
Decoupled
Django

Understand and Build Decoupled
Django Architectures for JavaScript
Front-ends
—
Valentino Gagliardi

Decoupled Django
Understand and Build Decoupled

Django Architectures for
JavaScript Front-ends

Valentino Gagliardi

Decoupled Django: Understand and Build Decoupled Django Architectures for
JavaScript Front-ends

ISBN-13 (pbk): 978-1-4842-7143-8			 ISBN-13 (electronic): 978-1-4842-7144-5
https://doi.org/10.1007/978-1-4842-7144-5

Copyright © 2021 by Valentino Gagliardi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7143-8. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Valentino Gagliardi
Colle di Val D’Elsa, Italy

https://doi.org/10.1007/978-1-4842-7144-5

To my grandfather, Valentino. I will always miss you.

v

Table of Contents

Chapter 1: �Introduction to the Decoupled World��� 1

Monoliths and MVC�� 1

What Makes a Decoupled Architecture?�� 2

Why and When to Decouple?�� 3

Hypermedia All the Things��� 5

Hypermedia as the Engine��� 7

Client-Server Separation�� 8

Stateless��� 8

Cacheable��� 8

Uniform Interface�� 10

An Introduction to GraphQL�� 11

Summary��� 15

Additional Resources��� 15

Chapter 2: �JavaScript Meets Django��� 17

JavaScript and Django in Production��� 17

The Need for Module Bundlers�� 19

Webpack Fights Django (the Need for Code Splitting)�� 20

Modern JavaScript, Babel, and Webpack��� 22

A Word on TypeScript�� 23

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

vi

JavaScript Frontend Libraries and Frameworks�� 24

Lightweight JavaScript UI Libraries�� 25

Universal JavaScript Applications�� 26

Static Site Generators��� 27

Testing Tooling��� 27

Other Ancillary JavaScript Tools��� 28

Summary�� 29

Additional Resources�� 29

Chapter 3: �Modern Django and the Django REST Framework���������������������������������� 31

What Is the Django REST Framework?�� 31

Class-Based Views in Django and the DRF��� 32

CRUD Viewsets in DRF�� 33

Models, Forms, and Serializers�� 34

From WSGI to ASGI��� 36

Getting Started with Asynchronous Django�� 37

Competing Asynchronous Frameworks and the DRF��� 39

Summary�� 40

Additional Resource��� 40

Chapter 4: �Advantages and Disadvantages of Decoupled Architectures����������������� 41

Pseudo-Decoupled Django��� 41

Pseudo-Decoupled Without REST��� 41

Pseudo-Decoupled with REST�� 45

Fully-Decoupled Django��� 47

Fully-Decoupled with REST�� 48

Fully-Decoupled with GraphQL��� 50

Summary��� 51

Chapter 5: �Setting Up a Django Project��� 53

Setting Up the Project�� 53

A Custom User�� 55

Interlude: Choosing the Right Database��� 56

Table of Contents

vii

Splitting the Settings File��� 56

Bonus: Running Django Under ASGI��� 59

Splitting the Requirements File�� 60

Summary�� 61

Chapter 6: �Decoupled Django with the Django REST Framework���������������������������� 63

Building the Billing App�� 63

Building the Models�� 64

Enabling the App�� 66

Wireframing the Billing App�� 66

Pseudo-Decoupled with the Django REST Framework�� 68

Vue.js and Django��� 68

Building the Vue App��� 73

Vue.js, Django, and CSS�� 79

Building the REST Backend�� 80

Building the Serializers�� 81

Building the Views and the URL�� 82

Working with Nested Serializers�� 86

Fixing the Vue Frontend�� 87

Summary��� 89

Additional Resource��� 89

Chapter 7: �API Security and Deployment��� 91

Django Hardening�� 91

Django Settings for Production��� 92

Authentication and Cookies in Django�� 94

Randomize the Admin URL��� 97

REST API Hardening��� 98

HTTPS Encryption and HSTS�� 98

Audit Logging��� 98

Cross-Origin Resource Sharing�� 99

Authentication and Authorization in the DRF�� 101

Disable the Browsable API�� 103

Table of Contents

viii

Deploying a Decoupled Django Project�� 104

Preparing the Target Machine�� 104

Configuring NGINX�� 105

Gunicorn and Django Production Requirements��� 106

Preparing Vue.js in Production with Django��� 107

The Deployment�� 108

Summary��� 111

Additional Resource��� 111

Chapter 8: �Django REST Meets Next.js�� 113

Django as a Headless CMS�� 113

Building the Blog App��� 113

Building the Model��� 114

Enabling the App�� 115

Building the REST Backend�� 116

Building the Serializer�� 116

Building the Views and the URL�� 117

Introduction to the React Ecosystem��� 118

A Reintroduction to React��� 119

Introduction to Next.js�� 120

Building the Next.js Frontend��� 121

Pages and Routing��� 122

Data Fetching��� 125

Static Site Generation��� 128

Deploying Next.js�� 131

Using React with Django�� 131

The Vue.js Ecosystem��� 132

Summary�� 132

Additional Resource��� 132

Table of Contents

ix

Chapter 9: �Testing in a Decoupled World��� 133

Introduction to Functional Testing�� 133

Getting Started with Cypress�� 134

Understanding Functional Testing for the Billing App��� 135

Creating the First Test�� 136

Filling and Submitting the Form��� 141

Introduction to Unit Testing�� 145

Unit Testing in the Django REST Framework�� 145

Django Settings for Testing��� 146

Installing the Dependencies and Configuring Requirements for Testing������������������������������ 147

Outlining Tests for the Billing REST API�� 147

Testing the Billing REST API�� 148

Summary��� 152

Additional Resource��� 152

Chapter 10: �Authentication and Authorization in the Django REST Framework���� 153

Introduction to Token-Based Authentication and JWT��� 154

Token-Based Authentication: The Good and the Bad�� 154

JSON Web Tokens in Django: Advantages and Challenges��� 155

Session-Based Auth for Single-Page Apps�� 156

Some Words on Production and Development��� 157

Preparing NGINX for the New Setup��� 158

Handling the Login Flow with Django��� 159

Preparing the Vue.js App for the New Setup��� 163

A Note About HttpOnly Cookies�� 165

Handling Authentication in the Frontend�� 166

Authorization and Permissions in the Django REST Framework�� 169

Summary��� 171

Additional Resource��� 171

Table of Contents

x

Chapter 11: �GraphQL in Django with Ariadne�� 173

Getting Started with Ariadne in Django�� 173

Installing Ariadne�� 174

Designing the GraphQL Schema��� 174

Loading the Schema in Ariadne�� 177

Wiring Up the GraphQL Endpoint�� 178

Working with Resolvers�� 182

Using Query Arguments in GraphQL��� 184

A Word on Schema-First vs Code-First��� 187

Implementing Mutations��� 187

Adding a Resolver for the Mutation�� 190

Introduction to GraphQL Clients��� 193

Building the React Frontend��� 194

Getting Started with Apollo Client��� 195

Creating a Select Component��� 196

Creating a Form Component��� 197

Creating the Root Component and Making Queries�� 197

Using Apollo Hooks for React��� 202

Summary��� 205

Additional Resources��� 205

Chapter 12: �GraphQL in Django with Strawberry��� 207

Getting Started with Strawberry in Django�� 207

Installing Strawberry�� 208

Designing the GraphQL Schema in Strawberry�� 209

Types and Enums in Strawberry��� 210

Working with Resolvers (Again)�� 213

Queries in Strawberry and Wiring Up the GraphQL Endpoint��� 214

Input Types and Mutations in Strawberry��� 216

Working Asynchronously with the Django ORM�� 218

Table of Contents

xi

Working Again on the Frontend�� 220

Creating Invoices with a Mutation�� 220

What’s Next?�� 229

Summary��� 230

Additional Resources��� 230

Index�� 231

Table of Contents

xiii

About the Author

Valentino Gagliardi is a freelance consultant with many

years of experience in the IT industry. He spent the last

several years as a frontend consultant, providing advice and

help, coaching, and training on JavaScript and React.

He worked as an instructor for many training agencies

around the country, running in-person workshops and

creating learning paths for aspiring developers. Author of

The Little JavaScript Book, he loves to share his knowledge

on his blog, with his tutorials reaching over 100k monthly

visits. An avid Django user, he is active in the Python

community as a speaker and as a coach for Django Girls.  

xv

About the Technical Reviewer

Marcin Gębala is a software engineer specializing in

building web apps with Python and Django, which he has

been doing professionally since 2014. He works as a staff

engineer, leading the backend team, which develops the

GraphQL API. He has spoken at several tech conferences,

including GraphQL Summit and PyCon Korea, and his main

topics of interest are open-source, Python, and GraphQL.

In his free time, he is a runner, musician, and traveler. He is

based in Wrocław, Poland.  

xvii

Acknowledgments

This book is the product of my love for Django and its community.

I’d also like to express my gratitude to the Italian Python community in particular,

one of the most welcoming out there!

xix

Introduction

If you’re reading this, I’m glad! It means you are interested in Django, one of the most

powerful and flexible web frameworks out there.

When I discovered Django years ago, I realized I could make perfectly working

prototypes faster than with any other web framework; prototypes that later would

become robust, rock-solid web applications.

These days, with JavaScript all the rage, the temptation to jump on the JavaScript-

full-stack bandwagon is strong, and sometimes this tendency makes beginners think

that everything must be built with JavaScript. It shouldn’t. Even if I work primarily with

JavaScript, Django is still my safe harbor for building stuff quickly.

At the same time, used with cognition, modern frontend libraries like Vue.js and

React pair well with Django, which can work completely decoupled from the frontend.

This book is an attempt to cover a part of the vast spectrum of decoupled architectures

with Django and JavaScript, with an eye on the last developments in the asynchronous

Django land, and on the integration between Django and GraphQL. Here’s a breakdown

of what you can expect from each chapter.

•	 In Chapters 1, 2, and 3, we introduce the terminology, what makes a

decoupled architecture, how modern JavaScript is supposed to work

in Django, and how the Django REST framework can help you build

REST APIs.

•	 In Chapter 4, we discuss the advantages and drawbacks of a

decoupled architecture.

•	 In Chapters 5 and 6, we begin to build a Django project with the

Django REST framework and Vue.js to show how Vue can work from

within Django templates.

•	 In Chapter 7, we discuss security for REST APIs, and deployment of

our Django/Vue.js project.

xx

•	 In Chapter 8, we move to React and Next.js to show how such a

framework can be paired with Django. We cover Next.js basics and

data fetching.

•	 Chapter 9 covers testing, both for the REST API and for the JavaScript

frontend.

•	 Chapter 10 covers authentication for decoupled setups and shows

you how to use session-based authentication for single-page apps

with the help of NGINX.

•	 Finally, in Chapters 11 and 12, we cover GraphQL in Django, with a

look at running Django asynchronously.

All the system commands presented in this book assume that the reader is using a

Linux or MacOS system. As for the prerequisites, a basic knowledge of TypeScript and

modern frontend libraries is expected.

Have fun!

Introduction

1
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_1

CHAPTER 1

Introduction to the
Decoupled World
This chapter offers a brief introduction to:

•	 Monoliths and decoupled architectures

•	 REST architectures

•	 The GraphQL query language

In this chapter, we review traditional web applications, the classic MVC pattern

based on views, models, and controllers.

We begin to outline use cases, benefits, and drawbacks of decoupled architectures.

We explore the foundations of REST, look at how it compares to GraphQL, and learn that

REST APIs are not only RESTful after all.

�Monoliths and MVC
For at least two decades, traditional websites and applications all shared a common

design based on the Model-View-Controller pattern, abbreviated MVC.

This pattern wasn’t built in a day. In the beginning, there was an intertwined mess

of business logic, HTML, and what once was a pale imitation of the JavaScript we

know today. In a typical MVC arrangement, when a user requests a path to a website,

the application responds with some HTML. Behind the scenes, a controller, usually a

function or a method, takes care to return the appropriate view to the user. This happens

after the controller populates the view with data coming from the database layer, most of

the time, through an ORM (object-relational mapping). Such a system, acting as a whole

to serve the user, with all its components living in a single place, is called monolith.

https://doi.org/10.1007/978-1-4842-7144-5_1#DOI

2

In a monolithic web application, the HTML response is generated right before returning

the page to the user, a process known as traditional server-side rendering. Figure 1-1

shows a representation of MVC.

MVC has variations, like the Model-View-Template pattern employed by Django. In

Django’s MVT, the data comes still from the database, but the view acts like a controller:

it gets data from the database through the ORM and injects the result in a template,

which is returned to the user. MVC and its variations are well and alive: all the most

popular web frameworks like .NET core, Rails, Laravel, and Django itself employ this

pattern with success. However, in recent times we are seeing the spread of decoupled

applications based on a service-oriented architecture.

In this design, a RESTful or a GraphQL API exposes data for one or more JavaScript

frontends, for a mobile application, or for another machine. Service-oriented and

decoupled architectures are a broader category that encompasses the galaxy of

microservices systems. Throughout the book, we refer to decoupled architectures in the

context of web applications, mainly as systems with a REST API, or GraphQL on the

backend, and a separated JavaScript/HTML frontend. Before focusing on REST APIs, let’s

first unpack what’s behind a decoupled architecture.

�What Makes a Decoupled Architecture?
A decoupled architecture is a system that abides to one of the most important rules in

software engineering: separation of concerns.

REQUEST

RESPONSE

VIEW

MODEL

CONTROLLER

Figure 1-1.  An MVC application responds to the user with a view, generated by a
controller. The model layer supplies the data from the database

Chapter 1 Introduction to the Decoupled World

3

In a decoupled architecture, there is a clear separation between the client and the

server. This is also one of the most important constraints required by REST. Figure 1-2

shows an overview of such a system, with a backend and a frontend.

As you will see later in the book, this separation between client and server, views and

controllers, is not always strict, and depending on the decoupling style, the distinction

becomes blurry. For example, we can have the REST API and the frontend living in two

completely different environments (separate domains or different origins). In this case,

the division is crystal clear. In some situations, when a full JavaScript frontend would not

make sense, Django can still expose a REST or GraphQL API, with JavaScript embedded

in a Django template talking to the endpoints.

To muddle things further, frameworks like Angular adopt the Model-View-Controller

pattern even for structuring frontend code. In a single-page application, we can find the

same MVC design, which replicates the backend structure. You can already guess that one

of the disadvantages of a purely decoupled architecture is, to some extent, code duplication.

Having defined what is a decoupled architecture, let’s now talk about its use cases.

�Why and When to Decouple?
This isn’t a book about the JavaScript gold rush. In fact, you should weigh your options

long before thinking about a full rewrite of your beloved Django monolith.

REQUEST

RESPONSE

REQUEST

RESPONSE

VIEW

MODEL

CONTROLLER

SINGLE-PAGE APP REST API

Figure 1-2.  A decoupled application with a REST API as a data source for a
JavaScript/HTML frontend

Chapter 1 Introduction to the Decoupled World

4

Not every project needs a single-page application. If instead your application falls

under one of the following categories, you can start evaluating the advantages of a

decoupled architecture. Here’s a list of the most common use cases:

•	 Machine-to-machine communication

•	 Interactive dashboards with heavy JS-driven interactions

•	 Static site generation

•	 Mobile applications

With Django, you can build all sorts of things involving machine-to-machine

communication. Think of an industrial application to collect data from sensors that

can be later aggregated in all sorts of data reporting. Such dashboards can have a lot of

JS-driven interactions. Another interesting application for decoupled architectures are

content repositories. Monoliths like Django, CMS like Drupal, or blogging platforms like

WordPress are good companions for static site generators. We explore this topic in detail

later.

Another benefit of a decoupled architecture is the ability to serve different types

of clients: mobile applications are one of the most compelling use cases. Now, if

decoupled architectures sound too appealing, I advise you to consider their drawbacks.

Decoupled architectures based exclusively on single-page applications are not always a

valid choice for:

•	 Constrained teams

•	 Websites with little or no JS-driven interactions

•	 Constrained devices

•	 Content-heavy websites with search engine optimization in mind

Note A s you will see in Chapter 7, frameworks like Next.js can help with
search engine optimization for single-page apps by producing static HTML. Other
examples of frameworks employing this technique are Gatsby and Prerenderer.

It’s easy to get overwhelmed by modern frontend development, especially if the team

is small. One of the most serious hindrances when designing or building a decoupled

architecture from scratch is the sheer amount of complexity lurking behind the surface

Chapter 1 Introduction to the Decoupled World

5

of JavaScript tooling. In the next sections, we focus on REST and GraphQL, the two

pillars of a decoupled architecture.

�Hypermedia All the Things
The foundation for almost any decoupled frontend architecture is the REST

architectural style.

REST is hardly a novel concept these days. The theory is that through verbs or

commands, we create, retrieve, or modify resources on a system. For example, given a

User model on the backend, exposed by a REST API as a resource, we can get a collection

of all the instances present in the database with a GET HTTP request. The following

shows a typical GET request to retrieve a list of entities:

GET https://api.example/api/users/

As you can see, we say users, not user, when retrieving the resource. As a

convention, resources should always be plural. To retrieve a single resource from the

API, we pass instead the ID in the path, as a path parameter. The following shows a GET

request to a single resource:

GET https://api.example/api/users/1

Table 1-1 shows a breakdown of all the verbs (HTTP methods) and their effect on the

resources.

Table 1-1.  HTTP Methods with the Corresponding

Effect on a Given Resource Present on the Backend

Method Effect Idempotent

POST Create resource No

GET Retrieve resource(s) Yes

PUT Update resource Yes

DELETE Delete resource Yes

PATCH Partial update resource No

Chapter 1 Introduction to the Decoupled World

6

To refer to this set of HTTP methods we also use the term CRUD, which stands for

Create, Read, Update, and Delete. As you can see from the table, some HTTP verbs are

idempotent, meaning that the result of the operation is always stable. A GET request

for example always returns the same data, no matter how many times we issue the

command after the first request. A POST request instead will always induce a side effect,

that is, create a new resource on the backend with different values for each call. When

retrieving a resource with GET, we can use search parameters in a query string to specify

search constraints, sorting, or to limit the number of results. The following shows a

request for a limited set of users:

GET https://api.example/api/users?limit=20

When creating a new resource with POST instead, we can send a request body

alongside the request. Depending on the operation type, the API can respond with

an HTTP status code, and with the newly created object. Common examples of HTTP

response code are 200 OK and 201 Created, 202 Accepted. When things don’t go well,

the API might respond with an error code. Common examples of HTTP error codes are

500 Internal Server Error, 403 Forbidden, and 401 Unauthorized.

This back and forth communication between the client and the server carries JSON

objects over the HTTP protocol. Nowadays, JSON is the preferred format for exchanging

data, whereas in the past you could have seen XML over HTTP (SOAP architectures are

still alive these days). Why does REST follow these conventions, and why does it use

HTTP? When Roy Fielding wrote his dissertation entitled, “Architectural Styles and the

Design of Network-based Software Architectures” in 2000, he defined the following rules:

•	 Hypermedia as the engine: When requesting a resource, the response

from the APIs must also include hyperlinks to related entities or to

other actions.

•	 Client-server separation: The consumer (JavaScript, a machine, or a

generic client) and the Web API must be two separate entities.

•	 Stateless: The communication between client and server should not

use any data stored on the server.

•	 Cacheable: The API should leverage HTTP caching as much as

possible.

Chapter 1 Introduction to the Decoupled World

7

•	 Uniform interface: The communication between client and server

should use a representation of the resources involved, and a standard

language for the communication.

It’s worth taking a quick detour to dive deeper into each of these rules.

�Hypermedia as the Engine
In the original dissertation, this constraint is buried under the Uniform Interface section,

but it’s crucial for understanding the real nature of REST APIs.

What hypermedia as the engine means in practice is that when communicating

with an API, we should be able to see what’s next by examining any link in the response.

Django REST framework, the most popular framework for building REST APIs in Django,

makes it easy to build Hypermedia APIs. In fact, Django REST framework serializers

have the ability to return hyperlinked resources. For example, a query for a List model

can return the many side of a one-to-many relationship. Listing 1-1 illustrates a JSON

response from an API where the Card model is connected with a foreign key to List.

Listing 1-1.  A JSON Response with Hyperlinked Relationships

{

 "id": 8,

 "title": "Doing",

 "cards": [

 "https://api.example/api/cards/1",

 "https://api.example/api/cards/2",

 "https://api.example/api/cards/3",

 "https://api.example/api/cards/4"

]

}

Other examples of hyperlinked resources are pagination links. Listing 1-2 is a JSON

response for a boards resource (Board model) with hyperlinks for navigating between

results.

Chapter 1 Introduction to the Decoupled World

8

Listing 1-2.  A JSON Response with Pagination Links

{

 "id": 4,

 "title": "Doing",

 "next": "https://api.example/api/boards/?page=5",

 "previous": "https://api.example/api/boards/?page=3"

}

Another interesting feature of the Django REST framework is the browsable API, a

web interface for interacting with the REST API. All these features make Django REST

framework Hypermedia APIs ready, which is the correct definition for these systems.

�Client-Server Separation
The second constraint, client-server separation, is easily achievable.

A REST API can expose endpoints to which consumers can connect to retrieve,

update, or delete data. In our case, consumers will be JavaScript frontends.

�Stateless
A compliant REST API should be stateless.

Stateless means that during the communication between client and server, the

request should not use any context data stored on the server. This doesn’t mean that we

can’t interact with the resources exposed by the REST APIs. The constraint applies to

session data, like session cookies or other means of identification stored on the server.

This strict prescription urged engineers to find new solutions for API authentication.

JSON Web Token, referred to as JWT later in the book, is a product of such research,

which is not necessarily more secure than other methods, as you will see later.

�Cacheable
A compliant REST API should take advantage of HTTP caching as much as possible.

HTTP caching operates through HTTP headers. A well-designed REST API should

always give the client hints about the lifetime of a GET response. To do so, the backend

sets a Cache-Control header on the response with a max-age directive, which drives the

Chapter 1 Introduction to the Decoupled World

9

lifespan of the response. For example, to cache a response for one hour, the server can

set the following header:

Cache-Control: max-age=3600

Most of the time, there is also an ETag header in the response, which indicates the

resource version. Listing 1-3 shows a typical HTTP response with cache headers.

Listing 1-3.  An HTTP Response with Cache Headers

200 OK

Cache-Control: max-age=3600

ETag: "x6ty2xv"

Note A nother method for enabling HTTP caching involves the Last-Modified
header. If the server sets this header, the client can in turn use If-Modified-
Since or If-Unmodified-Since to check the resource’s freshness.

When the client requests the same resource and max-age is not yet expired, the

response is fetched from the browser’s cache, not from the server. If max-age has

expired, the client issues a request to the server by attaching the If-None-Match header,

alongside with the value from the ETag. This mechanism is known as a conditional

request. If the resource is still fresh, the server responds with 304 Not Modified, hence

avoiding unnecessary exchange of data. If the resource instead is stale, that is, it’s

expired, the server responds with a fresh response. It’s important to remember that

browsers cache only the following response codes:

•	 200 OK

•	 301 Moved Permanently

•	 404 Not Found

•	 206 Partial Content

Moreover, responses with the Authorization header set aren’t cached by default,

unless the Cache-Control header includes the public directive. Also, as you will see

later, GraphQL operates mainly with POST requests, which aren’t cached by default.

Chapter 1 Introduction to the Decoupled World

10

�Uniform Interface
Uniform interface is one of the most important rules of REST.

One of its tenets, representations, prescribes that the communication between

client and server, for example to create a new resource on the backend, should carry the

representation of the resource itself. What this means is that if I want to create a new

resource on the backend, and I issue a POST request, I should provide a payload with the

resource.

Let’s say I have an API that accepts a command on an endpoint, but without a request

body. A REST API that creates a new resource based only on a command issued against

an endpoint is not RESTful. If we talk in terms of uniform interface and representations

instead, when we want to create a new resource on the server, we send the resource itself

in the request body. Listing 1-4 illustrates a complaint request, with a request body for

creating a new user.

Listing 1-4.  A POST Request

POST https://api.example/api/users/

{

 "name": "Juliana",

 "surname": "Crain",

 "age": 44

}

Here we use JSON as the media type, and a representation of the resource as

the request body. Uniform interface refers also to the HTTP verbs used to drive the

communication from the client to the server. When we talk to a REST API, we mainly use

five methods: GET, POST, PUT, DELETE, and PATCH. These methods are also the uniform

interface, that is, the common language we use for client-server communication.

After reviewing REST principles, let’s now turn our attention to its alleged contender,

GraphQL.

Chapter 1 Introduction to the Decoupled World

11

�An Introduction to GraphQL
GraphQL appeared in 2015, proposed by Facebook, and marketed as a replacement

for REST.

GraphQL is a data query language that allows the client to precisely define what data

to fetch from the server and combine data from multiple resources in one request. In a

sense, this is what we always did with REST APIs, but GraphQL takes this a step further,

pushing more control to the client. We saw how to request data from a REST API. To get a

single user, for example, we can visit the following URL of a fictional REST API:

https://api.example/api/users/4

In response, the API returns all the fields for the given user. Listing 1-5 shows a JSON

response for a single user, which also happens to have a one-to-many relationship with a

Friend model.

Listing 1-5.  A JSON Response from a REST API

{

 "id": 4,

 "name": "Juliana",

 "surname": "Crain",

 "age": 44,

 "city": "London",

 "occupation": "Software developer",

 "friends": [

 "https://api.example/api/friend/1",

 "https://api.example/api/friend/2",

 "https://api.example/api/friend/3",

 "https://api.example/api/friend/4"

]

}

This is a contrived example, but if you imagine an even larger set of fields in the

response, it becomes clear that we are over-fetching, that is, we are requesting more data

than we need. If we think for a moment of the same API, this time implemented with

GraphQL, we can request a smaller subset of fields. To request data from a GraphQL API,

Chapter 1 Introduction to the Decoupled World

12

we can make a query. Listing 1-6 shows a typical GraphQL query to request a single user,

by ID, with only a subset of fields.

Listing 1-6.  A GraphQL Query

query {

 getUser(userID: 4) {

 surname,

 age

 }

}

As you can see, the client controls what fields it can request. Here, for example, we

skipped all fields except surname and age. This query has also an argument identified by

userID, which acts as a first filter for the query. In response to this query, the GraphQL

API returns the requested fields. Listing 1-7 shows the JSON response for our query.

Listing 1-7.  A JSON Response from the Previous Query

{

 "surname": "Crain",

 "age": 44

}

“No more over-fetching” is one of the main selling points for GraphQL over REST. In

reality, this filtering capability based on fields is not an exclusive of GraphQL APIs. For

example, REST APIs that follow the JSON API specification can use sparse fieldsets to

request only a subset of data. Once we issue a query against a GraphQL endpoint, this

query travels over a POST request as a request body. Listing 1-8 shows a request to a

GraphQL API.

Listing 1-8.  A GraphQL Query over a POST Request

POST https://api.example/graphql

{

"query" : "query { getUser(userID: 4) { surname, age } }",

"variables": null

}

Chapter 1 Introduction to the Decoupled World

13

You can already notice in this request that we call the /graphql endpoint instead of

/api/users/4. Also, we use POST instead of GET to retrieve the resource. This is a large

departure from the REST architectural style. Query requests in GraphQL are only half

of the story. Whereas REST uses POST, PUT, and DELETE to create, update, or remove a

resource, respectively, GraphQL has the concept of mutations as a means of altering the

data. Listing 1-9 shows a mutation for creating a new a user.

Listing 1-9.  A GraphQL Mutation

mutation {

 createUser(name: "Caty", surname: "Jonson") {

 name,

 surname

 }

}

Subscriptions are another interesting feature of GraphQL services. Clients can

subscribe to events. For example, we may want to receive a notification from the server

any time a new user registers to our service. In GraphQL, we register a subscription for

this. Listing 1-10 illustrates a subscription.

Listing 1-10.  A GraphQL Subscription

subscription {

 userRegistered {

 name,

 email

 }

}

What happens when a GraphQL query reaches the backend? How does the flow

compare to a REST API? Once the query lands on the backend, it is validated against a

schema, which contains type definitions. Then one or more resolvers, dedicated functions

connected to each field in the schema, assemble and return the appropriate data for the

user. Speaking of type definitions, everything is a type in GraphQL: queries, mutations,

subscriptions, and the domain entities. Each query, mutation, and entity has to be

defined in a schema before it can be used, written in a Schema Definition Language.

Listing 1-11 shows a simple schema for the queries we have seen so far.

Chapter 1 Introduction to the Decoupled World

14

Listing 1-11.  A Simple GraphQL Schema

type User {

 name: String,

 surname: String,

 age: Int,

 email: String

}

type Query {

 getUser(userID: ID): User!

}

type Mutation {

 createUser(name: String, surname: String): User

}

type Subscription {

 userRegistered: User

}

By looking at this schema, you can immediately notice how GraphQL enforces strong

types, much like a typed language like TypeScript or C#. Here, String, Int, and ID are

scalar types, while User is our custom type. These custom types go under the definition

of object types in GraphQL parlance. How does GraphQL fit in the Python ecosystem?

Nowadays, there are a number of libraries for building Pythonesque GraphQL APIs. The

most popular are as follows:

•	 Graphene, with its code-first approach to building GraphQL services

•	 Ariadne, a schema-first GraphQL library

•	 Strawberry, built on top of data classes, code-first, and with type hints

All these libraries have integrations with Django. The difference between a code-first

approach and a schema-first approach to GraphQL is that the former promotes Python

syntax as a first-class citizen for writing the schema. The latter instead uses a multi-line

Python string to represent it. In Chapters 10 and 11, we work extensively with GraphQL

in Django with Ariadne and Strawberry.

Chapter 1 Introduction to the Decoupled World

15

�Summary
This chapter reviewed the fundamentals for both traditional and decoupled

architectures. You learned that:

•	 Monoliths are systems acting as a whole unit to serve HTML and data

to the users

•	 REST APIs are in reality Hypermedia APIs because they use HTTP as

the communication medium, and hyperlinks for providing paths to

related resources

•	 JavaScript-first and single-page apps are not the perfect solution to

every use case

•	 GraphQL is a strong contender for REST

In the next chapter, we dive deep into the JavaScript ecosystem to see how it fits

within Django.

�Additional Resources
•	 REST, Hypermedia & HATEOAS

•	 HTTP Caching tutorial

Chapter 1 Introduction to the Decoupled World

https://www.django-rest-framework.org/topics/rest-hypermedia-hateoas/
https://www.mnot.net/cache_docs/

17
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_2

CHAPTER 2

JavaScript Meets Django
This chapter covers:

•	 How JavaScript fits into Django

•	 JavaScript ecosystem and tooling

•	 JavaScript frontend libraries and frameworks

Despite its reputation of being a toy language, JavaScript has become a mature tool

in recent years.

For bad or good, JavaScript is everywhere these days. JavaScript tooling has grown

exponentially as well, with new libraries and techniques pouring fast in the ecosystem.

In this chapter, we introduce the modern JavaScript scene. You will understand what

JavaScript tools do, and how they fit within Django. We also take a look at the most

popular frontend libraries and frameworks.

�JavaScript and Django in Production
To better understand how modern JavaScript fits into Django, we should think not only of a

local development environment, but first and foremost of the typical production context.

Django in production is a different beast from its development counterpart. First,

Django in development has a local server that can serve static files, that is, JavaScript,

images, and CSS. However, the same development server can’t handle production

loads, let alone the security around a production setup. For this reason, in a production

environment, we usually employ the following components:

•	 The Django project itself

•	 A reverse proxy, such as NGINX, to serve static files, which also acts as

an SSL termination

•	 A WSGI or ASGI server, such as Gunicorn, Uvicorn, or Hypercorn

(more on ASGI in the next chapter)

https://doi.org/10.1007/978-1-4842-7144-5_2#DOI

18

How does JavaScript fit into this? When we deploy Django on a production server,

we run python manage.py collectstatic to group static files for all the Django apps

in a single place, identified by the STATIC_ROOT configuration variable. To put things in

context, suppose we have a Django project with an app named quote and a JavaScript

file in ~/repo-root/quote/static/quote/js/index.js. Assuming we configured

STATIC_ROOT as follows, where /home/user/static/ is an existing folder on the

production server:

STATIC_ROOT = "/home/user/static/"

When we run python manage.py collectstatic, static files land in /home/user/

static/, ready to get picked up by any Django template that references the static

template tag. For this to work, the STATIC_URL configuration must point to the URL

used for serving static files. In our example, we imagine a subdomain named static.

decoupled-django.com:

STATIC_URL = "https://static.decoupled-django.com/"

This URL is usually served by an NGINX virtual host, with a location block pointing

at the value configured in Django’s STATIC_ROOT. Listing 2-1 illustrates how you would

call a static file (JavaScript in this case) from a Django template.

Listing 2-1.  A Django Template Referencing a Static File

{% load static %}

<!DOCTYPE html>

<html lang="en">

<body>

<h1>Hello Django!</h1>

<div id="root"></div>

</body>

<script src="{% static "quote/js/index.js" %}"></script>

</html>

In the actual HTML, the URL becomes:

<script src="https://static.decoupled-django.com/quote/js/index.js"></script>

Chapter 2 JavaScript Meets Django

19

This is the most simple situation, where we have one or more Django apps, each

with its own JavaScript files. This approach works well for tiny apps, where the JavaScript

code for the entry point of the application fits within the 200KB limit. By entry point

in this context, we mean the first JavaScript file that the browser has to download to

kickstart the whole application. Since this book is about “decoupled Django” we need to

think about more complex setups where the JavaScript payload served to the user could

go well over 200KB. Also, the bigger a JavaScript application grows, the more we need

to structure our code in a modular fashion, which leads us to talk about JavaScript ES

modules and module bundlers.

�The Need for Module Bundlers
Up until 2015, JavaScript didn’t have a standard module system on the frontend.

Whereas Node.js always had require() from the beginning, the situation was really

scattered on the frontend with different and competing approaches like AMD modules,

UMD, and CommonJS.

Finally, in 2015, ES modules landed in ECMAScript. ES modules offer a standard

approach to code reuse in JavaScript, while also enabling powerful patterns like

dynamic import for improving performances in bigger applications. Now, the problem

for a typical frontend project is that ES modules are not the only asset available to the

developer. There are images, style files such as CSS or SASS, and different types of

JavaScript modules to include. Let’s also not forget that ES modules are a rather new

artifact, and traditional module formats are still out there. A JavaScript project might

use new libraries based on ES modules, but need as well to include code distributed as

CommonJS. Moreover, ES modules are not supported by older browsers.

Another challenge for modern frontend developers lies in the size of a typical

JavaScript application, especially when the project requires a lot of dependencies. To

overcome these issues, specialized tools known as module bundlers saw the light. The

goals of a module bundler are manifold. This tool can:

•	 Assemble different types of JavaScript modules into the same

application

•	 Include different types of files and assets in a JavaScript project

•	 Improve the performance of the application with a technique known

as code splitting

Chapter 2 JavaScript Meets Django

20

In brief, module bundlers offer a unified interface for collecting all the dependencies

of a frontend project, assembling them, and producing one or more JavaScript files

called bundles, in addition to any other asset (CSS and images) for the final application.

One of the most popular module bundlers these days is webpack, which is also used in

the most important CLI tools for project scaffolding in the JavaScript land (create-react-

app, Vue CLI). In the next section, we explore why webpack is important for the Django

developer who needs to deal with a lot of JavaScript.

�Webpack Fights Django (the Need for Code Splitting)
Code splitting in JavaScript refers to the ability to serve the minimum amount possible of

JavaScript to the client, while loading all the rest on-demand.

An understanding of code splitting is not strictly necessary for the average Django

developer, but Python teams approaching medium to bigger Django projects that

require a lot of interactivity in the frontend must know about this concept. In the

previous sections, I mentioned a theoretical limit of 200KB for the entry point of a

JavaScript application. Near to this number, we risk offering a terrible navigation

experience. JavaScript has a cost for any device, but the performance degradation

becomes even more dramatic on low-end devices and slow networks (I suggest always

keeping an eye on “The Cost of JavaScript” by Addy Osmani, link in the resources). For

this reason, it’s of utmost importance to apply a series of techniques to the final artifact.

One such technique is code minification, where the final JavaScript code is stripped out

of comments, whitespace, and while functions, and variable names are mangled. This

is a well-known optimization that almost any tool can accomplish. But a more powerful

technique, exclusive of modern module bundlers, called code splitting, can shrink down

the resulting JavaScript files even more. Code splitting in a JavaScript application applies

at various levels:

•	 At the route level

•	 At the component level

•	 On user interactions (dynamic import)

To some extent, CLI tools like Vue CLI and create-react-app already offer sane

defaults out of the box when it comes to code splitting. In these tools, webpack is already

configured to produce efficient output, thanks to a basic form of code splitting known as

vendor splitting. The effect of code splitting on a JavaScript application is visible in the

Chapter 2 JavaScript Meets Django

21

following example. This is the result of running npm run build on a minimal project

configured as a single-page application:

js/chunk-vendors.468a5298.js

js/app.24e08b96.js

Subsequent slices of the application, called chunks, land in different files than the

main entry point, and can be loaded in parallel. You can see here that we have two files,

app.24e08b96.js and chunk-vendors.468a5298. The js. app.24e08b96.js file is the

entry point of the application. When the application loads, the entry point requires the

second chunk, named chunk-vendors.468a5298.js. When you see vendors in a chunk

name, it’s a sign that webpack is doing the most basic form of code splitting: vendor

splitting. Vendor dependencies are libraries like lodash and React, which are potentially

included in multiple places across a project. To prevent dependency duplication,

webpack can be instructed to recognize what is in common between the consumers of

a dependency, and splits the common dependencies into single chunks. Another thing

you can notice from these file names is the hash. In app.24e08b96.js, for example, the

hash is 24e08b96, which is calculated from the file content by the module bundler. When

the content of the file changes, the hash changes as well. The important thing to keep in

mind is that the order in which the entry point and the chunks appear in the script tag

is paramount for the app to work. Listing 2-2 shows how our files should appear in the

HTML markup.

Listing 2-2.  Two Chunks As They Appear in the HTML

<-- rest of the document -->

<script src=/js/chunk-vendors.468a5298.js></script>

<script src=/js/app.24e08b96.js></script>

<-- rest of the document -->

Here, chunk-vendors.468a5298.js must come before app.24e08b96.js, because

chunk-vendors.468a5298.js contains one or more dependencies for the entry point.

Keeping our focus on Django, you can imagine that to inject these chunks in the same

exact order, we need some system for pairing the appearance order of each file with the

static tag in our templates. A Django library called django-webpack-loader was meant

to ease the usage of webpack within Django projects, but when webpack 4 came out with

a new configuration for code splitting, splitChunks, django-webpack-loader stopped

working.

Chapter 2 JavaScript Meets Django

22

The takeaway here is that JavaScript tooling moves faster than anything else, and

it’s not easy for package maintainers to keep up with the latest changes. Also, messing

up with the webpack configuration is a luxury not everybody can afford, not counting

the risk of configuration drift and breaking changes. When in doubt, before fighting

webpack or touching its configuration, use this mini-heuristic to decide what to do: if the

JavaScript section of an app is over 200KB, use the appropriate CLI tooling and serve the

application as a single-page app within a Django template, or as a decoupled SPA. We

will explore the first approach in Chapter 5. If the JavaScript code fits within the 200KB

limit instead, and the amount of interactive interactions are low, use a simple <script>

tag to load what you need, or if you want to use modern JavaScript, configure a simple

webpack pipeline with vendor splitting at least. Having outlined the foundations of

module bundlers, let’s now continue our tour of the modern JavaScript tooling.

Note  JavaScript tooling, and webpack in particular, are too much of a moving
target to cover in a book without the risk of providing outdated instructions. For this
reason, I don't cover the setup of a webpack project here. You can find a link to an
example of such a setup in the resources.

�Modern JavaScript, Babel, and Webpack
As developers we are quite fortunate, because most of the time we have access to fast

Internet connections, powerful machines with many cores, plenty of RAM, and modern

browsers.

If this shiny new snippet of JavaScript works on my machine, then it should work

virtually everywhere, right? It’s easy to understand the appeal of writing modern

JavaScript. Consider the following example, based on ECMAScript 5:

var arr = ["a", "b"];

function includes(arr, element) {

 return arr.indexOf(element) !== -1;

}

Chapter 2 JavaScript Meets Django

23

This function checks if a given element is present in an array. It is based on Array.

prototype.indexOf(), a built-in function for arrays, which returns -1 if the given

element is not found in the target list. Now consider instead the following snippet, based

on ECMAScript 2016:

const arr = ["a", "b"];

const result = arr.includes("c");

The second example is clearly more concise, understandable, and palatable for

developers. The drawback is that older browsers don’t understand Array.prototype.

includes() or const. We can’t ship this code as it is.

Tip  Both caniuse.com and the compatibility tables at developer.mozilla.
org are invaluable resources for understanding if a given target browser supports
modern syntax.

Luckily, fewer and fewer developers need to worry about the dreaded Internet

Explorer 11, but there are still a lot of edge cases to take into account. As of today, the

most compatible JavaScript version is ECMAScript 2009 (ES5), which is a safe target.

To keep both JavaScript developers and users happy, the community came up with

a category of tools called transpilers, of which Babel is the most popular incarnation.

With such a tool at our disposal, we can write modern JavaScript code, pass it into a

transpilation/compilation pipeline, and have compatible JavaScript code as the final

product. In a typical setup, we configure a build pipeline where:

	 1.	 Webpack ingests ES modules written in modern JavaScript.

	 2.	 A webpack loader passes the code through Babel.

	 3.	 Babel transpiles the code.

The webpack/Babel duo is ubiquitous these days, used by create-react-app, Vue CLI,

and more.

�A Word on TypeScript
TypeScript is the elephant in the room for most developers.

Chapter 2 JavaScript Meets Django

24

As a statically typed declination of JavaScript, TypeScript is more similar to languages

like C# or Java. It is widespread in the Angular world, and it is conquering more and

more JavaScript libraries, which now ship with type definitions by default. Whether you

like TypeScript or not, it is a tool to keep in consideration. In Chapters 8, 11, and 12, we

work with TypeScript in React.

�JavaScript Frontend Libraries and Frameworks
The JavaScript landscape has changed dramatically over the years. jQuery still owns a

large market share.

But when it comes to client-side applications, these are being written or rewritten

with modern frontend libraries like React and Vue.js, or full-fledged frameworks like

Angular. Django is mostly powered by HTML templates, but when the time comes it can

be paired with virtually any JavaScript library. These days the scene is dominated by

three competitors:

•	 React, the UI library from Facebook, which popularized (but not

pioneered) a component-based approach to writing interfaces

•	 Vue.js, the progressive UI library from Evan You, former Angular

developer, which shines for its progressiveness

•	 Angular, the battery-included framework, based on TypeScript

Of this trio, Vue.js is the most progressive. Angular has more batteries included (just

like Django), but has a steep learning curve. React instead is the most liberal because it

does not impose any constraint on the developer. You pick whatever library you need.

Whether this is an advantage or not, I leave the opinion for you. What is important

to keep in mind is that the core UI library is just the starting point for a number of

dependencies to solve another set of problems that arise when writing medium to bigger

client-side applications. In particular, you will sooner or later need:

•	 A state management library

•	 A routing library

•	 A schema validation library

•	 A form validation library

Chapter 2 JavaScript Meets Django

25

Each UI library has its own orbit of satellite sub-libraries to handle the

aforementioned concerns. React leans on Redux or Mobx (and more recently also on

Recoil.js) for state management, and on React Router for routing. Vue.js uses Vuex

for state management, and Vue Router for routing. Angular has a bunch of different

approaches to state management, but NgRx is the most widespread. Ultimately, all these

libraries and frameworks can work well as external clients for Django, paired either as:

•	 Client-side applications fetching data from a Django REST/GraphQL

API

•	 Server-side rendered or static site generators with Django as a

content source

We explore both topics in more detail later in the book. In the next section, we take a

quick look at some alternatives to the traditional single-page approach.

�Lightweight JavaScript UI Libraries
Other than Angular, Vue, React, and Svelte, there is a growing number of lightweight

JavaScript mini-frameworks, born to ease the most mundane tasks on the frontend and

to provide just enough JavaScript to get going.

In this category we can mention the following tools:

•	 AlpineJS

•	 Hotwire

•	 Htmx

Hotwire is a set of tooling and techniques popularized by Ruby on Rails and its

creator, David Heinemeier Hansson. At the time of this writing, there is experimental

work called turbo-django aiming at porting these techniques into Django. Along the

same lines there is also a new Django framework called django-unicorn. All these tools

offer a less JavaScript-heavy approach to building interactive interfaces. They will be

worth a look once they start to gain traction in the wild.

Chapter 2 JavaScript Meets Django

26

�Universal JavaScript Applications
Node.js is an environment for running JavaScript code outside of browsers. This means

servers and CLI tools.

The majority of the tools we mentioned in this chapter are JavaScript-based, and

since they run on the command line, they need a JavaScript environment, which Node.

js provides. Now, if you pair this with frontend libraries that are capable of running on

any JavaScript environment, not only browsers (like React and Vue.js), you obtain a

particular breed of JavaScript tooling that is taking the scene by storm with a JavaScript-

centric approach to server-side rendering.

We already mentioned server-side rendering in Chapter 1, when talking about

MVC web frameworks. In contrast to traditional server-side rendering, where the

HTML and the data is generated by a server-side language like Ruby, Python, or Java,

in the JavaScript-centric approach to server-side rendering, everything is generated by

JavaScript on Node.js. What does this mean for the end user and for the developer? The

main difference between a client-side application based on JavaScript and a server-side

rendered app is that the latter generates the HTML before sending it to the user, or to the

search engine crawler. This approach has a number of advantages over pure client-side

applications:

•	 It improves SEO for content-heavy websites

•	 It improves performances, since the main rendering effort is pushed

to the server

For the developer instead, universal JavaScript applications are the holy grail of code

reuse since everything can be written in a single language, JavaScript. The reasoning

behind these tools and the motivations for using them are roughly the following:

•	 We already have a big client-side app and we want to improve its

performances, both for the end user and for crawlers

•	 We have a lot of common code between the frontend and the Node.js

backend, and we want to reuse it

However, as with any technology, universal JavaScript applications have their own

drawbacks. For a Django shop focused on Python and maybe a sprinkle of JavaScript

with React or Vue.js, maintaining a parallel architecture based on Node.js can be taxing.

These setups need a Node.js server in order to run, with all the maintenance burden and

Chapter 2 JavaScript Meets Django

27

complexity it entails. Platforms like Vercel and Netlifly ease the deployments of these

architectures, but there are still things to keep in mind. The most popular tools available

today for creating universal JavaScript applications are:

•	 Next.js for React

•	 Nuxt.js for Vue.js

•	 Angular Universal for Angular

There are probably a million more tools out there. In Chapter 7, we focus on Next.js.

�Static Site Generators
While the approach to server-side rendering offered by tools like Next.js and Nuxt.js

is indeed interesting, static site generation should be the first choice in all those cases

where search engine optimization is paramount and there is little to no JavaScript-driven

interaction on certain pages (think of a blog, for example).

The current scenario for static site generation with JavaScript includes:

•	 Gatsby

•	 Next.js for React

•	 Nuxt.js for Vue.js

•	 Scully for Angular

Next.js and Nuxt.js can work in two modes: server-side rendering and static site

generation. To source data from the backend, these tools offer interfaces for making plain

HTTP requests to a REST API, or alternatively GraphQL. Gatsby instead makes exclusive

use of GraphQL, and might not be the right tool for every team.

�Testing Tooling
The whole Chapter 8 is devoted to testing Django and JavaScript applications. In this

section, we briefly introduce the most popular testing tools for JavaScript. They fall into

the conventional categorizations of testing.

Chapter 2 JavaScript Meets Django

28

Unit testing:

•	 Jest

End-to-end testing:

•	 Cypress

•	 Puppeteer by Google

•	 Playwright by Microsoft

For unit testing and integration testing between multiple units, Jest is the most

popular tool to this date. It can test pure JavaScript code and React/Vue.js components

as well. For end-to-end testing and functional testing, Cypress is the most feature-

complete test runner, and plays well with Django too, with Puppeteer and Playwright

gaining traction. Truth be told, Jest and Cypress can be thought more as wrappers

around existing testing libraries: Jest builds on top of Jasmine, while Cypress builds on

top of Mocha, as they borrow a high number of methods from these libraries. However,

their popularity is sparked by the fluent testing API they provide, in contrast to more

traditional tools.

�Other Ancillary JavaScript Tools
I would be remiss not to mention ancillary JavaScript tools, so important for the modern

JavaScript developer.

In both the Python and JavaScript land, there are code linters. For JavaScript, ESLint

is the most widespread. Then we have code formatters like Prettier. At the intersection

between pure JavaScript code and design systems we find Storybook, a powerful tool

for building design systems. Storybook is used widely in the React and React Native

community, but compatible with the most popular frontend libraries like Vue and Svelte.

Together with testing tools, linters, formatters, and UI tools make a powerful arsenal for

every JavaScript and Django developer.

Chapter 2 JavaScript Meets Django

29

�Summary
This chapter explored the boundaries of Django and client-side applications. You

learned about:

•	 JavaScript and Django in production

•	 Module bundlers and code splitting

•	 How webpack integrates into Django

•	 JavaScript tooling as a whole

•	 Universal JavaScript applications

In the next chapter, we introduce the asynchronous Django landscape.

�Additional Resources
•	 The cost of JavaScript

•	 Setting up React and webpack within a Django project

Chapter 2 JavaScript Meets Django

https://v8.dev/blog/cost-of-javascript-2019
https://www.valentinog.com/blog/drf/#setting-up-react-and-webpack

31
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_3

CHAPTER 3

Modern Django and
the Django REST
Framework
This chapter covers:

•	 The Django REST framework and Django side by side

•	 Asynchronous Django

I guess all Django developers share a common story. They built a lot of stuff and tried

the mini-framework approach à la Flask, but in the end, they always returned to Django

simply because it is opinionated, and it offers all the tools for building full-stack web

applications with Python. The Django REST Framework is a Django package that follows

the same pragmatic approach. In this chapter, we compare the Django REST Framework

to Django, and we explore the asynchronous Django landscape.

�What Is the Django REST Framework?
The Django REST Framework (DRF for short) is a Django package for building Web APIs.

Despite the rapid spread of GraphQL and the emergence of asynchronous micro-

frameworks like Starlette and FastAPI, the DRF still powers thousands of web services.

The DRF integrates seamlessly with Django to complement its features for building REST

APIs. In particular it offers an array of ready-made components:

•	 Class-based REST views

•	 Viewsets

•	 Serializers

https://doi.org/10.1007/978-1-4842-7144-5_3#DOI

32

This chapter isn’t intended as a guide to the DRF for beginners, but it is worth

spending some words to go over the main building blocks of this package. In the next

sections, we explore these components, since they will be the Lego blocks for the first

part of our decoupled Django project.

�Class-Based Views in Django and the DRF
When building web applications, some common patterns for handling data insertion

and data listing repeat over and over.

Consider an HTML form for example. There are three distinct phases to take account

of:

•	 Displaying the form, either empty or with initial data

•	 Validating the user input and showing eventual errors

•	 Saving the data to the database

It would be foolish to copy-paste the same code again and again in our projects. For

this reason, Django offers a convenient abstraction around common patterns in web

development. These classes go under the name of class-based view, or CBV for short.

Some examples of CBV in Django are CreateView, ListView, DeleteView, UpdateView,

and DetailView. As you might have noticed, the naming of these classes goes hand

in hand with the CRUD pattern, so common in REST APIs and in traditional web

applications. In particular:

•	 CreateView and UpdateView for POST requests

•	 ListView and DetailView for GET requests

•	 DeleteView for DELETE requests

The Django REST Framework follows the same convention and offers a wide toolbox

of class-based views for REST API development:

•	 CreateAPIView for POST requests

•	 ListAPIView and RetrieveAPIView for GET requests

•	 DestroyAPIView for DELETE requests

•	 UpdateAPIView for PUT and PATCH requests

Chapter 3 Modern Django and the Django REST Framework

33

In addition, you can peruse a combination of CBVs for retrieve/delete

operations like RetrieveDestroyAPIView, or for retrieve/update/destroy like

RetrieveUpdateDestroyAPIView. You will use a lot of these CBVs in your decoupled

Django projects to speed up development of the most common tasks, although the DRF

offers a more powerful layer on top of CBVs, called viewsets.

Tip  For a complete list of class-based views in Django, see ccbv.co.uk. For the
Django REST Framework, see cdrf.co.

�CRUD Viewsets in DRF
In Chapter 1, we reviewed the concept of resources as one of the main building blocks of

REST.

In the MVC Framework, operations on resources are handled by a controller that

exposes methods for CRUD verbs. We also clarified that Django is an MVT Framework,

rather than MVC. In Django and the DRF, we use class-based views to expose common

CRUD operations in terms of GET, POST, PUT, and so on. Nevertheless, the Django REST

Framework offers a clever abstraction over class-based views, called viewsets, which

make the DRF look more “resourceful” than ever. Listing 3-1 shows a viewset, specifically

a ModelViewSet.

Listing 3-1.  A ModelViewSet in DRF

from rest_framework import viewsets

from .models import Blog, BlogSerializer

class BlogViewSet(viewsets.ModelViewSet):

 queryset = Blog.objects.all()

 serializer_class = BlogSerializer

Such a viewset gives you all the methods for handling common CRUD operations for

free. Table 3-1 summarizes the relationship between viewset methods, HTTP methods,

and CRUD operations.

Chapter 3 Modern Django and the Django REST Framework

34

Once you have a viewset, it’s only a matter of wiring up the class with an

urlpatterns. Listing 3-2 shows the urls.py for the previous viewset.

Listing 3-2.  Viewset and Urlpatterns in Django REST

from .views import BlogViewSet

from rest_framework.routers import DefaultRouter

router = DefaultRouter()

router.register(r"blog", BlogViewSet, basename="blog")

urlpatterns = router.urls

As you can see, with a minimal amount of code you have the complete collection of

CRUD operations, with the corresponding URLs.

�Models, Forms, and Serializers
The ability to create pages and forms with little or no code at all is what makes Django

shine.

Thanks to model forms, for example, it takes a couple of lines of code to create a

form starting from a Django model, complete with validation and error handling, ready

to be included in a view. When you are in a hurry, you can even assemble a CreateView,

which takes exactly three lines of code (at least) to produce the HTML form for a model,

attached to the corresponding template. If Django model forms are the bridge between

the end user and the database, serializers in the Django REST Framework are the bridge

Table 3-1.  Relationship Between Viewset Methods, HTTP Methods, and CRUD

Operations

Viewset Methods HTTP Method CRUD Operation

create() POST Create resource

list() / retrieve() GET Retrieve resource(s)

update() PUT Update resource

destroy() DELETE Delete resource

update() PATCH Partial update resource

Chapter 3 Modern Django and the Django REST Framework

35

between the end user, our REST API, and Django models. Serializers are in charge of

serialization and deserialization of Python objects, and they can be thought of as model

forms for JSON. Consider the model shown in Listing 3-3.

Listing 3-3.  A Django Model

class Quote(models.Model):

 �client = models.ForeignKey(to=settings.AUTH_USER_MODEL,

on_delete=models.CASCADE)

 proposal_text = models.TextField(blank=True)

From this model, we can make a DRF model serializer, shown in Listing 3-4.

Listing 3-4.  A DRF Serializer

class QuoteSerializer(serializers.ModelSerializer):

 class Meta:

 model = Quote

 fields = ["client", "proposal_text"]

When we hit a DRF endpoint, the serializer converts the underlying model instances

to JSON before any output is shown to the user. Vice versa, when we make a POST request

against a DRF view, the serializer converts our JSON to the corresponding Python

object, not before validating the input. Serializers can also express model relationships.

In Listing 3-4, Quote is connected to the custom user model through a many-to-one

relationship. In our serializer we can expose this relationship as an hyperlink, as shown

in Listing 3-5 (remember hypermedia APIs?).

Listing 3-5.  A DRF Serializer

class QuoteSerializer(serializers.ModelSerializer):

 client = serializers.HyperlinkedRelatedField(

 read_only=True, view_name="users-detail"

)

 class Meta:

 model = Quote

 fields = ["client", "proposal_text"]

Chapter 3 Modern Django and the Django REST Framework

36

This will produce the JSON output shown in Listing 3-6.

Listing 3-6.  A JSON Response with Relationships

[

 {

 "client": "https://api.example/api/users/1",

 "proposal_text": "Django quotation system"

 },

 {

 "client": "https://api.example/api/users/2",

 "proposal_text": "Django school management system"

 }

]

In Chapter 6, we use serializers to decouple our Django project. Having outlined

the building blocks of the DRF, let’s now explore the wonderful world of asynchronous

Django.

�From WSGI to ASGI
WSGI is the lingua franca of web servers to Python communication, that is, a protocol

that enables the back and forth between web servers such as Gunicorn, and the

underlying Python application.

As anticipated in Chapter 2, Django needs a web server to run efficiently in

production. Usually, a reverse proxy such as NGINX acts as the main entry point for

the end user. A Python WSGI server listens for requests behind NGINX and acts as a

bridge between the HTTP request and the Django application. Everything happens

synchronously in WSGI, and there was no way to rewrite the protocol without

introducing breaking changes. That led the community (for this tremendous work

we must thank Andrew Godwin) to write a new protocol, called ASGI, for running

asynchronous Python applications under ASGI-capable web servers. To run Django

asynchronously, and we are going to see what that means in the next section, we need

an asynchronous-capable server. You can choose Daphne, Hypercorn, or Uvicorn. In our

example, we will use Uvicorn.

Chapter 3 Modern Django and the Django REST Framework

37

�Getting Started with Asynchronous Django
Asynchronous code is all about non-blocking execution. This is the magic behind

platforms like Node.js, which predated the realm of high throughput services for years.

The asynchronous Python landscape instead has always been fragmented, with

many PEPs and competing implementations before the arrival of async/await in

Python 3.5 (2015). Asynchronicity in Django was a dream, until Django 3.0, when

seminal support for the aforementioned ASGI found its way into the core. Asynchronous

views (Django 3.1) are one of the most exciting additions to Django in recent years. To

understand what problem asynchronicity solves in Django, and in Python in general,

consider a simple Django view. When the user reaches this view, we fetch a list of links

from an external service, as shown in Listing 3-7.

Listing 3-7.  A Synchronous View Doing Network Calls

from django.http import JsonResponse

import httpx

client = httpx.Client(base_url="https://api.valentinog.com/demo")

def list_links(_request):

 links = client.get("/sleep/").json()

 json_response = {"links": links}

 return JsonResponse(data=json_response)

This should immediately raise a red flag. It can run fast, really fast, or take forever to

complete, leaving the browser hanging. Due to the single-threaded nature of the Python

interpreter, our code runs in sequential steps. In our view, we can’t return the response

to the user until the API call completes. In fact my link, https://api.valentinog.com/

demo/sleep/, is configured to sleep for 10 seconds before returning the result. In other

words, our view is blocking. Here httpx, the Python HTTP client I use to make requests,

is configured with a safe timeout and will raise an exception after a few seconds, but not

every library has this sort of security in place.

Any IO-bound operation can potentially starve resources or block the whole

execution. Traditionally, to overcome this problem in Django, we would use a task

queue, a component that runs in the background, picks up tasks to execute, and returns

the result later. The most popular task queues for Django are Celery and Django

Q. Task queues are highly suggested for IO-bound operations like sending emails,

Chapter 3 Modern Django and the Django REST Framework

https://api.valentinog.com/demo/sleep/
https://api.valentinog.com/demo/sleep/

38

running scheduled jobs, HTTP requests, or for CPU-bound operations that need to

run on multiple cores. Asynchronous views in Django don’t completely replace task

queues, especially for CPU-bound operations. Django Q for example uses Python

multiprocessing. For non-critical IO-bound operations instead, like HTTP calls or

sending emails, Django asynchronous views are great. In the most simple case, you

can send out an email or call an external API without incurring the risk of blocking the

user interface. So what’s in an asynchronous Django view? Let’s rewrite the previous

example with an asynchronous view in a way that the httpx client retrieves data in the

background; see Listing 3-8.

Listing 3-8.  An Asynchronous View Doing Network Calls, This Time Safely

from django.http import HttpResponse

import httpx

import asyncio

async def get_links():

 base_url = "https://api.valentinog.com/demo"

 client = httpx.AsyncClient(base_url=base_url, timeout=15)

 response = await client.get("/sleep")

 json_response = response.json()

 # Do something with the response or with the json

 await client.aclose()

async def list_links(_request):

 asyncio.create_task(get_links())

 response = "<p>Fetching links in background</p>"

 return HttpResponse(response)

If you never worked with asynchronous Python and Django, there are a few new

concepts worth clarifying in this code. First of all, we import asyncio, the bridge between

us and the asynchronous Python world. We then declare a first asynchronous function

with async def. In this first function, get_links(), we use the asynchronous httpx

client with a timeout of 15 seconds. Since we are going to run this call in the background,

we can safely increase the timeout. Next up, we use await in front of client.get().

Finally, we close the client with client.aclose(). To avoid leaving resources open, you

can also use the asynchronous client with an asynchronous context manager. In this

case, we can refactor to async with, as shown in Listing 3-9.

Chapter 3 Modern Django and the Django REST Framework

39

Listing 3-9.  Using an Asynchronous Context Manager

async def get_links():

 base_url = "https://api.valentinog.com/demo"

 async with httpx.AsyncClient(base_url=base_url, timeout=15) as client:

 response = await client.get("/sleep")

 json_response = response.json()

 # Do something with the json ...

Tip A n asynchronous context manager is one that implements __aenter__ and
__aexit__ instead of __enter__ and __exit__.

In the second asynchronous function list_links(), our Django view, we use

asyncio.create_task() to run get_links() in the background. This is the real news.

async def in a Django view is the most notable change from a developer’s perspective.

For users instead, the most evident benefit is that they don’t have to wait to see the

HTML if the execution takes longer than expected. In the scenario we imagined

previously, for example, we can send the results to the user later with an email message.

This is one of the most compelling use cases for asynchronous views in Django. But it

doesn’t stop here. To recap, things you can do now that asynchronous Django is a thing:

•	 Efficiently execute multiple HTTP requests in parallel in a view

•	 Schedule long-running tasks

•	 Interact safely with external systems

There are still things missing before Django and the DRF become 100%

asynchronous—the ORM and the Django REST views are not asynchronous—but we will

use asynchronous Django capabilities here and there in our decoupled project to practice.

�Competing Asynchronous Frameworks and the DRF
At the time of writing, the Django REST Framework has no support for asynchronous

views.

In light of this, wouldn’t it be better to use something like FastAPI or Starlette for

building asynchronous web services? Starlette is an ASGI framework built by Tom

Christie, the DRF creator. FastAPI instead builds on top of Starlette and offers a stellar

Chapter 3 Modern Django and the Django REST Framework

40

developer tooling for building asynchronous Web APIs. Both are excellent choices for

greenfield projects, and luckily you don’t have to choose, because FastAPI can run within

Django itself, thanks to experimental projects like django-ninja, while we wait for

asynchronous DRF.

�Summary
This chapter reviewed the fundamentals of the Django REST Framework and covered

how to run a simple asynchronous Django view. You learned:

•	 What are the DRF class-based views, viewsets, and serializers

•	 How to create and asynchronous Django view

•	 How to run Django under Uvicorn

In the next chapter, we analyze in detail the patterns for decoupling Django, while in

Chapter 6, we finally get hands on with Django and JavaScript frontends.

�Additional Resource
•	 Asynchronous Django, a playlist

Chapter 3 Modern Django and the Django REST Framework

https://www.youtube.com/playlist?list=PLfNd7po_IV0EjRl6UMd1oVGBMqg4Jp4UK

41
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_4

CHAPTER 4

Advantages and
Disadvantages of
Decoupled Architectures
In this chapter, we outline various approaches for decoupling a Django project. In

particular, we cover:

•	 Hybrid architectures

•	 Fully decoupled architectures based on REST and GraphQL

•	 Advantages and disadvantages of both styles

By the end of the chapter you should be able to discern and apply with success one

or more decoupling styles to your next Django project.

�Pseudo-Decoupled Django
Pseudo-decoupled, or hybrid decoupling, is an approach in which a static frontend is

augmented with a sprinkle of JavaScript; just enough to make things interactive and

playful for the end user.

In the next two sections, we go over the perks and drawbacks of a pseudo-decoupled

setup by examining two different approaches: without REST and with REST.

�Pseudo-Decoupled Without REST
Depending on how long you have been programming, you will begin to notice that there

is a category of patterns recurring over and over when building web applications: data

fetching and form handling.

https://doi.org/10.1007/978-1-4842-7144-5_4#DOI

42

For example, you might have a page for inserting new data in your Django

application. How you handle data insertion is up to the user requirements, but basically

you have two choices:

•	 Handle the form exclusively with Django

•	 Handle the form with JavaScript

Django forms and model forms are great with their ability to generate the fields for

you, but most of the time we want to intercept the classic GET/POST/Redirect pattern of

form handling, in particular the submit event of forms. To do so, we introduce a little

JavaScript into the Django templates. Listing 4-1 shows such an example.

Listing 4-1.  JavaScript Logic for Form Handling

{% block script %}

 <script>

 const form = document.getElementById("reply-create");

 form.addEventListener('submit', function (event) {

 event.preventDefault();

 const formData = new FormData(this);

 fetch("{% url "support:reply-create" %}", {

 method: 'POST',

 body: formData

 }).then(response => {

 if (!response.ok) throw Error(response.statusText);

 return response;

 }).then(() => {

 location.reload();

 window.scrollTo({top:0});

 });

 });

{% endblock %}

In this example, we tie JavaScript to the form so that when the user submits the data,

the default event for the form is intercepted and stopped. Next up we build a FormData

object, which is sent to a Django CreateView. Notice also how we can use Django’s url

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

43

template tag to build the URL for Fetch. For this example to work, the form must have a

CSRF token included, as shown in Listing 4-2.

Listing 4-2.  Django’s CSRF Token Template Tag

<form id="reply-create">

 {% csrf_token %}

 <!-- fields here -->

</form>

If the token is outside the form, or for any other POST request not coming directly

from the form, the CSRF token must be included in the XHR request header. The example

outlined here is just one of the many use cases for JavaScript into a Django template. As

touched briefly in Chapter 2, we are seeing a Cambrian explosion of micro-frameworks

for adding just enough interactivity to Django templates. There is not enough space to

cover every possible example in this book. Here we focus on the broader architecture

to examine advantages and disadvantages of each approach. Figure 4-1 shows a

representation of pseudo-decoupled Django without REST.

Keeping in mind what Django has to offer in terms of development speed, in the case

of a pseudo-decoupled, or hybrid, approach, what do we gain and what do we lose?

REQUEST

RESPONSE

DJANGO APP

TEMPLATE(S)

JAVASCRIPT

DJANGO APP

TEMPLATE(S)

JAVASCRIPT

DJANGO

Figure 4-1.  A pseudo-decoupled Django project can have one or more apps, each
with its own templates. JavaScript is blended into templates and talks to regular
Django views

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

44

•	 Authentication and cookies: Since we serve JavaScript from

within Django templates we don’t need to worry about complex

authentication methods. We can use the built-in session auth. Also,

in a pseudo-decoupled setup, cookies are free to travel over each

request on the same domain.

•	 Forms: Django has an amazing form system that saves tons of time

during development. In a pseudo-decoupled setup, we can still use

Django forms to build up the HTML structure for data insertion, with

just enough JavaScript to make them interactive.

•	 What JS library? In a pseudo-decoupled setup, we can use any

lightweight frontend library that doesn’t require a build pipeline,

such as Vue.js, or even better, vanilla JavaScript. If we know

beforehand what user agent we’re going to target, we can serve

modern JavaScript syntax without a transpilation step.

•	 Routing: Django is in charge of routing and URL building. No need to

worry about JavaScript routing libraries or weird issues with the back

button of the browser.

•	 Search engine optimization: For content-heavy websites, a pseudo-

decoupled setup is often the safest choice, as long as we don’t

generate critical contents dynamically with JavaScript.

•	 Developer productivity/burden: In a hybrid setup, the amount of

JavaScript is hopefully so low that we don’t need complex build

tooling. Everything is still Django-centric, and the cognitive load for

the developer is low.

•	 Testing: Testing JavaScript interactions in the context of a Django

application has been always tricky. Selenium for Python doesn’t

support automatic waiting. There are a number of tools, mostly

wrappers around Selenium, like Splinter, that have this capability.

However, testing a pseudo-decoupled Django frontend without a

JavaScript-capable test runner can be still cumbersome. Tools like

Cypress, which we cover in Chapter 9, play really well with Django to

ease the burden of testing JavaScript-enriched interfaces.

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

45

�Pseudo-Decoupled with REST
Not every application must be architected as a single-page application, and since the

beginning of this book we stressed this point.

Over-engineered applications are the root of all evil, to play along the lines of Donald

Knuth. However, there are hybrid situations where the UI requires a lot of JavaScript

interactivity, more than a simple form handling, but we still don’t want to leave Django’s

umbrella. In these configurations you will find it reasonable to introduce JavaScript

libraries like Vue.js or React into a Django project. While Vue.js is highly progressive, it

doesn’t want to take control of all the page. React forces the developer to do everything

in React. In these situations the Django frontend, made out of templates and augmented

with Forms or Model Forms, can lose importance in favor of a pseudo-decoupled setup,

whereby:

•	 The frontend of one or more Django apps is built entirely with

JavaScript

•	 The backend exposes a REST API

The difference between such a setup and an architecture where the frontend is on

a different domain/origin from the REST API is that in a pseudo-decoupled setup, we

serve the SPA frontend and the REST API from within the same Django project. This

has a number of positive side effects. Why introduce REST in such a setup? A Django

CreateView and a Model work well up to a certain point, after which we don’t want

to reinvent the wheel, like JSON serialization for models. Django REST paired with a

modern frontend library is a solid ground for robust decoupled projects. Figure 4-2

shows a representation of pseudo-decoupled Django with REST.

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

46

In the next chapter, we see a practical example of a pseudo-decoupled setup with

the Django REST Framework and Vue.js. Here, we cover advantages and disadvantages

of a pseudo-decoupled configuration, as we did in the previous section for the REST-less

setup.

•	 Authentication and cookies: Session-based authentication is the

default choice for a pseudo-decoupled project, even with REST. Since

we serve the single-page application from within the same Django

project, it’s only a matter of authenticating the user through a regular

Django view and grabbing the appropriate cookies before making

POST requests from JavaScript.

•	 Forms: If we decide to build one or more Django applications as

single-page applications, we lose the ability to use Django Forms and

Model Forms. This begins to lead to code duplication and more work

for the team, as good ’ol Django forms and their data validation layers

must be reimplemented with the JavaScript library of choice.

•	 What JS library? In a pseudo-decoupled setup with REST, we can use

any JavaScript library or framework. This requires some extra steps to

include the bundle in the Django static system, but it is possible with

any library.

REQUEST

RESPONSE

DJANGO APP

DRF REST API

SPA

DJANGO

DJANGO APP

DRF REST API

SPA

Figure 4-2.  A pseudo-decoupled Django project with REST can have one or more
apps, each with its own REST API. JavaScript is served as a single-page application
inside the Django project and talks to Django REST views

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

47

•	 Routing: Routing for single-page apps served from within a Django

project is not trivial to implement. Django can still serve the main

path for each single app, something like https://decoupled-

django.com/billing/ for example, but then each app must handle

its internal routing. Hash-based routing is the simplest form of

routing, and the easiest to implement, compared to history-based

routing.

•	 Search engine optimization: Single-page applications (SPAs) are ill-

suited for content-heavy websites. This is one of the most important

aspects to take into account before integrating an SPA into Django.

•	 Developer productivity/burden: Any modern JavaScript library comes

with its own set of challenges and tooling. In a pseudo-decoupled

setup with REST and one or more single-page apps, the overhead for

Python developers can increase exponentially.

•	 Testing: In a pseudo-decoupled setup with a low amount of JavaScript

,it could make sense to use tools like Selenium or Splinter, taking

into account the need to implement automatic waiting for JavaScript

interactions. Instead, in a pseudo-decoupled configuration based on

REST and a SPA, Python-centric tools fall short. To test JavaScript-

heavy interfaces and JavaScript UI components such as those

implemented with Vue.js or React, tools like Cypress for functional

testing and Jest for unit testing are better choices.

�Fully-Decoupled Django
Opposed to a pseudo-decoupled setup, a fully-decoupled architecture, also called

headless, is an approach in which the frontend and the backend are completely

separated.

On the frontend we can find JavaScript single-page applications living on a different

domain/origin from the backend, which now serves as a source of data with REST or

GraphQL. In the next two sections, we go over both approaches.

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

https://decoupled-django.com/billing/
https://decoupled-django.com/billing/

48

�Fully-Decoupled with REST
Fully-decoupled Django projects with REST are by far one of the most widespread

setups. Thanks to its high flexibility, the REST API and the frontend may be deployed

on different domains or origins. The Django REST Framework is the de-facto library for

building REST APIs in Django, while JavaScript leads the frontend with React, Vue.js, and

Angular. In these configurations, the architecture is usually arranged as follows:

•	 The frontend of one or more Django apps lives outside Django as a

single-page JavaScript app

•	 One or more Django apps expose a REST API

A Django project configured fully-decoupled with a REST API can serve wonderfully as:

•	 A REST API for a SPA, a mobile app, or a Progressive Web App

•	 A content repository for a static site generation tool (SSG) or for a

server-side rendered JavaScript project (SSR)

Figure 4-3 shows a representation of fully-decoupled Django project with REST.

REQUEST

RESPONSE

SPA

REQUEST

RESPONSE

MOBILE APP

DJANGO

DJANGO APP

DRF REST
API

DJANGO APP

DRF REST
API

Figure 4-3.  A fully-decoupled Django project with REST can have one or more
apps, each with its own REST API. JavaScript lives outside the Django project as a
single-page application and talks to Django REST views through JSON

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

49

It’s important to note that not every Django app inside a project must expose a REST

API: one could choose to decouple one or more facets of the application, while keeping

the rest under the classic MVT arrangement. The separation of concerns prescribed by

REST opens the road to flexible, but also more complex, setups. What can we expect if

we decouple a Django project with REST?

•	 Authentication and cookies: Authentication for fully-decoupled projects

is not trivial to implement. Session-based authentication can work with

REST and single-page apps, but it breaks the stateless constraint. There

are a number of different approaches to circumvent the limitations

of session-based authentication for REST APIs, but in later years the

community seemed oriented to embrace stateless authentication

mechanisms, such as token-based authentication with JWT (JSON web

tokens). However, JWT is not so welcomed in the Django community

due to its security flaws and potential implementation pitfalls.

•	 Forms: Leaving Django templates and Forms means we lose the

ability to build forms easily. In a fully-decoupled setup, the form layer

is usually built entirely with JavaScript. Data validation often gets

duplicated in the frontend, which now has to sanitize and validate

the user input before sending requests to the backend.

•	 What JS library? In a fully-decoupled setup with REST, we can

use any JavaScript library or framework. There isn’t any particular

constraint for pairing the Django REST backend with a decoupled

frontend.

•	 Routing: In a fully-decoupled setup, Django does not handle routing

anymore. Everything weighs on the client’s shoulder. For single-page

applications, one can choose to implement hash-based or history

routing.

•	 Search engine optimization: Single-page applications don’t play

well with SEO. However, with the emergence of JavaScript static-site

generators such as Gatsby, Next.js, and Nuxt.js, JavaScript developers

can use the latest shiny tools to generate static pages from a headless

Django project without the risk of harming SEO.

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

50

•	 Developer productivity/burden: In a fully-decoupled setup with REST

and one or more single-page apps, the work for Python developers

increases by orders of magnitudes. For this reason, most Django

and Python web agencies have a dedicated frontend team that deals

exclusively with JavaScript and its related tooling.

•	 Testing: In a fully-decoupled project, the frontend and the backend

are tested separately. APITestCase and APISimpleTestCase help in

testing Django REST APIs, while on the frontend we see again Jest

and Cypress for testing the UI.

�Fully-Decoupled with GraphQL
As with fully-decoupled Django with REST, a fully-decoupled Django project with

GraphQL offers high flexibility, but also more technical challenges.

REST is a battle-tested technology. GraphQL on the other hand is pretty recent,

but seems to offer some apparent advantages over REST. However, as with any new

technology, developers and CTOs must assess carefully advantages and drawbacks

before integrating new tools, and potentially new challenges, in production projects.

Figure 4-4 shows a Django project decoupled with a GraphQL and a REST API.

REQUEST

RESPONSE

SPA

REQUEST

RESPONSE

MOBILE APP

DJANGO

DJANGO APP

GrapqhQL
API

DJANGO APP

DRF REST
API

Figure 4-4.  A fully-decoupled Django project can expose REST and GraphQL
APIs. It’s not unusual to have both technologies in the same project

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

51

In Figure 4-4, we imagine a fully-decoupled Django project that exposes two different

apps: one with REST and another with GraphQL. In fact, GraphQL can coexist with REST

to enable progressive refactorings from a legacy REST API to a GraphQL endpoint. This

is useful for assessing GraphQL before switching from REST or for exposing a GraphQL

API for tools like Gatsby. What is the price to pay for embracing GraphQL? Let’s see.

•	 Authentication and cookies: Authentication for GraphQL in

fully-decoupled setups is mostly handled with token-based

authentication. On the backend, GraphQL needs to implement mutations

for handling login, logout, registration, and all the related corner cases.

•	 What JS library? In a fully-decoupled setup with GraphQL, we can use

any JavaScript library or framework. There isn’t any particular constraint

for pairing the Django GraphQL backend with a decoupled frontend.

GraphQL queries can be done even with Fetch or XMLHttpRequest.

•	 Search engine optimization: GraphQL in the frontend is mostly used

with client-side libraries like React. This means we cannot ship

client-side generated pages as they are, or we would risk SEO damages.

Tools like Gatsby, Next.js, and Nuxt.js can operate in SSG (static site

generation) mode to generate static pages from a GraphQL API.

•	 Developer productivity/burden: GraphQL is a novel technology

and especially in the frontend there are literally a dozen ways to

implement the data fetching layer. GraphQL seems to speed up

developer productivity, but at the same time it introduces new things

to learn and new patterns to take into account.

Since GraphQL is a data fetching layer, considerations for forms, routing, and testing

do not differ from those of a decoupled REST project.

�Summary
In this chapter we outlined various approaches to decoupling a Django project:

•	 Pseudo-decoupled with and without REST

•	 Fully decoupled with REST or GraphQL

Hopefully, you are now ready to make an informed choice for your next Django project.

In the next chapter, we prepare our Django project before moving to JavaScript and Vue.js.

Chapter 4 Advantages and Disadvantages of Decoupled Architectures

53
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_5

CHAPTER 5

Setting Up a Django Project
This chapter covers:

•	 Setting up the Django project

In the following sections, we begin to lay down the structure of our Django project.

This project will accompany us for the rest of the book. It will be expanded with a

REST API in Chapter 6, and later with a GraphQL API.

�Setting Up the Project
To start off, create a new folder for the project and move into it:

mkdir decoupled-dj && cd $_

Note  It is a good idea to keep the project under source control with Git. You are
encouraged to initialize a repo with git init as soon as you create the project
folder.

Once inside the folder, create a new Python virtual environment:

python3.9 -m venv venv

For the virtual environment you can use any Python version above 3; the higher the

version, the better. When the environment is ready, activate it:

source venv/bin/activate

https://doi.org/10.1007/978-1-4842-7144-5_5#DOI

54

To confirm that the virtual environment is active, look for (venv) in your command

prompt. If everything is in place, install Django:

pip install django

Note  It is best to install a version of Django greater than 3.1, which has support
for asynchronous views.

Next up, create your Django project:

django-admin startproject decoupled_dj .

A note on the project folder structure:

•	 decoupled-dj is the repo root

•	 decoupled_dj is the actual Django project

•	 Django apps live in decoupled-dj

When you are ready, create two Django apps. The first app is named billing:

python manage.py startapp billing

The second app instead is a blog:

python manage.py startapp blog

A brief explanation of these apps. billing will be a Django application exposing

a REST API for creating client invoices. blog will expose a REST API first, and then a

GraphQL API. Now check that you have everything in place inside the project root. Run

ls -1, and you should see the following output:

blog

billing

decoupled_dj

manage.py

venv

In the next section, we continue the project customization with the introduction of a

custom Django user.

Chapter 5 Setting Up a Django Project

55

�A Custom User
Although not strictly required for our project, a custom Django user can save you in the

long run if you decide to put your project in production. Let’s create one. First off, create

a new app:

python manage.py startapp user

Open users/models.py and create the custom user, as shown in Listing 5-1.

Listing 5-1.  A Custom Django User

from django.contrib.auth.models import AbstractUser

from django.db.models import CharField

class User(AbstractUser):

 name = CharField(blank=True, max_length=100)

 def __str__(self):

 return self.email

We keep the custom user lean and simple with just one additional field to allow

further customizations in the future. The next step would be adding AUTH_USER_MODEL to

our settings file, but before doing so we need to split our settings by environment.

Tip  In the book entitled Practical Django 2 and Channels 2 by Federico Marani
(the section entitled “The User Model” in Chapter 4), you’ll find another extensive
example of a custom user in Django.

Chapter 5 Setting Up a Django Project

56

�Interlude: Choosing the Right Database
This step has inherently nothing to do with our decoupled Django project, but using the

right database is one of the most important things you can do, in any web framework.

Throughout the book I will use Postgres as the database of choice. If you want to do the

same, here’s how to get Postgres on your machine:

•	 Postgres.app for MacOS

•	 Postgres under Docker

•	 Install Postgres directly on your system through a package manager

If instead you want to use SQLite, look for instructions in the next section.

�Splitting the Settings File
Particularly useful when deploying in production, split settings are a way to partition

Django settings depending on the environment. In a typical project, you may have:

•	 The base environment, common for all scenarios

•	 The development environment, with settings for development

•	 The test environment, with settings that apply only to testing

•	 The staging environment

•	 The production environment

The theory is that depending on the environment, Django loads its settings from a

.env file. This approach is known as the Twelve-Factor app, first popularized by Heroku

in 2011. There are many libraries for Twelve-Factor in Django. Some developers prefer

to use os.environ to avoid additional dependencies altogether. My favorite library is

django-environ. For our project we set up three environments: base, development, and

later production. Let’s install django-environ and psycopg2:

pip install django-environ pyscopg2-binary

(psycopg2 is required only if you use Postgres.) Next up, we create a new Python

package named settings in decoupled_dj. Once the folder is in place, create another

file for the base environment in decoupled_dj/settings/base.py. In this file, we import

Chapter 5 Setting Up a Django Project

57

django-environ, and we place everything Django needs to run, regardless of the specific

environment. Among these settings are:

•	 SECRET_KEY

•	 DEBUG

•	 INSTALLED_APPS

•	 MIDDLEWARE

•	 AUTH_USER_MODEL

Remember that in the previous section we configured a custom Django user. In the

base settings we need to include the custom user app in INSTALLED_APPS, and most

important, configure AUTH_USER_MODEL. Our base settings file should look like Listing 5-2.

Listing 5-2.  Base Settings for Our Project

import environ

from pathlib import Path

BASE_DIR = Path(__file__).resolve().parent.parent

env = environ.Env()

environ.Env.read_env()

SECRET_KEY = env("SECRET_KEY")

DEBUG = env.bool("DEBUG", False)

INSTALLED_APPS = [

 "django.contrib.admin",

 "django.contrib.auth",

 "django.contrib.contenttypes",

 "django.contrib.sessions",

 "django.contrib.messages",

 "django.contrib.staticfiles",

 "users.apps.UsersConfig",

]

MIDDLEWARE = [# OMITTED FOR BREVITY]

ROOT_URLCONF = "decoupled_dj.urls"

TEMPLATES = [# OMITTED FOR BREVITY]

WSGI_APPLICATION = "decoupled_dj.wsgi.application

Chapter 5 Setting Up a Django Project

58

DATABASES = {"default": env.db()

AUTH_PASSWORD_VALIDATORS = [# OMITTED FOR BREVITY]

LANGUAGE_CODE = "en-GB"

TIME_ZONE = "UTC"

USE_I18N = True

USE_L10N = True

USE_TZ = Tru

STATIC_URL = env("STATIC_URL")

AUTH_USER_MODEL = "users.User"

Note  I have omitted for brevity the complete code for the following configurations:
MIDDLEWARE, TEMPLATES, and AUTH_PASSWORD_VALIDATORS. These should
have the default values that come from stock Django.

Next up we create an .env file in the decoupled_dj/settings folder. This file will

have different values depending on the environment. For development we use the values

in Listing 5-3.

Listing 5-3.  Environment File for Development

DEBUG=yes

SECRET_KEY=!changethis!

DATABASE_URL=psql://decoupleddjango:localpassword@127.0.0.1/decoupleddjango

STATIC_URL=/static/

If you want to use SQLite in place of Postgres, change DATABASE_URL to:

DATABASE_URL=sqlite:/decoupleddjango.sqlite3

To complete the setup, create a new file called decoupled_dj/settings/

development.py and import everything from the base settings. In addition, we also

customize the configuration. Here we are going to enable django-extensions, a handy

library for Django in development (Listing 5-4).

Chapter 5 Setting Up a Django Project

59

Listing 5-4.  decoupled_dj/settings/development.py – The Settings File for

Development

from .base import * # noqa

INSTALLED_APPS = INSTALLED_APPS + ["django_extensions"]

Let’s also install the library:

pip install django-extensions

Let’s not forget to export the DJANGO_SETTINGS_MODULE environment variable:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.development

Now you can make the migrations:

python manage.py makemigrations

Finally, you can apply them to the database:

python manage.py migrate

In a moment, we will test our setup.

�Bonus: Running Django Under ASGI
To run Django asynchronously, we need an ASGI server. In production, you can use

Uvicorn with Gunicorn. In development, you might want to use Uvicorn standalone.

Install it:

pip install uvicorn

Again, don’t forget to export the DJANGO_SETTINGS_MODULE environment variable if

you haven’t already done so:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.development

Next up, run the server with the following command:

uvicorn decoupled_dj.asgi:application

If everything goes well, you should see the following output:

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

Chapter 5 Setting Up a Django Project

60

If you click on the link, you should see the familiar Django rocket! One more thing

before moving forward: we need to split the requirements file.

�Splitting the Requirements File
As we have done with the settings file, it is good practice to split the requirements for our

Django applications. We will work in development for most of the next chapters, and for

now we can split the requirements in two files: base and development. Later, we will also

add dependencies for testing and production. Create a new folder called requirements,

and place the base.txt and development.txt files into it. In the base file, we place the

most essential dependencies for our project:

•	 Django

•	 django-environ for working with .env files

•	 pyscopg2-binary for connecting to Postgres (not required if you

decided to use SQLite)

•	 Uvicorn for running Django under ASGI

Your requirements/base.txt file should look like the following:

Django==3.1.3

django-environ==0.4.5

psycopg2-binary==2.8.6

uvicorn==0.12.2

Your requirements/development.txt file instead should look like the following:

-r ./base.txt

django-extensions==3.0.9

Note  Your versions of these packages will most likely be different from mine by
the time you read this book.

From now on, to install the dependencies of your project, you will run the following

command, where the requirements file will vary depending on the environment you are in:

pip install -r requirements/development.txt

Chapter 5 Setting Up a Django Project

61

Note  It is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_05_setting_up_project.

�Summary
This chapter prepared the Django project and explained how to run a Django with an

asynchronous ASGI server. You learned:

•	 How to split settings and requirements

•	 How to run Django under Uvicorn

In the next chapter, we finally get hands on with Django and JavaScript frontends.

Chapter 5 Setting Up a Django Project

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_05_setting_up_project
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_05_setting_up_project

63
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_6

CHAPTER 6

Decoupled Django
with the Django REST
Framework
This chapter covers:

•	 The Django REST Framework with Vue.js

•	 Single-page applications in Django templates

•	 Nested DRF serializers

In this chapter, you learn how to use the Django REST Framework to expose a REST

API in your Django project, and how to serve a single-page application within Django.

�Building the Billing App
In the previous chapter, we created a billing app in the Django project. If you haven’t

done this yet, here’s a quick recap. First off, configure DJANGO_SETTINGS_MODULE:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.development

Then, run the startapp command to create the app:

python manage.py startapp billing

If you prefer more flexibility but also more typing, you can pass the settings file

directly to manage.py:

python manage.py command_name --settings=decoupled_dj.settings.development

https://doi.org/10.1007/978-1-4842-7144-5_6#DOI

64

Here, command_name is the name of the command you want to run. You can also

make a shell function out of this command to avoid typing it again and again.

Note  The rest of this chapter assumes you are in the repo root decoupled-dj,
with the Python virtual environment active.

�Building the Models
For this app we need a couple of Django models: Invoice for the actual invoice, and

ItemLine, which represents a single row in the invoice. Let’s outline the relationships

between these models:

•	 Each Invoice can have one or many ItemLines

•	 An ItemLine belongs to exactly one Invoice

This is a many-to-one (or one-to-many) relationship, which means that ItemLine

will have a foreign key to Invoice (if you need a refresher on this topic, check out the

resources section at the end of the chapter). In addition, each Invoice is associated with

a User (the custom Django user we built in Chapter 3). This means:

•	 A User can have many Invoices

•	 Each Invoice belongs to one User

To help make sense of this, Figure 6-1 shows the ER diagram on which we will build

these Django models.

Chapter 6 Decoupled Django with the Django REST Framework

65

Having defined the entities, let’s now build the appropriate Django models. Open

billing/models.py and define the models as shown in Listing 6-1.

Listing 6-1.  billing/models.py – The Models for the Billing App

from django.db import models

from django.conf import settings

class Invoice(models.Model):

 class State(models.TextChoices):

 PAID = "PAID"

 UNPAID = "UNPAID"

 CANCELLED = "CANCELLED"

 �user = models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.

PROTECT)

 date = models.DateField()

 due_date = models.DateField()

User

Invoice ItemLine

PK

id
FK,U
PK

user

due_date
state

date

id
FK,U
PK

invoice

description
price
taxed

quantity

BIGINT
BIGINT

VARCHAR(500)
DECIMAL(8)
BOOLEAN

INTEGER

BIGINT
BIGINT

DATE
VARCHAR(15)

DATE

id BIGINT
name VARCHAR(100)

VARCHAR(254)email

Other Django User fields
omitted for brevity.

Figure 6-1.  The ER diagram for the billing application

Chapter 6 Decoupled Django with the Django REST Framework

66

 �state = models.CharField(max_length=15, choices=State.choices,

default=State.UNPAID)

class ItemLine(models.Model):

 invoice = models.ForeignKey(to=Invoice, on_delete=models.PROTECT)

 quantity = models.IntegerField()

 description = models.CharField(max_length=500)

 price = models.DecimalField(max_digits=8, decimal_places=2)

 taxed = models.BooleanField()

Here we take advantage of models.TextChoices, a feature shipped with Django 3.0.

As for the rest, they are standard Django fields, with all the relationships set up according

to the ER diagram. To add a bit more protection, since we don’t want to delete the

invoices or the item lines by accident, we use PROTECT on them.

�Enabling the App
When the models are ready, enable the billing app in decoupled_dj/settings/base.py,

as shown in Listing 6-2.

Listing 6-2.  decoupled_dj/settings/base.py - Enabling the Billing App

INSTALLED_APPS = [

 ...

 "billing.apps.BillingConfig",

]

Finally, you can make and apply the migrations (these are two separate commands):

python manage.py makemigrations

python manage.py migrate

With the app in place, we are now ready to outline the interface, and later the

backend code to make it work.

�Wireframing the Billing App
Before talking about any frontend library, let’s first see what we are going to build. Figure 6-2

shows a wireframe of the billing app, specifically, the interface for creating a new invoice.

Chapter 6 Decoupled Django with the Django REST Framework

67

Having the UI in mind before writing any code is important; this is an approach

known as outside-in development. By looking at the interface, we can begin to think

about what API endpoint we need to expose. What HTTP calls should we make from the

frontend to the backend? First off, we need to fetch a list of clients to populate the select

that says “Select a client”. This is a GET call to an endpoint like /billing/api/clients/.

As for the rest, it’s almost all dynamic data that must be sent with a POST request once we

compile all the fields in the invoice. This could be a request to /billing/api/invoices/.

There is also a Send Email button, which should trigger an email. To summarize, we

need to make the following calls:

•	 GET all or a subset of users from /billing/api/clients/

•	 POST data for a new invoice to /billing/api/invoices/

•	 POST for sending an email to the client (you will work on this in

Chapter 11)

These interactions might sound trivial to any developer familiar with JavaScript.

Nevertheless, they will help make sense of the architecture of a typical decoupled

project. In the next sections, we pair a JavaScript frontend with a DRF API. Keep in mind

Figure 6-2.  The wireframe for the billing app

Chapter 6 Decoupled Django with the Django REST Framework

68

that we focus on the interactions and on the architecture between all the moving parts

rather than strive for the perfect code implementation.

Note W e don’t have a specialized client model in this project. A client is just a
user for Django. We use the term client on the frontend for convenience, while for
Django everyone is a User.

�Pseudo-Decoupled with the Django REST Framework
We talked about pseudo-decoupled in the previous chapter, as a way to augment the

application frontend with JavaScript or to replace the static frontend altogether with a

single-page app.

We haven’t touched authentication extensively yet, but in brief, one of the advantages

of a pseudo-decoupled approach is that we can use the fantastic built-in Django

authentication, based on sessions. In the following sections, we work in practice with one of

the most popular JavaScript libraries for building interactive frontends—Vue.js—to see how

it fits into Django. Vue.js is a perfect match for a pseudo-decoupled Django project, thanks

to its high configurability. If you are wondering, we will cover React later in the book.

�Vue.js and Django
Let’s start off with Vue. We want to serve our single-page application from within a

Django template.

To do so, we must set up a Vue project. First off, install Vue CLI:

npm install -g @vue/cli

Now we need to create the Vue project somewhere. Vue is highly configurable; in

most cases it’s up to you to decide where to put the app. To keep things consistent we

create the Vue app inside the billing folder, where our Django app already lives. Move

inside the folder and run Vue CLI:

cd billing

vue create vue_spa

Chapter 6 Decoupled Django with the Django REST Framework

69

The installer will ask whether we want to manually select the features or use the

default preset. For our project, we pick the following configurations:

•	 Vue 2.x

•	 Babel

•	 No routing

•	 Linter/formatter (ESLint and Prettier)

•	 Configuration in dedicated config files

Press Enter and let the installer configure the project. When the package manager

finishes pulling in all the dependencies, take a minute to explore the Vue project

structure. Once you’re done, you are ready to explore all the steps for making the single-

page app work within Django.

To keep things manageable, we target only the development environment for now

(we cover production in the next chapter). As anticipated in Chapter 2, Django can serve

static files in development with the integrated server. When we run python manage.

py runserver, Django collects all the static assets, as long as we configure STATIC_URL.

In Chapter 3, we split all the settings for our project, and we configured STATIC_URL as /

static/ for development. Out of the box, Django can collect static files from each app

folder, and for our billing app, this means we need to put static assets in billing/static.

With a bunch of simple JavaScript files this is easy. You simply place them in

the appropriate folder. With a CLI tool like Vue CLI or create-react-app instead, the

destination folder for the JavaScript bundle and for all other static assets is already

decided for you by the tool. For Vue CLI, this folder is named dist, and it is meant to

end up in the same project folder of your single-page app. This is bad for Django, which

won’t be able to pick up these static files. Luckily, thanks to Vue’s configurability, we can

put our JavaScript build and the template where Django expects them. We can decide

where static files and index.html should end up through vue.config.js. Since Vue CLI

has an integrated development server with hot reloading, we have two options at this

point in development:

•	 We serve the app with npm run serve

•	 We serve the app through Django’s development server

With the first option, we can run and access the app at http://localhost:8081/ to

see changes in real time. With the second option, is convenient to get a more real-world

Chapter 6 Decoupled Django with the Django REST Framework

70

feeling: for example we can use the built-in authentication system. In order to go with

the second option, we need to configure Vue CLI.

To start off, in the Vue project folder billing/vue_spa, create an environment file

named .env.staging with the following content:

VUE_APP_STATIC_URL=/static/billing/

Note that this is the combination between Django’s STATIC_URL, which we aptly

configured in decoupled_dj/settings/.env, and Django’s app folder called billing.

Next up, create vue.config.js in the same Vue project folder, with the content shown in

Listing 6-3.

Listing 6-3.  billing/vue_spa/vue.config.js – Vue’s Custom Configuration

const path = require("path");

module.exports = {

 publicPath: process.env.VUE_APP_STATIC_URL,

 outputDir: path.resolve(__dirname, "../static", "billing"),

 �indexPath: path.resolve(__dirname, "../templates/", "billing",

"index.html")

};

With this configuration, we tell Vue to:

•	 Use the path specified at .env.staging as the publicPath

•	 Put static assets to outputDir inside billing/static/billing

•	 Put the index.html to indexPath inside billing/templates/

billing

This setup respects Django expectations about where to find static files and the main

template. publicPath is the path at which the Vue app is expecting to be deployed. In

development/staging, we can point to /static/billing/, where Django will serve the

files. In production, we provide a different path.

Chapter 6 Decoupled Django with the Django REST Framework

71

Note  Django is highly configurable in regard to static files and template
structure. You are free to experiment with alternative setups. Throughout the book
we will adhere to the stock Django structure.

Now you can build your Vue project in “staging” mode (you should run this

command from the Vue project folder):

npm run build -- --mode staging

After running the build, you should see Vue files landing in the expected folders:

•	 Static assets go in billing/static/billing

•	 index.html goes in billing/templates/billing

To test things out, we need to wire up a view and the URLs in Django. First off, in

billing/views.py create a subclass of TemplateView to serve Vue’s index.html, as

shown in Listing 6-4.

Listing 6-4.  billing/views.py - Template View for Serving the App Entry Point

from django.views.generic import TemplateView

class Index(TemplateView):

 template_name = "billing/index.html"

Note I f you like function view more, you can use the render() shortcut with a
function view instead of a TemplateView.

Next up, configure the main route in billing/urls.py, as shown in Listing 6-5.

Listing 6-5.  billing/urls.py - URL Configuration

from django.urls import path

from .views import Index

app_name = "billing"

Chapter 6 Decoupled Django with the Django REST Framework

72

urlpatterns = [

 path("", Index.as_view(), name="index")

]

Finally, include the URL for the billing app in decoupled_dj/urls.py, as shown in

Listing 6-6.

Listing 6-6.  decoupled_dj/urls.py - Project URL Configuration

from django.urls import path, include

urlpatterns = [

 path(

 "billing/",

 include("billing.urls", namespace="billing")

),

]

You can now run Django development server in another terminal:

python manage.py runserver

If you visit http://127.0.0.1:8000/billing/, you should see your Vue app up and

running, as shown in Figure 6-3.

Chapter 6 Decoupled Django with the Django REST Framework

73

You may wonder why we use the term staging, and not development, for this setup.

What you get out of this configuration, really, is more like a “pre-staging” environment

where you can test the Vue app within Django. The drawback of this configuration is that

to see changes reflected, we need to rebuild the Vue app every time. Of course nothing

stops you from running npm run serve to start the Vue app with the integrated webpack

server. In the next sections, we complete the UI for our billing app, and finally the REST

backend.

�Building the Vue App
Let’s now build our Vue app. To start off, wipe the boilerplate from vue_spa/src/App.

vue and start with the code shown in Listing 6-7.

Figure 6-3.  Our Vue app is served by Django’s development server

Chapter 6 Decoupled Django with the Django REST Framework

74

Listing 6-7.  Main Vue Component

<template>

 <div id="app">

 <InvoiceCreate />

 </div>

</template>

<script>

import InvoiceCreate from "@/components/InvoiceCreate";

export default {

 name: "App",

 components: {

 InvoiceCreate

 }

};

</script>

Here we include the InvoiceCreate component. Now, create this component in a

new file called vue_spa/src/components/InvoiceCreate.vue, (you can also remove

HelloWorld.vue). Listing 6-8 shows the template part first.

Listing 6-8.  Template Section of the Vue Form Component

<template>

 <div class="container">

 <h2>Create a new invoice</h2>

 <form @submit.prevent="handleSubmit">

 <div class="form">

 <div class="form__aside">

 <div class="form__field">

 <label for="user">Select a client</label>

 <select id="user" name="user" required>

 <option value="--">--</option>

 <option v-for="user in users" :key="user.email" :value="user.id">

 {{ user.name }} - {{ user.email }}

 </option>

Chapter 6 Decoupled Django with the Django REST Framework

75

 </select>

 </div>

 <div class="form__field">

 <label for="date">Date</label>

 <input id="date" name="date" type="date" required />

 </div>

 <div class="form__field">

 <label for="due_date">Due date</label>

 <input id="due_date" name="due_date" type="date" required />

 </div>

 </div>

 <div class="form__main">

 <div class="form__field">

 <label for="quantity">Qty</label>

 <input

 id="quantity"

 name="quantity"

 type="number"

 min="0"

 max="10"

 required

 />

 </div>

 <div class="form__field">

 <label for="description">Description</label>

 <input id="description" name="description" type="text" required />

 </div>

 <div class="form__field">

 <label for="price">Price</label>

 <input

 id="price"

 name="price"

 type="number"

 min="0"

Chapter 6 Decoupled Django with the Django REST Framework

76

 step="0.01"

 required

 />

 </div>

 <div class="form__field">

 <label for="taxed">Taxed</label>

 <input id="taxed" name="taxed" type="checkbox" />

 </div>

 </div>

 </div>

 <div class="form__buttons">

 <button type="submit">Create invoice</button>

 <button disabled>Send email</button>

 </div>

 </form>

 </div>

</template>

In this markup we have:

•	 The select for choosing the client

•	 Two date inputs

•	 Inputs for quantity, description, and price

•	 A checkbox for taxed

•	 Two buttons

Next up we have the logic part, with the quintessential form handling, as shown in

Listing 6-9.

Listing 6-9.  JavaScript Section of the Vue Form Component

<script>

export default {

 name: "InvoiceCreate",

 data: function() {

 return {

Chapter 6 Decoupled Django with the Django REST Framework

77

 users: [

 { id: 1, name: "xadrg", email: "xadrg@acme.io" },

 { id: 2, name: "olcmf", email: "olcmf@zyx.dev" }

]

 };

 },

 methods: {

 handleSubmit: function(event) {

 // eslint-disable-next-line no-unused-vars

 const formData = new FormData(event.target);

 // TODO - build the request body

 const data = {};

 fetch("/billing/api/invoices/", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify(data)

 })

 .then(response => {

 if (!response.ok) throw Error(response.statusText);

 return response.json();

 })

 .then(json => {

 console.log(json);

 })

 .catch(err => console.log(err));

 }

 },

 mounted() {

 fetch("/billing/api/clients/")

 .then(response => {

 if (!response.ok) throw Error(response.statusText);

 return response.json();

 })

 .then(json => {

Chapter 6 Decoupled Django with the Django REST Framework

78

 this.users = json;

 });

 }

};

</script>

In this code we have:

•	 A users property inside the Vue component state

•	 A method for handling the form submit

•	 A mounted lifecycle method for fetching data on mount

Also, we target our API endpoints (not yet implemented): /billing/api/clients/

and /billing/api/invoices/. You can notice some fake data in users; this is so we have

a minimal usable interface while we wait for building the REST API.

Tip  You can develop the frontend without a backend, with tools like Mirage JS,
which can intercept and respond to HTTP calls.

To make the code work, remember to put the template and the script part in order in

vue_spa/src/components/InvoiceCreate.vue. With this minimal implementation, you

are now ready to start the project in two ways. To build the app and serve it with Django,

run the following in the Vue project folder:

npm run build -- --mode staging

Then, start the Django development server and head over to http://

localhost:8000/billing/. To run Vue with its development server instead, run the

following inside the Vue folder:

npm run serve

The app will start at http://localhost:8081/, but since we don’t have the backend

yet, nothing will work for the end user. In the meantime, we can set up the application so

that:

•	 When launched under Django’s umbrella, it calls /billing/api/

clients/ and /billing/api/invoices/

Chapter 6 Decoupled Django with the Django REST Framework

79

•	 When called with the integrated webpack server, it calls

http://localhost:8000/billing/api/clients/ and http://

localhost:8000/billing/api/invoices/, which are the endpoints

where the DRF will listen

To do this, open vue.config.js and add the lines in Listing 6-10 in the

configuration.

Listing 6-10.  Development Server Configuration for Vue CLI

// omitted

module.exports = {

 // omitted

 devServer: {

 proxy: "http://localhost:8000"

 }

};

This ensures the project works well in staging/production with a pseudo-decoupled

setup, and in development as a standalone app. In a minute, we will finally build the

REST backend.

�Vue.js, Django, and CSS
At this point you may wonder where CSS fits into the big picture. Our Vue component

does have some classes, but we didn’t show any CSS pipeline in the previous section.

The reason is that there are at least two approaches for working with CSS in a project

like the one we are building. Specifically, you can:

•	 Include CSS in a base Django template

•	 Include CSS from each single-page app

At the time of this writing, Tailwind is one of the most popular CSS libraries on the

Django scene. In a pseudo-decoupled setup, you can configure Tailwind in the main

Django project, include the CSS bundle in a base template, and have a single-page Vue

app extend the base template. If each single-page app is independent, each one with

its own style, you can configure Tailwind and friends individually. Be aware that the

maintainability of the second approach might be a bit difficult in the long run.

Chapter 6 Decoupled Django with the Django REST Framework

80

Note  You can find a minimal CSS implementation for the component in the
source code for this chapter at https://github.com/valentinogagliardi/
decoupled-dj/tree/chapter_06_decoupled_with_drf.

�Building the REST Backend
We left a note in our Vue component that says // TODO - build the request body.

This is because with the form we built, we cannot send the request as it is to the Django

REST Framework. You’ll see the reason in a moment. In the meantime, with the UI in

place, we can wire up the backend with the DRF. Based on the endpoints we call from the

UI, we need to expose the following sources:

•	 /billing/api/clients/

•	 /billing/api/invoices/

Let’s also recap the relationships between all the entities:

•	 Each Invoice can have one or many ItemLines

•	 An ItemLine belongs to exactly one Invoice

•	 A User can have many Invoices

•	 Each Invoice belongs to one User

What does this mean? When POSTing to the backend to create a new invoice, Django

wants:

•	 The user ID to associate the invoice with

•	 One or more item lines to associate the invoice with

The user is not a problem because we grab it from the first API call to /billing/

api/clients/. Each item and the associated invoice cannot be sent as a whole from the

frontend. We need to:

•	 Build the correct object in the frontend

•	 Adjust the ORM logic in the DRF to save related objects

Chapter 6 Decoupled Django with the Django REST Framework

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_06_decoupled_with_drf
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_06_decoupled_with_drf

81

�Building the Serializers
To start off, we need to create the following components in the DRF:

•	 A serializer for User

•	 A serializer for Invoice

•	 A serializer for ItemLine

As a first step let’s install the Django REST Framework:

pip install djangorestframework

Once it’s installed, update requirements/base.txt to include the DRF:

Django==3.1.3

django-environ==0.4.5

psycopg2-binary==2.8.6

uvicorn==0.12.2

djangorestframework==3.12.2

Next up, enable the DRF in decoupled_dj/settings/base.py, as shown in

Listing 6-11.

Listing 6-11.  decoupled_dj/settings/base.py - Django Installed Apps with the

DRF Enabled

INSTALLED_APPS = [

 ...

 "users.apps.UsersConfig",

 "billing.apps.BillingConfig",

 "rest_framework", # enables DRF

]

Now create a new Python package named api in billing so that we have a billing/

api folder. In this package, we place all the logic for our REST API. Let’s now build the

serializers. Create a new file called billing/api/serializers.py with the content

shown in Listing 6-12.

Chapter 6 Decoupled Django with the Django REST Framework

82

Listing 6-12.  billing/api/serializers.py – The DRF Serializers

from users.models import User

from billing.models import Invoice, ItemLine

from rest_framework import serializers

class UserSerializer(serializers.ModelSerializer):

 class Meta:

 model = User

 fields = ["id", "name", "email"]

class ItemLineSerializer(serializers.ModelSerializer):

 class Meta:

 model = ItemLine

 fields = ["quantity", "description", "price", "taxed"]

class InvoiceSerializer(serializers.ModelSerializer):

 items = ItemLineSerializer(many=True, read_only=True)

 class Meta:

 model = Invoice

 fields = ["user", "date", "due_date", "items"]

Here we have three serializers. UserSerializer will serialize our User model.

ItemLineSerializer is the serializer for an ItemLine. Finally, InvoiceSerializer will

serialize our Invoice model. Each serializer subclasses the DRF’s ModelSerializer,

which we encountered in Chapter 3, and has the appropriate fields mapping to the

corresponding model. The last serializer in the list, InvoiceSerializer, is interesting

because it contains a nested ItemLineSerializer. It’s this serializer that needs some

work to comply with our frontend. To see why, let’s build the views.

�Building the Views and the URL
Create a new file called billing/api/views.py with the code shown in Listing 6-13.

Listing 6-13.  billing/api/views.py - DRF Views

from .serializers import InvoiceSerializer, UserSerializer, User

from rest_framework.generics import CreateAPIView, ListAPIView

Chapter 6 Decoupled Django with the Django REST Framework

83

class ClientList(ListAPIView):

 serializer_class = UserSerializer

 queryset = User.objects.all()

class InvoiceCreate(CreateAPIView):

 serializer_class = InvoiceSerializer

These views will respond respectively to /billing/api/clients/ and /billing/

api/invoices/. Here, ClientList is a subclass of the generic DRF list view.

InvoiceCreate instead subclasses the DRF’s generic create view. We are now ready to

wire up the URLs for our app. Open billing/urls.py and define your routes as shown

in Listing 6-14.

Listing 6-14.  billing/urls.py - URL Patterns for the Billing API

from django.urls import path

from .views import Index

from .api.views import ClientList, InvoiceCreate

app_name = "billing"

urlpatterns = [

 path("", Index.as_view(), name="index"),

 path(

 "api/clients/",

 ClientList.as_view(),

 name="client-list"),

 path(

 "api/invoices/",

 InvoiceCreate.as_view(),

 name="invoice-create"),

]

Here, app_name paired with a namespace in the main project URL will allow us to

call billing:client-list and billing:invoice-create with reverse(), which is

particularly useful in testing. As a last step, you should have the URLs configured in

decoupled_dj/urls.py, as shown in Listing 6-15.

Chapter 6 Decoupled Django with the Django REST Framework

84

Listing 6-15.  decoupled_dj/urls.py - The Main Project URL Configuration

from django.urls import path, include

urlpatterns = [

 path(

 "billing/",

 include("billing.urls", namespace="billing")

),

]

We are ready to test things out. To create a couple of models in the database, you can

launch an enhanced shell (this comes from django-extensions):

python manage.py shell_plus

To create the models, run the following queries (>>> is the shell prompt):

>>> User.objects.create_user(username="jul81", name="Juliana",

email="juliana@acme.io")

>>> User.objects.create_user(username="john89", name="John", email="john@

zyx.dev")

Exit the shell and start Django:

python manage.py runserver

In another terminal, run the following curl command and see what happens:

curl -X POST --location "http://127.0.0.1:8000/billing/api/invoices/" \

 -H "Accept: */*" \

 -H "Content-Type: application/json" \

 -d "{

 \"user\": 1,

 \"date\": \"2020-12-01\",

 \"due_date\": \"2020-12-30\"

 }"

As a response you should see the following output:

{"user":1,"date":"2020-12-01","due_date":"2020-12-30"}

Chapter 6 Decoupled Django with the Django REST Framework

85

This is the Django REST Framework telling us it created a new invoice in the

database. So far so good. How about adding some items to the invoice now? To do so, we

need to make the serializer writable. In billing/api/serializers.py, remove read_

only=True from the field items so that it looks like Listing 6-16.

Listing 6-16.  billing/api/serializers.py - The Serializer for an Invoice, Now with a

Writable Relationship

class InvoiceSerializer(serializers.ModelSerializer):

 items = ItemLineSerializer(many=True)

 class Meta:

 model = Invoice

 fields = ["user", "date", "due_date", "items"]

You can test again with curl, this time by passing also two items:

curl -X POST --location "http://127.0.0.1:8000/billing/api/invoices/" \

 -H "Accept: application/json" \

 -H "Content-Type: application/json" \

 -d "{

 \"user\": 1,

 \"date\": \"2020-12-01\",

 \"due_date\": \"2020-12-30\",

 \"items\": [

 {

 \"quantity\": 2,

 \"description\": \"JS consulting\",

 \"price\": 9800.00,

 \"taxed\": false

 },

 {

 \"quantity\": 1,

 \"description\": \"Backend consulting\",

 \"price\": 12000.00,

 \"taxed\": true

 }

]

 }"

Chapter 6 Decoupled Django with the Django REST Framework

86

At this point everything should blow up, and you should see the following exception:

TypeError: Invoice() got an unexpected keyword argument 'items'

Exception Value: Got a TypeError when calling Invoice.objects.create().

This may be because you have a writable field on the serializer class that is not a valid

argument to Invoice.objects.create(). You may need to make the field read-only or

override the InvoiceSerializer.create() method to handle this correctly.

Django REST is asking us to tweak create() in InvoiceSerializer so it can accept

items alongside with the invoice.

�Working with Nested Serializers
Open billing/api/serializers.py and modify the serializer as shown in Listing 6-17.

Listing 6-17.  billing/api/serializers.py - The Serializer for an Invoice, Now with a

Customized create()

class InvoiceSerializer(serializers.ModelSerializer):

 items = ItemLineSerializer(many=True)

 class Meta:

 model = Invoice

 fields = ["user", "date", "due_date", "items"]

 def create(self, validated_data):

 items = validated_data.pop("items")

 invoice = Invoice.objects.create(**validated_data)

 for item in items:

 ItemLine.objects.create(invoice=invoice, **item)

 return invoice

This is also a good moment to tweak the ItemLine model. As you can see from

the serializer, we are using the items field to set related items on a given invoice. The

problem is, there is no such field available in the Invoice model. This is because reverse

relationships on a Django model are accessible as modelname_set unless configured

differently. To fix the field, open billing/models.py and add the related_name attribute

to the invoice row, as shown in Listing 6-18.

Chapter 6 Decoupled Django with the Django REST Framework

87

Listing 6-18.  billing/models.py - The ItemLine Model with a related_name

class ItemLine(models.Model):

 invoice = models.ForeignKey(

 to=Invoice, on_delete=models.PROTECT, related_name="items"

)

 ...

After saving the file, run the migration as follows:

python manage.py makemigrations billing

python manage.py migrate

After starting Django, you should now be able to repeat the same curl request, this

time with success. At this stage, we can fix the frontend as well.

�Fixing the Vue Frontend
In vue_spa/src/components/InvoiceCreate.vue, locate the line that says

// TODO - build the request body and adjust the code as shown in Listing 6-19.

Listing 6-19.  The handleSubmit Method from the Vue Component

 methods: {

 handleSubmit: function(event) {

 const formData = new FormData(event.target);

 const data = Object.fromEntries(formData);

 data.items = [

 {

 quantity: formData.get("quantity"),

 description: formData.get("description"),

 price: formData.get("price"),

 taxed: Boolean(formData.get("taxed"))

 }

];

Chapter 6 Decoupled Django with the Django REST Framework

88

 fetch("/billing/api/invoices/", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify(data)

 })

 // omitted;

 }

 }

For brevity, I show only the relevant portion. Here, we use Object.fromEntries()

(ECMAScript 2019) to build an object from our form. We then proceed to add an array

of items (it has just one item for now) to the object. We finally send the object as the

body payload for fetch. You can run Vue with the integrated server (from within the Vue

project folder):

npm run serve

You should see a form that creates an invoice at http://localhost:8080/. Try to

fill the form and click on Create Invoice. In the browser console, you should see the

response from the Django REST Framework, with the invoice being successfully saved

to the database. Great job! We finished the first real feature of this decoupled Django

project.

Note I t is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_06_decoupled_with_drf.

EXERCISE 6-1: HANDLING MULTIPLE ITEMS

Extend the Vue component to handle multiple items for the invoice. The user should be able to

click on a plus (+) button to add more items to the form, which should be sent along with the

request.

Chapter 6 Decoupled Django with the Django REST Framework

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_06_decoupled_with_drf
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_06_decoupled_with_drf

89

�Summary
This chapter paired up a Vue.js frontend with a Django REST Framework API, with Vue.js

served in the same context as the main Django project.

By doing so, you learned how to:

•	 Integrate Vue.js into Django

•	 Interact with a DRF API from JavaScript

•	 Work with nested serializers in the Django REST Framework

In the next chapter, we approach a more real-world scenario. We discuss security

and deployment, before moving again to the JavaScript land, with Next.js in Chapter 8.

�Additional Resource
•	 Understanding many-to-one in Django

Chapter 6 Decoupled Django with the Django REST Framework

https://www.valentinog.com/blog/many-to-one/

91
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_7

CHAPTER 7

API Security and
Deployment
This chapter covers:

•	 Django hardening

•	 REST API hardening

•	 Deployment to production

In the previous chapter, we assembled a pseudo-decoupled Django project with the

Django REST Framework and Vue.js.

It’s now time to explore the security implications of such a setup, which are not so

dissimilar from running a monolith, but do require some extra steps due to the presence

of the REST API. After a focus on security, in the second part of the chapter we cover

deployment to production with Gunicorn and NGINX.

Note  In the first part of this chapter, we assume you are in the repo
root decoupled-dj, with the Python virtual environment active, and with
DJANGO_SETTINGS_MODULE configured as decoupled_dj.settings.
development.

�Django Hardening
Django is one of the most secure web frameworks out there.

However, it’s easy to let things slip out, especially when we are in a hurry to see our

project up and running in production. Before exposing our website or our API to the

world, we need to take care of some extra details to avoid surprises. It’s important to keep

https://doi.org/10.1007/978-1-4842-7144-5_7#DOI

92

in mind that the suggestions provided in this chapter are far from exhaustive. Security is

a huge topic, not counting that each project and each team might have different needs

when it comes to security, due to regional regulations or governmental requirements.

�Django Settings for Production
In Chapter 5, in the “Splitting the Settings File” section, we configured our Django

project to use different settings for each environment.

As of now, we have the following settings:

•	 decoupled_dj/settings/base.py

•	 decoupled_dj/settings/development.py

To prepare the project for production, we create another settings file in decoupled_

dj/settings/production.py, which will hold all the production-related settings. What

should go in this file? Some of the most important settings for production in Django are:

•	 SECURE_SSL_REDIRECT: Ensures that every request via HTTP gets

redirected to HTTPS

•	 ALLOWED_HOSTS: Drives what hostnames Django will serve

•	 STATIC_ROOT: Is where Django will look for static files

In addition to these settings, there are also DRF-related configurations, which we

touch on in the next sections. There are also a lot more authentication-related settings

that we cover in Chapter 10. To start off, create decoupled_dj/settings/production.py

and configure it as shown in Listing 7-1.

Listing 7-1.  decoupled_dj/settings/production.py – The First Settings for

Production

from .base import * # noqa

SECURE_SSL_REDIRECT = True

ALLOWED_HOSTS = env.list("ALLOWED_HOSTS")

STATIC_ROOT = env("STATIC_ROOT")

These settings will be read from an .env file, depending on the environment. In

development, we have the settings shown in Listing 7-2.

Chapter 7 API Security and Deployment

93

Listing 7-2.  The Development .env File

DEBUG=yes

SECRET_KEY=!changethis!

DATABASE_URL=psql://decoupleddjango:localpassword@127.0.0.1/decoupleddjango

STATIC_URL=/static/

Note H ow does DEBUG work here if we pass yes instead of a Boolean? The
conversion is handled by django-environ for us.

In production, we need to tweak this file according to the requirements we describe

in decoupled_dj/settings/production.py. This means we must deploy the .env file

shown in Listing 7-3.

Listing 7-3.  decoupled_dj/settings/.env.production.example - The Production

.env File

ALLOWED_HOSTS=decoupled-django.com,static.decoupled-django.com

DEBUG=no

SECRET_KEY=!changethis!

DATABASE_URL=psql://decoupleddjango:localpassword@127.0.0.1/decoupleddjango

STATIC_URL=https://static.decoupled-django.com

STATIC_ROOT=static/

Note T he database settings shown here assume we are using Postgres as the
database for the project. To use SQLite instead, change the database configuration
to DATABASE_URL=sqlite:/decoupleddjango.sqlite3.

It is of utmost importance in production to disable DEBUG to avoid error leaking. In the

previous file, note how the static related settings are slightly different from development:

•	 STATIC_URL is now configured to read static assets from a static.

decoupled-django.com subdomain

•	 STATIC_ROOT in production will read files from the static folder

Chapter 7 API Security and Deployment

94

With this basic configuration for production, we can move to harden our Django

project a little bit more, with authentication.

�Authentication and Cookies in Django
In the previous chapter, we configured a Vue.js single-page app, served from a Django

view. Let’s review the code in billing/views.py, which is summarized in Listing 7-4.

Listing 7-4.  billing/views.py - A TemplateView Serves the Vue.js SPA

from django.views.generic import TemplateView

class Index(TemplateView):

 template_name = "billing/index.html"

Locally, we can access the view at http://127.0.0.1:8000/billing/ after

running the Django development server, which is fine. However, once the project

goes live, nothing stops anonymous users from freely reaching the view and

making unauthenticated requests. To harden our project, we can, first of all, require

authentication on the view with the LoginRequiredMixin for class-based views. Open

billing/views.py and change the view, as shown in Listing 7-5.

Listing 7-5.  billing/views.py - Adding Authentication to the Billing View

from django.contrib.auth.mixins import LoginRequiredMixin

from django.views.generic import TemplateView

class Index(LoginRequiredMixin, TemplateView):

 template_name = "billing/index.html"

From now on, any user who wants to access this view must authenticate. For us at this

stage, it’s enough to create a superuser in development with the following command:

python manage.py createsuperuser

Once this is done, we can authenticate through the admin view, and then visit

http://127.0.0.1:8000/billing/ to create new invoices. But as soon as we fill the

form and click on Create Invoice, Django will return an error. In the Network tab of the

Chapter 7 API Security and Deployment

http://127.0.0.1:8000/billing/

95

browser’s console, after trying to submit the form, we should see the following error in

the response from the server:

"CSRF Failed: CSRF token missing or incorrect."

Django has a protection against CSRF attacks, and it won’t let us submit AJAX

requests without a valid CSRF token. In traditional Django forms, this token is usually

included as a template tag, and it’s sent to the backend by the browser as a cookie.

However, when the frontend is built entirely with JavaScript, the CSRF token must be

retrieved from the cookie storage and sent alongside the request as a header. To fix this

problem in our Vue.js app, we can use vue-cookies, a convenient library for handling

cookies. In a terminal, move to the Vue project folder called billing/vue_spa and run

the following command:

npm i vue-cookies

Next up, load the library in billing/vue_spa/src/main.js, as shown in Listing 7-6.

Listing 7-6.  billing/vue_spa/src/main.js - Enabling Vue-Cookies

...

import VueCookies from "vue-cookies";

Vue.use(VueCookies);

...

Finally, in billing/vue_spa/src/components/InvoiceCreate.vue, grab the cookie

and include it as a header, as outlined in Listing 7-7.

Listing 7-7.  billing/vue_spa/src/components/InvoiceCreate.vue - Including the

CSRF Token in the AJAX Request

...

 const csrfToken = this.$cookies.get("csrftoken");

 fetch("/billing/api/invoices/", {

 method: "POST",

 headers: {

 "Content-Type": "application/json",

 "X-CSRFToken": csrfToken

 },

Chapter 7 API Security and Deployment

96

 body: JSON.stringify(data)

 })

 .then(response => {

 if (!response.ok) throw Error(response.statusText);

 return response.json();

 })

 .then(json => {

 console.log(json);

 })

 .catch(err => console.log(err));

...

To test things out, we can rebuild the Vue app with the following command:

npm run build -- --mode staging

After running Django, the creation of a new invoice at http://127.0.0.1:8000/

billing/ should now work as expected.

Note A popular alternative to Fetch, axios can help with an interceptor feature.
It’s convenient for attaching cookies or other headers globally, on each request.

Back to the authentication front. At this stage, we enabled the most straightforward

authentication method in Django: session-based authentication. This is one of the most

traditional and most robust authentication mechanisms in Django. It relies on sessions,

saved in the Django database. When the user logs in with credentials, Django stores a

session in the database and sends back two cookies to the user’s browser: csrftoken and

sessionid. When the user makes requests to the website, the browser sends back these

cookies, which Django validates against what has been stored in the database. Since

HTTPS encryption is a mandatory requirement for websites these days, it makes sense to

disable the transmission of csrftoken and sessionid over plain HTTP. To do so, we can

add two configuration directives in decoupled_dj/settings/production.py, as shown

in Listing 7-8.

Chapter 7 API Security and Deployment

97

Listing 7-8.  decoupled_dj/settings/production.py - Securing Authentication

Cookies

...

CSRF_COOKIE_SECURE = True

SESSION_COOKIE_SECURE = True

...

With CSRF_COOKIE_SECURE and SESSION_COOKIE_SECURE set to True, we ensure that

session authentication related cookies are transmitted only over HTTPS.

�Randomize the Admin URL
The built-in admin panel is probably one of the most beloved Django features. However,

the URL for this panel, which by default is admin/, can be targeted by automated brute force

attacks when the website is exposed online. To mitigate the issue, we can introduce a bit

of randomness in the URL, by changing it to something not easily guessable. This change

needs to happen in the project root decoupled_dj/urls.py, as shown in Listing 7-9.

Listing 7-9.  decoupled_dj/urls.py - Hiding the Real Admin URL in Production

from django.urls import path, include

from django.contrib import admin

from django.conf import settings

urlpatterns = [

 path("billing/", include("billing.urls", namespace="billing")),

]

if settings.DEBUG:

 urlpatterns = [

 path("admin/", admin.site.urls),

] + urlpatterns

if not settings.DEBUG:

 urlpatterns = [

 path("77randomAdmin@33/", admin.site.urls),

] + urlpatterns

Chapter 7 API Security and Deployment

98

This code tells Django to change the admin URL from admin/ to 77randomAdmin@33/

when DEBUG is False. With this little change, we add a bit more protection to the admin

panel. Let’s now see what we can do to improve the security of our REST API.

�REST API Hardening
What is better than a REST API? A secure REST API, of course.

In the following sections, we will cover a set of strategies for improving the security

posture of our REST API. To do so, we borrow some guidance from the REST Security

Cheat Sheet by the OWASP foundation.

�HTTPS Encryption and HSTS
HTTPS is a must for every website these days.

By configuring SECURE_SSL_REDIRECT in our Django project, we ensure that our

REST API is secured as well. When we cover deployment in the next sections, we will see

that in our setup, NGINX provides SSL termination for our Django project. In addition

to HTTPS, we can also configure Django to attach an HTTP header named Strict-

Transport-Security to the response. By doing so, we ensure that browsers will connect

to our websites only through HTTPS. This feature is called HSTS, and while Django has

HSTS-related settings, it is common practice to add these headers at the webserver/

proxy level. The website https://securityheaders.com offers a free scanner that can

help in identifying what security headers can be added to the NGINX configuration.

�Audit Logging
Audit logging refers to the practice of writing logs for each action carried in a system—be

it a web application, a REST API, or a database—as a way to record “who did what” at a

particular point in time.

Paired with a log aggregation system, audit logging is a great way to improve data

security. The OWASP REST Security Cheat Sheet prescribes audit logging for REST APIs.

Out of the box, Django already provides some minimal form of audit logging in the

admin. Also, the user table in Django records the last login of each user in the system.

But these two trails are far from being a full-fledged audit logging solution and do not

Chapter 7 API Security and Deployment

https://securityheaders.com

99

cover the REST API. There are a couple of packages for Django to add audit logging

capabilities:

•	 django-simple-history

•	 django-auditlog

django-simple-history can track changes on models. This capability, paired with

access logging, can provide effective audit logging for Django projects. django-simple-

history is a mature package, actively supported. On the other hand, django-auditlog

provides the same functionalities, but it is still in development at the time of this writing.

�Cross-Origin Resource Sharing
In a decoupled setup, JavaScript is the main consumer for REST and GraphQL APIs.

By default, JavaScript can request resources with XMLHttpRequest or fetch, as

long as the server and the frontend live in the same origin. An origin in HTTP is the

combination of the scheme or protocol, the domain, and the port. This means that the

origin http://localhost:8000 is not equal to http://localhost:3000. When JavaScript

attempts to fetch a resource from a different origin than its own, a mechanism known

as Cross-Origin Resource Sharing (CORS) kicks in the browser. In any REST or GraphQL

project, CORS is necessary to control what origins can connect to the API. To enable

CORS in Django, we can install django-cors-headers in our project with the following

command:

pip install django-cors-headers

To enable the package, include corsheaders in decoupled_dj/settings/base.py, as

shown in Listing 7-10.

Listing 7-10.  decoupled_dj/settings/base.py - Enabling django-cors-headers in

Django

INSTALLED_APPS = [

 ...

 'corsheaders',

 ...

]

Chapter 7 API Security and Deployment

100

Next up, enable the CORS middleware as much higher in the list of middleware, as

shown in Listing 7-11.

Listing 7-11.  decoupled_dj/settings/base.py - Enabling CORS Middleware

MIDDLEWARE = [

 ...

 'corsheaders.middleware.CorsMiddleware',

 'django.middleware.common.CommonMiddleware',

 ...

]

With this change in place, we can configure django-cors-headers. In development,

we may want to allow all origins to bypass CORS altogether. To decoupled_dj/settings/

development.py, add the configuration shown in Listing 7-12.

Listing 7-12.  Decoupled_dj/settings/development.py - Relaxing CORS in

Development

CORS_ALLOW_ALL_ORIGINS = True

In production, we have to be more restrictive. django-cors-headers allows us to

define a list of allowed origins, which can be configured in decoupled_dj/settings/

production.py, as shown in Listing 7-13.

Listing 7-13.  decoupled_dj/settings/production.py - Hardening CORS in

Production

CORS_ALLOWED_ORIGINS = [

 "https://example.com",

 "http://another1.io",

 "http://another2.io",

]

Since we are using variables per environment, we can make this configuration

directive a list, as shown in Listing 7-14.

Chapter 7 API Security and Deployment

101

Listing 7-14.  decoupled_dj/settings/production.py - Hardening CORS in

Production

CORS_ALLOWED_ORIGINS = env.list(

 "CORS_ALLOWED_ORIGINS",

 default=[]

)

This way we can define allowed origins as a comma-separated list in .env for

production. CORS is a basic form of protection for users, since without this mechanism

in place, any website would be able to fetch and inject malicious code in the page, and

a protection for REST APIs, which can explicitly allow a list of predefined origins instead

of being open to the world. Of course, CORS does not absolutely replace authentication,

which is covered briefly in the next section.

�Authentication and Authorization in the DRF
Authentication in the DRF integrates seamlessly with what Django already

provides out of the box. By default, the DRF authenticates the user with two classes,

SessionAuthentication and BasicAuthentication, aptly named after the two most

common authentication methods for websites. Basic authentication is a highly insecure

authentication method, even under HTTPS, and it makes sense to disable it altogether to

leave enabled at least only session-based authentication. To configure this aspect of the

DRF, open decoupled_dj/settings/base.py, add the REST_FRAMEWORK dictionary, and

configure the desired authentication classes, as shown in Listing 7-15.

Listing 7-15.  decoupled_dj/settings/base.py - Tweaking Authentication for the

Django REST Framework

REST_FRAMEWORK = {

 "DEFAULT_AUTHENTICATION_CLASSES": [

 "rest_framework.authentication.SessionAuthentication",

],

}

In web applications, authentication refers to the “who you are?” part of the

identification flow. Authorization instead looks at the “what can you do with your

credentials” part. In fact, authentication alone is not enough to protect resources in a

Chapter 7 API Security and Deployment

102

website or in a REST API. As of now, the REST API for our billing app is open to any user.

Specifically, we need to secure two DRF views in billing/api/views.py, summarized in

Listing 7-16.

Listing 7-16.  billing/api/views.py – The DRF View for the Billing App

from .serializers import InvoiceSerializer

from .serializers import UserSerializer, User

from rest_framework.generics import CreateAPIView, ListAPIView

class ClientList(ListAPIView):

 serializer_class = UserSerializer

 queryset = User.objects.all()

class InvoiceCreate(CreateAPIView):

 serializer_class = InvoiceSerializer

These two views handle the logic for the following endpoints:

•	 /billing/api/clients/

•	 /billing/api/invoices/

Right now, both are accessible by anyone. By default, the DRF does not enforce any

form of permission on views. The default permission class is AllowAny. To fix the security

of all DRF views in the project, we can apply the IsAdminUser permission globally. To do

so, in decoupled_dj/settings/base.py, we augment the REST_FRAMEWORK dictionary

with a permission class, as shown in Listing 7-17.

Listing 7-17.  decoupled_dj/setting/base.py - Adding Permissions Globally in the DRF

REST_FRAMEWORK = {

 "DEFAULT_AUTHENTICATION_CLASSES": [

 "rest_framework.authentication.SessionAuthentication",

],

 "DEFAULT_PERMISSION_CLASSES": [

 "rest_framework.permissions.IsAdminUser"

],

}

Chapter 7 API Security and Deployment

103

Permission classes can be set not only globally, but also on a single view, depending

on the specific use case.

Note  We could also enforce these checks only in decoupled_dj/settings/
production.py. This means we won’t be bothered by authentication in
development. However, I prefer to apply authentication and authorization globally to
ensure a more realistic scenario, particularly in testing.

�Disable the Browsable API
The DRF eases most of the mundane work of building REST APIs. When we create an

endpoint, the DRF gives us a free web interface for interacting with the API. For example,

for creation views, we can access an HTML form to create new objects through the

interface. In this regard, the browsable API is a huge boon for developers because it

offers a convenient UI for interacting with the API. However, the interface can potentially

leak data and expose too many details if we forget to protect the API. By default, the DRF

uses BrowsableAPIRenderer to render the browsable API. We can change this behavior

by exposing only JSONRenderer. This configuration can be placed in decoupled_dj/

settings/production.py, as shown in Listing 7-18.

Listing 7-18.  decoupled_dj/setting/production.py - Disabling the Browsable API

in Production

...

REST_FRAMEWORK = {**REST_FRAMEWORK,

 "DEFAULT_RENDERER_CLASSES": ["rest_framework.renderers.JSONRenderer"]

}

...

This disables the browsable API only in production.

Chapter 7 API Security and Deployment

104

�Deploying a Decoupled Django Project
The modern cloud landscape offers endless possibilities to deploy Django.

It would be impossible to cover every single deployment style, not counting Docker,

Kubernetes, and serverless setups. Instead, in this section, we employ one of the

most traditional setups for Django in production. With the help of Ansible, a popular

automation tool, we deploy Django, NGINX, and Gunicorn. Included in the source code

for this chapter there is an Ansible playbook, which is helpful to replicate the setup on

your own servers. From the preparation of the target machine to the configuration of

NGINX, the following sections cover the deployment theory for the project we have built

so far.

Note T he source code for the Ansible playbook is at https://github.com/
valentinogagliardi/decoupled-dj/blob/chapter_07_security_
deployment/deployment/site.yml. Instructions on how to launch the
playbook can be found in the README.

�Preparing the Target Machine
To deploy Django, we need all the required packages in place: NGINX, Git, a newer

version of Python, and Certbot for requesting SSL certificates.

The Ansible playbook covers the installation of these packages. In this chapter, we

skip the installation of Postgres to keep things simple. The reader is encouraged to check

the PostgreSQL download page to see the installation instructions. On the target system,

there should also be an unprivileged user for the Django project. Once you’re done with

these prerequisites, you can move to configure NGINX, the reverse proxy.

Note T he Ansible playbook expects Ubuntu as the operating system used for the
deployment; a version not older than Ubuntu 20.04 LTS is enough.

Chapter 7 API Security and Deployment

https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_07_security_deployment/deployment/site.yml
https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_07_security_deployment/deployment/site.yml
https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_07_security_deployment/deployment/site.yml

105

�Configuring NGINX
In a typical production arrangement, NGINX works at the edge of the system.

It receives requests from the users, deals with SSL, and forwards these requests to

a WSGI or ASGI server. Django lives behind this curtain. To configure NGINX, in this

example, we use the domain name decoupled-django.com and the subdomain static.

decoupled-django.com. The NGINX configuration for a typical Django project is

composed of three sections at least:

•	 One or more upstream declarations

•	 A server declaration for the main Django entry point

•	 A server declaration for serving static files

The deployment/templates/decoupled-django.com.j2 file includes the whole

configuration; here we outline just some details of the setup. The upstream directive

instructs NGINX about the location of the WSGI/ASGI server. Listing 7-19 shows the

relevant configuration.

Listing 7-19.  deployment/templates/decoupled-django.com.j2 - Upstream

Configuration for NGINX

upstream gunicorn {

 server 127.0.0.1:8000;

}

In the first server block, we tell NGINX to forward all the requests for the main

domain to the upstream, as shown in Listing 7-20.

Listing 7-20.  deployment/templates/decoupled-django.com.j2 - Server

Configuration for NGINX

server {

 server_name {{ domain }};

 location / {

 proxy_pass http://gunicorn;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

Chapter 7 API Security and Deployment

106

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

 ## SSL configuration is managed by Certbot

}

Here {{ domain }} is an Ansible variable declared in the playbook. What’s

important here is the proxy_pass directive, which forwards requests to Gunicorn. In

addition, in this section we also set headers for the proxy, which are handed down to

Django on each request. In particular, we have:

•	 X-Real-IP and X-Forwarded-For, which ensure that Django gets the

IP address of the real visitor, not the address of the proxy

•	 X-Forwarded-Proto, which tells Django which protocol the client is

connecting with (HTTP or HTTPS)

�Gunicorn and Django Production Requirements
In Chapter 3, we introduced asynchronous Django, and we used Uvicorn to run Django

locally under ASGI. In production, we may want to run Uvicorn with Gunicorn. To do

so, we need to configure our dependencies for production. In the requirements folder,

create a new file named production.txt. In this file, we declare all the dependencies for

the ASGI part, as shown in Listing 7-21.

Listing 7-21.  requirements/production.txt - Production Requirements

-r ./base.txt

gunicorn==20.0.4

uvicorn==0.13.1

httptools==0.1.1

uvloop==0.15.2

This file should land in the Git repo, as it will be used in the deployment phase. Let’s

now see how to prepare our Vue.js app for production.

Chapter 7 API Security and Deployment

107

�Preparing Vue.js in Production with Django
In Chapter 6, we saw how to serve Vue.js under Django in development. We configured

vue.config.js, and a file named .env.staging inside the root folder of the Vue.js app.

This time, we are going to ship things in production. This means we need a production

Vue.js bundle which should be served by NGINX, not from Django anymore. In regard

to static files, in production Django wants to know where it can find JavaScript and

CSS. This is configured in STATIC_URL, as in Listing 7-22, extracted from the beginning of

this chapter.

Listing 7-22.  decoupled_dj/settings/.env.production.example - Static

Configuration for Production

...

STATIC_URL=https://static.decoupled-django.com/

STATIC_ROOT=static/

...

Notice that we use https://static.decoupled-django.com, and this subdomain

must be configured in NGINX. Listing 7-23 shows the subdomain configuration.

Listing 7-23.  deployment/templates/decoupled-django.com.j2 - Ansible

Template for NGINX

...

server {

 server_name static.{{ domain }};

 location / {

 alias /home/{{ user }}/code/static/;

 }

}

...

Here, {{ user }} is another variable defined in the Ansible playbook. After setting

up Django and NGINX, to configure Vue.js so that it “knows” that it will be served from

the above subdomain, we need to create another environment file in billing/vue_spa,

named .env.production with the content shown in Listing 7-24.

Chapter 7 API Security and Deployment

https://static.decoupled-django.com

108

Listing 7-24.  billing/vue_spa/.env.production - Production Configuration for Vue.js

VUE_APP_STATIC_URL=https://static.decoupled-django.com/billing/

This tells Vue.js that its bundle will be served from a specific subdomain/path. With

the file in place, if we move to the billing/vue_spa folder, we can run the following

command:

npm run build -- --mode production

This will build the optimized Vue.js bundle in static/billing. We now need to

push these files to the Git repo. After doing so, in the next section we finally see how to

deploy the project starting right from this repo.

Note  In real-world projects, production JavaScript bundles are not directly pushed
to source control. Instead, a continuous integration/deployment system takes care of
building production assets, or Docker images, after all the test suites pass.

�The Deployment
After building Vue for production locally and committing the files to the repo, we need to

deploy the actual code to the target machine.

To do so, we log in as the unprivileged user created in the previous steps (the Ansible

playbook defines a user called decoupled-django) or with SSH. Once done, we clone the

repo to a folder, which can be called code for convenience:

git clone --branch chapter_07_security_deployment https://github.com/

valentinogagliardi/decoupled-dj.git code

This command clones the repo for the project from the specified branch

chapter_07_security_deployment. When the code is in place, we move to the newly

created folder, and we activate a Python virtual environment:

cd code

python3.8 -m venv venv

source venv/bin/activate

Chapter 7 API Security and Deployment

109

Next up, we install production dependencies with the following command:

pip install -r requirements/production.txt

Before running Django, we need to configure the environment file for production.

This file must be placed in decoupled_dj/settings/.env. Extra care must be taken

when managing this file, as it contains sensitive credentials and the Django secret key.

In particular, .env files should never land in source control. Listing 7-25 recaps the

configuration directive for the production environment.

Listing 7-25.  decoupled_dj/settings/.env.production.example - Environment

Variables for Production

ALLOWED_HOSTS=decoupled-django.com,static.decoupled-django.com

DEBUG=no

SECRET_KEY=!changethis!

DATABASE_URL=psql://decoupleddjango:localpassword@127.0.0.1/decoupleddjango

STATIC_URL=https://static.decoupled-django.com/

STATIC_ROOT=static/

An example of this file is available in the source repo in decoupled_dj/settings/.

env.production.example. With this file in place, we can switch Django to production

with the following command:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.production

Finally, we can collect static assets with collectstatic and apply migrations:

python manage.py collectstatic --noinput

python manage.py migrate

The first command will copy static files to /home/decoupled-django/code/static,

which are picked up by NGINX. In the Ansible playbook there is a series of tasks to

automate all the steps presented here. Before running the project, we can create a

superuser to access protected routes:

python manage.py createsuperuser

Chapter 7 API Security and Deployment

110

To test things out, still in /home/decoupled-django/code, we can run Gunicorn with

the following command:

gunicorn decoupled_dj.asgi:application -w 2 -k uvicorn.workers.

UvicornWorker -b 127.0.0.1:8000 --log-file -

The Ansible playbook also includes a Systemd service for setting up Gunicorn

at boot. If everything goes well, we can access https://decoupled-django.

com/77randomAdmin@33/, log in to the website with the superuser credentials, and visit

https://decoupled-django.com/billing/, where our Vue.js app lives. Figure 7-1 shows

the result of our work.

Again, the Ansible playbook covers the deployment from the Git repo as well. For

most projects, Ansible is a good starting point to set up and deploy your Django projects.

Other alternatives these days are Docker and Kubernetes, which more and more teams

have fully internalized into their deployment toolchains.

Figure 7-1.  Django and the Vue.js app deployed in production

Chapter 7 API Security and Deployment

https://decoupled-django.com/77randomAdmin@33/
https://decoupled-django.com/77randomAdmin@33/
https://decoupled-django.com/billing/

111

Note  It is a good moment to commit the changes you made so far, and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_07_security_deployment.

�Summary
We covered a lot in this chapter. We went over security and deployment. In the process,

you learned that:

•	 Django is quite secure by default, but extra measures must be taken

when exposing a REST API

•	 Django doesn’t work alone; a reverse proxy like NGINX is a must for

production setups

•	 There are many ways to deploy Django; a configuration tool like

Ansible can work well in most cases

In the next chapter, we cover how Next.js, the React Framework, can be used as a

frontend for Django.

�Additional Resource
•	 OWASP REST Security Cheat Sheet

Chapter 7 API Security and Deployment

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_07_security_deployment
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_07_security_deployment
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html

113
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_8

CHAPTER 8

Django REST Meets Next.js
This chapter covers:

•	 Django as a content repo

•	 React and its ecosystem

•	 Vue.js and its ecosystem in brief

After having touched on security and deployment, in this chapter, we go back to

our local workstation to build a blog with Next.js, the React production framework, and

TypeScript.

�Django as a Headless CMS
Decoupled architectures based on REST and GraphQL have facilitated the rise in recent

years of a new trend: that of headless CMS.

With a backend that exclusively handles the data and serialization of the input/output,

we can create consumer frontends that are totally decoupled from the backend. These

frontends are not limited only to act as single-page applications, but can also retrieve data

from the backend to build static websites. In this chapter, we introduce Next.js, a React

framework for server-side rendering and static site generation.

�Building the Blog App
There are countless books and tutorials on Django that use a blog application as the

most straightforward way to introduce beginners to this fantastic framework.

It might not be the most exciting application ever, but in our case it turns out to be a

perfect candidate for using Django as a content repository with JavaScript frameworks.

Let’s get started.

https://doi.org/10.1007/978-1-4842-7144-5_8#DOI

114

Note  This chapter assumes you are in the repo root decoupled-dj, with
the Python virtual environment active and the environment variable DJANGO_
SETTINGS_MODULE set to decoupled_dj.settings.development.

�Building the Model
For our blog app, we need a Blog model. This model should be connected to a User.

Each User should also be able to access its blog posts. To start off, we create the model in

blog/models.py, as shown in Listing 8-1.

Listing 8-1.  blog/models.py - Model for the Blog App

from django.db import models

from django.conf import settings

class Blog(models.Model):

 class Status(models.TextChoices):

 PUBLISHED = "PUBLISHED"

 UNPUBLISHED = "UNPUBLISHED"

 user = models.ForeignKey(

 to=settings.AUTH_USER_MODEL,

 on_delete=models.PROTECT,

 related_name="blog_posts"

)

 title = models.CharField(max_length=160)

 body = models.TextField()

 status = models.CharField(

 max_length=15,

 choices=Status.choices,

 default=Status.UNPUBLISHED

)

 created_at = models.DateTimeField(auto_now_add=True)

Chapter 8 Django REST Meets Next.js

115

In this model, we define some of the most common fields for a blog entry:

•	 title: The title for the blog entry

•	 body: The text of the blog entry

•	 created_at: The creation date

•	 status: Whether the entry is published or unpublished

On the user field we have a foreign key to User, with related_name aptly configured

so that the user can access its posts via the .blog_posts attribute in the ORM. We could

add much more fields, like a slug, but for the scope of this chapter, these are enough.

�Enabling the App
With the model in place, we enable the app in decoupled_dj/settings/base.py, as in

Listing 8-2.

Listing 8-2.  decoupled_dj/settings/base.py - Enabling the Blog App

INSTALLED_APPS = [

 ...

 "blog.apps.BlogConfig",

]

Finally, we apply the migrations:

python manage.py makemigrations

python manage.py migrate

While we are there, let’s create a couple of blog entries in the database. First we open

a Django shell:

python manage.py shell_plus

Then we create the entries (>>> is the shell prompt):

>>> juliana = User.objects.create_user(username="jul81", name="Juliana",

email="juliana@acme.io")

>>> Blog.objects.create(title="Exploring Next.js", body="Dummy body",

user=juliana)

>>> Blog.objects.create(title="Decoupled Django", body="Dummy body", user=juliana)

Chapter 8 Django REST Meets Next.js

116

We will need these entries later, so this step can’t be skipped. With the app in place,

we are now ready to build the REST logic before moving on.

�Building the REST Backend
Our goal is to expose the Blog model to the outside. By doing so, any JavaScript client can

retrieve blog entries. As we did in Chapter 5 with the billing app, we need to wire up the

foundations of the DRF: serializers and views. In the next section, we build a serializer

for Blog and two views for exposing blog entries.

�Building the Serializer
To structure our REST API, we create a new Python package named api in blog.

In this package we place all the logic for our REST API. To start, let’s create a new file at

blog/api/serializers.py with the serializer in Listing 8-3.

Listing 8-3.  blog/api/serializers.py - DRF Serializer for the Blog Model

from blog.models import Blog

from rest_framework import serializers

class BlogSerializer(serializers.ModelSerializer):

 class Meta:

 model = Blog

 fields = ["title",

 "body",

 "created_at",

 "status",

 "id"]

There is nothing arcane in this serializer: it exposes the fields of the model, minus

user. Save and close the file. With the serializer in place, we can build views and the URL

configuration.

Chapter 8 Django REST Meets Next.js

117

�Building the Views and the URL
For this project we need two views:

•	 A ListAPIView to expose the whole list of posts

•	 A RetrieveAPIView to expose single entries

We create views in a new file at blog/api/views.py, as shown in Listing 8-4.

Listing 8-4.  blog/api/views.py - REST Views for Our Blog

from .serializers import BlogSerializer

from blog.models import Blog

from rest_framework.generics import ListAPIView, RetrieveAPIView

class BlogList(ListAPIView):

 serializer_class = BlogSerializer

 queryset = Blog.objects.all()

class BlogDetail(RetrieveAPIView):

 serializer_class = BlogSerializer

 queryset = Blog.objects.all()

Next up, we create a URL configuration in a new file at blog/urls.py. As usual, we

give this configuration an app_name, which is useful to namespace the app in the root

URL configuration, as shown in Listing 8-5.

Listing 8-5.  blog/urls.py - URL Configuration for the Blog App

from django.urls import path

from .api.views import BlogList, BlogDetail

app_name = "blog"

urlpatterns = [

 path("api/posts/",

 BlogList.as_view(),

 name="list"),

Chapter 8 Django REST Meets Next.js

118

 path("api/posts/<int:pk>",

 BlogDetail.as_view(),

 name="detail"),

]

Finally, we include the URL configuration for our blog in decoupled_dj/urls.py, as

shown in Listing 8-6.

Listing 8-6.  blog/urls.py - Project URL Configuration

from django.urls import path, include

urlpatterns = [

 ...

 path("blog/", include("blog.urls", namespace="blog")),

]

After running the Django development server, we should be able to access the

endpoint at http://localhost:8000/blog/api/posts/. This will be the data source for

Next.js.

Note  To avoid being bothered by authentication in this chapter, you can
temporarily comment DEFAULT_PERMISSION_CLASSES in decoupled_dj/
setting/base.py.

�Introduction to the React Ecosystem
React is a JavaScript library for building user interfaces that took web development by

storm.

The React approach to building user interfaces by the means of components,

isolated units of markup, and JavaScript code is not new to the scene. However, thanks

to its flexibility, React gained huge popularity, surpassing Angular and Vue.js as the

library of choice for building single-page apps. In the next sections, we recap React

fundamentals and introduce Next.js, the React framework for production.

Chapter 8 Django REST Meets Next.js

119

�A Reintroduction to React
Most of the time, user interfaces are not a single whole: they are made of independent

units, each one in control of a specific aspect of the whole interface.

If we think of a <select> HTML element for example, we may notice that in a typical

application it rarely appears just once. Instead, it can be used multiple times in the

same interface. In the beginning, web developers (myself included) reused part of the

application by copy-pasting the same markup over and over. However, this approach

often led to an unsustainable mess. In the past the question was: “How do I reuse this

markup alongside with its JavaScript logic”? React filled this huge gap, which still affects

the web platform to some extent: the lack of native components, that is, reusable pieces

of markup and logic.

Note  It is worth noting that Web Components (native components for building
interfaces) are a reality, but the specification still has a lot of rough edges.

React favors a component-based approach to building user interfaces. In the

beginning, React components were built as ES2015 classes due to their ability to retain

internal state. With the advent of hooks, a React component can be built as a simple

JavaScript function, as in Listing 8-7.

Listing 8-7.  React Component Example

import React, { useState } from "react";

export default function Button(props) {

 const [text, setText] = useState("");

 return (

 <button onClick={() => setText("CLICKED")}>

 {text || props.initialText}

 </button>

);

}

Chapter 8 Django REST Meets Next.js

120

In this example we define a Button component as a JavaScript function. In the

component we use the useState hook to hold the internal state. When we click on

the button, the onClick handler (which React maps to the click DOM event) triggers

setText(), which changes the internal state of the component. Additionally, the

component takes props from the outside, that is, a read-only object that takes an

arbitrary number of properties that the component can use to render data to the user.

Once we create a component, we can reuse it infinitely, as shown in Listing 8-8.

Listing 8-8.  React Component Usage Example

import Button from "./Button";

export default function App() {

 return (

 <Button initialText="CLICK ME" />

 <Button initialText="CLICK ME" />

);

}

Here we have an App root component that nests our Button two times. From the

outside we pass an initialText property. React components are not always that simple,

but this example summarizes the grand theory of React and serves to pave the road for

the next sections.

�Introduction to Next.js
Building single-page applications might look easy. We became accustomed to using

tools like create-react-app and Vue CLI to create new SPA projects.

These tools give the illusion that the work is done, which is true to some extent.

The reality is that things are not so straightforward in production. Depending on

the project, we need routing, efficient data fetching, search engine optimization,

internationalization, and performance and image optimization. Next.js is a framework

for React, born to ease the burden of setting up things manually over and over again, and

to provide developers with an opinionated production-ready environment.

In Chapter 2, we talked briefly about universal JavaScript applications, touching

on the ability to share and reuse code between the backend and frontend. Next.js falls

Chapter 8 Django REST Meets Next.js

121

exactly in this category of tools, as it enables developers to write server-side rendered

JavaScript applications. Next.js has two principal modes of operation:

•	 Server-side rendering

•	 Static site generation

In the next sections, we investigate both while building our blog frontend with

React and TypeScript. It’s important to remark that these kinds of frameworks cannot

directly integrate with Django because they have their own server, operated by Node.js.

A typical Next.js setup operates independently of any other backend; it handles routing,

authentication, internationalization, and everything in between. In this arrangement, a

framework like Django provides just the data for Next.js over a REST or GraphQL API.

�Building the Next.js Frontend
To start, we initialize a Next.js project. From the root project folder decoupled_dj/,

launch the following command:

npx create-next-app --use-npm next-blog

This will create the project in decoupled_dj/next-blog. Once the project is in place,

move into the folder:

cd next-blog

From inside the Next.js project folder, install TypeScript and a couple of other type

definitions, one for Node,js and another for React:

npm i typescript @types/react @types/node --save-dev

When the installation finishes, create a configuration file for TypeScript with the

following command:

touch tsconfig.json

In this file, depending on the level of strictness we want TypeScript to enforce, we

can leave the strict option set to false. However, for most projects we may want to set

it to true. With the file in place, launch the Next.js development server:

npm run dev

Chapter 8 Django REST Meets Next.js

122

This will start Next.js on http://localhost:3000. If everything goes well, you should

see the following output from the console:

ready - started server on 0.0.0.0:3000, url: http://localhost:3000

We detected TypeScript in your project and created a tsconfig.json file for

you.

From there, we are ready to write our first component.

�Pages and Routing
The basic theory of Next.js revolves around the concept of pages.

If we look in the newly created project, we should see a folder named pages. In this

folder, we can define subfolders. For example, by creating a new folder at pages/posts,

when running the Next.js project, we can access http://localhost:3000/posts/.

Nothing particularly exciting. The interesting part comes with React components. Any.

js, .jsx, .ts, or .tsx file placed in pages becomes a page for Next.js. To understand how

Next.js works, we create a page step by step by starting with fixed data first, to introduce

data fetching later.

Note  For the Next.js part, from now on we work in decoupled_dj/next-blog.
Each proposed file must be created in the appropriate subfolder, starting from this path.

We are going to create a simple page in Next.js. For the following example, create

a new file in pages/posts/index.tsx, with the following React component shown in

Listing 8-9.

Listing 8-9.  pages/posts/index.tsx - A First Next.js Page

const BlogPost = () => {

 return (

 <div>

 <h1>Post title</h1>

 <div>

 <p>Post body</p>

 </div>

Chapter 8 Django REST Meets Next.js

123

 </div>

);

};

export default BlogPost;

This is a React component, and it’s also already a page for Next.js. Let’s run the

development server:

npm run dev

Now, we can head over to http://localhost:3000/posts, and we should be able

to see a simple page with the content we placed in the React component. Interesting

indeed, but a bit useless for a dynamic website. What if we want to show different blog

posts, maybe by fetching them by id?

In Next.js, we can use dynamic routing to build pages on demand. For example, a

user should be able to access http://localhost:3000/posts/2 and see the desired

content there. For this to work, we need to change the filename of our component from

index.ts to the following:

[id].tsx

By doing so, Next.js will respond to any request for http://localhost:3000/

posts/$id where $id here is a placeholder for whichever numeric ID we can imagine.

With this information, the component can fetch data from the REST API, based on the

id, which for Next.js becomes a URL parameter. With this knowledge, let’s enrich the

component with type declarations before moving to data fetching. Wipe everything out

from the component we created a minute ago and place the following code in pages/

posts/[id].tsx, as shown in Listing 8-10.

Listing 8-10.  pages/posts/[id]tsx - Blog Component for the Corresponding Next.

js Page

enum BlogPostStatus {

 Published = "PUBLISHED",

 Unpublished = "UNPUBLISHED",

}

type BlogPost = {

 title: string;

Chapter 8 Django REST Meets Next.js

124

 body: string;

 created_at: string;

 status: BlogPostStatus;

 id: number;

};

const BlogPost = ({ title, body, created_at }: BlogPost) => {

 return (

 <div>

 <header>

 <h1>{title} </h1>

 Published on: {created_at}

 </header>

 <div>

 <p>{body}</p>

 </div>

 </div>

);

};

export default BlogPost;

This component is statically typed with TypeScript. There are three specific

TypeScript notations in this file. Here’s an explanation:

•	 BlogPostStatus: TypeScript enum that defines a set of possible states

for the blog post. It maps the nested Status class defined in the

Django model.

•	 BlogPost: TypeScript type that defines the properties for our React

component. It maps the model’s fields (minus user).

•	 BlogPost: Used in the component parameter to strongly type our

props.

With this component in place, we are now ready to define the data fetching logic to

populate each blog post with its corresponding data.

Chapter 8 Django REST Meets Next.js

125

Note  In TypeScript, enums produce a lot of JavaScript code during compilation. A
solution to this are const enums, but they are not supported by Babel, which Next.
js uses for compiling TypeScript to JavaScript.

�Data Fetching
Next.js can operate in two modes, as introduced earlier:

•	 Server-side rendering

•	 Static site generation

With server-side rendering, pages are built on each request, much like a traditional

server-side rendered website. Think of Django templates or Rails. In this mode, we can

fetch data on each request, as the user hits the corresponding path. In Next.js this is done

with getServerSideProps. This should be an asynchronous method, exported from the

same file where the React component lives. There are two things we need to take care of

in getServerSideProps:

•	 Fetch the desired data

•	 Return at least a props object

Once these are done, Next.js will take care of passing props to our React component.

Listing 8-11 shows an example skeleton of the function, complete with types.

Listing 8-11.  getServerSideProps Skeleton

export const getServerSideProps: GetServerSideProps = async (context) => {

 // fetch data

 return { props: {} };

};

The context object parameter carries information about the request, the response,

and a params object on which we can access the request parameters. We will destructure

params from context for convenience. Let’s add this function to pages/posts/[id].tsx,

as shown in Listing 8-12, with the corresponding data fetching logic.

Chapter 8 Django REST Meets Next.js

126

Listing 8-12.  pages/posts/[id].tsx - Data Fetching Logic for the Page

import { GetServerSideProps } from "next";

const BASE_URL = "http://localhost:8000/blog/api";

export const getServerSideProps: GetServerSideProps = async ({ params }) =>

{

 const id = params?.id;

 const res = await fetch(`${BASE_URL}/posts/${id}`);

 if (!res.ok) {

 return {

 notFound: true,

 };

 }

 const json = await res.json();

 const { title, body, created_at, status } = json;

 return { props: { title, body, created_at, status } };

};

This code bears a bit of explanation:

•	 We import the GetServerSideProps type, which is used to give typing

to the actual function

•	 In getServerSideProps:

•	 We get the id from params

•	 We fetch data from the Django REST API

•	 We return notFound if the response from the API is negative

•	 We return a props object for our component if the backend

returns the blog post

Chapter 8 Django REST Meets Next.js

127

Note  getServerSideProps has a lot more return properties, which are
convenient for specific use cases. Take a look at the official documentation to learn
more.

With this code in place, we can test things out. First off, Django must be running. In a

terminal, go to decoupled_dj and launch Django:

python manage.py runserver

In the other terminal where you launched Next.js, run the development server if it

isn’t already running (from the decoupled_dj/next_blog folder):

npm run dev

Now, access http://localhost:3000/posts/1 or http://localhost:3000/posts/2.

You should see a blog post, as shown in Figure 8-1.

As you can see, this approach works flawlessly. In this mode, Next.js retrieves data

before sending the page to the user. But for a blog, this is not the best approach: there

is no better website than a static website for making search engines happy. The next

section explains how to implement data fetching and static site generation with Next.js.

Figure 8-1.  Next.js is responding to the detail route for a single blog post

Chapter 8 Django REST Meets Next.js

128

�Static Site Generation
It’s a bit inefficient to call the REST API every time we want to display a blog post to our

users.

Blogs are better served as static pages. Other than data fetching on each request,

Next.js supports also data fetching at build time. In this mode we can generate pages and

their corresponding data as static HTML, which Next.js will serve to our users. To make

this work, we need a combination of two other methods from Next.js: getStaticPaths

and getStaticProps. What’s the difference between getServerSideProps from the

previous section and these methods?

getServerSideProps is used to asynchronously fetch data on each request in server-

side rendering. That is, when the user reaches a given page, it has to wait a bit because

the Next.js server has to fetch the data from the given sources (a REST API or a GraphQL

service). This approach is convenient for data that is dynamic and changes a lot.

getStaticProps, instead, is used to asynchronously fetch data at build time. That is,

when we run npm run build or yarn build, Next.js creates a production bundle with

all the JavaScript it needs, plus any page marked as static. Listing 8-13 shows an example

skeleton of the function.

Listing 8-13.  getStaticProps Example

import { GetStaticProps } from "next";

const BASE_URL = "http://localhost:8000/blog/api";

export const getStaticProps: GetStaticProps = async (_) => {

 const res = await fetch(`${BASE_URL}/posts/1`);

 const json = await res.json();

 const { title, body, created_at, status } = json;

 return { props: { title, body, created_at, status } };

};

Notice how we call http://localhost:8000/blog/api/1 specifically, which is

rather limiting. After the build phase, Next.js generates the corresponding static pages.

By running npm run start or yarn start, Next.js can serve our website. When a page

exports getStaticProps, the related component receives props returned from this

method. However, to make our example work, the page must have a fixed path, like

Chapter 8 Django REST Meets Next.js

129

1.tsx. It would be impractical to know beforehand the ID of every blog post in our

backend. This is where getStaticPaths comes into play. With this method, used in

combination with getStaticProps, we can generate a list of paths that getStaticProps

can use to fetch data. To take advantage of static site generation, let’s change pages/

posts/[id].tsx so that it uses getStaticPaths and getStaticProps instead of

getServerSideProps, as shown in Listing 8-14.

Listing 8-14.  pages/posts/[id].tsx - Data Fetching at Build Time with

getStaticPaths and getStaticProps

import { GetStaticPaths, GetStaticProps } from "next";

const BASE_URL = "http://localhost:8000/blog/api";

export const getStaticPaths: GetStaticPaths = async (_) => {

 const res = await fetch(`${BASE_URL}/posts/`);

 const json: BlogPost[] = await res.json();

 const paths = json.map((post) => {

 return { params: { id: String(post.id) } };

 });

 return {

 paths,

 fallback: false,

 };

};

export const getStaticProps: GetStaticProps = async ({ params }) => {

 const id = params?.id;

 const res = await fetch(`${BASE_URL}/posts/${id}`);

 if (!res.ok) {

 return {

 notFound: true,

 };

 }

Chapter 8 Django REST Meets Next.js

130

 const json: BlogPost = await res.json();

 const { title, body, created_at, status } = json;

 return { props: { title, body, created_at, status } };

};

Here, the logic for getStaticProps is the same used for getServerSideProps from

the previous section. However, we also have getStaticPaths. In this function, we:

•	 Call the REST API to get a list of all posts from

http://127.0.0.1:8000/blog/api/posts/

•	 Generate and return an array of paths

This array of paths is important and must have the following shape:

 paths: [

 { params: { id: 1 } },

 { params: { id: 2 } },

 { params: { id: 3 } },

]

In our code it is generated by the following snippet:

...

 const paths = json.map((post) => {

 return { params: { id: String(post.id) } };

 });

...

In the return object for getStaticPaths, there is also a fallback option. It’s used to

display a 404 page for any path not included in paths. At this point we can build the blog

with the following command:

npm run build

Note that Django must still be running in another terminal. Once the build is ready,

we should see static pages in .next/server/pages/posts. To serve the blog (at least

locally for now), we run the following command:

npm run start

Chapter 8 Django REST Meets Next.js

131

Now, access http://localhost:3000/posts/1 or http://localhost:3000/posts/2

and you should see a blog post, as shown in Figure 8-1. Apparently, nothing changes for

the user between this version and the previous version with getServerSideProps. But if

we stop the Django API, we can still access our blog, since now it’s just a bunch of static

pages, and more important, the performance gains of static HTML can’t be beaten.

Note  getStaticProps and getServerSideProps are not mutually exclusive.
Pages in a Next.js project can use both depending on the use case. For example,
part of a site can be served as static HTML, while another section can operate as a
single-page application.

We covered a lot. The concept exposed here might seem a bit too much seen in the

context of a simple blog. After all, Django alone would be enough to handle this type of

website. But more and more teams are adopting these kinds of setups, where frontend

developers can use the tool they love most to shape the UI, ranging from single-page

apps to static websites.

�Deploying Next.js
Next.js is a full-fledged React framework. It needs its own Node.js server, which is already

integrated, and this also means it can’t run inside Django. Usually, the deployment

is structured to have a Django backend and the Next.js system on their own separate

machines/containers.

�Using React with Django
In 2019, I published a post on my blog entitled, “Django REST with React.”

The tutorial illustrates how to configure a webpack environment to build React in

the right Django static folder, much like we did in Chapter 5 with Vue.js. The approach

outlined in that blog post is not inherently bad, but it can fall short for larger teams,

and due to potential breaking changes in webpack, it can become hard to keep up with

changes. A solution to this is the popular create-react-app, which abstracts away all the

mundane details related to webpack and Babel. However, to make Django work with

create-react-app, Django must be instructed to look for React static files. This involves

tweaking the DIRS key in TEMPLATES and STATICFILES_DIRS.

Chapter 8 Django REST Meets Next.js

132

�The Vue.js Ecosystem
To a casual observer, the modern web development land might seem totally dominated

by React.

That couldn’t be further from the truth. Vue.js and Angular occupy a good market

share. Vue.js has a framework called Nuxt.js, equivalent in functionality to Next.js. There

isn’t enough space to cover everything in this book, but given that Next.js and Nuxt.

js have almost total feature parity, developers accustomed to working with Vue.js can

apply the same concepts seen in this chapter to their framework of choice. In fact, you’re

encouraged to give Nuxt.js a try.

Note  It is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_08_django_rest_meets_next.

�Summary
This chapter paired a Next.js project to the blog app REST API. In the process, you

learned about:

•	 TypeScript for React

•	 Next.js operation modes

•	 Next.js data fetching

In the next chapter, we get even more serious with unit and functional testing for the

whole spectrum, from backend to frontend.

�Additional Resource
•	 Next.js docs

Chapter 8 Django REST Meets Next.js

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_08_django_rest_meets_next
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_08_django_rest_meets_next
https://nextjs.org/docs

133
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_9

CHAPTER 9

Testing in a Decoupled
World
This chapter covers:

•	 Functional testing for JavaScript-heavy interfaces

•	 Unit testing for the Django REST Framework

In this chapter, we add tests to our application. In the first part, we cover functional

testing for user interfaces with Cypress. In the second part, we move to unit testing in

Django.

Note  This chapter assumes you are in the repo root decoupled-dj, with the
Python virtual environment active.

�Introduction to Functional Testing
More often than not, testing in software development is an afterthought, something

overlooked as a waste of time that slows down development.

This is especially true of functional testing for user interfaces, where the amount of

JavaScript interactions to test increases day by day. This feeling probably comes from

the memory of tools like Selenium for Python, which unfortunately are notably slow

and hard to use for testing JavaScript interfaces. However, the situation has changed

substantially in recent years, with a new breed of JavaScript tooling that eases the

burden of testing single-page applications. These tools make it easy to write tests for

the interface from the user point of view. Functional tests are also a great way to catch

https://doi.org/10.1007/978-1-4842-7144-5_9#DOI

134

regressions in the UI, that is, bugs introduced by accidents during development in an

unrelated feature which used to work well before changes. In the next sections, we cover

Cypress, a test runner for JavaScript.

�Getting Started with Cypress
Cypress is a JavaScript package available on NPM that can be pulled in our projects. In a

project with a single JavaScript frontend that needs to be tested, you can install Cypress

in the root project folder of the React/Vue.js app.

In our case, since we might have more than one JavaScript application to test, we can

install Cypress in the root project folder decoupled-dj. To start, initialize a package.json

with the following command:

npm init -y

Next up, install Cypress:

npm i cypress --save-dev

Once you’re done, you can start Cypress the first time with the following command:

./node_modules/.bin/cypress open

This command will open a window and create a new folder named cypress in the

root project folder. A number of subfolders are created as well, as shown in the following

directory listing:

cypress

├── fixtures
├── integration
├── plugins
└── support

For the scope of this chapter we can safely ignore these folders, except integration.

We will place our tests there. With Cypress in place, we can move to writing our first test

in the next sections.

Chapter 9 Testing in a Decoupled World

135

�Understanding Functional Testing for the Billing App
Remember the billing app from Chapter 6? It’s now time to write functional tests for it.

This app has a form where the user can fill in fields to create a new invoice and then

click on Create Invoice to create the new entity on the backend. Figure 9-1 shows the

final form from Chapter 6.

Let’s not forget that we want to test the interface from the user point of view in a

functional test. With a nice fluent syntax, Cypress allows us to interact with elements

just like a user would do, step by step. How do we know how and what to test? Writing

a functional test should come naturally. We need to imagine how a user would

Figure 9-1.  The invoice form from Chapter 6

Chapter 9 Testing in a Decoupled World

136

interact with the interface, write selectors for each HTML element we want to test, and

then verify that the element behaves correctly or that it changes in response to user

interaction. In the case of our form, we can identify the following steps. The user should:

•	 Select a client for the invoice

•	 Compile at least one invoice line with quantity, description, and price

•	 Pick a date for the invoice

•	 Pick a due date for the invoice

•	 Submit the form by clicking on Create Invoice

All these steps must be translated into Cypress logic, which is essentially just

JavaScript. In the next section, we write our first test for the <select> element of the form.

�Creating the First Test
In the first iteration of our test, we interact with two pieces of the interface. In particular, we:

•	 Target the form

•	 Interact with the select

In Cypress, these two steps translate into method calls, which look almost like plain

English. To start, create a new test in cypress/integration/Billing.spec.js with the

code shown in Listing 9-1.

Listing 9-1.  cypress/integration/Billing.spec.js - A First Test Skeleton in Cypress

context("Billing app", () => {

 describe("Invoice creation", () => {

 it("can create a new invoice", () => {

 cy.visit("http://localhost:8080/"

);

 cy.get("form").within(() => {

 cy.get("select").select("Juliana - juliana@acme.io");

 });

 });

 });

});

Chapter 9 Testing in a Decoupled World

137

Let’s break down these instructions:

•	 context() encloses the whole test and gives it a cohesive

organization

•	 describe() encloses a single aspect of our test, often used in

conjunction with context()

•	 it() is the actual test block

•	 cy.visit() navigates to the app home page

•	 cy is Cypress itself, which offers a number of methods for selecting

and interacting with elements

•	 cy.get("form") selects the first form in the interface

•	 within() tells Cypress to run each subsequent command from inside

the previous selected element

•	 cy.get("select") selects the <select> element inside the form

•	 cy.get("select").select("Juliana - juliana@acme.io") picks

the <option> element whose value is "Juliana - juliana@acme.io"

from the select

Note S ince our interface is rather simple, we won’t focus too much on advanced
selectors and best practices. The reader is encouraged to read the Cypress
documentation to learn more about advanced techniques.

What stands out from this code is the expressiveness of each statement. With fluent,

descriptive methods, we can target and interact with HTML elements the same way as

we would expect from our users. In theory, our test is ready to run, but there’s a problem.

The <select> needs data from the network. This data comes from the Vue component’s

mounted() method, as shown in Listing 9-2.

Chapter 9 Testing in a Decoupled World

138

Listing 9-2.  billing/vue_spa/src/components/InvoiceCreate.vue - The Form’s

Mounted Method

...

 mounted() {

 fetch("/billing/api/clients/")

 .then(response => {

 if (!response.ok) throw Error(response.statusText);

 return response.json();

 })

 .then(json => {

 this.users = json;

 });

 }

...

In fact, if we launch the Vue.js app, we’ll see the following error in the console:

Proxy error: Could not proxy request /billing/api/clients/ from

localhost:8080 to http://localhost:8000

This comes from Vue.js development server, which we instructed to proxy all

network requests to the Django REST API in development. Without running Django

in another terminal, we can’t really test anything. This is where Cypress network

interception comes into play. It turns out that we can intercept the network call and

reply to it directly from Cypress. To do so, we need to adjust our test by adding a new

command called cy.intercept(), before cy.visit(), as shown in Listing 9-3.

Listing 9-3.  cypress/integration/Billing.spec.js - Adding Network Interception to

the Test

context("Billing app", () => {

 describe("Invoice creation", () => {

 it("can create a new invoice", () => {

 cy.intercept("GET", "/billing/api/clients", {

 statusCode: 200,

 body: [

Chapter 9 Testing in a Decoupled World

139

 {

 id: 1,

 name: "Juliana",

 email: "juliana@acme.io",

 },

],

 });

 cy.visit("http://localhost:8080/");

 cy.get("form").within(() => {

 cy.get("select").select(

 "Juliana - juliana@acme.io"

);

 });

 });

 });

});

From this snippet, we can see that cy.intercept() takes:

•	 The HTTP method to intercept

•	 The path to intercept

•	 An object used as a response stub

In this test we intercept the network request coming from the Vue component, we

stop it before it reaches the backend, and we reply with a static response body. By doing

so, we can avoid touching the backend altogether. Now, to test things out, we can run the

test suite. From the decoupled-dj folder where we installed Cypress, we run the testing

runner with the following command:

./node_modules/.bin/cypress open

Note  For convenience, it’s best to create an e2e script in package.json to
alias cypress open.

Chapter 9 Testing in a Decoupled World

140

This will open a new window from where we can choose which test to run, as shown

in Figure 9-2.

By clicking on the spec file Billing.spec.js, we can run the test, but before doing so

we need to start the Vue.js app. From another terminal, move into billing/vue_spa and

run the following command:

npm run serve

Once done we can reload the test and let Cypress do the job. The test runner will

go over every command in the test block, just like a real user would do. When the test

finishes we should see all green, which is a sign that the test is passing. Figure 9-3 shows

the test window.

Figure 9-2.  Cypress welcome page

Chapter 9 Testing in a Decoupled World

141

Network interception in Cypress is really convenient for working without a backend.

The backend team can share the expected API request and responses with the frontend

team through documentation, with actual JavaScript objects, or with JSON fixtures.

On the other side, frontend developers can build the UI without having to run Django

locally. In the next section we finish the test for our form by testing form inputs.

�Filling and Submitting the Form
In order to submit the form, Cypress needs to fill all the required fields.

To do so, we employ a set of Cypress methods for form interaction:

•	 type() to type into input fields

•	 submit() to trigger the submit event on our form

Figure 9-3.  A first passing test

Chapter 9 Testing in a Decoupled World

142

With type() we can not only type into form fields, but also interact with date inputs.

This is really handy since our form has two inputs of type date. For example, to select

and type into a date input with Cypress, we can use the following command:

cy.get("input[name=date]").type("2021-03-15");

Here, we target the input with the appropriate selector and use type() to fill the

field. This method works well with any kind of form input. For text inputs, it’s a matter

of targeting the CSS selector and type into it. When two or more inputs of the same type

exist on the page, Cypress needs to know which one to target. If we are only interested in

the first element found on the page, we can use the following instructions:

cy.get("input[type=number]").first().type("1");

Here we say to Cypress to select only the first input number on the page. What if

we wanted to interact with two or more elements of the same kind instead? As a quick

workaround, we can use .eq() to target the element by index. The index starts at 0,

much like JavaScript arrays:

cy.get("input[type=number]").eq(0).type("1");

cy.get("input[type=number]").eq(1).type("600.00");

In this example, we instruct Cypress to target two inputs of type number on the page.

With this knowledge in hand, and with an eye on the HTML form structure of our app,

we can add the code shown in Listing 9-4 to our previous test.

Listing 9-4.  cypress/integration/Billing.spec.js - Filling the Form with Cypress

...

 cy.get("form").within(() => {

 cy.get("select").select(

 "Juliana - juliana@acme.io"

);

 cy.get("input[name=date]").type("2021-03-15");

 cy.get("input[name=due_date]").type("2021-03-30");

 cy.get("input[type=number]").eq(0).type("1");

 cy.get("input[name=description]").type(

 "Django consulting"

);

Chapter 9 Testing in a Decoupled World

143

 cy.get("input[type=number]").eq(1).type("5000.00");

 });

 cy.get("form").submit();

...

Here we fill all the required inputs, the two dates, the description for the invoice,

and the price. Finally, we submit the form. While this test passes, Vue.js isn’t that happy

because it cannot route the POST request to /billing/api/invoices/. In the console, we

can see the following error:

Proxy error: Could not proxy request /billing/api/invoices/ from

localhost:8080 to http://localhost:8000

This is another situation where Cypress interception can help. Before submitting the

form, let’s declare another interception, this time for /billing/api/invoices. Also, let’s

assert that the API call is triggered by the frontend; see Listing 9-5.

Listing 9-5.  cypress/integration/Billing.spec.js - Adding Another Network

Interception to the Test

...

 cy.intercept("POST", "/billing/api/invoices", {

 statusCode: 201,

 body: {},

 }).as("createInvoice");

 cy.get("form").submit();

 cy.wait("@createInvoice");

...

The new instructions here are as() and cy.wait(). With as(), we can alias Cypress

selections, and in this case also our network intercept. With cy.wait() instead, we can

wait for the network call to happen and effectively test that the frontend is making the

actual API call to the backend. With this test in place we can run again Cypress, which

should now give us all green, as shown in Figure 9-4.

Chapter 9 Testing in a Decoupled World

144

This concludes functional testing for the client-facing side of our app. Although

limited in scope, this test helps illustrate the Cypress fundamentals. The test we wrote

so far targets Vue.js without considering Django. To make our functional tests as close

possible to the real world, we would also need to test the JavaScript frontend served from

within Django. This is left as an exercise for the user at the end of the chapter. Let’s now

focus on the backend. Our REST API needs testing as well.

Figure 9-4.  A full test suite for our invoice form

Chapter 9 Testing in a Decoupled World

145

�Introduction to Unit Testing
In contrast to functional testing, unit testing aims at ensuring that single units of code

such as functions or classes work as expected.

In this chapter we don’t cover unit testing for JavaScript because we already saw

functional testing with Cypress, and to properly address unit testing for React and Vue.

js, another chapter would not be enough. Instead, we see how to apply unit testing to the

Django backend. Functional testing is an invaluable tool for checking the functionality of

the UI from the user point of view. Unit testing instead ensures that our Django backend

and its REST API provide the right data for our JavaScript frontend. Functional testing

and unit testing are not mutually exclusive. A project should have both types of tests in

place in order to be considered robust and resilient to changes. In the next section, we

see how to test the Django REST Framework with Django testing tools.

�Unit Testing in the Django REST Framework
Out of the box, Django makes it possible to have excellent code coverage right from

the beginning. Code coverage is the measure of how much code is covered by tests.

Django is a battery included framework, and it comes with a robust set of tools, like API

views and a fantastic ORM, which are already tested by Django contributors and core

developers. However, these tests aren’t enough.

When building a project, we need to make sure that views, models, serializers, and

any custom Python class or function are properly tested. Luckily, Django has us covered

with a set of handy tools for unit and integration testing, like the TestCase class. The

Django REST Framework adds some custom tooling on top of this, including:

•	 APISimpleTestCase for testing the API without database support

•	 APITestCase for testing the API along with database support

Writing a unit test for a DRF view is not so different from writing a test for a

traditional Django view. The example in Listing 9-6 illustrates the minimal test structure

for getting started.

Chapter 9 Testing in a Decoupled World

146

Listing 9-6.  Django REST Test Example

from rest_framework.test import APITestCase

from rest_framework.status import HTTP_403_FORBIDDEN

from django.urls import reverse

class TestBillingAPI(APITestCase):

 @classmethod

 def setUpTestData(cls):

 pass

 def test_anon_cannot_list_clients(self):

 response = self.client.get(reverse("billing:client-list"))

 self.assertEqual(response.status_code, HTTP_403_FORBIDDEN)

In this example, we subclass APITestCase to declare a new test suite. Inside this class

we can see a class method named setUpTestData(), which is useful for initializing data

for our test. Next up we declare our first test as a class method: test_anon_cannot_list_

clients() is our first test. Inside this block, we call the API view with self.client.

get(), the testing HTTP client. Then, we check that the response code we get from the

view is what we expect, a 403 Forbidden in this case, since the user is not authenticated.

In the next sections, we write tests for our REST views by following the example’s

structure.

�Django Settings for Testing
Before getting started, let’s configure our Django project for testing. More often than

not, we will need to slightly change some setting in testing, and for this reason it is

convenient to create a split setting for the testing environment. To do so, create a new file

in decoupled_dj/settings/testing.py with the content shown in Listing 9-7.

Listing 9-7.  decoupled_dj/settings/testing.py - Split Settings for Testing

from .base import * # noqa

As of now, this file doesn’t do anything other than import the base settings, but this

ensures that we can override any configuration if needed.

Chapter 9 Testing in a Decoupled World

147

�Installing the Dependencies and Configuring
Requirements for Testing
We are now ready to install the dependencies for testing.

For our project, we will use two convenient libraries: pytest and pytest-django.

Used together they can simplify how we run tests. For instance, when used with pytest-

django, pytest can autodiscover our tests, so we don’t need to add imports to our

__init__.py files. We will also use model-bakery, which can ease the burden of model

creation in our tests. To install these libraries, run the following command:

pip install pytest pytest-django model-bakery

Next up, create a requirements file for testing in requirements/testing.txt and add

the lines shown in Listing 9-8.

Listing 9-8.  requirements/testing.txt - Requirements for Testing

-r ./base.txt

model-bakery==1.2.1

pytest==6.2.2

pytest-django==4.1.0

This concludes our setup. We are now ready to write tests!

�Outlining Tests for the Billing REST API
When writing tests, understanding what to test in a project is the most challenging task,

especially for beginners.

It is easy to get lost in the testing implementation details and internal code, but

really, it shouldn’t be that complicated. When deciding what to test, you need to focus

on one thing: the expected output from your system. In the case of our Django apps, we

are exposing REST endpoints. This means we need to look at how this system is used and

test these boundaries accordingly. After identifying the surface of the system, tests for

the internal logic will come naturally. Let’s now see what needs to be tested in our billing

app. The Vue frontend from Chapter 5 invokes the following endpoints:

•	 /billing/api/clients/

•	 /billing/api/invoices/

Chapter 9 Testing in a Decoupled World

148

Incidentally, these are the same endpoints that we stubbed in Cypress with

cy.intercept(). This time we need to cover them with a unit test in Django, rather than

with a functional test with Cypress. But let’s step back for a moment and think about

our tests. In Chapter 6, we added authentication and permissions check to our REST

API. Only an authenticated admin user can invoke the API. This means we need to take

authentication into account and test that we don’t forget to enforce authentication by

allowing anonymous users to sneak into our API. By intuition, we need to write the

following tests:

•	 As an anonymous user, I cannot access the client list

•	 As an admin user, I can access the client list

•	 As an anonymous user, I cannot create a new invoice

•	 As an admin user, I can create a new invoice

Let’s write these tests in the next section.

�Testing the Billing REST API
To start, create a new Python package named tests in billing.

In this folder create a new file called test_api.py. In this file, we are going to place

our test class, with the same structure we saw in the previous example. We also add all

the test methods to our class, as outlined in the previous section. Listing 9-9 shows the

backbone of this test.

Listing 9-9.  billing/tests/test_api.py - Test Case for the Billing API

from rest_framework.test import APITestCase

from rest_framework.status import HTTP_403_FORBIDDEN, HTTP_200_OK,

HTTP_201_CREATED

from django.urls import reverse

class TestBillingAPI(APITestCase):

 @classmethod

 def setUpTestData(cls):

 pass

Chapter 9 Testing in a Decoupled World

149

 def test_anon_cannot_list_clients(self):

 response = self.client.get(reverse("billing:client-list"))

 self.assertEqual(response.status_code, HTTP_403_FORBIDDEN)

 def test_admin_can_list_clients(self):

 # TODO: authenticate as admin

 response = self.client.get(reverse("billing:client-list"))

 self.assertEqual(response.status_code, HTTP_200_OK)

 def test_anon_cannot_create_invoice(self):

 response = self.client.post(

 reverse("billing:invoice-create"), data={}, format="json"

)

 self.assertEqual(response.status_code, HTTP_403_FORBIDDEN)

This test is far from being complete. Tests for the anonymous user look fine, but we

can’t say the same for admin because we are not authenticated in our tests yet. To create

an admin user (a staff user for Django) in our tests, we can use baker() from model-

bakery in setUpTestData(), and then the force_login() method on the test client, as in

Listing 9-10.

Listing 9-10.  billing/tests/test_api.py - Authenticating as an Admin in Our Test

from rest_framework.test import APITestCase

from rest_framework.status import HTTP_403_FORBIDDEN, HTTP_200_OK,

HTTP_201_CREATED

from django.urls import reverse

from model_bakery import baker

class TestBillingAPI(APITestCase):

 @classmethod

 def setUpTestData(cls):

 cls.admin = baker.make("users.User", is_staff=True)

 def test_anon_cannot_list_clients(self):

 response = self.client.get(reverse("billing:client-list"))

 self.assertEqual(response.status_code, HTTP_403_FORBIDDEN)

Chapter 9 Testing in a Decoupled World

150

 def test_admin_can_list_clients(self):

 self.client.force_login(self.admin)

 response = self.client.get(reverse("billing:client-list"))

 self.assertEqual(response.status_code, HTTP_200_OK)

 def test_anon_cannot_create_invoice(self):

 response = self.client.post(

 reverse("billing:invoice-create"), data={}, format="json"

)

 self.assertEqual(response.status_code, HTTP_403_FORBIDDEN)

With this test in place, we are now ready to test things out. In the terminal, run the

following command to switch Django to the testing environment:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.testing

Then, run pytest:

pytest

If everything goes well, we should see the following output in the console:

billing/tests/test_api.py ... [100%]

============= 3 passed in 0.94s ==========

Our tests are passing! We can now add one last case to our test: as an admin user, I

can create a new invoice. To do so, we create a new method in the class. In this method,

we log in as admin and make a POST request to the API, by providing a request body.

Let’s not forget that, to create an invoice, we must also pass a list of item lines. This can

be done in the request body. The following listing shows the complete test method,

where we also create a user before the request body. This user is later associated with the

invoice, as shown in Listing 9-11.

Listing 9-11.  billing/tests/test_api.py - Testing Invoice Creation as an Admin

...

def test_admin_can_create_invoice(self):

 self.client.force_login(self.admin)

 user = baker.make("users.User")

 data = {

Chapter 9 Testing in a Decoupled World

151

 "user": user.pk,

 "date": "2021-03-15",i

 "due_date": "2021-03-30",

 "items": [

 {

 "quantity": 1,

 "description": "Django consulting",

 "price": 5000.00,

 "taxed": True,

 }

],

 }

 response = self.client.post(

 reverse("billing:invoice-create"), data, format="json"

)

 self.assertEqual(response.status_code, HTTP_201_CREATED)

...

This concludes our unit test for the billing app REST API. Alongside a functional test,

we covered the whole spectrum of communication between the backend and frontend.

Note I t is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_09_testing.

EXERCISE 9-1: TESTING DJANGO AND VUE.JS

Our functional test with Cypress does not take into account that Vue.js is served from a Django

view in production. So far, we tested the Vue.js app in isolation. Write a functional test against

the Django view that’s serving the app.

Chapter 9 Testing in a Decoupled World

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_09_testing
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_09_testing

152

EXERCISE 9-2: TESTING THE BLOG APP

Now that you learned how to structure and write tests with Cypress and Django, write a set of

functional tests for the Next.js app. Write unit tests for the blog REST API as well.

�Summary
Testing is often an art of intuition in identifying and covering all the possible corner

cases. This chapter outlined tools and techniques for:

•	 Functional testing with Cypress

•	 Unit testing in Django, using the DRF’s testing tools

In the next chapter, we move to the next big topic: authentication.

�Additional Resource
•	 Intercepting network requests with Cypress

Chapter 9 Testing in a Decoupled World

https://docs.cypress.io/guides/guides/network-requests

153
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_10

CHAPTER 10

Authentication
and Authorization
in the Django REST
Framework
This chapter covers:

•	 Token-based authentication and JWT in brief

•	 Session-based authentication for single-page apps

Writing a technical book means starting with a billion topics to cover, and not

enough space to fit everything in.

Authentication is one of those huge topics that almost impossible to cover deeply

in a single chapter. There are simply too many scenarios: mobile applications, desktop

applications, and single-page apps. Since this book has been more about single-

page applications and JavaScript paired with Django, this chapter focuses only on

the interaction between these two actors. In the first part, we discuss token-based

authentication. In the second part, we resort to a battle-tested authentication flow,

paired with single-page applications.

Note  The rest of this chapter assumes you are in the repo root decoupled-dj,
with the Python virtual environment active and with DJANGO_SETTINGS_MODULE
configured as decoupled_dj.settings.development.

https://doi.org/10.1007/978-1-4842-7144-5_10#DOI

154

�Introduction to Token-Based Authentication
and JWT
In Chapter 6, we created a pseudo-decoupled Django project with the DRF and Vue.js.

In Chapter 7, we hardened the security of our project, by adding a minimal form

of authentication and authorization. We saw how to use session-based authentication

to protect our single-page application when it’s served from a Django view. In Chapter 8

we added Next.js to the mix. To generate a blog starting from our Django project, we

had to disable authentication altogether. This is far from optimal and leads us to think

also about all those situations where the frontend is completely decoupled from the

Django backend. In a traditional setup, it is possible to use cookies and session-based

authentication without much hassle. However, when the frontend and the backend are

on different domains, authentication becomes tricky. Also, since sessions are stored on

the server, the interchange of session cookies and CSRF cookies between the frontend

and the backend violates the stateless nature of REST. For this reason, over the years, the

community came up with a form of token-based authentication called JSON Web Token.

For authentication in decoupled setups, token-based authentication with JWT is

all the rage these days, especially in the JavaScript community. In Django, JWT is not

yet standardized into the core. What follows is an introduction to JWT, token-based

authentication, and a discussion of their potential pitfalls.

�Token-Based Authentication: The Good and the Bad
Token-based authentication is not a new concept by any means.

A token is a simple identifier that the frontend can exchange with the backend to

prove that it has the rights to read or write to the backend. In the simplest arrangement,

the decoupled frontend sends a username and password to the backend. On the other

side, the backend verifies the user’s credentials, and if they are valid, it sends a token

back to the frontend. The token is usually a simple alphanumeric string, such as the

following example:

9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

When the frontend wants to make requests to a protected resource on the API, be

it a GET or a POST request, it has to send back this token by including it in the request

headers. The Django REST Framework has out-of-the-box support for token-based

authentication with the TokenAuthentication scheme.

Chapter 10 Authentication and Authorization in the Django REST Framework

155

In terms of security, this authentication mechanism is far from being bulletproof.

First off, sending the credentials over the wire, namely a username and password, is not

the best approach, even under HTTPS. Also, once we obtain a token in the frontend, we

need to persist it during the entire user session, and sometimes even beyond that. To

persist the token, most developers resort to saving it in localStorage, a huge mistake

which effectively opens the application to a whole new set of risks. localStorage is

vulnerable to XSS attacks, where an attacker injects malicious JavaScript code in a web

page it has control of, lures the user to visit it, and steals any non HttpOnly cookies, as

well as potentially any data saved in localStorage.

In terms of the capabilities of these tokens instead, they are very simple. They do not

carry info about the user, nor indications on what permissions the user has. They are

strictly tied to Django and to its database, and only Django can pair a given user with

its token. Their simplicity is a “feature” of these basic tokens. Despite these limitations,

token-based authentication works well in all those situations where the frontend is on a

different domain from the backend. However, over the years, the JavaScript community

has pondered about the opportunity to create more structured tokens. This led to the

creation of a new standard called JSON Web Tokens, which introduced innovations as

well as more challenges.

�JSON Web Tokens in Django: Advantages and Challenges
A JSON Web Token, or JWT for short, is a standard that defines a convenient way to

exchange authentication information between a client and a server.

JWT tokens are a completely different beast from a simple alphanumeric token. First

off, they are signed. That is, they are encrypted by the server before being sent off the

wire and are decrypted back on the client. This is necessary because JWT tokens contain

sensitive information that can be used to authenticate against protected resources if these

tokens are stolen. JWT has a solid market share in the JavaScript/Node.js community.

On the Django scene instead, they are considered an insecure authentication

method. The reason for this is that server-side JWT implementations are hard to get

right, and there are simply too many things in the spec left open to interpretation for the

implementer, which can build an insecure JWT server without even knowing. To learn

more about all the security implications of JWT, check out the first link in the additional

resources. In brief, as of today, Django has no core support for JWT, and this situation is

not going to change in the future.

Chapter 10 Authentication and Authorization in the Django REST Framework

156

If you want to use JWT in your own Django projects, a number of libraries exist, like

django-rest-framework-simplejwt. This library does not handle the registration flow,

but only the issuing phase of JWT. In other words, from the frontend we can use

api/token/ and api/token/refresh/ with the username and password to request a new

token or refresh a token if we have a token in hand. When a client requests a token from

the server, the server replies with two tokens: an access token and a refresh token. Access

tokens usually have an expiration date as a security measure. Refresh tokens, on the

other hand, are used by the client to request a new access token when the latter expires.

The access token is used for authentication, and the refresh token is used for requesting

a new authentication token. Since both tokens are equally important, they must be both

protected adequately on the client.

As with any token, JWT tokens are often subject to the same pitfalls. Most developers

persist JWT tokens in localStorage, which is vulnerable to XSS. This is possibly even

worse than persisting a simple alphanumeric token, as JWT carries much more sensitive

information in its body, and even if it’s encrypted, we can’t be lax about protecting it.

To avoid these risks, developers resort to saving JWT tokens in HttpOnly cookies, which

coincidentally sounds a lot like the most classic session-based authentication method. In

the end, even if JWT tokens are convenient for cross-domain and mobile authentication,

maintaining such an infrastructure can be hard and prone to security risks. Is there an

easy path to authentication with Django and single-page applications? we’ll explore that

question in the next sections.

�Session-Based Auth for Single-Page Apps
In the end, authentication for Django projects should not be complicated, at least for

web apps.

In fact, with the help of NGINX, we can use session-based authentication instead

of tokens, even for single-page apps. In Chapter 7 we deployed our Django app with a

traditional setup, which was a Django template serving a single-page application. What if

we turn things upside down now, by serving a single-page application as the main entry

point to our Django project? There are a few steps we need to think about before this can

happen. In particular, NGINX should:

•	 Serve a single-page app from the root location block

•	 Proxy API, auth, and admin requests to Django

Chapter 10 Authentication and Authorization in the Django REST Framework

157

To do this, we need to make the necessary adjustments to the configuration from

Chapter 7. Let’s see what needs to be done in the next sections.

Note  The configuration we are going to see is completely independent of the one
in Chapter 7. They are two different approaches, both valid.

�Some Words on Production and Development
The scenario provided in the following sections is not easily replicable on the local

workstation, unless you’re using Docker or a virtual machine.

To keep things as close as possible to reality, we present a production environment

where the application is deployed at https://decoupled-django.com/, with a valid SSL

certificate. If you want to replicate the same environment, you have two options:

•	 Use Docker to run NGINX, Django, and Vue.js (not covered in this

book).

•	 Use a virtual machine environment, such as VirtualBox, to create a

Linux machine and then run the Ansible playbook from https://

github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_

authentication.

If you go with the second option, here are some tips:

•	 In the VirtualBox instance, forward a port for SSH and another for the

web server, from the guest to the host. For SSH you can pick 8022 for

the guest, forwarded to 22 on the host, and for the web server, pick

port 80 forwarded from the guest to the host.

•	 In the /etc/hosts file of your main workstation, configure the

decoupled-django.com domain and the static.decoupled-django.com

subdomain to point to 127.0.0.1.

With the virtual machine in place, from your workstation, run the Ansible playbook

with the following command:

ansible-playbook -i deployment/inventory deployment/site.yml --extra-vars

"trustme=yes"

Chapter 10 Authentication and Authorization in the Django REST Framework

https://decoupled-django.com/
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication
http://decoupled-django.com
http://static.decoupled-django.com

158

This playbook will configure the environment, deploy the code, and create a fake

SSL certificate for decoupled-django.com and static.decoupled-django.com. Once it’s

done, you can access https://decoupled-django.com/ in your browser, after adding an

exception for the certificates.

Note I nstructions on how to run the playbook can be found at https://
github.com/valentinogagliardi/decoupled-dj/blob/chapter_10_
authentication/README.md#deployment.

�Preparing NGINX for the New Setup
As a first step, we need to configure NGINX to serve our single-page application on the

root location block.

Listing 10-1 shows the first change.

Listing 10-1.  deployment/templates/decoupled-django.com.j2 - NGINX

Configuration to Serve the Single-Page Application

...

location / {

 alias /home/{{ user }}/code/billing/vue_spa/dist/;

}

...

This is different from what we saw in Chapter 7, where the main entry point of the

project was Gunicorn. In this example, we reuse the Vue.js single-page app from Chapter 6,

which is a simple form for creating invoices, but to test things out, we promote it to the

main single-page app for our project. Here we say to NGINX, when a user visits the root

of our website, send it to the Vue.js app in /home/decoupled-django/code/billing/

vue_spa/dist/. What is dist here? By default, Vue CLI builds the production JS bundle

in the dist folder of the Vue.js project. This is the default configuration, but in Chapter 6

we changed it to emit the bundles where Django would expect them, in static files.

Now we go back to the default. To make this work, we also need to tweak Vue.js a bit

in a moment. With this configuration, by visiting https://decoupled-django.com/ in

production, NGINX will serve the single-page app. However, as soon as Vue.js loads,

Chapter 10 Authentication and Authorization in the Django REST Framework

http://decoupled-django.com
http://static.decoupled-django.com
https://decoupled-django.com/
https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_10_authentication/README.md#deployment
https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_10_authentication/README.md#deployment
https://github.com/valentinogagliardi/decoupled-dj/blob/chapter_10_authentication/README.md#deployment
http://decoupled-django.com
https://decoupled-django.com/

159

it makes a call to billing/api/clients/ to fetch a list of clients for the <select>. This

leads us to adjust the NGINX configuration again so that any request to /api/ is proxied

to Gunicorn, and thus to Django. Listing 10-2 shows the additional NGINX block.

Listing 10-2.  deployment/templates/decoupled-django.com.j2 - NGINX

Configuration to Proxy API Requests to Django

location ~* /api/ {

 proxy_pass http://gunicorn;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

}

With this change in place, API calls will actually reach Django. There’s still one detail

missing: authentication. Everything changes with this setup. Django is not in charge of

serving the single-page app anymore, but it should indeed serve the API and the login

flow, for a good reason—more on this in the next section.

�Handling the Login Flow with Django
We want to use a single-page application as the main entry point to our Django project,

but we also want to use session-based authentication from Django.

This is the point where we hit a conundrum. How do we authenticate our users

without involving tokens? Django has a built-in authentication system, part of the

contrib module, from which we can peruse a set of views for handling the most

common authentication flows: login/logout, register/confirm, and password reset. For

example, LoginView from django.contrib.auth.views can help with the login flow.

However, the problem with our current setup is that the single-page application is now

completely decoupled from the Django project.

As a naive approach, we could try to make a POST request to a Django LoginView

from JavaScript, but these views are protected with a CSRF check. This is the same

problem we hit before, but now it is more serious because we don’t have any Django

view from which we can grab the CSRF token before issuing the request. The solution?

Chapter 10 Authentication and Authorization in the Django REST Framework

http://decoupled-django.com

160

We can let Django handle the authentication flow. To do so, we are going to create a

standalone Django application for the authentication logic. In the root project folder, run

the following command:

python manage.py startapp login

Next, create a new URL configuration in login/urls.py and place the code shown in

Listing 10-3 inside it.

Listing 10-3.  login/urls.py - URL Configuration for Login and Logout Views

from django.urls import path

from django.contrib.auth.views import LoginView, LogoutView

app_name = "auth"

urlpatterns = [

 path(

 "login/",

 LoginView.as_view(

 template_name="login/login.html",

 redirect_authenticated_user=True

),

 name="login",

),

 path("logout/", LogoutView.as_view(), name="logout"),

]

Here we declare two routes, one for login and another for logout. The LoginView uses

a custom template_name. Create the template in login/templates/login/login.html,

as shown in Listing 10-4.

Listing 10-4.  login/templates/login/login.html - Login Form

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Login</title>

</head>

Chapter 10 Authentication and Authorization in the Django REST Framework

161

<body>

<form method="POST" action="{% url "auth:login" %}">

 {% csrf_token %}

 <div>

 <label for="{{ form.username.id_for_label }}">Username:</label>

 �<input type="text" name="username" autofocus maxlength="254"

required id="id_username">

 </div>

 <div>

 <label for="{{ form.password.id_for_password }}">Password:</label>

 �<input type="password" name="password" autocomplete="current-

password" required="" id="id_password">

 </div>

 <input type="hidden" name="next" value="{{ next }}">

 <button type="submit" value="login">

 LOGIN

 </button>

</form>

{{ form.non_field_errors }}

</body>

</html>

This is a simple HTML form augmented with Django template tags; specifically, it

includes {% csrf_token %}. When the form is rendered, Django places a hidden HTML

input in the markup, as shown in Listing 10-5.

Listing 10-5.  Django’s CSRF Token in HTML Forms

<input type="hidden" name="csrfmiddlewaretoken" value="2TYg60oC0GC2LW7oJEPw

Bsg2ajZsjJ0n5Wvjqd28J9wMcGBanbnNfkmfT5Qw3juK">

The value of this input is sent alongside POST requests to Django LoginView. If the

user’s credentials are valid, Django redirects the user to a URL of choice, and sends two

cookies to the browser: csrftoken and sessionid. To make this work, we need to load

the login app and configure the redirect URL in decoupled_dj/settings/base.py, as

shown in Listing 10-6.

Chapter 10 Authentication and Authorization in the Django REST Framework

162

Listing 10-6.  decoupled_dj/settings/base.py - Enabling the Login App and

Configuring the Login Redirect URL

INSTALLED_APPS = [

 ...

 "login"

]

...

LOGIN_REDIRECT_URL = "/"

Once this is done, include the new URLs in the root configuration, decoupled_dj/

urls.py, as shown in Listing 10-7.

Listing 10-7.  decoupled_dj/urls.py - Including the URL from the Login App

urlpatterns = [

 ...

 path("auth/", include("login.urls", namespace="auth")),

]

As a last step, we tell NGINX that any request to /auth/ must be proxied to Django,

as shown in Listing 10-8.

Listing 10-8.  deployment/templates/decoupled-django.com.j2 - NGINX

Configuration to Proxy Authentication Requests to Django

location /auth/ {

 proxy_pass http://gunicorn;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

}

Chapter 10 Authentication and Authorization in the Django REST Framework

http://decoupled-django.com

163

What do we achieve with this setup? NGINX now replies as follows:

•	 Requests to https://decoupled-django.com/auth/login/ are

proxied to Gunicorn/Django

•	 Requests to https://decoupled-django.com/ are proxied to Vue.js

•	 Requests to https://decoupled-django.com/billing/api/ are

proxied to Gunicorn/Django

In this arrangement, Django handles the whole authentication flow with session-

based authentication. On the other hand, the single-page application merely makes API

calls to Django. In this regard, we need to fix Vue.js to work with the new setup.

Note  You can find the source code for the NGINX configuration at https://
github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_
authentication/deployment/templates/.

�Preparing the Vue.js App for the New Setup
To recap, in Chapter 6 we configured vue.config.js and .env.staging to make Django

static files work with Vue.js.

In Chapter 7 we added another piece to the puzzle, by configuring .env.production

so that Vue.js could recognize the subdomain from where it was loaded. In this chapter,

we can get rid of those configurations. The configuration files vue.config.js, .env.

staging, and .env.production can be removed from billing/vue_spa/. By doing so,

when building the production bundle, the JavaScript files and assets will land in the

dist folder. This folder is usually excluded from the source control, so we need to install

Node.js on the target machine to install JavaScript dependencies and build the bundle

from /home/decoupled-django/code/billing/vue_spa. Once this is done, we can run

our Vue.js app as the main entry point to the Django project.

Note  The Ansible playbook at https://github.com/valentinogagliardi/
decoupled-dj/tree/chapter_10_authentication takes care of installing
Node.js and building the bundle.

Chapter 10 Authentication and Authorization in the Django REST Framework

https://decoupled-django.com/auth/login/
https://decoupled-django.com/
https://decoupled-django.com/billing/api/
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication/deployment/templates/
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication/deployment/templates/
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication/deployment/templates/
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_09_authentication
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_09_authentication

164

The effect of this setup is that the JavaScript frontend will pass cookies to Django

without any intervention from us. Figure 10-1 shows csrftoken and sessionid travelling

with the GET request to /billing/api/clients.

Figure 10-2 shows the same cookies, this time transmitted with a POST request.

Figure 10-1.  GET requests from JavaScript to Django include the session cookie
and the CSRF token

Chapter 10 Authentication and Authorization in the Django REST Framework

165

There isn’t anything magical in this setup: cookies can travel on the same origin,

even over Fetch.

�A Note About HttpOnly Cookies
An HttpOnly cookie is a cookie that can’t be read from JavaScript code.

By default, Django already ensures that sessionid has the HttpOnly attribute. This

doesn’t break cookie exchange with fetch because the same-origin default behavior

ensures that cookies are sent back and forth when the calling JavaScript code has the

same origin of the targeted URL. As for csrftoken, we need to leave it accessible to

JavaScript because we include it as a header alongside non-safe HTTP requests (POST

and the like).

Figure 10-2.  POST requests from JavaScript to Django include the session cookie
and the CSRF token

Chapter 10 Authentication and Authorization in the Django REST Framework

166

�Handling Authentication in the Frontend
Now that we configured NGINX to proxy our requests to the appropriate destination,

and now that the Django backend is ready to handle login requests, we can handle

authentication in the frontend.

The good news is that we won’t write authentication forms by hand, send out tokens,

or save them in localStorage. However, we need to find a way around HttpOnly cookies,

since we can’t access sessionid from JavaScript anymore. It is a common practice

to check if the user is authenticated from JavaScript code by looking at cookies. With

sessionid as a HttpOnly cookie, we don’t have this luxury (and relaxing this protection

is not an option). A possible solution hides in the error messages coming from our

REST API. Any unauthenticated request to the DRF in fact returns Authentication

credentials were not provided, along with a 403 Forbidden error. In the frontend,

we can check for this signal, and then redirect the user to /auth/login/. Let’s open

billing/vue_spa/src/App.vue. This is the root component of our Vue.js application. In

this component we can check whether the user is authenticated before redirecting it to

the login view. To start, in the template section, we render InvoiceCreate only if the user

is authenticated by checking a Boolean in the component’s state. Listing 10-9 shows the

changes in the <template> section.

Listing 10-9.  billing/vue_spa/src/App.vue - Checking if the User Is Logged In

<template>

 <div id="app">

 <div v-if="isLoggedIn">

 <InvoiceCreate />

 </div>

 <div v-else></div>

 </div>

</template>

In the script section of the component, we assemble the following logic:

•	 In mounted(), we make a call to an endpoint

•	 If we get a 200, we consider the user authenticated

•	 If we get a Forbidden, we jump to check the exact type of error from

the Django REST Framework

Chapter 10 Authentication and Authorization in the Django REST Framework

167

Listing 10-10 shows the changes in the <script> section.

Listing 10-10.  billing/vue_spa/src/App.vue - Handling Authentication in the

Frontend

<template>

 <div id="app">

 <div v-if="isLoggedIn">

 <InvoiceCreate />

 </div>

 <div v-else></div>

 </div>

</template>

<script>

import InvoiceCreate from "@/components/InvoiceCreate";

export default {

 name: "App",

 components: {

 InvoiceCreate

 },

 data: function() {

 return {

 isLoggedIn: false

 };

 },

 methods: {

 redirectToLogin: function() {

 this.isLoggedIn = false;

 window.location.href = "/auth/login/";

 }

 },

 mounted() {

 fetch("/billing/api/clients/")

 .then(response => {

Chapter 10 Authentication and Authorization in the Django REST Framework

168

 if (

 !response.ok &&

 response.statusText === "Forbidden"

) {

 return response.json();

 }

 this.isLoggedIn = true;

 })

 .then(drfError => {

 switch (drfError?.detail) {

 case "Authentication credentials were not provided.":

 this.redirectToLogin();

 break;

 default:

 break;

 }

 });

 }

};

</script>

In this code, we make an AJAX request to an endpoint of choice. If the request

returns a Forbidden, we check what kind of error the Django REST Framework gives

us, with a simple switch statement. The first error message we may want to check for

is Authentication credentials were not provided. This is a clear sign that we are

trying to access a protected resource without credentials. If you are worried that checking

authentication or permissions by the means of strings will look hacky because Django

could sooner or later change the error message and return an unexpected string, in

my experience there is always some kind of contract between frontend and backend

developers to agree on which response bodies or error messages they can expect from

each other. If strings are a concern, these can be easily abstracted away into constants. Not

counting that the frontend and the backend must always be put under a strong test suite.

Chapter 10 Authentication and Authorization in the Django REST Framework

169

Note I n this example, we use fetch() to avoid pulling in additional
dependencies. Another valid alternative is axios, which has a convenient
interceptor feature.

With this logic in place, we can add more checks, such as permissions, as we will see

in the next section. This isn’t the most clever implementation, but it gets the job done,

and more important, it uses a battle-tested authentication method. The same approach

can also be used with React: we can serve the single-page application from NGINX, with

Django lurking in the background. It is important to note that this setup works only when

Django and the single-page are served under the same domain. This is easily achievable

with NGINX and Docker. For all those configurations where the client lives on a different

domain instead, token-based authentication is required. With the authentication part in

place, let’s now explore authorization in the Django REST Framework.

Note I n the previous example, we used window.location to redirect the user.
If you use Vue router, the code must be adjusted to use this.$router.push().

�Authorization and Permissions in the Django REST
Framework
Once a user logs in, we are in the middle of the flow.

Authentication is the “who are you” part of the whole story. Next comes the “what

can you do” part. In Chapter 7, we locked down our API by allowing access only to admin

users. Listing 10-11 shows the configuration applied in decoupled_dj/settings/base.py.

Listing 10-11.  decoupled_dj/setting/base.py - Adding Permissions Globally in

the DRF

REST_FRAMEWORK = {

 "DEFAULT_AUTHENTICATION_CLASSES": [

 "rest_framework.authentication.SessionAuthentication",

],

Chapter 10 Authentication and Authorization in the Django REST Framework

170

 "DEFAULT_PERMISSION_CLASSES": [

 "rest_framework.permissions.IsAdminUser"

],

}

To test things in the frontend, we can create an unprivileged user in our Django

project. Open a Django shell and run the following ORM instruction:

User.objects.create_user(username="regular-user", password="insecure-pass")

This will create a new user in the database. If we try to log in with this user on auth/

login/, Django will redirect back to the homepage as expected, but once we land there,

we won’t see anything in the interface. This is because our JavaScript frontend isn’t

wired to handle the case where the Django REST Framework responds with You do not

have permission to perform this action. We can see this error in the Network tab

of the browser’s console for the call to billing/api/clients. With DRF permissions, we

can give users access to REST views. Permissions can be not only set at the configuration

level, but also with granularity on each view. To permit access to authenticated users, not

only to admin on billing/api/clients, we can use the IsAuthenticated permission

class. To apply this permission, open billing/api/views.py and adjust the code as

shown in Listing 10-12.

Listing 10-12.  billing/api/views.py - Applying Permissions on the View Level

...

from rest_framework.permissions import IsAuthenticated

class ClientList(ListAPIView):

 permission_classes = [IsAuthenticated]

 serializer_class = UserSerializer

 queryset = User.objects.all()

...

With this change, any authenticated user can access the view. In the frontend, we

can handle permissions errors by adding another check in the switch statement, which

looks for You do not have permission to perform this action in the response from

the API and shows a user-friendly message to our users. Of course, the permission story

Chapter 10 Authentication and Authorization in the Django REST Framework

171

does not stop here. In the Django REST Framework, we can customize permissions,

grant permissions on the object level, and much more. The documentation covers

almost every possible use case.

Note I t is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_10_authentication.

�Summary
You learned some important key takeaways from this chapter:

•	 Never store tokens or other sensitive data in localStorage

•	 Whenever possible, use session-based authentication to secure

single-page apps

In the next chapter, we begin our exploration of GraphQL in Django with Ariadne.

�Additional Resource
•	 JWTs in Django

Chapter 10 Authentication and Authorization in the Django REST Framework

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_10_authentication
https://groups.google.com/g/django-developers/c/6oS9R2GwO4k/m/Rep92xfsAwAJ

173
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_11

CHAPTER 11

GraphQL in Django
with Ariadne
This chapter covers:

•	 GraphQL schema, operations, and resolvers

•	 Ariadne in Django

•	 React and Django with GraphQL

In the first part of this chapter, we augment the billing app from Chapter 6 with a

GraphQL API. Later, we begin to connect a React/TypeScript frontend to the GraphQL

backend.

Note  This chapter assumes you are in the repo root decoupled-dj, with
the Python virtual environment active and with DJANGO_SETTINGS_MODULE
configured as decoupled_dj.settings.development.

�Getting Started with Ariadne in Django
Chapter 1 covered the fundamentals of GraphQL.

We learned that in order to get data from a GraphQL API, we send a query over a

POST request. To change data on the database instead, we send a so-called mutation. It’s

now time to put the theory in practice by introducing GraphQL into our Django project

with Ariadne, a GraphQL library for Python. Ariadne uses a schema-first approach.

In schema-first, the GraphQL API gets shaped with the GraphQL Schema Definition

Language, in the form of a string or a .graphql file.

https://doi.org/10.1007/978-1-4842-7144-5_11#DOI

174

�Installing Ariadne
To start off, we install Ariadne in the Django project:

pip install ariadne

After the installation, we update requirements/base.txt to include the new

dependency. Next, we enable Ariadne in decoupled_dj/settings/base.py, as shown in

Listing 11-1.

Listing 11-1.  decoupled_dj/settings/base.py - Enabling Ariadne in

INSTALLED_APPS

INSTALLED_APPS = [

 ...

 "ariadne.contrib.django",

]

We also need to make sure that APP_DIRS in TEMPLATES is set to True, as shown in

Listing 11-2.

Listing 11-2.  decoupled_dj/settings/base.py - Template Configuration

TEMPLATES = [

 {

 ...

 "APP_DIRS": True,

 ...

]

That’s all we need to do to get started. After enabling Ariadne, we are now ready to

start building our GraphQL schema.

�Designing the GraphQL Schema
GraphQL enforces the Schema Definition Language to define a schema, which is the

principal building block for the GraphQL API.

Chapter 11 GraphQL in Django with Ariadne

175

This is a large departure from REST where the backend code usually comes first, and

only later we generate documentation for the API. This concept in GraphQL is turned

upside down: we create the schema first, which acts both as a documentation and as

a contract between the GraphQL API and its consumers. Without a schema we cannot

send queries or mutations to the GraphQL API: we would get an error, because the

schema drives exactly what the consumer can ask the service. What’s in a schema? The

GraphQL schema contains a definition of all the operations and model entities available

for consumers. Before thinking about our schema, let’s recap the entities involved in our

billing app. We have the following endpoints:

•	 /billing/api/clients/

•	 /billing/api/invoices/

Plus, we have the following models:

•	 User

•	 Invoice, connected with a foreign key to User

•	 ItemLine, connected with a foreign key to Invoice

Our GraphQL schema must contain the shape of all these models (as long as we

want to expose them in the API), plus the shape of each permitted GraphQL operation,

with their return values. What does this mean in practice? In order to send a getClients

query to the GraphQL API, we first need to define its shape in the schema. Take for

example the query in Listing 11-3.

Listing 11-3.  Example of a Typical GraphQL Query

query {

 getClients {

 name

 }

}

Without the corresponding schema, the query would fail with the following error:

Cannot query field 'getClients' on type 'Query'

All the queries, mutations, and subscriptions available in the GraphQL schema go

under the name of operations.

Chapter 11 GraphQL in Django with Ariadne

176

With this knowledge, let’s define our first schema. Create a new file at billing/

schema.graphql. Notice it has a .graphql extension. Most editors and IDEs offer

completion and IntelliSense for the language, thus it makes sense to have the schema in

its own file. As an alternative we could also write the schema directly as a triple-quoted

string in the code. In this example, we take the first approach. In the schema we are

going to define all the entities for the billing app, plus a first query for getting all clients

from the database. Where do we get the shape of our objects? Since our app already has

a REST API with the DRF, we can look at billing/api/serializers.py to see what fields

are exposed there. After all, DRF serializers are the public interface between Django

models and the rest of the world, and so it’s the GraphQL schema in its own way. Also,

we should look in billing/models.py to see how our models are connected, in order to

express the same relationships in GraphQL. Listing 11-4 shows our first schema based

on our models and on the appropriate fields defined in DRF serializers.

Listing 11-4.  billing/schema.graphql - First Iteration of the GraphQL Schema for

the Billing App

enum InvoiceState {

 PAID

 UNPAID

 CANCELLED

}

type User {

 id: ID

 name: String

 email: String

}

type Invoice {

 user: User

 date: String

 dueDate: String

 state: InvoiceState

 items: [ItemLine]

}

type ItemLine {

Chapter 11 GraphQL in Django with Ariadne

177

 quantity: Int

 description: String

 price: Float

 taxed: Boolean

}

type Query {

 getClients: [User]

}

From the schema we can immediately recognize GraphQL scalar types: ID, String,

Boolean, Int, and Float. These types describe what type of data each field of the object

has. We can also notice an enum type, which represents the different states of an Invoice.

In our serializer we didn’t expose the state field for an Invoice, but it is a good time

to include it in the GraphQL schema. As for the model entities in our database, notice

User, Invoice, and ItemLine as custom objects types with fields. Another thing that

stands out is the way in which model relationships are described. From top to bottom,

we can see that:

•	 Invoice as a user field to a User

•	 Invoice as an items field to a list of ItemLines

•	 The getClients query resolves (returns) a list of Users

Really, the schema is expressiveness at its finest. It’s also worth noting that this

schema isn’t perfect yet, for many reasons. For example, Invoice has date and dueDate

represented as String. This is not what Django expects. We will fix these inconsistencies

later. Eager to see what a GraphQL API looks like in Django, in the next section we load

the schema in Ariadne.

�Loading the Schema in Ariadne
We are a couple of steps away from setting up our first GraphQL endpoint in Django.

To do so, we need to load the schema and make it executable. Create another file at

billing/schema.py, which should contain the code in Listing 11-5.

Chapter 11 GraphQL in Django with Ariadne

178

Listing 11-5.  billing/schema.py - Loading the Schema in Ariadne

from ariadne import load_schema_from_path, gql, make_executable_schema

from ariadne import ObjectType

from pathlib import Path

BASE_DIR = Path(__file__).resolve().parent

schema_file = load_schema_from_path(BASE_DIR / "schema.graphql")

type_defs = gql(schema_file)

query = ObjectType("Query")

"""

TODO: Write resolvers

"""

schema = make_executable_schema(type_defs, query)

In this snippet, we import the necessary tools from Ariadne. In particular:

•	 load_schema_from_path loads our schema file from the filesystem

•	 gql validates the schema

•	 ObjectType creates root types (Query, Mutation, and Subscription)

•	 make_executable_schema connects the schema to resolvers, Python

functions that execute queries against the database

In this first snippet we don’t have any resolver yet. We will add some in the next

sections. It’s also important to note that this code does not do anything on the database

yet. In the next section, we wire up billing/schema.py to a Django URL.

�Wiring Up the GraphQL Endpoint
Before making queries to the GraphQL API, we need to connect our schema to a Django

URL.

To do so, we add an URL named graphql/ in billing/urls.py, as shown in

Listing 11-6.

Chapter 11 GraphQL in Django with Ariadne

179

Listing 11-6.  billing/urls.py - Enabling the GraphQL Endpoint

from django.urls import path

from .views import Index

from .api.views import ClientList, InvoiceCreate

from ariadne.contrib.django.views import GraphQLView

from .schema import schema

app_name = "billing"

urlpatterns = [

 path("", Index.as_view(), name="index"),

 path("api/clients/", ClientList.as_view(), name="client-list"),

 path("api/invoices/", InvoiceCreate.as_view(), name="invoice-create"),

 path("graphql/", GraphQLView.as_view(schema=schema), name="graphql"),

]

In this URL configuration for Django, we import GraphQLView from Ariadne, which

works much like a regular CBV. After saving the file and starting the Django project with

python manage.py runserver, we can head over to http://127.0.0.1:8000/billing/

graphql/. This should open the GraphQL Playground, an interactive tool for exploring

the GraphQL API. In the playground we can send out queries, mutations, or just explore

the schema and the integrated documentation. Figure 11-1 shows the schema we

created before as it appears on the GraphQL Playground.

Chapter 11 GraphQL in Django with Ariadne

180

Figure 11-2 instead shows the auto-generated documentation for our first query.

Figure 11-1.  The GraphQL Playground for Ariadne. It exposes the schema and a
convenient documentation

Chapter 11 GraphQL in Django with Ariadne

181

To send queries to this GraphQL endpoint, we can use the playground or more

realistically a JavaScript client. For a quick test, you can also use curl. Open another

terminal and launch the following command:

curl -X POST --location "http://127.0.0.1:8000/billing/graphql/" \

 -H "Accept: application/json" \

 -H "Content-Type: application/json" \

 -d "{

 \"query\": \"query { getClients { name } }\"

 }"

In response, you should get the following result:

{"data": {"getClients": null } }

This is a sign that our GraphQL API is working, but nothing gets returned from our

query. Time to meet resolvers in the next section.

Figure 11-2.  Our first query appears in the auto-generated documentation

Chapter 11 GraphQL in Django with Ariadne

182

�Working with Resolvers
What’s a resolver in GraphQL? In its simplest form, a resolver is a callable (a method or a

function) in charge of querying a database or any other source. Resolvers in GraphQL are

the bridge between the public API and the database, and this is also the hardest part of the

equation. GraphQL is simply a spec, and most implementations do not include a database

layer. Luckily, Django has a great ORM to ease the burden of working directly with raw

SQL queries. Let’s revisit our schema, specifically the query shown in Listing 11-7.

Listing 11-7.  Our First Query

type Query {

 getClients: [User]

}

This query has a field called getClients. In order to get our getClients query

working, we need to bind this query field to a resolver. To do so, we go back to billing/

schema.py where we add a first resolver, as in Listing 11-8.

Listing 11-8.  billing/schema.py - Adding a Resolver to the Mix

from ariadne import load_schema_from_path, gql, make_executable_schema

from ariadne import ObjectType

from pathlib import Path

from users.models import User

BASE_DIR = Path(__file__).resolve().parent

schema_file = load_schema_from_path(BASE_DIR / "schema.graphql")

type_defs = gql(schema_file)

query = ObjectType("Query")

@query.field("getClients")

def resolve_clients(obj, info):

 return User.objects.all()

schema = make_executable_schema(type_defs, query)

Chapter 11 GraphQL in Django with Ariadne

183

The most notable change in this file is that we import the User model, and we

decorate a resolver function with @query.field(). In the example, the resolver resolve_

clients() gets two parameters: obj and info. info contains details about the requested

field, and more important, it carries a context object that has the HTTP request attached.

This is an instance of WSGIRequest for a Django project running synchronously. obj

is any value returned from a parent resolver, since resolvers can also be nested. In our

example we don’t use these parameters for now. Once we save the file, we can include as

many fields as we want in our query for each single user. For example, we can send the

query in Listing 11-9 in the GraphQL Playground.

Listing 11-9.  A GraphQL Query for Fetching All Clients

query {

 getClients {

 id

 name

 email

 }

}

Notice that in the Python code for Ariadne, we didn’t define resolvers for id, name, or

email. We simply defined a resolver for the getClients query. It would be impractical to

define by hand a resolver for each field, and luckily, GraphQL has us covered. Ariadne can

handle these fields with the concept of default resolvers, taken from graphql-core, which

Ariadne builds upon. Our query will now return the response shown in Listing 11-10.

Listing 11-10.  The Response from the GraphQL API

{

 "data": {

 "getClients": [

 {

 "id": "1",

 "name": "Juliana",

 "email": "juliana@acme.io"

 },

Chapter 11 GraphQL in Django with Ariadne

184

 {

 "id": "2",

 "name": "John",

 "email": "john@zyx.dev"

 }

]

 }

}

If you don’t have a user in the database yet, create some from the shell:

python manage.py shell_plus

To create two users, run the following queries (>>> is the shell prompt):

>>> User.objects.create_user(username="jul81", name="Juliana",

email="juliana@acme.io")

>>> User.objects.create_user(username="john89", name="John",

email="john@zyx.dev")

Note  So far we talked about databases, but GraphQL can work with almost any
data source. Gatsby is a great example of this capability: the Markdown plugin for
example can resolve data from .md files.

Congratulations on creating your first GraphQL endpoint! Let’s now learn about

query arguments in GraphQL.

�Using Query Arguments in GraphQL
So far we fetched all the users from the database.

What if we want to fetch just one? This is where query arguments come into play.

Let’s imagine the following GraphQL query:

Chapter 11 GraphQL in Django with Ariadne

185

query {

 getClient(id: 2) {

 name

 email

 }

}

Here we have a query field, used much like a function. id is the argument for the

“function”. In the body instead, we declare the fields we want to fetch for the single user.

To support this query, the schema must know about it. This means we need to:

•	 Define the new query field in the schema

•	 Create a resolver to fulfill the field

First off, in billing/schema.graphql, we add the new field to the existing Query

object, as shown in Listing 11-11 (all the existing object types must be left intact).

Listing 11-11.  billing/schema.graphql - Adding a New Field to the Query

type Query {

 getClients: [User]

 getClient(id: ID!): User

}

In the new getClient field, notice the id parameter with its scalar type ID, which is

now followed by an exclamation mark. This symbol means that the parameter is non-

nullable: we cannot query with a null ID, for obvious reasons.

Note  The non-nullable constraint can be applied to any GraphQL object
field or list.

With the schema in good shape, we now proceed to define the new resolver in

billing/schema.py, as shown in Listing 11-12 (for brevity, we show just the new

resolver).

Chapter 11 GraphQL in Django with Ariadne

186

Listing 11-12.  billing/schema.py - An Additional Resolver for Fulfilling the New

Query

...

@query.field("getClient")

def resolve_client(obj, info, id):

 return User.objects.get(id=id)

...

In this new resolver, alongside obj and info, we can also see a third parameter

named id. This parameter will be passed by our GraphQL query to the resolver. In

general, any number of parameters defined in the query are passed down to the

corresponding resolver. We can now issue the query shown in Listing 11-13 in the

playground.

Listing 11-13.  Retrieving a Single User from the GraphQL Playground

query {

 getClient(id: 2) {

 name

 email

 }

}

The server should return the response shown in Listing 11-14.

Listing 11-14.  The GraphQL Response for a Single User

{

 "data": {

 "getClient": {

 "name": "John",

 "email": "john@zyx.dev"

 }

 }

}

After this tour of data fetching, it’s now time to do something more challenging: add

data with a mutation.

Chapter 11 GraphQL in Django with Ariadne

187

�A Word on Schema-First vs Code-First
We can already spot a pattern after adding a couple of queries and resolvers to our

GraphQL API.

Every time we need a new field, we update two files:

•	 billing/schema.graphql

•	 billing/schema.py

A solution to this problem consists in co-locating the textual schema right inside the

code. Consider the following example:

type_defs = gql(

 """

 type User {

 id: ID

 name: String

 email: String

 }

 """

)

Instead of loading the schema from the file, we place it directly in gql. This is a

convenient approach. However, the ability to derive and generate the schema starting

from the code, with a code-first approach, turns out to be even more flexible than

dealing with strings. Graphene and Strawberry follow this path exactly.

�Implementing Mutations
Mutations in GraphQL are side effects, that is, operations meant to change the state of

the database.

In Chapter 6, we worked on a REST backend, which accepted POST requests from the

frontend to create new invoices. To create a new invoice, our backend wanted:

•	 The user ID to associate to the invoice

•	 The invoice date

•	 The invoice due date

•	 One or more item lines (an array) to associate to the invoice

Chapter 11 GraphQL in Django with Ariadne

188

To implement the same logic in GraphQL we must think in terms of mutations. A

mutation has the following traits:

•	 It’s not a query

•	 It takes arguments

We already saw how a GraphQL query with arguments looks. A mutation is not so

different. With the requirements for creating a new invoice in mind, we want to be able

to craft the mutation shown in Listing 11-15.

Listing 11-15.  The Mutation Request for Creating a New Invoice

mutation {

 invoiceCreate(invoice: {

 user: 1

 date: "2021-02-15"

 dueDate: "2021-02-15"

 state: PAID

 items: [{

 quantity: 1

 description: "Django backend"

 price: 6000.00

 taxed: false

 },

 {

 quantity: 1

 description: "React frontend"

 price: 8000.00

 taxed: false

 }]

 }) {

 user { id }

 date

 state

 }

}

Chapter 11 GraphQL in Django with Ariadne

189

We can see from the invoice argument that the payload is not a simple scalar

anymore, but a complex object. Such an input object is known as input type, that is, a

strongly typed argument. We could pass these arguments separately in the signature of

the mutation, but better, we can leverage GraphQL type system to define the shape of

a single object as an argument. As a return value from this query, we ask the server to

respond with the following data:

•	 The user ID connected to the new invoice

•	 The date and the state of the invoice

The process of adding a mutation in GraphQL is not dissimilar from adding queries:

•	 First we define the mutation and its inputs in the schema

•	 Then we create a resolver to handle the side effect

In GraphQL, mutations are declared under the Mutation type. To create our first

mutation, add the code in Listing 11-16 to billing/schema.graphql.

Listing 11-16.  billing/schema.graphql - The Mutation for Creating a New Invoice

type Mutation {

 invoiceCreate(invoice: InvoiceInput!): Invoice!

}

The invoiceCreate mutation takes an argument named invoice, of type

InvoiceInput, non-nullable. In exchange, it returns a non-nullable Invoice. We now

need to define input types. What they should look like? First of all, they should contain all

the required fields for creating an invoice. Let’s also not forget that item lines are an array

of items. In billing/schema.graphql, we create two input types, as in Listing 11-17.

Listing 11-17.  billing/schema.graphql - Input Types for the Mutation

input ItemLineInput {

 quantity: Int!

 description: String!

 price: Float!

 taxed: Boolean!

}

Chapter 11 GraphQL in Django with Ariadne

190

input InvoiceInput {

 user: ID!

 date: String!

 dueDate: String!

 state: InvoiceState

 items: [ItemLineInput!]!

}

type Mutation {

 invoiceCreate(invoice: InvoiceInput!): Invoice!

}

We now have:

•	 InvoiceInput: The input type used as the argument type for the

mutation. It has an items array of ItemLineInput.

•	 ItemLineInput: The input type that represents a single item, as an

input type.

These input types will be reflected in the schema and in the documentation. With

the schema in place, we can now wire up the corresponding resolver.

Note A fter making changes to billing/schema.graphql, you should restart
Django development server, otherwise the changes won’t be picked up.

�Adding a Resolver for the Mutation
With the definition of the mutation in place, we can now add the corresponding resolver.

This resolver will touch the database to save a new invoice. To make this work, we

need to introduce a bit more code in our schema, specifically:

•	 MutationType: To create a Mutation root type

•	 Invoice and ItemLine: The Django models

Listing 11-18 shows the changes we need to make in billing/schema.py.

Chapter 11 GraphQL in Django with Ariadne

191

Listing 11-18.  billing/schema.py - Adding a Resolver to Fulfill the Mutation

...

from ariadne import ObjectType, MutationType

...

from billing.models import Invoice, ItemLine

...

mutation = MutationType()

@mutation.field("invoiceCreate")

def resolve_invoice_create(obj, info, invoice):

 user_id = invoice.pop("user")

 items = invoice.pop("items")

 invoice = Invoice.objects.create(user_id=user_id, **invoice)

 for item in items:

 ItemLine.objects.create(invoice=invoice, **item)

 return invoice

schema = make_executable_schema(type_defs, query, mutation)

A lot is going on in this code. Let’s break it down:

•	 We use MutationType() to create a new mutation root type in

Ariadne

•	 We decorate the mutation resolver so that it maps to the field defined

in the schema

•	 In the resolver, we create a new invoice with the ORM

•	 We bind the mutation to the schema

Django wants an instance of the user to create a new invoice, but all we have from

the GraphQL request is the ID of the user. This is why we remove user from the payload

to pass it as user_id to Invoice.objects.create(). As for the next steps, the logic

resembles what we did in Chapter 5 in the serializer. With this additional code in place,

we can now send the mutation shown in Listing 11-19 to GraphQL.

Chapter 11 GraphQL in Django with Ariadne

192

Listing 11-19.  The Mutation Request for Creating a New Invoice

mutation {

 invoiceCreate(invoice: {

 user: 1

 date: "2021-02-15"

 dueDate: "2021-02-15"

 state: PAID

 items: [{

 quantity: 1

 description: "Django backend"

 price: 6000.00

 taxed: false

 },

 {

 quantity: 1

 description: "React frontend"

 price: 8000.00

 taxed: false

 }]

 }) {

 user { id }

 date

 state

 }

}

Send out the mutation in the GraphQL Playground and you should see the following

error:

Invoice() got an unexpected keyword argument 'dueDate'

This comes from the ORM layer of Django. In our mutation, we are sending out a

field named dueDate, which is by convention in the GraphQL/JS world in camel case.

However, Django expects due_date, as it’s defined in the model. To fix this mismatch we

can use convert_kwargs_to_snake_case from Ariadne. Open billing/schema.py and

apply the change shown in Listing 11-20.

Chapter 11 GraphQL in Django with Ariadne

193

Listing 11-20.  billing/schema.py - Converting from Camel Case to Snake Case

...

from ariadne.utils import convert_kwargs_to_snake_case

...

...

@mutation.field("invoiceCreate")

@convert_kwargs_to_snake_case

def resolve_invoice_create(obj, info, invoice):

...

Here, we decorate our mutation resolver with the converter utility. If everything is in

the right spot, the server should now return the following response:

{

 "data": {

 "invoiceCreate": {

 "user": {

 "id": "1",

 "email": "juliana@acme.io"

 },

 "date": "2021-02-15",

 "state": "PAID"

 }

 }

}

With the query and the mutation in place, we are now ready to connect a React

frontend to our GraphQL backend. But first, a word about GraphQL clients.

�Introduction to GraphQL Clients
We saw that as far the network layer is concerned, GraphQL does not seem to require

arcane tooling.

The conversation between a GraphQL client and its server happens over HTTP,

with POST requests. We could even call a GraphQL service with curl. This means, in

the browser we can use fetch, axios, or even XMLHttpRequest to make requests against

Chapter 11 GraphQL in Django with Ariadne

194

a GraphQL API. In reality, this could work well for tiny apps, but sooner or later, in the

real-world we need more than fetch. Specifically, for almost every data-fetching layer,

we need to take into account some kind of caching. Thanks to the way GraphQL works,

we can request only a subset of the data, but this does not rule out the need for sparing

round trips to the server. In the next sections we work with one of the most popular

GraphQL clients for JavaScript: Apollo Client. This tool abstracts away all the mundane

details of performance optimization for developers working with GraphQL in the

frontend.

�Building the React Frontend
In Chapter 6, we built a Vue.js app for creating invoices.

The app has a <form>, which in turn contains a <select> and a number of fields

for inserting invoice details. For this React app, we build the same structure, this time

splitting each sub-component in its own file. In this chapter, we work with the query

part. In Chapter 12, we see how to work with mutations. To start off we initialize a React

project. We move to the billing folder, and we launch create-react-app. To create the

React project, run the following command:

npx create-react-app react_spa --template typescript

This will create the project in billing/react_spa. Once the project is in place, in a

new terminal move into the folder:

cd react_spa

From this folder we will start the React application as soon as the GraphQL layer is in

place.

Note  For the React part, we work in decoupled_dj/billing/react_spa.
Each proposed file must be created or change in the appropriate subfolder, starting
from this path.

Chapter 11 GraphQL in Django with Ariadne

195

�Getting Started with Apollo Client
To start off, we need to install Apollo Client in our project.

To do so, run the following command:

npm i @apollo/client

Once the installation is done, open src/App.tsx, wipe out all the boilerplate, and

populate the file with the code shown in Listing 11-21.

Listing 11-21.  src/App.tsx - Initializing Apollo Client

import {

 ApolloClient,

 InMemoryCache,

 gql,

} from "@apollo/client";

const client = new ApolloClient({

 uri: "http://127.0.0.1:8000/billing/graphql/",

 cache: new InMemoryCache(),

});

Here we initialize the client by providing the URL of our GraphQL service. The

ApolloClient constructor takes at least these two options:

•	 uri: The GraphQL service address

•	 cache: The caching strategy for the client

Here we use InMemoryCache, which is the default caching package included in Apollo

Client. Once we have a client instance, to send requests to the server, we can use:

•	 client.query() to send queries

•	 client.mutate() to send mutations

For the usage with React, Apollo offers also a set of convenient hooks. In the

next sections we create three React components, and we see how to work with client

methods, and later with hooks.

Chapter 11 GraphQL in Django with Ariadne

196

�Creating a Select Component
The <select> is part of our form, and will receive props from the outside. It should

render an <option> element for each user in the database. In src/Select.tsx, we create

the component shown in Listing 11-22.

Listing 11-22.  src/Select.tsx - Select Component with TypeScript Definitions

import React from "react";

type Props = {

 id: string;

 name: string;

 options: Array<{

 id: string;

 email: string;

 }>;

};

const Select = ({ id, name, options }: Props) => {

 return (

 <select id={id} name={name} required={true}>

 <option value="">---</option>

 {options.map((option) => {

 return (

 <option value={option.id}>{option.email}</option>

);

 })}

 </select>

);

};

export default Select;

This component accepts from the outside a list of options to render out to the user.

Before adding GraphQL, in Vue.js we were fetching this data from the REST API. In this

app instead, we let a root component handle the data fetching, this time from a GraphQL

service, and pass the data to the <select>. Let’s now build the form.

Chapter 11 GraphQL in Django with Ariadne

197

�Creating a Form Component
The form component is rather simple, as it accepts a function for handling the submit

event, alongside one or more children. In src/Form.tsx, we create the component

shown in Listing 11-23.

Listing 11-23.  src/Form.tsx - Form Component with TypeScript Definitions

import React from "react";

type Props = {

 children: React.ReactNode;

 handleSubmit(

 event: React.FormEvent<HTMLFormElement>

): void;

};

const Form = ({ children, handleSubmit }: Props) => {

 return <form onSubmit={handleSubmit}>{children}</form>;

};

export default Form;

With the <form> and the <select> in place, we can now wire up the root component

that will contain both.

�Creating the Root Component and Making Queries
Each React app must have a root component, which in charge of rendering the shell of

the whole app. To keep things simple, we will create the root component in src/App.tsx.

In our root component, we need to:

•	 Query the GraphQL service for a list of clients, with a query

•	 Handle the submit event, with a mutation

Chapter 11 GraphQL in Django with Ariadne

198

The idea here is that when the app mounts, we use useEffect() to query the

GraphQL API with client.query(). In the GraphQL Playground, we used the following

query to get a list of clients:

query {

 getClients {

 id

 email

 }

}

In our React component we will use the same query to fetch clients. This is also the

source of data for our <select>. The only thing to keep in mind when assembling the

query is that this is an anonymous query, while in our React component we need to use

a slightly different form, as a named query. Let’s create the component in src/App.tsx,

as in Listing 11-24.

Listing 11-24.  src/App.tsx - React Component for Fetching Data

import React, { useEffect, useState } from "react";

import {

 ApolloClient,

 InMemoryCache,

 gql,

} from "@apollo/client";

import Form from "./Form";

import Select from "./Select";

const client = new ApolloClient({

 uri: "http://127.0.0.1:8000/billing/graphql/",

 cache: new InMemoryCache(),

});

const App = () => {

 const [options, setOptions] = useState([

 { id: "", email: "" },

]);

Chapter 11 GraphQL in Django with Ariadne

199

 const handleSubmit = (

 event: React.FormEvent<HTMLFormElement>

) => {

 event.preventDefault();

 // client.mutate()

 };

 const GET_CLIENTS = gql`

 query getClients {

 getClients {

 id

 email

 }

 }

 `;

 useEffect(() => {

 client

 .query({

 query: GET_CLIENTS,

 })

 .then((queryResult) => {

 setOptions(queryResult.data.getClients);

 })

 .catch((error) => {

 console.log(error);

 });

 }, []);

 return (

 <Form handleSubmit={handleSubmit}>

 <Select id="user" name="user" options={options} />

 </Form>

);

};

export default App;

Chapter 11 GraphQL in Django with Ariadne

200

Let’s explain in detail what is inside this code:

•	 We keep the logic for Apollo Client

•	 We use useState() to initialize the state for the component

•	 The state contains a list of options for the <select>, passed as props

•	 We define a minimal method for handling the submit event

•	 We use useEffect() to fetch data from the GraphQL API

•	 We render Form and Select to the user

It’s also worth going through the Apollo part. First, the query is shown in Listing 11-25.

Listing 11-25.  Building the Query

...

 const GET_CLIENTS = gql`

 query getClients {

 getClients {

 id

 email

 }

 }

 `;

...

Here we use gql to wrap the query in a template literal tag. This will generate a

GraphQL Abstract syntax tree, which is used by the actual GraphQL client. Next up, let’s

examine the logic for sending the query:

...

 client

 .query({

 query: GET_CLIENTS,

 })

 .then((queryResult) => {

 setOptions(queryResult.data.getClients);

 })

Chapter 11 GraphQL in Django with Ariadne

201

 .catch((error) => {

 console.log(error);

 });

...

In this logic, we call client.query() by providing an object with a query property,

which gets assigned the previous query. client.query() returns a promise. This means

we can use then() to consume the result, and catch() to handle errors. Inside then()

we access the query result, and we use setOptions from the component state to save

the result. The query result is accessible on data.getClients, which happens to be the

name of our query. This looks a bit verbose. In fact, Apollo offers a useQuery() hook to

reduce the boilerplate, as we will see in a moment. With everything saved, to test things

out we should run Django, as usual in a terminal from decoupled-dj:

python manage.py runserver

In the other terminal, from /billing/react_spa we can run the React app:

npm start

This will launch React at http://localhost:3000/. In the UI, we should be able to

see a select element, where each option renders the ID and the email of each client, as

in Figure 11-3.

Chapter 11 GraphQL in Django with Ariadne

202

This might not look like a tremendous achievement, not so different from fetching

data with axios or fetch. In the next section, we see how to clean up the logic with Apollo

Hooks for React.

�Using Apollo Hooks for React
Apollo Client does not discourage the use of client.query().

However, in React applications, developers might want to use Apollo Hooks to keep

the codebase consistent, much like we are accustomed to reaching for useState()

and useEffect() in our components. Apollo Client includes a set of hooks that make

Figure 11-3.  The select component receives data from the GraphQL API

Chapter 11 GraphQL in Django with Ariadne

203

working with GraphQL a breeze in React. To make queries, we can use the useQuery()

hook instead of client.query(). However, this needs a bit of rearrangement in our

application. First off, we need to wrap the whole app with ApolloProvider. For those

familiar with Redux or the React Context API, this is the same concept exposed by Redux

Provider or by the React Context counterpart. In our app, we first need to move Apollo

Client instantiation in src/index.tsx. In this same file, we also wrap the whole app with

the provider. Listing 11-26 illustrates the changes we need to make.

Listing 11-26.  src/index.tsx - The App Shell

import React from "react";

import ReactDOM from "react-dom";

import {

 ApolloClient,

 InMemoryCache,

 ApolloProvider,

} from "@apollo/client";

import App from "./App";

const client = new ApolloClient({

 uri: "http://127.0.0.1:8000/billing/graphql/",

 cache: new InMemoryCache(),

});

ReactDOM.render(

 <React.StrictMode>

 <ApolloProvider client={client}>

 <App />

 </ApolloProvider>

 </React.StrictMode>,

 document.getElementById("root")

);

Now, in src/App.tsx we import only gql and useQuery from Apollo Client, plus we

arrange the query a bit by moving it outside the component. In the component body

instead we use useQuery(), as in Listing 11-27.

Chapter 11 GraphQL in Django with Ariadne

204

Listing 11-27.  src/App.tsx - GraphQL Query with Apollo Hook

import React from "react";

import { gql, useQuery } from "@apollo/client";

import Form from "./Form";

import Select from "./Select";

const GET_CLIENTS = gql`

 query getClients {

 getClients {

 id

 email

 }

 }

`;

const App = () => {

 const { loading, data } = useQuery(GET_CLIENTS);

 const handleSubmit = (

 event: React.FormEvent<HTMLFormElement>

) => {

 event.preventDefault();

 // client.mutate()

 };

 return loading ? (

 <p>Loading ...</p>

) : (

 <Form handleSubmit={handleSubmit}>

 <Select

 id="user"

 name="user"

 options={data.getClients}

 />

Chapter 11 GraphQL in Django with Ariadne

205

 </Form>

);

};

export default App;

Both Form and Select can stay the same. We can also notice that useQuery() takes

our query as an argument and gives back for free a loading Boolean, convenient for

conditional rendering, and a data object which contains the query result. This is much

cleaner than client.query(). If we run the project again, everything should still work

as expected, with a <select> rendered in the UI. With this change we now take full

advantage of the declarative style of hooks, paired with GraphQL.

Note I t is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_11_graphql_ariadne.

�Summary
This chapter augmented the billing app from Chapter 6 with a GraphQL API. You also

saw how to connect React to a GraphQL backend. In the process you learned about:

•	 GraphQL building blocks

•	 Adding GraphQL to a Django project with Ariadne

•	 Connecting React to a GraphQL backend

In the next chapter, we continue our exploration of GraphQL in Django, with

Strawberry, and we also add mutations to the mix.

�Additional Resources
•	 Ariadne documentation

•	 GraphQL: Designing a Data Language

Chapter 11 GraphQL in Django with Ariadne

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_11_graphql_ariadne
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_11_graphql_ariadne
https://ariadnegraphql.org/docs/
https://www.youtube.com/watch?v=Oh5oC98ztvI

207
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5_12

CHAPTER 12

GraphQL in Django
with Strawberry
This chapter covers:

•	 Code-first GraphQL with Strawberry

•	 Asynchronous Django and GraphQL

•	 Mutations with Apollo Client

In the previous chapter, we introduced the concept of schema-first for GraphQL APIs

with Ariadne.

We explored queries and Apollo Client. In this chapter, we switch to a code-first

approach to build our GraphQL API with Strawberry. In the process, we add mutations

in the frontend to the mix, and we learn how to work with asynchronous code in Django.

Note  The rest of this chapter assumes you are in the repo root decoupled-dj,
with the Python virtual environment active and with DJANGO_SETTINGS_MODULE
configured as decoupled_dj.settings.development.

�Getting Started with Strawberry in Django
In the beginning, GraphQL was mainly targeted at JavaScript.

It’s not a coincidence that most early implementations of GraphQL servers were

written for Node.js. In time, most programming communities picked up interest in this

new paradigm for data querying, and these days we have a GraphQL implementation in

most languages. In the Python land, we explored Ariadne and we mentioned Graphene.

https://doi.org/10.1007/978-1-4842-7144-5_12#DOI

208

What makes Strawberry different from these libraries? First off, Strawberry uses Python

dataclasses heavily. Dataclasses in Python are a simple way to declare concise classes

with attributes and optional logic. The following example shows a Python dataclass:

class User:

 name: str

 email: str

In this example, we declared a Python class with no behavior, but with two attributes,

name and email. These attributes are also strongly typed; that is, they are able to enforce

the kind of type they can hold, which is strings in this case. Strawberry makes heavy use

of Python type hints. Type hints are an optional Python feature that can improve the

robustness of our code. Python, much like JavaScript, is a dynamic language that does not

enforce static types. With type hints, we can add a type layer to our Python code, which

can be checked with a tool named MyPy before releasing the code in production. This

can catch nasty bugs that could make their way to the runtime environment. Additionally,

static type checks improve the developer experience. In Strawberry, we will use

dataclasses to define our GraphQL types and type hints all along the way. Time to practice!

�Installing Strawberry
To start off, we install Strawberry in our Django project:

pip install strawberry-graphql

After the installation, we update requirements/base.txt to include the new

dependency. Next up, we enable Strawberry in decoupled_dj/settings/base.py, as

shown in Listing 12-1.

Listing 12-1.  decoupled_dj/settings/base.py - Enabling Strawberry in

INSTALLED_APPS

INSTALLED_APPS = [

 ...

 "strawberry.django",

]

With Strawberry enabled, we can move to refactoring the schema from schema-first

to code-first.

Chapter 12 GraphQL in Django with Strawberry

209

�Designing the GraphQL Schema in Strawberry
In the previous chapter, we created a GraphQL schema in a .graphql file.

Let’s recap what we have so far. Listing 12-2 shows the GraphQL schema we

assembled in Chapter 11.

Listing 12-2.  billing/schema.graphql - The Original GraphQL Schema

enum InvoiceState {

 PAID

 UNPAID

 CANCELLED

}

type User {

 id: ID

 name: String

 email: String

}

type Invoice {

 user: User

 date: String

 dueDate: String

 state: InvoiceState

 items: [ItemLine]

}

type ItemLine {

 quantity: Int

 description: String

 price: Float

 taxed: Boolean

}

type Query {

 getClients: [User]

 getClient(id: ID!): User

}

Chapter 12 GraphQL in Django with Strawberry

210

input ItemLineInput {

 quantity: Int!

 description: String!

 price: Float!

 taxed: Boolean!

}

input InvoiceInput {

 user: ID!

 date: String!

 dueDate: String!

 state: InvoiceState

 items: [ItemLineInput!]!

}

type Mutation {

 invoiceCreate(invoice: InvoiceInput!): Invoice!

}

In this schema, we used most of the GraphQL scalar types the language has to offer,

plus our custom types and input types definitions. We also created two queries and

a mutation. To appreciate what Strawberry has to offer, let’s port each element of our

schema from a plain text schema to Python code.

�Types and Enums in Strawberry
To start off we begin with the base types of our GraphQL schema.

We need to declare User, Invoice, and ItemLine. To create the schema, open

billing/schema.py, wipe out all the code we created in Chapter 11, and import the

modules shown in Listing 12-3.

Listing 12-3.  billing/schema.py - Initial Imports

import strawberry

import datetime

import decimal

from typing import List

Chapter 12 GraphQL in Django with Strawberry

211

typing is the main Python module from which we can peruse the most common

type declarations. Next is strawberry itself. We also need the decimal module and the

quintessential datetime. Next up, we are ready to create our first types. Listing 12-4

shows three GraphQL types in Strawberry.

Listing 12-4.  billing/schema.py - First Types in Strawberry

import strawberry

import datetime

import decimal

from typing import List

@strawberry.type

class User:

 id: strawberry.ID

 name: str

 email: str

@strawberry.type

class Invoice:

 user: User

 date: datetime.date

 due_date: datetime.date

 state: InvoiceState

 items: List["ItemLine"]

@strawberry.type

class ItemLine:

 quantity: int

 description: str

 price: decimal.Decimal

 taxed: bool

For someone new to Python typings, there a lot of things here that need a bit of

explanation. Thankfully, Python is expressive enough to not overcomplicate things. Let’s

start from the top.

Chapter 12 GraphQL in Django with Strawberry

212

To declare a new GraphQL type in Strawberry we use the @strawberry.type

decorator, which goes on top of our dataclasses. Next, each type is declared as a

dataclass, each containing a set of attributes. In Chapters 1 and 11, we saw GraphQL

scalar types. In Strawberry there isn’t anything special to describe these scalars, apart

from strawberry.ID. As you can see in Listing 12-4, most scalar types are represented as

Python primitives: str, int, and bool. The only exception to this are the types for date

and due_date, which we declared as strings in the original GraphQL schema. Since types

in Strawberry are dataclasses, and dataclasses are “just” Python code, instead of strings

for our date, we can now use datetime.date objects. This was one of our unsolved

problems in Chapter 11, and it’s now fixed.

Note Y ou may wonder what’s the deal with due_date here and dueDate
from the previous chapter. In the original GraphQL schema, we used dueDate
in camel case. Ariadne converts this syntax to snake case before it reaches
the Django ORM. Now we use snake case again in the GraphQL schema. Why?
Being Python code, the convention is to use snake case for longish variables and
function names. But this time, the conversion happens the other way around: in the
GraphQL documentation schema, Strawberry will display the field as camel case!

Moving forward, notice how the relations are described by associating the dataclass

attribute with the corresponding entity, like the User dataclass assigned to user in

Invoice. Also note that the List type from Python typings to associate ItemLine

to items. Previously, we used the Float scalar from GraphQL for the price of each

ItemLine. In Python, we can use a more appropriate decimal.Decimal. Even from a

simple listing like this, we can deduce that the Strawberry approach to writing GraphQL

schemas as Python code brings a lot of benefits, including type safety, flexibility, and

better handling of scalar types.

In the original GraphQL schema, we had an enum type associated with Invoice,

which specifies whether the invoice is paid, unpaid, or cancelled. In the new schema

we already have Invoice, so it’s a matter of adding the enum. In Strawberry, we can use

plain Python enums to declare the corresponding GraphQL type. In the schema file, add

the enumeration, as in Listing 12-5 (this should go before User).

Chapter 12 GraphQL in Django with Strawberry

213

Listing 12-5.  billing/schema.py - Enum Type in Strawberry

...

from enum import Enum

@strawberry.enum

class InvoiceState(Enum):

 PAID = "PAID"

 UNPAID = "UNPAID"

 CANCELLED = "CANCELLED"

...

This is quite similar to the choices for our Invoice model in Django. With a bit of

creativity, one could reuse this Strawberry enum in the Django model (or the other

way around). With the enum in place, we are almost ready to test things out. Let’s add

resolvers and queries in the next sections.

�Working with Resolvers (Again)
We already learned that a GraphQL schema needs resolvers to return data.

Let’s add two resolvers to our schema, copied almost straight from Chapter 11 (see

Listing 12-6).

Listing 12-6.  billing/schema.py - Adding Resolvers to the Schema

...

from users.models import User as UserModel

...

def resolve_clients():

 return UserModel.objects.all()

def resolve_client(id: strawberry.ID):

 return UserModel.objects.get(id=id)

To avoid clashing with the User GraphQL type here, we import our user model

as UserModel. Next up, we declare resolvers to fulfill the original GraphQL queries,

namely getClient and getClients. Notice how we pass an id as the argument to the

Chapter 12 GraphQL in Django with Strawberry

214

second resolver to fetch a single user by ID as we did in the previous chapter. With these

resolvers in place we can add a Query type and finally wire up the GraphQL endpoint in

the next section.

�Queries in Strawberry and Wiring Up the GraphQL
Endpoint
With the fundamental types and the resolvers in place, we can create a code-first Query

type for our API.

Add the code shown in Listing 12-7 to the schema file.

Listing 12-7.  billing/schema.py - Adding a Root Query Type

@strawberry.type

class Query:

 get_clients: List[User] = strawberry.field(resolver=resolve_clients)

 get_client: User = strawberry.field(resolver=resolve_client)

schema = strawberry.Schema(query=Query)

Here we are telling Strawberry that there’s a Query type for GraphQL with two fields.

Let’s look at these fields in detail:

•	 get_clients returns a list of Users and is connected to the resolver

named resolve_clients

•	 get_client returns a single User and is connected to the resolver

named resolve_client

Both resolvers are wrapped with strawberry.field(). Notice that both queries

will be converted to camel case in the GraphQL documentation, even though they are

declared as snake case in our code. In the last line we load our schema into Strawberry,

so it is picked up and served to the user. It is important to note that resolvers in

Strawberry don’t have to be disconnected from the Query dataclass itself. In fact, we

could have declared them as methods in the Query. We leave these two resolvers outside

of the dataclass, but we will see mutations as methods of the Mutation dataclass in a

moment.

Chapter 12 GraphQL in Django with Strawberry

215

With this logic in place, we can connect the GraphQL layer to the Django URL system

in billing/urls.py. Remove the GraphQL view from Ariadne. This time, instead of

a regular view, we use the asynchronous GraphQL view from Strawberry, as shown in

Listing 12-8.

Listing 12-8.  billing/urls.py - Wiring Up the GraphQL Endpoint

...

from strawberry.django.views import AsyncGraphQLView

...

app_name = "billing"

urlpatterns = [

 ...

 path("graphql/",

 AsyncGraphQLView.as_view(schema=schema),

 name="graphql"

),

]

By running the GraphQL API asynchronously, we have a world of new possibilities,

but a lot of new things to think about as well, as we will see in a moment. We explore an

example in the next sections. Remember that to run Django asynchronously, we need

an ASG-capable server like Uvicorn. We installed this package in Chapter 5, but to recap,

you can install Uvicorn with the following command:

pip install uvicorn

Next, export the DJANGO_SETTINGS_MODULE environment variable if you haven’t

already:

export DJANGO_SETTINGS_MODULE=decoupled_dj.settings.development

Finally, run the server with the following command:

uvicorn decoupled_dj.asgi:application --reload

The --reload flag ensures that Uvicorn reloads on file changes. If everything goes

well, you should see the following output:

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

Chapter 12 GraphQL in Django with Strawberry

216

Throughout the next sections, we will run Django under Uvicorn. Now we can head

over to http://127.0.0.1:8000/billing/graphql/. This should open GraphiQL, a

playground for exploring the GraphQL API. In the playground, we can send out queries

and mutations and explore the schema and the integrated documentation, just as we

did with Ariadne. Now that you have the big picture, you can complete the schema with

input types and mutations.

�Input Types and Mutations in Strawberry
We saw that input types in GraphQL are basically arguments for a mutation.

To define an input type in Strawberry, we still create a dataclass, but this time we

use the @strawberry.input decorator on top of it. Let’s create two input types for

ItemLineInput and InvoiceInput (this code can go after the Query type); see Listing 12-9.

Listing 12-9.  billing/schema.py - Adding Input Types to the Schema

...

@strawberry.input

class ItemLineInput:

 quantity: int

 description: str

 price: decimal.Decimal

 taxed: bool

@strawberry.input

class InvoiceInput:

 user: strawberry.ID

 date: datetime.date

 due_date: datetime.date

 state: InvoiceState

 items: List[ItemLineInput]

Here we have dataclasses with the appropriate attribute for the input type. As the

icing, ... oops, strawberry, on the cake, let’s add a mutation as well (see Listing 12-10).

Chapter 12 GraphQL in Django with Strawberry

217

Listing 12-10.  billing/schema.py - Adding a Mutation to the Schema

...

import dataclasses

...

from billing.models import Invoice as InvoiceModel

from billing.models import ItemLine as ItemLineModel

...

@strawberry.type

class Mutation:

 @strawberry.mutation

 def create_invoice(self, invoice: InvoiceInput) -> Invoice:

 _invoice = dataclasses.asdict(invoice)

 user_id = _invoice.pop("user")

 items = _invoice.pop("items")

 state = _invoice.pop("state")

 new_invoice = InvoiceModel.objects.create(

 user_id=user_id, state=state.value, **_invoice

)

 for item in items:

 ItemLineModel.objects.create(invoice=_invoice, **item)

 return new_invoice

schema = strawberry.Schema(query=Query, mutation=Mutation)

This code bears a bit of explanation. First off, we import our Django models again,

this time by aliasing them to avoid clashes with the dataclasses. Next up, we define

a Mutation and a method inside it. The method, named create_invoice(), takes

InvoiceInput input type as a parameter and is decorated with @strawberry.mutation.

Inside the method we convert the dataclass input type to a dictionary. This is important

because the mutation parameter is a dataclass, not a dictionary. This way, we can pop

out the keys we need, as we did with Ariadne. In the mutation, we also pop out state,

which is later passed as state.value to InvoiceModel.objects.create(). At the time of

this writing, Strawberry doesn’t convert automatically enums keys to strings, so we need

to do a bit of data drilling. Finally, notice the type annotation for the return value of this

mutation, Invoice. At the very end of the file we also load the mutation dataclass into

the schema.

Chapter 12 GraphQL in Django with Strawberry

218

Mutation and input types complete our GraphQL schema for now. At this stage we

could use the GraphiQL Playground to send an invoiceCreate mutation, but instead of

trying things manually, we will implement the mutation in our React frontend. But first,

let’s look at the implications of running Strawberry asynchronously with Django.

�Working Asynchronously with the Django ORM
After setting everything up, you might have noticed that by sending even a simple query

in GraphiQL, everything blows up.

Even by sending out a simple query, Django will respond with the following error:

You cannot call this from an async context - use a thread or sync_to_async.

The error is a bit cryptic, but this comes from the ORM layer. At the time of writing,

Django’s ORM isn’t async-ready yet. This means we can’t simply launch ORM queries

while running Django asynchronously. To work around the issue we need to wrap ORM

interactions with an asynchronous adapter called sync_to_async from ASGI. To keep

things digestible, we first move the actual ORM queries into separate functions. Then, we

wrap these functions with sync_to_async. Listing 12-11 shows the required changes.

Listing 12-11.  billing/schema.py - Converting ORM Queries to Work

Asynchronously

...

from asgiref.sync import sync_to_async

...

def _get_all_clients():

 return list(UserModel.objects.all())

async def resolve_clients():

 return await sync_to_async(_get_all_clients)()

def _get_client(id):

 return UserModel.objects.get(id=id)

async def resolve_client(id: strawberry.ID):

 return await sync_to_async(_get_client)(id)

Chapter 12 GraphQL in Django with Strawberry

219

Let’s look at what is going on here. First off, we move the ORM logic to two regular

functions. In the first function, _get_all_clients(), we fetch all the clients from the

database with .all(). We also force Django to evaluate the queryset by converting it

to a list with list(). It’s necessary to evaluate the query in the asynchronous context,

because Django querysets are lazy by default. In the second function, _get_client(),

we simply get a single user from the database. Both functions are then called in two

asynchronous functions, wrapped in sync_to_async(). This machinery will make ORM

code work under ASGI.

Resolvers are not the only piece that needs the async wrapper. While at this stage, we

don’t expect anybody to hit our GraphQL mutation furiously, the ORM code for saving

new invoices needs to be wrapped too. Again, we can pull out the ORM-related code to

separate functions and then wrap these with sync_to_async, as shown in Listing 12-12.

Listing 12-12.  billing/schema.py - Converting ORM Queries to Work

Asynchronously

...

from asgiref.sync import sync_to_async

...

def _create_invoice(user_id, state, invoice):

 �return InvoiceModel.objects.create(user_id=user_id, state=state.value,

**invoice)

def _create_itemlines(invoice, item):

 ItemLineModel.objects.create(invoice=invoice, **item)

@strawberry.type

class Mutation:

 @strawberry.mutation

 async def create_invoice(self, invoice: InvoiceInput) -> Invoice:

 _invoice = dataclasses.asdict(invoice)

 user_id = _invoice.pop("user")

 items = _invoice.pop("items")

 state = _invoice.pop("state")

 �new_invoice = await sync_to_async(_create_invoice)(user_id, state,

_invoice)

Chapter 12 GraphQL in Django with Strawberry

220

 for item in items:

 await sync_to_async(_create_itemlines)(new_invoice, item)

 return new_invoice

This might seem like a lot of code to do something that Django provides out-of-

the-box, namely SQL queries, but this is the price to pay at this moment in order to run

Django asynchronously. In the future, we hope to have better async support for the ORM

layer. For now, with these changes, we are ready to run Strawberry and Django side by

side asynchronously. We can now move to the frontend to implement mutations with

Apollo Client.

�Working Again on the Frontend
In Chapter 11, we began to work on a React/TypeScript frontend, which acted as a client

for our GraphQL API.

So far, we implemented a simple query in the frontend for a <select> component.

First, we worked with Apollo client.query(), which is a lowish-level method for making

queries. Then, we refactored to use the useQuery() hook. In the following sections, we

tackle mutations in the frontend with Apollo Client and useMutation().

Note  For the React part, we work in decoupled_dj/billing/react_spa.
Each proposed file must be created or changed in the appropriate subfolder,
starting from this path.

�Creating Invoices with a Mutation
We left the previous chapter with the App component shown in Listing 12-13.

Listing 12-13.  src/App.tsx - GraphQL Query with Apollo

import React from "react";

import { gql, useQuery } from "@apollo/client";

import Form from "./Form";

import Select from "./Select";

Chapter 12 GraphQL in Django with Strawberry

221

const GET_CLIENTS = gql`

 query getClients {

 getClients {

 id

 email

 }

 }

`;

const App = () => {

 const { loading, data } = useQuery(GET_CLIENTS);

 const handleSubmit = (

 event: React.FormEvent<HTMLFormElement>

) => {

 event.preventDefault();

 // client.mutate()

 };

 return loading ? (

 <p>Loading ...</p>

) : (

 <Form handleSubmit={handleSubmit}>

 <Select

 id="user"

 name="user"

 options={data.getClients}

 />

 </Form>

);

};

export default App;

This component uses a query to populate the <select> as soon as it is mounted

in the DOM. It’s now time to implement a mutation. So far in Ariadne, we sent out

mutations by providing the mutation payload in the GraphQL Playground. This time,

things change a bit in the frontend: we need to use useMutation() from Apollo Client.

First, we import the new hook, as shown in Listing 12-14.

Chapter 12 GraphQL in Django with Strawberry

222

Listing 12-14.  src/App.tsx - Importing useMutation

...

import { gql, useQuery, useMutation } from "@apollo/client";

...

Next, right after the GET_CLIENTS query, we declare a mutation named CREATE_

INVOICE, as shown in Listing 12-15.

Listing 12-15.  src/App.tsx - Declaring a Mutation

...

const CREATE_INVOICE = gql`

 mutation createInvoice($invoice: InvoiceInput!) {

 createInvoice(invoice: $invoice) {

 date

 state

 }

 }

`;

...

This mutation looks a bit like a function, as it takes a parameter and returns some

data to the caller. But the parameter in this case is an input type. Now, in App we use the

new hook. The usage of useMutation() recalls useState() from React: we can array-

destructure a function from the hook. Listing 12-16 shows the mutation hook in our

component.

Listing 12-16.  src/App.tsx - Using the useMutation Hook

...

const App = () => {

 const { loading, data } = useQuery(GET_CLIENTS);

 const [createInvoice] = useMutation(CREATE_INVOICE);

...

In addition, we can also destructure an object with two properties: error and

loading. As with the query, these will provide info in case of errors, and a loading state

to conditionally render the UI during the mutation. To avoid clashing with loading

Chapter 12 GraphQL in Django with Strawberry

223

from the query, we assign a new name to the mutation loader. Listing 12-17 shows the

changes.

Listing 12-17.  src/App.tsx - Using the useMutation Hook with Loading and Error

...

const App = () => {

 const { loading, data } = useQuery(GET_CLIENTS);

 const [

 createInvoice,

 { error, loading: mutationLoading },

] = useMutation(CREATE_INVOICE);

...

Now that we’ve met mutations, let’s see how to use them in the frontend. From the

useMutation() hook, we destructured createInvoice(), a function that we can now call

in response to some user interaction. In this case we already have an handleSubmit() in

our component, and that is a good place to send out a mutation to create new data into

the database. It is important to note that the mutation will return a promise. This means

we can use then()/catch()/finally() or try/catch/finally with async/await.

What can we send in the mutation? More important, how can we use it? Once we get

the mutator function from the hook, we can call it by providing an option object, which

should contain at least the mutation variables. The following example illustrates how we

can use this mutation:

...

 await createInvoice({

 variables: {

 invoice: {

 user: 1,

 date: "2021-05-01",

 dueDate: "2021-05-31",

 state: "UNPAID",

 items: [

 {

 description: "Django consulting",

 price: 7000,

Chapter 12 GraphQL in Django with Strawberry

224

 taxed: true,

 quantity: 1,

 },

],

 },

 },

 });

...

In this mutation, we send the entire input type for the mutation, as declared in our

schema. In this example, we hardcode some data, but in the real world we might want

to get mutation variables dynamically with JavaScript. This is exactly what we did in

Chapter 6, when we built a POST payload from a form with FormData. Let’s complete our

form by adding the appropriate inputs and a Submit button. To start, Listing 12-18 shows

the complete React form (for brevity, we skip any CSS and stylistic concerns here).

Listing 12-18.  src/App.tsx - The Complete Form

<Form handleSubmit={handleSubmit}>

 <Select

 id="user"

 name="user"

 options={data.getClients}

 />

 <div>

 <label htmlFor="date">Date</label>

 <input id="date" name="date" type="date" required />

 </div>

 <div>

 <label htmlFor="dueDate">Due date</label>

 <input

 id="dueDate"

 name="dueDate"

 type="date"

 required

 />

 </div>

Chapter 12 GraphQL in Django with Strawberry

225

 <div>

 <label htmlFor="quantity">Qty</label>

 <input

 id="quantity"

 name="quantity"

 type="number"

 min="0"

 max="10"

 required

 />

 </div>

 <div>

 <label htmlFor="description">Description</label>

 <input

 id="description"

 name="description"

 type="text"

 required

 />

 </div>

 <div>

 <label htmlFor="price">Price</label>

 <input

 id="price"

 name="price"

 type="number"

 min="0"

 step="0.01"

 required

 />

 </div>

 <div>

 <label htmlFor="taxed">Taxed</label>

 <input id="taxed" name="taxed" type="checkbox" />

 </div>

Chapter 12 GraphQL in Django with Strawberry

226

 {mutationLoading ? (

 <p>Creating the invoice ...</p>

) : (

 <button type="submit">CREATE INVOICE</button>

)}

</Form>

This form contains all the inputs for creating a new invoice. At the bottom, note the

conditional rendering based on the state of mutationLoading.

This is a nice thing to have in order to inform the user about the state of request.

With the form in place, we can assemble the logic for sending out the mutation from

handleSubmit(). For convenience, we can use async/await with try/catch. Some

words before looking at the code:

•	 We build the mutation payload starting from a FormData

•	 In the building logic, we convert quantity to an integer and taxed to

a Boolean

These last steps are necessary because our GraphQL schema expects quantity to be

an integer, while in the form it is simply a string. Listing 12-19 shows the complete code.

Listing 12-19.  src/App.tsx - Logic for Sending the Mutation

const handleSubmit = async (

 event: React.FormEvent<HTMLFormElement>

) => {

 event.preventDefault();

 if (event.target instanceof HTMLFormElement) {

 const formData = new FormData(event.target);

 const invoice = {

 user: formData.get("user"),

 date: formData.get("date"),

 dueDate: formData.get("dueDate"),

 state: "UNPAID",

 items: [

 {

 quantity: parseInt(

Chapter 12 GraphQL in Django with Strawberry

227

 formData.get("quantity") as string

),

 description: formData.get("description"),

 price: formData.get("price"),

 taxed: Boolean(formData.get("taxed")),

 },

],

 };

 try {

 const { data } = await createInvoice({

 variables: { invoice },

 });

 event.target.reset();

 } catch (error) {

 console.error(error);

 }

 }

};

Apart from the FormData logic, the rest is pretty straightforward:

•	 We send out the mutation with createInvoice() by providing an

invoice payload

•	 If everything goes well, we reset the form with event.target.

reset()

If we test things in the browser, we should be able to send out the mutation and get a

response from the server. This process can be seen in the browser’s console, as shown in

Figure 12-1, where the Response tab is highlighted.

Chapter 12 GraphQL in Django with Strawberry

228

In REST, when we create or modify a resource with a POST or PATCH request, the

API responds with a payload. GraphQL makes no exceptions. In fact, we can access the

response data on the mutation, as shown in the following snippet:

const { data } = await createInvoice({

 variables: { invoice },

});

// do something with the data

Figure 12-1.  The mutation response from the GraphQL server

Chapter 12 GraphQL in Django with Strawberry

229

In Figure 12-1, we can see the data object containing a property named

createInvoice, which holds the fields we requested from the mutation. We can also see

__typename. This is part of GraphQL’s introspection capabilities, which make it possible

to ask GraphQL “what type is this object”? An explanation of GraphQL introspection is

out of the scope of this book, but the official documentation is a good starting point for

learning more.

Note I t is a good moment to commit the changes you made so far and to
push the work to your Git repo. You can find the source code for this chapter
at https://github.com/valentinogagliardi/decoupled-dj/tree/
chapter_12_graphql_strawberry.

�What’s Next?
We’ve barely scratched the surface of GraphQL in these last pages. The subject is bigger

than two chapters. The following is a list of topics that you can explore on your own after

finishing this book:

•	 Authentication and deployment: In fully decoupled setups, GraphQL

works well with JWT tokens for authentication. However, the

specification does not enforce any particular type of authentication

method. This means it is possible to use session-based

authentication for GraphQL API, as we saw in Chapter 10 for REST.

•	 Subscriptions: GraphQL Python libraries for Django can integrate

with Django Channels to provide subscriptions over WebSocket.

•	 Testing: Testing GraphQL API does not involve any magic. Since

they accept and return JSON, any testing HTTP client for Python or

Django can be used to test a GraphQL endpoint.

•	 Sorting, filtering, and pagination: It’s easy to sort, filter, and paginate

responses with Django and the Django REST Framework tools.

However, to implement the same things in GraphQL, we need

to write a bit of code by hand. But since GraphQL queries accept

arguments, it’s not so hard to build custom filtering capabilities in a

GraphQL API.

Chapter 12 GraphQL in Django with Strawberry

https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_12_graphql_strawberry
https://github.com/valentinogagliardi/decoupled-dj/tree/chapter_12_graphql_strawberry

230

•	 Performances: Since queries in GraphQL can be nested, great care

must be taken to avoid crashing our database with N+1 queries. Most

GraphQL libraries include a so-called dataloader, which takes care of

caching database queries.

EXERCISE 12-1: ADDING MORE ASYNCHRONOUS MUTATIONS

The wireframe in Chapter 6 has a Send Email button. Try to implement this logic in the React

frontend, with a mutation. On the backend, you will also need a new asynchronous mutation to

send the email.

EXERCISE 12-2: TESTING GRAPHQL

Add tests to this simple application: you can test the GraphQL endpoint with Django testing

tools and test the interface with Cypress.

�Summary
In this chapter, we closed the circle with the basics of GraphQL and asynchronous

Django. You learned how to:

•	 Use GraphQL mutations in the backend and in the frontend

•	 Work with asynchronous Django

Now it’s your turn! Go build your next Django project!

�Additional Resources
•	 GraphQL-first Django

•	 GraphQL.org

Chapter 12 GraphQL in Django with Strawberry

https://youtu.be/GoGpjngDB7c
https://graphql.org

231
© Valentino Gagliardi 2021
V. Gagliardi, Decoupled Django, https://doi.org/10.1007/978-1-4842-7144-5

Index

A
Ancillary JavaScript tools, 28
Ariadne

installation, 174
loading schema, 177–178
template configuration, 174

Asynchronous code
context manager, 39
framework, 39
httpx client, 38
list_links(), 39
synchronous view, 37
task queue, 37

B
Billing app

configuration, 63
enable option, 66
ER diagram, 65
GraphQL schema, 175–176
models, 64–66
pseudo-decoupled

approach, 68–80
startapp command, 63
wireframe, 66–68

Blog application
enable process, 115–116
fantastic framework, 113
model building, 114–115

react (see React ecosystem)
serializers/views, 116–120

C
Class-based views (viewsets), 33–34
Code splitting, 20
Cross-Origin Resource Sharing (CORS),

99–101
CRUD viewsets (DRF), 33–34
Cypress, 134

D, E
Decoupled application

advantages, 4
content repositories, 4
hypermedia (see Hypermedia)
JavaScript/HTML frontend, 3
single-page applications, 4
software engineering, 2

Deployment theory
deployment, 108–111
Gunicorn production

requirements, 106
NGINX configuration, 105–106
production dependencies, 109
server configuration, 105
subdomain configuration, 107
target machine, 104
Vue.js production, 107–108

https://doi.org/10.1007/978-1-4842-7144-5#DOI

232

Django project
ASGI server, 59
base settings file, 57
creation, 53
custom user, 55
development, 58
environments, 57–59
folder structure, 54
interlude database, 56
production (see JavaScript/

Django)
requirements file, 60
split settings file, 56
twelve-factor app, 56
virtual environment, 53–54

Django REST Framework (DRF)
authentication/

authorization, 101–103
asynchronous code, 37–40
class-based views, 32–33
components, 31
CRUD operations, 33–34
model forms, 34–36
serializer, 35
WSGI-ASGI server, 36

Django-unicorn, 25

F
Fully-decoupled projects

approaches, 47
GraphQL, 50–51
REST, 48–50

Functional testing
billing app, 135–136
Cypress, 133–134
first iteration, 136–141
mounted() method, 137

network interception, 138
submitting/filling

process, 141–144

G
GraphQL schema

Ariadne (see Ariadne)
arguments (queries), 184–186
auto-generated

documentation, 181
backend code, 175
billing app, 175–176
client process

Apollo client, 195
Apollo Hooks, 202–205
form component, 197
meaning, 193
react frontend, 194
root component, 197–202
select component, 196

code-first vs. schema-first, 187
convenient documentation, 180
endpoint, 179–182
fully-decoupled, 50–51
JSON response, 11
meaning, 11
model relationships, 177
mutations

implementation, 187–190
input type, 189
request code, 192
resolvers, 190–193
user creation, 13

operations, 175
over-fetching, 11
POST Request, 12
query process, 12, 175

INDEX

233

resolver, 182–184
schema process, 14
subscription, 13
Strawberry (see Strawberry)
type() method, 142
TypeScript (see TypeScript/react

frontend)
user interfaces, 133

H, I
Hardening

admin panel URL, 97–98
authentication/cookies, 94–97
deployment theory (see Deployment

theory)
production, 92–94
REST API, 98

audit logging, 98
authentication/authorization,

101–103
browsable API, 103
CORS control, 99–101
HTTPS encryption/HSTS, 98

secure web frameworks, 91
Hypermedia

architectural styles, 6
boards resource, 7
caching operation, 8
client-server separation, 8
conditional request, 9
engine, 7
HTTP methods, 5
hyperlinked relationships, 7
pagination links, 8
path parameter, 5
POST request, 6
REST API, 5

stateless, 8
uniform interface, 10

J, K, L
JavaScript

ancillary tools, 28
components, 17
ECMAScript, 22–23
frontend libraries/frameworks

client-side applications, 24
competitors, 24
Redux/Mobx, 25

lightweight UI libraries, 25
module bundlers, 19
module bundlers system

approaches, 19
bundlers, 20
chunks, 21
code modification, 20
dynamic import, 19
modern frontend developers, 19
webpack fights, 20–22

production server, 17
template references, 18
testing tools, 27
transpilation/compilation pipeline, 23
TypeScript, 23
universal app (see Universal JavaScript

applications)
JSON Web Token (JWT), see Token-based

authentication

M
Microservices systems, 2
Model-View-Controller (MVC) pattern, 1–2
Monolithic web application, 2–3

INDEX

234

N
Next.js

data fetching, 125–127
deployment, 131
frontend, 121–122
pages/routing, 122–125
principal modes, 121
production-ready environment, 120
react, 131
server-side rendering, 125
single blog post, 127
static site generation, 128–131
TypeScript notations, 124
Vue.js ecosystem, 132

O
Object-relational mapping (ORM), 1

P, Q
Pseudo-decoupled/hybrid decoupling

approaches, 41
fully-decoupled (see Fully-decoupled

Django projects)
Vue.js, 68–80
with REST

over-engineered applications, 45
representation, 45
routing, 47
session-based authentication, 46
setup process, 45
testing, 47

without REST
amazing form system, 44
authentication methods, 44
CSRF token template tag, 43
developer productivity/burden, 44

Django project, 43
handling, 42
routing, 44
web applications, 42–45

R
React applications

GraphQL
client process, 194
schema, 202–205

ecosystem
approaches, 118
component, 119
reintroduction, 119–120
setText() method, 120

Representational State Transfer (REST)
architectural style, 5
backend REST

handleSubmit method, 87
handling multiple items, 89
nested serializers, 86–87
POSTing, 80
serializers, 81–82, 116
UI process, 80
URL configuration, 118
views/URL, 82–86, 117
Vue component, 87–88

headless CMS, 113
session-based authentication, 169–171
unit testing, 145–147

Resolvers, 182–184

S
Server-side rendering, 2
Session-based authentication

authentication/permissions, 169–171
GET requests, 164

INDEX

235

handling authentication forms, 166–169
HTML forms, 161
HttpOnly cookie, 165
login flow, 159–163
NGINX configuration, 158–159
POST requests, 165
production/development, 157–158
single-page application, 156
URL configuration, 160
vue.config.js, 163–165

Single-page applications (SPAs), see
Session-based authentication

Strawberry
asynchronous, 218–220
base types, 210–212
enum type, 213–214
endpoint, 215
GraphQL schema, 209–210
input types, 216
installation, 208
libraries, 208
mutation, 217
Python data classes, 208
queries, 214–216
resolvers, 213–214
Uvicorn installation, 215

T
Token-based authentication

advantages JWT, 155
concept, 153–154
decoupled frontend/backend, 154
session/CSRF cookies, 154

Turbo-django, 25
TypeScript/react frontend

Apollo, 220
app component, 220

authentication, 229
complete form, 224
complete form, 225–226
FormData logic, 227
GraphQL schema, 226
handleSubmit(), 226
loading and error, 223
mutation, 220, 228–229
performances, 230
sort/filter/paginate responses, 229
testing, 229
useMutation() hook, 222–224

U
Unit testing

billing app, 148–152
dependencies/configuration/

requirements, 147
Django project, 146
integration testing, 28
REST framework, 145–146
outlining testing, 147
testing invoice creation, 150

Universal JavaScript applications
advantages, 26
client-side applications, 26
Node.js, 26
server-side rendering, 26
static site generation, 27
tools, 27

V
Vendor splitting, 20
Vue.js project

component, 74–81
configurations, 69

Index

236

CSS pipeline, 79
custom configuration, 70
development server, 73, 79
integrated development

server, 69
JavaScript section, 76
Next.js, 132

single-page application, 68
staging mode, 71
template section, 74
URL configuration, 71

W, X, Y, Z
Webpack/Babel, 23

Vue.js project (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to the Decoupled World
	Monoliths and MVC
	What Makes a Decoupled Architecture?
	Why and When to Decouple?

	Hypermedia All the Things
	Hypermedia as the Engine
	Client-Server Separation
	Stateless
	Cacheable
	Uniform Interface

	An Introduction to GraphQL
	Summary
	Additional Resources

	Chapter 2: JavaScript Meets Django
	JavaScript and Django in Production
	The Need for Module Bundlers
	Webpack Fights Django (the Need for Code Splitting)

	Modern JavaScript, Babel, and Webpack
	A Word on TypeScript

	JavaScript Frontend Libraries and Frameworks
	Lightweight JavaScript UI Libraries

	Universal JavaScript Applications
	Static Site Generators

	Testing Tooling
	Other Ancillary JavaScript Tools
	Summary
	Additional Resources

	Chapter 3: Modern Django and the Django REST Framework
	What Is the Django REST Framework?
	Class-Based Views in Django and the DRF
	CRUD Viewsets in DRF
	Models, Forms, and Serializers

	From WSGI to ASGI
	Getting Started with Asynchronous Django
	Competing Asynchronous Frameworks and the DRF
	Summary
	Additional Resource

	Chapter 4: Advantages and Disadvantages of Decoupled Architectures
	Pseudo-Decoupled Django
	Pseudo-Decoupled Without REST
	Pseudo-Decoupled with REST

	Fully-Decoupled Django
	Fully-Decoupled with REST
	Fully-Decoupled with GraphQL

	Summary

	Chapter 5: Setting Up a Django Project
	Setting Up the Project
	A Custom User
	Interlude: Choosing the Right Database
	Splitting the Settings File
	Bonus: Running Django Under ASGI
	Splitting the Requirements File
	Summary

	Chapter 6: Decoupled Django with the Django REST Framework
	Building the Billing App
	Building the Models
	Enabling the App
	Wireframing the Billing App

	Pseudo-Decoupled with the Django REST Framework
	Vue.js and Django
	Building the Vue App
	Vue.js, Django, and CSS

	Building the REST Backend
	Building the Serializers
	Building the Views and the URL
	Working with Nested Serializers
	Fixing the Vue Frontend

	Summary
	Additional Resource

	Chapter 7: API Security and Deployment
	Django Hardening
	Django Settings for Production
	Authentication and Cookies in Django
	Randomize the Admin URL

	REST API Hardening
	HTTPS Encryption and HSTS
	Audit Logging
	Cross-Origin Resource Sharing
	Authentication and Authorization in the DRF
	Disable the Browsable API

	Deploying a Decoupled Django Project
	Preparing the Target Machine
	Configuring NGINX
	Gunicorn and Django Production Requirements
	Preparing Vue.js in Production with Django
	The Deployment

	Summary
	Additional Resource

	Chapter 8: Django REST Meets Next.js
	Django as a Headless CMS
	Building the Blog App
	Building the Model
	Enabling the App

	Building the REST Backend
	Building the Serializer
	Building the Views and the URL

	Introduction to the React Ecosystem
	A Reintroduction to React

	Introduction to Next.js
	Building the Next.js Frontend
	Pages and Routing
	Data Fetching
	Static Site Generation
	Deploying Next.js
	Using React with Django

	The Vue.js Ecosystem
	Summary
	Additional Resource

	Chapter 9: Testing in a Decoupled World
	Introduction to Functional Testing
	Getting Started with Cypress
	Understanding Functional Testing for the Billing App
	Creating the First Test
	Filling and Submitting the Form

	Introduction to Unit Testing
	Unit Testing in the Django REST Framework
	Django Settings for Testing
	Installing the Dependencies and Configuring Requirements for Testing
	Outlining Tests for the Billing REST API
	Testing the Billing REST API

	Summary
	Additional Resource

	Chapter 10: Authentication and Authorization in the Django REST Framework
	Introduction to Token-Based Authentication and JWT
	Token-Based Authentication: The Good and the Bad
	JSON Web Tokens in Django: Advantages and Challenges

	Session-Based Auth for Single-Page Apps
	Some Words on Production and Development
	Preparing NGINX for the New Setup
	Handling the Login Flow with Django
	Preparing the Vue.js App for the New Setup
	A Note About HttpOnly Cookies
	Handling Authentication in the Frontend
	Authorization and Permissions in the Django REST Framework

	Summary
	Additional Resource

	Chapter 11: GraphQL in Django with Ariadne
	Getting Started with Ariadne in Django
	Installing Ariadne
	Designing the GraphQL Schema
	Loading the Schema in Ariadne
	Wiring Up the GraphQL Endpoint
	Working with Resolvers
	Using Query Arguments in GraphQL
	A Word on Schema-First vs Code-First
	Implementing Mutations
	Adding a Resolver for the Mutation

	Introduction to GraphQL Clients
	Building the React Frontend
	Getting Started with Apollo Client
	Creating a Select Component
	Creating a Form Component
	Creating the Root Component and Making Queries
	Using Apollo Hooks for React

	Summary
	Additional Resources

	Chapter 12: GraphQL in Django with Strawberry
	Getting Started with Strawberry in Django
	Installing Strawberry
	Designing the GraphQL Schema in Strawberry
	Types and Enums in Strawberry
	Working with Resolvers (Again)
	Queries in Strawberry and Wiring Up the GraphQL Endpoint
	Input Types and Mutations in Strawberry
	Working Asynchronously with the Django ORM

	Working Again on the Frontend
	Creating Invoices with a Mutation

	What’s Next?
	Summary
	Additional Resources

	Index

