
Database-Driven
Web Development

Learn to Operate at a Professional Level
with PERL and MySQL
—
Thomas Valentine

Database-Driven Web
Development

Learn to Operate at a Professional
Level with PERL and MySQL

Thomas Valentine

Database-Driven Web Development: Learn to Operate at a Professional Level with
PERL and MySQL

ISBN-13 (pbk): 978-1-4842-5969-6 ISBN-13 (electronic): 978-1-4842-5970-2
https://doi.org/10.1007/978-1-4842-5970-2

Copyright © 2021 by Thomas Valentine

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259696. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Thomas Valentine
Selkirk, MB, Canada

https://doi.org/10.1007/978-1-4842-5970-2

For Allison, our family miracle

v

Table of Contents

Chapter 1: Database-Driven Web Development Fundamentals �������������������������������� 1

The Evolution of the Database-Driven Approach��� 1

How to Spot a Database-Driven Website �� 2

The Address (URL) ��� 3

Differing Content ��� 4

Search Features �� 4

Username and Password ��� 5

� htaccess Files ��� 5

Where and When to Use a Database ��� 6

The World’s Most Oft-Used Database: MySQL ��� 6

Tables, Rows, and Columns ��� 7

Data Types ��� 7

Operators ��� 8

Time Values ��� 10

Web Hosting Fundamentals �� 11

The Shared Server �� 11

Email Options �� 12

Secure Transactions �� 13

Plesk or cPanel? �� 13

Hard Drive Space and Data Transfer Limits ��� 14

Resellers �� 14

About the Author ��� xiii

About the Technical Reviewer ���xv

Introduction ���xvii

vi

The VPS Server ��� 15

The Dedicated Server�� 15

Installing Perl Modules �� 16

File Transfer Protocol (FTP) Clients �� 16

File Rights and Permissions �� 16

Obtaining Your Path Statement with printenv�pl �� 17

Summary��� 18

Chapter 2: Perl CGI and MySQL Essentials ��� 19

CGI Primer ��� 19

HTTP Methods ��� 20

The GET Method �� 20

The POST Method �� 20

Running Perl CGI Programs ��� 21

CPAN�bat �� 22

The Perl Package Manager �� 22

Including the CGI Module in Your Script �� 23

Using the param() Method �� 23

Obtaining the Calling IP Address ��� 23

Making System Calls ��� 24

Error Handling ��� 24

CGI::Carp �� 25

Where to Use Error Handling ��� 25

Handle Your Errors ��� 26

The External HTML Content Template �� 26

Printing Your Dynamic Content to the Browser ��� 27

Perl and MySQL Basics ��� 27

Selecting One Database Item into One Variable �� 28

Selecting a Piece of Data Using the Three-Step Method ��� 28

Selecting a Piece of Data Using the Two-Step Method ��� 29

Selecting a Piece of Data Using the One-Step Method ��� 29

Table of ConTenTs

vii

Selecting Many Database Items into Many Variables �� 30

Selecting Many Database Items into One Array �� 31

Selecting Many Pieces of Information Using a WHERE Clause �� 31

Selecting Many Items to Many Arrays ��� 32

Inserting Many Database Items from One Array �� 34

Using a foreach Loop to Insert from an Array �� 35

Inserting Many Database Items from Many Arrays �� 37

Using a foreach Loop to Insert Many Items from Many Arrays �� 38

Summary��� 39

Chapter 3: Essential MySQL Skills �� 41

MySQL Column and Index Types ��� 41

Integer Column Types �� 41

Floating Point Column Types ��� 42

Character String Column Types ��� 42

BLOB Column Types �� 42

Enumeration or Set Column Types �� 43

Time Column Types ��� 43

Perl and MySQL Functions Review ��� 43

Creating Tables �� 43

Loops ��� 44

Pushing an Array ��� 46

Gathering Content �� 46

Ordering Your Arrays: Perl reverse() vs� MySQL ASC or DESC ��� 47

Links and Parameters �� 48

Summary��� 49

Chapter 4: Nuts and Bolts ��� 51

Date and Time Formatting ��� 51

Website Parameters �� 52

Catching the Parameters ��� 53

Processing the Parameters ��� 54

Table of ConTenTs

viii

Loading Your Links �� 55

Gathering the Information ��� 55

Constructing the End Array �� 56

The External Content Template ��� 57

Printing the End Array �� 58

Using the CGI::Carp Module �� 59

Username and Password Maintenance �� 59

Per User Usage Statistics �� 60

Deleting Tables �� 61

Deleting Rows ��� 62

Uploading Files ��� 63

Managing Images and Files �� 64

Summary��� 64

Chapter 5: Practical JavaScript Concepts and Projects ��� 65

Turning Visibility On and Off �� 65

Change the Background Color of an Element ��� 66

An onLoad Event Trigger ��� 68

Use “this” to Change Colors �� 69

Switching Images on the Fly ��� 69

Change HTML Code Using innerHTML ��� 71

Change the Position of a Page Element �� 72

Using onMouseMove ��� 73

Using onLoad and onUnload ��� 74

Making Text Bigger ��� 75

Change the Background Color of an “input” Field �� 77

Change the Text Color of an “input” Field ��� 78

Change the Background Image of an “input” Field ��� 79

Select All of the Checkboxes in a Form��� 80

Select the Background Color of a Submit Button �� 82

Table of ConTenTs

ix

Change the Text Color of a Submit Button �� 83

Insert a Background Image on a Button ��� 84

Change the Background Color of a Drop-Down List�� 86

Change the Text Color of a Drop-Down List �� 87

Change the Background Color of a Textarea Element ��� 88

Insert a Background Image into a Textarea Element �� 90

Preload and Store an Image �� 91

Changing the Size of an Image ��� 92

Changing the Source of an Image ��� 93

Changing the Position of an Image ��� 94

Changing the Background Image �� 96

An Image Viewer ��� 97

A Digital Clock ��� 99

A Drop-Down Menu ��� 101

Create Inset or Outset Border Buttons �� 104

A Description Menu ��� 106

Create a Description Box for an Image ��� 108

A Sliding Horizontal Menu ��� 110

A Click-Driven Horizontal Sliding Menu �� 112

Return the Cursor’s Coordinates ��� 115

Make Your Text Follow the Cursor ��� 116

Summary��� 118

Chapter 6: Images: Uploads and Scripted Manipulation �������������������������������������� 119

Getting Started �� 119

Block One �� 121

Block Two �� 122

Block Three ��� 123

Block Four ��� 124

Block Five�� 126

Table of ConTenTs

x

Block Six ��� 128

Block Seven �� 129

Summary��� 130

Chapter 7: Installing and Using the Perl Server�� 131

The Many Flavors of Perl �� 131

Where’s Perl on a Windows Operating System? ��� 132

Preparing Your Workstation ��� 132

Installing the Perl Server��� 132

Topics to Consider ��� 133

Perl Is Always Ready ��� 133

Installing Perl Modules �� 134

CPAN�bat ��� 134

The Perl Package Manager (PPM) ��� 135

Commonly Used Perl Modules �� 136

Summary��� 137

Chapter 8: Installing and Using the MySQL Database Server ������������������������������� 139

Downloading the MySQL Server Binaries ��� 139

What’s a Beta? �� 140

Preparing Your Workstation ��� 140

Installing the MySQL Server �� 140

Start the MySQL Server ��� 153

Summary��� 153

Chapter 9: Installing and Using the Apache Web Server �������������������������������������� 155

Handling Errors ��� 155

Downloading and Installing the Apache Web Server Binaries��� 156

Allowing Changes to Your Operating System �� 157

Apache and DBI�pm ��� 163

Starting the Apache Server ��� 166

Table of ConTenTs

xi

Startup on a Windows Operating System�� 166

Stopping or Restarting the Server ��� 166

Stopping the Apache Server �� 167

Restarting the Apache Server, Gracefully �� 167

Reviewing Runtime Configuration Directives �� 168

Setting the Server Root ��� 168

Setting the Server Name ��� 169

Summary��� 170

Chapter 10: A Database-Driven Menu System �� 171

create�pl �� 171

populate�pl �� 174

page�cgi �� 176

menu�html ��� 178

Code Block One ��� 178

Begin Code Block Two ��� 179

Code Block Three ��� 180

Begin Code Block Four �� 182

Summary��� 183

Index ��� 185

Table of ConTenTs

xiii

About the Author

With 20 years of experience as both a professional web developer and writer, Thomas
Valentine is uniquely qualified to have written this book. He is a LAMP, Perl, PHP, and

MySQL web developer, programmer, and expert. He writes for various magazines and

websites and has been a technical consultant for large-scale, database- driven websites

such as FedEx.ca and Texas Instruments (ti.com).

xv

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with experience in

coding on different platforms internationally. Prior to dedicated software development,

he worked as a lecturer for a year and was then head of IT at different organizations.

He has domain experience working with technology for companies in a wide variety

of sectors. When he’s not working, he likes reading up on emerging technologies and

strives to be an active member of the software community.

xvii

Introduction

It has been three years since I wrote a technical book. I enjoyed writing this book as

much as I did the first for Apress, some years ago. One of the hardest parts of writing

this book was to separate the weed from the chaff. That is, what should I include that

will make you, the reader, experience an aha! moment after reading a particularly

eye- opening chapter or section?

I separated the useless information that always seemed to be repeated in one way or

another within all of the books I’ve read on the subject. I realized that some knowledge

was missing from the books I’ve read on database-driven web development. I broke

down the constituent parts of the common cgi script and thought back to when I was

learning Perl and MySQL. I remembered the questions I asked myself and what would

have been useful to know. These techniques took me years to perfect. I’m looking

forward to hearing your feedback on what you learn from my techniques.

I develop in Perl and MySQL, so that is what this book will be teaching you. Perl is a

wonderful language to work with. It can be learned in a weekend but takes many years to

master. MySQL is a great partner to the abilities of the Perl scripting language. It too can

be learned in a weekend.

In the chapters to come, you’ll be introduced to some concepts that you know

and understand. My hope is to take that morsel of knowledge further and expand on

it until the wider picture is placed in your mind. I go the extra step and present it in an

intuitively obvious form with plain language explanations and simple to understand

examples, each example building on the knowledge imparted from the last.

We’ll explore concepts that I’ve not been able to find in any other book on the

subject. They all seem to generate the same knowledge, but with only minor concepts

you might already know. They all look alike and, in my opinion, don’t go very far past the

minimum to get the job done.

xviii

I’ve broken up the chapters of this book into logically consecutive blocks of

knowledge. In the examples to come, you’ll be taught not only how Perl and MySQL

work, but how the four main languages and specifications all work together to generate

a fully formed HTML document. Understanding those four specifications (HTML, CSS,

DOM, and JavaScript) is crucial to your success as a web developer. They must be taught

in a way that shows their flexibility and well-thought-out implementation.

Using Perl and MySQL with those four specifications is stimulating and rewarding.

There’s always a moment of personal satisfaction when a particularly tricky script works

perfectly for the first time.

I hope I put forward the concepts and techniques in an easy-to-understand but still

information-packed book. Read on, and remember the only limit is your imagination.

InTroduCTIon

1
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_1

CHAPTER 1

Database-Driven
Web Development
Fundamentals
The database was first created by software engineers at North American Rockwell in

the mid-1970s. They were previously using static files to catalog the work they were

producing. They began to notice that efforts were being duplicated, as a project such as

the designing of an Apollo-era rocket generates hundreds of thousands of different parts.

Each part was given a static file. Keeping track of these hundreds of thousands of parts

was a nightmare before the relational database was put into practice. With it, they were

able to find the duplicated efforts and eliminate them.

We’ll begin this chapter by reviewing the fundamentals of database-driven websites

before moving on to the pros and cons of web hosting, delving into the options that

are available. You’ll see how the modern database fits into the process of using three

different servers (the Perl, Apache, and MySQL servers) to generate a web page. These

three servers are what we’ll be learning to use together in this book. Read on, it’s going to

be fun!

 The Evolution of the Database-Driven Approach
During the infancy of the Internet, databases weren’t used with websites. All pages

were static HTML pages. Today, they’d be pretty boring sites to surf, as we’ve all become

accustomed to the modern database-driven website.

The world caught on to the idea that databases were the more efficient way to

go, eventually leading to our database-driven world. All of our worldly services from

banking to social networks now use a database of some flavor.

https://doi.org/10.1007/978-1-4842-5970-2_1#DOI

2

Of particular note is the Internet. Databases are widely used to serve the pages that

we all look at every day. They integrate seamlessly into a web page and have changed the

world we live in. Databases are here to stay, so it is of paramount importance that you

know a thing or two about them.

Since the database runs on a server, there has to be a way to access these databases.

There are many different ways to do this, as there are many different languages used

in modern computing. We’ll be concentrating on the interactions between the MySQL

database and the Perl scripting language.

Perl has great capabilities when it comes to interacting with databases. It is a

powerful language that has been around for decades. It is a mature technology and

is best suited to working with text. Perl stands for Practical Exporting and Reporting

Language and was first used to manipulate text within common static text files. Since

the languages we use in web development are textually based, Perl is the way to go when

dealing with large textual documents (e.g., HTML markup).

Coupled with a database, Perl is a powerful and capable engine to power the modern

website. Perl usually runs on the same server or at least the same network that the

database runs on. This allows for fast and efficient interactions comprised of large blocks

of textual data, such as the HTML code used in every page on the Internet today.

Databases are evolving to fill the need for newer, faster, and more powerful websites.

It is common for one website to use many databases to serve its web pages. This scalable

ability is the cornerstone of today’s website. As the site grows, more databases are

required to run the website. Parceling your website data from one or two databases into

say a dozen allows you to access these databases from different parts of the website in a

timely fashion under a heavy user load.

 How to Spot a Database-Driven Website
Most people just take it for granted that their web page will just load with the information

they expect to be there. As a developer, you need to know how to spot a database-driven

website. There are a few ways you can do this. We’ll examine the different ways to spot

one and to know, in general, what database is being used, in what way, and why.

Chapter 1 Database-Driven Web Development FunDamentals

3

 The Address (URL)
The first, and perhaps easiest, method to use to spot a database-driven website is the

URL in the address bar of the browser. If you were to look at a web page that is a static

HTML page, you would see an address that ends in a file name with the .html file

extension. Examine the following example:

http://www.domain.com/index.html

You can see the constituent parts of the web address clearly: the address starts with

the standard http://www.domain.com and ends with the file named index.html.

Most websites use index.html as the default starting point of their website. It is the

main page that the Apache web server sees as the base file of any given website, although

it is entirely possible to use a different file name as the starting point of your website.

Configuring your web server is tackled in a coming chapter of this book.

The .html extension tells you that the page is a static HTML page. There is nothing

to the right of the address bar, so it is a good bet that a database isn’t being used at all on

that website.

When you use Perl to present a database-driven page, the file extension is either .cgi

or .pl. If there’s a database being used, a question mark will be displayed after the file

name extension. What follows the question mark is unique to each website. Examine the

following URL:

http://www.domain.com/thisfile.cgi?id=1234

You can see the basic constituent parts of a URL, including a Perl script named

thisfile with the extension .cgi. Then comes a question mark followed by the “id=1234”

statement. This is a good indicator that a database is being used. There may be many

different statements after the question mark, each separated with an ampersand (&), as

follows:

http://www.domain.com/thisfile.cgi?id=1234&id2=5678

You can see now that the URL shows two different statements called parameters.

These parameters show that two sets of data within the parameters are being passed to

the server. While it is possible that a database isn’t being used with these parameters, it is

very uncommon to see more than one parameter that is being used without a database

being in the loop somewhere.

Chapter 1 Database-Driven Web Development FunDamentals

http://www.domain.com/index.html
http://www.domain.com
http://www.domain.com/thisfile.cgi?id=1234
http://www.domain.com/thisfile.cgi?id=1234&id2=5678

4

 Differing Content
You can also see that a database is being used by clicking a few links and noticing that

one page looks very much like the previous, but with different content being displayed in

the main content areas. This is because a database-driven site commonly uses templates

to present their data. By template I mean a set of markup (such as HTML) that is used to

present the top and bottom and sides of the page, for example. The only part of the page

that changes is, say, the center of the page. This is the database-generated content.

Another easy way to spot a database-driven site is by paying attention to the

advertising banners and buttons. If they change with every page or even if you refresh

the page, the advertisement changes. This can’t be done without using a database on

some level.

When working with Perl and a database, you’ll notice that a dialog box will be

presented by the browser asking if you’d like to “repost form data.” This is because you’ve

just finished posting data to a database and have clicked the “Back” button on your

browser. The Perl script that posted the information is being run again, making the same

database entry you just made again.

On the Perl scripts that don’t interact with a database, you won’t see the “repost form

data” dialog box. As we progress through the chapters of this book, you’ll notice that this

happens quite often. The only way around this is to provide, within the Perl script, an

easy-to-recognize link that takes you back to the previous page without reposting the

form data and duplicating the database entry.

Reposting the form data can be detrimental to your site, as it duplicates the data

within your database. While the Perl script being rerun may be something as simple as

counting a page hit, it may be something as complicated as uploading a dozen images to

your server – you’ll see that the 12 images are duplicated on your server.

 Search Features
One surefire way of detecting that a website is using a database is if the site offers up

search features. While it is possible to search a website without using a database, this is

costly in terms of server resources and isn’t done very often. Searching through dozens

or even hundreds of static HTML files would take an inordinate amount of time and

server resources.

Chapter 1 Database-Driven Web Development FunDamentals

5

Searching for content via a database, however, is exactly what the database was

created for. MySQL is great for doing this, as it is a relational database. We’ll discover

more on the term relational database in a different section of this chapter.

Search features are a common sight on most database-driven websites. MySQL,

along with Perl, can incorporate some very powerful search features into your site. The

project we’ll be working on in later chapters of this book includes a search feature that

finds users and posts based on a word or phrase entered into a search field by you, the

user.

 Username and Password
One definite and easy way to spot that you’re using a database is if you have to sign in

with a username and password. While there is a way to use a username and password

without using a database, this method doesn’t involve a true database.

When supplying a username and password, the script tells the database to first

look for the username. Once the username is found, the password is retrieved. Once

retrieved, if the password on file mirrors the password provided, the user is logged in.

From there on in, a database is most commonly used to present the page to the user,

most of the time based on some aspect of the user’s personal information.

 .htaccess Files
The only way to use a username and password without using a traditional database is

with an older method of recognizing a user. This older method is by using an .htaccess

file. Within this file is a name/value pair that contains the username and password. An

.htaccess file is simply a text file with commands and data within it.

Once the username and password are verified, the directory directly below where

the .htaccess file resides on your server will be able to be accessed by that particular user.

This check is made by the Apache web server, not Perl nor a database.

While this works fine in some cases, you are limited to about 100 users. After the

100-user limit has been reached, it will take an inordinate amount of time to verify the

username and password. This is because the supplied username and password must be

verified by comparing both pieces of data to the 100 different name/value pairs within

the simple .htaccess file.

Chapter 1 Database-Driven Web Development FunDamentals

6

While the operation of simple user verification is the base operation of an .htaccess

file, it should be known that the Apache web server allows you to include special

commands that limit or change the conditions of each page covered by that .htaccess file.

If you were a web master, in installing and configuring the Apache web server, you

will have to make a certain set of changes in a configuration file known as httpd.conf.

Within this file is all of the information the Apache web server requires to successfully

serve a web page from that server. Most of these commands, such as for allowing user

access, can be put into the .htaccess file. This handy functionality is why the .htaccess file

is still being used on the Internet today.

 Where and When to Use a Database
You would normally use a database if you have a need to present a certain web page to

your users that has as its main point of interest content that is changeable and fluid – a

page that differs according to each user such as a user profile page, for example.

Using a database gives you the flexibility to present to your users dynamic content.

By dynamic, it is meant data that changes, usually according to user action. The user

that generated the data a user is looking at may not be the current user – since there is

the potential to have thousands or even millions of users on one website, looking at data

generated by a different user is commonplace.

If you see that you have a need to employ features such as displaying individual

user information, search features, or are working with HTML forms in any number, you

should be using a database.

While working with a database on the Internet, you’ll be able to easily see where

and how a database is being used within each site that you visit. You’ll get an idea of the

flexibility and power that a database-driven website can accomplish. Through the use

of simple markup code such as HTML, you’ll see that a database can extend the creative

reach that is possible.

 The World’s Most Oft-Used Database: MySQL
MySQL is a database that was completed by Michael Widenius in May of 1995. He

created it as a means to provide a tool that was missing on the project he was working

on at the time. It took him 3 months to write the first incarnation of MySQL, and its

evolution is ongoing today.

Chapter 1 Database-Driven Web Development FunDamentals

7

Released under the GNU Public License in June of the year 2000, MySQL quickly

became known as a powerful open source memory resident server that was easy to use

and flexible enough to be learned in a weekend. Its easy-to-understand SQL (Structured

Query Language) commands allowed even weekend warriors to create really great

database-driven websites.

 Tables, Rows, and Columns
Every database is a collection of tables. Within this table are rows. Within each row are

columns. MySQL doesn’t allow multiple tables or columns with the same name. Rows

aren’t named but are usually identified in some way that is unique to that website. As

you’ll see in the chapters to come, we will be using an AUTO_INCREMENT column as

the primary key that we’ll use to identify each unique row within the database.

Think of tables as something like a spreadsheet – the data presented is logically

arranged in rows and columns within each spreadsheet (table). MySQL keeps track of

the data no matter how it resides on the physical hard drive.

 Data Types
MySQL uses the standard ANSI data types, so if you’ve previously used a database, some

of this may be familiar to you.

Within each table, each column is named. These names are what are referenced

when you make a database call. MySQL allows you to assign a data type to each column

within a row. Data may be of two different fundamental types – strings or numbers.

Strings are letters (and numbers) and numbers are self-explanatory. In queries, strings

must be contained within opening and closing double or single quotes, as you’ll see in a

later chapter when we begin working with data and begin making database queries.

When using the number data type, it is not necessary to enclose the number in

opening and closing single or double quotes. You may use a decimal or negative number

as a data type for your columns.

Chapter 1 Database-Driven Web Development FunDamentals

8

 Operators
There are four basic categories of operators: arithmetic, relational, logical, and bitwise.

Operators are mainly used to work with numbers, but some operators allow strings to be

used with them. The strings are changed into their number equivalents, and the given

operation will be performed upon them.

 Arithmetic Operators

Arithmetic operators are symbols that stand for the basic mathematical operations we

all know, such as addition, subtraction, multiplication, and division. MySQL allows for

these basic operators to be used within a database call. You may use the negative sign in

your queries, as well as floating point numbers (decimal numbers):

• + – Addition

• - – Subtraction

• * – Multiplication

• / – Division

• % – Modulo division

 Relational Operators

Relational operators differ from arithmetic operators in that they return the Boolean

value true or false as the result of the operation. Values of 1 for true and 0 (zero) for false

are also valid returned products of a relational operation.

A string used in a relational operation will be converted into a number. If the string

is not able to be converted into a number, the number value of zero will be returned.

Integers used in a relational operation, when compared to a floating point number, will

be converted into a floating point number. Strings are compared alphabetically with no

regard to case.

• < – Less than

• > – Greater than

• <= – Less than or equal to

• >= – Greater than or equal to

Chapter 1 Database-Driven Web Development FunDamentals

9

• BETWEEN min AND max – Between minimum and maximum,

inclusive

• IN – In a set

• NOT IN – Not in a set

• = – Equal to

• <=> – Equal to, safe for comparing to null

• LIKE – Matches a pattern

• NOT LIKE – Does not match a pattern

• REGEXP, RLIKE – Matches a regular expression

• NOT REGEXP, NOT RLIKE – Does not match a regular expression

• != <> – Not equal to

• IS NULL – Null

• IS NOT NULL – Not null

A null value will return a value of null from any expression. The escape character of \

must be used with %, \, or _.

 Logical Operators

A logical operator is either true or false. There is no in between. Values such as a 1 for

true or 0 (zero) for false may also be returned from a logical operation. We’ll be using

these operators quite a bit once we get into the later chapters of this book. They are

simple to understand and remember, as there are only three of them. While there are

only three of them, they are powerful mathematical operators that work well in a Perl

script:

• AND or && – Logical AND

• OR or || – Logical OR

• NOT or ! – Logical NOT

Chapter 1 Database-Driven Web Development FunDamentals

10

 Bitwise Operators

Bitwise operators are presented much the same as logical operators in that they use

much the same characters to declare themselves. They are numbers that are then

converted to their binary equivalents. The operation is then performed and an integer is

returned. Binary numbers are beyond the scope of this book, so we won’t go any further

in respect to integer to binary conversions:

• | – OR

• & – AND

• << – Shifts all bits to the left

• >> – Shifts all bits to the right

• ~ – One’s complement or NOT

The shifting operators shift all binary digits to either side, resulting in a new binary

value. The tilde (~) operator inverts each binary value. For example, the binary “~101”

becomes “010.”

 Time Values
MySQL provides for a number of different time stamps. Each different time stamp is

displayed slightly different than the next. Time stamps are important in situations when

the time is critical to the site’s operation. Time stamps return not only the time of day but

the date as well. The value of the time stamp is taken from the server on which MySQL is

installed.

It should be noted that time stamps aren’t just obtained via MySQL. The Perl

backtick (`) operator can also be used to obtain a date and time from the Linux server

upon which the Perl script is run. The backtick operator, with Perl, is a system call. So the

entire command within your Perl script will be as follows:

$date = `date`;

The Linux “date” command returns the date and time down to the nearest second of

a minute. You may then use the $date as the value in the column you would use a MySQL

time stamp for otherwise. This has the benefit of including the exact date and time an

operation was performed. Within a Perl script, you’ll eventually have the need to know

Chapter 1 Database-Driven Web Development FunDamentals

11

when a command is run in relation to a different command in a different part of the Perl

script. You may then evaluate the two different numbers down to a fraction of a second.

This is handy for adding a feature to your website that gives the time it took to perform

the database search, as you’ll see on some sites such as Google.

 Web Hosting Fundamentals
So you have an idea for a website and wish to pursue it and make it real. One of the first

things you’ll have to consider is who your web hosting company is going to be.

In a nutshell, there are three options for web hosting – the shared plan, the VPS

(Virtual Private Server) plan, and the dedicated server plan – and each has its own pros

and cons. We will look at each one in the remainder of the chapter.

 The Shared Server
Shared server plans are just what you think they are – you share your server with many

different websites. This plan is great for developing your website in its infant stage. You

would normally start out with the shared plan in order to develop your website into a

finished product. It is the cheapest option that still gives a good amount of functionality,

although it usually isn’t the option to stay with if you plan on having a large amount of

users. It should be noted that there are two ways your shared server will be addressed

as – name-based or IP-based. A name-based server address is the way we humans

usually understand www.domain.com, for example. The other naming convention, IP-

based, is a numeric form of addressing that uses an “octet” of numbers. IP stands for

Internet Protocol, that is, four groups of three numbers separated by a period:

127.34.56.124

The IP address as seen in the preceding example is a valid IP address. It contains

four numbers separated by dots. These numbers are the base addressing system on the

Internet. In order to match these numbers with words that us humans understand, we

would have to use a DNS server. DNS stands for Domain Name Server.

Shared hosting plans usually have all of the functionality you’ll need to get your

website from nothing to a fully functioning Internet offering. However, there are a few

things you have to know of before you sign the contract and pay the company for space

on one of its servers.

Chapter 1 Database-Driven Web Development FunDamentals

http://www.domain.com

12

Web hosting companies only allow a certain amount of resources for your site when

using a shared server plan. Resources are things like disk space, a percentage of processor

usage, and a limit on bandwidth that can be used, usually measured within a 30-day period.

Some limit the amount of MySQL databases you are able to create and use. You

should ask your web host if your MySQL databases are on the same server you’re using or

accessed via the local network on a server dedicated to running MySQL databases. This

is important because in order to use the database, you’ll have to know whether to use a

web address as the location if the database is on a dedicated server or “localhost” if the

database resides on the same server the rest of your website is stored on. This addressing

will be reflected in every Perl script that uses the database, so knowing this is important.

Since the primary scripting language of this book is Perl, it is important that you ask

the web hosting company if they allow you to install more Perl modules that don’t come

with the standard Perl distribution, such as DBI.pm. In later chapters, you will also need

to use size.pm and resize.pm. size.pm and resize.pm are Perl modules that are used to

return the size of an image (size.pm) and resize the image (resize.pm). More on those

two Perl modules in a later chapter.

You should also ask your web host where the Perl executables are located. This piece

of information is the one line of code at the very top of every Perl script, known as the

“shebang.” If the script can’t find the Perl executables, the script won’t run. The most

common location of Perl is as follows:

#!/usr/bin/perl

I have encountered web hosting companies that list every recent version of Perl

as the shebang, giving you the option of what version to use. Some companies use an

unusual shebang. Look to the FAQ or support section of the web host’s website for the

location of Perl.

I have run into a web hosting company that doesn’t offer Perl as a scripting language.

Their excuse was that Perl is not scalable, which couldn’t be further from the truth. Perl

is infinitely scalable – you just have to know how to do it.

 Email Options
Another basic service you should query your web host about is Linux’s sendmail feature.

While most people are familiar with Windows, it is rarely used on the Internet as a server.

This is where Linux comes in. Linux is the prevalent server used to serve the web pages

you see every day.

Chapter 1 Database-Driven Web Development FunDamentals

13

In order to send email via a script, you’ll need sendmail to do it with. sendmail is

a very basic email server that has been in use for decades. With it, you’re able to send

email on the fly according to scripted action.

You’ll also want to ask about your online email client. There are many email clients

to choose from, and all offer pretty much the same functions. What you’re looking

for, though, is a client that is stable and time tested. The most common email client is

Horde, and it works very well. It is one of the oldest and most developed online email

clients available. It is a mature technology. With it, you’ll be able to retrieve and send

email online from any computer with Internet service. The emails you receive are stored

on your server and therefore are available from anywhere, should you memorize the

address to the server.

 Secure Transactions
An important thing to ask about is whether or not you’ll be able to use SSL (Secure

Socket Layer) in a portion of your website that collects payment information or

information that is delicate in nature. Many web hosting companies only allow SSL on

dedicated or VPS servers.

You can tell if a page is protected by SSL by looking to the address bar of the browser.

Instead of having http:// at the beginning, the protocol should be https://. This shows

you that a digital certificate is being used and your data is safe from prying eyes. Some

websites don’t limit the use of SSL to one section of the website in question – they use

SSL to protect their entire website’s data. While this is fine, it usually isn’t warranted.

 Plesk or cPanel?
Most web hosting companies offer one of two different web applications to manage your

server, those being Plesk or cPanel. They both cover pretty much the same functionality,

with a few twists. They look slightly different, but achieve the same thing. It is up to you

to choose which server management application to use. Some like Plesk better, some

cPanel. It is entirely up to you which application to use, as most web hosting companies

give you the choice of the two most common server managers.

Chapter 1 Database-Driven Web Development FunDamentals

14

 Hard Drive Space and Data Transfer Limits
Another issue of concern is the amount of hard drive space you’re going to be assigned.

MySQL databases take up lots of space, so you should have a shared plan with at least

5 GB of available hard drive space.

If you plan on uploading files, make sure you have space enough to sustain the site.

If you’re on a shared plan, go for the plan that offers the most hard drive space. When

you use two thirds of the space you’ve leased, it is time to make plans to upgrade your

hosting solution. Your server manager (Plesk or cPanel) will tell you the amount of space

used and what is remaining, both in easy-to-understand terms.

Most web hosting companies have restrictions on the amount of data transfer

you’re able to use within a 30-day period. Be sure to ask what the bandwidth limit for

your account is and the fees you’ll have to pay if your data transfer needs outweigh your

bandwidth allocation.

 Resellers
Most web hosting companies allow reselling of their services via a third party. These

resellers typically only offer shared web hosting at a very low price, such as $3.99 a

month. They’re exclusively a shared service provider and usually don’t offer dedicated or

VPS plans, so your upgrading options are limited.

While these resellers are fine during the infant stage of your site’s lifecycle, they

can cause a bit of a problem if you’ve already gathered user data and have to move

to a dedicated or VPS server. You’ll have to find a way to get your user’s data from the

resellers shared server to your primary web hosting company’s dedicated or VPS server.

Using a web hosting company that isn’t the primary service provider can sometimes

cause lengthy delays in getting some changes made to your shared server as well. Your

technical support request has to go through the reseller and then to the primary hosting

company for a solution, then back to the reseller who in turn informs you of the outcome

of your request. This amount of time can be lengthy, causing you to have to sit and wait

for an outcome. So that’s the shared server; let’s move on to the VPS server.

Chapter 1 Database-Driven Web Development FunDamentals

15

 The VPS Server
The Virtual Private Server (VPS) plan is a step up from the shared plan in terms of server

ability and customization. A VPS plan gives a guaranteed percentage of processor use,

memory (RAM), and hard drive space. It closely emulates a dedicated server without the

higher cost of a dedicated sever. Most plans also allocate more bandwidth per 30-day

period than you would get with a shared server plan.

A VPS plan is one that emulates the functionality of a dedicated server. They’re

pricier than a shared plan, but the extra expense is usually worth the cost. Use a VPS

server when you’re in the final beta testing stage of your site’s lifecycle. Again, be careful

about what is and isn’t allowed on your VPS server. The VPS server is a good solution

for low-traffic, low-bandwidth sites that require the functionality of a dedicated server

without the added cost.

 The Dedicated Server
Dedicated plans are the costliest of the three common plan types and are also the most

feature-rich, since it is usually only the one website on a single server. Some web hosting

companies allow you to have more than one website on each dedicated server.

You would normally use a dedicated server after your site is complete and is already

taking on users. They’re the most expensive plan that a web hosting company provides,

as yours is the only site using that server. Use a dedicated server when your traffic starts

to bog down or you run low on hard drive space on your shared or VPS server.

Dedicated servers usually are offered on a sliding scale of functionality and

capability. If you’re going to lease a dedicated server, make sure it has hard drive

redundancy, such as RAID1. RAID stands for Redundant Array of Individual Disks.

The two most common flavors of RAID are RAID1 and RAID5. RAID1 involves two

separate hard drives that mirror each other’s data. Only two hard drives are involved,

with the idea being that if one hard drive fails, the data is still in a usable form on the

other mirrored disk. This is the most common form of RAID.

RAID5 is known as disk striping. Up to seven disks may be involved in storing your

data. If one disk is lost, enough information remains on the other functioning hard drives

to rebuild the data on the hard drive that had failed and was replaced.

Chapter 1 Database-Driven Web Development FunDamentals

16

 Installing Perl Modules
In working with Perl on the Internet, you’ll eventually have the need to install more Perl

modules to accomplish some task or other. As mentioned in the previous section, you

would use Plesk or cPanel to do this. Both methods work fine and use either CPAN.bat or

PPM. Exploring CPAN.bat and PPM is beyond the scope of this book.

 File Transfer Protocol (FTP) Clients
FTP clients are programs that allow you to access your files on your server remotely using

FTP. With them, you are able to move around files on your server, create directories, and

update your cgi scripts as you create and debug them.

There are many different FTP clients to choose from. The best by far, I’ve found, is a

freeware application known as FileZilla. It has a connection manager that allows you to

have a list of different websites to connect to as well as provides all of the functionality

needed to work your website into a fully complete Internet offering.

 File Rights and Permissions
Every file on your server has a set of rights and permissions assigned to them. Some

are assigned automatically and some have to be assigned by you. Perl cgi scripts, once

uploaded, lack the rights and permissions required to be run by your users via their

browsers.

To assign the proper rights and permissions, look to your FTP client. There should be

an easy way to change the rights and permissions of the file or files in question.

The Linux chmod command is what changes the permissions for a file. In FileZilla,

simply highlight the file or files whose rights and permissions you need to change. Right-

click the highlighted file or files and select Permissions. A dialog box will open with nine

options to check. There is also a field where you can simply enter the proper rights and

permissions code according to Linux’s ranking system. To have a user run a cgi script

on your server, enter “755” in this field (without quotes). You’ll see that the dialog box

updates the proper fields. Click OK and you’ve changed the file’s rights and permissions

to allow your users to execute the script via their browsers within your cgi-bin.

Chapter 1 Database-Driven Web Development FunDamentals

17

 Obtaining Your Path Statement with printenv.pl
One of the first things you need to know about your server’s setup is the path statement.

Within the path statement is the hierarchy of directories that extend from the root

directory of your account to the working directories you’ll be using, such as the cgi-bin

directory that will hold all of your site’s cgi scripts.

To obtain your path statement, it is required that you run a small but powerful script

called printenv.pl. Simply upload the file and adjust its rights and permissions to chmod

755. Run the script in your browser and you’ll be able to pick out the path statement. The

following is code used in this small script:

print "Content-type: text/plain; charset=iso-8859-1\n\n";

foreach $var (sort(keys(%ENV))) {

 $val = $ENV{$var};

 $val =~ s|\n|\\n|g;

 $val =~ s|"|\\"|g;

 print "${var}=\"${val}\"\n";

}

This small piece of code tells you everything that is within the server’s environment,

including the path statement to many resources that will come in handy in later chapters

of this book.

The path statements on a server are pointers to resources that are accessed directly

from the operating system or the server in question. For example, a path statement in

Windows can be set up to affect the Perl shebang. If you were to install Apache to c:\

Apache, the shebang in your Perl script will be as follows:

C:\Apache\bin\perl

As you can see, the location allows for the server to find perl, but you may have to

give the path to the perl.exe executable, as follows:

C:\Apache\bin\Perl\perl.exe

Giving the fully formed location to perl.exe is a security nightmare. Use it only if you

don’t want to set up an operating system’s path statements from the control panel.

Chapter 1 Database-Driven Web Development FunDamentals

18

 Summary
In this chapter, we touched on the basic functionality of the various technologies we’ll be

using to create fully formed web pages. We discussed your web hosting options and how

the three servers (Perl, MySQL, and Apache) are used together.

We touched on rights and permissions and basic knowledge that we will be building

on in the chapters to come.

Chapter 1 Database-Driven Web Development FunDamentals

19
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_2

CHAPTER 2

Perl CGI and MySQL
Essentials
The Perl Common Gateway Interface (CGI) module is a module capable of creating

HTML markup code on the fly within your Perl script. It is mostly used as a means to

catch the parameters of a page. While you could create entire pages with the methods

included in the CGI module, it is a lengthy process and isn’t very efficient. A simple print

statement with your HTML markup as the printed material is a much more practical use

of the CGI module.

In this chapter, we’ll be exploring the Perl modules that will be used in the upcoming

project. We’ll also be using error control techniques and will introduce the methods used

in the project to trap the errors in a manner that allows the script to continue running.

We’ll then be exploring the syntax and use of Perl and the MySQL queries that we

all will come across eventually and concentrate on retrieving information from the

database, with a few exceptions for fun.

But first, let’s quickly define CGI a bit further.

 CGI Primer
CGI is a combination of web standards that defines how information is exchanged

between the web server and the script. CGI specifications are currently maintained

by the NCSA that defines CGI as a standard for external gateway programs to interface

with web servers such as HTTP servers. The CGI module was created in order to make

available some of the higher forms of programming methods available in one compact

and powerful source. With it, you’re able to control forms, create page redirects, and

access the Perl environment to retrieve things like the user’s IP address.

https://doi.org/10.1007/978-1-4842-5970-2_2#DOI

20

Through the methods of the CGI module, you will be able to create and control your

Perl script’s capabilities with only a few standard commands. I’ve found that working

with HTML forms and CGI.pm is a good programming investment, as you’re given a few

options as to how the data submitted via the form will be handled.

 HTTP Methods
HTTP stands for Hypertext Transfer Protocol and is the base form of sending information

over the Internet via your web page. An HTML form is the tool to interact with the server

and send information from your web page to the CGI script via HTTP. There are a couple

of ways to do this.

 The GET Method
The GET method of sending data from your web page to the server is perhaps the most

common way of achieving this. The information within the form is sent to the server as

part of the URL of the page. It is mostly used when you don’t have a lot of data to be sent

to the server. Examine the form element given in Listing 2-1.

Listing 2-1. Displaying the GET method of submitting FORM data

<form method="GET" action="/cgi-bin/perlscript.cgi" name="form1">

 <input type="TEXT" name="INPUT1"></input>

 <input TYPE"SUBMIT" name="SUBMIT1"></input>

</form>

You can see where the GET method is invoked within the HTML form element. You

would use this if you have a small amount of information to be sent to the server to be

acted upon and reported back. You wouldn’t use the GET method when submitting a

username and password to the server, as the username and password would be visible

within the browser’s address bar.

 The POST Method
The POST method of sending data to the server is for large blocks of information. The

data is sent to the server in the body of the page submission. Only the URL of the script

that the data is being sent to appears in the address bar of the browser. You would use

Chapter 2 perl CGI and MySQl eSSentIalS

21

the POST method if you’re uploading an image, for example. Examine the example of

using the POST method given in Listing 2-2.

Listing 2-2. Applying the POST method of submitting FORM data

<form method="POST" action="/cgi-bin/perlscript.pl" enctype="multipart/

form-data" name="photo1">

 <input type="FILE" name="photo"></input>

 <input type"SUBMIT" value="SUBMIT PHOTO"></submit>

</form>

As you can see from the preceding example, the POST method was used to signify

that the data is to be sent to the server within the body of the document. Notice also that

an enctype attribute was used within the form element. This tells the server that a large

block of data is being sent, in two forms – the data itself and the name of the data, in this

case, the file name of the photo you’re uploading. The input type is set to FILE. This tells

the server that a file is being uploaded. When you are uploading a file, the browser opens

a dialog box, within which are the folders and files on the hard drive of your computer.

You would select a file and double-click it. It will then be made visible within the text

box on the web page. Click the Submit button and the file will be uploaded via the Perl

upload script named perlscript.pl.

 Running Perl CGI Programs
The Perl CGI.pm module is required to be installed within the Perl server for its libraries

to be made available for use. The source files may be downloaded from CPAN.org in

order for you to install the module. The Internet is a vast thing, as and such the CPAN

library contains hundreds of thousands of Perl modules in order to work with this

vastness.

There are basically two ways that you can install a Perl module – CPAN.bat or the

Perl Package Manager (PPM). Each is easy to use, requiring only the same knowledge

required to configure Perl itself. By this, I mean simple path statements to resources on

your computer such as, in this case, the location of Perl.

Chapter 2 perl CGI and MySQl eSSentIalS

22

 CPAN.bat
CPAN.bat is an old-fashioned text-based batch file that runs on either Windows or Linux

operating systems. It is easy to set up, requiring only the locations of Perl and a couple of

other simple programs it may need in order to install the Perl modules.

Since it is a text-based program, you’ll see a command-line utility box open once you

double-click CPAN.bat. You can find CPAN.bat within the directories that make up Perl.

It is in the same directory as the Perl executables, such as perl.exe itself.

Once configured, you simply enter the following command in order to install the CGI

module:

install CGI

CPAN.bat will contact CPAN.org in order to fetch the executables required for

the installation. A handy feature of CPAN.bat is its ability to also install any other Perl

modules that may be required for the installing module. That is, CPAN.bat installs the

other Perl modules that the CGI module will require to work properly.

 The Perl Package Manager
The Perl Package Manager is a bit easier to use than CPAN.bat. It has a GUI that is used

primarily to display and manage all of the Perl modules you have installed.

While you can use CPAN.bat to see what modules you have installed, PPM displays

the entire list as CPAN.bat only verifies the Perl module is installed according to your

typing the name of the module in question. PPM is the better of the two at managing

your Perl installation.

Installing a Perl module with the PPM is a breeze. A small command line is

displayed. You enter the Perl module you’d like to install and it does so. I’ve found

that some modules install better under PPM than CPAN.bat. The DBD.pm module for

working with databases, for example, has problems installing via CPAN.bat while it

installs with a minimum of fuss with PPM. The in-depth use of both CPAN and PPM is

beyond the scope of this book.

Chapter 2 perl CGI and MySQl eSSentIalS

23

 Including the CGI Module in Your Script
In order for a Perl script to use any module ever made, it first must be declared with the

use directive, as follows:

use CGI;

This line must be put at the top of the Perl script, just below the shebang. In order to

start using the CGI module, you must first declare a new instance of the module:

$cgi = new CGI;

This generates a new instance of the CGI module and allows you to use the powerful

methods contained within the CGI module as a whole.

 Using the param() Method
One of the most oft-used methods made available by the CGI module is the param()

method. It is used to catch the parameters sent to the Perl script from the HTML page the

user is interacting with:

$param1 = $cgi->param('input1');

As you can see, catching a parameter with the CGI module is a simple affair. If you

need more than one parameter caught, simply start a new param() method on the next

line, as follows:

$param1 = $cgi->param('input1');

$param2 = $cgi->param('input2');

The second parameter is caught in exactly the same way as was the first. The only

differences between the two are the Perl variable names and the parameter names.

Simple.

 Obtaining the Calling IP Address
As you’ll see when we get into later chapters of this book, it is sometimes a necessity

to know who is doing what on your website. In the project in later chapters, you’ll be

uploading photos to your server to be displayed as your avatar. Because this functionality

can be maliciously attacked with illegal images or images that aren’t suitable, it is of

Chapter 2 perl CGI and MySQl eSSentIalS

24

paramount importance that you know who is uploading the photo. The CGI module

has prepared for this eventuality by including a means to retrieve the user’s IP (Internet

Protocol) address.

Every computer and server on the Internet has a unique IP address. This is needed

because if you had two computers with the same IP address, the other computers on the

Internet wouldn’t know which one to send the information to.

The CGI module provides for this with the following simple statement:

$userip = $cgi->remote_host();

Using this simple-to-use line of code in your Perl script tells you the IP address of the

person that has just interacted with your script. You need not limit this functionality to

one upload script. Because it is so easy to use, you could record the user’s IP address in

every script that is being used and stuff it into your database.

 Making System Calls
Because CGI.pm doesn’t do absolutely everything, you will soon find the need to use

your server’s operating system to retrieve certain pieces of information. The first thing

that comes to mind is the date and time. CGI.pm can do a lot, but not time and date

stamping. As you learned in a previous chapter, MySQL allows for time stamping, but

that is only the time that the record was created in the database.

In order to make a system call, you would use the Perl backtick (`) operator. The

following shows how to use the backtick operator to find the date:

$date = `date`;

As you can see, retrieving the exact date and time is a fairly simple and

straightforward operation. Because the backtick operator allows for any system

command to be executed, it is possible to work with files and directories via scripted

action as well.

 Error Handling
In working with Perl, you’ll have to include error handling within the structure of your

script. By error handling, it is meant that unforeseen errors may occur that are either a

pitfall of your script or as a product of malicious attacks by your users.

Chapter 2 perl CGI and MySQl eSSentIalS

25

There are a few ways to handle errors in Perl, and we’ll discuss all of them in this

section. Before you can handle your errors, it is advisable that you first set your scripts

up to report the error or errors properly. That is where the CGI::Carp module comes in to

play.

 CGI::Carp
This module is an invaluable tool for the developer. With it, the errors that are thrown by

Perl are echoed to the browser for you to read there. If you weren’t using CGI::Carp, your

browser would display an “Error 500. A critical system error has occurred,” which doesn’t

tell you much. You’d have to look in the Apache error log every time your script throws a

fatal error. This can be very annoying and will certainly slow you down by a considerable

amount of time.

The CGI::Carp module must be declared at the top of the script along with the other

Perl modules the script will be using:

use CGI::Carp qw(fatalsToBrowser);

It may be entered in no particular order in the list of modules you’re using. Used in

this way, every error thrown will be sent to the browser. The error that has occurred is in

plain language as well as the line of the Perl script and the Perl script name that the error

occurred within is reported. You can then tell exactly what happened to cause the error

and find a speedy solution to the problem.

 Where to Use Error Handling
Error handling can be a bit of a hit or miss thing. A fatal error may be thrown in a way

and from a part of your script that you didn’t think would cause problems. You’ll learn

where to use error handling as you debug your scripts.

I normally automatically include error handling on every database call. Even the

slightest error is fatal when using MySQL. Most of the time the error is caused by the

user using your script in a way that you didn’t anticipate. Malicious users are the bane of

every web developer as well.

There are a few ways to handle the errors that your scripts will throw. One is to wrap

the Perl code in an eval statement or to redirect the user to a different custom error page.

Chapter 2 perl CGI and MySQl eSSentIalS

26

 Handle Your Errors
The placement of your error handling is as important as the error handling itself. With

database calls, the easiest way to handle your errors is after they’ve been thrown and

redirect the user to a custom error page. I usually redirect to a custom error page that

is written in HTML that logs the user out of the site, requiring them to log in again and

hopefully not try the same action again. The following is the code to do this:

<meta http-equiv="refresh" content="0;url=/errors/error1.html">

This HTML code is given within the head of the document with the other meta

elements. It tells the browser to fetch the page given in the amount of milliseconds given.

If you give a value of 0 (zero) for the time, the page redirects to the URL given upon page

loading, not allowing the user to do anything but be redirected to the new error page.

 The External HTML Content Template
You’ll eventually be at the point where you want to print your HTML content to

the browser. There are a few ways you can do this, the easiest of which is to use a

print statement for every line of HTML code that makes up your page. This is not

recommended, as it is an inefficient means to print your page.

As you’ll see in later chapters when we actually start displaying pages, there is an

efficient means to accomplish a multiline printout to the browser – the external content

template.

This template holds the HTML content that will be used to display the page. You may

use as many templates as you wish. The templates are included in the script via a simple

require statement:

require "content.pl";

Within content.pl is the HTML markup, along with variable and array names placed

in strategic locations. The content.pl file is required near the end of the script, when all

of the Perl script actions have been taken on the dynamic database-driven HTML code.

Applying a template this way allows you to include a large amount of content in your

page.

Within content.pl are two different variables and one array. The variables are

$topcontent and $bottomcontent, and the array is @contentarray. The content template

HTML tables end and start up again in a strategic way that allows the content between

Chapter 2 perl CGI and MySQl eSSentIalS

27

them to be displayed inline and within the running markup code in order to make the

page appear as one coherent web page. For an example of this, examine Listing 2-3.

Listing 2-3. An example of an external content template

<table cellpadding="0" cellspacing="0" border="0" align="center">

$topcontent

@contentarray

$bottomcontent

</table>

As you might surmise, $topcontent contains the markup that should appear on the

top of the database-generated content that is within @contentarray. $bottomcontent

closes up the markup so it fits with the static markup within content.pl.

 Printing Your Dynamic Content to the Browser
In order to print your generated and static content to the browser, the HTML markup

within content.pl is encased within one large variable, $htmlcontent. It is easy, then, to

print the dynamic content to the browser with just two easy-to-use commands:

print qq{Content-type: text/html\n\n};

print qq{$htmlcontent};

The first print statement tells the browser that the data being sent to it is of type text/

html, which is a fancier way of saying that what’s coming is HTML markup. The second

print statement prints the huge $htmlcontent variable that contains both the static

markup from content.pl and the database-generated content that is within $topcontent,

@contentarray, and $bottomcontent.

 Perl and MySQL Basics
Perl and MySQL work together to achieve some very powerful procedures for the

manipulation of your database data. Through the use of the Perl DBI module, it is

possible to store and retrieve your database data in a very timely fashion. The DBI

module is a great tool to work with, as it contains methods for just about any database

machination you will run across.

Chapter 2 perl CGI and MySQl eSSentIalS

28

We’ll be exploring the syntax and use of Perl and the MySQL queries that we all will

come across eventually. In this chapter, we’ll concentrate on retrieving information from

the database, with a few exceptions for fun.

In the examples that follow, every conceivable method of acquiring the data is

presented. You’ll see that the methods for retrieving the piece of data are simple and

to the point. Once the data is retrieved, you may act upon it in any way you see fit. For

simplicity’s sake, the data will exist in the variables and arrays exactly as it appears in the

database, always.

 Selecting One Database Item into One Variable
Retrieving one piece of information from a database is a straightforward operation,

but there are some finer points that need to be addressed. First, what you need to do is

decide if you’re going to use the fetchrow() method or fetchrow_array() method. Since

there is only one piece of information to be retrieved, the fetchrow() method will be

used.

Note that it is entirely possible to use fetchrow_array() to catch the piece of data –

you simply wouldn’t because that is not what it was designed for. The fetchrow_array()

method creates and loads an array into memory rather than a scalar variable. Since we’re

only taking out one piece of information from the database, it is not recommended that

you use fetchrow_array() in this situation.

 Selecting a Piece of Data Using the Three-Step Method
Listing 2-4 shows how to define the query and place it in $query. You then prepare the

query with the prepare() method and execute the query by calling the execute() method.

You then catch the piece of data with the fetchrow() method and place it in $thisvariable.

Listing 2-4. Applying the three-step method

$query = "SELECT id FROM this_table WHERE id = 12";

$sth = $dbh->prepare($query);

$sth->execute();

$thisvariable = $sth->fetchrow();

Chapter 2 perl CGI and MySQl eSSentIalS

29

Note that a WHERE clause has been defined in the example. This is a great way

to select one or many similar pieces of information from the database. We’ll explore

WHERE clauses in several upcoming examples. Stay tuned.

 Selecting a Piece of Data Using the Two-Step Method
With the following two-step method, we define the query within the prepare() method

and execute the query by calling execute(). In place of the $query variable from the

previous example, we send the textual database query as the argument to prepare(). We

then catch the piece of data with the fetchrow() method and place it in $thisvariable.

$sth = $dbh->prepare(SELECT id FROM this_table WHERE id = 12);

$sth->execute();

$thisvariable = $sth->fetchrow();

As you can probably glean from the example, this is a very basic construction.

For simple, clean code, you would only use simple MySQL queries with the two-step

method. The three-step method – where you simply have more room on that line – is

more suited to the multiline constructions we’ll be using later in this book. Now we’ll

explore the one-step method through the use of the do() method.

 Selecting a Piece of Data Using the One-Step Method
We used the do() method to define, prepare, and execute a database call, then catch the

piece of data with the fetchrow() method, and place it in $thisvariable. This is a great

method to use to clean up your code if you have many simple database queries in the

same script. With less to read, there is less confusion and your code is cleaner in general.

$dbh->do(qq{SELECT id FROM this_table WHERE id = 12});

$thisvariable = $sth->fetchrow();

You would normally use the one-step do() method if you need to quickly perform

a small amount of work. You wouldn’t want to use the do() method with a foreach loop

that is a million iterations long.

Chapter 2 perl CGI and MySQl eSSentIalS

30

 Selecting Many Database Items into Many Variables
Since there will be a future need to select many pieces of information into many

variables, the examples will show this. However, there are a few points to consider before

continuing. This section of the book will delve into these points to remember and offer

example tasks that reflect the functionality that we’re shooting for.

There are two general functions that you may use to retrieve data from a database

using the Perl DBI module. One is used for single pieces of data being pulled from the

database. This is the fetchrow() method. It is used to retrieve single pieces of information

from a database that will be stored either in one scalar variable or within one simple

array. Since we’ll be retrieving more than one piece of information, it is recommended

that you use the fetchrow_array() method to achieve your database query.

The fetchrow_array() method is of a higher order than is the fetchrow() method,

making the executions with this method very fast and very reliable. The simple

constructions used with the fetchrow_array() method are effective and intuitive, which

no doubt lends to the massive popularity of the Perl DBI module.

The database query itself must be of a sort that allows for more than one piece of

data to be retrieved. Using a WHERE clause is the easiest and most straightforward

way of accomplishing this. For example, if you were to use one definite value with your

WHERE clause, you would only be able to retrieve one piece of data. Through the use of a

WHERE clause that is designed to offer more than one result, the script is able to retrieve

multiple values from multiple columns or rows, as the examples suggest. A simple >

(greater than) operator achieves this very well, as you’ll see in the coming examples.

The examples outline the constructions that can be used to retrieve many pieces of

information and store them in several scalar variables. You can use an array in place of

the variables, but this is not recommended. Keep your coding as simple as possible and

you’ll have the best results.

As always, the data retrieved should be presented in your variables and arrays as it

exists in the database. This lends to a clean and concise database model and an easy-

to- understand script. This is also a very easy-and-simple-to-implement approach to

working with a database.

Chapter 2 perl CGI and MySQl eSSentIalS

31

 Selecting Many Database Items into One Array
Let’s start using arrays as the end product of our database queries. We’ll begin with the

simplest of constructions, pulling many pieces of information from the database and

putting them in one array. Since there is only one piece of information to be pulled from

the database at one time, the fetchrow() method will be used. The successive database

data items are pushed onto an array to achieve the final result – an array that reflects

your database columns exactly.

The example pulls many rows of data from one table and places the table data in one

array. You may then access the data within the array by index numbers or loop through

the entire array for one large list. Of note in the example tasks is the id >= 0, which tells

MySQL to fetch all of the columns whose id value is greater than or equal to zero. This

will essentially pull every row of the table and place the data in the one array, which will

be a perfect reflection of what you have in that one database column.

You wouldn’t use fetchrow_array() because we are fetching only one column of the

database table. Although we are fetching only one column, the columns will span across

many rows. In this situation, the fetchrow_array() method is not needed. The fetchrow()

method fits the need very well.

In the examples, it can be seen that every conceivable option for pulling data from

the database is explored – the DBI module is a great piece of work to use. You can see

from the example tasks that a very large amount of information can be fetched using the

methods described. You may then act upon the data as you see fit. With a database call

like this one, you are conceivably working with a very large amount of data. Constructing

a list is a simple affair of looping through the index items with a foreach or while

statement.

 Selecting Many Pieces of Information Using a WHERE
Clause
WHERE clauses are wonderfully useful tools to use. They’re easy to understand and

use and make your database calls easy to implement. You can apply string or number

type syntax. As you can see in Listing 2-5, mathematical operators may be used in your

MySQL statement.

Chapter 2 perl CGI and MySQl eSSentIalS

32

Listing 2-5. Implementing a WHERE clause

$query = "SELECT col1 FROM this_table WHERE id >= 0";

$sth = $dbh->prepare($query);

$sth->execute();

while ($thisvalue = $sth->fetchrow()) {

 push @thisarray, $thisvalue;

}

We stated the database query and placed it in $query. We then called the prepare()

method to prepare the $query for execution. The execute() method was used to execute

the database call, and we used a while loop to iterate through the table columns, pushing

the array for each iteration.

With Perl and MySQL, it is entirely possible to select a large amount of information

in one database query. You eventually want to make some very large lists of information

that reflect many columns and rows of the database. Like I said before, you want your

arrays and variables to reflect the contents of your database.

Because the script makes multiple calls to the database, it is a necessity to keep

things clear and simple by reflecting the database structure in your variables and arrays.

For each row of the database, there is a corresponding set of arrays that represent the

table columns. This simple yet effective method of reflecting the database structure in

your variables and arrays is a good programming convention to stick to. It will make your

more complicated future scripts much simpler to follow and will allow a much more

complicated database model for future machinations.

The coming examples show how to put the data from many table rows in columns

that reflect the structure of the database. You can see that the data retrieved is placed

in three different arrays to be acted upon. The fetchrow_array() method of the DBI.

pm module is used to perform the multicolumn query. Each column of the database is

reflected in the arrays that follow, one array to each column. The rows are structured as

the index items of each successive array.

 Selecting Many Items to Many Arrays
Selecting large pieces of varying data from the database can be a tricky thing for the

uninitiated. This book, among other reasons, was written to dispel the questions that we

all had about selecting many different pieces of information from your database.

Chapter 2 perl CGI and MySQl eSSentIalS

33

The first thing to think about is the form you want your data to be in. That is, the

arrangement of the arrays that we’ll be using should reflect the database data perfectly.

Each column will be selected into one array. Each row of that column will be an

index item of the array. Using multiple arrays to represent multiple columns is a good

programming convention to follow. It keeps the database data easy to understand and

easier to act upon.

In the example that I’ve provided in Listing 2-5, the arrays are @col1, @col2, and

@col3. They perfectly reflect the database data as it exists within the database. You can

see that we used a simple array push to load the subsequent pieces of data into the three

arrays.

You can see that through the use of a WHERE clause, we are able to select essentially

every piece of data within those columns of the database. Using an operator such as >=

(greater than or equal to) lets MySQL know exactly what pieces of information that you

require. The id column is an AUTO_INCREMENT column.

You may order your query by the aforementioned AUTO_INCREMENT id column

without selecting the id column into a variable or array – MySQL does the work for you.

You don’t even have to select the id column, just reference it in your query and MySQL

will act accordingly. This has the benefit of keeping the number of variables or arrays at

a manageable number and simplifies the script as a whole. The id column is present in

every hypothetical table that we’ll be using and is the primary key of the table.

The AUTO_INCREMENT id column is present in every table that we’ll be using

because it is such a handy way to refer to the contents of the table rows and columns.

Using this method will ensure that you have the fastest and most capable queries

possible with this combination of Perl, MySQL, and Apache. Consider the following:

$query = qq{SELECT col1, col2, col3 FROM $this_table WHERE id >= 0 ORDER BY

id DESC};

$sth = $dbh->prepare($query);

$sth->execute();

while (@this_data = $sth->fetchrow_array()) {

 push @col1, $this_data[0];

 push @col2, $this_data[1];

 push @col3, $this_data[2];

};

Chapter 2 perl CGI and MySQl eSSentIalS

34

We constructed a query, in this case, the query is for three items – col1, col2, and

col3. We prepare the query using the DBI.pm prepare() method. This reviews the query

for syntactical correctness. We then execute the query using execute(). This sends the

query to the database. Then we gathered the data using the DBI.pm fetchrow_array()

method. The data is now contained in @col1, @col2, and @col3 and matches the

database columns and rows exactly.

We used fetchrow_array() because we wanted more than one piece of information to

be pulled from the database. For each iteration of the while statement, we gathered the

data into the @this_data array. The data is then pushed into @col1, @col2, and @col3

using a simple push statement. The while statement then loops again, and a new set of

data is pushed on @this_data, which is then pushed onto the three column arrays, and

the process repeats until there is no more data to be retrieved from the database.

A few words should be given to system resources. Using such a powerful

construction can potentially lead to an overwhelmed server. This is because of the

massive amount of data that can be fetched into the three column arrays in our example.

A good convention to follow regarding your data is related to the amount of RAM

memory your server has available. On most systems, you may check the average amount

of memory available using various programs. We won’t get into the workings of such a

program. What we need to know right now is the amount of free RAM you have on your

server. Simply don’t fetch more data than the amount of memory you have.

 Inserting Many Database Items from One Array
Using an array to insert your database items is a bit complicated, but is still a fairly

simple task. There are just a few things that you would have to consider while using this

approach. This section will explain them.

Using a $count that increments with every iteration of the loop, it is possible to

dynamically insert as many rows as you have a need for. Your limit is your resources, so

a few words must be given to system resources. Because this method of inserting table

rows is a very powerful one, it is possible to overwhelm your server by using an array

that contains more data than can be handled successfully and in a timely fashion by the

server. You wouldn’t use a construction such as this to insert thousands of table rows

with each piece of data having many kilobytes of information. The resulting operation,

while still safe, might leave you with an overwhelmed server.

Chapter 2 perl CGI and MySQl eSSentIalS

35

While it is possible to use a while loop in your constructions to achieve the same

result, the efficiency and simplicity of the foreach loop with a $count variable is a better

choice. There is less to do with a foreach loop, since all we’re doing is iterating through

the array’s index items and incrementing a count. The foreach loop automatically loops

through the entire array and stops when it has reached the end of the array given as the

argument.

With a while statement, you would have to have a test be performed to see if the

$count matches the number of index items in the array. This slows things down, just

a bit. However, if you know beforehand the number of items in the array, by all means

use a while statement. Keep in mind this is only if you previously know the length of the

array to be used.

 Using a foreach Loop to Insert from an Array
You can see how from the example that looping through the array’s index items is an

easy thing with Perl. The $count variable keeps track of the index items for you so the

database column exactly reflects the contents of @this_column. With each iteration of

@this_column, the value of $this_column[$count] changed and was loaded into the

database. We used a simple one-column MySQL statement to accomplish our task

(Listing 2-6).

Listing 2-6. Using a foreach loop to INSERT from an array

$count = "0";

foreach (@this_column) {

$query = qq{INSERT INTO this_table (col1)

 VALUES

 ('$this_column[$count]')};

$sth = $dbh->prepare($query);

$sth->execute();

++$count;

};

We declared a count and declared a foreach loop that will iterate until the length of

@this_column is reached. We then declared the query and put it in $query. The query

was then prepared for execution using prepare(). We executed the query using execute()

and incremented the $count for the next iteration of the loop.

Chapter 2 perl CGI and MySQl eSSentIalS

36

Note that we used the three-step method of performing your database query. There

are two other methods that may be used to have your query declared, prepared, and

executed, as shown in Listing 2-7.

Listing 2-7. Using the two-step method to INSERT from an array

$count = "0";

foreach (@this_column) {

$sth = $dbh->prepare(INSERT INTO this_table (col1) VALUES ('$this_

column[$count]'));

$sth->execute();

++$count;

};

The preceding example task shows the two-step method of achieving a successful

insertion query. You can see that we eliminated the $query scalar variable and instead

passed the query as the argument to the prepare() function. The execute() function was

then called. This handy method is used extensively because it results in a clean query

that uses less resources than does the three-step method.

In our previous examples, we used the prepare() function to handle the query.

Listing 2-8 provides a one-step method that can be used that omits both the prepare()

and execute() functions entirely.

Listing 2-8. Using the one-step method to INSERT from an array

$count = "0";

foreach (@this_column) {

$sth = $dbh->do(INSERT INTO this_table (col1) VALUES ('$this_

column[$count]'));

++$count;

};

Using the do() method of performing your query is a handy one liner that is both

useful and powerful. With it, you may perform any valid MySQL query.

So we’ve explored an insertion from an array using the three-step, two-step, and

one- step methods of performing your database query. These easy statements are the

core of any web developer’s plethora of tricks and constructions.

Chapter 2 perl CGI and MySQl eSSentIalS

37

The simple insertion statements we’ve explored here can just as easily be very

complicated JOIN statements that utilize the full power and flexibility of this duo of

programming languages. The limit is your understanding of the languages and the needs

of your situation. While big, powerful JOINs can be fun to work with, keep things simple

and use the simplest method for achieving your desired end result. You’ll thank me

when you have to work with a script that you created a year before and are expected to

understand it.

 Inserting Many Database Items from Many Arrays
The time will come when you require a large, multi-array insertion into your database.

What we’ll explore in this section are the ways that you may insert the data that exists in

many arrays into your database. The introduction of more arrays into the equation isn’t

a bad thing; we’re just starting to learn the tremendous flexibility of this combination of

programming tools.

We’ll begin by defining several fictitious arrays, each of the same length. The data

may be textual/ASCII or binary. Note, though, that you would have to create the column

using the right column type. Column types are beyond the scope of this section, so we’ll

assume all the data we’re working with is textual only and is being put into VARCHAR or

BLOB column types.

The easiest way to insert the data from many arrays into your database is to loop

through the arrays with a foreach loop. You would declare a $count that is initially set to

zero. This is because all arrays within Perl are zero-based. They’re indexed according to a

number system that starts with zero. With Perl, zero is a whole number (an integer).

For each iteration of the loop, more than one array is being referred to. This results

in a potentially massive amount of data being inserted into the database. Be sure to limit

yourself to 300 or 400 iterations, although more can be used if the amount of data is fairly

small for each insertion and your server has plenty of resources. You may have as many

row and column insertions as you need – this construction is infinitely scalable. Use a

LIMIT declaration to limit the amount of database rows to be created if that is required.

You may use either a foreach loop or a while loop to achieve the same result. Use a

while loop when you have a specific number of rows to be inserted. That is, if you know

beforehand how many rows are to be inserted, then use while. If you have a varying

amount of database rows to be inserted, use the foreach loop to iterate through your

gathered arrays.

Chapter 2 perl CGI and MySQl eSSentIalS

38

 Using a foreach Loop to Insert Many Items from
Many Arrays
You can see in the example task given in Listing 2-9 that for each element of @col1, we

looped through the index items of three arrays (@col1, @col2, and @col3) due to the

iteration of $count. The example assumes you have three arrays of equal length for each

table column. The rows are inserted one at a time and perfectly reflect the array data.

Listing 2-9. Using a foreach loop with an insertion

$count = "0";

foreach (@col1) {

$query = qq{INSERT INTO this_table (

 col1,

 col2,

 col3

) VALUES (

 '$col1[$count]',

 '$col2[$count]',

 '$col3[$count]'

)}";

$sth = $dbh->prepare($query);

$sth->execute();

 ++$count;

};

We declare the $count and set it to zero. The foreach loop was then declared, and we

used @col1 as the argument. We can use @col1 as the argument because every array is

of the same length – no data will be left out of the insertion. We declared the query and

stored it in $query. We then prepared the query using prepare(). We executed the query

using execute() and incremented the $count for the next iteration of the loop, starting

the process over and inserting more data.

Note that I’ve used a more vertical approach to ordering my query, putting each

element of the query on its own line. With Perl, you can break up the more complicated

code into more readable forms. This is mine. You’ll find yours. Note also that in

order for this approach to be possible, you wouldn’t use double quotes to define your

Chapter 2 perl CGI and MySQl eSSentIalS

39

query – double quotes only work when the entire query is on one line. Nest your query

within the Perl qq{} statements to allow your query to span more than one line.

You can see how powerful and intuitive are the workings of the Perl DBI module.

With it, you are able to store and retrieve any data from the database. While we used very

simple examples as learning tools, there is essentially no limit on how complicated and

capable your future DBI machinations can be. The limit is your skill and imagination –

Perl and MySQL are up to the task.

 Summary
In this chapter, we covered the various ways that Perl and the DBI module work together

to do some very powerful operations. We explored database structures and the means to

select or insert the data in question.

Chapter 2 perl CGI and MySQl eSSentIalS

41
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_3

CHAPTER 3

Essential MySQL Skills
Before we start delving into the scripts that make up the project for this book, we should

first cover a few bases. In this chapter, we’ll review the skills necessary in order to make

sense of what is to come. You may already be familiar with these concepts, but it is

always a good idea to review a skill before having to apply it to a live, functioning script.

In this chapter, we’ll work through the functions that will be used in the project. We’ll

cover only those functions that will be used in the project – we won’t cover all of the

abilities that the DBI module offers, for example.

 MySQL Column and Index Types
Within MySQL are many different types of data that you can tailor your database

tables to accept. Everything from common text characters to binary information may

be provided for. Any valid data type can be used. A valid type is number or string, for

example.

Column types are declared upon creation of a table. There are many different types,

and we’ll cover them all in the sections to come. While we won’t be using every column

type in the projects, it is of paramount importance that you know and understand the

full breadth of what is available. This knowledge will come in handy if you plan on

expanding one of the projects, a full featured bulletin board.

 Integer Column Types
We’ll start with the integer column types. The integer column types are a numeric type of

column and are used to store numbers only – if you try to insert text, MySQL will throw

an error.

https://doi.org/10.1007/978-1-4842-5970-2_3#DOI

42

There is a very wide range of integer types – the full range of signed numbers

available is huge. By signed, I mean the negative numbers are represented. Note that

the positive number is one less than the negatively signed number. This is because the

number zero is still considered an integer. Zero is a value – it is not to be confused with

the null value, which is considered to be an absence of value.

 Floating Point Column Types
A floating point column type is simply a column type that includes a decimal point. The

decimal point may “float” from one position to another, hence the floating point name.

Floating point numbers are usually used when the range of numbers from an integer

column type isn’t high or low enough for the task at hand. It should be noted that

floating point numbers are approximate values – MySQL will round the floating point

number to the number of decimal places you define when the table is created.

 Character String Column Types
Character strings are either CHAR or VARCHAR. CHAR stands for “Characters,” and

VARCHAR stands for “Varying Characters.” A fixed length for the column is set during

table creation. If the data is not as long as the length of the declared CHAR or VARCHAR,

the space remaining is padded with spaces. It should be noted that if the value you’ve

inserted has trailing spaces by design, the spaces will be removed. You’ll have to provide

for this within the Perl script in order to add the trailing spaces.

If you need a binary columned case-sensitive CHAR or VARCHAR column, set this

with the BINARY flag. If the BINARY flag is present, the column is case sensitive when

used for sorting or comparison. Otherwise, strings are case insensitive.

 BLOB Column Types
BLOB column types are of varying width. BLOB stands for Binary Large Object. They are

able to store very large data sets and don’t trim trailing spaces. A BLOB column is case

sensitive. Values that exceed the maximum length are simply truncated. BLOBs cannot

have default values.

Chapter 3 essential MysQl skills

43

 Enumeration or Set Column Types
Enumerations and sets are string columns that have a small set of possible values. If

no value is declared upon table creation, an empty string will be inserted. The ENUM

column type has a maximum value of 64 KB (65535 bytes), and the SET column type has

a maximum value of 64 bytes.

To insert a value in an ENUM column, use a string literal. That is, encase the string

within quotes. To insert multiple values in a SET column, separate the values within the

opening and closing quotes with commas.

 Time Column Types
MySQL provides a wide array of date and time stamps. The time is taken from the

operating system of the server the MySQL database resides upon.

MySQL is able to use time and date stamps in an ORDER BY clause, so you’re able to

sort your data by both date and time. This great feature comes in handy if you’re looking

to order the contents of a table by date or time or both.

All time and date values are integers. If, for some reason, you should have a floating

point number as part of a date, MySQL will round to the nearest value of the following:

month values are limited to 1 to 12. Day values are limited to 1 to 31. Hour values are

from 0 to 23, while minutes and seconds range in value from 0 to 59.

 Perl and MySQL Functions Review
Reviewing a skill, no matter its depth, is always a good thing as you will always come

away with a new vantage point. In this section, we’ll be reviewing the specific skills that

will be used in the project which we’ll begin working on in the coming chapters.

There is always more than one way to do something with Perl, syntactically speaking.

Because of this, I’ll try to present each topic in this section in more than one way.

 Creating Tables
Creating a table is a straightforward affair, but there are a few things that you need to

know first. We’ll use the three-step method to create our tables. We visited this three-step

method in Chapter 2.

Chapter 3 essential MysQl skills

44

When creating a table, you will first need to know the column types that you’ll be

using. You will also need to know the names of the columns. Column names are case

sensitive, remember, so name your columns accordingly.

In the project to come, the primary key is the first column, named “id.” It is an

autoincrement column, as you can see in the example of a table creation given in

Listing 3-1.

Listing 3-1. Creating a table using both Perl and MySQL

$query = qq{CREATE TABLE $thisthread (

 id INT AUTO_INCREMENT PRIMARY KEY,

 title VARCHAR (250) NOT NULL,

 threadid VARCHAR (20) NOT NULL,

 posts VARCHAR (20) NOT NULL,

 date VARCHAR (20) NOT NULL

)};

$sth = $dbh->prepare($query);

$sth->execute();

As you can see, creating a table is a simple but very powerful function. The id column

is an integer and is the primary key of the table. The other VARCHAR columns range

in size from 20 to 250 characters. The 20-character limited columns are numbers and

the date, all of which will not exceed 20 characters in length. The title column is set to

250 characters, as it is the title of a thread. The maximum character count (defined in a

different script within the project) is 250 characters because it is a descriptive column of

the table – the thread name may be up to 250 characters. You’ll see this table creation in

putnewthread.cgi within the project we’ll soon be working on, so I won’t show any more

of the code for now. Please focus on the table structure within the Perl code.

 Loops
The most common functions we’ll be using in the project are simple loops. We’ll

be constructing lists that are accrued via the use of a loop that selects data from the

database and formats it into an HTML segment. This segment of HTML and the data

from the database are then added to the final results and are displayed in the user’s

browser.

Chapter 3 essential MysQl skills

45

There are two forms of loops used in the project – the foreach() loop and the while()

loop. Each is used in slightly different ways and locations, as you’ll see in the coming

discussions.

 The while() Loop

The while() loop is used to select one piece of data at a time. If there is only one result,

it is placed in a scalar variable. If there are multiple results, the data is pushed onto an

array, as given in Listing 3-2.

Listing 3-2. Performing a while loop

$query = "SELECT id FROM $thistopic WHERE id >= 0 ";

$sth = $dbh->prepare($query);

$sth->execute;

while ($thisvalue = $sth->fetchrow()) {

 push @theseids, $thisvalue;

};

The while() loop iterates until there are no more results being pushed onto the array

by MySQL. Note that the primary key, id, is being selected. You’ll see a lot of that in the

scripts to follow.

 The foreach() Loop

We use the foreach() loop mostly to construct the final HTML markup that will be

displayed to the user, although that is not the only place it is used. It can also be used to

loop through table rows via a previous database call. Using the id column as a means to

limit your database queries is a good place to use a foreach() loop, as shown in Listing 3-3.

Listing 3-3. A fully functional foreach loop

$count = "0";

foreach (@theseids) {

 $query = qq{SELECT title, threadid, posts, date

 FROM $thistopic

 WHERE id = $theseids[$count] LIMIT 30};

 $sth = $dbh->prepare($query);

Chapter 3 essential MysQl skills

46

 $sth->execute();

 while (@thisvalue = $sth->fetchrow_array()) {

 push @titles, $thisvalue[0];

 push @threadids, $thisvalue[1];

 push @posts, $thisvalue[2];

 push @date, $thisvalue[3];

 }

++$count;

};

This code snippet was taken from threads.cgi. It shows a foreach() loop that will

iterate through the loop as long as there is a value (a previously gathered array based

on the id primary key) within @theseids. You can also see that a while() loop is being

used to gather data from the database based on the $theseids[$count] array. We’ll delve

further into the workings of a construction such as this in a later chapter. For now, this

basic construction has been an example of what is to come in terms of loops.

 Pushing an Array
By “pushing” an array, it means that a value is being added to the end of an array. An

array can be likened to a list, with each list item being given an index number, starting

at zero. Every time you push an array, you’re adding to the end of the list. The syntax for

pushing an array is as follows:

push @thisarray, $thisvariable;

The scalar variable $thisvariable is being added to the end of the list, that is,

@thisarray. Simple. We’ll be using this snippet of code in almost every script within

the project, so it is important that you understand the process now before we start

examining code in great detail.

 Gathering Content
Every script we’ll be using is a collection of individual sets of data that have been

formatted into HTML markup. In collecting the data, you do so in a fashion that is

conducive to being easily formatted. What is usually done once the data is collected is

the data is placed in the logically ordered HTML markup, which can be text within a

Chapter 3 essential MysQl skills

47

table or anchor tag links, although you are not limited to just those two options. Examine

the following snippet of code given in Listing 3-4.

Listing 3-4. Gathering content to be displayed

$count = "0";

foreach (@these_ids) {

 $oneContentElement = qq{<TR ><TD ALIGN="CENTER" VALIGN="TOP">

 <A HREF= "/cgi-bin/this_script.cgi?id=$id[$count]& id2=$id2[$count]"

>$thislink[$count] </TD></TR>};

 push @endarray, oneContentElement;

 ++$count;

};

First a $count is declared and is set to zero. We then initiated a foreach() loop using

@these_ids as the argument. The newly declared scalar variable, $oneContentElement,

is stuffed with some HTML markup. Notice that there are three separate and distinct

arrays being used (@id, @id2, and @thislink). Each array’s index items are used as the

unique data for every iteration of @these_ids. Since the $count is being incremented

every time the loop iterates, the data within each of the three arrays (three links) changes

and is pushed onto @endarray.

It is the entire HTML markup that is pushed onto @endarray that is to be displayed

in the user’s browser. This example contains only the code for three links. In the project

to come, we’ll be adding images, links, and other useful page elements to the mix.

 Ordering Your Arrays: Perl reverse() vs. MySQL ASC or
DESC
In working with an array, it is sometimes favorable to reverse it and apply formatting to

the data that has been reversed. There are three options available – one via Perl and two

via MySQL.

The Perl reverse() function is one such option. You would apply the reversal to every

array that you are working with. This takes MySQL out of the loop and is sometimes

favorable in situations where you’ve already retrieved data from the database. Use the

reverse() method as follows:

@this_new_array = reverse(@this_array);

Chapter 3 essential MysQl skills

48

You can see how easy it is to use the reverse() function. It is equally easy to use the

ASC (ascending) and DESC (descending) clauses via MySQL. Examine the following

examples:

$query = qq{SELECT fieldone, fieldtwo FROM this_table

 ORDER BY id ASC};

Or

$query = qq{SELECT fieldone, fieldtwo FROM this_table

 ORDER BY id DESC};

Each MySQL statement uses the id primary key to organize the data returned – what

direction the data is actually retrieved from is a function of the ASC or DESC clauses.

DESC orders the information in a descending manner. That is, the data that is at the

top of the table is also the oldest. A descending order returns the data organized from

the oldest data on the top of the list to the newest data on the bottom of the list. The ASC

clause places the oldest data at the bottom of the list, leaving the newest data at the top

of the list.

There are pros and cons for all three methods of ordering your data. While the Perl

reverse() function is useful, it is the slowest of the three methods. The ASC and DESC

methods are faster, since MySQL is written in a faster programming language optimized

for this kind of operation and is already memory resident. What method to use is entirely

up to you – tailor to your situation.

 Links and Parameters
We’ll be using loaded links extensively in the upcoming project sections. A loaded link is

one that contains parameters that scripts use to pass on data that is used to retrieve data

for the next page. An example of a loaded link is as follows:

This Link

This method of loading links is the GET method, as you’ll remember from a previous

chapter. The id parameter holds the value 1234, and the id2 parameter holds the value

5678. These parameters and their associated values are what are used to generate the

page that is generated by the “this_script.cgi” script.

Chapter 3 essential MysQl skills

49

 Summary
This chapter covered data types and how to both insert and retrieve large amounts of

data. The concept of ordering your arrays via the Perl reverse() method and the MySQL

ASC and DESC attributes was explored. We then performed several possibly large inserts

into a database.

Chapter 3 essential MysQl skills

51
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_4

CHAPTER 4

Nuts and Bolts
With all that you have learned so far, there are still a few things that you need to know

to get the job done. This chapter introduces the skills needed for you to expand your

working knowledge of database-driven web development.

We’ll begin with simple date and time formatting and move on to more involved

topics, such as gathering your data and presenting it to your users via the browser. Most

of these concepts were introduced as examples of code in previous chapters. They

were kept as simple as possible to enable you to learn. From now on, I’ll be using actual

functioning code from the example projects we’ll be discussing in the coming chapters.

There’s a lot to cover, so let’s get to work.

 Date and Time Formatting
There are a number of different Perl modules that can be used to present the date and

time to your users. These modules are usually very hefty and slow, and to be honest, they

aren’t required in most cases. This is because you can take the date and time directly

from the operating system using the backtick operator (`). The backtick operator is used

to make system calls to whatever operating system you’re using.

These modules all use the backtick operator to retrieve the date and time eventually,

so you can speed things up by doing it yourself. We’ll stick to Linux date and times, as

this is the most prevalent operating system used on Internet servers.

You might be asking why there are so many different Perl modules just to format the

date and time. The answer is there are simply many ways to present the date and time.

This is what the date and time modules do – format what they get from a system call for

the date and time into something a little more presentable. The reason they’re so large is

because they have many different ways to present the date and time all in one module.

All of this complication translates into a slow functioning Perl module.

https://doi.org/10.1007/978-1-4842-5970-2_4#DOI

52

The system call syntax to retrieve the date and time on Linux is very simple. Examine

the following code snippet:

$date = `date`;

On Linux, the “date” command brings up both the date and time down to the last

second. In this case, these date and time are stored in the $date variable, which now

contains the following:

Fri Nov 20 11:18:44 PST 2015

You can see that a full representation of both the date and time is given. This might

not be what you’d like to see as your date or time – this is true in most cases. What we

need to do now is format the date and time into something more aesthetically pleasing.

You can do this very simply with the concatenation operator (.) and the split() function,

as shown in Listing 4-1.

Listing 4-1. Formatting $date

@date_raw = split(/ /, $date);

$date_complete = $date_raw[0] . ", " . $date_raw[1] . " " . $date_raw[2] .

", " . " " . $date_raw[5];

What I just did is split the contents of $date on the spaces with the split function

and pushed the results into the @date_raw array. I then created $date_complete and

concatenated index numbers 0, 1, 2, and 5 to come to the formatted date:

Fri, Nov 20, 2015

You can see that I didn’t use the time and time zone, which resides in index items 3

and 4 ($date_raw[3] and $date_raw[4]). You can also see from within the concatenations

that I’ve added commas between index items 0 and 1 and 2 and 5.

 Website Parameters
You’ll eventually need to include parameters in your scripts. Catching and using your

parameters is a common occurrence, so you’ll have to fully understand their use.

Know a website parameter as the jumble of letters, numbers, and special characters

that come after the question mark (?) following the file name:

http://www.domain.com/cgi-bin/script.cgi?id=123456&id2=abcdefg

Chapter 4 Nuts aNd Bolts

53

As you can see, the fully qualified domain name given holds two parameters and a

file name. The parameters given are the id and id2 parameters. They each hold values

and are separated by an ampersand (&). You may have as many parameters as needed,

with the usual maximum being about five parameters.

This particular parameter method is known as the GET method. There is another

method of submitting parameters called the POST method. These concepts were visited

briefly in a past chapter.

In order to use the POST method, you must submit the parameters from within an

HTML FORM element, as shown in Listing 4-2.

Listing 4-2. Using a FORM with the method set to POST

<FORM NAME="form1" METHOD="POST" ACTION=" http://www.domain.com/cgi-bin/

script.cgi">

 <INPUT TYPE="hidden" NAME="id" VALUE="123456">

 <INPUT TYPE="hidden" NAME="id2" VALUE="abcdefg">

 <INPUT TYPE="submit" VALUE="Submit Values">

</FORM>

You can see from the preceding example that I’ve inserted the parameters within

opening and closing HTML FORM elements in type “hidden” INPUTs. The parameters

will be uploaded to the server when the Submit button is clicked.

Since the method of POST is used, the parameters will be passed to the server within

the message body instead of within the values in the address bar.

 Catching the Parameters
The easiest way to catch a parameter is with the param() method, which is within the

capabilities of the CGI module. In order to invoke the param() method, you must first

create a new instance of the CGI module, as shown in Listing 4-3.

Listing 4-3. Catching parameters using the param() method

USE CGI;

$cgi = new CGI;

$id = $cgi->param('id');

$id2 = $cgi->param('id2');

Chapter 4 Nuts aNd Bolts

54

You can see that I first included a “USE CGI;” statement. I then created a new

instance of the CGI module through the use of the “$cgi = new CGI;” statement. The

id and id2 parameters were then caught with the “$id = $cgi->param(‘id’);” and “$id2

= $cgi->param(‘id2’);” methods, the values of which are now stored in $id and $id2. It

should be noted that the parameter names are case sensitive.

You may have as many parameters as necessary, with the limit being between

five and ten in one script. It should be noted that the POST method can pass more

parameters than can the GET method.

 Processing the Parameters
There are many ways of processing a parameter. What I’ve found is that regular

expressions are used regularly and can be applied to the data contained in the

parameter’s variable in order to combat malicious attacks.

A regular expression that only allows numbers to be within a parameter’s variable:

$id =~ s/[A-Za-z\s]+//g;

As you can see in the regular expression, all letters will be stripped from the variable,

$id. This allows only numbers to be contained within the parameter’s variable. Malicious

users won’t have a chance to hack your script because it is impossible to gain entrance to

a script without using textual commands in some way.

You may also put the parameter’s values directly into a database if security isn’t

an issue. Since a parameter has a logical use, you may prepare your data to be used

in the next script or format it to be able to access a particular database table, with the

parameter’s value being the unique identifier. Consider the following example:

$profileid = $id . "profile";

I used the concatenation operator again to join the $id and the word “profile” in

quotes. Note that the word “profile” is contained within opening and closing double

quotes. This tells Perl that the contents are textual in nature. The $profileid variable now

holds the following value:

123456profile

Since the new variable $profileid is now a unique value, you may use it to access a

unique database table or row within a table, in this case, the site profile of that particular user.

Chapter 4 Nuts aNd Bolts

55

 Loading Your Links
There will come a time when using an HTML FORM to pass your parameters just will not

work. It is not always possible to use a form and the POST method. In this case, you have

to work out a way to pass your data via the GET method of loading your links. In this

case, you can load your links with data.

As touched on in an earlier section of this chapter, data can be carried from page to

page via a loaded link:

/cgi-bin/script.cgi?id1=123456id2=abcdef

The loading of your links should be very familiar to you now. It is important that you

understand how to load your links since it is a technique that is used with almost every

Perl script.

In the following sections, we’ll take your knowledge of loading links further so you

are able to create loaded links dynamically, according to database entries from multiple

Perl arrays.

 Gathering the Information
Gathering all of the information from your database into multiple arrays is a

straightforward affair that uses the fetchrow_array() method. What we’ll be doing is

gathering all of the information from one table. Examine the following construction

given in Listing 4-4.

Listing 4-4. Gathering data for later formatting

$query = qq{SELECT id1, id2, id3, id4 FROM thistable

 WHERE id >= 0};

$sth = $dbh->prepare($query);

$sth->execute();

while (@thisvalue = $sth->fetchrow_array()) {

 push @id1, $thisvalue[0];

 push @id2, $thisvalue[1];

 push @id3, $thisvalue[2];

 push @id4, $thisvalue[3}

};

Chapter 4 Nuts aNd Bolts

56

So we’ve gathered all of the information from one table and placed the contents

of each column into its own array via the use of the Perl push function. We now have a

complete representation of the database table within the @id1, @id2, @id3, and @id4

arrays. Read on to find out what to do with them.

 Constructing the End Array
What we’ll be doing with the arrays generated in the previous section is construct loaded

links dynamically using the contents of the four arrays. We’ll be placing the database

information within one large array using the following functions given in Listing 4-5.

Listing 4-5. Gathering the end results

$count = 0;

foreach (@id1) {

$oneContentElement = qq{<tr>

<td align="right" valign="top">

 <a href="thesmessages.cgi?id1=$id1($count]&id2=$id2[$count]&id3=id3

[$count]&id4=$id4[$count]">Message[$count]

</td>

</tr>};

push @contentArray, $oneContentElement;

++$count;

};

We started by declaring $count. We set its value to 0 (zero). The reason why we did

this will be addressed in the paragraphs to come.

We then declared a foreach() loop using @id1 as the argument. In this case, it is used

as a count to dictate how many times the foreach() loop will be iterated.

As you can see from the HTML markup within the $oneContentElement variable,

there are four parameters given to each anchor element. The $count refers to the index

item position within each array.

For example, the first index item within @id1 is zero, since we haven’t iterated the

$count from its original value of zero yet.

This set of links is then pushed onto @contentArray, and then we iterated $count.

$count now has the value of 1 (one).

Chapter 4 Nuts aNd Bolts

57

Since we have now reached the end of the construction, it is then looped through

again, this time with different values being pushed onto @contentArray due to $count

being iterated.

The entire construction is looped through with $count being iterated for each loop.

In this way, each anchor tag has different values.

The construction will loop until the @id1 array is out of index items to trigger

another iteration and push onto @contentArray.

 The External Content Template
Now that you have the necessary knowledge to generate and format page content, you

must now learn how to generate a full HTML page that the contents of @contentArray

will be printed within.

To do this, you must create a new Perl script with HTML markup within it. Place this

markup within a variable enclosed with a double quote operator (qq{}). We use a double

quote operator because it allows more than a single line of code to be encapsulated

within it, as is the case with the textual double quote (“).

The only Perl code that is put in this script is one variable and the shebang, which

is used to tell the script where to find Perl. The following is an example of a common

shebang:

#!/usr/bin/perl

The name of the variable I always use in this situation is $htmlContent. An example

of a very simple external content template is as follows in Listing 4-6.

Listing 4-6. An external content template

#!/usr/bin/perl

$htmlContent = qq{<!DOCTYPE HTML>

<head>

<title> - - - Web Site Title - - - </title>

<body >

<table border="0" cellpadding="0" cellspacing="0" align="center"

width="100%">

Chapter 4 Nuts aNd Bolts

58

@contentArray

</table>

</body>

</html>};

1;

The preceding shown markup is simplified in order to learn without too much

complication. However, it is still a valid and complete page of HTML markup.

We first started with the shebang, followed by the $htmlContent variable which is

stated between opening and closing qq{} operators.

We then moved on to some simple markup and ended the script with a number 1

(one). The number 1 is required in order to return a value of true to Perl. Leaving this

number out will cause a fatal error to be thrown, ending execution of the script.

You might have noticed that I included the @contentArray array between the

opening and closing table elements. The table element markup meshes with the four

simple links we used in an earlier section of this chapter.

Stating @contentArray in this way will allow you to have more complicated pages

that utilize the content generated with the loading of your links discussed in detail in a

previous section of this chapter.

In order for the HTML content template to be used with the rest of your script, simply

utilize a Perl require statement:

require "content.pl";

The key to this system is declaring the require statement at the very end of your Perl

script. This way, all of your data has been collected and formatted and is ready to be

printed to the user’s browser.

 Printing the End Array
Printing your content to the user’s browser is simple and straightforward. It is the last

command given within a script and will appear on the last lines of the script:

print qq{Content-type: text/html\n\n};

print qq{$htmlcontent};

Chapter 4 Nuts aNd Bolts

59

You can see that we first told the browser what type of data that is to be received and

displayed with the Content-type command. We used “text/html\nn” as the content type

that is to be received by the browser.

Now everything comes together. The data that is collected from the database is

formatted and pushed on to @contentArray. @contentArray is then put within an

appropriate place in the external content template, content.pl. The variable with all of

the markup within it is then printed to the browser. Simple.

 Using the CGI::Carp Module
Every script has an error in it after you’ve completed writing it. A script of any complexity

will have at least one error within it.

While Perl can’t correct your mistakes, it does allow you a means as to what the

problem is. To that end, the CGI::Carp module is an invaluable tool that is used to help

you find your errors. As with all Perl modules, it is declared at the top of the script. The

following is its syntax:

use CGI::Carp qw(fatalsToBrowser);

As you can see, declaring it is a simple matter. Instead of having to use the command

prompt to debug your scripts, the CGI::Carp module will print your errors to the browser.

The reports are very intuitive and easy to figure out.

The reports announce the error, the script, and the line number of the script where

the fatal error occurred.

You would normally use this module during development of the site. After you have

all site errors figured out, it is recommended that you comment out CGI::Carp so your

users won’t be able to figure out your scripts or database model. Leaving CGI::Carp

active with a live script opens you to attacks from malicious users.

 Username and Password Maintenance
Username and password maintenance is an important part of developing your website.

Unless you use a secure shell connection (which is beyond the scope of this book), you

would normally use FTP to place your files where they should be.

Chapter 4 Nuts aNd Bolts

60

Changing your password once a month will allow you peace of mind, knowing that

other developers won’t be able to access your site’s critical files.

Creating a new account with a different username will also add to the security of

your site.

When it comes to database usernames and passwords, changing the username and

password is usually a big chore, as all of the database calls will fail unless you change

the username and password of the connection statement. You would have to change the

username and password of every Perl script that uses a database.

If you only have a small number of scripts running on your site, changing the

username and password would be a viable security effort.

Instead of changing the username and password in your database connection script,

use a well-crafted password. A good password in this case is 10 to 12 characters long.

Use letters of both cases, numbers, and punctuation in your password to reduce the

chances of someone gaining access via your database connection statement. It should be

noted that both the username and password are case sensitive on MySQL.

 Per User Usage Statistics
On some sites, tracking users is a required operation. This is usually the case if the site is

a charge-for-service site where the user pays according to what services they utilize.

Tracking a user is most easily done via their IP address. Tracking an IP (Internet

Protocol) address is made easy with the CGI module. Consider the following:

$userip = $cgi->remote_host();

This statement will return the user’s IP address, allowing you to record it or work

upon it at will. Some sites narrow a user’s address using the IP address, allowing them to

record your general location or use it as a sales pitch.

Tracking the pages each user uses is a common feature of many sites. By tracking

users’ movements, it is possible to know which sections of your site are being used and

which ones aren’t being used. This will allow you to make informed changes to those site

features that aren’t being utilized.

Tracking your users requires a database call or two. There are two methods that are

commonly used to record if a script and thus a page of your site is being accessed. The

first is a straightforward two-step method, as given in Listing 4-7.

Chapter 4 Nuts aNd Bolts

61

Listing 4-7. A hit counter using MySQL

$query = qq{SELECT hits FROM tracker};

$sth = $dbh->prepare($query);

$sth->execute();

$thisHit = $sth->fetchrow()

};

++$thisHit;

$query = qq{UPDATE tracker SET hits = '$thisHit'};

$sth = $dbh->prepare($query);

$sth->execute();

};

You can see that two database calls were carried out. First, the hit count is fetched

using the upper statement. We then incremented that retrieved value and updated the

new value into the database. This is a good, straightforward way of recording a single

page hit.

The single call method is perhaps the more elegant of the two methods. With it, you

only use one database call and let MySQL do the work for you:

$query = qq{UPDATE tracker SET hits + 1};

$sth = $dbh->prepare($query);

$sth->execute();

};

As you can see, a single Perl call results in a cleaner script, also allowing the faster

executing MySQL to do the increment for you.

 Deleting Tables
Deleting tables can be a risky affair, especially because MySQL doesn’t have a reliable

restore feature. Once a table is deleted, it is gone for good, so some care has to be taken.

You would normally drop a table via scripted action. Make sure that the proper

validity checks are taken before the table is dropped.

For example, if a user is deleting their account, the table(s) should be dropped after

checking that the rest of the deletion script has been evaluated and a table deletion is

found to be the case. You may then drop a table successfully.

Chapter 4 Nuts aNd Bolts

62

The proper term for deleting a table is “dropping” the table, and this is reflected in

the syntax of the database call, as the following shows:

$query = qq{DROP TABLE username_master};

$sth = $dbh->prepare($query);

$sth->execute();

As you can see, a table deletion is simple and has a minimum of clutter. Also, make

sure you’re dropping the right table or troubles will ensue.

 Deleting Rows
Deleting a row in a table is a common practice and is usually completed via scripted

action. Deleting an entire row in a database can be done by matching a value within the

row, telling MySQL which row to delete that way.

As I’ve said before, always have an autoincrement id column present in every

table. Since this id table starts at zero and works upward from there (hence the term

autoincrement), it is a very safe way to identify one single row for deletion, even in a

table with thousands of entries.

To narrow down which row to delete among thousands, you would use a WHERE

clause. Simply match which row to delete via the id column and it’ll be a safe bet that

you’ve deleted the intended row within the table.

Examine the following example of a row deletion where the row to delete is found via

the row’s id column:

$query = qq{DELETE thisrow FROM master WHERE id = 1234};

$sth = $dbh->prepare($query);

$sth->execute();

Listing 11-22 Deleting a row

You can see how and where to use a WHERE clause in your database call. I used the

values 1234 as the row identifier in the example. It is an entirely possible, and oft-used,

method of deletion to use a variable instead of a static row name such as shown in the

example.

Note also that we used the id column name to come to the decision to delete that

row. I’ve found this method to be invaluable when working with a database of any flavor.

Chapter 4 Nuts aNd Bolts

63

 Uploading Files
Uploading files is perhaps the most complicated operation you’ll run across in your

dealings with Perl and MySQL. The actual Perl script you would use to upload a file is

beyond the scope of this book, but you have to be aware of a few things before you can

start thinking about an upload script for future use.

The first thing to consider when you’re working with file uploading is that the HTML

FORM element must reflect the fact that a file is to be uploaded. Examine the following

HTML FORM statement:

<form method="post" action="upload_script.cgi" enctype="multipart/

form- data">

 <input type="file" name="photo">

 <input type="submit" value="Upload Image">

</form>

As you can see, there are a couple of things to include in a form that wouldn’t usually

be there. The first is the ENCTYPE, which in the example is set to “multipart/form-data”.

This tells the browser, then the server, that an upload of several parts is being uploaded.

The first part is the ENCTYPE, which will hold the name of the file as well as a different

data container that will hold the digital coding of the file itself.

The next part of the form that has changed is the type, which is set to “file”. This tells

the browser to display a form element that has a Select button and a small space to show

the file name.

Click the “select” button, and a dialog box appears with your computer’s file system

shown within it. Navigate to the desired file, click it once to select it, and click the OK

button.

The file name, now selected, will be displayed next to the button. Click the Submit

button and your file will be uploaded to the script given in the form.

Depending on your browser, you should see a progress indicator somewhere

that shows, as a percentage of the total size of the file, how much of the file has been

uploaded and therefore how much more that has to still be uploaded.

Chapter 4 Nuts aNd Bolts

64

 Managing Images and Files
Managing files via scripted action can be confusing for the newbie. While there are many

Perl modules that can be used to manage your file collection, you don’t have to use

them. Once again, use the backtick (’) operator.

The backtick operator allows you to make system calls directly to the server’s

operating system. Most Internet servers run the Linux operating system, so all of the

database calls we’ll make in the coming chapters will reflect this.

In web development, for every file there are two locations. The first is the URL,

which is the file’s location that your users will see via the browser. The second is the file’s

location within the server’s operating system.

We’ll be primarily working with the latter file location - the place the file resides on

the server. All Linux servers use basically the same commands when it comes to dealing

with files, so do use the backtick operator liberally.

 Summary
This was a fun chapter. We explored date and time formatting, loading your links, and

the external content template. A few SQL commands were studied, and we discussed

concerns regarding gathering your database-generated content and applying HTML

markup. We also opened discussions on file and image uploads, topics that will be

expanded in the chapters to come.

Chapter 4 Nuts aNd Bolts

65
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_5

CHAPTER 5

Practical JavaScript
Concepts and Projects
This chapter looks at some useful JavaScript concepts and projects that span everything

from menus to links, coloring, and positioning concerns. I’ve provided about 50

individual code examples with detailed descriptions for each. Some are a little

complicated, but for these I’ve just included more explanations.

I tried to keep the skill level as an increasing progression – one leads to another. We’ll

be using these essential skills in the chapters to come. Enjoy.

 Turning Visibility On and Off
You’ve no doubt run into a situation whereby you’ve clicked an action object and had

other options, such as links or images, made visible on the page. This is accomplished

via the use of the DOM style method of the document object. In this example, the hidden

attribute is simply switched from “hidden” to “visible” when the input button is clicked.

The action is an HTML onClick event handler, and it is shown how to change this

property on two input buttons, given in Listing 5-1.

Listing 5-1. Toggling the visible and hidden page elements

<html>

<body>

<p id="x">This is text. This is text. This is text.</p>

<input type="button" value="Hide text"

onclick="document.getElementById('x').style.visibility='hidden'">

https://doi.org/10.1007/978-1-4842-5970-2_5#DOI

66

<input type="button" value="Show text"

onclick="document.getElementById('x').style.visibility='visible'">

</body>

</html>

It should be mentioned that older browsers may need you to adjust your thinking a

little to accommodate them. If you notice, the ‘x’ identifier has been merely stated in the

onClick declaration – it has no action other than to identify that piece of the document

as a unique part. In the P element above it, the id attribute is set to x before the DOM

statement is applied. The standard bubbling order rules apply, so the x identifier has to

be declared before the DOM statement. Otherwise, you’ll get an error that it can’t locate

the document element that you’re referring to (x).

 Change the Background Color of an Element
The following chunk of code shows how to make changes to the background color of a

few table elements. In this example, the action is applied only to the TD element of the

table that it is declared within. You can apply this method to any page element that DOM

allows access to, including making document-wide changes through altering the values

of attributes of the BODY element.

These methods can be used in one page element or in sweeping changes that you

can accomplish through the use of CSS rules. Simply alter the DOM statement stated in

the JavaScript within the script elements given in the head of the document accordingly.

Listing 5-2. Changing colors dynamically

<html>

<head>

<script type="text/javascript">

function bgChange(bg) {

 document.body.style.background=bg;

}

</script>

</head>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

67

<body>

Mouse over the squares and the background color will change

<table width="300" height="100">

 <tr>

 <td onmouseover="bgChange('red')"

 onmouseout="bgChange('transparent')"

 bgcolor="red">

 </td>

 <td onmouseover="bgChange('blue')"

 onmouseout="bgChange('transparent')"

 bgcolor="blue">

 </td>

 <td onmouseover="bgChange('green')"

 onmouseout="bgChange('transparent')"

 bgcolor="green">

 </td>

</tr>

</table>

</body>

</html>

Some things that you might want to play around with are changing which events fire

the changes stated in the DOM statement, what properties are altered, and if you want

to go a bit further and assign a variable loaded with information that is decided upon by

other functions such as according to stored user preference.

To do this, change from using a literal value as the argument passed to the

bgChange() function. For example, use a variable name instead of the word “green” – the

actual color to be applied can be decided upon in another function and is contained

as the data of the variable. You may use named colors, hex colors, or RGB colors as the

method of defining what color is to be applied.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

68

 An onLoad Event Trigger
Learning to use an onLoad event handler is great. Through the use of this simple event

handler, you can time actions to coincide with subtle things such as starting an action

when the page element is finished loading and is displayed – applying a CSS rule when a

large image has finished downloading, for example.

Try downloading a large file such as an audio or video file. Change the border

property of a table to 1 with a bgcolor=“red” statement and a border will be displayed

around the object that is 1 pixel wide, colored red, when the file is finished loading

into the page. Put the instructions in a script in the head of the document and state the

JavaScript function within the body of the document as that to be processed when the

onLoad event is triggered.

Listing 5-3 uses the onLoad event in the BODY element to display an alert box with

the text given when the entire document is finished loading. You don’t have to apply this

rule in terms of document-wide alterations – the onLoad event can be triggered in any

HTML element and applied when the element is finished loading by the browser.

Listing 5-3. Using the onLoad() event handler

<html>

<head>

<script type="text/javascript">

function myMessage() {

alert("This message was triggered from the onLoad event");

}

</script>

</head>

<body onload="myMessage()">

</body>

</html>

You can accomplish quite a bit of creative actions using this simple event. Try mixing

this event with its opposite, the onUnload event handler. onUnload is very handy to write

user preferences or any generated data to a cookie when the page is closed, I’ve found.

You can then use the data contained within the cookie and apply it to the next page by

applying it using the onLoad function in the next page.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

69

 Use “this” to Change Colors
This is a very simple way to achieve some impressive results. The DOM directive is

triggered with a simple onClick event, changing the original color of the Click Me! Text to

red. You may use a named color, hex color, or RGB color.

The this directive can be very powerful when used in a unique position. However,

you wouldn’t want to change many items in a document with this approach. It is

inefficient on a large scale and isn’t the best approach to solving the problem of

document-wide or even selective area alterations.

Listing 5-4. Using the this directive

<html>

<body>

<h1 onclick="this.style.color='red'">Click Me!</h1>

</body>

</html>

You can apply this technique to any properly formed container in any given

document, since HTML version 3.2. This functionality is widespread, so it will be

included in every version of HTML (and thus DOM) for the foreseeable future.

 Switching Images on the Fly
Switching images is fairly simple as long as you realize a couple of things: you must

preload the image data that you want to switch to into a variable, and if you want to

change the image back, you have to load the original image data into a variable of

its own. You accomplish through the use of the src attribute of the document object.

Examine the example in Listing 5-5.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

70

Listing 5-5. Manipulating images

<html>

<body>

<script type="text/javascript">

document.getElementById("image").src="image2.jpg";

</script>

<p>The original image was image1.gif The script changed it to

image2.jpg</p>

</body>

</html>

You can place the JavaScript function that accomplishes this action in any place

within the document. However, older browsers require that you place the function in

a section of the document that is parsed before the location of the image is stated to

be changed. You can use a JavaScript function within the opening and closing SCRIPT

elements, or you can use a javascript: parameter of any given legal element within the

HTML specifications.

To change the image back to the original image, you must use the same src attribute

of the document object to do so – simply change the URL of the image file. The browser

will load the data and store it until it is triggered with the event handler of your choice.

In the preceding example, we used two variables to store and retrieve the image

data. It is entirely possible, and in some cases, desirable, to use one array rather than

many variables. Simply declare the array, assign the src attribute in the exact way given

previously, but use an arrayName[count]= assignment instead of a simple variable

declaration.

You would use this technique if you need to change many different images in many

different portions of the document, at different times. You should use variables if you

wish to change many images that are the same at the same time – the image data stored

in the variable can be used repeatedly.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

71

 Change HTML Code Using innerHTML
The innerHTML attribute is sometimes a little confusing in its use, I’ve found. For some

reason, outerHTML seems to be the best choice for most people, but this isn’t always the

case – the proof for this is simply because the innerHTML attribute was included in the

HTML specifications, not just the outerHTML attribute.

Use the id attribute to assign the JavaScript commands within the nameon() function

to that individual page element. Call the name given as the value of the id attribute as the

argument passed to the two functions we’re using to accomplish our goals. We use two

events to trigger two separate actions, onMouseOut and onMouseOver.

Listing 5-6. An exercise in innerHTML

<html>

<head>

<script type="text/javascript">

function nameon() {

document.getElementById('h2text').innerHTML="WELCOME!";

}

function nameout() {

document.getElementById('h2text').innerHTML="How are you today?";

}

</script>

</head>

<body>

<h2 id="h2text" onMouseOut="nameout()" onMouseOver="nameon()">Mouse over

this text!</h2>

</body>

</html>

This is especially useful if you have an action that must change as the user triggers an

event. You don’t have to stop with one command, remember, so you can load whatever

functionality you’d like within the functions. The innerHTML attribute is used primarily

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

72

as a text editing directive, but with a little forethought and creativity, you can assign

DOM style sheet rules when the text is changed. Each set of text you’d like to include as

the changed content can have its own style sheet rules applied to it.

 Change the Position of a Page Element
Before we get into the use of the style.position statement, you must understand how the

two options of this statement differ. You would usually use them with ilayer elements

to accomplish a drop-down menu. Each has its pros and cons, and each has a very

particular way they must be used.

The first option is absolute. The absolute positioned document element is positioned

according to a position the browser calculates in relation to the top left corner of the

document. It is expressed in pixels. The element assigned to this positioning schema will

stay in the position given even if the rest of the document resizes or shifts as the browser

window is resized. For example, if you absolutely positioned a centered table in your

document and the user resized the window, that portion of the table that is absolutely

referenced will stay where it is – the rest of the document will move. If you’d like to use

this positioning technique, you must, for practical reasons, position your page justified

left, valign=top. This is because the document is positioned absolutely according to the

top-left corner of the document. If the browser window is resized, the page doesn’t move

and the absolutely positioned element will have the same referenced location in the

document.

The relatively positioned page element is by far the most useful. It is usually applied

as a position in a table. The position is referenced as a point positioned absolutely, but

in reference to the upper left corner of the area of the document specified by the TD

element. If the page is resized, the TD element will move, but the content attached to

the upper left corner of that element will adjust as the TD element adjusts, keeping the

structure of the table intact. A browser resize, then, will move the entire table including

the relatively positioned portion given as content within the table.

Listing 5-7. Positioning page elements

<html>

<head>

<script type="text/javascript">

function moveleft() {

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

73

document.getElementById('header').style.position="absolute";

document.getElementById('header').style.left="0";

}

function moveback() {

document.getElementById('header').style.position="relative";

}

</script>

</head>

<body>

<h1 id="header" onmouseover="moveleft()" onmouseout="moveback()">Mouse over

this text</h1>

</body>

</html>

Notice that the style.left attribute was stated as the second statement within the

JavaScript function. This is the value, in pixels, that the browser will use to position the

content. Notice also that you don’t have to use the style.left attribute if you’re positioning

relatively.

 Using onMouseMove
onMouseMove is a document-wide event handler that applies to the BODY element

only. You can use a javascript; approach, but that is usually not a good thing, as it clutters

up your BODY element with unneeded attributes. Use a JavaScript function in the HEAD

of the document and call it with the onMouseMove event handler as per usual.

Listing 5-8. Using the onMouseMove event handler

<html>

<head>

<script type="text/javascript">

var i=1;

function moveright() {

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

74

document.getElementById('header').style.position="absolute";

document.getElementById('header').style.left=i;

i++;

}

</script>

</head>

<body onmousemove="moveright()">

<h1 id="header">Move the mouse over this page</h1>

</body>

</html>

Note that a variable loaded with a value was used as the parameter of the style.left

attribute. This is just to show that a variable name can be used as the value. You may use

other JavaScript functions within the rest of the document to calculate the value given in

the variable. This will allow a limited sort of dynamic positioning while still receiving the

benefits of the rules that govern the absolutely positioned document element.

 Using onLoad and onUnload
The load event handlers are great to work with. There are many different ways you can

use them, and all are very useful and easy to implement. The two JavaScript functions

used in the example are fairly basic, although the first function, starttimer(), uses four

DOM statements and two JavaScript object activations.

Listing 5-9. Using the onLoad and onUnload event handlers

<html>

<head>

<script type="text/javascript">

var i=10

function starttimer() {

document.getElementById('h_one').style.position="relative";

document.getElementById('h_one').style.left=+i;

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

75

document.getElementById('h_two').style.position="relative";

document.getElementById('h_two').style.top=+i;

i++;

}

</script>

</head>

<body onLoad="starttimer()" onUnload="stoptimer()">

<h1 id="h_one">Header one</h1>

<h1 id="h_two">Header two</h1>

</body>

</html>

The JavaScript functions we’ve stated are relatively positioned. The value of this

relatively positioned portion of the document is given in the i variable. Note that the

increment operand (+) is used with the variable name. This increments the numeric

value within the variable by one, changing the position of said page element.

It is extremely handy to be able to carry data from one page to the next without

first sending that data to the web server to be stored, processed, and re-served for the

next page. Using the onUnload event handler, you are able to attach a series of nested

commands that allow you to store data such as user preferences in a cookie on the user

machine and load from that cookie to format the next page on the fly through the use of

the onLoad event handler.

 Making Text Bigger
Applying a textual formatting application is very easy. Simply use any CSS rule that has

been included in the DOM specifications. In this case, we’re altering the sizing of text.

We’ll take it a step further and introduce a maximum text size as well.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

76

Listing 5-10. Changing text size properties

<html>

<head>

<script type="text/javascript">

txtsize=0;

maxsize=100;

function writemsg() {

 if (txtsize<maxsize) {

 document.getElementById('msg').style.fontSize=txtsize;

 txtsize++;

 }

}

</script>

</head>

<body onload="writemsg()" onunload="stoptimer()">

<p id="msg">This is the text that will become bigger</p>

</body>

</html>

The style.fontSize attribute is used to change the size of the text. There are many

style rules that can be used in this exact same location in this exact way to change many

different textual formatting options. However, you are not limited to applying only one

textual formatting option per function – you may also apply groups of rules to construct

the look and feel you’re thinking of.

The timer was introduced to provide for older browsers that take a little bit of time

to apply a text change and redraw the document. The value given is 10 and is stated in

milliseconds. This gives the legacy browser time to make the change and be ready to

redraw. Otherwise, the browser will throw an error when it tries to apply the formatting

change.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

77

 Change the Background Color of an “input” Field
This option can easily be applied as the page loads or according to user selection. We use

the style.background statement to change the color. The color can be stated as a named

color, hex color, or RGB color.

Listing 5-11. Changing the color of an INPUT field

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

 document.getElementById('x').style.background=color;

}

</script>

</head>

<body>

<p>Mouse over the three table cells, and the input field will change its

background color</p>

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="changeColor('red')"></td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"></td>

 <td bgcolor="green" onmouseover="changeColor('green')"></td>

</tr>

</table>

<form>

<input id="x" type="text" value="Mouse over the colors" size="20">

</form>

</body>

</html>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

78

Be sure to use an appropriate id attribute on the input field you want to apply

changes to. The arguments passed to the changeColor() function are stated in a static

way as named colors but can also be decided upon with other functions by replacing

the named color with a variable. The value of the value can then be decided by other

functions within the page.

 Change the Text Color of an “input” Field
A simple way to change the text within an input field is by using the oft-used style.color

statement. It can be changed according to one option or many options. It is also entirely

possible to make these decisions on what color to change to a part of other JavaScript

functions.

The coloring methods used are named colors, hex colors, or RGB colors. You may

mix the three at any given point in the logical progression of the script.

Listing 5-12. Changing the text color of an INPUT field

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

 document.getElementById('x').style.color=color;

}

</script>

</head>

<body>

<p>Mouse over the three colored table cells. The text will change color. </p>

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="changeColor('red')"> </td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"> </td>

 <td bgcolor="green" onmouseover="changeColor('green')"> </td>

</tr>

</table>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

79

<form>

<input id="x" type="text" value="Mouse over the colors" size="20">

</form>

</body>

</html>

Note that this method of changing textual formatting can be applied to anywhere

within the document using any valid DOM reflection of a CSS rule.

 Change the Background Image of an “input” Field
There are many websites that use this small but powerful chunk of functionality. The

Internet is based on look and feel, so it is obviously very common to have to work with

a large amount of display options. The easiest to understand is simply changing the

background image used in a text input field.

We use a preloader to fetch the image data that is going to be displayed. The src

attribute of the document object is used to tell the browser the location of the file.

Upon the page loading, the data for the image is fetched and stored and is immediately

available to the entire page. It should be noted that if you wish to switch the displayed

image back to the original image, you would have to use another src attribute statement

to fetch the original image data and store it. You may then provide to have the image

switched back according to your requirements.

Listing 5-13. Working with an image as the background

<html>

<head>

<script type="text/javascript">

function bgChange(bg) {

 document.getElementById('x').style.background="url(" + bg + ")";

}

</script>

</head>

<body>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

80

<p>Mouse over these images. The input field will get a new background

image.</p>

<table width="300" height="100">

<tr>

 <td onmouseover="bgChange('image1.jpg')" background="image2.jpg">

</td>

 <td onmouseover="bgChange('image2.jpg')" background="image1.jpg">

</td>

</tr>

</table>

<form>

<input id="x" type="text" value="Mouse over the images" size="20">

</form>

</body>

</html>

Use a simple id attribute to uniquely identify the page element to apply the change

to. This id is used as the argument of the getElementById object. We then use a style.

background attribute to select from the many style sheet options available and apply the

new value when the onMouseOver event is triggered. You may use a relative or absolute

URL for the location of the image file, and the image format can be any that the browser

supports, in this case, a .jpg.

 Select All of the Checkboxes in a Form
This is a very useful procedure to implement and is fairly simple to understand. In

working with forms, you’ll no doubt need to include this in at least one page if you

have a large amount of options to select or if you work with long lists. An example of

this functionality is the Yahoo Mail option to select all email messages for deletion or

moving. The checked=true value is used to check all of the checkboxes within that one

form. It is important to realize that this will work only if you’re using a single form (of any

size). If you have more than one form to submit on the same page with this functionality,

you’ll have to provide an entirely separate checked=true statement within a different

function.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

81

Listing 5-14. Selecting all checkboxes in an HTML FORM

<html>

<head>

<script type="text/javascript">

function makeCheck(thisForm) {

 for (i = 0; i < thisForm.option.length; i++) {

 thisForm.option[i].checked=true;

 }

}

function makeUncheck(thisForm) {

 for (i = 0; i < thisForm.option.length; i++) {

 thisForm.option[i].checked=false;

 }

}

</script>

</head>

<body>

<form name="form">

<input type="button" value="Check" onclick="makeCheck(this.form)">

<input type="button" value="Uncheck" onclick="makeUncheck(this.form)">

<input type="checkbox" name="option">CheckBox1

<input type="checkbox" name="option"> CheckBox2

<input type="checkbox" name="option"> CheckBox3

<input type="checkbox" name="option"> CheckBox4

</form>

</body>

</html>

You may use a type=submit button to check all boxes and submit at the same time if

you like. This is usually used in the case of having trained employees who are using the

form over many times on an Intranet or private Internet page. They know that the form

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

82

will be submitted with all boxes being checked. An Internet page that the user visits only

once shouldn’t have this functionality, as the user may not completely understand what

just happened simply because they’ve never used that particular form before.

 Select the Background Color of a Submit Button
Internet pages are a visual medium and being such should look as good as possible.

The default gray color of a Submit button sometimes just will not do, so you’re now

able to change this color to any within the normal palette of millions of colors. You can

specify a permanent color within CSS rules in the HEAD of the document or change it

dynamically or according to user input.

You may use any coloring method such as named colors, hex colors, or RGB

colors. We use the style.color attribute to apply the color change and call it with an

onMouseOver event. Notice that the color is given as a static named color. You may

substitute this static value with a JavaScript variable or array index value. In this way, the

value (the color) may be decided upon by a different JavaScript function and applied

exactly as it would be if you’re stating a static value.

Listing 5-15. Changing the background color of an INPUT element

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

 document.getElementById('x').style.background=color;

}

</script>

</head>

<body>

<p>Mouse over the three colored table cells. The background color will

change:</p>

<table width="100%">

<tr>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

83

 <td bgcolor="red" onmouseover="changeColor('red')"></td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"></td>

 <td bgcolor="green" onmouseover="changeColor('green')"></td>

</tr>

</table>

<form>

<input id="x" type="button" value="Mouse over the colors">

</form>

</body>

</html>

Use an id attribute within the page element you’re committing the changes to. This

should be reflected as the argument passed to the getElementById object. The new color

is applied when the onMouseOver event is triggered.

 Change the Text Color of a Submit Button
The coloring of text is extremely important, as it is the part of the page that conveys the

most information and thus effect on your users. We use the style.color attribute to assign

a new color and an onMouseOver event to trigger the assignment. The new color value is

a static named color in this example, but it doesn’t always have to be – you can substitute

the static value with a variable name and use a different function to arrive at the color

value your users prefer, for example.

The coloring method may be named colors, hex colors, or RGB colors. You aren’t

limited to applying only a text color change. You may also apply any formatting options

available via the DOM reflection of every CSS rule. These rules are part of the style

attribute, and there are many of them. Simply provide another legal style directive on

another line within the JavaScript function in the HEAD of the document.

Listing 5-16. Changing the text color of an HTML INPUT element

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

84

 document.getElementById('x').style.color=color;

}

</script>

</head>

<body>

<p>Mouse over the three table cells. The text color will change:</p>

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="changeColor('red')"></td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"></td>

 <td bgcolor="green" onmouseover="changeColor('green')"></td>

</tr>

</table>

<form>

<input id="x" type="button" value="Mouse over the colors">

</form>

</body>

</html>

It should be noted that if you would like to change back to the original color, a

different JavaScript function would have to be created to do this. You would usually

trigger the change with an onMouseOut event handler that calls this new function.

 Insert a Background Image on a Button
Providing a background image as that to display as the Submit button is always a good

idea. The flat default gray colored button just isn’t very nice to look at. Use any size image

for your button – the browser will automatically size the button accordingly. Keep it to a

practical size, of course.

We use the style.background attribute to adjust the image to be used. The URL to

the file may be given as absolute or relative and can be any image format the browser

supports. An onMouseOver event is used to trigger the execution of the JavaScript

function given in the HEAD of the document.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

85

Listing 5-17. Changing the background image of an HTML INPUT element

<html>

<head>

<script type="text/javascript">

function bgChange(bg) {

 document.getElementById('x').style.background="url(" + bg + ")";

}

</script>

</head>

<body>

<p>Mouse over these images. The button will get a new background image.</p>

<table width="300" height="100">

<tr>

 <td onmouseover="bgChange('image1.jpg')" background="image1.jpg"></td>

 < td onmouseover="bgChange('image2.jpg')" background="image 2.jpg"></td>

</tr>

</table>

<form>

<input id="x" type="button" value="Mouse over the images">

</form>

</body>

</html>

Adding a bit of customization can be fun. One idea for this is to change the image as

the button is clicked. You would need to create a different JavaScript function within the

HEAD of the document with the exact same directions, just change the file name. Use an

onMouseDown event to change to the down image you’d like to use and an onMouseUp

event to change the image back as the up image.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

86

 Change the Background Color of a Drop-Down List
A drop-down list is usually colored with a simple white background. You can change

this using the style.background attribute to any color within the normal range available

(millions of colors). The color value may be stated as a named color, hex color, or RGB color.

We use the style.background attribute in a JavaScript function within the HEAD of

the document. This function is triggered with an onMouseOver event, and the new color

is applied.

Listing 5-18. Working with lists

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

 formname.elements[0].style.background=color;

}

</script>

</head>

<body>

<p>Mouse over the three table cells. The option list will change color:</p>

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="changeColor('red')"> </td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"> </td>

 <td bgcolor="green" onmouseover="changeColor('green')"> </td>

</tr>

</table>

<form name="formname">

<select>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

87

</select>

</form>

</body>

</html>

Notice that we stated the color to be used as a named color. This appears as

the argument that is passed to the changeColor() function created in the HEAD

of the document. In this example, we used the form name with the elements[0]

collection to state which page element is to be used. You may use a document.

getElementById(formname) statement if you’re more comfortable with that.

 Change the Text Color of a Drop-Down List
Sometimes the default text color – black – just doesn’t work with your page. You can

easily change this color upon page loading or dynamically according to user preferences.

We use a style.color statement to access and apply the new color to the page element

that is specified with the name= attribute.

We use an onMouseOver event to trigger the JavaScript function that is given in the

HEAD of the document. The actual color value stated is a named color and is given as the

argument passed to the JavaScript function that was created, in this case, changeColor().

The coloring method used may be named colors, hex colors, or RGB colors.

Listing 5-19. Changing the text color of an HTML INPUT element

<html>

<head>

<script type="text/javascript">

function changeColor(color) {

 thisform.elements[0].style.color=color;

}

</script>

</head>

<body>

<p>Mouse over the three table cells. The option list text will change

color:</p>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

88

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="changeColor('red')"> </td>

 <td bgcolor="blue" onmouseover="changeColor('blue')"> </td>

 <td bgcolor="green" onmouseover="changeColor('green')"> </td>

</tr>

</table>

<form name="thisform">

<select>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

 <option>Mouse over the colored table cells</option>

</select>

</form>

</body>

</html>

Notice that I didn’t give name= or value= values in the option elements in the

example. This is because the server-side script doesn’t need them if your form name=

attribute is stated. All of the option elements will be treated as part of the form being

submitted. It should be noted, though, that you would have to state name= and value=

attributes if you’re using more than one form within a single page. This is a browser

requirement, not a server-side scripting issue.

 Change the Background Color of a Textarea Element
Textarea spaces are usually fairly large, so they affect the appearance of your page in

a big way. Coloring them can be a great way to add a unique impression upon your

visitors. We use the style.background attribute to alter this. You may have the color

change as the default color that is applied as the page loads or at any time according to

user action.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

89

We use an onMouseOver event to trigger the JavaScript function that is given in the

HEAD of the document. The coloring method may be stated as a named color, hex color,

or RGB color.

Listing 5-20. Changing the background color of an HTML TEXTAREA element

<html>

<head>

<script type="text/javascript">

function newColor(color) {

 document.getElementById('x').style.background=color;

}

</script>

</head>

<body>

<p>Mouse over the three table cells. The textarea background will change

color:</p>

<table width="100%">

<tr>

 <td bgcolor="red" onmouseover="newColor('red')"></td>

 <td bgcolor="blue" onmouseover="newColor('blue')"></td>

 <td bgcolor="green" onmouseover="newColor('green')"></td>

</tr>

</table>

<form>

<textarea id="x" rows="5" cols="20"></textarea>

</form>

</body>

</html>

The new background color is stated as the argument passed to the newColor()

function given in the JavaScript function stated in the HEAD of the document. You

may use a variable or array item as the value. In this way, the color to be applied can be

decided by scripted action, such as per user preference selection.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

90

 Insert a Background Image into a Textarea Element
Inserting a background image into your TEXTAREA is an effective way to brand your site

with a unique look and feel. Use any image format supported by the browser. The style.

background=url attribute is used to give the location of the file and may be an absolute

or relative URL.

The style.background attribute acts like the background=url attribute you might use

with the BODY element. The image is displayed at its actual size, and any overlapping

areas aren’t shown if the textarea is smaller than the image. If the textarea element is

larger than the image, it will be repeated (tiled).

Listing 5-21. Inserting an image into an HTML TEXTAREA element

<html>

<head>

<script type="text/javascript">

function bgChange(bg) {

 document.getElementById('x').style.background="url(" + bg + ")";

}

</script>

</head>

<body>

<p>Mouse over the images. The textarea will get a background image.</p>

<table width="300" height="100">

<tr>

 <td onmouseover="bgChange('image1.jpg')" background="image1.jpg"></td>

 <td onmouseover="bgChange('image2.jpg')" background="image2.jpg"></td>

</tr>

</table>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

91

<form>

<textarea id="x" rows="5" cols="20"></textarea>

</form>

</body>

</html>

I’ve seen a few sites that use the background image as an informative indicator to

the user. It is entirely possible to count the number of characters being typed in the

TEXTAREA and change the image that is displayed according to these counted values.

A progress bar can be displayed as the background image as the user types, giving them

the idea of how much more characters they have to add if you’ve specified a minimum or

the amount of characters they have left if you’ve specified a maximum.

 Preload and Store an Image
Image preloading is as essential skill that you’ll use repeatedly. Consider this: you’ve

loaded your page and have a menu system that uses images that change as the mouse

floats over them. Once the page is loaded, the user does so, but there is a lag between

the mouse passing over that area and the new image being displayed. This is because

the browser has to fetch the new image and display it. This lag can be eliminated if you

preload the image into a variable as the page loads and trigger its display as the mouse

floats over it. The process is essentially immediate and is a great effect.

Listing 5-22. Preload and store images

<html>

<head>

<script type="text/javascript">

img2=new Image();

img2.src="image1.gif";

function changeImage() {

 document.getElementById('myImage').src=img2.src;

}

</script>

</head>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

92

<body>

<p>When you mouse over the image, a new image will appear.</p>

<img id="myImage" onmouseover="changeImage()" width="160" height="120"

src="image2.jpg">

</body>

</html>

We use an onMouseOver event to trigger the JavaScript function that is stated in the

HEAD of the document. The original image is displayed until the mouse floats over it.

The new image is then displayed. Note that if you’d like to change back to the original

image, you’d have to provide a different function name with the original file name and

trigger it with an onMouseOut event.

 Changing the Size of an Image
It is entirely possible to change the size of an image. You may apply the changes

to the same image or download a new image and display that, resized. We use the

getElementById() method to access the data associated with that image, in this case, the

image dimensions. The browser can be made to display an image in dimensions that

aren’t the actual size of the image. Because of this, it is possible to change the image

dimensions dynamically.

Listing 5-23. Changing the size of an image

<html>

<head>

<script type="text/javascript">

function moveover() {

 document.getElementById('image').width="200";

 document.getElementById('image').height="360";

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

93

function moveback() {

 document.getElementById('image').width="100";

 document.getElementById('image').height="180";

}

</script>

</head>

<body>

Mouse over the image:

<img id="image" src="bulbon.gif" onmouseover="moveover()"

onmouseout="moveback()">

</body>

</html>

A few things have to be considered if you’re going to resize images. The first is simple

page layout. If you use a table that contains the image to be resized, you’d alter the

entire table upon the resize. Most of the time, this isn’t what you want, so it is sometimes

prudent to account for the new image dimensions. Within the TD element of the table,

state the size of the TD area as the size of the largest image dimension. This way, the

table isn’t altered with an oversized image and the page looks as you intended.

 Changing the Source of an Image
You might have to alter the location of the image being displayed in that space on the

page you’re working with. You would do this with an src attribute declaration. The page

element is accessed with the getElementById() method, and the image is changed. The

image may be a different image or a duplicate image that is simply located elsewhere.

Listing 5-24. Changing the source image to be used

<html>

<head>

<script type="text/javascript">

function moveover() {

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

94

 document.getElementById('image').src="imageon.gif";

}

function moveback() {

 document.getElementById('image').src="imageoff.gif";

}

</script>

</head>

<body>

<img id="image" src="imageoff.gif" onmouseover="moveover()"

onmouseout="moveback">

</body>

</html>

We used an onMouseOver event to trigger the first change and an onMouseOut

event to change back to the original image. This is advantageous when you’re working

with images that must necessarily be located in different directories on even different

servers. The URL may be stated as absolute or relative, according to needs. If you’re

changing servers, be sure to use the absolute http://www.domain.com/ method to avoid

confusion.

 Changing the Position of an Image
Have you ever been to a page that has a flying banner? There are many uses for this

catchy display option. Some take this to an extreme, but for now, we’ll keep it simple.

This is a great exercise to quickly understand dynamic positioning concepts.

We’ll use both absolute and relative positioning techniques. The first position is

absolute, and the second position is relative to the first absolute position. You can use

an increment operator (++) to change the document coordinates by ones if you wish, or

even jump in increments of ten (or any given number, really) with the addition operator

(+). The style.left attribute is used to give the image position in pixels. You can state a

static value here, or you can use a variable or array item to arrive at the new coordinate

through scripted action.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

http://www.domain.com/

95

The image can be any dimension or format, as long as the format is supported by the

browser. Changing the image dynamically is also a good effect.

We use the getElementById() method to access the display properties for that image.

This includes its position on the page. The id attribute must be stated with the IMG

element to allow the browser to figure out what element is to be positioned.

Listing 5-25. Working with image positioning

<html>

<head>

<script type="text/javascript">

function moveleft() {

 document.getElementById('image').style.position="absolute";

 document.getElementById('image').style.left="0";

}

function moveback() {

 document.getElementById('image').style.position="relative";

}

</script>

</head>

<body>

<img id="image" src="imageon.gif" onmouseover="moveleft()"

onmouseout="moveback()">

</body>

</html>

To change back to the original position, a relative positioning method is used. It calls

the original location of the image on the page and acts accordingly. If you’re going to

move an image within a table in the page, you must account for the area that the image

will be moved within or the table will automatically alter to fit the new image position.

For example, if you were to move a 100-pixel-wide image 10 pixels in both directions,

you would have to have a space given in the TD element containing it to be 120 pixels

wide – 10 pixels to the left, 10 pixels to the right, and the original 100-pixel-wide image.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

96

 Changing the Background Image
You can change the background image of the entire document simply by changing that

parameter of the BODY tag. We’ll use the document.body.background statement to

accomplish this. The background image may be any format supported by the browser. Its

location may be stated as absolute or relative.

According to normal functionality, the background image to be displayed will be

displayed in its actual dimensions. If the image is larger than the browser window area,

the portions of the image that are larger than the window will not be displayed. If the

background image is smaller than the browser window, the image will be repeated

(tiled) to fill the remaining background area.

Listing 5-26. Changing the background image

<html>

<head>

<script type="text/javascript">

function bgChange(bg) {

 document.body.background=bg;

}

</script>

</head>

<body>

<table width="300" height="100">

<tr>

 <td onmouseover="bgChange('image1.jpg')" background="image.jpg"></td>

 <td onmouseover="bgChange('image2.jpg')" background="image2.jpg"></td>

 <td onmouseover="bgChange('image3.jpg')" background="image3.jpg"></td>

</tr>

</table>

</body>

</html>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

97

Also note that this can be used within a table – not just the entire displayed

document. Just change the DOM statement given in the JavaScript function in the HEAD

of the document. A table has the option of displaying an image as the background,

so it might be a good idea to look into this. Use the getElementById.style.background

statement in this case. Give the location of the image as needed and apply with an

onLoad event handler to display the background image when the page is loaded or an

onMouseOver event to display the background image when the user selects that.

 An Image Viewer
This is a great experiment to play with. You can use this basic application to achieve

some startling results without using a server-side script. We use a preloader to download

the image data into an array. We then reference the array items and display accordingly.

The getElementById() method is used to access the properties of each image. The

images are then displayed. This can be taken a little further – such as putting together a

slideshow or simply displaying the images in the way you have in mind.

Listing 5-27. An in-browser image viewer

<html>

<head>

<script type="text/javascript">

myImages=new Array();

myImages[0]="image1.gif";

myImages[1]="bulbon.gif";

myImages[2]="landscape.jpg";

myImages[3]="image2.gif";

myImages[4]="bulboff.gif";

myImages[5]="smiley.gif";

imagecounter=myImages.length-1;

i=0;

function first() {

 document.getElementById('imageviewer').src=myImages[0];

 i=0;

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

98

function previous() {

 if (i>0) {

 i--;

 document.getElementById('imageviewer').src=myImages[i];

 }

}

function next() {

 if (i<imagecounter) {

 i++;

 document.getElementById('imageviewer').src=myImages[i];

 }

}

function last() {

 document.getElementById('imageviewer').src=myImages[imagecounter];

 i=imagecounter;

}

</script>

</head>

<body>

<center>

<form>

<input type="button" value="First" onclick="first()">

<input type="button" value="Previous" onclick="previous()">

<input type="button" value="Next" onclick="next()">

<input type="button" value="Last" onclick="last()">

</form>

</center>

</body>

</html>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

99

A single click accesses the next, previous, first, or last image given in the array stated

in the JavaScript function in the HEAD of the document. Four functions were created,

each with a specific action to access an index item in the array. The original image

doesn’t have to even be seen – it can be a transparent image 1 pixel by 1 pixel in size or

an image that is the same size and color as the page background.

 A Digital Clock
Clocks are everywhere, and so they should be in your web page. You can make them as

prominent or discreet as your taste allows. In this example, we’re displaying ten images

as the digits of the clock. Each digit is a unique image that is preloaded into an array. We

then display the images in increments of a second, minute, or hour.

Listing 5-28. A simple digital clock

<html>

<head>

<script type="text/javascript">

function getDigits() {

num=new Array("0.gif","1.gif","2.gif","3.gif","4.gif","5.gif","6.gif","7.

gif","8.gif","9.gif");

time=new Date();

hour=time.getHours()

if (hour<10) {

 document.getElementById('hour1').src=num[0];

 h2="'" + hour + "'";

 h2=h2.charAt(1);

 document.getElementById('hour2').src=num[h2];

} else {

 h1="'" + hour + "'";

 h1=h1.charAt(1);

 document.getElementById('hour1').src=num[h1];

 h2="'" + hour + "'";

 h2=h2.charAt(2);

 document.getElementById('hour2').src=num[h2];

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

100

minute=time.getMinutes();

if (minute<10) {

 document.getElementById('minute1').src=num[0];

 m2="'" + minute + "'";

 m2=m2.charAt(1);

 document.getElementById('minute2').src=num[m2];

} else {

 m1="'" + minute + "'";

 m1=m1.charAt(1);

 document.getElementById('minute1').src=num[m1];

 m2="'" + minute + "'";

 m2=m2.charAt(2);

 document.getElementById('minute2').src=num[m2];

}

second=time.getSeconds();

if (second<10) {

 document.getElementById('second1').src=num[0];

 s2="'" + second + "'";

 s2=s2.charAt(1);

 document.getElementById('second2').src=num[s2];

} else {

 s1="'" + second + "'";

 s1=s1.charAt(1);

 document.getElementById('second1').src=num[s1];

 s2="'" + second + "'";

 s2=s2.charAt(2);

 document.getElementById('second2').src=num[s2];

}

}

function showTime() {

 timer=setTimeout("getDigits()",10);

 interval=setInterval("getDigits()",1000);

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

101

function stopInterval() {

 clearTimeout(timer);

 clearInterval(interval);

}

</script>

</head>

<body onload="showTime()" onunload="stopInterval()" bgcolor="#000000">

</body>

</html>

It looks a little more complicated than it actually is. The images are placed in an

array. The date is read using the getSeconds(), getMinutes(), and getHours() methods.

We then simply increment those values according to the seconds, minutes, and hours we

state in increments of milliseconds. For each increment in milliseconds, the appropriate

image is displayed from the array we preloaded.

 A Drop-Down Menu
This simple drop-down menu uses CSS rules and the hidden and visible attributes of the

style object. The menu is always there – it’s just set to hidden. When you mouse over it,

the property is changed to visible and you see the menu. Simple.

We use the getElementById() method to access the page properties and change only

the hidden or visible property. Use a menu as simple or as complicated as needed. It

doesn’t really matter. Change its appearance through the use of simple CSS rules. I’ve

included eight rules, and there are many more than that.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

102

Listing 5-29. A drop-down menu system

<html>

<head>

<style>

body{font-family:arial;}

table{font-size:80%;background:black}

a{color:black;text-decoration:none;font:bold}

a:hover{color:#606060}

td.menu{background:lightblue}

table.menu {

 font-size:100%;

 position:absolute;

 visibility:hidden;

}

</style>

<script type="text/javascript">

function showmenu(elmnt) {

 document.getElementById(elmnt).style.visibility="visible";

}

function hidemenu(elmnt) {

 document.getElementById(elmnt).style.visibility="hidden";

}

</script>

</head>

<body>

<table width="100%">

<tr bgcolor="#FF8080">

 <td onmouseover="showmenu('tutorials')" onmouseout="hidemenu

('tutorials')">

 Tutorials

 <table class="menu" id="tutorials" width="120">

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

103

 <tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr>

 </table>

 </td>

 <td onmouseover="showmenu('scripting')" onmouseout="hidemenu

('scripting')">

 Scripting</a

 <table class="menu" id="scripting" width="120">

 <tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr><tr>

 <td class="menu">List Item</td>

 </tr>

 </table>

 </td>

 <td onmouseover="showmenu('validation')" onmouseout="hidemenu

('validation')">

 Validation

 <table class="menu" id="validation" width="120">

 <tr>

 <td class="menu"> List Item</td>

 </tr><tr>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

104

 <td class="menu"> List Item</td>

 </tr><tr>

 <td class="menu"> List Item</td>

 </tr><tr>

 <td class="menu"> List Item</td>

 </tr><tr>

 <td class="menu"> List Item</td>

 </tr>

 </table>

 </td>

</tr>

</table>

</body>

</html>

The list items are displayed as they appear within the table given. Notice that there

are a few nested tables used. You can do this in any complexity you need and include

any valid HTML coding using any formatting options. You can even put images and/or a

form with many input elements in each drop-down list.

 Create Inset or Outset Border Buttons
So when you’ve learned to use bulleted lists, you were introduced to the concept of inset

and outset placed buttons. Each bulleted item is placed in relation to the beginning

location of the UL or OL element. Each list item is then stated with an LI element. Inset

bullets are set to the right of the starting location specified by the OL or UL element.

Outset bullets are further to the left.

The style.borderStyle attribute works the same way. You are able to position the

border in an inset or outset styled display. The easiest way to understand this is to simply

run the script given as follows.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

105

Listing 5-30. Creating inset or outset buttons

<html>

<head>

<script type="text/javascript">

function inset(elmnt) {

 elmnt.style.borderStyle="inset";

}

function outset(elmnt) {

 elmnt.style.borderStyle="outset";

}

</script>

<style>

td {

 background:C0C0C0;

 border:2px outset;

}

</style>

</head>

<body>

<table width="80">

<tr>

 <td onmouseover="inset(this)" onmouseout="outset(this)">Item One</td>

</tr><tr>

 <td onmouseover="inset(this)" onmouseout="outset(this)">Item Two</td>

</tr><tr>

 <td onmouseover="inset(this)" onmouseout="outset(this)">Item Three</td>

</tr><tr>

 <td onmouseover="inset(this)" onmouseout="outset(this)">Item Four</td>

</tr>

</table>

</body>

</html>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

106

We used the onMouseOver and onMouseOut to trigger the different border styles.

You don’t have to go back to the original style, however, and can adjust the bordering

styles as needed. A good example of this is to create a display of the sections of a

document the user has read or reviewed. When they’re finished reviewing the entire

document, all of the border styles will be the same, letting them know in an easy way that

they’re finished what they started.

It is an unusual occurrence that this code snippet is not supported in Microsoft Edge.

The days of massive differences between the implementations of any given markups are

over, for the most part. You can attribute this to increased public input and a very well-

run and organized W3C.org (World Wide Web Consortium).

 A Description Menu
This is a good way to add some surprising functionality to your links. You can link to

anything in a different document or to a place within the current document as provided

by the attributes you use within the anchor tag. Links may be relative or absolutely

stated. CSS rules that apply to a normal link apply and are given in the HEAD of the

document.

We use the getElementById() method to access the properties of the anchor element,

in this case, to assign the locations and other attributes of the links.

Listing 5-31. A descriptive menu feature

<html>

<head>

<style>

Table {

 background:black;

}

a {

 text-decoration:none;

 color:#000000;

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

107

th {

 width:150px;

 background:#FF8080;

}

td {

 font:bold;

 background:#ADD8E6;

}

</style>

<script type="text/javascript">

function get(txt) {

 document.getElementById('tip').innerHTML="txt";

}

function reset() {

 document.getElementById('tip').innerHTML=" ";

}

</script>

</head>

<body>

<table width="400">

<tr>

 <td><a href="page.html" onmouseover="get('Description')"

onmouseout="reset()">Item One</td>

 <td rowspan="3" id="tip"></td>

</tr><tr>

 <td>

<a href="page1.html" onmouseover="get('Description')"

onmouseout="reset()">Item Two</td>

</tr><tr>

 <td><a href="page2.html" onmouseover="get('Description)"

onmouseout="reset()">Item Three</td>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

108

</tr>

</table>

</body>

</html>

I’ve put the links in a table, but they don’t have to be. You can place them anywhere

you like using any method you like, as long as they’re able to be rendered by the browser.

 Create a Description Box for an Image
This series of instructions shows a small pop-up description according to whatever

you’re interested in showing. You place the descriptive text within the functions as

they’re placed in the document. The functions are triggered with an onMouseOver event

handler and reset by calling a reset() method with an onMouseOut event handler.

Assign any CSS rules you like, as long as they’re applicable to a textual link. If you’d

like to play around, you can include many different formatting styles and any valid CSS

rule that is reflected within the DOM specifications. There are many, some 400 of them.

Listing 3-32. A description box for an image

<html>

<head>

<style>

table {

 background:black;

}

a {

 text-decoration:none;

 color:#000000;

}

td {

 font:bold;

 background:#ADD8E6;

}

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

109

</style>

<script type="text/javascript">

function get(image) {

 document.getElementById('tip').innerHTML="<img src='" + image + "'

/>";

}

function reset() {

 document.getElementById('tip').innerHTML=" ";

}

</script>

</head>

<body>

<table width="100%">

<tr>

 <td><a href="page1.html" onmouseover="get('image1.gif')"

onmouseout="reset()">Item One</td>

</tr><tr>

 <td><a href="page2.html" onmouseover="get('image2.gif')"

onmouseout="reset()">Item Two</td>

</tr><tr>

 <td><a href="page3.html" onmouseover="get('image3.gif')"

onmouseout="reset()">Item Three</td>

</tr>

</table>

</body>

</html>

I’ve placed the links inside a table and have provided a reset() method to clear the

descriptive text from being displayed. You might not want to do this, though – just leave

the descriptions up if you need to, without calling a reset() method.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

110

 A Sliding Horizontal Menu
These menus have always been very popular because they’re very impressive and

useful. We use a series of CSS rules to assign formatting and positioning. The JavaScript

functions are called with an onMouseOver event handler to open the menu and an

onMouseOut event handler to close the menu.

The getElementById() method is used to access the display properties for the initial

formatting and display options. We then alter these options according to the directions

given in the rest of the script.

The speed that the menu opens with is an option that can be set according to your

preference. If you’d like a quicker slide, decrease this value. If you’d like a slower slide,

increase the value.

Listing 5-33. A sliding horizontal menu

<html>

<head>

<style>

body {

 font-family:arial;

}

a {

 color:black;text-decoration:none;font:bold;

}

a:hover {

 color:#606060;

}

td.menu {

 background:lightblue;

}

table.nav {

 background:black;

 position:relative;

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

111

 font: bold 80% arial;

 top:0px;

 left:-135px;

}

</style>

<script type="text/javascript">

var i=-135;

var intHide;

var speed=3;

function showmenu() {

 clearInterval(intHide);

 intShow=setInterval("show()",10);

}

function hidemenu() {

 clearInterval(intShow);

 intHide=setInterval("hide()",10);

}

function show() {

 if (i<-12) {

 i=i+speed;

 document.getElementById('myMenu').style.left=i;

 }

}

function hide() {

 if (i>-135) {

 i=i-speed;

 document.getElementById('myMenu').style.left=i;

 }

}

</script>

</head>

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

112

<body>

<table id="myMenu" class="nav" width="150" onmouseover="showmenu()"

onmouseout="hidemenu()">

<tr>

 <td class="menu">Item One</td>

</tr><tr>

 <td class="menu">Item Two</td>

</tr><tr>

 <td class="menu">Item Three</td>

</tr><tr>

 <td class="menu">Item Four</td>

</tr><tr>

 <td class="menu">Item Five</td>

</tr>

</table>

</body>

</html>

You may include any valid HTML coding into your sliding menu. A few examples of

this are forms, images, and embedded files for video and audio. By segregating the class=

attributes, you’re able to assign specific formatting to every element within your menu

on an individual basis.

 A Click-Driven Horizontal Sliding Menu
So you’ve all seen the horizontal menus that zoom out when you mouse over them,

but it is entirely possible to change this if you find that it just isn’t what you’re looking

for. You can initiate the menu with a click of the mouse (an onClick event handler) and

slide it back with an onMouseOut event that collapses the menu. If you’d like to have

the menu slide out when the button goes down and slide back when it goes up, use the

onMouseDown and onMouseUp event handlers.

Any CSS rule can be applied, and any HTML element can be used within the menu.

You can even put a form on it if you so choose. Definitely add some images, small or

large, to add some appeal.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

113

We use the getElementById() method to access the properties of the page elements

and act upon them. A single onClick event handler executes the JavaScript functions

within the HEAD of the document, and the menu slides out.

Listing 5-34. A click-driven horizontal menu

<html>

<head>

<style>

body{

 font-family:arial;

}

a {

 color:black;text-decoration:none;font:bold;

}

a:hover {

 color:#606060;

}

td.menu {

 background:lightblue;

}

table.nav {

 background:black;

 position:relative;

 font: bold 80% arial;

 top:0px;

 left:-135px;

 margin-left:3px;

}

</style>

<script type="text/javascript">

var i=-135;

var c=0;

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

114

var intHide;

var speed=3;

function show_hide_menu() {

 if (c==0)

 {

 c=1;

 clearInterval(intHide);

 intShow=setInterval("show()",10);

 } else {

 c=0;

 clearInterval(intShow);

 intHide=setInterval("hide()",10);

 }

}

function show() {

 if (i<-12)

 {

 i=i+speed;

 document.getElementById('myMenu').style.left=i;

 }

}

function hide() {

 if (i>-135)

 {

 i=i-speed;

 document.getElementById('myMenu').style.left=i;

 }

}

</script>

</head>

<body>

<table id="myMenu" class="nav" width="150" onclick="show_hide_menu()">

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

115

<tr>

 <td class="menu">Item One</td>

</tr><tr>

 <td class="menu">Item Two</td>

</tr><tr>

 <td class="menu">Item Three</td>

</tr><tr>

 <td class="menu">Item Four</td>

</tr><tr>

 <td class="menu">Item Five</td>

</tr>

</table>

</body>

</html>

There can be as many menu items as you wish, and they don’t have to be in one

single column as I have them here. Multicolumn menus are entirely possible – if it can be

rendered in a normal page, you can include it in your menu.

 Return the Cursor’s Coordinates
If you’re going to be using any type of positioning in your web development, it will be

absolutely necessary to know and understand how coordinates recalculated, returned,

and altered by the browser. Coordinates in a browser are represented by the X axis and Y

axis. Each has their own objects and methods to read or alter the X and Y values built in

to the browser.

We’ll use the event.clientX and event.clientX attributes to return the values of the

current position of the exact tip of the mouse pointer as it sits on the web page the

moment the function is triggered. The value is returned very quickly, and you can act on

and alter that value through scripted action just as quickly.

You’ll see this code in every page you’ve seen that has movable buttons or flying

banners. It’s a universal operation, so it’s best to take a long look at it and commit it to

memory. It’s much simpler than it sounds.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

116

Listing 5-35. Returning the cursor’s coordinates

<html>

<head>

<script type="text/javascript">

function show_coords(event) {

 x=event.clientX;

 y=event.clientY;

 alert("X coords: " + x + ", Y coords: " + y);

}

</script>

</head>

<body onclick="show_coords(event)">

Click Anywhere To Return The Mouse Position

</body>

</html>

Notice how easy this is? It is very important, though. The script is set up to show an

alert box when you click anywhere on the document, as shown through the use of the

onClick event handler that has been placed as an attribute of the BODY element.

 Make Your Text Follow the Cursor
You can instruct the browser to have a string of text follow the cursor around anywhere

in the active window. We first determine the X and Y coordinates of the mouse pointer.

Then we determine some idea as to what the text should look like and assign them with

common CSS rules. Positioning is determined and the text is set to follow the pointer,

while the X and Y coordinates are being generated and passed along the bubbling order

of the JavaScript functions in the HEAD of the document.

The text is actually always there – we just set it to hidden with the style.visibility

attribute and to visible when we need to. The onMouseMove event handler triggers the

JavaScript functions when you move the cursor on the X or Y axis 1 pixel. If you stay still,

so will the text.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

117

To have a finer degree of control over the rendering of the moving – if it looks jerky –

just alter the amount that the X or Y axis is incremented with every iteration of the script.

A smaller value will result in a smoother look, but might lag a little behind if you’re

showing a lot of text trailing behind the cursor or if the computer is being used heavily.

If this is a concern, increase the increment of the positioning and the text will move

quicker and will stay with the cursor.

Listing 5-36. Making the text follow the pointer

<html>

<head>

<script type="text/javascript">

function cursor(event) {

 document.getElementById('trail').style.visibility="visible";

 document.getElementById('trail').style.position="absolute";

 document.getElementById('trail').style.left=event.clientX+10;

 document.getElementById('trail').style.top=event.clientY;

}

</script>

</head>

<body onmousemove="cursor(event)">

Cursor Text

</body>

</html>

You can assign an image to follow the cursor as well. Just state a simple IMG element

with the same given preceding attributes for the textual version. The coordinate system

works the same for text as it does for images, as it’s initially based not on the location of

the text or image, but on the position of the mouse pointer.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

118

 Summary
We covered lots of ground in this chapter. We explored how HTML, CSS, DOM, and

JavaScript work together in a web page. We touched on formatting and design. We

introduced concepts such as creating and loading variables and arrays – and using what

is contained within them.

Chapter 5 praCtiCal JavaSCript ConCeptS and proJeCtS

119
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_6

CHAPTER 6

Images: Uploads
and Scripted Manipulation
It is entirely possible to edit or otherwise manipulate images that you upload to your

server automatically. In this chapter, we’ll discuss not just image uploading but also

image manipulation via scripted action.

As you’ll see later in this chapter, we’ll be using a handful of Perl modules to provide

significant functionality. They are well written and work great – for what they’ve been

designed to do.

To start, we must lay the groundwork, starting with some simple HTML markup.

 Getting Started
The HTML code to allow a FORM control to upload an image is simple but very

important in its constituent parts. The HTML markup that we’ll use for this section’s

discussions is given in Listing 6-1.

Listing 6-1. A multipart FORM element uploading up to six files

<table border="0" align="center">

<tr>

 <form name="form1" method="post" action="upload.pl"

enctype="multipart/form-data">

 <td align="center" valign="top">1.

 <input type="file" name="FILE0"></input></td>

</tr><tr>

 <td align="center" valign="top"> 2.

 <input type="file" name="FILE1"></input></td>

https://doi.org/10.1007/978-1-4842-5970-2_6#DOI

120

</tr><tr>

 <td align="center" valign="top"> 3.

 <input type="file" name="FILE2"></input></td>

</tr><tr>

 <td align="center" valign="top"> 4.

 <input type="file" name="FILE3"></input></td>

</tr><tr>

 <td align="center" valign="top"> 5.

 <input type="file" name="FILE4"></input></td>

</tr><tr>

 <td align="center" valign="top"> 6.

 <input type="file" name="FILE5"></input></td>

</tr><tr>

 <td align="center" valign="top" colspan="2">

 <input type="submit" value="Upload Image(s)"></td>

 </form>

</tr>

</table>

As you can see, there are six file fields being displayed. Each one has a name attribute

that is unique and is listed in a logical order. The input type of “file” tells the browser to

expect a file upload of some kind. The enctype=“multipart/form-data” is essential to the

success of the upload and cannot be left out. The name of the file and then the data (the

file’s contents) are sent to the server in two completely separate parts. Because of this, it

is said to be a multipart form.

The simple HTML I used for the example really is all it takes to make an aesthetically

pleasing page element. Now let’s get into the upload script itself. As with all Perl scripts,

the script starts on its first line, an area called the shebang. Linux servers are the norm on

the Web, so the path to find perl.exe is usually “#!/usr/bin/perl.”

The path may be anything, really, but it’s always good to stay with normal

conventions and protocols when describing the path to an object. On a Windows

computer, the shebang is usually C:\Progra~@\Perl\bin\perl.

Second to come on the upload script is the declarations of the Perl modules that will

be used further down the script. In this script, we’ll be exploring moving data, creating

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

121

files, resizing and thumbnailing images, and generating HTML markup to display the

resized images. The Perl modules you’ll need to have ready to use are these:

• use CGI;

• use CGI::Carp qw(fatalsToBrowser);

• use DBI;

• use Image::Size;

• use Image::Resize;

• use File::Copy;

• use Image::Magick;

There are seven Perl modules, and all have a very specific job to do. In order to have

the script use the resources within each Perl module, a use directive is stated for each

module. We’ll discuss each module as it becomes relevant to the concepts I’m teaching

in that paragraph or section.

 Block One
Block one in the uploader is the first chunk of Perl script to be addressed and is written

as follows, in Listing 6-2.

Listing 6-2. The first block of the upload script

$cgi = new CGI;

$thisfilename0 = $cgi->param('FILE0');

$thisfilename1 = $cgi->param('FILE1');

$thisfilename2 = $cgi->param('FILE2');

$thisfilename3 = $cgi->param('FILE3');

$thisfilename4 = $cgi->param('FILE4');

$thisfilename5 = $cgi->param('FILE5');

$thisfile0 = $cgi->upload('FILE0');

$thisfile1 = $cgi->upload('FILE1');

$thisfile2 = $cgi->upload('FILE2');

$thisfile3 = $cgi->upload('FILE3');

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

122

$thisfile4 = $cgi->upload('FILE4');

$thisfile5 = $cgi->upload('FILE5');

$dirPath = "/home/public_html/content/";

declare @thumb and @thesefiles

@thumb;

@thesefiles;

As always, there are considerations that must be addressed while designing your

scripts. I’ve found that processing the parameters and script’s data at the top of the

script worked the best, as Perl reads and executes from the top down. I have also found

that keeping the script as simple as possible is always the best way to go. You can see in

Listing 6-2 that the variables are all uniquely identified.

The very first mistake a developer will make when starting to write their first

uploader is to only use a param() method to catch the data or only an upload() method

to catch the data. The fact is you have to use both methods, as you can see in Listing 6-2.

$thisfilename0 to $thisfilename5 are param() methods, all unique. Then you’ll see the

$thisfile0 to $thisfile5 use the upload() method, also unique. Use the param() methods to

handle the file name. The data within the file is transported using the upload() method.

The $dirPath variable is stated near the top of the script. Instead of typing out a

couple of dozen path statements, the short variable name is used to keep things simple.

It also unclutters the script.

I touched upon scope a couple of chapters ago. Since Perl is read and executed from

the top down, it is sometimes required that you simply create variables, arrays, and

hashes as a resource to be used within a function later in the script that will be available

globally, to all areas of the script that follow.

 Block Two
Block two is where it’s getting interesting. We’re working with files and Perl modules in

this section, so let’s start with why I started a file manipulation with a length() method

in Listing 6-3. The reason I weigh the variable is to check if an input field was left empty.

There are six file locations to upload with. If it’s empty, @thumb and @thesefiles will not

have data pushed onto them. This has connotations for the following blocks of code. Just

keep in mind right now that a decision has been made about the image name and thumb

name and that the data is going to be used later in the script.

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

123

Listing 6-3. Working on a file creation block

$thisLength0 = length($thisfilename0);

if ($thisLength0 > 0) {

open(FILE0, ">/$dirPath/$thisfilename0;

while(<$thisfile0>) {

 print FILE0;

};

close FILE0;

push @thumb, "tn_" . $thisfilename0;

push @thesefiles, $thisfilename0;

copy ("/$dirPath/$thisfilename0", "/$dirPath/tn_$thisfilename0");

};

After weighing $thisfilename0, a simple if statement decides if the file is to be created

and stored and named. Next comes a while() statement, which is used to read the data in

$thisfile0. The print FILE0 statement then writes the data to the file, the name of which is

in $thisfilename0. The data stream is then closed.

In order to refer to the proper variable names that hold your data, in particular the file

names, I pushed the file name and the thumbnail name onto arrays, @thumb and

@thesefiles. A simple concatenation of the original file name indicates that a thumbnail of

the uploaded file will be created and called a thumbnail, the name of which starts with “tn_.”

I then used the File::Copy module to copy the file and again start the file name with a

“tn_.”

 Block Three
We start this smaller block with some data formatting, specifically actions on the date

and time and returning the IP address. Examine Listing 6-4.

Listing 6-4. Formatting the date and returning an IP address

$datesystem = `date`;

@date = split " ", $datesystem;

$datedisplayed = $date[0] . ", " . $date[1] . " " . $date[2] . ", " . $date[5];

get the ip address

$ipaddress = $cgi->remote_host();

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

124

On Linux, the date is returned by simply typing “date” at the command prompt. On

Windows computers, the date is returned by using “Date \T” to return the date and time.

We accomplish a system call through the use of the backtick (`) operator. Formatting

your dates starts with the date command, which is put in $datesystem. This variable

holds both the date and the exact time, down to a second.

If, like me, you don’t like to have the time in your date field, split $datesystem on the

spaces and stuff the results in @date. The @date array is concatenated on the 0, 1, 2, and

5 index items. The result is a formatted date that no longer shows the time or time zone

code.

We then obtain the IP address of the machine uploading the files. This is a good

convention to follow, as someone will try to upload something offensive or illegal

eventually. Knowing the exact date and time and the IP address will help in at least

blocking that user.

 Block Four
We’ll begin manipulating images through scripted action in this section, starting with the

use of the Image::Size module. Size.pm returns the dimensions of the image in pixels.

The dimensions are stuffed into $globe_x and $globe_y. To decide if the image is to

be resized, a simple if statement is used. If the value in globe_x or globe_y is larger than

640, the image will be resized.

You might have noticed that there is a flaw in this script. It is easily identified and

just as easily remedied. Every programmer has come up against the divide by zero error.

You can’t go any further in the execution of this script without addressing the fact that

globe_x can equal zero and then be divided into a number (any number). A simple if

statement that if globe_x and globe_y are <= 0 (less than or equal to zero), globe_x and

$globe_y become 1. Peruse the following chunk of code given in Listing 6-5.

Listing 6-5. Resizing large images to maximum width and height of 640 X 1500

$count = "0";

foreach (@thesefiles) {

Resize the full size image in $file, if required. Height has to be over

1500 and width 640

Get the size of the uploaded file

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

125

($globe_x, $globe_y) = imgsize("/$dirPath/$thesefiles[$count]");

find out if to resize at all. this is for the resize of the original

image

big if statement starts here

if (($globe_x or $globe_y) > 640) {

fix x and y divide by zero potential with an if statement

if ($globe_x <= 0) {

 $globe_x = "1";

};

if ($globe_y <= 0) {

 $globe_y = "1";

};

resize the width to a maximum of 640, proportionally, if ### required

$ratio = $globe_y / $globe_x;

if ($globe_y > 640) {

 $globe_y = "640";

 $globe_x = $globe_y / $ratio;

}

$newwidth1 = int($globe_y);

resize the height to a maximum of 1500, proportionally, if ### required

$ratio = $globe_y / $globe_x;

if ($globe_x >= 1500) {

 $globe_x = "1500";

 $globe_y = $globe_x / $ratio;

}

$newheight1 = int($globe_x);

$image = Image::Magick->new();

$image->Read("/$dirPath/$thesefiles[$count]");

$image->Resize(geometry => "$newheight1x$newwidth1");

$image->Write("/$dirPath/$thesefiles[$count]");

}

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

126

Next comes the decision on when to resize the image as is shown in Listing 6-5.

The first piece of information we’ll need to generate is a ratio of $globe_x and $globe_y,

which is stated as “$ratio = $globe_y / $globe_x.” The size is then tested with an if

statement, which, if higher than 640, globe_y becomes 640 and $globe_x becomes the

result of the division of $globe_y / $ratio. $newwidth1 becomes the integer value of

$globe_x, which is the final value before actually resizing, should the limit of 640 pixels

wide be exceeded.

The same set of code that decided if the image was to be resized by exceeding the

width is used to calculate the maximum height. Images with a height exceeding 1500

pixels are resized.

Now is when we’ll do the actual image manipulation. We’ll call on Image::Magick

by creating a new Image::Magick object. We will then perform three operations: Read(),

Resize(), and write(), each on their own line.

 Block Five
We start block five with a $count = “0” declaration. The $count, which is zero based,

is fed to a foreach statement. Every time the foreach loop iterates, a 100 X 100 pixel

thumbnail is generated, preserving proportions. It is tested and acted upon just as

resizing the large 640 X 1500 display images, but instead of having values of 640 X 1500,

the proportions are maximum 100 X 100 pixels. Consider the following block of code,

given in Listing 6-6.

Listing 6-6. Creating thumbnails of a maximum width and height of 100 pixels

Begin processing the @thumbs

$count = "0";

foreach (@thumb) {

Begin processing the $thumb, resizing to 100 square

Get the size of the uploaded file

($globe_x, $globe_y) = imgsize("/home/public_html/content/$thumb[$count]");

find out if to resize at all. this is for the resize of ### the

original image

big if statement starts here

if (($globe_x or $globe_y) > 100) {

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

127

fix x and y divide by zero potential with an if statement ### each

if ($globe_x <= 0) {

 $globe_x = "1";

};

if ($globe_y <= 0) {

 $globe_y = "1";

};

resize the width to a maximum of 100, proportionally, if ### required

$ratio = $globe_y / $globe_x;

if ($globe_y > 100) {

 $globe_y = "100";

 $globe_x = $globe_y / $ratio;

}

$newwidth2 = int($globe_y);

resize the height to a maximum of 100, proportionally, if ### required

$ratio = $globe_y / $globe_x;

if ($globe_x > 100) {

 $globe_x = "100";

 $globe_y = $globe_x / $ratio;

}

$newheight2 = int($globe_x);

$image = Image::Magick->new();

$image->Read("/home/public_html/content/$thumb[$count]");

$image->Resize(geometry => "$newheight2 x $newwidth2");

$image->Write("/home/public_html/content/$thumb[$count]");

++$count;

};

}; # end resize if statement for the generated thumb

};

You can now see how images can be resized via scripted action. Do try to play

around with it.

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

128

 Block Six
So we’re done with manipulating images. Next comes the generation of the HTML

markup that will display your uploaded, thumbed images in the browser. Examine

Listing 6-7.

Listing 6-7. Generating three images in each of two rows. Six images in total

Begin processing the 6 images uploaded. generate HTML ### ### markup

for 2 rows of 3 images

$count = "0";

$filesuploaded = @thumb;

foreach (@thumb) {

 $onecontentelement = qq{<td align="center" valign="middle"

width="100" height="100"><img src="http://www.domain.com/

content/$thumb[$count]"></td>};

 push @contentarray, $onecontentelement;

 if ($count == "2") {

 $newrow = qq{<tr><td height="8" colspan="10"></td></tr>};

 push @contentarray, $newrow;

 };

++$count;

};

We first declare $count = “0”. We will use this number, incremented after every

iteration of the foreach loop, to load values in @contentarray. We build the HTML

one step at a time, adding HTML code every time the foreach statement iterates.

$onecontentelement contains a TD element, the value of which changes as $count is

incremented on the last line of the foreach statement.

The code block given in Listing 6-7 builds a row of three images, twice. Two rows.

The $newrow is pushed on @contentarray every time $count reaches 2. $count starts

at zero, remember, so three iterations have taken place when $newrow is two. $newrow

contains the TR element that will be stuck between two TD elements, three wide. This

way, we achieve two rows of three thumbs through scripted action.

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

129

 Block Seven
You may think that after generating the HTML markup for each thumb, we’re done with

that, but now we have to lay out some rules as to what markup will be encapsulating your

generated code. In block seven, we run into some scripting concerns that we have to

discuss.

Because Perl is an inline language, the execution starts from the top and goes down.

When writing the HTML for your page, you at first have to realize where in the complete

document your generated content will be. Peruse Listing 6-8.

Listing 6-8. Arranging HTML markup for printing to the browser

$topofcontent = qq{HTML><HEAD><TITLE>EasyUploader.pl</TITLE></HEAD><BODY>

<table border="0" cellpadding="0" cellspacing="0" align="center"

valign="top">

<tr>

 <td height="10"></td>

</tr><tr>

 <td align="center" colspan="10" valign="middle"

class="contenthead">Upload Successful!</td>

</tr><tr>

 <td height="10"></td>

</tr><tr>

 <td align="center" colspan="10" valign="middle" class="disclaimer">

$filesuploaded Files Uploaded</td>

</tr><tr>

 <td height="10"></td>

</tr><tr>

 <td align="center" colspan="10" valign="middle"

class="disclaimer">Showing $filesuploaded Thumbs</td>

</tr>};

$bottomofcontent = qq{<tr>

 <td height="10"></td>

</tr>

</table>

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

130

</BODY>

</HTML>};

print da page

print qq{Content-type: text/html\n\n};

print qq{$topofcontent @contentarray $bottomofcontent};

Alright, so we’ve discussed an upload script, but we’re not entirely completed. You

must give thought to how you’re going to get the script to print your formatted HTML

markup to the browser. As you can see in Listing 6-8, there are two print commands. The

first is used to tell the browser what type of data to expect, in this case, “text/html.”

Then comes another print command, this time stating that $topofcontent

@content and $bottomofcontent be printed, in that order. If you look back at Listing 6-8,

you’ll see that the top of a table is in $topofcontent and the bottom of a table is in

$bottomofcontent.

We put @content in the middle because the HTML will be sent in exactly that order:

the content generated on the fly and stuffed into @content is printed in the right order,

showing up to six image thumbnails.

 Summary
This script taught you how to work with both files and, more importantly, images.

Through scripted action, we uploaded, created, and populated images. We duplicated

images and resized as well.

Chapter 6 Images: Uploads and sCrIpted manIpUlatIon

131
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_7

CHAPTER 7

Installing and Using
the Perl Server
Some might say that installing a server as powerful as Perl is a chore, but it really isn’t. It

installs cleanly and easily like many less powerful programs. There is little to configure

past the initial installation. However, there are a few finer points of the installation that

we will have to cover. We’ll start with a brief explanation of the many flavors of Perl that

are available on the Internet today.

This chapter is brief, as there is only so much you need to know to install and use a

Perl server. For the most part, most operations are simple and intuitively obvious.

 The Many Flavors of Perl
As with most things Internet, there are a few different flavors and versions of Perl to

become familiar with. The following list is comprised of the two major operating systems

of the day:

• macOS

• Perlbrew – Currently in version 5.xx

• Windows OS

• Strawberry Perl – Currently in version 5.32.0.1. Available in 32-bit

and 64-bit architecture. Installed via an .msi package

• Active State Perl – Currently in version 5.28. Installed with an .msi

package

https://doi.org/10.1007/978-1-4842-5970-2_7#DOI

132

As you can see, there are a few flavors to experiment with. You might be wondering

why I left out Perl for Linux/Unix. This is because Perl usually comes standard with the

Linux operating system. On Linux, Perl is the means by which to automate the recurring

and single-use tasks encountered by administrators in everyday computing.

Each Perl package has its pros and cons. Try installing all of them to get a feel for

these differences. The differences are readily apparent. You will have to uninstall each

flavor of Perl to successfully install the other packages.

 Where’s Perl on a Windows Operating System?
As mentioned in a previous chapter, the first line of any Perl script is called the shebang.

It is the location on the hard drive of the Perl executables. On Linux operating systems,

it’s usually #!/usr/bin/perl.

On the Windows operating system, the location of Perl is a little convoluted and not

very intuitive. All of the Perl .msi packages available install directly to c:\Program Files\

Perl\bin\perl.exe. This has the very irritating drawback of the space between the word

Program and the word Files throwing errors because scripts and other programs get

stuck by that pesky space. To counter that, the path to Perl should be #!c:/progra~1/perl/

bin/perl.exe.

I recommend installing Perl to the root of the C drive, as follows: C:\Perl\bin\perl.

exe. You would have to specify this during the installation of the Perl binaries.

 Preparing Your Workstation
As with most software installations, you will have to close all programs, being sure to

save your work first. Once all programs are shut down and your work is saved, double-

click the .msi package you downloaded to begin the installation. The name of this .msi

package depends on the flavor of Perl you decided to use.

 Installing the Perl Server
Once you click the .msi package, the installation will be halted by a window that asks

for permission for the installing program to make changes to your operating system and

install the program. If you decline, the installation promptly halts.

Chapter 7 InstallIng and UsIng the perl server

133

There will invariably be a logo screen as the first window of the install program.

Some flavors of Perl put the End User License Agreement in the first window. If the

agreement isn’t on the first window, it’ll be on the second. Click “I Agree” to accept the

terms of the contract.

Next up is a window that either asks what to install or where to install it to on your

hard drive. This location, by default, is “C:\Program Files\Perl for a Windows workstation

and #!/usr/bin/perl on a Linux workstation.

If the second window wasn’t the installation option, the third will be. I recommend

you install everything. This includes the Perl executables and support libraries as well as

the literature on the use of your Perl server. Including the literature increases the install

time by about two minutes.

 Topics to Consider
One of the only topics to consider during installation is simply the location of Perl.

I recommend your path on a Windows operating system be C:\Perl. This goes against

the default path, but you’ll actually benefit from it further down the road.

Some programs don’t like the space between Program and Files if you were to

use the default path during installation. There is a workaround to this, which is a bit

unintuitive. The path C:\Progra~@\Perl is the path that some programs that don’t like

the space will require to operate. Installing to C:\Perl allows these legacy programs to

find Perl without adding extra work such as including PATH statements, which is a direct

change to the operating system and is beyond the scope of this book.

 Perl Is Always Ready
One of the best things about Perl is you don’t have to start a server or service to use the

full capabilities of the Perl server. It is always ready to take on work. The first line of every

Perl script gives the location to the Perl executables. The Perl server springs into action

with minimal fuss.

Perl is an inline language, meaning that execution begins at the top of the script and

moves down, following the instructions as they are placed within the body of the script.

Chapter 7 InstallIng and UsIng the perl server

134

 Installing Perl Modules
On a Perl server, extra functionality comes from Perl modules. A Perl module is a

software package that enhances and extends the capabilities of your standard Perl

installation.

The most oft-used Perl modules come standard with the installation binaries

and can be identified by their .pm extension. Two Perl modules that we’ll be using

extensively are DBD.pm and DBI.pm. They allow interaction between the Perl script and

the database server (that you’ll install in the next chapter).

There are two methods of installing a Perl module – using CPAN.bat and PPM.bat.

They both work fine most of the time, but since there are thousands of Perl modules

to choose from, you might have to switch between CPAN and PPM in order to have a

successful installation. That is, if one doesn’t work, try the other.

There are some modules that rely on other modules to complete their functionality.

The aforementioned DBD.pm has to be installed before DBI.pm is installed, for example.

If you leave out DBD.pm and only install DBI.pm, you’ll get fatal errors to be thrown.

Most of the time, the installing program knows what modules need to be installed and

installs them automatically, with minimum fuss.

 CPAN.bat
CPAN stands for Comprehensive Perl Archive Network. It is the means by which you’ll be

installing the Perl modules used in the projects in later chapters. The website for the Perl

modules is CPAN.org. It is an easy-to-use and complete list of all of the functionality that

Perl has to offer.

To start CPAN.bat, simply double-click the link that you’ll find in the Perl/bin

directory. A dialog box will open with a flashing cursor, signifying that CPAN.bat is ready

to work. Then type a question mark at the command prompt, and the CPAN.bat help

options will appear as shown in Figure 7-1.

Chapter 7 InstallIng and UsIng the perl server

135

Simply type instructions such as “Install DBD” and CPAN.bat will chug and install

the DBD.pm module. Do this before DBI.pm is installed, as stated earlier in this chapter.

As mentioned before, CPAN.bat usually knows what libraries are required to install the

full capabilities of each module.

 The Perl Package Manager (PPM)
The Perl Package Manager is the other means to install Perl modules. Some say it’s easier

to use, and this is probably the case, but there are restrictions on what PPM can do. For

example, CPAN.bat knows what libraries to install for pretty much every module created

to date. PPM doesn’t have a comprehensive database, so sometimes PPM won’t work.

As with CPAN.bat, simply double-click the ppm.bat windows batch file. A command

dialog box will be displayed. Enter the word “help” at the command prompt and the

screen in Figure 7-2 will appear.

Figure 7-1. CPAN.bat help options

Chapter 7 InstallIng and UsIng the perl server

136

As you can see, PPM is easier to use than CPAN.bat due to its lack of optional

commands. While most modules will install just fine, be ready for when one or two

modules you require won’t install with PPM.

 Commonly Used Perl Modules
As you’ll see in a later chapter, there is a module for pretty much everything that is

possible on the Internet to date. Also mentioned was the fact that some Perl modules

require that supporting modules be installed first.

In the projects to come in later chapters, you’ll see the list of Perl modules required

for the Perl scripts to work stated at the top of every script. I’ve found that the most oft-

used modules that aren’t in the standard distribution are as follows:

• DBI.pm

• Size.pm

• Resize.pm

• File::Copy

• Image::Magick

Figure 7-2. PPM.bat?

Chapter 7 InstallIng and UsIng the perl server

137

They are all intuitively obvious as to what they do by their names. Size.pm is used to

return the size, measured in pixels, of an image. Resize.pm is used to resize an image to a

larger or smaller size. As with all things Perl, there are a couple of details to keep in mind.

Both the size.pm and resize.pm modules will only work with jpg (jpeg), gif, and png file

formats.

The Image::Magick modulea requires that its software package be installed on your

server in order to be able to access the higher capabilities of the Image::Magick module.

There are both source code (for Linux) and binaries (for Windows) available to be

downloaded and installed. The installation is very easy and simple on both operating

systems.

Image::Magick supports pretty much every image file format in creation. With it, you

can manipulate images via scripted action, as touched on in Chapter 6.

 Summary
In this chapter, we installed Perl and reviewed the finer points of a typical Perl

installation. We discussed Perl modules and how they work. We also explored installing

Perl modules with CPAN.bat and PPM.bat.

Chapter 7 InstallIng and UsIng the perl server

139
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_8

CHAPTER 8

Installing and Using
the MySQL Database
Server
The MySQL database server has been around for years and as such is a robust and

practical piece of software. Its features are many and are powerful. MySQL is the most

oft-used database in the world. It has to be good to earn that designation. Quite the

accomplishment. Even compared to giant database vendors like Oracle, MySQL stands

up to the task. SQL (Structured Query Language) is a simple database language to learn,

and the server is easy to install, use, and configure.

MySQL is a memory-resident piece of software, meaning that the entire functional

pieces of the server are loaded into memory and are ready to execute queries without

pausing to load more software into memory to accomplish the task at hand.

 Downloading the MySQL Server Binaries
The software you’re looking for to install the MySQL server is available from MySQL.

com. They offer the MySQL database for free.

The pay ware package is for production environments that require high-

level functionality such as clustering and other technologies that are required to

accommodate high-traffic networks. They sell you the software, and it comes with

technical support options. Most believe it is a better piece of software than the free

flavor, and in terms of capability, they’re right. The binary package from MySQL.com is

designed for websites and doesn’t offer support for clustering or database farms.

https://doi.org/10.1007/978-1-4842-5970-2_8#DOI

140

 What’s a Beta?
If you’ve installed software in the past, you’ve probably run past an option to download

a beta. Betas are software pieces that are in the process of being debugged. They are

written but still contain errors or omissions. Expect errors from a beta.

It is not recommended that you use a beta for your active database server, as there is

going to be errors that will cause headaches to ensue. They’re fun to play around with,

but running it live will just frustrate you.

 Preparing Your Workstation
It is recommended that you save all of your work and close down any active software

before you start the installation process. Having software run that might interfere or be

incompatible with the server is a real threat to the basic health of your installation as well

as the workstation as a whole.

It is also recommended that you restart the workstation before you begin the

installation. This will ensure you’re working with an operating system that is not running

with errors or shortcomings instituted by other software.

 Installing the MySQL Server
As with most software installations, the first thing you’re asked is if you’ll allow changes

to be made to the operating system. Click Yes or No. Yes will allow the installation of the

MySQL server to begin. No will promptly end the installation.

The first dialog box of the installation program to open is the setup type. There

are five different installation options. While they all should be explored eventually, for

purposes of discussion, we’ll go with the Full setup type. This will install every feature

and ability that is possible with the binary, including the official manuals.

The MySQL server installation and configuration takes about 10 minutes. You’ll be

asked for basic things like usernames and passwords and networking concerns that we’ll

discuss as needed.

The MySQL install packages come in two general installation types: a small, 4 or

5 megabyte installer and a 450 megabyte installer. The difference between the two is

in the way the installation is allowed to proceed. The small package is a web installer.

Chapter 8 InstallIng and UsIng the MysQl database server

141

If you use this package, the installation will start but will eventually pause to

download the rest of the setup software. The big one is the entire installation package

in one MSI installer.

It is recommended that you download the entire 450 megabyte package so you

can still install and configure the workstation should Internet connectivity become a

problem (Figure 8-1).

It is intuitively obvious as to what each installation type does. Select each option to

cause a brief description of what will happen being given in the Setup Type Description

box to the right of the radio buttons. The installer is a very stable and capable entity.

We selected Full because it is handy to have all manuals and documentation at

your fingertips on the local workstation. The manuals and tools included with a Full

installation are indispensable.

Figure 8-1. Choosing the setup type

Chapter 8 InstallIng and UsIng the MysQl database server

142

If you’ve installed the Full version, you’ll have all of the capabilities ready to use.

If you installed the Developer version, you won’t get the literature or tools included in

the Full installation, but your installation will still be very capable.

Selecting the Custom installation will give you the wide array of available features,

selected through radio buttons, checkboxes, and drop-down lists.

The next dialog box (Figure 8-2) checks your workstation for system requirements.

Depending on what software had been previously installed, there may be up to ten

system requirements that the installer will try to install.

There may be a few system requirements that the installer can’t install. These

requirements aren’t normally needed unless you’re using tools that don’t pertain

to serving data to web pages. As you can see in Figure 8-2, the only two system

requirements that are left for full capability aren’t normally used on Internet sites and

are beyond the scope of this book.

Figure 8-2. Checking for system requirements

Chapter 8 InstallIng and UsIng the MysQl database server

143

The requirements that are labeled as “Manual” require you to locate, download, and

install supporting software to end up with a full installation with full capabilities. Like I

mentioned, these products aren’t typically used in today’s web pages.

As you can see in Figure 8-3, there are ten products ready to be installed. This is

typical of a Full installation. You’re able to do pretty much anything that is required of a

modern web page with these products.

It should be noted that now is the time that the operating system will halt the

installation should there not be enough free space on the hard drive you’re installing

to. The downloaded MSI is about 450 megabytes. Expect more space to be used after

unpacking the compressed files, in the range of 520 megabytes. The total space required,

then, is about a gigabyte. Be sure you have enough space on your hard drive.

Figure 8-3. Showing software to be installed

Chapter 8 InstallIng and UsIng the MysQl database server

144

The maximum time I’ve seen this stage take is ten minutes. Any moderately

new workstation will be able to handle the requirements of the installer with ease.

Successfully installed products are given a green check. Products currently being

installed are shown with a cute pencil icon.

This section is where you basically sit back and watch the installer do its thing. The

installation will have reported errors by now, so it’s a good bet that the installation is

going to be successful. If you’d like to see exactly what is going on in real time, click the

“Show Details” button.

There might be troubles with the installation should software that accesses the same

resources that the installer does is running. Be sure to shut everything down that you

can, especially software that uses the Internet or communications. Don’t keep the web

browser you used to download the binaries running either.

Figure 8-4. In the process of installing the MySQL Server

Chapter 8 InstallIng and UsIng the MysQl database server

145

As you can see in Figure 8-5, all of the products were successfully installed. Now

the installation program will present a series of dialog boxes that will ask for usernames

and passwords. I recommend you write this down in many different locations until it

becomes second-hand knowledge that you’ll be using several times a day to configure

your installation.

Of particular note, the MySQL Documentation installed contains handy tips and

tools for your everyday database administration duties. Do take a look and have a read.

I’ve been using MySQL for two decades now, and I learn something new with every

version of the MySQL Documentation and Samples and Examples.

Regardless of what type of installation you select, there are always going to be these

three products (at least) that you’ll have to provide some information for. The questions

being asked are concerning root usernames and passwords as well as users’ names and

passwords (Figure 8-6).

Figure 8-5. All products completely installed

Chapter 8 InstallIng and UsIng the MysQl database server

146

As I’ve previously mentioned, write all of this information down in several locations.

You must provide the administrator’s as well as a user’s username and password.

Take a look at Figure 8-7, which shows options for the configuration of your server

on your local network. There are a few different Config Types to choose from. I suggest

you keep your selection of Development Computer. This is because the other options

assume that the workstation (now a server) is the main piece of software that is being

run. The MySQL engine and supporting programs are loaded directly into memory. The

rest of the available memory that hasn’t been taken by the operating system is attached

to the MySQL server.

Figure 8-6. Showing the first screen of the Product Configuration area

Chapter 8 InstallIng and UsIng the MysQl database server

147

Figure 8-7 shows the options you have that are available via the MySQL installer. Always

select TCP/IP. The default port, which is already filled in, should be written down with all

of your usernames and passwords. Other technologies, such as the Apache web server, use

mutually agreed-upon port numbers for each communications protocol. Every major server

or tool gets its own port to connect on, which speeds things up, programmatically speaking.

There is also an option to use Windows Firewall to include some security for your

future database use. TCP/IP is a very capable communications protocol that has been

the primary protocol used on the Internet since the earliest days when the Internet was a

research and development project.

Another checkbox to note is the Show Advanced and Login Options. If you’ve ever

installed something that uses communications and the higher functions of the operating

system, you’ve most likely solved the problem by looking in one or many of the dozens

of logs that are available to provide clues as to errors and, sometimes, to even give

suggestions about how to handle fatal errors.

Figure 8-7. Setting network and installation options

Chapter 8 InstallIng and UsIng the MysQl database server

148

The two options given in Figure 8-8 are basically asking for a way to authenticate the

username and password required to attach and run queries on the MySQL server.

Because you’re most likely not installing a dedicated database server, it is

recommended that you select “Use Legacy Authentication Method.” This is for backward

compatibility with previous, out-of-date (but still used) servers. The last time the

authentication method was changed or added to was when the MySQL server was in

version 5.X.

You must specify a root username and password. Again, write this down in several

locations until you’ve used it so much it becomes a second nature recollection when

asked for authentication (Figure 8-9).

Figure 8-8. Two options for authentication method

Chapter 8 InstallIng and UsIng the MysQl database server

149

There is a meter that displays the strength of the password. Use upper- and

lowercase letters, numbers, and punctuation. Using these four types of characters for

your passwords will result in a strong password that you have to write down until you

know it with a moment’s thought.

If your password strength is deemed weak, the installation program will not allow

you to proceed. The password strength must be at least medium before the installer will

allow you to continue.

It is recommended you create at least one user within this dialog box and assign

administrative privileges to that newly created user. Using a superuser instead of the root

account allows the security concerns of both the MySQL server and the operating system

to work together, providing a secure transaction every time the database is consulted.

Figure 8-9. Setting administrative usernames and passwords

Chapter 8 InstallIng and UsIng the MysQl database server

150

The fields of information being asked for in Figure 8-10 are intuitively obvious. You’ll

provide a username as well as a password that again has to have a password strength of

at least medium.

Keep the role of DB Admin for this first user. Write down this username and

password in several places. By now, you’ll have about half a page of security information

recorded that is essential to working with your MySQL server. Make several copies and

give them to everyone that requires them.

Keep authentication to be resolved by MySQL. This is because the MySQL

usernames and passwords are put through a more rigorous authentication protocol than

do other entities such as the operating system.

When the password strength is medium or max, the OK button will become active,

allowing you to proceed with the configuration of your server.

Figure 8-11 shows the option to configure the installation as a Windows Service. We

don’t want that, so take the check mark out of this field. You’ll also see a checkbox to

empty which tells the server to run at startup. You don’t want this to happen, so make

sure it is not checked.

Figure 8-10. Adding a user

Chapter 8 InstallIng and UsIng the MysQl database server

151

If you were to run the MySQL server at startup, the rest of the operating system’s

capabilities will suffer and be narrower than if you started the MySQL server in console,

which will be discussed in a coming section of this chapter.

The next dialog box that is displayed is the “Apply Configuration” section (Figure 8- 12).

Like I mentioned in a previous section of this chapter, if there were going to be any errors

thrown by the installation, they would have been thrown by now. It’s a good bet that your

installation configuration will be applied successfully.

Figure 8-11. Selecting the configuration scheme

Chapter 8 InstallIng and UsIng the MysQl database server

152

Click Execute in this dialog box to begin applying the configuration. Notice that there

is a Log tab to click. This log will report absolutely everything that is being done should

you run into an error. At this stage in the installation, a fatal error usually comes only

from running out of disk space or processor utilization errors and incompatibilities.

This process takes a few minutes. You’ll notice the pointer turn to hour glasses and

working rings as the configuration progresses. If you’ve enabled a firewall, you’ll either

be asked to allow the MySQL server to provide authentication or bypass the firewall’s

authentication entirely. My advice is to have the firewall disregard MySQL queries,

allowing them pass beyond the firewall’s area of influence.

This bypass is so you can practice using dedicated MySQL servers, perhaps in a

multiple server setup. As you’ll see in the chapters to come, MySQL teams well with Perl

and the Apache web server. A common multiple server setup is to use three separate

physical servers: one for the database server, one for the Perl scripting server, and one

server as the file server.

Figure 8-12. Applying the server configuration preferences

Chapter 8 InstallIng and UsIng the MysQl database server

153

 Start the MySQL Server
Starting the MySQL via the command line is a simple task. This short command is all it

takes to begin the startup. Below the user is the root, server. After pressing Enter, you’ll

be asked for a username and password. Supply them from the page of usernames and

passwords you have accrued and hopefully memorized already.

mysql -u root -p

 Summary
In this chapter, we discussed the installation, configuration, and use of the MySQL

database server. You learned how to turn your workstation into a powerful database

server. In the chapters to come, the knowledge given in this chapter will be invaluable.

Read on, there’s quite a way to go before we’re finished.

Chapter 8 InstallIng and UsIng the MysQl database server

155
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_9

CHAPTER 9

Installing and Using
the Apache Web Server
The Apache web server has as its core function the ability to serve web pages. It is a

highly specialized and powerful software application that is being used to serve billions

of web pages daily. The Apache web server is the single most oft-used web server on the

Internet today.

Apache’s most basic function is to serve static, unchanging HTML documents. This

has the benefit of being the easiest method to implement – HTML is a simple language.

If your site as you envision it is a simple affair, then by all means explore that. If you’d

like dynamically created web pages that are driven by a powerful database, then read

on. Apache can be used with Perl to generate web pages according to the rules given

in a Perl script. This is more complicated than the static HTML method, but the extra

thought, planning, and time are well worth the effort. The rewards for your hard work

will be some very powerful and capable websites that will catch your user’s attention and

hold it.

Apache may work with several programming languages, be they scripted or

compiled languages. Apache provides for a wide range of data-crunching abilities

through the use of these various programming languages. It is a versatile and well-made

product.

 Handling Errors
Apache has an error page for pretty much everything. As you’ll see in the chapters to

come, these error pages are indispensable when something goes wrong, usually in the

configuration of Apache via the httpd.conf file. This configuration file will be explained

in its entirety in the pages to come.

https://doi.org/10.1007/978-1-4842-5970-2_9#DOI

156

Before starting the installation, it is recommended that you “ping the stack,” which is

a technical term for the readiness of the operating system to carry out whatever function

you may be installing.

If the software and/or hardware that controls communications on a Windows

workstation fails, the first thing you do is ping the loopback address, as shown in

Figure 9-1.

As you can see, there are four pings sent to 127.0.0.1 to ensure the operating system

is functioning properly. If the operating system was in bad shape, you’d get an error

message stating that the IP address was not found.

 Downloading and Installing the Apache Web Server
Binaries
The first step in learning the Apache web server is to simply find the software. A simple

Google search will tell you where to find Apache. Apache has been around for decades. The

people that made it did and continue to do a very good job, and it’s fairly easy to find the

Apache binaries. This web server is developed with the Linux operating system in mind. It

is ported to an executable package that the Windows operating system can deal with.

Figure 9-1. Pinging the local loopback address

Chapter 9 InstallIng and UsIng the apaChe Web server

157

The binaries come in the form of an .msi package, which is the standard method of

installing pretty much any software package on Windows. The installation is fairly basic.

The learning curve sharpens when configuring the server and making it load on your

Windows workstation.

 Allowing Changes to Your Operating System
The Windows operating system will first ask your permission to allow changes to your

computer. The installation will halt if you decline this prompt. Every program that is

installed on a Windows computer will start this way. The splash screen appears and is

shown in Figure 9-2. Click Next to continue.

As with all software installations, a title page is displayed, showing important data

like version and copyright statements.

Figure 9-2. The splash screen of the Apache binary installation

Chapter 9 InstallIng and UsIng the apaChe Web server

158

Next comes the license agreement and legal stuff. You must review the information

on this page to make sure you don’t break your contract. It’s pretty basic stuff.

The license agreement isn’t all that lengthy or complicated. Most of it is basic rules

and general use statements. Basically, you may use it as long as you don’t alter the source

code and expect it to work.

Another big statement in the agreement is that you will not sell the Apache server as

your own product, even after altering the bulk of its source code.

Do have a read of the agreement. It only takes a few minutes but answers many

questions about how you may and may not use this software.

Click the accept option as shown in Figure 9-3 and click Next.

The agreement used in freeware software usually started as the GNU Public License,

which was the standard agreement used with freeware like Apache in its early days.

After the license agreement comes a window that you enter the local loopback

address, 127.0.0.1, in two places, as shown in Figure 9-4. The page asks for a network

domain Internet address, server name, administrator’s email, and whether or not to

install as a service or manually in console.

Figure 9-3. Accepting the license agreement

Chapter 9 InstallIng and UsIng the apaChe Web server

159

Here’s where we have to explain things. A program, in this case a server, can be run

as a service of the operating system or as a program in console. A program run in console

is run from the command line and displays its operating parameters in a black screen

with white text.

The decision of which to use usually stems from what use you’re going to be using

the installation for. If Apache is installed on a server that will be running as a live web

server serving pages over the Internet, install as a service. If it will be a web development

workstation, select manual start, which will be in a command prompt. Starting in

console still allows for the high functionality, but won’t be running constantly, such as

when you aren’t programming web pages.

You might be wondering why I use the local loopback address in both the Network

Domain and Server Name fields. In order to serve a domain name, you would have

to install and use a DNS (Domain Name Server). DNS servers match the IP address

computers understand into a form that humans can understand, a domain name. While

you can easily find a website with an IP address, for most people remembering words

instead of numbers works better should you want to find that site again. How the DNS

Figure 9-4. Filling out installation options

Chapter 9 InstallIng and UsIng the apaChe Web server

160

server does all of this is beyond the scope of this book. In order to serve web pages for

the workstation from the workstation, you need to use this address, which the operating

system will automatically see as a local installation.

Installing Apache as a service requires administrative access. This is also required to

stop and start the server, as you’ll see if you install in this way.

Installing as a manually started program allows you to stop and start the Apache

server simply and as needed, rather than it always being an active service that is taking up

resources should you not be programming or serving pages. The next window, Figure 9-5,

asks you to select a Custom or Typical installation. Select Custom and click Next.

Ask for installation options. “Build Headers and Libraries” is not checked by

default. Check it to install it. Set installation directory to be C:\Apache. You may have to

change this field more than once. The installer wants you to name the Apache directory

Apache2.2. There have been other places in this book that I’ve said to keep it as simple as

possible. With a simple and easy-to-remember installation path, you don’t have to look

up directory or resource names. Do keep it simple.

Figure 9-5. Selecting a Typical or Custom installation

Chapter 9 InstallIng and UsIng the apaChe Web server

161

The next option is to click the Install button to begin the installation, as shown in

Figure 9-7. You’ll see a window with a progress bar that gives you an idea of the progress

of your installation. The installation usually only takes a few minutes.

Figure 9-6. Specifying what is to be installed on the hard drive

Chapter 9 InstallIng and UsIng the apaChe Web server

162

After the progress bar disappears and your machine displays Figure 9-8, you’ve

completed the installation. Now the Apache web server is on your workstation.

Figure 9-7. The installation progress window

Chapter 9 InstallIng and UsIng the apaChe Web server

163

 Apache and DBI.pm
The Perl DBI module is perhaps one of the best modules that have been put into

production. With it, you are able to interact with a number of popular database servers

in a timely and effective manner. The methods available from DBI make it a simple and

effective affair to connect and interact with the database. All of the following examples

assume you’re using the current version of MySQL.

First, let us concentrate on connecting to the database. As with all things Perl, there

are several distinct ways to do this, and all can be correct. We’ll use what I’ve seen to be

the most common syntax to connect to a MySQL database.

You’re going to run into errors with databases for similar reasons that you do when

using system calls. And just as you should always check the return code of your system

calls, so should you always check the return status of your database calls. The easiest

way to do this is by setting DBI’s RaiseError attribute to 1. First, you would connect to

the database and check the return. You would set the RaiseError attribute, as shown in

Listing 9-1.

Figure 9-8. Installation completed window

Chapter 9 InstallIng and UsIng the apaChe Web server

164

Listing 9-1. Connecting to a MySQL database

$dbh = DBI->connect('DBI:mysql:host=127.0.0.1;database=tvalentine3',

'tvalentine', 'valentine1',

 {'RaiseError' => 1}) or die "Cannot Connect to the database:",

$DBI::errstr;

By doing this, you ensure that any database error will cause a die to be thrown by

DBI. If you’re writing a database application and you have a database error, you don’t

want to continue as if nothing happened. You could also catch the die in an eval – just

make sure that you handle the error rather than ignore it.

So that’s connecting to the database; now let us examine using placeholders instead

of literal values. It is said by many that you should use placeholders instead of literal

values in your database calls, always. This speeds up execution and will generally make a

faster and more reliable database call. Examine the following:

$dbh->do(qq{INSERT INTO $this_table (col1, col2, col3)

VALUES (?, ?, ?)}, undef, '$col1', '$col2', '$col3');

We’ve inserted three columns in one row – col1, col2, and col3. What we’ve done

is use placeholders as the values of the database insertion and provided variables

with the actual data to be inserted. This is a simple and very fast method to perform a

database call.

Now let us concentrate on SELECT statements. When you execute a SELECT

statement, you would obviously want to get the data back as quickly as possible. The

fastest way to do this is to use the bind_columns() and fetchrow_array() methods.

bind_columns binds Perl variables to columns returned from your SELECT statement.

For example, if you had the following SQL statement

SELECT id, name, postid FROM $thistable

you’d want to bind three variables to the associated columns using the bind_columns()

method. So you set up the variables, then use bind_columns to bind them:

$sth->bind_columns(undef, \$id, \$name, \$postid);

The first argument to bind_columns is actually a hash reference specifying which

DBI attributes to associate with this particular method. We don’t want to associate any

attributes with this particular method, so we’ll just pass it undef, which is a completely

Chapter 9 InstallIng and UsIng the apaChe Web server

165

OK thing to do. After you’ve called execute on your statement handle, you’ll want to fetch

the data. To do this, use the fetchrow_array() method, which fetches the next row and

returns an array reference holding the field values. But you don’t need to use that array

reference, because you’ve got the column values bound to Perl variables, and you can

just use those directly as shown in Listing 9-2.

Listing 9-2. Selecting and retrieving three database items

while (@this_data = $sth->fetchrow_array()) {

 $id = $this_data[0];

 $name = $this_data[1];

 $postid = $this_data[2];

}

Each time you call fetchrow_array() on your statement handle, the values of the

bound variables get updated.

Now let us take a look at mod_perl. Part of the purpose of mod_perl is to make Perl

programs run much faster on the Apache web server. mod_perl accomplishes this by

building a Perl interpreter into the web server and compiling your programs in memory.

Thus, when it gets a new request, it maps that request onto a program compiled into

memory, speeding things up considerably. If you’re going to use DBI with mod_perl,

you’ll want to make sure that your database transactions are fast as well because you

don’t want the database being the bottleneck. The easiest way to accomplish this

is to use the Apache::DBI module, which gives your programs persistent database

connections. It does so by overriding the DBI connect method and keeping a cache of

open database handles. One of the nicest things about Apache::DBI is that you won’t

have to modify your existing DBI code to use it. Just add the following before your “use

DBI;” call:

use Apache::DBI;

You don’t even have to take out the calls to disconnect, because Apache::DBI

overrides those calls and makes sure that the handle doesn’t actually get disconnected.

This persistent connection speeds up execution by not having to connect to the database

for each successive call to the script – an open database connection already exists.

Chapter 9 InstallIng and UsIng the apaChe Web server

166

 Starting the Apache Server
Starting your Apache server properly is a simple but important task. The first thing that

httpd does when it is invoked is to locate and read the configuration file, httpd.conf.

Within this file are the locations and settings for the Apache server’s startup. You would

specify what your root web location is, as well as dozens of other configuration directives.

During startup, the Apache server parses the httpd.conf file and applies the settings

and directives you have within this file to that instance of the Apache server. The

locations for your files can be anywhere on the current machine, either on a Linux

operating system or a Windows operating system. It is understood that the user is adept

on either or both of these operating systems before the installation of Apache.

When installing on a Windows operating system, you have the option of compiling the

server’s files from the source code or using a precompiled binary file. If you have a Windows

version higher than Windows 98 and have the MSI installer up to date, you can download

the .msi package to install Apache on your Windows machine. This is recommended, as it

greatly simplifies the installation and ensures that any errors that may happen are handled

and repaired by the installation program. The MSI installer is a program that has within it

the rules for installing almost any program on the Windows operating system.

 Startup on a Windows Operating System
Startup on a Windows operating system is an easy affair. You simply state the path to the

Apache.exe file along with a switch or two. You then give the location of the http.conf file

and the root of the Apache source files’ directory:

C:\Apache\bin\Apache.exe -w -f "C:\Apache\conf\httpd.conf" -d "C:\Apache"

First, we declared the path to the Apache.exe executable. We then included startup

switches. Next, we included the path to the httpd.conf file for startup options. Finally, we

gave the location of the root for the Apache installation.

 Stopping or Restarting the Server
In order to stop or restart Apache, you must send a signal to the running httpd processes.

We’ll examine stopping the server on a Windows machine first. This is as easy as pressing

Ctrl+C in most cases, so we won’t delve into stopping the Apache server on a Windows

Chapter 9 InstallIng and UsIng the apaChe Web server

167

machine very far. Instead, let us concentrate on the command-line switches that, save

for the path to the executable, will be the same on a Linux as well as Windows operating

system.

There are a number of switches that can be used to start or stop or restart the server.

A full listing of these switches is beyond the scope of this book. However, the manual that

comes with the Apache installation explains all of these switches and a great deal more –

it is advised that you read the manual before using any of the higher functions inherent

to Apache.

 Stopping the Apache Server
Stopping your Apache installation is a very easy affair, but it is one that must be covered

in order for you to work with Apache in the future. The following example shows how to

stop the Apache server on a Linux system:

apachectl -k stop

This example assumes you are within the working Apache directory. If you aren’t,

then you would use the entire path to the apachectl executable.

On Windows, there are two options for stopping the Apache web server that is

started and is running in console. You can press Ctrl+C to exit or go to the Task Manager

window and exit the program from there.

 Restarting the Apache Server, Gracefully
There are several ways to restart your server. You can use a command-line directive, or

you can use the operating system to stop the Apache process. You would then have to

restart according to the procedure given in an earlier section of this document. Examine

the following:

apachectl -k graceful

A graceful restart will restart the server after all waiting server calls have completed.

The server then restarts and accepts new calls. This has the benefit of completing the

waiting calls to the server before restarting. You would normally restart in this fashion

after a configuration change within your httpd.conf file.

Chapter 9 InstallIng and UsIng the apaChe Web server

168

 Reviewing Runtime Configuration Directives
Runtime configuration directives are the commands and configuration notes that

Apache uses to start the server. There are perhaps 200 of these directives, so a full

explanation of these directives is beyond the scope of this book. See the manual that

comes with the Apache distribution for an exhaustive and detailed explanation of every

runtime configuration directive.

There are eight general types of runtime directives. They are server config, virtual

host, directory, .htaccess, Core, MPM (Multi-Processing Modules), Base, Extension,

and Experimental. Each of these runtime configuration types is an integral part of your

Apache server’s configuration and is read at server startup time.

The configuration directives are grouped into three basic sections within the httpd.

conf file:

 1. Directives that control the operation of the Apache server process

as a whole (the “global environment”).

 2. Directives that define the parameters of the “main” or “default”

server, which responds to requests that aren’t handled by a virtual

host. These directives also provide default values for the settings

of all virtual hosts.

 3. Settings for virtual hosts, which allow web requests to be sent to

different IP addresses or hostnames and have them handled by

the same Apache server process.

You’ll get a feel for what each type of directive does with further use of the server and

after reading the Apache manual.

 Setting the Server Root
The server root is the place where the Apache executable and configuration files are

stored on the local machine.

ServerRoot "C:/Apache "

The ServerRoot directive tells the Apache server where the website documents,

executables, and configuration files start.

Chapter 9 InstallIng and UsIng the apaChe Web server

169

 Setting the Server Name
The server name is the domain name that the Apache server will be serving files to. You

may specify a domain name or an IP address as the server name attribute, but in this

case, you would enter the local loopback address:

ServerName 127.0.0.1

The ServerName directive tells the Apache server what the URL of the server is to

be. If you are using Apache as a developer server on your own desktop computer, use a

server name of “127.0.0.1.” This is the local loopback address and will allow you to serve

pages on your own machine from your own machine.

 Setting the Document Root

The document root is the location of the directory that will be serving the pages for your

website. It is given as a file system location. The following example is a document root as

given on a Windows machine:

DocumentRoot "C:\Apache\htdocs"

The DocumentRoot directive tells the server where to find the HTML files that will be

served and is a reflection of your file system. It is also used to show the general location

of the CGI-BIN for Perl scripts.

 Setting the CGI-BIN Location

In order to use Perl with your Apache installation, Perl will have to be installed on the

local machine. The CGI-BIN location shows the location of the Perl scripts that your

Apache server will be serving:

ScriptAlias /cgi-bin/ "C:\apache\htdocs\cgi-bin\"

The example sets the ScriptAlias location. This tells the server where to expect CGI

scripts. Your ScriptAlias doesn’t need to be within the document or server root – you can

have it anywhere on the local machine, on any operating system supported.

You may specify the location and name of your CGI-BIN as something other than

the norm. Apache has provided this functionality for those server setups that don’t

conform to the norm. Using a setup in this manner isn’t the norm, but can be a fun way

to personalize your website to your specifications. You don’t even have to have your CGI

Chapter 9 InstallIng and UsIng the apaChe Web server

170

scripts end with the .cgi or .pl extension. You can use something descriptive to conform

to your site’s theme. Simply use the knowledge in the coming pages to change the

Apache directives to conform to your theme.

What you would do is alter the default settings within your httpd.conf file, which

is the main configuration file that Apache uses at startup to apply the settings that you

have chosen. These settings don’t have to include the default settings – you may specify

anything you like. There are several large sites that I’ve encountered that use a custom

setup such as this. They’ve used the theme of their site to their advantage, adding a

customized flair to their configuration files that are reflected in the address bar in the

browser.

 Summary
In this chapter, we learned about the Apache web server. Apache is a great server to work

with, as we touched on. It’s a powerful and capable server that offers many configuration

options. Every option and all functionality possibilities of the Apache are beyond the

scope of this book – it is a book unto itself.

Chapter 9 InstallIng and UsIng the apaChe Web server

171
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2_10

CHAPTER 10

A Database-Driven Menu
System
So we’ve all seen drop-down menus on great sites. They’re a timeless feature – they’ve

been used for decades and will no doubt be used for many more. In this chapter, we’ll be

using the knowledge presented in an earlier chapter on JavaScript machinations about

how HTML, CSS, DOM, and JavaScript work together to provide some pretty amazing

functionality. Employ the Perl scripting language and the MySQL database and you’ve

got the makings of a very powerful web page feature.

Drop-down menus are simple to understand, given a few pointers. Your drop-down

menu uses the GET method for loading the links that you’ll be using. Values are passed

to a script via the parameters stated within the anchor element.

 create.pl
As with most Perl scripts, there are always a few tables that have to be created before

the script with the working features is called upon. These scripts are usually for account

information like contact information or personal details – names and addresses, for

example. The limit to what you can do is governed by your imagination.

create.pl is a simple script that begins our foray into the drop-down menu system.

I use it to create the base tables that we’ll be working with in a later section of this chapter.

We aren’t filling in any values in this simple script. We’re simply creating the base tables

where the values will be stored through the use of other scripts. Examine Listing 10-1.

https://doi.org/10.1007/978-1-4842-5970-2_10#DOI

172

Listing 10-1. Examining create.pl

#!/usr/bin/perl

use DBI;

use CGI;

use CGI::Carp qw(fatalsToBrowser);

$cgi = new CGI;

connect

$dbh = DBI->connect('DBI:mysql:host=localhost;

database=menu_system', 'user_name', 'password',

{'RaiseError' => 1}) or die "Cannot Connect to Database";

$query = qq{CREATE TABLE pages (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 id1 VARCHAR (250) NOT NULL,

 id2 VARCHAR (250) NOT NULL,

 hits VARCHAR (250) NOT NULL

)};

$sth = $dbh->prepare($query);

$sth->execute();

$sth->finish();

$dbh->disconnect();

print da shtuff

print qq{Content-type: text/html\n\n};

print qq{<html>

<head>

<title>Create Menu Tables</title>

</head>

<body bgcolor="white">

<table border = "0" cellspacing="0" cellpadding="0" align="center">

<tr>

Chapter 10 a Database-Driven Menu systeM

173

 <td align="center">Database Tables Created</td>

</table>

</body>

</html>};

1;

As you can see, we connect to the database and create a table named “pages.” This

is an empty table right now, but the next working script will put values in the database,

as you’ll see soon. This is the first time you’ll see the id, id1, id2, and hits columns. I use

them with pretty much every project I take on. They’re a starting point of the database

model. As your project grows, so too will the complexity of your database system.

The first step in this small script is simply the database connection code. It has four

items that are used to state where the database is (localhost), what database is being

used (database name), a username, and a password.

The database location is stated as localhost. This is used when the Perl script and the

MySQL database are running on the same server. If you were using a multiserver setup,

you could state a URL or IP address as this value.

The database name is simply what you named the database. It can be any letter

or number, but try not to incorporate punctuation into your database names. Some

commonly used punctuation can interfere with a script. The left single quote is

notorious for this. Depending where and what you’re doing with the script, a warning

message could be thrown or a fatal error could be thrown. Usernames and passwords

should follow this convention as well.

After the database connection code comes the creation of the tables. Note that the id

column is auto_increment. This means that the id column will start with a value of zero.

This number will be increased by one every time a new table row gets inserted into the

database. This is a handy way of specifying the order your table data will be organized

within the variables and arrays that will be used to generate the completed document.

The other columns within the table I created are id1, id2, and hits. id1 and id2 can be

any type of data you wish. I’m including them here to give you a better understanding of

how you should organize your database tables, rows, and columns.

After completing the table creation, I send a small but fully formed HTML document

to the browser’s target which is the current browser window. The table is now ready to

use.

Chapter 10 a Database-Driven Menu systeM

174

 populate.pl
The populate.pl script is used to insert values into the database. As I stated before, you

want your database tables to be intuitively obvious. There are four columns to the table

we’ll be using – an auto_increment id, id1, id2, and hits. What we’ll be doing with this

script is inserting the menu items into a database via variables and arrays.

The menu system we’re ultimately building up to consists of two drop-down menus.

The first, simply called heading1, consists of two links. The second drop-down menu

is entitled heading2 and has four list items. What makes heading2 interesting is that

the list items are in two columns. This is a handy feature to know about if you have an

inordinately long list of menu items. Breaking one long list into two shorter lists will

make the menu easier to read and will be a more obvious and functional page item

(Listing 10-2).

Listing 10-2. Examining populate.pl

#!/usr/bin/perl

use DBI;

use CGI;

use CGI::Carp qw(fatalsToBrowser);

$cgi = new CGI;

create the heading1 and heading2 variables and arrays

@link1 = ('1', '2');

@link2 = ('1', '2', '3', '4');

$id1 = "1";

$id2 = "2";

connect, damnit !!!

$dbh = DBI->connect('DBI:mysql:host=localhost;database=databasename',

'username', 'password', {'RaiseError' => 1}) or die "Cannot Connect to

Database";

$count = "0";

foreach (@link1) {

 $query = qq{INSERT INTO pages (id1, id2)

 VALUES

Chapter 10 a Database-Driven Menu systeM

175

 ('$id1', '$link1[$count]')};

 $sth = $dbh->prepare($query);

 $sth->execute;

 ++$count;

};

$count = "0";

foreach (@link2) {

 $query = qq{INSERT INTO pages (id1, id2)

 VALUES

 ('$id2', '$link2[$count]')};

 $sth = $dbh->prepare($query);

 $sth->execute;

 ++$count;

};

$sth->finish();

$dbh->disconnect();

print da schtuff

print qq{Content-type: text/html\n\n};

print qq{<html>

<head>

<title>Experiment</title>

</head>

<body bgcolor="white">

<table border = "0" cellspacing="0" cellpadding="0" align="center">

<tr>

 <td align="center">Database Entries Inserted</td>

</table>

</body>

</html>};

1;

Chapter 10 a Database-Driven Menu systeM

176

As you can see, populate.pl is a good example of the beginnings of a really great

menu system. The two arrays are looped through and stuffed into the database along

with the two $id1 and $id2 variables.

After the minor database insertions, some HTML markup was sent to the browser,

showing a small message that everything went well.

 page.cgi
As with all Perl scripts, we start with the shebang. I always declare the modules to be

used at the top of the script. This makes it easy to see at a glance what modules the script

is using. There are two parameters being passed to the script, id1 and id2. They are

contained within the intuitively named $id1 and $id2 variables. page.cgi shows the ease

with which values can be passed to a script. It also shows where to fit in your database

calls and the generation of HTML content.

Examine Listing 10-3, which is a complete script that stores the id1 and id2

parameters in a table named pages. Notice also that there is a “hits” column. This is

incremented every time the script is run with its own very simple statement.

Listing 10-3. Examining page.cgi

#!/usr/bin/perl

use DBI;

use CGI;

use CGI::Carp qw(fatalsToBrowser);

$cgi = new CGI;

$id1 = $cgi->param('id1');

$id2 = $cgi->param('id2');

connect, damnit !!!

$dbh = DBI->connect('DBI:mysql:host=localhost;

database=menu_system', 'user_name', 'password', {'RaiseError' => 1})

or die "Cannot Connect to Database";

$query = qq{INSERT INTO pages (id1, id2) VALUES ('$id1', '$id2') WHERE id2

= $id2};

Chapter 10 a Database-Driven Menu systeM

177

$sth = $dbh->prepare($query);

$sth->execute;

$query = qq{UPDATE pages SET Hits = Hits + 1 WHERE id2 = $id2};

$sth = $dbh->prepare($query);

$sth->execute;

$query = qq{SELECT id1, id2, hits FROM pages WHERE id2 = $id2};

$sth = $dbh->prepare($query);

$sth->execute();

while (@thisid = $sth->fetchrow_array()) {

 $id1 = $thisid[0];

 $id2 = $thisid[1];

 $hits = $thisid[2];

}

$sth->finish();

$dbh->disconnect();

print da shtuff

print qq{Content-type: text/html\n\n};

print qq{<html>

<head>

<title>Experiment</title>

</head>

<body bgcolor="white">

<table border = "0" cellspacing="0" cellpadding="0" align="center">

<tr>

 <td align="center" valign="top">Heading $id1, Page $id2, Visited

$hits times</td>

</table>

</body>

</html>};

We start the database calls with an insertion. The values contained within the id1

and id2 parameters are inserted into the pages table.

Chapter 10 a Database-Driven Menu systeM

178

 menu.html
Now comes the code to present the document we’ll be working with. I’ve kept the

HTML markup as simple as possible to aid in learning. Most of you should be able to

make sense of the simple but fully formed web page that is given as the next topic of

discussion.

 Code Block One
This block of code represents an entire selection of CSS rules. As always, I’ve kept it to a

minimum of code to aid in learning. Notice that we started with a simple <html> element

at the top of the page. The !DOCTYPE element is no longer required.

The CSS rules in this list show seven styles. Get used to using CSS rules in the HEAD

of the document. Note that CSS rules are within opening and closing braces and are

encapsulated in their entirety within the opening and closing <STYLE> elements.

<html>

<head>

<title>- - - Menu System - - -</title>

<style>

body{font-family:arial;}

table{font-size:10pt;

 background:#336699;

}

a{

 color:white;

 text-decoration:none;

 font:bold;

}

a:hover{

 color:white;

 text-decoration: underline;

}

td.menu{

 background:#336699;

}

Chapter 10 a Database-Driven Menu systeM

179

table.menu {

 font-size:10pt;

 position:absolute;

 visibility:hidden;

}

.white {

 font-size:10pt;

 color: white;

 font-weight: bold;

}

</style>

As you can see, there are a few different syntax combinations that allow CSS to do

some pretty powerful operations. td.menu applies to all td elements with the name

attribute of “menu.” The same goes with table.menu.

 Begin Code Block Two
This simple but essential block of code is where we’ll start getting into the functionality

of the database-driven drop-down menu system we’ll be exploring. As always, JavaScript

code is stated between the opening and closing <script> elements. You may state your

JavaScript code anywhere on the page, but the normal convention is to declare them in

the HEAD of the document.

<script type="text/javascript">

function showmenu(elmnt) {

 document.getElementById(elmnt).style.visibility="visible";

}

function hidemenu(elmnt) {

 document.getElementById(elmnt).style.visibility="hidden";

}

</script>

</head>

Chapter 10 a Database-Driven Menu systeM

180

This block of code switches the visibility() to visible or hidden. The reason we do

this here is because we want the entire document to have the option of employing a

drop-down menu. It’s always a good idea to insert your JavaScript in the HEAD of the

document, every time.

 Code Block Three
Now comes the BODY of the document. The HTML markup we’re exploring is simple

and intuitive even if you only have a glimmer of what is entailed in writing document

content. We begin with a simple table declaration that shows the basic dimensions of

the table followed by further table data, utilized by tr and td elements. Note that the

bottom-most block of markup shows two columns, side by side. This will translate into a

multicolumn menu when the visible() method is toggled.

<body>

<table border="0" cellpadding="0" cellspacing="0" align="center"

width="400">

<tr bgcolor="#336699">

 <td height="20" align="left"

 onmouseover="showmenu('menu1')"

 onmouseout="hidemenu('menu1')" class="white"> Heading 01

 <table border="0" cellpadding="5" cellspacing="0" align="center"

class="menu" id="menu1">

 <tr>

 <td width="150" class="menu"><a href="page.cgi?id1=1&id2=1"

 onmouseover="showmenu('menu1')"

 onmouseout="hidemenu('menu1')"

 target="output">List Item

 </td>

 </tr><tr>

 <td width="150" class="menu"><a href="page.cgi?id1=1&id2=2"

 onmouseover="showmenu('menu1')"

 onmouseout="hidemenu('menu1')"

 target="output">List Item

 </td>

Chapter 10 a Database-Driven Menu systeM

181

 </tr>

 </table>

 </td>

 <td height="20" align="right"

 onmouseover="showmenu('menu2')"

 onmouseout="hidemenu('menu2')" class="white">Heading 02

 <table border="0" cellpadding="5" cellspacing="0" align="center"

class="menu" id="menu2" width="175">

 <tr>

 <td width="150" class="menu"><a href="page.cgi?id1=2&id2=5"

 onmouseover="showmenu('menu2')"

 onmouseout="hidemenu('menu2')"

 target="output">List Item

 </td>

 <td width="150" class="menu"><a href="page.cgi?id1=2&id2=6"

 onmouseover="showmenu('menu2')"

 onmouseout="hidemenu('menu2')"

 target="output">List Item

 </td>

 </tr><tr>

 <td width="150" class="menu"><a href="page.cgi?id1=2&id2=7"

 onmouseover="showmenu('menu2')"

 onmouseout="hidemenu('menu2')"

 target="output">List Item

 </td>

 <td width="150" class="menu"><a href="page.cgi?id1=2&id2=8"

 onmouseover="showmenu('menu2')"

 onmouseout="hidemenu('menu2')"

 target="output">List Item

 </td>

 </tr>

 </table>

 </td>

</tr>

</table>

Chapter 10 a Database-Driven Menu systeM

182

Take note of how the menu data is placed in the document. You can have as many

drop-down menu windows as you can fit on a page. Of particular import are the id

and name attributes. They are stated in multiple locations to ensure the menu data is

displayed in the right menu.

 Begin Code Block Four
Block four consists of the declaration of a simple table that encapsulates an iFrame.

As you might have noticed in an earlier code example, all of the anchor elements had

the target attribute set to “output.” The iFrame is designated as “output” via the name

attribute. Because of this, the output of the scripts will be written to the iFrame. The

entire page won’t refresh, only the contents of the iFrame. All of the scripts in this

chapter are put together in this way so all output is written to the iFrame.

<table border="0" cellpadding="0" cellspacing="0" align="center">

<tr>

 <td height="50"></td>

</tr>

</table>

<table border="0" cellpadding="0" cellspacing="0" align="center">

<tr>

 <td align="center">

<iframe name="output" src="empty.html"

cols="50" rows="30">

</iframe>

 </td>

</tr>

</table>

</body>

</html>

As you can see, the file named empty.html is first loaded into the iFrame window.

This could just as easily have been a fully formed Perl script that is able to perform

database interactions and then write the generated content to the iFrame.

Chapter 10 a Database-Driven Menu systeM

183

 Summary
In this chapter, we explored the creation of a simple but functional database-driven

drop-down menu system. Drop-down menu systems are here to stay. Now you know

how to create a basic drop-down menu, but you can also play around with it and add

features.

Chapter 10 a Database-Driven Menu systeM

185
© Thomas Valentine 2021
T. Valentine, Database-Driven Web Development, https://doi.org/10.1007/978-1-4842-5970-2

Index

A
Apache web server

DBI.pm, 163, 165
definition, 155
downloading/installing binaries, 156
handling errors, 155, 156
httpd.conf file, 166
operating system, changes, 157–161, 163
runtime configuration

directives, 168, 169
Windows operating system,

startup, 166, 167
Arithmetic operators, 8

B
backtick operator, 10, 24, 51, 64
Bitwise operators, 8, 10
BLOB column types, 37, 42

C
CGI::Carp module, 25, 59
Character strings, 42
Coloring method, 78, 82, 83
Column types, 37, 41, 42
Common Gateway Interface (CGI)

module, 19
CGI::Carp module, 25
dynamic content, 27

error handling, 24–26
external HTML content, 26, 27
GET method, 20
HTTP, 20
IP address, 23, 24
param() method, 23
Perl, 23
POST method, 20, 21
primer, 19, 20
system call, 24

Comprehensive Perl Archive
Network (CPAN), 134

cPanel, 13, 14, 16

D
Database-driven menu system

create.pl, 171–173
menu.html

begin code block four, 182
begin code block two, 179
code block one, 178, 179
code block time, 180, 181

page.cgi, 176, 177
populate.pl, 174, 176

Database-driven website, 1
content, 4
features, 4, 5
.htaccess file, 5
Perl, 3

https://doi.org/10.1007/978-1-4842-5970-2#DOI

186

URL, 3
username/password, 5
users, 6

Data transfer, 14
Date and time format, 51
DBI.pm prepare() method, 34
Dedicated plans, 15

file rights, 16
FTP, 16
Perl, 16
permissions, 16
printenv.pl, 17

Deleting tables, 61, 62
Digital clocks, 99, 101
Domain Name Server (DNS), 11, 159
Drop-down menu

system, 102, 171, 179

E
Enumerations, 43
execute() method, 28, 32
External content template, 57, 58

CGI::Carp module, 59
end array, 58
per user usage, 60, 61
username/password

maintenance, 59, 60

F
fetchrow_array() method, 28, 30, 31, 33,

34, 55
fetchrow() method, 28–31
File transfer protocol (FTP) clients, 16
Floating point column type, 42
foreach() loop, 45, 46, 56

G
getElementById() method, 97, 106, 110
GET method, 20, 53, 54

H
Hard drive space, 14
Hypertext Transfer Protocol (HTTP), 20

I
iFrame, 182
Image::Magick module, 137
Image preloading, 91, 92
innerHTML attribute, 71, 72
Integer column types, 41

J, K
JavaScript

background color change, 66, 67
background color change, drop-down

list, 86, 87
background color change,

input field, 77, 78
background color change,

Textarea, 88, 89
background color insert,

Textarea, 90, 91
change background

image, 79, 80, 96, 97
change image position, 94, 95
change image size, 92, 93
change image source, 93, 94
checkboxes, 80, 82
click-driven horizontal

sliding menu, 112, 115
color change, 69

Database-driven website (cont.)

Index

187

coordinates, 115, 116
descriptive menu, 106, 108
event trigger, 68
image preloading, 91, 92
image viewer, 97, 99
innerHTML attribute, 71, 72
insert background image, 84, 85
inset/outset, 104, 106
onLoad/onUnload, 74, 75
onMouseMove, 73, 74
on/off visibility, 65, 66
page element, 72, 73
pop-up description, 108, 109
select background color, 82, 83
sliding horizontal menu, 110, 112
switching images, 69, 70
text, 116, 117
text color change, drop-down list, 87, 88
text color change, input field, 78, 79
text color change, Submit button, 83, 84
textual formatting application, 75, 76

L
Linux chmod command, 16
Load event handlers, 74, 75
Localhost, 12, 173
Logical operator, 9, 10

M, N
Managing files, 64
msi package, 131, 132, 157
MySQL, 6

column/index types, 41
database server, 141–150
data types, 7
operators

arithmetic, 8
bitwise, 10
logical, 9
relational, 8, 9

tables/rows/columns, 7
time values, 10

O
one-step do() method, 29
onMouseMove, 73, 74, 116
onUnload event handler, 68, 74, 75

P, Q
Parameters, 3, 9, 13, 23, 48, 52, 53
param() method, 23, 53, 122
Perl and MySQL database

ASC/DESC, 47, 48
create tables, 43, 44
foreach loop, 35, 36
gathering content, 46, 47
links/parameters, 48
loops, 44

foreach(), 45, 46
while(), 45

many arrays, 32–34
many arrays, foreach loop, 38
many arrays, insert, 37
many variables, 30
one array, 31
one array, insert, 34, 35
one-step method, 29
pushing an array, 46
selection, 28
three-step method, 28, 29
two-step method, 29
WHERE clauses, 31, 32

Index

188

Perl DBI module, 27, 30, 39, 163
Perl modules, 12, 16, 19, 21, 22, 25, 51, 59,

64, 119
Perl Package Manager (PPM), 21
Perl scripting language, 2
Perl Server

CPAN.bat, 134–136
flavors and versions, 131
install, 132, 133
modules, 134, 136, 137
Windows operating system, 132

POST method, 20, 21, 53–55
prepare() method, 28, 29, 32
$profileid variable, 54

R
Relational operators, 8, 9
reverse() function, 47, 48
Runtime configuration directives, 168

S
Secure Socket Layer (SSL), 13
SET column type, 43
Shared server plans, 11

cPanel, 13
data transfer, 14
email options, 12
hard drive space, 14
Plesk, 13
reselling, 14
secure transactions, 13

split() function, 52
Switching images, 69, 70

T
Textarea spaces, 88
Textual formatting

application, 75, 76

U
Upload image, 119, 120
Uploading files, 63
Upload script, 120

block five, 126, 127
block four, 124, 126
block one, 121, 122
block seven, 129, 130
block six, 128
block three, 123, 124
block two, 122, 123

V
Virtual Private Server (VPS), 11, 15

W, X, Y, Z
Website parameters, 52, 53

catching, 53, 54
processing, 54

WHERE clauses, 31, 32
while() loop, 45, 46

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Database-Driven Web Development Fundamentals
	The Evolution of the Database-Driven Approach
	How to Spot a Database-Driven Website
	The Address (URL)
	Differing Content
	Search Features
	Username and Password
	.htaccess Files

	Where and When to Use a Database
	The World’s Most Oft-Used Database: MySQL
	Tables, Rows, and Columns
	Data Types
	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators

	Time Values

	Web Hosting Fundamentals
	The Shared Server
	Email Options
	Secure Transactions
	Plesk or cPanel?
	Hard Drive Space and Data Transfer Limits
	Resellers

	The VPS Server
	The Dedicated Server
	Installing Perl Modules
	File Transfer Protocol (FTP) Clients
	File Rights and Permissions
	Obtaining Your Path Statement with printenv.pl

	Summary

	Chapter 2: Perl CGI and MySQL Essentials
	CGI Primer
	HTTP Methods
	The GET Method
	The POST Method

	Running Perl CGI Programs
	CPAN.bat
	The Perl Package Manager

	Including the CGI Module in Your Script
	Using the param() Method
	Obtaining the Calling IP Address
	Making System Calls
	Error Handling
	CGI::Carp
	Where to Use Error Handling
	Handle Your Errors
	The External HTML Content Template
	Printing Your Dynamic Content to the Browser

	Perl and MySQL Basics
	Selecting One Database Item into One Variable
	Selecting a Piece of Data Using the Three-Step Method
	Selecting a Piece of Data Using the Two-Step Method
	Selecting a Piece of Data Using the One-Step Method
	Selecting Many Database Items into Many Variables
	Selecting Many Database Items into One Array
	Selecting Many Pieces of Information Using a WHERE Clause
	Selecting Many Items to Many Arrays
	Inserting Many Database Items from One Array
	Using a foreach Loop to Insert from an Array
	Inserting Many Database Items from Many Arrays
	Using a foreach Loop to Insert Many Items from Many Arrays

	Summary

	Chapter 3: Essential MySQL Skills
	MySQL Column and Index Types
	Integer Column Types
	Floating Point Column Types
	Character String Column Types
	BLOB Column Types
	Enumeration or Set Column Types
	Time Column Types
	Perl and MySQL Functions Review
	Creating Tables
	Loops
	The while() Loop
	The foreach() Loop

	Pushing an Array
	Gathering Content
	Ordering Your Arrays: Perl reverse() vs. MySQL ASC or DESC
	Links and Parameters

	Summary

	Chapter 4: Nuts and Bolts
	Date and Time Formatting
	Website Parameters
	Catching the Parameters
	Processing the Parameters

	Loading Your Links
	Gathering the Information
	Constructing the End Array

	The External Content Template
	Printing the End Array

	Using the CGI::Carp Module
	Username and Password Maintenance
	Per User Usage Statistics
	Deleting Tables
	Deleting Rows

	Uploading Files
	Managing Images and Files
	Summary

	Chapter 5: Practical JavaScript Concepts and Projects
	Turning Visibility On and Off
	Change the Background Color of an Element
	An onLoad Event Trigger
	Use “this” to Change Colors
	Switching Images on the Fly
	Change HTML Code Using innerHTML
	Change the Position of a Page Element
	Using onMouseMove
	Using onLoad and onUnload
	Making Text Bigger
	Change the Background Color of an “input” Field
	Change the Text Color of an “input” Field
	Change the Background Image of an “input” Field
	Select All of the Checkboxes in a Form
	Select the Background Color of a Submit Button
	Change the Text Color of a Submit Button
	Insert a Background Image on a Button
	Change the Background Color of a Drop-Down List
	Change the Text Color of a Drop-Down List
	Change the Background Color of a Textarea Element
	Insert a Background Image into a Textarea Element
	Preload and Store an Image
	Changing the Size of an Image
	Changing the Source of an Image
	Changing the Position of an Image
	Changing the Background Image
	An Image Viewer
	A Digital Clock
	A Drop-Down Menu
	Create Inset or Outset Border Buttons
	A Description Menu
	Create a Description Box for an Image
	A Sliding Horizontal Menu
	A Click-Driven Horizontal Sliding Menu
	Return the Cursor’s Coordinates
	Make Your Text Follow the Cursor
	Summary

	Chapter 6: Images: Uploads and Scripted Manipulation
	Getting Started
	Block One
	Block Two
	Block Three
	Block Four
	Block Five
	Block Six
	Block Seven
	Summary

	Chapter 7: Installing and Using the Perl Server
	The Many Flavors of Perl
	Where’s Perl on a Windows Operating System?
	Preparing Your Workstation
	Installing the Perl Server
	Topics to Consider
	Perl Is Always Ready
	Installing Perl Modules
	CPAN.bat
	The Perl Package Manager (PPM)
	Commonly Used Perl Modules
	Summary

	Chapter 8: Installing and Using the MySQL Database Server
	Downloading the MySQL Server Binaries
	What’s a Beta?
	Preparing Your Workstation
	Installing the MySQL Server
	Start the MySQL Server

	Summary

	Chapter 9: Installing and Using the Apache Web Server
	Handling Errors
	Downloading and Installing the Apache Web Server Binaries
	Allowing Changes to Your Operating System
	Apache and DBI.pm
	Starting the Apache Server
	Startup on a Windows Operating System
	Stopping or Restarting the Server
	Stopping the Apache Server
	Restarting the Apache Server, Gracefully

	Reviewing Runtime Configuration Directives
	Setting the Server Root
	Setting the Server Name
	Setting the Document Root
	Setting the CGI-BIN Location

	Summary

	Chapter 10: A Database-Driven Menu System
	create.pl
	populate.pl
	page.cgi
	menu.html
	Code Block One
	Begin Code Block Two
	Code Block Three
	Begin Code Block Four

	Summary

	Index

