moduleDataByName
_moduleClassesByID

JS =>

_moduleDataByID
_moduleDataByName
_moduleClassesByID

Figure 6-5.  React Native bootstrap (phase 0-1)

The initialization flow is divided roughly into three phases, prior

bootstrap, bootstrap, and initialization on the JavaScript layer. They

are discussed in the respective sections. Note that we have a dedicated

section to explain the thread and locking mechanism, so please don’t feel

frustrated when something does not look clear in the beginning.

Now, let’s start the journey.

Chapter 6 Advanced Topics

344

6.5.1  �Phase 0, Prior Bootstrap
The initialization of a native module starts from the macro RCT_EXTERN_

MODULE which in turn applies two other macros RCT_EXTERN_REMAP_MODULE

and RCT_EXPORT_MODULE_NO_LOAD (Listing 6-9). These macros eventually

will populate the module class within RCTModuleClasses in a very early

stage, which will be used to instantiate the native module instances in the

next step.

Listing 6-9.  Phase 0-0, behind RCT_EXTERN_MODULE

#define RCT_EXTERN_MODULE(objc_name, objc_supername)

RCT_EXTERN_REMAP_MODULE(, objc_name, objc_supername)

#define RCT_EXTERN_REMAP_MODULE(// -----------------------> 1)

 js_name, objc_name, objc_supername) \

 objc_name: \

 objc_supername @ \

 end @interface objc_name(RCTExternModule)<RCTBridgeModule> \

 @end \

 @implementation objc_name (RCTExternModule) \

 RCT_EXPORT_MODULE_NO_LOAD(js_name, objc_name) // --------> 2)

#define RCT_EXPORT_MODULE_NO_LOAD(js_name, objc_name)\

 RCT_EXTERN void RCTRegisterModule(Class); \

 +(NSString *)moduleName \ // -> 3)

 { \

 return @ #js_name; \

 } \

 __attribute__((constructor))

Chapter 6 Advanced Topics

345

 static void RCT_CONCAT(initialize_,

 objc_name)() \ // -> 4)

 { \

 RCTRegisterModule([objc_name class]); \ // -> 5)

 }

	 1)	 Define the @interface using the module name

passed in.

	 2)	 Define its @implementation straight after.

	 3)	 Implement moduleName. This is the exact

equivalent of getName() in Android native module

implementation.

	 4)	 Use __attribute__((constructor)) to make the

module registration before everything else.

	 5)	 Call RCTRegisterModule to register the module.

Note  RCT_EXTERN_MODULE is primarily used by Swift-based
native modules where the load() method is not allowed. For vanilla
Objective-C, we can use the simpler version RCT_EXPORT_MODULE
to achieve the same.

At the end of this phase, let’s look at how the RCTRegisterModule is

implemented (Listing 6-10).

Listing 6-10.  Phase 0-1, RCTRegisterModule@RCTBridge

void RCTRegisterModule(Class moduleClass)

{

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

Chapter 6 Advanced Topics

346

 RCTModuleClasses = [NSMutableArray new]; // ------> 1)

 RCTModuleClassesSyncQueue = dispatch_queue_create(

 "com.facebook.react.ModuleClassesSyncQueue",

 DISPATCH_QUEUE_CONCURRENT

);

 });

 RCTAssert(

 �[moduleClass conformsToProtocol:@protocol

(RCTBridgeModule)],

 �@"%@ does not conform to the RCTBridgeModule

protocol",

 moduleClass);

 // Register module

 dispatch_barrier_async(RCTModuleClassesSyncQueue, ^{

 [RCTModuleClasses addObject:moduleClass]; // -----> 2)

 });

}

	 1)	 Instantiate the singleton entities, RCTModuleClasses

and RCTModuleClassesSyncQueue.

	 2)	 Add the class object to RCTModuleClasses.

At the end of this phase, the native modules are in the form of their

respective classes and are stored in RCTModuleClasses.

6.5.2  �Phase 1, Bootstrap
Next, let’s look at the bootstrap of a React Native app, more specifically,

the initialization of the bridge.

Chapter 6 Advanced Topics

347

RCTBridge offers two approaches for initialization:

	 1)	 Direct initialization: This way, the initialization is

facilitated with initWithBundleURL:moduleProv

ider:launchOptions: which accepts the bundle

URL and extra modules (Section 4.3.7) directly as

parameters.

	 2)	 Delegate initialization: This way, the initialization

is facilitated with initWithDelegate:launchOptio

ns:, where the bundle URL and extra modules are

provided by a delegate.

We are going to use the second approach which is more flexible and is

more conforming to the general design pattern on iOS (Listing 6-11).

Note  When both bundle URL and delegate are provided using the
designated initializer (initWithDelegate:bundleURL:modul
eProvider: launchOptions:), the information provided by the
latter (i.e., delegate) will prevail.

Listing 6-11.  Phase 1-0, app bootstrap logic in AppDelegate

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate,

RCTBridgeDelegate {

 var window: UIWindow?

 var bridge: RCTBridge!

 func application(

 _ application: UIApplication,

 didFinishLaunchingWithOptions

Chapter 6 Advanced Topics

348

 launchOptions: [UIApplication.LaunchOptionsKey: Any]?

) -> Bool { // --> 1)

 self.bridge = RCTBridge(// ---------------------------> 2)

 delegate: self, launchOptions: launchOptions

)

 let rootView = RCTRootView(// ------------------------> 3)

 bridge: self.bridge,

 moduleName: "ManyFaces",

 initialProperties: nil

)

 self.window = UIWindow(frame: UIScreen.main.bounds)

 let rootViewController = UIViewController()

 rootViewController.view = rootView // -----------------> 4)

 self.window!.rootViewController =

rootViewController; // > 4)

 self.window!.makeKeyAndVisible() // -------------------> 4)

 return true

 }

 func sourceURL(for bridge: RCTBridge!) -> URL! { // -----> 5)

#if DEBUG

 return RCTBundleURLProvider.sharedSettings().

 jsBundleURL(forBundleRoot:"index", fallbackResource: nil)

#else

 return Bundle.main.url(

 forResource:"main", withExtension:"jsbundle"

)

#endif

 }

}

Chapter 6 Advanced Topics

349

	 1)	 The initialization all happens within the application:

didFinishLaunchingWithOptions: callback.

	 2)	 Use the second approach to initialize the bridge.

This is the critical line from where we can go deeper.

	 3)	 Use the bridge to initialize the root view.

	 4)	 Attach the root view to the window.rootView

Controller, and make it visible.

	 5)	 Override the sourceURL(for bridge: RCTBridge!)

to provide the bundle. More specifically, when it’s in

debug mode, use RCTBundleURLProvider to load

the bundle from the metro server; otherwise, read

the bundle file directly from the asset. Here, the

DEBUG macro is defined under Build Settings

➤ Swift Compiler ➤ Custom Flags ➤ Other

Swift Flags.

Then let’s examine what’s going on within RCTBridge (Listing 6-12).

Listing 6-12.  Phase 1-1, set up the RCTBridge

- (instancetype)initWithDelegate:(id<RCTBridgeDelegate>)

delegate

 bundleURL:(NSURL *)bundleURL

 �moduleProvider:(RCTBridgeModuleList

Provider)block

 �launchOptions:(NSDictionary *)

launchOptions

{

 if (self = [super init]) {

 _delegate = delegate; // ------------------------------> 1)

 _bundleURL = bundleURL;

Chapter 6 Advanced Topics

350

 _moduleProvider = block;

 _launchOptions = [launchOptions copy];

 [self setUp]; // --------------------------------------> 2)

 }

 return self;

}

...

- (void)setUp

{

... // perf log

 Class bridgeClass = self.bridgeClass;

 // �Only update bundleURL from delegate if delegate bundleURL

has changed

 NSURL *previousDelegateURL = _delegateBundleURL;

 _delegateBundleURL =

 [self.delegate sourceURLForBridge:self];// --------------> 3)

 if (_delegateBundleURL &&

 ![_delegateBundleURL isEqual:previousDelegateURL]

) {

 _bundleURL = _delegateBundleURL; // -------------------> 3)

 }

 // Sanitize the bundle URL

 �_bundleURL = [RCTConvert NSURL:_bundleURL.

absoluteString];//>3)

// ... for debug mode

Chapter 6 Advanced Topics

351

 self.batchedBridge = [[bridgeClass alloc] // ------------> 4)

 initWithParentBridge:self];

 [self.batchedBridge start]; // --------------------------> 5)

// ... perf

}

	 1)	 Set the delegate (an AppDelegate instance) in step 0

to the bridge.

	 2)	 Move on.

	 3)	 Call the delegate sourceURLForBridge implemented

in phase 0 to obtain the bundle URL.

	 4)	 Instantiate the RCTCxxBridge which is another layer

below RCTBridge that deals directly with the C++

layer. RCTCxxBridge is the layer we are going to stop

for this section.

	 5)	 Move on to RCTCxxBridge.

As mentioned, the RCTCxxBridge is the cutting point between

Objective-C and C++. In React Native, there are four major C++ entities:

Instance, JSIExecutor, JsToNativeBridge, and NativeToJsBridge.

Their names are very self-explained. JSIExecutor executes JavaScript

loaded in the form of bundle or string literals. The JsToNativeBridge

and NativeToJsBridge facilitate the two-way communication between

JavaScript and native layers. And Instance is their container that

provides the interfaces to the upper layer. The major task of the next

phase in RCTCxxBridge is to initialize Instance and the associated entities

(Listing 6-13).

Chapter 6 Advanced Topics

352

Listing 6-13.  Phase 1-2, start the RCTCxxBridge

- (void)start

{

... // profiling

 // Set up the JS thread early

 _jsThread = [[NSThread alloc] initWithTarget:[self class]

 selector:@selector(runRunLoop) object:nil]; // ----------> 1)

 _jsThread.name = RCTJSThreadName;

 _jsThread.qualityOfService =

 NSOperationQualityOfServiceUserInteractive;

#if RCT_DEBUG

 _jsThread.stackSize *= 2;

#endif

 [_jsThread start];

 dispatch_group_t prepareBridge = dispatch_group_create();

... // perf log

 [self registerExtraModules]; // -------------------------> 2)

 // Initialize all native modules that cannot be loaded lazily

 (void)[self _initializeModules:RCTGetModuleClasses()

 withDispatchGroup:prepareBridge lazilyDiscovered:NO]; // --> 3)

 [self registerExtraLazyModules]; // ---------------------> 4)

... // perf log

 // �This doesn't really do anything. The real work happens in

initializeBridge.

 _reactInstance.reset(new Instance); // ------------------> 5)

Chapter 6 Advanced Topics

353

 __weak RCTCxxBridge *weakSelf = self;

 // Prepare executor factory (shared_ptr for copy into block)

 std::shared_ptr<JSExecutorFactory> executorFactory;

 if (!self.executorClass) {

...

 if (!executorFactory) {

 executorFactory =

 std::make_shared<JSCExecutorFactory>(nullptr); // ---> 6)

 }

 } else {

...

 }

 // Dispatch the instance initialization as soon as the

initial module metadata has

 // been collected (see initModules)

 dispatch_group_enter(prepareBridge); // -----------------> 7)

 [self ensureOnJavaScriptThread:^{

 [weakSelf _initializeBridge:executorFactory]; // ------> 7)

 dispatch_group_leave(prepareBridge);

 }];

 // �Load the source asynchronously, then store it for later

execution.

 dispatch_group_enter(prepareBridge); // -----------------> 8)

 __block NSData *sourceCode;

 [self

 loadSource:^(NSError *error, RCTSource *source) { // --> 8)

 if (error) {

 [weakSelf handleError:error];

 }

Chapter 6 Advanced Topics

354

 sourceCode = source.data;

 dispatch_group_leave(prepareBridge);

 }

... // for debug

 // �Wait for both the modules and source code to have

finished loading

 dispatch_group_notify(prepareBridge, // -----------------> 9)

 dispatch_get_global_queue(QOS_CLASS_USER_INTERACTIVE, 0),

 ^{

 RCTCxxBridge *strongSelf = weakSelf;

 if (sourceCode && strongSelf.loading) {

 [strongSelf executeSourceCode:sourceCode sync:NO]; // –> 9)

 }

 });

...

}

	 1)	 Init the JavaScript thread. All JavaScript code will

be executed on this thread. Inside runRunLoop,

a technique using iOS run loop is used to start a

persistent thread.

	 2)	 Use the native module instances provided by

the delegate to initialize their corresponding

RCTModuleData which stores all metadata of a native
module (Section 4.3.2). This step is effective if the

delegate implements the extraModulesForBridge

in phase 0. More specifically, this step could be used

for dependency injection on iOS (Section 4.3.7).

Chapter 6 Advanced Topics

355

	 3)	 Use native module classes stored in

RCTModuleClasses to initialize their corresponding

RCTModuleData (Section 4.3.2). RCTModuleClasses

is populated with the RCT_EXTERN_MODULE that

we used very often to export native modules in

previous sections. We are going to examine this step

very soon in Section 4.3.2.1. This step leads to the

next critical phase (1-3).

	 4)	 This method is not used for production.

	 5)	 Instantiate Instance.

	 6)	 Initialize JSCExecutorFactory which is the provider

of JSIExecutor.

	 7)	 Initialize the four entities. Note that this

step is carried out asynchronously on the

JavaScript thread.

	 8)	 Load the JavaScript bundle.

	 9)	 Execute the JavaScript bundle loaded after steps 3, 7,

and 8 are completed. Note that this is guaranteed with

the prepareBridge.

Next, let’s examine the initializeModules in step 3. This is actually

the most relevant step to this chapter as it is where all native modules

(and view managers) are instantiated. Again, all unrelated code is

removed for clarity (Listing 6-14).

Listing 6-14.  Phase 1-3, initialize modules

- (NSArray<RCTModuleData *> *)

_initializeModules:(NSArray<Class> *)modules

 withDispatchGroup:(dispatch_group_t)dispatchGroup

 lazilyDiscovered:(BOOL)lazilyDiscovered

Chapter 6 Advanced Topics

356

{

 // Set up moduleData for automatically-exported modules

 NSArray<RCTModuleData *> *moduleDataById =

 [self _registerModulesForClasses:modules

 lazilyDiscovered:lazilyDiscovered]; // --> 1)

 if (lazilyDiscovered) {

// --> 2)

 } else {

 for (RCTModuleData *moduleData in _moduleDataByID) {

 if (moduleData.hasInstance &&

 �(!moduleData.requiresMainQueueSetup || RCTIsMainQueue())

) {

 (void)[moduleData instance]; // -------------------> 3)

 }

 }

...

 _moduleSetupComplete = YES;

 [self _prepareModulesWithDispatchGroup:dispatchGroup]; //> 4)

 }

// ... profiling

 return moduleDataById;

}

	 1)	 Transform the raw classes of native modules to

RCTModuleData with _registerModulesForClasses.

This step is similar to that of registerExtraModules

(phase 1-2, step 2). The difference here is that native
modules are not instantiated in this step. We look at

the implementation of this method in Listing 6-15.

Chapter 6 Advanced Topics

357

	 2)	 lazilyDiscovered is set to no for ordinary

native modules that are not passed in with

registerAdditionalModuleClasses.

	 3)	 Initialize the native modules that require the main

queue setup and have been already instantiated,

that is, native module instances provided by

registerExtraModules are under this category

(phase 1-2, step 2).

	 4)	 Initialize and instantiate the native modules

that require the main queue setup and are

provided otherwise (using RCT_EXTERN_

MODULE macros). The implementation of _

prepareModulesWithDispatchGroup is shown in

Listing 6-16.

Let’s look at the _registerModulesForClasses (Listing 6-15).

Listing 6-15.  Phase 1-4, initialize modules (continue)

- (NSArray<RCTModuleData *> *)

 _registerModulesForClasses:(NSArray<Class> *)moduleClasses

 lazilyDiscovered:(BOOL)lazilyDiscovered

{

...

 NSArray *moduleClassesCopy = [moduleClasses copy];

 NSMutableArray<RCTModuleData *> *moduleDataByID =

 [NSMutableArray arrayWithCapacity:moduleClassesCopy.count];

 for (Class moduleClass in moduleClassesCopy) {

 if (RCTTurboModuleEnabled() &&

 [moduleClass conformsToProtocol:

 @protocol(RCTTurboModule)]

) {

Chapter 6 Advanced Topics

358

 continue;

 }

 NSString *moduleName =

 RCTBridgeModuleNameForClass(moduleClass);

// Check for module name collisions

...

 moduleData = [[RCTModuleData alloc]

 initWithModuleClass:moduleClass bridge:self]; // ------> 1)

 _moduleDataByName[moduleName] = moduleData; // --------> 2)

 [_moduleClassesByID addObject:moduleClass]; // --------> 2)

 [moduleDataByID addObject:moduleData]; // -------------> 2)

 }

 [_moduleDataByID addObjectsFromArray:moduleDataByID]; // --> 2)

...

 return moduleDataByID;

}

	 1)	 Instantiate the RCTModuleData.

	 2)	 Save it to the corresponding data structures.

Listing 6-16 gives a simplified version of the previously used

_prepareModulesWithDispatchGroup that is removed with all the

noncritical logic. As you can see, it is another iteration that invokes an

instance of RCTModuleData. Note that this is where the prepareBridge

dispatch queue group (prepared in phase 1-3, step 2) is applied.

Chapter 6 Advanced Topics

359

Listing 6-16.  Phase 1-5, initialize modules (continue)

- (void)_prepareModulesWithDispatchGroup:

 (dispatch_group_t)dispatchGroup

{

...

 BOOL initializeImmediately = NO;

 if (dispatchGroup == NULL) {

// ... condition not applied here

 }

// ... perf

 for (RCTModuleData *moduleData in _moduleDataByID) {

 if (moduleData.requiresMainQueueSetup) {

 dispatch_block_t block = ^{ // ----------------------> 2)

 if (self.valid &&

 ![moduleData.moduleClass

 isSubclassOfClass:[RCTCxxModule class]]

) {

// ...

 (void)[moduleData instance]; // -----------------> 1)

 [moduleData gatherConstants]; // ----------------> 1)

// ...

 }

 };

 if (initializeImmediately && RCTIsMainQueue()) {

// condition not applied here

 } else {

 if (dispatchGroup) {

 dispatch_group_async(// ---------------------> 2)

 dispatchGroup, dispatch_get_main_queue(), block

Chapter 6 Advanced Topics

360

);

 }

 }

 _modulesInitializedOnMainQueue++;

 }

 }

...

}

	 1)	 Initialize and instantiate the native modules.

	 2)	 Apply the initialization on the main queue

as indicated by requiresMainQueueSetup.

As mentioned, this operation is part of the

prepareBridge dispatch queue group.

At this point, the native modules are in the form of RCTModuleData

stored in _moduleDataByID. Among those, the native modules that require

the main queue setup are initialized and are instantiated up front. The

rest of the native modules are instantiated on the run in the next phases.

Before we move on to those phases, we look at requiresMainQueueSetup.

6.5.2.1  �requiresMainQueueSetup

requiresMainQueueSetup is a class method defined in RCTBridgeModule

that can be overridden by any native modules. When returning true, it

indicates that the native module requires the main queue setup, meaning

to be set up in the main queue. This is the explicit type of requiring the

main queue setup. And as we just saw, modules that require the main

queue setup are instantiated up front during bootstrap.

Chapter 6 Advanced Topics

361

There are also native modules that require the main queue setup

implicitly. More specifically, if a native module either has a custom init

method or overrides the constantsToExport, it is determined as requiring

the main queue setup. This implicitly is also highlighted during bootstrap

with the following warning message:

Module HelloWorldManager requires main queue setup since

it overrides `constantsToExport` but doesn't implement

`requiresMainQueueSetup`. In a future release React Native will

default to initializing all native modules on a background

thread unless explicitly opted-out of.

The actual code that reflects this logic is inside the setUp method of

RCTModuleData (Listing 6-17). Actually, the sole purpose of this method is

to determine whether the native module requires a main queue.

Listing 6-17.  Set up the RCTModuleData

- (void)setUp

{

// ... irrelevant logic

 _hasConstantsToExport =

 [_moduleClass instancesRespondToSelector:

 @selector(constantsToExport)

];

 const BOOL implementsRequireMainQueueSetup =

 [_moduleClass respondsToSelector:

 @selector(requiresMainQueueSetup)];

 if (implementsRequireMainQueueSetup) {

 _requiresMainQueueSetup =

 [_moduleClass requiresMainQueueSetup];

 } else {

Chapter 6 Advanced Topics

362

 static IMP objectInitMethod;

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

 objectInitMethod =

 [NSObject instanceMethodForSelector:@selector(init)];

 });

 const BOOL hasCustomInit = !_instance &&

 �[_moduleClass instanceMethodForSelector:@selector(init)]

!= objectInitMethod;

 _requiresMainQueueSetup =

 _hasConstantsToExport || hasCustomInit;

 if (_requiresMainQueueSetup) {

 const char *methodName = "";

 if (_hasConstantsToExport) {

 methodName = "constantsToExport";

 } else if (hasCustomInit) {

 methodName = "init";

 }

 RCTLogWarn(

 �@"Module %@ requires main queue setup since it overrides

`%s` but doesn't implement "

 �"`requiresMainQueueSetup`. In a future release React

Native will default to initializing all native modules "

 �"on a background thread unless explicitly opted-

out of.",

 _moduleClass,

 methodName);

 }

 }

}

Chapter 6 Advanced Topics

363

We know that RCTModuleData is initialized and instantiated in two

methods, _registerModulesForClasses and registerExtraModules in

RCTCxxBridge. And the setUp method is eventually called from there.

6.5.2.2  �Threads and Locks

One difficulty in understanding the flow (Figure 6-5) is the threading

model and locks. Some locks are nested down to the call stack and are

working on different phases, which obscure the actual mechanics.

The first lock we encounter is across phase 0 and phase 1,

where a dispatch barrier is applied on a dispatch queue,

RCTModuleClassesSyncQueue, when we add the native module classes to

RCTModuleClasses in RCTRegisterModule (Listing 6-18).

Listing 6-18.  Lock in phase 0

...

 dispatch_barrier_async(RCTModuleClassesSyncQueue, ^{

 [RCTModuleClasses addObject:moduleClass];

 });

...

This is to ensure that all the module classes have been stored successfully

before we read from RCTModuleClasses in phase 1 (Listing 6-19).

Listing 6-19.  Waiting for lock in phase 1

- (void)start

{

...

 (void)[self _initializeModules:RCTGetModuleClasses()

 withDispatchGroup:prepareBridge lazilyDiscovered:NO];

...

}

Chapter 6 Advanced Topics

364

Inside RCTGetModuleClasses(), dispatch_sync is used to wait for all

the dispatch barriers to complete (Listing 6-20).

Listing 6-20.  RCTGetModuleClasses

NSArray<Class> *RCTGetModuleClasses(void)

{

 __block NSArray<Class> *result;

 dispatch_sync(RCTModuleClassesSyncQueue, ^{

 result = [RCTModuleClasses copy];

 });

 return result;

}

The second lock is in phase 1 which is applied around a dispatch

group, prepareBridge. Firstly, this dispatch group is passed all the way

down to _prepareModulesWithDispatchGroup where blocks are created

for each native module and are shot to the main thread (Listing 6-21).

Listing 6-21.  Passed down to _prepareModulesWithDispatchGroup

- (void)_prepareModulesWithDispatchGroup:(dispatch_group_t)

dispatchGroup

{

...

 for (RCTModuleData *moduleData in _moduleDataByID) {

 if (moduleData.requiresMainQueueSetup) {

 dispatch_block_t block = ^{

...

 };

...

 if (dispatchGroup) {

 dispatch_group_async(

Chapter 6 Advanced Topics

365

 dispatchGroup, dispatch_get_main_queue(), block

);

 }

 _modulesInitializedOnMainQueue++;

 }

 }

...

}

Next, the dispatch group is used (1) to initialize the bridge on the

JavaScript thread as well as (2) to load the bundle (Listing 6-22).

Listing 6-22.  Init bridge and load the bundle

- (void)start

{

...

 dispatch_group_enter(prepareBridge); // -----------------> 1)

 [self ensureOnJavaScriptThread:^{

 [weakSelf _initializeBridge:executorFactory];

 dispatch_group_leave(prepareBridge); // ---------------> 1)

 }];

 dispatch_group_enter(prepareBridge); // -----------------> 2)

 __block NSData *sourceCode;

 [self loadSource:^(NSError *error, RCTSource *source) {

 if (error) {

 [weakSelf handleError:error];

 }

 sourceCode = source.data;

 dispatch_group_leave(prepareBridge); // ---------------> 2)

 }

...

}

Chapter 6 Advanced Topics

366

Lastly, the JavaScript execution can start after all the prerequisites are

met (Listing 6-23).

Listing 6-23.  Execute JavaScript after everything is done

- (void)start

{

...

 dispatch_group_notify(

 prepareBridge,

 dispatch_get_global_queue(QOS_CLASS_USER_INTERACTIVE, 0),

 ^{

 RCTCxxBridge *strongSelf = weakSelf;

 if (sourceCode && strongSelf.loading) {

 [strongSelf executeSourceCode:sourceCode sync:NO];

 }

 }

);

...

}

6.5.3  �Phase 2, Native Module on the
JavaScript Layer

The last step of native module initialization occurs on the

JavaScript layer.

Again, let’s look at the big picture (Figure 6-6) to understand what

happens after the JavaScript execution starts. This step involves direct

native-to-JS communication through the global object. More specifically,

JavaScript and native layers both inject functions and classes to global

objects for other sides to call at a certain stage.

Chapter 6 Advanced Topics

367

Phase 1

JS =>

Phase 2

NativeModules.HelloWorldManager

NativeModuleProxy::get
name = "HelloWorldManager"

JSINativeModules::getModule
name = "HelloWorldManager"

JSINativeModules::createModule
name = "HelloWorldManager"

ModuleRegistry::getConfig
name = "HelloWorldManager"

1

NativeModules.genModule

2

RCTNativeModule::getMethods
::getConstants

[RCTModuleData methods]
[RCTModuleData exportedConstants]

NativeModules.genMethod

C++

ObjC

Figure 6-6.  React Native bootstrap (phase 2)

We have seen that to import a native module, we do not use the

ordinary ES6 require(). Instead, we use NativeModules.xxx which is the

actual entry point of native module initialization on the JavaScript layer.

Let’s see what happens inside (Listing 6-24).

Note A ll the relevant source code files on the JavaScript layer are
located in react-native/Libraries/BatchedBridge.

Chapter 6 Advanced Topics

368

Listing 6-24.  Phase 2-0, reference NativeModules on the

JavaScript layer

let NativeModules: {[moduleName: string]: Object, ...} = {};

if (global.nativeModuleProxy) {

 NativeModules = global.nativeModuleProxy;

} else if (!global.nativeExtensions) {

// ... irrelevant logic

}

Note H ere, we only cover the logic flow in production where the JS
bundle is loaded from a bundle file and native and JavaScript layers
share the same runtime.

Here, the native nativeModuleProxy is injected to the global object

on the C++ layer, which is backed by NativeModuleProxy. We are going

to discuss the exact mechanics in the second half of this topic. For now,

we need to know that the NativeModules.xxx will invoke the getter of

NativeModuleProxy (Listing 6-25).

Listing 6-25.  Phase 2-1, invoke the get method of

NativeModuleProxy@ JSIExecutor on the native layer

class JSIExecutor::NativeModuleProxy : public jsi::HostObject {

public:

 NativeModuleProxy(

 std::shared_ptr<JSINativeModules> nativeModules

) : weakNativeModules_(nativeModules) {}

Chapter 6 Advanced Topics

369

 Value get(Runtime &rt, const PropNameID &name) override //-> 1)

 {

 if (name.utf8(rt) == "name") {

 return jsi::String::createFromAscii(rt, "NativeModules");

 }

 auto nativeModules = weakNativeModules_.lock();

 if (!nativeModules) {

 return nullptr;

 }

 return nativeModules->getModule(rt, name); // ---------> 2)

 }

 void set(Runtime &, const PropNameID &, const Value &) override

 {

 throw std::runtime_error(

 "Unable to put on NativeModules: Operation unsupported");

 }

private:

 std::weak_ptr<JSINativeModules> weakNativeModules_;

};

	 1)	 This is the getter method that gets called whenever

we import a native module.

	 2)	 Move on to the next step (Listing 6-26).

Chapter 6 Advanced Topics

370

Listing 6-26.  Phase 2-2, getModule@JSINativeModules on the

native layer

Value JSINativeModules::getModule(Runtime &rt, const PropNameID

&name) {

 if (!m_moduleRegistry) {

 return nullptr;

 }

 std::string moduleName = name.utf8(rt);

 const auto it = m_objects.find(moduleName); // ----------> 1)

 if (it != m_objects.end()) {

 return Value(rt, it->second); // ----------------------> 1)

 }

 auto module = createModule(rt, moduleName); // ----------> 2)

 if (!module.hasValue()) {

 // �Allow lookup to continue in the objects own properties,

which allows for

 // overrides of NativeModules

 return nullptr;

 }

 auto result =

 m_objects.emplace(

 std::move(moduleName),std::move(*module)

).first; // ---> 3)

 return Value(rt, result->second); // --------------------> 4)

}

	 1)	 Check if the native module information has already

been cached in m_objects. Return the cached value

if that’s the case.

Chapter 6 Advanced Topics

371

	 2)	 Move to the next step and create the native
module information. This step will eventually call

a JavaScript method to create the native module

information (Listing 6-27).

	 3)	 Add the newly created native module information

to the cache.

	 4)	 Return the newly created native module

information to the JavaScript layer.

Listing 6-27.  Phase 2-3, createModule@JSINativeModules on the

native layer

folly::Optional<Object> JSINativeModules::createModule(

 Runtime &rt,

 const std::string &name

) {

...

 if (!m_genNativeModuleJS) { // --------------------------> 2)

 m_genNativeModuleJS =

 �rt.global().getPropertyAsFunction(rt, "__fbGenNativeModule");

 }

 auto result = m_moduleRegistry->getConfig(name); // -----> 1)

 if (!result.hasValue()) {

 return folly::none;

 }

 Value moduleInfo = m_genNativeModuleJS->call(// --------> 2)

 rt,

 valueFromDynamic(rt, result->config),

 static_cast<double>(result->index)

);

Chapter 6 Advanced Topics

372

 CHECK(!moduleInfo.isNull())

 << "Module returned from genNativeModule is null";

 folly::Optional<Object> module(

 moduleInfo.asObject(rt).getPropertyAsObject(rt, "module"));

...

 return module; // ---------------------------------------> 3)

}

	 1)	 Fetch the native module metadata from

m_moduleRegistry, which is the C++ counterpart

of the mentioned data structures that store

RCTModuleData. In this step, all the methods and

constants are extracted from the native module

from the RCTModuleData generated in phase 1.

	 2)	 Invoke the __fbGenNativeModule with the relevant

information (Listing 6-28).

	 3)	 Return the result of __fbGenNativeModule, the

object of which is returned eventually to the

JavaScript layer.

Listing 6-28.  Phase 2-4, __fbGenNativeModule@NativeModules on

the JavaScript layer

function genModule(

 config: ?ModuleConfig,

 moduleID: number,

): ?{

 name: string,

 module?: Object,

 ...

Chapter 6 Advanced Topics

373

} {

 if (!config) { return null; }

 const [

 moduleName,

 constants,

 methods,

 promiseMethods,

 syncMethods

] = config;

...

 if (!constants && !methods) {

 // Module contents will be filled in lazily later

 return {name: moduleName};

 }

 const module = {};

 methods && methods.forEach((methodName, methodID) => {

// -> 1)

 const isPromise =

 promiseMethods && arrayContains(promiseMethods, methodID);

 const isSync =

 syncMethods && arrayContains(syncMethods, methodID);

...

 const methodType =

 isPromise ? 'promise' : isSync ? 'sync' : 'async';

 module[methodName] = genMethod(

 moduleID, methodID, methodType

); // ---> 2)

 });

Chapter 6 Advanced Topics

374

 Object.assign(module, constants);

...

 return {name: moduleName, module};

}

...

global.__fbGenNativeModule = genModule; // ----------------> 3)

...

	 1)	 Iterate through all the methods for this

native module.

	 2)	 Create the JavaScript layer counterparts for those

methods.

	 3)	 Inject the genModule as __fbGenNativeModule so it

can be invoked from the native layer.

6.5.3.1  �The Nature of a Native Call

Lastly, let’s look at the genMethod. At this point, the mechanic of a native

call should be crystal clear to us (Listing 6-29).

Listing 6-29.  Phase 2-5, genMethod@NativeModules on the

JavaScript layer

function genMethod (

 moduleID: number, methodID: number, type: MethodType

) {

 let fn = null;

 if (type === 'promise') {

 fn = function promiseMethodWrapper(...args: Array<any>) {

 // In case we reject, capture a useful stack trace here.

 const enqueueingFrameError: ExtendedError = new Error();

Chapter 6 Advanced Topics

375

 return new Promise((resolve, reject) => { // --------> 1)

 BatchedBridge.enqueueNativeCall(// ---------------> 2)

 moduleID,

 methodID,

 args,

 data => resolve(data), // -----------------------> 1)

 errorData => reject(updateErrorWithErrorData(// --> 1)

 errorData, enqueueingFrameError)

),

);

 });

 };

 } else {

 �fn = function nonPromiseMethodWrapper(...args:

Array<any>) {

 const lastArg =

 args.length > 0 ? args[args.length - 1] : null;

 const secondLastArg =

 args.length > 1 ? args[args.length - 2] : null;

 const hasSuccessCallback = typeof lastArg === 'function';

 const hasErrorCallback =

 typeof secondLastArg === 'function';

 hasErrorCallback && invariant(hasSuccessCallback,

 'Cannot have a non-function arg after a function arg.',

);

 const onSuccess = hasSuccessCallback ? lastArg : null;

 const onFail = hasErrorCallback ? secondLastArg : null;

 const callbackCount =

 hasSuccessCallback + hasErrorCallback;

Chapter 6 Advanced Topics

376

 args = args.slice(0, args.length - callbackCount);

 if (type === 'sync') {

 return BatchedBridge.callNativeSyncHook(// -------> 3)

 moduleID,

 methodID,

 args,

 onFail,

 onSuccess,

);

 } else {

 BatchedBridge.enqueueNativeCall(// ---------------> 2)

 moduleID,

 methodID,

 args,

 onFail,

 onSuccess,

);

 }

 };

 }

 fn.type = type;

 return fn;

}

	 1)	 Wrap the promise around the actual native call.

	 2)	 Carry out the asynchronous native call using

enqueueNativeCall with the moduleID and

methodID.

	 3)	 Carry out the synchronous native call using

callNativeSyncHook with the moduleID and

methodID.

Chapter 6 Advanced Topics

377

We reached our last stop on the JavaScript layer, the native call. As you

can see, all the native calls are essentially converged to two methods that

are injected from the native layer (Listing 6-30).

Listing 6-30.  enqueueNativeCall, @MessageQueue on the

JavaScript layer

enqueueNativeCall(

 moduleID: number,

 methodID: number,

 params: any[],

 onFail: ?Function,

 onSucc: ?Function,

) {

 this.processCallbacks(

moduleID, methodID, params, onFail, onSucc

);

...

 this._queue[MODULE_IDS].push(moduleID);

 this._queue[METHOD_IDS].push(methodID);

 this._queue[PARAMS].push(params);

 const now = Date.now();

 if (

 global.nativeFlushQueueImmediate &&

 now - this._lastFlush >= MIN_TIME_BETWEEN_FLUSHES_MS

// -> 3)

) {

 const queue = this._queue;

 this._queue = [[], [], [], this._callID];

Chapter 6 Advanced Topics

378

 this._lastFlush = now;

 global.nativeFlushQueueImmediate(queue); // -----------> 1)

 }

}

...

callNativeSyncHook(

 moduleID: number,

 methodID: number,

 params: any[],

 onFail: ?Function,

 onSucc: ?Function,

): any {

 this.processCallbacks(

 moduleID, methodID, params, onFail, Succ

);

 return global.nativeCallSyncHook(

moduleID, methodID, params

); // ---> 2)

}

	 1)	 nativeFlushQueueImmediate for asynchronous

method calls.

	 2)	 nativeCallSyncHook for synchronous ones. Both

of the preceding calls accept the module ID and

method ID procured in the last few steps with the

NativeModuleProxy, another entity injected from

the native layer.

	 3)	 A queue that aggregates method calls within five

milliseconds for asynchronous calls.

Chapter 6 Advanced Topics

379

Next, we will examine the missing pieces in the bootstrap process

discussed earlier, the C++ layer that interacts directly with the

JavaScriptCore. We will answer three specific unresolved questions: (1)

how the bundle is executed through JavaScriptCore, (2) how the two-

way communication is facilitated between JavaScriptCore and the React
Native runtime, and (3) how the native module metadata are stored

in the C++ layer, which reveals the mechanism of method calls to the

Objective-C layer.

6.5.4  �Execute the Bundle
JSCRuntime is in the core of JavaScript and native communication, which

is basically an encapsulation of JavaScriptCore. Let’s firstly get familiar

with some JavaScriptCore API and then get straight to its core.

JSEvaluateScript() runs a script in the form of a

JSStringRef which can be created from an ordinary string using

JSStringCreateWithUTF8CString(). And JSStringRelease()

releases a JSStringRef. These functions are the building blocks of

evaluateJavaScript, which is eventually called in the last step of React
Native bootstrap (Section 4.3.2) to execute the bundle. Next, we look at the

function of JSCRuntime to have a taste (Listing 6-31).

Listing 6-31.  JSCRuntime::evaluateJavaScript

jsi::Value JSCRuntime::evaluateJavaScript(

 const std::shared_ptr<const jsi::Buffer> &buffer,

 const std::string &sourceURL) {

 std::string tmp(

 �reinterpret_cast<const char *>(buffer->data()),

buffer->size()

);

Chapter 6 Advanced Topics

380

 JSStringRef sourceRef =

 JSStringCreateWithUTF8CString(tmp.c_str());

 JSStringRef sourceURLRef = nullptr;

 if (!sourceURL.empty()) {

 sourceURLRef = JSStringCreateWithUTF8CString(

 sourceURL.c_str());

 }

 JSValueRef exc = nullptr;

 JSValueRef res =

 JSEvaluateScript(// --------------------------------> 1)

 ctx_, sourceRef, nullptr, sourceURLRef, 0, &exc);

 JSStringRelease(sourceRef);

 if (sourceURLRef) {

 JSStringRelease(sourceURLRef);

 }

 checkException(res, exc);

 return createValue(res);

}

	 1)	 This is where the bundle got executed eventually.

6.5.5  �The Two-Way Communication
Again, let’s get to know some JavaScriptCore API first. We know that

the communication is pivoting around the global object. We use

JSContextGetGlobalObject() to get the C++ representative of this object.

We can then inject native instances and functions to this object to be called

by the JavaScript layer.

The native instances are injected into the global object in JavaScript

in three steps:

Chapter 6 Advanced Topics

381

	 1)	 Map C++ classes to JavaScript using

JSClassCreate() using a JSClassDefinition.

	 2)	 Instantiate such class using JSObjectMake().

	 3)	 Inject the instance to the global object using

JSObjectSetProperty().

Next, we look at the code that injects the NativeModuleProxy to

the global object, which facilitates the two-way communication that

establishes the native modules on the JavaScript layer (Listing 6-32).

Listing 6-32.  Inject nativeModuleProxy

void JSIExecutor::initializeRuntime() {

 SystraceSection s("JSIExecutor::initializeRuntime");

 runtime_->global().setProperty(// --------------------> 1,2)

 *runtime_,

 "nativeModuleProxy",

 Object::createFromHostObject(// ----------------------> 3)

 *runtime_, std::make_shared<NativeModuleProxy>(

 nativeModules_

)

)

);

...

	 1)	 global() is a wrapper function that gets the global

object using JSContextGetGlobalObject() and

returns it wrapped with a jsi::Object.

	 2)	 jsi::Object::setProperty() is the wrapper for

JSObjectSetProperty().

	 3)	 jsi::Object::createFromHostObject is the

wrapper of JSClassCreate() and JSObjectMake().

Chapter 6 Advanced Topics

382

This is how the object nativeModuleProxy is made available

to the JavaScript layer. And other critical functions such as

nativeFlushQueueImmediate() and nativeCallSyncHook() are injected

to global objects in a similar way.

6.5.6  �The Native Module Metadata
As discussed, the metadata is also stored in the C++ layer. This is achieved

by saving the reference of RCTModuleData in RCTNativeModule which is in

turn stored in Instance::moduleRegistry_.

RCTNativeModule works as a simple C++ wrapper of RCTModuleData.

Let’s take a look at how a method is invoked as an example (Listing 6-33).

Listing 6-33.  Method invocation from C++

static MethodCallResult

invokeInner(RCTBridge *bridge, RCTModuleData *moduleData,

unsigned int methodId, const folly::dynamic ¶ms)

{

 if (!bridge || !bridge.valid || !moduleData) {

 return folly::none;

 }

 �id<RCTBridgeMethod> method = moduleData.methods

[methodId];//>1)

...

 NSArray *objcParams = convertFollyDynamicToId(params);

 @try {

 id result =

 [method invokeWithBridge:bridge

 module:moduleData.instance arguments:objcParams]; // -> 2)

Chapter 6 Advanced Topics

383

 return convertIdToFollyDynamic(result);

 } @catch (NSException *exception) {

 // Pass on JS exceptions

 if ([exception.name hasPrefix:RCTFatalExceptionName]) {

 @throw exception;

 }

...

 }

 return folly::none;

}

	 1)	 Get the method object from RCTModuleData.

	 2)	 Invoke the method. Internally, it uses NSInvocation

to invoke the method dynamically.

6.5.7  �Wrap Up
It’s a pretty heavy section. It takes significant effort to write, and I suppose

the reading effort would be equal if not more. With an eye for detail,

you might have answered several practical questions that are not well

documented already, for instance:

	 1)	 What is the app bootstrap process like? The start

render time is one of the key factors to one of the

key metrics to five-point apps. By answering this

question, we know the initialization of our native
modules could block the bootstrap process. So we

shall consider making native modules that are not

essential or need a long time to be loaded lazily.

Chapter 6 Advanced Topics

384

	 2)	 What does it mean by requiresMainQueueSetup?

This is an actual follow-up question of the previous

one. More specifically, native modules that require

the main queue setup are those that need to be

initialized up front and could block the bootstrap.

By answering this question, we also know that there

are actually two types of requiresMainQueueSetup,

explicit and implicit.

	 3)	 At which point native modules are instantiated?

We know that only native modules that require the

main queue setup are instantiated up front; the rest

stay in the form of class metadata and will only be

instantiated in an on-demand way. Answering this

question could be beneficial to multibridge settings.

This setting is common for apps that use React
Native for parts of its features. Here, lazy loading

can be used to improve memory footprint as it

gives the option to each bridge to load only native
modules that are needed.

	 4)	 What is lazy loading exactly? We haven’t fully

answered this question just yet. We know

that native modules that do not require the

main queue setup are lazily loaded. And you

might have noticed that RCTBridge offers a

registerAdditionalModuleClasses to enable lazy

loading. We will leave it to you to explore in that

multibridge is not a common scenario that most of

our readers would confront.

	 5)	 What is exactly a native method call? We

know that the nature of native method calls

are two C++ functions injected to the global

Chapter 6 Advanced Topics

385

object, nativeFlushQueueImmediate and

nativeCallSyncHook. By answering this question,

we know what to look at when there is a bottleneck

imposed by the bridge.

It’s sometimes essential to understand the underlying logic for

fixing hard bugs or deep squeezing the performance. Moreover, I

found the insight of the internal mechanism is beneficial for everyday

development activities such as decision making, filtering answers on

Stack Overflow and issues on GitHub, as well as discussing pull requests.

It’s like understanding the soil properties before building a skyscraper or

understanding the aerodynamics before making an aircraft. At the end of

the day, a solid understanding leads to a solid product, a 05 app.

Leaving aside all practical purposes, an inside-out understanding

is always fun. Next, let's continue this journey by understanding the

animation mechanism. It will be another intensive albeit fun one.

6.6  �Animation Inside Out
In this section, we examine the underlying mechanisms of a native event,

an animated value, and a value interpolation/calculation, which are the

three major building blocks of the native driver that enables the native-

level performant animation.

The secret behind the performance is direct native-to-native

communication that is completely free of JavaScript thread intervention.

The relationship between the event source (user gestures) and the

receivers (component) is a directed graph connected with animation

nodes (will be discussed very soon). After this graph is defined in the

JavaScript layer, it is pushed down altogether to the animation subsystem

of the React Native runtime to keep record. Then all animation can be

performed purely in the native layer.

Chapter 6 Advanced Topics

386

Before we move on, let’s have a look at the big picture (Figure 6-7).

Technically, all the animation entities listed earlier are represented by

the data structure animated node. In Section 3.4.2, we used the value

calculation (Section 3.3.2.3) technique to derive the component props in

animation from the native event. What this technique creates is nothing

but an animated node graph (ANG). Those animated nodes (1) are

connected with each other within the ANG and (2) are attached to both

the event source, the ScrollView in our case, and the event receiver, the

SpinningEnvelope component. We will revisit this relationship very soon

in Section 6.6.1.1, so don’t worry if you cannot recall the implementation

details from the case study. Lastly, all the preceding relationships are

declared on the JavaScript layer and are passed down to the native layer.

ANG is the key information for the native layer to carry out animation

without the involvement of the JavaScript thread. More specifically, the

animation can be carried out by (1) relaying a native event from the source

all the way to the receivers through the ANG and (2) deriving the result of

the value calculation/interpolation along the way.

AnimatedProps

createAnimatedComponent (HOC)

componentDidMount

_attachNativeEvents

JS
OBJ-C

AnimatedEvent

__attach

attachNativeEven

RCTNativeAnimatedModule

connectAnimatedNodeToView addAnimatedEventToView

UNSAFE_componentWillMount

_attachProps

constructor

__connectAnimatedView

setNativeView

__attach

......

connectAnimatedNodes

createAnimatedNode

Figure 6-7.  Internal architecture of the native driver

Chapter 6 Advanced Topics

387

Let’s track and trace from the entry point createAnimatedComponent()

(Listing 6-34). This is where all animation elements are declared, that is,

establish the ANG (Section 6.6.1), bind the event receiver (Section 6.6.2),

and attach the event source (Section 6.6.3).

Note  Code for JavaScript-driven animation is removed on purpose
for clarity. We also remove the logic of node detaching for simplicity.

Listing 6-34.  createAnimatedComponent

function createAnimatedComponent<Props: {+[string]: mixed,

...}, Instance>(

 Component: React.AbstractComponent<Props, Instance>,

): AnimatedComponentType<Props, Instance> {

 invariant(

 typeof Component !== 'function' || // ----------------> 1a)

 �(Component.prototype && Component.prototype.

isReactComponent),

 �'`createAnimatedComponent` does not support stateless

functional components; ' +

 'use a class component instead.',

);

 �class AnimatedComponent extends React.Component<Object> {//> 1)

 _component: any;

...

 _propsAnimated: AnimatedProps;

...

 _attachNativeEvents() {

 // �Make sure to get the scrollable node for components

that implement

Chapter 6 Advanced Topics

388

 // `ScrollResponder.Mixin`.

 const scrollableNode = this._component?.getScrollableNode

 ? this._component.getScrollableNode()

 : this._component;

 for (const key in this.props) {

 const prop = this.props[key];

 if (prop instanceof AnimatedEvent && prop.__isNative) {

 prop.__attach(scrollableNode, key); // ----------> 5)

...

 }

 }

 }

...

 _attachProps(nextProps) { // --------------------------> 3)

 const oldPropsAnimated = this._propsAnimated;

 this._propsAnimated = new AnimatedProps(

 nextProps,

 this._animatedPropsCallback,

);

...

}

 _setComponentRef = setAndForwardRef({

 getForwardedRef: () => this.props.forwardedRef,

 setLocalRef: ref => {

 this._prevComponent = this._component;

 this._component = ref; // -------------------------> 2)

...

 },

 });

Chapter 6 Advanced Topics

389

 render() {

 const props = this._propsAnimated.__getValue();

 return (

 <Component

 {...props}

 ref={this._setComponentRef}

...

 />

);

 }

 UNSAFE_componentWillMount() { // ----------------------> 3)

 this._attachProps(this.props);

 }

 componentDidMount() {

...

 this._propsAnimated.setNativeView(this._component); // > 4)

 this._attachNativeEvents(); // ------------------------> 5)

}

 }

 return React.forwardRef(// --------------------------> 1b)

function AnimatedComponentWrapper(props, ref

) {

 return (

 <AnimatedComponent

 {...props}

 {...(ref == null ? null : {forwardedRef: ref})}

 />

);

 });

}

module.exports = createAnimatedComponent;

Chapter 6 Advanced Topics

390

	 1)	 createAnimatedComponent is the entry point

of all animation-related logic. It is a standard

HOC. It wraps the component passed in with the

AnimatedComponent which, in its life cycle methods,

sets up the metadata (events, props, values) related

to animation. Two points worth noting here are: (a)

functional components are not supported, and (b)

it uses the technique of ref forwarding which we

introduced in Section 4.5.3.4.

	 2)	 Set the ref (Section 4.3.2.1) to this._component.

	 3)	 Set up the ANG with the starting point set to

_propsAnimated. We will know very soon that

_propsAnimated: AnimatedProps is also one type of

animated node. This step will be discussed in detail

in Section 6.6.1.

	 4)	 Bind the _propsAnimated with the current

component, which connects the ANG to the event

receiver. This step will be discussed in Section 6.6.2.

	 5)	 Attach the native event to the current component,

which connects the ANG to the event source. Note

that only ScrollView is supported by vanilla React
Native, which is sufficient for most scenarios that

involve a gesture. This step will be discussed in

Section 6.6.3.

Next, we look at how the ANG is established from the entry point

of UNSAFE_componentWillMount in step 3. Step 4 that connects ANG to

the receiver end and step 5 that connects ANG to the sender end will be

examined in detail in Sections 6.6.2 and 6.6.3, respectively. Then in Section

6.6.4, we will see how events are transmitted end to end.

Chapter 6 Advanced Topics

391

6.6.1  �Establish the Animated Node Graph
Let’s recall the pull-to-refresh animation we implemented in Section 3.4.2.

As a reminder, we use value calculation to define the animation behavior.

Listing 6-35 shows the original code.

Listing 6-35.  Value calculation for pull-to-refresh

...

<LoomingSpinningEnvelope

 color={'#6291f0'}

 size={45}

 style={{

 opacity:

 Animated.add(

 Animated.multiply(

 this.userPulling,

 this.pullDownPos.interpolate({

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [0.5, 0]

 })

),

 Animated.multiply(

 this.autoScrolling,

 this.pullDownPos.interpolate({

 inputRange: [-loadingIndicatorOffset, 0],

 outputRange: [1, 0]

 })

),

)

 }}

/>

...

Chapter 6 Advanced Topics

392

Data structure wise, all the individual animated values, the value

calculation (e.g., Animated.multiply()), and value interpolation are

different forms of animated nodes. The invocation of animation-related

functions essentially instantiates the corresponding subclasses of

animated nodes. The cascading invocation of such functions incorporates

those animated nodes together to form the mentioned ANG. The

calculated result of such value calculation is represented by the root of the

tree and is eventually attached to props of a component, the process of

which will be examined in Section 6.6.3.

A copy of the ANG is maintained in the native layer as well. This

is achieved majorly with two methods createAnimatedNode: and

connectAnimatedNode: residing in RCTNativeAnimatedModule. These two

methods are invoked as side effects when the ANG is established, which

we will examine later in this section.

Programmatically, the ANG is established using two key animated

node methods: __attach() and __makeNative(). __attach() is used for

establishing the ANG on the JavaScript layer, while __makeNative() is for

establishing the native layer representative.

Note  The following logic is a bit hard to be interpreted as the
key methods reside in different classes within the AnimatedNode
inheritance hierarchy. And those methods are to establish ANG with
another kind of hierarchy.

6.6.1.1  �JavaScript Pass

The JavaScript pass starts from step 3 of createAnimatedComponent, from

where an AnimatedProps is instantiated, and all the animated nodes are

attached. Let’s get started from that point by looking at the implementation

Chapter 6 Advanced Topics

393

of _attachProps in createAnimatedComponent. Basically, this method

instantiates an AnimatedProps and invokes the __attach() method of it

(Listing 6-36).

Listing 6-36.  __attachProps

...

_attachProps(nextProps) {

...

 this._propsAnimated = new AnimatedProps(// -------------> 1)

 nextProps,

 this._animatedPropsCallback,

);

...

}

...

class AnimatedProps extends AnimatedNode {

 _props: Object;

...

 constructor(props: Object, callback: () => void) {

 super();

...

 this.__attach(); // -----------------------------------> 2)

 }

 __attach(): void {

 for (const key in this._props) {

 const value = this._props[key];

 if (value instanceof AnimatedNode) {

 value.__addChild(this); // ------------------------> 3)

 }

Chapter 6 Advanced Topics

394

 }

 }

...

}

	 1)	 Continued from step 3 in

createAnimatedComponent.

	 2)	 Call __attach() of AnimatedProps and move on.

	 3)	 Call __addChild() of all the _props that are

animated.

Here, __attach() and addChild() are the paired methods calling each

recursively. In particular, __attach() calls all the parent’s addChild()

which in turn calls the __attach() of the respective parent and traverses

the complete ANG.

The preceding recursion resides in AnimatedWithChildren from which

all nodes except for the starting node inherit (Listing 6-37).

Listing 6-37.  AnimatedWithChildren

class AnimatedWithChildren extends AnimatedNode {

 _children: Array<AnimatedNode>;

 constructor() {

 super();

 this._children = [];

 }

 __makeNative() { // -------------------------------------> 3)

 if (!this.__isNative) {

 this.__isNative = true;

 for (const child of this._children) {

 child.__makeNative();

 NativeAnimatedHelper.API.connectAnimatedNodes(

Chapter 6 Advanced Topics

395

 this.__getNativeTag(),

 child.__getNativeTag(),

);

 }

 }

 super.__makeNative();

 }

 __addChild(child: AnimatedNode): void { // --------------> 1)

 if (this._children.length === 0) {

 this.__attach(); // ---------------------------------> 2)

 }

 this._children.push(child); // ------------------------> 1)

 if (this.__isNative) {

... // --> 3)

 }

 }

...

}

	 1)	 __addChild is called from __attach of the

children node.

	 2)	 Call __attach of the current node to recursively

attach all the nodes downward the tree hierarchy.

	 3)	 Native pass (Section 6.6.1.2).

Figure 6-8 shows the animated node graph generated.

Chapter 6 Advanced Topics

396

AnimatedProps

AnimatedStyle

AnimatedAddition

AnimatedMultiple AnimatedMultiple

AnimatedValue
(userPulling)

AnimatedInterpolation AnimatedValue
(autoScrolling)

AnimatedInterpolation

AnimatedValue
(loadingIndicatorOffset)

Figure 6-8.  An animated node graph (ANG)

6.6.1.2  �Native Pass

Like components, animated nodes all have their native layer

representatives of the same type. The native layer counterpart is

created using __makeNative which in turn calls two native methods

from RCTNativeAnimatedModule, createAnimatedNode() and

connectAnimatedNode().

Let’s start by revisiting the __makeNative() (Listing 6-38).

Note  We haven’t seen the entry point of the native pass yet, which
will be covered in Section 6.6.3.

Chapter 6 Advanced Topics

397

Listing 6-38.  __makeNative

...

__makeNative() {

 if (!this.__isNative) {

 this.__isNative = true; // ----------------------------> 1)

 for (const child of this._children) {

 child.__makeNative(); // ----------------------------> 2)

 NativeAnimatedHelper.API.connectAnimatedNodes(// ---> 4)

 this.__getNativeTag(), // -------------------------> 3)

 child.__getNativeTag(),

);

 }

 }

 super.__makeNative();

}

...

	 1)	 Set the __isNative to true to flag that this node is

native for the following logic.

	 2)	 Recursively make all the children nodes native. Note

that in the respective animated node classes, the

parent’s makeNative() is also called to traverse the

whole graph.

	 3)	 Call __getNativeTag() to generate a tag for the

current animated node and to call one of the key

native methods, createAnimatedNode(), to register

the current node.

	 4)	 Call the other key native method,

connectAnimatedNode(), to make connection

between the current node and its child.

Chapter 6 Advanced Topics

398

Next, we look at the __getNativeTag(). This method resides in the

AnimatedNode, the superclass of all nodes (Listing 6-39).

Listing 6-39.  __getNativeTag

__getNativeTag(): number {

...

 const nativeTag =

 �this.__nativeTag ?? NativeAnimatedHelper.generateNewNode

Tag();

 if (this.__nativeTag == null) {

 this.__nativeTag = nativeTag;

 NativeAnimatedHelper.API.createAnimatedNode(// -------> 1)

 nativeTag,

 this.__getNativeConfig(),

);

 this.__shouldUpdateListenersForNewNativeTag = true;

 }

 return nativeTag;

}

	 1)	 Call createAnimatedNode() from step 3 in

__makeNative().

Lastly, we look at the two key native methods in RCTNativeAnimated

Module. In fact, those two methods are thin wrappers of their counterparts

in RCTNativeAnimatedNodesManager.

The AnimatedNode is created in the native layer using createAnimated

Node:config: (Listing 6-40).

Chapter 6 Advanced Topics

399

Listing 6-40.  createAnimatedNode:config:

RCT_EXPORT_METHOD(createAnimatedNode:(double)tag

 �config:(NSDictionary<NSString *, id> *)

config)

{

 �[self addOperationBlock:^(RCTNativeAnimatedNodesManager

*nodesManager) {

 �[nodesManager createAnimatedNode:[NSNumber numberWith

Double:tag] config:config];

 }];

}

The heavy lifting is carried out by RCTNativeAnimatedNodesManager

which encapsulates all the animated node records and operations

(Listing 6-41).

Listing 6-41.  createAnimatedNode:config: (internal call)

- (void)createAnimatedNode:(nonnull NSNumber *)tag

 �config:(NSDictionary<NSString *, id> *)

config

{

 static NSDictionary *map;

 static dispatch_once_t mapToken;

 dispatch_once(&mapToken, ^{ // --------------------------> 1)

 map = @{@"style" : [RCTStyleAnimatedNode class],

 @"value" : [RCTValueAnimatedNode class],

 @"props" : [RCTPropsAnimatedNode class],

 �@"interpolation" : [RCTInterpolationAnimated

Node class],

 @"addition" : [RCTAdditionAnimatedNode class],

 @"diffclamp": [RCTDiffClampAnimatedNode class],

Chapter 6 Advanced Topics

400

 @"division" : [RCTDivisionAnimatedNode class],

 �@"multiplication" : [RCTMultiplicationAnimated

Node class],

 @"modulus" : [RCTModuloAnimatedNode class],

 �@"subtraction" : [RCTSubtractionAnimated

Node class],

 @"transform" : [RCTTransformAnimatedNode class],

 @"tracking" : [RCTTrackingAnimatedNode class]};

 });

 NSString *nodeType = [RCTConvert NSString:config[@"type"]];

 Class nodeClass = map[nodeType]; // ---------------------> 1)

 if (!nodeClass) {

 �RCTLogError(@"Animated node type %@ not supported

natively", nodeType);

 return;

 }

 RCTAnimatedNode *node = [[nodeClass alloc] initWithTag:tag

config:config]; // --> 1)

 node.manager = self;

 _animationNodes[tag] = node; // -------------------------> 2)

 [node setNeedsUpdate]; // -------------------------------> 3)

}

	 1)	 Take the factory pattern to create the corresponding

animated node class according to the config string

passed in from the JavaScript layer. Note that the

relationship between native classes and JavaScript

ones is 1:1.

	 2)	 Store the created animated node instance in a map.

	 3)	 Set “needs update” for the newly created node. This

flag will be used in Section 6.6.4.

Chapter 6 Advanced Topics

401

The relationship among them has been recorded in the native layer by

connectAnimatedNode:childTag (Listing 6-42).

Listing 6-42.  connectAnimatedNode:childTag:

RCT_EXPORT_METHOD(connectAnimatedNodes:(double)parentTag

 childTag:(double)childTag)

{

 �[self addOperationBlock:^(RCTNativeAnimatedNodesManager

*nodesManager) {

 �[nodesManager connectAnimatedNodes:[NSNumber number

WithDouble:parentTag] childTag:[NSNumber number

WithDouble:childTag]];

 }];

}

Again, the actual work is carried out by RCTNativeAnimatedNodesManager

which establishes the same ANG as in the JavaScript layer (Listing 6-43).

Listing 6-43.  connectAnimatedNode:childTag: (internal call)

- (void)connectAnimatedNodes:(nonnull NSNumber *)parentTag

 childTag:(nonnull NSNumber *)childTag

{

 RCTAssertParam(parentTag);

 RCTAssertParam(childTag);

 RCTAnimatedNode *parentNode = _animationNodes[parentTag];

 RCTAnimatedNode *childNode = _animationNodes[childTag];

 RCTAssertParam(parentNode);

 RCTAssertParam(childNode);

Chapter 6 Advanced Topics

402

 [parentNode addChild:childNode]; // ---------------------> 1)

 [childNode setNeedsUpdate]; // --------------------------> 2)

}

	 1)	 Establish the same parent-to-children relationship

as in the JavaScript layer.

	 2)	 Set “needs update” for the child node. This flag will

be used in Section 6.6.4.

6.6.2  �Bind the Event Receiver
We know that the starting point of the graph is attached to the component

in animation, which is the AnimatedProps (Listing 6-44).

Listing 6-44.  AnimatedProps

class AnimatedProps extends AnimatedNode {

...

 __makeNative(): void {

 if (!this.__isNative) {

 this.__isNative = true;

 for (const key in this._props) {

 const value = this._props[key];

 if (value instanceof AnimatedNode) {

 value.__makeNative();

 }

 }

 if (this._animatedView) {

 this.__connectAnimatedView(); // ------------------> 2)

 }

 }

 }

Chapter 6 Advanced Topics

403

 setNativeView(animatedView: any): void { // -------------> 1)

 if (this._animatedView === animatedView) {

 return;

 }

 this._animatedView = animatedView;

 if (this.__isNative) {

 this.__connectAnimatedView();

 }

 }

 __connectAnimatedView(): void {

 �invariant(this.__isNative, 'Expected node to be marked as

"native"');

 const nativeViewTag: ?number = ReactNative.findNodeHandle(

 this._animatedView,

);

...

 NativeAnimatedHelper.API.connectAnimatedNodeToView(

// --> 3)

 this.__getNativeTag(),

 nativeViewTag,

);

 }

...

}

	 1)	 The _animatedView is set by step 2 of

createAnimatedComponent.

	 2)	 This is the critical line within __makeNative().

Though we haven’t encountered the entry point of

this method yet, we know that it is recursively called

for all nodes within the ANG.

Chapter 6 Advanced Topics

404

	 3)	 Call the native method

connectAnimatedNodeToView() to make the

connection.

Next, we look at the native layer implementation. Similarly, here the

native module RCTNativeAnimatedModule provides merely a thin wrapper

to RCTNativeAnimatedNodesManager (Listing 6-45).

Listing 6-45.  connectAnimatedNodeToView:viewTag:

RCT_EXPORT_METHOD(connectAnimatedNodeToView:(double)nodeTag

 viewTag:(double)viewTag)

{

 NSString *viewName = [self.bridge.uiManager

viewNameForReactTag:[NSNumber numberWithDouble:viewTag]];

 [self addOperationBlock:^(RCTNativeAnimatedNodesManager

*nodesManager) {

 [nodesManager connectAnimatedNodeToView:[NSNu

mber numberWithDouble:nodeTag] viewTag:[NSNumber

numberWithDouble:viewTag] viewName:viewName];

 }];

}

Lastly, we look at the actual native implementation of the connectAnim

atedNodeToView:viewTag:viewName: (Listing 6-46).

Listing 6-46.  connectAnimatedNodeToView:viewTag:viewName:

(internal call)

- (void)connectAnimatedNodeToView:(nonnull NSNumber *)nodeTag

 viewTag:(nonnull NSNumber *)viewTag

 viewName:(nonnull NSString *)viewName

Chapter 6 Advanced Topics

405

{

 RCTAnimatedNode *node = _animationNodes[nodeTag];

 if ([node isKindOfClass:[RCTPropsAnimatedNode class]]) {

 �[(RCTPropsAnimatedNode *)node connectToView:viewTag

viewName:viewName bridge:_bridge]; // -----------------> 1)

 }

 [node setNeedsUpdate]; // -------------------------------> 2)

}

	 1)	 Register the native view in animation with the

RCTPropsAnimatedNode.

	 2)	 Set “needs update” for the RCTPropsAnimatedNode.

This flag will be used in Section 6.6.4.

6.6.3  �Attach the Event Source
As usual, let’s look back at the implementation layer where the event

source is bound to ScrollView (Listing 6-47).

Listing 6-47.  Revisit the Moment based on FlatList

...

<Animated.FlatList

 data={this.state.data}

 renderItem={this.renderItem}

 onViewableItemsChanged={this.onViewableItemsChanged}

 contentInset={{

 top: this.state.loading ?

 5: 0

 }}

Chapter 6 Advanced Topics

406

 scrollEventThrottle={1}

 onScroll={

 Animated.event([{ // ----------------------------------> 1)

 nativeEvent: { contentOffset: { y: this.pullDownPos } }

 }], { useNativeDriver: true }) // ---------------------> 2)

 }

 onScrollBeginDrag={this.beginDrag}

 onScrollEndDrag={this.endDrag}

 ref={this.getScrollViewRef}

 onMomentumScrollEnd={this.onReset}

/>

...

	 1)	 Like animated nodes, the Animated.event()

basically instantiates an AnimatedEvent which we

will examine very soon.

	 2)	 By saying nativeEvent and useNativeDriver:

true, we indicate that the event should be sent to

the native layer. The JavaScript layer will receive the

same event, so we can bind an additional callback to

it if we want. This callback will still be subject to the

performance penalty of the JavaScript layer.

Next, we examine the respective logic in createAnimatedComponent.

More specifically, we look at how the nativeEvent object combined with

the onScroll props is translated into metadata that is understandable

by the native layer. Moreover, we will encounter the entry point of the

ANG native pass (Section 6.6.1.2) in this process. Continue from step 5 in

_attachNativeEvents (Listing 6-48).

Chapter 6 Advanced Topics

407

Listing 6-48.  _attachNativeEvents

_attachNativeEvents() {

...

 const scrollableNode = this._component?.getScrollableNode

 ? this._component.getScrollableNode()

 : this._component;

 for (const key in this.props) {

 const prop = this.props[key];

 if (prop instanceof AnimatedEvent && prop.__isNative) {

 prop.__attach(scrollableNode, key); // ----------------> 1)

 this._eventDetachers.push(() =>

 prop.__detach(scrollableNode, key)

);

 }

 }

}

	 1)	 Call __attach() if we encounter an AnimatedEvent.

__attach() is a wrapper of the method

attachNativeEvent(). Let’s get to those two

methods directly (Listing 6-49).

Listing 6-49.  _attach

__attach(viewRef: any, eventName: string) {

...

 this._attachedEvent = attachNativeEvent(// -------------> 1)

 viewRef,

 eventName,

 this._argMapping,

);

}

Chapter 6 Advanced Topics

408

...

function attachNativeEvent(// ----------------------------> 1)

 viewRef: any,

 eventName: string,

 argMapping: $ReadOnlyArray<?Mapping>,

): {detach: () => void} {

...

 const traverse = (value, path) => { // ------------------> 2)

 if (value instanceof AnimatedValue) {

 value.__makeNative(); // ----------------------------> 3)

 eventMappings.push({

 nativeEventPath: path,

 animatedValueTag: value.__getNativeTag(),

 });

 } else if (typeof value === 'object') {

 for (const key in value) {

 traverse(value[key], path.concat(key));

 }

 }

 };

...

 traverse(argMapping[0].nativeEvent, []); // -------------> 4)

 const viewTag = ReactNative.findNodeHandle(viewRef);

 if (viewTag != null) {

 eventMappings.forEach(mapping => { // -----------------> 5)

 NativeAnimatedHelper.API.addAnimatedEventToView(

 viewTag,

 eventName,

 mapping,

Chapter 6 Advanced Topics

409

);

 });

 }

 return {

...

 };

}

	 1)	 Here, we need to pay attention to the parameters

passed through. viewRef is the react ref of the

ScrollView; eventName is the prop name which

is onScroll; this._argMapping is the first

parameter passed to the Animated.event(), which

is [{nativeEvent: {contentOffset:{ y: this.

pullDownPos }}}].

	 2)	 Define a traverse() in a way that it can extract the

path and associate it with the animated value. Here,

the key path extracted is 'contentOffSet'.

	 3)	 Call the first __makeNative() of the animated value

bound to the event. This leads to the cascading

invocation of the same methods throughout the

ANG (Section 6.6.1.2).

	 4)	 Invoke the traverse(). 💣 One caveat is that

the nativeEvent should be the first element in

the array.

	 5)	 Pass the mapping of the event path to the animated

value down to the native layer.

Chapter 6 Advanced Topics

410

For event attaching, we look at the native layer implementation.

Here, we can find the same pattern that the native module

RCTNativeAnimatedModule works as a thin layer that offloads the work to

RCTNativeAnimatedNodesManager (Listing 6-50).

Listing 6-50.  addAnimatedEventToView:eventName

RCT_EXPORT_METHOD(addAnimatedEventToView:(double)viewTag

 eventName:(nonnull NSString *)eventName

 �eventMapping:(JS::NativeAnimatedModule::Event

Mapping &)eventMapping)

{

 �NSMutableDictionary *eventMappingDict =

[NSMutableDictionary new];

 �eventMappingDict[@"nativeEventPath"] = RCTConvertVecToArray(

eventMapping.nativeEventPath()); // ---------------------> 1)

 if (eventMapping.animatedValueTag()) {

 eventMappingDict[@"animatedValueTag"] = // ------------> 1)

 @(*eventMapping.animatedValueTag());

 }

 �[self addOperationBlock:^(RCTNativeAnimatedNodesManager

*nodesManager) {

 �[nodesManager addAnimatedEventToView:[NSNumber

numberWithDouble:viewTag] eventName:eventName

eventMapping:eventMappingDict]; // --------------------> 2)

 }];

}

	 1)	 Reorganize the parameters passed in from the

JavaScript layer.

	 2)	 Pass it down to RCTNativeAnimatedNodesManager

(Listing 6-51).

Chapter 6 Advanced Topics

411

Listing 6-51.  addAnimatedEventToView:eventName:eventMapping

(internal call)

- (void)addAnimatedEventToView:(nonnull NSNumber *)viewTag

 eventName:(nonnull NSString *)eventName

 eventMapping:(NSDictionary<NSString*, id> *)eventMapping

{

 �NSNumber *nodeTag = [RCTConvert NSNumber:eventMapping[

@"animatedValueTag"]];

 RCTAnimatedNode *node = _animationNodes[nodeTag];

... // error check

 NSArray<NSString *> *eventPath =

 �[RCTConvert NSStringArray:eventMapping[@"nativeEventPath"]];

 RCTEventAnimation *driver =

 �[[RCTEventAnimation alloc] initWithEventPath:eventPath

valueNode:(RCTValueAnimatedNode *)node]; // -----------> 1)

 �NSString *key = [NSString stringWithFormat:@"%@%@", viewTag,

RCTNormalizeAnimatedEventName(eventName)];

 if (_eventDrivers[key] != nil) {

 [_eventDrivers[key] addObject:driver]; // -------------> 2)

 } else {

 �NSMutableArray<RCTEventAnimation *> *drivers =

[NSMutableArray new];

 [drivers addObject:driver]; // ------------------------> 2)

 _eventDrivers[key] = drivers;

 }

}

Chapter 6 Advanced Topics

412

	 1)	 Create the RCTEventAnimation using the eventPath

passed down. We will come back to this class when

we examine the event transmission pass. For now,

we only need to know that this class keeps a record

of the eventPath and the associated animated

value (node).

	 2)	 Record the event key which is basically the

eventPath concatenated with the react tag.

6.6.4  �Native Event Transmission
Now it’s time to connect everything up. We know that gesture-driven

animation starts from the gesture on the RCTScrollView; let’s start from

there (Listing 6-52).

Listing 6-52.  Event source of RCTScrollView

- (void)scrollViewDidScroll:(UIScrollView *)scrollView

{

 NSTimeInterval now = CACurrentMediaTime();

 [self updateClippedSubviews];

 if (_allowNextScrollNoMatterWhat ||

 �(_scrollEventThrottle > 0 && _scrollEventThrottle < MAX

(0.017, now - _lastScrollDispatchTime))) { // -------> 2)

...

 RCT_SEND_SCROLL_EVENT(onScroll, nil); // ------------> 1)

...

 // Update dispatch time

 _lastScrollDispatchTime = now;

 _allowNextScrollNoMatterWhat = NO;

 }

Chapter 6 Advanced Topics

413

 RCT_FORWARD_SCROLL_EVENT(scrollViewDidScroll : scrollView);

}

...

#define RCT_SEND_SCROLL_EVENT(_eventName, _userData) \

 { \

 �NSString *eventName = NSStringFromSelector(@selector

(_eventName)); \

 �[self sendScrollEventWithName:eventName scrollView:_

scrollView userData:_userData]; \

 }

...

- (void)sendScrollEventWithName:(NSString *)eventName

 scrollView:(UIScrollView *)scrollView

 userData:(NSDictionary *)userData

{

 if (![_lastEmittedEventName isEqualToString:eventName]) {

 _coalescingKey++;

 _lastEmittedEventName = [eventName copy];

 }

 RCTScrollEvent *scrollEvent = [[RCTScrollEvent alloc]

 initWithEventName:eventName

 reactTag:self.reactTag

 scrollViewContentOffset:scrollView.contentOffset

 scrollViewContentInset:scrollView.contentInset

 scrollViewContentSize:scrollView.contentSize

 scrollViewFrame:scrollView.frame

 scrollViewZoomScale:scrollView.zoomScale

 userData:userData

Chapter 6 Advanced Topics

414

 coalescingKey:_coalescingKey];

 [_eventDispatcher sendEvent:scrollEvent]; // ------------> 1)

}

	 1)	 Send an event with all the information included.

	 2)	 Set a throttle to 17 milliseconds. For JavaScript-

powered animation, this throttle is reasonable.

This throttle could be removed for native-powered

animation.

The event is eventually sent to RCTNativeAnimatedModule

which, again, passes it down to RCTNativeAnimatedNodesManager

for the hard work (Listing 6-53). With all the relevant information

for event transmission registered (Sections 6.6.2 and 6.6.3),

RCTNativeAnimatedNodesManager is able to dispatch the event to the

destined animated node through the ANG.

Listing 6-53.  Event dispatcher

// # RCTNativeAnimatedModule

- (void)eventDispatcherWillDispatchEvent:(id<RCTEvent>)event

{

...

 RCTExecuteOnMainQueue(^{

 [self->_nodesManager handleAnimatedEvent:event];

 });

}

// # RCTNativeAnimatedNodesManager

- (void)handleAnimatedEvent:(id<RCTEvent>)event

{

 if (_eventDrivers.count == 0) {

 return;

 }

Chapter 6 Advanced Topics

415

 NSString *key = [NSString stringWithFormat:@"%@%@",

 event.viewTag, RCTNormalizeAnimatedEventName(event.eventName)];

 NSMutableArray<RCTEventAnimation *> *driversForKey =

 �_eventDrivers

[key]; // > 1)

 if (driversForKey) {

 for (RCTEventAnimation *driver in driversForKey) {

// ---> 1)

 [self stopAnimationsForNode:driver.valueNode];

 [driver updateWithEvent:event]; // ------------------> 2)

 }

 [self updateAnimations]; // ---------------------------> 3)

 }

}

	 1)	 Find the animation drivers related to the event and

iterate through them. This information is populated

in Section 6.6.3.

	 2)	 The updateWithEvent depth first searches the ANG

to identify all the event receivers (Section 6.6.4.1).

	 3)	 The updateAnimations breadth first searches

the ANG to update all the associated animated

nodes and eventually updates the event receiver, a

component (Section 6.6.4.2).

Next, we see how the component got updated in this process by

examining steps 2 and 3 closer in the following two sections.

Chapter 6 Advanced Topics

416

6.6.4.1  �Identify Receivers

The depth-first search is carried out by searching through the children of

the animated node. As mentioned, this search is used to identify all the

receivers (Listings 6-54 and 6-55).

Listing 6-54.  Depth-first search to mark the receivers

(updateWithEvent)

- (void)updateWithEvent:(id<RCTEvent>)event

{

 NSArray *args = event.arguments;

 id currentValue = args[2];

 for (NSString *key in _eventPath) { // ------------------> 1)

 currentValue = [currentValue valueForKey:key];

 }

 _valueNode.value = ((NSNumber *)currentValue).doubleValue;//>2)

 [_valueNode setNeedsUpdate]; // -------------------------> 3)

}

	 1)	 Extract the value from the event using the

_eventPath populated in Section 6.6.3.

	 2)	 Update the animated node with the value extracted.

	 3)	 setNeedsUpdate cascading calls the same method of

all the children of the animated node. See the logic

in the next snippet.

Chapter 6 Advanced Topics

417

Listing 6-55.  Depth-first search to mark the receivers

(setNeedsUpdate)

- (void)setNeedsUpdate

{

 _needsUpdate = YES; // ----------------------------------> 1)

 for (RCTAnimatedNode *child in _childNodes.

objectEnumerator) {

 [child setNeedsUpdate]; // ----------------------------> 2)

 }

}

	 1)	 Mark self as “needs update.”

	 2)	 Cascading marks all children as “needs update.”

Take the example ANG we used in Section 6.6.1.1;

the resulting state of the data structure is given in

Figure 6-9.

U

U

U

U U

U U

U Event Source
(Scroll View)

Event Receiver (s)

Figure 6-9.  Update pass within an animated node graph (ANG)

Chapter 6 Advanced Topics

418

6.6.4.2  �Update

Let’s continue from step 3 in handleAnimatedEvent (Listing 6-56).

Listing 6-56.  Breadth-first search to update (updateAnimations)

// # RCTNativeAnimatedNodesManager

- (void)updateAnimations

{

 �[_animationNodes enumerateKeysAndObjectsUsingBlock:

^(NSNumber *key, RCTAnimatedNode *node, BOOL *stop) {

 if (node.needsUpdate) {

 [node updateNodeIfNecessary]; // --------------------> 1)

 }

 }];

}

// # RCTAnimatedNode

- (void)updateNodeIfNecessary

{

 if (_needsUpdate) {

 �for (RCTAnimatedNode *parent in _parentNodes.

objectEnumerator) {

 [parent updateNodeIfNecessary]; // ------------------> 2)

 }

 [self performUpdate]; // ------------------------------> 3)

 }

}

Chapter 6 Advanced Topics

419

	 1)	 Iterate through the registered animated nodes

and carry out the updateNodeIfNecessary() of

all nodes.

	 2)	 The update of ANG is carried out as a breadth-

first search (BFS). Here, all parent nodes need

to be updated first before the current node is

updated. The stop condition of the BFS is false in

needsUpdate, so the values can be directly used for

nodes that have been updated.

	 3)	 Perform the actual update of the animated node.

Let’s take a look at the performUpdate of RCTAdditionAnimatedNode

continued from step 3 (Listing 6-57).

Listing 6-57.  Breadth-first search to update (performUpdate)

// # RCTAdditionAnimatedNode

- (void)performUpdate

{

 [super performUpdate]; // —------------------------------> 1)

 NSArray<NSNumber *> *inputNodes = self.config[@"input"];

 if (inputNodes.count > 1) {

 RCTValueAnimatedNode *parent1 = (RCTValueAnimatedNode *)

 [self.parentNodes objectForKey:inputNodes[0]];

 RCTValueAnimatedNode *parent2 = (RCTValueAnimatedNode *)

 [self.parentNodes objectForKey:inputNodes[1]];

 if ([parent1 isKindOfClass:[RCTValueAnimatedNode class]] &&

 [parent2 isKindOfClass:[RCTValueAnimatedNode class]]) {

 self.value = parent1.value + parent2.value;

 }

 }

}

Chapter 6 Advanced Topics

420

	 1)	 Before the calculation of the current node,

perform the search on related nodes through

RCTPropsAnimatedNode (Listing 6-58).

Listing 6-58.  Breadth-first search to update (RCTPropsAnimated

Node::performUpdate)

- (void)performUpdate

{

 [super performUpdate];

 if (!_connectedViewTag) {

 return;

 }

 for (NSNumber *parentTag in self.parentNodes.keyEnumerator) {

 RCTAnimatedNode *parentNode =

 [self.parentNodes objectForKey:parentTag];

 if (

 [parentNode isKindOfClass:[RCTStyleAnimatedNode class]]

) {

 [self->_propsDictionary addEntriesFromDictionary:

 �[(RCTStyleAnimatedNode *)parentNode

propsDictionary]];// 1)

 } else if (

 [parentNode isKindOfClass:[RCTValueAnimatedNode class]]

) {

 NSString *property =

 [self propertyNameForParentTag:parentTag];

 id animatedObject =

 [(RCTValueAnimatedNode *)parentNode animatedObject];

Chapter 6 Advanced Topics

421

 if (animatedObject) {

 �self->_propsDictionary[property] =

animatedObject;// > 1)

 } else {

 CGFloat value =

 [(RCTValueAnimatedNode *)parentNode value];

 �self->_propsDictionary[property] = @(value); // ---> 1)

 }

 }

 }

 if (_propsDictionary.count) {

 [self updateView]; // ---------------------------------> 2)

 }

}

	 1)	 Populate the _propsDictionary with the properties

in change.

	 2)	 Update the views using the _propsDictionary. See

in Listing 6-59 the implementation of updateView.

Listing 6-59.  updateView

- (void)updateView

{

 if (_managedByFabric) {

 ...

 } else {

 [_bridge.uiManager

 synchronouslyUpdateViewOnUIThread:_connectedViewTag

 viewName:_connectedViewName

 props:_propsDictionary];

 }

}

Chapter 6 Advanced Topics

422

6.7  �Adaptive to All Screens, Layout Design
In the experience of the author, the various widths of phones rarely cause

issues. The heights do. Unscrollable vertical layout could easily mess up

the UI, especially on small screens. Here are some hints from the battle-

ironed methods to do a vertical layout that is adaptable to any screens:

	 1)	 🚀 Do not use an absolute value for height.

	 2)	 🚀 Make all components layoutable, that is,

the layout of a component should be able to be

extrapolated from its flex attributes with no surprise.

To achieve this, all customized components

should be designed to behave the same as stock

components – they can maintain their inheritance

layouts while respecting flex attributes passed down

from the consumer. Practically, the spread operator

on the style props is your friend.

	 3)	 🚀 Do not overabstract. Try to make the component

hierarchy flatten and to put in one place all

components involved in one screen. So they can be

programmed, reasoned, and debugged in one place.

Combined with the second hint, you will find coding

layout a breeze. Moreover, the animation code can

benefit from this practice too.

	 4)	 🚀 Make the best of available space by using intrinsic

sizes combined with flexGrow. More specifically,

(a) let the components with solid intrinsic size

occupy the space they need (nonnegotiable space)

and (b) leverage flexGrow to distribute the gaps

left among those components. In some cases, the

Chapter 6 Advanced Topics

423

size of some components (such as text size) is also

negotiable. Discuss with your designer if that’s

the case.

	 5)	 🚀 Use raw calculation based on screen height as the

last resort. It is not very scalable (in terms of adding

new components) and hard to maintain.

6.8  �Time to Say Goodbye
We have completed the journey of React Native. From programming

techniques to internal mechanisms, I hope this journey is exciting and

fruitful to you too. Nonetheless, the topics discussed in this book are

far from enough to cover the complete enormous ecosystem of React
Native which arises based on a whole lot of JavaScript projects that

are equally significant, sophisticated, and complex. They are, namely,

Yoga that makes flexbox possible on mobile development; Metro that

enables hot reload and debugging of JavaScript; NodeJS and Webpack

that establish the foundation to most React Native projects; Babel that

enables JSX; JavaScriptCore and Hermes that provide the JavaScript

runtime; TypeScript that makes JavaScript a safer language; Jest that

is a framework to write unit tests in JavaScript; and lastly but most

importantly, React that defines the modernized program paradigm

accompanied with the reconciliation/rendering mechanism.

There are also a plethora of awesome third-party libraries that haven’t

been examined. There are react-native-fast-image, react-native-vector-

icons, and react-native-svg for image rendering and caching; react-native-

reanimated, react-native-gesture, react-native-gesture-handler, and

react-native-lottie that extend the React Native animation capacity; react-

navigation that offers a declarative way for page routing; react-native-video

that enables multimedia; and recyclerlistview that enhances the long list

performance in React Native, just to name a few.

Chapter 6 Advanced Topics

424

React Native and its ecosystem is ever iterating. Turbo modules

and Fabric are on the horizon; the practice of great front end (share

code across all platforms including desktop and the Web) is still behind

the walls of big corporations; and excellent developers and teams are

continuously creating new awesome projects filling almost every capillary

requirement and pain point. Hopefully when you are reading this book,

these new architectural optimizations and methodologies are available to

the community.

From first-party to third-party projects, from coding guides to n-times

efficiency methodologies, it’s simply not possible to cover the complete

ecosystem that is moving forward, regardless of how much I would like to.

All the preceding unexplored territories could be side tasks in the future.

You may also choose your next adventure in accordance with your project

goal to make the greatest impact.

It is worth noting that the principles in this book are subjective from

my point of view and are also subjective to be challenged. Having been

working on projects of various scales, from startup apps with thousands

of users to full-fledged Internet systems that are used by hundreds of

millions, I believe there is a “best practice” suitable for each team under

each particular circumstances. It is the development team to define what

it is. So please use the guides in this book as scale weights, instead of rules,

when making your own decisions. Please bear in mind that these are just

opinions derived from years of working on the technology by a developer

just like yourself. Feel free to revise, enhance, or undermine some of the

opinions based on your specific circumstance. Feel free to contact me

(holmeshe@hotmail.com) if you want to discuss it with me.

Chapter 6 Advanced Topics

425

We have accomplished our adventure of Manyface. After having

thoroughly explored it, the adventurous region has now turned into a

playground with maps and guidance. A good idea is to use Manyface

as a reference app to experiment on when you are tackling technical

difficulties, making design decisions, or trying to understand platform/

network particularities. With the understanding of both the regime of

application and the regime of framework, you are now more than capable

of doing it.

Let’s conclude it here. Happy hacking, and Valar Morghulis (͡° ʖ͜ ͡°).

Chapter 6 Advanced Topics

427© M. Holmes He 2022
M. H. He, Creating Apps with React Native, https://doi.org/10.1007/978-1-4842-8042-3

Index

A, B
Android version

project setup, 159
asynchronous, 163, 164
hello() method, 162
HelloWorldManager, 160
implementation, 161, 162
Kotlin class, 160
ManyfacePackage, 161–163
subdirectory, 159

Animated node graph (ANG), 386,
391, 395, 396, 417

Animation
AnimatedProps, 402
createAnimatedComponent()

method, 387–390
event source, 385
internal architecture, 386
interpolation/calculation, 385
node graph

AnimatedWithChildren, 394
createAnimatedNode,

399–402
getNativeTag(), 398
JavaScript pass, 392–396
makeNative(), 396, 397
native pass, 396
pull-to-refresh, 391, 392

value calculation, 391, 392
nodes, 386
receiver option, 402–405
source process

addAnimatedEventToView,
410, 411

attach() method, 407
attachNativeEvents, 407
FlatList, 405–412

transmission
depth-first search, 417
dispatcher, 414, 415
handleAnimatedEvent, 418
performUpdate, 419
RCTPropsAnimated

Node, 420
RCTScrollView, 412, 414
receiver identification,

416, 417
update, 418–421
updateView, 421

Animation technique
gesture-driven, 134–145
glimmering skeleton view, 89
layout (see Layout animation)
setState() method, 90
user experience, 90
value (see Value animation)

https://doi.org/10.1007/978-1-4842-8042-3

428

Asynchronous operations
application development, 281
await keyword, 283–285
fetch(), 286
interruption, 280
meaning, 280
online process

conditional rendering,
290, 291

feed list, 288
fetching data, 292
loadData() method, 289, 290
network fetching, 287
requirements, 287

orphan operations, 285
promise, 281–283
traditional callback

paradigm, 282

C
Composition vs. Inheritance

components, 56
HOC (see Higher-order

component (HOC))
render() method, 56, 57
specialization order, 57

Congestion window (CWND),
252, 253

D
Dependency injection

CREATE_MODULE, 203

implementation details, 202
module creation, 202
native components/

modules, 201
Design exception flow

ACE programmers, 334
catch block/error

boundary, 337
controlled/uncontrolled

exceptions, 336
definition, 334
external/internal

exceptions, 336
feature flow, 334
global error handling, 340
key qualities, 341, 342
principles, 336
problem-solving, 334
software architecture

bubble, 338
crash points, 339, 340
entry points, 338, 339

Direct manipulations, 197, 253
Domain Name System (DNS),

272–274

E
Error handling

component, 74, 87
definition, 74
error boundary, 74
exception flow, 88
moment production

INDEX

429

componentDidCatch
method, 80

error page, 87
exception flow, 77
exception report, 85, 86
feeds reinforced, 80, 81
instant crash, 75, 76
requirements, 77
silent log, 77
source code, 82–84
withErrorBoundary

method, 78, 79
problematic component, 88

Event
Android version, 187
callbacks/set properties, 186
hello() method, 187, 188
iOS send message, 186, 187
JavaScript layer, 188
native-to-native events, 186
receive message, 188, 189

Exception handling
approaches, 206
ErrorBoundary, 207
network programming, 302–311
StarCraft, 207

Explicit Congestion
Notice (ECN), 278

Export constants
Android, 199
bootstrap phase, 198
disadvantages, 198
iOS view manager, 199
JavaScript, 199

F
Flexbox

alignItem, 43
components, 41
component size, 44
feed components

containers, 51
control panel, 50, 51
divided mock, 47
implementation, 54, 55
metadata area, 47, 48
requirements, 45
resources, 47
source code, 49, 50
visual outcome, 46
widget, 51, 52

flex sizes, 45
intrinsic size, 44
justifyContent, 42

G
Gesture-driven animation, 91

calculation results, 136
interpolation, 137
native events, 135–137
phases, 134
pull down load effect,

137–144
real-world objects, 134
requirements, 137
transitional stage, 135
value animation, 136

INDEX

430

H
“Hello world” app

container and children, 21–24
handling props.children, 24
index.js, 10
inline style, 20
internals/JSX, 25–30
JSX, 12–15
key concepts, 7
layout subcomponents, 23
margin mode, 20
native development

environment, 7–12
position mode, 19
production/dev mode, 8
props, 15, 16
setState() internals, 37, 38
skeleton source code, 10, 12
states/props

cascading change, 33–36
component, 30
current component, 30–33
setState() method, 32

styles, 16–20
TypeScript, 16
visual outcome, 18

Higher-order component
(HOC), 57, 88

factory component, 59
feed factory, 59, 60
implementation, 63–66
meta data/control panels, 60, 62
multiple photo feeds, 59

original feed, 62
requirements, 58
source code, 57, 58

Hypertext transfer protocol
(HTTP/1.1)

API design, 270, 271
cache control, 268, 269
definition, 257
dynamic request, 260
GET, 260
GraphQL, 271
HOL blocking, 276
POST, 260
PUT request, 260
query parameters, 257
request method, 258, 259, 261,

263, 264
response methods, 262, 264, 265
server-side errors, 267
static/dynamic types, 257
status codes, 266, 267
URI, 260

I
Initial properties

features, 199
init method, 200
JavaScript layer, 201
main activity, 200

Internet
ECN, 278
head-of-line blocking (HOL

blocking), 275, 276

INDEX

431

HTTP/2, 275–277
IPV6, 278
Multipath TCP, 278
multiplexing, 276, 277
qualities, 275
QUIC and HTTP/3, 278

iOS native module
asynchronous, 157, 158
callback, 157
events, 186, 187
implementation, 156, 157
native component, 167, 168
native method invocation, 157
project setup

header file, 153
HelloWorldManager, 152
HelloWorldManager

Bridge, 154
JavaScript/

communication, 155
Objective-C file, 154
swift file, 152
.xcworkspace, 151

video component, 209–214

J, K
JavaScript, 91
JavaScript layer

Asynchronization (see
Asynchronous operations)

modules, 342
JavaScript XML (JSX)

app component, 26

conditional rendering, 14
createElement() code, 25
DOM tree, 29
Hello world app, 12–15
meaning, 3
static string, 13
ternary expression, 14

L
Layout animation, 89

abstraction, 92
Android, 95
definition, 91
expandable message

ExpandableText
method, 100–102

expand() method, 100
source code, 102, 103
text component, 97–100

LayoutAnimation.create(), 93
linear/bouncing animation, 92
raw animation config, 93–95
requirements, 96
shortcut methods, 92

Layout design/screen
intrinsic sizes, 422
spread operator, 422
vertical layout, 422

Long list
component, 330
entries, 331–333
FlatList item, 332
optimization, 330, 331

INDEX

432

rendering behaviors, 331
TableView/recyclerview, 330
warning message, 332
withMetaAndControls, 333

M
Modules

Android version, 159–164
bootstrap, 343

AppDelegate, 347–349
approaches, 347
init bridge and load, 365
initialization, 355–360
prerequisites, 366
RCTBridge, 349–351
RCTCXXBridge, 352–355
RCTGetModule

Classes, 364
requiresMainQueue

Setup, 360–363
threading model and

locks, 363–366
checklist creation, 165
communication, 380–382
comparable technology, 149
concrete method, 342
dependency injection, 201
disadvantages, 150, 383–385
evaluateJavaScript, 379, 380
function arguments, 149
initialization flow, 343
iOS (see iOS native module)

JavaScript, 164, 165
JavaScriptCore, 379
JavaScript layer

bootstrap, 366, 367
createModule@

JSINativeModules, 371
enqueueNativeCall, 377
fbGenNativeModule@

NativeModules, 372–374
genMethod@

NativeModules, 374–379
getModule@

JSINativeModules, 370
NativeModuleProxy, 368
NativeModules, 368

JSEvaluateScript(), 379
macros, 344–346
metadata, 382, 383
nativeModuleProxy, 381
native techniques, 205, 206
push notification, 148
RCT_EXTERN_MODULE, 344
RCTRegisterModule, 345
rendering systems, 147
requirements, 147
video component, 208
WebView, 149

N, O, P, Q
Native components

Android
callback view, 177
HelloViewManager, 173

Long list (cont.)

INDEX

433

implementation, 174–176
project setup, 173
view properties, 176–178

children, 180–184
components, 185
dependency injection, 201
iOS native

HelloViewManager, 167, 168
HelloViewManager

Bridge, 168
implementation, 168–170
project setup, 167, 168
RCTViewManager, 170
view properties, 170–173

JavaScript layer
abstraction, 179, 180
isolated file, 180
modified version, 178, 179

native techniques, 204, 206
react-native-fast-image, 166
UI elements, 166
video component, 208
view manager, 166

Network programming
asynchronous operations, 242
diagnostic tools, 242
DNS, 271–273
exception handling

HTTP status code, 303
network requests, 302
network service, 304
offline mode, 309–311
potential design

options, 302

reinforce components,
304–308

strategies, 302
goals, 280
HTTP/1.1, 257–271
Internet, 275–279
JavaScript layer, 280–292
learning process, 241
native layer, 242

fetch network
resources, 293

local caching, 294–301
LoomingImage, 294
offline strategies, 293
requirements, 294
VideoView, 297

protocols, 279
TCP/IP (see Transmission

Control Protocol/Internet
Protocol (TCP/IP))

TLS, 273–275
types, 242

R
React

components
building blocks, 2
feed source code, 4
flexbox, 2
key concepts, 7
life cycle methods, 6
programmatical form, 1
props, 2

INDEX

434

render() method, 5
source code, 3, 4

fractal topology, 1
Hello world (see “Hello

world” app)
programmatic approach, 1

React tag
command system, 192
HelloViewManager, 193
native layer, 191–194
Objective-C dependency, 192
react ref, 189, 190
reconcile

implementation, 194–196
ScrollView, 190
setBlue method, 192
UIView instance, 191

Redux
action, 319
collateral advantages, 318
component, 316
concepts, 319
events, 318
general principles, 320
parsing/deserialization

process, 320
principles, 319
social network

action/dispatcher, 323, 327
connect subscriber, 324
implementation, 325–329
loadData() method, 324

requirements, 321
store/reducer, 322–325

states, 316
video player, 316

Rendering method
constrain, 314
props, 315
shouldComponent

Update(), 314
virtual DOM tree, 313

requirements, 79

S
ScrollView/FlatList methods

component, 67
moment

FeedModel method, 69
mock data, 71, 72
requirements, 68

viewport/window, 68
virtual list, 68

Synchronous method, 197, 198

T
Transmission Control Protocol/

Internet Protocol (TCP/IP)
application layer, 246
congestion control, 252–254
data delivery/nodes, 247
duplication, 247
empirical values, 250

React (cont.)

INDEX

435

four-way handshake, 254, 255
general-purpose layers, 244
handshake, 248–251
header flags, 255, 256
headers, 245
inbound packet, 245
network clients, 246
packet aggregation, 256
port numbers, 246
processing unit, 244
protocol definition, 243
pseudo packet, 245
sliding window, 251, 252
software module, 243
stack, 243
TCP header, 247

Transport layer security (TLS)
certificate authorities (CA), 274
definition, 273
handshake, 274
key exchange, 273, 274
pinning, 275

Turbo modules, 424

U
Uniform resource

identifier (URI), 260

V, W, X, Y, Z
Value animation, 90

Animated.spring(), 107
Animated.timing(), 106, 107

Animated.Value, 105, 106
calculation, 112–114
cascading invocation, 112
cohort, 108
component props, 104
interpolation, 111, 112
JavaScript thread, 105
loading indicator

LoomingImage, 125, 126
requirements, 121
RotatingCircle, 122–124
setValue(), 133
skeleton view, 122, 130–133
spinning envelope, 121
SpinningEnvelope, 127, 128

looming/image loading
LoomingImage,

115–117, 119–121
requirements, 114

methods, 113
setValue(), 109
transform props.style, 110, 111

Video component
Android counterpart, 214–217
feed images, 209
iOS implementation, 209–214
JavaScript layer

feed categories, 220–223
onViewableItems

Changed, 227
ref forwarding, 223–226
renderItem method,

226–228
view manager, 219

INDEX

436

withMetaAndControls, 224
wrapper, 217–219

reinforced component
Android version, 234–238
ErrorBoundary, 238
iOS code, 229–234

JavaScript layer, 238–240
requirements, 228
theoretical method, 228

requirements, 208
video playback, 208

Virtual DOM tree (VDOM tree),
28, 313

Video component (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	The Path to a 05 App
	Chapter 1: Start Thinking in React
	1.1	 Component
	1.1.1 Key Takeaways

	1.2	 The “Hello World” App in Pieces
	1.2.1 React Native Development Environment
	1.2.2 JSX
	1.2.3 props
	1.2.3.1 Style
	1.2.3.2 Children

	1.2.4 JSX Internals
	1.2.5 States
	1.2.5.1 State Change on the Current Component
	1.2.5.2 Cascading State Changes

	1.2.6 setState() Internals
	1.2.7 Key Takeaways

	1.3	 Summary

	Chapter 2: Foundations of React
	2.1 Flexbox, a Practical Guide
	2.1.1 Component Size
	2.1.2 Case Study: Feed
	2.1.3 Key Takeaways

	2.2 Composition vs. Inheritance, HOC
	2.2.1 Case Study: Multiple Photo Feeds
	2.2.2 Key Takeaways

	2.3 ScrollView and FlatList
	2.3.1 Case Study: Moment
	2.3.2 Key Takeaways

	2.4 Error Handling
	2.4.1 Case Study: Moment (Reinforced)
	2.4.2 Key Takeaways

	2.5 Summary

	Chapter 3: Animation in React Native
	3.1 Introduction to React Native Animation
	3.2 Layout Animation
	3.2.1 Presets
	3.2.2 LayoutAnimation.create( )
	3.2.3 Raw Animation Config
	3.2.4 Android
	3.2.5 Case Study, Read More
	3.2.6 Key Takeaways

	3.3 Value Animation
	3.3.1 Animate the Animation
	3.3.1.1 Animated.timing( )
	3.3.1.2 Animated.spring( )
	3.3.1.3 Animation Cohort
	3.3.1.4 setValue( )

	3.3.2 Bind the Animation Value
	3.3.2.1 The transform props.style
	3.3.2.2 Value Interpolation
	3.3.2.3 Value Calculation

	3.3.3 Case Study 1, Looming Animation for Image Loading
	3.3.4 Case Study 2, Loading Indicators
	3.3.5 Key Takeaways

	3.4 Gesture-Driven Animation
	3.4.1 Native Event
	3.4.2 Case Study, a Pull Down Load Experience
	3.4.3 Key Takeaways

	3.5 Summary

	Chapter 4: Native Modules and Components
	4.1	 Native Modules
	4.1.1 iOS Native Module
	4.1.1.1 Setup
	4.1.1.2 Implement the Native Module
	4.1.1.3 Async Calls

	4.1.2 Android Native Module
	4.1.2.1 Setup
	4.1.2.2 Implement the Native Module
	4.1.2.3 Register the Native Module
	4.1.2.4 Async Calls

	4.1.3 Use the Native Module in JavaScript
	4.1.4 Key Takeaways

	4.2	 Native Components
	4.2.1 iOS Native Component
	4.2.1.1 Setup
	4.2.1.2 Implement the View Manager
	4.2.1.3 View Property

	4.2.2 Android Native Component
	4.2.2.1 Setup
	4.2.2.2 Implement the View Manager
	4.2.2.3 View Property

	4.2.3 Use the Native Component in JavaScript
	4.2.3.1 The Easy Way
	4.2.3.2 The Right Way, Abstraction on the JavaScript Layer

	4.2.4 Children of a Native Component
	4.2.5 Key Takeaways

	4.3	 Advanced Techniques
	4.3.1 Event
	4.3.1.1 Send Events from iOS
	4.3.1.2 Send Events from Android
	4.3.1.3 Receive Events in JavaScript

	4.3.2 React Tag
	4.3.2.1 React Refs
	4.3.2.2 React Tags
	4.3.2.3 Reconcile React Tag Implementation on JavaScript

	4.3.3 Direct Manipulation
	4.3.4 Synchronous Method Call
	4.3.5 Export Constants
	4.3.5.1 iOS
	4.3.5.2 Android
	4.3.5.3 Access Constants in JavaScript

	4.3.6 Initial Properties
	4.3.7 Dependency Injection
	4.3.8 Key Takeaways

	4.4	 Exception Handling
	4.5	 Case Study – a Video Component
	4.5.1 iOS Implementation of a Video Component
	4.5.2 Android Implementation of a Video Component
	4.5.3 JavaScript Layer
	4.5.3.1 Native Component Wrapper
	4.5.3.2 View Manager Wrapper
	4.5.3.3 Video Feed
	4.5.3.4 Ref Forwarding
	4.5.3.5 Video Feed in Moment

	4.5.4 Reinforced Video Component
	4.5.4.1 Protect the iOS Component
	4.5.4.2 Protect the Android Component
	4.5.4.3 JavaScript Layer

	4.6	 Summary

	Chapter 5: Network Programming
	5.1 A Very Brief Introduction to TCP/IP
	5.1.1 TCP
	5.1.1.1 Three-Way Handshake (Opening Connection)
	5.1.1.2 Sliding Window
	5.1.1.3 Congestion Control
	5.1.1.4 Four-Way Handshake (Closing Connection)
	5.1.1.5 Miscellanies

	5.1.2 HTTP/1.1
	5.1.2.1 HTTP Is Text Based
	5.1.2.2 Common Request Headers
	5.1.2.3 Common Response Headers
	5.1.2.4 HTTP Status Code
	5.1.2.5 Cache Control
	5.1.2.6 HTTP API Design

	5.1.3 DNS
	5.1.4 TLS
	5.1.4.1 Pinning

	5.1.5 The Modern Internet
	5.1.6 Key Takeaway

	5.2 Network Programming on the JavaScript Layer
	5.2.1 Asynchronous Operations
	5.2.1.1 Promise
	5.2.1.2 Await

	5.2.2 fetch( )
	5.2.3 Case Study, Move Everything Online

	5.3 Network Programming on the Native Layer
	5.3.1 Case Study, Enable Local Caching

	5.4 Exception Handling
	5.4.1 Case Study, Reinforce the Network Components
	5.4.2 Case Study, Offline Mode

	5.5 Summary

	Chapter 6: Advanced Topics
	6.1 Revisit Rendering
	6.2 Redux
	6.2.1 Case Study, Like
	6.2.1.1 Reduxfy Feeds
	6.2.1.2 Implement Like

	6.3 Long List
	6.3.1 Case Study, Apply Basic Heuristics

	6.4 0 Crash, Design Exception Flow
	6.4.1 Robustness Built in Software Architecture
	6.4.1.1 Entry Points
	6.4.1.2 Crash Points

	6.4.2 Last Resort, Global Error Handler
	6.4.3 Wrap Up

	6.5 Native Modules Inside Out
	6.5.1 Phase 0, Prior Bootstrap
	6.5.2 Phase 1, Bootstrap
	6.5.2.1 requiresMainQueueSetup
	6.5.2.2 Threads and Locks

	6.5.3 Phase 2, Native Module on the JavaScript Layer
	6.5.3.1 The Nature of a Native Call

	6.5.4 Execute the Bundle
	6.5.5 The Two-Way Communication
	6.5.6 The Native Module Metadata
	6.5.7 Wrap Up

	6.6 Animation Inside Out
	6.6.1 Establish the Animated Node Graph
	6.6.1.1 JavaScript Pass
	6.6.1.2 Native Pass

	6.6.2 Bind the Event Receiver
	6.6.3 Attach the Event Source
	6.6.4 Native Event Transmission
	6.6.4.1 Identify Receivers
	6.6.4.2 Update

	6.7 Adaptive to All Screens, Layout Design
	6.8 Time to Say Goodbye

	Index

