
Docs for
Developers

An Engineer’s Field Guide
to Technical Writing
 ―
Jared Bhatti
Zachary Sarah Corleissen
Jen Lambourne
David Nunez
Heidi Waterhouse
Foreword by Kelsey Hightower

Docs for Developers
An Engineer’s Field Guide

to Technical Writing

Jared Bhatti
Zachary Sarah Corleissen
Jen Lambourne
David Nunez
Heidi Waterhouse

Foreword by Kelsey Hightower

Docs for Developers: An Engineer’s Field Guide to Technical Writing

ISBN-13 (pbk): 978-1-4842-7216-9 ISBN-13 (electronic): 978-1-4842-7217-6
https://doi.org/10.1007/978-1-4842-7217-6

Copyright © 2021 by Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne,

David Nunez, Heidi Waterhouse

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Illustrations by Neiko Ng

Diagrams by Tegan Broderick and Eleni Fragkiadaki

Code samples by Eleni Fragkiadaki

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484272169. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Jared Bhatti
Berkeley, CA, USA

Jen Lambourne
Cornwall, UK

Heidi Waterhouse
Mounds View, MN, USA

Zachary Sarah Corleissen
Victoria, BC, Canada

David Nunez
San Francisco, CA, USA

https://doi.org/10.1007/978-1-4842-7217-6

iii

“Add documentation” is a step in every product release plan,
and “we need more docs” is an action item from every internal
developer productivity survey, but it’s surprisingly difficult to
translate those concise goals into useful documentation.
Docs for Developers reveals the repeatable process behind
incredible documentation.

—Will Larson, CTO at Calm, author of An Elegant Puzzle
and Staff Engineer

Great documentation is an often overlooked yet critical
component for ensuring the success and large scale adoption
of a software project. Docs for Developers is a must-read for
developers and technical writers who want to rapidly accelerate
their ability to create documentation that is easy to consume,
brings joy to end users, and is capable of dramatically
improving business results.

—Brad Topol, IBM Distinguished Engineer, Open
Technology and Developer Advocacy. Co-author of

Kubernetes in the Enterprise, and Hybrid Cloud Apps
with OpenShift and Kubernetes

Praise for Docs for
Developers

iv

No matter your starting point, you can find techniques and
advice to improve your documentation in Docs for Developers.
This book does for dev docs what The Phoenix Project does for
devops - makes your aspirations attainable. The API startup
story kept me reading and the cute corgi pictures made me
smile.

—Anne Gentle, Developer Experience Manager
at Cisco. Author of the book Docs Like Code

and website docslikecode.com.

Good documentation is a multiplier that helps people onboard
and explore software. Docs for Developers guides developers
and technical writers to document what their users care about,
organize content to help users find what they need, and mea-
sure how documentation helps users understand and adopt
their software.

—Stephanie Blotner, Technical Writing
Manager at Uber

Docs for Devs condenses years of knowledge from multiple
industry leaders into a concise, actionable framework.
This book guides you from planning to production, with hard
won insights on every page. Read it today; your users will
thank you.

—Eric Holscher, Co-founder of Write the
Docs and Read the Docs

Praise for Docs for DeveloPers

https://docslikecode.com

v

About the Authors ���xv

Acknowledgments ��xvii

Foreword ���xix

Introduction ���xxiii

Table of Contents

Chapter 1: Understanding your audience ���1

Corg.ly: One month to launch ..1

The curse of knowledge ..3

Creating an initial sketch of your users ..4

Defining your users’ goals ...4

Understanding who your users are ...6

Outline your users’ needs ..7

Validate your user understanding ...8

Using existing data sources ..9

Collecting new data ...10

Condensing user research findings ..14

User personas..15

User stories ...16

User journey maps ..17

Creating a friction log ...19

Summary...21

vi

Chapter 2: Planning your documentation ���23

Corg.ly: Creating a plan ...23

Plans and patterns ..24

Content types ..25

Code comments ...25

READMEs ...27

Getting started documentation ..29

Conceptual documentation ..30

Procedural documentation ..31

Reference documentation ...35

Planning your documentation ...41

Summary...44

Chapter 3: Drafting documentation ��45

Corg.ly: First drafts ..45

Confronting the blank page (or screen) ..45

Setting yourself up for writing success ..46

Choosing your writing tools ...47

Breaking through the blank page ..47

Defining your document’s title and goal ..48

Creating your outline ...49

Meeting your reader’s expectations ..50

Completing your outline ..51

Creating your draft ..52

Headers ...53

Paragraphs ..54

Procedures ..54

Lists ...55

Callouts ..56

Table of conTenTs

vii

Writing for skimming ..57

State your most important information first ..58

Break up large blocks of text ...59

Break up long documents..59

Strive for simplicity and clarity ..60

Getting unstuck ...60

Let go of perfectionism..61

Ask for help ...61

Highlight missing content ..62

Write out of sequence ...62

Change your medium ..63

Working from templates ...63

Finishing your first draft ..65

Summary...66

Chapter 4: Editing documentation ��67

Corg.ly: Editing content ...67

Editing to meet your user’s needs ..68

Different approaches to editing ..69

Editing for technical accuracy ...70

Editing for completeness ...71

Editing for structure ...72

Editing for clarity and brevity ..73

Creating an editing process ..75

Reviewing your document first ..75

Requesting a peer review ..76

Requesting a technical review ..77

Table of conTenTs

viii

Receiving and integrating feedback ...78

Giving good feedback ...79

Summary...81

Chapter 5: Integrating code samples ���83

Corg.ly: Showing how it works ..83

Using code samples ..84

Types of code samples ..85

Principles of good code samples ..86

Explained ...87

Concise ..90

Clear ..92

Usable (and extensible) ...93

Trustworthy ..94

Designing code samples ...95

Choosing a language ...95

Highlighting a range of complexity ..95

Presenting your code ...96

Tooling for code samples ..96

Testing code samples ..97

Sandboxing code ...98

Autogenerating samples ..98

Summary...99

Chapter 6: Adding visual content ���101

Corg.ly: Worth a thousand words ..101

When words aren’t enough ...102

Why visual content is hard to create ...103

Comprehension ...104

Table of conTenTs

ix

Accessibility ..105

Performance ..106

Using screenshots ...106

Common types of diagrams ..108

Boxes and arrows ..108

Flowcharts ...110

Swimlanes ...111

Drawing diagrams ...112

Start on paper ..116

Find a starting point for your reader ..116

Use labels ..116

Use colors consistently ..117

Place the diagram ...117

Publishing a diagram ...117

Get help with diagrams ...117

Creating video content ..118

Reviewing visual content ..119

Maintaining visual content ..120

Summary...120

Chapter 7: Publishing documentation ��121

Corg.ly: Ship it! ..121

Putting your content out there ..122

Building a content release process ...123

Creating a publishing timeline ..124

Coordinate with code releases ..126

Finalize and approve publication ...126

Table of conTenTs

x

Decide how to deliver content ...128

Announce your docs ..129

Planning for the future ..129

Summary...130

Chapter 8: Gathering and integrating feedback �������������������������������133

Corg.ly: Initial feedback ...133

Listening to your users ...134

Creating feedback channels ...135

Accept feedback directly through documentation pages136

Monitor support issues ..137

Collect document sentiment ..138

Create user surveys ...139

Create a user council ...140

Converting feedback into action ...141

Triaging feedback ..141

Following up with users ..145

Summary...145

Chapter 9: Measuring documentation quality ����������������������������������147

Corg.ly: Tuesday after the launch ..147

Is my documentation any good? ...148

Understanding documentation quality ..148

Functional quality ..149

Structural quality ...155

How functional and structural quality relate ...158

Creating a strategy for analytics ...158

Organizational goals and metrics ..159

Table of conTenTs

xi

User goals and metrics ..160

Documentation goals and metrics ...162

Tips for using document metrics ..164

Make a plan ...164

Establish a baseline ...165

Consider context ..165

Use clusters of metrics ..166

Mix qualitative and quantitative feedback...166

Summary...166

Chapter 10: Organizing documentation ��169

Corg.ly: The next release ...169

Organizing documentation for your readers ...170

Helping your readers find their way ..171

Site navigation and organization ...172

Landing pages ...176

Navigation cues ...178

Organizing your documentation ..179

Assess your existing content ...179

Outline your new information architecture ..181

Migrate to your new information architecture ...183

Maintaining your information architecture ..184

Summary...184

Chapter 11: Maintaining and deprecating documentation ���������������187

Corg.ly: A few releases later ...187

Maintaining up-to-date documentation ..188

Table of conTenTs

xii

Planning for maintainability ..189

Align documentation with release processes ..190

Assign document owners ..192

Reward document maintenance ..193

Automating documentation maintenance ...193

Content freshness checks ...194

Link checkers ..195

Linters ...195

Reference doc generators ...196

Removing content from your docset ...196

Deprecating documentation ..197

Deleting documentation ..198

Summary...199

 Appendix A: When to hire an expert ���201

 Meeting a new set of user needs ..202

 Increasing support deflections..202

 Managing large documentation releases ..202

 Refactoring an information architecture ...202

 Internationalization and localization ...203

 Versioning documentation with software ...203

 Accepting user contributions to documentation ...203

 Open-sourcing documentation..204

 Appendix B: Resources ���205

Courses ...205

Templates ..206

 Style guides ..207

Automation tools ...207

Table of conTenTs

xiii

Visual content tools and frameworks..209

Blogs and research ...210

Books ..211

Communities ...212

 Bibliography ���215

 Index ���221

Table of conTenTs

xv

About the Authors

Jared Bhatti
Jared (he/him) is a Staff Technical Writer at Alphabet, and the co-founder

of Google’s Cloud documentation team. He’s worked for the past 14 years

documenting an array of projects at Alphabet, including Kubernetes,

App Engine, Adsense, Google’s data centers, and Google’s environmental

sustainability efforts. He currently leads technical documentation at

Waymo and mentors several junior writers in the industry.

Zachary Sarah Corleissen
Zach (he/him, they/them) began this book as the Lead Technical Writer

for the Linux Foundation and ended it as Stripe’s first Staff Technical

Writer. Zach served as co-chair for Kubernetes documentation from

2017 until 2021, and has worked on developer docs previously at GitHub,

Rackspace, and several startups. They enjoy speaking at conferences and

love to mentor writers and speakers of all abilities and backgrounds.

Jen Lambourne

Jen (she/her) leads the technical writing and knowledge management

discipline at Monzo Bank. Before her foray into fintech, she led a

community of documentarians across the UK government as Head of

Technical Writing at the Government Digital Service (GDS). Having

moved from government to finance, she recognizes she’s drawn to creating

inclusive and user-centered content in traditionally unfriendly industries.

She likes using developer tools to manage docs, demystifying the writing

process for engineers, mentoring junior writers, and presenting her

adventures in documentation at conferences.

xvi

David Nunez

David (he/him) heads up the technical writing organization at Stripe,

where he founded the internal documentation team and wrote for

Increment magazine. Before Stripe, he founded and led the technical

writing organization at Uber and held a documentation leadership role at

Salesforce. Having led teams that have written about cloud, homegrown

infrastructure, self-driving trucks, and economic infrastructure, he’s

studied the many ways that technical documentation can shape the

user experience. David also acts as an advisor for several startups in the

knowledge platform space.

Heidi Waterhouse

Heidi (she/her) spent a couple decades at Microsoft, Dell Software, and

many, many startups learning to communicate with and for developers.

She currently works as a principal developer advocate at LaunchDarkly,

but was reassured to find that technical communication is universal across

all roles.

abouT The auThors

xvii

Acknowledgments

A special thanks to everyone who made this book possible, including family

and friends that supported us, colleagues that gave us encouragement,

and test readers and editors who improved our work enormously. We’d

specifically like to thank Riona Macnamara, Brian MacDonald, Sid

Orlando, Brad Topol, Kelsey Hightower, Larry Ullman, Stephanie Blotner,

Jim Angel, Betsy Beyer, Eleni Fragkiadaki, Lisa Carey, and Eric Holscher for

their feedback, input, and encouragement.

Individually, we would like to acknowledge the following people.

Jared: Immense gratitude to Tegan Broderick who never wavered in her

support, and a special thank you to Meggin Kearney and Ryan Powell for

giving me the time and space to work on this.

Zach: Many thanks to Chris Aniszczyk at the Linux Foundation for

supporting documentation in open source. Much love to my mom, Christine

Durham, who always knew I had it in me.

Jen: Colossal thanks to Luke Wilkinson for being on hand with a squish,

a wine, and words of encouragement whenever I questioned if writing a

book in a pandemic was a good idea. I will always be your number one

subscriber. My immense gratitude to my mum, dad, and little brother Chris

for always encouraging me to “write a bloody book”. Chris, you’re one step

closer to getting your boat. To my colleagues past and present who teach

me something new every day, and especially Eleni Fragkiakadi for her code

and diagrams in this book. Thank you to Vince Davis for never losing faith

in me, and finally to Rosalie Marshall for being the reason I started writing

docs and the reason I’ll never stop.

xviii

David: My deepest gratitude goes to Katie Nunez for always believing in me,

and to Charlotte and Cameron for motivating me to pursue my passion for

writing. My love and appreciation go to Lydia Nunez for showing me that

the library is the coolest place to be, and to Alfred Nunez for always sharing

his newspaper with me. Thank you, Jessica and Stephen for being my best

friends and inspiration. Eternal thanks to my current and former technical

writing teams who’ve taught me so much. Finally, I’m forever indebted to

John Souchak for giving me a chance.

Heidi: Enormous thanks to my wife, Megan, for putting up with me

muttering about this for a whole pandemic, and to my kids Sebastian and

Carolyn, who are good sports about Weird Mom Hobbies. To Laura, who

is always my first audience. I’d like to thank my former managers, Adam

Zimman and Jess, and my current manager, Dawn Parzych, for giving me

the encouragement, space, and time to work on such a big project and for

believing in me.

acknowleDgmenTs

xix

Foreword

If a new software project is created and there are no docs around to learn

it, does it work?

Most of your potential users will never know because they’ll never find

your project, and if they do, they’ll have no clue how they’re supposed to

use it. This is an all too common problem, and as a software developer

myself, I can honestly say I spend too much of my time reverse engineering

command line tools, libraries, and APIs that lack adequate documentation

necessary to complete the task at hand.

If developers are the superheroes of the software industry, then the lack of

documentation is our kryptonite.

I’ve often joked that “Good developers copy; great developers paste.” To

understand why, you have to dig into the workflow used by most software

engineers when faced with a problem. Our usual workflow looks like this:

 1. Attempt to understand the problem.

 2. Search for an existing solution everywhere we can

think to look.

 3. If we’re lucky enough to find one, we prove to

ourselves the solution works.

 4. We push the solution we found to production.

This is what we call the “developer loop,” and the most successful projects

have documentation to guide developers through each of these steps. It’s

because documentation is a feature. In fact, it’s the first feature of your

project most users interact with, because it’s the first thing we look for

when trying to solve a problem.

xx

So it begs the question, why is documentation often deprioritized or

missing altogether?

It’s not because we’re not invested in it, nor is it because we aren’t good

writers. It’s because many of us don’t know how to do it. It’s because we,

as developers, rarely understand that in addition to the developer loop,

there’s an equally important “writer loop.”

The writer loop is similar to how we write code. It requires you to

understand the problem your users are trying to solve, create a plan for

solving it, use common design patterns, and write the content that solves

the issue. The developer loop and the writer loop are two sides of the same

coin. During the writing loop, we’re creating information our users want

during the developer loop. Knowing how to bring these two loops into

alignment helps both your project and your users succeed.

I realized this myself when introducing new developers to Kubernetes.

Developers wanted to know how all the pieces of Kubernetes fit together,

but there wasn’t any content that helped them. I found out quickly that you

have about five minutes to help developers find the information they need

before they abandon your project and move on to something else.

That’s what led me to write Kubernetes the Hard Way, a hands-on approach

that now has over 27,000 stars on GitHub. Likewise, when developers were

seeking information on how to quickly get Kubernetes up and running

for their infrastructure, I worked with co-authors to write the aptly named

book Kubernetes: Up and Running.

Through these experiences, I learned more than I ever wanted to know

about the writer loop and how necessary it is to developers. That’s why I

was excited to learn about this book.

The authors of this book have worked on documenting several difficult

technical projects at places like the Linux Foundation, Google, Stripe,

LaunchDarkly, and the UK government, working to meet developers’

foreworD

xxi

needs through documentation. In this book, they distill their experience

into a step-by-step process that you can apply to any project, along with

case studies, tutorials, and tips based on hard-won experience.

So, here it is: The book you’re holding guides you through the phases of the

writer loop by leveraging real-world situations and a workflow that is so

pragmatic and effective that I’ve been using parts of it over the years and

didn’t even know it.

I’ve gone on and on about the importance of the processes presented in

this book, but you probably only care that it works. It does.

—Kelsey Hightower

foreworD

xxiii

It’s four AM and your pager goes off. Your company’s service has crashed

and clients are panicking. You scramble through a half-familiar code

base, searching for the root cause. The error messages in the unit tests are

frustratingly unspecific, and the internal README consists of headings

followed by repeating one-word paragraphs: [TODO].

Who wrote this, you wonder. With a sinking feeling, you realize you’re

looking at your own code from fourteen months ago, and you’ve forgotten

almost everything about it.

You search your memory for any reminder of what you were doing, why

you did it this way, and whether you’d peer-reviewed or tested for a

particular set of edge cases. Meanwhile, your clients open support ticket

after support ticket, demanding answers.

Your own words come back to haunt you: the code is self-documenting.

Or maybe your service is performing great and getting better. As more

clients sign on, they have questions. So many questions. Emails and

support tickets flood in as your service scales, and you’re increasingly

pulled away from development and into support.

As the person most knowledgeable about what you’ve built, you’re

doomed to a calendar full of one-on-one support meetings, answering

the same question from six different people. You know you could fix the

problem if you had an opportunity to research and write down how things

work, but you’re so busy replying to users’ questions that you never have

the time.

Introduction

xxiv

Now picture another scenario: your code is commented and your

READMEs are accurate and up to date. You have a getting started guide

and a set of tutorials that target your users’ top use cases. When a user asks

you for help, you point them to documentation that’s genuinely helpful.

That four AM pager alert? It took five minutes to resolve because you found

what you needed with your first search.

Effective developer documentation makes the last scenario possible.

You might have heard the often-misquoted saying that good code documents

itself. It’s true that good naming, types, design, and patterns make code

easier to understand. But projects with sufficient complexity and scale (that

is, most projects worth building) need human-readable documentation to

help others quickly understand what you’re building and how to use it.

The authors of this book have helped a number of organizations create

great developer documentation, including large tech companies, fast

moving startups, government agencies, and open source consortiums. We

each have years of experience creating developer documentation, listening

to and working with developers, and generally being immersed in every

aspect of developer docs at every scale.

We’ve helped innumerable developers out of the nightmare scenarios

described above. The more we helped, the more we realized that there

wasn’t a primer for developers looking to create documentation. So, we

went to work, documenting a fix to the problem we observed developers

experiencing.

We created this field guide to technical documentation by building on our

own expertise and feedback from a multitude of developers. It’s designed

as a resource to keep at hand, so you can write documentation as part of

your software development process.

This book walks you through creating documentation from scratch. It

begins with identifying the needs of your users and creating a plan with

inTroDucTion

xxv

common patterns of documentation, then moves through the process of

drafting, editing, and publishing your content. The book concludes with

practical advice about integrating feedback, measuring effectiveness,

and maintaining your documentation as it grows. Each chapter builds

sequentially on previous chapters, and we recommend following the book

in order, at least on your first read through.

Throughout this book, we weave through stories about a developer team

working on a fictional service called Corg.ly. Corg.ly is a service that

translates dog barks into human language. Corg.ly uses an API to send

and receive translations, and uses a machine learning model to regularly

improve its translations.

The Corg.ly team consists of:

• Charlotte: The lead engineer at Corg.ly, tasked with

launching Corg.ly publicly in a month with developer

documentation.

• Karthik: A software engineer at Corg.ly working with

Charlotte.

• Mei: One of the first customers for Corg.ly’s translation

service.

• Ein: Office mascot and beta tester for Corg.ly. A corgi.

Finally, this book is intentionally agnostic about tools and frameworks.

It may seem frustrating that we don’t tell you to write in a particular

markup language or publish with a particular static site generator that

automatically updates with a particular continuous integration tool. Our

opacity is intentional: the languages and tools that work best are the ones

closest to your own code and tooling.

If, by the end of this book you’re still looking for more guidance on tooling,

we provide an appendix of resources you can use to find additional

information and the right documentation tools for your needs.

inTroDucTion

1© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_1

CHAPTER 1

Understanding your
audience
 Corg.ly: One month to launch
Charlotte was frustrated. The launch date for Corg.ly was just a few weeks

away, yet it took the entire engineering team (well, all five engineers) an

afternoon to get a single user started.

Mei, their alpha customer, was

extraordinarily patient as Charlotte

demonstrated how Corg.ly worked and

how to use the API. Charlotte had spent

the previous hour sketching out a system

diagram, some of the design decisions

made, and how endpoints sent and

received data. Ein, the company dog and

official product tester, had happily demonstrated how bark translations

worked in exchange for a few dog biscuits.

Reflecting on the time spent in this meeting, Charlotte realized these sessions

were time consuming and costly. If the product was going to scale to the

large audience they projected, users were going to have to get started by

themselves, and quickly.

https://doi.org/10.1007/978-1-4842-7217-6_1#DOI

2

As if reading Charlotte’s mind, Mei leaned back in her chair. “I still have a

lot of problems getting this working, and I know I’ll have a million more

questions once I do. Can you send me the docs when they’re ready, and I’ll

happily give it another try?”

“Of course,” Charlotte said. She felt a pit open in her stomach as a montage

of vignettes from the past six months flashed through her mind: multiple

instances where she had said things like, “Let’s wait on the documentation,

since everything is just going to change anyway... Let’s deprioritize the

documentation for now, since there’s so much else to do... We probably

don’t need to worry about documentation right now since the code is self-

explanatory...”

“Thanks,” said Mei. “I’m excited to share this with the rest of my team, but

I know you’re the experts. It’s going to take time to teach the developers on

my team how to develop against your API, but we need to start soon. We’re

hoping to produce several million dog translator collars for Christmas this

year.”

“Sure thing. We’ll polish up the docs and share them when they’re ready. We

should have drafts ready in the next few weeks,” responded Charlotte.

As the lead engineer, she architected the product and worked closely with

her coworker, Karthik, to dole out the tasks and assignments to everyone,

none of which included documentation. Corg.ly was in fact heavily

documented—in a mishmash of emails, scattered meeting notes, and

pictures of whiteboards. As the architect of the product, she had an intimate

knowledge of the code, what it could do, and the trade-offs they made along

the way.

Corg.ly is so easy for me to use, I didn’t think about how hard it might be

for others, Charlotte thought to herself after the meeting. Where do I start?

Chapter 1 Understanding yoUr aUdienCe

3

 The curse of knowledge
In the late 1980s, a group of economists at Harvard determined that

humans assume others have the same knowledge they do. They named

this cognitive bias the “curse of knowledge.”1 A few years later, a Stanford

PhD student demonstrated the curse in an experiment. She asked one

group of participants to tap their fingers to the rhythm of a well-known

song while another group of participants listened to the taps and tried to

guess the tunes. The tappers, with the song fresh in their mind, assumed

their listeners would be able to guess the majority of songs.

Listeners didn’t.2 Tappers guessed that listeners would predict the song

51% of the time, but the unfortunate listeners only got the song right a

mere 2.5% of the time.

It’s likely you’ve been on the receiving end of the curse of knowledge.

A coworker may have used jargon you weren’t familiar with, forgot to

mention an API endpoint they assumed you would find, or pointed you to

an error message with very little information on how to fix the problem.

For Corg.ly, Charlotte has spent so much time with the product that she

knows it perfectly, but the first few users trying out the product have no

idea how to make sense of it.

Breaking the curse, and writing effective documentation, requires empathy

for your users. You have to understand what your users want from your

software, and where they need help along the way. Through user research,

you can understand your users’ needs well enough to predict what they

need before they need it. By performing user research before you put pen

to paper or hands to keyboard, you’ll set your users on the path to success.

1 Colin Camerer, George Loewenstein, Martin Weber, “The Curse of Knowledge
in Economic Settings: An Experimental Analysis,” Journal of Political Economy,
Vol. 97 no. 5.
2 Elizabeth Louise Newton Ph.D., “The Rocky Road From Actions to Intentions,”
Stanford University, 1990, 33–46.

Chapter 1 Understanding yoUr aUdienCe

4

This chapter guides you through breaking the curse of knowledge and

understanding your users by:

• Identifying the goals you have for your users

• Understanding who your users are

• Understanding your users’ needs and how

documentation addresses them

• Condensing your findings into personas, stories, and

maps

• Testing your assumptions with a friction log

 Creating an initial sketch of your users
To write effectively for users, you need to understand who they are and

what they want to achieve.

Start by gathering and reviewing any existing materials you already have

about your product or your users. These could include old emails, design

documents, chat conversations, code comments, and commit messages.

Reviewing these artifacts will help you build a clearer picture of how your

software works and what you intend your users to do with it.

Users also have their own goals that may or may not match those of

your organization. An initial review can help identify any initial gaps or

mismatches between these different sets of goals.

 Defining your users’ goals
Once you review your existing knowledge, the next step is to understand

what your users want to accomplish from reading your documentation.

Knowing your users’ goals will guide your research and focus your efforts

on documenting the most relevant information.

Chapter 1 Understanding yoUr aUdienCe

5

Consider: why are you writing this documentation in the first place? You

don’t just want your users to know something about your software; you

want them to complete a set of tasks or change their behavior in some way.

There is an engineering goal (for them) and a business goal (for you) that

you want your users to reach.

At Corg.ly, Charlotte needs to onboard as many new users to Corg.ly

as possible for the business to be a success. The goal of Corg.ly

documentation can be summarized as

Onboard new users to Corg.ly by helping them integrate with
Corg.ly’s API.

By contrast, the most common goal of Corg.ly users is

Translate my dog’s barks into human speech.

The goals of Corg.ly and Corg.ly users are different, but they can still align

in a single documentation set. You probably have a goal for your users as

well. Identifying how different goals can both differ and overlap helps you

gain empathy and meet needs effectively.

The following sections in this chapter will help you break your goal down

into smaller goals as you research your users and their needs. However, it’s

important to define your overarching user goal from a business standpoint

first.

Note once you determine your goal for users of your product, write
it down. Later, you can measure the success of your documentation
by how well it meets your goal. (For more information about
measuring documentation success, see Chapter 9.)

Chapter 1 Understanding yoUr aUdienCe

6

 Understanding who your users are
Now that you know what you want your users to achieve, you can identify

who they are. You can define them in a variety of ways. For example, you

can define users by their role, such as developers, product managers, or

system administrators.

Alternatively, you can define users by their level of experience or by what

situation they’re in when reading your documentation. For example,

are they junior developers new to their roles? Will they be using your

documentation at 4 a.m. after waking up to a pager alert?

Remember your curse of knowledge. The knowledge, skills, and tools you

have may be very different from your users.

Note not every user is the same, and you can’t meet every user’s
needs. prioritize the users who are most important for your product or
business.

For example, if your software will primarily be used by developers, then

focus on understanding developers’ needs—as opposed to those of a

product manager who may be evaluating your software for an engineering

team. Consider what kind of developer your user is: an application

developer using an API needs different things than a site reliability

engineer (SRE) focused on security and reliability.

As you think through these questions, write down a list of characteristics

that your users share. Keep it focused and brief. For a developer audience,

consider characteristics like:

• Developer skill

• Programming languages

Chapter 1 Understanding yoUr aUdienCe

7

• Developer environment

• Operating system

• Team role

A list of characteristics gives you a starting point for user research. You can

add more categories later as your research progresses.

 Outline your users’ needs
Once you create a basic definition of who your users are and the overall

goal you want them to accomplish, you can start outlining what your users

need. The easiest approach is to list questions your users will have about

your product that your documentation will need to answer.

Some questions, in general, apply to all products. Questions like:

• What is this product?

• Will this product solve my problem?

• What features are available?

• How much does it cost?

• How do I get started?

Other questions are going to be very specific to your product, your users,

and their goal:

• How do I authenticate against your API?

• How do I use a specific feature?

• How do I troubleshoot a specific problem?

You’ll identify some of these questions immediately through your

experience with your own product, but remember your curse of

knowledge. Your users don’t know as much about your product as you

Chapter 1 Understanding yoUr aUdienCe

8

do, so they will likely have basic questions about your product that you’ll

need to answer. As you do more research into your users and validate your

understanding, you can add additional questions for which users need

answers from your documentation.

 Validate your user understanding
Once you have a definition of your users, their goals, and their needs, you

should validate and build on your initial understanding. User research

helps you confirm who your users are and what they need from your

documentation.

The quickest way to confirm or reject your assumptions about who

your users are and what they need from your documentation is to talk

to them directly. Interacting directly with users is a surefire way to help

you understand what they’re trying to do with your software, how they’re

currently using it, and any frustrations or concerns they have.

Note the focus here is on your users’ needs, which are different
from user wants. Consider asking someone how they want to travel
to a nearby town. given all the options in the world, they may say
they want to drive there in a sports car. this is a good representation
of their desires. Who wouldn’t want to travel by sports car, given the
option? But if that same person doesn’t know how to drive, a better
option may be to offer them a bus ticket. they want the sports car,
but they need a bus ticket. When researching, work on identifying
these needs, even when they are buried in a pile of wants.

Chapter 1 Understanding yoUr aUdienCe

9

 Using existing data sources
The easiest way to connect with your users is to find the places where

communication channels already exist. If you’re part of a larger

organization, you might have access to teams who are already having

conversations with users whom you can reach out to. These teams include:

• Developer relations

• Product support

• User experience

• Marketing

These teams can help you validate your assumptions about your user and

give you additional information, for example: What do we already know

about our users’ experience with the software? What are their blockers

or pain points? How long does it take for a user to complete a successful

integration?

 Support tickets

Support tickets are an existing data source and a gold mine for

understanding your users. Nothing beats the content of a support request

sent in the heat of the moment by a frustrated user for understanding what

your users need most. In addition, you can follow up with the user who

filed the support ticket and see if they would be willing to speak with you

directly.

To analyze your support issues, pull a list of recently filed issues that relate

to what you’re documenting, and then group them by theme (Table 1-1).

Chapter 1 Understanding yoUr aUdienCe

10

Some themes may be immediately obvious. Others can take some time to

appear. Get a colleague to join you to see if they can spot themes you didn’t

notice. Remember the curse of knowledge is always at play; anything or

anyone you can involve to challenge your own biases and knowledge is

useful at this stage.

As patterns emerge, add your discoveries to your initial definition of the

user. Is the experience level of users filing support issues higher or lower

than you expected? Are they using specific tools or languages that you

should consider documenting? Did they express common needs that many

users likely share?

 Collecting new data
Sometimes, existing data sources aren’t available or aren’t enough to

validate or refute the assumptions we have about our readers. This is

a perfect opportunity for more in-depth research collection methods.

However, it’s important to note that good research can be time consuming.

Although the return on your time investment will be huge, it can be tricky

to find the balance between the right amount of research and the need to

get your documentation in front of your readers quickly.

Table 1-1. Grouping issues with examples

Issue Example

topic Users are confused by the name of a particular endpoint

process 80% of users had issues authenticating

type of

user

Developers who recently started using Corg.ly are more likely to
request help

action We helped 4/5 users by rewriting a particular error message to give
more information

Chapter 1 Understanding yoUr aUdienCe

11

However scrappy your research, something is usually better than nothing.

You can scale the following research methods as you feel is appropriate to

break your curse of knowledge.

In some cases, approaching existing online communities for their views

or speaking with attendees at a developer conference may be sufficient for

you to break the curse and validate your assumptions. In other cases, you

may need to invest more time in in-depth interviews and surveys.

Note Whatever method you choose for your research, if you
are collecting user data, you need to keep your participants and
their data safe. you must consider how you get consent from your
participant and keep their information secure.3

in addition, familiarize yourself with local data protection laws if
you choose to collect any personal data. For example, in the eU and
UK, the general data protection regulations (gdpr) outline how
organizations must handle any collection of personal data.

 Direct interviews

Where themes overlap or requests seem the most pressing, interviews

can help you dig a little deeper. Provided you are considerate of their

time, most people like the chance to help shape a future product or

documentation.

3 Maria Rosala, “Ethical maturity in user research,” Nielsen Norman Group,
published December 29, 2019, www.nngroup.com/articles/user-research-
ethics/.

Chapter 1 Understanding yoUr aUdienCe

https://nngroup.com/articles/user-research-ethics/
https://nngroup.com/articles/user-research-ethics/

12

Consider what existing routes you can use to find participants for

interviews. Are there online communities where users of your software

typically chat with each other? Are there upcoming conferences or other

events where you could meet potential users? Do you have a few early

adopters who would be interested in talking to you?

Regardless of your interview source, pursue quality over quantity. Five

potential readers who fit your target audience will offer much more valuable

insight than fifty people who didn’t meet your criteria, but were easier to

find—and if you can only find five participants, that’s okay, too. Advice varies,

but around three to five people for one “round” of research is considered a

robust enough sample on which to base future content decisions.4

Note Consider the diversity of the people you talk to. Look at
the age, gender, disabilities, ethnicity, job duties, and social and
economic status of your pool. are your interview participants
representative of the wider group of people who will eventually read
your documentation?

When performing the interviews, it’s important to prepare your topics in

advance to keep the conversations focused and useful. Some high-level

topics for the Corg.ly API could be:

• Previous experience using similar services and APIs

• Expectations while using the Corg.ly API

Break each topic down into specific, open questions. A specific question

bounds the scope of possible answers in a helpful way. An open question

4 Jakob Nielsen, “Why you only need to test with 5 users,” Nielsen
Norman Group, published March 18, 2000, www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/.

Chapter 1 Understanding yoUr aUdienCe

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

13

is exploratory, usually answered with a story or longer explanation. By

contrast, a closed question is limited and usually answered with a yes

or a no. For example, “Have you used pet translation software before?”

is a closed question. You can rephrase it as an open question by asking,

“What’s your experience using translation software?”

If possible, ask the interviewee to walk through the steps of doing the task

that you’re documenting. Observe them and see where they get stuck, and

have them talk through their process and frustrations.

At the end of your interviews, you should have recordings or transcripts

of each session and high-level observations. While interviews are handy

for asking open questions, sometimes you may need more directly

comparable data to understand what your readers need. This is where

surveys can be a handy part of your research repertoire.

 Developer surveys

If you have a large group of people from whom you’d like to gather

information, a well-designed survey can give you more actionable and

immediate insights, especially if you don’t have much time for in-depth

interviews. The trick to great surveys is to make them quick and painless.5

To make a survey quick and painless, you need to create a small set of

targeted questions. As with planning interviews, you’ll need to know what

you want to find out—and asking fewer questions is more impactful than

trying to cover everything.

Good survey questions:

• Ask one thing per question

• Are closed (with limited answers)

5 Jakob Nielsen, “Keep online surveys short,” Nielsen Norman Group, published
February 1, 2004, www.nngroup.com/articles/keep-online-surveys-short/.

Chapter 1 Understanding yoUr aUdienCe

http://www.nngroup.com/articles/keep-online-surveys-short/

14

• Optional to answer

• Are neutral

Even the most perfectly designed questions are only useful if people

answer them. There are several tactics you can use to increase your

response rate. Make it clear who you are, what data you’re collecting,

and why. Write your questions carefully so they are easy to answer. If you

demand too much from your responder, it’s likely they will not complete

the survey or annoy them so much it skews their responses.6

Finally, you can consider incentives or rewards for taking part in your

research. This could be a monetary reward or a voucher, but you could also

offer access or information, for example, beta access to the Corg.ly app, or

their name included in a public list of contributors.

 Condensing user research findings
Compiling your results and observations from research can feel

unnecessary. You’ve probably gathered a lot of information about

problems you want to immediately fix, but hold up! That rush of

knowledge is easily lost, and it’s worth taking the time to condense your

findings into tangible records you can refer to during later stages of writing

documentation.

Three useful ways of condensing your user research findings are:

• User personas

• User stories

• User journey maps

6 Gerry Gaffney and Caroline Jarrett, Forms that work: Designing web forms for
usability (Oxford: Morgan Kaufmann, 2008), 11–29.

Chapter 1 Understanding yoUr aUdienCe

15

 User personas
A user persona is a semi-fictional character created to represent your ideal

reader or readers. This character can be based on a specific person or an

amalgam of people you learned about in your research. A user persona

usually includes a short description of the individual (real or imagined)

and a list of their goals, skills, knowledge, and situation.

To build a user persona, compile a list of the essential characteristics

you’ve learned about your users through your research. For example,

here’s a user persona for an advanced developer based on Mei, Corg.ly’s

alpha customer:

Name: Mei

Developer skill advanced

Languages python, Java

Developer environment Macos, Linux

Role Lead developer

There are also a number of junior developers using Corg.ly. Here’s a

persona named “Charles” that represents them:

Name: Charles

Developer skill Beginner-intermediate

Languages python

Developer environment Macos, Linux

Role Junior developer

Chapter 1 Understanding yoUr aUdienCe

16

Once you create your personas, consider which persona you want to

focus the rest of your research on. In the example of Charles and Mei, it’s

probably most useful to focus on people similar to Charles when creating

documentation. There are many more developers like Charles who need

more guidance and explanation than there are advanced developers like

Mei who will understand your product quicker.

As you develop your own user personas, consider the needs of your users.

Who do you need to help most? Who would face the biggest learning curve to

use your software? Who is most important for the adoption of your product?

 User stories
If you have more time, you may find it useful to write user stories alongside

your personas. User stories are short written summaries of what a user

is trying to achieve and are a nifty way to condense your users’ needs to

keep them front of mind for the planning, writing, editing, publishing, and

maintenance that comes next. You may be familiar with the idea of user

stories from working in Agile product teams.

A user story tends to follow the same format: As a [type of
user], I want [activity] so that I can [goal].

You can break down your research findings into many of these kinds of

statements. You can also take one significant part of your research and

create multiple user stories for it. An example user story for a Corg.ly user

could be:

As a developer, I want to integrate Corg.ly data with my smart
watch so I know what my dog is saying when we’re out for a
walk.

The user story is not focused on knowing how to use the API or wanting

great documentation. It’s focused on the higher-level tasks users are trying

to achieve and their motivations for it.

Chapter 1 Understanding yoUr aUdienCe

17

 User journey maps
For meatier research projects with ample research notes and text, a visual

illustration can be handy. A user journey map is a diagram showing the

path a user takes through a product or website while trying to accomplish a

particular task. The map usually covers all routes or “channels” a user may

take when interacting with your software and documentation. The map is a

timeline, tracking what a user does at each point in their journey and what

they feel or experience at each step. Creating a user journey map can be a

succinct way to condense your findings, highlighting where your users are

happiest, and where you can improve.

To create a user journey map:

 1. Define the task the user is trying to accomplish.

 2. List the channels a user may interact with (e.g.,

your website, docs, your code repository, or the app

itself).

 3. Piece together the steps a user takes through each

channel (e.g., discover, sign up, install, configure,

test, run, review).

 4. List the user experience at each step (e.g., what they

are doing, feeling, thinking).

 5. Connect the channels, steps, and experiences in a flow.

Figure 1-1 shows an example map of a user journey where a user evaluates,

signs up for, and connects to Corg.ly. The top row shows common user

questions identified through Charlotte’s research. The middle row

shows the user’s experience throughout the journey (where the current

experience is meeting or not meeting their needs). The final row lists

opportunities for Charlotte’s team to add or improve the documentation or

product to provide a better experience.

Chapter 1 Understanding yoUr aUdienCe

18

It may take several iterations to find a design that works for you. You

may find it useful to emphasize where your users are not having a good

experience or where there are few channels to help them through difficult

steps.

Figure 1-1. User journey map for connecting to Corg.ly

Chapter 1 Understanding yoUr aUdienCe

19

 Creating a friction log
Equipped with your research findings, you now know the context,

knowledge, and skills of your user. You know what they’re trying to achieve

and why. Now it’s time to step into the shoes of your reader and experience

for yourself the friction that stands in their way.

Friction can manifest in different ways. Frustration, anger, disappointment,

and stress are all symptoms of friction that result in the same thing: distrust

and disengagement with your software.

A friction log is a journal in which you try your software as a user would

and record your experiences. To record your experience, log each step

sequentially, noting the behavior you expect and the actual behavior of

your software. The bigger the gap between expectation and reality, the

bigger the opportunity to improve your docs or software.

The best friction logs have a tight scope to prevent sprawl and keep results

actionable. Pick a user and a scenario with a clear beginning and end, for

example, a developer installing your software for the first time. Note the

scenario and any other test information at the top of the page, such as the

environment or version you’re using.

Now it’s time to work through the steps and record the experience. As best

you can, let go of your existing knowledge and your own mental models.

Put yourself firmly in that user’s shoes: How does it feel to complete a step?

Did it seem easy? Are you reassured you’re on the right track? Are you

feeling unsure? Lost? Annoyed?

Format your friction log into numbered steps, breaking down each task

into its own line. For example, to start using the Corg.ly API, the first step is

to sign up for a paid Corg.ly account. The process of completing that task

contains a lot of friction, outlined in the following friction log:

Chapter 1 Understanding yoUr aUdienCe

20

Goal: start using Corg.ly api

Tasks Friction log

 1. sign up for a paid

Corg.ly account.

 1. opened Corg.ly website.

 2. navigated to web form for sign-up. had to scroll to

the bottom of the page. difficult to find. Maybe add

to top of page?

 3. Completed form. put in credit card information.

 4. Clicked submit button. did not receive confirmation

it had been submitted. no error generated.

 5. noticed some form fields were blank. did the

empty fields stop the form from submitting?

 6. Filled in blank fields.

 7. Clicked submit button. received confirmation

message and reassuring information has been sent.

...

You may find it useful to color code your friction log to indicate positive

and negative user experiences. For example, green could indicate steps

that were easy to complete, offered clear evidence of success, and guided

you to the next step, or red for steps that were particularly frustrating or

stopped you from progressing.

At the end of the scenario, examine your log. Are there any steps that

were particularly difficult, or areas that were manageable but could be

improved? Friction logs offer a chance to reflect on what steps could be

improved by documentation and which by software changes. You may

have identified issues that are fixable in the product (a missing error

message, a typo in a command) rather than documentation. Consider

creating a bug report or issue to capture these and free your time to focus

on writing documentation for where it matters most.

Chapter 1 Understanding yoUr aUdienCe

21

You don’t need to restrict friction logging to the early stages of your

documentation project. Rerunning or picking a new area to log is a great

way to reconnect with your readers and remember what it feels like to

experience your software as a newcomer, as well as find new improvements

to make. In time, you can test the usability of your documentation itself

alongside your software, which can be a handy means of measuring the

effectiveness of your documentation. For more information on measuring

the quality of your documentation, see Chapter 9.

 Summary
Effective documentation requires you to have empathy for your users,

which you can build with user research and its tools: interviews, developer

surveys, and reviewing support issues. Condense your research into user

personas, user stories, and user journey maps that you can refer to later.

Empathize with your users by trying out your own software and

documenting your experience in a friction log. Notice the places in your

product where you can help your users through documentation or through

product improvements.

The next chapter covers how to turn your empathy into action by creating a

documentation plan.

Chapter 1 Understanding yoUr aUdienCe

23© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_2

CHAPTER 2

Planning your
documentation
 Corg.ly: Creating a plan
Charlotte had spent the previous three weeks researching Corg.ly’s users.

She and Ein did a few demos of the product at a local dog park with several

interested initial users. She’d gotten to know how they wanted to use Corg.ly,

the kinds of products and apps they wanted to build, and what they wanted

from the documentation.

She felt she knew their

problems inside and out

and how Corg.ly could

solve them—but it was

overwhelming to think

of how to translate the

information from her

head into the right kind of

documentation.

As Charlotte and Karthik

thought about how to

shape their documentation, they realized they could use the same approach:

understand the users’ needs and shape the content to solve their use cases.

https://doi.org/10.1007/978-1-4842-7217-6_2#DOI

24

Charlotte’s team understood that new developers were their key users and

that the getting started documentation was critical. In addition, a service

with so many features meant they needed a strong set of use cases for the

most common workflows. Also, because their service was still new, the team

wanted to provide a safety net for new users with good troubleshooting

content. Luckily, they already had existing resources like friction logs, user

interviews, and meeting notes they could use as source material.

Knowing what they needed to deliver to users, it was time to actually plan

the documentation.

 Plans and patterns
In the previous chapter, you built a strong understanding of your audience

through user research. With this understanding, you can decide which

types of content to create to serve your users’ needs.

By the end of this chapter, you will know how to plan your documentation.

You will also understand some different content types and how to

determine which types best fit your users’ needs.

Content types are different patterns for building effective and consistent

documentation. Different content types help solve different kinds of problems.

This chapter explains the most common content types, when to use them,

and which jobs require multiple types. This chapter also describes how to

turn user research and the existing content you have (design documents,

emails, whiteboard sessions, meeting notes, old documentation, and

rough drafts) into a plan for your documentation. Your plan will guide

what you write and how you write it.

A use case (also called a business problem or user scenario) is a set of tasks

required to complete a goal. Each task is an interaction with your service or

systems. You can create use cases from researching your users and finding

what goals are most important to them. When you identify the most

Chapter 2 planning your doCumentation

25

important use cases for your users, you can plan your documentation with

content types that address their needs. Good documentation describes use

cases that help your users meet their goals.

By the end of this chapter, you will:

• Understand the common content types for developer

documentation

• Learn about the patterns that best support each

content type

• Learn how certain content types best complement each

other

• Build a comprehensive plan for creating your content

 Content types
Content types help you write the specific kinds of documentation your

users need. Each document type serves a specific task, user archetype, or

learning preference.

The following section describes the most common content types for

developers and shows you how to assemble them into a documentation

plan. Although each of these content types has its own templates and

guidance, you should shape them into what works best for your users.

 Code comments
The most basic content type for developers is code comments. Beyond

describing what your code does, code comments document design

decisions and tradeoffs made when writing code, describing what you did

and why you did it.

Chapter 2 planning your doCumentation

26

The tenets for good code comments are to:1

• Keep them brief

• Make them relevant

• Use them liberally, but not excessively

As a code base evolves, it’s useful to preserve the context for past decisions,

and a single inline code comment before a particularly complex piece of

code can save future developers a lot of time. Code will never be perfect,

especially in complex services, and therefore it’s rarely self- documenting.

You may eventually have more people looking at your code, whether it’s

a colleague doing support, a new engineer on your team, or, if you’re

contributing open source code, an entire community.

Some developers advocate against code comments, promoting the idea

that your code should be so clear that code comments are unnecessary.

They also suggest that code comments are a maintenance burden,

with comments having to be updated when the code is updated. This

argument makes a certain amount of sense. However, code comments

reduce confusion and ambiguity about what your code does and

provide useful context and information that doesn’t exist in the code

itself.

Note even as a solitary developer working on a project, code
comments can be a tremendous help. if you’ve put code aside and
returned to it after weeks or months, you may have experienced
bewilderment at what you were doing or why you made certain
choices. Comments help you reorient to your own code.

1 B.J. Keeton, “How to comment your code like a pro,” Elegant Themes,
published April 3, 2019, www.elegantthemes.com/blog/wordpress/
how-to-comment-your-code-like-a-pro-best-practices-and-good-habits.

Chapter 2 planning your doCumentation

http://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
http://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits

27

 READMEs
Code comments alone aren’t enough to help your users understand a system

at a summary level. To help users understand why your code exists—the

problems your code solves and why it matters—you can write a README.

A README is a single text file, often written in Markdown, that

summarizes a collection of code, usually at the top level of the code

repository.2 You can also write READMEs for important subfolders that

require additional summary or explanation. A README contains basic

information like:

• What the code does at a high level

• How to install it

• Troubleshooting steps

• Who maintains the code

• License information

• A changelog

• Basic examples

• Links to more in-depth resources and documentation

Listing 2-1 provides a README template.

2 Omar Abdelhafith, “README.md: History and components,”
Medium, published August 13, 2015, https://medium.com/@NSomar/
readme-md-history-and-components-a365aff07f10.

Chapter 2 planning your doCumentation

https://medium.com/@NSomar/readme-md-history-and-components-a365aff07f10
https://medium.com/@NSomar/readme-md-history-and-components-a365aff07f10

28

README

a paragraph or two that encapsulates what the code does at a high level.

For example: Corg.ly is a service that translates dog barks into human

language. Corg.ly uses an api to send and receive translations, and uses a

machine learning model to regularly improve its translations.

Installation

1.

2.

3.

4.

5.

Examples

Troubleshooting

Changelog

Additional resources

License information

A README needs to be concise, informative, accurate, and up to date.

As you continue working on code, make sure to keep the README

current with the changes you make. Along with serving as a cheat sheet

for the code repository, a README often serves as the basis for more

comprehensive user-facing documentation. If you follow this chapter’s

example template in your README, your users will likely have what they

need to get started. There are additional resources listed in the Resources

appendix for writing a detailed and concise README.

Chapter 2 planning your doCumentation

29

 Getting started documentation
Guiding users through first impressions and first-time user experience

is the critical role of getting started documentation. Getting started docs

are your opportunity to help users get up and running and to build trust

with your users that you will guide and support them with good resources.

As you write a getting started document, some questions you should ask

yourself are:

• What are the quickest explanations of what this service

is and what its core features do?

• What are the simplest steps to install and use your

product?

• What are the most important questions new users will

have?

• What are the cool things they can do with your service?

Getting started documentation should translate your user’s interest into

them actually developing with your product. If your product is fairly

simple, you could show the steps of how to do a basic integration with your

product and your user’s code. If your product is more complex, you could

provide your users with an inline or downloadable code sample that just

needs a few small tweaks to use. It’s better to show your users your product

than to tell them about it.

Getting started content also acts as a starting point for more advanced

pieces of content. A common mistake organizations make is to only

produce advanced documentation, like how-to guides. But you really

want to make sure that all types of users are supported, whether they’re

advanced or just evaluating your service. You need to help them quickly

understand what your product does and what it can do for them. Getting

started documentation helps with this problem.

Chapter 2 planning your doCumentation

30

 Conceptual documentation
The next content type is conceptual documentation. Conceptual documentation

helps users understand the concepts and ideas behind your service. It describes

how your service works to your users. Conceptual content can be opinionated,

but it should avoid implementation details. (Implementation details belong in

procedural content, covered later in this chapter.)

Meeting notes, design documents, whiteboard diagrams, and internal

documentation are great source material for your service’s conceptual

content.

Keep conceptual documentation brief and concise, especially if you’re

using conceptual information to set context for a procedure or tutorial.

Focus on these sections:

CONCEPTUAL GUIDE

the first paragraph, which introduces the concept explained in the document.

Overview
give a technical overview of how the concept works. describe any additional

sub-components or related concepts in sub-sections.

Related Concept 1

. . .

Related Concept 2

. . .

Additional resources
list any related documentation, including tutorials and how-to guides that

implement the concept.

Chapter 2 planning your doCumentation

31

Limit the number of concepts explained in a single document. Readers are

generally good at absorbing one core concept at a time. If you’re explaining

several new concepts, things get complex very quickly and users may

struggle. By keeping conceptual documentation simple for your readers,

beginners will feel comfortable learning about your service, and advanced

users will appreciate the efficiency it affords them.

Note Conceptual documentation offers a good opportunity for
simple user research. ask a user to read a draft, and then ask them
to explain what they read. evaluate which concepts made sense to
them and which ones did not. improve your document based on this
feedback and repeat the exercise as many times as needed.

this user research exercise also shows you other content to include
in your documentation plan. not only does iterative user research
improve your conceptual documentation, it helps you identify gaps
that you can fill with other types of documentation.

 Procedural documentation
The next type of user content is procedural documentation. Procedural

content includes tutorials and how-to guides—anything from installation

instructions to API integrations. A procedural document shows readers how to

accomplish a specific goal by following a set of structured steps. A single step

should describe a single action that a user takes.

People read documentation to solve a problem or accomplish a task, and

they want to do so as quickly and effectively as possible. These are some

useful patterns for writing guides and tutorials:

• Make the guide stand on its own as much as possible

with all the actions users need on a single page.

Chapter 2 planning your doCumentation

32

• Keep the number of steps limited to what’s necessary

for your users. When a procedure contains many

steps, the procedure looks overwhelming and

complex to users. Longer procedures also create more

opportunities for mistakes and tend to require more

maintenance.

• Avoid lengthy explanations. A few sentences of

explanation or a well-placed image is useful, but

too much additional content within a procedure

tends to overwhelm users. A good practice is to write

procedures that allow a user to see two or more

steps on a standard monitor screen. If you find your

procedure contains many explanations, consider

separating that information out into a conceptual

guide. Note that this doesn’t apply to code examples.

 Tutorials

A tutorial is a procedure that teaches users how to achieve a specific

goal. Tutorials help users test an integration without implementing real

code. Good tutorials provide users with an environment they can use for

learning and may even offer test data or tools to use.

If your tutorial includes more than ten steps, you’re trying to solve for a

use case that’s too complex, or you’re combining too many actions in one

document. Long, time-consuming tutorials make it less likely that a user

will successfully finish.

If you can’t condense a long tutorial—or any procedural content, for

that matter—into fewer steps despite your best efforts, it could mean the

service itself is too complex. There may be steps that should be combined,

automated, or omitted from the service—and that’s a conversation you

should have with the product developers.

Chapter 2 planning your doCumentation

33

Note Complex documentation helps you identify potential user
challenges and can be an opportunity to improve the service itself.
discuss with your development team whether spending multiple hours
on a single document is the user experience your organization wants.
if, on the other hand, you’re the one who introduced the complexity
into the system, that should be a much easier conversation.

 How-to guides

How-to guides are the core type of procedural content. A how-to guide

shows how users can solve actual business problems by performing

specific steps with your service.

How-to guides are a true differentiator for your users: a single document that

helps them build a solution to their problem. While tutorials focus on learning,

a how-to guide is based on action with users implementing real code.

HOW-TO GUIDE

the first paragraph, which introduces the core concepts and gives overview

information required for this guide.

Prerequisites
list any steps your users should do before they follow the steps in this guide.

Steps

1.

2.

3.

4.

5.

. . .

Chapter 2 planning your doCumentation

34

Next steps
link to additional documentation the user should follow after doing the steps

in this guide.

When planning how-to guides, pay attention to your users’ needs and

interpret your company’s strategy of what you want your users to do. Plan

carefully and be selective, as how-to guides are labor-intensive to write

and maintain. You could lead users astray by documenting edge cases at

the outer boundaries of your service’s capability.

A good pattern for writing how-to guides is to keep words simple, make

actions clear, and continuously reinforce the problem the guide solves.

Include prerequisites at the start of your guides. Prerequisites include

any dependencies, such as installing a required version of your system or

packages. If specialist skills and knowledge are truly required, list them as a

prerequisite, but avoid this whenever possible. Assessments of knowledge

or skills are often subjective and add unnecessary requirements.

Prerequisites not only tell users what they need to accomplish a goal; they

also provide users with an escape hatch.

Note escape hatches are helpful cues that signal to a user that they’re
probably not in the right place and show them more suitable options.
escape hatches can include links, a callout, or a note with useful context.

Effective how-to guides keep users on a single page as much as possible.

It’s tempting to use a link every time another page exists for a term

or concept that you mention, but clicking too many links adds more

distractions for users. As opposed to Wikipedia, which uses links liberally

to teach you new things you didn’t know existed, you can help your users

focus by creating a how-to guide on a single page.

Chapter 2 planning your doCumentation

35

Users come to your documentation with a specific problem in mind, and

you want to help them solve that problem as quickly as possible. If they’re

jumping from link to link across your documentation site, they’re getting

farther away from a solution to the problem they came there to solve. Some

overeager users may be tempted to learn everything you’re giving them. They

may think, If they're linking to a concept, it’s probably important, which could

quickly leave them with an overwhelming number of open tabs. Your goal is

to provide a guided experience with helpful guardrails to keep users on track.

Links in the middle of your document may distract readers. Instead,

provide links to additional resources at the bottom of the page. Linking to

related concepts and next steps helps build trust with users by presenting

them with the greater context in which a particular guide fits and helps

take them to the next step in their user journey.

 Reference documentation
When your users are ready to start building, they lean heavily on

your reference documentation. While procedural and conceptual

documentation educate and inform, reference documentation is all about

cause and effect: which actions produce which results. This is also true

for troubleshooting. Sometimes users encounter errors or friction, and

reference documentation helps them quickly get back on track.

 API reference

API documentation is a trusted reference for your users to start building.

Good API documentation:

• Provides a detailed reference for all its resources and

endpoints

• Offers plenty of examples

• Lists and defines status codes and error messages

Chapter 2 planning your doCumentation

36

An API reference should be concise and minimalistic. It’s a good practice

to introduce your API by sharing important information like the standards

it follows and how responses are formatted (for example, REST and

JSON) and then showing users how to authenticate. You can also use

your product documentation to demonstrate lengthier procedures for

interacting with your API.

The best way to provide a comprehensive reference of your API is to

annotate your code with descriptive comments and autogenerate a

reference from the source.3 This saves you the trouble of manually creating

many pages of documentation and offers a more complete reference by

tying the content to the code.

Your API reference should define all resources and their endpoints,

methods, and parameters, while offering an example request and

example response to that request. Chapter 5 covers best practices for code

examples.

Listing and defining status codes and error messages is a great way to

conveniently support your developers. In your documentation, explain

the error messages developers may encounter when using your API, along

with what error codes mean and how to resolve them.

Developers are accustomed to an API reference existing separately from

the product and the rest of the documentation. While conceptual and

procedural documentation offers more context, an API reference is rooted

in a service’s code. An API reference serves as the source of truth for

developers to integrate with your service. Once they start building, they’ll

depend heavily on this reference.

3 Shariq Nazr, “Say goodbye to manual documentation with these 6 tools,”
Medium, published March 30, 2018, https://medium.com/@shariq.nazr/
say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa.

Chapter 2 planning your doCumentation

https://medium.com/@shariq.nazr/say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa
https://medium.com/@shariq.nazr/say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa

37

Note there are many useful resources available to build a
reference that best suits the needs of your developers. See the
resources appendix at the end of this book for more information.

 Glossary

Any complex system has terms with unclear meanings. A glossary is a

collection of terms and definitions that are specific to your service, field, or

industry.

A glossary helps you use terms consistently in your documentation. It’s

frustrating for users to see the same term in your documentation defined

in different ways or different terms for the same thing. Not only does

inconsistency make it difficult to understand a term in context, it also

degrades users’ trust, as it indicates that your organization isn’t even sure

of a term’s definition. A glossary doesn’t need to be comprehensive, but it

must define the key terms users need to use your service.

Note limit external links in glossaries. it’s tempting to link to
external sites, especially if you’re using third-party terms. however,
external links put your content at the mercy of third parties, trusting
that they’ll keep the resource up to date and in the same location.

 Troubleshooting documentation

Users often find gaps and limitations in your service faster than you can

fix them. As you or your users identify known issues in your product, you

can document workarounds in a variety of ways using troubleshooting

documentation.

Chapter 2 planning your doCumentation

38

A documented workaround shows users a solution that may not be intuitive,

but still gets the job done despite known limitations. It’s valuable to be

transparent with known issues and bugs to save your users time, as they’re

going to discover them anyway. Known limitations typically include edge

cases—actions that you may not have expected or recommended users to

attempt. Be clear with your users about which edge cases are unsupported.

When organizing troubleshooting information, it’s best to avoid too

much explanation on why the problem happens and focus instead on the

workaround. Make sure you include a solution (or fix) with the description

of the problem.

TROUBLESHOOTING

Issue 1

description:

Steps to fix:

1.

2.

Issue 2

description:

Steps to fix:

1.

2.

. . .

Organize the issues in a way that makes the most sense to your users. You

can organize issues by descending order of frequency—from most likely

Chapter 2 planning your doCumentation

39

to least likely—or in chronological order of where users might encounter

them in their workflow. The important thing is to give your user a logical

flow for finding the right information.

When users reach a troubleshooting page, they’re often trying to fix a

problem that’s frustrating to them. Help them solve their problem as

quickly as possible.

Another type of troubleshooting reference is to list all of your error

messages and provide more information about causes and solutions. This

allows users to copy and paste their error message into search and find

more context around the issue that they’re having.

A good pattern for documenting error messages is to group them together

on a single page. This makes searching by copy-and-paste more efficient.

It’s also good to include specific error messages within the procedure or

tutorial where they may occur.

Note FaQs are a common way to organize troubleshooting
information, but it’s better to avoid the question and answer format
and instead list your users’ issues and how to solve them. FaQs often
become lengthy lists of uncurated questions without a logical flow. if
you do decide to create an FaQ, keep it short and focused.

 Change documentation

A changelog provides a helpful historical record for internal teams like

support and engineering. Understanding when changes took place

and when customers were impacted can be useful information when

troubleshooting. Changelogs are most common in API documentation,

where breaking changes or new versions can negatively impact a

developer’s existing integration with your service.

Chapter 2 planning your doCumentation

40

Whenever there’s a significant or breaking change, provide information for

what, when, and why this occurred. Not only is it helpful in the moment

when you’re letting users know that something changed, but if they’re

looking backward and trying to troubleshoot an issue, they can see when a

change took place that may have affected them.

List changes in chronological order, including data like:

• Previously supported versions, integrations, or

deprecated features

• Name changes of parameters or important fields

• An object or resource moved

Release notes are another helpful type of documentation. Release notes

provide rich context for the changes listed in a changelog. While a

changelog can be automated or consist only of a bulleted list with little

context, release notes speak directly to your users. Here's the change that

took place. Here's why. Here's how it used to be. Here's how it's going to be.

Release notes give users context to understand why a change took place.

Example entries for release notes include:

• New features

• Bug fixes

• Known bugs or limitations

• Migrations

Chapter 2 planning your doCumentation

41

RELEASE NOTES

2020–03–18

item one

• Summary

• impact

• reasoning

• actions required

item two

. . .

2020–03–11
. . .

 Planning your documentation
Now that you understand the content types and patterns that best serve

your users, you can create a documentation plan. A documentation plan

functions as a flexible outline, making it easy to map out a user journey

through the content you write.

A good documentation plan allows you to:

• Anticipate and meet your user’s needs for information

• Get early feedback from users and internal

stakeholders on your direction

• Identify gaps and shortcomings not just with your

documentation, but the user journey for your service

altogether

Chapter 2 planning your doCumentation

42

• Coordinate writing, organizing, and publishing your

documentation with other stakeholders

Creating a documentation plan is often straightforward, but easily overlooked.

If you start writing documentation before creating a plan, you might miss

critical information your users need or overlook problems they are trying to

solve. Without a plan, it’s difficult to think about your user journeys holistically.

To build your documentation plan, answer the following questions which

will help you focus on the right information for your users. You already

gathered some of this information in your user research (see Chapter 1),

but it’s useful to restate it at the top of your documentation plan to help

you focus and keep the right information in scope.

• Who is your target audience? (You might already have a

user persona for them.)

• What are the biggest takeaways you want them to have

from your launch?

• In order of importance, what features are you releasing?

• What do users expect from your launch?

• Is there any knowledge users need before they start

using your product or features?

• What are the use cases you’re supporting?

• Are there known issues or points of friction users could

stumble upon?

Answering these questions creates a context—and with your context in

place, you can decide what to build. Start planning your documentation

with a content outline. Your content outline is a list of titles for pages you

need to write and each page’s content type.

Your content outline can be a list with a brief explanation of what’s in each

document. A content outline for Corg.ly might look like Table 2-1.

Chapter 2 planning your doCumentation

43

If your documentation plan reflects a coherent journey for your users,

you’re probably in good shape. If your plan feels like a maze or it’s unclear

what a user needs to do to accomplish a task or solve their problem,

then go back and reshape the documentation plan. You may need to

interview more users or internal stakeholders. If the problem isn’t with the

documentation plan, then it may point to an overly complex service that

needs improvement before a clear user journey can emerge.

Get feedback from others on your documentation plan before you begin

writing. For more information on reviews, see Chapter 4.

Table 2-1. Content outline

Title Content type Brief description

getting Started with

Corg.ly

getting started a very simple demo for using Corg.ly

with links to other documentation

Corg.ly: dog translation

explained

Conceptual a technical explanation of how Corg.ly

works

authenticating with

Corg.ly’s api

how-to a step-by-step procedure for

authenticating with Corg.ly’s api

translating dog Barks to

english

how-to a step-by-step procedure for translating

dog barks into english

translating english into

dog Barks

how-to a step-by-step procedure for translating

english into dog barks

Corg.ly api reference api reference list of all api calls and their syntax

troubleshooting audio

issues

troubleshooting Common issues with translating audio

and managing audio files

release notes Changelog release notes for this Corg.ly release

Chapter 2 planning your doCumentation

44

Once you have your documentation plan, you can start writing and editing

content (described in Chapters 3 and 4). You can also list additional

items your documentation needs to improve the overall user experience.

These include integrating code samples (described in Chapter 5) and

visual content like diagrams and videos (Chapter 6). You can also start the

rough outline of a publishing plan (Chapter 7), considering where your

documentation will be published and your timeline for publishing.

 Summary
This chapter guides you through how to turn the empathy you gained

in Chapter 1 into action with a documentation plan, which outlines the

content and content types you need to create before you start writing.

Content types are different ways to present information. Different content

types help solve different kinds of problems. Content types include code

comments, READMEs, getting started, conceptual, procedural, and

reference documentation. Each of these types follows different patterns,

and building content based around these patterns helps create effective

and consistent documentation.

A documentation plan functions as a flexible outline of the content that

your users need and ensures that you’re focusing on writing the most

important documentation. The next chapter shows you how to turn your

documentation plan into actual documentation.

Chapter 2 planning your doCumentation

45© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_3

CHAPTER 3

Drafting
documentation
 Corg.ly: First drafts
Charlotte stared at the screen in front of her. The cursor blinked slowly. After

all the research, all the planning, the writing should be the easy bit, right?

She looked through the documentation plan again. She read the use cases

and patterns they had identified and reminded herself of the user profiles

they had drawn up just a week ago. As she

read, her confidence began to build; the

research and planning had answered so

many of the hardest questions already.

Ein, curled under Charlotte’s desk,

stretched and settled by her feet. Charlotte

sat up a little straighter in her chair and

began to type.

 Confronting the blank page (or screen)
One of the hardest things about writing is confronting an empty document.

There are so many things that you know about your code, but getting these

thoughts down in clear, precise language for another person to understand

https://doi.org/10.1007/978-1-4842-7217-6_3#DOI

46

can be mentally and emotionally difficult. Acknowledging that difficulty is

the first step to working through it.

If you read through the previous chapters, you’ve already defined

your audience, researched existing content and code, and chosen a

documentation pattern to meet your users’ needs. This chapter is where

you synthesize your work so far into content for your audience.

This chapter guides you through creating your first draft, while

helping you:

• Choose your writing tools

• Define your document’s audience and goals

• Craft an outline

• Use paragraphs, lists, and callouts to build your content

• Avoid getting stuck during your writing

 Setting yourself up for writing success
If you’re writing code on a regular basis, you probably spent a lot of time

learning how to set up your coding environment in the way that works

best for you: your preferred IDE, color themes, tools, and key bindings are

things you experimented with until you found your comfort zone. Writing

requires similar experiments and experience to find what’s right.

You may think that starting your document is a daunting task—but once

you pick the right tools and compile the information you’ve already

collected, you’ll have a good foundation for your document.

Chapter 3 Drafting DoCumentation

47

 Choosing your writing tools
When choosing your writing tools, consider two important factors: the

format for your final content, and the shareability of drafts.

Most documentation you write will be published online, so your final

format will likely be Markdown, HTML, or wikiscript. Any text editor can

output in these formats, so there’s no need to learn a new set of tools. The

same text editor you use for your code also works for your documentation.

It’s important to share drafts with others for reviews and feedback. You

can use the same review tools you use for code to share and review your

documentation. If you want to write your initial drafts in a word processor

that allows you to easily share content and get feedback from others, that

works too. Most word processors have plugins available that can convert

your text into whatever markup you need.

Use the tools you’re most comfortable with. There’s no need to learn an

entirely new set of tools to write documentation. All of the tools you use

to write code also work for writing docs. Mixing tools also works: if you

like drafting outlines with pen and paper, or sketching them out on a

whiteboard, use those methods to get started.

Don't get hung up on choosing tools. Most of the time, your existing

workflow works great!

 Breaking through the blank page
In previous chapters, you created an audience definition, researched existing

content and code, and chose a documentation pattern to meet your needs.

Chapter 3 Drafting DoCumentation

48

You can start your document by listing the information you’ve already

gathered at the top:

• Audience

• Purpose

• Pattern

For example, let’s say you’re creating a document for a Corg.ly API that

takes audio files of dog barks and translates them into strings of human

language. You want to create a document that describes how to upload

files to the Corg.ly service. Your initial information might look like:

• Audience: Developers using Corg.ly who know how to

use REST APIs

• Purpose: Describe how to upload audio files to the

Corg.ly service for analysis

• Content pattern: Procedural guide

 Defining your document’s title and goal
You can define your document’s title based on the audience, purpose, and

content pattern for the document. The title should be the shortest, clearest

rephrasing of the document’s purpose from the user’s perspective.

In the example of the Corg.ly service, the purpose of the document is:

Describe how to upload audio files to the Corg.ly service for analysis. You

can shorten this further for the reader into something like: “Uploading

Audio Files to Corg.ly”.

The title of the document should summarize the goal for reading the

document. Anyone who clicks on your document title will know exactly

what they’re getting. Here are a few examples of titles for additional

documents:

Chapter 3 Drafting DoCumentation

49

• Translating dog barks to text

• Translating dog barks from streaming audio

• Audio encoding and sampling rates

The title “Translating dog barks to text” lets the reader know that they will

be learning how to perform a specific task (translating) from one format

(dog barks) to another (text). The reader understands that this document is

a step-by-step procedure covering how to do the task.

Likewise, a reader seeing the title “Audio encoding and sampling rates”

sees that it doesn’t start with a verb like “Translating”, so it doesn’t cover

a specific task. Instead, the document covers the technical specifics for

audio file encoding and sampling for “Corg.ly”. It’s likely a reference for

understanding how Corg.ly processes and interprets audio files.

The goal of each of these documents is defined in the title. Limit your

document to only one goal. If your document has several goals, you

probably need multiple documents.

 Creating your outline
Now that you’ve defined your title with the goal for your reader, consider

all the steps that your reader needs to reach that goal. Start writing down

all of these steps, and don’t worry about whether or not it’s in the right

order.

If the goal is to understand a particular technical concept, write down all

the parts that make up that concept. If the goal is to complete a technical

task, write down all of the subtasks the reader needs to complete. If you

made a friction log as part of your research, this is a good time to review it.

Chapter 3 Drafting DoCumentation

50

These initial steps form the outline of your document. An outline is a

quick way to verify your approach to a document. Think of an outline as

the pseudocode of a document: it lets you discuss your content with other

developers and potential users before you’ve sunk too much time into

writing.

Continuing the earlier example, here are some of the subtasks for

“Uploading Audio Files to Corg.ly”, in no particular order:

• Install the Corg.ly application

• Upload audio files to Corg.ly (using the user interface

and the API)

• Authenticate with the API

• Verify the upload worked

Each of these subtasks is a separate topic, and each topic is a reference

point to expand later. None of those bullet points actually contains any

instructions, but you can see how the different topics relate to each other,

and where they fit in the sequence. You can start filling out details for each

topic by adding more bullet points describing increasingly granular tasks,

or you can rearrange your topics now. As you practice writing, you will

discover the process that’s most natural for you.

 Meeting your reader’s expectations
Once you create a title, goal, and outline for your document, it’s time to

think about the flow of information. Consider what your reader needs

to know and do to successfully complete the goal you stated in the title.

Imagine their expectations and knowledge, drawing upon the research

you’ve already done. The order of information in your outline should meet

your user’s expectations and needs. The knowledge your reader has is

different from yours, and their experience with what you’ve built won’t be

Chapter 3 Drafting DoCumentation

51

as extensive. It’s up to you to provide the reader with the right information

at the right time. This is what’s meant by the flow of information.

Review the initial outline you’ve written. Rearrange the steps if needed,

focusing on how best to help your readers. You can start by grouping tasks

hierarchically, splitting up some of the tasks if you think they might be too

complex, and grouping similar tasks together. Grouping and rearranging

the outline also gives you a chance to spot any information you may have

missed in your first pass.

For example, the following steps describe “Uploading Audio Files to Corg.ly”,

based on the initial set of tasks. The steps for this procedural guide are

grouped in the order a user performs them, with tasks for the Corg.ly app

user interface (UI) and the Corg.ly API grouped separately.

 Completing your outline
Review the outline for the document and consider your readers. Ask

yourself the following questions:

• Is there additional introductory or setup information

that readers need to know?

Figure 3-1. Steps for uploading audio files to Corg.ly

Chapter 3 Drafting DoCumentation

52

• Are there steps that you’re skipping or that aren’t fully

explained?

• Do the steps make sense in consecutive order?

For readers uploading an audio file to “Corg.ly”, they need to know the

audio file requirements for the application. They need to know how to

authenticate with the REST API in order to use it. They also want to verify

that their file uploaded successfully. Add all of these items to the outline:

 Creating your draft
When you feel confident in your outline, start drafting your content. That

might feel intimidating at first, but building from an outline to a draft

doesn’t need to be difficult.

The focus of your draft is to take the reader through the topics described in

your outline, expanding on each topic with the detailed information your

reader needs. When filling in content, you can use headers, paragraphs,

Title: Uploading audio files to Corg.ly

Prerequisites
● File size and format requirements

Uploading audio files using the application
● Download the applications
● Install the application
● Upload audio files using the UI
● Verify a file has been uploaded using the UI

Uploading audio files using the REST API
● Getting access to the API
● Calling the API
● Uploading a file using the API
● Verifying a file has been uploaded using the API

Figure 3-2. Adding items to the outline

Chapter 3 Drafting DoCumentation

53

procedures, lists, and callouts. Each of these conveys information in

different ways. Each has its advantages and disadvantages.

This book covers visual forms of information like code samples, tables,

diagrams, and graphics in Chapters 5 and 6.

 Headers
Headings are like signposts: they organize content within your document.

Headings also serve as destinations in documentation, letting readers

jump to exactly the information they need. Headings help structure

content for the reader, but they’re also important for search engine

optimization (SEO). Make sure to include headings in your document.

You can create document headings from your outline by making each of

the high-level steps in your outline a header. When creating headers, keep

the following tips in mind:

• Be as brief, clear, and specific as possible. Readers

must be able to skim your headers quickly and

understand your document at a high level.

• Lead with the most important information. Start with

the most important information that readers need to

know as close to the top of the page as possible.

• Use unique headers for each section. Unique headers

help your reader find the right content quickly. For

example, if there are multiple “testing” sections in the

document, specify in the header what is being tested.

• Be consistent. Structure all of your headers similarly.

If your document is a procedure for accomplishing a

task, start every header with a verb. If you’re writing

your document for a larger documentation set, match

the style of headers in other documents.

Chapter 3 Drafting DoCumentation

54

 Paragraphs
Paragraphs are groups of sentences that help readers understand context,

purpose, and details of your document. Paragraphs give context about

when to run a procedure, or offer details about how a procedure works.

Paragraphs can contain stories that make a concept easier to understand,

or they may give readers historical information that affects how they

proceed.

Of the different types of text you can put in your document, paragraphs

contain the most information, but they’re the slowest to read and the

hardest to skim. When writing paragraphs, give your readers the context

they need to understand and act, but keep it short. Limit paragraphs to five

sentences or fewer when possible. Short paragraphs are easier to read on

mobile devices!

 Procedures
A procedure is a sequential set of actions a reader takes to achieve a

desired result. Procedures should always use numbered lists to help

readers understand the order of tasks they’re performing. Explain the

desired goal at the start of the procedure so that users understand what

they are doing. At the end of the procedure, add a way for the user to check

that they performed it correctly. This serves as a kind of unit test for the

documentation, and prevents users from compounding any errors they

may make.

For example, here’s a procedure to “Upload an audio file using

Corg.ly’s UI”:

 1. Open the Corg.ly app.

 2. Select “Record” to record your dog barking.

 3. Select “Upload” to upload your file for translation.

Chapter 3 Drafting DoCumentation

55

When you’re writing a procedure, identify the system’s starting state. Do

you expect a reader to be logged in? Are they typing in a browser or a

command line? Also, give readers the instructions they need to reach the

desired state.

Each step of the procedure should only cover one action. Your reader

may be jumping between your documentation and your interface or the

command line, and multiple actions in a single step can make it hard for

your reader to follow along.

Finally, give readers a way to verify they’ve completed the procedure

properly. For example, at the end of the Corg.ly procedure, you could tell

the reader they will receive a confirmation message if their upload has

been successful.

 Lists
Lists allow you to group related information in a skimmable format. Lists

include things like:

• Lists of examples

• Settings

• Related topics

Lists are not in procedural order, but that doesn’t mean they are

completely unordered. When creating a list, consider ordering it in a way

that is most helpful to the user. For example, you could add a bulleted list

to the audio file upload procedure:

Chapter 3 Drafting DoCumentation

56

For a list of file types like this, you can order from most commonly used

to least commonly used by your user. Alternatively, you could list it in

alphabetical order, since that’s easy to skim.

The longer a list grows, the less skimmable it becomes. If you find yourself

listing more than ten items, consider dividing the list into smaller lists,

broken up by headers and paragraphs.

 Callouts
When writing your document, you might discover a piece of information

that your reader needs to know at that moment, but that doesn’t fit with

the flow of your content. It might be something absolutely critical that a

reader needs to know in order to be safe, or it might be some useful, related

information that you want to highlight at that point in the document. In

these cases, you can use a callout.

Here are some examples of callouts and when to use them:

• Warning: Don’t take this action! Readers might be in

danger, personal data might be at stake, or the system

may suffer irreversible damage or loss.

• Caution: Proceed carefully. An action might have

unexpected consequences.

• Note: Related information or a tip about what you’re

currently reading.

The following audio file types are supported by Corg.ly:
● MP3
● AAC
● WAV
● M4A
● FLAC

Figure 3-3. Sample list of audio file types

Chapter 3 Drafting DoCumentation

57

Callouts break the flow of your document, which is useful for highlighting

scenarios for readers to avoid. Use color, icons, and other signals to

highlight the severity of the callout, and make sure readers can see the

callout before they take the related action.

For example, here’s a callout that you might find at the top of the doc for

uploading an audio file to Corg.ly:

Just as you may experience alert fatigue if you are bombarded with system

alerts, your reader can feel the same if you use too many callouts. Reserve

callouts for important information your readers cannot afford to miss.

Referring back to your friction log created in Chapter 1 can be a great way

to know where a note or a warning may be helpful to your reader.

 Writing for skimming
There are two fundamental, paradoxical truths about readers of technical

documentation:

• Readers come to your documentation looking for

information.

• Readers read very little of what you write.

Think of how you read most content online: you probably search for

something specific to catch your eye, quickly scanning the first few sections

of multiple pages until you find what you’re looking for. Only when you’ve

found what you’re looking for do you settle in and read content closely.

You’ve moved through a number of pages while reading very little.

Caution: Only use Corg.ly with dogs you have the owner’s permission to record. If you’re
unsure of how to approach a dog (and their owner), see this article.

Figure 3-4. Example of a Caution callout

Chapter 3 Drafting DoCumentation

58

Most people read in the same way: skimming titles and headings until

they find the content that answers their question. In fact, based on the

time readers spend on a page, they can read at most 28% of the words on a

page (and that’s if they’re a very fast reader)1. This is true both for readers

visually skimming through the document and for those using screen

readers (tools that render content as speech or braille).

Note When readers view a page of content, research shows
they typically skim the content in an “f” pattern, scanning in two
horizontal lines across the top of the document for the title and
subtitle, and then scanning down the page. they do not read every
word on the page.

Write in a way that helps your reader skim your content to find the

right piece of information. Helping your reader skim helps them find

the content they’re looking for faster, and it leads to better, more direct

content. There are a number of strategies you can use to make your

content more skimmable and therefore more helpful to your readers.

 State your most important information first
If your reader is skimming your document they will, at most, get through

the first few paragraphs of your document. In those first paragraphs, it’s

important that you answer the question that’s burning in your reader’s

mind: “Will this help me?”

Your title should summarize the goal of the document. Include any critical

information in the first three paragraphs. If you’re writing a procedure, let the

1 Jakob Nielsen, “F-shaped pattern for reading web content (original study),”
Nielsen Norman Group, published Apr 16, 2006, https://www.nngroup.com/
articles/f-shaped-pattern-reading-web-content-discovered/.

Chapter 3 Drafting DoCumentation

https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/

59

reader know what they will accomplish by the end of the document. If you’re

writing something more conceptual, explain the importance of the concept

you’re describing, and why knowing more about it will help your reader.

 Break up large blocks of text
Long paragraphs are difficult to skim. If most of your writing is for print

publications or academic papers, you’re probably more familiar with

writing long-form essays. Unfortunately, most of your readers will skip over

your page if they see a wall of text.

Instead, make long sets of paragraphs easier to scan by breaking them up

with subheaders, lists, code samples, or graphics. Chapters 5 and 6 cover

how to use code samples and visual content to break up your text.

 Break up long documents
It might be tempting to heap all of your content into a single document—

but a single long document often tries to accomplish too many goals for

too many different readers. Take, for example, the outline in Figure 3-5 for

“Uploading Audio Files to Corg.ly”:

○ Prerequisites
■ File size and format requirements

○ Uploading audio files using the application
■ Download the applications
■ Install the application
■ Upload audio files using the UI
■ Verify a file has been uploaded

○ Uploading audio files using the REST API
■ Get access to the API
■ Call the API and upload a file
■ Verify a file has been uploaded

Figure 3-5. This outline tries to meet too many different goals

Chapter 3 Drafting DoCumentation

60

The readers using the application to upload audio files to Corg.ly have a

different level of technical knowledge and different needs than readers

who use the API. As illustrated in Figure 3-6, it makes sense to break up

this document into two and then further divide into topics.

If breaking up a document by audience doesn’t work, experiment with

other ways to break up the document. Can you break it up by type of

information? By product feature used? By the format of content?

 Strive for simplicity and clarity
Short, concise documents are beautiful.

As you draft a document, ask yourself: “Does this content satisfy my reader’s

needs?” It might be tempting to add information like the history of a project

or the design considerations you’ve made on a system, but they don’t belong

in a procedural document. Put the history, design theory, and commentary

for a document in a separate place and title and format it appropriately.

 Getting unstuck
Every writer gets stuck. Writing is difficult, creative work, and creative work

is sometimes hard to sustain. It’s not because you’re bad at writing! Getting

stuck is part of the writing process, whether it’s floundering in the initial

steps of creating your outline or somewhere in the middle of completing

your draft.

Figure 3-6. Breaking apart an outline into two documents

Chapter 3 Drafting DoCumentation

61

There are ways to get unstuck. See if you can figure out what’s stopping

you: is it a fear of being wrong? Is it a lack of time to engage material

deeply? Is it concern about the finished product not being good enough?

Once you identify the reasons why you’re stalled, it’s easier to resolve and

keep going.

The following sections are strategies to help you when you get stuck while

drafting content.

 Let go of perfectionism
Your first draft of content shouldn’t be perfect—in fact, it doesn’t even

have to be good. The goal of a first draft is to get all of the information

down for your readers, not to craft a perfectly polished document ready for

publication. (For information about polishing a document for publishing,

see Chapter 4.)

So relax. Release any notions of content perfection, stop worrying about

grammar, and focus on getting your ideas down on the page. The first draft

is a judgment-free zone.

 Ask for help
One of the best ways to get unstuck is to talk through your problem with

another person. Ask someone to read what you’ve written so far and work

through your outline of content with them. Talk through the issues that

you’re having and where you’re stuck.

You can also ask someone to write some of the content while you look over

their shoulder (or virtual shoulder if you’re able to share your screen) while

you review. You can also ask a peer to review your content; see Chapter 4.

Chapter 3 Drafting DoCumentation

62

 Highlight missing content
[TODO].

We’ve all left TODO comments in code, and the same thing happens in

documentation. As you’re writing, you may not have all the information

you need to write a section, or you may realize there’s an essential part

missing.

When you notice a gap in content—that important information is

missing—make a note of it and keep working on the parts you’re sure you

can fill in. You can fill in the gap during a later round of revision or writing.

Don’t get hung up on trying to write a document correctly and in order

the first time through. Like code, writing is an iterative process. Write

what you know, see what’s missing, research it, and write the new things

you know.

 Write out of sequence
You don’t have to write the first thing first. Sometimes, the first thing

that people read—the introduction—is the last thing you write. Good

introductions describe a document’s major themes, what readers will gain

from reading the document, and why it matters. These topics aren’t always

clear until you’re finished writing the steps or conceptual details that make

up the body of the document.

At other times, you may want to write the procedure first; for example, if

you just learned the procedure and want to make sure you remember it.

After writing the procedure, you can then write any prerequisites and the

expected outcome.

Write in whatever order works best for you. It’s easy to change your words

and move them around as needed.

Chapter 3 Drafting DoCumentation

63

 Change your medium
If you’re still struggling to write, try changing the medium that you’re

writing in. If your text editor isn’t working for you, switch to a different

program or leave your computer entirely. Try jotting down your ideas on a

piece of paper, or sketch them out on a whiteboard. Voice transcription is

also an option if speaking feels more comfortable than writing.

The important thing is to experiment with a variety of mediums to see

what works best for you.

 Working from templates
If you’re making several similar documents that share the same document

pattern, it’s worth creating a template. Templates provide reliable ways to

create consistent documentation and simplify creating future documents.

Templates create a consistent user experience. They make writing easier by

letting you focus on content rather than structure.

A template is a stable document with placeholders for headers and content

that provides consistent formatting for a related group of documents.

For example, you might have a release note template with sections for

new features, documentation changes, and a table for all the known and

fixed bugs. Templates provide consistent style, format, and outline, even

as individual documents based on the same template contain different

content.

When creating a template, evaluate existing documents (whether your

own or others’) and make an outline of the sections that need to remain

consistent for your document and others like it.

For example, bug reports often need to contain the same information each

time, so a bug report template is often useful.

Chapter 3 Drafting DoCumentation

64

BUG TEMPLATE

Bug title

Environment

including Device/oS, brower, and software versions

Steps to reproduce

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Expected result

Actual result

Screenshots/visuals

Chapter 3 Drafting DoCumentation

65

Note templated documents are easier to skim.2 for example, it’s
easier to scan for specific information in multiple bug reports if the
bug reports share a common pattern of formatting and structure.

Not every kind of document needs a template. For example, it’s probably

not worth templating documents with unique content, or that focus on

context or story. The more common a type of document is, the more

helpful a template becomes. In addition to bug reports, commonly

templated documents include:

• Procedural guides for similar apps

• API and integration references

• Release notes

Templates also work for small documents such as glossary entries and

error messages, which contain highly predictable forms of writing.

For a list of online template resources you can borrow, see the Resources

appendix.

 Finishing your first draft
Eventually, your draft document will be done: you’ve written down all the

information your reader needs to reach your stated goal. To determine

whether you’re done, ask yourself:

• Does the headline summarize the document’s goal?

• Do headings adequately summarize the document?

• Does your draft address your reader's needs from start

to finish?

2 “Reading: Skimming or scanning,” BBC Teach, accessed September 17, 2021,
https://www.bbc.co.uk/teach/skillswise/skimming-and-scanning/zd39f4j.

Chapter 3 Drafting DoCumentation

https://www.bbc.co.uk/teach/skillswise/skimming-and-scanning/zd39f4j/

66

• Does the flow of information make sense to your reader?

• Does the draft address any issues you found in your

friction log?

• Does your draft correctly follow any documentation

patterns or a template?

• Have you tested and verified that any and all

procedures work?

If you can answer yes to all of the questions above, then your first draft is

done. Finishing a draft doesn’t mean that the content is ready to publish,

but it does mean you’ve reached a major milestone in writing: you’ve

conveyed all of the necessary information for your reader to succeed.

 Summary
Set yourself up for writing success by choosing writing tools that you’re

comfortable and familiar with. The tool chain that you use for writing code

likely works great for documentation as well.

Start by defining the audience, purpose, and pattern of the document. The

goal of the document should be the title of your document.

Create an outline for your document and flesh it out using headers,

paragraphs, lists, and callouts. Fill in the details of your plan (see Chapter 2).

Readers will skim your document, so make information easy to find by

stating the most important information first and breaking up content for

your readers.

Create and use templates if you’re making multiple similar documents to

create consistent documentation.

First drafts don’t have to be perfect, or even good. The next chapter talks

about editing your content and transforming it from a first draft into a

document ready to publish.

Chapter 3 Drafting DoCumentation

67© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_4

CHAPTER 4

Editing
documentation
 Corg.ly: Editing content
Karthik took a sip of coffee and read through Charlotte’s draft of content for

Corg.ly one more time.

To him, the instructions were fairly simple.

He could walk through them in less than

two minutes and get translations working.

He’d done it multiple times with Ein when

demonstrating how the system worked for

potential customers. Now that he saw all

the instructions written out, however, he

realized he took for granted how much users

had to understand in order to succeed.

The document for using the Corg.ly

API was basically a long list of steps for

authenticating with the API and uploading an audio file to be analyzed. He

read through the steps again and thought about Mei, their first customer.

He thought about all the questions she would ask if she were looking at

this document. “Which of these steps are required?” would probably be the

first thing she’d ask, followed by, “How do I tweak these API calls for my

purposes?”, and finally, “What are some common errors I’ll likely run into?”.

https://doi.org/10.1007/978-1-4842-7217-6_4#DOI

68

Karthik kept these questions in mind as he made comments on Charlotte’s

draft. Really, this wasn’t too different from a regular code review: add more

detail here, add additional headers there, fix this link, and add some next

steps. He knew he would have at least another round of feedback with

Charlotte before they showed it to Mei.

 Editing to meet your user’s needs
The creative act of writing isn’t the same as the analytical act of reviewing

and evaluating text. If drafting content is about getting all of your ideas

down, editing is the process of looking at your documentation and making

sure it’s meeting your users’ needs. Beyond grammar and readability,

editing makes sure that text conveys information to your users in the

clearest, fastest, and most helpful way possible.

Trying to write and edit at the same time is slower than doing each task

separately. Ask anyone who has been stuck at the beginning of writing a

document, writing and rewriting the first sentence over and over for hours.

Separating writing from editing lets you separate the process of creation

from the process of evaluation, reviewing what you wrote with a critical eye

outside of trying to get it down in the first place.

Editing documentation is similar to validating, testing, and reviewing code.

You need to validate code in different ways to make sure that it runs, that it

does what you expect it to do, and that it doesn’t cause problems with other

code. Just as you can have bugs in code that passes a linter perfectly, you can

have grammatically perfect documentation that fails to help your users.

Like code reviews, editing is a collaborative process, where you share your

content with others, test your assumptions, and gather feedback. This may

feel vulnerable at first, but it’s also where the most learning happens. As

you integrate the feedback you receive, you may see more elegant ways to

approach the problem you’re documenting and write more effectively.

Chapter 4 editing doCumentation

69

This chapter guides you through the process of editing documentation,

including:

• Understanding different approaches to editing

• Creating a standardized editing process

• Accepting and integrating editorial feedback

 Different approaches to editing
When editing your work, it’s useful to focus on a single aspect of the

document that you’re trying to improve. For example, “Is all of the

technical information in this document correct?”, or “Is this document

structured well?”. Trying to focus on all the factors of good documentation

at once is both overwhelming and slow. It’s faster to break down the

editing process into a series of passes, with each pass focused on one

aspect of a well-edited document.

Depending on your users and their needs, you may have different aspects

that you focus on while editing your content. However, for most developer

documentation, your editing passes should focus on:

• Technical accuracy

• Completeness

• Structure

• Clarity and brevity

Editing in this order lets you start with what you, the developer,

know best (technical accuracy) and work toward what your users want

(a well-written document that addresses their needs).

When editing for each of these qualities, read the document like someone

encountering this information for the first time. When you know a product

or technology well, it’s easy to make assumptions about familiar material,

Chapter 4 editing doCumentation

70

glossing over crucial introductory information that new readers need. The

editing process is a great time to fill in these gaps and add information that

helps users succeed.

 Editing for technical accuracy
When editing for technical accuracy, you’re editing for the correctness of

your content. You should be able to answer the following questions:

• If someone follows these instructions, will they get the

result you promised them?

• Is there any technical jargon or terms that might lead to

confusion?

• Are code functions, parameters, and endpoints named

and explained correctly?

If you’re documenting a step-by-step procedure, follow the instructions

yourself and verify that the instructions work. If you support multiple

operating systems and developer environments, verify that they work and

document any variations required in the procedure. If you made a Friction

Log (see Chapter 1), verify that you’ve documented any workarounds or

issues you identified there.

For documentation that explains a technical concept, verify that

you’ve explained the concept at the level your user needs. If there are

disagreements in terminology, make them consistent. For example, if

you’re editing a document and see “encryption” and “hashing” used

interchangeably, you should clarify which one is correct. This might

require reviewing content with other developers and getting consensus.

A technical accuracy pass is also when you should check if there are any

major sources of failure, data loss, or injury you should warn your users

about. Any issues that would cause a critical or unexpected failure should

be called out with a warning.

Chapter 4 editing doCumentation

71

 Editing for completeness
When editing for completeness, you’re verifying that your content contains

all of the necessary information for your user to be successful. It’s where

you verify that there are no gaps in your content and that any [TODO] or

[TBD] left in your draft is filled in.

When editing for completeness, consider your user and how they might be

using your software. If you’re developing on Linux, and they’re developing

on a Mac, will your instructions still work? What if they’re not using the

latest version of your software, but one that’s still supported—will there be

any unexpected errors?

Similarly, if you know of a foreseeable expiration date for information,

note any limitations clearly. For example, instructions on filling out a tax

form might say, “These instructions only apply to the 2021 tax year.” If a

document is relevant only to a specific version of your software, be sure to

document your version limitations clearly.

Editing for completeness is a great time to involve a new reader. New

readers often see the gaps in your explanations and instructions far more

quickly than you do. Watching someone else work through the document

for the first time lets you understand what you’ve assumed and left out.

The friction logs of new readers may help confirm your own logs or add

depth by highlighting other sources of friction. For more information

about friction logs, see Chapter 1.

Completeness is not the same as telling people everything. It’s as

easy to lose readers with too much information as it is with too little.

Completeness ensures you have enough documentation to help people

who need it and not so much that they can’t find what they’re looking for.

Chapter 4 editing doCumentation

72

 Editing for structure
The first thing a person sees when they open a document is the title, the

headers, and the table of contents. These first few words are some of

the most important parts of your document, giving your readers a set of

signposts that point the way to the information they want. When you’re

editing for structure, you’re verifying that these signposts are correct and

that it’s clear to a reader what this document is about and how the topic is

broken down.

As you edit for structure, you’re trying to answer the following questions:

• Is it clear from the title and headers what the document

is about?

• Is the document organized in a consistent and logical

way?

• Are there sections in this document that should be put

in another document?

• If a template exists, does the document follow it?

Note Chapter 2 covers planning for common formats and why
people use them. editing for structure is a good time to verify that
you’re following your documentation plan.

Using a consistent, predictable structure for your documents means that

people can navigate to the part that’s most relevant to them. For example,

consider websites for recipes: some readers might be interested in the

history of how a recipe was developed, while other readers may want to

Chapter 4 editing doCumentation

73

skip straight to the instructions. In this example, clearly signposting the

“history” part of the write-up from the “recipe” part creates a predictable

structure that allows different groups of readers to quickly find what they

need.

In addition to signposting what a document contains, you should also

verify that you’re pointing your readers to what they should do both before

and after they read your content. Most people use search to find the

information they need: if a user shows up to your page without reading

anything else, will they have the right prerequisite skills and knowledge to

understand your document?

Clearly state any prerequisite steps. For example, “You must be an

administrator to complete these steps,” or “This document assumes you

have finished configuring your API.”

Likewise, if there are common next steps or additional information that

a reader might need after reading your document, you should list those

links. These signposts let your user know where they are on their journey.

 Editing for clarity and brevity
When editing for clarity and brevity, you’re reviewing your document

on a line-by-line basis for how easily understandable each sentence and

paragraph is. Reword awkward phrases, remove any duplicate information,

and cut unnecessary words. Think of editing for clarity and brevity as code

refactoring for documentation.

Chapter 4 editing doCumentation

74

Editing at this stage includes all the classic elements of editing language,

correcting for grammar, tone, and conciseness. Tools like spelling and

grammar checkers can perform some of this work, but you should also

review your document in its entirety. As you read each section of your

document, ask yourself the following:

• Is this as clear as it can be?

• Are there terms used inconsistently that I should

correct?

• Are there unnecessary words or phrases that I can cut?

• Are there any idioms, metaphors, or slang that could

confuse readers?

• Am I using any biased language that should be

avoided?

Make your content as short and to the point as possible. While you’re

editing, you might find yourself cutting a lot of content. This is a good

thing! It means your reader will get to the right information quickly,

without having to scan through your document.

Public style guides using a publically available style guide helps
you standardize language and grammar decisions and lets you focus
on style decisions that are specific to your organization, like your
product and feature names. this book’s resources appendix contains
a list of widely used developer style guides.

Chapter 4 editing doCumentation

75

 Creating an editing process
You could do all of the editing passes by yourself for everything you

write—but that becomes exhausting over time. In addition, reviewing your

document immediately after you write it isn’t as effective as giving yourself

some distance and reviewing with a fresh mind. With both the time and

work required to edit well, it’s best to share the editing load with others

by creating an editing process. An editing process creates a set of common

procedures and standards for review.

Creating an editing process is similar to creating a code review process,

and it has similar benefits. An editing process speeds up the length

of time it takes to edit a document, allowing someone with a fresh

perspective to give you objective feedback. It also helps share knowledge

across reviewers and helps establish standards across documentation

within your team.

A typical editing process is shown in Figure 4-1.

 Reviewing your document first
The first step in any review process is editing the document yourself.

Reading your own writing is sometimes emotionally difficult, in the same

way it can be hard to watch yourself on video or listen to a recording of

your voice. Everything seems different from the inside, and experiencing

ourselves from the outside takes compassion and practice.

Figure 4-1. Editing process flow

Chapter 4 editing doCumentation

76

One way to make reviewing your own content easier is to use an editing

checklist. An editing checklist helps keep you on track, reviewing what’s

important without getting bogged down in trying to create a perfect

sentence. A checklist might look something like this:

• Title is short and specific

• Headers are logically ordered and consistent

• Purpose of document is explained in the first paragraph

• Procedures are tested and work

• Any technical concepts are explained or linked to

• Document follows structure from templates

• All links work

• Spelling and grammar checker has been run

• Graphics and images are clear and useful

• Any prerequisites and next steps are defined

You may need to tweak this checklist to suit your needs, depending on

what you’re writing. In addition, you may want to limit the time you

spend editing: it’s easy to get bogged down in refining details instead of

proceeding to peer reviews.

 Requesting a peer review
Peer reviews for documentation are similar to code reviews for code.

You’re requesting that someone review your content and make sure it’s

useful and relevant for your audience. In the introduction to this chapter,

peer review is exactly what Karthik is doing for Charlotte.

In the same way that you may have felt uncertain or uncomfortable

when reviewing your own document, reviewers may feel uncomfortable

Chapter 4 editing doCumentation

77

if they don’t know what kind of editing you want. Clear requests make it

more likely that you’ll get useful feedback. Tell your reviewer what kind

of feedback you’re looking for. Is it structural? Technical? For clarity and

conciseness?

In addition to requesting specific feedback from your review, it’s important

to specify how you’d like to receive your feedback. Do you prefer to

receive marked up paper, inline comments, or sidebar notes in a shared

document? In peer reviews, the goal is to reduce friction, so your reviewer

can comment efficiently and you can incorporate feedback easily.

You can use the same system to review documentation that you use to

review code—and you can use similar review loops to request peer review

for a document. Working within existing code review systems lets you

improve your documentation by minimizing the number of new tools for

your reviewers to learn and adopt.

For a first draft review, you probably want a reviewer on your team who

is familiar with the product or procedure you’re documenting, similar to

how Karthik reviews Charlotte’s work. As you get closer to publication, you

may want additional reviews from people who are more like your target

audience, to make sure you’ve written what they need to understand.

 Requesting a technical review
In a perfect world, you would know every aspect of the technology you’re

documenting. In reality, you need to verify your technical understanding

with others. This is where technical reviews come in.

Technical reviews are a specific type of peer review to add or confirm

details from a technical expert on a particular topic. Technical reviews are

particularly important when you’re documenting an integration of two or

more technologies, where you might be an expert on one but not the other.

Chapter 4 editing doCumentation

78

Take, for example, the work that Charlotte and Karthik are doing on Corg.ly.

They might know all of the technology in dog bark translation software, but

they might not know how to build a dog bark translator collar. If they started

working on a document for connecting hardware to the Corg.ly API, they’d

likely need a lot of help from another technical expert in that field.

It’s often faster to request a targeted, specific technical review from someone

who is an expert than trying to research and learn that information yourself.

There’s no shame in asking for help, especially when doing so leads to a

stronger document and clearer understanding for your readers.

 Receiving and integrating feedback
After you request and receive reviews, you’ll have a pile of scribbles, pull

requests, and other notes on how people want your text changed. What’s

next?

First, take a deep breath. Feedback about writing can feel personal.

Remember that reviews are intended to help you improve your

content, not to pick on you as a person. The goal of your document is to

communicate knowledge effectively to your readers. Ultimately, reviews

help you help your readers and get you closer to your goal.

Note From one group of writers to another, you are almost certainly
doing better than you think you are.

Next, go through each reviewer’s comments in turn. If you start with

the person who sent in the most feedback, you’re likely to preemptively

address feedback from subsequent reviews. If you try to incorporate all

feedback simultaneously on a single item, you’re more likely to lose track

of edits and progress while attempting to resolve contradictory advice.

Chapter 4 editing doCumentation

79

You should consider each piece of feedback you receive—but that doesn’t

mean you have to accept it! Not all suggestions are helpful or necessary,

even though your reviewer offered feedback with good intentions.

Whether or not you accept their feedback, it’s important to acknowledge a

reviewer’s help. Likewise, don’t reject feedback out of hand. It’s important

to review all feedback to understand your reviewers’ concerns and

maximize your document’s quality.

If you do receive contradictory feedback, consider what helps your user the

most. If you get a suggestion that you should have more technical details

from one reviewer, while another reviewer argues for less, then consider

this: what does a user using this doc need to know?

After you incorporate all your changes, you can request a second round of

reviews to get additional feedback on the changes you made and verify that

it’s what your reviewers expected. A follow-up review of specific changes is

comparable to reviewing subsequent commits on a pull request.

 Giving good feedback
If you expect to get good feedback from your reviewers, it’s important to

know how to give good feedback as well. Peer reviews work best when you

approach them with a constructive mindset. You’re not fixing someone

else’s mistakes; you’re adding to their understanding.

Consider the animation studio Pixar’s method of reviewing and critiquing

work, where feedback on creative or technical work must follow a rule

called plussing,1 which is:

1 Erin ‘Folleto’ Casali, “Pixar’s plussing technique of giving feedback,” Intense
Minimalism, published June 24, 2015, https://intenseminimalism.com/2015/
pixars-plussing-technique-of-giving-feedback/.

Chapter 4 editing doCumentation

https://intenseminimalism.com/2015/pixars-plussing-technique-of-giving-feedback/
https://intenseminimalism.com/2015/pixars-plussing-technique-of-giving-feedback/

80

You may only criticize an idea if you also add a constructive
suggestion.

When using the plussing method of offering feedback, focus on the idea,

not the person. For example, start by saying something like, “I found this

part unclear,” rather than, “You got this wrong.”

Follow your critique with specific suggestions for improvement.

Constructive suggestions provide additional context for what you think

would solve the problem. This “adding on” is why Pixar called the system

“plussing.” For documentation, it’s helpful to suggest a specific way to

rewrite an awkward sentence or a poorly defined concept. The more

specific you make your constructive suggestion, the better your feedback

becomes—and the more you help your users.

If you’re adding a lot of constructive feedback, give the original writer time

to consider your suggestions. People need time to receive, evaluate, and

implement feedback. Don’t expect an immediate response, especially if

there are multiple reviewers.

In short, to provide good feedback:

• Focus on the idea, not the person

• Follow up with a constructive suggestion

• Allow the recipient time to react to your feedback

One more note about feedback: it’s okay to point out things you like! For

example, an elegant explanation of a deeply technical concept is worth

pointing out and celebrating. In addition, pointing out great writing makes

it easier for others to emulate.

Finally, provide the kind of feedback that you would appreciate receiving.

When it comes to giving, receiving, and learning from feedback, Norm

Kerth stated it well in the Agile prime directive:

Chapter 4 editing doCumentation

81

Regardless of what we discover, we understand and

truly believe that everyone did the best job they could,

given what they knew at the time, their skills and

abilities, the resources available, and the situation at

hand.2

 Summary
Editing documentation is like testing and refactoring your code and just

as important.

Edit a document in multiple passes to narrow your focus and reduce

complexity. Different passes include technical accuracy, completeness,

structure, brevity, and clarity.

Peer reviews are an important part of learning to write better and teaching

your peers about your work.

When receiving feedback, consider each item of feedback and decide

whether to integrate it into your content. You don’t have to accept each

piece of feedback, but you should consider it.

When giving feedback, follow the rule of plussing: only criticize an idea if

you also add a constructive suggestion.

Give feedback about what you like!

The next chapter covers integrating code samples into your

documentation.

2 Norm Kerth, Project Retrospectives: A Handbook for Team Review (New York:
Dorset House: 2001), Chap. 1, Kindle.

Chapter 4 editing doCumentation

83© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_5

CHAPTER 5

Integrating code
samples
 Corg.ly: Showing how it works
Charlotte looked through her draft and the feedback from Karthik. Most

edits had been straightforward: fixing a typo here and slightly restructuring

the text there. Karthik’s other comments could be grouped into two

questions:

• How can we explain this better?

• What does this look like in practice?

Charlotte knew from her team’s early research

that Corg.ly users wanted to see the product in

action. While product demos were on the team’s

roadmap, code samples could show developers

how Corg.ly worked in practice and with far fewer

words. The API was fundamental to developers

building integrations with Corg.ly, and the

reference documentation was the perfect place to

show example requests and responses.

With this realization, Charlotte scrolled to the

top of the draft and began marking where code

samples could help.

https://doi.org/10.1007/978-1-4842-7217-6_5#DOI

84

 Using code samples
Code is in another language, so as much as you might try to
describe the communication in this other language through
text, it often falls short. When developers see code, they can
often read the code and understand it natively.1

—Tom Johnson, I’d Rather Be Writing

Code samples are a critical part of effective developer documentation.

Text and code are different languages, and it is code that your reader

ultimately cares about.2 No matter how clear or beautifully articulated

your words, nothing beats a well-crafted code sample to help your

readers get started or to demonstrate how to use a particular feature.

A good sample can say more than the prose that describes it while

providing a useful frame of reference for your readers to build upon.

Research from Twilio’s documentation team showed that when developers

were trying to accomplish a specific task with their product, they

specifically sought out pages with code samples and ranked them higher.

Furthermore, they skimmed over any introductory text while hunting for

code embedded in the docs.3 You may have done the same while reading

this book!

1 Tom Johnson, “Code Samples,” I’d Rather Be Writing, accessed June 26, 2021,
https://idratherbewriting.com/learnapidoc/docapis_codesamples_
bestpractices.html.
2 “Creating Great Sample Code.” Google Technical Writing One, accessed on June
15, 2021, https://developers.google.com/tech-writing/two/sample-code.
3 Jarod Reyes, “How Twilio writes documentation,” Signal 2016, YouTube, accessed
June 26, 2021, www.youtube.com/watch?v=hTMuAPaKMI4.

Chapter 5 IntegratIng Code samples

https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://developers.google.com/tech-writing/two/sample-code
https://www.youtube.com/watch?v=hTMuAPaKMI4

85

If code samples are the gold your readers are hunting for, then samples

need to be specific, useful, and maintainable. This chapter covers:

• Types of code samples

• Principles of good samples

• Designing useful code samples

• Generating samples from the source code

 Types of code samples
In general, documentation contains two types of code samples: executable

and explanatory.

Executable code is runnable: code that your readers can copy and paste,

perhaps after personalizing the example. For example, the request to the

Corg.ly API in Listing 5-1 retrieves information about a specific bark. The

code samples throughout this chapter assume that the Corg.ly team writes

their documentation in Markdown.4

Listing 5-1. Sample API request

Example request:

```shell

$ curl 'https://corgly.example.com/api/v1/bark/1' -i

```

4 We’ve used example.com as the Corg.ly domain in line with RFC 676, which
permits the use of example.com for documentation, https://tools.ietf.org/
html/rfc6761.

Chapter 5 IntegratIng Code samples

http://example.com
http://example.com
https://tools.ietf.org/html/rfc6761
https://tools.ietf.org/html/rfc6761

86

Explanatory code isn’t expected to be runnable. It’s usually an output

or a block of code that a reader can learn from or compare to their own.

Readers expect that explanatory code samples, especially outputs, match

what readers experience in their own environment. Readers also expect

that copying and pasting an output or error code into site search produces

relevant results with no ambiguity.

Consider an example response in API docs (Listing 5-2).

Listing 5-2. Sample API response

Example response:

```

{

  "id": 1,

  "name": "woof",

  "created": "2021-02-22T14:56:29.000Z",

  "updated": "2021-02-29T17:56:28.000Z",

  "tags": [

    "happy",

    "anxious",

    "hungry"

  ]

}

```

 Principles of good code samples
Like good documentation, readers expect your code samples to just work.

Readers want to be able to skim through your documentation, find a code

sample, grasp the concept demonstrated in the sample, and copy and

paste the code if applicable. They also want this code to always be up to

date and production-ready.

Chapter 5 IntegratIng Code samples

87

With these sorts of expectations, it takes considerable effort to make

something “just work,” and there are several principles to keep in mind.

A good code sample should be:

• Explained: It’s displayed alongside a written description,

whether in the main body of text or in code comments to

provide context and explanation where needed.

• Concise: It provides the exact amount of information

needed by the reader.

• Clear: It follows conventions a reader would expect of

the language the sample is written in.

Executable code should also be:

• Usable (and extensible): It’s clear how the reader uses

the sample and where they need to input their own data.

• Trustworthy: It’s pastable, works, and only does what a

reader expects.

 Explained
Explanations that accompany your samples are as important as the

samples themselves.5 Even the cleverest of code samples need your writing

skills to provide your readers with context.

Your documentation should explain any prerequisites to running a

code sample, like installing any specific libraries or setting environment

variables. Describe any limitations to the code, for example, if the code

only runs with certain versions of a programming language.

5 Seyed Mehdi Nasehi, “What makes a good code sample? A study of programming
Q&A in Stack Overflow,” 2013 IEEE International Conference on Software
Maintenance, 2012.

Chapter 5 IntegratIng Code samples

88

Introduce code samples with a clear explanation so that your readers

know what to expect if they run or encounter this code. Specifically, your

explanation shouldn’t be a description of what it does, but why it does it.

Really useful code samples explain anything that’s unique to your software,

for example, an odd naming convention or particular method.

If the sample immediately follows an instruction or explanatory line, end

the line with a colon (Listing 5-3).

The response you receive from the Corg.ly API should look similar to the

following:

Listing 5-3. When instructions or explanations precede code

samples, end them with a colon

```

{

  "id": 1,

  "name": "woof",

  "created": "2021-02-22T14:56:29.000Z",

  "updated": "2021-02-29T17:56:28.000Z",

  "tags": [

    "happy",

    "anxious",

    "hungry"

  ]

}

```

If you provide a sample input, follow it with a description or sample of a

successful output that matches what your users would see.

If you’re documenting an API, match the sample request and parameters

to the exact response a reader would receive with those same parameters

(Listing 5-4).

Chapter 5 IntegratIng Code samples

89

Listing 5-4. Match sample requests to exact outputs

HTTP method and URL:

```shell

$ curl 'https://corgly.example.com/api/v1/translate' -i -X POST \

  -H 'Content-Type: application/json' \

  -d '{"query": "woof woof arf woof"}'

```

Response:

```http request

HTTP/1.1 200 OK

Content-Length: 456

Content-Type: application/json

{

  "meta": {

    "total": 5

  },

  "data": [

    {

      "translation": "It's so good to see you!",

      "confidence": 0.99

    },

    {

      "translation": "Play with me!",

      "confidence": 0.90

    },

    {

      "translation": "I am ready for my walk, please",

      "confidence": 0.76

    },

Chapter 5  IntegratIng Code samples



90

    {

      "translation": "I am hungry",

      "confidence": 0.60

    },

    {

      "translation": "I need a nap",

      "confidence": 0.51

    }

  ]

}

```

Include samples of any common errors that users might experience. Make

sure samples match actual outputs.

For more complex code or lengthier samples, consider including inline

comments with executable code. If you use comments to break up larger

samples, keep comments short and to the point. Use comments to explain

the intent behind the code, explaining the “why” that may be missing to

someone reading your code for the first time.

If you find yourself writing lengthy explanations, consider whether the

code needs to be less complex to make a good sample. If you can, refactor

the code into a simpler sample. Otherwise, talk with the engineers for the

product, and let them know that a particular use case requires elaborate

interaction with the code base and could be a source of confusion.

 Concise
Making code samples concise doesn’t just mean making them shorter.

It means making sure your samples convey the essential information

users need to complete their task, and nothing else. Keep your sample

focused on the specific use case you’re trying to highlight, without

Chapter 5 IntegratIng Code samples

91

adding anything unnecessary. It should only show the features you are

documenting at that point.

Irrelevant code or overly complicated examples can confuse your reader

and make it difficult to see the intention of your code. It also makes it

harder for readers to copy and paste your code and modify it for their own

purposes.

Note Keep code sample lines short enough to display fully at
default screen widths. horizontal scroll bars are awkward!

Sometimes, larger samples are more helpful to a reader but can be more

difficult to read. Help your users by breaking up those larger chunks

(Listing 5-5).

• Wrap lines after a number of characters (Google’s style

guide suggests 80)

• Use an ellipsis (...) to indicate where you aren’t showing

the whole sample

Listing 5-5. Wrap lines at 80 characters and mark gaps with ellipses

Response:

```http request

HTTP/1.1 200 OK

Content-Length: 456

Content-Type: application/json

{

  "meta": {

    "total": 5

  },

Chapter 5  IntegratIng Code samples



92

  "data": [

    {

      "translation": "It's so good to see you!",

      "confidence": 0.99

    },

...

    {

      "translation": "I need a nap",

      "confidence": 0.51

    }

  ]

}

```

 Clear
You may need to refactor your code in order to make a good sample. In the

process of documenting your software, you may find all sorts of shortcuts

and scrappy code you wrote in order to ship a change. That may be helpful

to you, but can be confusing for a reader.

Consider what a reader needs from each sample and edit accordingly. For

example:

• Use descriptive class, method, and variable names in

your code that your readers will understand.

• Avoid confusing your readers with hard-to-decipher

programming tricks, unnecessary complexity, and

deeply nested code.

Chapter 5 IntegratIng Code samples

93

• Omit any aliases that have made their way into your

documentation unless they’re required and you’re

certain readers will have the same aliases.

In addition, follow any existing code style conventions for your language

or project. Some large open source projects create their own style

conventions, as do most languages. Following existing style guides creates

less cognitive overhead for your readers. The result should be clear,

readable, and consistent samples so your reader ends up using code that

already follows best practices.

 Usable (and extensible)
Part of the delight of a well-crafted code sample is the amount of time a

reader can save by copying and pasting. However, a reader often needs to

replace some data in order to make it applicable for them. It’s important

that a reader knows both when to replace sample data and what to replace

the data with.

Avoid using foo, bar, acronyms, or gibberish terms that may mean a

lot to your development team and not a lot to your reader. Terms like

foo and bar may be familiar—even standard—to developers with a

traditional background, but developers increasingly enter the field through

nontraditional education and experience. It’s better to write looking

forward than backward.

Use descriptive strings in a consistent style to describe replacement data.

For example, use strings like your_password or replace_with_actual_

bark (Listing 5-6).

Chapter 5 IntegratIng Code samples

94

Listing 5-6. Descriptive strings indicate where readers should

replace code with their own data

```shell

# Provide code comments that tell users what to update or replace

$ curl 'https://corgly.example.com/api/v1/translate' -i -X POST \

  -H 'Content-Type: application/json' \

  -d '{"query": "replace_with_actual_bark"}'

```

Make sure it’s clear where you expect your reader to get any replacement

data from. For example, in a sample where readers provide an access

token, indicate where readers can find or create the access token.

 Trustworthy
Concise, clear, and usable samples ensure consistency, which builds trust

with your reader. It only takes one incorrect or broken sample for your

reader to lose trust in your documentation and by extension your software.

For example, a sample error code that doesn’t match what readers

actually encounter makes it much harder for users to diagnose and fix any

problems.

Use production-ready code where possible so your readers can use your

samples with confidence. Clearly mark any alpha or beta features to let

readers know they may be subject to change.

To make sure your samples are trustworthy, test and review your code

samples regularly. A later section in this chapter provides advice for

testing. Chapter 11 gives more guidance on overall documentation

maintenance, including regular code sample reviews.

Chapter 5 IntegratIng Code samples

95

 Designing code samples
Designing your samples is as much about choosing what to include as well

as presenting them to your reader.

 Choosing a language
Sometimes, it’s easy to get caught up in the question of which language

to write your code samples in. If your users work primarily in one

programming language, then answering this question is easy: provide

samples in your users’ language.

If your users work in multiple languages, then you may find yourself

struggling to decide which language(s), and how many, to support in your

code samples. Generally speaking, provide samples in a single language

that is familiar and most likely to be used by your readers. For example,

choose the language of a popular client library supported for your API. For

API documentation, consider providing curl samples and allowing your

reader to generate samples in a language of their choice.

If you have the time and tooling, you can provide code samples in multiple

languages, but be aware that adding multiple language samples adds

additional maintenance overhead to your documentation.

 Highlighting a range of complexity
Every reader approaches your documentation with a different level of

comfort and confidence in using your software. Your documentation

should support readers across the spectrum of comfort and familiarity

by providing code samples with a range of complexity. With a range

of samples, your readers can opt to read and follow whichever layer of

complexity is most helpful to them.

Chapter 5 IntegratIng Code samples

96

For complete newcomers, simple examples to help get started are usually

most beneficial. Think of a typical “hello world” tutorial with small, short

samples. Hello world exercises are quick to complete, don’t require much

additional input from the reader, and provide lots of context to explain

what is happening and why.

For readers more comfortable with your software, you may want to follow

the newcomer-friendly options with more complex examples. These could

be code samples for specific use cases when the reader is already familiar

with the core concepts in your software. Limit examples to one use case

per page: avoid mixing newcomer and advanced documentation!

 Presenting your code
Code samples need good presentation.

Since your code samples are what your readers are looking for, choose

formatting and styles that help your code visually pop out of the page. You

can use a surrounding box and a different font and background color to make

your code samples visually distinct from the rest of your documentation.

The text of your code samples should also look like code. Limit sample

lines to 80 characters, and format code samples in a fixed-width font. For

example, use backticks in Markdown or the element in HTML.

Most documentation tools have predefined styles to help you format and

present well-formed code samples. For example, some documentation

platforms let you use tabs to present code samples in different languages.

 Tooling for code samples
As with all tooling advice, your mileage may vary. It’s up to you to decide

what types of tools work best for your workflow, but code sample tooling

falls roughly into three types:

Chapter 5 IntegratIng Code samples

97

• Testing

• Sandboxes

• Autogeneration

Note We’ve deliberately avoided mentioning any specific tools for
generating and handling code samples in this chapter because tools
are constantly changing.

Before you dive into tooling recommendations, pause for a moment. As

with all automation and tooling choices, the trick is knowing when to

invest the time and energy to make the results worthwhile. Automation

could be right for you—but automation alone doesn’t solve usability and

maintenance problems. Before automating something, consider whether

the time and energy you’d invest might produce more helpful results if

placed instead into your writing, editing, information architecture, user

research, or the product itself.

 Testing code samples
Code samples, especially runnable code samples your reader may use in

production, must work. There are many packages available to help you test

code samples before adding them to your documentation. You can also

store the samples themselves in GitHub or another source repository and

run tests against them there. Once the samples pass their tests, you can

embed them in your documentation.

Chapter 5 IntegratIng Code samples

98

 Sandboxing code
Providing code in a sandbox lets you give your readers the chance to play

with sample code safely. Unlike other types of code samples, a sandbox

lets your reader interact with the sample before they implement it.

Sandboxes help readers build greater trust with your software before using

it in production.

Sandboxes take a lot of time and effort to create properly. A sandbox may

be worth the investment if your software is particularly risky or sensitive in

some way, and you’re sure you have the time and bandwidth to maintain

it. Sandboxes are also incredibly helpful if your samples require a lot of

customization to make them applicable to your reader.

In the majority of cases, sandboxes are likely excessive, and you may

better meet your readers’ needs by investing in good test coverage for your

samples or autogenerating them from source.

 Autogenerating samples
Autogenerating code samples directly from source can be incredibly

helpful. Tightly coupling documentation and code often means easier

maintenance and a better experience for both you and your reader.

For example, output code, like API responses or error codes generated with

the help of an OpenAPI spec or similar tools, ideally mean that your code

samples automatically reflect any changes to your API. However, no matter

which tool you use, autogenerated samples need human input and review.

Your readers need context to understand the intent behind your code. At

minimum, human input often means rewriting code comments to make

them reader friendly.

Chapter 5 IntegratIng Code samples

99

 Summary
Use code samples to accompany your explanations and vice versa.

Make sure your samples are:

• Explained: Provide the why, not the what, behind your

sample.

• Concise: Aim for minimal reproducible examples.

• Clear: Lean on existing conventions and style guides.

• Extensible: Make it clear where and how a reader

needs to amend their own code.

• Trustworthy: Be consistent and test, test, and test

again.

Tooling for code samples relies on testing, sandboxing, and

autogeneration. Think before you automate!

Now that you’re well equipped to add code samples to your

documentation, the next chapter covers adding visual content as well.

Chapter 5 IntegratIng Code samples

101© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_6

CHAPTER 6

Adding visual
content
 Corg.ly: Worth a thousand words
Charlotte looked at the comments Karthik had left on the draft. Some were

easily fixable—a typo here, rearranging a paragraph there—but others

would clearly need more work.

She spotted one comment in the overview she had written of Corg.ly

architecture: “Not sure this describes data flow from the dog to the

translation service to the user’s web application clearly. Is there more we can

add or some other way to explain this?”

She reread the section line by line. Having spent

some time away from the draft, she immediately

saw Karthik’s point. It didn’t look like there was

information missing, but she could see how most

users would struggle.

She looked back at the research she had compiled

earlier in the planning stages. All users they had

profiled were short on time and needed to quickly

assess how Corg.ly would integrate with their

product. Words weren’t enough; she needed to find another way to quickly

show how easily someone could slot Corg.ly into their product. Maybe it was

time for a diagram…

https://doi.org/10.1007/978-1-4842-7217-6_6#DOI

102

 When words aren’t enough
Your brain is reading this sentence. And this one. You may think you’re

consuming chunks of text, but your brain is actually processing each

word in this sentence as a shape and connecting these shapes to concepts

and ideas. We recognize these parts of words to understand the whole.1

Although reading may seem fast, it can be an incredibly inefficient process.

You may have heard the phrase, “a picture is worth a thousand words.”

How long would it take you to read a thousand words? More than 13

milliseconds? A human brain can process an image at that speed, and even

if you flick your eyes to a new image immediately afterward, your brain

will continue to process the first image for longer than you originally spent

looking at it.2

Single images require less cognitive processing, help your brain draw

connections, and derive understanding much more quickly than written

text. We also remember information better if it’s presented alongside

images. When you hear information, you’ll recall only approximately

10% of it. If that information is accompanied by an image, however, you’ll

remember 65%.3

Effective visual content falls firmly in the high-risk and high-reward

category of documentation. This chapter:

• Helps you assess the risks and benefits of using visual

content

• Gives you guidelines to create accessible additions to

your documentation

1 Denis G. Pelli, Bart Farell, Deborah C. Moore, “The remarkable inefficiency of
word recognition,” Nature (June: 2003), 423, 752–756.
2 Potter M.C, Wyble B., Hagmann C.E, McCourt E.S, “Detecting meaning in RSVP
at 13 ms per picture,” Attention, Perception and Psychophysics (December 2013).

Chapter 6 adding visual Content

103

 Why visual content is hard to create
Like written documentation, the most effective visual content is something

the reader barely notices. It doesn’t require them to stop in order to think

or be aware of the fact they are consuming anything at all. When visual

content works, it conveys information so quickly that the reader sweeps

through their task. In the words of Edward Tufte, statistician, pioneer

of data visualization, and all-round visual content expert, “Graphical

excellence is that which gives to the viewer the greatest numbers of ideas

in the shortest time with the least ink in the smallest space.”4

Knowing how our brains process images and text helps us craft better

content, down to the typography we choose. Your brain finds it easier to

process simple unadorned typefaces because it can more easily recognize

the curves and strokes of each letter like the ones used in a sans serif font.

Reading UPPER CASE TEXT LIKE THIS is difficult because the letters are

the same height and size. Variety helps comprehension.

In Chapter 3, we discussed how using a variety of paragraphs, bullets, and

numbered steps helps break up walls of text. Visual content is another way

to bring variety to documentation and with great effect. In one study, readers

who followed instructions with illustrations were 323% better at completing

those instructions than readers with no illustrations to help.5

However, visual content is a supplement to and not a replacement for

written documentation. Its purpose is to help increase understanding, and

anything else is a distraction. “Every single pixel should testify directly to

content,” says Tufte.6

3 John Medina, Brain rules: 12 principles for surviving and thriving at work, home
and school (Seattle: Pear Press, 2008).
4 Edward R. Tufte, The visual display of quantitative information (2001, 2nd ed.).
5 W. Howard Levie and Richard Lentz, “Effects of text illustrations: A review of
research,” Educational Technology Research and Development, 30, 195–232 (1982).
6 Edward R Tufte, The art of data visualisation, PBS film, 2013.

Chapter 6 adding visual Content

104

If you’ve ever faced a set of architecture diagrams with too many arrows,

labels, and layers, however, you know that visual content can quickly

become more confusing than helpful. Visual content is often subjective.

We often think we know what makes a good diagram or graphic helpful—

but the most helpful visual content is what’s most useful for your reader.

We know from Chapter 1 on user research that what we as creators like is

often different from what our readers need.

Ineffective visual content interferes with the transfer of information,

usually due to a lack of:

• Comprehension

• Accessibility

• Performance

It doesn’t matter whether you’re looking at screenshots, illustrations,

graphs, videos, infographics, diagrams, or photographs. All visual content

types, and all documentation including them, sometimes fail to help

because of these issues.

 Comprehension
Eye tracking studies by the Nielsen Norman Group show readers pay

closer attention to images that contain information relevant to them. Other

images, however beautifully designed, are ignored.7

7 Jakob Nielsen, “Photos as Web Content,” Nielsen Norman Group, accessed June
26, 2021, www.nngroup.com/articles/photos-as-web-content/.

Chapter 6 adding visual Content

http://www.nngroup.com/articles/photos-as-web-content/

105

Note You might have been taught that different individuals learn
better from different learning styles, for example, visual content over
words. this has been debunked.8 Well-designed visuals can help
almost all readers.

That isn’t to say that aesthetics don’t play an important part in helping

your reader. In fact, the opposite is true. Poor aesthetics can stop us from

wanting to engage with content. “We react to design, and the aesthetics of

the piece just as much as we react to the information contained in it,” says

Julie Steele, co-author of Beautiful Visualization.9

An overcrowded diagram with crisscrossing arrows, missing labels, or

different levels of abstraction is a hindrance, not just because they are

confusing, but because they aren’t engaging to look at.

 Accessibility
We all need clear, helpful, visual content, but ineffective visual content

further excludes readers with access needs. Someone using a screen

reader cannot “read” an image without the addition of alternative text

(“alt text”). Someone with color vision deficiency may find it hard to

distinguish elements of an image if the color contrast between them is

not high enough. Diagrams full of text, despite best intentions, may be

unhelpful to dyslexic readers for whom visual content should provide a

clear benefit.10

8 Calhoun, Ragowsky and Tallal, “Matching learning style to instructional method:
Effects on comprehension,” Journal of Educational Psychology, Vol. 107 (2015).
9 Julie Steele, The art of data visualisation, PBS film, 2013.
10 David Roberts, “The power of images in teaching dyslexic students,”
Loughborough University, accessed June 26, 2021, https://blog.lboro.ac.uk/
sbe/2017/06/30/teaching-dyslexic-students/.

Chapter 6 adding visual Content

https://blog.lboro.ac.uk/sbe/2017/06/30/teaching-dyslexic-students/
https://blog.lboro.ac.uk/sbe/2017/06/30/teaching-dyslexic-students/

106

Note in the uK, 10% of the population is dyslexic. in the united
states, an estimated 5–15% of the population is dyslexic.

 Performance
It’s easy to get caught up in the design of visual content, but many creators

don’t consider how they will serve the image or video to their readers. Not

everyone reading your documentation will be doing so with a top-spec

machine or high-speed Internet connection.

Large images are necessary when printing documentation but can affect

loading speeds online. Although it’s important to make your images large

and clear enough for someone to zoom in, or use a screen magnifier, they

shouldn’t be so big as to stop someone from being able to load them in the

first place.

Now we know what to avoid, how do we apply these lessons to create

valuable, understandable, accessible, and high-performing content?

 Using screenshots
Screenshots can be a useful addition to documentation, particularly to

show a user interface (UI). If you think a screenshot would be useful to

your readers, make sure they:

• Never appear without introduction or reference in the text.

• Appear close to the instructions or related text.

• Are clean and clutter free—do not include anything in

your screenshot not part of your UI.

• Include all relevant parts of the UI with enough context

to reassure the reader they’re on the right screen.

Chapter 6 adding visual Content

107

• Not too big—your readers need to be able to read all

parts of the image.

• Not too small—your readers need to be able to

correlate the screenshot to the UI they experience.

It’s sometimes useful to annotate screenshots to draw your readers’

attention to parts of the image. Blocks and arrows can help highlight

parts of the image. Graying out other areas can help

de- emphasize them.

You may be familiar with the options for alternative (or “alt”) text on

images, including screenshots. Screen readers will read all of the findable

text on a page. Writing alt text is one way to make your content more

accessible to screen readers.

A better practice is to include a full description of what the image shows

within the body of your main text. Leaving alt text blank tells screen

readers to ignore the image. Instead, add a description of the content of

the image as if the image wasn’t there at all. For example, “there is a small

cog at the top of the menu” rather than “an image of a small cog at the top

of the menu.” If you find this tricky to write, try explaining the image out

loud—how would you describe it to someone?

Note the W3C provides a useful “decision tree” to help you use alt
text. www.w3.org/WAI/tutorials/images/decision- tree/

Finally, never use screenshots as the sole source of critical information

a reader may need, such as IP addresses or code samples. Readers often

want to copy such samples or text for their own use and screenshots make

that impossible.

Chapter 6 adding visual Content

http://www.w3.org/WAI/tutorials/images/decision-tree/

108

 Common types of diagrams
Diagrams can be an effective way to convey complexity without resorting

solely to words, especially for help with visualizing processes.

There are several types of process diagrams that are particularly helpful in

documentation:

• Boxes and arrows

• Flowcharts

• Swimlanes

 Boxes and arrows
Box and arrow diagrams depict a flow from one item to the next. They

appear frequently for good reason. When used well, box and arrow

diagrams clearly depict a relationship or data flow between entities that

would be difficult to explain with text alone.

Start by writing down the entities and the relationships you want to

express. For example:

Database ➤ API ➤ Front-end ➤ User

Choose a shape and line to denote each item and the relationship or flow

you want to illustrate. Each entity should be represented consistently with

a distinctive shape and design, for example, using square boxes exclusively

to denote different apps (Figure 6-1).

Chapter 6 adding visual Content

109

Figure 6-1. Boxes and arrows can represent architecture

Aim for minimal clutter. Do not cross any lines or arrows. Be clear whether

a connecting line represents a one or two-way data flow, or whether it

represents another relationship such as a dependency. If in doubt, add

labels to the element or connecting line and add a legend that clearly

defines what each element represents.

In Figure 6-2, the dotted lines and label help the reader understand which

elements are microservices.

Chapter 6 adding visual Content

110

 Flowcharts
Flowcharts guide a user from a start to a finish point and are particularly

helpful for documenting processes.

Write down the process in full if it’s not already included in your written

draft. Consider all of the possible directions or steps someone could take to

achieve a result. Knowing how many options you need to include will help

you know how much space you’ll need.

As with all diagram types, it’s important to be consistent. Flowcharts often

use the same shapes to denote a type of action (Figure 6-3). For example,

rectangles indicate processes and diamonds indicate a decision point. Any

text within shapes must be legible with a large and clear font.

Figure 6-2. Box and arrows example of microservices architecture

Chapter 6 adding visual Content

111

 Swimlanes
Swimlane diagrams are particularly useful for situations with multiple

contributors or acting parts. Much like a flowchart, they show a process

from beginning to end. Each actor or contributor has its own lane, and

each step of a process takes place in one of those lanes. In doing so, it’s

easier to see at glance who or what is responsible for each step.

Figure 6-3. Flowchart

Chapter 6 adding visual Content

112

You can use horizontal or vertical lanes, or a mix of both. In Figure 6-4,

each lane is a different “actor” in the flow. At each stage, the reader can see

who performs which action.

Use the same consistency in process shapes and flows as you would for

a flowchart. Make sure any connecting lines are clearly separated from

the swimlanes themselves and your horizontal or vertical swimlanes are

clearly labeled.

 Drawing diagrams
Regardless of the type of diagram you choose, your objective is to simplify.

Comic book artists have honed this skill. In his book, Understanding

Comics: The Invisible Art, Scott McCloud explores how comics are

incorrectly interpreted as conveying less information.11 Instead,

Figure 6-4. Swimlane diagram

11 Scott McCloud, Understanding Comics: The Invisible Art (New York: William
Morrow Paperbacks, 1994).

Chapter 6 adding visual Content

113

McCloud argues that by eliminating unnecessary detail, a comic’s true

meaning is amplified. A good piece of art, or diagram, guides the user to

understanding. To “simplify to amplify” as McCloud advises, you must

keep your diagrams targeted to your users. Remember what you know

about your audience and their task.

Illustrate only one idea per diagram. For example, show one level

of abstraction in a system, one process flow, or a particular piece of

logic. Figures 6-5 and 6-6 show the same process. The second is full of

unnecessary detail that a reader may not need.

Chapter 6 adding visual Content

114

Figure 6-5. Simplified flowchart

Chapter 6 adding visual Content

115

It’s okay to use multiple diagrams where splitting the information keeps

things simple. Think about ways to walk your reader through your system

or process. Overview diagrams can be a helpful addition to conceptual

documentation, especially for readers new to your product or domain.

Lower-level diagrams detailing data flows between specific microservices

may be more helpful for reference documentation. Splitting information

into chunks or layers helps to keep your designs targeted and provide the

appropriate level of information to a reader at different points of their

learning.

Figure 6-6. Overly complicated flowchart

Chapter 6 adding visual Content

116

 Start on paper
Like written documentation, effective diagrams start with good planning.

Grab a whiteboard or pen and paper to sketch with. If you have lots of

elements that will need a lot of space, try using sticky notes to represent

components or processes. Physically sketching or moving sticky notes

around can help group elements together and give you an opportunity to

prototype different designs before getting into (often fiddly) tooling.

This can be a useful point for some rudimentary user testing. Show

your sketch or sticky notes to someone else to see if their understanding

matches yours. Are the entities and relationships clear? Are processes

logical?

 Find a starting point for your reader
Consider where you want someone to begin reading your diagram. Make

that starting point clearly identifiable, and consider the reading patterns

of your users. For example, Western audiences tend to read from left to

right and top to bottom, so the top left point of a diagram will be where a

Western reader’s eyes are drawn to.

 Use labels
However neat your shapes and connecting lines, labels can help provide

even more clarity. A good label can be strangely tricky! Labels must be

legible (avoid tiny text) and understandable. However tempting it is to use

an acronym to save space, your readers may not share your familiarity. If in

doubt, spell it out.

Chapter 6 adding visual Content

117

 Use colors consistently
If you’ve used color to indicate a database, do not use it elsewhere in the

diagram to indicate a microservice. Keep in mind some of your readers

may struggle to distinguish colors. It’s best to avoid using color alone to

convey meaning and instead make good use of labels.

Note if you’re concerned about how readable your text is on a
colored background, use an online color contrast checker to make
sure any colors have a contrast of at least 4.5:1.

 Place the diagram
The position of your diagram is equally important. Make sure it appears

close to the instructions or description the diagram is helping to illustrate.

Remember never to use a diagram in isolation and to write alt text

consistent with the context in which the image appears.

 Publishing a diagram
Publish images in scalable vector graphic (SVG) format. Although other

formats are available, SVGs scale well and ensure your reader can access

and zoom in on your diagrams at any screen size.

 Get help with diagrams
Diagrams can be hard! Luckily, there are experts and standards to help

make your diagrams shine.

Chapter 6 adding visual Content

118

In the software world, Simon Brown’s C4 model is particularly handy

for diagramming architecture. The model provides a standardized way

of visualizing levels of abstraction. Brown’s second volume of software

architecture for developer’s series covers the C4 model extensively.12

The Web Content Accessibility Guidelines (WCAG) provide extensive

advice on making web content usable to all.13 WCAG is equally as helpful

for diagrams as for front-end development and design. A list of additional

design resources is available in the Resources appendix.

 Creating video content
Beware anyone who tells you that videos are the solution to any software

documentation problem. This isn’t to say that good video content cannot

be a part of effective software documentation, but the path to success is

littered with abandoned YouTube channels and footage of features last

helpful to a user in 1998.

Video content can be useful when introducing a new concept. Marketers

love it for the ability to condense an overview of a product or feature into a

short time. Most technical writers are wary of videos. They are difficult to

create, expensive to maintain, and most writers would struggle to prove they

give value to users. Think about your readers: Would they really benefit from

video overviews of your product? Could you provide a similar overview more

quickly and cheaply with well-written documentation and some images?

If you do want to commit the time and money required for video

production, find a professional. Video content is really, really hard to do

well. Writing, filming, and editing video content always take longer than

you expect, and you will need a professional’s expertise.

12 More information on the C4 model is available at c4model.com.
13 Web Content Accessibility Guidelines are available at www.w3.org/WAI/.

Chapter 6 adding visual Content

http://c4model.com
http://www.w3.org/WAI/

119

Much like static content, you must keep the accessibility of video to your

readers in mind. Can all of your readers access the content using the

hosting provider you have chosen? Is the video short enough to keep

your readers engaged? Have you added captions to your video? Have you

provided a full transcript with timestamps alongside the video? In addition

to helping viewers who are deaf or hard of hearing, a published transcript

can be indexed by search engines, making it more likely for your video to

be found.

Remember that making changes to written or static images is much easier

than amending a video. Plan ahead for your video maintenance: how long

will it stay up to date? Are you prepared to reshoot or republish the video

when you release a new feature?

 Reviewing visual content
Visual content, no matter how few words it contains, is still content.

That means you need to subject it to the same editing process covered in

Chapter 4.

Never review the visual content in isolation. Check the text around it. Does

its placement make sense in the text? Is it introduced properly? Does it

move when you view your content on a mobile or larger screen and still

make sense? Has it impacted your site’s performance?

Once you are satisfied it meets your comprehension, accessibility,

and performance requirements, get it in front of colleagues for review.

Remember that design is subjective and you still have the curse of

knowledge. Your overfamiliarity with what you have documented makes it

harder to evaluate your visual content objectively. In later chapters, we’ll

explore ways to test the effectiveness of your documentation, including

visual content.

Chapter 6 adding visual Content

120

 Maintaining visual content
Chapter 11 discusses the biggest reason for most documentation failures:

maintenance. Written text can fall out of date fast, but visual content can

fall even faster. A single UI change can render your screenshots obsolete.

A quick process change can mean that a single line in a diagram suddenly

guides users incorrectly. A new feature can make a very expensive and

well-produced video almost worthless.

Regardless of the format or tools you use to create an image, make sure

you share the source files with others in order to make updates easy and

possible.

 Summary
Visual content conveys information more quickly than text, but it’s tricky to

get visual content right. Make sure your images and your text complement

each other. Screenshots have numerous specific requirements to make

them useful. Don’t substitute a screenshot for copy-pastable text. Diagrams,

labels, and colors all benefit from consistency and clean practice.

Beware of video content! Its drawbacks almost always outweigh any

advantages for small teams and small budgets. Keep the three principles of

visual content fresh in your mind from design to maintenance:

• Comprehension: Does this help my reader?

• Accessibility: Am I excluding any readers?

• Performance: Do this content’s size and format help or

hinder my reader?

The next chapter guides you through taking the leap from creating and

polishing content to putting a document out in the world for others to

view.

Chapter 6 adding visual Content

121© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_7

CHAPTER 7

Publishing
documentation
 Corg.ly: Ship it!
Feeling a sense of anticipation, Charlotte took one final look through her

documentation. Thanks to Karthik’s help, the documentation had pulled

together faster than she’d expected. She scanned through the document,

looking over the code samples and diagrams to make sure everything looked

right. It’s ready, she thought.

The next step was putting the documentation in front of developers. She

could email a copy to Mei so Mei’s team could get started, of course, but

email wasn’t going to scale to the thousands of developers she hoped to

attract to Corg.ly. She needed

to publish it online, but where?

She messaged Karthik. “I want

to run something by you real

quick. I’m debating where to

publish this documentation,

and there are a couple of

different ways I can do this.”

“Of course,” Karthik replied.

“What are you thinking?”

https://doi.org/10.1007/978-1-4842-7217-6_7#DOI

122

Charlotte walked through a few different places they could publish the content

and a few different tools they could use to manage publication. In the end,

they narrowed down the process to the simplest solution available: adding

the documentation to a new section on their company website and managing

content with the same version control system they used for their code.

“I can also write up a quick post for our company blog,” Karthik suggested.

“Everyone will know when it’s up and where to find it.”

“That sounds great,” Charlotte smiled. “I’m ready to celebrate once this is

live for everyone to see.”

 Putting your content out there
Publishing content used to be a clear process. You sent your proofs to the

printer, complete with registration marks and ink numbers, and several

weeks later you got back documentation in the form of printed manuals.

From there, you had to ship physical copies into the hands of your readers.

We don’t live in that world anymore. Nowadays, publishing means making

content available to read and follow, similar to announcing that a piece of

software has been released. What we mean by “publishing” now is usually

“making your content available electronically to the intended audience.”

Sometimes it’s emotionally difficult to publish something: once it’s out

in the world, people will have reactions to it. It’s easy to fall into the trap

of having “just a few more things to fix” and never actually getting a

document out to readers. You might worry that people will judge it harshly,

that it’s incomplete, or that you’ve forgotten or missed something and

therefore want to stall its release.

Relax: like code, almost no document is perfect at release. The best way to

handle your fears about publication is to publish and then iterate based

on feedback. It’s okay to patch your documents, to update them, to modify

Chapter 7 publishing doCumentation

123

them after they have been published—just like it’s okay and even expected

that you’ll patch and update your software. Publishing is no longer a

printed artifact, just like a software release is no longer a CD.

There are a myriad of tools and locations to choose from. Publishing your

documentation can mean creating a website, a blog post, a GitHub gist,

or an internally facing wiki. To help you navigate the publishing process,

this chapter guides you through some of the decisions you’ll need to make,

including:

• Building a content release process

• Creating a publishing timeline

• Finalizing and approving publication

• Announcing your content to your audience

 Building a content release process
Just like your organization (hopefully!) has a software release process, you

should also build a release process for your documentation. Your content

release process is the plan for publishing your content. It contains the

timeline for publishing, assigning responsibilities for final content review

and publication, and designating where to publish content.

Your content release process should answer the following questions:

• When are you going to publish your content?

• Who is responsible for final review and publication?

• Where are you going to publish your content?

• What additional software tools are needed to publish

the content?

• How will you announce your new content to your users?

Chapter 7 publishing doCumentation

124

A content release process can be as lightweight as a checklist, or it could

be a fully scripted integration with your existing software release process.

What’s important is that you have a plan for getting your content to your

audience.

You should customize your content release process for the size of your

launch. For example, for this initial release of Corg.ly, Charlotte has a

fully planned release, complete with a timeline for software and content

publishing, final reviewers for content, and a blog post announcement to

inform Corg.ly’s users about the upcoming release. However, if Karthik

fixes a small bug and it isn’t part of a major release, a single peer review

can suffice for a brief update.

 Creating a publishing timeline
A publishing timeline is a way to make sure that all the essential tasks

of publishing are included and that you have enough time to complete

them. Doing user researching, creating a documentation plan, drafting

documentation and getting reviews all takes time. A Gantt chart is a useful

way to represent the planning that goes into a full release (Figure 7-1).

For example, if you need three days for the web team to verify and upload

something, two days to incorporate feedback, and one week to edit, you

can see that you need to have the draft ready for editing two weeks before

your publication target.

Chapter 7 publishing doCumentation

125

When setting your publishing timeline, it’s useful to make sure you’re

aligned with the software release and other relevant events. Projects

used to have time set aside for independent QA cycles, and so did

documentation—but in a faster, more agile development world, you

don’t have that luxury. Instead, you need to build your publishing

timeline into the rest of your release timeline and make sure the teams

responsible know that they need to hold time for essential writing and

review.

A publishing timeline created with buy-in from other release stakeholders

is a great way to align schedules and uncover potential problems before

they affect a release schedule. A publishing timeline also clearly defines

the owners for each part of the process.

Set a publishing timeline for all your documentation releases. Even small

or light releases need some participation from others.

Figure 7-1. A Gantt chart with a publishing timeline

Chapter 7 publishing doCumentation

126

 Coordinate with code releases
Developer documentation needs to release with the software it’s

describing. There is no amount of training or user interface design that can

cover up missing documentation. Coordinating a publishing schedule with

the product release schedule allows everyone to understand that this is all

the same release and needs to go out together.

If you’re doing a small documentation release, you may not need a full

publication cycle. Notify users of documentation changes and updates in

the release notes.

 Finalize and approve publication
You should assign a single, final approver who is responsible for allowing

or halting a documentation release. This approver should be listed in

the publishing timeline, and they should have final say in the amount of

content and its level of quality before you launch. No document is ever

going to be perfect, but no released document should be harmful. Be sure

you have a responsible party for that decision.

This person should also be responsible for testing and reviewing the

documentation prior to the release. If this person is you, then you will

probably find some errors. When you discover errors, decide in advance

what your criteria are for stalling a release. You can use the same triage

system for documentation bugs that you use for code. Will it cause harm to

people? Damage to systems or software? Data loss? Most documentation

doesn’t have the ability to go that wrong, but neither does most software,

and most organizations still have a triage category for it.

If your organization wouldn’t release code without a peer review and

some automated testing, you shouldn’t release your documents that way,

either. The simplest way to ensure parity would be to use your code review

process for documentation. If it’s going to be part of your codebase, it

Chapter 7 publishing doCumentation

127

certainly needs to pass all the integration tests that your code does. If you

have a culture of peer review or QA, your docs should be held to the same

standard.

Test your docs, even if they’re not part of your codebase. If you don’t

have unit tests for code samples, test instructions manually. For example,

does following a procedure produce the expected outcome for users?

Remember that when you write a procedure, you know more about it than

most users, and that knowledge may lead you to skip “obvious” steps that

not everyone knows. For example, you may write

$ brew install --cask firefox

as an instruction, but for that to work, the user has to be using MacOS,

have Homebrew installed, and be typing at the command line with

sufficient permissions. Your user may know that, or they may not; that’s

why audience analysis is so important.

It’s safer to err on the side of overexplaining, but make sure your

instructions don’t become too big or unapproachable for both readers

and writers. Think of instructions for making a sandwich that start with

how to remove the fastener on a bag of bread: that level of detail might be

necessary for some readers, but is too much for most. If you try to write for

every user, you may alienate readers in your most important use cases. For

purposes of testing, make sure your target user can perform the action you

describe with the information you provide or can reasonably expect them

to have.

Now is also a good time to decide on criteria for stopping a release.

If something isn’t quite ideal, or maybe a little awkward, it’s probably not

worth slipping your publication date. If something is materially wrong

and may cause harm, you need to stop publication until it’s fixed. Set

your standards and stick to them. This sounds simple, but there will be

judgment calls, which is why defining your standards in advance helps.

Chapter 7 publishing doCumentation

128

 Decide how to deliver content
If you’re adding content to a site that already exists, then most of these

decisions will be made for you. However, if you’re publishing new content,

you should give careful thought to where it will live and how your users will

find it.

When deciding where to publish your content, it’s important to remember

the following rule:

Meet your users where they are.

Your publishing destination depends on how your readers want to

experience the content. To meet your users where they are, consider the

following questions and scenarios:

• Are they internal teams looking for the right way to use

something in your organization? A private wiki or an

intranet site is a good place to put it.

• Are your readers external users who work with

code or endpoints? It’s convenient for them if the

documentation is in the same repository as the code.

• Are your readers end users or system administrators

looking to install something? Make sure the documents

are external to the software to avoid a dependency loop.

• Are your readers external users of your codebase? Put it

on your website or in your code repository.

Based on your audience research, you probably have an idea of how your

audience is expecting to use your documentation. If you’re putting your

documentation somewhere it will be indexed, be sure that the headings

are clear and that you allow search indexing. It’s disappointing to put effort

into documentation only to realize that no one is reading it because they

can’t find it.

Chapter 7 publishing doCumentation

129

Also, if it’s your first time publishing to a new location and you’re using

a new set of tools to do it, try manually publishing a test document to

your destination in advance. Take notes on the gaps you find in tools or

understanding. That’s right: your documentation needs documentation, or

at least the process for releasing it does. Running a test document through

your publication process means that when you upload the full set of

documentation, you can be sure it arrives intact, and so others can follow

the process too.

 Announce your docs
After your documentation goes live, it’s important to announce to your

readers that it’s available. For documentation aligned with a release,

it’s easy to link to the technical documentation anywhere you make the

announcement for the new release.

If you’re launching a whole set of documentation, then link to the most

logical entry point for your readers. For example, for the upcoming Corg.ly

release, Charlotte could point new users to the new “Getting Started” page

for Corg.ly. This would be the most logical entry point for new users.

You can also bundle announcements about new documentation into emails

that go to your users or with release notes and in-application notifications.

The important thing is to let people know there is a new resource available.

 Planning for the future
Your documents are living documents, just like your code. You need to

have some plans for what will happen to them.

Developers often spend time on call (“pager duty”) for critical responses.

It may surprise you to learn that documentation can also require critical

response. There are some industries and products where documentation

Chapter 7 publishing doCumentation

130

errors are incident-worthy problems and people get paged about them.

If your documentation is critical, then you need to plan for critical response,

with a runbook, just like you would have for any operations problem.

How often do you update your documentation? If your content is tied to

releases, you should make updates at the same cadence, even if it delays

publishing some content. If your deployments are more continuous, then

set predictable dates for documentation updates, and let your readers

know about them in advance. Setting a schedule for your documentation

updates also keeps these issues from sliding to the bottom of everyone’s

priority list until you have a bunch of technical debt to work through.

Once you know your publication cadence and you’ve used your release

process a few times, take a step back and look for places where you can

improve the process. You might be tempted to use tooling and scripts

to automate your publishing process initially, but it’s better to start with

the least-complicated process that works and iterate on it. You can’t

automate toil away until you understand where toil exists. Finding your

actual friction points saves you much more time than guessing at them in

advance of experience.

More information on maintaining content and content automation is in

Chapter 11.

 Summary
Create a documentation release process that aligns with your software

release process. The release process should contain the timeline for

publishing, assign responsibilities for final content review and publication,

and designate where to publish content.

Assign a single, final approver who is responsible for allowing or stopping a

documentation release. List this approver in the publishing timeline.

Chapter 7 publishing doCumentation

131

Test documentation before release. Verify that documentation is accurate,

code samples work and are adequately described, and that content meets

the bar for publication.

After your documentation goes live, announce its availability through

channels such as product announcements, blog posts, customer emails, or

release notes.

Iterate and improve your release process with better planning,

communication, and tooling.

Chapter 7 publishing doCumentation

133© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_8

CHAPTER 8

Gathering and
integrating feedback
 Corg.ly: Initial feedback
It had been two weeks since Charlotte’s team published Corg.ly’s first set of

documentation on their website. After taking a short break to celebrate and

relax, Charlotte and Karthik wanted to know how readers are responding.

Was the documentation as helpful as they’d hoped?

Karthik emailed Mei to see if her team had any feedback and included a

short questionnaire for the group. After he received the questionnaire results,

Karthik asked Mei for a follow-up meeting.

“Thanks for meeting with me,” Mei started, “and asking for feedback from

me and my team. Overall, the documentation is good, but we have some

questions. The docs don’t seem to cover formatting parameters for the length

of a bark...”

Karthik took notes as Mei outlined other issues that her team was

facing. Some of the issues were product issues, and some were issues with

documentation. He started thinking about ways to organize these issues

when Mei surprised him with a question.

“Is there a better way for us to get you feedback?” Mei asked. “I appreciate

you taking time with me, but I know this kind of interaction won’t scale for

all your users.”

https://doi.org/10.1007/978-1-4842-7217-6_8#DOI

134

Mei was right—fixing her team’s issues would

be fairly easy, but getting feedback one to one

like this wouldn’t scale to all of Karthik and

Charlotte’s users. Also, what if Mei’s team

was an outlier in the kind of feedback they

got? Karthik knew he needed to think more

about this and chat through some ideas with

Charlotte.

 Listening to your users
Documentation is one of the primary ways you communicate with your

users, and users expect to be able to communicate back. Collecting user

feedback can help you learn where your product and documentation

succeed and where you need to make improvements. It also helps you

validate (or correct) all the assumptions you’ve made about your users in

your initial user assessment (see Chapter 1).

At first glance, gathering and understanding all the feedback your users

have may feel overwhelming. You put a lot of effort into your code and your

documentation, and user feedback can feel judgmental, confusing, or just

plain unhelpful. It’s a daunting task to sort useful, constructive feedback

from feedback that’s not.

That said, documentation plays a critical role in addressing users’ needs

and helping them understand your product and be productive. User

feedback provides critical information on how your documentation and

product perform, and your users often provide suggestions that you can

use to improve both your content and your code.

This chapter guides you through the process of gathering user feedback

and making it actionable by helping you:

Chapter 8 GatherinG and inteGratinG feedbaCk

135

• Create user feedback channels

• Convert feedback into action

• Triage the feedback you’ve received from users

Note feedback and metrics are closely related. for more
information on metrics, see Chapter 9.

 Creating feedback channels
If you have a small number of users, you might communicate with them

individually through email and chat, or through small meetings like the

one Karthik is having with Mei. As your users increase in number, these

ad hoc methods of getting feedback don’t scale. Users will still try to reach

you—through mountains of emails, Twitter posts, and Stack Overflow

questions—and you’ll find yourself in the painful place of playing “whack-

a- mole” trying to keep up with all of the messages you’re getting.

The solution is to create channels for user feedback that you can use to

improve your documentation and code. Feedback channels are specific

means or venues for your users to connect with you. Feedback channels

include everything from allowing users to submit issues directly against

your documentation to requesting feedback through customer surveys.

There are many creative ways to gather feedback from your users. For the

purposes of this chapter, we focus on these channels that relate closely to

documentation:

• Accepting feedback directly through documentation

pages

• Monitoring support issues

Chapter 8 GatherinG and inteGratinG feedbaCk

136

• Collecting document sentiment

• Creating user surveys

• Creating a user council

Each of these channels provides a different kind of feedback from your

users. For example, accepting issues filed by users directly through your

documentation pages provides you with feedback on individual pages,

whereas contacting customers periodically can give you higher-level

feedback about both your documentation and product.

This list of channels isn’t exhaustive, nor should you try to implement

every channel. Listening to your users means respecting their time, so

carefully consider which channels are most useful for you and least time

consuming or distracting for your readers. After all, your readers came to

your documentation to understand your product, not to submit feedback.

 Accept feedback directly through
documentation pages
Accepting feedback directly through your published pages gives readers a

way to contact you if they have a specific issue with the page. For example,

a user might find one of the steps in your process confusing, or a code

sample that you’ve published doesn’t work.

For small projects, you can add a short script to a page that displays

an email link and appends the page title and URL to any email sent.

Alternatively, you can provide a link that sends feedback to the same

system you use to manage bugs and issues for code. This is particularly

useful for larger projects where users submit a lot of feedback: it’s easier to

track, measure, and respond to feedback if you track it in the same place as

your code issues.

Chapter 8 GatherinG and inteGratinG feedbaCk

137

Most issue tracking systems allow you to collect information through a

form or template. This is particularly useful when collecting feedback from

your users. An issue template gives your users additional structure for their

feedback, guiding them away from sending unhelpful or cryptic feedback

about your documentation. The following example is an issue template

for Corg.ly docs. This example assumes that Corg.ly documentation uses a

Markdown-based issue template:

Title

<!--- Provide a short summary of the issue-->

Document URL

<!-- Copy and paste the relevant URL(s) into this section. -->

What's wrong or missing?

<!-- Clearly explain the specific impact. Attach screenshots if

necessary. -->

Possible solution

<!-- Not required. Describe how the document can be more

helpful. -->

The goal of page-level feedback mechanisms is to give users an

opportunity to respond directly from the content. They give you the most

granular feedback on where to improve the documentation.

 Monitor support issues
If your organization has a support team, they’re a good partner for

collecting and understanding user feedback. Your support team likely

has feedback channels of their own that customers use to get help, and

they probably have an incident management system for logging customer

issues, documenting workarounds, and generating reports.

Chapter 8 GatherinG and inteGratinG feedbaCk

138

If possible, work closely with your support team to understand commonly

reported issues and trends of customer feedback. If customers experience

the same issue over and over, it needs to be addressed through either

documentation or a product update.

 Collect document sentiment
Document sentiment is how readers feel about your documentation. You

can discover and measure document sentiment through a simple survey

or by using embedded code on a page that prompts a user to indicate by

clicking a simple yes or no whether the page was helpful (Figure 8-1).

If your pages have low ratings, you can improve the pages, then measure

the effect of those changes on sentiment. If your pages get high ratings and

you know why, you can replicate that success elsewhere.1

There are significant limitations to measuring sentiment. You need to

collect a large number of responses from a yes/no sentiment survey

in order for data to be useful. The more responses you get, the more

confident you can be that the data actually represents your users. You also

have to wait after making changes before collecting more responses to

measure whether changes had an effect.

1 “Widgets,” Pete LePage, Google Web Fundamentals, accessed January 28, 2021,
https://developers.google.com/web/resources/widgets.

Figure 8-1. A document sentiment tool on a Google page

Chapter 8 GatherinG and inteGratinG feedbaCk

https://developers.google.com/web/resources/widgets

139

Sentiment can also be highly contextual. For example, a troubleshooting

page might have low sentiment because readers of that page arrive there

frustrated. Even if the page is helpful, users might rank it low. You can

get more context about why users feel the way they do about your pages

through follow-up questions or surveys.

 Create user surveys
Customer surveys let you ask users specific questions about your product

and documentation in an automated way that’s easy to aggregate. You

can embed shorter surveys in your documentation, either as a link or as a

popup. Longer surveys can be emailed to your customers.

Regardless of how you reach your users with a survey, it’s important to

keep your survey focused on a specific set of questions with measurable

results. For example, if Karthik wanted to understand user satisfaction with

Corg.ly’s documentation, he might create a survey that asked the following

questions:

 1. How satisfied are you with Corg.ly’s documentation?

 2. Are you able to find the information you were

looking for?

 3. How much time did it take you to find this

information?

 4. Did this effort match your expectations?

 5. What can we do to improve our documentation?

A survey like this helps generate a customer satisfaction score, also known

as CSAT. Once you have enough responses to establish a baseline, you can

track changes in CSAT as you publish more documentation or address

issues that users raise against your current documentation.

Chapter 8 GatherinG and inteGratinG feedbaCk

140

Note Creating a good customer survey requires specific knowledge
and skills. there are many guides and tools to help you create helpful
surveys that yield insightful results. doing research before publishing
a survey makes a significant difference in the quality of results and
helps you avoid annoying your users with an intrusive experience.

 Create a user council
If you have a small number of critical users for your product, you can

establish a user council to get their feedback. A user council is a group

of current or potential users who are willing to give you advice on your

product.2 Typically, it’s because they’re early adopters and want you

to succeed or they are current customers who expect to make a big

investment in your product or service. Mei, from this book’s Corg.ly stories,

is a good example of someone who would be a perfect fit on a user council.

User councils can provide feedback on your documentation and your

product as members try out new services. They can also help answer

questions through one-to-one interviews, usability testing, and surveys.

Having a user council means that you always have a dedicated group

of people on hand if you need input or feedback on a new feature or

document. It also helps you build a relationship with a core group of users

who can evangelize your product to others.

2 “What we learnt from building a User Council,” Charlie Whicher,
Medium.com, published Nov 13, 2017, https://medium.com/@CWhicher/
what-we-learnt-from-building-a-user-council-541319c5c356.

Chapter 8 GatherinG and inteGratinG feedbaCk

http://medium.com
https://medium.com/@CWhicher/what-we-learnt-from-building-a-user-council-541319c5c356
https://medium.com/@CWhicher/what-we-learnt-from-building-a-user-council-541319c5c356

141

 Converting feedback into action
When you gather data from the various feedback channels you create,

you’re amassing information on the changes your users want. Some

feedback will be concrete and easily actionable, like, “This particular code

sample in this particular document needs an update.” Other feedback

will be more complicated or require you to consider whether you need to

improve your code or revise your information architecture.

You need a process to convert user feedback into action, one that allows

you to prioritize issues that are most important to your users, and backlog

the issues you can ignore or defer to another time.

The name for this process—of sorting and prioritizing feedback—is

triage. Not all opinions deserve consideration, and not every great idea

deserves immediate action. Triage helps you choose the most valuable

improvements to make with limited resources.

 Triaging feedback
As in healthcare settings that evaluate patients upon arrival to make sure

each patient receives an appropriate level of care, user feedback requires

similar triage. Each feedback issue should be quickly evaluated to see if

you can answer the following questions:

 1. Is the issue valid?

 2. Can it be fixed?

 3. How important is the issue?

The following sections dive into each of these questions, defining specific

requirements for answers at each step. Answering these questions helps

you separate actionable user feedback from feedback that needs more

Chapter 8 GatherinG and inteGratinG feedbaCk

142

information and feedback that can be ignored. Applying a standard triage

process is critical because it:3

• Speeds up the response times to user issues

• Prevents requested work from lingering endlessly

• Builds a standard set of priorities for issues

• Directs limited resources toward the most necessary

and impactful changes

Triaging feedback for documentation is no different from triaging code

or product issues. If you already have a system for managing issues, you

should apply that system to managing your user feedback as well.

 Step one: Is the issue valid?

It’s important to take a “trust but verify” approach when evaluating user

feedback issues. Users have good intentions when submitting feedback,

but sometimes their feedback isn’t relevant to documentation, or the issue

they’re describing has already been fixed.

The first step to triaging user feedback is to determine whether it’s valid. In

this case, validity means the issue is relevant to documentation.

Even if you build feedback channels specific to documentation, you will

likely still get feedback on unrelated issues. Common examples include

product feedback (a feature didn’t behave as expected, or a desired feature

is missing) and requests for support (a reader struggles to complete a

certain task in their local environment). These may be valid issues, but

they’re not issues with the docs, so effective triage means routing unrelated

issues to more appropriate teams.

3 “Issue Triage Guidelines,” Kubernetes, 2021, accessed June 27, 2021,
www.kubernetes.dev/docs/guide/issue-triage/.

Chapter 8 GatherinG and inteGratinG feedbaCk

http://www.kubernetes.dev/docs/guide/issue-triage/

143

 Step two: Can the issue be fixed?

Once you’ve determined that the feedback is applicable to documentation,

the next step is to determine whether the feedback is actionable—that is,

whether you can act to change the documentation for the better.

For a documentation issue to be actionable, it must be:

• Original

• Reproducible

• Scoped

For an issue to be original, it can’t be a duplicate of an issue submitted by

other users. Having a searchable issue tracking system makes searching for

duplicates much easier. If an issue has many duplicates, note the existence

of duplicates in the original issue and close all the duplicates. You should

also consider increasing the original issue’s priority if multiple users are

reporting the same issue.

Next, try to reproduce the issue. Users might have an issue they think is

the fault of your code or documentation, but it could be an issue in their

local environment. If you can’t reproduce the issue, you can respond

to the feedback with a request for more information to help you better

understand the problem. Asking for additional details about their

environment and the specific code they’re using can help you diagnose the

issue.

Finally, scope the issue to something that’s possible to fix. Feedback that’s

too general in scope (e.g., “These docs didn’t help”) isn’t feedback on

which you can act. The same is true for feedback that’s too large in scope

(e.g., “Rewrite the entire security section”).

Narrow the scope of an issue to something you can fix. For example,

“The setup section for audio translation is difficult to follow and should

be rewritten.” Limit the scope of each issue to a specific documentation

Chapter 8 GatherinG and inteGratinG feedbaCk

144

fix that directly improves the user experience. Break down any required

changes into smaller steps until you’ve created a well-bounded set of

actions to take.

 Step three: How important is the issue?

The last step of triage is to assign a priority to the issue. An issue’s priority

encapsulates how important the issue is and how quickly it needs to be

fixed.

Most projects have a standard set of priorities for issues. For example,

Table 8-1 lists a set of issue priorities for the Chromium project.4

These priorities are identical across the Chromium organization. They’re

easy to understand, and they can be quickly applied to any incoming

issue. This prioritization scheme makes it easy to see at a glance which

documentation issues to address quickly and which issues to defer until

later.

4 “Triage Best Practices,” The Chromium Projects, accessed May 14, 2021,
www.chromium.org/for-testers/bug-reporting-guidelines/triage-
best-practices.

Table 8-1. Issue priorities

Priority What it means

P0 emergency: requires immediate resolution

P1 needed for upcoming release

P2 Wanted for upcoming release (but not

required)

P3 not time sensitive

Chapter 8 GatherinG and inteGratinG feedbaCk

http://www.chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
http://www.chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices

145

 Following up with users
As stated at the beginning of the chapter, feedback is how you have a

conversation with your users. It’s important to communicate with users

about how you’re taking action on the issues they raised.

For example, if a user reports an issue that you can’t reproduce,

the quickest way to address the issue is to ask for more specifics,

including any code the user can provide you to help diagnose the issue

and any information about their specific environment that might not

be covered by your documentation. Asking users for more information

about their feedback is quicker than trying to figure out the reported

issue on your own.

It’s also important to follow up with users when you fix the issue they

reported. Some issue trackers let you follow up with the user who

submitted the issue. Otherwise, you can reach out to them directly and

thank them for their feedback. If a user goes above and beyond in their

feedback, you can praise them in release notes or blog posts after you fix

the issue.

Let your users know that you’ve listened to their feedback. It takes time for

users to submit feedback, so it builds trust when you let your users know

they’ve been heard.

 Summary
Documentation is one of the primary ways you communicate with your

users, and users expect to be able to communicate back through user

feedback.

Chapter 8 GatherinG and inteGratinG feedbaCk

146

There are many feedback channels you can build to collect user feedback

related to documentation, including:

• Accepting feedback directly through documentation

pages

• Monitoring support issues

• Collecting document sentiment

• Creating customer surveys

• Contacting customers periodically

• Creating a user council

After you collect feedback, triage issues with a process that validates and

prioritizes each issue. Follow up with users when you fix the issues they

report.

The next chapter covers how feedback is closely related to measuring

documentation quality and gives you tools to measure where and how

your documentation succeeds.

Chapter 8 GatherinG and inteGratinG feedbaCk

147© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_9

CHAPTER 9

Measuring
documentation
quality
 Corg.ly: Tuesday after the launch
Success! Charlotte and Karthik watched the number of Corg.ly API users increase.

Mei had emailed earlier in the week with congratulations and some initial

feedback on the documentation and code. The celebrations were over, and, more

than anything, Charlotte felt an immense sense of relief and accomplishment.

Charlotte put her laptop on the ground and motioned Ein to come over.

“See,” she said, pointing at her screen. “We had over one thousand new

signups just this morning.”

Ein sniffed at the screen and barked twice.

“Treat! Treat!” Corg.ly translated.

Charlotte pulled a doggie biscuit out of the

jar on her desk and held it out to Ein. As Ein

crunched down on his biscuit, Charlotte

ruminated on the success of Corg.ly. The

number of users continued to grow, but how

did Charlotte’s team know their docs were

https://doi.org/10.1007/978-1-4842-7217-6_9#DOI

148

successful? They were getting plenty of issues opened against both the docs

and the product, issues that her team were busy triaging and addressing, but

was there a way to measure the quality of their docs?

 Is my documentation any good?
Like Charlotte, once you’ve published a few documents, you may have

questions like, “Is my documentation any good?” and “How can I be sure?”

You might be tempted to dive straight into all of the available metrics for

your content. Everything from page and site analytics, search data, click-

through metrics, satisfaction surveys, and text analysis is available to

measure.

The more metrics you gather, the more you might feel adrift. The numbers

can create an illusion of an answer. It’s easy to find yourself chasing more

and more metrics without getting an answer to your initial question.

To help you, his chapter guides you through measuring your

documentation quality, including:

• Understanding documentation quality

• Creating a document analytics strategy

• Aligning metrics to quality

• Using clusters of metrics

 Understanding documentation quality
Before you can measure document quality, you must first define “quality.”

Luckily, a group of writers and engineers at Google worked on this very

question: they evaluated documentation quality with similar methods for

Chapter 9 Measuring doCuMentation quality

149

evaluating code quality.1 The definition for documentation quality they

created is very simple:

A document is good when it fulfills its purpose.

If a document is good when it fulfills its purpose, then what is its purpose?

The purpose of your documentation should align with the purpose of your

code: to drive specific user behavior and accomplish the goals of your

organization. Lifting vocabulary directly from the field of software testing,

the group broke down documentation quality into two fundamental

categories:

• Functional quality, which describes whether or not a

document accomplishes its purpose or goal

• Structural quality, which describes whether a

document is well written and well structured

Both functional quality and structural quality have many components.

Understanding these components makes them easier to measure and

evaluate.

 Functional quality
The functional quality of a document describes whether or not the

document accomplishes the goal it sets out to achieve. It examines at a

fundamental level whether or not the document works.

1 Riona Macnamara et al. “Do Docs Better: Integrating Documentation into the
Engineering Workflow” in Seeking SRE, ed. David Blank- Edleman (O’Reilly Press,
2018).

Chapter 9 Measuring doCuMentation quality

150

Functional quality is difficult to measure holistically, but it’s the more

important metric because it more closely aligns with the document’s

purpose. The functional quality of documentation can be broken down

into the following categories:2

• Accessible

• Purposeful

• Findable

• Accurate

• Complete

 Accessible

Accessibility is the most essential aspect of functional quality. If your

readers can’t access and understand your content on a fundamental level,

they won’t be able to accomplish their goals.

For documentation, accessibility includes language, reading level, and

screen reader access.

One of the most important parts of accessibility is writing in the language

of your readers. In the United States, for example, census records show

that more than 300 languages are spoken within the country, and 8% of the

population has limited English proficiency.3

2 Torrey Podmajersky, Strategic writing for UX: Drive Engagement, Conversion, and
Retention with Every Word, pp. 113–115 (O’Reilly, 2019).
3 “The Limited English Proficient Population in the United States in 2013,” Jie Zong
and Jeanne Batalova, Migration Policy Institute, published July 8, 2015,
www.migrationpolicy.org/article/limited-english-proficient-population-
united-states-2013.

Chapter 9 Measuring doCuMentation quality

http://www.migrationpolicy.org/article/limited-english-proficient-population-united-states-2013
http://www.migrationpolicy.org/article/limited-english-proficient-population-united-states-2013

151

Globally, the number of developers who are proficient in English is

very high. For example, 80% of developers in the Ukraine possess an

intermediate or higher level of English proficiency.4 However, you can’t

assume that all developers know English and that their proficiency level

is advanced. Looking at the number of page views and what language

your readers select when viewing your content can help you understand

whether your documents are sufficiently accessible.

Reading level is another way to measure the accessibility of your

documentation. In general, technical documentation should be written to

a tenth grade level, including titles, headers, and paragraphs. This helps

your readers understand your content quickly and pushes you, the writer,

to use clear language and avoid complex technical jargon.

There are several methods of measuring a document’s reading level,

including Flesch-Kincaid Grade level, the Automated Readability Index,

and the Coleman-Liau index. Each of these indexes uses sentence length

and word length to estimate the minimum grade level a person would

need to understand your writing. There are many free document parsers

that can assess your content with these indexes and guide you to any

necessary adjustments.

Some users require accessibility devices such as screen readers to read

and understand your documentation. It’s important to use alt text for

any graphics, diagrams, or visuals you use. Also, any videos that you

link to should also be captioned and subtitled. For more information on

accessibility for visual elements, see Chapter 6.

4 “How Many Software Developers Are in the US and the World?” DAXX, published
February 9, 2020. Retrieved from: www.daxx.com/blog/development-trends/
number-software-developers-world.

Chapter 9 Measuring doCuMentation quality

http://www.daxx.com/blog/development-trends/number-software-developers-world
http://www.daxx.com/blog/development-trends/number-software-developers-world

152

Note Verifying accessibility for the visually impaired extends far
beyond the text of your document to include page elements and
visual design. the World Wide Web Consortium (W3C) offers a set
of Web Content accessibility guidelines (WCag) that you can use to
validate the accessibility of your content.5

 Purposeful

For a document to be useful, it must clearly state its purpose or goal and

then work to fulfill it. Your document should, in both its title and first

paragraph, state the purpose of the document and what it will help your

reader accomplish. These goals should align with both the goals of your

organization and the goals of your reader.

For example, let’s say Charlotte is creating a document to help developers

get started with the Corg.ly API. First, the document title should explicitly

be the goal of the document for the reader, something like “Getting started

with the Corg.ly API.” Next, the document should explicitly state at the

beginning what the document covers, such as “Authenticating with the

Corg.ly API” and “Making your first Corg.ly API call.”

To measure the success of this document, Charlotte might simply check

the amount of time it takes for a new user to get to their first Corg.ly API

call. This measurement is called Time to Hello World (TTHW). Task

completion isn’t a perfect measurement of purpose and understanding,

but it does give you a good starting point for understanding how effective

your document is.

5 Web Accessibility Initiative (WAI): Making the Web Accessible, accessed June 27,
2021, www.w3.org/WAI/.

Chapter 9 Measuring doCuMentation quality

http://www.w3.org/WAI/

153

Note time to hello World (or tthW) is the amount of time it takes
a developer to author “hello World” in a new programming language.
the concept has been extended beyond programming languages to
apis, as a measure of how simple it is for a new developer to get a
basic example working. Faster times correlate to easier adoption.6

 Findable

Findability is the measure of how easily your readers navigate to and

through your content.

You might think of findability as something that exists outside of your

documentation, something that can be fixed with a good site architecture

and a good search engine. Although good site architecture helps (see

Chapter 10), search engines can direct users to the wrong page within

your site or miss your site entirely. Readers searching for the right content

can be stymied if your content doesn’t have the keywords they expect or if

there are many similar sites with similar content. Understanding what your

users are searching for, standardizing on search keywords, and monitoring

how users find and enter your site all help increase findability.

Once readers make it to your site, they might not land on the right page. As

Mark Baker, the author of Every Page is Page One, writes, “The real findability

problem is how to get readers from the wrong place deep within your content

to the right place deep within your content.”7 If findability within your content

6 Brenda Jin, Saurabh Sahni, Amir Shevat, Designing Web APIs: Building APIs That
Developers Love (O’Reilly Media, 2018).
7 “Findability is a Content Problem, not a Search Problem” Mark Baker, Every
Page is Page One, published May 2013, https://everypageispageone.
com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/.

Chapter 9 Measuring doCuMentation quality

https://en.wikipedia.org/wiki/Application_programming_interface
https://everypageispageone.com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/
https://everypageispageone.com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/

154

is poor, you might notice readers entering and leaving your site repeatedly as

they try different search terms to get to the right document.

To address deep content navigation, each document should provide

as much context as possible for a reader’s current location in your

site content as a whole. Contextual location, linking between related

documents, using clear document types (Chapter 2), and using a site

architecture (Chapter 10) all help your reader navigate smoothly and

efficiently to the content they need.

 Accurate

Accuracy is the measure of how correct and credible the content is in a

document. A document with high accuracy has correct and up-to-date

technical explanations of the code it’s describing, along with working code

samples and command line examples. A document with low accuracy might

have several issues filed against it (see Chapter 9) and might contain code

samples that are broken or superseded by new versions of your product.

Low-accuracy documentation leads to user frustration, as well as a loss

of trust in both your documentation and product. How often have you

searched for an answer to a problem and found a promising document,

only to find out that the solution didn’t work?

Testing code samples, commands, API calls, and any other examples you

provide helps proactively address accuracy issues. It’s also possible to

automate tests that verify any examples you put in your documentation.

Monitoring and addressing user feedback quickly also helps to improve

document accuracy.

Chapter 9 Measuring doCuMentation quality

155

 Complete

A document is complete if it contains all of the information necessary for

the reader to succeed. For a task-driven document, completeness means:

 1. Listing all prerequisites that readers should follow.

 2. Documenting all tasks required to finish the task.

 3. Defining next steps the reader should take.

If the document is an overview of a technical concept, it’s complete when

it describes every key aspect of the technology that a reader needs to know.

If the document is a technical reference, like an API reference, it should

contain every single command in the API.

 Structural quality
The structural quality of a document describes how well it’s written. This

includes sentence, paragraph, and header structure, quality of language,

and accuracy of grammar. Structural quality encapsulates how easy a

document is to read.

This book uses the “three Cs” of good writing to define structural quality:

• Clear

• Concise

• Consistent

 Clear

Clarity is the measure of how easy your document is to understand. For

documentation, clarity refers to how easily your reader can take in the

information you’ve provided them and how confident they are that they

will succeed.

Chapter 9 Measuring doCuMentation quality

156

At a holistic level, clear documentation has:

• Well-defined and well-ordered headers that break

down a topic into logical sections

• Headers ordered chronologically for tasks and each

step indicating the desired outcome

• Unambiguous results for each step in a process

• Steps organized in a way your readers understand

• Content that calls out any places where a reader might

get stuck

• Definitions of any errors that users may encounter

On a sentence-by-sentence level, clear documentation avoids

unnecessarily long words or jargon that your reader might not understand.

If you have to use unfamiliar words, define them for your readers.

 Concise

A good definition of concision (or conciseness) is brief but comprehensive.

At a holistic level, a concise document contains only information that’s

relevant to a reader and their goals. Remove anything that gets in the way

of a reader’s understanding, and link to anything that is relevant but not

immediately necessary.

At a sentence-by-sentence and word-by-word level, concise

documentation contains only the necessary information needed by the

reader and no more. That includes avoiding unnecessary words and

unnecessary concepts.

Chapter 9 Measuring doCuMentation quality

157

As William Strunk Jr., author of The Elements of Style says, “A sentence

should contain no unnecessary words, a paragraph no unnecessary

sentences, for the same reason that a drawing should have no unnecessary

lines and a machine no unnecessary parts.”8

Note there are several tools that can measure and improve the
conciseness of your documentation, such as the hemmingway editor
(hemmingwayapp.com). these tools evaluate your content to make it
easier to read.9

 Consistent

Document consistency means that the structure of your content,

the concepts that you introduce, and your word choice are the

same throughout your documentation. At a holistic level, consistent

documentation has consistent titles, headers, paragraph structures, and

lists. The content uses patterns that a reader can easily follow and use to

skim documentation and quickly find what they need.

On a sentence-by-sentence level, consistency means that the same terms

mean the same thing. For example, if a user is authenticating with the

Corg.ly API, it’s important to always call it “authenticating” and not use

other terms like “Connecting to the Corg.ly API.” Keeping terms consistent

in your documentation makes it easier for readers to understand your

content quickly.

Using a style guide and a standard set of document types helps create

content consistency.

8 William Strunk, The Elements of Style. 4th ed. (Pearson, 1999).
9 Hemingway Editor, www.hemingwayapp.com/.

Chapter 9 Measuring doCuMentation quality

http://hemmingwayapp.com
http://www.hemingwayapp.com/

158

 How functional and structural quality relate
Ideally, your documentation should have both high structural quality and

high functional quality. However, functional quality is more important. A

well-structured, well-written document that doesn’t accomplish its goal is

a poor piece of documentation. A document with structural issues that still

accomplishes its goal is a good document.

Here’s a good way to think about it:

• Low functional quality + high structural quality = poor

overall quality

• High functional quality + okay structural quality = good

overall quality

When collecting metrics about your documentation, it’s easy to focus on

structural quality instead of functional quality. Metrics for word count,

time your users spend on a page, and consistency of language are easier

to gather than whether or not a user is successful at accomplishing the

documented task. That’s why before you begin collecting analytics, it’s

important to first define what you’re looking to measure and improve.

 Creating a strategy for analytics
For documentation to be effective, it must align your technical and

business goals with the goals of your reader. As stated at the beginning of

the chapter, “A document is good when it fulfills its purpose.”

An analytics strategy helps you recognize how your documentation goals

align with the larger goals of your readers and your organization. A strategy

allows you to focus on the metrics that are important to what you want to

improve while ignoring the rest.

Chapter 9 Measuring doCuMentation quality

159

To create an effective analytics strategy, clearly define the following:

• Your organization’s goals and how they’re measured

• Your reader’s goals and how they’re measured

• Your documentation goals and how they’re measured

Your documentation should help readers accomplish their goals, which

in turn help your larger organization accomplish its goals. These metrics

should all align with one another, so it’s useful to look at all of these

together.

Organizational goals and reader goals are covered in Chapter 1, but as

your set of documentation grows, and your documentation becomes more

specialized, it’s useful to revisit these goals before starting to measure

quality.

 Organizational goals and metrics
Organizational goals are specific behaviors the organization wants from

its users. These goals are usually tied to revenue. They focus on increasing

revenue through adding users, engagement, and retention. They can

also focus on reducing costs by addressing support needs and customer

questions at scale. These goals include things like:

• Recruiting and onboarding new users

• Encouraging existing users to adopt new features

• Getting users to complete a specific task

• Retaining existing users

• Addressing users’ support needs and product questions

Referring back to Chapter 1, Corg.ly’s goal was to recruit and onboard new

users to Corg.ly by helping them integrate with Corg.ly’s API.

Chapter 9 Measuring doCuMentation quality

160

To be successful, Corg.ly needs to optimize these key behaviors from its

users:

• Increase adoption of Corg.ly’s API by developers:

Adoption of Corg.ly’s API by other developers and device

manufacturers is the fastest way for Corg.ly to scale. This is

the highest margin activity for Corg.ly and the service on

which they are focusing most of their engineering efforts.

• Help Corg.ly API users integrate with the API: Corg.ly

needs to teach new developers how to use the Corg.ly

API and features and retain them over the long term to

maintain revenue.

In order for Corg.ly to succeed as both a technical platform and as a

business, it must encourage users to engage in these behaviors. Therefore,

when documentation is created for Corg.ly, it should align with goals listed

in Table 9-1.

 User goals and metrics
While the business goals of your organization are focused on revenue and

adoption, your readers’ goals are focused on completing specific tasks. You

already outlined these goals in Chapter 1, when you were researching your

readers’ needs. It’s useful to highlight them again as you’re considering

documentation quality.

Table 9-1. Goals and metrics

Organizational goal Success metrics

increase adoption of Corg.ly’s api by

other developers

increased sign-ups to use the api

increased usage of the api

decreased number of support questions

from api users

Chapter 9 Measuring doCuMentation quality

161

Your readers’ goals are smaller and more specific than your organizational

goals. They can include things like “Downloading the SDK,”

“Authenticating with your service,” or “Troubleshooting an Error.” They’re

also more subjective in measurement.

When considering the documentation for using Corg.ly’s API, readers

might have any of the following goals:

• Get started using the Corg.ly API

• Authenticate with the API

• Send a dog bark to the API for translation

• Receive a translation in the form of a text

• Receive a translation as an audio file

• I received an error from the service and I need to fix it

Each one of these goals might have more than one document related to it

and might have different metrics related to its success.

Using the Corg.ly example of “Getting started with the Corg.ly API,” your

readers’ goals might include the following:

• Sign up for the API

• Get access to the API

• Learn the basics of using the API

You can then align these with specific success metrics listed in Table 9- 2.

Table 9-2. Goals and metrics

Reader goals Success metrics

sign up for the api

get access to the api

learn the basics of using the api

increased sign-ups to use the api

increased requests for api access

increased numbers of active api users

Chapter 9 Measuring doCuMentation quality

162

 Documentation goals and metrics
There are many different kinds of metrics you can gather from web

analytics tools that can help you measure document quality.

Documentation metrics you can collect include:

• Unique visitors: Unique visitors are the number of

people who have visited your site over a set period of

time.

• Page views: A page view records each time a visitor

looks at a page. Page views help you understand which

of your pages are visited most, least, or not at all.

• Time on page: Time on page tracks the amount of time

a visitor spends on your page before moving on to the

next one.

• Bounce rate: Bounce rate is the number of visitors

who come to your site, visit one page, and then leave

(“bounce”) without viewing other pages.

• Search keyword analysis: Keyword analysis shows

you the search terms visitors use to enter your site. It

can help you understand whether you’re providing the

information your users are looking for.

• Reading level or text complexity analysis: Reading

level or text complexity analysis helps you understand

how difficult your pages are to read and understand.

• Support issues related to documentation: Tracking

support issues related to documentation helps you

understand where documentation fails to meet your

user’s needs.

Chapter 9 Measuring doCuMentation quality

163

• Link validation: Link validation evaluates whether

links to and from pages on your site are broken. Broken

links are a common source of user frustration.

• Time to Hello World (TTHW): Time to Hello World

is the amount of time it takes a developer to author

“Hello World” in a new programming language or to

accomplish a fairly simple task with your service.

The available metrics are nearly inexhaustible, so it’s important to narrow

down the metrics you’re looking at based on the scenario you want to

measure. For example, to assess the quality of a set of docs for “Getting

started with the Corg.ly API,” Table 9-3 lists some questions to ask and

some metrics that could answer those questions.

Table 9-3. Questions of quality and associated metrics

Questions Document metrics

how many users are reading

the docs?

unique visits

Which docs are they looking at

the most?

page views

how long does it take a user to

get started?

time to hello World (or in this case, “time to getting

started with the Corg.ly api”)

how are users finding the

document?

Findability of the “getting started with Corg.ly api”

document, including search keywords, links, and

inbound traffic

are there problems with the

document that need to be

fixed?

number of user issues filed against the document

link validation

Chapter 9 Measuring doCuMentation quality

164

The goal with these metrics is to answer the question, “Is the document

fulfilling its purpose?” You can track additional metrics to better

understand your readers and their behaviors, but make sure you’ve

identified the core metrics that help you evaluate your documentation.

 Tips for using document metrics
There’s no one-size-fits-all approach to gathering and analyzing metrics

on documentation. The metrics you can gather depend on where your

content is published, what tools you have available to gather user data, and

the amount of time you have to analyze your results.

When evaluating the quality of your content with documentation metrics,

keep the following tips in mind:

• Make a plan

• Establish a baseline

• Consider context

• Use clusters of metrics

• Mix qualitative and quantitative feedback

 Make a plan
Make a list of specific questions you want to answer about your content.

In addition to what you want to measure, you should outline your

rationale and how it will help you. Bob Watson, professor of technical

communications, suggests that at the minimum, you should answer the

following questions:10

10 “Measuring your technical content – Part 1” Bob Watson, Docs by Design,
published August 24, 2017, https://docsbydesign.com/2017/08/24/
measuring-your-technical-content-part-1/.

Chapter 9 Measuring doCuMentation quality

https://docsbydesign.com/2017/08/24/measuring-your-technical-content-part-1/
https://docsbydesign.com/2017/08/24/measuring-your-technical-content-part-1/

165

• Why do you want to measure?

• What will you do with the information?

• How will your effort advance the goals of your

organization?

Knowing what you want to measure and why you want to measure it helps

you focus your work and helps you to think through whether or not those

metrics are worth pursuing.

 Establish a baseline
Once you select a set of metrics to track, you need to establish a baseline

for those metrics. A baseline allows you to compare metrics before and

after you’ve made changes so you can evaluate their impact. If you only

take measurements after you’ve made your changes, you won’t have

anything to compare them to!

 Consider context
Quantitative metrics can be misleading if you consider them outside of

a document’s context. Different documentation helps users accomplish

different goals. Readers use documentation in different ways depending on

their needs, which become visible in more contextual metrics.

For example, if page views increase for “Getting started with the Corg.ly

API,” that’s a good thing. More users are interested in learning how to use

Corg.ly. However, an increasing number of views for a page that describes

Corg.ly error codes may mean readers are having problems with the

product, the documentation, or both.

Chapter 9 Measuring doCuMentation quality

166

 Use clusters of metrics
A cluster of metrics can often give a better answer to a question than

a single metric alone, especially if you can correlate relationships

between those metrics. For example, let’s say that Corg.ly notices an

increase in support issues for the Corg.ly API, so Karthik publishes a

set of troubleshooting content for Corg.ly users. After publishing, the

number of support issues continues to rise. Karthik could assume that

the documentation wasn’t effective, but he couldn’t be 100% sure that’s

correct.

It could be that Corg.ly has a huge influx of new users and there are more

users filing fewer support cases. In this case, Karthik’s documentation is

working. It could also be that users aren’t finding the content, so Karthik

would need to improve the findability of the content. In this case, looking

at a cluster of metrics would help Karthik solve this problem.

 Mix qualitative and quantitative feedback
When evaluating your content, it’s important to look at both quantitative

and qualitative feedback. Page metrics, search analytics, and number

of users are all relatively easy to track, so it’s easy to focus on these hard

numbers. However, qualitative feedback from user studies, support issues,

and user feedback can provide more context on specific issues you can fix

to improve your documentation.

 Summary
A document is good when it fulfills its purpose. When considering and

measuring document quality, consider functional quality (how well the

document fulfills its purpose) and structural quality (how well written the

document is).

Chapter 9 Measuring doCuMentation quality

167

When measuring your documentation, make sure your goals for your

readers and your organization align.

Create a plan for measuring your documentation, establishing a baseline

for metrics, evaluating usage patterns in context, using clusters of metrics,

and considering both quantitative and qualitative feedback.

The next chapter covers information architecture: how to organize your

content to make it searchable and easy to navigate.

Chapter 9 Measuring doCuMentation quality

169© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_10

CHAPTER 10

Organizing
documentation
 Corg.ly: The next release
“Charlotte, I have a few ideas for our next release,” Karthik said. “I shared a

design doc with you when you have a minute.”

Charlotte took a few minutes to read through the document. “This looks

great!” she said. “I like how you’ve thought about adding video support. I

think that will give us better results in our translations.”

“Thanks!” replied Karthik. “This was the most frequent request from

customer feedback. I even wrote up a few docs for customers who want to try

video support as an alpha feature.”

After an alpha release and publication, Charlotte and Karthik reached out

to Mei for her feedback and set up a meeting.

“Thanks for reaching out,” Mei responded. “My team was excited by the

announcement, but we had trouble finding the right information on how to

send the Corg.ly service a video and get back the translation text.”

Karthik thought for a second. “I definitely documented that. Here, let me

show you.” After clicking through the Corg.ly documentation site several

times, he spun his laptop around. “I know it’s buried deep in the site, but we

did document it.”

https://doi.org/10.1007/978-1-4842-7217-6_10#DOI

170

Mei frowned. “Oh, I see. Without the link

you sent me directly, I don’t think I would

have found that on my own.”

Karthik and Charlotte exchanged glances

across the room. They hadn’t thought

about how to organize their content for

their readers. If Mei was having this issue,

their other customers definitely were too.

Back to the whiteboard to come up with a plan...

 Organizing documentation for your readers
In previous chapters, you defined your audience, drafted your content

according to common documentation types, and published your content. As

you publish more and more pages, you might find yourself with a growing set

of unorganized content that readers find difficult to navigate and understand.

It’s time to start thinking about how you organize your documentation.

Defining how you organize your content helps you grow your

documentation in a structured and sustainable way. How you organize

content conveys meaning and purpose to your readers. The organizational

structure you apply to your documentation is called its information

architecture.

A clearly defined information architecture helps you and your fellow

developers add pages to your site and scale up the number of documents

you publish without confusing your readers or making your site difficult to

navigate.

Chapter 10 Organizing dOCumentatiOn

171

To help you build an information architecture for your documentation, this

chapter guides you through:

• How to help your readers find the right content

• Designing your information architecture

• Implementing your information architecture

 Helping your readers find their way
Imagine you’re entering an unfamiliar airport and trying to find the right

gate for your plane. As you scan your surroundings, you’re on the hunt

for clues as to where you are. You might first look to see if there is a map

or signs indicating which terminal you’re in. Then, you might search for

indicators telling you which floor you’re on and where you can go to check

your luggage.

When your users search through your set of documentation for a specific

piece of information, they’re similarly scanning their surroundings for

clues as to whether or not they’re in the right place and where to go next.

This scanning process is very fast, and it’s focused on identifying patterns

in your content to find relevant information. Depending on the complexity

of your product, your readers might encounter dozens or even hundreds

of pages containing distinct bits of information with varying degrees of

relevance.1

You can help your users navigate your site faster and more intuitively

by organizing information into a meaningful structure, intentionally

1 “First Impressions Matter: How Designers Can Support Humans’
Automatic Cognitive Processing”, Therese Fessenden, Nielsen Norman
Group, accessed 27 June 2021, https://www.nngroup.com/articles/
first-impressions-human-automaticity/.

Chapter 10 Organizing dOCumentatiOn

https://www.nngroup.com/articles/first-impressions-human-automaticity/
https://www.nngroup.com/articles/first-impressions-human-automaticity/

172

surfacing your pattern of organizing content, and highlighting

information that is most relevant to your users. Doing this helps your

readers build a map in their mind, or a mental model, of how your

content is organized.

Planning your information architecture, and helping your readers build

a mental model of your content means incorporating new elements into

your set of documentation, including:

• Site navigation and organization

• Landing pages

• Navigation cues

Note this section merely scratches the surface of information
architecture, focusing on how it relates to documentation. For more
resources on information architecture and how it relates to user
experience, see the resources appendix.

 Site navigation and organization
Your site navigation is both a map for your existing content and your blueprint

for where to publish additional content. It’s the most important part of your

information architecture, so it’s important to build it thoughtfully.

There are three basic ways to organize your content: sequences,

hierarchies, and webs.2 These architectures govern the possible ways for

you to create a consistent model for users to navigate your site, and for you

to add additional pages.

2 Patrick Lynch and Sarah Horton, Web Style Guide, Yale University Press; fourth
edition (2016)

Chapter 10 Organizing dOCumentatiOn

173

 Sequences

Sequential structures are the most familiar to any reader (Figure 10-1). Any

book you read is organized in sequential order—one page after another.

Sequential ordering may be chronological, like the steps required to use

an API, or may be alphabetical, like an index or glossary. Sequential order

requires you, the writer, to put the pages in the most effective order for

your reader.

 Hierarchies

Hierarchical structure is similar to a family tree or an organizational chart

(Figure 10-2). Like a family tree, content has a parent/child relationship

between pages. In a hierarchical structure, you start from one broad

idea and narrow down into more detailed and increasingly specific

information. One main topic is supported by multiple related subtopics

beneath it.

Figure 10-1. Sequential structure

Figure 10-2. Hierarchical structure

Chapter 10 Organizing dOCumentatiOn

174

 Webs

Webs are interconnected, non-hierarchical patterns of pages where each

page links to one or more pages (Figure 10-3). This allows your user to

decide how to view and organize your content. Wikipedia, for example, has

a web organization. Each page is at the same level in the hierarchy, and

is linked to one or more pages in the set, allowing you to seamlessly read

from one topic to the next, traversing any linked order you choose.

 Bringing it all together

Your site navigation and organization likely uses a combination of

sequences, hierarchies, and webs. For example, the landing page for

Corg.ly’s documentation might be hierarchical based on different user

needs, but each section contains sequential how-to pages to Procedural

guides step by step through the process of accomplishing a task

(Figure 10-4).

Figure 10-3. Web structure

Chapter 10 Organizing dOCumentatiOn

175

Although there are many different ways to categorize information, your

information architecture should always feel consistent and familiar for

a reader to navigate. For example, if Corg.ly had two services, one that

translates dog barks through an app on phones carried by humans, and

one for translation collars worn by dogs, it might make sense to have a

document structure and navigation that looks like Figure 10-5.

The users of each product may be different, but there’s enough crossover

between them that it’s helpful to keep your information architecture

consistent. A consistent information architecture also helps you know

Figure 10-4. Sample architecture

Figure 10-5. Sample architecture

Chapter 10 Organizing dOCumentatiOn

176

where to add new content. If a developer writes a new set of procedures

for using a new feature of a translation collar, it’s clear in the information

architecture where that content goes.

 Landing pages
Landing pages are pages that route users to the right content with

minimal reading required, building trust with users by saving them

time. A landing page should be short, easy to scan, devoid of jargon, and

surface useful information for your reader. Landing pages are equivalent

to a huge signpost in the road that points to the possible directions your

users can go.

To make a good landing page, you must prioritize your users’ needs first.

Your landing page should highlight the most important and relevant

information for your users. Create guardrails to guide your users down

the right path, and hide complexity that most users don’t need right away.

Your user research (from Chapter 1) and your company’s strategic goals

can help define the top-level categories on your landing page.

For example, the main landing page for Corg.ly documentation might have

three major sections on the main page, each targeted at the most common

user tasks (Figure 10-6):

• A Getting Started section that includes an overview of

the Corg.ly service and a quick tutorial.

• Two of the most used how-to guides for what users

want to accomplish with Corg.ly: “Translating barks to

English”, and “Translating English to barks”.

Chapter 10 Organizing dOCumentatiOn

177

A landing page lets a user choose their topic, and prepares them to find

a resource that helps them accomplish a task or learn more about how

to accomplish the task. Make sure the links on landing pages take users

directly to documents—the fewer clicks required for users to get to a

document from the landing page, the better.

As the service grows, the number of items on the landing page can

increase. For example, if a number of advanced users need quick access

to the API reference pages, it’s useful to add that to the main landing page.

However, it’s important to limit the number of links on the page to the

most important items for users.

You can add additional landing pages as features grow. For example, if

Corg.ly launches support for a number of different mobile applications

and a number of devices like translation collars, it might be useful to create

a landing page for each different service.

Figure 10-6. Example landing page

Chapter 10 Organizing dOCumentatiOn

178

Avoid creating unnecessary landing pages or nesting too many landing

pages under one another. Nesting landing pages under yet more landing

pages requires too much sifting from users to find the document they’re

looking for, and makes it more confusing when you add additional pages.

 Navigation cues
Most users will arrive at your documentation through search, by putting

terms in a search engine and clicking on the first, most relevant result. This

might get them to the right piece of information, but more likely than not,

it will simply get them close.

Unfortunately, close isn’t helpful if users don’t know how close they are, or

how to navigate from a page that’s close to the actual page they’re looking

for. This is where navigation cues can help.

Navigation cues surface your information architecture to your readers,

helping them understand where they are in relation to the rest of your content,

and where to go next. It's the red dot on a map that says “You are here”.

Navigation cues include elements like:

• Breadcrumbs that show where a particular page sits in

a content hierarchy by displaying its parent pages

• Side navigation that shows the content hierarchy for

the entire site, or a large portion of the site

• Labels and metadata that contain information relevant

to the document, typically machine readable for help

with search indexing

• Prerequisites, next steps, and additional information
sections that are succinct and informative, directing

users where to go next, or what they should have read

before arriving at a page

Chapter 10 Organizing dOCumentatiOn

179

• Escape hatches, often in the form of callouts, that offer

recommendations for alternative pages if a reader ends

up on the wrong page

While navigation cues are crucial, use them economically. If you’ve

ever found yourself at an intersection staring at a guidepost with signs

pointing in every possible direction, you know that too many pointers

create confusion instead of clarity. Users get decision fatigue and become

overwhelmed at the number of options when negative space (space with

nothing in it) would serve them better.

 Organizing your documentation
Organizing your documentation means assessing your existing content,

planning and building an information architecture, and migrating

content into this new organizational scheme. The goal is to create the best

organizational structure for your content that helps your users find what

they need and that you can maintain and scale over time.

The following sections guide you through the process of assessing a

collection of content, determining how it should be organized, and

implementing a new information architecture. It assumes that you know

what your users’ needs are, and how they’re navigating and reading your

content, based on user research, user feedback, and documentation

metrics.

 Assess your existing content
The first step to organizing your documentation and building an

information architecture is to create an assessment of your existing

content. The goal is to create a list of all the content you currently have and

understand how well its location is serving your users.

Chapter 10 Organizing dOCumentatiOn

180

Think of assessment as a flow chart that starts at the top of your site and

goes through each page in your documentation. To start, list each page

of documentation in your site in a spreadsheet, including the page title

and URL. Next, evaluate each page in the list, using what you know about

your users to determine how well each page is working. Ask yourself the

following questions:

• Is this page useful?

• Is this page up to date?

• Is this page in the right place?

As you evaluate each page, label it with what work needs to be done.

Example labels include:

• Keep

• Remove

• Review for accuracy

• Merge with another document

• Split into multiple documents

After assessing your existing content, ask yourself, is there missing

information that your users have been requesting? This missing content

is called a content gap. Make a list of all the content gaps you find and add

them to your assessment.

From this exercise, you now have a list of all the content that should be in

your new information architecture. You also have a list of new content to

create, edit, or remove to improve your set of documentation.

Chapter 10 Organizing dOCumentatiOn

181

 Outline your new information architecture
After assessing your existing content, consider what an ideal map of your

content would look like. This is your chance to map out how your content

should be organized to best support your users.

As you create this new map, consider the mental model that your

users have for your documentation. How do your users expect your

documentation to be organized? How can you best guide them to the right

information?

Ultimately, users expect your content to be:

• Consistent: Your content is organized with familiar

structure and patterns. Users always know where they

are.

• Relevant: The most important content that addresses

the most common user needs is the easiest to find.

• Findable: Your content is easily accessed from any

homepage or landing pages, and through search.

With these principles in mind, make sure your map includes consistent

patterns for your content. For example, if you have a list of procedures

documented, you probably want to list them in chronological order. If you

have a list of conceptual information, you might want to organize it based

on what’s most important to your users first.

As you try different organizational schemes and get feedback from users,

you might have to work through several iterations of your information

architecture. Card sorting can be a good way to experiment with different

structures.3

3 “Card Sorting”, usability.gov, accessed June 20, 2021, https://www.usability.
gov/how-to-and-tools/methods/card-sorting.html.

Chapter 10 Organizing dOCumentatiOn

https://www.usability.gov/how-to-and-tools/methods/card-sorting.html
https://www.usability.gov/how-to-and-tools/methods/card-sorting.html

182

Card sorting is exactly what it sounds like: you create an index card for

each page in your site, including landing pages. Then, you move the cards

around until you create your desired site organization. Putting page names

on cards makes them easy to move, letting you play with different orders

and organizational schemes for your information and quickly get feedback

from your users.

Aim for an information architecture that’s neither too deep nor too

shallow. If one section of the site is too deep, consider ways of dividing that

content into different groups. Likewise, if you have a section with only one

page in it, consider whether to merge the page into another.4

As you settle on an outline for your content, verify your new information

architecture serves the needs of your users. Consider the common tasks

that your users perform with your documentation, and ask yourself:

• Does each common task have a clear starting point?

• Is the next step for each task clearly defined?

• Are there any missing steps (content gaps) that need to

be added?

If the answer to any of these questions is no, consider adding additional

landing pages, navigation cues, or additional content to address the issue.

4 Heidi McInerney, “How to Build Information Architecture (IA) that’s a ‘No
Brainer’”, Vont, accessedJune 20, 2021, https://www.vontweb.com/blog/
how-to-build-information-architecture/.

Chapter 10 Organizing dOCumentatiOn

https://www.vontweb.com/blog/how-to-build-information-architecture/
https://www.vontweb.com/blog/how-to-build-information-architecture/

183

Note What if a document fits in multiple locations? automated
content reuse is a tempting option as your documentation set grows,
but use it sparingly. do it when it’s best for your users, not for your
organization. automated reuse can hurt search results and confuse
your readers, and the technical complexity of automation can make
maintenance difficult.

You’re better off settling the document in a single best location and
linking to it from multiple places as necessary.

 Migrate to your new information architecture
Once you’re happy with your information architecture and you’ve

gotten enough user feedback and validation, it’s time to migrate to your

new organizational structure. As you move the pages around, use this

validation checklist as an auditing mechanism:

• Landing pages: created sparingly and guiding users to

the most important documents

• Content types: consistently implemented and suitable

for your users

• Page data: descriptive and consistent titles, headers,

prerequisites, and next steps

• Navigation cues: breadcrumbs, side navigation, and

escape hatches to help orient users

• Labels and metadata: display relevant data for users

and search index

• Redirects: users are redirected from previous locations

to new URLs after you move pages

Chapter 10 Organizing dOCumentatiOn

184

It’s also important to document your information architecture: note the

decisions you made, the user research and feedback it was based on, and

the patterns used for the information architecture. This document doesn’t

need to be a significant undertaking. Even a compact resource with a site

map and collection of templates creates consistency for your users and

alignment within your organization.

 Maintaining your information architecture
When you add new pages to your documentation, consider the following

questions:

• Is it clear where this new content belongs?

• What adjustments to the existing information

architecture are required?

• Does this content impact the home page and landing

pages?

A well-thought out information architecture allows you to answer these

questions quickly and easily, helping you scale your content while

confidently knowing where your content will be published. However, as

your product and documentation evolve, keep verifying your users’ mental

models for your site. When a big release or update results in many pages

changing, you should evaluate your information architecture and make the

required changes to support your users.

 Summary
Information architecture is the organizational structure you apply to your

documentation. Information architecture helps your readers assemble

a map in their minds of how to navigate your content. To communicate

Chapter 10 Organizing dOCumentatiOn

185

your information architecture to your readers, you should integrate

site navigation, landing pages, and navigation cues into your set of

documentation.

There are three basic ways to organize your content: sequences,

hierarchies, and webs. These architectures govern the possible ways for

you to create a consistent model for users to navigate your site, and for you

to add additional pages.

When designing your information architecture, build an inventory of your

existing content, assess your inventory for any content gaps, and organize

your set of content into a new information architecture.

The next chapter covers how to maintain documentation over time,

including deprecating content when it’s no longer relevant.

Chapter 10 Organizing dOCumentatiOn

187© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6_11

CHAPTER 11

Maintaining
and deprecating
documentation
 Corg.ly: A few releases later
Charlotte, Karthik, and their team had settled into a comfortable pattern

with launching features and updating documentation. Charlotte focused

on the audio translations created by Corg.ly, and Karthik on the video

translations.

One afternoon, Karthik looked up from his computer and smiled. “Looks

like we’re ready to move video translations out of beta!” he said.

“Excellent!” responded Charlotte, “When I ask Ein if he wants a walk, I’m

never sure how urgent it is. Video helps a lot with that.”

“Walk?” Ein said, ears perking up.

Charlotte continued. “You mentioned this launch has some pretty big

changes to the API as well, changes that will affect users.”

https://doi.org/10.1007/978-1-4842-7217-6_11#DOI

188

“I know,” Karthik sighed. “How can

we document API changes clearly

so that Mei’s team isn’t caught off

guard?”

As Charlotte and Karthik outlined a

few different ways to make changes

and communicate them to their

users, Ein interrupted them. With his

leash held in his mouth, Ein barked.

“Walk now?” his translator asked.

 Maintaining up-to-date documentation
Applications grow and evolve over time. Methods get rewritten. Products

incorporate new technology. Teams add new features and deprecate and

remove others. All of these changes affect your documentation.

Can you recall finding documentation about a product you were

using, only to discover that the answers in the document weren’t

correct anymore? You probably felt frustrated and annoyed. Too often,

documentation is written and released once, with no subsequent updates.

As the product gains new functionality, the documentation increasingly

falls out of date, diverging from what the code actually does. The greater

the gap between what the documentation says and what the code does, the

more your users are frustrated and the less they trust your product.

As Karthik and Charlotte experienced, changes to the functionality

and interface of your code affect the developers using your product.

Documentation allows you to keep your readers informed of changes,

improving your user’s experience by transitioning them to features and

functionality that best addresses their needs while steering them away

from deprecated features. Your documentation can also proactively answer

Chapter 11 Maintaining and depreCating doCuMentation

189

questions that readers may have about your changes, giving readers the

best, most up-to-date experience with your product.

This chapter guides you through maintaining your documentation

alongside your code, including:

• Planning for maintenance

• Helpful maintenance tools

• Deprecating and removing content when it’s no longer

needed

This chapter’s strategies are designed to integrate with how you already

release and maintain your code. You can take the guidance in this chapter

and tweak it to work with your own development process.

 Planning for maintainability
Maintaining your documentation requires you to align writing your code

with writing your docs. As you design new features, consider what updates

need to happen to both your code and your content. If your new feature

changes your API, or how your users interact with other parts of your

application, you need to inform users through your documentation. Plan

accordingly.

Start your plan by considering how your users are impacted and answering

the following questions:

• How are users impacted by this change?

• How does this change affect existing product

functionality?

• What existing documentation does this change affect?

• What new documentation do we need to create to

support our users?

Chapter 11 Maintaining and depreCating doCuMentation

190

These questions help you perform a user impact analysis, which is a

shorter version of the user research done in Chapter 1. A user impact

analysis highlights how your users are affected by the change you’re

proposing, and what documentation needs to be updated or created to

address the situation.

Some changes, like code refactoring or optimizations, don’t need

documentation changes at all—but the vast majority of feature changes

require changes to your documentation as well. Small changes need

updates to your existing reference documentation, but larger changes,

like the one that Karthik proposed, need entirely new pages added to your

documentation set.

By thinking about documentation early in the process, you can budget

time accordingly and prevent your documentation from falling out of date

when you update your code.

 Align documentation with release processes
Once you’ve budgeted time in your planning process for updating

documentation, you should also integrate documentation into your release

process. Updated documentation and code should be released at the same

time, guaranteeing that they both stay in sync.

There are many ways you can align docs with a release. One way is to

create tracking issues or bugs for each documentation update required for

a release. Another way is to track documentation needs in a spreadsheet

along with feature requests.

For example, Kubernetes (Kubernetes.io) tracks its feature release process

using a spreadsheet. Kubernetes is an open source project for automating

Chapter 11 Maintaining and depreCating doCuMentation

191

container deployment and management with over 43,000 contributors.1

Despite its large size and rotating group of contributors, Kubernetes aligns

new feature releases (called “enhancements”) and documentation updates

with the following release process:2

 1. A tracking spreadsheet lists all proposed

enhancements for the upcoming release.

 2. Each proposed enhancement is documented in a

Github Issue, and is required to have a design doc,

feature owner, unit tests, and an assessment of

whether or not documentation is necessary.

 3. If the enhancement needs documentation, the

feature owner must open a Pull Request for

documentation and receive approval before the

enhancement is approved for release.

 4. Once the code, unit tests, and documentation are all

approved for the enhancement, the enhancement is

approved for launch.

 5. On the release date, all approved enhancements are

pushed with the new release.

In the case of Kubernetes, the process for releasing code enhancements

is tightly coupled with the documentation process. This effort keeps the

documentation up to date, preventing the documentation from diverging

from the code.

1 “How Kubernetes contributors are building a better communication process”,
Paris Pittman, Kubernetes Blog, published 21 April, 2020, https://kubernetes.
io/blog/2020/04/21/contributor-communication.
2 “Documenting a feature for a release”, Kubernetes documentation, last
modified 11 February 11, 2021, Retrieved from: https://kubernetes.io/docs/
contribute/new-content/new-features/.

Chapter 11 Maintaining and depreCating doCuMentation

https://kubernetes.io/blog/2020/04/21/contributor-communication
https://kubernetes.io/blog/2020/04/21/contributor-communication
https://kubernetes.io/docs/contribute/new-content/new-features/
https://kubernetes.io/docs/contribute/new-content/new-features/

192

Release processes differ between companies, projects, and teams. The

important thing is to find a process that works for you.

 Assign document owners
Documentation often seems like a task that everyone is responsible for—

and therefore no one is responsible for. Make responsibility clear with

explicit assignments to owners who are responsible for responding to

documentation issues, reviewing documentation changes, and updating

documentation when needed. Clear, unambiguous responsibility helps

prevent documentation from going out of date.

If your documentation is already in a source code repository, access to

the revision history and identifying the last person who updated the

documentation may be enough. However, for larger, more complex sets of

documentation, it’s useful to assign specific documentation owners who

own and understand how the larger set of documentation fits together.

Many source code repositories have an option for setting explicit code

owners who are responsible for specific files or directories of content.

For example, you can use CODEOWNERS files in Github to specific

documentation owners.3 Alternatively, you can add comments or

metadata to the top of your documentation and list the owners of your

documentation, for example:

<!-- Owners: Charlotte@corgly.com, Karthik@corgly.com -->

3 “About Code Owners”, GitHub, accessed 29 December 2020,
https://docs.github.com/en/free-pro-team@latest/github/
creating-cloning-and-archiving-repositories/about-code-owners.

Chapter 11 Maintaining and depreCating doCuMentation

https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-code-owners
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-code-owners

193

 Reward document maintenance
It’s important to reward the efforts of developers who create and review

documentation, close documentation issues, and keep content up to

date. Documentation is a lot of work! Recognition and rewards motivate

developers to create and maintain good documentation.

Rewards and recognition for maintaining documents might include gift

cards, thank-you notes, and public praise, depending on what motivates

the person. It’s also important to be sure that your team is not penalized

for taking time to do documentation. Writing and maintaining the docs

should be built into performance expectations and debt estimates, not

considered an “extra” or “bonus” task.

 Automating documentation maintenance
The goal of automating documentation work is to eliminate toil. Toil isn’t

just “work you don’t like to do”; toil has a specific definition in the world of

software engineering:4

“Toil is the kind of work that tends to be manual, repetitive,
automatable, tactical, devoid of enduring value, and that
scales linearly as a service grows.”

There are many opportunities to make documentation maintenance easier

through thoughtful automation. The next sections show a few examples

of eliminating toil through automation, including automating freshness

checks, using documentation linters, and automating reference doc

generation.

4 Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy, Site
Reliability Engineering: How Google Runs Production Systems 1st. ed., (O’Reilly,
2016).

Chapter 11 Maintaining and depreCating doCuMentation

194

Be warned, however: while good automation saves people from toil,

bad automation can compound toil into a crisis. Before you automate a

process, be sure you understand all the steps and handoffs.

The tools you use to generate documentation depend heavily on how

you’re publishing your content. Whichever tools you use, it’s good to

search for places where you can automate your work and reduce the

toil of maintenance. For more information on automation tools, see the

Resources appendix.

 Content freshness checks
With a large enough documentation set, some documents eventually

become stale and out of date. One way to avoid staleness is to show the

“last modified” dates for your content on the rendered page. Last modified

dates denote the last time that the document was reviewed or updated. If

your documentation is stored in a source code repository, you can pull this

information directly from your repo. Otherwise you can embed metadata

in the document to store this information.

In addition to last modified dates, you can set times in the future to verify

the contents of your document. For example, Google attaches metadata

to the top of internal documents for freshness reminders. If the document

isn’t updated in a set amount of time, for example six months, a reminder

is sent to the document owner to review the document and verify that the

content is still accurate. The metadata looks like this:5

<!--

Freshness: {owner: "karthik" reviewed: 2021-06-15}

-->

5 Titus Winters, Tom Manshreck, Hyrum Wright, “Documentation” in Software
Engineering at Google: Lessons Learned from Programming over Time, (O’Reilly,
2020).

Chapter 11 Maintaining and depreCating doCuMentation

195

When document owners receive a notification to do a freshness check,

they review the document to make sure the content is still accurate. The

review date for the doc is updated, and the reminder is set for another six

months. Google found that by using freshness checks, document owners

were incentivized to keep their documentation up to date, and that

documentation that uses freshness checks is more trustworthy.

 Link checkers
Links in your documentation can break when the link target is moved,

archived, or deleted. As your documentation grows, verifying that all

of your links work can be a frustrating, time consuming process. Link

checkers relieve toil by verifying all the links in your site, flagging links that

generate 404 errors for updates.

Link checkers work in one of two ways:

• By running against your documentation prior to

publication as part of your CI/CD toolchain

• By running against the documentation after it’s

published by crawling your document like a web page

How you integrate a link checker into your documentation depends on the

tools you’re using for publishing and hosting your documentation. There

are multiple tools available for both approaches.

 Linters
Documentation linters, or prose linters, operate on the same principle

as code linters. They can find, flag, and propose fixes to common issues

found in documentation. Prose linters are similar to the spelling and

grammar checker included with most word processors, such as when your

spellchecker catches misspellings of common words.

Chapter 11 Maintaining and depreCating doCuMentation

196

Linters can also recognize and ignore text that is specific to your company.

For example, “Corg.ly” is not a real word, and could be flagged as a

misspelling of “corgi”, but that would be incredibly annoying for the

employees who work there. Instead, you can add “Corg.ly” to the linter’s

dictionary so that if someone types “Corg.ly”, the linter will suggest using

the appropriate capital letter.

Some prose linters can be quite sophisticated and flag language choices

that may seem exclusionary or hurtful. They can also catch issues where

content doesn’t conform to your style guides or content templates.

Ultimately, linters are just exceedingly fancy regex expressions. They can’t

help you with every prose or grammar problem, but they can catch many

common issues and automate toilsome reviews.

 Reference doc generators
Reference documentation can be painstakingly difficult to maintain by

hand. Automating reference doc generation significantly reduces your

maintenance burden. It also produces more accurate documentation that’s

easier to update.

Automation tools can be built from scratch for simple automation tasks.

For larger tasks, like API documentation, there are a host of tools you can

use. OpenAPI and Javadoc are good examples of tools for generating API

documentation and formatting the output into templates.

 Removing content from your docset
Content grows and evolves over time. Even if you keep documentation

closely aligned with code releases, it’s possible for documentation to

become stale or obsolete. Sections of a document might no longer be

relevant to your users, or an entire document might no longer be necessary

Chapter 11 Maintaining and depreCating doCuMentation

197

due to changes in your API or service. Deprecating content notifies your

users that they should no longer use this feature or service.

It’s important to know when to deprecate content so you’re not presenting

incorrect information to your users. Once content is deprecated and users

are notified, you can delete the content. It's also important to remove

content correctly so users aren’t stranded when you delete information

from your site.

 Deprecating documentation
Deprecation, in the programming sense, is the process of marking older

code as no longer useful, usually because it’s been superseded by newer

code in a codebase. For instance, you might deprecate parts of your API

because you released a new version of your API that you want developers

to use instead. Developers who see code flagged as deprecated know it will

be removed at a future date, so they should both steer clear of using it for

anything new and plan to migrate existing features away.

Documentation should be deprecated in a similar manner. You might

be tempted to hide the features that you’re deprecating, but it’s critical

that your users know if something they’re relying on is going to go away.

Imagine their frustration if their product unexpectedly breaks because they

relied on code they thought was still maintained!

Documentation plays an important role in informing your users of

feature deprecations. If specific features or code are deprecated, the

documentation associated with that code should have callouts that notify

developers to avoid using that feature. If there are newer alternatives to the

deprecated code that developers should use instead, callouts should link

to that new feature as shown here:

Chapter 11 Maintaining and depreCating doCuMentation

198

Deprecated the Corg.ly audio api was deprecated on august 20,
2021. it has been replaced by the Corg.ly Multimedia api, which
supports both audio and video.

You should also consider additional ways of notifying your users of upcoming

deprecations. One way is to list deprecated features in release announcements

or release notes. Another option, if you have a lot of deprecations in your

codebase, is to create a page in your documentation that contains a list of

deprecations that’s updated with each release of your software.

Depending on how much a deprecated feature impacts your users, you

should consider writing a migration guide to help users move off the soon-

to- be-deleted feature. A migration guide can significantly reduce support

issues and customer frustration. If you decide to write a migration guide,

make sure to publish the guide before you announce the deprecation, so

your users understand their path forward.

 Deleting documentation
As a rule, documentation should be deleted when it’s no longer useful to

your users. There are a few common reasons this might happen. One is

when all the users of a deprecated feature have successfully migrated away

from it, the feature is being removed, and the documentation is no longer

needed. Another reason to delete is when a piece of documentation is

outdated or irrelevant and it’s not worth the time to fix it.

You might feel sad to delete content you’ve written, but the end goal is

to help your users. Removing outdated and unnecessary content helps

your users find the right information quickly without being distracted

by documentation that is no longer useful or relevant. Your users will

appreciate that you’re keeping your content tidy and focused by deleting

content that’s no longer necessary.

Chapter 11 Maintaining and depreCating doCuMentation

199

If you’re deleting content because a feature is being removed, make sure

to give your users adequate notice. Before shutting down the feature and

deleting the documentation, document that the feature has been turned

off in any product announcements or release notes, and update any links

that point to the document that you are deleting.

If you are considering deleting a document because you think it’s no

longer relevant to your users, you can use user feedback (Chapter 8) and

document analytics (Chapter 9) to evaluate the content. If a particular

page has a very low number of page views, and a large number of issues

filed against it, it might be worth deleting the content instead of trying to

fix it.

For example, let’s say Karthik writes two tutorials for translating dog barks

with Corg.ly, one for audio files and one for video files. Each tutorial has

extensive code samples that need a lot of maintenance. The video feature

becomes wildly popular, and the tutorial is one of the most popular pages

on the Corg.ly site. The audio feature isn’t used very often, and it doesn’t

get many page views. In addition, the code samples for the audio page are

out of date, and users are filing issues against the page.

Although Corg.ly continues to support audio translation, Karthik decides

to delete the audio tutorial to prevent user frustration, and instead, points

users to a much shorter, easier to maintain document on how to translate

audio with Corg.ly.

 Summary
Make documentation maintenance easier by doing the following:

• Plan code and documentation together with

maintainability in mind.

• Align documentation releases with feature releases.

Chapter 11 Maintaining and depreCating doCuMentation

200

• Assign owners to documents.

• Automate toil with content freshness checks, link

checkers, documentation linters, and reference doc

generators—but be careful before automating.

Deprecate and delete documentation to keep your content up to date and

useful. Inform users about deprecations and deletions through callouts,

release notes, and announcements, and set up redirects to prevent users

from being stranded when content moves or you delete it.

The next sections cover when to hire an expert and additional resources

for creating developer documentation.

Chapter 11 Maintaining and depreCating doCuMentation

201© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6

 APPENDIX A

When to hire
an expert
As your documentation grows and scales, you might struggle to keep up

with changes or need answers to documentation questions beyond the

scope of your knowledge. A rapidly growing set of documentation requires

you to manage many moving parts and demands multiple kinds of

expertise. In these situations, it’s better to hire a professional.

Documentation specialists, also called documentarians1, can help you

with advanced documentation issues. Documentarians go by various

job titles, including technical writers, UX designers, project managers,

and software engineers who focus on content. If you’re looking to hire a

documentarian, you can find them in the professional communities listed

in the Resources appendix.

Regardless of their job title, documentarians can help you with critical

inflection points for your documentation, such as the ones listed below.

1 Eric Holscher, “Documentarians”, Write the Docs. Retrieved June 22, 2021,
https://www.writethedocs.org/documentarians/.

https://doi.org/10.1007/978-1-4842-7217-6#DOI
https://www.writethedocs.org/documentarians/

202

 Meeting a new set of user needs
If you find yourself working with a new kind of user whom you don’t fully

understand, a documentarian can help you describe their use cases, define

user journeys, and perform end to end testing of your documentation.

 Increasing support deflections
If your support team is overwhelmed with solving support cases on a one-

to- one basis, a documentarian can assess these issues and create docs that

provide scalable support.

 Managing large documentation releases
If the number or size of your launches make it difficult to keep your

documentation up to date, or if you find that documentation consumes

an increasing amount of your engineering and development time, a

documentarian can help manage and write the documentation for

large- scale software releases.

 Refactoring an information architecture
If you find yourself trying to refactor an information architecture for large

numbers of documents, a documentarian can help you plan and manage

that process. Organizing documentation for searchability and scalability

is difficult. A documentarian can guide you through planning a new

information architecture and migrating content over.

Appendix A When to hire An expert

203

 Internationalization and localization
If you’re struggling to localize your documentation for an international

customer base, a documentarian can help you build and manage this

content pipeline.

 Versioning documentation with software
If you’re creating a new version of your documentation with each software

release and worried about scalability and SEO, a documentarian can help

create a versioning process for your site.

 Accepting user contributions
to documentation
If you’re considering accepting community feedback to your

documentation and publishing articles or technical documents submitted

by your users, a documentarian can provide a path for user-contributed

content and respond to community feedback.

Appendix A When to hire An expert

204

 Open-sourcing documentation
If you’re open-sourcing your documentation, a documentarian can assist

with creating templates, standards, processes, and reviews for open source

contributors.

Appendix A When to hire An expert

205© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6

 APPENDIX B

Resources
This appendix offers a small selection of resources you’ll find useful as you

continue to work on documenting your projects. Resources are listed in no

particular order.

We wrote this book as a field guide, a way to get your hands dirty with the

work of documentation. We hope this book sets a path for your future

adventures in technical writing.

We don’t want the book to end here either, so don’t think of this as the end.

Consider this the starting point for future conversations. If you’d like to

reach out to us directly, find us at docsfordevelopers.com.

 Courses
• Technical Writing Courses from Google

Google’s technical writing team offers two

self-guided courses in beginner and intermediate

technical writing, focused on developers.

Available at: developers.google.com/

tech-writing

https://doi.org/10.1007/978-1-4842-7217-6#DOI

206

• Documenting APIs: A Guide for Technical Writers
and Engineers

Tom Johnson’s API documentation course is an

extensive set of self-guided tutorials full of practical

tasks. Read Tom’s blog for even more resources.

Available at: www.idratherbewriting.com/

learnapidoc

 Templates
• The Good Docs Project

The Good Docs Project is an open source set of

processes, doc templates, and guides for creating

great documentation.

Available at: www.thegooddocsproject.dev

• Diataxis Framework

The Diataxis Framework provides a guide to

templating and structuring your documentation to

meet different user needs.

Available at: www.diataxis.fr

• README checklist

There are many README checklists available,

but Daniel Beck’s is one of the best. It’s a useful

accompaniment to Daniel’s talk “Write the readable

README” which is available on YouTube.

Available at: www.github.com/ddbeck/

readme- checklist

Appendix B ResouRces

http://www.idratherbewriting.com/learnapidoc
http://www.idratherbewriting.com/learnapidoc
http://www.thegooddocsproject.dev
http://www.diataxis.fr
http://www.github.com/ddbeck/readme-checklist
http://www.github.com/ddbeck/readme-checklist

207

 Style guides
• Google Developers Style Guide

This guide is widely used as a default for writing

about API components and interactions, especially

in open source projects.

Available at: developers.google.com/style

• Microsoft Style Guide

Microsoft’s guide historically served as a common

standard for interacting with UI components.

Available at: docs.microsoft.com/style-guide

• Mediawiki Style Guide

Mediawiki maintains a comprehensive style guide

with example documentation templates for a wide

variety of documents.

Available at: mediawiki.org/wiki/Documentation

 Automation tools
• API reference generation

OpenAPI, Redoc, and Swagger are flavors of one of

the most common API specifications for integrating

documentation directly into an API.

Available at:

• openapis.org

• Redoc.ly

• swagger.io

Appendix B ResouRces

208

• Vale linter

Vale is one of the most common prose linters and

allows you to write your own style rules and use

codified style guides from Google, Microsoft, and

others.

Available at: github.com/errata-ai/vale

• htmltest

htmltest lets you detect broken links in generated

HTML.

Available at: github.com/wjdp/htmltest

• Read the Docs

Read the Docs is a site that automates building,

versioning, and hosting documentation.

Available at: readthedocs.org

• Docsy

Docsy is a Hugo theme for technical documentation.

Hugo (gohugo.io) is a Golang-based static site

generator.

Available at: docsy.dev

• Netlify

Netlify is a content delivery network (CDN)

with well- integrated continuous integration and

delivery (CI/CD). It’s a powerful and easy way to

automatically publish content to the Web from a Git

repository.

Available at: netlify.com

Appendix B ResouRces

209

• Prow

Prow is a heavyweight CI/CD tool based on

Kubernetes. Its features are powerful and almost

certainly overkill for all but the largest projects—

but it’s invaluable for wrangling toil at increasingly

massive scale.

Available at: github.com/kubernetes/test-infra/

tree/master/prow

 Visual content tools and frameworks
• Excalidraw

An open source whiteboarding tool to sketch

diagrams.

Available at: excalidraw.com

• Snagit

One of the most widely used tools for screenshots

and animated screen GIFs.

Available at: snagit.com

• C4 Model

A standardized, developer friendly approach to

software architecture diagramming.

Available at: c4model.com

Appendix B ResouRces

210

 Blogs and research
• Tom Johnson, I’d Rather Be Writing

Comprehensive blog about technical writing,

especially API documentation and the business

value of technical writing.

Available at: idratherbewriting.com

• Bob Watson, Docs by Design

Great for academic articles about technical writing

and measuring the quality of documentation.

Available at: docsbydesign.com

• Sarah Maddox, Ffeathers

Practical technical writing advice from a seasoned

professional. Sarah also gives classes on technical

writing and API documentation.

Available at: ffeathers.wordpress.com

• Daniel Beck

Practical technical writing advice from a freelance

technical writer for GitHub, ARM, Mozilla, and

others.

Available at: ddbeck.com/writing

Appendix B ResouRces

211

• Stephanie Morillo

Advice on creating content with a focus on

developer marketing, technical writing, and content

strategy.

Available at: stephaniemorillo.co/blog

• Nielsen Norman Group

Well-researched insight into user experience (UX)

data and best practices.

Available at: nngroup.com/articles

 Books
• Docs Like Code, Anne Gentle

One of the most widely adopted models for developer

documentation in current professional practice.

• Every Page is Page One, Mark Baker

A guide to topic-based writing and helping users

orient themselves in your documentation no matter

where they land.

• How to Make Sense of Any Mess, Abby Covert

A broad overview of information architecture,

including a seven-step process for approaching

information architecture challenges.

• The Content Design Book, Sarah Richards

A tour through content design and meeting the

needs of your users, using data to determine when,

where, and how users want to digest information.

Appendix B ResouRces

212

• User Research: A Practical Guide to Designing Better
Products and Services, Stephanie Marsh

A practical guide to user research methods,

including face-to-face user testing, card sorting,

surveys, A/B testing, and more.

• The Elements of Style, William Strunk,
Jr. & E.B. White

A classic and timeless guide to effective prose in

English.

 Communities
• Write the Docs

Write the Docs is a global community of people who

care about documentation, including programmers,

tech writers, developer advocates, customer

support, marketers, and anyone else who wants

people to have great experiences with software.

Write the Docs maintains an active online and

in-person community through its Slack network,

conferences, and local meetups.

Available at: www.writethedocs.org

Appendix B ResouRces

http://www.writethedocs.org

213

• Society for Technical Communication

The Society for Technical Communication (STC)

is a professional association dedicated to the

advancement of technical communication. The

STC supports a growing community of technical

communicators through its publications,

certifications, and conferences.

Available at: www.stc.org

Appendix B ResouRces

http://www.stc.org

215© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6

 Bibliography

Abdelhafith, Omar, “README.md: History and components,” Medium,

published August 15, 2015, https://medium.com/@NSomar/readme-

md-history-and-components-a365aff07f10.

Baker, Mark, “Findability is a Content Problem, not a Search

Problem,” published May 2013, https://everypageispageone.

com/2013/05/28/findability-is-a-content-problem-not-a-

search-problem/.

Beck, Daniel, “README checklist,” GitHub, https://github.com/ddbeck/

readme-checklist/blob/main/checklist.md.

Beyer, Betsy, Chris Jones, Jennifer Petoff, and Niall Richard Murphy, Site

Reliability Engineering: How Google Runs Production Systems 1st. ed.,

(O'Reilly, 2016).

Calhoun, Ragowsky and Tallal, “Matching learning style to instructional

method: Effects on comprehension,” Journal of Educational

Psychology, Vol. 107 (2015).

Camerer, Colin, George Loewenstein, Martin Weber, “The Curse of

Knowledge in Economic Settings: An Experimental Analysis,” Journal

of Political Economy, Vol. 97 no. 5.

Casali, Erin ‘Folleto’ “Pixar’s plussing technique of giving feedback,”

Intense Minimalism, https://intenseminimalism.com/2015/

pixars-plussing-technique-of-giving-feedback/.

Chromium Projects, “Triage Best Practices,” accessed May 14, 2021, www.

chromium.org/for-testers/bug-reporting-guidelines/triage-

best-practices.

https://doi.org/10.1007/978-1-4842-7217-6#DOI
https://medium.com/@NSomar/readme-md-history-and-components-a365aff07f10
https://medium.com/@NSomar/readme-md-history-and-components-a365aff07f10
https://everypageispageone.com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/
https://everypageispageone.com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/
https://everypageispageone.com/2013/05/28/findability-is-a-content-problem-not-a-search-problem/
https://github.com/ddbeck/readme-checklist/blob/main/checklist.md
https://github.com/ddbeck/readme-checklist/blob/main/checklist.md
https://intenseminimalism.com/2015/pixars-plussing-technique-of-giving-feedback/
https://intenseminimalism.com/2015/pixars-plussing-technique-of-giving-feedback/
http://chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
http://chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
http://chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices

216

DAXX, “How Many Software Developers Are in the US and the World?”,

published February 9, 2020, www.daxx.com/blog/development-

trends/number-software-developers-world.

Fessenden, Therese “First Impressions Matter: How Designers Can

Support Humans’ Automatic Cognitive Processing,” Nielsen Norman

Group, accessed June 27, 2021, www.nngroup.com/articles/first-

impressions-human-automaticity/.

Gaffney Gerry and Caroline Jarrett, Forms that work: Designing web forms

for usability (Oxford: Morgan Kaufmann, 2008), 11–29.

GitHub, “About Code Owners,” accessed December 29, 2020, https://

docs.github.com/en/free-pro-team@latest/github/creating-

cloning-and-archiving-repositories/about-code-owners.

GitHub, “Open Source Survey,” accessed June 2021, https://

opensourcesurvey.org/2017/.

Google, “Creating Great Sample Code,” Google Technical Writing One,

https://developers.google.com/tech-writing/two/sample-code.

Jin, Brenda, Saurabh Sahni, Amir Shevat, Designing Web APIs: Building

APIs That Developers Love (O'Reilly Media, 2018).

Johnson, Tom “Code Samples,” I’d Rather Be Writing, accessed June 29,

2021, https://idratherbewriting.com/learnapidoc/docapis_

codesamples_bestpractices.html.

Keeton, B.J., “How to comment your code like a pro,” Elegant Themes,

accessed June 29, 2021, www.elegantthemes.com/blog/wordpress/

how-to-comment-your-code-like-a-pro-best-practices-and-

good-habits.

Kubernetes documentation, “Documenting a feature for a release,”

last modified February 11, 2021, https://kubernetes.io/docs/

contribute/new-content/new-features/.

BIBLIOGRAPHY

http://daxx.com/blog/development-trends/number-software-developers-world
http://daxx.com/blog/development-trends/number-software-developers-world
http://www.nngroup.com/articles/first-impressions-human-automaticity/
http://www.nngroup.com/articles/first-impressions-human-automaticity/
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-code-owners
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-code-owners
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-code-owners
https://opensourcesurvey.org/2017/
https://opensourcesurvey.org/2017/
https://developers.google.com/tech-writing/two/sample-code
https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
https://idratherbewriting.com/learnapidoc/docapis_codesamples_bestpractices.html
http://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
http://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
http://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
https://kubernetes.io/docs/contribute/new-content/new-features/
https://kubernetes.io/docs/contribute/new-content/new-features/

217

Kubernetes, “Issue Triage Guidelines,” 2021, accessed June 27, 2021, www.

kubernetes.dev/docs/guide/issue-triage/.

LePage, Pete, “Widgets,” Google Web Fundamentals, accessed January 28,

2021, https://developers.google.com/web/resources/widgets.

Levie, W. Howard, Richard Lentz, “Effects of text illustrations: A review of

research,” Educational Technology Research and Development, 30,

195–232 (1982).

Lieby, Violet, “Worldwide Professional Developer Population of 24 Million

Projected to Grow amid Shifting Geographical Concentrations,” Evans

Data Corporation, accessed June 29, 2021, https://evansdata.com/

press/viewRelease.php?pressID=278.

Macnamara, Riona et al. “Do Docs Better: Integrating Documentation into

the Engineering Workflow” in Seeking SRE, ed. David Blank-Edleman

(O’Reilly Press, 2018).

Medina, John, Brain rules: 12 principles for surviving and thriving at work,

home and school (Seattle:Pear Press, 2008).

McCloud, Scott, Understanding Comics: The Invisible Art (New York:

William Morrow Paperbacks, 1994).

Nasehi, Seyed Mehdi “What makes a good code sample? A study of

programming Q&A in Stack Overflow,” 2013 IEEE International

Conference on Software Maintenance, 2012.

Nazr, Shariq “Say goodbye to manual documentation with these 6 tools,”

Medium, accessed June 21, 2021, https://medium.com/@shariq.

nazr/say-goodbye-to-manual-documentation-with-these-6-

tools-9e3e2b8e62fa.

Nielsen Jakob, “F-shaped pattern for reading web content (original study),”

Nielsen Norman Group, accessed June 29, 2021, www.nngroup.com/

articles/f-shaped-pattern-reading-web-content-discovered/.

BIBLIOGRAPHY

http://kubernetes.dev/docs/guide/issue-triage/
http://kubernetes.dev/docs/guide/issue-triage/
https://developers.google.com/web/resources/widgets
https://evansdata.com/press/viewRelease.php?pressID=278
https://evansdata.com/press/viewRelease.php?pressID=278
https://medium.com/@shariq.nazr/say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa
https://medium.com/@shariq.nazr/say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa
https://medium.com/@shariq.nazr/say-goodbye-to-manual-documentation-with-these-6-tools-9e3e2b8e62fa
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/

218

Nielsen, Jakob, “Keep online surveys short,” Nielsen Norman Group,

accessed June 29, 2021, www.nngroup.com/articles/keep-online-

surveys-short/.

Nielsen, Jakob “Photos as Web Content,” Nielsen Norman Group, accessed

June 29, 2021, www.nngroup.com/articles/photos-as-web-

content/.

Nielsen, Jakob, “Why you only need to test with 5 users,” Nielsen Norman

Group, accessed June 26, 2021, www.nngroup.com/articles/why-

you-only-need-to-test-with-5-users/.

Newton, Elizabeth Louise Ph.D., “The Rocky Road From Actions to

Intentions,” Stanford University, 1990, Ofcom, Connected Nations

Report (2017), accessed June 2021, www.ofcom.org.uk/research-

and-data/multi-sector-research/infrastructure-research/

connected-nations-2017/.

Pelli, Denis G., Bart Farell, Deborah C. Moore, “The remarkable

inefficiency of word recognition,” Nature (June: 2003), 423, 752–756.

Pittman, Paris, “How Kubernetes contributors are building a better

communication process,” Kubernetes Blog, published April 21,

2020, https://kubernetes.io/blog/2020/04/21/contributor-

communication.

Podmajersky, Torrey, Strategic writing for UX: Drive Engagement,

Conversion, and Retention with Every Word (O'Reilly, 2019).

Potter M.C, Wyble B., Hagmann C.E, McCourt E.S, “Detecting meaning in

RSVP at 13 ms per picture,” Attention, Perception and Psychophysics

(December 2013).

Reyes, Jarod, “How Twilio writes documentation,” Signal 2016, YouTube,

www.youtube.com/watch?v=hTMuAPaKMI4.

BIBLIOGRAPHY

http://nngroup.com/articles/keep-online-surveys-short/
http://nngroup.com/articles/keep-online-surveys-short/
http://nngroup.com/articles/photos-as-web-content/
http://nngroup.com/articles/photos-as-web-content/
http://nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://ofcom.org.uk/research-and-data/multi-sector-research/infrastructure-research/connected-nations-2017/
http://ofcom.org.uk/research-and-data/multi-sector-research/infrastructure-research/connected-nations-2017/
http://ofcom.org.uk/research-and-data/multi-sector-research/infrastructure-research/connected-nations-2017/
https://kubernetes.io/blog/2020/04/21/contributor-communication
https://kubernetes.io/blog/2020/04/21/contributor-communication
http://youtube.com/watch?v=hTMuAPaKMI4

219

Roberts, David, “The power of images in teaching dyslexic students,”

Loughborough University, accessed June 26, 2021, https://blog.

lboro.ac.uk/sbe/2017/06/30/teaching-dyslexic-students/.

Rosala, Maria, “Ethical maturity in user research,” Nielsen Norman Group,

www.nngroup.com/articles/user-research-ethics/.

Steele, Julie, The art of data visualisation, PBS film, 2013, accessed June 29,

2021, www.pbs.org/video/book-art-data-visualization.

Strunk, William, The Elements of Style. 4th ed. (Pearson, 1999).

Tufte, Edward R, The art of data visualisation, PBS film, 2013, accessed

June 29, 2021, www.pbs.org/video/book-art-data-visualization.

Tufte, Edward R. The visual display of quantitative information (2001,

2nd ed.). Web Content Accessibility Guidelines, accessed June 2021,

www.w3.org/WAI/.

Watson, Bob, “Measuring your technical content – Part 1” Docs by Design,

published August 24, 2017, https://docsbydesign.com/2017/08/24/

measuring-your-technical-content-part-1/.

Whicher, Charlie, “What we learnt from building a User Council,”

Repositive.io, published November 13, 2017, https://repositive.

io/resources/what-we-learnt-from-building-a-user-council.

Winters, Titus, Tom Manshreck, Hyrum Wright, “Documentation” in

Software Engineering at Google: Lessons Learned from Programming

over Time, (O'Reilly, 2020).

Zong, Jie, and Jeanne Batalova, “The Limited English Proficient Population

in the United States in 2013,” Migration Policy Institute, published

July 8, 2015, www.migrationpolicy.org/article/limited-english-

proficient-population-united-states-2013.

BIBLIOGRAPHY

https://blog.lboro.ac.uk/sbe/2017/06/30/teaching-dyslexic-students/
https://blog.lboro.ac.uk/sbe/2017/06/30/teaching-dyslexic-students/
http://www.nngroup.com/articles/user-research-ethics/
http://pbs.org/video/book-art-data-visualization
http://pbs.org/video/book-art-data-visualization
http://w3.org/WAI/
https://docsbydesign.com/2017/08/24/measuring-your-technical-content-part-1/
https://docsbydesign.com/2017/08/24/measuring-your-technical-content-part-1/
https://repositive.io/resources/what-we-learnt-from-building-a-user-council
https://repositive.io/resources/what-we-learnt-from-building-a-user-council
http://www.migrationpolicy.org/article/limited-english-proficient-population-united-states-2013
http://www.migrationpolicy.org/article/limited-english-proficient-population-united-states-2013

221© Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez,
Heidi Waterhouse 2021
J. Bhatti et al., Docs for Developers, https://doi.org/10.1007/978-1-4842-7217-6

Index

A
Accessibility, 106, 152, 153
Accuracy, 156, 157, 159
Analytics strategy, 160

documentation metrics, 164
organizational goals, 161
questions of

quality, 165, 166
readers’ goals, 163

API documentation, 35, 36, 39, 95
Architects, 189
Audio file, 48–51, 55
Automating documentation, 177

freshness checks, 178, 179
link checkers, 179
linters, 179, 180
reference, 180

B
Business problem, 25, 33

C
Callouts, 46, 52, 56, 57
Changelogs, 27, 28, 39
Clarity, 60, 73, 157, 158
Code comments, 26, 87

Code samples, 84, 85
autogenerating, 98
design

choose language, 94, 95
complexity, 95
presentation, 96

principles, 87
clear, 92, 93
concise, 90, 91
explanations, 87, 88, 90
trust, 94
usable, 93, 94

sandbox code, 97
testing, 97
tooling, 96, 97
types, 85

Cognitive processing, 102
Completeness, 71, 72, 156
Conceptual documentation,

30, 31, 35, 115
Content gap, 199, 205
Content release process, 123, 124
Content types, 24, 25

code comments, 26
READMEs, 27, 28

Corg.ly
collecting new data, 10, 11
developer surveys, 13, 14

https://doi.org/10.1007/978-1-4842-7217-6#DOI

222

direct interviews, 11–13
existing data sources, 9
friction log, 19, 20
identify user, 6
research findings, 14
support tickets, 9, 10
user goals, 4, 5
user journey map, 17, 18
user needs, 7
user stories, 16

user understanding, 8
Customer satisfaction score

(CSAT), 140
Customer surveys, 135, 139

D
Deprecating content,

delete, 180–183
Deprecation, 181, 182, 184
Developers, 6, 24, 129
Diagrams, 108

box and arrow, 109, 110
flowcharts, 110, 111
swinlane, 112

Direct interviews, 11–13
Documentation, 24

concept, 30
content outline, 42
planning, 41
procedural, 31, 32
reference, 35
starting, 29

Documentation metrics,
164, 166

baseline, 167
clusters, 166
context, 167
plan, 166

Documentation quality
definition, 151
functional, 151

accessibility, 152, 153
accuracy, 156
completeness, 156
findability, 155, 156
purposeful, 154

fundamental categories, 151
Document consistency, 159
Document sentiment, 138, 139
Drawing diagram, 113

complicated flowchart, 115
help, 117
place, 117
publish, 117
simplified flowchart, 114
starting point, 116
use colors, 117
use labels, 116

E
Editing, 68

approaches, 69
clarity and brevity, 73, 74
completeness, 71, 72
structure, 72, 73

Corg.ly (cont.)

INDEX

223

technical accuracy, 70, 71
create, 75

peer review, 76, 77
review document, 75, 76
technical review, 77, 78

good feedback, 79, 80
process flow, 75
receive feedback, 78

Executable code, 85
Explanatory code, 86
External developer, 188

F
Feedback channels, 135, 136

customer surveys, 139
documentation page, 137, 138
document sentiment, 138, 139
support team, 138
user council, 141

Feedback, 141
triage, 142, 143

actionable issue, 143, 144
priorities for issues, 144
valid issue, 143

users, 145, 146
Findability, 155
Friction log, 4, 19, 20
Functional quality, 160

G
Gantt chart, 124, 125

H
Headers, 52, 53
Hierarchical

structure, 190, 191
How-to guides, 33–35

I
Ineffective visual

content, 104, 106
Information architecture,

187, 193
Irrelevant code, 91

J, K
Junior developers, 6, 15

L
Landing pages, 194–196
Links, 27, 34, 35, 37, 42, 179
Linters, 179, 180
Lists, 55
Low-accuracy documentation, 156

M, N
Maintaining, documentation,

173, 174
assign owners, 176
release process, 175
reward, 177

INDEX

224

Markdown-based issue template, 137
Metrics, 135, 150, 162

N
Navigation cues, 178, 179

O
Organizational goals, 161, 162
Organizing documentation, 187,

198
existing content, 198, 199
hire expert, 203–205
maintain information,

202, 203
new information, 199–201
validation checklist, 201, 202

P
Page-level elements, 189
Page-level feedback

mechanisms, 138
Paragraphs, 46, 52–54
Peer reviews, 76, 77, 79
Pixar’s method, 79
Plussing, 79
Procedural documentation, 31, 32

how-to guides, 33–35
tutorials, 32

Publishing content, 122, 123
Publishing timeline, 124, 125

announcement, 129
code releases, 126

deliver content, 128, 129
final approver, 126, 127

Q
Qualitative feedback, 166, 169
Quantitative feedback, 166
Quantitative metrics, 167

R
README, 27, 28, 44
Reference documentation, 35

API, 35, 36
changelogs, 39
glossary, 37
troubleshooting, 37–39

Release notes, 40, 65, 126
Release processes, 174–176

S
Sandboxes, 97
Screen readers, 108, 152, 153
Screenshots, 107, 108
Search engine optimization (SEO), 53
Sequential structures, 190
Site navigation, 190

hierarchical structures, 190, 191
sample architecture, 193
sequential structures, 190
users step, 192
webs, 191, 192

Site reliability engineer (SRE), 6
Skimming titles, 57, 58

INDEX

225

Structural quality, 157
clear, 157, 158
concise, 158
consistent, 159

Support tickets, 9, 10
Swimlane diagrams, 112

T
Technical documentation, 57, 126
Technical reviews, 77, 78
Templates, 63, 64
Time to Hello World (TTHW), 154
Troubleshooting documentation,

37–39
Twilio’s documentation team, 84

U
Use case, 24, 25, 30, 31
User interface (UI), 49, 50
User journey map, 14, 17, 18
User story, 16

V
Validate code, 68
Video content, 118, 119

maintain, 120
review, 119

Visual content, 103, 104
accessibility, 106
comprehension, 105
performance, 106

W, X, Y, Z
Web Content Accessibility

Guidelines (WCAG), 118
Writing, 46

blank page, 47, 48
choosing tools, 47
draft, 52

callouts, 56, 57
headers, 52, 53
lists, 55
paragraphs, 53
procedure, 54, 55

first draft, 65, 66
goals, 49
outline, 49, 50

complete, 51, 52
readers expectations, 50

skimming, 57, 58
breaking large

texts, 58, 59
breaking long documents,

59, 60
critical information, 58
simplicity/clarity, 60

titles, 48
unstuck, 61

ask for help, 61
change medium, 63
highlight missing

content, 62
perfect, 61
sequence, 62
templates, 63, 64

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Understanding your audience
	Corg.ly: One month to launch
	The curse of knowledge
	Creating an initial sketch of your users
	Defining your users’ goals
	Understanding who your users are
	Outline your users’ needs

	Validate your user understanding
	Using existing data sources
	Support tickets

	Collecting new data
	Direct interviews
	Developer surveys

	Condensing user research findings
	User personas
	User stories
	User journey maps

	Creating a friction log
	Summary

	Chapter 2: Planning your documentation
	Corg.ly: Creating a plan
	Plans and patterns
	Content types
	Code comments
	READMEs
	Getting started documentation
	Conceptual documentation
	Procedural documentation
	Tutorials
	How-to guides

	Reference documentation
	API reference
	Glossary
	Troubleshooting documentation
	Change documentation

	Planning your documentation
	Summary

	Chapter 3: Drafting documentation
	Corg.ly: First drafts
	Confronting the blank page (or screen)
	Setting yourself up for writing success
	Choosing your writing tools
	Breaking through the blank page
	Defining your document’s title and goal

	Creating your outline
	Meeting your reader’s expectations
	Completing your outline

	Creating your draft
	Headers
	Paragraphs
	Procedures
	Lists
	Callouts

	Writing for skimming
	State your most important information first
	Break up large blocks of text
	Break up long documents
	Strive for simplicity and clarity

	Getting unstuck
	Let go of perfectionism
	Ask for help
	Highlight missing content
	Write out of sequence
	Change your medium

	Working from templates
	Finishing your first draft
	Summary

	Chapter 4: Editing documentation
	Corg.ly: Editing content
	Editing to meet your user’s needs
	Different approaches to editing
	Editing for technical accuracy
	Editing for completeness
	Editing for structure
	Editing for clarity and brevity

	Creating an editing process
	Reviewing your document first
	Requesting a peer review
	Requesting a technical review

	Receiving and integrating feedback
	Giving good feedback
	Summary

	Chapter 5: Integrating code samples
	Corg.ly: Showing how it works
	Using code samples
	Types of code samples
	Principles of good code samples
	Explained
	Concise
	Clear
	Usable (and extensible)
	Trustworthy

	Designing code samples
	Choosing a language
	Highlighting a range of complexity
	Presenting your code

	Tooling for code samples
	Testing code samples
	Sandboxing code
	Autogenerating samples

	Summary

	Chapter 6: Adding visual content
	Corg.ly: Worth a thousand words
	When words aren’t enough
	Why visual content is hard to create
	Comprehension
	Accessibility
	Performance

	Using screenshots
	Common types of diagrams
	Boxes and arrows
	Flowcharts
	Swimlanes

	Drawing diagrams
	Start on paper
	Find a starting point for your reader
	Use labels
	Use colors consistently
	Place the diagram
	Publishing a diagram
	Get help with diagrams

	Creating video content
	Reviewing visual content
	Maintaining visual content
	Summary

	Chapter 7: Publishing documentation
	Corg.ly: Ship it!
	Putting your content out there
	Building a content release process
	Creating a publishing timeline
	Coordinate with code releases
	Finalize and approve publication
	Decide how to deliver content
	Announce your docs

	Planning for the future
	Summary

	Chapter 8: Gathering and integrating feedback
	Corg.ly: Initial feedback
	Listening to your users
	Creating feedback channels
	Accept feedback directly through documentation pages
	Monitor support issues
	Collect document sentiment
	Create user surveys
	Create a user council

	Converting feedback into action
	Triaging feedback
	Step one: Is the issue valid?
	Step two: Can the issue be fixed?
	Step three: How important is the issue?

	Following up with users

	Summary

	Chapter 9: Measuring documentation quality
	Corg.ly: Tuesday after the launch
	Is my documentation any good?
	Understanding documentation quality
	Functional quality
	Accessible
	Purposeful
	Findable
	Accurate
	Complete

	Structural quality
	Clear
	Concise
	Consistent

	How functional and structural quality relate

	Creating a strategy for analytics
	Organizational goals and metrics
	User goals and metrics
	Documentation goals and metrics

	Tips for using document metrics
	Make a plan
	Establish a baseline
	Consider context
	Use clusters of metrics
	Mix qualitative and quantitative feedback

	Summary

	Chapter 10: Organizing documentation
	Corg.ly: The next release
	Organizing documentation for your readers
	Helping your readers find their way
	Site navigation and organization
	Sequences
	Hierarchies
	Webs
	Bringing it all together

	Landing pages
	Navigation cues

	Organizing your documentation
	Assess your existing content
	Outline your new information architecture
	Migrate to your new information architecture
	Maintaining your information architecture

	Summary

	Chapter 11: Maintaining and deprecating documentation
	Corg.ly: A few releases later
	Maintaining up-to-date documentation
	Planning for maintainability
	Align documentation with release processes
	Assign document owners
	Reward document maintenance

	Automating documentation maintenance
	Content freshness checks
	Link checkers
	Linters
	Reference doc generators

	Removing content from your docset
	Deprecating documentation
	Deleting documentation

	Summary

	Appendix A: When to hire an expert
	Meeting a new set of user needs
	Increasing support deflections
	Managing large documentation releases
	Refactoring an information architecture
	Internationalization and localization
	Versioning documentation with software
	Accepting user contributions to documentation
	Open-sourcing documentation

	Appendix B: Resources
	Courses
	Templates
	Style guides
	Automation tools
	Visual content tools and frameworks
	Blogs and research
	Books
	Communities

	Bibliography
	Index

