
Essential
TypeScript 4

From Beginner to Pro
—
Second Edition
—
Adam Freeman

Essential TypeScript 4
From Beginner to Pro

Second Edition

Adam Freeman

Essential TypeScript 4: From Beginner to Pro

ISBN-13 (pbk): 978-1-4842-7010-3 ISBN-13 (electronic): 978-1-4842-7011-0
https://doi.org/10.1007/978-1-4842-7011-0

Copyright © 2021 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Editorial Operations Manager: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484270103. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Adam Freeman
London, UK

https://doi.org/10.1007/978-1-4842-7011-0
http://www.freepik.com
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://booktranslations@springernature.com
http://bookpermissions@springernature.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484270103
http://www.apress.com/source-code

Dedicated to my lovely wife, Jacqui Griffyth.

(And also to Peanut.)

v

 ■Part I: Getting Started with TypeScript ��� 1

 ■Chapter 1: Your First TypeScript Application ��� 3

Getting Ready for This Book ��� 3

Step 1: Install Node�js ��� 3

Step 2: Install Git �� 3

Step 3: Install TypeScript �� 4

Step 4: Install a Programmer’s Editor ��� 4

Creating the Project �� 5

Initializing the Project ��� 6

Creating the Compiler Configuration File �� 6

Adding a TypeScript Code File �� 6

Compiling and Executing the Code ��� 7

Defining the Data Model ��� 8

Adding Features to the Collection Class ��� 13

Using a Third-Party Package �� 20

Adding Type Declarations for the JavaScript Package ��� 22

Adding Commands ��� 24

Filtering Items ��� 24

Adding Tasks ��� 25

Marking Tasks Complete �� 27

Table of Contents

About the Author ��xix

About the Technical Reviewer ��xxi

■ Table of ConTenTs

vi

Persistently Storing Data �� 30

Applying the Persistent Collection Class �� 32

Summary �� 33

 ■Chapter 2: Understanding TypeScript �� 35

Should You Use TypeScript? ��� 35

Understanding the TypeScript Developer Productivity Features ��� 35

Understanding the JavaScript Version Features ��� 37

What Do You Need to Know? �� 37

How Do You Set Up Your Development Environment? �� 37

What Is the Structure of This Book? ��� 37

Are There Lots of Examples? �� 38

Where Can You Get the Example Code? ��� 40

What If You Have Problems Following the Examples? �� 40

What If You Find an Error in the Book? ��� 40

How Do You Contact the Author? �� 40

What If You Really Enjoyed This Book? ��� 41

What If This Book Has Made You Angry and You Want to Complain? ����������������������������� 41

Summary �� 41

 ■Chapter 3: JavaScript Primer, Part 1 ��� 43

Preparing for This Chapter ��� 43

Getting Confused by JavaScript ��� 44

Understanding JavaScript Types �� 45

Working with Primitive Data Types ��� 46

Understanding Type Coercion ��� 48

Working with Functions �� 52

Working with Arrays ��� 57

Using the Spread Operator on Arrays ��� 59

Destructuring Arrays ��� 59

■ Table of ConTenTs

vii

Working with Objects ��� 61

Adding, Changing, and Deleting Object Properties ��� 62

Using the Spread and Rest Operators on Objects ��� 64

Defining Getters and Setters �� 66

Defining Methods ��� 67

Understanding the this Keyword �� 69

Understanding the this Keyword in Stand-Alone Functions ��� 70

Understanding this in Methods ��� 71

Changing the Behavior of the this Keyword ��� 73

Understanding this in Arrow Functions �� 73

Returning to the Original Problem �� 75

Summary �� 76

 ■Chapter 4: JavaScript Primer, Part 2 ��� 77

Preparing for This Chapter ��� 77

Understanding JavaScript Object Inheritance �� 78

Inspecting and Modifying an Object’s Prototype �� 79

Creating Custom Prototypes ��� 81

Using Constructor Functions �� 82

Checking Prototype Types��� 85

Defining Static Properties and Methods ��� 86

Using JavaScript Classes�� 87

Using Iterators and Generators �� 90

Using a Generator ��� 91

Defining Iterable Objects �� 93

Using JavaScript Collections �� 95

Storing Data by Key Using an Object �� 95

Storing Data by Key Using a Map ��� 96

Storing Data by Index ��� 98

■ Table of ConTenTs

viii

Using Modules �� 99

Creating a JavaScript Module ��� 100

Using a JavaScript Module ��� 101

Exporting Named Features from a Module ��� 102

Defining Multiple Named Features in a Module ��� 104

Summary �� 105

 ■Chapter 5: Using the TypeScript Compiler ��� 107

Preparing for This Chapter ��� 107

Understanding the Project Structure �� 108

Using the Node Package Manager ��� 110

Understanding the TypeScript Compiler Configuration File �� 112

Compiling TypeScript Code ��� 114

Understanding Compiler Errors �� 115

Using Watch Mode and Executing the Compiled Code ��� 116

Using the Version Targeting Feature ��� 120

Setting the Library Files for Compilation �� 122

Selecting a Module Format �� 124

Useful Compiler Configuration Settings ��� 127

Summary �� 129

 ■Chapter 6: Testing and Debugging TypeScript ��� 131

Preparing for This Chapter ��� 131

Debugging TypeScript Code ��� 132

Preparing for Debugging �� 132

Using Visual Studio Code for Debugging �� 133

Using the Integrated Node�js Debugger �� 135

Using the Remote Node�js Debugging Feature ��� 135

Using the TypeScript Linter �� 138

Disabling Linting Rules ��� 139

■ Table of ConTenTs

ix

Unit Testing TypeScript ��� 141

Configuring the Test Framework��� 142

Creating Unit Tests �� 143

Starting the Test Framework �� 144

Summary �� 145

 ■Part II: Working with TypeScript ��� 147

 ■Chapter 7: Understanding Static Types ��� 149

Preparing for This Chapter ��� 149

Understanding Static Types �� 152

Creating a Static Type with a Type Annotation �� 154

Using Implicitly Defined Static Types �� 155

Using the any Type �� 157

Using Type Unions �� 161

Using Type Assertions��� 163

Asserting to an Unexpected Type�� 164

Using a Type Guard ��� 166

Understanding the Never Type �� 167

Using the unknown Type �� 168

Using Nullable Types �� 169

Restricting Nullable Assignments ��� 170

Removing null from a Union with an Assertion ��� 172

Removing null from a Union with a Type Guard �� 173

Using the Definite Assignment Assertion �� 174

Summary �� 176

 ■Chapter 8: Using Functions ��� 177

Preparing for This Chapter ��� 178

Defining Functions ��� 179

Redefining Functions �� 179

Understanding Function Parameters �� 181

■ Table of ConTenTs

x

Understanding Function Results ��� 187

Overloading Function Types �� 190

Understanding Assert Functions ��� 192

Summary �� 193

 ■Chapter 9: Using Arrays, Tuples, and Enums ��� 195

Preparing for This Chapter ��� 196

Working with Arrays ��� 197

Using Inferred Typing for Arrays ��� 199

Avoiding Problems with Inferred Array Types ��� 200

Avoiding Problems with Empty Arrays �� 201

Working with Tuples ��� 202

Processing Tuples ��� 203

Using Tuple Types ��� 204

Using Tuples with Optional Elements �� 205

Defining Tuples with Rest Elements ��� 206

Using Enums �� 207

Understanding How Enums Work ��� 208

Using String Enums �� 211

Understanding the Limitations of Enums�� 212

Using Literal Value Types �� 215

Using Literal Value Types in Functions �� 216

Mixing Value Types in a Literal Value Type �� 217

Using Overrides with Literal Value Types �� 218

Using Template Literal String Types �� 219

Using Type Aliases �� 220

Summary �� 221

 ■Chapter 10: Working with Objects ��� 223

Preparing for This Chapter ��� 224

Working with Objects ��� 225

Using Object Shape Type Annotations �� 226

■ Table of ConTenTs

xi

Understanding How Shape Types Fit �� 227

Using Type Aliases for Shape Types �� 230

Dealing with Excess Properties �� 231

Using Shape Type Unions�� 232

Understanding Union Property Types �� 233

Using Type Guards for Objects �� 234

Using Type Intersections �� 239

Using Intersections for Data Correlation ��� 241

Understanding Intersection Merging �� 242

Summary �� 249

 ■Chapter 11: Working with Classes and Interfaces �� 251

Preparing for This Chapter ��� 252

Using Constructor Functions �� 253

Using Classes ��� 256

Using the Access Control Keywords ��� 257

Using JavaScript Private Fields �� 260

Defining Read-Only Properties ��� 262

Simplifying Class Constructors ��� 264

Using Class Inheritance �� 265

Using an Abstract Class �� 268

Using Interfaces ��� 271

Implementing Multiple Interfaces ��� 273

Extending Interfaces ��� 275

Defining Optional Interface Properties and Methods �� 277

Defining an Abstract Interface Implementation �� 279

Type Guarding an Interface ��� 280

Dynamically Creating Properties �� 281

Enabling Index Value Checking ��� 283

Summary �� 285

■ Table of ConTenTs

xii

 ■Chapter 12: Using Generic Types ��� 287

Preparing for This Chapter ��� 288

Understanding the Problem �� 289

Adding Support for Another Type �� 290

Creating Generic Classes ��� 291

Understanding Generic Type Arguments ��� 293

Using Different Type Arguments ��� 293

Constraining Generic Type Values ��� 294

Defining Multiple Type Parameters ��� 297

Allowing the Compiler to Infer Type Arguments �� 300

Extending Generic Classes ��� 301

Type Guarding Generic Types �� 306

Defining a Static Method on a Generic Class�� 307

Defining Generic Interfaces �� 310

Extending Generic Interfaces �� 310

Implementing a Generic Interface �� 311

Summary �� 314

 ■Chapter 13: Advanced Generic Types �� 315

Preparing for This Chapter ��� 316

Using Generic Collections ��� 317

Using Generic Iterators ��� 319

Combining an Iterable and an Iterator �� 321

Creating an Iterable Class ��� 322

Using Index Types ��� 323

Using the Index Type Query �� 323

Explicitly Providing Generic Type Parameters for Index Types �� 324

Using the Indexed Access Operator �� 325

Using an Index Type for the Collection<T> Class ��� 327

■ Table of ConTenTs

xiii

Using Type Mapping ��� 329

Changing Mapping Names and Types ��� 330

Using a Generic Type Parameter with a Mapped Type �� 331

Changing Property Optionality and Mutability �� 332

Using the Basic Built-in Mappings ��� 333

Combining Transformations in a Single Mapping ��� 336

Creating Types with a Type Mapping �� 336

Using Conditional Types ��� 337

Nesting Conditional Types��� 339

Using Conditional Types in Generic Classes ��� 339

Using Conditional Types with Type Unions �� 341

Using Conditional Types in Type Mappings ��� 342

Identifying Properties of a Specific Type �� 343

Inferring Additional Types in Conditions ��� 345

Summary �� 348

 ■Chapter 14: Working with JavaScript �� 349

Preparing for This Chapter ��� 350

Adding the TypeScript Code to the Example Project ��� 351

Working with JavaScript �� 354

Including JavaScript in the Compilation Process ��� 355

Type Checking JavaScript Code �� 356

Describing Types Used in JavaScript Code��� 357

Using Comments to Describe Types ��� 358

Using Type Declaration Files ��� 360

Describing Third-Party JavaScript Code ��� 362

Using Definitely Typed Declaration Files ��� 365

Using Packages That Include Type Declarations ��� 367

Generating Declaration Files �� 370

Summary �� 373

■ Table of ConTenTs

xiv

 ■Part III: Creating Web Applications ��� 375

 ■Chapter 15: Creating a Stand-Alone Web App, Part 1 �� 377

Preparing for This Chapter ��� 377

Creating the Toolchain �� 379

Adding a Bundler �� 379

Adding a Development Web Server �� 382

Creating the Data Model ��� 385

Creating the Data Source �� 387

Rendering HTML Content Using the DOM API ��� 389

Adding Support for Bootstrap CSS Styles ��� 390

Using JSX to Create HTML Content �� 393

Understanding the JSX Workflow ��� 394

Configuring the TypeScript Compiler and the Webpack Loader �� 396

Creating the Factory Function �� 397

Using the JSX Class �� 398

Importing the Factory Function in the JSX Class �� 399

Adding Features to the Application �� 400

Displaying a Filtered List of Products ��� 400

Displaying Content and Handling Updates�� 404

Summary �� 406

 ■Chapter 16: Creating a Stand-Alone Web App, Part 2 �� 407

Preparing for This Chapter ��� 407

Adding a Web Service �� 410

Incorporating the Data Source into the Application �� 411

Using Decorators �� 413

Using Decorator Metadata �� 415

Completing the Application �� 419

Adding a Header Class�� 419

Adding an Order Details Class �� 419

■ Table of ConTenTs

xv

Adding a Confirmation Class �� 421

Completing the Application ��� 422

Deploying the Application ��� 425

Adding the Production HTTP Server Package ��� 425

Creating the Persistent Data File �� 426

Creating the Server ��� 426

Using Relative URLs for Data Requests �� 427

Building the Application �� 428

Testing the Production Build ��� 429

Containerizing the Application �� 430

Installing Docker ��� 430

Preparing the Application ��� 431

Creating the Docker Container ��� 431

Running the Application �� 432

Summary �� 434

 ■Chapter 17: Creating an Angular App, Part 1 �� 435

Preparing for This Chapter ��� 435

Configuring the Web Service �� 436

Configuring the Bootstrap CSS Package �� 438

Starting the Example Application ��� 438

Understanding TypeScript in Angular Development ��� 440

Understanding the Angular TypeScript Compiler Configuration �� 441

Creating the Data Model ��� 442

Creating the Data Source �� 443

Creating the Data Source Implementation Class �� 445

Configuring the Data Source��� 447

Displaying a Filtered List of Products ��� 447

Displaying the Category Buttons �� 450

Creating the Header Display ��� 451

Combining the Product, Category, and Header Components �� 452

■ Table of ConTenTs

xvi

Configuring the Application �� 453

Summary �� 455

 ■Chapter 18: Creating an Angular App, Part 2 �� 457

Preparing for This Chapter ��� 458

Completing the Example Application Features ��� 459

Adding the Summary Component ��� 461

Creating the Routing Configuration �� 462

Deploying the Application ��� 464

Adding the Production HTTP Server Package ��� 464

Creating the Persistent Data File �� 464

Creating the Server ��� 465

Using Relative URLs for Data Requests �� 466

Building the Application �� 467

Testing the Production Build ��� 467

Containerizing the Application �� 468

Preparing the Application ��� 468

Creating the Docker Container ��� 469

Running the Application �� 470

Summary �� 472

 ■Chapter 19: Creating a React App ��� 473

Preparing for This Chapter ��� 474

Configuring the Web Service �� 474

Installing the Bootstrap CSS Package �� 475

Starting the Example Application ��� 476

Understanding TypeScript in React Development �� 477

Defining the Entity Types �� 479

Displaying a Filtered List of Products ��� 481

Using a Functional Component and Hooks ��� 483

Displaying a List of Categories and the Header �� 484

Composing and Testing the Components ��� 486

■ Table of ConTenTs

xvii

Creating the Data Store �� 489

Creating the HTTP Request Class ��� 492

Connecting the Data Store to the Components��� 493

Summary �� 495

 ■Chapter 20: Creating a React App, Part 2 �� 497

Preparing for This Chapter ��� 498

Configuring URL Routing �� 499

Completing the Example Application Features ��� 501

Adding the Order Summary Component ��� 501

Adding the Confirmation Component �� 503

Completing the Routing Configuration �� 504

Deploying the Application ��� 505

Adding the Production HTTP Server Package ��� 505

Creating the Persistent Data File �� 506

Creating the Server ��� 506

Using Relative URLs for Data Requests �� 507

Building the Application �� 508

Testing the Production Build ��� 508

Containerizing the Application �� 509

Preparing the Application ��� 509

Creating the Docker Container ��� 510

Running the Application �� 511

Summary �� 513

 ■Chapter 21: Creating a Vue�js App, Part 1 ��� 515

Preparing for This Chapter ��� 516

Configuring the Web Service �� 517

Configuring the Bootstrap CSS Package �� 518

Starting the Example Application ��� 518

■ Table of ConTenTs

xviii

Understanding TypeScript in Vue�js Development �� 520

Understanding the TypeScript Vue�js Toolchain �� 520

Creating the Entity Classes �� 521

Displaying a Filtered List of Products ��� 523

Displaying a List of Categories and the Header �� 525

Composing and Testing the Components ��� 528

Creating the Data Store �� 531

Connecting Components to the Data Store ��� 533

Adding Support for the Web Service �� 536

Summary �� 539

 ■Chapter 22: Creating a Vue�js App, Part 2 ��� 541

Preparing for This Chapter ��� 542

Configuring URL Routing �� 543

Completing the Example Application Features ��� 544

Adding the Order Summary Component ��� 545

Adding the Confirmation Component �� 547

Completing the Routing Configuration �� 548

Deploying the Application ��� 549

Adding the Production HTTP Server Package ��� 549

Creating the Persistent Data File �� 550

Creating the Server ��� 550

Using Relative URLs for Data Requests �� 551

Building the Application �� 552

Testing the Production Build ��� 552

Containerizing the Application �� 553

Preparing the Application ��� 553

Creating the Docker Container ��� 554

Running the Application �� 555

Summary �� 556

 Index ��� 557

xix

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now
retired, he spends his time writing and long-distance running.

xxi

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com

PART I

Getting Started with TypeScript

3© Adam Freeman 2021
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_1

CHAPTER 1

Your First TypeScript Application

The best way to get started with TypeScript is to dive in. In this chapter, I take you through a simple
development process to create an application that keeps track of to-do items. Later chapters show how
TypeScript features work in detail, but a simple example will be enough to demonstrate how the basic
TypeScript features work. Don’t worry if you don’t understand everything in this chapter. The idea is just to
get an overall sense of how TypeScript works and how it fits into an application.

 Getting Ready for This Book
Four packages are required to get ready for this book. Perform each installation described in the following
sections and run the test provided for each of them to ensure that the packages work as they should.

 Step 1: Install Node.js
First, download and install Node.js, also known as Node, from https://nodejs.org/dist/v14.15.4. This
URL provides the installers for all supported platforms for the 14.15.4 release, which is the version that I use
in this book. During the installation, ensure that Node Package Manager (NPM) is selected for installation.
Once the installation is complete, open a new command prompt and run the commands shown Listing 1-1
to check that Node and NPM are working.

Listing 1-1. Checking Node and NPM

node --version
npm --version

The output from the first command should be v14.15.4, indicating that Node is working and the correct
version has been installed. The output from the second command should be 6.14.10, which indicates that
NPM is working.

 Step 2: Install Git
The second task is to download and install the Git version management tool from https://git- scm.com/
downloads. Git isn’t required directly for TypeScript development, but some of the most commonly used
packages depend on it. Once you have completed the installation, use a command prompt to run the
command shown in Listing 1-2 to check that Git is working.

https://doi.org/10.1007/978-1-4842-7011-0_1#DOI
https://nodejs.org/dist/v14.15.4
https://git-scm.com/downloads
https://git-scm.com/downloads

Chapter 1 ■ Your First tYpesCript appliCation

4

Listing 1-2. Checking Git

git --version

At the time of writing, the latest version of Git for all platforms is 2.30.0.

 Step 3: Install TypeScript
The third step is to install the TypeScript package. Use a command prompt to run the command shown in
Listing 1-3.

Listing 1-3. Installing the TypeScript Package

npm install --global typescript@4.2.2

Once the package has been installed, run the command shown in Listing 1-4 to ensure that the
compiler was installed correctly.

Listing 1-4. Testing the TypeScript Compiler

tsc --version

The TypeScript compiler is called tsc, and the output from the command in Listing 1-4 should be
Version 4.2.2.

 Step 4: Install a Programmer’s Editor
The final step is to install a programmer’s editor that supports TypeScript. Most popular editors can be used
for TypeScript development, but if you don’t have a preferred editor, then download and install Visual Studio
Code from https://code.visualstudio.com. Visual Studio Code is an open-source, cross-platform code
editor that is free to use and is the editor I used while writing the examples for this book.

If you are using Visual Studio Code, run the command code to start the editor or use the program icon
created during installation, and you will see the welcome screen shown in Figure 1-1. (You may need to add
Visual Studio Code to your command prompt path before using the code command.)

https://code.visualstudio.com

Chapter 1 ■ Your First tYpesCript appliCation

5

 ■ Tip some editors will let you specify a different version of typescript than the one contained in the project,
which can cause errors to be displayed in the code editor even when the command-line tools show successful
compilation. if you are using Visual studio Code, for example, you will see the version of typescript that is used
displayed at the bottom right of the editor window when you edit a typescript file. Click the version that is
shown, click select typescript Version, and select the version you require.

 Creating the Project
To get started with TypeScript, I am going to build a simple to-do list application. The most common use for
TypeScript is web application development, which I demonstrate for the most popular frameworks (Angular,
React, and Vue) in Part 3 of this book. But for this chapter, I build a command-line application that will keep
the focus on TypeScript and avoid the complexity of a web application framework.

The application will display a list of tasks, allow new tasks to be created, and allow existing tasks to be
marked as complete. There will also be a filter to include already completed tasks in the list. Once the core
features are in place, I will add support for storing data persistently so that changes are not lost when the
application is terminated.

Figure 1-1. The Visual Studio Code welcome screen

Chapter 1 ■ Your First tYpesCript appliCation

6

 Initializing the Project
To prepare a project folder for this chapter, open a command prompt, navigate to a convenient location, and
create a folder named todo. Run the commands shown in Listing 1-5 to navigate into the folder and initialize
it for development.

Listing 1-5. Initializing the Project Folder

cd todo
npm init --yes

The npm init command creates a package.json file, which is used to keep track of the packages
required by the project and also to configure the development tools.

 Creating the Compiler Configuration File
The TypeScript package installed in Listing 1-3 includes a compiler, named tsc, which compiles TypeScript
code to produce pure JavaScript. To define the configuration for the TypeScript compiler, create a file called
tsconfig.json in the todo folder with the content shown in Listing 1-6.

Listing 1-6. The Contents of the tsconfig.json File in the todo Folder

{
 "compilerOptions": {
 "target": "es2018",
 "outDir": "./dist",
 "rootDir": "./src",
 "module": "commonjs"
 }
}

I describe the TypeScript compiler in Chapter 5, but these settings tell the compiler that I want to use
the latest version of JavaScript, that the project’s TypeScript files will be found in the src folder, that the
output it produces should be placed in the dist folder, and that the commonjs standard should be used for
loading code from separate files.

 Adding a TypeScript Code File
TypeScript code files have the ts file extension. To add the first code file to the project, create the todo/src
folder and add to it a file called index.ts with the code shown in Listing 1-7. This file follows the popular
convention of calling the main file for an application index, followed by the ts file extension to indicate the
file contains JavaScript code.

Listing 1-7. The Contents of the index.ts File in the src Folder

console.clear();
console.log("Adam's Todo List");

Chapter 1 ■ Your First tYpesCript appliCation

7

The file contains regular JavaScript statements that use the console object to clear the command-line
window and write out a simple message, which is just enough functionality to make sure that everything is
working before starting on the application features.

 Compiling and Executing the Code
TypeScript files must be compiled to produce pure JavaScript code that can be executed by browsers or the
Node.js runtime installed at the start of this chapter. Use the command line to run the compiler in the todo
folder using the command in Listing 1-8.

Listing 1-8. Running the TypeScript Compiler

tsc

The compiler reads the configuration settings in the tsconfig.json file and locates the TypeScript files
in the src folder. The compiler creates the dist folder and uses it to write out the JavaScript code. If you
examine the dist folder, you will see that it contains an index.js file, where the js file extension indicates
the file contains JavaScript code. If you examine the contents of the index.js file, you will see that it contains
the following statements:

console.clear();
console.log("Adam's Todo List");

The TypeScript file and the JavaScript file contain the same statements because I have not yet used any
TypeScript features. As the application starts to take shape, the contents of the TypeScript file will start to
diverge from the JavaScript files that the compiler produces.

 ■ Caution Do not make changes to the files in the dist folder because they will be overwritten the next
time the compiler runs. in typescript development, changes are made to files with the ts extension, which are
compiled into Javascript files with the js extension.

To execute the compiled code, use the command prompt to run the command shown in Listing 1-9 in
the todo folder.

Listing 1-9. Executing the Compiled Code

node dist/index.js

The node command starts the Node.js JavaScript runtime, and the argument specifies the file whose
contents should be executed. If the development tools have been installed successfully, the command-
prompt window should be cleared and display the following output:

Adam's Todo List

Chapter 1 ■ Your First tYpesCript appliCation

8

 Defining the Data Model
The example application will manage a list of to-do items. The user will be able to see the list, add new items,
mark items as complete, and filter the items. In this section, I start using TypeScript to define the data model
that describes the application’s data and the operations that can be performed on it. To start, add a file called
todoItem.ts to the src folder with the code shown in Listing 1-10.

Listing 1-10. The Contents of the todoItem.ts File in the src Folder

export class TodoItem {
 public id: number;
 public task: string;
 public complete: boolean = false;

 public constructor(id: number, task: string, complete: boolean = false) {
 this.id = id;
 this.task = task;
 this.complete = complete;
 }

 public printDetails() : void {
 console.log(`${this.id}\t${this.task} ${this.complete
 ? "\t(complete)": ""}`);
 }
}

Classes are templates that describe a data type. I describe classes in detail in Chapter 4, but the code in
Listing 1-10 will look familiar to any programmer with knowledge of languages such as C# or Java, even if not
all of the details are obvious.

The class in Listing 1-10 is named TodoItem, and it defines id, task, and complete properties and
a printDetails method that writes a summary of the to-do item to the console. TypeScript is built on
JavaScript, and the code in Listing 1-10 is a mix of standard JavaScript features with enhancements that are
specific to TypeScript. JavaScript supports classes with constructors, properties, and methods, for example,
but features such as access control keywords (such as the public keyword) are provided by TypeScript. The
headline TypeScript feature is static typing, which allows the type of each property and parameter in the
TodoItem class to be specified, like this:

...
public id: number;
...

This is an example of a type annotation, and it tells the TypeScript compiler that the id property
can only be assigned values of the number type. As I explain Chapter 3, JavaScript has a fluid approach to
types, and the biggest benefit that TypeScript provides is making data types more consistent with other
programming languages while still allowing access to the normal JavaScript approach when needed.

 ■ Tip Don’t worry if you are not familiar with the way that Javascript handles data types. Chapters 3 and 4
provide details about the Javascript features you need to understand to be effective with typescript.

Chapter 1 ■ Your First tYpesCript appliCation

9

I wrote the class in Listing 1-10 to emphasize the similarity between TypeScript and languages such
as C# and Java, but this isn’t the way that TypeScript classes are usually defined. Listing 1-11 revises the
TodoItem class to use TypeScript features that allow classes to be defined concisely.

Listing 1-11. Using More Concise Code in the todoItem.ts File in the src Folder

export class TodoItem {

 constructor(public id: number,
 public task: string,
 public complete: boolean = false) {
 // no statements required
 }

 printDetails() : void {
 console.log(`${this.id}\t${this.task} ${this.complete
 ? "\t(complete)": ""}`);
 }
}

Support for static data types is only part of the broader TypeScript objective of safer and more
predictable JavaScript code. The concise syntax used for the constructor in Listing 1-11 allows the TodoItem
class to receive parameters and use them to create instance properties in a single step, avoiding the error-
prone process of defining a property and explicitly assigning it the value received by a parameter.

The change to the printDetails method removes the public access control keyword, which isn’t
needed because TypeScript assumes that all methods and properties are public unless another access level
is used. (The public keyword is still used in the constructor because that’s how the TypeScript compiler
recognizes that the concise constructor syntax is being used, as explained in Chapter 11.)

 Creating the Todo Item Collection Class
The next step is to create a class that will collect together the to-do items so they can be managed more
easily. Add a file named todoCollection.ts to the src folder with the code shown in Listing 1-12.

Listing 1-12. The Contents of the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

export class TodoCollection {
 private nextId: number = 1;

 constructor(public userName: string, public todoItems: TodoItem[] = []) {
 // no statements required
 }

 addTodo(task: string): number {
 while (this.getTodoById(this.nextId)) {
 this.nextId++;
 }
 this.todoItems.push(new TodoItem(this.nextId, task));
 return this.nextId;
 }

Chapter 1 ■ Your First tYpesCript appliCation

10

 getTodoById(id: number) : TodoItem {
 return this.todoItems.find(item => item.id === id);
 }

 markComplete(id: number, complete: boolean) {
 const todoItem = this.getTodoById(id);
 if (todoItem) {
 todoItem.complete = complete;
 }
 }
}

 Checking the Basic Data Model Features
Before going any further, I am going to make sure the initial features of the TodoCollection class work as
expected. I explain how to perform unit testing for TypeScript projects in Chapter 6, but for this chapter, it
will be enough to create some TodoItem objects and store them in a TodoCollection object. Listing 1-13
replaces the code in the index.ts file, removing the placeholder statements added at the start of the chapter.

Listing 1-13. Testing the Data Model in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List`);

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);
console.log(JSON.stringify(todoItem));

All the statements shown in Listing 1-13 use pure JavaScript features. The import statements are used
to declare dependencies on the TodoItem and TodoCollection classes, and they are part of the JavaScript
modules feature, which allows code to be defined in multiple files (described in Chapter 4). Defining an
array and using the new keyword to instantiate classes are also standard features, along with the calls to the
console object.

 ■ Note the code in listing 1-13 uses features that are recent additions to the Javascript language. as i
explain in Chapter 5, the typescript compiler makes it easy to use modern Javascript features, such as the let
keyword, even when they are not supported by the Javascript runtime that will execute the code, such as older
browsers. the Javascript features that are essential to understand for effective typescript development are
described in Chapters 3 and 4.

Chapter 1 ■ Your First tYpesCript appliCation

11

The TypeScript compiler tries to help developers without getting in the way. During compilation,
the compiler looks at the data types that are used and the type information I applied in the TodoItem and
TodoCollection classes and can infer the data types used in Listing 1-13. The result is code that doesn’t
contain any explicit static type information but that the compiler can check for type safety anyway. To see
how this works, Listing 1-14 adds a statement to the index.ts file.

Listing 1-14. Adding a Statement in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List`);

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);
todoItem.printDetails();

collection.addTodo(todoItem);

The new statement calls the TodoCollection.addTodo method using a TodoItem object as the
argument. The compiler looks at the definition of the addTodo method in the todoItem.ts file and can see
that the method expects to receive a different type of data.

...
addTodo(task: string): number {
 while (this.getTodoById(this.nextId)) {
 this.nextId++;
 }
 this.todoItems.push(new TodoItem(this.nextId, task));
 return this.nextId;
}
...

The type information for the addTodo method tells the TypeScript compiler that the task parameter
must be a string and that the result will be a number. (The string and number types are built-in JavaScript
features and are described in Chapter 3.) Run the command shown in Listing 1-15 in the todo folder to
compile the code.

Listing 1-15. Running the Compiler

tsc

Chapter 1 ■ Your First tYpesCript appliCation

12

The TypeScript compiler processes the code in the project, detects that the parameter value used to call
the addTodo method isn’t the correct data type, and produces the following error:

src/index.ts:17:20 - error TS2345: Argument of type 'TodoItem' is not assignable to
parameter of type 'string'.
17 collection.addTodo(todoItem);
                      ~~~~~~~~
Found 1 error.

TypeScript does a good job of figuring out what is going on and identifying problems, allowing you to 
add as much or as little type information as you like in a project. In this book, I tend to add type information 
to make the listings easier to follow, since many of the examples in this book are related to how the 
TypeScript compiler handles data types. Listing 1-16 adds types to the code in the index.ts file and disables 
the statement that causes the compiler error. 

Listing 1-16. Adding Type Information in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List`);

let newId: number = collection.addTodo("Go for run");
let todoItem: TodoItem = collection.getTodoById(newId);
todoItem.printDetails();

//collection.addTodo(todoItem);

The type information added to the statements in Listing 1-16 doesn’t change the way the code 
works, but it does make the data types being used explicit, which can make the purpose of code easier to 
understand and doesn’t require the compiler to infer the data types being used. Run the commands shown 
in Listing 1-17 in the todo folder to compile and execute the code.

Listing 1-17. Compiling and Executing

tsc
node dist/index.js

When the code is executed, the following output will be produced:

Adam's Todo List
5       Go for run



Chapter 1 ■ Your First tYpesCript appliCation

13

 Adding Features to the Collection Class
The next step is to add new capabilities to the TodoCollection class. First, I am going to change the way that 
TodoItem objects are stored so that a JavaScript Map is used, as shown in Listing 1-18.

Listing 1-18. Using a Map in the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();

    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }

    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }

    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }

    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }
}

TypeScript supports generic types, which are placeholders for types that are resolved when an object is 
created. The JavaScript Map, for example, is a general-purpose collection that stores key/value pairs. Because 
JavaScript has such a dynamic type system, a Map can be used to store any mix of data types using any mix 
of keys. To restrict the types that can be used with the Map in Listing 1-18, I provided generic type arguments 
that tell the TypeScript compiler which types are allowed for the keys and values.

...
private itemMap = new Map<number, TodoItem>();
...

The generic type arguments are enclosed in angle brackets (the < and > characters), and the Map in 
Listing 1-18 is given generic type arguments that tell the compiler that the Map will store TodoItem objects 
using number values as keys. The compiler will produce an error if a statement attempts to store a different 
data type in the Map or use a key that isn’t a number value. Generic types are an important TypeScript feature 
and are described in detail in Chapter 12.



Chapter 1 ■ Your First tYpesCript appliCation

14

 Providing Access to To-Do Items
The TodoCollection class defines a getTodoById method, but the application will need to display a list of 
items, optionally filtered to exclude completed tasks. Listing 1-19 adds a method that provides access to the 
TodoItem objects that the TodoCollection is managing.

Listing 1-19. Providing Access to Items in the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();

    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }

    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }

    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }

    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }

    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }
}

The getTodoItems method gets the objects from the Map using its values method and uses them to 
create an array using the JavaScript spread operator, which is three periods. The objects are processed 
using the filter method to select the objects that are required, using the includeComplete parameter to 
decide which objects are needed.

The TypeScript compiler uses the information it has been given to follow the types through each step. 
The generic type arguments used to create the Map tell the compiler that it contains TodoItem objects, so the 
compiler knows that the values method will return TodoItem objects and that this will also be the type of 
the objects in the array. Following this through, the compiler knows that the function passed to the filter 
method will be processing TodoItem objects and knows that each object will define a complete property. 



Chapter 1 ■ Your First tYpesCript appliCation

15

If I try to read a property or method not defined by the TodoItem class, the TypeScript compiler will report 
an error. Similarly, the compiler will report an error if the result of the return statement doesn’t match the 
result type declared by the method.

In Listing 1-20, I have updated the code in the index.ts file to use the new TodoCollection class 
feature and display a simple list of to-do items to the user.

Listing 1-20. Getting the Collection Items in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List`);

//collection.addTodo(todoItem);
collection.getTodoItems(true).forEach(item => item.printDetails());

The new statement calls the getTodoItems method defined in Listing 1-19 and uses the standard 
JavaScript forEach method to write a description of each TodoItem object using the console object.

Run the commands shown in Listing 1-21 in the todo folder to compile and execute the code.

Listing 1-21. Compiling and Executing

tsc
node dist/index.js

When the code is executed, the following output will be produced:

Adam's Todo List
1       Buy Flowers
2       Get Shoes
3       Collect Tickets
4       Call Joe        (complete)

 Removing Completed Tasks
As tasks are added and then marked complete, the number of items in the collection will grow and 
eventually become difficult for the user to manage. Listing 1-22 adds a method that removes the completed 
items from the collection.



Chapter 1 ■ Your First tYpesCript appliCation

16

Listing 1-22. Removing Completed Items from the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();

    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }

    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }

    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }

    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }

    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }

    removeComplete() {
        this.itemMap.forEach(item => {
            if (item.complete) {
                this.itemMap.delete(item.id);
            }
        })
    }
}

The removeComplete method uses the Map.forEach method to inspect each TodoItem stored in the Map 
and calls the delete method for those whose complete property is true. Listing 1-23 updates the code in the 
index.ts file to invoke the new method.



Chapter 1 ■ Your First tYpesCript appliCation

17

Listing 1-23. Testing Item Removal in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List`);

//collection.addTodo(todoItem);
collection.removeComplete();
collection.getTodoItems(true).forEach(item => item.printDetails());

Run the commands shown in Listing 1-24 in the todo folder to compile and execute the code.

Listing 1-24. Compiling and Executing

tsc
node dist/index.js

When the code is executed, the following output will be produced, showing that the completed task has 
been removed from the collection:

Adam's Todo List
1       Buy Flowers
2       Get Shoes
3       Collect Tickets

 Providing Item Counts
The final feature I need for the TodoCollection class is to provide counts of the total number of TodoItem 
objects, the number that are complete, and the number still outstanding.

I have focused on classes in earlier listings because this is the way that most programmers are used 
to creating data types. JavaScript objects can also be defined using literal syntax, for which TypeScript can 
check and enforce static types in the same way as for objects created from classes. When dealing with object 
literals, the TypeScript compiler focuses on the combination of property names and the types of their values, 
which is known as an object’s shape. A specific combination of names and types is known as a shape type. 
Listing 1-25 adds a method to the TodoCollection class that returns an object that describes the items in the 
collection. 



Chapter 1 ■ Your First tYpesCript appliCation

18

Listing 1-25. Using a Shape Type in the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

type ItemCounts = {
    total: number,
    incomplete: number
}

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();

    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }

    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }

    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }

    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }

    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }

    removeComplete() {
        this.itemMap.forEach(item => {
            if (item.complete) {
                this.itemMap.delete(item.id);
            }
        })
    }



Chapter 1 ■ Your First tYpesCript appliCation

19

    getItemCounts(): ItemCounts {
        return {
            total: this.itemMap.size,
            incomplete: this.getTodoItems(false).length
        };
    }
}

The type keyword is used to create a type alias, which is a convenient way to assign a name to a shape 
type. The type alias in Listing 1-25 describes objects that have two number properties, named total and 
incomplete. The type alias is used as the result of the getItemCounts method, which uses the JavaScript 
object literal syntax to create an object whose shape matches the type alias. Listing 1-26 updates the index.
ts file so that the number of incomplete items is displayed to the user. 

Listing 1-26. Displaying Item Counts in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log(`${collection.userName}'s Todo List `
    + `(${ collection.getItemCounts().incomplete } items to do)`);
collection.getTodoItems(true).forEach(item => item.printDetails());

Run the commands shown in Listing 1-27 in the todo folder to compile and execute the code.

Listing 1-27. Compiling and Executing

tsc
node dist/index.js

When the code is executed, the following output will be produced:

Adam's Todo List (3 items to do)
1       Buy Flowers
2       Get Shoes
3       Collect Tickets
4       Call Joe        (complete)



Chapter 1 ■ Your First tYpesCript appliCation

20

 Using a Third-Party Package
One of the joys of writing JavaScript code is the ecosystem of packages that can be incorporated into 
projects. TypeScript allows any JavaScript package to be used but with the addition of static type support. I 
am going to use the excellent Inquirer.js package (https://github.com/SBoudrias/Inquirer.js) to deal 
with prompting the user for commands and processing responses. To add Inquirer.js to the project, run the 
command shown in Listing 1-28 in the todo folder.

Listing 1-28. Adding a Package to the Project

npm install inquirer@7.3.3

Packages are added to TypeScript projects just as they are for pure JavaScript projects, using the npm 
install command. To get started with the new package, I added the statements shown in Listing 1-29 to the 
index.ts file.

Listing 1-29. Using a New Package in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

function displayTodoList(): void {
    console.log(`${collection.userName}'s Todo List `
        + `(${ collection.getItemCounts().incomplete } items to do)`);
    collection.getTodoItems(true).forEach(item => item.printDetails());
}

enum Commands {
    Quit = "Quit"
}

function promptUser(): void {
    console.clear();
    displayTodoList();
    inquirer.prompt({
            type: "list",
            name: "command",
            message: "Choose option",
            choices: Object.values(Commands)
    }).then(answers => {

https://github.com/SBoudrias/Inquirer.js


Chapter 1 ■ Your First tYpesCript appliCation

21

        if (answers["command"] !== Commands.Quit) {
            promptUser();
        }
    })
}

promptUser();

TypeScript doesn’t get in the way of using JavaScript code, and the changes in Listing 1-29 make use 
of the Inquirer.js package to prompt the user and offer a choice of commands. There is only one command 
available currently, which is Quit, but I’ll add more useful features shortly.

 ■ Tip i don’t describe the inquirer.js api in detail in this book because it is not directly related to typescript. 
see https://github.com/SBoudrias/Inquirer.js for details if you want to use inquirer.js in your own 
projects.

The inquirer.prompt method is used to prompt the user for a response and is configured using a 
JavaScript object. The configuration options I have chosen present the user with a list that can be navigated 
using the arrow keys, and a selection can be made by pressing Return. When the user makes a selection, the 
function passed to the then method is invoked, and the selection is available through the answers.command 
property.

Listing 1-29 shows how TypeScript code and the JavaScript code from the Inquirer.js package can be 
used seamlessly together. The enum keyword is a TypeScript feature that allows values to be given names, 
as described in Chapter 9, and will allow me to define and refer to commands without needing to duplicate 
string values through the application. Values from the enum are used alongside the Inquirer.js features, like 
this:

...
if (answers["command"] !== Commands.Quit) {
...

Run the commands shown in Listing 1-30 in the todo folder to compile and execute the code.

Listing 1-30. Compiling and Executing

tsc
node dist/index.js

When the code is executed, the list of to-do items will be displayed, along with a prompt to select a 
command, as shown in Figure 1-2, although there is only one command available.

https://github.com/SBoudrias/Inquirer.js


Chapter 1 ■ Your First tYpesCript appliCation

22

If you press the Return key, the Quit command will be selected, and the application will terminate.

 Adding Type Declarations for the JavaScript Package
TypeScript doesn’t prevent JavaScript code from being used, but it isn’t able to provide any assistance for its 
use. The compiler doesn’t have any insight into the data types that are being used by Inquirer.js and has to 
trust that I am using the right types of arguments to prompt the user and that I am processing the response 
objects safely. 

There are two ways to provide TypeScript with the information that it requires for static typing. The 
first approach is to describe the types yourself. I cover the features that TypeScript provides for describing 
JavaScript code in Chapter 14. Manually describing JavaScript code isn’t difficult, but it does take some time 
and requires good knowledge of the code you are describing.

The second approach is to use type declarations provided by someone else. The Definitely Typed 
project is a repository of TypeScript type declarations for thousands of JavaScript packages, including the 
Inquirer.js package. To install the type declarations, run the command shown in Listing 1-31 in the todo 
folder.

Listing 1-31. Installing Type Definitions

npm install --save-dev @types/inquirer

Type declarations are installed using the npm install command, just like JavaScript packages. 
The save-dev argument is used for packages that are used in development but that are not part of the 
application. The package name is @types/ followed by the name of the package for which type descriptions 
are required. For the Inquirer.js package, the type declarations package is @types/inquirer because 
inquirer is the name used to install the JavaScript package.

 ■ Note see https://github.com/DefinitelyTyped/DefinitelyTyped for the details of the Definitely 
typed project and the packages for which type declarations are available.

Figure 1-2. Prompting the user for a command

https://github.com/DefinitelyTyped/DefinitelyTyped


Chapter 1 ■ Your First tYpesCript appliCation

23

The TypeScript compiler detects type declarations automatically, and the command in Listing 1-31 
allows the compiler to check the data types used by the Inquirer.js API. To demonstrate the effect of the type 
declarations, Listing 1-32 uses a configuration property that isn’t supported by Inquirer.js.

Listing 1-32. Adding a Property in the index.ts File in the src Folder

...
function promptUser(): void {
    console.clear();
    inquirer.prompt({
            type: "list",
            name: "command",
            message: "Choose option",
            choices: Object.values(Commands),
            badProperty: true
    }).then(answers => {
        // no action required
        if (answers["command"] !== Commands.Quit) {
            promptUser();
        }
    })
}
...

There is no configuration property named badProperty in the Inquirer.js API. Run the command shown 
in Listing 1-33 in the todo folder to compile the code in the project.

Listing 1-33. Running the Compiler

tsc

The compiler uses the type information installed in Listing 1-31 and reports the following error:

src/index.ts:25:13 - error TS2322: Type '"list"' is not assignable to type '"number"'.

25             type: "list",
               ~~~~
Found 1 error.

The type declaration allows TypeScript to provide the same set of features throughout the application,
even though the Inquirer.js package is written in pure JavaScript and not TypeScript. However, as this
example shows, there can be limitations to this feature, and the addition of a property that isn’t supported
has produced an error about the value assigned to the type property. This happens because it can be
difficult to describe the types that pure JavaScript expects, and sometimes the error messages can be more of
a general indication that something is wrong.

Chapter 1 ■ Your First tYpesCript appliCation

24

 Adding Commands
The example application doesn’t do a great deal at the moment and requires additional commands. In the
sections that follow, I add a series of new commands and provide the implementation for each of them.

 Filtering Items
The first command I will add allows the user to toggle the filter to include or exclude completed items, as
shown in Listing 1-34.

Listing 1-34. Filtering Items in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
 console.log(`${collection.userName}'s Todo List `
 + `(${ collection.getItemCounts().incomplete } items to do)`);
 collection.getTodoItems(showCompleted).forEach(item => item.printDetails());
}

enum Commands {
 Toggle = "Show/Hide Completed",
 Quit = "Quit"
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 //badProperty: true
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;
 promptUser();

Chapter 1 ■ Your First tYpesCript appliCation

25

 break;
 }
 })
}

promptUser();

The process for adding commands is to define a new value for the Commands enum and the statements
that respond when the command is selected. In this case, the new value is Toggle, and when it is selected,
the value of the showCompleted variable is changed so that the displayTodoList function includes or
excludes completed items. Run the commands shown in Listing 1-35 in the todo folder to compile and
execute the code.

Listing 1-35. Compiling and Executing

tsc
node dist/index.js

Select the Show/Hide Completed option and press Return to toggle the completed tasks in the list, as
shown in Figure 1-3.

 Adding Tasks
The example application isn’t much use unless the user can create new tasks. Listing 1-36 adds support for
creating new TodoItem objects.

Listing 1-36. Adding Tasks in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

Figure 1-3. Toggling completed items

Chapter 1 ■ Your First tYpesCript appliCation

26

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
 console.log(`${collection.userName}'s Todo List `
 + `(${ collection.getItemCounts().incomplete } items to do)`);
 collection.getTodoItems(showCompleted).forEach(item => item.printDetails());
}

enum Commands {
 Add = "Add New Task",
 Toggle = "Show/Hide Completed",
 Quit = "Quit"
}

function promptAdd(): void {
 console.clear();
 inquirer.prompt({ type: "input", name: "add", message: "Enter task:"})
 .then(answers => {if (answers["add"] !== "") {
 collection.addTodo(answers["add"]);
 }
 promptUser();
 })
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;
 promptUser();
 break;
 case Commands.Add:
 promptAdd();
 break;
 }
 })
}

promptUser();

Chapter 1 ■ Your First tYpesCript appliCation

27

The Inquirer.js package can present different types of questions to the user. When the user selects the
Add command, the input question type is used to get the task from the user, which is used as the argument
to the TodoCollection.addTodo method. Run the commands shown in Listing 1-37 in the todo folder to
compile and execute the code.

Listing 1-37. Compiling and Executing

tsc
node dist/index.js

Select the Add New Task option, enter some text, and press Return to create a new task, as shown in
Figure 1-4.

 Marking Tasks Complete
Completing a task is a two-stage process that requires the user to select the item they want to complete.
Listing 1-38 adds the commands and an additional prompt that will allow the user to mark tasks complete
and to remove the completed items.

Listing 1-38. Completing Items in the index.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

Figure 1-4. Adding a new task

Chapter 1 ■ Your First tYpesCript appliCation

28

function displayTodoList(): void {
 console.log(`${collection.userName}'s Todo List `
 + `(${ collection.getItemCounts().incomplete } items to do)`);
 collection.getTodoItems(showCompleted).forEach(item => item.printDetails());
}

enum Commands {
 Add = "Add New Task",
 Complete = "Complete Task",
 Toggle = "Show/Hide Completed",
 Purge = "Remove Completed Tasks",
 Quit = "Quit"
}

function promptAdd(): void {
 console.clear();
 inquirer.prompt({ type: "input", name: "add", message: "Enter task:"})
 .then(answers => {if (answers["add"] !== "") {
 collection.addTodo(answers["add"]);
 }
 promptUser();
 })
}

function promptComplete(): void {
 console.clear();
 inquirer.prompt({ type: "checkbox", name: "complete",
 message: "Mark Tasks Complete",
 choices: collection.getTodoItems(showCompleted).map(item =>
 ({name: item.task, value: item.id, checked: item.complete}))
 }).then(answers => {
 let completedTasks = answers["complete"] as number[];
 collection.getTodoItems(true).forEach(item =>
 collection.markComplete(item.id,
 completedTasks.find(id => id === item.id) != undefined));
 promptUser();
 })
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;

Chapter 1 ■ Your First tYpesCript appliCation

29

 promptUser();
 break;
 case Commands.Add:
 promptAdd();
 break;
 case Commands.Complete:
 if (collection.getItemCounts().incomplete > 0) {
 promptComplete();
 } else {
 promptUser();
 }
 break;
 case Commands.Purge:
 collection.removeComplete();
 promptUser();
 break;
 }
 })
}

promptUser();

The changes add a new prompt to the application that presents the user with the list of tasks and allows
their state to be changed. The showCompleted variable is used to determine whether completed items are
shown, creating a link between the Toggle and Complete commands.

The only new TypeScript feature of note is found in this statement:

...
let completedTasks = answers["complete"] as number[];
...

Even with type definitions, there are times when TypeScript isn’t able to correctly assess the types that
are being used. In this case, the Inquirer.js package allows any data type to be used in the prompts shown
to the user, and the compiler isn’t able to determine that I have used only number values, which means that
only number values can be received as answers. I used a type assertion to address this problem, which allows
me to tell the compiler to use the type that I specify, even if it has identified a different data type (or no data
type at all). When a type assertion is used, it overrides the compiler, which means that I am responsible
for ensuring that the type I assert is correct. Run the commands shown in Listing 1-39 in the todo folder to
compile and execute the code.

Listing 1-39. Compiling and Executing

tsc
node dist/index.js

Select the Complete Task option, select one or more tasks to change using the spacebar, and then press
Return. The state of the tasks you selected will be changed, which will be reflected in the revised list, as
shown in Figure 1-5.

Chapter 1 ■ Your First tYpesCript appliCation

30

 Persistently Storing Data
To store the to-do items persistently, I am going to use another open-source package because there is no
advantage in creating functionality when there are well-written and well-tested alternatives available. Run
the commands shown in Listing 1-40 in the todo folder to install the Lowdb package and the type definitions
that describe its API to TypeScript.

Listing 1-40. Adding a Package and Type Definitions

npm install lowdb@1.0.0

npm install --save-dev @types/lowdb

Lowdb is an excellent database package that stores data in a JSON file and that is used as the data
storage component for the json-server package, which I use to create HTTP web services in Part 3 of this
book.

 ■ Tip i don’t describe the lowdb api in detail in this book because it is not directly related to typescript. see
https://github.com/typicode/lowdb for details if you want to use lowdb in your own projects.

I am going to implement persistent storage by deriving from the TodoCollection class. In preparation, I
changed the access control keyword used by the TodoCollection class so that subclasses can access the Map
that contains the TodoItem objects, as shown in Listing 1-41.

Listing 1-41. Changing Access Control in the todoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";

type ItemCounts = {
 total: number,
 incomplete: number
}

Figure 1-5. Completing items

https://github.com/typicode/lowdb

Chapter 1 ■ Your First tYpesCript appliCation

31

export class TodoCollection {
 private nextId: number = 1;
 protected itemMap = new Map<number, TodoItem>();

 constructor(public userName: string, todoItems: TodoItem[] = []) {
 todoItems.forEach(item => this.itemMap.set(item.id, item));
 }

 // ...methods omitted for brevity...
}

The protected keyword tells the TypeScript compiler that a property can be accessed only by a class or
its subclasses. To create the subclass, I added a file called jsonTodoCollection.ts to the src folder with the
code shown in Listing 1-42.

Listing 1-42. The Contents of the jsonTodoCollection.ts File in the src Folder

import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as lowdb from "lowdb";
import * as FileSync from "lowdb/adapters/FileSync";

type schemaType = {
 tasks: { id: number; task: string; complete: boolean; }[]
};

export class JsonTodoCollection extends TodoCollection {
 private database: lowdb.LowdbSync<schemaType>;

 constructor(public userName: string, todoItems: TodoItem[] = []) {
 super(userName, []);
 this.database = lowdb(new FileSync("Todos.json"));
 if (this.database.has("tasks").value()) {
 let dbItems = this.database.get("tasks").value();
 dbItems.forEach(item => this.itemMap.set(item.id,
 new TodoItem(item.id, item.task, item.complete)));
 } else {
 this.database.set("tasks", todoItems).write();
 todoItems.forEach(item => this.itemMap.set(item.id, item));
 }
 }

 addTodo(task: string): number {
 let result = super.addTodo(task);
 this.storeTasks();
 return result;
 }

 markComplete(id: number, complete: boolean): void {
 super.markComplete(id, complete);
 this.storeTasks();
 }

Chapter 1 ■ Your First tYpesCript appliCation

32

 removeComplete(): void {
 super.removeComplete();
 this.storeTasks();
 }

 private storeTasks() {
 this.database.set("tasks", [...this.itemMap.values()]).write();
 }
}

The type definition for Lowdb uses a schema to describe the structure of the data that will be stored,
which is then applied using generic type arguments so that the TypeScript compiler can check the data types
being used. For the example application, I need to store only one data type, which I describe using a type
alias.

...
type schemaType = {
 tasks: { id: number; task: string; complete: boolean; }[]
};
...

The schema type is used when the Lowdb database is created, and the compiler can check the way that
data is used when it is read from the database as in this statement, for example:

...
let dbItems = this.database.get("tasks").value();
...

The compiler knows that the tasks argument corresponds to the tasks property in the schema type
and that the get operation will return an array of objects with id, task, and complete properties.

 Applying the Persistent Collection Class
Listing 1-43 uses the JsonTodoCollection class in the index.ts file so that data will be stored persistently by
the example application.

Listing 1-43. Using the Persistent Collection in the index.ts File in the src Folder

...
import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";
import * as inquirer from 'inquirer';
import { JsonTodoCollection } from "./jsonTodoCollection";

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new JsonTodoCollection("Adam", todos);
let showCompleted = true;
...

Chapter 1 ■ Your First tYpesCript appliCation

33

Run the commands shown in Listing 1-44 in the todo folder to compile and execute the code for the
final time in this chapter.

Listing 1-44. Compiling and Executing

tsc
node dist/index.js

When the application starts, a file called Todos.json will be created in the todo folder and used to store
a JSON representation of the TodoItem objects, ensuring that changes are not lost when the application is
terminated.

 Summary
In this chapter, I created a simple example application to introduce you to TypeScript development
and demonstrate some important TypeScript concepts. You saw that TypeScript provides features that
supplement JavaScript, focus on type safety, and help avoid common patterns that trip up developers,
especially those coming to JavaScript from languages such as C# or Java.

You saw that TypeScript isn’t used in isolation and that a JavaScript runtime is required to execute
the JavaScript code that the TypeScript compiler produces. The advantage of this approach is that projects
written with TypeScript have full access to the broad spectrum of JavaScript packages that are available,
many of which have type definitions available for easy use.

The application I created in this chapter uses some of the most essential TypeScript features, but there
are many more available, as you can tell from the size of this book. In the next chapter, I put TypeScript in
context and describe the structure and content of this book.

35© Adam Freeman 2021
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_2

CHAPTER 2

Understanding TypeScript

TypeScript is a superset of the JavaScript language that focuses on producing safe and predictable code that
can be executed by any JavaScript runtime. Its headline feature is static typing, which makes working with
JavaScript more predictable for programmers familiar with languages such as C# and Java. In this book, I
explain what TypeScript does and describe the different features it provides.

THIS BOOK AND THE TYPESCRIPT RELEASE SCHEDULE

The TypeScript team makes frequent releases, which means there is an ongoing stream of fixes and
features. It doesn’t seem fair or reasonable to ask you to buy a new edition of this book every few
months, especially since most TypeScript features are unlikely to change even in a major release.
Instead, I am going to post updates following the major releases to the GitHub repository for this book,
https://github.com/Apress/essential- typescript- 4.

This is an ongoing experiment for me (and for Apress), and I don’t yet know what form those updates
may take—not least because I don’t know what the major releases of TypeScript will contain—but the
goal is to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how long
I will produce them before folding them into a new edition of this book. Please keep an open mind and
check the repository for this book when new TypeScript versions are released. If you have ideas about
how the updates could be improved, then email me at adam@adam-freeman.com and let me know.

 Should You Use TypeScript?
TypeScript isn’t the solution to every problem, and it is important to know when you should use TypeScript
and when it will simply get in the way. In the sections that follow, I describe the high-level features that
TypeScript provides and the situations in which they can be helpful.

 Understanding the TypeScript Developer Productivity Features
TypeScript’s headline features are focused on developer productivity, especially through the use of static
types, which help make the JavaScript type system easier to work with. Other productivity features, such as
access control keywords and a concise class constructor syntax, help prevent common coding errors.

https://doi.org/10.1007/978-1-4842-7011-0_2#DOI
https://github.com/Apress/essential-typescript-4

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

36

The TypeScript productivity features are applied to JavaScript code. As Chapter 1 demonstrated, the
TypeScript package includes a compiler that processes TypeScript files and produces pure JavaScript that
can be executed by a JavaScript runtime, such as Node.js or a browser, as shown in Figure 2-1.

The combination of JavaScript and TypeScript features retains much of the flexible and dynamic nature
of JavaScript while constraining the use of data types so they are familiar and more predictable for most
developers. It also means that projects that use TypeScript can still make use of the wide range of third-
party JavaScript packages that are available, either to provide specific features (such as the command-line
prompts in Chapter 1) or to embrace complete frameworks for app development (such as the React, Angular,
and Vue.js frameworks described in Part 3).

TypeScript features can be applied selectively, which means you can use only those features useful
for a specific project. If you are new to TypeScript and JavaScript, you are likely to start by using all of the
TypeScript features. As you become more experienced and your depth of knowledge increases, you will find
yourself using TypeScript with more focus and applying its features just to the parts of your code that are
especially complex or that you expect to cause problems.

 Understanding the Limitations of the Productivity Features
Some TypeScript features are implemented entirely by the compiler and leave no trace in the JavaScript
code that is executed when the application runs. Other features are implemented by building on standard
JavaScript and performing additional checks during compilation. This means you often have to understand
how a feature works and how it is implemented to get the best results, which can make TypeScript features
seem inconsistent and arcane.

More broadly, TypeScript enhances JavaScript, but the result is still JavaScript, and development in a
TypeScript project is largely a process of writing JavaScript code. Some developers adopt TypeScript because
they want to write web applications without learning how JavaScript works. They see that TypeScript
is produced by Microsoft and assume that TypeScript is C# or Java for web development, which is an
assumption that leads to confusion and frustration.

Effective TypeScript requires a good knowledge of JavaScript and the reasons it behaves as it does.
Chapters 3 and 4 describe the JavaScript features you need to understand to get the best out of TypeScript
and provide a solid foundation for understanding why TypeScript is such a powerful tool.

If you are willing to understand the JavaScript type system, then you will find TypeScript a pleasure
to use. But if you are not willing to invest the time to become competent in JavaScript, then you should
not use TypeScript. Adding TypeScript to a project when you don’t have any JavaScript knowledge makes
development more difficult because you will have two sets of language features to wrangle, neither of which
will behave exactly as you expect.

Figure 2-1. The TypeScript transformation to JavaScript code

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

37

 Understanding the JavaScript Version Features
JavaScript has had a turbulent history but has recently become the focus of a concerted standardization
and modernization effort, introducing new features that make JavaScript easier to use. The problem is
that there are still lots of JavaScript runtimes that don’t support these modern features, especially older
browsers, which constrains JavaScript development to the small set of language features that are universally
supported. JavaScript can be a challenging language to master, and this is made worse when the features
intended to make development easier cannot be used.

The TypeScript compiler can transform JavaScript code written using modern features into code that
conforms to older versions of the JavaScript language. This allows recent JavaScript features to be used with
TypeScript during development while allowing older JavaScript runtimes to execute the code that the project
produces.

 Understanding the Limitations of the Version Features
The TypeScript compiler does a good job of dealing with most language features, but some features can’t
be translated effectively for older runtimes. If the earliest versions of JavaScript are your target, you will find
that not all modern JavaScript features can be used during development because the TypeScript compiler
doesn’t have the means to represent them in legacy JavaScript.

That said, the need to generate legacy JavaScript code isn’t important in all projects because the
TypeScript compiler is just one part of an extended toolchain. The TypeScript compiler is responsible for
applying the TypeScript features, but the result is modern JavaScript code that is further processed by other
tools. This approach is commonly used in web application development, and you will see examples in Part 3.

 What Do You Need to Know?
If you decide that TypeScript is the right choice for your project, then you should be familiar with using data
types in development and understand the basic JavaScript features. Don’t worry if you do not understand
how JavaScript deals with data types, however, because I provide a primer for all the JavaScript features
that are useful to understand TypeScript in Chapters 3 and 4. In Part 3 of this book, I demonstrate how
TypeScript can be used with popular web application development frameworks, and knowledge of HTML
and CSS is required for these examples.

 How Do You Set Up Your Development Environment?
The only development tools needed for TypeScript development are the ones you installed in Chapter 1
when you created your first application. Some later chapters require additional packages, but full
instructions are provided. If you successfully built the application in Chapter 1, then you are set for
TypeScript development and the rest of the chapters in this book.

 What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

• Part 1, “Getting Started with TypeScript”: Part 1 of this book provides the information
you need to get started with TypeScript development. It includes Chapter 1, this
chapter, and a primer chapter for the data type features provided by JavaScript.
Chapters 5 and 6 introduce the TypeScript development tools.

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

38

• Part 2, “Understanding TypeScript”: Part 2 of this book covers the TypeScript features
for developer productivity, including static types. TypeScript provides a lot of
different type features, which I describe in-depth and demonstrate with examples.

• Part 3, “Creating Applications with TypeScript”: TypeScript isn’t used on its own,
so Part 3 of this book shows you how to use TypeScript to create web applications
using three popular frameworks: React, Angular, and Vue.js. These chapters explain
the TypeScript features that are useful for each framework and demonstrate how to
achieve tasks commonly required during web application development. To provide
the foundation for understanding what these frameworks do, I also show you how
to create a stand-alone web application that doesn’t rely on a web application
framework.

 Are There Lots of Examples?
There are loads of examples. The best way to learn TypeScript is by example, and I have packed as many
of them into this book as I can. To maximize the number of examples in this book, I have adopted a simple
convention to avoid listing the same code or content repeatedly. When I create a file, I will show its full
contents, just as I have in Listing 2-1. I include the name of the file and its folder in the listing’s header, and I
show the changes that I have made in bold.

Listing 2-1. Asserting an Unknown Value in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
 const calcAmount = amount * 1.2;
 return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {
 case "number":
 console.log(`Number Value: ${taxValue.toFixed(2)}`);
 break;
 case "string":
 console.log(`String Value: ${taxValue.charAt(0)}`);
 break;
 default:
 let value: never = taxValue;
 console.log(`Unexpected type for value: ${value}`);
}

let newResult: unknown = calculateTax(200, false);
let myNumber: number = newResult as number;
console.log(`Number value: ${myNumber.toFixed(2)}`);

This is a listing from Chapter 7, which shows the contents of a file called index.ts that can be found in
the src folder. Don’t worry about the content of the listing or the purpose of the file; just be aware that this
type of listing contains the complete contents of a file and that the changes you need to make to follow the
example are shown in bold.

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

39

Some code files become long, and the feature I am describing requires only a small change. Rather than
list the complete file, I use an ellipsis (three periods in series) to indicate a partial listing, which shows just a
portion of the file, as shown in Listing 2-2.

Listing 2-2. Configuring Tools in the package.json File in the reactapp Folder

...
"scripts": {
 "json": "json-server data.js -p 4600",
 "serve": "react-scripts start",
 "start": "npm-run-all -p serve json",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
},
...

This is a listing from Chapter 19, and it shows a set of changes applied to one part of a larger file. When
you see a partial listing, you will know that the rest of the file does not have to change and that only the
sections marked in bold are different.

In some cases, changes are required in different parts of a file, which makes it difficult to show as a
partial listing. In this situation, I omit part of the file’s contents, as shown in Listing 2-3.

Listing 2-3. Applying a Decorator in the abstractDataSource.ts File in the src Folder

import { Product, Order } from "./entities";
import { minimumValue } from "../decorators";

export type ProductProp = keyof Product;

export abstract class AbstractDataSource {
 private _products: Product[];
 private _categories: Set<string>;
 public order: Order;
 public loading: Promise<void>;

 constructor() {
 this._products = [];
 this._categories = new Set<string>();
 this.order = new Order();
 this.loading = this.getData();
 }

 @minimumValue("price", 30)
 async getProducts(sortProp: ProductProp = "id",
 category? : string): Promise<Product[]> {
 await this.loading;
 return this.selectProducts(this._products, sortProp, category);
 }

 // ...other methods omitted for brevity...
}

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

40

In this listing from Chapter 16, the changes are still marked in bold, and the parts of the file that are
omitted from the listing are not affected by this example.

 Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/Apress/
essential- typescript- 4. The download is available without charge and contains everything that you need
to follow the examples without having to type in all of the code.

 What If You Have Problems Following the Examples?
The first thing to do is to go back to the start of the chapter and begin over. Most problems are caused by
accidentally skipping a step or not fully applying the changes shown in a listing. Pay close attention to the
emphasis in code listings, which highlights the changes that are required.

Next, check the errata/corrections list, which is included in the book’s GitHub repository. Technical
books are complex, and mistakes are inevitable, despite my best efforts and those of my editors. Check the
errata list for the list of known errors and instructions to resolve them.

If you still have problems, then download the project for the chapter you are reading from the book’s
GitHub repository, https://github.com/Apress/essential- typescript- 4, and compare it to your project.
I create the code for the GitHub repository by working through each chapter, so you should have the same
files with the same contents in your project.

If you still can’t get the examples working, then you can contact me at adam@adam-freeman.com for help.
Please make it clear in your email which book you are reading, and which chapter/example is causing the
problem. A page number or code listing is always helpful. Please remember that I get a lot of emails and that
I may not respond immediately.

 What If You Find an Error in the Book?
You can report errors to me by email at adam@adam-freeman.com, although I ask that you first check the
errata/corrections list for this book, which you can find in the book’s GitHub repository at https://github.
com/Apress/essential- typescript- 4, in case it has already been reported.

I add errors that are likely to confuse readers, especially problems with example code, to the errata/
corrections file on the GitHub repository, with a grateful acknowledgment to the first reader who reported
it. I keep a list of less serious issues, which usually means errors in the text surrounding examples, and I use
them when I write a new edition.

 How Do You Contact the Author?
You can email me at adam@adam-freeman.com. It has been a few years since I started publishing an email
address in my books. I wasn’t entirely sure that it was a good idea, but I am glad that I did it. I have received
emails from around the world, from readers working or studying in every industry, and—for the most part,
anyway—the emails are positive, polite, and a pleasure to receive.

I try to reply promptly, but I get many emails, and sometimes I get a backlog, especially when I have my
head down trying to finish writing a book. I always try to help readers who are stuck with an example in the
book, although I ask that you follow the steps described earlier in this chapter before contacting me.

https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4

CHAPTer 2 ■ UnderSTAndInG TyPeSCrIPT

41

While I welcome reader emails, there are some common questions for which the answers will always be
“no.” I am afraid that I won’t write the code for your new startup, help you with your college assignment, get
involved in your development team’s design dispute, or teach you how to program.

 What If You Really Enjoyed This Book?
Please email me at adam@adam-freeman.com and let me know. It is always a delight to hear from a happy
reader, and I appreciate the time it takes to send those emails. Writing these books can be difficult, and those
emails provide essential motivation to persist at an activity that can sometimes feel impossible.

 What If This Book Has Made You Angry and You Want
to Complain?
You can still email me at adam@adam-freeman.com, and I will still try to help you. Bear in mind that I can help
only if you explain what the problem is and what you would like me to do about it. You should understand
that sometimes the only outcome is to accept I am not the writer for you and that we will have closure only
when you return this book and select another. I’ll give careful thought to whatever has upset you, but after 25
years of writing books, I have come to accept that not everyone enjoys reading the books I like to write.

 Summary
In this chapter, I explained when TypeScript is a good choice for projects. I also outlined the content and
structure of this book, explained where to get the source code, and talked about how to contact me if you
have problems with the examples in this book. In the next chapter, I give you a primer for the JavaScript type
system, which provides the underpinnings for the features of TypeScript.

43© Adam Freeman 2021
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_3

CHAPTER 3

JavaScript Primer, Part 1

Effective TypeScript development requires an understanding of how JavaScript deals with data types. This
can be a disappointment to developers who adopt TypeScript because they found JavaScript confusing, but
understanding JavaScript makes understanding TypeScript easier and provides valuable insights into what
TypeScript offers and how its features work. In this chapter, I introduce the basic JavaScript type features,
continuing with more advanced features in Chapter 4.

 Preparing for This Chapter
To prepare for this chapter, create a folder called primer in a convenient location. Open a command prompt,
navigate to the primer folder, and run the command shown in Listing 3-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/essential- typescript- 4.

Listing 3-1. Preparing the Project Folder

npm init --yes

To install a package that will automatically execute the JavaScript file when its contents change, run the
command shown in Listing 3-2 in the primer folder.

Listing 3-2. Installing a Package

npm install nodemon@2.0.7

The package, called nodemon, will be downloaded and installed. Once the installation is complete,
create a file called index.js in the primer folder with the contents shown in Listing 3-3.

https://doi.org/10.1007/978-1-4842-7011-0_3#DOI
https://github.com/Apress/essential-typescript-4

Chapter 3 ■ JavaSCript primer, part 1

44

Listing 3-3. The Contents of the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);

Run the command shown in Listing 3-4 to execute the contents of the JavaScript file and monitor it for
changes.

Listing 3-4. Starting the JavaScript File Monitor

npx nodemon index.js

The nodemon package will execute the contents of the index.js file and produce the following output:

[nodemon] 1.18.10
[nodemon] to restart at any time, enter `rs`
[nodemon] watching: *.*
[nodemon] starting `node index.js`
Hat price: 100
[nodemon] clean exit - waiting for changes before restart

I have highlighted the part of the output that comes from the index.js file. To ensure that changes are
detected correctly, alter the contents of the index.js file as shown in Listing 3-5.

Listing 3-5. Making a Change in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

When you save the changes, the nodemon package should detect that the index.js file has been
modified and execute the code it contains. The code in Listing 3-5 produces the following output, which is
shown without the information provided by the nodemon package:

Hat price: 100
Boots price: 100

 Getting Confused by JavaScript
JavaScript has many features that are similar to other programming languages, and developers tend to start
with code that looks like the statements in Listing 3-5. Even if you are new to JavaScript, the statements in
Listing 3-5 will be familiar.

The building blocks for JavaScript code are statements, which are executed in the order they are
defined. The let keyword is used to define variables (as opposed to the const keyword, which defines
constant values) followed by a name. The value of a variable is set using the assignment operator (the equal
sign) followed by a value.

Chapter 3 ■ JavaSCript primer, part 1

45

JavaScript provides some built-in objects to perform common tasks, such as writing strings to the
command prompt with the console.log method. Strings can be defined as literal values, using single or
double quotes, or as template strings, using backtick characters and inserting expressions into the template
using the dollar sign and braces.

But at some point, unexpected results appear. The cause of the confusion is the way that JavaScript
deals with types. Listing 3-6 shows a typical problem.

Listing 3-6. Adding Statements in the index.ts File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice == bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = hatPrice + bootsPrice;
console.log(`Total Price: ${totalPrice}`);

The new statements compare the values of the hatPrice and bootsPrice variables and assign their total
to a new variable named totalPrice. The console.log method is used to write messages to the command
prompt and produces the following output when the code is executed:

Hat price: 100
Boots price: 100
Prices are the same
Total Price: 100100

Most developers will notice that the value for hatPrice has been expressed as a number, while the
bootsPrice value is a string of characters, enclosed in double quotes. But in most languages, performing
operations on different types would be an error. JavaScript is different; comparing a string and a number
succeeds, but trying to total the values actually concatenates them. Understanding the results from
Listing 3-6—and the reasons behind them—reveals the details of how JavaScript approaches data types and
why TypeScript can be so helpful.

 Understanding JavaScript Types
It can seem that JavaScript doesn’t have data types or that types are used inconsistently, but that’s not true.
JavaScript just works differently than most popular programming languages, and it only seems to behave
inconsistently until you know what to expect. The foundation for the JavaScript language is a set of built-in
types, which are described in Table 3-1.

Chapter 3 ■ JavaSCript primer, part 1

46

The first six types in the table are the JavaScript primitive data types. The primitive types are always
available, and every value in a JavaScript application either is a primitive type itself or is composed from
primitive types. The sixth type is object and is used to represent objects.

 Working with Primitive Data Types
If you look back at Listing 3-6, you will see that there are no types declared in the code. In other languages,
you are required to declare the data type of a variable before it can be used, like this fragment of code from
one of my C# books:

...
string name = "Adam";
...

This statement specifies that the type of the name variable is a string and assigns it the value Adam. In
JavaScript, values have types, not variables. To define a variable that holds a string, you assign a string value,
as shown in Listing 3-7.

Listing 3-7. Creating a String Variable in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice == bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = hatPrice + bootsPrice;
console.log(`Total Price: ${totalPrice}`);

let myVariable = "Adam";

Table 3-1. The JavaScript Built-in Types

Name Description
number This type is used to represent numeric values. Unlike other programming languages, JavaScript

doesn’t differentiate between integer and floating-point values, both of which can be
represented using this type.

string This type is used to represent text data.

boolean This type can have true and false values.

symbol This type is used to represent unique constant values, such as keys in collections.

null This type can be assigned only the value null and is used to indicate a nonexistent or invalid
reference.

undefined This type is used when a variable has been defined but has not been assigned a value.

object This type is used to represent compound values, formed from individual properties and values.

Chapter 3 ■ JavaSCript primer, part 1

47

The JavaScript runtime only has to figure out which of the types from Table 3-1 it should use for the
value assigned to myVariable. The small set of types supported by JavaScript makes the process simpler, and
the runtime knows that any value enclosed in double quotes must be a string. You can confirm the type of a
value using the typeof keyword, as shown in Listing 3-8.

Listing 3-8. Getting a Value Type in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice == bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = hatPrice + bootsPrice;
console.log(`Total Price: ${totalPrice}`);

let myVariable = "Adam";
console.log(`Type: ${typeof myVariable}`);

The typeof keyword identifies a value’s type and produces the following output when the code is
executed:

Hat price: 100
Boots price: 100
Prices are the same
Total Price: 100100
Type: string

Listing 3-9 assigns a new value to myVariable and displays the type again.

Listing 3-9. Assigning a New Value in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice == bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = hatPrice + bootsPrice;
console.log(`Total Price: ${totalPrice}`);

Chapter 3 ■ JavaSCript primer, part 1

48

let myVariable = "Adam";
console.log(`Type: ${typeof myVariable}`);
myVariable = 100;
console.log(`Type: ${typeof myVariable}`);

When the changes are saved, the code will produce the following output:

Hat price: 100
Boots price: 100
Prices are the same
Total Price: 100100
Type: string
Type: number

Changing the value assigned to a variable changes the type reported by the typeof keyword because
values have types. The type of the value initially assigned to myVariable was string, and then the variable
was assigned a number value. This dynamic approach to types is made easier by the limited range of types
that JavaScript supports, which makes it easier to determine which of the built-in types is being used. For
example, all numbers are represented by the number type, which means that integers and floating-point
values are all handled using number, which would not be possible with a more complex set of types.

UNDERSTANDING THE TYPEOF NULL ODDITY

When the typeof keyword is used on null values, the result is object. this is a long-standing behavior
that dates back to the earliest days of JavaScript and that hasn’t been changed because so much code
has been written that expects this behavior.

 Understanding Type Coercion
When an operator is applied to values of different types, the JavaScript runtime converts one value into an
equivalent value in the other type, a process known as type coercion. It is the type coercion feature—also
known as type conversion—that causes the inconsistent results from Listing 3-6, although, as you will learn,
the results are not inconsistent once you understand how this feature works. There are two points in the
code in Listing 3-6 where types are coerced.

...
let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice == bootsPrice) {
...

The double equal sign performs a comparison using type coercion so that JavaScript will try to convert
the values it is working with in order to produce a useful result. This is known as the JavaScript abstract
equality comparison, and when a number is compared to a string, the string value is converted to a number

Chapter 3 ■ JavaSCript primer, part 1

49

value, and then the comparison is performed. This means when the number value 100 is compared with
the string value 100, the string is converted to the number value 100, and this is the reason why the if
expression evaluates to true.

 ■ Tip You can read the sequence of steps that JavaScript follows in an abstract equality comparison in the
JavaScript specification, https://www.ecma- international.org/ecma- 262/7.0/#sec- abstract- equality-
comparison. the specification is well-written and surprisingly interesting. But before you spend a day getting
lost in the implementation details, you should bear in mind that typeScript constrains the use of some of the
most unusual and exotic features.

The second time coercion is used in Listing 3-6 is when the prices are totaled.

...
let totalPrice = hatPrice + bootsPrice;
...

When you use the + operator on a number and a string, one of the values is converted. The confusing
part is that the conversion isn’t the same as for comparisons. If either of the values is a string, the other
value is converted to a string, and both string values are concatenated. This means that when the number
value 100 is added to the string value 100, the number is converted to a string and concatenated to produce
the string result 100100.

 Avoiding Unintentional Type Coercion
Type coercion can be a useful feature, and it has gained a poor reputation only because it is applied
unintentionally, which is easy to do when the types being processed are changed with new values. As
you will learn in later chapters, TypeScript provides features that help manage unwanted coercion. But
JavaScript also provides features to prevent coercion, as shown in Listing 3-10.

Listing 3-10. Preventing Coercion in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice === bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = Number(hatPrice) + Number(bootsPrice);
console.log(`Total Price: ${totalPrice}`);

let myVariable = "Adam";
console.log(`Type: ${typeof myVariable}`);
myVariable = 100;
console.log(`Type: ${typeof myVariable}`);

https://www.ecma-international.org/ecma-262/7.0/#sec-abstract-equality-comparison
https://www.ecma-international.org/ecma-262/7.0/#sec-abstract-equality-comparison

Chapter 3 ■ JavaSCript primer, part 1

50

The double equal sign (==) performs a comparison that applies type coercion. The triple equal sign
(===) applies a strict comparison that will return true only if the values have the same type and are equal.

To prevent string concatenation, values can be explicitly converted to numbers before the + operator is
applied using the built-in Number function, with the effect that numeric addition is performed. The code in
Listing 3-10 produces the following output:

Hat price: 100
Boots price: 100
Prices are different
Total Price: 200
Type: string
Type: number

 Appreciating the Value of Explicitly Applied Type Coercion
Type coercion can be a useful feature when it is explicitly applied. One useful feature is the way that values
are coerced into the boolean type by the logical OR operator (||). Values that are null or undefined are
converted into the false value, and this makes an effective tool for providing fallback values, as shown in
Listing 3-11.

Listing 3-11. Handling Null Values in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

if (hatPrice === bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = Number(hatPrice) + Number(bootsPrice);
console.log(`Total Price: ${totalPrice}`);

let myVariable = "Adam";
console.log(`Type: ${typeof myVariable}`);
myVariable = 100;
console.log(`Type: ${typeof myVariable}`);

let firstCity;
let secondCity = firstCity || "London";
console.log(`City: ${ secondCity }`);

The value of the variable named secondCity is set with an expression that checks the firstCity
value: if firstCity is converted to the boolean value true, then the value of secondCity will be the value of
firstCity.

Chapter 3 ■ JavaSCript primer, part 1

51

The undefined type is used when variables are defined but have not been assigned a value, which is
the case for the variable named firstCity, and the use of the || operator ensures that the fallback value for
secondCity will be used when firstCity is undefined or null.

 Understanding Nullish Coalescing
One problem with the logical OR operator is that it isn’t just null or undefined that is converted into a false
value, which can cause unexpected results, as shown in Listing 3-12.

Listing 3-12. The Unintentional Effect of Applied Type Coercion in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

let taxRate; // no tax rate has been defined
console.log(`Tax rate: ${taxRate || 10}%`);
taxRate = 0; // zero-rated for tax
console.log(`Tax rate: ${taxRate || 10}%`);

In addition to null and undefined, the logical OR operator will also coerce the number value 0 (zero),
the empty string value (""), and the special NaN number value to false. These values, in addition to the
false value, are collectively known as the JavaScript “falsy” values and cause a lot of confusion. In Listing 3-12,
the logical OR operator uses the fallback value when the taxRate variable is assigned zero and produces the
following output:

Hat price: 100
Boots price: 100
Tax rate: 10%
Tax rate: 10%

The code doesn’t differentiate between an unassigned value and the zero value, which can be a
problem when zero is a required value. In this example, it is impossible to set a tax rate of zero, even though
this is a legitimate rate. To address this problem, JavaScript supports the nullish coalescing operator, ??,
which only coerces undefined and null values and not the other falsy values, as shown in Listing 3-13.

Listing 3-13. Using the Nullish Operator in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

let taxRate; // no tax rate has been defined
console.log(`Tax rate: ${taxRate ?? 10}%`);
taxRate = 0; // zero-rated for tax
console.log(`Tax rate: ${taxRate ?? 10}%`);

Chapter 3 ■ JavaSCript primer, part 1

52

In the first statement, the fallback value will be used because taxRate is undefined. In the second
statement, the fallback value will not be used because zero is not coerced by the ?? operator, producing the
following output:

Hat price: 100
Boots price: 100
Tax rate: 10%
Tax rate: 0%

 Working with Functions
The fluid approach that JavaScript takes to types is followed through in other parts of the language, including
functions. Listing 3-14 adds a function to the example JavaScript file and removes some of the statements
from previous examples for brevity.

Listing 3-14. Defining a Function in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(first, second, third) {
 return first + second + third;
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total Price: ${totalPrice}`);

A function’s parameter types are determined by the values used to invoke the function. A function
may assume that it will receive number values, for example, but there is nothing to prevent the function
from being invoked with string, boolean, or object arguments. Unexpected results can be produced if the
function doesn’t take care to validate its assumptions, either because the JavaScript runtime coerces values
or because features specific to a single type are used.

The sumPrices function in Listing 3-14 uses the + operator, intended to sum a set of number parameters, but
one of the values used to invoke the function is a string, and as explained earlier in the chapter, the + operator
applied to a string value performs concatenation. The code in Listing 3-14 produces the following output:

Hat price: 100
Boots price: 100
Total Price: 100100undefined

JavaScript doesn’t enforce a match between the number of parameters defined by a function and the
number of arguments used to invoke it. Any parameter for which a value is not provided will be undefined.
In the listing, no value is provided for the parameter named third, and the undefined value is converted to
the string value undefined and included in the concatenation output.

Total Price: 100100undefined

Chapter 3 ■ JavaSCript primer, part 1

53

 Working with Function Results
The differences between JavaScript types and those of other languages are magnified by functions. A
consequence of the JavaScript type features is that the arguments used to invoke a function can determine
the type of the function’s result, as shown in Listing 3-15.

Listing 3-15. Invoking a Function in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(first, second, third) {
 return first + second + third;
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

The value of the totalPrice variable is set three times by invoking the sumPrices function. After each
function call, the typeof keyword is used to determine the type of the value returned by the function. The
code in Listing 3-15 produces the following output:

Hat price: 100
Boots price: 100
Total: 100100undefined string
Total: 600 number
Total: NaN number

The first function call includes a string argument, which causes all of the function’s parameters to
be converted to string values and concatenated, meaning that the function returns the string value
100100undefined.

The second function call uses three number values, which are added together and produce the number
result 600. The final function call uses number arguments but doesn’t provide a third value, which causes
an undefined parameter. JavaScript coalesces undefined to the special number value NaN (meaning not a
number). The result of addition that includes NaN is NaN, which means that the type of the result is number
but the value isn’t useful and is unlikely to be what was intended.

 Avoiding Argument Mismatch Problems
Although the results in the previous section can confuse, they are the outcomes described in the JavaScript
specification. The problem isn’t that JavaScript is unpredictable but that its approach is different from other
popular programming languages.

Chapter 3 ■ JavaSCript primer, part 1

54

JavaScript provides features that can be used to avoid these issues. The first is default parameter values
that are used if the function is invoked without a corresponding argument, as shown in Listing 3-16.

Listing 3-16. Using a Default Parameter Value in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(first, second, third = 0) {
 return first + second + third;
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

The name of the third parameter is followed by the equal sign and the value that should be used if
the function is invoked without a corresponding value. The result is that the statement that invokes the
sumPrices function with two number values will no longer produce the NaN result, as shown in the output:

Hat price: 100
Boots price: 100
Total: 1001000 string
Total: 600 number
Total: 300 number

A more flexible approach is a rest parameter, which is prefixed with three periods (...) and must be the
last parameter defined by the function, as shown in Listing 3-17.

Listing 3-17. Using a Rest Parameter in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(...numbers) {
 return numbers.reduce(function(total, val) {
 return total + val
 }, 0);
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

Chapter 3 ■ JavaSCript primer, part 1

55

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

A rest parameter is an array containing all the arguments for which parameters are not defined. The
function in Listing 3-17 defines only a rest parameter, which means that its value will be an array containing
all of the arguments used to invoke the function. The contents of the array are summed using the built-in
array reduce method. JavaScript arrays are described in the “Working with Arrays” section, and the reduce
method is used to invoke a function for each object in the array to produce a single result value. This
approach ensures that the number of arguments doesn’t affect the result, but the function invoked by the
reduce method uses the addition operator, which means that string values will still be concatenated. The
listing produces the following output:

Hat price: 100
Boots price: 100
Total: 100100 string
Total: 600 number
Total: 300 number

To ensure the function produces a useful sum of its parameter values however they are received, they
can be converted to numbers and filtered to remove any that are NaN, as shown in Listing 3-18.

Listing 3-18. Converting and Filtering Parameter Values in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(...numbers) {
 return numbers.reduce(function(total, val) {
 return total + (Number.isNaN(Number(val)) ? 0 : Number(val));
 }, 0);
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, undefined, false, "hello");
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

Chapter 3 ■ JavaSCript primer, part 1

56

The Number.isNaN method is used to check whether a number value is NaN, and the code in Listing 3-18
explicitly converts each parameter to a number and substitutes zero for those that are NaN. Only parameter
values that can be treated as numbers are processed, and the undefined, boolean, and string arguments
added to the final function call do not affect the result.

Hat price: 100
Boots price: 100
Total: 200 number
Total: 600 number
Total: 300 number

 Using Arrow Functions
Arrow functions—also known as fat arrow functions or lambda expressions—are an alternative way of
concisely defining functions and are often used to define functions that are arguments to other functions.
Listing 3-19 replaces the standard function used with the array reduce method with an arrow function.

Listing 3-19. Using an Arrow Function in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

function sumPrices(...numbers) {
 return numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));
}

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, undefined, false, "hello");
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

There are three parts to an arrow function: the input parameters, then an equal sign with a greater-than
sign (the “arrow”), and finally the result value. The return keyword and curly braces are required only if the
arrow function needs to execute more than one statement.

Arrow functions can be used anywhere that a function is required, and their use is a matter of personal
preference, except for the issue described in the “Understanding the this Keyword” section. Listing 3-20
redefines the sumPrices function in the arrow syntax.

Chapter 3 ■ JavaSCript primer, part 1

57

Listing 3-20. Replacing a Function in the index.js File in the primer Folder

let hatPrice = 100;
console.log(`Hat price: ${hatPrice}`);
let bootsPrice = "100";
console.log(`Boots price: ${bootsPrice}`);

let sumPrices = (...numbers) => numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));

let totalPrice = sumPrices(hatPrice, bootsPrice);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, 300);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

totalPrice = sumPrices(100, 200, undefined, false, "hello");
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

Functions—regardless of which syntax is used—are values, too. They are a special category of the
object type, described in the “Working with Objects” section, and functions can be assigned to variables
passed as arguments to other functions and used like any other value.

In Listing 3-20, the arrow syntax is used to define a function that is assigned a variable called sumPrices.
Functions are special because they can be invoked, but being able to treat functions as values allows
complex functionality to be expressed concisely, although it is easy to create code that can be difficult to
read. There are more examples of arrow functions and using functions as values throughout the book.

 Working with Arrays
JavaScript arrays follow the approach taken by most programming languages, except they are dynamically
resized and can contain any combination of values and, therefore, any combination of types. Listing 3-21
shows how an array is defined and used.

Listing 3-21. Defining and Using an Array in the index.js File in the primer Folder

let names = ["Hat", "Boots", "Gloves"];
let prices = [];

prices.push(100);
prices.push("100");
prices.push(50.25);

console.log(`First Item: ${names[0]}: ${prices[0]}`);

let sumPrices = (...numbers) => numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));

let totalPrice = sumPrices(...prices);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

Chapter 3 ■ JavaSCript primer, part 1

58

The size of an array is not specified when it is created, and capacity will be allocated automatically
as items are added or removed. JavaScript arrays are zero-based and are defined using square brackets,
optionally with the initial contents separated by commas. The names array in the example is created with
three string values. The prices array is created empty, and the push method is used to append items to the
end of the array.

Elements in the array can be read or set using square brackets or processed using the methods
described in Table 3-2.

Table 3-2. Useful Array Methods

Method Description
concat(otherArray) This method returns a new array that concatenates the array on which it has been

called with the array specified as the argument. Multiple arrays can be specified.

join(separator) This method joins all the elements in the array to form a string. The argument
specifies the character used to delimit the items.

pop() This method removes and returns the last item in the array.

shift() This method removes and returns the first element in the array.

push(item) This method appends the specified item to the end of the array.

unshift(item) This method inserts a new item at the start of the array.

reverse() This method returns a new array that contains the items in reverse order.

slice(start,end) This method returns a section of the array.

sort() This method sorts the array. An optional comparison function can be used to
perform custom comparisons. Alphabetic sorting is performed if no comparison
function is defined.

splice(index, count) This method removes count items from the array, starting at the specified index.
The removed items are returned as the result of the method.

every(test) This method calls the test function for each item in the array and returns true if
the function returns true for all of them and false otherwise.

some(test) This method returns true if calling the test function for each item in the array
returns true at least once.

filter(test) This method returns a new array containing the items for which the test
function returns true.

find(test) This method returns the first item in the array for which the test function returns
true.

findIndex(test) This method returns the index of the first item in the array for which the test
function returns true.

forEach(callback) This method invokes the callback function for each item in the array, as
described in the previous section.

includes(value) This method returns true if the array contains the specified value.

map(callback) This method returns a new array containing the result of invoking the callback
function for every item in the array.

reduce(callback) This method returns the accumulated value produced by invoking the callback
function for every item in the array.

Chapter 3 ■ JavaSCript primer, part 1

59

 Using the Spread Operator on Arrays
The spread operator can be used to expand the contents of an array so that its elements can be used as
arguments to a function. The spread operator is three periods (...) and is used in Listing 3-21 to pass the
contents of an array to the sumPrices function.

...
let totalPrice = sumPrices(...prices);
...

The operator is used before the array name. The spread operator can also be used to expand the
contents of an array for easy concatenation, as shown in Listing 3-22.

Listing 3-22. Using the Spread Operator in the index.js File in the primer Folder

let names = ["Hat", "Boots", "Gloves"];
let prices = [];

prices.push(100);
prices.push("100");
prices.push(50.25);

console.log(`First Item: ${names[0]}: ${prices[0]}`);

let sumPrices = (...numbers) => numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));

let totalPrice = sumPrices(...prices);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

let combinedArray = [...names, ...prices];
combinedArray.forEach(element => console.log(`Combined Array Element: ${element}`));

The spread operator is used to create an array that contains the elements from the names and prices
arrays. The code in Listing 3-22 produces the following output:

First Item: Hat: 100
Total: 250.25 number
Combined Array Element: Hat
Combined Array Element: Boots
Combined Array Element: Gloves
Combined Array Element: 100
Combined Array Element: 100
Combined Array Element: 50.25

 Destructuring Arrays
Values from arrays can be unpacked using a destructuring assignment, which assigns selected values to
variables, as shown in Listing 3-23.

Chapter 3 ■ JavaSCript primer, part 1

60

Listing 3-23. Destructuring an Array in the index.js File in the primer Folder

let names = ["Hat", "Boots", "Gloves"];

let [one, two] = names;
console.log(`One: ${one}, Two: ${two}`);

The left side of the expression is used to specify the variables to which values will be assigned. In this
example, the first value in the names array will be assigned to a variable named one, and the second value
will be assigned to a variable named two. The number of variables doesn’t have to match the number of
elements in the array: any elements for which there are not variables in the destructuring assignment
are ignored, and any variables in the destructuring assignment for which there is no corresponding array
element will be undefined. The code in Listing 3-23 produces the following output:

One: Hat, Two: Boots

 Ignoring Elements When Destructuring an Array
You can ignore elements by not specifying a name in the assignment, as shown in Listing 3-24.

Listing 3-24. Ignoring Elements in the index.js File in the primer Folder

let names = ["Hat", "Boots", "Gloves"];

let [, , three] = names;
console.log(`Three: ${three}`);

No name is specified in the first two positions in the assignment, which means the first two elements in
the array are ignored. The third element is assigned to the variable named three, and the code produces the
following output:

Three: Gloves

 Assigning Remaining Elements to an Array
The last variable name in a destructuring assignment can be prefixed with three periods (...), known as the
rest expression or rest pattern, which assigns any remaining elements to an array, as shown in Listing 3-25.
(The rest expression is often referred to as the spread operator for consistency since both are three periods
and behave in similar ways.)

Listing 3-25. Assigning Remaining Elements in the index.js File in the primer Folder

let names = ["Hat", "Boots", "Gloves"];

let [, , three] = names;
console.log(`Three: ${three}`);

Chapter 3 ■ JavaSCript primer, part 1

61

let prices = [100, 120, 50.25];
let [, ...highest] = prices.sort((a, b) => a - b);
highest.forEach(price => console.log(`High price: ${price}`));

The prices array is sorted, the first element is discarded, and the remaining elements are assigned to an
array named highest, which is enumerated so that the values can be written to the console, producing the
following output:

Three: Gloves
High price: 100
High price: 120

 Working with Objects
JavaScript objects are collections of properties, each of which has a name and a value. The simplest way to
define an object is to use the literal syntax, as shown in Listing 3-26.

Listing 3-26. Creating an Object in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

let sumPrices = (...numbers) => numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));

let totalPrice = sumPrices(hat.price, boots.price);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

The literal syntax uses braces to contain a list of property names and values. Names are separated from
their values with colons and from other properties with commas. Objects can be assigned to variables, used
as arguments to functions, and stored in arrays. Two objects are defined in Listing 3-26 and assigned to
variables named hat and boots. The properties defined by the object can be accessed through the variable
name, as shown in this statement, which gets the values of the price properties defined by both objects:

...
let totalPrice = sumPrices(hat.price, boots.price);
...

The code in Listing 3-26 produces the following output:

Total: 200 number

Chapter 3 ■ JavaSCript primer, part 1

62

 Adding, Changing, and Deleting Object Properties
Like the rest of JavaScript, objects are dynamic. Properties can be added and removed, and values of any
type can be assigned to properties, as shown in Listing 3-27.

Listing 3-27. Manipulating an Object in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

let gloves = {
 productName: "Gloves",
 price: "40"
}

gloves.name = gloves.productName;
delete gloves.productName;
gloves.price = 20;

let sumPrices = (...numbers) => numbers.reduce((total, val) =>
 total + (Number.isNaN(Number(val)) ? 0 : Number(val)));

let totalPrice = sumPrices(hat.price, boots.price, gloves.price);
console.log(`Total: ${totalPrice} ${typeof totalPrice}`);

The gloves object is created with productName and price properties. The statements that follow create
a name property, use the delete keyword to remove a property, and assign a number value to the price
property, replacing the previous string value. The code in Listing 3-27 produces the following output:

Total: 220 number

 Guarding Against Undefined Objects and Properties
Care is required when using objects because they may not have the shape (the term used for the
combination of properties and values) that you expect or that was originally used when the object was
created.

Because the shape of an object can change, setting or getting the value of a property that has not been
defined is not an error. If you set a nonexistent property, then it will be added to the object and assigned
the specified value. If you read a nonexistent property, then you will receive undefined. One useful way to
ensure that code always has values to work with is to rely on the type coercion feature and the nullish or
logical OR operators, as shown in Listing 3-28.

Chapter 3 ■ JavaSCript primer, part 1

63

Listing 3-28. Guarding Against Undefined Values in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

let gloves = {
 productName: "Gloves",
 price: "40"
}

gloves.name = gloves.productName;
delete gloves.productName;
gloves.price = 20;

let propertyCheck = hat.price ?? 0;
let objectAndPropertyCheck = (hat ?? {}).price ?? 0;
console.log(`Checks: ${propertyCheck}, ${objectAndPropertyCheck}`);

The code can be difficult to read, but the ?? operator will coerce undefined and null values to false
and other values to true. The checks can be used to provide a fallback for an individual property, for an
object, or for a combination of both.

The first check in Listing 3-28 assumes the hat variable has been assigned a value but checks to make
sure hat.price is defined and has been assigned a value. The second statement is more cautious—but
harder to read—and checks that a value has been assigned to hat before also checking the price property.
The code in Listing 3-28 produces the following output:

Checks: 100, 100

The second check in Listing 3-28 can be simplified using optional chaining, as shown in Listing 3-29.

Listing 3-29. Using Optional Chaining in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

Chapter 3 ■ JavaSCript primer, part 1

64

let gloves = {
 productName: "Gloves",
 price: "40"
}

gloves.name = gloves.productName;
delete gloves.productName;
gloves.price = 20;

let propertyCheck = hat.price ?? 0;
let objectAndPropertyCheck = hat?.price ?? 0;
console.log(`Checks: ${propertyCheck}, ${objectAndPropertyCheck}`);

The optional changing operator (the ? character) will stop evaluating an expression if the value it is
applied to is null or undefined. In the listing, I have applied the operator to hat, which means that the
expression won’t try to read the value of the price property if hat is undefined or null. The result is that the
fallback value will be used if hat or hat.price is undefined or null.

 Using the Spread and Rest Operators on Objects
The spread operator can be used to expand the properties and values defined by an object, which makes it
easy to create one object based on the properties defined by another, as shown in Listing 3-30.

Listing 3-30. Using the Object Spread Operator in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

let otherHat = { ...hat };
console.log(`Spread: ${otherHat.name}, ${otherHat.price}`);

The spread operator is used to include the properties of the hat object as part of the object literal syntax.
The use of the spread operator in Listing 3-30 has the effect of copying the properties from the hat object to
the new otherHat object. The code in Listing 3-30 produces the following output:

Spread: Hat, 100

The spread operator can also be combined with other properties to add, replace, or absorb properties
from the source object, as shown in Listing 3-31.

Chapter 3 ■ JavaSCript primer, part 1

65

Listing 3-31. Adding, Replacing, and Absorbing Properties in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: "100"
}

let additionalProperties = { ...hat, discounted: true};
console.log(`Additional: ${JSON.stringify(additionalProperties)}`);

let replacedProperties = { ...hat, price: 10};
console.log(`Replaced: ${JSON.stringify(replacedProperties)}`);

let { price , ...someProperties } = hat;
console.log(`Selected: ${JSON.stringify(someProperties)}`);

The property names and values expanded by the spread operator are treated as though they had been
expressed individually in the object literal syntax, which means the shape of an object can be altered by
mixing the spread operator with other properties. This statement, for example:

...
let additionalProperties = { ...hat, discounted: true};
...

will be expanded so that the properties defined by the hat object will be combined with the discounted
property, equivalent to this statement:

let additionalProperties = { name: "Hat", price: 100, discounted: true};

If a property name is used twice in the object literal syntax, then the second value is the one that will be
used. This feature can be used to change the value of a property that is obtained through the spread operator
and means that this statement:

...
let replacedProperties = { ...hat, price: 10};
...

will be expanded so that it is equivalent to this statement:

let replacedProperties = { name: "Hat", price: 100, price: 10};

Chapter 3 ■ JavaSCript primer, part 1

66

The effect is an object that has the name property and value from the hat object but with a price
property whose value is 10. The rest operator (which is the same three periods as the spread operator) can be
used to select properties or to exclude them when used with the object literal syntax. This statement defines
variables named price and someProperties:

...
let { price , ...someProperties } = hat;
...

The properties defined by the hat object are decomposed. The hat.price property is assigned to the
new price property, and all the other properties are assigned to the someProperties object.

The built-in JSON.stringify method creates a string representation of an object using the JSON data
format. It is useful only for representing simple objects; it doesn’t usefully deal with functions, for example,
but it is helpful in understanding how objects are composed, and the code in Listing 3-31 produces the
following output:

Additional: {"name":"Hat","price":100,"discounted":true}
Replaced: {"name":"Hat","price":10}
Selected: {"name":"Hat"}

 Defining Getters and Setters
Getters and setters are functions that are invoked when a property value is read or assigned, as shown in
Listing 3-32.

Listing 3-32. Using Getters and Setters in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 _price: 100,
 priceIncTax: 100 * 1.2,

 set price(newPrice) {
 this._price = newPrice;
 this.priceIncTax = this._price * 1.2;
 },

 get price() {
 return this._price;
 }
};

let boots = {
 name: "Boots",
 price: "100",

 get priceIncTax() {
 return Number(this.price) * 1.2;
 }
}

Chapter 3 ■ JavaSCript primer, part 1

67

console.log(`Hat: ${hat.price}, ${hat.priceIncTax}`);
hat.price = 120;
console.log(`Hat: ${hat.price}, ${hat.priceIncTax}`);

console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);
boots.price = "120";
console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);

The example introduces a priceIncTax property whose value is updated automatically when the
price property is set. The hat object does this by using a getter and setter for the price property to update
a backing property named _price. When a new value is assigned to the price property, the setter updates
the backing property and the priceIncTax property. When the value of the price property is read, the getter
responds with the value of the _price property. (A backing property is required because getters and setters
are treated as properties and cannot have the same name as any of the conventional properties defined by
the object.)

UNDERSTANDING JAVASCRIPT PRIVATE PROPERTIES

JavaScript doesn’t have any built-in support for private properties, meaning properties that can be
accessed only by an object’s methods, getters, and setters. there are techniques to achieve a similar
effect, but they are complex, and so the most common approach is to use a naming convention to
denote properties not intended for public use. this doesn’t prevent access to these properties, but it
does at least make it obvious that doing so is undesirable. a widely used naming convention is to prefix
the property name with an underscore, as demonstrated with the _price property in Listing 3-32.

there is a proposal working its way through the standardization process to add support for private
properties to the JavaScript language. the names of private properties will be prefixed with the #
character, but it will be some time before this feature is part of the JavaScript standard. typeScript
provides private properties and supports the JavaScript feature, as described in Chapter 11.

The boots object defines the same behavior as the hat object but does so by creating a getter that
has no corresponding setter, which has the effect of allowing the value to be read but not modified and
demonstrates that getters and setters don’t have to be used together. The code in Listing 3-32 produces the
following output:

Hat: 100, 120
Hat: 120, 144
Boots: 100, 120
Boots: 120, 144

 Defining Methods
JavaScript can be confusing at first, but digging into the details reveals a consistency that isn’t always
apparent from casual use. One example is methods, which build on the features described in earlier
sections, as shown in Listing 3-33.

Chapter 3 ■ JavaSCript primer, part 1

68

Listing 3-33. Defining Methods in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 _price: 100,
 priceIncTax: 100 * 1.2,

 set price(newPrice) {
 this._price = newPrice;
 this.priceIncTax = this._price * 1.2;
 },

 get price() {
 return this._price;
 },

 writeDetails: function() {
 console.log(`${this.name}: ${this.price}, ${this.priceIncTax}`);
 }
};

let boots = {
 name: "Boots",
 price: "100",

 get priceIncTax() {
 return Number(this.price) * 1.2;
 }
}

hat.writeDetails();
hat.price = 120;
hat.writeDetails();

console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);
boots.price = "120";
console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);

A method is a property whose value is a function, which means that all the features and behaviors that
functions provide, such as default and rest parameters, can be used for methods. The method in Listing 3-33
is defined using the function keyword, but there is a more concise syntax available, as shown in Listing 3-34.

Listing 3-34. Using the Concise Methods Syntax in the index.js File in the primer Folder

...
writeDetails() {
 console.log(`${this.name}: ${this.price}, ${this.priceIncTax}`);
}
...

Chapter 3 ■ JavaSCript primer, part 1

69

The function keyword and colon that separates a property name from its value are omitted, allowing
methods to be defined in a style that many developers find natural. The following output is produced by the
listings in this section:

Hat: 100, 120
Hat: 120, 144
Boots: 100, 120
Boots: 120, 144

 Understanding the this Keyword
The this keyword can be confusing to even experienced JavaScript programmers. In other programming
languages, this is used to refer to the current instance of an object created from a class. In JavaScript, the
this keyword can often appear to work the same way—right up until the moment a change breaks the
application and undefined values start to appear.

To demonstrate, I used the fat arrow syntax to redefine the method on the hat object, as shown in
Listing 3-35.

Listing 3-35. Using the Fat Arrow Syntax in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 _price: 100,
 priceIncTax: 100 * 1.2,

 set price(newPrice) {
 this._price = newPrice;
 this.priceIncTax = this._price * 1.2;
 },

 get price() {
 return this._price;
 },

 writeDetails: () =>
 console.log(`${this.name}: ${this.price}, ${this.priceIncTax}`)
};

let boots = {
 name: "Boots",
 price: "100",

 get priceIncTax() {
 return Number(this.price) * 1.2;
 }
}

Chapter 3 ■ JavaSCript primer, part 1

70

hat.writeDetails();
hat.price = 120;
hat.writeDetails();

console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);
boots.price = "120";
console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);

The method uses the same console.log statement as Listing 3-34, but when the change is saved and
the code is executed, the output shows undefined values, like this:

undefined: undefined, undefined
undefined: undefined, undefined
Boots: 100, 120
Boots: 120, 144

Understanding why this happens and being able to fix the problem requires taking a step back and
examining what the this keyword really does in JavaScript.

 Understanding the this Keyword in Stand-Alone Functions
The this keyword can be used in any function, even when that function isn’t used as a method, as shown in
Listing 3-36.

Listing 3-36. Invoking a Function in the index.js File in the primer Folder

function writeMessage(message) {
 console.log(`${this.greeting}, ${message}`);
}

greeting = "Hello";

writeMessage("It is sunny today");

The writeMessage function reads a property named greeting from this in one of the expressions
in the template string passed to the console.log method. The this keyword doesn’t appear again in the
listing, but when the code is saved and executed, the following output is produced:

Hello, It is sunny today

JavaScript defines a global object, which can be assigned values that are available throughout
an application. The global object is used to provide access to the essential features in the execution
environment, such as the document object in browsers that allows interaction with the Document Object
Model API.

Values assigned names without using the let, const, or var keyword are assigned to the global object.
The statement that assigns the string value Hello creates a variable in the global scope. When the function
is executed, this is assigned the global object, so reading this.greeting returns the string value Hello,
explaining the output produced by the application.

Chapter 3 ■ JavaSCript primer, part 1

71

The standard way to invoke a function is to use parentheses that contain arguments, but in JavaScript,
this is a convenience syntax that is translated into the statement shown in Listing 3-37.

Listing 3-37. Invoking a Function in the index.js File in the primer Folder

function writeMessage(message) {
 console.log(`${this.greeting}, ${message}`);
}

greeting = "Hello";

writeMessage("It is sunny today");
writeMessage.call(global, "It is sunny today");

As explained earlier, functions are objects, which means they define methods, including the call
method. It is this method that is used to invoke a function behind the scenes. The first argument to the call
method is the value for this, which is set to the global object. This is the reason that this can be used in any
function and why it returns the global object by default.

The new statement in Listing 3-37 uses the call method directly and sets the this value to the global
object, with the same result as the conventional function call before it, which can be seen in the following
output produced by the code when executed:

Hello, It is sunny today
Hello, It is sunny today

The name of the global object changes based on the execution environment. In code executed by Node.
js, global is used, but window or self may be required in browsers. At the time of writing, there is a proposal
to standardize the name global, but it has yet to be adopted universally.

UNDERSTANDING THE EFFECT OF STRICT MODE

JavaScript supports strict mode, which disables or restricts features that have historically caused
poor-quality software or that prevent the runtime from executing code efficiently. When strict mode is
enabled, the default value for this is undefined to prevent accidental use of the global object, and
values with global scope must be explicitly defined as properties on the global object. See https://
developer.mozilla.org/en- US/docs/Web/JavaScript/Reference/Strict_mode for details. the
typeScript compiler provides a feature for automatically enabling strict mode in the JavaScript code it
generates, as described in Chapter 5.

 Understanding this in Methods
When a function is invoked as an object’s method, this is set to the object, as shown in Listing 3-38.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 3 ■ JavaSCript primer, part 1

72

Listing 3-38. Invoking a Function as a Method in the index.js File in the primer Folder

let myObject = {
 greeting: "Hi, there",

 writeMessage(message) {
 console.log(`${this.greeting}, ${message}`);
 }
}

greeting = "Hello";

myObject.writeMessage("It is sunny today");

When the function is invoked via the object, the statement that invokes the function is equivalent to
using the call method with the object as the first argument, like this:

...
myObject.writeMessage.call(myObject, "It is sunny today");
...

Care is required because this is set differently if the function is accessed outside of its object, which can
happen if the function is assigned to a variable, as shown in Listing 3-39.

Listing 3-39. Invoking a Function Outside of Its Object in the index.js File in the primer Folder

let myObject = {
 greeting: "Hi, there",

 writeMessage(message) {
 console.log(`${this.greeting}, ${message}`);
 }
}

greeting = "Hello";

myObject.writeMessage("It is sunny today");

let myFunction = myObject.writeMessage;
myFunction("It is sunny today");

Functions can be used like any other value, including assigning them to variables outside of the object
in which they were defined, as shown in the listing. If the function is invoked through the variable, then this
will be set to the global object. This often causes problems when functions are used as arguments to other
methods or as callbacks to handle events, and the effect is that the same function will behave differently
based on how it is invoked, as shown in the output produced by the code in Listing 3-39.

Hi, there, It is sunny today
Hello, It is sunny today

Chapter 3 ■ JavaSCript primer, part 1

73

 Changing the Behavior of the this Keyword
One way to control the this value is to invoke functions using the call method, but this is awkward and
must be done every time the function is invoked. A more reliable method is to use the function’s bind
method, which is used to set the value for this regardless of how the function is invoked, as shown in
Listing 3-40.

Listing 3-40. Setting the this Value in the index.js File in the primer Folder

let myObject = {
 greeting: "Hi, there",

 writeMessage(message) {
 console.log(`${this.greeting}, ${message}`);
 }
}

myObject.writeMessage = myObject.writeMessage.bind(myObject);

greeting = "Hello";

myObject.writeMessage("It is sunny today");

let myFunction = myObject.writeMessage;
myFunction("It is sunny today");

The bind method returns a new function that will have a persistent value for this when it is invoked.
The function returned by the bind method is used to replace the original method, ensuring consistency
when the writeMessage method is invoked. Using bind is awkward because the reference to the object isn’t
available until after it has been created, which leads to a two-step process of creating the object and then
calling bind to replace each of the methods for which a consistent this value is required. The code in
Listing 3-40 produces the following output:

Hi, there, It is sunny today
Hi, there, It is sunny today

The value of this is always set to myObject, even when the writeMessage function is invoked as a stand-
alone function.

 Understanding this in Arrow Functions
To add to the complexity of this, arrow functions don’t work in the same way as regular functions. Arrow
functions don’t have their own this value and inherit the closest value of this they can find when they are
executed. To demonstrate how this works, Listing 3-41 adds an arrow function to the example.

Chapter 3 ■ JavaSCript primer, part 1

74

Listing 3-41. Using an Arrow Function in the index.js File in the primer Folder

let myObject = {
 greeting: "Hi, there",

 getWriter() {
 return (message) => console.log(`${this.greeting}, ${message}`);
 }
}

greeting = "Hello";

let writer = myObject.getWriter();
writer("It is raining today");

let standAlone = myObject.getWriter;
let standAloneWriter = standAlone();
standAloneWriter("It is sunny today");

In Listing 3-41, the getWriter function is a regular function that returns an arrow function as its result.
When the arrow function returned by getWriter is invoked, it works its way up its scope until it locates a
value for this. As a consequence, the way that the getWriter function is invoked determines the value of
this for the arrow function. Here are the first two statements that invoke the functions:

...
let writer = myObject.getWriter();
writer("It is raining today");
...

These two statements can be combined as follows:

...
myObject.getWriter()("It is raining today");
...

The combined statement is a little harder to read, but it helps emphasize that the value of this is based
on how a function is invoked. The getWriter method is invoked through myObject and means that the
value of this will be set to myObject. When the arrow function is invoked, it finds a value of this from the
getWriter function. The result is that when the getWriter method is invoked through myObject, the value of
this in the arrow function will be myObject, and the this.greeting expression in the template string will be
Hi, there.

The statements in the second set treat getWriter as a stand-alone function, so this will be set to the
global object. When the arrow function is invoked, the this.greeting expression will be Hello. The code in
Listing 3-41 produces the following output, confirming the this value in each case:

Hi, there, It is raining today
Hello, It is sunny today

Chapter 3 ■ JavaSCript primer, part 1

75

 Returning to the Original Problem
I started this section by redefining a function in the arrow syntax and showing that it behaved differently,
producing undefined in its output. Here is the object and its function:

...
let hat = {
 name: "Hat",
 _price: 100,
 priceIncTax: 100 * 1.2,

 set price(newPrice) {
 this._price = newPrice;
 this.priceIncTax = this._price * 1.2;
 },

 get price() {
 return this._price;
 },

 writeDetails: () =>
 console.log(`${this.name}: ${this.price}, ${this.priceIncTax}`)
};
...

The behavior changed because arrow functions don’t have their own this value, and the arrow function
isn’t enclosed by a regular function that can provide one. To resolve the issue and be sure that the results will
be consistent, I must return to a regular function and use the bind method to fix the this value, as shown in
Listing 3-42.

Listing 3-42. Resolving the Function Problem in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 _price: 100,
 priceIncTax: 100 * 1.2,

 set price(newPrice) {
 this._price = newPrice;
 this.priceIncTax = this._price * 1.2;
 },

 get price() {
 return this._price;
 },

 writeDetails() {
 console.log(`${this.name}: ${this.price}, ${this.priceIncTax}`);
 }
};

Chapter 3 ■ JavaSCript primer, part 1

76

let boots = {
 name: "Boots",
 price: "100",

 get priceIncTax() {
 return Number(this.price) * 1.2;
 }
}

hat.writeDetails = hat.writeDetails.bind(hat);
hat.writeDetails();
hat.price = 120;
hat.writeDetails();

console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);
boots.price = "120";
console.log(`Boots: ${boots.price}, ${boots.priceIncTax}`);

With these changes, the value of this for the writeDetails method will be its enclosing object,
regardless of how it is invoked.

 Summary
In this chapter, I introduced the basic features of the JavaScript type system. These are features that often
confuse because they work differently from those in other programming languages. Understanding
these features make working with TypeScript easier because they provide insight into the problems that
TypeScript solves. In the next chapter, I describe more of the JavaScript type features that are useful for
understanding TypeScript.

77© Adam Freeman 2021
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_4

CHAPTER 4

JavaScript Primer, Part 2

In this chapter, I continue describing the JavaScript type features that are important to TypeScript
development. I focus on the JavaScript support for objects, the different ways they can be defined, and
how they relate to JavaScript classes. I also demonstrate the features for handling sequences of values, the
JavaScript collections, and the modules feature, which allows a project to be split up into multiple JavaScript
files.

 Preparing for This Chapter
In this chapter, I continue to use the primer project created in Chapter 3. To prepare for this chapter, replace
the contents of the index.js file in the primer folder with the code shown in Listing 4-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 4-1. Replacing the Code in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
};

console.log(`Hat: ${hat.price}, ${hat.getPriceIncTax() }`);

Open a new command prompt, navigate to the primer folder, and run the command shown in
Listing 4-2 to start monitoring and executing the JavaScript file.

Listing 4-2. Starting the Development Tools

npx nodemon index.js

https://doi.org/10.1007/978-1-4842-7011-0_4#DOI
https://github.com/Apress/essential-typescript-4

Chapter 4 ■ JavaSCript primer, part 2

78

The nodemon package will execute the contents of the index.js file and produce the following output:

[nodemon] 1.18.10
[nodemon] to restart at any time, enter `rs`
[nodemon] watching: *.*
[nodemon] starting `node index.js`
Hat: 100, 120
[nodemon] clean exit - waiting for changes before restart

 Understanding JavaScript Object Inheritance
JavaScript objects have a link to another object, known as the prototype, from which they inherit properties
and methods. Since prototypes are objects and have their own prototype, objects form an inheritance chain
that allows complex features to be defined once and used consistently.

When an object is created using the literal syntax, such as the hat object in Listing 4-1, its prototype
is Object, which is a built-in object provided by JavaScript. Object provides basic features that all objects
inherit, including a method named toString that returns a string representation of an object, as shown in
Listing 4-3.

Listing 4-3. Using an Object in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
};

console.log(`Hat: ${hat.price}, ${hat.getPriceIncTax() }`);
console.log(`toString: ${hat.toString()}`);

The first console.log statement receives a template string that includes the price property, which is
one of the hat object’s own properties. The new statement invokes the toString method. None of the hat
object’s own properties is named toString, so the JavaScript runtime turns to the hat object’s prototype,
which is Object and which does provide a property named toString, producing the following output:

Hat: 100, 120
toString: [object Object]

The result produced by the toString method isn’t especially useful, but it does illustrate the
relationship between the hat object and its prototype, as shown in Figure 4-1.

Figure 4-1. An object and its prototype

Chapter 4 ■ JavaSCript primer, part 2

79

 Inspecting and Modifying an Object’s Prototype
Object is the prototype for most objects, but it also provides methods that are used directly, rather than
through inheritance, and that can be used to get information about prototypes. Table 4-1 describes the most
useful of these methods.

Listing 4-4 uses the getPrototypeOf method to confirm that two objects created using the literal syntax
share the same prototype.

Listing 4-4. Comparing Prototypes in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
};

let boots = {
 name: "Boots",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
}

let hatPrototype = Object.getPrototypeOf(hat);
console.log(`Hat Prototype: ${hatPrototype}`);

let bootsPrototype = Object.getPrototypeOf(boots);
console.log(`Boots Prototype: ${bootsPrototype}`);

console.log(`Common prototype: ${ hatPrototype === bootsPrototype}`);

console.log(`Hat: ${hat.price}, ${hat.getPriceIncTax() }`);
console.log(`toString: ${hat.toString()}`);

Table 4-1. Useful Object Methods

Name Description
getPrototypeOf This method returns an object’s prototype.

setPrototypeOf This method changes the prototype of an object.

getOwnPropertyNames This method returns the names of an object’s own properties.

Chapter 4 ■ JavaSCript primer, part 2

80

The listing introduces another object and compares its prototype, producing the following output:

Hat Prototype: [object Object]
Boots Prototype: [object Object]
Common prototype: true
Hat: 100, 120
toString: [object Object]

The output shows that the hat and boots objects have the same prototype, as illustrated by Figure 4-2.

Because prototypes are regular JavaScript objects, new properties can be defined on prototypes, and
new values can be assigned to existing properties, as shown in Listing 4-5.

Listing 4-5. Changing a Prototype Property in the index.js File in the primer Folder

let hat = {
 name: "Hat",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
};

let boots = {
 name: "Boots",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
}

let hatPrototype = Object.getPrototypeOf(hat);
hatPrototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}

console.log(hat.toString());
console.log(boots.toString());

Figure 4-2. Objects and a common prototype

Chapter 4 ■ JavaSCript primer, part 2

81

Listing 4-5 assigns a new function to the toString method through the hat object’s prototype. Because
objects maintain a link to their prototype, the new toString method will be used for the boots object, too, as
shown by the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100

 Creating Custom Prototypes
Changes to Object should be made cautiously because they affect all the other objects in the application.
The new toString function in Listing 4-5 produces more useful output for the hat and boots objects but
assumes that there will be name and price properties, which won’t be the case when toString is called on
other objects.

A better approach is to create a prototype specifically for those objects that are known to have name and
price properties, which can be done using the Object.setPrototypeOf method, as shown in Listing 4-6.

Listing 4-6. Using a Custom Prototype in the index.js File in the primer Folder

let ProductProto = {
 toString: function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

let hat = {
 name: "Hat",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
};

let boots = {
 name: "Boots",
 price: 100,
 getPriceIncTax() {
 return Number(this.price) * 1.2;
 }
}

Object.setPrototypeOf(hat, ProductProto);
Object.setPrototypeOf(boots, ProductProto);

console.log(hat.toString());
console.log(boots.toString());

Prototypes can be defined just like any other object. In the listing, an object named ProductProto that
defines a toString method is used as the prototype for the hat and boots objects. The ProductProto object
is just like any other object, and that means it also has a prototype, which is Object, as shown in Figure 4-3.

Chapter 4 ■ JavaSCript primer, part 2

82

The effect is a chain of prototypes that the JavaScript works its way along until it locates a property or
method or reaches the end of the chain. The code in Listing 4-6 produces the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100

 Using Constructor Functions
A constructor function is used to create a new object, configure its properties, and assign its prototype, all of
which is done in a single step with the new keyword. Constructor functions can be used to ensure that objects
are created consistently and that the correct prototype is applied, as shown in Listing 4-7.

Listing 4-7. Using a Constructor Function in the index.js File in the primer Folder

let Product = function(name, price) {
 this.name = name;
 this.price = price;
}

Product.prototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}

let hat = new Product("Hat", 100);
let boots = new Product("Boots", 100);

console.log(hat.toString());
console.log(boots.toString());

Constructor functions are invoked with the new keyword, followed by the function or its variable name
and the arguments that will be used to configure the object, like this:

...
let hat = new Product("Hat", 100);
...

Figure 4-3. A chain of prototypes

Chapter 4 ■ JavaSCript primer, part 2

83

The JavaScript runtime creates a new object and uses it as the this value to invoke the constructor
function, providing the argument values as parameters. The constructor function can configure the object’s
own properties using this, which is set to the new object.

...
let Product = function(name, price) {
 this.name = name;
 this.price = price;
}
...

The prototype for the new object is set to the object returned by the prototype property of the
constructor function. This leads to constructors being defined in two parts—the function itself is used to
configure the object’s own properties, while the object returned by the prototype property is used for the
properties and methods that should be shared by all the objects the constructor creates. In the listing, a
toString property is added to the Product constructor function prototype and used to define a method.

...
Product.prototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}
...

The result is the same as the previous example, but using a constructor function can help ensure that
objects are created consistently and have their prototypes set correctly.

 Chaining Constructor Functions
Using the setPrototypeOf method to create a chain of custom prototypes is easy, but doing the same thing
with constructor functions requires a little more work to ensure that objects are configured correctly by the
functions and get the right prototypes in the chain. Listing 4-8 introduces a new constructor function and
uses it to create a chain with the Product constructor.

Listing 4-8. Chaining Constructor Functions in the index.js File in the primer Folder

let Product = function(name, price) {
 this.name = name;
 this.price = price;
}

Product.prototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}

let TaxedProduct = function(name, price, taxRate) {
 Product.call(this, name, price);
 this.taxRate = taxRate;
}
Object.setPrototypeOf(TaxedProduct.prototype, Product.prototype);

Chapter 4 ■ JavaSCript primer, part 2

84

TaxedProduct.prototype.getPriceIncTax = function() {
 return Number(this.price) * this.taxRate;
}

TaxedProduct.prototype.toTaxString = function() {
 return `${this.toString()}, Tax: ${this.getPriceIncTax()}`;
}

let hat = new TaxedProduct("Hat", 100, 1.2);
let boots = new Product("Boots", 100);

console.log(hat.toTaxString());
console.log(boots.toString());

Two steps must be taken to arrange the constructors and their prototypes in a chain. The first step is to
use the call method to invoke the next constructor so that new objects are created correctly. In the listing, I
want the TaxedProduct constructor to build on the Product constructor, so I have to use call on the Product
function so that it adds its properties to new objects.

...
Product.call(this, name, price);
...

The call method allows the new object to be passed to the next constructor through the this value.
The second step is to link the prototypes together.

...
Object.setPrototypeOf(TaxedProduct.prototype, Product.prototype);
...

Notice that the arguments to the setPrototypeOf method are the objects returned by the constructor
function’s prototype properties and not the functions themselves. Linking the prototypes ensures that the
JavaScript runtime will follow the chain when it looks for properties that are not an object’s own. Figure 4-4
shows the new set of prototypes.

The TaxedProduct prototype defines a toTaxString method that invokes toString, which will be found
by the JavaScript runtime on the Product prototype, and the code in Listing 4-8 produces the following
output:

toString: Name: Hat, Price: 100, Tax: 120
toString: Name: Boots, Price: 100

Figure 4-4. A more complex prototype chain

Chapter 4 ■ JavaSCript primer, part 2

85

ACCESSING OVERRIDDEN PROTOTYPE METHODS

a prototype can override a property or method by using the same name as one defined further along
the chain. this is also known as shadowing in JavaScript, and it takes advantage of the way that the
JavaScript runtime follows the chain.

Care is required when building on an overridden method, which must be accessed through the
prototype that defines it. the TaxedProduct prototype can define a toString method that overrides the
one defined by the Product prototype and can invoke the overridden method by accessing the method
directly through the prototype and using call to set the this value.

...
TaxedProduct.prototype.toString = function() {
 let chainResult = Product.prototype.toString.call(this);
 return `${chainResult}, Tax: ${this.getPriceIncTax()}`;
}
...

this method gets a result from the Product prototype’s toString method and combines it with
additional data in a template string.

 Checking Prototype Types
The instanceof operator is used to determine whether a constructor’s prototype is part of the chain for a
specific object, as shown in Listing 4-9.

Listing 4-9. Checking Prototypes in the index.js File in the primer Folder

let Product = function(name, price) {
 this.name = name;
 this.price = price;
}

Product.prototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}

let TaxedProduct = function(name, price, taxRate) {
 Product.call(this, name, price);
 this.taxRate = taxRate;
}
Object.setPrototypeOf(TaxedProduct.prototype, Product.prototype);

TaxedProduct.prototype.getPriceIncTax = function() {
 return Number(this.price) * this.taxRate;
}

TaxedProduct.prototype.toTaxString = function() {
 return `${this.toString()}, Tax: ${this.getPriceIncTax()}`;
}

Chapter 4 ■ JavaSCript primer, part 2

86

let hat = new TaxedProduct("Hat", 100, 1.2);
let boots = new Product("Boots", 100);

console.log(hat.toTaxString());
console.log(boots.toString());
console.log(`hat and TaxedProduct: ${ hat instanceof TaxedProduct}`);
console.log(`hat and Product: ${ hat instanceof Product}`);
console.log(`boots and TaxedProduct: ${ boots instanceof TaxedProduct}`);
console.log(`boots and Product: ${ boots instanceof Product}`);

The new statements use instanceof to determine whether the prototypes of the TaxedProduct and
Product constructor functions are in the chains of the hat and boots objects. The code in Listing 4-9
produces the following output:

toString: Name: Hat, Price: 100, Tax: 120
toString: Name: Boots, Price: 100
hat and TaxedProduct: true
hat and Product: true
boots and TaxedProduct: false
boots and Product: true

 ■ Tip Notice that the instanceof operator is used with the constructor function. the Object.isPrototypeOf
method is used directly with prototypes, which can be useful if you are not using constructors.

 Defining Static Properties and Methods
Properties and methods that are defined on the constructor function are often referred to as static, meaning
they are accessed through the constructor and not individual objects created by that constructor (as
opposed to instance properties, which are accessed through an object). The Object.setPrototypeOf and
Object.getPrototypeOf methods are good examples of static methods. Listing 4-10 simplifies the example
for brevity and introduces a static method.

Listing 4-10. Defining a Static Method index.js File in the primer Folder

let Product = function(name, price) {
 this.name = name;
 this.price = price;
}

Product.prototype.toString = function() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
}

Product.process = (...products) =>
 products.forEach(p => console.log(p.toString()));

Product.process(new Product("Hat", 100, 1.2), new Product("Boots", 100));

Chapter 4 ■ JavaSCript primer, part 2

87

The static process method is defined by adding a new property to the Product function object and
assigning it a function. Remember that JavaScript functions are objects, and properties can be freely added
and removed from objects. The process method defines a rest parameter and uses the forEach method
to invoke the toString method for each object it receives and writes the result to the console. The code in
Listing 4-10 produces the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100

 Using JavaScript Classes
JavaScript classes were added to the language to ease the transition from other popular programming
languages. Behind the scenes, JavaScript classes are implemented using prototypes, which means that
JavaScript classes have some differences from those in languages such as C# and Java. In Listing 4-11, I
removed the constructors and prototypes and introduced a Product class.

Listing 4-11. Defining a Class in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

let hat = new Product("Hat", 100);
let boots = new Product("Boots", 100);

console.log(hat.toString());
console.log(boots.toString());

Classes are defined with the class keyword, followed by a name for the class. The class syntax may
appear more familiar, but classes are translated into the underlying JavaScript prototype system described in
the previous section.

Objects are created from classes using the new keyword. The JavaScript runtime creates a new object
and invokes the class constructor function, which receives the new object through the this value and
which is responsible for defining the object’s own properties. Methods defined by classes are added to
the prototype assigned to objects created using the class. The code in Listing 4-11 produces the following
output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100

Chapter 4 ■ JavaSCript primer, part 2

88

 Using Inheritance in Classes
Classes can inherit features using the extends keyword and invoke the superclass constructor and methods
using the super keyword, as shown in Listing 4-12.

Listing 4-12. Extending a Class in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

class TaxedProduct extends Product {

 constructor(name, price, taxRate = 1.2) {
 super(name, price);
 this.taxRate = taxRate;
 }

 getPriceIncTax() {
 return Number(this.price) * this.taxRate;
 }

 toString() {
 let chainResult = super.toString();
 return `${chainResult}, Tax: ${this.getPriceIncTax()}`;
 }
}

let hat = new TaxedProduct("Hat", 100);
let boots = new TaxedProduct("Boots", 100, 1.3);

console.log(hat.toString());
console.log(boots.toString());

A class declares its superclass using the extends keyword. In the listing, the TaxedProduct class uses the
extend keyword to inherit from the Product class. The super keyword is used in the constructor to invoke
the superclass constructor, which is equivalent to chaining constructor functions.

...
constructor(name, price, taxRate = 1.2) {
 super(name, price);
 this.taxRate = taxRate;
}
...

Chapter 4 ■ JavaSCript primer, part 2

89

The super keyword must be used before the this keyword and is generally used in the first statement in
the constructor. The super keyword can also be used to access superclass properties and methods, like this:

...
toString() {
 let chainResult = super.toString();
 return `${chainResult}, Tax: ${this.getPriceIncTax()}`;
}
...

The toString method defined by the TaxedProduct class invoked the superclass’s toString method,
which is equivalent to overriding prototype methods. The code in Listing 4-12 produces the following
output:

toString: Name: Hat, Price: 100, Tax: 120
toString: Name: Boots, Price: 100, Tax: 130

 Defining Static Methods
The static keyword is applied to create static methods that are accessed through the class, rather than the
object it creates, as shown in Listing 4-13.

Listing 4-13. Defining a Static Method in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

class TaxedProduct extends Product {

 constructor(name, price, taxRate = 1.2) {
 super(name, price);
 this.taxRate = taxRate;
 }

 getPriceIncTax() {
 return Number(this.price) * this.taxRate;
 }

 toString() {
 let chainResult = super.toString();
 return `${chainResult}, Tax: ${this.getPriceIncTax()}`;
 }

Chapter 4 ■ JavaSCript primer, part 2

90

 static process(...products) {
 products.forEach(p => console.log(p.toString()));
 }
}

TaxedProduct.process(new TaxedProduct("Hat", 100, 1.2),
 new TaxedProduct("Boots", 100));

The static keyword is used on the process method defined by the TaxedProduct class and is accessed
as TaxedProduct.process. The code in Listing 4-13 produces the following output:

toString: Name: Hat, Price: 100, Tax: 120
toString: Name: Boots, Price: 100, Tax: 120

 Using Iterators and Generators
Iterators are objects that return a sequence of values. Iterators are used with the collections described later
in this chapter, but they can also be useful in their own right. An iterator defines a function named next that
returns an object with value and done properties: the value property returns the next value in the sequence,
and the done property is set to true when the sequence is complete. Listing 4-14 shows the definition and
use of an iterator.

Listing 4-14. Using an Iterator in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

function createProductIterator() {
 const hat = new Product("Hat", 100);
 const boots = new Product("Boots", 100);
 const umbrella = new Product("Umbrella", 23);

 let lastVal;

 return {
 next() {
 switch (lastVal) {
 case undefined:
 lastVal = hat;
 return { value: hat, done: false };

Chapter 4 ■ JavaSCript primer, part 2

91

 case hat:
 lastVal = boots;
 return { value: boots, done: false };
 case boots:
 lastVal = umbrella;
 return { value: umbrella, done: false };
 case umbrella:
 return { value: undefined, done: true };
 }
 }
 }

}

let iterator = createProductIterator();
let result = iterator.next();
while (!result.done) {
 console.log(result.value.toString());
 result = iterator.next();
}

The createProductIterator function returns an object that defines a next function. Each time the
next method is called, a different Product object is returned, and then, once the set of objects has been
exhausted, an object whose done property is true is returned to indicate the end of the data. A while loop is
used to process the iterator data, calling next after each object has been processed. The code in Listing 4-14
produces the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100
toString: Name: Umbrella, Price: 23

 Using a Generator
Writing iterators can be awkward because the code has to maintain state data to keep track of the current
position in the sequence each time the next function is invoked. A simpler approach is to use a generator,
which is a function that is invoked once and uses the yield keyword to produce the values in the sequence,
as shown in Listing 4-15.

Listing 4-15. Using a Generator in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

Chapter 4 ■ JavaSCript primer, part 2

92

function* createProductIterator() {
 yield new Product("Hat", 100);
 yield new Product("Boots", 100);
 yield new Product("Umbrella", 23);
}

let iterator = createProductIterator();
let result = iterator.next();
while (!result.done) {
 console.log(result.value.toString());
 result = iterator.next();
}

Generator functions are denoted with an asterisk, like this:

...
function* createProductIterator() {
...

Generators are consumed in the same way as iterators. The JavaScript runtime creates the next function
and executes the generator function until it reaches the yield keyword, which provides a value in the
sequence. Execution of the generator function continues gradually each time the next function is invoked.
When there are no more yield statements to execute, an object whose done property is true is created
automatically.

Generators can be used with the spread operator, allowing the sequence to be used as a set of function
parameters or to populate an array, as shown in Listing 4-16.

Listing 4-16. Using the Spread Operator in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

function* createProductIterator() {
 yield new Product("Hat", 100);
 yield new Product("Boots", 100);
 yield new Product("Umbrella", 23);
}

[...createProductIterator()].forEach(p => console.log(p.toString()));

Chapter 4 ■ JavaSCript primer, part 2

93

The new statement in Listing 4-16 uses the sequence of values from the generator to populate an array,
which is enumerated using the forEach method. The code in Listing 4-16 produces the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100
toString: Name: Umbrella, Price: 23

 Defining Iterable Objects
Stand-alone functions for iterators and generators can be useful, but the most common requirement is for
an object to provide a sequence as part of some broader functionality. Listing 4-17 defines an object that
groups related data items and provides a generator to allow the items to be sequenced.

Listing 4-17. Defining an Object with a Sequence in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

class GiftPack {
 constructor(name, prod1, prod2, prod3) {
 this.name = name;
 this.prod1 = prod1;
 this.prod2 = prod2;
 this.prod3 = prod3;
 }

 getTotalPrice() {
 return [this.prod1, this.prod2, this.prod3]
 .reduce((total, p) => total + p.price, 0);
 }

 *getGenerator() {
 yield this.prod1;
 yield this.prod2;
 yield this.prod3;
 }
}

Chapter 4 ■ JavaSCript primer, part 2

94

let winter = new GiftPack("winter", new Product("Hat", 100),
 new Product("Boots", 80), new Product("Gloves", 23));

console.log(`Total price: ${ winter.getTotalPrice() }`);

[...winter.getGenerator()].forEach(p => console.log(`Product: ${ p }`));

The GiftPack class keeps track of a set of related products. One of the methods defined by GiftPack is
named getGenerator and is a generator that yields the products.

 ■ Tip the asterisk appears before generator method names.

This approach works, but the syntax for using the iterator is a little awkward because the getGenerator
method has to be explicitly called, like this:

...
[...winter.getGenerator()].forEach(p => console.log(`Product: ${ p }`));
...

A more elegant approach is to use the special method name for the generator, which tells the JavaScript
runtime that the method provides the default iteration support for an object, as shown in Listing 4-18.

Listing 4-18. Defining a Default Iterator Method in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

class GiftPack {
 constructor(name, prod1, prod2, prod3) {
 this.name = name;
 this.prod1 = prod1;
 this.prod2 = prod2;
 this.prod3 = prod3;
 }

 getTotalPrice() {
 return [this.prod1, this.prod2, this.prod3]
 .reduce((total, p) => total + p.price, 0);
 }

Chapter 4 ■ JavaSCript primer, part 2

95

 *[Symbol.iterator]() {
 yield this.prod1;
 yield this.prod2;
 yield this.prod3;
 }
}

let winter = new GiftPack("winter", new Product("Hat", 100),
 new Product("Boots", 80), new Product("Gloves", 23));

console.log(`Total price: ${ winter.getTotalPrice() }`);

[...winter].forEach(p => console.log(`Product: ${ p }`));

The Symbol.iterator property is used to denote the default iterator for an object. (Don’t worry about
Symbol at the moment—it is the least used of the JavaScript primitives, and its purpose is described in the
next section.) Using the Symbol.iterator value as the name for a generator allows the object to be iterated
directly, like this:

...
[...winter].forEach(p => console.log(`Product: ${ p }`));
...

I no longer have to invoke a method to get a generator, which produces clearer and more elegant code.

 Using JavaScript Collections
Traditionally, collections of data in JavaScript have been managed using objects and arrays, where objects
are used to store data by key, and arrays are used to store data by index. JavaScript also provides dedicated
collection objects that provide more structure, although they can also be less flexible, as explained in the
sections that follow.

 Storing Data by Key Using an Object
Objects can be used as collections, where each property is a key/value pair, with the property name being
the key, as shown in Listing 4-19.

Listing 4-19. Using an Object as a Collection in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

Chapter 4 ■ JavaSCript primer, part 2

96

let data = {
 hat: new Product("Hat", 100)
}

data.boots = new Product("Boots", 100);

Object.keys(data).forEach(key => console.log(data[key].toString()));

This example uses an object named data to collect Product objects. New values can be added to the
collection by defining new properties, like this:

...
data.boots = new Product("Boots", 100);
...

Object provides useful methods for getting the set of keys or values from an object, which Table 4-2
summarizes for quick reference.

Listing 4-19 uses the Object.keys method to get an array containing the property names defined by the
data object and uses the array forEach method to get the corresponding value. When a property name is
assigned to a variable, the corresponding value can be obtained using square brackets, like this:

...
Object.keys(data).forEach(key => console.log(data[key].toString()));
...

The contents of the square brackets are evaluated as an expression, and specifying a variable name,
such as key, returns its value. The code in Listing 4-19 produces the following output:

toString: Name: Hat, Price: 100
toString: Name: Boots, Price: 100

 Storing Data by Key Using a Map
Objects are easy to use as basic collections, but there are some limitations, such as being able to use only
string values as keys. JavaScript also provides Map, which is purpose-built for storing data using keys of any
type, as shown in Listing 4-20.

Table 4-2. The Object Methods for Keys and Values

Name Description
Object.keys(object) This method returns an array containing the property names defined by the object.

Object.values(object) This method returns an array containing the property values defined by the object.

Chapter 4 ■ JavaSCript primer, part 2

97

Listing 4-20. Using a Map in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.name = name;
 this.price = price;
 }

 toString() {
 return `toString: Name: ${this.name}, Price: ${this.price}`;
 }
}

let data = new Map();
data.set("hat", new Product("Hat", 100));
data.set("boots", new Product("Boots", 100));

[...data.keys()].forEach(key => console.log(data.get(key).toString()));

The API provided by Map allows items to be stored and retrieved, and iterators are available for the keys
and values. Table 4-3 describes the most commonly used methods.

 Using Symbols for Map Keys
The main advantage of using a Map is that any value can be used as a key, including Symbol values. Each
Symbol value is unique and immutable and ideally suited as an identifier for objects. Listing 4-21 defines a
new Map that uses Symbol values as keys.

 ■ Note Symbol values can be useful, but they can be difficult to work with because they are not human-
readable and have to be created and handled carefully. See https://developer.mozilla.org/en- US/docs/
Web/JavaScript/Reference/Global_Objects/Symbol for more details.

Table 4-3. Useful Map Methods

Name Description
set(key, value) This method stores a value with the specified key.

get(key) This method retrieves the value stored with the specified key.

keys() This method returns an iterator for the keys in the Map.

values() This method returns an iterator for the values in the Map.

entries() This method returns an iterator for the key/value pairs in the Map, each of which is
presented as an array containing the key and value. This is the default iterator for Map
objects.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

Chapter 4 ■ JavaSCript primer, part 2

98

Listing 4-21. Using Symbol Values as Keys in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

class Supplier {
 constructor(name, productids) {
 this.name = name;
 this.productids = productids;
 }
}

let acmeProducts = [new Product("Hat", 100), new Product("Boots", 100)];
let zoomProducts = [new Product("Hat", 100), new Product("Boots", 100)];

let products = new Map();
[...acmeProducts, ...zoomProducts].forEach(p => products.set(p.id, p));
let suppliers = new Map();
suppliers.set("acme", new Supplier("Acme Co", acmeProducts.map(p => p.id)));
suppliers.set("zoom", new Supplier("Zoom Shoes", zoomProducts.map(p => p.id)));

suppliers.get("acme").productids.forEach(id =>
 console.log(`Name: ${products.get(id).name}`));

The benefit of using Symbol values as keys is that there is no possibility of two keys colliding, which
can happen if keys are derived from the value’s characteristics. The previous example used the Product.
name value as the key, which is subject to two objects being stored with the same key, such that one replaces
the other. In this example, each Product object has an id property that is assigned a Symbol value in the
constructor and that is used to store the object in the Map. Using a Symbol allows me to store objects that have
identical name and price properties and retrieve them without difficulty. The code in Listing 4-21 produces
the following output:

Name: Hat
Name: Boots

 Storing Data by Index
In Chapter 3, you saw how data can be stored in an array. JavaScript also provides Set, which stores data
by index but has performance optimizations and—most usefully—stores only unique values, as shown in
Listing 4-22.

Chapter 4 ■ JavaSCript primer, part 2

99

Listing 4-22. Using a Set in the index.js File in the primer Folder

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

let product = new Product("Hat", 100);

let productArray = [];
let productSet = new Set();

for (let i = 0; i < 5; i++) {
 productArray.push(product);
 productSet.add(product);
}

console.log(`Array length: ${productArray.length}`);
console.log(`Set size: ${productSet.size}`);

This example adds the same Product object five times to an array and a Set and then prints out how
many items each contains, producing the following output:

Array length: 5
Set size: 1

For my projects, the need to allow or prevent duplicate values is the reason to choose between an
array and a Set. The API provided by Set provides comparable features to working with an array; Table 4-4
describes the most useful methods.

 Using Modules
Most applications are too complex to have all the code in a single file. To break up an application into
manageable chunks, JavaScript supports modules. There have been competing approaches for defining and
consuming modules, but the approach I focus on here is the one defined by the JavaScript specification,
which is the most broadly supported by popular JavaScript development tools and application frameworks.

Table 4-4. Useful Set Methods

Name Description
add(value) This method adds the value to the Set.

entries() This value returns an iterator for the items in the Set, in the order in which they were
added.

has(value) This value returns true if the Set contains the specified value.

forEach(callback) This method invokes a function for each value in the Set.

Chapter 4 ■ JavaSCript primer, part 2

100

Node.js supports modules but in a way that is slightly different from the TypeScript support you will
see in later chapters. To work around this limitation, stop the nodemon process you started in Listing 4-2 and
use the command prompt to run the command shown in Listing 4-23 in the primer folder. This command
installs a package called esm that provides support for working with modules.

Listing 4-23. Adding a Package

npm install esm@3.2.25

Once the package has been installed, use the command prompt to run the command shown in
Listing 4-24 in the primer folder.

Listing 4-24. Starting the Development Tools

npx nodemon --require esm index.js

The nodemon package will start up and display the following output:

[nodemon] 1.18.10
[nodemon] to restart at any time, enter `rs`
[nodemon] watching: *.*
[nodemon] starting `node --require esm index.js`
Array length: 5
Set size: 1
[nodemon] clean exit - waiting for changes before restart

 Creating a JavaScript Module
Each JavaScript module is contained in its own JavaScript file. To create a module, I added a file called
tax.js to the primer folder and added the code shown in Listing 4-25.

Listing 4-25. The Contents of the tax.js File in the primer Folder

export default function(price) {
 return Number(price) * 1.2;
}

The function defined in the tax.js file receives a price value and applies a 20 percent tax rate. The
function itself is simple, and it is the export and default keywords that are important. The export keyword
is used to denote the features that will be available outside the module. By default, the contents of the
JavaScript file are private and must be explicitly shared using the export keyword before they can be used in
the rest of the application. The default keyword is used when the module contains a single feature, such as
the function defined in Listing 4-25. Together, the export and default keywords are used to specify that the
only function in the tax.js file is available for use in the rest of the application.

Chapter 4 ■ JavaSCript primer, part 2

101

 Using a JavaScript Module
Another JavaScript keyword is required to use a module: the import keyword. In Listing 4-26, I have used the
import keyword in the index.js file to use the function defined in the tax.js file.

Listing 4-26. Using a Module in the index.js File in the primer Folder

import calcTax from "./tax";

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

let product = new Product("Hat", 100);
let taxedPrice = calcTax(product.price);
console.log(`Name: ${ product.name }, Taxed Price: ${taxedPrice}`);

The import keyword is used to declare a dependency on the module. The import keyword can be used
in several different ways, but this is the format you will use most often when working with modules you have
created within your project.

The import keyword is followed by an identifier, which is the name by which the function in the module
will be known when it is used, and the identifier in this example is calcTax. The from keyword follows
the identifier, which is then followed by the location of the module. It is important to pay close attention
to the location because different behaviors are created by different location formats, as described in the
“Understanding Module Locations” sidebar.

During the build process, the JavaScript runtime will detect the import statement and will load the
contents of the tax.js file. The identifier used in the import statement can be used to access the function in
the module, in just the same way that locally defined functions are used.

...
let taxedPrice = calcTax(product.price);
...

When the code is executed, the value assigned to the taxedPrice variable is calculated using the
function defined in the tax.js file and produces the following output:

Name: Hat, Taxed Price: 120

Chapter 4 ■ JavaSCript primer, part 2

102

UNDERSTANDING MODULE LOCATIONS

the location of a module specifies where the JavaScript runtime will look for the code file that contains
the module’s code. For modules defined in the project, the location is specified as a relative path,
starting with one or two periods, indicating that the path is relative to the current file or the current file’s
parent directory. in Listing 4-26, the location starts with a period.

...
import calcTax from "./tax";
...

this location tells the build tools that there is a dependency on the tax module, which can be found
in the same folder as the file that contains the import statement. Notice that the file extension is not
included in the location.

if you omit the initial period or periods, then the import statement declares a dependency on a module
that is not in the local project. the locations that are searched for the module will vary depending on
the application framework and build tools you are using, but the most common location to search is the
node_modules folder, which is where packages are installed during the project setup. this location is
used to access features provided by third-party packages. You will see examples of using modules from
third-party packages in part 3 of this book, but for quick reference, here is an import statement from
Chapter 19, which covers development with react:

...
import React, { Component } from "react";
...

the location for this import statement doesn’t start with a period and will be interpreted as a
dependency on the react module in the project’s node_modules folder, which is the package that
provides the core react application features.

 Exporting Named Features from a Module
A module can assign names to the features it exports. This is the approach that I prefer, and in Listing 4-27,
I have given a name to the function exported by the tax module.

Listing 4-27. Exporting a Named Feature in the tax.js File in the primer Folder

export function calculateTax(price) {
 return Number(price) * 1.2;
}

The function provides the same feature but is exported using the name calculateTax and no longer
uses the default keyword. In Listing 4-28, I have imported the feature using its new name in the index.js
file.

Chapter 4 ■ JavaSCript primer, part 2

103

Listing 4-28. Importing a Named Feature in the index.js File in the primer Folder

import { calculateTax } from "./tax";

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

let product = new Product("Hat", 100);
let taxedPrice = calculateTax(product.price);
console.log(`Name: ${ product.name }, Taxed Price: ${taxedPrice}`);

The name of the feature to be imported is specified in curly braces (the { and } characters) and is used
by this name in the code. A module can export default and named features, as shown in Listing 4-29.

Listing 4-29. Exporting Named and Default Features in the tax.js File in the primer Folder

export function calculateTax(price) {
 return Number(price) * 1.2;
}

export default function calcTaxandSum(...prices) {
 return prices.reduce((total, p) => total += calculateTax(p), 0);
}

The new feature is exported using the default keyword. In Listing 4-30, I have imported the new feature
as the default export from the module.

Listing 4-30. Importing a Default Feature in the index.js File in the primer Folder

import calcTaxAndSum, { calculateTax } from "./tax";

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

let product = new Product("Hat", 100);
let taxedPrice = calculateTax(product.price);
console.log(`Name: ${ product.name }, Taxed Price: ${taxedPrice}`);

let products = [new Product("Gloves", 23), new Product("Boots", 100)];
let totalPrice = calcTaxAndSum(...products.map(p => p.price));
console.log(`Total Price: ${totalPrice.toFixed(2)}`);

Chapter 4 ■ JavaSCript primer, part 2

104

This is a common pattern with web application frameworks such as React, where the core features are
provided by the default export of a module and optional features are available as named exports. The code in
Listing 4-30 produces the following output:

Name: Hat, Taxed Price: 120
Total Price: 147.60

 Defining Multiple Named Features in a Module
Modules can contain more than one named function or value, which is useful for grouping related features.
To demonstrate, I added a file called utils.js to the primer folder with the code shown in Listing 4-31.

Listing 4-31. The Contents of the utils.js File in the primer Folder

import { calculateTax } from "./tax";

export function printDetails(product) {
 let taxedPrice = calculateTax(product.price);
 console.log(`Name: ${product.name}, Taxed Price: ${taxedPrice}`);
}

export function applyDiscount(product, discount = 5) {
 product.price = product.price - 5;
}

This module defines two functions to which the export keyword has been applied. Unlike the previous
example, the default keyword is not used, and each function has its own name. When importing from a
module that contains multiple features, the names of the features that are used are specified as a comma-
separated list between the braces, as shown in Listing 4-32.

Listing 4-32. Importing Named Features in the index.js File in the primer Folder

import calcTaxAndSum, { calculateTax } from "./tax";
import { printDetails, applyDiscount } from "./utils";

class Product {
 constructor(name, price) {
 this.id = Symbol();
 this.name = name;
 this.price = price;
 }
}

let product = new Product("Hat", 100);
applyDiscount(product, 10);
let taxedPrice = calculateTax(product.price);
printDetails(product);

Chapter 4 ■ JavaSCript primer, part 2

105

let products = [new Product("Gloves", 23), new Product("Boots", 100)];
let totalPrice = calcTaxAndSum(...products.map(p => p.price));
console.log(`Total Price: ${totalPrice.toFixed(2)}`);

The braces that follow the import keyword surround the functions I want to use. I only need to declare
dependencies on the functions that I require, and there is no need to add functions that are not used to the
import statement. The code in Listing 4-32 produces the following output:

Name: Hat, Taxed Price: 114
Total Price: 147.60

 Summary
In this chapter, I described the JavaScript features for dealing with objects, sequences of values, collections,
and the use of modules. These are all JavaScript features, but, as you will learn, understanding them helps
put TypeScript into context and sets the foundation for effective TypeScript development. In the next
chapter, I introduce the TypeScript compiler, which is at the heart of the features that TypeScript provides to
developers.

107© Adam Freeman 2021
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_5

CHAPTER 5

Using the TypeScript Compiler

In this chapter, I show you how to use the TypeScript compiler, which is responsible for transforming
TypeScript code into JavaScript that can be executed by browsers or the Node.js runtime. I also describe the
compiler configuration options that are most useful for TypeScript development, including those that are
used with the web application frameworks covered in Part 3 of this book.

 Preparing for This Chapter
To prepare for this chapter, open a command prompt, navigate to a convenient location, and create a folder
named tools. Run the commands shown in Listing 5-1 to navigate to the tools folder and to tell the Node
Package Manager (NPM) to create a file named package.json. This file will be used to keep track of the
packages added to the project, as described in the “Using the Node Package Manager” section.

Listing 5-1. Creating the package.json File

cd tools
npm init --yes

Use the command prompt to run the commands shown in Listing 5-2 in the tools folder to install the
package required for this chapter.

Listing 5-2. Adding Packages Using the Node Package Manager

npm install --save-dev typescript@4.2.2
npm install --save-dev tsc-watch@4.2.9

The install argument tells NPM to download and add a package to the current folder. The --save-dev
argument tells NPM that these are packages for use in development but not part of the application. The final
argument is the name of the package, followed by the @ symbol, followed by the version that is required.

 ■ Note It is important to use the versions specified for the examples in this book. You may encounter
unexpected behavior or errors if you use different versions.

https://doi.org/10.1007/978-1-4842-7011-0_5#DOI

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

108

To create a configuration file for the TypeScript compiler, add a file called tsconfig.json to the tools
folder with the content shown in Listing 5-3.

Listing 5-3. The Contents of the tsconfig.json File in the tools Folder

{
 "compilerOptions": {
 "target": "es2018",
 "outDir": "./dist",
 "rootDir": "./src"
 }
}

To complete the setup, create the tools/src folder and add to it a file called index.ts that contains the
code in Listing 5-4.

Listing 5-4. The Contents of the index.ts File in the src Folder

function printMessage(msg: string): void {
 console.log(`Message: ${ msg }`);
}

printMessage("Hello, TypeScript");

To compile the TypeScript code, run the command shown in Listing 5-5 in the tools folder.

Listing 5-5. Compiling the TypeScript Code

tsc

To execute the compiled code, run the command shown in Listing 5-6 in the tools folder.

Listing 5-6. Running the Compiled Code

node dist/index.js

If the project has been set up successfully, the following output will be displayed at the command
prompt:

Message: Hello, TypeScript

 Understanding the Project Structure
The structure of the example project is one that you will see in most JavaScript and TypeScript development,
with some variations for the main framework used for the application, such as React or Angular. Figure 5-1
shows the contents of the tools folder.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

109

The figure shows how the project folder is displayed by Visual Studio Code, which is the editor I use
throughout this book. Table 5-1 describes each of the items in the project, and I provide more details about
the most important items in the sections that follow.

Figure 5-1. The contents of the example project folder

Table 5-1. The Project Files and Folders

Name Description
dist This folder contains the output from the compiler.

node_modules This folder contains the packages that the application and development tools
require, as described in the “Using the Node Package Manager” section.

src This folder contains the source code files that will be compiled by the TypeScript
compiler.

package.json This folder contains the set of top-level package dependencies for the project, as
described in the “Using the Node Package Manager” section.

package-lock.json This file contains a complete list of the package dependencies for the project.

tsconfig.json This file contains the configuration settings for the TypeScript compiler.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

110

 Using the Node Package Manager
TypeScript and JavaScript development depends on a rich ecosystem of packages. Most TypeScript projects
will require packages that contain the TypeScript compiler, the application framework (if one is used), and
the tools required to package the compiled code so that it can be distributed and executed.

NPM is used to download these packages and add them to the project’s node_modules folder. Each
package declares a set of dependencies on other packages and specifies the versions that it can work
with. NPM follows this chain of dependencies, working out which versions of each package is needed and
downloads everything that is required.

The package.json file is used to keep track of the packages that have been added using the npm
install command. Here are the contents of the package.json file from the example project:

{
 "name": "tools",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "tsc-watch": "^4.2.9",
 "typescript": "^4.2.2"
 }
}

The basic content of the file was created by the npm init command in Listing 5-1 and was then
modified by each use of the npm install command in Listing 5-2. Packages are separated into the tools
used during the development process and those that form part of the application. Packages used during
development are installed with the save-dev argument and are recorded in the devDependencies section
of the package.json file. Packages that are included in the application are installed without the --save-dev
argument and are stored in a section named dependencies. Only tool packages were installed in Listing 5-2,
which is why all of the packages are in the devDependencies section and why the package.json file doesn’t
contain a dependencies section at all. Examples later in the book add packages to the dependencies section,
but the focus in this chapter is on the tools that are used for TypeScript development. Table 5-2 describes
each of the packages that have been added to the example project.

UNDERSTANDING GLOBAL AND LOCAL PACKAGES

package managers can install packages so they are specific to a single project (known as a local install)
or so they can be accessed from anywhere (known as a global install). In Chapter 1, you installed the
typescript package globally, which allows the tsc command to be used to compile code anywhere. In
listing 5-2, the same package is installed locally, even though the functionality is already available. this
is so that other packages in the same project can access the functionality provided by the typescript
compiler.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

111

For each package, the package.json file includes details of the version numbers that are acceptable,
using the format described in Table 5-3.

NPM is a sophisticated tool, and understanding its use is an important part of JavaScript and TypeScript
development. Table 5-4 describes some NPM commands that you may find useful during development. All
of these commands should be run inside the project folder, which is the one that contains the package.json
file.

Table 5-2. The Packages Added to the Example Project

Name Description
tsc-watch This package watches a source code folder, runs the TypeScript compiler when there is a

change, and executes the compiled JavaScript code.

typescript This is the package that contains the TypeScript compiler and its supporting tools.

Table 5-3. The Package Version Numbering System

Format Description
4.2.2 Expressing a version number directly will accept only the package with the exact

matching version number, e.g., 4.2.2.

* Using an asterisk accepts any version of the package to be installed.

>4.2.2 >=4.2.2 Prefixing a version number with > or >= accepts any version of the package that is
greater than or greater than or equal to a given version.

<4.2.2 <=4.2.2 Prefixing a version number with < or <= accepts any version of the package that is less
than or less than or equal to a given version.

~4.2.2 Prefixing a version number with a tilde (the ~ character) accepts versions to be installed
even if the patch level number (the last of the three version numbers) doesn’t match.
For example, specifying ~4.2.2 will accept version 4.2.3 or 4.2.4 (which would contain
patches to version 4.2.2) but not version 4.3.0 (which would be a new minor release).

^4.2.2 Prefixing a version number with a caret (the ^ character) will accept versions even if the
minor release number (the second of the three version numbers) or the patch number
doesn’t match. For example, specifying ^4.2.2 will allow versions 4.2.3 and 4.3.0, but
not version 5.0.0.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

112

The node_modules folder is typically excluded from version control because it contains a large number
of files and because packages can contain platform-specific components that don’t work when a project is
checked out on a new machine. Instead, the npm install command is used to create a new node_modules
folder and install the required packages.

This approach can produce a different set of packages each time the npm install command is
run because dependencies can be expressed as a range of versions, as described in Table 5-4. To ensure
consistency, NPM creates the package-lock.json file, which contains a complete list of the packages
installed in the node_module folder, along with the versions that were used. The package-lock.json file is
updated by NPM when changes are made to the packages in the project and the versions it contains are used
by the npm install command.

 ■ Note the package.json and package-lock.json files should be checked in for revision control to ensure
everyone on the development team gets the same packages. When you pull updates from the repository, make
sure you run the npm install command to receive any new packages that have been added by another
developer.

 Understanding the TypeScript Compiler Configuration File
The TypeScript compiler, tsc, is responsible for compiling TypeScript files. It is the compiler that is
responsible for implementing TypeScript features, such as static types, and the result is pure JavaScript from
which the TypeScript keywords and expressions have been removed.

Table 5-4. Useful NPM Commands

Command Description
npm install This command performs a local install of the packages specified in the

package.json file.

npm install package@version This command performs a local install of a specific version of a
package and updates the package.json file to add the package to the
dependencies section.

npm install --save-dev
package@version

This command performs a local install of a specific version of a
package and updates the package.json file to add the package to the
devDependencies section, which is used to add packages to the project
that are required for development but are not part of the application.

npm install --global
package@version

This command will perform a global install of a specific version of a
package.

npm list This command will list all the local packages and their dependencies.

npm run This command will execute one of the scripts defined in the package.
json file.

npx package This command runs the code contained in a package.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

113

The TypeScript compiler has a lot of configuration options, as described later in this chapter. A
configuration file is used to override the default settings and ensures a consistent configuration is always used.
The name of the configuration file is tsconfig.json, which was created with this content in Listing 5-3:

{
 "compilerOptions": {
 "target": "es2018",
 "outDir": "./dist",
 "rootDir": "./src"
 }
}

The tsconfig.json file can contain several top-level configuration settings, as described in Table 5-5,
although the file used by the example project contains only compilerOptions settings, which are described
in the “Useful Compiler Configuration Settings” section.

The files, include, and exclude options are useful if you have an unusual project structure to
accommodate, such as when integrating TypeScript into a project that contains another framework or toolkit
that has a conflicting set of files. You can see the set of files that the compiler has found for compilation by
using the listFiles setting, which can be defined in the compilerOptions section of the tsconfig.json file
or specified on the command line. As an example, run the command shown in Listing 5-7 in the tools folder
to see the files that are selected by the compiler configuration.

Listing 5-7. Displaying the List of Files for Compilation

tsc --listFiles

Table 5-5. The Top-Level Configuration Settings of the tsconfig.json File

Name Description
compilerOptions This section groups the settings that the compiler will use, as described in the

“Useful Compiler Configuration Settings” section.

files This setting specifies the files that will be compiled, which overrides the default
behavior where the compiler searches for files to compile.

include This setting is used to select files for compilation by pattern. If unspecified, files
with the .ts, tsx, and .d.ts extensions will be selected. (TSX files are described
in Chapter 15. Files with the .d.ts extension are described in Chapter 14.)

exclude This setting is used to exclude files from the compilation by pattern.

compileOnSave When set to true, this setting is a hint to the code editor that it should run the
compiler each time a file is saved. This feature is not supported by all editors,
and the watch feature, described in the next section, provides a more useful
alternative.

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

114

The listFiles argument displays a long list of files that the compiler has located, as follows:

...
C:/npm/node_modules/typescript/lib/lib.es5.d.ts
C:/npm/node_modules/typescript/lib/lib.es2015.d.ts
C:/npm/node_modules/typescript/lib/lib.es2016.d.ts
C:/npm/node_modules/typescript/lib/lib.es2017.d.ts
C:/npm/node_modules/typescript/lib/lib.es2018.d.ts
...

The files displayed by the listFiles option include the type declarations that the compiler has located.
As explained in Chapter 1, type declarations describe the data types used by JavaScript code so that it can
be safely used in a TypeScript application. The TypeScript package includes type declarations for different
versions of the JavaScript language and for the APIs that are available in Node.js and browsers. Type
declarations are described in more detail in Chapter 14, and these specific files are described in the “Using
the Version Targeting Feature” section of this chapter.

 ■ Note the paths for the type declaration files are outside of the project because the tsc command runs the
typescript compiler from the package installed globally in Chapter 1. the same package has been installed
locally in the node_modules folder and is used when creating a development pipeline, as described in the next
section. If you need to run the compiler from the package installed locally in the project, then you can use the
npx command, such that npx tsc --listFiles has the same effect as the command in listing 5-7 but uses
the local package.

This file appears at the end of the list produced by the listFile option:

...
C:/tools/src/index.ts
...

As part of the discovery process, the TypeScript compiler looks for TypeScript files in the location
specified by the rootDir setting in the tsconfig.json file. The compiler examines the src folder and
discovers the index.ts file.

 Compiling TypeScript Code
The compiler checks the TypeScript code to enforce features like static types and emits pure JavaScript
code from which the TypeScript additions have been removed. The compiler can be run directly from the
command line and will process all the files shown by the listfile option. Run the command shown in
Listing 5-8 in the tools folder to start the compiler.

Listing 5-8. Running the Compiler

tsc

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

115

There is only one TypeScript file in the project—the src/index.ts file—and the configuration settings
in the tsconfig.json file tell the compiler that it should place the JavaScript it emits into the dist folder. If
you examine the contents of the dist folder, you will see it contains a file called index.js, with the following
contents:

function printMessage(msg) {
 console.log(`Message: ${msg}`);
}
printMessage("Hello, TypeScript");

The index.js file contains the compiled code from the index.ts file in the src folder but without the
additional type information for the printMessage function. The relationship between the TypeScript code
and the JavaScript code the compiler produces won’t always be as direct, especially when the compiler has
been instructed to target a different version of JavaScript, as described in the “Using the Version Targeting
Feature” section.

 ■ Caution Do not edit the Javascript files in the dist folder because your changes will be overwritten the
next time the typescript compiler runs. Changes must be made only to the typescript files.

 Understanding Compiler Errors
The TypeScript compiler checks the code it compiles to make sure it conforms to the JavaScript language
specification and to apply the TypeScript features, such as static types and access control keywords. To
create a simple example of a compiler error, Listing 5-9 adds a statement that uses the wrong data type to
invoke the printMessage function.

Listing 5-9. Creating a Type Mismatch in the index.ts File in the src Folder

function printMessage(msg: string): void {
 console.log(`Message: ${ msg }`);
}

printMessage("Hello, TypeScript");
printMessage(100);

Run the command shown in Listing 5-10 in the tools folder to execute the compiler.

 ■ Tip the printMessage function specifies the data type it is willing to accept through its msg parameter
using a type annotation, which is described in Chapter 7. For this chapter, it is enough to know that invoking the
printMessage function with a number value is a typescript error.

Listing 5-10. Running the Compiler

tsc

Chapter 5 ■ UsIng the tYpesCrIpt CompIler

116

The compiler detects that the type of the argument in the new statement is number and not the string
that is specified by the printMessage function, and it produces the following message:

src/index.ts:6:14 - error TS2345: Argument of type '100' is not assignable to parameter of
type 'string'.

6 printMessage(100);
               ~~~
Found 1 error.

In most respects, the TypeScript compiler works like any compiler. But there is one difference that can 
catch out the unwary: by default, the compiler continues to emit JavaScript code even when it encounters 
an error. If you examine the contents of the index.js file in the dist folder, you will see that it contains the 
following output:

function printMessage(msg) {
    console.log(`Message: ${msg}`);
}
printMessage("Hello, TypeScript");
printMessage(100);

This is an odd behavior that can cause problems with chains of tools that execute or further process 
the JavaScript emitted by the TypeScript compiler because they will operate on JavaScript files that contain 
potential problems. Fortunately, this behavior can be disabled by setting the noEmitOnError configuration 
setting to true in the tsconfig.json file, as shown in Listing 5-11.

Listing 5-11. Changing the Compiler Configuration in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "es2018",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true
    }
}

When the compiler runs, output will be generated only when there are no errors detected in the 
JavaScript code.

 Using Watch Mode and Executing the Compiled Code
Manually running the compiler after every code change quickly becomes tiresome, so the TypeScript 
compiler supports watch mode, where it monitors the project and automatically compiles files when a 
change is detected. Run the command shown in Listing 5-12 in the tools folder to start the compiler in 
watch mode. 



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

117

Listing 5-12. Starting the Compiler in Watch Mode

tsc --watch

The compiler will start, report the same error as shown in the previous section, and then start 
monitoring the project for code changes. To trigger a compile, comment out the problem statement added to 
the index.ts file, as shown in Listing 5-13.

 ■ Caution You may encounter a bug in node.js when running the typescript compiler in watch mode. If you 
see a Check failed: U_SUCCESS(status) error, then may need to update to the latest version of node.js. 
alternatively, just jump ahead to the next section because the typescript compiler watch mode is used only in 
this part of the chapter and not relied on again in this book.

Listing 5-13. Commenting Out a Statement in the index.ts File in the src Folder

function printMessage(msg: string): void  {
    console.log(`Message: ${ msg }`);
}

printMessage("Hello, TypeScript");
//printMessage(100);

When the change is saved, the compiler will run automatically. There are no errors in the code, and the 
compiler produces the following output:

[6:37:35 AM] File change detected. Starting incremental compilation...
[6:37:35 AM] Found 0 errors. Watching for file changes.

To execute the compiled code, open a second command prompt, navigate to the tools folder, and run 
the command shown in Listing 5-14.

Listing 5-14. Executing the Compiled Code

node dist/index.js

The Node.js runtime will execute the statements in the index.js file in the dist folder and produce the 
following output:

Message: Hello, TypeScript



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

118

 Automatically Executing Code After Compilation
The compiler’s watch mode doesn’t automatically execute compiled code. It can be tempting to combine 
the watch mode with a tool that executes a command when a file change is detected, but this can be difficult 
because the JavaScript files are not all written at the same time and there is no easy way to reliably determine 
when compilation has completed.

If you are using a web development framework such as React, Angular, or Vue.js, the TypeScript 
compiler is integrated into a larger toolchain that will automatically execute the compiled code, as 
demonstrated in Part 3. For stand-alone projects, there are open-source packages available that build on the 
functionality provided by the compiler to offer additional features. One such package is ts-watch, which 
was installed in the example project in Listing 5-2. The ts-watch package starts the compiler in watch mode, 
observes its output, and executes commands based on the compilation results. Run the command shown in 
Listing 5-15 in the tools folder to start the ts-watch package. 

Listing 5-15. Starting the Package Command

npx tsc-watch --onsuccess "node dist/index.js"

ESCAPING POWERSHELL ARGUMENTS

If you are using microsoft powershell, you will receive a warning that index.js is a Javascript file. this 
occurs because powershell doesn’t properly handle arguments that contain spaces. Use this command 
instead:

npx tsc-watch --onsuccess "\`"node dist\index.js\`""

pay close attention to the order of the escape characters, the double quotes (the " character), and the 
back ticks (the ` character).

The onsuccess argument specifies a command that is executed when compilation succeeds without 
errors. Make the change shown in Listing 5-16 to the index.ts file to trigger a compilation and execute the 
result.

 ■ Tip see https://github.com/gilamran/tsc- watch for details of the other options provided by the  
ts-watch package.

Listing 5-16. Making a Change in the index.ts File in the src Folder

function printMessage(msg: string): void  {
    console.log(`Message: ${ msg }`);
}

printMessage("Hello, TypeScript");
printMessage("It is sunny today");

https://github.com/gilamran/tsc-watch


Chapter 5 ■ UsIng the tYpesCrIpt CompIler

119

When the change is saved, the TypeScript compiler will detect the change and compile the TypeScript 
file. The ts-watch package will see that no errors are reported by the compiler and run the command that 
executes the compiled code, producing the following output:

7:20:25 AM - File change detected. Starting incremental compilation...
7:20:25 AM - Found 0 errors. Watching for file changes.
Message: Hello, TypeScript
Message: It is sunny today

 ■ Note the typescript compiler also provides an apI that can be used to create custom tools, which can 
be useful if you need to integrate the compiler into a complex workflow. microsoft doesn’t provide extensive 
documentation for the apI, but there are some notes and examples at https://github.com/Microsoft/
TypeScript/wiki/Using- the- Compiler- API.

 Starting the Compiler Using NPM
The TypeScript compiler doesn’t respond to changes on all of its configuration properties, and there will  
be times when you will need to stop and then start the compiler. Instead of typing in the command in  
Listing 5-16, a more reliable method is to use the scripts section of the package.json file, as shown in 
Listing 5-17.

Listing 5-17. Adding an Entry to the Scripts Section of the package.json File in the tools Folder

{
  "name": "tools",
  "version": "1.0.0",
  "description": "",
  "main": "index.js",
  "scripts": {
    "start": "tsc-watch --onsuccess \"node dist/index.js\""
  },
  "keywords": [],
  "author": "",
  "license": "ISC",
  "devDependencies": {
    "tsc-watch": "^4.2.9",
    "typescript": "^4.2.2"
  }
}

Care must be taken to escape the quote characters required for the onsuccess argument. Save the 
changes to the package.json file and then run the command shown in Listing 5-18 in the tools folder.

https://github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API
https://github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API


Chapter 5 ■ UsIng the tYpesCrIpt CompIler

120

Listing 5-18. Starting the Compiler

npm start

The effect is the same, but the compiler can now be started without having to remember the 
combination of package and filenames, which can become complex in real projects.

 Using the Version Targeting Feature
TypeScript relies on the most recent versions of the JavaScript language, which introduced features such as 
classes. To make it easier to adopt TypeScript, the compiler can generate JavaScript code that targets older 
versions of the JavaScript language, which means that recent features can be used during development to 
create code that can be executed by older JavaScript runtimes, such as legacy browsers.

The version of the JavaScript language targeted by the compiler is specified by the target setting in the 
tsconfig.json file, as shown in Listing 5-19. 

Listing 5-19. Selecting a Target JavaScript Version in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "ES5",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true
    }
}

The target setting selects a JavaScript version from the list described in Table 5-6.

 ■ Note the ES in these settings refers to eCmascript, which is the standard that defines the features 
implemented by the Javascript language. the history of Javascript and eCmascript is long, tortured, and not 
at all interesting. For typescript development, Javascript and eCmascript can be regarded as being the same, 
which is how I have approached them in the book. see https://en.wikipedia.org/wiki/ECMAScript if you 
want to get into the details.

https://en.wikipedia.org/wiki/ECMAScript


Chapter 5 ■ UsIng the tYpesCrIpt CompIler

121

The earlier versions of the ECMAScript standard were given numbers, but recent versions are named for the 
year in which they were completed. This change happened partway through the definition of ES6, which is why 
it is known as both ES6 and ES2015. The biggest changes to the language were introduced in ES6/ES2015, which 
can be regarded as the start of “modern” JavaScript. The release of ES6 marked the switch to annual updates to 
the language specification, which is why the 2016–2020 editions contain only a small number of changes. 

The setting in Listing 5-19 specifies es5, which means that modern features such as the let keyword 
and fat-arrow functions will not be supported. To show how the compiler deals with these features, make the 
changes shown in Listing 5-20 to the index.ts file.

Listing 5-20. Using Modern Features in the index.ts File in the src Folder

let printMessage = (msg: string): void =>  console.log(`Message: ${ msg }`);

let message = ("Hello, TypeScript");
printMessage(message);

When the changes to the file are saved, the code will be compiled and executed. The JavaScript 
generated by the compiler can be seen by examining the index.js file in the dist folder, which contains the 
following statements:

var printMessage = function (msg) { return console.log("Message: " + msg); };
var message = ("Hello, TypeScript");
printMessage(message);

Table 5-6. The Values for the target Setting

Name Description
ES3 This value targets the third edition of the language specification that was defined in December 

1999 and is considered to be the baseline for the language. This is the default value when the 
target setting is not defined.

ES5 This value targets the fifth edition of the language specification that was defined in December 
2009 and focuses on consistency. (There was no fourth edition.)

ES6 This value targets the sixth edition of the language specification and added features required 
for creating complex applications, such as classes and modules, arrow functions, and promises.

ES2015 This value is equivalent to ES6.

ES2016 This value targets the seventh edition of the language specification, which introduced the 
includes method for arrays and an exponentiation operator.

ES2017 This value targets the eighth edition of the language specification, which introduced features 
for inspecting objects and new keywords for asynchronous operations.

ES2018 This value targets the ninth edition of the language specification, which introduced the spread 
and rest operators and improvements for string handling and asynchronous operations.

ES2019 This value targets the tenth edition of the language specification, which includes new array 
features, changes to error handling, and improvements to JSON formatting.

ES2020 This value targets the 11th edition of the language specification, which includes support for 
the nullish operator, optional chaining, and loading modules dynamically.

esNext This value refers to the features that are expected to be included in the next edition of the 
specification. The specific features supported by the TypeScript compiler can change between 
releases. This is an advanced setting that should be used with caution.



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

122

The let keyword has been replaced with var, and the fat-arrow function has been replaced with a 
traditional function. The code achieves the same effect as when targeting a more recent version of JavaScript 
and produces the following output:

Message: Hello, TypeScript

 Setting the Library Files for Compilation
The output from the listFiles compiler option showed the files that the compiler discovers and included 
a series of type declaration files. These files provide the compiler with type information about the features 
available in different versions of JavaScript and the features provided for applications running in the browser, 
which are able to create and manage HTML content using the Document Object Model (DOM) API.

The compiler defaults to the type information it requires based on the target property, which  
means that errors will be generated when features from later versions of JavaScript are used, as shown in 
Listing 5-21. 

Listing 5-21. Using a Later JavaScript Feature in the index.ts File in the src Folder

let printMessage = (msg: string): void =>  console.log(`Message: ${ msg }`);

let message = ("Hello, TypeScript");
printMessage(message);

let data = new Map();
data.set("Bob", "London");
data.set("Alice", "Paris");
data.forEach((val, key) => console.log(`${key} lives in ${val}`));

The Map was added to JavaScript as part of the ES2015 specification, and it not part of the version 
selected by the target property in the tsconfig.json file. When the changes to the code file are saved, the 
compiler will generate the following warning:

src/index.ts(6,16): error TS2583: Cannot find name 'Map'. Do you need to change your 
target library? Try changing the `lib` compiler option to es2015 or later.

6:50:49 AM - Found 1 error. Watching for file changes.

To resolve this problem, I can target a later version of the JavaScript language, or I can change the type 
definitions used by the compiler with the lib configuration property, which is set to an array of values from 
Table 5-7.



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

123

There are also values that can be used to select specific features from one version of the language 
specification. Table 5-8 describes the most useful single-feature settings.

It is important to think through the implications of using the lib configuration setting because it just 
tells the TypeScript compiler that the runtime for the application can be relied on to support a specific set of 
features, such as the Map in this case. The compiler can adapt the JavaScript it generates for different language 
features, but that doesn’t extend to objects like collections. Changing the lib setting tells the compiler that 
there will be a nonstandard set of features available when the compiled JavaScript is executed, and it is your 
responsibility to ensure this is the case, either because you know more about the runtime than the compiler 
or because the application uses a polyfill such as core-js (https://github.com/zloirock/core- js). 

Table 5-8. Useful Per-Feature Values for the lib Compiler Option

Name Description
es2015.core This setting includes type information for the main features introduced by 

ES2015.

es2015.collection This setting includes type information for the Map and Set collections, 
described in Chapters 4 and 13.

es2015.generator
es2015.iterable

These settings include type information for the generator and iterator 
features described in Chapter 4 and 13.

es2015.promise This setting includes type information for promises, which describe 
asynchronous actions.

es2015.reflect This setting includes type information for the reflection features that 
provide access to properties and prototypes, as described in Chapter 16.

es2015.symbol
es2015.symbol.wellknown

These settings include type information about symbols, which are 
described in Chapter 4.

Table 5-7. The Values for the lib Compiler Option

Name Description
ES5, ES2015, ES2016, ES2017, 
ES2018, ES2019, ES2020

These values select type definition files that correspond to a specific version 
of the JavaScript specification. The old naming scheme can be used as well 
so that the value ES6 can be used in place of ES2015.

ESnext This value selects features that are proposed additions to the JavaScript 
specification but have not yet been formally adopted. The set of features 
will change over time.

dom This value selects type information files for the Document Object Model 
(DOM) API that web applications use to manipulate the HTML content 
presented by browsers. This setting is also useful for Node.js applications.

dom.iterable This value provides type information for the additions to the DOM API that 
allow iteration over HTML elements.

scriptHost This value selects type information for the Windows Script Host, which 
allows for automation on Windows systems.

webworker This value selects type information for the web worker feature, which allows 
web applications to perform background tasks.

https://github.com/zloirock/core-js


Chapter 5 ■ UsIng the tYpesCrIpt CompIler

124

The Node.js version installed in Chapter 1 supports the most recent JavaScript features and can be 
relied on to have Map, which means that I can safely change the lib setting in the tsconfig.json file, as 
shown in Listing 5-22.

Listing 5-22. Changing the Compiler Configuration in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "es5",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true,
        "lib": ["es5", "dom", "es2015.collection"]
    }
}

The set of types I have selected includes the standard types for the version of JavaScript selected by the 
target property, the dom setting (which provides access to the console object), and the ES2015 collections 
feature from Table 5-8.

The compiler will detect the change to the configuration file and recompile the code. The change to the 
lib setting tells the compiler that the Map will be available, and no error is reported. When the compiler code 
is executed, it produces the following output:

Message: Hello, TypeScript
Bob lives in London
Alice lives in Paris

This example runs because the Node.js version used in this book supports the Map feature. In this 
situation, I knew more about the runtime than the TypeScript compiler, and changing the lib setting 
produces an example that runs, although the same effect could have been achieved by changing the target 
setting to a more recent JavaScript version that the compiler knows includes collections. If I were targeting a 
runtime that supported only ES5, then I would have to provide a polyfill implementation of Map, such as the 
one included in the core-js package.

 Selecting a Module Format
In Chapter 4, I explained how modules can be used to break a JavaScript application into multiple files, 
making a project easier to manage. Modules were standardized as part of the ES2016 specification, but 
before that, different approaches were taken to deal with defining and using modules. When writing 
TypeScript code, the standardized module features are used. As a demonstration, add a file called calc.ts 
to the src folder with the code shown in Listing 5-23. 

Listing 5-23. The Contents of the calc.ts File in the src Folder

export function sum(...vals: number[]): number {
    return vals.reduce((total, val) => total += val);
}

The new file uses the export keyword to make a function named sum that reduces an array of number 
values to create a total. Listing 5-24 imports the function into the index.ts file and calls the function.



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

125

Listing 5-24. Using a Module in the index.ts File in the src Folder

import { sum } from "./calc";

let printMessage = (msg: string): void =>  console.log(`Message: ${ msg }`);

let message = ("Hello, TypeScript");
printMessage(message);

let total = sum(100, 200, 300);
console.log(`Total: ${total}`);

When the file is saved, the compiler will process the code files, and the resulting JavaScript produces the 
following output:

Message: Hello, TypeScript
Total: 600

Examine the contents of the index.js file in the dist folder, and you will see that the TypeScript 
compiler has introduced code to deal with the modules.

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var calc_1 = require("./calc");
var printMessage = function (msg) { return console.log("Message: " + msg); };
var message = ("Hello, TypeScript");
printMessage(message);
var total = calc_1.sum(100, 200, 300);
console.log("Total: " + total);

The TypeScript compiler uses the target configuration property to select the approach taken to deal 
with modules. When the target is es5, it uses the commonjs module style, which was the result of an earlier 
attempt to introduce a module standard. The Node.js runtime supports the commonjs module system by 
default, which is why the code generated by the TypeScript compiler executes without problems.

When later versions of the JavaScript language are targeted, the TypeScript compiler switches to the 
module system from the ES2015/ES6 version of the JavaScript language, which means that the import and 
export keywords are passed on from the TypeScript code to the JavaScript code without being changed. 
Listing 5-25 changes the compiler configuration to select the ES2018 version of JavaScript and removes the 
lib setting so that the compiler will use the default type definitions.

Listing 5-25. Changing the Compiler Configuration in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "es2018",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true,
        //"lib": ["es5", "dom", "es2015.collection"]
    }
}



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

126

When the change to the configuration file is saved, the compiler will regenerate the JavaScript using 
standard modules. At the time of writing, the Node.js runtime doesn’t support modules as they are emitted 
by the compiler and produces the following error when the JavaScript code is executed:

C:\tools\dist\index.js:1
import { sum } from "./calc";
^^^^^^
SyntaxError: Cannot use import statement outside a module

The module system can be explicitly selected using the module setting in the tsconfig.json file, using 
the values described in Table 5-9. 

The choice of module format is driven by the environment that will execute the code. At the time 
of writing, Node.js supports CommonJS modules and ECMAScript modules, although it requires the file 
extension to be included in the import statement, which is problematic when using TypeScript, which deals 
with .ts and .js files.

For web applications, especially those built using a framework like React, Angular, or Vue.js, the module 
format will be dictated by the framework’s toolchain, which will include either a bundler, which packages 
up all of the modules into a single JavaScript file during deployment, or a module loader, which sends HTTP 
requests to the web server to get JavaScript files as they are required. You will see examples of using the 
TypeScript compiler with these frameworks in Part 3. To target a recent version of JavaScript on Node.js, I 
have to select the commonjs format, as shown in Listing 5-26.

 ■ Tip an alternative approach is to use a third-party package to add support for es2015 modules to node.js, 
which is the approach I took in Chapter 4.

Table 5-9. The Types of Web Form Code Nuggets

Name Description
None This value disables modules.

CommonJS This value selects the CommonJS module format, which is supported by Node.js.

AMD This value selects the Asynchronous Module Definition (AMD), which is supported by 
the RequireJS module loader.

System This value selects the module format supported by the SystemJS module loader.

UMD This value selects the Universal Module Definition (UMD) module format.

ES2015, ES6 This value selects the module format specified in the ES2016 language specification.

ES2020 This value selects the module format specified in the ES2020 language specification, 
which includes dynamic loading of modules.

ESNext This value selects the module features that have been proposed for the next version of 
the JavaScript language.



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

127

Listing 5-26. Selecting a Module Format in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "es2018",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true,
        //"lib": ["es5", "dom", "es2015.collection"]
        "module": "CommonJS"
    }
}

The compiler doesn’t pick up changes to some configuration properties. To ensure that the specified 
module format is used, terminate the compiler process using Control+C and run the command shown in 
Listing 5-27 in the tools folder to start it again.

Listing 5-27. Running the Compiler

npm start

The compiler will add the code required for the CommonJS module format, and the code produces the 
following output when it is executed:

Message: Hello, TypeScript
Total: 600

UNDERSTANDING MODULE RESOLUTION

the typescript compiler can use two different approaches to resolving dependencies on modules, 
which it selects based on the module format that is being used. the two modes are classic, which 
searches for modules in the local project, and Node, which locates modules in the node_modules folder. 
the typescript compiler uses the classic resolution mode when the module property is set to ES2015, 
System, or AND. For all other module settings, the node resolution is used. a resolution style can be 
specified using the moduleResolution configuration property in the tsconfig.json file using the 
classic or node value. 

 Useful Compiler Configuration Settings
The TypeScript compiler supports a large number of configuration options. In Part 2, I include a table at the 
start of each chapter that lists the compiler settings used by the features in the examples. For quick reference, 
Table 5-10 lists the compiler options used in this book. Many of these options won’t make sense at the 
moment, but each one is described when it is used, and all will make sense by the end of this book. 



Chapter 5 ■ UsIng the tYpesCrIpt CompIler

128

 ■ Tip see https://www.typescriptlang.org/docs/handbook/compiler- options.html for the complete 
set of options the compiler supports.

Table 5-10. The TypeScript Compiler Options Used in This Book

Name Description
allowJs This option includes JavaScript files in the compilation process.

allowSyntheticDefaultImports This option allows imports from modules that do not declare a 
default export. This option is used to increase code compatibility.

baseUrl This option specifies the root location used to resolve module 
dependencies.

checkJs This option tells the compiler to check JavaScript code for common 
errors.

declaration This option produces type declaration files, which provide type 
information for JavaScript code.

downlevelIteration This option enables support for iterators when targeting older 
versions of JavaScript.

emitDecoratorMetadata This option includes decorator metadata in the JavaScript emitted by 
the compiler and is used with the experimentalDecorators option.

esModuleInterop This option adds helper code for importing from modules that do 
not declare a default export and is used in conjunction with the 
allowSyntheticDefaultImports option.

experimentalDecorators This option enables support for decorators.

forceConsistentCasingInFileNames This option ensures that names in import statements match the 
case used by the imported file.

importHelpers This option determines whether helper code is added to the 
JavaScript to reduce the amount of code that is produced overall.

isolatedModules This option treats each file as a separate module, which increases 
compatibility with the Babel tool.

jsx This option specifies how HTML elements in JSX/TSX files are 
processed.

jsxFactory This option specifies the name of the factory function that is used 
to replace HTML elements in JSX/TSX files.

lib This option selects the type declaration files the compiler uses.

module This option specifies the format used for modules.

moduleResolution This option specifies the style of module resolution that should be 
used to resolve dependencies.

noEmit This option prevents the compiler from emitting JavaScript code, 
with the result that it only checks code for errors.

noImplicitAny This option prevents the implicit use of the any type, which the 
compiler uses when it can’t infer a more specific type.

(continued)

https://www.typescriptlang.org/docs/handbook/compiler-options.html


Chapter 5 ■ UsIng the tYpesCrIpt CompIler

129

Name Description

noImplicitReturns This option requires all paths in a function to return a result.

noUncheckedIndexedAccess This option does not allow properties accessed via an index 
signature to be accessed until they have been guarded against 
undefined values.

noUnusedParameters This option causes the compiler to produce a warning if a function 
defines parameters that are not used.

outDir This option specifies the directory in which the JavaScript files will 
be placed.

paths This option specifies the locations used to resolve module 
dependencies.

resolveJsonModule This option allows JSON files to be imported as though they were 
modules.

rootDir This option specifies the root directory that the compiler will use to 
locate TypeScript files.

skipLibCheck This option speeds up compilation by skipping the normal 
checking of declaration files.

sourceMap This option determines whether the compiler generates source 
maps for debugging.

strict This option enables stricter checking of TypeScript code.

strictNullChecks This option prevents null and undefined from being accepted as 
values for other types.

suppressExcessPropertyErrors This option prevents the compiler from generating errors for 
objects that define properties not in a specified shape.

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

typeRoots This option specifies the root location that the compiler uses to 
look for declaration files.

types This option specifies a list of declaration files to include in the 
compilation process.

Table 5-10. (continued)

 Summary
In this chapter, I introduced the TypeScript compiler, which is responsible for transforming TypeScript code 
into pure JavaScript. I explained how the compiler is configured, demonstrated the different ways that it can 
be used, and showed you how to change the version of the JavaScript language that is targeted and how to 
change the way that modules are resolved. I finished this chapter by listing the configuration options used 
in this book, which may not make sense now but will become clearer as you progress through the examples. 
In the next chapter, I continue with the theme of TypeScript developer tools and explain how to perform 
debugging and unit testing of TypeScript code.



131© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_6

CHAPTER 6

Testing and Debugging TypeScript

In this chapter, I continue the theme of TypeScript development tools started in Chapter 5, which introduced 
the TypeScript compiler. I show you the different ways that TypeScript code can be debugged, demonstrate 
the use of TypeScript and the linter, and explain how to set up unit testing for TypeScript code.

 Preparing for This Chapter
For this chapter, I continue using the tools project created in Chapter 5. No changes are required for this 
chapter.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Open a new command prompt and use it to run the command shown in Listing 6-1 in the tools folder 
to start the compiler in watch mode using the tsc-watch package installed in Chapter 5.

Listing 6-1. Starting the Compiler

npm start

The compiler will start, the TypeScript files in the project will be compiled, and the following output will 
be displayed:

7:04:50 AM - Starting compilation in watch mode...
7:04:52 AM - Found 0 errors. Watching for file changes.
Message: Hello, TypeScript
Total: 600

https://doi.org/10.1007/978-1-4842-7011-0_6#DOI
https://github.com/Apress/essential-typescript-4


Chapter 6 ■ testing and debugging tYpesCript

132

 Debugging TypeScript Code
The TypeScript compiler does a good job of reporting syntax errors or problems with data types, but there 
will be times when you have code that compiles successfully but doesn’t execute in the way you expected. 
Using a debugger allows you to inspect the state of the application as it is executing and can reveal why 
problems occur. In the sections that follow, I show you how to debug a TypeScript application that is 
executed by Node.js. In Part 3, I show you how to debug TypeScript web applications. 

 Preparing for Debugging
The difficulty with debugging a TypeScript application is that the code being executed is the product of the 
compiler, which transforms the TypeScript code into pure JavaScript. To help the debugger correlate the 
JavaScript code with the TypeScript code, the compiler can generate files known as source maps. Listing 6-2 
enables source maps in the tsconfig.json file. 

Listing 6-2. Enabling Source Maps in the tsconfig.json File in the tools Folder

{
    "compilerOptions": {
        "target": "es2018",
        "outDir": "./dist",
        "rootDir": "./src",
        "noEmitOnError": true,
        "module": "CommonJS",
        "sourceMap": true
    }
}

When the compiler next compiles the TypeScript files, it will also generate a map file, which has the map 
file extension, alongside the JavaScript files in the dist folder.

 Adding Breakpoints
Code editors that have good TypeScript support, such as Visual Studio Code, allow breakpoints to be added 
to code files. My experience with this feature has been mixed, and I have found them unreliable, which 
is why I rely on the less elegant but more predictable debugger JavaScript keyword. When a JavaScript 
application is executed through a debugger, execution halts when the debugger keyword is encountered, and 
control is passed to the developer. The advantage of this approach is that it is reliable and universal, but you 
must remember to remove the debugger keyword before deployment. Most runtimes ignore the debugger 
keyword during normal execution, but it isn’t a behavior that can be counted on. (Linting, described later 
in this chapter, can help avoid leaving the debugger keyword in code files.) In Listing 6-3, I have added the 
debugger keyword to the index.ts file. 

Listing 6-3. Adding the debugger Keyword in the index.ts File in the src Folder

import { sum } from "./calc";

let printMessage = (msg: string): void =>  console.log(`Message: ${ msg }`);

let message = ("Hello, TypeScript");
printMessage(message);



Chapter 6 ■ testing and debugging tYpesCript

133

debugger;

let total = sum(100, 200, 300);
console.log(`Total: ${total}`);

There will be no change in the output when the code is executed because Node.js ignores the debugger 
keyword by default.

 Using Visual Studio Code for Debugging
Most good code editors have some degree of support for debugging TypeScript and JavaScript code. In this 
section, I show you how to perform debugging with Visual Studio Code to give you an idea of the process. 
There may be different steps required if you use another editor, but the basic approach is likely to be similar. 

To set up the configuration for debugging, select Add Configuration from the Run menu and select 
Node.js or Node.js (legacy) from the list of environments when prompted, as shown in Figure 6-1.

 ■ Note if selecting the add Configuration menu doesn’t work, try selecting start debugging instead.

The editor will create a .vscode folder in the project and add to it a file called launch.json, which is 
used to configure the debugger. Change the value of the program property so that the debugger executes the 
JavaScript code from the dist folder, as shown in Listing 6-4.

Listing 6-4. Changing the Code Path in the launch.json File in the .vscode Folder

{
    "version": "0.2.0",
    "configurations": [
        {
            "type": "node",
            "request": "launch",

Figure 6-1. Selecting the debugger environment



Chapter 6 ■ testing and debugging tYpesCript

134

            "name": "Launch Program",
            "skipFiles": [
                "<node_internals>/**"
            ],
            "program": "${workspaceFolder}/dist/index.js"
        }
    ]
}

Save the changes to the launch.json file and select Start Debugging from the Run menu. Visual Studio 
Code will execute the index.js file in the dist folder under the control of the Node.js debugger. Execution 
will continue as normal until the debugger statement is reached, at which point execution halts and control 
is transferred to the debugging pop-up, as shown in Figure 6-2.

The state of the application is displayed in the sidebar, showing the variables that are set at the point 
that execution was halted. A standard set of debugging features is available, including setting watches, 
stepping into and over statements, and resuming execution. The Debug Console window allows JavaScript 
statements to be executed in the context of the application so that entering a variable name and pressing 
Return, for example, will return the value assigned to that variable.

Figure 6-2. Debugging an application using Visual Studio Code



Chapter 6 ■ testing and debugging tYpesCript

135

 Using the Integrated Node.js Debugger
Node.js provides a basic integrated debugger. Open a new command prompt and use it to run the command 
shown in Listing 6-5 in the tools folder. 

 ■ Note there are no hyphens before the inspect argument in Listing 6-5. using hyphens enables the remote 
debugger described in the following section.

Listing 6-5. Starting the Node.js Debugger

node inspect dist/index.js

The debugger starts, loads the index.js file, and halts execution. Enter the command shown in  
Listing 6-6 and press Return to continue execution.

Listing 6-6. Continuing Execution

c

The debugger halts again when the debugger statement is reached. You can execute expressions to 
inspect the state of the applications using the exec command, although expressions have to be quoted as 
strings. Enter the command shown in Listing 6-7 at the debug prompt.

Listing 6-7. Evaluating an Expression in the Node.js Debugger

exec("message")

Press Return, and the debugger will display the value of the message variable, producing the following 
output:

'Hello, TypeScript'

Type help and press Return to see a list of commands. Press Control+C twice to end the debugging 
session and return to the regular command prompt.

 Using the Remote Node.js Debugging Feature
The integrated Node.js debugger is useful but awkward to use. The same features can be used remotely  
using the Google Chrome developer tools feature. First, start Node.js by running the command shown in 
Listing 6-8 in the tools folder. 



Chapter 6 ■ testing and debugging tYpesCript

136

Listing 6-8. Starting Node.js in Remote Debugger Mode

node --inspect-brk dist/index.js

The inspect-brk argument starts the debugger and halts execution immediately. This is required 
for the example application because it runs and then exits. For applications that start and then enter an 
indefinite loop, such as a web server, the inspect argument can be used. When it starts, Node.js will produce 
a message like this:

Debugger listening on ws://127.0.0.1:9229/e3cf5393-23c8-4393-99a1-d311c585a762
For help, see: https://nodejs.org/en/docs/inspector

The URL in the output is used to connect to the debugger and take control of execution. Open a new 
Chrome window and navigate to chrome://inspect. Click the Configure button and add the IP address 
and port from the URL from the previous message. For my machine, this is 127.0.0.1:9229, as shown in 
Figure 6-3.

Click the Done button and wait a moment while Chrome locates the Node.js runtime. Once it has been 
located, it will appear in the Remote Target list, as shown in Figure 6-4.

Figure 6-3. Configuring Chrome for remote Node.js debugging



Chapter 6 ■ testing and debugging tYpesCript

137

Click the “inspect” link to open a new Chrome developer tools window that is connected to the Node.
js runtime. Control of execution is handled by the standard developer tool buttons, and resuming execution 
will let the runtime proceed until the debugger statement is reached. The initial view of the code in the 
debugger window will be of the JavaScript code, but the source maps will be used once execution resumes, 
as shown in Figure 6-5.

Figure 6-4. Discovering the Node.js runtime

Figure 6-5. Debugging with the Chrome developer tools



Chapter 6 ■ testing and debugging tYpesCript

138

 Using the TypeScript Linter
A linter is a tool that checks code files using a set of rules that describe problems that cause confusion, 
produce unexpected results, or reduce the readability of the code. The standard linter package for 
TypeScript is typescript-eslint, which adapts the popular JavaScript linter package eslint to work  
with TypeScript. To add the linter to the project, use a command prompt to run the commands shown in 
Listing 6-9 in the tools folder. 

 ■ Note the standard typescript linter used to be tsLint, but this has been deprecated in favor of the 
typescript-eslint package.

Listing 6-9. Adding Packages to the Example Project

npm install --save-dev eslint@7.18.0
npm install --save-dev @typescript-eslint/parser@4.13.0
npm install --save-dev @typescript-eslint/eslint-plugin@4.13.0

To create the configuration required to use the linter, add a file called .eslintrc to the tools folder with 
the content shown in Listing 6-10. 

Listing 6-10. The Contents of the .eslintrc File in the tools Folder

{
    "root": true,
    "ignorePatterns": ["node_modules", "dist"],
    "parser": "@typescript-eslint/parser",
    "parserOptions": {
      "project": "./tsconfig.json"
    },
    "plugins": [
      "@typescript-eslint"
    ],
    "extends": [
      "eslint:recommended",
      "plugin:@typescript-eslint/eslint-recommended",
      "plugin:@typescript-eslint/recommended"
    ]
  }

The linter comes with preconfigured sets of rules that are specified using the extends setting, as 
described in Table 6-1. 



Chapter 6 ■ testing and debugging tYpesCript

139

Stop the node process using Control+C and run the command shown in Listing 6-11 in the tools folder 
to run the linter on the example project. (Don’t omit the period at the end of the command.)

Listing 6-11. Running the TypeScript Linter

npx eslint .

The project argument tells the linter to use the compiler settings file to locate the source files it will 
check, although there is only one TypeScript file in the example project. The linter will check the code and 
produce the following output:

C:\tools\src\index.ts
   3:5  error  'printMessage' is never reassigned. Use 'const' instead  prefer-const
   5:5  error  'message' is never reassigned. Use 'const' instead       prefer-const
   8:1  error  Unexpected 'debugger' statement                          no-debugger
  10:5  error  'total' is never reassigned. Use 'const' instead         prefer-const

4 problems (4 errors, 0 warnings)
  3 errors and 0 warnings potentially fixable with the `--fix` option.

The linter locates the TypeScript code files and checks them for compliance with the rules specified in 
the configuration file. The code in the example project breaks two of the linter’s rules: the prefer-const rule 
requires the const keyword to be used in place of let when the value assigned to a variable isn’t changed, 
and the no-debugger rule prevents the debugger keyword from being used.

 Disabling Linting Rules
The problem is that the value of a linting rule is often a matter of personal style and preference, and even 
when the rule is useful, it isn’t always helpful in every situation. Linting works best when you only get 
warnings that you want to address. If you receive a list of warnings that you don’t care about, then there is a 
good chance you won’t pay attention when something important is reported. 

The prefer-const rule highlights a deficiency in my coding style, but it is one that I have learned to 
accept. I know that I should use const instead of let, and that’s what I try to do. But my coding habits are 
deeply ingrained, and my view is that some problems are not worth fixing, especially since doing so requires 
breaking my concentration on the larger flow of the code I write. I accept my imperfections and know that 
I will continue to use let, even when I know that const would be a better choice. I don’t want the linter to 
highlight this problem, and the linter can be configured to disable rules, as shown in Listing 6-12.

Table 6-1. The TSLint Preconfigured Rule Sets

Name Description
eslint:recommended This is the set of rules suggested by the ESLint development 

team and is intended for general JavaScript development.

@typescript-eslint/eslint-recommended This set overrides the recommended set to disable rules that 
are not required for linting TypeScript code.

@typescript-eslint/recommended This set contains additional rules that are specific to 
TypeScript code.



Chapter 6 ■ testing and debugging tYpesCript

140

Listing 6-12. Disabling a Linter Rule in the .eslintrc File in the tools Folder

{
    "root": true,
    "ignorePatterns": ["node_modules", "dist"],
    "parser": "@typescript-eslint/parser",
    "parserOptions": {
      "project": "./tsconfig.json"
    },
    "plugins": [
      "@typescript-eslint"
    ],
    "extends": [
      "eslint:recommended",
      "plugin:@typescript-eslint/eslint-recommended",
      "plugin:@typescript-eslint/recommended"
    ],
    "rules": {
      "prefer-const": 0
    }
  }

The rules configuration section is populated with the names of the rules and a value of 1 or 0 to enable 
or disable the rules. By setting a value of 0 for the prefer-const rule, I have told the linter to ignore my use of 
the let keyword when const would be a better choice.

Some rules are useful in a project but disabled for specific files or statements. This is the category into 
which the no-debugger rule falls. As a general principle, the debugger keyword should not be left in code 
files in case it causes problems during code execution. However, when investigating a problem, debugger is a 
useful way to reliably take control of the execution of the application, as demonstrated earlier in this chapter.

In these situations, it doesn’t make sense to disable a rule in the linter’s configuration file. Instead, a 
comment that starts with eslint-disable-line followed by one or more rule names disables rules for a 
single statement, as shown in Listing 6-13.

Listing 6-13. Disabling a Linter Rule for a Single Statement in the index.ts File in the src Folder

import { sum } from "./calc";

let printMessage = (msg: string): void =>  console.log(`Message: ${ msg }`);

let message = ("Hello, TypeScript");
printMessage(message);

debugger; // eslint-disable-line no-debugger

let total = sum(100, 200, 300);
console.log(`Total: ${total}`);

The comment in Listing 6-13 tells the linter not to apply the no-debugger rule to the highlighted 
statement.



Chapter 6 ■ testing and debugging tYpesCript

141

 ■ Tip rules can be disabled for all the statements that follow a block comment (one that starts with /* and 
ends with */) that starts with eslint-disable. You can disable all linting rules by using the eslint-disable or 
eslint-disable-line comment without any rule names.

THE JOY AND MISERY OF LINTING

Linters can be a powerful tool for good, especially in a development team with mixed levels of skill and 
experience. Linters can detect common problems and subtle errors that lead to unexpected behavior 
or long-term maintenance issues. i like this kind of linting, and i like to run my code through the linting 
process after i have completed a major application feature or before i commit my code into version 
control.

but linters can also be a tool of division and strife. in addition to detecting coding errors, linters can 
be used to enforce rules about indentation, brace placement, the use of semicolons and spaces, and 
dozens of other style issues. Most developers have style preferences that they adhere to and believe 
that everyone else should, too. i certainly do: i like four spaces for indentation, and i like opening braces 
to be on the same line as the expression they relate to. i know that these are part of the “one true way” 
of writing code, and the fact that other programmers prefer two spaces, for example, has been a source 
of quiet amazement to me since i first started writing code.

Linters allow people with strong views about formatting to enforce them on others, generally under the 
banner of being “opinionated.” the logic is that developers spend too much time arguing about different 
coding styles, and everyone is better off being forced to write in the same way. My experience is that 
developers will just find something else to argue about and that forcing a code style is often just an 
excuse to make one person’s preferences mandatory for an entire development team.

i often help readers when they can’t get book examples working (my email address is adam@adam-
freeman.com if you need help), and i see all sorts of coding styles every week. i know, deep in my heart, 
that anyone who doesn’t follow my personal coding preferences is just plain wrong. but rather than 
forcing them to code my way, i get my code editor to reformat the code, which is a feature that every 
capable editor provides.

My advice is to use linting sparingly and focus on the issues that will cause real problems. Leave 
formatting decisions to the individuals and rely on code editor reformatting when you need to read code 
written by a team member who has different preferences.

 Unit Testing TypeScript
Some unit test frameworks provide support for TypeScript, although that isn’t as useful as it may sound. 
Supporting TypeScript for unit testing means allowing tests to be defined in TypeScript files and, sometimes, 
automatically compiling the TypeScript code before it is tested. Unit tests are performed by executing small 
parts of an application, and that can be done only with JavaScript since the JavaScript runtime environments 
have no knowledge of TypeScript features. The result is that unit testing cannot be used to test TypeScript 
features, which are solely enforced by the TypeScript compiler. 



Chapter 6 ■ testing and debugging tYpesCript

142

For this book, I have used the Jest test framework, which is easy to use and supports TypeScript tests. 
Also, with the addition of an extra package, it will ensure that the TypeScript files in the project are compiled 
into JavaScript before tests are executed. Run the commands shown in Listing 6-14 in the tools folder to 
install the packages required for testing. 

Listing 6-14. Adding Packages to the Project

npm install --save-dev jest@26.6.3
npm install --save-dev ts-jest@26.4.4

The jest package contains the testing framework. The ts-jest package is a plugin to the Jest 
framework and is responsible for compiling TypeScript files before tests are applied.

DECIDING WHETHER TO UNIT TEST

unit testing is a contentious topic. this section assumes you do want to do unit testing and shows you 
how to set up the tools and apply them to typescript. it isn’t an introduction to unit testing, and i make 
no effort to persuade skeptical readers that unit testing is worthwhile. if would like an introduction to 
unit testing, then there is a good article here: https://en.wikipedia.org/wiki/Unit_testing.

i like unit testing, and i use it in my own projects—but not all of them and not as consistently as you 
might expect. i tend to focus on writing unit tests for features and functions that i know will be hard 
to write and are likely to be the source of bugs in deployment. in these situations, unit testing helps 
structure my thoughts about how to best implement what i need. i find that just thinking about what i 
need to test helps produce ideas about potential problems, and that’s before i start dealing with actual 
bugs and defects.

that said, unit testing is a tool and not a religion, and only you know how much testing you require. 
if you don’t find unit testing useful or if you have a different methodology that suits you better, then 
don’t feel you need to unit test just because it is fashionable. (however, if you don’t have a better 
methodology and you are not testing at all, then you are probably letting users find your bugs, which is 
rarely ideal.)

 Configuring the Test Framework
To configure Jest, add a file named jest.config.js to the tools folder with the content shown in  
Listing 6-15. 

Listing 6-15. The Contents of the jest.config.js File in the tools Folder

module.exports = {
    "roots": ["src"],
    "transform": {"^.+\\.tsx?$": "ts-jest"}
}

https://en.wikipedia.org/wiki/Unit_testing


Chapter 6 ■ testing and debugging tYpesCript

143

The roots setting is used to specify the location of the code files and unit tests. The transform property 
is used to tell Jest that files with the ts and tsx file extension should be processed with the ts-jest package, 
which ensures that changes to the code are reflected in tests without needing to explicitly start the compiler. 
(TSX files are described in Chapter 14.)

 Creating Unit Tests
Tests are defined in files that have the test.ts file extension and are conventionally created alongside the 
code files they relate to. To create a simple unit test for the example application, add a file called calc.test.
ts to the src folder and add the code shown in Listing 6-16. 

Listing 6-16. The Contents of the calc.test.ts File in the src Folder

import { sum } from "./calc";

test("check result value", () => {
    let result = sum(10, 20, 30);
    expect(result).toBe(60);
});

Tests are defined using the test function, which is provided by Jest. The test arguments are the name 
of the test and a function that performs the testing. The unit test in Listing 6-16 is given the name check 
result value, and the test invokes the sum function with three arguments and inspects the results. Jest 
provides the expect function that is passed the result and used with a matcher function that specifies the 
expected result. The matcher in Listing 6-16 is toBe, which tells Jest that the expected result is a specific 
value. Table 6-2 describes the most useful matcher functions. (You can find the full list of matcher functions 
at https://jestjs.io/docs/en/expect.) 

Table 6-2. Useful Jest Matcher Functions

Name Description
toBe(value) This method asserts that a result is the same as the specified value (but need not 

be the same object).

toEqual(object) This method asserts that a result is the same object as the specified value.

toMatch(regexp) This method asserts that a result matches the specified regular expression.

toBeDefined() This method asserts that the result has been defined.

toBeUndefined() This method asserts that the result has not been defined.

toBeNull() This method asserts that the result is null.

toBeTruthy() This method asserts that the result is truthy.

toBeFalsy() This method asserts that the result is falsy.

toContain(substring) This method asserts that the result contains the specified substring.

toBeLessThan(value) This method asserts that the result is less than the specified value.

toBeGreaterThan(value) This method asserts that the result is more than the specified value.

https://jestjs.io/docs/en/expect


Chapter 6 ■ testing and debugging tYpesCript

144

 Starting the Test Framework
Unit tests can be run as a one-off task or by using a watch mode that runs the tests when changes are 
detected. I find the watch mode to be most useful so that I have two command prompts open: one for 
the output from the compiler and one for the unit tests. To start the tests, open a new command prompt, 
navigate to the tools folder, and run the command shown in Listing 6-17. 

Listing 6-17. Starting the Unit Test Framework in Watch Mode

npx jest --watchAll

Jest will start, locate the test files in the project, and execute them, producing the following output:

PASS  src/calc.test.ts
  check result value (3ms)
Test Suites: 1 passed, 1 total
Tests:       1 passed, 1 total
Snapshots:   0 total
Time:        3.214s
Ran all test suites.
Watch Usage
 › Press f to run only failed tests.
 › Press o to only run tests related to changed files.
 › Press p to filter by a filename regex pattern.
 › Press t to filter by a test name regex pattern.
 › Press q to quit watch mode.
 › Press Enter to trigger a test run.

The output shows that Jest discovered one test and ran it successfully. When additional tests are defined 
or when any of the source code in the application changes, Jest will run the tests again and issue a new 
report. To see what happens when a test fails, make the change shown in Listing 6-18 to the sum function that 
is the subject of the test.

Listing 6-18. Making a Test Fail in the calc.ts File in the src Folder

export function sum(...vals: number[]): number {
    return vals.reduce((total, val) => total += val) + 10;
}

The sum function no longer returns the value expected by the unit test, and Jest produces the following 
warning:

FAIL  src/calc.test.ts
  check result value (6ms)
  check result value
    expect(received).toBe(expected) // Object.is equality
    Expected: 60



Chapter 6 ■ testing and debugging tYpesCript

145

    Received: 70
      3 | test("check result value", () => {
      4 |     let result = sum(10, 20, 30);
    > 5 |     expect(result).toBe(60);
        |                    ^
      6 | });
      at Object.<anonymous> (src/calc.test.ts:5:20)
Test Suites: 1 failed, 1 total
Tests:       1 failed, 1 total
Snapshots:   0 total
Time:        4.726s
Ran all test suites.
Watch Usage: Press w to show more.

The output shows the result expected by the test and the result that was received. Failed tests can be 
resolved by fixing the source code to conform to the expectations of the test or, if the purpose of the source 
code has changed, updating the test to reflect the new behavior. Listing 6-19 modifies the unit test.

Listing 6-19. Changing a Unit Test in the calc.test.ts File in the src Folder

import { sum } from "./calc";

test("check result value", () => {
    let result = sum(10, 20, 30);
    expect(result).toBe(70);
});

When the change to the test is saved, Jest runs the tests again and reports success.

PASS  src/calc.test.ts
  check result value (3ms)
Test Suites: 1 passed, 1 total
Tests:       1 passed, 1 total
Snapshots:   0 total
Time:        5s
Ran all test suites.
Watch Usage: Press w to show more.

 Summary
In this chapter, I introduced three tools that are often used to support TypeScript development. The Node.js 
debugger is a useful way to inspect the state of applications as they are being executed, the linter helps avoid 
common coding errors that are not detected by the compiler but that cause problems nonetheless, and the 
unit test framework is used to confirm that code behaves as expected. In the next chapter, I start describing 
TypeScript features in depth, starting with static type checking.



PART II

Working with TypeScript



149© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_7

CHAPTER 7

Understanding Static Types
In this chapter, I introduce the key TypeScript features for working with data types. The features I describe 
in this chapter are the foundations for working with TypeScript, and they are the building blocks for the 
advanced features described in later chapters.

I start by showing how TypeScript’s types differ from pure JavaScript’s types. I demonstrate that the 
TypeScript compiler is able to infer data types from code, and then I introduce features that provide precise 
control over data types, either by giving the TypeScript compiler information about how sections of code are 
expected to behave or by changing the way that the compiler is configured. Table 7-1 summarizes the chapter.

For quick reference, Table 7-2 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
To create the example project for this chapter, create a folder called types in a convenient location. Open a 
new command prompt, navigate to the types folder, and run the command shown in Listing 7-1 to initialize 
the folder for use with NPM.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 7-1. Initializing the Node Package Manager

npm init --yes

Run the command shown in Listing 7-2 in the types folder to add the packages required for this chapter.

Listing 7-2. Adding Packages to the Project

npm install --save-dev typescript@4.2.2
npm install --save-dev tsc-watch@4.2.9

To configure the TypeScript compiler, add a file called tsconfig.json to the types folder with the 
content shown in Listing 7-3.

https://doi.org/10.1007/978-1-4842-7011-0_7#DOI
https://github.com/Apress/essential-typescript-4


Chapter 7 ■ Understanding statiC tYpes

150

Listing 7-3. The Contents of the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src"
    }
}

Table 7-1. Chapter Summary

Problem Solution Listing

Specify a type Use a type annotation or allow the compiler to 
infer a type

10–13

Inspect the types that the compiler infers Enable the declarations compiler option and 
inspect the compiled code

14, 15

Allow any type to be used Specify the any or unknown types 16–19, 
29, 30

Prevent the compiler from inferring the any 
type

Enable the noImplicityAny compiler option 20

Combine types Use a type union 21–22

Override the type expected by the compiler Use a type assertion 23–25

Test for a primitive value type Use the typeof operator as a type guard 26–28

Prevent null or undefined from being 
accepted as values of other types

Enable the strictNullChecks compiler option 31–33

Override the compiler to remove null values 
from a union

Use a non-null assertion or use a type guard 34, 35

Allow a variable to be used when it has not 
been assigned a value

Use the definite assignment assertion 36, 37

Table 7-2. The TypeScript Compiler Options Used in This Chapter

Name Description

declaration This option produces type declaration files when enabled, which can be useful in 
understanding how types have been inferred. These files are described in more detail 
in Chapter 14.

noImplicitAny This option prevents the implicit use of the any type, which the compiler uses when it 
can’t infer a more specific type.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate TypeScript files.

strictNullChecks This option prevents null and undefined from being accepted as values for other types.

target This option specifies the version of the JavaScript language that the compiler will 
target in its output.



Chapter 7 ■ Understanding statiC tYpes

151

These configuration settings tell the TypeScript compiler to generate code for the most recent JavaScript 
implementations, using the src folder to look for TypeScript files and the dist folder for its outputs. To 
configure NPM so that it can start the compiler, add the configuration entry shown in Listing 7-4 to the 
package.json file.

Listing 7-4. Configuring NPM in the package.json File in the types Folder

{
  "name": "types",
  "version": "1.0.0",
  "description": "",
  "main": "index.js",
  "scripts": {
    "start": "tsc-watch --onsuccess \"node dist/index.js\""
  },
  "keywords": [],
  "author": "",
  "license": "ISC",
  "devDependencies": {
    "tsc-watch": "^4.2.9",
    "typescript": "^4.2.2"
  }
}

To create the entry point for the project, create the tools/src folder and add to it a file called index.ts 
with the code shown in Listing 7-5.

Listing 7-5. The Contents of the index.ts File in the src Folder

console.log("Hello, TypeScript");

Use the command prompt to run the command shown in Listing 7-6 in the types folder to start the 
TypeScript compiler.

Listing 7-6. Starting the TypeScript Compiler

npm start

The compiler will compile the code in the index.ts file, execute the output, and then enter watch 
mode, producing the following output:

6:43:06 AM - Starting compilation in watch mode...

6:43:08 AM - Found 0 errors. Watching for file changes.
Hello, TypeScript



Chapter 7 ■ Understanding statiC tYpes

152

 Understanding Static Types
As I explained in Chapter 4, JavaScript is dynamically typed. The biggest obstacle that JavaScript presents 
to programmers who are used to other languages is that values have types instead of variables. As a quick 
reminder of how this works, replace the code in the index.ts file with the statements shown in Listing 7-7.

Listing 7-7. Replacing the Contents of the index.ts File in the src Folder

let myVar;

myVar = 12;
myVar = "Hello";
myVar = true;

The type of the variable named myVar changes based on the value assigned to it. The JavaScript typeof 
keyword can be used to determine a type, as shown in Listing 7-8.

Listing 7-8. Displaying the Variable Type in the index.ts File in the src Folder

let myVar;
console.log(`${myVar} = ${typeof myVar}`);
myVar = 12;
console.log(`${myVar} = ${typeof myVar}`);
myVar = "Hello";
console.log(`${myVar} = ${typeof myVar}`);
myVar = true;
console.log(`${myVar} = ${typeof myVar}`);

Save the changes to the file, and you will see the following output when the compiled code is executed:

undefined = undefined
12 = number
Hello = string
true = boolean

The first statement in Listing 7-8 defines the variable without assigning a value, which means that its 
type is undefined. A variable whose type is undefined will always have a value of undefined, which can be 
seen in the output.

The value 12 is a number, and as soon as the value is assigned, the data type of the variable changes. The 
value Hello is a string, and the value false is a boolean; you can see the data type as each value is assigned 
to the variable. You don’t need to tell JavaScript the data type, which it automatically infers from the value. 
For quick reference, Table 7-3 describes the built-in types that JavaScript provides.



Chapter 7 ■ Understanding statiC tYpes

153

Dynamic types offer flexibility, but they can also lead to problems, as shown in Listing 7-9, which 
replaces the code in the index.ts file with a function and a set of statements that invoke it.

Listing 7-9. Defining a Function in the index.ts File in the src Folder

function calculateTax(amount) {
    return amount * 1.2;
}

console.log(`${12} = ${calculateTax(12)}`);
console.log(`${"Hello"} = ${calculateTax("Hello")}`);
console.log(`${true} = ${calculateTax(true)}`);

Function parameter types are also dynamic, which means that the calculateTax function may receive 
values of any type. The statements that follow the function invoke it with number, string, and boolean 
values, producing the following results when the code is executed:

12 = 14.399999999999999
Hello = NaN
true = 1.2

From a JavaScript perspective, there is nothing wrong with this example. Function parameters can 
receive values of any type, and JavaScript has handled each type exactly as it should. But the calculateTax 
function has been written with the assumption that it will only receive number values, which is why only the 
first result makes sense. (The second result, NaN, means not a number, and the third result is obtained by 
coercing true to the number value 1 and using that in the calculation—see Chapter 4 for details of JavaScript 
type coercion.)

It is easy to understand the function’s assumption about its parameter type when you can see the 
code next to the statements that use it, but it’s much harder when the function has been written by another 
programmer and is deep inside a complex project or package.

Table 7-3. The JavaScript Built-in Types

Name Description

number This type is used to represent numeric values.

string This type is used to represent text data.

boolean This type can have true and false values.

symbol This type is used to represent unique constant values, such as keys in collections.

null This type can be assigned only the value null and is used to indicate a nonexistent or 
invalid reference.

undefined This type is used when a variable has been defined but has not been assigned a value.

object This type is used to represent compound values, formed from individual properties and values.



Chapter 7 ■ Understanding statiC tYpes

154

 Creating a Static Type with a Type Annotation
Most developers are used to static types. TypeScript’s static type feature makes type assumptions explicit and 
allows the compiler to report an error when different data types are used. Static types are defined using type 
annotations, as shown in Listing 7-10. 

Listing 7-10. Using a Type Annotation in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

console.log(`${12} = ${calculateTax(12)}`);
console.log(`${"Hello"} = ${calculateTax("Hello")}`);
console.log(`${true} = ${calculateTax(true)}`);

There are two annotations in Listing 7-10, which are defined using a colon followed by the static type, as 
shown in Figure 7-1.

The type annotation on the function parameter tells the compiler that the function accepts only number 
values. The annotation that follows the function signature indicates the result type and tells the compiler 
that the function returns only number values.

When the code is compiled, the TypeScript compiler analyzes the data types of the values passed to the 
calculateTax function and detects that some of the values have the wrong type, producing the following 
error messages:

src/index.ts(6,42): error TS2345: Argument of type '"Hello"' is not assignable to 
parameter of type 'number'.
src/index.ts(7,39): error TS2345: Argument of type 'true' is not assignable to parameter 
of type 'number'.

 ■ Tip You may also see warnings in your code editor if it has good support for typescript. i use Visual studio 
Code for typescript development, and it highlights problems directly in the editor window.

Figure 7-1. Applying type annotations



Chapter 7 ■ Understanding statiC tYpes

155

Type annotations can also be applied to variables and constants, as shown in Listing 7-11.

Listing 7-11. Applying Annotations to Variables in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

let price: number = 100;
let taxAmount: number = calculateTax(price);
let halfShare: number = taxAmount / 2;

console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

Annotations are applied after the name, using a colon and a type, just as with the annotations applied 
to the function. The three variables in Listing 7-11 are all annotated to tell the compiler they will be used for 
number values, producing the following output when the code is executed:

Full amount in tax: 120
Half share: 60

 Using Implicitly Defined Static Types
The TypeScript compiler can infer types, meaning that you can benefit from static types without using 
annotations, as shown in Listing 7-12. 

Listing 7-12. Relying on Implicit Types in the index.ts File in the src Folder

function calculateTax(amount: number) {
    return amount * 1.2;
}

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

The TypeScript compiler can infer the type of the price variable based on the literal value that it is 
assigned when it is defined. The compiler knows that 100 is a number value and treats the price variable as 
though it has been defined with a number type annotation, which means that it is an acceptable value to use 
as an argument to the calculateTax function.

The compiler is also able to infer the result of the calculateTax function because it knows that only 
number parameters will be accepted, that 1.2 is a number value, and that the result of the multiplication 
operator on two number values is a number.



Chapter 7 ■ Understanding statiC tYpes

156

The result from the function is assigned to the taxAmount variable, which the compiler is also able to 
infer as a number. Finally, the compiler knows the type produced by the division operator on two number 
values and can infer the type of the halfShare variable, too.

The TypeScript compiler remains silent when types are used correctly, and it is easy to forget that the 
code is being checked. To see what happens when the inferred types don’t match, change the function in the 
index.ts file as shown in Listing 7-13.

Listing 7-13. Changing the Result Type in the index.ts File in the src Folder

function calculateTax(amount: number) {
    return (amount * 1.2).toFixed(2);
}

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

The toFixed method formats number values so they have a fixed number of digits after the decimal 
point. The result of the toFixed method is a string, which changes the result from the calculateTax 
function. When the TypeScript compiler works its way through the chain of types, it sees the division 
operator applied to a string and a number:

...
let halfShare = taxAmount / 2;
...

This is legal JavaScript and will be dealt with by type coercion, as described in Chapter 3. In this case, 
the string value will be converted to a number, and the outcome will be either the division of two number 
values or NaN if the string value cannot be converted.

In TypeScript, automatic type coercion is restricted, and the compiler reports an error instead of trying 
to convert values:

src/index.ts(7,17): error TS2362: The left-hand side of an arithmetic operation must be of 
type 'any', 'number', 'bigint' or an enum type.

The TypeScript compiler doesn’t prevent the use of the JavaScript type features, but it does generate 
errors when it sees statements that can lead to problems.

There can be times, especially when you are first starting to use TypeScript, where you will receive 
errors because the compiler infers types in a way that you don’t expect. In almost every instance, the 
compiler will be correct, but there is a useful compiler feature that can be enabled to reveal the types that are 
used in the code, as shown in Listing 7-14.

Listing 7-14. Configuring the TypeScript Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",



Chapter 7 ■ Understanding statiC tYpes

157

        "rootDir": "./src",
        "declaration": true
    }
}

The declaration setting tells the compiler to generate files that contain type information alongside the 
JavaScript code it produces. I describe these files in detail in Chapter 14, but for now, it is enough to know 
they help identify the types that the compiler has inferred, even though this is not their intended purpose. 
The configuration change will take effect when the compiler next runs. To trigger compilation, add the 
statement shown in Listing 7-15 to the index.js file and then save the changes.

Listing 7-15. Adding a Statement to the index.ts File in the src Folder

function calculateTax(amount: number) {
    return (amount * 1.2).toFixed(2);
}

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Price: ${price}`);
console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

When the compiler runs, it will generate a file named index.d.ts in the dist folder, which contains the 
following content:

...
declare function calculateTax(amount: number): string;
declare let price: number;
declare let taxAmount: string;
declare let halfShare: number;
...

The purpose of the declare keyword—and the file itself—is explained in Chapter 14, but this file reveals 
the types that the compiler has inferred for the statements in Listing 7-15, showing that the return types for 
the calculateTax function and the taxAmount variable are string. When you get a compiler error, looking 
at the files generated when the declaration setting is true can be helpful, especially if you can’t see any 
obvious cause.

 Using the any Type
TypeScript doesn’t stop you from using the flexibility of the JavaScript type system, but it does try to prevent 
you from using it accidentally. To allow all types as function parameters and results or be able to assign all 
types to variables and constants, TypeScript provides the any type, as shown in Listing 7-16. 

Listing 7-16. Using the any Type in the index.ts File in the src Folder

function calculateTax(amount: any): any {
    return (amount * 1.2).toFixed(2);
}



Chapter 7 ■ Understanding statiC tYpes

158

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Price: ${price}`);
console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

These annotations tell the compiler that the amount parameter can accept any value and that the 
function’s result may be of any type. The use of the any type stops the compiler from reporting the error 
produced by Listing 7-15 because it no longer validates that the result from the calculateTax function can 
be used with the division operator. The code will run successfully because JavaScript converts the division 
operands to number values automatically so that the string returned by calculateTax is parsed to a number, 
producing the following result when the code is executed:

Price: 100
Full amount in tax: 120.00
Half share: 60

When you use the any type, you take responsibility for ensuring that your code doesn’t misuse types, 
just as you would if you were using pure JavaScript. In Listing 7-17, I have changed the calculateTax 
function so that it prepends a currency symbol to its result.

Listing 7-17. Changing the Function Result in the index.ts File in the src Folder

function calculateTax(amount: any): any {
    return `$${(amount * 1.2).toFixed(2)}`;
}

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Price: ${price}`);
console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

The function’s result cannot be parsed into a number value, so the code produces this output when it is 
executed:

Price: 100
Full amount in tax: $120.00
Half share: NaN

One consequence of using any is that it can be assigned to all other types without triggering a compiler 
warning, as shown in Listing 7-18.



Chapter 7 ■ Understanding statiC tYpes

159

Listing 7-18. Assigning the any Type in the index.ts File in the src Folder

function calculateTax(amount: any): any {
    return `$${(amount * 1.2).toFixed(2)}`;
}

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

console.log(`Price: ${price}`);
console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);

let newResult: any = calculateTax(200);
let myNumber: number = newResult;
console.log(`Number value: ${myNumber.toFixed(2)}`);

The any value newResult is assigned to a number without causing a compiler warning. At runtime, the 
calculateTax method returns a string result, which doesn’t define the toFixed method invoked in the last 
statement in Listing 7-18 and produces the following error when the code is executed:

console.log(`Number value: ${myNumber.toFixed(2)}`);
                                     ^
TypeError: myNumber.toFixed is not a function

The compiler trusts that the any value can be treated as a number, which means a type mismatch occurs 
at runtime. The any type allows full use of the JavaScript type features, which can be useful but can lead to 
unexpected results when types are coerced automatically at runtime.

 ■ Tip typescript also provides the unknown type to provide deliberate access to the dynamic type features 
while restricting accidental use, as described in the “Using the Unknown type” section.

 Using Implicitly Defined Any Types
The TypeScript compiler will use any when it is assigning types implicitly and cannot identify a more specific 
type to use. This makes it easier to selectively apply TypeScript in an existing JavaScript project and can 
simplify working with third-party JavaScript packages. In Listing 7-19, I have removed the type annotation 
from the calculateTax parameter. 

Listing 7-19. Removing an Annotation and Defining a Variable in the index.ts File in the src Folder

function calculateTax(amount): any {
    return `$${(amount * 1.2).toFixed(2)}`;
}



Chapter 7 ■ Understanding statiC tYpes

160

let price = 100;
let taxAmount = calculateTax(price);
let halfShare = taxAmount / 2;

let personVal = calculateTax("Bob");

console.log(`Price: ${price}`);
console.log(`Full amount in tax: ${taxAmount}`);
console.log(`Half share: ${halfShare}`);
console.log(`Name: ${personVal}`);

The compiler will use an implicit any for the function parameter because it isn’t able to determine 
a better type to use, which is why no compiler error will be reported when the function is invoked with a 
string argument, producing the following output:

Price: 100
Full amount in tax: $120.00
Half share: NaN
Name: $NaN

You can confirm the implicit use of any by inspecting the contents of the index.d.ts file in the dist 
folder, which will contain the following description of the calculateTax function:

...
declare function calculateTax(amount: any): any;
...

 Disabling Implicit Any Types
Explicitly using any provides an escape-hatch from type checking, which can be useful when applied 
cautiously. Allowing the compiler to use any implicitly creates gaps in type checking that you may not even 
notice and that can undermine the benefit of using TypeScript.

It is good practice to disable the implicit use of any by setting the compiler’s noImplicityAny setting, as 
shown in Listing 7-20. (The implicit use of any is also disabled when you enable the strict compiler setting, 
as noted in Table 7-3.)

Listing 7-20. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        "noImplicitAny": true
    }
}



Chapter 7 ■ Understanding statiC tYpes

161

Save the changes to the compiler configuration file, and the code will be recompiled with the 
following error:

src/index.ts(1,23): error TS7006: Parameter 'amount' implicitly has an 'any' type.

The compiler will now display this warning when it cannot infer a more specific type, although this 
doesn’t prevent the explicit use of any.

 Using Type Unions
At one end of the type safety spectrum is the any feature, which allows complete freedom. At the other end 
of the spectrum are type annotations for single types, which narrows the range of allowable values. Between 
these two extremes, TypeScript provides type unions, which specify a set of types. In Listing 7-21, I have 
defined a function that returns different data types and used a type annotation with a union to describe the 
result to the compiler. 

Listing 7-21. Using a Type Union in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxNumber = calculateTax(100, false);
let taxString = calculateTax(100, true);

The type returned by the calculateTax function is the union of the string and number types, which is 
defined using the bar character between type names, as shown in Figure 7-2. The union in Listing 7-21 uses 
two types, but you can combine as many types as you need to create a union.

It is important to understand that a type union is handled as a type in its own right, whose features are 
the intersection of the individual types. This means that the type of the taxNumber variable in Listing 7-21, 
for example, is string | number and not number, even though the calculateTax function returns a number 
when the boolean argument is false. To emphasize the effect of the union type, Listing 7-22 makes the 
variable types explicit.

Figure 7-2. Defining a type union



Chapter 7 ■ Understanding statiC tYpes

162

Listing 7-22. Declaring Union Types Explicitly in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxNumber: string | number  = calculateTax(100, false);
let taxString: string | number  = calculateTax(100, true);

console.log(`Number Value: ${taxNumber.toFixed(2)}`);
console.log(`String Value: ${taxString.charAt(0)}`);

You can only use the properties and methods defined by all the types in the union, which can be 
useful for complex types (as described in Chapter 10) but is limited by the small common API presented 
by primitive values. The only method shared by the number and string types that are used in the union in 
Listing 7-22 is the toString method, as shown in Figure 7-3.

Figure 7-3. The effect of a type union



Chapter 7 ■ Understanding statiC tYpes

163

This means that the other methods defined by the number and string types cannot be used, and the use 
of the toFixed and charAt methods in Listing 7-22 produces the following compiler messages:

src/index.ts(9,40): error TS2339: Property 'toFixed' does not exist on type 'string | 
number'. Property 'toFixed' does not exist on type 'string'.
src/index.ts(10,40): error TS2339: Property 'charAt' does not exist on type 'string | 
number'. Property 'charAt' does not exist on type 'number'.

 Using Type Assertions
A type assertion tells the TypeScript compiler to treat a value as a specific type, known as type narrowing. A 
type assertion is one of the ways that you can narrow a type from a union, as shown in Listing 7-23. 

Listing 7-23. Using Type Assertions in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxNumber = calculateTax(100, false) as number;
let taxString = calculateTax(100, true) as string;

console.log(`Number Value: ${taxNumber.toFixed(2)}`);
console.log(`String Value: ${taxString.charAt(0)}`);

A type is asserted using the as keyword, followed by the required type, as illustrated in Figure 7-4.

In the listing, the as keyword is used to tell the compiler that the value assigned to the taxNumber 
variable is a number and that the value assigned to the taxString variable is a string:

...
let taxNumber = calculateTax(100, false) as number;
let taxString = calculateTax(100, true) as string;
...

Figure 7-4. Asserting a type



Chapter 7 ■ Understanding statiC tYpes

164

 ■ Caution no type conversion is performed by a type assertion, which only tells the compiler what type it 
should apply to a value for the purposes of type checking.

When a type is asserted in this way, TypeScript uses the asserted type as the type for the variable, which 
means that the highlighted statements in Listing 7-23 are equivalent to these statements:

...
let taxNumber: number = calculateTax(100, false) as number;
let taxString: string = calculateTax(100, true) as string;
...

The type asserts select a specific type from the union, which means that the methods and properties 
available on that type can be used, preventing the errors reported for Listing 7-22 and producing the 
following output:

Number Value: 120.00
String Value: $

 Asserting to an Unexpected Type
The compiler checks that the type used in an assertion is expected. When using an assertion from a type union, 
for example, the assertion must be to one of the types in the union. To see what happens when asserting to a 
type that the compiler doesn’t expect, add the statements shown in Listing 7-24 to the index.ts file. 

Listing 7-24. Asserting to an Unexpected Type in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxNumber = calculateTax(100, false) as number;
let taxString = calculateTax(100, true) as string;
let taxBoolean = calculateTax(100, false) as boolean;

console.log(`Number Value: ${taxNumber.toFixed(2)}`);
console.log(`String Value: ${taxString.charAt(0)}`);
console.log(`Boolean Value: ${taxBoolean}`);

The type assertion tells the compiler to treat a string | number value as a boolean. The compiler knows 
that boolean is not one of the types in the union and produces the following error when the code is compiled:

...
src/index.ts(9,18): error TS2352: Conversion of type 'string | number' to type 'boolean' 
may be a mistake because neither type sufficiently overlaps with the other. If this was 
intentional, convert the expression to 'unknown' first.
  Type 'number' is not comparable to type 'boolean'.
...



Chapter 7 ■ Understanding statiC tYpes

165

In most situations, you should review the data types and the type assertion and correct the problem by 
expanding the type union or asserting to a different type. However, you can force the assertion and override 
the compiler’s warning by first asserting to any and then to the type you require, as shown in Listing 7-25. 
(The compiler error refers to the unknown type, which I explain in the “Using the Unknown Type” section.)

Listing 7-25. Asserting to an Unexpected Type in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxNumber = calculateTax(100, false) as number;
let taxString = calculateTax(100, true) as string;
let taxBoolean = calculateTax(100, false) as any as boolean;

console.log(`Number Value: ${taxNumber.toFixed(2)}`);
console.log(`String Value: ${taxString.charAt(0)}`);
console.log(`Boolean Value: ${taxBoolean}`);

This additional step prevents the compiler from warning about the change and treats the result from the 
function as a boolean value. However, as noted earlier, assertions only affect the type checking process and 
do not perform type coercion, which can be seen in the results produced when the code is compiled:

Number Value: 120.00
String Value: $
Boolean Value: 120

The result produced by the function has been described to the compiler as the string | number union 
and asserted as a boolean. But when the code is executed, the function produces a number, whose value is 
written to the console.

THE ALTERNATIVE TYPE ASSERTION SYNTAX

Type assertions can also be performed using an angle bracket syntax, so that this 
statement:...
let taxString = calculateTax(100, true) as string;
...

is equivalent to this statement:...
let taxString = <string> calculateTax(100, true);
...

the problem with this syntax is that it cannot be used in tsX files, which combine htML elements with 
typescript code and are commonly used in react development, as described in Chapter 19. For this 
reason, the as keyword is the preferred way to assert types.



Chapter 7 ■ Understanding statiC tYpes

166

 Using a Type Guard
For primitive values, the typeof keyword can be used to test for a specific type without needing a type 
assertion, as shown in Listing 7-26. 

Listing 7-26. Using a Type Guard in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

if (typeof taxValue === "number") {
    console.log(`Number Value: ${taxValue.toFixed(2)}`);

} else if (typeof taxValue === "string") {
    console.log(`String Value: ${taxValue.charAt(0)}`);
}

To test a type, the typeof keyword is applied to a value, producing a string that can be compared to the 
names of the primitive JavaScript types, such as number and boolean.

 ■ Note the typeof keyword can be used only with the Javascript primitive types. a different approach is 
required to differentiate between objects, as described in Chapter 3 and Chapter 10.

The compiler doesn’t implement the typeof keyword, which is part of the JavaScript specification. 
Instead, the compiler trusts that the statements in the conditional block will be executed at runtime only if 
the value being tested is of the specified type. This knowledge allows the compiler to treat the value as the 
type being tested. For example, the first test in Listing 7-26 is for number:

...
if (typeof taxValue === "number") {
    console.log(`Number Value: ${taxValue.toFixed(2)}`);
}
...

The TypeScript compiler knows that the statements inside the if code block will be executed only if 
taxValue is a number and allows the number type’s toFixed method to be used without the need for a type 
assertion, producing the following result when the code is compiled:

Number Value: 120.00

The compiler is adept at recognizing type guard statements, even when they are not in a conventional 
if...else block. The code in Listing 7-27 produces the same result as Listing 7-26 but uses a switch 
statement to differentiate between types. Within each block, the compiler treats taxValue as though it has 
been defined with only the type selected by the case statement.



Chapter 7 ■ Understanding statiC tYpes

167

Listing 7-27. Type Guarding in a switch Statement in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
}

 Understanding the Never Type
TypeScript provides the never type for situations where a type guard has dealt with all of the possible types 
for a value. In Listing 7-27, for example, the switch statement is a type guard for the number and string 
types, which are the only types that will be returned in the string | number union from the function. Once 
all the possible types have been handled, the compiler will only allow a value to be assigned to the never 
type, as shown in Listing 7-28. 

Listing 7-28. Using the never Type in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        let value: never = taxValue;
        console.log(`Unexpected type for value: ${value}`);
}

Something has gone wrong if execution reaches the default clause of the switch statement, and 
TypeScript provides the never type to ensure you can’t accidentally use a value once type guards have been 
used to exhaustively narrow a value to all of its possible types.



Chapter 7 ■ Understanding statiC tYpes

168

 Using the unknown Type
In the “Using the any Type” section, I explained that an any value can be assigned to all other types, which 
creates a gap in the compiler’s type checking. TypeScript also supports the unknown type, which is a safer 
alternative to any. An unknown value can be assigned only any or itself unless a type assertion or type guard is 
used. Listing 7-29 repeats the statements from the example that showed how the any type behaves but uses 
unknown instead. 

Listing 7-29. Using any and unknown Types in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        let value: never = taxValue;
        console.log(`Unexpected type for value: ${value}`);
}

let newResult: unknown = calculateTax(200, false);
let myNumber: number = newResult;
console.log(`Number value: ${myNumber.toFixed(2)}`);

An unknown value can’t be assigned to another type without a type assertion, so the compiler produces 
the following error when it compiles the code:

src/index.ts(18,5): error TS2322: Type 'unknown' is not assignable to type 'number'.

Listing 7-30 uses a type assertion to override the warning and tell the compiler to assign the unknown 
value as a number.

Listing 7-30. Asserting an Unknown Value in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {



Chapter 7 ■ Understanding statiC tYpes

169

    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        let value: never = taxValue;
        console.log(`Unexpected type for value: ${value}`);
}

let newResult: unknown = calculateTax(200, false);
let myNumber: number = newResult as number;
console.log(`Number value: ${myNumber.toFixed(2)}`);

Unlike the earlier example, the unknown value is really a number, so the code doesn’t generate a runtime 
error and produces the following output when executed:

Number Value: 120.00
Number value: 240.00

 Using Nullable Types
There is a hole in the TypeScript static type system: the JavaScript null and undefined types. The null type 
can be assigned only the null value and is used to represent something that doesn’t exist or is invalid. The 
undefined type can be assigned only the undefined value and is used when a variable has been defined but 
not yet assigned a value. 

The problem is that, by default, TypeScript treats null and undefined as legal values for all types. The 
reason for this is convenience because a lot of existing JavaScript code that may be required for integration 
into an application uses these values as part of its normal operation, but it does lead to inconsistencies in 
type checking, as shown in Listing 7-31.

Listing 7-31. Using Nullable Types in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue: string | number = calculateTax(0, false);

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;



Chapter 7 ■ Understanding statiC tYpes

170

    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        let value: never = taxValue;
        console.log(`Unexpected type for value: ${value}`);
}

let newResult: unknown = calculateTax(200, false);
let myNumber: number = newResult as number;
console.log(`Number value: ${myNumber.toFixed(2)}`);

The change to the calculateTax shows a typical use of null, where it is used as a result if the value of 
the amount parameter is zero, indicating an invalid condition. The result type for the function and the type 
of the taxValue variable are string | number. But, in JavaScript, changing the value assigned to a variable 
can change its type, and that is what happens in the example: the second call to the calculateTax function 
returns null, which changes the taxValue type to null. When the type guard statements inspect the type 
of the variable, they fail to narrow its type to one of those in the string | number union and produce the 
following output:

Unexpected type for value: null
Number value: 240.00

Under normal circumstances, the compiler will report an error if a value of one type is assigned to 
a variable of a different type, but the compiler remains silent because it allows null and undefined to be 
treated as values for all types.

 ■ Note in addition to type inconsistencies, nullable values can lead to runtime errors that are difficult to 
detect during development and often encountered by users. in Listing 7-31, for example, there is no easy way 
for consumers of the calculateTax function to know that a null value may be returned and to understand 
when that might happen. it is easy to see the null value and the reasons for its use in the example but much 
harder to do the same thing in a real project or in a third-party package.

 Restricting Nullable Assignments
The use of null and undefined can be restricted by enabling the strictNullChecks compiler setting, as 
shown in Listing 7-32. (This setting is also enabled by the strict setting.)

Listing 7-32. Enabling Strict Null Checks in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,



Chapter 7 ■ Understanding statiC tYpes

171

        "noImplicitAny": true,
        "strictNullChecks": true
    }
}

When true, this setting tells the compiler not to allow null or undefined values to be assigned to 
other types. Save the change to the configuration file, and the compiler will recompile the index.ts file and 
generate the following error:

src/index.ts(3,9): error TS2322: Type 'null' is not assignable to type 'string | number'.

The configuration change tells the compiler to produce an error when null or undefined values 
are assigned to another type. In this example, the error occurs because the null value returned by the 
calculateTax function isn’t one of the types in the union that describes the function’s result.

To resolve the error, the function can be rewritten not to use null, or the type union used to describe its 
result can be expanded to include null, which is the approach taken in Listing 7-33.

Listing 7-33. Expanding a Type Union in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number | null {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue: string | number | null = calculateTax(0, false);

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        if (taxValue === null) {
            console.log("Value is null");
        } else {
            console.log(typeof taxValue);
            let value: never = taxValue;
            console.log(`Unexpected type for value: ${value}`);
        }
}



Chapter 7 ■ Understanding statiC tYpes

172

Expanding the type union makes it obvious that null values may be returned by the function, 
ensuring that code that uses the function knows that string, number, or null values have to be dealt with. 
As explained in Chapter 3, using typeof on null values returns object, so guarding against null values is 
done using an explicit value check, which the TypeScript compiler understands as a type guard. The code in 
Listing 7-33 produces the following result when it is executed:

Value is null

 Removing null from a Union with an Assertion
Remember that unions present the intersection of the API of each individual type. The null and undefined 
values don’t present any properties or methods, which means that values for nullable type unions can’t be 
used directly, even if the non-null types have an intersection of useful properties or methods (of which there 
are examples in later chapters). A non-null assertion tells the compiler that a value isn’t null, which removes 
null from the type union and allows the intersection of the other types to be used, as shown in Listing 7-34. 

 ■ Caution a non-null assertion should be used only when you know that a null value cannot occur. a 
runtime error will be caused if you apply the assertion and a null value does occur. a safer approach is to use a 
type guard, as described in the next section.

Listing 7-34. Using a Non-Null Assertion in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number | null {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue: string | number = calculateTax(100, false)!;

switch (typeof taxValue) {
    case "number":
        console.log(`Number Value: ${taxValue.toFixed(2)}`);
        break;
    case "string":
        console.log(`String Value: ${taxValue.charAt(0)}`);
        break;
    default:
        if (taxValue === null) {
            console.log("Value is null");
        } else {
            console.log(typeof taxValue);
            let value: never = taxValue;
            console.log(`Unexpected type for value: ${value}`);
        }
}



Chapter 7 ■ Understanding statiC tYpes

173

A non-null value is asserted by applying the ! character after the value, as illustrated by Figure 7-5. The 
assertion in the listing tells the compiler that the result from the calculateTax function will not be null, 
which allows it to be assigned to the taxValue variable, whose type is string | number.

The code in Listing 7-34 produces this output when it is compiled and executed:

Number Value: 120.00

 Removing null from a Union with a Type Guard
An alternative approach is to filter out null or undefined values using a type guard, as shown in Listing 7-35. 
This approach has the advantage of testing values at runtime.

Listing 7-35. Removing null Values with a Type Guard in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number | null {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue: string | number | null = calculateTax(100, false);
if (taxValue !== null) {
    let nonNullTaxValue: string | number = taxValue;
    switch (typeof taxValue) {
        case "number":
            console.log(`Number Value: ${taxValue.toFixed(2)}`);
            break;
        case "string":
            console.log(`String Value: ${taxValue.charAt(0)}`);
            break;
    }
} else {
    console.log("Value is not a string or a number");
}

Figure 7-5. Asserting a non-null value



Chapter 7 ■ Understanding statiC tYpes

174

The compiler knows that the test for null values means that the value can be treated as the non-
nullable string | number union type with the if code block. (The compiler also knows that taxValue can 
be null only in the else code block.) The code in Listing 7-35 produces this output when it is compiled and 
executed:

Number Value: 120.00

 Using the Definite Assignment Assertion
If the strictNullChecks option is enabled, the compiler will report an error if a variable is used before it is 
assigned a value. This is a helpful feature, but there can be times where a value is assigned in a way that isn’t 
visible to the compiler, as shown in Listing 7-36. 

 ■ Caution i use the built-in Javascript eval function in Listing 7-36 to execute a string as a code statement. 
the eval function is considered dangerous and should not be used in real projects.

Listing 7-36. Using an Unassigned Variable in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number | null {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue: string | number | null;
eval("taxValue = calculateTax(100, false)");

if (taxValue !== null) {
    let nonNullTaxValue: string | number = taxValue;
    switch (typeof taxValue) {
        case "number":
            console.log(`Number Value: ${taxValue.toFixed(2)}`);
            break;
        case "string":
            console.log(`String Value: ${taxValue.charAt(0)}`);
            break;
    }
} else {
    console.log("Value is not a string or a number");
}



Chapter 7 ■ Understanding statiC tYpes

175

The eval function accepts a string and executes it as a code statement. The TypeScript compiler isn’t 
able to determine the effect of the eval function and doesn’t realize that it assigns a value to taxValue. When 
the code is compiled, the compiler reports the following errors:

src/index.ts(12,5): error TS2454: Variable 'taxValue' is used before being assigned.
src/index.ts(13,9): error TS2322: Type 'string | number | null' is not assignable to type 
'string | number'.
  Type 'null' is not assignable to type 'string | number'.
src/index.ts(13,44): error TS2454: Variable 'taxValue' is used before being assigned.
src/index.ts(14,20): error TS2454: Variable 'taxValue' is used before being assigned.

The definitive assignment assertion tells TypeScript that a value will be assigned before the variable is 
used, as shown in Listing 7-37.

Listing 7-37. Using the Definitive Assignment Assertion in the index.ts File in the src Folder

function calculateTax(amount: number, format: boolean): string | number | null {
    if (amount === 0) {
        return null;
    }
    const calcAmount = amount * 1.2;
    return format ? `$${calcAmount.toFixed(2)}` : calcAmount;
}

let taxValue!: string | number | null;
eval("taxValue = calculateTax(100, false)");

if (taxValue !== null) {
    let nonNullTaxValue: string | number = taxValue;
    switch (typeof taxValue) {
        case "number":
            console.log(`Number Value: ${taxValue.toFixed(2)}`);
            break;
        case "string":
            console.log(`String Value: ${taxValue.charAt(0)}`);
            break;
    }
} else {
    console.log("Value is not a string or a number");
}

The definitive assignment assertion is a ! character, but it is applied after the name when the variable 
is defined, unlike the non-null assertion that is applied in expressions. Just as with the other assertions, you 
are responsible for ensuring that a value really is assigned. You may encounter a runtime error if you use an 
assertion but don’t perform an assignment. The assertion in Listing 7-37 allows the code to be compiled, 
which produces the following output when it is executed:

Number Value: 120.00



Chapter 7 ■ Understanding statiC tYpes

176

 Summary
In this chapter, I explained how TypeScript can be used to restrict the JavaScript type system by performing 
type checking. I demonstrated how type annotations can be used to specify the types that can be used and 
how the compiler can infer types from code statements. I explained the use of the any, unknown, and never 
types; type unions; and guards that restrict the range of types. In the next chapter, I explain how TypeScript 
deals with functions in more depth.



177© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_8

CHAPTER 8

Using Functions

In this chapter, I explain how TypeScript is applied to functions, showing you how TypeScript helps prevent 
common problems when defining functions, dealing with parameters, and producing results. Table 8-1 
summarizes the chapter.

Table 8-1. Chapter Summary

Problem Solution Listing

Allow a function to be called with fewer arguments 
than parameters

Define optional parameters or define 
parameters with default values

7, 8

Allow a function to be called with more arguments 
than parameters

Use a rest parameter 9, 10

Restrict the types that can be used for parameter 
values and results

Apply type annotations to parameters or 
function signatures

11, 17, 18

Prevent null values from being used as function 
arguments

Enable the strictNullChecks compiler 
option

12–14

Ensure that all function code paths return a result Enable the noImplicitReturns compiler 
option

15. 16

Describe the relationship between the types of a 
function’s parameters and its result

Overload the function’s types 19, 20

Describe the effect of an assert function Use the assert keyword 21–23

https://doi.org/10.1007/978-1-4842-7011-0_8#DOI


Chapter 8 ■ Using FUnCtions

178

For quick reference, Table 8-2 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7. To prepare for this chapter, replace 
the contents of the index.ts file in the src folder with the code shown in Listing 8-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 8-1. The Contents of the index.ts File in the src Folder

function calculateTax(amount) {
    return amount * 1.2;
}

let taxValue = calculateTax(100);
console.log(`Total Amount: ${taxValue}`);

Comment out the compiler options that prevent the implicit use of the any type and the assignment of 
the null and undefined values to other types, as shown in Listing 8-2.

Listing 8-2. Disabling Compiler Options in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",

Table 8-2. The TypeScript Compiler Options Used in This Chapter

Name Description

target This option specifies the version of the JavaScript language that the compiler will 
target in its output.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate 
TypeScript files.

declaration This option produces type declaration files when enabled, which can be useful in 
understanding how types have been inferred. These files are described in more 
detail in Chapter 14.

strictNullChecks This option prevents null and undefined from being accepted as values for  
other types.

noImplicitReturns This option requires all paths in a function to return a result.

noUnusedParameters This option causes the compiler to produce a warning if a function defines 
parameters that are not used.

https://github.com/Apress/essential-typescript-4


Chapter 8 ■ Using FUnCtions

179

        "declaration": true,
        // "noImplicitAny": true,
        // "strictNullChecks": true
    }
}

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 8-3 
to start the TypeScript compiler so it automatically executes code after it has been compiled.

Listing 8-3. Starting the TypeScript Compiler

npm start

The compiler will compile the code in the index.ts file, execute the output, and then enter watch 
mode, producing the following output:

6:52:41 AM - Starting compilation in watch mode...

6:52:43 AM - Found 0 errors. Watching for file changes.
Total Amount: 120

 Defining Functions
TypeScript transforms JavaScript functions to make them more predictable and to make the data type 
assumptions explicit so they can be checked by the compiler. The index.ts file contains this simple 
function:

...
function calculateTax(amount) {
    return amount * 1.2;
}
...

Chapter 7 demonstrated how TypeScript features like type annotations can be applied to functions. 
In the sections that follow, I revisit these features and describe the other ways that TypeScript enhances 
functions.

 Redefining Functions
One of the most important changes that TypeScript introduces is a warning when a function is redefined. 
In JavaScript, a function can be defined more than once, and the most recent implementation is used when 
the function is invoked. This leads to a common problem for developers who have moved to JavaScript from 
another language, as shown in Listing 8-4. 



Chapter 8 ■ Using FUnCtions

180

Listing 8-4. Redefining a Function in the index.ts File in the src Folder

function calculateTax(amount) {
    return amount * 1.2;
}

function calculateTax(amount, discount) {
    return calculateTax(amount) - discount;
}

let taxValue = calculateTax(100);
console.log(`Total Amount: ${taxValue}`);

Many languages support function overloading, which allows multiple functions to be defined with the 
same name as long as they have different numbers of parameters or if the parameters have different types. 
If you are used to this style of programming, the code in Listing 8-4 looks perfectly normal, and you will 
assume the second calculateTax function builds on the first calculateTax function to apply a discount.

JavaScript doesn’t support function overloading, and when you define two functions with the same 
name, the second function replaces the first, regardless of the function’s parameters. The number of 
arguments used to call a function is not important in JavaScript—if there are more parameters than 
arguments, then the extra parameters are undefined. If there are more arguments than parameters, the 
function can either ignore them or use the special arguments value, which provides access to all the 
arguments used to invoke the function. If the code in Listing 8-4 were executed, the first calculateTax 
function would be ignored, and the second function would be invoked, but without a value for the second 
parameter. When the function is executed, it would invoke itself repeatedly, until the call stack becomes 
exhausted and an error is produced.

To avoid this problem, the TypeScript compiler reports an error when more than one function is defined 
with the same name. Here are the error messages produced by the compiler for the code in Listing 8-4:

src/index.ts(1,10): error TS2393: Duplicate function implementation.
src/index.ts(5,10): error TS2393: Duplicate function implementation.

The practical effect of not being able to overload functions is that different names must be used (such as 
calculateTax and calculateTaxWithDiscount, for example) or a single function adapts its behavior based 
on its parameters. I find the first approach works well for complex groups of features, and I prefer the second 
approach for simpler tasks. Listing 8-5 takes the second approach and consolidates the functionality into a 
single function.

Listing 8-5. Consolidating Functions in the index.ts File in the src Folder

function calculateTax(amount, discount) {
    return (amount * 1.2) - discount;
}

let taxValue = calculateTax(100, 0);
console.log(`Total Amount: ${taxValue}`);

The code in Listing 8-6 produces the following output when compiled and executed:

Total Amount: 120



Chapter 8 ■ Using FUnCtions

181

 Understanding Function Parameters
I had to make two changes in Listing 8-5 to get the code to compile. The first was to remove the duplicate 
calculateTax function and combine the functionality in a single function. The second change was to the 
statement that calls the function, to which I added a second argument: 

...
let taxValue = calculateTax(100, 0);
...

TypeScript has a stricter approach than JavaScript and expects functions to be used with the same 
number of arguments as there are parameters. Add the statements shown in Listing 8-6 to the index.ts file 
to see how the compiler responds to different numbers of arguments.

Listing 8-6. Calling a Function in the index.ts File in the src Folder

function calculateTax(amount, discount) {
    return (amount * 1.2) - discount;
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
taxValue = calculateTax(100, 10, 20);
console.log(`3 args: ${taxValue}`);

The first new call to the function doesn’t provide enough arguments, and the second provides too 
many. The compiler reports the following errors when the code is compiled:

src/index.ts(7,12): error TS2554: Expected 2 arguments, but got 1.
src/index.ts(8,12): error TS2554: Expected 2 arguments, but got 3.

The compiler insists on matching arguments to parameters to make the expectations in the code 
explicit, just as for the features described in Chapter 7. When you examine a set of parameters, you can’t 
easily determine how the function will behave if some of them don’t receive values. And when a function is 
invoked with a different number of arguments, it is difficult to determine whether this is intentional or an 
error. TypeScript tackles both of these problems by requiring arguments that correspond to all parameters 
unless the function indicates that it can be more flexible using the features described in the following 
sections.

 ■ Tip if the noUnusedParameters option is enabled, the compiler will warn you if a function defines 
parameters that it doesn’t use.



Chapter 8 ■ Using FUnCtions

182

 Using Optional Parameters
Function parameters are mandatory by default, but this can be changed by using optional parameters, as 
shown in Listing 8-7. (I have also commented out the statement that has too many arguments, which I return 
to in the following sections.)

Listing 8-7. Defining an Optional Parameter in the index.ts File in the src Folder

function calculateTax(amount, discount?) {
    return (amount * 1.2) - (discount || 0);
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
//taxValue = calculateTax(100, 10, 20);
//console.log(`3 args: ${taxValue}`);

Optional parameters are defined by placing a question mark after the parameter name, as illustrated in 
Figure 8-1.

 ■ Note optional parameters must be defined after the required parameters. this means that i cannot reverse 
the order of the amount and discount parameters in Listing 8-7, for example, because amount is required and 
discount is optional.

Callers of the calculateTax function can omit a value for the discount parameter, which will provide 
the function with an undefined value parameter. Functions that declare optional parameters must ensure 
they can operate when values are not supplied, and the function in Listing 8-7 does this using the logical OR 
operator (||) to coalesce undefined values to zero if the discount parameter is undefined, like this:

...
return (amount * 1.2) - (discount || 0);
...

Figure 8-1. Defining an optional parameter



Chapter 8 ■ Using FUnCtions

183

The discount parameter is used in the same way as the required parameter, and the only change is that 
the function must be able to deal with the possibility of an undefined value.

The user of the function doesn’t have to take any special measures to deal with the optional parameter. 
In the case of the example, this means the calculateTax function can be used with one or two arguments. 
The code in Listing 8-7 produces the following output when it is executed:

2 args: 120
1 arg: 120

 Using a Parameter with a Default Value
If there is a fallback value that should be used for an optional parameter, then it can be applied when the 
parameter is defined, as shown in Listing 8-8. 

Listing 8-8. Using a Default Parameter Value in the index.ts File in the src Folder

function calculateTax(amount, discount = 0) {
    return (amount * 1.2) - discount;
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
//taxValue = calculateTax(100, 10, 20);
//console.log(`3 args: ${taxValue}`);

A parameter with a default value is known as a default-initialized parameter. The name of the parameter 
is followed by the assignment operator (a single = character) and the value, as shown in Figure 8-2. Notice 
that no question mark is used when defining a parameter with a default value.

Using a default value means that the code in the function doesn’t have to check for undefined values 
and means that the fallback value can be changed in a single location and take effect throughout the 
function.

Figure 8-2. Defining a default parameter value



Chapter 8 ■ Using FUnCtions

184

 ■ Tip parameters with default values are still optional parameters, even though no question mark is used, 
and must be defined after the function’s required parameters.

The code in Listing 8-8 produces the following output when it compiled and executed:

2 args: 120
1 arg: 120

 Using a Rest Parameter
The counterpart to optional parameters is the rest parameter, which allows a function to accept a variable 
number of arguments, which are grouped and presented together. A function can have one rest parameter 
only, and it must be the last parameter, as shown in Listing 8-9. 

Listing 8-9. Defining a Rest Parameter in the index.ts File in the src Folder

function calculateTax(amount, discount = 0, ...extraFees) {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
taxValue = calculateTax(100, 10, 20);
console.log(`3 args: ${taxValue}`);

A rest parameter is defined by prefixing the parameter name with an ellipsis (three periods), as shown 
in Figure 8-3.

Any arguments for which there are no corresponding parameters are assigned to the rest parameter, which 
is an array. The array will always be initialized and will contain no items if there were no extra arguments. 
The addition of the rest parameter means that the calculateTax function can be called with one or more 
arguments: the first argument is assigned to the amount parameter, the section argument (if there is one) is 
assigned to the discount parameter, and any other arguments are added to the extraFees parameter array.

Figure 8-3. Defining a rest parameter



Chapter 8 ■ Using FUnCtions

185

The process of grouping arguments into the rest parameter array is done automatically, and no special 
measures are required when calling the function. The user of the function can define additional arguments 
and separate them with commas, as shown in Listing 8-10.

Listing 8-10. Using Additional Function Arguments in the index.ts File in the src Folder

function calculateTax(amount, discount = 0, ...extraFees) {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
taxValue = calculateTax(100, 10, 20);
console.log(`3 args: ${taxValue}`);
taxValue = calculateTax(100, 10, 20, 1, 30, 7);
console.log(`6 args: ${taxValue}`);

The code in Listing 8-10 produces the following output when it is compiled and executed:

2 args: 120
1 arg: 120
3 args: 130
6 args: 168

 Applying Type Annotations to Function Parameters
By default, the TypeScript compiler assigns all function parameters to the any type, but more specific types 
can be declared using type annotations. Listing 8-11 applies type annotations to the calculateTax function 
to ensure that only number values can be used for its parameters. 

Listing 8-11. Applying Parameter Type Annotations in the index.ts File in the src Folder

function calculateTax(amount: number, discount: number = 0, ...extraFees: number[]) {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

let taxValue = calculateTax(100, 0);
console.log(`2 args: ${taxValue}`);
taxValue = calculateTax(100);
console.log(`1 arg: ${taxValue}`);
taxValue = calculateTax(100, 10, 20);
console.log(`3 args: ${taxValue}`);
taxValue = calculateTax(100, 10, 20, 1, 30, 7);
console.log(`6 args: ${taxValue}`);



Chapter 8 ■ Using FUnCtions

186

For parameters with default values, the type annotation comes before the value assignment. The type 
for a rest parameter is always an array. I return to the topic of typed arrays in Chapter 9, and the annotation 
for the extraFees parameter tells the compiler that any additional arguments must be numbers. The code in 
Listing 8-11 produces the following output:

2 args: 120
1 arg: 120
3 args: 130
6 args: 168

 ■ Tip type annotations for optional parameters are applied after the question mark, like this: discount?: 
number.

 Controlling Null Parameter Values
As explained in Chapter 7, TypeScript allows null and undefined to be used as values for all types by default, 
which means that a function can receive null values for all of its parameters, as shown in Listing 8-12. 

Listing 8-12. Passing a Null Value to a Function in the index.ts File in the src Folder

function calculateTax(amount: number, discount: number = 0, ...extraFees: number[]) {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

let taxValue = calculateTax(null, 0);
console.log(`Tax value: ${taxValue}`);

If the null value is used for a default-initialized parameter, then its default value is used, as though the 
function had been called without an argument. But for required parameters, the function receives the null 
value, which can lead to unexpected results. In the example, the calculateTax function receives null for the 
amount parameter, which produces the following output:

Tax value: 0

The null value is coerced to the number 0 by the multiplication operator. For some projects, this may 
be a reasonable outcome, but it is the kind of outcome that silently swallows a null value and confuses the 
user at runtime. The strictNullChecks compiler option disables the use of null and undefined as values 
for all types, as described in Chapter 7, and requires parameters that can accept null values to use a type 
union. Listing 8-13 enables the compiler option.

Listing 8-13. Changing the Compiler Option in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",



Chapter 8 ■ Using FUnCtions

187

        "rootDir": "./src",
        "declaration": true,
        "strictNullChecks": true
    }
}

When the configuration file is saved, the compiler will run and produce the following error, flagging the 
use of the null argument:

src/index.ts(6,29): error TS2345: Argument of type 'null' is not assignable to parameter 
of type 'number'.

When null values should be allowed, the parameter can be defined with a type union, as shown in 
Listing 8-14.

Listing 8-14. Allowing a Null Parameter Value in the index.ts File in the src Folder

function calculateTax(amount: number | null, discount: number = 0,
        ...extraFees: number[]) {
    if (amount != null) {
        return (amount * 1.2) - discount
            + extraFees.reduce((total, val) => total + val, 0);
    }
}

let taxValue = calculateTax(null , 0);
console.log(`Tax value: ${taxValue}`);

A type guard is required to prevent the null value from being used with the multiplication operator. 
This can feel like an arduous process when you start using TypeScript, but restricting nullable parameters 
can flush out problems that would otherwise produce unexpected results at runtime. The code in Listing 
8-14 produces the following result:

Tax value: undefined

 Understanding Function Results
The TypeScript compiler will try to infer the result type from the code in the function and will automatically 
use type unions if a function can return multiple types. The easiest way to see what type the compiler infers 
for a function result is to enable the generation of type declaration files, using the declaration setting, 
which was enabled in Listing 8-2. These files are used to provide type information when a package is used in 
another TypeScript project, and I describe their use in Chapter 14. 

Examine the contents of the index.d.ts file in the dist folder to see details of the types that the 
compiler has inferred or read from type annotations, as follows:

declare function calculateTax(amount: number | null, discount?: number,
    ...extraFees: number[]): number | undefined;
declare let taxValue: number | undefined;



Chapter 8 ■ Using FUnCtions

188

The highlighted part of the type information for the calculateTax function shows the type inferred by 
the compiler for the function’s result.

 Disabling Implicit Returns
JavaScript has an unusually relaxed approach to function results, such that a function will return undefined 
for any path through the function’s code that doesn’t reach a statement with the return keyword, which is 
known as the implicit return feature. 

The type guard used to filter out null values means that there is a path through the function’s code 
that doesn’t reach a return statement and so the function will return a number if the amount parameter isn’t 
null and will return undefined if the amount parameter is null. The strictNullChecks compiler option was 
enabled in Listing 8-14, so the compiler has inferred the result type to be number | undefined.

To prevent implicit returns, enable the compiler setting shown in Listing 8-15.

Listing 8-15. Changing the Compiler Configuration in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        "strictNullChecks": true,
        "noImplicitReturns": true
    }
}

When the noImplicitReturns setting is true, the compiler will report an error when there are paths 
through functions that don’t explicitly produce a result with the result keyword or throw an error. Save 
the change to the tsconfig.json file; you will see the following output from the compiler, and it builds the 
index.ts file using the new configuration:

src/index.ts(1,10): error TS7030: Not all code paths return a value.

Now every path through functions must produce a result. A function can still return undefined, but it 
must now be done explicitly, as shown in Listing 8-16.

Listing 8-16. Returning a Result in the index.ts File in the src Folder

function calculateTax(amount: number | null, discount: number = 0,
        ...extraFees: number[]) {
    if (amount != null) {
        return (amount * 1.2) - discount
            + extraFees.reduce((total, val) => total + val, 0);
    } else {
        return undefined;
    }
}

let taxValue = calculateTax(null, 0);
console.log(`Tax value: ${taxValue}`);



Chapter 8 ■ Using FUnCtions

189

Disabling implicit returns ensures that functions have to be explicit about the results they produce. The 
change in Listing 8-16 addresses the compiler error from Listing 8-14 and produces the following result:

Tax value: undefined

 Using Type Annotations for Function Results
The compiler infers a function result type by analyzing the code paths and creating a union of the types 
it encounters. I prefer to use a type annotation to explicitly specify the result type because it allows me to 
declare what I intended the function result to be, rather than what the code produces, ensuring that I do not 
accidentally use the wrong type. Annotations for function results appear at the end of the function signature, 
as shown in Listing 8-17. 

Listing 8-17. Annotating the Function Result Type in the index.ts File in the src Folder

function calculateTax(amount: number, discount: number = 0,
        ...extraFees: number[]): number {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

let taxValue = calculateTax(100, 0);
console.log(`Tax value: ${taxValue}`);

I have set the result type to number and removed the null type from the amount parameter. Explicitly 
declaring the type means that the compiler will report an error if I accidentally return a different type 
from the function. The code in Listing 8-17 produces the following output once it has been compiled and 
executed:

Tax value: 120

 Defining Void Functions
Functions that do not produce results are declared using the void type, as shown in Listing 8-18. 

Listing 8-18. Defining a Void Function in the index.ts File in the src Folder

function calculateTax(amount: number, discount: number = 0,
        ...extraFees: number[]): number {
    return (amount * 1.2) - discount
        + extraFees.reduce((total, val) => total + val, 0);
}

function writeValue(label: string, value: number): void {
    console.log(`${label}: ${value}`);
}

writeValue("Tax value",  calculateTax(100, 0));



Chapter 8 ■ Using FUnCtions

190

The writeValue function doesn’t return a result and has been annotated with the void type. Using void 
ensures that the compiler will warn you if the result keyword is used or if the function is used to assign a 
value.

 ■ Note the never type can be used as the result type for functions that will never complete, such as 
functions that will always throw an exception, for example.

The code in Listing 8-18 produces the following output:

Tax value: 120

 Overloading Function Types
Type unions make it possible to define a range of types for function parameters and results, but they don’t 
allow the relationship between them to be expressed accurately, as shown in Listing 8-19. 

Listing 8-19. Defining a Function with Unions in the index.ts File in the src Folder

function calculateTax(amount: number | null): number | null {
    if (amount != null) {
        return amount * 1.2;
    }
    return null;
}

function writeValue(label: string, value: number): void {
    console.log(`${label}: ${value}`);
}

let taxAmount: number | null = calculateTax(100);
if (typeof taxAmount === "number") {
    writeValue("Tax value",  taxAmount);
}

The type annotation in Listing 8-19 describes the types that the calculateTax function will accept, 
telling users that the function will accept either a number or null and will return a number or null. The 
information provided by the type unions is correct but does not fully describe the situation. What’s missing is 
the relationship between the parameter and result types: the function will always return a number result if the 
amount parameter is a number parameter and will always return null if amount is null. The missing details in 
the function’s types mean that the user of the function has to use a type guard on the result to remove null 
values, even though the value 100 is a number and will always produce a number result.

To describe the relationships between the types used by a function, TypeScript supports type overloads, 
as shown in Listing 8-20.



Chapter 8 ■ Using FUnCtions

191

 ■ Note this is not the function overloading supported by languages such as C# and Java. only the type 
information is overloaded by this feature for the purposes of type checking. as Listing 8-20 shows, there is only 
one implementation of the function, which is still responsible for dealing with all the types used in the overloads.

Listing 8-20. Overloading Function Types in the index.ts File in the src Folder

function calculateTax(amount: number): number;
function calculateTax(amount: null): null;
function calculateTax(amount: number | null): number | null {
    if (amount != null) {
        return amount * 1.2;
    }
    return null;
}

function writeValue(label: string, value: number): void {
    console.log(`${label}: ${value}`);
}

let taxAmount: number = calculateTax(100);
//if (typeof taxAmount === "number") {
    writeValue("Tax value",  taxAmount);
//}

Each type overload defines a combination of types supported by the function, describing a mapping 
between the parameters and the result they produce, as illustrated in Figure 8-4.

The type overloads replace the function definition as the type information used by the TypeScript 
compiler, which means that only those combinations of types can be used. When the function is invoked, the 
compiler can determine the result type based on the type of the arguments provided, allowing the taxAmount 
variable to be defined as a number and removing the need for the type guard to pass on the result to the 
writeValue function. The compiler knows that taxAmount can only be a number and doesn’t require the type 
to be narrowed. The code in Listing 8-20 produces the following output when it is compiled and executed:

Tax value: 120

Figure 8-4. A function type overload



Chapter 8 ■ Using FUnCtions

192

 ■ Tip You can also express the relationship between parameters and results using the conditional types 
feature, which is described in Chapter 13.

 Understanding Assert Functions
An assert function is one that evaluates an expression condition and, typically, throws an error if the result 
isn’t true. Assert functions are sometimes used as type guards in pure JavaScript, where the static types of 
TypeScript are not available. The problem with asset functions is that the TypeScript compiler cannot infer 
the effect of the assert function on types, as shown in Listing 8-21. 

Listing 8-21. Using an Assert Function in the index.ts File in the src Folder

function check(expression: boolean) {
    if (!expression) {
        throw new Error("Expression is false");
    }
}

function calculateTax(amount: number | null): number {
    check(typeof amount == "number");
    return amount * 1.2;
}

let taxAmount: number = calculateTax(100);
console.log(`Tax value: ${taxAmount}`)

The check function defines a boolean parameter and throws an error if it is false. This is the basic 
pattern of an assert function.

The calculateTax function accepts a number | null argument and uses the check function to narrow 
the type so that null values cause errors and so number values are used to produce a result.

The problem with this code is that the TypeScript compiler doesn’t understand that the check function 
means that only number values will be processed. When the code is compiled, the following error message is 
produced:

src/index.ts(9,12): error TS2531: Object is possibly 'null'.

The asserts keyword can be used to denote an assert function, which lets the TypeScript compiler take 
the function into account, as shown in Listing 8-22.

Listing 8-22. Denoting an Assert Function in the index.ts File in the src Folder

function check(expression: boolean) : asserts expression  {
    if (!expression) {
        throw new Error("Expression is false");
    }
}

function calculateTax(amount: number | null): number {



Chapter 8 ■ Using FUnCtions

193

    check(typeof amount == "number");
    return amount * 1.2;
}

let taxAmount: number = calculateTax(100);
console.log(`Tax value: ${taxAmount}`)

The asserts keyword is used like a result type and is followed by the name of the parameter that the 
function asserts, as shown in Figure 8-5.

The TypeScript compiler can take the effect of the check function into account and knows that the 
calculateTax function narrows the type of amount parameter to exclude null values.

There is a variation for assert functions that operate on types directly, rather than just evaluating an 
expression, as shown in Listing 8-23.

Listing 8-23. Narrowing Types Directly in the index.ts File in the src Folder

function checkNumber(val: any): asserts val is number {
    if (typeof val != "number") {
        throw new Error("Not a number");
    }
}

function calculateTax(amount: number | null): number {
    checkNumber(amount);
    return amount * 1.2;
}

let taxAmount: number = calculateTax(100);
console.log(`Tax value: ${taxAmount}`)

In this example, the assets keyword is followed by val is number, which tells the TypeScript compiler 
that the effect of the checkNumber function is to ensure that the val parameter is a number value.

 Summary
In this chapter, I described the features that TypeScript provides for functions. I explained how duplicate 
function definitions are prevented, showed you the different ways to describe function parameters and results, 
and described how to override function types to create more specific mappings between parameter types and 
the results they produce. In the next chapter, I describe how TypeScript addresses simple data structures.

Figure 8-5. Denoting an assert function



195© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_9

CHAPTER 9

Using Arrays, Tuples, and Enums

The examples so far in this part of the book have focused on primitive types, which has let me introduce the 
basic TypeScript features. In real projects, related data properties are grouped together to create objects. 
In this chapter, I describe the TypeScript support for simple data structures, starting with arrays. Table 9-1 
summarizes the chapter.

Table 9-1. Chapter Summary

Problem Solution Listing

Restrict the range of types that an array 
can contain

Apply a type annotation or allow the compiler to infer 
the types from the value used to initialize the array

4–9

Define fixed-length arrays with  
specified types for each value

Use a tuple 10–14

Define variable-length arrays with 
specified types for each value

Use a tuple with a rest element 15

Refer to a collection of related values 
through a single name

Use an enum 16–25

Define a type that can be assigned only 
specific values

Use a literal value type 26–32

Avoid duplication when describing a 
complex type

Use a type alias 33

https://doi.org/10.1007/978-1-4842-7011-0_9#DOI


Chapter 9 ■ Using arrays, tUples, and enUms

196

For quick reference, Table 9-2 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7. To prepare for this chapter, replace 
the contents of the index.ts file in the src folder with the code shown in Listing 9-1.

 ■ Tip you can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 9-1. The Contents of the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hatPrice = 100;
let glovesPrice = 75;
let umbrellaPrice = 42;

writePrice("Hat", calculateTax(hatPrice));
writePrice("Gloves", calculateTax(glovesPrice));
writePrice("Umbrella", calculateTax(umbrellaPrice));

Comment out the compiler options shown in Listing 9-2 to reset the compiler configuration.

Table 9-2. The TypeScript Compiler Options Used in This Chapter

Name Description

target This option specifies the version of the JavaScript language that the compiler will 
target in its output.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate 
TypeScript files.

declaration This option produces type declaration files when enabled, which can be useful in 
understanding how types have been inferred. These files are described in more 
detail in Chapter 14.

strictNullChecks This option prevents null and undefined from being accepted as values for other 
types.

https://github.com/Apress/essential-typescript-4


Chapter 9 ■ Using arrays, tUples, and enUms

197

Listing 9-2. Disabling Compiler Options in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        // "strictNullChecks": true,
        // "noImplicitReturns": true
    }
}

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 9-3 
to start the TypeScript compiler so that the compiled code is executed automatically.

Listing 9-3. Starting the TypeScript Compiler

npm start

The compiler will compile the code in the index.ts file, execute the output, and then enter watch 
mode, producing the following output:

6:58:20 AM - File change detected. Starting incremental compilation...
6:58:21 AM - Found 0 errors. Watching for file changes.
Price for Hat: $120.00
Price for Gloves: $90.00
Price for Umbrella: $50.40

 Working with Arrays
As explained in Chapter 8, JavaScript arrays can contain any combination of types and have variable length, 
which means that values can be added and removed dynamically without the need to explicitly resize the 
array. TypeScript doesn’t change the flexible sizing of arrays, but it does allow the data types they contain to 
be restricted through the use of type annotations, as shown in Listing 9-4. 

Listing 9-4. Using Arrays in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let prices: number[] = [100, 75, 42];
let names: string[] = ["Hat", "Gloves", "Umbrella"];



Chapter 9 ■ Using arrays, tUples, and enUms

198

writePrice(names[0], calculateTax(prices[0]));
writePrice(names[1], calculateTax(prices[1]));
writePrice(names[2], calculateTax(prices[2]));

An array type is specified by putting square brackets after the type name in the annotation, as illustrated 
in Figure 9-1.

TypeScript uses an annotation to restrict the operations that can be performed on the array to the 
specified type: one of the arrays in the listing is restricted to number values and the other to string values. 
In Listing 9-5, I have used the JavaScript forEach method on the arrays, and you can see that the function I 
used to process the array values is typed to match the array types. 

 ■ Tip you can use parentheses when describing an array that contains multiple types, such as when using 
a type union (described in Chapter 8) or a type intersection (described in Chapter 10). For example, an array 
whose elements can be number or string values can be annotated as (number | string)[], where the 
parentheses around the type union prevent the compiler from assuming that the union is between a single 
number or an array of strings.

Listing 9-5. Performing Operations on Typed Arrays in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let prices: number[] = [100, 75, 42];
let names: string[] = ["Hat", "Gloves", "Umbrella"];

prices.forEach((price: number, index: number) => {
    writePrice(names[index], calculateTax(price));
});

Figure 9-1. An array type annotation



Chapter 9 ■ Using arrays, tUples, and enUms

199

The first argument of the function passed to the forEach method receives a number value because that’s 
the type of the array that is being processed. TypeScript will ensure that only operations that are allowed for 
number values are performed by the function. The code in Listing 9-5 produces the following output when 
compiled and executed:

Price for Hat: $120.00
Price for Gloves: $90.00
Price for Umbrella: $50.40

THE ARRAY SYNTAX

array types can also be expressed using an angle bracket syntax so that this statement:

...
let prices: number[] = [100, 75, 42];
...

is equivalent to this statement: 

...
let prices:Array<number> = [100, 75, 42];
...

the problem with this syntax is that it cannot be used in tsX files, which combine html elements with 
typescript code, as described in Chapter 15. For this reason, the square bracket syntax is the preferred 
way to assert array types.

 Using Inferred Typing for Arrays
I used type annotations in Listing 9-5 to make it obvious that the arrays are typed, but the TypeScript 
compiler is adept at inferring types automatically, and the same example can be expressed without type 
annotations, as shown in Listing 9-6. 

Listing 9-6. Using Inferred Types in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let prices = [100, 75, 42];
let names = ["Hat", "Gloves", "Umbrella"];

prices.forEach((price, index) => {
    writePrice(names[index], calculateTax(price));
});



Chapter 9 ■ Using arrays, tUples, and enUms

200

The compiler can determine the array types based on the set of values that are assigned when the arrays 
are initialized, and it uses the inferred types to follow through to the forEach method.

The compiler is skilled at inferring types, but if you don’t get the results you expect, you can inspect the 
files that the compiler emits when the declaration option is enabled. This option generates type declaration 
files, which are used to provide type information when a package is used in another TypeScript project and 
which are described in detail in Chapter 14.

Here are the types that the compiler has inferred for the arrays in Listing 9-6, which are contained in the 
index.d.ts file in the dist folder:

...
declare let prices: number[];
declare let names: string[];
...

I explain the declare keyword in Chapter 14. For the moment, it is enough to see that the compiler has 
correctly inferred the array types from the initial values.

 Avoiding Problems with Inferred Array Types
The compiler infers array types using the values used to populate the array when it is created. This can lead 
to type errors if the values used to populate an array are accidentally mixed, as shown in Listing 9-7.

Listing 9-7. Mixing Array Types in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let prices = [100, 75, 42, "20"];
let names = ["Hat", "Gloves", "Umbrella", "Sunglasses"];

prices.forEach((price, index) => {
    writePrice(names[index], calculateTax(price));
});

The new value used to initialize the price array causes the following error when the code is compiled:

src/index.ts(13,43): error TS2345: Argument of type 'string | number' is not assignable to 
parameter of type 'number'.

If you examine the index.d.ts file in the dist folder, you will see that the TypeScript compiler has 
inferred the smallest set of types that can describe the values used to initialize the array:

declare let prices: (string | number)[];



Chapter 9 ■ Using arrays, tUples, and enUms

201

The change in the array type causes the error message because the function passed to the forEach 
method treats the values as number when they are now part of the string | number union. It is easy to see 
the cause of the problem in a simple example, but it becomes more difficult when the initial values for the 
array come from different parts of an application. I find it more useful to declare the array type explicitly, 
which means that problems like the one in Listing 9-7 produce a compiler error that highlights my error in 
trying to add a string to a number array.

 Avoiding Problems with Empty Arrays
Another reason for using type annotations for arrays is that the compiler will infer the type any for arrays that 
are created empty, as shown in Listing 9-8. 

Listing 9-8. Creating an Empty Array in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let prices = [];
prices.push(...[100, 75, 42, "20"]);
let names = ["Hat", "Gloves", "Umbrella", "Sunglasses"];

prices.forEach((price, index) => {
    writePrice(names[index], calculateTax(price));
});

There are no initial values for the compiler to use when selecting the type for the prices array. The only 
option available to the compiler is to use any since it has no other information to work with, which you can 
see by examining the index.d.ts file in the dist folder.

declare let prices: any[];

Even though the values added to the array mix number and string values, the code in Listing 9-8 
compiles without error and produces the following results:

Price for Hat: $120.00
Price for Gloves: $90.00
Price for Umbrella: $50.40
Price for Sunglasses: $24.00

The effect of allowing the compiler to infer the type of the empty array is to create a gap in the type 
checking process. The code works because the JavaScript multiplication operator coerces string values to 
number values automatically. This can be useful behavior, but it is likely to be used accidentally, and it is for 
this reason that you should use explicit types.



Chapter 9 ■ Using arrays, tUples, and enUms

202

 Understanding the never Array Type Pitfall
TypeScript infers types for empty arrays differently when null and undefined values are not assignable to 
other types. To see the difference, change the compiler configuration as shown in Listing 9-9.

Listing 9-9. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        "strictNullChecks": true
    }
}

The strictNullChecks setting tells the compiler to restrict the use of null and undefined values and 
prevents the compiler from using any when inferring the type of an empty array. Instead, the compiler 
infers the never type, which means that nothing can be added to the array. When the code in Listing 9-9 is 
compiled and executed, the following error is reported:

src/index.ts(10,13): error TS2345: Argument of type 'string | number' is not assignable to 
parameter of type 'never'.

Inferring the never type ensures that the array doesn’t escape the type checking process and the code 
won’t compile until a type is asserted for the array or the array is initialized using values that allow the 
compiler to infer a less restrictive type.

 Working with Tuples
Basic tuples are fixed-length arrays, where each element in the array can have a different type. Tuples are a 
data structure that is provided by the TypeScript compiler implemented using regular JavaScript arrays in 
the compiled code. Listing 9-10 shows how tuples are defined and used. (There is a more complex type of 
tuple that I describe shortly.)

Listing 9-10. Using Tuples in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hat: [string, number] = ["Hat", 100];
let gloves: [string, number] = ["Gloves", 75];

writePrice(hat[0], hat[1]);
writePrice(gloves[0], gloves[1]);



Chapter 9 ■ Using arrays, tUples, and enUms

203

Tuples are defined using square brackets containing the types for each element, separated by commas, 
as illustrated in Figure 9-2.

The type of the hat tuple in Listing 9-10 is [string, number], which defines a tuple with two elements, 
where the first element is a string and the second value is a number. The elements in the tuple are accessed 
using the array index syntax so that the first element of the hat tuple is hat[0], for example.

The code in Listing 9-10 produces the following output when compiled and executed:

Price for Hat: $100.00
Price for Gloves: $75.00

Tuples must be defined with type annotations; otherwise, the compiler will assume that a regular array 
with a type that is the union of each value used during initialization. Without the type annotation shown in 
Figure 9-2, for example, the compiler would assume that the type of the value assigned to the hat variable 
is [string | number], which would denote a variable-length array in which every element can be either a 
string or number value.

 Processing Tuples
The restrictions on the number of elements and the element types are enforced entirely by the TypeScript 
compiler, and, at runtime, a tuple is implemented as a regular JavaScript array. This means tuples can be 
used with the standard JavaScript array features, as shown in Listing 9-11. 

Listing 9-11. Processing the Elements in a Tuple in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hat: [string, number] = ["Hat", 100];
let gloves: [string, number] = ["Gloves", 75];

hat.forEach((h: string | number) => {
    if (typeof h === "string") {

Figure 9-2. Defining a tuple



Chapter 9 ■ Using arrays, tUples, and enUms

204

        console.log(`String: ${h}`);
    } else {
        console.log(`Number: ${h.toFixed(2)}`);
    }
});

To process all the tuple values, the function passed to the forEach method must receive string | 
number values, which are then narrowed with a type guard. I used type annotations for clarity, but the 
compiler will correctly infer the type union based on the element types in the tuple. The code in Listing 9-11 
produces the following output when it is compiled and executed:

String: Hat
Number: 100.00

Since tuples are arrays, they can be destructured to access individual values, which can make tuples 
easier to work with, as shown in Listing 9-12.

Listing 9-12. Destructuring Tuples in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hat: [string, number] = ["Hat", 100];
let gloves: [string, number] = ["Gloves", 75];

let [hatname, hatprice] = hat;
console.log(`Name: ${hatname}`);
console.log(`Price: ${hatprice.toFixed(2)}`);

The hat tuple is destructured, and its values are assigned to hatname and hatprice variables, which are 
written to the console. There is no change in the output in this example; only the way the tuples values are 
accessed has changed.

 Using Tuple Types
Tuples have a distinct type that can be used just like any type, which means you can create arrays of tuples, 
use tuples in type unions, and use type guards to narrow values to specific tuple types, all of which are 
shown in Listing 9-13. 

Listing 9-13. Using Tuple Types in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}



Chapter 9 ■ Using arrays, tUples, and enUms

205

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hat: [string, number] = ["Hat", 100];
let gloves: [string, number] = ["Gloves", 75];

let products: [string, number][] = [["Hat", 100], ["Gloves", 75]];
let tupleUnion: ([string, number] | boolean)[] = [true, false, hat, ...products];

tupleUnion.forEach((elem: [string, number] | boolean) => {
    if (elem instanceof Array) {
        let [str, num] = elem;
        console.log(`Name: ${str}`);
        console.log(`Price: ${num.toFixed(2)}`);
    } else if (typeof elem === "boolean") {
        console.log(`Boolean Value: ${elem}`);
    }
});

The profusion of square brackets can be confusing, and it can take a few attempts to describe the 
combination of types correctly, but the example shows how a tuple type can be used just like any other 
type, albeit with one important difference from the previous examples in this part of the book: I cannot use 
the typeof keyword in Listing 9-13 to determine whether a value is a tuple. Tuples are implemented using 
standard JavaScript arrays, and the test for array types requires the instanceof keyword, which I described 
in Chapter 4. The code in Listing 9-13 produces the following output when it is compiled and executed:

Boolean Value: true
Boolean Value: false
String Value: Hat
Number Value: 100
String Value: Hat
Number Value: 100
String Value: Gloves
Number Value: 75

 Using Tuples with Optional Elements
Tuples can contain optional elements, which are denoted by the question mark (the ? character). The tuple 
is still fixed-length, and the optional element will be undefined if no value has been defined, as shown in 
Listing 9-14. 

Listing 9-14. Using an Optional Element in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}



Chapter 9 ■ Using arrays, tUples, and enUms

206

let hat: [string, number, number?] = ["Hat", 100];
let gloves: [string, number, number?] = ["Gloves", 75, 10];

[hat, gloves].forEach(tuple => {
    let [name, price, taxRate] = tuple;
    if (taxRate != undefined) {
        price += price * (taxRate / 100);
    }
    writePrice(name, price);
});

The tuple type in Listing 9-14 has an optional number element. (A tuple can have multiple optional 
elements, but they must be the last elements defined by the tuple type.)

The type of the optional element is a union of the specified type and undefined so that in the example, 
the type is number | undefined. The value of the element will be undefined if no value has been provided, 
and it is the responsibility of the code that processes the tuple to narrow the type to exclude undefined values.

Defining an optional element means that the TypeScript compiler won’t complain if there is no 
corresponding value, like this:

...
let hat: [string, number, number?] = ["Hat", 100];
...

There is no value for the third tuple element, but the compiler processes the code without complaint 
and produces the following output:

Price for Hat: $100.00
Price for Gloves: $82.50

 Defining Tuples with Rest Elements
Tuples can also contain a rest element, that can be used to match multiple values of a given type. This 
feature produces a variable-length tuple that lacks the rigidly defined structure of basic tuples. Listing 9-15 
shows the use of a tuple with a rest element.

Listing 9-15. Using a Rest Element in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

let hat: [string, number, number?, ...number[]] = ["Hat", 100, 10, 1.20, 3, 0.95];
let gloves: [string, number, number?, ...number[]] = ["Gloves", 75, 10];



Chapter 9 ■ Using arrays, tUples, and enUms

207

[hat, gloves].forEach(tuple => {
    let [name, price, taxRate, ...coupons] = tuple;
    if (taxRate != undefined) {
        price += price * (taxRate / 100);
    }
    coupons.forEach(c => price -= c);
    writePrice(name, price);
});

In this example, I destructure the tuple rest element into an array named coupons, which is processed 
by a forEach loop, producing the following output:

Price for Hat: $104.85
Price for Gloves: $82.50

This is not a feature that I like because the variable lengths introduced by the rest elements undermine 
the fixed structure that makes tuples useful. The only time I use this feature is when describing JavaScript 
code, as described in Chapter 14.

 Using Enums
An enum allows a collection of values to be used by name, which makes code easier to read and ensures that 
a fixed set of values is used consistently. Like tuples, enums are a feature that is provided by the TypeScript 
compiler. Listing 9-16 shows the definition and use of an enum. 

Listing 9-16. Using an Enum in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum Product { Hat, Gloves, Umbrella }

let products: [Product, number][] = [[Product.Hat, 100], [Product.Gloves, 75]];

products.forEach((prod: [Product, number]) => {
    switch (prod[0]) {
        case Product.Hat:
            writePrice("Hat", calculateTax(prod[1]));
            break;
        case Product.Gloves:
            writePrice("Gloves", calculateTax(prod[1]));
            break;



Chapter 9 ■ Using arrays, tUples, and enUms

208

        case Product.Umbrella:
            writePrice("Umbrella", calculateTax(prod[1]));
            break;
    }
});

An enum is defined using the enum keyword, followed by a name, followed by a list of values in curly 
braces, as illustrated in Figure 9-3.

The enum values are accessed in the form <enum>.<value> so that the Hat value defined by the Product 
enum is accessed as Product.Hat, like this:

...
case Product.Hat:
...

An enum is used like any other type, and the example shows the Product enum used in a tuple and a 
switch statement. The code in Listing 9-16 produces the following output when it is compiled and executed:

Price for Hat: $120.00
Price for Gloves: $90.00

 Understanding How Enums Work
Enums are implemented entirely by the TypeScript compiler, relying on type checking during compilation and 
standard JavaScript features at runtime. Each enum value has a corresponding number value that is assigned 
automatically by the compiler and that starts at zero by default. This means that the numbers used for the Hat, 
Gloves, and Umbrella names for the Product enum are 0, 1, and 2, as demonstrated in Listing 9-17. 

Listing 9-17. Using an Enum Number Value in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

Figure 9-3. Defining an enum



Chapter 9 ■ Using arrays, tUples, and enUms

209

enum Product { Hat, Gloves, Umbrella }

[Product.Hat, Product.Gloves, Product.Umbrella].forEach(val => {
    console.log(`Number value: ${val}`);
});

The highlighted statements pass each value from the Product enum to the console.log value. Each 
enum value is a number, and the code in Listing 9-17 produces the following output:

Number value: 0
Number value: 1
Number value: 2

Because enums are implemented using JavaScript number values, an enum can be assigned a number 
and is displayed as a number value, as shown in Listing 9-18.

Listing 9-18. Using Enum and Number Values in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum Product { Hat, Gloves, Umbrella }

let productValue: Product = 0;
let productName: string = Product[productValue];
console.log(`Value: ${productValue}, Name: ${productName}`);

The compiler enforces type checking for enums, which means that you will receive an error if you try 
to compare values from different enums, even when they have the same underlying number value. Enums 
provide an array-indexer style syntax that can be used to get the name of a value, like this:

...
let productName: string = Product[productValue];
...

The result from this operation is a string containing the name of the enum value, which is Hat in this 
example. The code in Listing 9-18 produces the following output:

Value: 0, Name: Hat



Chapter 9 ■ Using arrays, tUples, and enUms

210

 Using Specific Enum Values
By default, the TypeScript compiler starts assigning number values for an enum with zero and will compute 
the values by incrementing the previous value. For the Product enum in Listing 9-18, the compiler starts 
by assigning 0 to Hat, 1 to Gloves, and 2 to Umbrella. If you want to see the values that have been assigned 
for an enum, then you can examine the type declaration files that are generated by the compiler when the 
declarations setting is true. If you examine the index.d.ts file in the dist folder, you will see the values 
the compiler computed for the Product enum.

...
declare enum Product {
    Hat = 0,
    Gloves = 1,
    Umbrella = 2
}
...

Enums can also be defined with literal values, where a specific value is used, as shown in Listing 9-19. 
This is useful when the enum represents a real-world set of values.

Listing 9-19. Using a Constant Enum Value in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum Product { Hat, Gloves = 20, Umbrella }

let productValue: Product = 0;
let productName: string = Product[productValue];
console.log(`Value: ${productValue}, Name: ${productName}`);

I assigned Gloves a value of 20. The compiler will still generate the remaining values required for the 
enum, and examining the index.d.ts file shows that the compiler has computed values for Hat and Umbrella.

...
declare enum Product {
    Hat = 0,
    Gloves = 20,
    Umbrella = 21
}
...

The previous value is used to generate enum values, regardless of whether it has been selected by the 
programmer or generated by the compiler. For the enum in Listing 9-19, the compiler has used the value 
assigned to Gloves to generate the value for Umbrella. The code in Listing 9-19 produces the following output:

Value: 0, Name: Hat



Chapter 9 ■ Using arrays, tUples, and enUms

211

 ■ Caution the compiler consults the previous value only when it generates a number value and doesn’t 
check to see whether the value has already been used, which can lead to duplicate values in an enum.

The compiler will evaluate simple expressions for enum values, as shown in Listing 9-20, which means 
that values can be based on other values in the same enum, another enum, or another value entirely.

Listing 9-20. Using Expressions in an Enum in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum OtherEnum { First = 10, Two = 20 }
enum Product { Hat = OtherEnum.First + 1 , Gloves = 20, Umbrella = Hat + Gloves }

let productValue: Product = 0;
let productName: string = Product[productValue];
console.log(`Value: ${productValue}, Name: ${productName}`);

The Hat value is assigned using an expression that uses an OtherEnum value and the addition operator, 
and the Umbrella value is the sum of Hat and Gloves; examining the index.d.ts file in the dist folder shows 
the compiler has evaluated the expressions to determine the Product enum values.

...
declare enum Product {
    Hat = 11,
    Gloves = 20,
    Umbrella = 31
}
...

These features can be useful, but close attention is required to avoid accidentally creating duplicate 
values or unexpected results. My advice is to keep enums simple and leave the compiler to generate 
numbers wherever possible. The code in Listing 9-20 produces the following output:

Value: 0, Name: undefined

 Using String Enums
The default implementation of enums represents each value with a number, but the compiler can also use 
string values for enums, as shown in Listing 9-21. 

 ■ Tip an enum can contain both string and number values, although this is not a feature that is widely used.



Chapter 9 ■ Using arrays, tUples, and enUms

212

Listing 9-21. Using a String Enum in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum OtherEnum { First = 10, Two = 20 }
enum Product { Hat = OtherEnum.First + 1 , Gloves = 20, Umbrella = Hat + Gloves }

let productValue: Product = 0;
let productName: string = Product[productValue];
console.log(`Value: ${productValue}, Name: ${productName}`);

enum City { London = "London", Paris = "Paris", NY = "New York"}
console.log(`City: ${City.London}`);

A string values must be provided for every enum value name, but the advantage of using string values 
is that they are easier to recognize during debugging or in log files, as this output from Listing 9-21 shows:

Value: 0, Name: undefined
City: London

 Understanding the Limitations of Enums
Enums can be useful, but there are some limitations because they are a feature that is implemented entirely 
by the TypeScript compiler and then translated into pure JavaScript. 

 Understanding the Value-Checking Limitation
The compiler is excellent at checking types for enums, but it doesn’t do anything to ensure that legal number 
values are used. In Listing 9-21, I selected specific values for some of the Product enum values, which means 
this statement is a problem:

...
let productValue: Product = 0;
...

The compiler doesn’t prevent the assignment of a number to a variable whose type is an enum when 
the number doesn’t correspond to one of the enum values, which is why the output shown for Listing 9-21 
contains undefined, as the lookup fails to find a corresponding Product name for the number value. The 
same issue arises if a function uses an enum as its result type because the compiler will allow it to return any 
number value.



Chapter 9 ■ Using arrays, tUples, and enUms

213

 ■ Tip this isn’t a problem with string enums, which are implemented differently behind the scenes and can 
be assigned values only from the enum.

 Understanding the Type Guard Limitation
A related problem arises when using a type guard. Testing types is done using the JavaScript typeof keyword, 
and since enums are implemented using JavaScript number values, typeof cannot be used to distinguish 
between enum and number values, as shown in Listing 9-22.

Listing 9-22. Using a Type Guard in the index.ts File in the src Folder

function calculateTax(amount: number): number {
    return amount * 1.2;
}

function writePrice(product: string, price: number): void {
    console.log(`Price for ${product}: $${price.toFixed(2)}`);
}

enum OtherEnum { First = 10, Two = 20 }
enum Product { Hat = OtherEnum.First + 1 , Gloves = 20, Umbrella = Hat + Gloves }

let productValue: Product = Product.Hat;
if (typeof productValue === "number") {
    console.log("Value is a number");
}

let unionValue: number | Product = Product.Hat;
if (typeof unionValue === "number") {
    console.log("Value is a number");
}

The code in Listing 9-22 produces the following output when it is compiled and executed:

Value is a number
Value is a number

 Using Constant Enums
The TypeScript compiler creates an object that provides the implementation for an enum. In some 
applications, the performance impact of using the object can be a problem, and a different approach can be 
used instead. 

 ■ Tip this is an advanced feature that is rarely required in most projects.



Chapter 9 ■ Using arrays, tUples, and enUms

214

To demonstrate how the compiler uses an object to implement an enum, Listing 9-23 simplifies the code in 
the index.ts file so that it defines an enum and contains a statement that assigns an enum value to a variable.

Listing 9-23. Simplifying the Code in the index.ts File in the src Folder

enum Product { Hat, Gloves, Umbrella }
let productValue = Product.Hat;

To see how the enum is implemented, examine the index.js file in the dist folder, and you 
will see the following code:...
var Product;
(function (Product) {
    Product[Product["Hat"] = 0] = "Hat";
    Product[Product["Gloves"] = 1] = "Gloves";
    Product[Product["Umbrella"] = 2] = "Umbrella";
})(Product || (Product = {}));
let productValue = Product.Hat;
...

You don’t have to understand how this code works. What’s important is that a Product object is created 
and that it is used when the value is assigned to the productValue variable.

To prevent the compiler from using an object to implement an enum, the const keyword can be used 
when the enum is defined in the TypeScript file, as shown in Listing 9-24.

 ■ Note Const enums are more restrictive than regular enums, and all of the values must be assigned 
constant expressions. the simplest way to do this is to allow the compiler to assign values or to explicitly assign 
values yourself.

Listing 9-24. Defining a Const Enum in the index.ts File in the src Folder

const enum Product { Hat, Gloves, Umbrella }
let productValue = Product.Hat;

When the code is compiled, the compiler will inline each reference to the enum, meaning that the 
numeric value will be used directly. If you examine the index.js file in the dist folder after the compilation 
is complete, you will see the following code:

...
let productValue = 0 /* Hat */;
...

The comment is included by the compiler to indicate the relationship between the number value and the 
enum. The object that previously represented the enum is no longer included in the compiled code.

Const enums may offer a small performance improvement, but they do so by disabling the enum 
feature that allows a name to be looked up by value, as shown in Listing 9-25.

Listing 9-25. Looking Up an Enum Name in the index.ts File in the src Folder

const enum Product { Hat, Gloves, Umbrella}
let productValue = Product.Hat;
let productName = Product[0];



Chapter 9 ■ Using arrays, tUples, and enUms

215

The compiler will produce the following error when compiling the code:

src/index.ts(11,27): error TS2476: A const enum member can only be accessed using a string 
literal

The object used to represent a normal enum is responsible for providing the lookup feature and isn’t 
available for const enums.

 ■ Tip there is a compiler option named preserveConstEnums that tells the compiler to generate the object 
even for const enums. this feature is only for debugging, and it doesn’t restore the lookup feature.

 Using Literal Value Types
A literal value type specifies a specific set of values and allows only those values. The effect is to treat a set 
of values as a distinct type, which is a useful feature but can be difficult to understand because it blurs the 
separation between types and values. This feature is most easily understood with an example, as shown in 
Listing 9-26. 

Listing 9-26. Using a Literal Value Type in the index.ts File in the src Folder

let restrictedValue: 1 | 2 | 3 = 3;
console.log(`Value: ${restrictedValue}`);

A literal type looks similar to a type union, but literal values are used instead of data types, as illustrated 
in Figure 9-4.

The literal value type in Listing 9-26 tells the compiler that the restrictedValue variable can be 
assigned only 1, 2, or 3. The compiler will report an error if the variable is assigned any other value, including 
other number values, as shown in Listing 9-27.

Listing 9-27. Assigning a Different Value in the index.ts File in the src Folder

let restrictedValue: 1 | 2 | 3 = 100;
console.log(`Value: ${restrictedValue}`);

Figure 9-4. A literal value type



Chapter 9 ■ Using arrays, tUples, and enUms

216

The compiler determines that 100 isn’t one of the allowed values and produces the following error:

src/index.ts(1,5): error TS2322: Type '100' is not assignable to type '1 | 2 | 3'.

The combination of values is treated as a distinct type, and each combination of literal values is a 
different type, as shown in Listing 9-28, but a value of one type can be assigned to a different type as long as 
it is one of the allowed values.

Listing 9-28. Defining a Second Literal Value Type in the index.ts File in the src Folder

let restrictedValue: 1 | 2 | 3 = 1;

let secondValue: 1 | 10 | 100 = 1;

restrictedValue = secondValue;
secondValue = 100;
restrictedValue = secondValue;

console.log(`Value: ${restrictedValue}`);

The first statement that assigns secondValue to restrictedValue is allowed because the value of 
secondValue is one of the restrictedValue literal values. The second assignment statement isn’t allowed 
because the value falls outside the allowed set, producing the following error when the code is compiled:

src/index.ts(7,1): error TS2322: Type '100' is not assignable to type '1 | 2 | 3'

 Using Literal Value Types in Functions
Literal value types are most helpful when used with functions, allowing parameters or results to be restricted 
to a specific set of values, as shown in Listing 9-29. 

Listing 9-29. Restricting a Function in the index.ts File in the src Folder

function calculatePrice(quantity: 1 | 2, price: number): number {
    return quantity * price;
}

let total = calculatePrice(2, 19.99);
console.log(`Price: ${total}`);

The function’s quantity parameter will only accept 1 or 2, and using any other value—even other 
number values—will produce a compiler error. The code in Listing 9-29 produces the following output when 
it is compiled and executed:

Price: 39.98



Chapter 9 ■ Using arrays, tUples, and enUms

217

 Mixing Value Types in a Literal Value Type
A literal value type can be made up of any combination of values that can be expressed literally, including 
enums. Listing 9-30 shows a mix of values in a literal value type.

Listing 9-30. Mixing Values in a Literal Value Type in the index.ts File in the src Folder

function calculatePrice(quantity: 1 | 2, price: number): number {
    return quantity * price;
}

let total = calculatePrice(2, 19.99);
console.log(`Price: ${total}`);

function getRandomValue(): 1 | 2 | 3 | 4 {
    return Math.floor(Math.random() * 4) + 1 as 1 | 2 | 3 | 4;
}

enum City { London = "LON", Paris = "PAR", Chicago = "CHI" }

function getMixedValue(): 1 | "Hello" | true | City.London {
    switch (getRandomValue()) {
        case 1:
            return 1;
        case 2:
            return "Hello";
        case 3:
            return true;
        case 4:
            return City.London;
    }
}

console.log(`Value: ${getMixedValue()}`);

The getRandomValue function returns one of four values, which are used by the getMixedValue function 
to produce its result. The getMixedValue function shows how a literal value type can combine values that 
would usually be considered separate types, using a number value, a string value, a boolean value, and 
an enum value. The code in Listing 9-30 produces the following output when it is compiled and executed, 
although you may see different output since the value from the getMixedValue function is selected using a 
random number:

Price: 39.98
Value: true

 ■ Tip literal value types can be used in type unions with regular types, creating combinations that permit 
specific values of one type with any legal values for another. For example, the type union string | true | 3 
can be assigned any string value, the true boolean value, and the number value 3.



Chapter 9 ■ Using arrays, tUples, and enUms

218

 Using Overrides with Literal Value Types
In Chapter 8, I explained how the relationship between a function’s parameter and result types can be 
expressed using type overrides, restricting the effect of using type unions. Type overrides can also be applied 
to literal value types, as shown in Listing 9-31, which are essentially unions for individual values. 

Listing 9-31. Overriding Literal Value Types in the index.ts File in the src Folder

function calculatePrice(quantity: 1 | 2, price: number): number {
    return quantity * price;
}

let total = calculatePrice(2, 19.99);
console.log(`Price: ${total}`);

function getRandomValue(): 1 | 2 | 3 | 4 {
    return Math.floor(Math.random() * 4) + 1 as 1 | 2 | 3 | 4;
}

enum City { London = "LON", Paris = "PAR", Chicago = "CHI" }

function getMixedValue(input: 1): 1;
function getMixedValue(input: 2 | 3): "Hello" | true;
function getMixedValue(input: 4): City.London;
function getMixedValue(input: number): 1 | "Hello" | true | City.London {
    switch (input) {
        case 1:
            return 1;
        case 2:
            return "Hello";
        case 3:
            return true;
        case 4:
        default:
            return City.London;
    }
}

let first = getMixedValue(1);
let second = getMixedValue(2);
let third = getMixedValue(4);
console.log(`${ first}, ${second}, ${third}`);

Each mapping creates a relationship between parameter and result parameters, which can be expressed 
as one or more values. The TypeScript compiler can follow the overloads to determine the types for the 
first, second, and third variables, which can be seen by inspecting the contents of the index.d.ts file in 
the dist folder.

...
declare let first: 1;
declare let second: true | "Hello";
declare let third: City.London;
...



Chapter 9 ■ Using arrays, tUples, and enUms

219

This isn’t a feature that you will need in most projects, but I have demonstrated it here to show that 
literal value types are handled just like regular types and because it is an interesting insight into the way that 
the TypeScript compiler works. The code in Listing 9-31 produces the following output:

Price: 39.98
1, Hello, LON

 Using Template Literal String Types
Literal string types can be used with the JavaScript template string feature to create template strings that only 
accept specific values, which can be a concise way to express complex combinations of values. Listing 9-32 
creates a template string that uses a literal value type. 

Listing 9-32. Using a Literal Value Type in a String Template in the index.ts File in the src Folder

function calculatePrice(quantity: 1 | 2, price: number): number {
    return quantity * price;
}

let total = calculatePrice(2, 19.99);
console.log(`Price: ${total}`);

function getRandomValue(): 1 | 2 | 3 | 4 {
    return Math.floor(Math.random() * 4) + 1 as 1 | 2 | 3 | 4;
}

function getCityString(city: "London" | "Paris" | "Chicago")
        : `City: ${"London" | "Paris" | "Chicago"}` {
    return `City: ${city}` as `City: ${"London" | "Paris" | "Chicago"}`;
}

let str = getCityString("London");
console.log(str);

The getCityString function defines a parameter that is restricted to three string values with a literal 
value type. The function’s result is expressed using a string template that uses the literal value type, like this:

...
`City: ${"London" | "Paris" | "Chicago"}`
...

To see why this is useful, inspect the contents of the index.d.ts file in the dist folder to see how the 
TypeScript compiler defines the type for the str variable:

...
declare let str: "City: London" | "City: Paris" | "City: Chicago";
...



Chapter 9 ■ Using arrays, tUples, and enUms

220

The compiler has used the literal value type to expand the string template into the complete set of 
strings that can be assigned to the str variable. The code in Listing 9-32 produces the following output:

Price: 39.98
City: London

 Using Type Aliases
To avoid repetition, TypeScript provides the type alias feature, which allows a custom type combination to 
be assigned a name and applied where it is needed, as shown in Listing 9-33. 

Listing 9-33. Using Type Aliases in the index.ts File in the src Folder

function calculatePrice(quantity: 1 | 2, price: number): number {
    return quantity * price;
}

let total = calculatePrice(2, 19.99);
console.log(`Price: ${total}`);

type numVals = 1 | 2 | 3 | 4;

function getRandomValue(): numVals {
    return Math.floor(Math.random() * 4) + 1 as numVals;
}

type cities = "London" | "Paris" | "Chicago";
type cityResponse = `City: ${ cities }`;

function getCityString(city: cities): cityResponse {
    return `City: ${city}` as cityResponse;
}

let str = getCityString("London");
console.log(str);

Type aliases clean up TypeScript code by reducing duplication. Instead of having to define the same set 
of cities for the parameter and result of the getCityString function, for example, I can create a type alias 
that can be used for the function parameter and also in the template string:

...
type cities = "London" | "Paris" | "Chicago";
type cityResponse = `City: ${ cities }`;
...

Type aliases are defined using the type keyword, followed by a name for the alias, the equal sign, and 
the type that will be aliased, as shown in Figure 9-5.



Chapter 9 ■ Using arrays, tUples, and enUms

221

The name assigned to the alias is used in place of the full type description. Using a type alias allows 
a complex type or combination of types to be referred to more easily, but it doesn’t change the way that 
the TypeScript compiler deals with the type, and the alias can be used in type annotations or assertions as 
normal. The code in Listing 9-33 produces the following output when it is compiled and executed:

Price: 39.98
City: London

 Summary
In this chapter, I explained how TypeScript can be used with arrays and introduced the tuples and enums 
features, which are implemented by the TypeScript compiler. I also showed you how to define literal value 
types and how to use aliases to describe types consistently. In the next chapter, I describe the features that 
TypeScript provides for working with objects.

Figure 9-5. Defining a type alias



223© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_10

CHAPTER 10

Working with Objects

In this chapter, I describe the way that TypeScript deals with objects. As explained in Chapters 3 and 4, 
JavaScript has a fluid and flexible approach to dealing with objects, and TypeScript aims to strike a balance 
between preventing the most common mistakes while allowing useful features to be preserved. This is a 
theme that is continued in Chapter 11, where I describe the TypeScript support for using classes. Table 10-1 
summarizes the chapter.

For quick reference, Table 10-2 lists the TypeScript compiler options used in this chapter.

Table 10-1. Chapter Summary

Problem Solution Listing

Describe an object to the TypeScript compiler Use a shape type 4–6, 8

Describe irregular shape types Use optional properties 7, 9, 10

Use the same shape to describe multiple objects Use a type alias 11

Prevent compiler errors when a type contains a 
superset of the properties in a shape

Enable the suppressExcessPropertyErrors 
compiler option

12, 13

Combine shape types Use type unions or intersections 14, 15, 
19–25

Type guard for object types Check the properties defined by an object 
using the in keyword

16, 17

Reuse a type guard Define a predicate function 18

Table 10-2. The TypeScript Compiler Options Used in This Chapter

Name Description

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

outDir This option specifies the directory in which the JavaScript files will be 
placed.

rootDir This option specifies the root directory that the compiler will use to 
locate TypeScript files.

(continued)

https://doi.org/10.1007/978-1-4842-7011-0_10#DOI


Chapter 10 ■ Working With objeCts

224

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7 and updated in the chapters since. 
To prepare for this chapter, replace the contents of the index.ts file in the src folder with the code shown in 
Listing 10-1.

Listing 10-1. Replacing the Contents of the index.ts File in the src Folder

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };

let products = [hat, gloves];

products.forEach(prod => console.log(`${prod.name}: ${prod.price}`));

Reset the configuration of the compiler by replacing the contents of the tsconfig.json file with those 
shown in Listing 10-2.

Listing 10-2. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        //"strictNullChecks": true,
    }
}

The compiler configuration includes the declaration setting, which means that the compiler will 
create type declaration files alongside the JavaScript files. The real purpose of declaration files is explained in 
Chapter 14, but they will be used in this chapter to explain how the compiler deals with data types.

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 10-3 
to start the TypeScript compiler so that it automatically executes code after it has been compiled.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Name Description

declaration This option produces type declaration files when enabled, which can 
be useful in understanding how types have been inferred. These files 
are described in more detail in Chapter 14.

strictNullChecks This option prevents null and undefined from being accepted as 
values for other types.

suppressExcessPropertyErrors This option prevents the compiler from generating errors for objects 
that define properties not in a specified shape.

Table 10-2. (continued)

https://github.com/Apress/essential-typescript-4


Chapter 10 ■ Working With objeCts

225

Listing 10-3. Starting the TypeScript Compiler

npm start

The compiler will compile the project, execute the output, and then enter watch mode, producing the 
following output:

7:10:34 AM - Starting compilation in watch mode...
7:10:35 AM - Found 0 errors. Watching for file changes.
Hat: 100
Gloves: 75

 Working with Objects
JavaScript objects are collections of properties that can be created using the literal syntax, constructor 
functions, or classes. Regardless of how they are created, objects can be altered once they have been created, 
adding or removing properties and receiving values of different types. To provide type features for objects, 
TypeScript focuses on an object’s “shape,” which is the combination of its property names and types. 

The TypeScript compiler tries to make sure that objects are used consistently by looking for common 
shape characteristics. The best way to see how this works is to look at the declaration files that the compiler 
generates when its declarations option is enabled. If you examine the index.d.ts file in the dist folder, 
you will see that the compiler has used the shape of each object defined in Listing 10-1 as its type, like this:

declare let hat:      { name: string; price: number; };
declare let gloves:   { name: string; price: number; };
declare let products: { name: string; price: number; }[];

I have formatted the contents of the declaration file to make it easier to see how the compiler has 
identified the type of each object using its shape. When the objects are placed into an array, the compiler 
uses the shape of the objects to set the type of the array to match.

This may not seem like a useful approach, but it prevents many common mistakes. Listing 10-4 adds an 
object with a different shape.

Listing 10-4. Adding an Object in the index.ts File in the src Folder

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella" };

let products = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price}`));

Even though the objects in Listing 10-1 are defined using the literal syntax, the TypeScript compiler is 
able to warn when the objects are used inconsistently. The umbrella object doesn’t have a price property, 
and the compiler produces the following error when the file is compiled:

src/index.ts(9,60): error TS2339: Property 'price' does not exist on type '{ name: string; }'.



Chapter 10 ■ Working With objeCts

226

The arrow function used with the forEach method reads a price property that isn’t present on all of the 
objects in the products array, leading to an error. The compiler correctly identifies the shape of the objects 
in the example, which can be seen in the index.d.ts file in the dist folder.

declare let hat:      { name: string; price: number; };
declare let gloves:   { name: string; price: number; };
declare let umbrella: { name: string; };
declare let products: { name: string; }[];

Notice that the type for the products array has changed. When objects of different shapes are used 
together, such as in an array, the compiler creates a type that has the common properties of the objects it 
contains because they are the only properties that are safe to work with. In the example, the only property 
common to all the objects in the array is the string property name, which is why the compiler reports an 
error for the statement that tries to read the price property.

 Using Object Shape Type Annotations
For object literals, the TypeScript compiler infers the type of each property using the value that it has been 
assigned. Types can also be explicitly specified using type annotations, which are applied to individual 
properties, as shown in Listing 10-5. 

Listing 10-5. Using Object Shape Type Annotations in the index.ts File in the src Folder

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella" };

let products: { name: string, price: number }[] = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price}`));

The type annotation restricts the contents of the products array to objects that have name and price 
properties that are string and number values, as shown in Figure 10-1.

Figure 10-1. An object shape type



Chapter 10 ■ Working With objeCts

227

The compiler still reports an error for the code in Listing 10-5, but now the problem is that the umbrella 
object doesn’t conform to the shape specified by the type annotation for the products array, which provides 
a more useful description of the problem.

src/index.ts(5,64): error TS2741: Property 'price' is missing in type '{ name: string; }' 
but required in type '{ name: string; price: number; }'.

 Understanding How Shape Types Fit
To match a type, an object must define all the properties in the shape. The compiler will still match an object 
if it has additional properties that are not defined by the shape type, as shown in Listing 10-6. 

Listing 10-6. Adding Properties in the index.ts File in the src Folder

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30, waterproof: true };

let products: { name: string, price?: number }[] = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price}`));

The new properties allow the umbrella object to match the shape of the array type because it now 
defines name and price properties. The waterproof property is ignored because it is not part of the shape 
type. The code in Listing 10-6 produces the following code when it is compiled and executed:

Hat: 100
Gloves: 75
Umbrella: 30

Notice that type annotations are not required to indicate that individual objects have a specific shape. 
The TypeScript compiler automatically determines whether an object conforms to a shape by inspecting its 
properties and their values.

 Using Optional Properties for Irregular Shapes
Optional properties make a shape type more flexible, allowing it to match objects that don’t have those 
properties, as shown in Listing 10-7. This can be important when dealing with a set of objects that don’t 
share the same shape but where you need to use a property when it is available. 

Listing 10-7. Using an Optional Property in the index.ts File in the src Folder

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30, waterproof: true };



Chapter 10 ■ Working With objeCts

228

let products: { name: string, price?: number, waterproof?: boolean }[]
    = [hat, gloves, umbrella];

products.forEach(prod =>
    console.log(`${prod.name}: ${prod.price} Waterproof: ${ prod.waterproof }`));

Optional properties are defined using the same syntax as optional function parameters, where a 
question mark follows the property name, as shown in Figure 10-2.

A shape type with optional properties can match objects that don’t define those properties, as long 
the required properties are defined. When the optional property is used, such as in the forEach function in 
Listing 10-7, the value of the optional property will be either the value defined by the object or undefined, as 
shown in the following output from the code when it is compiled and executed:

Hat: 100 Waterproof: undefined
Gloves: 75 Waterproof: undefined
Umbrella: 30 Waterproof: true

The hat and gloves objects don’t define the optional waterproof property, so the value received in the 
forEach function is undefined. The umbrella object does define this property, and its value is displayed.

 Including Methods in Shape Types
Shape types can include methods as well as properties, giving greater control over how objects are matched 
by the type, as shown in Listing 10-8. 

Listing 10-8. Including a Method in a Shape Type in the index.ts File in the src Folder

enum Feature { Waterproof, Insulated }

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30,
        hasFeature: (feature) => feature === Feature.Waterproof };

let products: { name: string, price?: number,
        hasFeature?(Feature): boolean }[]
    = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price} `
    + `Waterproof: ${prod.hasFeature(Feature.Waterproof)}`));

Figure 10-2. An optional property in a shape type



Chapter 10 ■ Working With objeCts

229

The type annotation for the products array includes an optional property called hasFeature that 
represents a method. A method property is similar to a regular property with the addition of parentheses that 
describe the types of the parameters, followed by a colon and then the result type, as shown in Figure 10-3.

The method included in the shape type in Listing 10-8 specifies a method called hasFeature that has 
one parameter, which must be a value from the Feature enum (also defined in Listing 10-8) and which 
returns a boolean result.

 ■ Tip Methods in shape types don’t have to be optional, but when they are, as in Listing 10-8, the question 
mark comes after the method name and before the parentheses that denote the start of the parameter types.

The umbrella object defines the hasFeature method with the correct types, but since the method is 
optional, the hat and gloves object are also matched by the shape type. As with regular properties, optional 
methods are undefined when they are not present on an object, which means that the code in Listing 10-8 
produces the following error when compiled and executed:

C:\types\dist\index.js:12  + `Waterproof: ${prod.hasFeature(Feature.Waterproof)}`));
TypeError: prod.hasFeature is not a function

As with regular properties, you must ensure that a method is implemented before it is invoked.

Enforcing Strict Checking for Methods

To help prevent errors like the one in the previous section, the TypeScript compiler can report errors when 
an optional method specified by a shape type is used without checking for undefined values. This check 
is enabled by the strictNullChecks setting, which has also been used in earlier chapters. Change the 
configuration of the compiler by enabling the settings as shown in Listing 10-9.

Listing 10-9. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",

Figure 10-3. A method in a shape type



Chapter 10 ■ Working With objeCts

230

        "declaration": true,
        "strictNullChecks": true
    }
}

When the configuration file is saved, the compiler will rebuild the project and produce the following 
error:

src/index.ts(13,22): error TS2722: Cannot invoke an object which is possibly 'undefined'.

This error prevents the use of optional methods until they are checked to make sure they exist on an 
object, as shown in Listing 10-10.

Listing 10-10. Checking for an Optional Method in the index.ts File in the src Folder

enum Feature { Waterproof, Insulated }

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30,
        hasFeature: (feature) => feature === Feature.Waterproof };

let products: { name: string, price?: number, hasFeature?(Feature): boolean }[]
    = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price} `
    + `${ prod.hasFeature ? prod.hasFeature(Feature.Waterproof) : "false" }`));

The hasFeature method is invoked only if it has been defined, and the code in Listing 10-10 produces 
the following output when it is compiled and executed:

Hat: 100 false
Gloves: 75 false
Umbrella: 30 true

 Using Type Aliases for Shape Types
A type alias can be used to give a name to a specific shape, making it easier to refer to the shape in code 
consistently, as shown in Listing 10-11. 

Listing 10-11. Using an Alias for a Shape Type in the index.ts File in the src Folder

enum Feature { Waterproof, Insulated }

type Product = {
    name: string,
    price?: number,
    hasFeature?(Feature): boolean
};



Chapter 10 ■ Working With objeCts

231

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30,
        hasFeature: (feature) => feature === Feature.Waterproof };

let products: Product[] = [hat, gloves, umbrella];

products.forEach(prod => console.log(`${prod.name}: ${prod.price} `
    + `${ prod.hasFeature ? prod.hasFeature(Feature.Waterproof) : "false" }`));

The alias assigns a name to the shape, which can be used in type annotations. In the listing, an alias 
named Product is created and used as the type for the array. Using an alias doesn’t change the output from 
the code when it is compiled and executed.

Hat: 100 false
Gloves: 75 false
Umbrella: 30 true

 Dealing with Excess Properties
The TypeScript compiler is good at inferring types, which means that type annotations can often be omitted. 
There are times, however, when providing the compiler with information about types can change its 
behavior, as demonstrated in Listing 10-12. 

Listing 10-12. Defining Objects in the index.ts File in the src Folder

enum Feature { Waterproof, Insulated }

type Product = {
    name: string,
    price?: number,
    hasFeature?(Feature): boolean
};

let hat = { name: "Hat", price: 100 };
let gloves = { name: "Gloves", price: 75 };
let umbrella = { name: "Umbrella", price: 30,
        hasFeature: (feature) => feature === Feature.Waterproof };

let mirrorShades = { name: "Sunglasses", price: 54, finish: "mirrored"};
let darkShades: Product = { name: "Sunglasses", price: 54, finish: "flat"};

let products: Product[] = [hat, gloves, umbrella, mirrorShades, darkShades];

products.forEach(prod => console.log(`${prod.name}: ${prod.price} `
    + `${ prod.hasFeature ? prod.hasFeature(Feature.Waterproof) : "false" }`));



Chapter 10 ■ Working With objeCts

232

When the code is compiled, the compiler will report the following error:

src/index.ts(16,60): error TS2322: Type '{ name: string; price: number; finish: string; }' 
is not assignable to type 'Product'
  Object literal may only specify known properties, and 'finish' does not exist in type 
'Product'.

The compiler treats the mirrorShades and darkShades objects differently, even though they have 
the same shape. The compiler reports errors when object literals with type annotations define additional 
properties, because this is likely to be a mistake. In the case of the example, the darkShades object has a 
Product type annotation. The finish property isn’t part of the Product shape and is known as an excess 
property, which the compiler reports as an error. Excess properties do not cause errors when an object is 
defined without a type annotation, which means the darkShades object can be used as a Product.

I can prevent the error by removing the excess property or by removing the type annotation, but my 
preference is to disable excess property checking entirely because I find it counterintuitive. Listing 10-13 
shows the changes to the compiler configuration file.

Listing 10-13. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        "strictNullChecks": true,
        "suppressExcessPropertyErrors": true
    }
}

When the suppressExcessPropertyErrors setting is true, the compiler won’t report an error if an 
object literal defines properties that are not part of the type declared by the annotation. When the change to 
the configuration file is saved, the code will be compiled and executed and produce the following output:

Hat: 100 false
Gloves: 75 false
Umbrella: 30 true
Sunglasses: 54 false
Sunglasses: 54 false

 Using Shape Type Unions
In Chapter 7, I described the type union feature that allows multiple types to be expressed together so that, 
for example, arrays or function parameters can accept multiple types. As I explained, type unions are types 
in their own right and contain the properties that are defined by all of their constituent types. This isn’t a 
useful feature when dealing with unions of primitive data types because there are few common properties, 
but it is a more useful feature when dealing with objects, as shown in Listing 10-14. 



Chapter 10 ■ Working With objeCts

233

Listing 10-14. Using a Type Union in the index.ts File in the src Folder

type Product = {
    id: number,
    name: string,
    price?: number
};

type Person = {
    id: string,
    name: string,
    city: string
};

let hat = { id: 1, name: "Hat", price: 100 };
let gloves = { id: 2, name: "Gloves", price: 75 };
let umbrella = { id: 3, name: "Umbrella", price: 30 };
let bob = { id: "bsmith", name: "Bob", city: "London" };

let dataItems: (Product | Person)[] = [hat, gloves, umbrella, bob];

dataItems.forEach(item => console.log(`ID: ${item.id}, Name: ${item.name}`));

The dataItems array in this example has been annotated with a union of the Product and Person types. 
These types have two properties in common, id and name, which means these properties can be used when 
processing the array without having to narrow to a single type.

...
dataItems.forEach(item => console.log(`ID: ${item.id}, Name: ${item.name}`));
...

These are the only properties that can be accessed because they are the only properties shared by 
all types in the union. Any attempt to access the price property defined by the Product type or the city 
property defined by the Person type will produce an error because these properties are not part of the 
Product | Person union. The code in Listing 10-14 produces the following output:

ID: 1, Name: Hat
ID: 2, Name: Gloves
ID: 3, Name: Umbrella
ID: bsmith, Name: Bob

 Understanding Union Property Types
When a union of shape types is created, the types of each common property are combined, also using a 
union. This effect can be more easily understood by creating a type that is equivalent to the union, as shown 
in Listing 10-15.



Chapter 10 ■ Working With objeCts

234

Listing 10-15. Creating an Equivalent Type in the index.ts File in the src Folder

type Product = {
    id: number,
    name: string,
    price?: number
};

type Person = {
    id: string,
    name: string,
    city: string
};

type UnionType = {
    id: number | string,
    name: string
};

let hat = { id: 1, name: "Hat", price: 100 };
let gloves = { id: 2, name: "Gloves", price: 75 };
let umbrella = { id: 3, name: "Umbrella", price: 30 };
let bob = { id: "bsmith", name: "Bob", city: "London" };

let dataItems: UnionType[] = [hat, gloves, umbrella, bob];

dataItems.forEach(item => console.log(`ID: ${item.id}, Name: ${item.name}`));

The UnionType shows the effect of the union between the Product and Person types. The id property 
type is a number | string union because the id property in the Product type is a number, but the id 
property in the Person type is a string. The name property in both types is a string, so this is the type for the 
name property in the union. The code in Listing 10-15 produces the following output when it is compiled and 
executed:

ID: 1, Name: Hat
ID: 2, Name: Gloves
ID: 3, Name: Umbrella
ID: bsmith, Name: Bob

 Using Type Guards for Objects
The previous section demonstrated how unions of shape types can be useful in their own right, but type 
guards are still required to get to a specific type to access all of the features it defines.

In Chapter 7, I demonstrated how the typeof keyword can be used to create type guards. The typeof 
keyword is a standard JavaScript feature that the TypeScript compiler recognizes and uses during the type-
checking process. But the typeof keyword cannot be used with objects because it will always return the 
same result, as demonstrated in Listing 10-16. 



Chapter 10 ■ Working With objeCts

235

Listing 10-16. Type Guarding in the index.ts File in the src Folder

type Product = {
    id: number,
    name: string,
    price?: number
};

type Person = {
    id: string,
    name: string,
    city: string
};

let hat = { id: 1, name: "Hat", price: 100 };
let gloves = { id: 2, name: "Gloves", price: 75 };
let umbrella = { id: 3, name: "Umbrella", price: 30 };
let bob = { id: "bsmith", name: "Bob", city: "London" };

let dataItems: (Product | Person)[] = [hat, gloves, umbrella, bob];

dataItems.forEach(item => console.log(`ID: ${item.id}, Type: ${typeof item}`));

This listing resets the type of the array to be a union of the Product and Person types and uses the 
typeof keyword in the forEach function to determine the type of each item in the array, producing the 
following results when the code is compiled and executed:

ID: 1, Type: object
ID: 2, Type: object
ID: 3, Type: object
ID: bsmith, Type: object

The shape type feature is provided entirely by TypeScript, and all objects have the type object as far 
as JavaScript is concerned, with the result that the typeof keyword isn’t useful for determining whether an 
object conforms to the Product and Person shapes.

 Type Guarding by Checking Properties
The simplest way to differentiate between shape types is to use the JavaScript in keyword to check for a 
property, as shown in Listing 10-17. 

Listing 10-17. Type Guarding in the index.ts File in the src Folder

type Product = {
    id: number,
    name: string,
    price?: number
};



Chapter 10 ■ Working With objeCts

236

type Person = {
    id: string,
    name: string,
    city: string
};

let hat = { id: 1, name: "Hat", price: 100 };
let gloves = { id: 2, name: "Gloves", price: 75 };
let umbrella = { id: 3, name: "Umbrella", price: 30 };
let bob = { id: "bsmith", name: "Bob", city: "London" };

let dataItems: (Product | Person)[] = [hat, gloves, umbrella, bob];

dataItems.forEach(item => {
    if ("city" in item) {
        console.log(`Person: ${item.name}: ${item.city}`);
    } else  {
        console.log(`Product: ${item.name}: ${item.price}`);
    }
});

The goal is to be able to determine each object in the array conforms to the Product shape or the Person 
shape. We know these are the only types that the array can contain because its type annotation is (Product 
| Person)[].

A shape is a combination of properties, and a type guard must test for one or more properties that are 
included in one shape but not the other. In the case of Listing 10-17, any object that has a city property must 
conform to the Person shape since this property is not part of the Product shape. To create a type guard 
that checks for a property, the property name is expressed as a string literal, followed by the in keyword, 
followed by the object to test, as shown in Figure 10-4.

Figure 10-4. Using the in keyword



Chapter 10 ■ Working With objeCts

237

The in expression returns true for objects that define the specified property and false otherwise. The 
TypeScript compiler recognizes the significance of testing for a property and infers the type within the code 
blocks of the if/else statement. The code in Listing 10-17 produces the following output when compiled 
and executed:

Product: Hat: 100
Product: Gloves: 75
Product: Umbrella: 30
Person: Bob: London

AVOIDING COMMON TYPE GUARD PROBLEMS

it is important to create type guard tests that definitively and accurately differentiate between types. if 
the compiler gives you unexpected errors when you have used a type guard, then the likely cause is an 
inaccurate test.

there are two common problems to avoid. the first is creating an inaccurate test that doesn’t reliably 
differentiate between types, such as this test:

dataItems.forEach(item => {
    if ("id" in item && "name" in item) {
        console.log(`Person: ${item.name}: ${item.city}`);
    } else  {
        console.log(`Product: ${item.name}: ${item.price}`);
    }
});

this test checks for id and name properties, but these are defined by both the Person and Product 
types, and the test doesn’t give the compiler enough information to infer a type. the type inferred in 
the if block is the Product | Person union, which means the use of the city property will generate 
an error. the type inferred in the else block is never, since all the possible types have already been 
inferred, and the compiler will generate errors for the use of the name and price properties.

a related problem is testing for an optional property, like this:

dataItems.forEach(item => {
    if ("price" in item) {
        console.log(`Product: ${item.name}: ${item.price}`);
    } else  {
        console.log(`Person: ${item.name}: ${item.city}`);
    }
});

the test will match objects that define a price property, which means that the type inferred in the if 
block will be Product, as intended (notice that the statements in the code blocks are reversed in this 
example). the problem is that objects can still match the Product shape if they don’t have a price 
property, which means the type inferred in the else block is Product | Person and the compiler will 
report an error for the use of the city property.

Writing effective tests for types can require careful thought and thorough testing, although the process 
becomes easier with experience.



Chapter 10 ■ Working With objeCts

238

 Type Guarding with a Type Predicate Function
The in keyword is a useful way to identify whether an object conforms to a shape, but it requires the same 
checks to be written each time types need to be identified. TypeScript also supports guarding object types 
using a function, as shown in Listing 10-18. 

Listing 10-18. Type Guarding with a Function in the index.ts File in the src Folder

type Product = {
    id: number,
    name: string,
    price?: number
};

type Person = {
    id: string,
    name: string,
    city: string
};

let hat = { id: 1, name: "Hat", price: 100 };
let gloves = { id: 2, name: "Gloves", price: 75 };
let umbrella = { id: 3, name: "Umbrella", price: 30 };
let bob = { id: "bsmith", name: "Bob", city: "London" };

let dataItems: (Product | Person)[] = [hat, gloves, umbrella, bob];

function isPerson(testObj: any): testObj is Person {
    return testObj.city !== undefined;
}

dataItems.forEach(item => {
    if (isPerson(item)) {
        console.log(`Person: ${item.name}: ${item.city}`);
    } else  {
        console.log(`Product: ${item.name}: ${item.price}`);
    }
});

Type guarding for objects is done with a function that uses the is keyword, as shown in Figure 10-5.

Figure 10-5. An object type guard function



Chapter 10 ■ Working With objeCts

239

The result of the function, which is a type predicate, tells the compiler which of the function’s 
parameters is being tested and the type that the function checks for. In Listing 10-18, the isPerson function 
tests its testObj parameter for the Person type. If the result of the function is true, then the TypeScript 
compiler will treat the object as the specified type.

Using a function for type guarding can be more flexible because the parameter type is any, allowing 
properties to be tested for without having to use string literals and the in keyword.

 ■ Tip the are no restrictions on the name of the type guard function, but the convention is to prefix the 
guarded type with is, such that a function that tests for the Person type is named isPerson and a function that 
tests for the Product type is named isProduct.

The code in Listing 10-18 produces the following output when compiled and executed, showing that 
using the guard function has the same effect as the in keyword:

Product: Hat: 100
Product: Gloves: 75
Product: Umbrella: 30
Person: Bob: London

 Using Type Intersections
Type intersections combine the features of multiple types, allowing all the features to be used. This is in 
contrast to type unions, which only allow the use of common features. Listing 10-19 shows an intersection 
type being defined and used. 

Listing 10-19. Defining a Type Intersection in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

type Employee = {
    company: string,
    dept: string
};

let bob = { id: "bsmith", name: "Bob", city: "London",
    company: "Acme Co", dept: "Sales" };

let dataItems: (Person & Employee)[] = [bob];

dataItems.forEach(item => {
    console.log(`Person: ${item.id}, ${item.name}, ${item.city}`);
    console.log(`Employee: ${item.id}, ${item.company}, ${item.dept}`);
});



Chapter 10 ■ Working With objeCts

240

The type of the dataItems array is set to the intersection of the Person and Employee types. Intersections 
are defined using the ampersand between two or more types, as shown in Figure 10-6.

An object will conform to the shape of a type intersection only if it defines the properties defined by 
merging all the types in that intersection, as shown in Figure 10-7.

In Listing 10-19, the intersection between Person and Employee types has the effect that the dataItems 
array can contain only objects that define id, name, city, company, and dept properties.

The contents of the array are processed using the forEach method, which demonstrates that the 
properties from both types in the intersection can be used. The code in the listing produces the following 
output when compiled and executed:

Person: bsmith, Bob, London
Employee: bsmith, Acme Co, Sales

Figure 10-7. The effect of a type intersection

Figure 10-6. Defining an intersection type



Chapter 10 ■ Working With objeCts

241

 Using Intersections for Data Correlation
Intersections are useful when you receive objects from one source and need to introduce new functionality 
so they can be used elsewhere in the application or when objects from two data sources need to be 
correlated and combined. JavaScript makes it easy to introduce functionality from one object into another, 
and intersections allow the types that are used to be clearly described so they can be checked by the 
TypeScript compiler. Listing 10-20 shows a function that correlates two data arrays. 

Listing 10-20. Correlating Data in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

type Employee = {
    id: string,
    company: string,
    dept: string
};

type EmployedPerson = Person & Employee;

function correlateData(peopleData: Person[], staff: Employee[]): EmployedPerson[] {
    const defaults = { company: "None", dept: "None"};
    return peopleData.map(p => ({ ...p,
        ...staff.find(e => e.id === p.id) || { ...defaults, id: p.id } }));
}

let people: Person[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"}];

let employees: Employee[] =
    [{ id: "bsmith", company: "Acme Co", dept: "Sales" },
     { id: "dpeters", company: "Acme Co", dept: "Development" }];

let dataItems: EmployedPerson[] = correlateData(people, employees);

dataItems.forEach(item => {
    console.log(`Person: ${item.id}, ${item.name}, ${item.city}`);
    console.log(`Employee: ${item.id}, ${item.company}, ${item.dept}`);
});

In this example, the correlateData function receives an array of Person objects and an array of 
Employee objects and uses the id property they share to produce objects that combine the properties of 
both shape types. As each Person object is processed by the map method, the array find method is used to 
locate the Employee object with the same id value, and the object spread operator is used to create objects 



Chapter 10 ■ Working With objeCts

242

that match the intersection shape. Since the results from the correlateData function have to define all the 
intersection properties, I use default values when there is no matching Employee object.
...
const defaults = { company: "None", dept: "None"};
return peopleData.map(p => ({ ...p,
    ...staff.find(e => e.id === p.id) || { ...defaults, id: p.id } }));
...

I used type annotations in Listing 10-20 to make the purpose of the code easier to understand, but 
the code would work without them. The TypeScript compiler is adept at understanding the effect of code 
statements and can understand the effect of this statement is to create objects that conform to the shape of 
the type intersection.

The code in Listing 10-20 produces the following output when it is compiled and executed:

Person: bsmith, Bob Smith, London
Employee: bsmith, Acme Co, Sales
Person: ajones, Alice Jones, Paris
Employee: ajones, None, None
Person: dpeters, Dora Peters, New York
Employee: dpeters, Acme Co, Development

 Understanding Intersection Merging
Because an intersection combines features from multiple types, an object that conforms to the intersection 
shape also conforms to each of the types in the intersection. For example, an object that conforms to Person 
& Employee can be used where the Person type or the Employee type is specified, as shown in Listing 10-21. 

Listing 10-21. Using Underlying Types in an Intersection in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

type Employee = {
    id: string,
    company: string,
    dept: string
};

type EmployedPerson = Person & Employee;

function correlateData(peopleData: Person[], staff: Employee[]): EmployedPerson[] {
    const defaults = { company: "None", dept: "None"};
    return peopleData.map(p => ({ ...p,
        ...staff.find(e => e.id === p.id) || { ...defaults, id: p.id } }));
}



Chapter 10 ■ Working With objeCts

243

let people: Person[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"}];

let employees: Employee[] =
    [{ id: "bsmith", company: "Acme Co", dept: "Sales" },
     { id: "dpeters", company: "Acme Co", dept: "Development" }];

let dataItems: EmployedPerson[] = correlateData(people, employees);

function writePerson(per: Person): void {
    console.log(`Person: ${per.id}, ${per.name}, ${per.city}`);
}

function writeEmployee(emp: Employee): void {
    console.log(`Employee: ${emp.id}, ${emp.company}, ${emp.dept}`);
}

dataItems.forEach(item => {
    writePerson(item);
    writeEmployee(item);
});

The compiler matches an object to a shape by ensuring that it defines all the properties in the shape 
and doesn’t care about excess properties (except when defining an object literal, as explained earlier in 
the chapter). The objects that conform to the EmployedPerson type can be used in the writePerson and 
writeEmployee functions because they conform to the types specified for the function’s parameters. The 
code in Listing 10-21 produces the following output:

Person: bsmith, Bob Smith, London
Employee: bsmith, Acme Co, Sales
Person: ajones, Alice Jones, Paris
Employee: ajones, None, None
Person: dpeters, Dora Peters, New York
Employee: dpeters, Acme Co, Development

It may seem obvious that an intersection type is compatible with each of its constituents, but it has an 
important effect when the types in the intersection define properties with the same name: the type of the 
property in the intersection is an intersection of the individual property types. That sentence is hard to make 
sense of, so the sections that follow provide a more useful explanation.

 Merging Properties with the Same Type
The simplest situation is where there are properties with the same name and the same type, such as the id 
properties defined by the Person and Employee types, which are merged into the intersection without any 
changes, as shown in Figure 10-8. 



Chapter 10 ■ Working With objeCts

244

There are no issues to deal with in this situation because any value assigned to the id property will be a 
string and will conform to the requirements of the object and intersection types.

 Merging Properties with Different Types
If there are properties with the same name but different types, the compiler keeps the property name but 
intersects the type. To demonstrate, Listing 10-22 removes the functions and adds a contact property to the 
Person and Employee types.

Listing 10-22. Adding Properties with Different Types in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string,
    contact: number
};

type Employee = {
    id: string,
    company: string,
    dept: string,
    contact: string
};

type EmployedPerson = Person & Employee;

let typeTest = ({} as EmployedPerson).contact;

The last statement in Listing 10-22 is a useful trick for seeing what type the compiler assigns to 
a property in the intersection by looking at the declaration file created in the dist folder when the 
declaration compiler configuration option is true. The statement uses a type assertion to tell the compiler 

Figure 10-8. Merging properties with the same type



Chapter 10 ■ Working With objeCts

245

that an empty object conforms to the EmployedPeson type and assigns the contact property to the typeTest 
variable. When the changes to the index.ts file are saved, the compiler will compile the code, and the 
index.d.ts file in the dist folder will show the type for the contact property in the intersection.

declare let typeTest: number & string;

The compiler created an intersection between the type of the contact property defined by Person and 
the type of the contact property defined by Employee, as shown in Figure 10-9.

Creating an intersection of the types is the only way the compiler can merge the properties, but it 
doesn’t produce a useful result because there are no values that can be assigned to the intersection of the 
primitive number and string types, as shown in Listing 10-23.

Listing 10-23. Assigning Values to the Intersection of Primitives in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string,
    contact: number
};

type Employee = {
    id: string,
    company: string,
    dept: string,
    contact: string
};

type EmployedPerson = Person & Employee;

let typeTest = ({} as EmployedPerson).contact;

Figure 10-9. Merging properties with different types



Chapter 10 ■ Working With objeCts

246

let person1: EmployedPerson = {
    id: "bsmith", name: "Bob Smith", city: "London",
    company: "Acme Co", dept: "Sales", contact: "Alice"
};

let person2: EmployedPerson = {
    id: "dpeters", name: "Dora Peters", city: "New York",
    company: "Acme Co", dept: "Development", contact: 6512346543
};

An object has to assign a value to the contact property to conform to the shape, but doing so creates the 
following errors:

src/index.ts(21,40): error TS2322: Type 'string' is not assignable to type 'never'.
src/index.ts(26,46): error TS2322: Type 'number' is not assignable to type 'never'.

The intersection of number and string is an impossible type. There is no way to work around this 
problem for primitive types, and the only solution is to adjust the types used in the intersection so that shape 
types are used instead of primitives, as shown in Listing 10-24.

 ■ Note it might seem odd that the typescript compiler allows impossible types to be defined, but the 
reason is that some of the advanced typescript features, described in later chapters, make it difficult for the 
compiler to deal with all situations consistently, and the Microsoft development team has chosen simplicity over 
exhaustively checking for every impossible type.

Listing 10-24. Using Shape Types in an Intersection in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string,
    contact: { phone: number }
};

type Employee = {
    id: string,
    company: string,
    dept: string,
    contact: { name: string }
};

type EmployedPerson = Person & Employee;

let typeTest = ({} as EmployedPerson).contact;



Chapter 10 ■ Working With objeCts

247

let person1: EmployedPerson = {
    id: "bsmith", name: "Bob Smith", city: "London",
    company: "Acme Co", dept: "Sales",
    contact: { name: "Alice" , phone: 6512346543 }
};

let person2: EmployedPerson = {
    id: "dpeters", name: "Dora Peters", city: "New York",
    company: "Acme Co", dept: "Development",
    contact: { name: "Alice" , phone: 6512346543 }
};

The compiler handles the property merge in the same way, but the result of the intersection is a shape 
that has name and phone properties, as shown in Figure 10-10.

The intersection of an object with a phone property and an object with a name property is an object with 
phone and name properties, which makes it possible to assign contact values that conform to the Person and 
Employee types and their intersection.

 Merging Methods
If the types in an intersection define methods with the same name, then the compiler will create a function 
whose signature is an intersection, as shown in Listing 10-25. 

Listing 10-25. Merging Methods in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string,
    getContact(field: string): string
};

type Employee = {
    id: string,
    company: string,
    dept: string
    getContact(field: number): number
};

Figure 10-10. Merging properties with shape types



Chapter 10 ■ Working With objeCts

248

type EmployedPerson = Person & Employee;

let person: EmployedPerson = {
    id: "bsmith", name: "Bob Smith", city: "London",
    company: "Acme Co", dept: "Sales",
    getContact(field: string | number): any {
        return typeof field === "string" ? "Alice" : 6512346543;
    }
};

let typeTest = person.getContact;
let stringParamTypeTest = person.getContact("Alice");
let numberParamTypeTest = person.getContact(123);

console.log(`Contact: ${person.getContact("Alice")}`);
console.log(`Contact: ${person.getContact(12)}`);

The compiler will merge the functions by creating an intersection of their signatures, which can 
produce impossible types or functions that cannot be usefully implemented. In the example, the getContact 
methods in the Person and Employee types are intersected, as shown in Figure 10-11.

It can be difficult to work out the consequences of merging methods in an intersection, but the overall 
effect is similar to type overloading, described in Chapter 8. I often rely on the type declaration file to make 
sure that I have achieved the intersection I want, and there are three statements in Listing 10-25 that help 
show how the methods have been merged.

...
let typeTest = person.getContact;
let stringParamTypeTest = person.getContact("Alice");
let numberParamTypeTest = person.getContact(123);
...

When the index.ts file is saved and compiled, the index.d.ts file in the dist folder will contain 
statements that show the type the compiler has assigned to each of the variables:

declare let typeTest: ((field: string) => string) & ((field: number) => number);
declare let stringParamTypeTest: string;
declare let numberParamTypeTest: number;

Figure 10-11. Merging methods



Chapter 10 ■ Working With objeCts

249

The first statement shows the type of the intersected method, and the other statements show the type 
returned when string and number arguments are used. (I explain the intended purpose of the index.d.ts 
file in Chapter 14, but taking advantage of this feature to see the types that the compiler is working with is 
often useful.)

The implementation of an intersected method must preserve compatibility with the methods in the 
intersection. Parameters are usually easy to deal with, and in Listing 10-25, I used a type union to create a 
method that can receive string and number values. Method results are more difficult to deal with because it 
can be hard to find a type that preserves compatibility. I find the most reliable approach is to use any as the 
method result and use type guards to create the mappings between parameters and result types.

...
getContact(field: string | number): any {
    return typeof field === "string" ? "Alice" : 6512346543;
}
...

I try to avoid using any as much as possible, but there is no other type that can be specified in this 
example that allows an EmployedPerson object to be used both as a Person and an Employee object. The 
code in Listing 10-25 produces the following output when compiled and executed:

Contact: Alice
Contact: 6512346543

 Summary
In this chapter, I describe the way that TypeScript uses an object’s shape to perform type checking. I 
explained how shapes are compared, how shapes can be used for aliases, and how shapes are combined 
into unions and intersections. In the next chapter, I explain how the shape features are used to provide type 
support for classes.



251© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_11

CHAPTER 11

Working with Classes 
and Interfaces

In this chapter, I describe the features that TypeScript provides for working with classes and introduce the 
interface feature, which provides an alternative approach to describing the shape of objects. Table 11-1 
summarizes the chapter.

Table 11-1. Chapter Summary

Problem Solution Listing

Create objects consistently Use a constructor function or define a class 4–6, 13–15

Prevent access to properties and methods Use the TypeScript access control keywords 
or JavaScript private fields

7-10

Prevent properties from being modified Use the readonly keyword 11

Receive a constructor parameter and create an 
instance property in a single step

Use the concise constructor syntax 12

Define partial common functionality that will 
be inherited by subclasses

Define an abstract class 16, 17

Define a shape that classes can implement Define an interface 18–23

Define a property dynamically Use an index signature 24-28

https://doi.org/10.1007/978-1-4842-7011-0_11#DOI


Chapter 11 ■ Working With Classes and interfaCes

252

For quick reference, Table 11-2 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7 and used in the chapters since. To 
prepare for this chapter, replace the contents of the index.ts file in the src folder with the code shown in 
Listing 11-1.

Listing 11-1. Replacing the Contents of the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

let data: Person[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"}];

data.forEach(item => {
    console.log(`${item.id} ${item.name}, ${item.city}`);
});

Reset the configuration of the compiler by commenting out the configuration options shown in 
Listing 11-2.

Listing 11-2. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",

Table 11-2. The TypeScript Compiler Options Used in This Chapter

Name Description
target This option specifies the version of the JavaScript language that the compiler 

will target in its output.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate 
TypeScript files.

declaration This option produces type declaration files when enabled, which can be 
useful in understanding how types have been inferred. These files are 
described in more detail in Chapter 14.

noUncheckedIndexedAccess This option does not allow properties accessed via an index signature to be 
accessed until they have been guarded against undefined values.



Chapter 11 ■ Working With Classes and interfaCes

253

        "declaration": true,
        // "strictNullChecks": true,
        // "suppressExcessPropertyErrors": true
    }
}

The compiler configuration includes the declaration setting, which means that the compiler will 
create type declaration files alongside the JavaScript files. The intended purpose for declaration files is 
explained in Chapter 14, but they will be used in this chapter to explain how the compiler deals with data 
types.

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 11-3 
to start the TypeScript compiler so that it automatically executes code after it has been compiled.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this 
book—from https://github.com/Apress/essential- typescript- 4.

Listing 11-3. Starting the TypeScript Compiler

npm start

The compiler will compile the project, execute the output, and then enter watch mode, producing the 
following output:

7:16:33 AM - Starting compilation in watch mode...
7:16:35 AM - Found 0 errors. Watching for file changes.
bsmith Bob Smith, London
ajones Alice Jones, Paris
dpeters Dora Peters, New York

 Using Constructor Functions
As explained in Chapter 4, objects can be created using constructor functions and provide access to the 
JavaScript prototype system. Constructor functions can be used in TypeScript code, but the way they are 
supported is counterintuitive and not as elegant as the way that classes are handled, as explained later in this 
chapter. Listing 11-4 adds a constructor function to the example code. 

Listing 11-4. Using a Constructor Function in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

let Employee = function(id: string, name: string, dept: string, city: string) {
    this.id = id;
    this.name = name;

https://github.com/Apress/essential-typescript-4


Chapter 11 ■ Working With Classes and interfaCes

254

    this.dept = dept;
    this.city = city;
};
Employee.prototype.writeDept = function() {
    console.log(`${this.name} works in ${this.dept}`);
};

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");

let data: (Person | Employee )[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"},
     salesEmployee];

data.forEach(item => {
    if (item instanceof Employee) {
        item.writeDept();
    } else {
        console.log(`${item.id} ${item.name}, ${item.city}`);
    }
});

The Employee constructor function creates objects with id, name, dept, and city properties, and there is 
a method named writeDept defined on the Employee prototype. The data array is updated to contain Person 
and Employee objects, and the function passed to the forEach method uses the instanceof operator to 
narrow the type of each object in the array. The code in Listing 11-4 produces the following compiler errors:

src/index.ts(17,21): error TS2304: Cannot find name 'Employee'.
src/index.ts(17,21): error TS4025: Exported variable 'data' has or is using private name 
'Employee'.
src/index.ts(25,14): error TS2339: Property 'writeDept' does not exist on type '{}'.

TypeScript treats the Employee constructor function like any other function and looks at its parameter 
and result types to describe its shape. When the Employee function is used with the new keyword, the 
compiler uses the any type for the object assigned to the salesEmployee variable. The result is a series of 
errors as the compiler struggles to make sense of the way the constructor function is used.

The simplest way to solve this problem is to provide the compiler with additional information about the 
shapes of the objects that are used. Listing 11-5 adds a type alias that describes the objects created by the 
Employee constructor function.

Listing 11-5. Adding a Type Alias in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};



Chapter 11 ■ Working With Classes and interfaCes

255

type Employee = {
    id: string,
    name: string,
    dept: string,
    city: string,
    writeDept: () => void
};

let Employee = function(id: string, name: string, dept: string, city: string) {
    this.id = id;
    this.name = name;
    this.dept = dept;
    this.city = city;
};
Employee.prototype.writeDept = function() {
    console.log(`${this.name} works in ${this.dept}`);
};

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");

let data: (Person | Employee )[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"},
     salesEmployee];

data.forEach(item => {
    if ("dept" in item) {
        item.writeDept();
    } else {
        console.log(`${item.id} ${item.name}, ${item.city}`);
    }
});

The TypeScript compiler may not understand the significance of the constructor function, but it can 
match the objects it creates by shape. The listing adds a shape type that corresponds to those created by the 
constructor function, including the method that is accessed through the prototype. For convenience, I have 
given the shape type an alias that matches the name of the constructor function, but that is optional because 
the compiler keeps track of variable names and type names separately.

Notice that the type guard has changed in Listing 11-5 so that the type is narrowed by checking for 
a property. The TypeScript compiler isn’t able to use the instanceof operator as a type guard for objects 
created by a constructor function, so I have used one of the techniques described in Chapter 10. The result 
is that the compiler can match the shape of the objects created by the Employee constructor function to the 
shape defined by the Employee type and differentiate between objects based on the presence of the dept 
property, producing the following output when the code is compiled and executed:

bsmith Bob Smith, London
ajones Alice Jones, Paris
dpeters Dora Peters, New York
Fidel Vega works in Sales



Chapter 11 ■ Working With Classes and interfaCes

256

 Using Classes
TypeScript doesn’t have good support for constructor functions, but that is because the focus has been 
on classes, building on the features provided by JavaScript to make them more familiar to programmers 
accustomed to languages such as C#. Listing 11-6 replaces the factory function with a class. 

Listing 11-6. Using a Class in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {
    id: string;
    name: string;
    dept: string;
    city: string;

    constructor(id: string, name: string, dept: string, city: string) {
        this.id = id;
        this.name = name;
        this.dept = dept;
        this.city = city;
    }

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");

let data: (Person | Employee )[] =
    [{ id: "bsmith", name: "Bob Smith", city: "London" },
     { id: "ajones", name: "Alice Jones", city: "Paris"},
     { id: "dpeters", name: "Dora Peters", city: "New York"},
     salesEmployee];

data.forEach(item => {
    if (item instanceof Employee) {
        item.writeDept();
    } else {
        console.log(`${item.id} ${item.name}, ${item.city}`);
    }
});

The syntax for a TypeScript class requires the declaration of instance properties and their types. This 
leads to more verbose classes—although I demonstrate a feature that addresses this shortly—but it has 
the advantage of allowing the constructor parameter types to be different from the types of the instance 



Chapter 11 ■ Working With Classes and interfaCes

257

properties to which they are assigned. Objects are created from classes using the standard new keyword, and 
the compiler understands the use of the instanceof keyword for type narrowing when classes are used.

As you will learn in the sections that follow, TypeScript provides powerful features for classes, and a 
TypeScript class can look different from the standard JavaScript classes described in Chapter 4. But it is 
important to understand that the compiler generates standard classes that depend on the JavaScript constructor 
function and prototype features at runtime. You can see the class that is generated from Listing 11-6 by looking at 
the contents of the index.js file in the dist folder, which will contain the following code:

...
class Employee {
    constructor(id, name, dept, city) {
        this.id = id;
        this.name = name;
        this.dept = dept;
        this.city = city;
    }
    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}
...

As you start using more advanced class features, it can be useful to examine the classes that the 
compiler produces to see how the TypeScript features are translated into pure JavaScript. The code in 
Listing 11-6 produces the following output when it is compiled and executed:

bsmith Bob Smith, London
ajones Alice Jones, Paris
dpeters Dora Peters, New York
Fidel Vega works in Sales

 Using the Access Control Keywords
JavaScript doesn’t provide access controls, which means that all of an object’s instance properties are 
accessible, such that classes—or the objects created from them—can be easily changed or dependencies 
created on implementation features. In pure JavaScript, property naming conventions are used to indicate 
which properties are not to be used, but TypeScript goes further and supports keywords that can be used to 
manage access to class properties, as described in Table 11-3. (There is also support for a proposed addition 
to the JavaScript specification, which I describe in the “Using JavaScript Private Fields” section.)

Table 11-3. The TypeScript Access Control Keywords

Name Description

public This keyword allows free access to a property or method and is the default if no keyword is 
used.

private This keyword restricts access to the class that defines the property or method it is applied to.

protected This keyword restricts access to the class that defines the property or method it is applied to 
and its subclasses.



Chapter 11 ■ Working With Classes and interfaCes

258

TypeScript treats properties as public by default when no keyword is specified, although you can 
explicitly apply the public keyword to make the purpose of the code easier to understand. Listing 11-7 
applies keywords to the properties defined by the Employee class.

Listing 11-7. Applying Access Control Keywords in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {
    public id: string;
    public name: string;
    private dept: string;
    public city: string;

    constructor(id: string, name: string, dept: string, city: string) {
        this.id = id;
        this.name = name;
        this.dept = dept;
        this.city = city;
    }

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
console.log(`Dept value: ${salesEmployee.dept}`);

The access control keywords are applied before the property name, as shown in Figure 11-1.

Figure 11-1. An access control keyword



Chapter 11 ■ Working With Classes and interfaCes

259

In Listing 11-7, I applied the public keyword to all the instance properties except dept, to which 
private has been applied. The effect of the private keyword is to restrict access to within the Employee 
class, and the compiler generates the following error for the statement that attempts to read the value of the 
dept property from outside the class:

src/index.ts(27,42): error TS2341: Property 'dept' is private and only accessible within 
class 'Employee'.

The only way that the dept property can be accessed is through the writeDept method, as used in 
Listing 11-8, which is part of the Employee class and allowed by the private keyword.

 ■ Caution the access protection features are enforced by the typescript compiler and are not part of the 
Javascript code that the compiler generates. do not rely on the private or protected keyword to shield 
sensitive data because it will be accessible to the rest of the application at runtime.

Listing 11-8. Using a Method in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {
    public id: string;
    public name: string;
    private dept: string;
    public city: string;

    constructor(id: string, name: string, dept: string, city: string) {
        this.id = id;
        this.name = name;
        this.dept = dept;
        this.city = city;
    }

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();

The code in Listing 11-8 produces the following output when it compiled and executed:

Fidel Vega works in Sales



Chapter 11 ■ Working With Classes and interfaCes

260

ENSURING INSTANCE PROPERTIES ARE INITIALIZED

When the strictPropertyInitialization configuration option is set to true, the typescript compiler 
reports an error if a class defines a property that is not assigned a value, either as it is defined or by the 
constructor. the strictNullChecks option must also be enabled for this feature to work.

 Using JavaScript Private Fields
TypeScript supports a JavaScript feature working its way through the standardization process and that is 
likely to be added to the language specification. This feature is support for private fields, which provides an 
alternative to the private keyword, as shown in Listing 11-9. 

 ■ Note My advice is to use the typescript private keyword, at least until private fields become part of the 
Javascript specification.

Listing 11-9. Using a Private Field in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {
    public id: string;
    public name: string;
    #dept: string;
    public city: string;

    constructor(id: string, name: string, dept: string, city: string) {
        this.id = id;
        this.name = name;
        this.#dept = dept;
        this.city = city;
    }

    writeDept() {
        console.log(`${this.name} works in ${this.#dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();

Private fields are denoted with the # character, as shown in Figure 11-2.



Chapter 11 ■ Working With Classes and interfaCes

261

By prefixing the name of the dept variable, I restrict its access to the class that defines it. The # character 
is also required to get or set the value of the field, like this:

...
this.#dept = dept;
...

The key advantage over the TypeScript private keyword is that the # character is not removed during 
the compilation process, which means that access control is enforced by the JavaScript runtime. Like most 
TypeScript features, the private keyword is not included in the JavaScript code produced by the compiler, 
which means that access control is not enforced in the JavaScript code.

There are limitations. This feature applies only to fields and cannot be used with methods. There is 
a proposal for private methods, but it isn’t yet supported by the TypeScript compiler. And because this 
feature is not part of the JavaScript language specification, the TypeScript compiler implements the feature 
indirectly by adding code to the JavaScript output. If you examine the index.js file in the dist folder, you 
can see how the compiler handles private fields.

var __classPrivateFieldSet = (this && this.__classPrivateFieldSet) || function (receiver, 
privateMap, value) {
    if (!privateMap.has(receiver)) {
        throw new TypeError("attempted to set private field on non-instance");
    }
    privateMap.set(receiver, value);
    return value;
};
var __classPrivateFieldGet = (this && this.__classPrivateFieldGet) || function (receiver, 
privateMap) {
    if (!privateMap.has(receiver)) {
        throw new TypeError("attempted to get private field on non-instance");
    }
    return privateMap.get(receiver);
};
var _dept;
class Employee {
    constructor(id, name, dept, city) {
        _dept.set(this, void 0);
        this.id = id;
        this.name = name;
        __classPrivateFieldSet(this, _dept, dept);
        this.city = city;
    }

Figure 11-2. A private field



Chapter 11 ■ Working With Classes and interfaCes

262

    writeDept() {
        console.log(`${this.name} works in ${__classPrivateFieldGet(this, _dept)}`);
    }
}
_dept = new WeakMap();
let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();

It is difficult to implement access controls when they are not available in the runtime, and the result is 
an approximation, at best. If you know that your target runtime supports the proposed private fields feature, 
then you can include the private fields in the compiled JavaScript code by selecting the ESNext version in the 
tsconfig.json file, as shown in Listing 11-10.

Listing 11-10. Changing the Version Target in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "esNext",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        // "strictNullChecks": true,
        // "suppressExcessPropertyErrors": true
    }
}

No configuration option enables just the private fields feature, so you must make sure that your 
JavaScript runtime supports all the features that are enabled by the ESNext target version, which changes 
from release to release. When the TypeScript file is compiled, the private fields are passed on directly, 
producing the following code:

class Employee {
    constructor(id, name, dept, city) {
        this.id = id;
        this.name = name;
        this.#dept = dept;
        this.city = city;
    }
    #dept;
    writeDept() {
        console.log(`${this.name} works in ${this.#dept}`);
    }
}
let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();

 Defining Read-Only Properties
The readonly keyword can be used to create instance properties whose value is assigned by the constructor 
but cannot otherwise be changed, as shown in Listing 11-11. 



Chapter 11 ■ Working With Classes and interfaCes

263

Listing 11-11. Creating a Read-Only Property in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {
    public readonly id: string;
    public name: string;
    #dept: string;
    public city: string;

    constructor(id: string, name: string, dept: string, city: string) {
        this.id = id;
        this.name = name;
        this.#dept = dept;
        this.city = city;
    }

    writeDept() {
        console.log(`${this.name} works in ${this.#dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();
salesEmployee.id = "fidel";

The readonly keyword must come after the access control keyword if one has been used, as shown in 
Figure 11-3.

The application of the readonly keyword to the id property in Listing 11-11 means the value assigned 
by the constructor cannot be changed subsequently. The statement that attempts to assign a new value to 
the id property causes the following compiler error:

src/index.ts(27,15): error TS2540: Cannot assign to 'id' because it is a read-only property.

Figure 11-3. A read-only property



Chapter 11 ■ Working With Classes and interfaCes

264

 ■ Caution the readonly keyword is enforced by the typescript compiler and does not affect the Javascript 
code that the compiler generates. do not use this feature to protect sensitive data or operations.

 Simplifying Class Constructors
Pure JavaScript classes use constructors that create instance properties dynamically, but TypeScript requires 
properties to be explicitly defined. The TypeScript approach is the one that most programmers find familiar, 
but it can be verbose and repetitive, especially when most constructor parameters are assigned to properties 
that have the same name. TypeScript supports a more concise syntax for constructors that avoids the “define 
and assign” pattern, as shown in Listing 11-12. 

Listing 11-12. Simplifying the Constructor in the index.ts File in the src Folder

type Person = {
    id: string,
    name: string,
    city: string
};

class Employee {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

let salesEmployee = new Employee("fvega", "Fidel Vega", "Sales", "Paris");
salesEmployee.writeDept();
//salesEmployee.id = "fidel";

To simplify the constructor, access control keywords are applied to the parameters, as shown in 
Figure 11-4.

Figure 11-4. Applying access control keywords to constructor parameters



Chapter 11 ■ Working With Classes and interfaCes

265

The compiler automatically creates an instance property for each of the constructor arguments to 
which an access control keyword has been applied and assigns the parameter value. The use of the access 
control keywords doesn’t change the way the constructor is invoked and is required only to tell the compiler 
that corresponding instance variables are required. The concise syntax can be mixed with conventional 
parameters if required, and the readonly keyword is carried over to the instance properties created by the 
compiler. The code in Listing 11-12 produces the following output:

Fidel Vega works in Sales

 Using Class Inheritance
TypeScript builds on the standard class inheritance features to make them more consistent and familiar, 
with some useful additions for commonly required tasks and for restricting some of the JavaScript 
characteristics that can cause problems. Listing 11-13 replaces the Person type alias with a class that 
provides the same features and uses it as the superclass for Employee. 

 ■ Note i have shown multiple classes in the same code file, but a common convention is to separate each 
class into its own file, which can make a project easier to navigate and understand. You can see more realistic 
examples in part 3, where i build a series of web applications.

Listing 11-13. Adding a Class in the index.ts File in the src Folder

class Person {

    constructor(public id: string, public name: string,
        public city: string) { }
}

class Employee extends Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        super(id, name, city);
    }

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

let data = [new Person("bsmith", "Bob Smith", "London"),
    new Employee("fvega", "Fidel Vega", "Sales", "Paris")];

data.forEach(item => {
    console.log(`Person: ${item.name}, ${item.city}`);



Chapter 11 ■ Working With Classes and interfaCes

266

    if (item instanceof Employee) {
        item.writeDept();
    }
});

When using the extends keyword, TypeScript requires that the superclass constructor is invoked 
using the super keyword, ensuring that its properties are initialized. The code in Listing 11-13 produces the 
following output:

Person: Bob Smith, London
Person: Fidel Vega, Paris
Fidel Vega works in Sales

 Understanding Type Inference for Subclasses
Caution is required when letting the compiler infer types from classes because it is easy to produce 
unexpected results by assuming the compiler has insight into the hierarchy of classes.

The data array in Listing 11-13 contains a Person object and an Employee object, and if you examine the 
index.d.ts file in the dist folder, you will see that the compiler has inferred Person[] as the array type, like 
this:

...
declare let data: Person[];
...

If you are familiar with other programming languages, you might reasonably assume that the compiler 
has realized that Employee is a subclass of Person and that all the objects in the array can be treated as 
Person objects. In reality, the compiler creates a union of the types the array contains, which would be 
Person | Employee, and determines that this is equivalent to Person since a union only presents the 
features that are common to all types. It is important to remember that the compiler pays attention to object 
shapes, even if the developer is paying attention to classes. This can appear to be an unimportant difference, 
but it has consequences when using objects that share a common superclass, as shown in Listing 11-14.

Listing 11-14. Using Objects with a Common Superclass in the index.ts File in the src Folder

class Person {

    constructor(public id: string, public name: string,
        public city: string) { }
}

class Employee extends Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        super(id, name, city);
    }



Chapter 11 ■ Working With Classes and interfaCes

267

    writeDept() {
        console.log(`${this.name} works in ${this.dept}`);
    }
}

class Customer extends Person {
    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number) {
        super(id, name, city);
    }
}

class Supplier extends Person {
    constructor(public readonly id: string, public name: string,
            public city: string, public companyName: string) {
        super(id, name, city);
    }
}

let data = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];

data.push(new Supplier("dpeters", "Dora Peters", "New York", "Acme"));

data.forEach(item => {
    console.log(`Person: ${item.name}, ${item.city}`);
    if (item instanceof Employee) {
        item.writeDept();
    } else if (item instanceof Customer) {
        console.log(`Customer ${item.name} has ${item.creditLimit} limit`);
    } else if (item instanceof Supplier) {
        console.log(`Supplier ${item.name} works for ${item.companyName}`);
    }
});

This example won’t compile because the TypeScript compiler has inferred the type for the data 
array based on the types of the objects it contains and has not reflected the shared superclass. Here is the 
statement from the index.d.ts file in the dist folder that shows the type the compiler inferred:

...
declare let data: (Employee | Customer)[];
...

The array can only contain Employee or Customer objects, and the errors are reported because a 
Supplier object is added. To resolve this problem, a type annotation can be used to tell the compiler that the 
array can contain Product objects, as shown in Listing 11-15.



Chapter 11 ■ Working With Classes and interfaCes

268

Listing 11-15. Using a Type Annotation in the index.ts File in the src Folder

...
let data: Person[] = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];

data.push(new Supplier("dpeters", "Dora Peters", "New York", "Acme"));
...

The compiler will allow the data array to store Product objects and objects created from its subclasses. 
The code in Listing 11-15 produces the following output:

Person: Fidel Vega, Paris
Fidel Vega works in Sales
Person: Alice Jones, London
Customer Alice Jones has 500 limit
Person: Dora Peters, New York
Supplier Dora Peters works for Acme

 Using an Abstract Class
Abstract classes cannot be instantiated directly and are used to describe common functionality that must 
be implemented by subclasses, forcing subclasses to adhere to a specific shape but allowing class-specific 
implementations of specific methods, as shown in Listing 11-16. 

Listing 11-16. Defining an Abstract Class in the index.ts File in the src Folder

abstract class Person {

    constructor(public id: string, public name: string,
        public city: string) { }

    getDetails(): string {
        return `${this.name}, ${this.getSpecificDetails()}`;
    }

    abstract getSpecificDetails(): string;
}

class Employee extends Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        super(id, name, city);
    }

    getSpecificDetails() {
        return `works in ${this.dept}`;
    }
}



Chapter 11 ■ Working With Classes and interfaCes

269

class Customer extends Person {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number) {
        super(id, name, city);
    }

    getSpecificDetails() {
        return `has ${this.creditLimit} limit`;
    }
}

class Supplier extends Person {

    constructor(public readonly id: string, public name: string,
            public city: string, public companyName: string) {
        super(id, name, city);
    }

    getSpecificDetails() {
        return `works for ${this.companyName}`;
    }
}

let data: Person[] = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];
data.push(new Supplier("dpeters", "Dora Peters", "New York", "Acme"));

data.forEach(item => console.log(item.getDetails()));

Abstract classes are created using the abstract keyword before the class keyword, as shown in 
Figure 11-5.

The abstract keyword is also applied to individual methods, which are defined without a body, as 
shown in Figure 11-6.

Figure 11-5. Defining an abstract class



Chapter 11 ■ Working With Classes and interfaCes

270

When a class extends an abstract class, it must implement all the abstract methods. In the example, the 
abstract Person class defines an abstract method named getSpecificDetails, which must be implemented 
by the Employee, Customer, and Supplier classes. The Person class also defines a regular method named 
getDetails, which invokes the abstract method and uses its result.

Objects instantiated from classes derived from an abstract class can be used through the abstract 
class type, which means that the Employee, Customer, and Supplier objects can be stored in a Person 
array, although only the properties and methods defined by the Person class can be used unless objects are 
narrowed to a more specific type. The code in Listing 11-16 produces the following output:

Fidel Vega, works in Sales
Alice Jones, has 500 limit
Dora Peters, works for Acme

 Type Guarding an Abstract Class
Abstract classes are implemented as regular classes in the JavaScript generated by the TypeScript compiler. 
The drawback of this approach is that it is the TypeScript compiler that prevents abstract classes from being 
instantiated, and this isn’t carried over into the JavaScript code, potentially allowing objects to be created 
from the abstract class. However, this approach does mean that the instanceof keyword can be used to 
narrow types, as shown in Listing 11-17. 

Listing 11-17. Type Guarding an Abstract Class in the index.ts File in the src Folder

abstract class Person {

    constructor(public id: string, public name: string,
        public city: string) { }

    getDetails(): string {
        return `${this.name}, ${this.getSpecificDetails()}`;
    }

    abstract getSpecificDetails(): string;
}

class Employee extends Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        super(id, name, city);
    }

Figure 11-6. Defining an abstract method



Chapter 11 ■ Working With Classes and interfaCes

271

    getSpecificDetails() {
        return `works in ${this.dept}`;
    }
}

class Customer {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number) {
    }
}

let data: (Person | Customer)[] = [
        new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];

data.forEach(item => {
    if (item instanceof Person) {
        console.log(item.getDetails());
    } else {
        console.log(`Customer: ${item.name}`);
    }
});

In this listing, Employee extends the abstract Person class, but the Customer class does not. The 
instanceof operator can be used to identify any object instantiated from a class that extends the abstract 
class, which allows narrowing in the Person | Customer union used as the type for the array. The code in 
Listing 11-17 produces the following output:

Fidel Vega, works in Sales
Customer: Alice Jones

 Using Interfaces
Interfaces are used to describe the shape of an object, which a class that implements the interface must 
conform to, as shown in Listing 11-18. 

 ■ Note interfaces have a similar purpose to shape types, described in Chapter 10, and successive versions 
of typescript have eroded the differences between these two features, to the point where they can often be 
used interchangeably to achieve the same effect, especially when dealing with simple types. interfaces do have 
some useful features, however, and they provide a development experience that is more consistent with other 
languages, such as C#.



Chapter 11 ■ Working With Classes and interfaCes

272

Listing 11-18. Using an Interface in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;
}

class Employee implements Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works in ${this.dept}`;
    }
}

class Customer implements Person {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number) {
        // no statements required
    }

    getDetails() {
        return `${this.name} has ${this.creditLimit} limit`;
    }
}

let data: Person[] = [
        new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];
data.forEach(item => console.log(item.getDetails()));

Interfaces are defined by the interface keyword and contain the set of properties and methods that a 
class must provide in order to conform to the interface, as shown in Figure 11-7.

Figure 11-7. Defining an interface



Chapter 11 ■ Working With Classes and interfaCes

273

Unlike abstract classes, interfaces don’t implement methods or define a constructor and just define a 
shape. Interfaces are implemented by classes through the implements keyword, as shown in Figure 11-8.

The Person interface defines a name property and a getDetails method, so the Employee and Customer 
classes must define the same property and method. These classes can define extra properties and methods, 
but they can only conform to the interface by providing name and getDetails. The interface can be used in 
type annotations, such as the array in the example.

...
let data: Person[] = [
        new Employee("fvega", "Fidel Vega", "Sales", "Paris"),
        new Customer("ajones", "Alice Jones", "London", 500)];
...

The data array can contain any object created from a class that implements the Product array, although 
the function passed to the forEach method can access only the features defined by the interface unless 
objects are narrowed to a more specific type. The code in Listing 11-18 produces the following output:

Fidel Vega works in Sales
Alice Jones has 500 limit

MERGING INTERFACE DECLARATIONS

interfaces can be defined in multiple interface declarations, which are merged by the compiler to form 
a single interface. this is an odd feature—and one that i have yet to find useful in my own projects. 
the declarations must be made in the same code file, and they must all be exported (defined with the 
export keyword) or defined locally (defined without the export keyword).

 Implementing Multiple Interfaces
A class can implement more than one interface, meaning it must define the methods and properties defined 
by all of them, as shown in Listing 11-19. 

Listing 11-19. Implementing Multiple Interfaces in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;
}

Figure 11-8. Implementing an interface



Chapter 11 ■ Working With Classes and interfaCes

274

interface DogOwner {
    dogName: string;
    getDogDetails(): string;
}

class Employee implements Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works in ${this.dept}`;
    }
}

class Customer implements Person, DogOwner {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number,
            public dogName ) {
        // no statements required
    }

    getDetails() {
        return `${this.name} has ${this.creditLimit} limit`;
    }

    getDogDetails() {
        return `${this.name} has a dog named ${this.dogName}`;
    }
}

let alice = new Customer("ajones", "Alice Jones", "London", 500, "Fido");

let dogOwners: DogOwner[] = [alice];
dogOwners.forEach(item => console.log(item.getDogDetails()));

let data: Person[] = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"), alice];
data.forEach(item => console.log(item.getDetails()));

Interfaces are listed after the implements keyword, separated with commas. In the listing, the Customer 
class implements the Person and DogOwner interfaces, which means that the Person object assigned to 
the variable named alice can be added to the arrays typed for Person and DogOwner objects. The code in 
Listing 11-19 produces the following output:

Alice Jones has a dog named Fido
Fidel Vega works in Sales
Alice Jones has 500 limit



Chapter 11 ■ Working With Classes and interfaCes

275

 ■ Note a class can implement multiple interfaces only if there are no overlapping properties with conflicting 
types. for example, if the Person interface defined a string property named id and if the DogOwner interface 
defined a number property with the same name, the Customer class would not be able to implement both 
interfaces because there is no value that could be assigned to its id property that could represent both types.

 Extending Interfaces
Interfaces can be extended, just like classes. The same basic approach is used, and the result is an interface 
that contains the properties and methods inherited from its parent interfaces, along with any new features 
that are defined, as shown in Listing 11-20. 

Listing 11-20. Extending an Interface in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;
}

interface DogOwner extends Person {
    dogName: string;
    getDogDetails(): string;
}

class Employee implements Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works in ${this.dept}`;
    }
}

class Customer implements DogOwner {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number,
            public dogName ) {
        // no statements required
    }

    getDetails() {
        return `${this.name} has ${this.creditLimit} limit`;
    }



Chapter 11 ■ Working With Classes and interfaCes

276

    getDogDetails() {
        return `${this.name} has a dog named ${this.dogName}`;
    }
}

let alice = new Customer("ajones", "Alice Jones", "London", 500, "Fido");

let dogOwners: DogOwner[] = [alice];
dogOwners.forEach(item => console.log(item.getDogDetails()));

let data: Person[] = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"), alice];
data.forEach(item => console.log(item.getDetails()));

The extend keyword is used to extend an interface. In the listing, the DogOwner interface extends 
the Person interface, which means that classes that implement DogOwner must define the properties and 
methods from both interfaces. Objects created from the Customer class can be treated as both DogOwner and 
Person objects, since they always define the shapes required by each interface. The code in Listing 11-20 
produces the following output:

Alice Jones has a dog named Fido
Fidel Vega works in Sales
Alice Jones has 500 limit

INTERFACES AND SHAPE TYPES

as noted at the start of this section, shape types and interfaces can often be used interchangeably. 
Classes can, for example, use the implements keyword with a shape type to indicate they implement 
the properties in the shape, like this:

...
type Person = {
    name: string;
    getDetails(): string;
};

class Employee implements Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works in ${this.dept}`;
    }
}
...



Chapter 11 ■ Working With Classes and interfaCes

277

this fragment of code is based on listing 11-20 and replaces the Person interface with a shape type 
that has the same properties. the Employee class uses the implements keyword to declare that it 
conforms to the Person shape.

interfaces can also conform to shape types, using the extends keyword, like this:

...
type NamedObject = {
    name: string;
};

interface Person extends NamedObject {
    getDetails(): string;
};
...

in this fragment of code, the Person interface inherits the name property from the NamedObject shape 
type. Classes that implement the Person interface must define the name property, along with the 
getDetails method that the interface specifies directly.

 Defining Optional Interface Properties and Methods
Adding an optional property to an interface allows classes that implement the interface to provide the 
property without making it a requirement, as shown in Listing 11-21. 

Listing 11-21. Adding an Optional Property in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;

    dogName?: string;
    getDogDetails?(): string;
}

class Employee implements Person {

    constructor(public readonly id: string, public name: string,
            private dept: string, public city: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works in ${this.dept}`;
    }
}

class Customer implements Person {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number,



Chapter 11 ■ Working With Classes and interfaCes

278

            public dogName) {
        // no statements required
    }

    getDetails() {
        return `${this.name} has ${this.creditLimit} limit`;
    }

    getDogDetails() {
        return `${this.name} has a dog named ${this.dogName}`;
    }
}

let alice = new Customer("ajones", "Alice Jones", "London", 500, "Fido");
let data: Person[] = [new Employee("fvega", "Fidel Vega", "Sales", "Paris"), alice];
data.forEach(item => {
    console.log(item.getDetails());
    if (item.getDogDetails) {
        console.log(item.getDogDetails());
    }
});

Declaring an optional property on an interface is done using the question mark character after the 
name, as shown in Figure 11-9.

Optional interface features can be defined through the interface type without causing compiler errors, 
but you must check to ensure that you do not receive undefined values since objects may have been created 
from classes that have not implemented them, like this:

...
data.forEach(item => {
    console.log(item.getDetails());
    if (item.getDogDetails) {
        console.log(item.getDogDetails());
    }
});
...

Figure 11-9. Defining optional interface members



Chapter 11 ■ Working With Classes and interfaCes

279

Only one of the types in Listing 11-21 that implements the Person interface defines the getDogDetails 
method. This method can be accessed through the Person type without narrowing to a specific class but may 
not have been defined, which is why I use type coercion in a conditional expression so that the method is 
only invoked on objects that have defined it. The code in Listing 11-21 produces the following output:

Fidel Vega works in Sales
Alice Jones has 500 limit
Alice Jones has a dog named Fido

 Defining an Abstract Interface Implementation
Abstract classes can be used to implement some or all of the features described by an interface, as shown in 
Listing 11-22. This can reduce code duplication when some of the classes that implement an interface would 
do so, in the same way, using the same code. 

Listing 11-22. Creating an Abstract Implementation in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;

    dogName?: string;
    getDogDetails?(): string;
}

abstract class AbstractDogOwner implements Person {

    abstract name: string;
    abstract dogName?: string;

    abstract getDetails();

    getDogDetails() {
        if (this.dogName) {
            return `${this.name} has a dog called ${this.dogName}`;
        }
    }
}

class DogOwningCustomer extends AbstractDogOwner {

    constructor(public readonly id: string, public name: string,
            public city: string, public creditLimit: number,
            public dogName) {
        super();
    }



Chapter 11 ■ Working With Classes and interfaCes

280

    getDetails() {
        return `${this.name} has ${this.creditLimit} limit`;
    }
}

let alice = new DogOwningCustomer("ajones", "Alice Jones", "London", 500, "Fido");
if (alice.getDogDetails) {
    console.log(alice.getDogDetails());
}

AbstractDogOwner provides a partial implementation of the Person interface but declares the interface 
features that it doesn’t implement as abstract, which forces subclasses to implement them. There is one 
subclass that extends AbstractDogOwner, which inherits the getDogDetails method from the abstract class. 
The code in Listing 11-22 produces the following output:

Alice Jones has a dog called Fido

 Type Guarding an Interface
There is no JavaScript equivalent to interfaces, and no details of interfaces are included in the JavaScript 
code generated by the TypeScript compiler. This means that the instanceof keyword cannot be used to 
narrow interface types, and type guarding can be done only by checking for one or more properties that are 
defined by the interface, as shown in Listing 11-23.

Listing 11-23. Type Guarding an Interface in the index.ts File in the src Folder

interface Person {
    name: string;
    getDetails(): string;
}

interface Product {
    name: string;
    price: number;
}

class Employee implements Person {
    constructor(public name: string, public company: string) {
        // no statements required
    }

    getDetails() {
        return `${this.name} works for ${this.company}`;
    }
}

class SportsProduct implements Product {
    constructor(public name: string, public category: string,



Chapter 11 ■ Working With Classes and interfaCes

281

            public price: number) {
        // no statements required
    }
}

let data: (Person | Product)[] = [new Employee("Bob Smith", "Acme"),
    new SportsProduct("Running Shoes", "Running", 90.50),
    new Employee("Dora Peters", "BigCo")];

data.forEach(item => {
    if ("getDetails" in item) {
        console.log(`Person: ${item.getDetails()}`);
    } else {
        console.log(`Product: ${item.name}, ${item.price}`);
    }
});

This listing uses the presence of the getDetails property to identify those objects that implement the 
Person interface, allowing the contents of the data array to be narrowed to the Person or Product type. 
Listing 11-23 produces the following output:

Person: Bob Smith works for Acme
Product: Running Shoes, 90.5
Person: Dora Peters works for BigCo

 Dynamically Creating Properties
The TypeScript compiler only allows values to be assigned to properties that are part of an object’s type, 
which means that interfaces and classes have to define all the properties that the application requires.

By contrast, JavaScript allows new properties to be created on objects simply by assigning a value 
to an unused property name. The TypeScript index signature feature bridges these two models, allowing 
properties to be defined dynamically while preserving type safety, as shown in Listing 11-24. 

Listing 11-24. Defining an Index Signature in the index.ts File in the src Folder

interface Product {
    name: string;
    price: number;
}

class SportsProduct implements Product {
    constructor(public name: string, public category: string,
            public price: number) {
        // no statements required
    }
}



Chapter 11 ■ Working With Classes and interfaCes

282

class ProductGroup {
    constructor(...initialProducts: [string, Product][]) {
        initialProducts.forEach(p => this[p[0]] = p[1]);
    }

    [propertyName: string]: Product;
}

let group
    = new ProductGroup(["shoes", new SportsProduct("Shoes", "Running", 90.50)]);
group.hat = new SportsProduct("Hat", "Skiing", 20);
Object.keys(group).forEach(k => console.log(`Property Name: ${k}`));

The ProductGroup class receives an array of [string, Product] tuples through its constructor, each 
of which is used to create a property using the string value as its name and the Product as its value. The 
compiler will allow the constructor to create the property and give it the any type, unless the noImplicitAny 
or strict compiler options are enabled, when an error is thrown.

Classes can define an index signature to allow properties to be created dynamically outside the 
constructor (and to prevent noImplicitAny compiler errors). An index signature uses square brackets to 
specify the type of the property keys, followed by a type annotation that restricts the types that can be used to 
create dynamic properties, as shown in Figure 11-10.

The property name type can be only string or number, but the property value type can be any type. The 
index signature in the figure tells the compiler to allow dynamic properties that use string values for names 
and that are assigned Product values, such as this property:

...
group.hat = new SportsProduct("Hat", "Skiing", 20);
...

This statement creates a property named hat. The code in Listing 11-24 produces the following output, 
showing the names of the properties created by the constructor and by the subsequent statement:

Property Name: shoes
Property Name: hat

Figure 11-10. An index signature



Chapter 11 ■ Working With Classes and interfaCes

283

 Enabling Index Value Checking
One potential pitfall with index signatures is that the TypeScript compiler assumes that you will only 
access properties that exist, which is inconsistent with the broader approach taken by TypeScript to force 
assumptions into the open so they can be explicitly verified. In Listing 11-25, I access a property that doesn’t 
exist via an index signature.

Listing 11-25. Accessing a Nonexistent Property in the index.ts File in the src Folder

interface Product {
    name: string;
    price: number;
}

class SportsProduct implements Product {
    constructor(public name: string, public category: string,
            public price: number) {
        // no statements required
    }
}

class ProductGroup {
    constructor(...initialProducts: [string, Product][]) {
        initialProducts.forEach(p => this[p[0]] = p[1]);
    }

    [propertyName: string]: Product;
}

let group
    = new ProductGroup(["shoes", new SportsProduct("Shoes", "Running", 90.50)]);
group.hat = new SportsProduct("Hat", "Skiing", 20);

let total = group.hat.price + group.boots.price;
console.log(`Total: ${total}`);

The statement that assigns a value to total uses the index signature to access hat and boots properties. 
No boots property has been created, but the code still compiles, and the result is an error when the 
compiled code is executed.

let total = group.hat.price + group.boots.price;
                                          ^
TypeError: Cannot read property 'price' of undefined
    at Object.<anonymous> (C:\types\dist\index.js:16:43)

To configure the compiler to check index signatures accesses, set the noUncheckedIndexedAccess and 
strictNullChecks configuration options to true, as shown in Listing 11-26.



Chapter 11 ■ Working With Classes and interfaCes

284

Listing 11-26. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "esNext",
        "outDir": "./dist",
        "rootDir": "./src",
        "declaration": true,
        "strictNullChecks": true,
        "noUncheckedIndexedAccess": true
    }
}

Save the configuration changes, and the code will be recompiled. This time the TypeScript compiler 
generates an error.

src/index.ts(25,31): error TS2532: Object is possibly 'undefined'.

To prevent the error, I must make sure that the property exists before attempting to use its value, as 
shown in Listing 11-27, to guard against undefined values.

Listing 11-27. Checking a Property in the index.ts File in the src Folder

interface Product {
    name: string;
    price: number;
}

class SportsProduct implements Product {
    constructor(public name: string, public category: string,
            public price: number) {
        // no statements required
    }
}

class ProductGroup {
    constructor(...initialProducts: [string, Product][]) {
        initialProducts.forEach(p => this[p[0]] = p[1]);
    }

    [propertyName: string]: Product;
}

let group
    = new ProductGroup(["shoes", new SportsProduct("Shoes", "Running", 90.50)]);
group.hat = new SportsProduct("Hat", "Skiing", 20);

if (group.hat && group.boots) {
    let total = group.hat.price + group.boots.price;
    console.log(`Total: ${total}`);
}



Chapter 11 ■ Working With Classes and interfaCes

285

The if expression ensures that the boots property won’t be used if it is undefined. An alternative 
approach is to use optional chaining and the nullish operator to provide a fallback value, as shown in 
Listing 11-28.

Listing 11-28. Using a Fallback Value in the index.ts File in the src Folder

interface Product {
    name: string;
    price: number;
}

class SportsProduct implements Product {
    constructor(public name: string, public category: string,
            public price: number) {
        // no statements required
    }
}

class ProductGroup {
    constructor(...initialProducts: [string, Product][]) {
        initialProducts.forEach(p => this[p[0]] = p[1]);
    }

    [propertyName: string]: Product;
}

let group
    = new ProductGroup(["shoes", new SportsProduct("Shoes", "Running", 90.50)]);
group.hat = new SportsProduct("Hat", "Skiing", 20);

let total = group.hat.price + (group.boots?.price ?? 0);
console.log(`Total: ${total}`);

This code produces the following output:

Total: 20

 Summary
In this chapter, I explained the way that TypeScript enhances the JavaScript class feature, providing support 
for concise constructors, abstract classes, and access control keywords. I also described the interface feature, 
which is implemented by the compiler and provides an alternative way to describe the shape of objects so 
that classes can readily conform to them. In the next chapter, I describe the TypeScript support for generic 
types.



287© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_12

CHAPTER 12

Using Generic Types

Generic types are placeholders for types that are resolved when a class or function is used, allowing type-
safe code to be written that can deal with a range of different types, such as collection classes. This is a 
concept that is more easily demonstrated than explained, so I start this chapter with an example of the 
problem that generic types solve and then describe the basic ways that generic types are used. In Chapter 13, 
I describe the advanced generic type features that TypeScript provides. Table 12-1 summarizes the chapter.

For quick reference, Table 12-2 lists the TypeScript compiler options used in this chapter.

Table 12-1. Chapter Summary

Problem Solution Listing

Define a class or function that can 
safely operate on different types

Define a generic type parameter 5–7, 19, 20

Resolve a type for a generic type 
parameter

Use a generic type argument when instantiating the 
class or invoking the function

8–13

Extend a generic class Create a class that passes on, restricts, or fixes the 
generic type parameter inherited from the superclass

14–16

Type guard a generic type Use a type predicate function 17, 18

Describe a generic type without 
providing an implementation

Define an interface with a generic type parameter 21–25

Table 12-2. The TypeScript Compiler Options Used in This Chapter

Name Description

declaration This option produces type declaration files when enabled, which can be useful in 
understanding how types have been inferred. These files are described in more detail in 
Chapter 14.

module This option specifies the module format, as described in Chapter 5.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate TypeScript 
files.

target This option specifies the version of the JavaScript language that the compiler will target in 
its output.

https://doi.org/10.1007/978-1-4842-7011-0_12#DOI


Chapter 12 ■ Using generiC types

288

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7 and used in every chapter since. 
To prepare for this chapter, create a file called dataTypes.ts in the src folder, with the contents shown in 
Listing 12-1.

 ■ Tip you can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 12-1. The Contents of the dataTypes.ts File in the src Folder

export class Person {
    constructor(public name: string, public city: string) {}
}

export class Product {
    constructor(public name: string, public price: number) {}
}

export class City  {
    constructor(public name: string, public population: number) {}
}

export class Employee {
    constructor(public name: string, public role: string) {}
}

Replace the contents of the index.ts file in the src folder with the code shown in Listing 12-2.

Listing 12-2. Replacing the Contents of the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

[...people, ...products].forEach(item => console.log(`Item: ${item.name}`));

This listing uses an import statement to declare dependencies on the Person and Product classes 
defined in the dataTypes module. To enable module resolution, as described in Chapter 5, add the 
configuration statement shown in Listing 12-3 to the tsconfig.json file in the types folder.

Listing 12-3. Configuring the Compiler in the tsconfig.json File in the types Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",

https://github.com/Apress/essential-typescript-4


Chapter 12 ■ Using generiC types

289

        "rootDir": "./src",
        "declaration": true,
        // "strictNullChecks": true,
        // "noUncheckedIndexedAccess": true,
        "module": "CommonJS"
    }
}

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 12-4 
to start the TypeScript compiler so that it automatically executes code after it has been compiled.

Listing 12-4. Starting the TypeScript Compiler

npm start

The compiler will compile the project, execute the output, and then enter watch mode, producing the 
following output:

7:22:32 AM - Starting compilation in watch mode...
7:22:34 AM - Found 0 errors. Watching for file changes.
Item: Bob Smith
Item: Dora Peters
Item: Running Shoes
Item: Hat

 Understanding the Problem
The best way to understand how generic types work—and why they are useful—is to work through a 
common scenario that shows when regular types become difficult to manage. Listing 12-5 defines a class 
that manages a collection of Person objects.

Listing 12-5. Defining a Class in the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

class PeopleCollection {
    private items: Person[] = [];

    constructor(initialItems: Person[]) {
        this.items.push(...initialItems);
    }

    add(newItem: Person) {
        this.items.push(newItem);
    }



Chapter 12 ■ Using generiC types

290

    getNames(): string[] {
        return this.items.map(item => item.name);
    }

    getItem(index: number): Person {
        return this.items[index];
    }
}

let peopleData = new PeopleCollection(people);

console.log(`Names: ${peopleData.getNames().join(", ")}`);
let firstPerson = peopleData.getItem(0);
console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);

The PeopleCollection class operates on Person objects, which are provided via the constructor or 
the add method. The getNames method returns an array containing the name value of each Person object, 
and the getItem method allows a Person object to be retrieved using an index. A new instance of the 
PeopleCollection class is created, and its methods are called to produce the following output:

Names: Bob Smith, Dora Peters
First Person: Bob Smith, London

 Adding Support for Another Type
The problem with the PeopleCollection class is that it works only on Person objects. If I want to perform 
the same set of operations on Product objects, then the obvious choices present compromises. I could create 
a new class that duplicates the functionality. This is easy to do, but there will always be another type to deal 
with in the future, and the classes will quickly become difficult to manage. Another approach is to take 
advantage of the TypeScript features and modify the existing class to support multiple types, as shown in 
Listing 12-6.

Listing 12-6. Adding Type Support in the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type dataType = Person | Product;

class DataCollection {

    private items: dataType[] = [];

    constructor(initialItems: dataType[]) {
        this.items.push(...initialItems);
    }



Chapter 12 ■ Using generiC types

291

    add(newItem: dataType) {
        this.items.push(newItem);
    }

    getNames(): string[] {
        return this.items.map(item => item.name);
    }

    getItem(index: number): dataType {
        return this.items[index];
    }
}

let peopleData = new DataCollection(people);

console.log(`Names: ${peopleData.getNames().join(", ")}`);
let firstPerson = peopleData.getItem(0);
if (firstPerson instanceof Person) {
    console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);
}

The listing uses a type union to add support for the Product class. I could also have used an interface, 
an abstract class, or function type overrides, but the support for a wider range of types would require some 
form of type narrowing to get back to a specific type. The other problem is that the DataCollection class will 
accept both Person and Product objects. What I wanted was support for either Person or Product objects 
but not both. The code in Listing 12-6 produces the following output:

Names: Bob Smith, Dora Peters
First Person: Bob Smith, London

 Creating Generic Classes
A generic class is a class that has a generic type parameter. A generic type parameter is a placeholder for a 
type that is specified when the class is used to create a new object. Generic type parameters allow classes 
to be written that operate on a specific type without knowing what that type will be in advance, as shown in 
Listing 12-7. 

Listing 12-7. Using a Generic Type in the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

//type dataType = Person | Product;

class DataCollection<T> {

    private items: T[] = [];



Chapter 12 ■ Using generiC types

292

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    add(newItem: T) {
        this.items.push(newItem);
    }

    // getNames(): string[] {
    //     return this.items.map(item => item.name);
    // }

    getItem(index: number): T {
        return this.items[index];
    }
}

let peopleData = new DataCollection<Person>(people);

//console.log(`Names: ${peopleData.getNames().join(", ")}`);
let firstPerson = peopleData.getItem(0);
//if (firstPerson instanceof Person) {
console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);
//}

The DataCollection class has been defined with a generic type parameter, which is part of the class 
declaration, as shown in Figure 12-1. 

A generic type parameter is defined between angle brackets (the < and > characters), and only a name is 
specified. The convention is to start with the letter T as the name of the type parameter, although you are free 
to follow any naming scheme that makes sense in your project.

The result is known as a generic class, meaning a class that has at least one generic type parameter. The 
generic type parameter is named T in this example and can be used in place of a specific type. For example, 
the constructor can be defined to accept an array of T values, like this:

...
constructor(initialItems: T[]) {
    this.items.push(...initialItems);
}
...

Figure 12-1. A generic type parameter



Chapter 12 ■ Using generiC types

293

As the constructor shows, generic types can be used in type annotations, even though we don’t yet 
know the specific type for which it is a placeholder. The class in Listing 12-7 defines a single type parameter 
named T and so is referred to as DataCollection<T>, clearly indicating that it is a generic class. The code in 
Listing 12-7 produces the following output:

First Person: Bob Smith, London

 Understanding Generic Type Arguments
A generic type parameter is resolved to a specific type using a generic type argument when an instance of the 
DataCollection<T> class is created with the new keyword, as shown in Figure 12-2. 

The type argument uses angle brackets, and the argument in the example specifies the Person class.

...
let peopleData = new DataCollection<Person>(people);
...

This statement creates a DataCollection<T> object where the type parameter T will be Person. When an 
object is created from a generic class, its type incorporates the argument, such as DataCollection<Person>. 
The compiler enforces the TypeScript type rules using Person wherever it encounters T, which means 
that only Person objects can be passed to the constructor and the add method and that invoking the 
getItem method will return a Person object. TypeScript keeps track of the type argument used to create the 
DataCollection<Person> object, and no type assertions or type narrowing is required.

 Using Different Type Arguments
The value of a generic type parameter affects only a single object, and a different type can be used for the 
generic type argument for each use of the new keyword, producing a DataCollection<T> object that works 
with a different type, as shown in Listing 12-8. 

Listing 12-8. Using a Different Type Argument in the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

Figure 12-2. Creating an object with a generic type argument



Chapter 12 ■ Using generiC types

294

class DataCollection<T> {

    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    add(newItem: T) {
        this.items.push(newItem);
    }

    // getNames(): string[] {
    //     return this.items.map(item => item.name);
    // }

    getItem(index: number): T {
        return this.items[index];
    }
}

let peopleData = new DataCollection<Person>(people);
let firstPerson = peopleData.getItem(0);
console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);

let productData = new DataCollection<Product>(products);
let firstProduct = productData.getItem(0);
console.log(`First Product: ${firstProduct.name}, ${firstProduct.price}`);

The new statements create a DataCollection<Product> object by using Product for the generic type 
argument. TypeScript keeps track of which type has been specified for each object and ensures only that the 
type can be used. The code in Listing 12-8 produces the following output:

First Person: Bob Smith, London
First Product: Running Shoes, 100

 Constraining Generic Type Values
In Listing 12-7 and Listing 12-8, I commented out the getNames method. By default, any type can be used for 
a generic type argument, so the compiler treats generic types as any by default, meaning that it won’t let me 
access the name property on which the getNames method depends without some kind of type narrowing.

I could do the type narrowing within the getNames method, but a more elegant approach is to restrict 
the range of types that can be used as the value for the generic type parameter so that the class can be 
instantiated only with types that define the features that the generic class relies on, as shown in Listing 12-9. 



Chapter 12 ■ Using generiC types

295

Listing 12-9. Restricting Generic Types in the index.ts File in the src Folder

import { Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

class DataCollection<T extends (Person | Product)> {
    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    add(newItem: T) {
        this.items.push(newItem);
    }

    getNames(): string[] {
        return this.items.map(item => item.name);
    }

    getItem(index: number): T {
        return this.items[index];
    }
}

let peopleData = new DataCollection<Person>(people);
let firstPerson = peopleData.getItem(0);
console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);
console.log(`Person Names: ${peopleData.getNames().join(", ")}`);

let productData = new DataCollection<Product>(products);
let firstProduct = productData.getItem(0);
console.log(`First Product: ${firstProduct.name}, ${firstProduct.price}`);
console.log(`Product Names: ${productData.getNames().join(", ")}`);

The extends keyword is used after the type parameter name to specify a constraint, as shown in 
Figure 12-3.

Figure 12-3. A generic type parameter restriction



Chapter 12 ■ Using generiC types

296

The change in Listing 12-9 can be thought of as creating two levels of restriction on the 
DataCollection<T> class: one applied when a new object is created and one that is applied when the object 
is used.

The first restriction constrains the types that can be used as the generic type argument to create a new 
DataCollection<Product | Person> object so that only types that can be assigned to Product | Person 
can be used as the type parameter value. Three types can meet that restriction: Person, Product, and the 
Person | Product union. These are the only types that can be assigned to the generic type parameter T.

The second restriction applies the value of the generic type parameter when the object is used. When 
a new object is created with Product as the type parameter, for example, Product is the value of T: the 
constructor and add methods will only accept Product objects, and the getItem method will only return a 
Product object. When Person is used as the type parameter, Person is the value of T and becomes the type 
used by the constructor and methods.

Put another way, the extends keyword constrains the types that can be assigned to the type parameter, 
and the type parameter restricts the types that can be used by a specific instance of the class. Since the 
compiler knows all the types that can be used for the generic type parameter to define a name property, it 
allows me to uncomment the getItem method and read the value of the name property without causing an 
error. The code in Listing 12-9 produces the following output:

First Person: Bob Smith, London
Person Names: Bob Smith, Dora Peters
First Product: Running Shoes, 100
Product Names: Running Shoes, Hat

 Constraining Generic Types Using a Shape
Using a type union to constrain generic type parameters is useful, but the union must be extended for each 
new type that is required. An alternative approach is to use a shape to constrain the type parameter, which 
will allow only the properties that the generic class relies on to be described, as shown in Listing 12-10.

Listing 12-10. Using a Shape Type in the index.ts File in the src Folder

import { City, Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];

class DataCollection<T extends { name: string }> {
    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    add(newItem: T) {
        this.items.push(newItem);
    }



Chapter 12 ■ Using generiC types

297

    getNames(): string[] {
        return this.items.map(item => item.name);
    }

    getItem(index: number): T {
        return this.items[index];
    }
}

let peopleData = new DataCollection<Person>(people);
let firstPerson = peopleData.getItem(0);
console.log(`First Person: ${firstPerson.name}, ${firstPerson.city}`);
console.log(`Person Names: ${peopleData.getNames().join(", ")}`);

let productData = new DataCollection<Product>(products);
let firstProduct = productData.getItem(0);
console.log(`First Product: ${firstProduct.name}, ${firstProduct.price}`);
console.log(`Product Names: ${productData.getNames().join(", ")}`);

let cityData = new DataCollection<City>(cities);
console.log(`City  Names: ${cityData.getNames().join(", ")}`);

The shape specified in Listing 12-10 tells the compiler that the DataCollection<T> class can be 
instantiated using any type that has a name property that returns a string. This allows DataCollection 
objects to be created to deal with Person, Product, and City objects without requiring individual types to be 
specified.

 ■ Tip generic type parameters can also be constrained using type aliases and interfaces. it is also possible to 
constrain generic types to those that define a specific constructor shape, which is done with the extends new 
keywords, which are demonstrated in Chapter 13.

The code in Listing 12-10 produces the following output:

First Person: Bob Smith, London
Person Names: Bob Smith, Dora Peters
First Product: Running Shoes, 100
Product Names: Running Shoes, Hat
City  Names: London, Paris

 Defining Multiple Type Parameters
A class can define multiple type parameters. Listing 12-11 adds a second type parameter to the 
DataCollection<T> class and uses it to correlate data values. (The listing also removes methods from the 
class that are no longer required for the examples.)



Chapter 12 ■ Using generiC types

298

Listing 12-11. Defining Another Generic Type Parameter in the index.ts File in the src Folder

import { City, Person, Product } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];

class DataCollection<T extends { name: string }, U> {
    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    collate(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}

let peopleData = new DataCollection<Person, City>(people);
let collatedData = peopleData.collate(cities, "city", "name");
collatedData.forEach(c => console.log(`${c.name}, ${c.city}, ${c.population}`));

Additional type parameters are separated with commas, just like regular function or method parameters. 
The DataCollection<T, U> class defines two generic type parameters. The new parameter, named U, is used 
to define the type of an argument passed to the collate method, which compares the properties on an array 
of objects and intersections between those T and U objects that have the same property values.

When the generic class is instantiated, arguments must be supplied for each of the generic type 
parameters, separated by commas, like this:

...
let peopleData = new DataCollection<Person, City>(people);
...

This statement creates a DataCollection<Person, City> object that will store Person objects and 
compare them to City objects. An array of City objects is passed to the collate method, comparing the 
values of the city property of the Person objects and the name property of the City objects.

The properties of objects that have matching values are combined using the spread syntax to create an 
intersection.

...
results.push({ ...match, ...item });
...



Chapter 12 ■ Using generiC types

299

There is one pair of objects with matching values, and the code in Listing 12-11 produces the following 
result:

Bob Smith, London, 8136000

 Applying a Type Parameter to a Method
The second type parameter in Listing 12-11 isn’t as flexible as it could be because it requires the data type 
used by the collate method to be specified when the DataCollection object is created, meaning that’s the 
only data type that can be used with that method.

When a type is used by only one method, the type parameter can be moved from the class declaration 
and applied directly to the method, allowing a different type to be specified each time the method is 
invoked, as shown in Listing 12-12. 

Listing 12-12. Applying a Type Parameter to a Method in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T extends { name: string }> {
    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    collate<U>(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}

let peopleData = new DataCollection<Person>(people);
let collatedData = peopleData.collate<City>(cities, "city", "name");
collatedData.forEach(c => console.log(`${c.name}, ${c.city}, ${c.population}`));
let empData = peopleData.collate<Employee>(employees, "name", "name");
empData.forEach(c => console.log(`${c.name}, ${c.city}, ${c.role}`));



Chapter 12 ■ Using generiC types

300

The type parameter U is applied directly to the collate method, allowing a type to be provided when 
the method is invoked, like this:

...
let collatedData = peopleData.collate<City>(cities, "city", "name");
...

The method’s type parameter allows the collate method to be invoked using City objects and then 
invoked again with Employee objects. The code in Listing 12-12 produces the following output:

Bob Smith, London, 8136000
Bob Smith, London, Sales

 Allowing the Compiler to Infer Type Arguments
The TypeScript compiler can infer generic type arguments based on the way that objects are created or 
methods are invoked. This can be a useful way to write concise code but requires caution because you 
must ensure that you initialize objects with the types that you would have specified explicitly. Listing 12-13 
instantiates the DataCollection<T> class and invokes the collate method without type arguments, leaving 
the compiler to infer the type. 

Listing 12-13. Using Generic Type Inference in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T extends { name: string }> {
    private items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    collate<U>(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}



Chapter 12 ■ Using generiC types

301

export let peopleData = new DataCollection(people);
export let collatedData = peopleData.collate(cities, "city", "name");
collatedData.forEach(c => console.log(`${c.name}, ${c.city}, ${c.population}`));
export let empData = peopleData.collate(employees, "name", "name");
empData.forEach(c => console.log(`${c.name}, ${c.city}, ${c.role}`));

The compiler is able to infer the type arguments based on the argument passed to the 
DataCollection<T> constructor and the first argument passed to the collate method. To check the 
types inferred by the complier, examine the index.d.ts file in the dist folder, which is created when the 
declaration option is enabled.

 ■ Tip in a project that uses modules, the files created through the declaration option contain only those types 
that are exported outside a module, which is why i added the export keyword in Listing 12-13.

Here are the types inferred by the compiler:

...
export declare let peopleData: DataCollection<Person>;
export declare let collatedData: (Person & City)[];
export declare let empData: (Person & Employee)[];
...

The code in Listing 12-13 produces the following output:

Bob Smith, London, 8136000
Bob Smith, London, Sales

 Extending Generic Classes
A generic class can be extended, and the subclass can choose to deal with the generic type parameters in 
several ways, as described in the following sections. 

 Adding Extra Features to the Existing Type Parameters
The first approach is to simply add features to those defined by the superclass using the same generic types, 
as shown in Listing 12-14.

Listing 12-14. Subclassing a Generic Class in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];



Chapter 12 ■ Using generiC types

302

class DataCollection<T extends { name: string }> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    collate<U>(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}

class SearchableCollection<T extends { name: string }> extends DataCollection<T> {

    constructor(initialItems: T[]) {
        super(initialItems);
    }

    find(name: string): T | undefined {
        return this.items.find(item => item.name === name);
    }
}

let peopleData = new SearchableCollection<Person>(people);
let foundPerson = peopleData.find("Bob Smith");
if (foundPerson !== undefined) {
    console.log(`Person ${ foundPerson.name }, ${ foundPerson.city}`);
}

The SearchableCollection<T> class is derived from DataCollection<T> and defines a find method 
that locates an object by its name property. The declaration of the SearchableCollection<T> class uses the 
extends keyword and includes type parameters, like this:

...
class SearchableCollection<T extends { name: string }> extends DataCollection<T> {
...

The type of a generic class includes its type parameters so that the superclass is DataCollection<T>. 
The type parameter defined by the SearchableCollection<T> class must be compatible with the type 
parameter of the superclass, so I have used the same shape type to specify types that defined a name 
property.



Chapter 12 ■ Using generiC types

303

 ■ Tip notice i changed the access control keyword on the items property in Listing 12-14 to protected, 
allowing it to be accessed by subclasses. see Chapter 11 for details of the access control keywords provided by 
typescript.

The SearchableCollection<T> class is instantiated just like any other using a type argument (or 
allowing the compiler to infer the type argument). The code in Listing 12-14 produces the following output:

Person Bob Smith, London

 Fixing the Generic Type Parameter
Some classes need to define functionality that is only available using a subset of the types that are supported 
by the superclass. In these situations, a subclass can use a fixed type for the superclass’s type parameter, such 
that the subclass is not a generic class, as shown in Listing 12-15.

Listing 12-15. Fixing a Generic Type Parameter in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T extends { name: string }> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    collate<U>(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}



Chapter 12 ■ Using generiC types

304

class SearchableCollection extends DataCollection<Employee> {

    constructor(initialItems: Employee[]) {
        super(initialItems);
    }

    find(searchTerm: string): Employee[] {
        return this.items.filter(item =>
            item.name === searchTerm || item.role === searchTerm);
    }
}

let employeeData = new SearchableCollection(employees);
employeeData.find("Sales").forEach(e =>
    console.log(`Employee ${ e.name }, ${ e.role}`));

The SearchableCollection class extends DataCollection<Employee>, which fixes the generic type 
parameter so that the SearchableCollection can deal only with Employee objects. No type parameter can 
be used to create a SearchableCollection object, and the code in the find method can safely access the 
properties defined by the Employee class. The code in Listing 12-15 produces the following output:

Employee Bob Smith, Sales
Employee Alice Jones, Sales

 Restricting the Generic Type Parameter
The third approach strikes a balance between the previous two examples, providing a generic type variable 
but restricting it to specific types, as shown in Listing 12-16. This allows functionality that can depend on 
features of particular classes without fixing the type parameter completely.

Listing 12-16. Restricting a Type Parameter in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T extends { name: string }> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }



Chapter 12 ■ Using generiC types

305

    collate<U>(targetData: U[], itemProp: string, targetProp: string): (T & U)[] {
        let results = [];
        this.items.forEach(item => {
            let match = targetData.find(d => d[targetProp] === item[itemProp]);
            if (match !== undefined) {
                results.push({ ...match, ...item });
            }
        });
        return results;
    }
}

class SearchableCollection<T extends Employee | Person> extends DataCollection<T> {

    constructor(initialItems: T[]) {
        super(initialItems);
    }

    find(searchTerm: string): T[] {
        return this.items.filter(item => {
            if (item instanceof Employee) {
                return item.name === searchTerm || item.role === searchTerm;
            } else if (item instanceof Person) {
                return item.name === searchTerm || item.city === searchTerm;
            }
        });
    }
}

let employeeData = new SearchableCollection<Employee>(employees);
employeeData.find("Sales").forEach(e =>
    console.log(`Employee ${ e.name }, ${ e.role}`));

The type parameter specified by the subclass must be assignable to the type parameter it inherits, 
meaning that only a more restrictive type can be used. In the example, the Employee | Person union can be 
assigned to the shape used to restrict the DataCollection<T> type parameter.

 ■ Caution Bear in mind that when a union is used to constrain a generic type parameter, the union itself is 
an acceptable argument for that parameter. this means that the SearchableCollection class in Listing 12-16 
can be instantiated with a type parameter of Employee, Product, and Employee | Product. see Chapter 13 for 
advanced features for restricting type arguments.

The find method uses the instanceof keyword to narrow objects to specific types to make property 
value comparisons. The code in Listing 12-16 produces the following output:

Employee Bob Smith, Sales
Employee Alice Jones, Sales



Chapter 12 ■ Using generiC types

306

 Type Guarding Generic Types
The SearchableCollection<T> class in Listing 12-16 used the instanceof keyword to identify Employee 
and Person objects. This is manageable because the restriction applied to the type parameter means that 
there are only a small number of types to deal with. For classes with type parameters that are not restricted, 
narrowing to a specific type can be difficult, as shown in Listing 12-17. 

Listing 12-17. Narrowing a Generic Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    filter<V extends T>(): V[] {
        return this.items.filter(item => item instanceof V) as V[];
    }
}

let mixedData = new DataCollection<Person | Product >([...people, ...products]);
let filteredProducts = mixedData.filter<Product>();
filteredProducts.forEach(p => console.log(`Product: ${ p.name}, ${p.price}`));

Listing 12-17 introduces a filter method that uses the instanceof keyword to select objects of a 
specific type from the array of data items. A DataCollection<Person | Product> object is created with an 
array that contains a mix of Person and Product objects, and the new filter method is used to select the 
Product objects.

 ■ Tip notice that the filter method’s generic type parameter, named V, is defined with the extend keyword, 
telling the compiler that it can only accept types that can be assigned to the class generic type T, which 
prevents the compiler from treating V as any.

This example doesn’t compile and produces the following error message:

src/index.ts(18,58): error TS2693: 'V' only refers to a type, but is being used as a value 
here.



Chapter 12 ■ Using generiC types

307

There is no JavaScript feature that is equivalent to generic types, so they are removed from the 
TypeScript code during the compilation process, which means that there is no information available at 
runtime to use generic types with the instanceof keyword.

In situations where you need to identify objects by type, generic types are not helpful, and a predicate 
function must be used. Listing 12-18 adds a parameter to the filter method that accepts a type predicate 
function, which is then used to find objects of a specific type.

Listing 12-18. Using a Type Predicate Function in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    filter<V extends T>(predicate: (target) => target is V): V[] {
        return this.items.filter(item => predicate(item)) as V[];
    }
}

let mixedData = new DataCollection<Person | Product >([...people, ...products]);
function isProduct(target): target is Product {
    return target instanceof Product;
}
let filteredProducts = mixedData.filter<Product>(isProduct);
filteredProducts.forEach(p => console.log(`Product: ${ p.name}, ${p.price}`));

The predicate function for the required type is provided as an argument to the filter method using 
JavaScript features that are available when the code is executed; this provides the method with the means to 
select the required objects. The code in Listing 12-18 produces the following results:

Product: Running Shoes, 100
Product: Hat, 25

 Defining a Static Method on a Generic Class
Only instance properties and methods have a generic type, which can be different for each object. Static 
methods are accessed through the class, as shown in Listing 12-19.



Chapter 12 ■ Using generiC types

308

Listing 12-19. Defining a Static Method in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    filter<V extends T>(predicate: (target) => target is V): V[] {
        return this.items.filter(item => predicate(item)) as V[];
    }

    static reverse(items: any[]) {
        return items.reverse();
    }
}

let mixedData = new DataCollection<Person | Product >([...people, ...products]);

function isProduct(target): target is Product {
    return target instanceof Product;
}

let filteredProducts = mixedData.filter<Product>(isProduct);
filteredProducts.forEach(p => console.log(`Product: ${ p.name}, ${p.price}`));

let reversedCities: City[] = DataCollection.reverse(cities);
reversedCities.forEach(c => console.log(`City: ${c.name}, ${c.population}`));

The static reverse method is accessed through the DataCollection class without the use of a type 
argument, like this:

...
let reversedCities: City[] = DataCollection.reverse(cities);
...

Static methods can define their own generic type parameters, as shown in Listing 12-20.



Chapter 12 ■ Using generiC types

309

Listing 12-20. Adding a Type Parameter in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let people = [new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York")];
let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];
let cities = [new City("London", 8136000), new City("Paris", 2141000)];
let employees = [new Employee("Bob Smith", "Sales"),
    new Employee("Alice Jones", "Sales")];

class DataCollection<T> {
    protected items: T[] = [];

    constructor(initialItems: T[]) {
        this.items.push(...initialItems);
    }

    filter<V extends T>(predicate: (target) => target is V): V[] {
        return this.items.filter(item => predicate(item)) as V[];
    }

    static reverse<ArrayType>(items: ArrayType[]): ArrayType[] {
        return items.reverse();
    }
}

let mixedData = new DataCollection<Person | Product >([...people, ...products]);

function isProduct(target): target is Product {
    return target instanceof Product;
}

let filteredProducts = mixedData.filter<Product>(isProduct);
filteredProducts.forEach(p => console.log(`Product: ${ p.name}, ${p.price}`));

let reversedCities = DataCollection.reverse<City>(cities);
reversedCities.forEach(c => console.log(`City: ${c.name}, ${c.population}`));

The reverse method defines a type parameter that specifies the array type it processes. When the 
method is invoked, it is done so through the DataCollection class, and a type argument is provided after the 
method name, like this:

...
let reversedCities = DataCollection.reverse<City>(cities);
...



Chapter 12 ■ Using generiC types

310

The type parameters defined by static methods are separate from those defined by the class for use by 
its instance properties and methods. The code in Listing 12-20 produces the following output:

Product: Running Shoes, 100
Product: Hat, 25
City: Paris, 2141000
City: London, 8136000

 Defining Generic Interfaces
Interfaces can be defined with generic type parameters, allowing functionality to be defined without 
specifying individual types. Listing 12-21 defines an interface with a generic type parameter. 

Listing 12-21. Defining a Generic Interface in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type  shapeType = { name: string };

interface Collection<T extends shapeType> {

    add(...newItems: T[]): void;
    get(name: string): T;
    count: number;
}

The Collection<T> interface has a generic type parameter named T, following the same syntax used for 
class type parameters. The type parameter is used by the add and get methods, and it has been constrained 
to ensure that only types that have a name property can be used.

An interface with a generic type parameter describes a set of abstract operations but doesn’t specify 
which types they can be performed on, leaving specific types to be selected by derived interfaces or 
implementation classes. The code in Listing 12-21 produces no output.

 Extending Generic Interfaces
Generic interfaces can be extended just like regular interfaces, and the options for dealing with its type 
parameters are the same as when extending a generic class. Listing 12-22 shows a set of interfaces that 
extend the Collection<T> interface.

Listing 12-22. Extending a Generic Interface in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type  shapeType = { name: string };

interface Collection<T extends shapeType> {

    add(...newItems: T[]): void;
    get(name: string): T;



Chapter 12 ■ Using generiC types

311

    count: number;
}

interface SearchableCollection<T extends shapeType> extends Collection<T> {

    find(name: string): T | undefined;
}

interface ProductCollection extends Collection<Product> {

    sumPrices(): number;
}

interface PeopleCollection<T extends Product | Employee> extends Collection<T> {

    getNames(): string[];
}

The code in Listing 12-22 does not produce any output.

 Implementing a Generic Interface
When a class implements a generic interface, it must implement all the interface properties and methods, 
but it has some choices about how to deal with type parameters, as described in the following sections. 
Some of these options are similar to those used when extending generic classes and interfaces.

 Passing on the Generic Type Parameter
The simplest approach is to implement the interface properties and methods without changing the type 
parameter, creating a generic class that directly implements the interface, as shown in Listing 12-23.

Listing 12-23. Implementing an Interface in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type  shapeType = { name: string };

interface Collection<T extends shapeType> {

    add(...newItems: T[]): void;
    get(name: string): T;
    count: number;
}

class ArrayCollection<DataType extends shapeType> implements Collection<DataType> {
    private items: DataType[] = [];

    add(...newItems): void {
        this.items.push(...newItems);
    }



Chapter 12 ■ Using generiC types

312

    get(name: string): DataType {
        return this.items.find(item => item.name === name);
    }

    get count(): number {
        return this.items.length;
    }
}

let peopleCollection: Collection<Person> = new ArrayCollection<Person>();
peopleCollection.add(new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York"));
console.log(`Collection size: ${peopleCollection.count}`);

The ArrayCollection<DataType> class uses the implements keyword to declare that it conforms to the 
interface. The interface has a generic type parameter, so the ArrayCollection<DataType> class must define 
a compatible parameter. Since the type parameter for the interface is required to have a name property, so 
must the type parameter for the class, and I used the same type alias for the interface and the class to ensure 
consistency.

The ArrayCollection<DataType> class requires a type argument when an object is created and can be 
operated on through the Collection<T> interface, like this:

...
let peopleCollection: Collection<Person> = new ArrayCollection<Person>();
...

The type argument resolves the generic type for the class and the interface it implements so that an 
ArrayCollection<Person> object implements the Collection<Person> interface. The code in Listing 12-23 
produces the following output:

Collection size: 2

 Restricting or Fixing the Generic Type Parameter
Classes can provide an implementation of an interface that is specific to a type or a subset of the types 
supported by the interface, as shown in Listing 12-24.

Listing 12-24. Implementing an Interface in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type  shapeType = { name: string };

interface Collection<T extends shapeType> {

    add(...newItems: T[]): void;
    get(name: string): T;
    count: number;
}



Chapter 12 ■ Using generiC types

313

class PersonCollection implements Collection<Person> {
    private items: Person[] = [];

    add(...newItems: Person[]): void {
        this.items.push(...newItems);
    }

    get(name: string): Person {
        return this.items.find(item => item.name === name);
    }

    get count(): number {
        return this.items.length;
    }
}

let peopleCollection: Collection<Person> = new PersonCollection();
peopleCollection.add(new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York"));
console.log(`Collection size: ${peopleCollection.count}`);

The PersonCollection class implements the Collection<Product> interface, and the code in 
Listing 12-24 produces the following output when compiled and executed:

Collection size: 2

 Creating an Abstract Interface Implementation
An abstract class can provide a partial implementation of an interface, which can be completed by 
subclasses. The abstract class has the same set of options for dealing with type parameters as regular classes: 
pass it on to subclasses unchanged, apply further restrictions, or fix for specific types. Listing 12-25 shows an 
abstract class that passed on the interface’s generic type argument.

Listing 12-25. Defining an Abstract Class in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type  shapeType = { name: string };

interface Collection<T extends shapeType> {

    add(...newItems: T[]): void;
    get(name: string): T;
    count: number;
}

abstract class ArrayCollection<T extends shapeType> implements Collection<T> {
    protected items: T[] = [];



Chapter 12 ■ Using generiC types

314

    add(...newItems: T[]): void {
        this.items.push(...newItems);
    }

    abstract get(searchTerm: string): T;

    get count(): number {
        return this.items.length;
    }
}

class ProductCollection extends ArrayCollection<Product> {

    get(searchTerm: string): Product {
        return this.items.find(item => item.name === searchTerm);
    }
}

class PersonCollection extends ArrayCollection<Person> {

    get(searchTerm: string): Person {
        return this.items.find(item =>
            item.name === searchTerm || item.city === searchTerm);
    }
}

let peopleCollection: Collection<Person> = new PersonCollection();
peopleCollection.add(new Person("Bob Smith", "London"),
    new Person("Dora Peters", "New York"));
let productCollection: Collection<Product> = new ProductCollection();
productCollection.add(new Product("Running Shoes", 100), new Product("Hat", 25));
[peopleCollection, productCollection].forEach(c => console.log(`Size: ${c.count}`));

The ArrayCollection<T> class is abstract and provides a partial implementation of the Collection<T> 
interface, leaving subclasses to provide the get method. The ProductCollection and PersonCollection 
classes extend ArrayCollection<T>, narrowing the generic type parameter to specific types and 
implementing the get method to use the properties of the type they operate on. The code in Listing 12-25 
produces the following output:

Size: 2
Size: 2

 Summary
In this chapter, I introduced generic types and described the problem they solve. I showed you the 
relationship between generic type parameters and arguments and the different ways that generic types can 
be restricted or fixed. I explained that generic types can be used with regular classes, abstract classes, and 
interfaces and showed you how functions and methods can have generic types that are resolved each time 
they are used. In the next chapter, I describe the advanced generic type features that TypeScript provides.



315© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_13

CHAPTER 13

Advanced Generic Types

In this chapter, I continue to describe the generic type features provided by TypeScript and focus on 
the advanced features. I explain how generic types can be used with collections and iterators, introduce 
the index types and type mapping features, and describe the most flexible of the generic type features: 
conditional types. Table 13-1 summarizes the chapter.

For quick reference, Table 13-2 lists the TypeScript compiler options used in this chapter.

Table 13-1. Chapter Summary

Problem Solution Listing

Use collection classes with type safety Provide a generic type argument when 
creating the collection

3, 4

Use iterators with type safety Use the interfaces that TypeScript provides 
that support generic type arguments

5–7

Define a type whose value can only be the 
name of a property

Use an index type query 8–14

Transform a type Use a type mapping 15–22

Select types programmatically Use conditional types 23–32

Table 13-2. The TypeScript Compiler Options Used in This Chapter

Name Description

declaration This option produces type declaration files when enabled, which can be useful in 
understanding how types have been inferred. These files are described in more 
detail in Chapter 14.

downlevelIteration This option enables support for iteration when targeting older versions of 
JavaScript.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate 
TypeScript files.

target This option specifies the version of the JavaScript language that the compiler will 
target in its output.

https://doi.org/10.1007/978-1-4842-7011-0_13#DOI


Chapter 13 ■ advanCed GeneriC types

316

 Preparing for This Chapter
In this chapter, I continue to use the types project created in Chapter 7 and used in all the chapters since. 
To prepare for this chapter, replace the contents of the index.ts file in the src folder with the code shown in 
Listing 13-1.

Listing 13-1. Replacing the Contents of the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> {

    constructor(private items: T[] = []) {}

    add(...newItems: T[]): void {
        this.items.push(...newItems);
    }

    get(name: string): T {
        return this.items.find(item => item.name === name);
    }

    get count(): number {
        return this.items.length;
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);
let p = productCollection.get("Hat");
console.log(`Product: ${ p.name }, ${ p.price }`);

Open a new command prompt, navigate to the types folder, and run the command shown in Listing 13-2 to 
start the TypeScript compiler so that it automatically executes code after it has been compiled.

 ■ Tip you can download the example project for this chapter—and for all the other chapters in this 
book—from https://github.com/Apress/essential- typescript- 4.

Listing 13-2. Starting the TypeScript Compiler

npm start

https://github.com/Apress/essential-typescript-4


Chapter 13 ■ advanCed GeneriC types

317

The compiler will compile the project, execute the output, and then enter watch mode, producing the 
following output:

7:31:10 AM - Starting compilation in watch mode...
7:31:11 AM - Found 0 errors. Watching for file changes.
There are 2 products
Product: Hat, 25

 Using Generic Collections
TypeScript provides support for using the JavaScript collections with generic type parameters, allowing 
a generic class to safely use collections, as described in Table 13-3. The JavaScript collection classes are 
described in Chapter 4. 

Listing 13-3 shows how a generic class can use its type parameters with a collection.

Listing 13-3. Using a Collection in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> {
    private items: Set<T>;

    constructor(initialItems: T[] = []) {
        this.items = new Set<T>(initialItems);
    }

    add(...newItems: T[]): void {
        newItems.forEach(newItem => this.items.add(newItem));
    }

    get(name: string): T {
        return [...this.items.values()].find(item => item.name === name);
    }

Table 13-3. The Generic Collection Types

Name Description

Map<K, V> This describes a Map whose key type is K and whose value type is V.

ReadonlyMap<K, V> This describes a Map that cannot be modified.

Set<T> This describes a Set whose value type is T.

ReadonlySet<T> This describes a Set that cannot be modified.



Chapter 13 ■ advanCed GeneriC types

318

    get count(): number {
        return this.items.size;
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);
let p = productCollection.get("Hat");
console.log(`Product: ${ p.name }, ${ p.price }`);

The Collection<T> class has been changed to Set<T> to store its items, which it does by using its 
generic type parameter for the collection. The TypeScript compiler uses the type parameter to prevent other 
data types from being added to the set, and no type guarding is required when retrieving objects from the 
collection. The same approach can be taken with a map, as shown in Listing 13-4.

Listing 13-4. Using a Map in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> {
    private items: Map<string, T>;

    constructor(initialItems: T[] = []) {
        this.items = new Map<string, T>();
        this.add(...initialItems);
    }

    add(...newItems: T[]): void {
        newItems.forEach(newItem => this.items.set(newItem.name, newItem));
    }

    get(name: string): T {
        return this.items.get(name);
    }

    get count(): number {
        return this.items.size;
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);
let p = productCollection.get("Hat");
console.log(`Product: ${ p.name }, ${ p.price }`);



Chapter 13 ■ advanCed GeneriC types

319

Generic classes don’t have to provide generic type parameters for collections and can specify concrete 
types instead. In the example, a Map is used to store objects using the name property as a key. The name 
property can be used safely because it is part of the restriction applied to the type parameter named T. The 
code in Listing 13-4 produces the following output:

There are 2 products
Product: Hat, 25

 Using Generic Iterators
As explained in Chapter 4, iterators allow a sequence of values to be enumerated, and support for iterators 
is a common feature for classes that operate on other types, such as collections. TypeScript provides the 
interfaces listed in Table 13-4 for describing iterators and their results. 

Listing 13-5 shows the use of the Iterator<T> and IteratorResult<T> interfaces to provide access to 
the contents of the Map<string, T> used to store objects by the Collection<T> class.

Listing 13-5. Iterating Objects in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> {
    private items: Map<string, T>;

    constructor(initialItems: T[] = []) {
        this.items = new Map<string, T>();
        this.add(...initialItems);
    }

Table 13-4. The TypeScript Iterator Interface

Name Description

Iterator<T> This interface describes an iterator whose next method returns IteratorResult<T> 
objects.

IteratorResult<T> This interface describes a result produced by an iterator, with done and value 
properties.

Iterable<T> This interface defines an object that has a Symbol.iterator property and that 
supports iteration directly.

IterableIterator<T> This interface combines the Iterator<T> and Iterable<T> interfaces to describe 
an object that has a Symbol.iterator property and that defines a next method 
and a result property.



Chapter 13 ■ advanCed GeneriC types

320

    add(...newItems: T[]): void {
        newItems.forEach(newItem => this.items.set(newItem.name, newItem));
    }

    get(name: string): T {
        return this.items.get(name);
    }

    get count(): number {
        return this.items.size;
    }

    values(): Iterator<T> {
        return this.items.values();
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);

let iterator: Iterator<Product> = productCollection.values();
let result: IteratorResult<Product> = iterator.next();
while (!result.done) {
    console.log(`Product: ${result.value.name}, ${ result.value.price}`);
    result = iterator.next();
}

The values method defined by the Collection<T> class returns an Iterator<T>. When this method is 
invoked on the Collection<Product> object, the iterator it returns will produce IteratorResult<Product> 
objects through its next method. The result property of each IteratorResult<Product> object will return 
a Product, allowing the objects managed by the collection to be iterated. The code in Listing 13-5 produces 
the following output:

There are 2 products
Product: Running Shoes, 100
Product: Hat, 25

USING ITERATORS WITH JAVASCRIPT ES5 AND EARLIER

iterators were introduced in the Javascript es6 standard. if you use iterators in your project and 
are targeting earlier versions of Javascript, then you must set the typescript downlevelIteration 
compiler property to true.



Chapter 13 ■ advanCed GeneriC types

321

 Combining an Iterable and an Iterator
The IterableIterator<T> interface can be used to describe objects that can be iterated and that also define 
a Symbol.iterator property. Objects that implement this interface can be enumerated more elegantly, as 
shown in Listing 13-6. 

Listing 13-6. Using an Iterable Iterator in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> {
    private items: Map<string, T>;

    constructor(initialItems: T[] = []) {
        this.items = new Map<string, T>();
        this.add(...initialItems);
    }

    add(...newItems: T[]): void {
        newItems.forEach(newItem => this.items.set(newItem.name, newItem));
    }

    get(name: string): T {
        return this.items.get(name);
    }

    get count(): number {
        return this.items.size;
    }

    values(): IterableIterator<T> {
        return this.items.values();
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);

[...productCollection.values()].forEach(p =>
    console.log(`Product: ${p.name}, ${ p.price}`));



Chapter 13 ■ advanCed GeneriC types

322

The values method returns an IterableIterator object, which it is able to do because the result of the 
Map method defines all the members specified by the interface. The combined interface allows the result of the 
values method to be iterated directly, and the listing uses the spread operator to populate an array and then 
enumerates its contents with the forEach method. The code in Listing 13-6 produces the following output:

There are 2 products
Product: Running Shoes, 100
Product: Hat, 25

 Creating an Iterable Class
Classes that define a Symbol.iterator property can implement the Iterable<T> interface, which allows 
iteration without needing to call a method or read a property, as shown in Listing 13-7. 

Listing 13-7. Creating an Iterable Class in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

type shapeType = { name: string };

class Collection<T extends shapeType> implements Iterable<T> {
    private items: Map<string, T>;

    constructor(initialItems: T[] = []) {
        this.items = new Map<string, T>();
        this.add(...initialItems);
    }

    add(...newItems: T[]): void {
        newItems.forEach(newItem => this.items.set(newItem.name, newItem));
    }

    get(name: string): T {
        return this.items.get(name);
    }

    get count(): number {
        return this.items.size;
    }

    [Symbol.iterator](): Iterator<T> {
        return this.items.values();
    }
}

let productCollection: Collection<Product> = new Collection(products);
console.log(`There are ${ productCollection.count } products`);

[...productCollection].forEach(p => console.log(`Product: ${p.name}, ${ p.price}`));



Chapter 13 ■ advanCed GeneriC types

323

The new property implements the Iterable<T> interface, indicating that it defines a Symbol.iterator 
property that returns an Iterator<T> object that can be used for iteration. The code in Listing 13-7 produces 
the following output:

There are 2 products
Product: Running Shoes, 100
Product: Hat, 25

 Using Index Types
The Collection<T> class restricts the types it can accept using a shape type, which ensures that all the 
objects it deals with have a name property that can be used as the key to store and retrieve objects in the Map.

TypeScript provides a set of related features that allow any property defined by an object to be used as 
a key while preserving type safety. These features can be difficult to understand, so I show how they work in 
isolation and then use them to improve the Collection<T> class. 

 Using the Index Type Query
The keyof keyword, known as the index type query operator, returns a union of the property names of a type, 
using the literal value type feature described in Chapter 9. Listing 13-8 shows keyof applied to the Product 
class. 

Listing 13-8. Using the Index Type Query Operator in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let myVar: keyof Product = "name";
myVar = "price";
myVar = "someOtherName";

The type annotation for the myVar variable is keyof Product, which will be the union of the property 
names defined by the Product class. The result is that myVar can be assigned only the string values name and 
price because these are the names of the only two properties defined by the Product class in the dataTypes.
ts file, which was created in Chapter 12.

...
export class Product {
    constructor(public name: string, public price: number) {}
}
...

Assigning any other value to myVar, as the final statement in Listing 13-8 attempts to do, produces a 
compiler error.

src/index.ts(34,1): error TS2322: Type '"someOtherName"' is not assignable to type '"name" 
| "price"'.



Chapter 13 ■ advanCed GeneriC types

324

The keyof keyword can be used to constrain generic type parameters so that they can only be typed to 
match the properties of another type, as shown in Listing 13-9.

Listing 13-9. Constraining a Generic Type Parameter in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

function getValue<T, K extends keyof T>(item: T, keyname: K) {
    console.log(`Value: ${item[keyname]}`);
}

let p = new Product("Running Shoes", 100);
getValue(p, "name");
getValue(p, "price");

let e = new Employee("Bob Smith", "Sales");
getValue(e, "name");
getValue(e, "role");

The example defines a function named getValue, whose type parameter K is constrained using typeof 
T, which means that K can be the name of only one of the properties defined by T, regardless of the type 
used for T when the function is invoked. When the getValue function is used with a Product object, the 
keyname parameter can be only name or price. And when the getValue function is used with an Employee 
object, the keyname parameter can be only name or role. In both cases, the keyname parameter can be used 
to safely get or set the value of the corresponding property from the Product or Employee object, and the 
code in Listing 13-9 produces the following output:

Value: Running Shoes
Value: 100
Value: Bob Smith
Value: Sales

 Explicitly Providing Generic Type Parameters for Index Types
The getValue method was invoked without generic type arguments in Listing 13-9, allowing the compiler to 
infer the types from the function arguments. Explicitly stating the type arguments reveals an aspect of using 
the index type query operator that can be confusing, as shown in Listing 13-10.

Listing 13-10. Using Explicit Type Arguments in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

function getValue<T, K extends keyof T>(item: T, keyname: K) {
    console.log(`Value: ${item[keyname]}`);
}

let p = new Product("Running Shoes", 100);
getValue<Product, "name">(p, "name");
getValue(p, "price");



Chapter 13 ■ advanCed GeneriC types

325

let e = new Employee("Bob Smith", "Sales");
getValue(e, "name");
getValue(e, "role");

It can appear as though the property that is required for the example is specified twice, but name has two 
different uses in the modified statement, as shown in Figure 13-1.

As a generic type argument, name is a literal value type that specifies one of the keyof Product types 
and is used by the TypeScript compiler for type checking. As a function argument, name is a string value 
that is used by the JavaScript runtime when the code is executed. The code in Listing 13-10 produces the 
following output:

Value: Running Shoes
Value: 100
Value: Bob Smith
Value: Sales

 Using the Indexed Access Operator
The indexed access operator is used to get the type for one or more properties, as shown in Listing 13-11. 

Listing 13-11. Using the Indexed Access Operator in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

function getValue<T, K extends keyof T>(item: T, keyname: K) {
    console.log(`Value: ${item[keyname]}`);
}

type priceType = Product["price"];
type allTypes = Product[keyof Product];

let p = new Product("Running Shoes", 100);
getValue<Product, "name">(p, "name");
getValue(p, "price");

let e = new Employee("Bob Smith", "Sales");
getValue(e, "name");
getValue(e, "role");

Figure 13-1. An index type and value



Chapter 13 ■ advanCed GeneriC types

326

The indexed access operator is expressed using square brackets following a type so that 
Product["price"], for example, is number, since that is the type of the price property defined by the 
Product class. The indexed access operator works on literal value types, which means it can be used with 
index type queries, like this:

...
type allTypes = Product[keyof Product];
...

The keyof Product expression returns a literal value type union with the property names defined by 
the Product class, "name" | "price". The indexed access operator returns the union of the types of those 
properties, such that Product[keyof Product] is string | number, which is the union of the types of the 
name and price properties.

 ■ Tip the types returned by the indexed access operator are known as lookup types.

The indexed access operator is most commonly used with generic types, which allows property types to 
be handled safely even though the specific types that will be used are unknown, as shown in Listing 13-12.

Listing 13-12. Using the Indexed Access Operator with a Generic Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

function getValue<T, K extends keyof T>(item: T, keyname: K): T[K] {
    return item[keyname];
}

let p = new Product("Running Shoes", 100);
console.log(getValue<Product, "name">(p, "name"));
console.log(getValue(p, "price"));

let e = new Employee("Bob Smith", "Sales");
console.log(getValue(e, "name"));
console.log(getValue(e, "role"));

The indexed access operator is expressed using a regular type, its keyof type, and square brackets, as 
shown in Figure 13-2.

Figure 13-2. The indexed access operator



Chapter 13 ■ advanCed GeneriC types

327

The indexed access operator in Listing 13-12, T[K], tells the compiler that the result of the getValue 
function will have the type of the property whose name is specified by the keyof type argument, leaving the 
compiler to determine the result types based on the generic type arguments used to invoke the function. 
For the Product object, that means a name argument will produce a string result, and a price argument will 
produce a number result. The code in Listing 13-12 produces the following output:

Running Shoes
100
Bob Smith
Sales

 Using an Index Type for the Collection<T> Class
Using an index type allows me to change the Collection<T> class so that it can store any type of object and 
not just those that define a name property. Listing 13-13 shows the changes to the class, which uses an index 
type query to restrict the propertyName constructor property to the names of the properties defined by the 
generic type parameter T, providing the key by which objects can be stored in the Map.

Listing 13-13. Using an Index Type in a Collection Class in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

let products = [new Product("Running Shoes", 100), new Product("Hat", 25)];

//type shapeType = { name: string };

class Collection<T, K extends keyof T> implements Iterable<T> {
    private items: Map<T[K], T>;

    constructor(initialItems: T[] = [], private propertyName: K) {
        this.items = new Map<T[K], T>();
        this.add(...initialItems);
    }

    add(...newItems: T[]): void {
        newItems.forEach(newItem =>
            this.items.set(newItem[this.propertyName], newItem));
    }

    get(key: T[K]): T {
        return this.items.get(key);
    }

    get count(): number {
        return this.items.size;
    }

    [Symbol.iterator](): Iterator<T> {
        return this.items.values();
    }
}



Chapter 13 ■ advanCed GeneriC types

328

let productCollection: Collection<Product, "name">
    = new Collection(products, "name");
console.log(`There are ${ productCollection.count } products`);

let itemByKey = productCollection.get("Hat");
console.log(`Item: ${ itemByKey.name}, ${ itemByKey.price}`);

The class has been rewritten with an additional generic type parameter, K, that is restricted to keyof T, 
which is the data type of the objects stored by the collection. A new instance of the Collection<T, K> is 
created like this:

...
let productCollection: Collection<Product, "name">
    = new Collection(products, "name");
...

The code in Listing 13-13 produces the following output:

There are 2 products
Item: Hat, 25

The dense chains of angle and square brackets in Listing 13-13 can be difficult to make sense of when 
you first start using index types. To help make sense of the code, Table 13-5 describes the significant type and 
constructor parameters and the types they are resolved to for the Collection<Product, "name"> object that 
is created in the example.

The results of the index type in Listing 13-13 are that any property can be used to store objects and 
that any type of object can be stored. Listing 13-14 changes the way that the Collection<T, K> class is 
instantiated so that the price property is used as the key. The listing also omits the generic type arguments 
and allows the compiler to infer the types that are required.

Table 13-5. The Significant Types Used by the Collection<T> Class

Name Description
T This is the type of the objects stored in the collection class, which is provided by the first 

generic type argument, which is Product for the object created in the listing.

K This is the key property name, which is restricted to the property names defined by T. The 
value for this type is provided by the second generic type argument, which is name for the 
object created in the listing.

T[K] This is the type of the key property, which is obtained using the indexed access operator 
and which is used to specify the key type when creating the Map object and to restrict 
the type for the parameters. This is the type of the Product.name property for the object 
created in the listing, which is string.

propertyName This is the key property name, which is required as a value that can be used by the 
JavaScript runtime after the TypeScript generic type information has been removed. For 
the object created in the listing, this value is name, corresponding to the generic type K.



Chapter 13 ■ advanCed GeneriC types

329

Listing 13-14. Changing the Key Property in the index.ts File in the src Folder

...
let productCollection = new Collection(products, "price");
console.log(`There are ${ productCollection.count } products`);

let itemByKey = productCollection.get(100);
console.log(`Item: ${ itemByKey.name}, ${ itemByKey.price}`);
...

The type of the argument to the get method changes to match the type of the key property so that 
objects can be obtained using a number argument. The code in Listing 13-14 produces the following output:

There are 2 products
Item: Running Shoes, 100

 Using Type Mapping
Mapped types are created by applying a transformation to the properties of an existing type. The best way to 
understand how mapped types work is to create one that processes a type but doesn’t make any changes, as 
shown in Listing 13-15. 

Listing 13-15. Using a Mapped Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type MappedProduct = {
    [P in keyof Product] : Product[P]
};

let p: MappedProduct = { name: "Kayak", price: 275};
console.log(`Mapped type: ${p.name}, ${p.price}`);

A type mapping is an expression that selects property names to be included in the mapped type and the 
type for each of them, as shown in Figure 13-3.

Figure 13-3. A mapped type



Chapter 13 ■ advanCed GeneriC types

330

The property name selector defines a type parameter, named P in this example, and uses the in 
keyword to enumerate the types in a literal value union. The type union can be expressed directly, such as 
"name"|"price", or obtained using keyof.

The TypeScript compiler creates a new property in the mapped type for each of the types in the union. 
The type of each property is determined by the type selector, which can be obtained from the source type 
using the indexed access operator with P as the literal value type to look up.

The MappedProduct type in Listing 13-15 uses keyof to select the properties defined by the Product 
class and uses the indexed type operator to get the type of each of those properties. The result is equivalent 
to this type:

type MappedProduct = {
    name: string;
    price: number;
}

The code in Listing 13-15 produces the following output:

Mapped type: Kayak, 275

 Changing Mapping Names and Types
The previous example preserved the names and types of the properties during the mapping. But type 
mapping is more flexible and there is support for changing both the name and the type of the properties in 
the new type, as shown in Listing 13-16.

Listing 13-16. Changing Mappings Names and Types in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type MappedProduct = {
    [P in keyof Product] : Product[P]
};

let p: MappedProduct = { name: "Kayak", price: 275};
console.log(`Mapped type: ${p.name}, ${p.price}`);

type AllowStrings = {
    [P in keyof Product] : Product[P] | string
}
let q: AllowStrings = { name: "Kayak",  price: "apples" };
console.log(`Changed type # 1: ${q.name}, ${q.price}`);

type ChangeNames = {
    [P in keyof Product as `${P}Property`] : Product[P]
}

let r: ChangeNames = { nameProperty: "Kayak",  priceProperty: 12 };
console.log(`Changed type # 2: ${r.nameProperty}, ${r.priceProperty}`);



Chapter 13 ■ advanCed GeneriC types

331

The AllowStrings type is created with a mapping that creates a type union between string and the 
property’s original type, like this:

...
[P in keyof Product] : Product[P] | string
...

The result is a type that is equivalent to this type:

type AllowStrings = {
    name: string;
    price: number | string;
}

The ChangeNames type is created with a mapping that alters the name of each property by adding 
Property.

...
[P in keyof Product as `${P}Property`] : Product[P]
...

The as keyword is combined with an expression that defines the property name. In this case, a template 
string is used to modify the existing name, with the result that is equivalent to this type:

type ChangeNames = {
    nameProperty: string;
    priceProperty: number;
}

The code in Listing 13-16 produces the following output when it is compiled and executed:

Mapped type: Kayak, 275
Changed type # 1: Kayak, apples
Changed type # 2: Kayak, 12

 Using a Generic Type Parameter with a Mapped Type
Mapped types become more useful when they define a generic type parameter, as shown in Listing 13-17, 
which allows the transformation they describe to be applied to a broader range of types.

Listing 13-17. Using a Generic Type Parameter in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type Mapped<T> = {
    [P in keyof T] : T[P]
};



Chapter 13 ■ advanCed GeneriC types

332

let p: Mapped<Product> = { name: "Kayak", price: 275};
console.log(`Mapped type: ${p.name}, ${p.price}`);

let c: Mapped<City> = { name: "London", population: 8136000};
console.log(`Mapped type: ${c.name}, ${c.population}`);

The Mapped<T> type defines a generic type parameter named T, which is the type to be transformed. 
The type parameter is used in the name and type selectors, meaning that any type can be mapped using 
a generic type parameter. In Listing 13-17, the Mapped<T> mapped type is used on the Product and City 
classes and produces the following output:

Mapped type: Kayak, 275
Mapped type: London, 8136000

UNDERSTANDING MAPPING FOR CONSTRUCTORS AND METHODS

Mapping operates only on properties. When applied to a class, a type mapping produces a shape type 
that contains properties but omits the constructor and the implementation of methods. For example, this 
class:

class MyClass {

    constructor(public name: string ) {}

    getName(): string {
        return this.name;
    }
}

is mapped to the following type by the Mapping<T> type mapping in Listing 13-17:

{
    name: string;
    getName: () => string;
}

type mapping produces shapes that can be used for object literals, implemented by classes, or 
extended by interfaces. type mapping does not produce a class, however.

 Changing Property Optionality and Mutability
Mapped types can change properties to make them optional or required and to add or remove the readonly 
keyword, as shown in Listing 13-18.

Listing 13-18. Changing Properties in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type MakeOptional<T> = {
    [P in keyof T]? : T[P]
};



Chapter 13 ■ advanCed GeneriC types

333

type MakeRequired<T> = {
    [P in keyof T]-? : T[P]
};

type MakeReadOnly<T> = {
    readonly [P in keyof T] : T[P]
};

type MakeReadWrite<T> = {
    -readonly [P in keyof T] : T[P]
};

type optionalType = MakeOptional<Product>;
type requiredType = MakeRequired<optionalType>;
type readOnlyType = MakeReadOnly<requiredType>;
type readWriteType = MakeReadWrite<readOnlyType>;

let p: readWriteType = { name: "Kayak", price: 275};
console.log(`Mapped type: ${p.name}, ${p.price}`);

A question mark (the ? character) is placed after the name selector to make the properties in the 
mapped type optional, and a minus sign and a question mark (the -? characters) are used to make 
properties required. Properties are made read-only and read-write by preceding the name selector with 
readonly and -readonly.

Mapped types change all the properties defined by the type they transform so that the type produced by 
MakeOptional<T> when applied to the Product class, for example, is equivalent to this type:

type optionalType = {
    name?: string;
    price?: number;
}

The types produced by mappings can be fed into other mappings, creating a chain of transformations. 
In the listing, the type produced by the MakeOptional<T> mapping is then transformed by the 
MakeRequired<T> mapping, the output of which is then fed to the MakeReadOnly<T> mapping and then the 
MakeReadWrite<T> mapping. The result is that properties are made optional and then required and then 
read-only and, finally, read-write.

 Using the Basic Built-in Mappings
TypeScript provides built-in mapped types, some of which correspond to the transformations in Listing 13-18 
and some that are described in later sections. Table 13-6 describes the basic built-in mappings.



Chapter 13 ■ advanCed GeneriC types

334

There is no built-in mapping to remove the readonly keyword, but Listing 13-19 replaces my custom 
mappings with those provided by TypeScript.

Listing 13-19. Using the Built-in Mappings in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

// type MakeOptional<T> = {
//     [P in keyof T]? : T[P]
// };

// type MakeRequired<T> = {
//     [P in keyof T]-? : T[P]
// };

// type MakeReadOnly<T> = {
//     readonly [P in keyof T] : T[P]
// };

type MakeReadWrite<T> = {
    -readonly [P in keyof T] : T[P]
};

type optionalType = Partial<Product>;
type requiredType = Required<optionalType>;
type readOnlyType = Readonly<requiredType>;
type readWriteType = MakeReadWrite<readOnlyType>;

let p: readWriteType = { name: "Kayak", price: 275};
console.log(`Mapped type: ${p.name}, ${p.price}`);

The built-in mappings have the same effect as the ones defined in Listing 13-19, and the code in 
Listing 13-19 produces the following output:

Mapped type: Kayak, 275

Table 13-6. The Basic Type Mappings

Name Description

Partial<T> This mapping makes properties optional.

Required<T> This mapping makes properties required.

Readonly<T> This mapping adds the readonly keyword to properties.

Pick<T, K> This mapping selects specific properties to create a new type, as described in the 
“Mapping Specific Properties” section.

Omit<T, keys> This mapping selects specific properties to create a new type, as described in the 
“Mapping Specific Properties” section.

Record<T, K> This mapping creates a type without transforming an existing one, as explained in the 
“Creating Types with a Type Mapping” section.



Chapter 13 ■ advanCed GeneriC types

335

 Mapping Specific Properties
The index type query for a mapped type can be expressed as a generic type parameter, which can then be 
used to select specific properties to map by name, as shown in Listing 13-20.

Listing 13-20. Mapping Specific Properties in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type SelectProperties<T, K extends keyof T> = {
    [P in K]: T[P]
};

let p1: SelectProperties<Product, "name"> = { name: "Kayak" };
let p2: Pick<Product, "name"> = { name: "Kayak" };
let p3: Omit<Product, "price"> = { name: "Kayak"};
console.log(`Custom mapped type: ${p1.name}`);
console.log(`Built-in mapped type (Pick): ${p2.name}`);
console.log(`Built-in mapped type (Omit): ${p3.name}`);

The SelectProperties mapping defines an additional generic type parameter named K that is 
restricted using keyof so that only types that correspond to properties defined by the type parameter T can 
be specified. The new type parameter is used in the mapping’s name selector, with the result that individual 
properties can be selected for inclusion in the mapped type, like this:

...
let p1: SelectProperties<Product, "name"> = { name: "Kayak" };
...

This mapping selects the name property defined by the Product class. Multiple properties can be 
expressed as a type union, and TypeScript provides the built-in Pick<T, K> mapping that performs the same 
role.

...
let p2: Pick<Product, "name"> = { name: "Kayak" };
...

The Pick mapping specifies the keys that are to be kept in the mapped type. The Omit mapping works in 
the opposite way and excludes one or more keys.

...
let p3: Omit<Product, "price"> = { name: "Kayak"};
...

The result of all three mappings is the same, and the code in Listing 13-20 produces the following 
output:

Custom mapped type: Kayak
Built-in mapped type (Pick): Kayak
Built-in mapped type (Omit): Kayak



Chapter 13 ■ advanCed GeneriC types

336

 Combining Transformations in a Single Mapping
Listing 13-19 showed how mappings can be combined to create a chain of transformations, but mappings 
can apply multiple changes to properties, as shown in Listing 13-21.

Listing 13-21. Combining Transformations in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type CustomMapped<T, K extends keyof T> = {
    readonly[P in K]?: T[P]
};

type BuiltInMapped<T, K extends keyof T> = Readonly<Partial<Pick<T, K>>>;

let p1: CustomMapped<Product, "name"> = { name: "Kayak" };
let p2: BuiltInMapped<Product, "name"| "price">
    = { name: "Lifejacket", price: 48.95};
console.log(`Custom mapped type: ${p1.name}`);
console.log(`Built-in mapped type: ${p2.name}, ${p2.price}`);

For custom type mappings, the question mark and the readonly keyword can be applied in the same 
transformation, which can be constrained to allow properties to be selected by name. Mappings can also be 
chained together, as shown by the combination of the Pick, Partial, and Readonly mappings. The code in 
Listing 13-21 produces the following results:

Custom mapped type: Kayak
Built-in mapped type: Lifejacket, 48.95

 Creating Types with a Type Mapping
The final feature provided by type mappings is the ability to create new types, rather than transform a 
specific one. Listing 13-22 shows the basic use of this feature, which creates a type that contains name and 
city properties.

Listing 13-22. Creating a Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type CustomMapped<K extends keyof any, T> = {
    [P in K]: T
};

let p1: CustomMapped<"name" | "city", string> = { name: "Bob",  city: "London"};
let p2: Record<"name"| "city", string> = { name: "Alice", city: "Paris"};

console.log(`Custom mapped type: ${p1.name}, ${p1.city}`);
console.log(`Built-in mapped type: ${p2.name}, ${p2.city}`);



Chapter 13 ■ advanCed GeneriC types

337

The first generic type parameter is restricted using keyof any, which means that a literal value type 
union can be specified and that it can contain the property names required for the new type. The second 
generic type parameter is used to specify the type for the properties that are created and is used like this:

...
let p1: CustomMapped<"name" | "city", string> = { name: "Bob",  city: "London"};
...

The mapping produces a type with two string properties: name and city. TypeScript provides the built-
in Record mapping, which performs the same task.

...
let p2: Record<"name"| "city", string> = { name: "Alice", city: "Paris"};
...

This is the mapping feature that I use the least in my own projects, but it does serve to show that 
mappings are more flexible than they might appear and that literal value types restricted by keyof any can 
accept any combination of property names. The code in Listing 13-22 produces the following output:

Custom mapped type: Bob, London
Built-in mapped type: Alice, Paris

 Using Conditional Types
Conditional types are expressions containing generic type parameters that are evaluated to select new types. 
Listing 13-23 shows a basic conditional type. 

Listing 13-23. Using a Conditional Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type resultType<T extends boolean> = T extends true ? string : number;

let firstVal: resultType<true> = "String Value";
let secondVal: resultType<false> = 100;

let mismatchCheck: resultType<false> = "String Value";

Conditional types have a generic type parameter and a ternary expression that selects a result type, as 
illustrated in Figure 13-4.

Figure 13-4. A conditional type



Chapter 13 ■ advanCed GeneriC types

338

A conditional type is a placeholder for one of its result types, which isn’t chosen until the generic type 
parameter is used, which allows the expression to be evaluated using one of the result types selected.

In the listing, the resultType<T> conditional type is a placeholder for the string and number types, 
meaning that the argument for the generic type T will determine whether the conditional type resolves to 
string or number. The generic type parameter T is restricted so that it can only accept boolean values, and 
the expression will evaluate as true if the argument provided for T is the literal value type true. The effect is 
that resultType<T> resolves to string when T is true.

...
let firstVal: resultType<true> = "String Value";
let stringTypeCheck: string = firstVal;
...

The compiler resolves the conditional type and knows that the type annotation for firstVal resolves to 
string, allowing a string literal value to be assigned to firstVal. When the generic type argument is false, 
the conditional type resolves to number.

...
let secondVal: resultType<false> = 100;
let numberTypeCheck: number = secondVal;
...

The compiler enforces type safety with conditional types. In the final statement in Listing 13-23, the 
conditional type resolves to number but is assigned a string value, which produces the following compiler 
error:

error TS2322: Type '"String Value"' is not assignable to type 'number'.

THE DANGER OF CONDITIONAL TYPES

Conditional types are an advanced feature that should be used carefully. Writing conditional types can 
be a tortured process and can often feel like sleight of hand as you lead the compiler through a series of 
expressions to get the results you require.

as the complexity of a conditional type increases, so does the danger that you won’t capture all of the 
permutations of types correctly and create a result that is too lax, creating a type checking hole, or too 
restrictive, causing compiler errors for valid uses.

When using conditional types, remember that you are only describing combinations of types to the 
typescript compiler and that the type information will be removed during compilation. and, as a 
conditional type becomes more complex and encompasses more combinations, you should take a 
moment to consider if there is a simpler way to achieve the same result.



Chapter 13 ■ advanCed GeneriC types

339

 Nesting Conditional Types
More complex combinations of types can be described by nesting conditional types. A conditional type’s 
result types can be another conditional type, and the compiler will follow the chain of expressions until it 
reaches a result that isn’t conditional, as shown in Listing 13-24.

Listing 13-24. Nesting Conditional Types in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type resultType<T extends boolean> = T extends true ? string : number;

type references = "London" | "Bob" | "Kayak";

type nestedType<T extends references>
    = T extends "London" ? City : T extends "Bob" ? Person : Product;

let firstVal: nestedType<"London"> = new City("London", 8136000);
let secondVal: nestedType<"Bob"> = new Person("Bob", "London");
let thirdVal: nestedType<"Kayak"> = new Product("Kayak", 275);

The type nestedType<T> is a nested conditional type to select between three result types, based on the 
value of the generic type parameter. As noted in the sidebar, complex conditional types can be difficult to 
understand, and this is especially true when they are nested.

 Using Conditional Types in Generic Classes
Conditional types can be used to express the relationship between a method or function’s parameter types 
and the results it produces, as shown in Listing 13-25. This is a more concise alternative to the function type 
overloading I described in Chapter 8, although conditional types can be harder to understand.

Listing 13-25. Defining a Generic Type in the index.ts File in the src Folder

import { City, Person, Product, Employee } from "./dataTypes";

type resultType<T extends boolean> = T extends true ? string : number;

class Collection<T> {
    private items: T[];

    constructor(...initialItems: T[]) {
        this.items = initialItems || [];
    }

    total<P extends keyof T, U extends boolean>(propName: P, format: U)
            : resultType<U> {
        let totalValue = this.items.reduce((t, item) =>
            t += Number(item[propName]), 0);
        return format ? `$${totalValue.toFixed()}` : totalValue as any;
    }
}



Chapter 13 ■ advanCed GeneriC types

340

let data = new Collection<Product>(new Product("Kayak", 275), new Product("Lifejacket", 
48.95));

let firstVal: string = data.total("price", true);
console.log(`Formatted value: ${firstVal}`);
let secondVal: number = data.total("price", false);
console.log(`Unformatted value: ${secondVal}`);

The Collection<T> class uses an array to store objects whose type is specified by the generic type 
parameter named T. The total method defines two generic type parameters: P, which specifies a property 
to use to create a total, and U, which specifies whether the result should be formatted. The result of the total 
method is a conditional type, which is resolved using the value provided for the type parameter U.

...
total<P extends keyof T, U extends boolean>(propName: P, format: U): resultType<U> {
...

The use of the conditional type means that the result of the total method is determined by the 
argument provided for the type parameter U. And since the compiler can infer U from the value provided for 
the argument format, as explained in Chapter 12, the method can be invoked like this:

...
let firstVal: string = data.total("price", true);
...

When the argument for the format parameter is true, the conditional type resolves to set the result type 
of the total method to string. This matches the data type produced by the method implementation.

...
return format ? `$${totalValue.toFixed()}` : totalValue as any;
...

When the argument for the format parameter is false, the conditional type resolves to set the type of 
the total method to number, allowing the method to return the unformatted number value.

...
return format ? `$${totalValue.toFixed()}` : totalValue as any;
...

RETURNING VALUES IN METHODS THAT USE A CONDITIONAL TYPE

at the time of writing, the typescript compiler has difficulty correlating the data type of values returned 
by methods and functions when conditional types are used. it is for this reason that Listing 13-25 uses 
a type assertion in the total method to tell the compiler to treat the result as any. Without the type 
annotation, the compiler will report an error.



Chapter 13 ■ advanCed GeneriC types

341

The code in Listing 13-25 produces the following output:

Formatted value: $324
Unformatted value: 323.95

 Using Conditional Types with Type Unions
Conditional types can be used to filter type unions, allowing types to be easily selected or excluded from the 
set that the union contains, as shown in Listing 13-26.

Listing 13-26. Filtering a Type Union in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

type Filter<T, U> = T extends U ? never : T;

function FilterArray<T, U>(data: T[],
        predicate: (item) => item is U): Filter<T, U>[] {
    return data.filter(item => !predicate(item)) as any;
}

let dataArray = [new Product("Kayak", 275), new Person("Bob", "London"),
    new Product("Lifejacket", 27.50)];

function isProduct(item: any): item is Product {
    return item instanceof Product;
}

let filteredData: Person[] = FilterArray(dataArray, isProduct);
filteredData.forEach(item => console.log(`Person: ${item.name}`));

When a conditional type is provided with a type union, the TypeScript compiler distributes the 
condition over each type in the union, creating what is known as a distributive conditional type. This effect is 
applied when a conditional type is used like a type union, like this, for example:

...
type filteredUnion = Filter<Product | Person, Product>
...

The TypeScript compiler applies the conditional type to each type in the union separately 
and then creates a union of the results, like this:...
type filteredUnion = Filter<Product, Product> | Filter<Person, Product>
...

The Filter<T, U> conditional type evaluates to never when the first type parameter is the same as the 
second, producing this result:

...
type filteredUnion = never | Person
...



Chapter 13 ■ advanCed GeneriC types

342

It isn’t possible to have a union with never, so the compiler omits it from the union, with the result that 
Filter<Product | Person, Product> is equivalent to this type:

...
type filteredUnion = Person
...

The conditional type filters out any type that cannot be assigned to Person and returns the remaining 
types in the union. The FilterArray<T, U> method does the work of filtering an array using a predicate 
function and returns the Filter<T, U> type. The code in Listing 13-26 produces the following result:

Person: Bob

 Using the Built-in Distributive Conditional Types
TypeScript provides a set of built-in conditional types that are used to filter unions, as described in Table 13-7, 
allowing common tasks to be performed without the need to define custom types.

 Using Conditional Types in Type Mappings
Conditional types can be combined with type mappings, allowing different transformations to be applied to 
the properties in a type, which can provide greater flexibility than using either feature alone. Listing 13-27 
shows a type mapping that uses a conditional type.

Listing 13-27. Defining a Type Mapping with a Conditional Type in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

type changeProps<T, U, V> = {
    [P in keyof T]: T[P] extends U ? V: T[P]
};

type modifiedProduct = changeProps<Product, number, string>;

function convertProduct(p: Product): modifiedProduct {
    return { name: p.name, price: `$${p.price.toFixed(2)}` };
}

let kayak = convertProduct(new Product("Kayak", 275));
console.log(`Product: ${kayak.name}, ${kayak.price}`);

Table 13-7. The Built-in Distributive Conditional Types

Name Description

Exclude<T, U> This type excludes the types that can be assigned to U from T, equivalent to the 
Filter<T, U> type in Listing 13-26.

Extract<T, U> This type selects the types that can be assigned to U from T.

NonNullable<T> This type excludes null and undefined from T.



Chapter 13 ■ advanCed GeneriC types

343

The changeProps<T, U, V> mapping selects the properties of type U and changes them to type V in the 
mapped type. This statement applies the mapping to the Product class, specifying that number properties 
should be made into string properties:

...
type modifiedProduct = changeProp<Product, number, string>;
...

The mapped type defines name and price properties, both of which are typed as string. The 
modifiedProduct type is used as the result of the convertProduct function, which accepts a Product object 
and returns an object that conforms to the shape of the mapped type by formatting the price property. The 
code in Listing 13-27 produces the following output:

Product: Kayak, $275.00

 Identifying Properties of a Specific Type
A common requirement is to limit a type parameter so that it can be used only to specify a property that has 
a specific type. For example, the Collection<T> class in Listing 13-25 defined a total method that accepts a 
property name and that should be restricted to number properties. This type of restriction can be achieved by 
combining the features described in the previous sections, as shown in Listing 13-28.

Listing 13-28. Identifying Properties in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

type unionOfTypeNames<T, U> = {
    [P in keyof T] : T[P] extends U ? P : never;
};

type propertiesOfType<T, U> = unionOfTypeNames<T, U>[keyof T];

function total<T, P extends propertiesOfType<T, number>>(data: T[],
        propName: P): number {
    return data.reduce((t, item) => t += Number(item[propName]), 0);
}

let products = [new Product("Kayak", 275), new Product("Lifejacket", 48.95)];
console.log(`Total: ${total(products, "price")}`);

The method for identifying the properties is unusual, so I have broken the process into two statements 
to make it easier to explain. The first step is to use a type mapping that has a conditional statement.

...
type unionOfTypeNames<T, U> = {
    [P in keyof T] : T[P] extends U ? P : never;
};
...



Chapter 13 ■ advanCed GeneriC types

344

The conditional statement checks the type of each property. If a property doesn’t have the target type, 
then its type is changed to never. If a property does have the expected type, then its type is changed to the 
literal value that is the property name. This means that the mapping unionOfTypeNames<Product, number> 
produces the following mapped type:

...
{
    name: never,
    price: "price"
}
...

This odd mapped type provides the input to the second stage in the process, which is to use the indexed 
access operator to get a union of the types of the properties defined by the mapped type, like this:

...
type propertiesOfType<T, U> = unionOfTypeNames<T, U>[keyof T];
...

For the mapped type created by unionOfTypeNames<Product, number>, the indexed access operator 
produces the following union:

...
never | "price"
...

As noted previously, never is automatically removed from unions, leaving a union of literal value types 
that are the properties of the required type. The union of property names can then be used to restrict generic 
type parameters.

...
function total<T, P extends propertiesOfType<T, number>>(data: T[],
        propName: P): number {
    return data.reduce((t, item) => t += Number(item[propName]), 0);
}
...

The propName parameter of the total function can be used only with the names of the number 
properties in the type T, like this:

...
console.log(`Total: ${total(products, "price")}`);
...

This example shows how flexible the TypeScript generic type features can be but also illustrates how 
unusual steps can be required to achieve a specific effect. The code in Listing 13-28 produces the following 
output:

Total: 323.95



Chapter 13 ■ advanCed GeneriC types

345

 Inferring Additional Types in Conditions
There can be a tension between the need to accept a wide range of types through a generic type parameter 
and the need to know the details of those types. As an example, Listing 13-29 shows a function that accepts 
an array or a single object of a given type.

Listing 13-29. Defining a Function in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

function getValue<T, P extends keyof T>(data: T, propName: P): T[P] {
    if (Array.isArray(data)) {
        return data[0][propName];
    } else {
        return data[propName];
    }
}

let products = [new Product("Kayak", 275), new Product("Lifejacket", 48.95)];
console.log(`Array Value: ${getValue(products, "price")}`);
console.log(`Single Total: ${getValue(products[0], "price")}`);

This code won’t compile because the generic parameters don’t correctly capture the relationship 
between the types. If the total function receives an array through the data parameter, it returns the value 
of the property specified by the propName parameter for the first item in the array. If the function receives 
a single object through data, then it returns the propName value for that object. The propName parameter is 
constrained using keyof, which is a problem when an array is used because keyof returns a union of the 
property names defined by the JavaScript array object and not the properties of the type contained in the 
array, which can be seen in the compiler error message.

src/index.ts(12,48): error TS2345: Argument of type '"price"' is not assignable to 
parameter of type 'number | keyof Product[]'.

The TypeScript infer keyword can be used to infer types that are not explicitly expressed in the 
parameters of a conditional type. For the example, this means I can ask the compiler to infer the type of the 
objects in an array, as shown in Listing 13-30.

Listing 13-30. Inferring the Array Type in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

type targetKeys<T> = T extends (infer U)[] ? keyof U: keyof T;

function getValue<T, P extends targetKeys<T>>(data: T, propName: P): T[P] {
    if (Array.isArray(data)) {
        return data[0][propName];
    } else {
        return data[propName];
    }
}



Chapter 13 ■ advanCed GeneriC types

346

let products = [new Product("Kayak", 275), new Product("Lifejacket", 48.95)];
console.log(`Array Value: ${getValue(products, "price")}`);
console.log(`Single Total: ${getValue(products[0], "price")}`);

Types are inferred with the infer keyword, and they introduce a generic type whose type will be 
inferred by the compiler when the conditional type is resolved, as shown in Figure 13-5.

In Listing 13-30, the type U is inferred if T is an array. The type of U is inferred by the compiler from the 
generic type parameter T when the type is resolved. The effect is that the type of targetKeys<Product> and 
targetKeys<Product[]> both produce the "name" | "price" union. The conditional type can be employed 
to constrain the property of the getValue<T, P> function, providing consistent typing for both single objects 
and arrays. The code in Listing 13-30 produces the following output:

Array Value: 275
Single Total: 275

 Inferring Types of Functions
The compiler can also infer types in generic types that accept functions, as shown in Listing 13-31.

Listing 13-31. Using Type Inference for a Function in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

type Result<T> = T extends (...args: any) => infer R ? R : never;

function processArray<T,
        Func extends (T) => any>(data: T[], func: Func): Result<Func>[] {
    return data.map(item => func(item));
}

let selectName = (p: Product) => p.name;

let products = [new Product("Kayak", 275), new Product("Lifejacket", 48.95)];
let names: string[] = processArray(products, selectName);
names.forEach(name => console.log(`Name: ${name}`));

Figure 13-5. Inferring a type in a conditional type



Chapter 13 ■ advanCed GeneriC types

347

The Result<T> conditional type uses the infer keyword to obtain the result type for a function that 
accepts an object of type T and produces an any result. The use of type inference allows functions that 
process a specific type to be used while ensuring that the result of the processArray function is a specific 
type, based on the result of the function provided for the func parameter. The selectName function returns 
the string value of the name property of a Product object, and the inference means that Result<(...
args:Product) => string)> is correctly identified as string, allowing the processArray function to return 
a string[] result. The code in Listing 13-31 produces the following output:

Name: Kayak
Name: Lifejacket

Type inference in conditional types can be difficult to figure out, and TypeScript provides a series of 
built-in conditional types that are useful for dealing with functions, as described in Table 13-8.

The ConstructorParameters<T> and InstanceType<T> conditional types operate on constructor 
functions and are most useful when describing the types of functions that create objects whose type is 
specified as a generic type parameter, as shown in Listing 13-32.

Listing 13-32. Using the Built-in Conditional Types in the index.ts File in the src Folder

import { City, Person, Product, Employee} from "./dataTypes";

function makeObject<T extends new (...args: any) => any>
        (constructor: T, ...args: ConstructorParameters<T>) : InstanceType<T> {
    return  new constructor(...args as any[]);
}

let prod: Product = makeObject(Product, "Kayak", 275);
let city: City = makeObject(City, "London", 8136000);

[prod, city].forEach(item => console.log(`Name: ${item.name}`));

Table 13-8. The Built-in Conditional Types with Inference

Name Description

Parameters<T> This conditional type selects the types of each function parameter, 
expressed as a tuple.

ReturnType<T> This conditional type selects the function result type, equivalent to 
Result<T> in Listing 13-31.

ConstructorParameters<T> The conditional type selects the types of each parameter of a constructor 
function, expressed as a tuple, as demonstrated after the table.

InstanceType<T> This conditional type returns the result type of a constructor function.



Chapter 13 ■ advanCed GeneriC types

348

The makeObject function creates objects from classes without advanced knowledge of which class is 
required. The ConstructorParameters<T> and InstanceType<T> conditional types infer the parameters 
and result for the constructor of the class provided as the first generic type parameter, ensuring that the 
makeObject function receives the correct types for creating an object and whose type accurately reflects the 
type of the object that is created. The code in Listing 13-32 produces the following output:

Name: Kayak
Name: London

 Summary
In this chapter, I described the advanced generic type features that TypeScript provides. These are not 
required in every project, but they are invaluable when the more basic features cannot describe the types 
that an application requires. In the next chapter, I explain how TypeScript deals with JavaScript code, both 
when it is directly part of the project and also when it is in third-party packages on which the application 
depends.



349© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_14

CHAPTER 14

Working with JavaScript

TypeScript projects generally incorporate some amount of pure JavaScript code, either because the 
application is written in both TypeScript and JavaScript or because the project relies on third-party 
JavaScript packages installed using NPM. In this chapter, I describe the features that TypeScript provides for 
working with JavaScript. Table 14-1 summarizes the chapter.

For quick reference, Table 14-2 lists the TypeScript compiler options used in this chapter.

Table 14-1. Chapter Summary

Problem Solution Listing

Incorporate JavaScript files in a project Enable the allowJs and checkJs compiler options 9–13

Control whether a JavaScript file is 
checked by the TypeScript compiler

Use the @ts-check and @ts-nocheck comments 14

Describe JavaScript types Use JSDoc comments or create a declaration file 15–22

Describe third-party JavaScript code Update the compiler configuration and create a 
declaration file

22–26

Describe third-party code without 
creating a declaration file

Use a package that contains a declaration file or 
install a publicly available type declaration package

27–35

Generate declaration files for use in 
other projects

Enable the declaration compiler option 36–38

Table 14-2. The TypeScript Compiler Options Used in This Chapter

Name Description

allowJs This option includes JavaScript files in the compilation process.

baseUrl This option specifies the root location used to resolve module dependencies.

checkJs This option tells the compiler to check JavaScript code for common errors.

declaration This option produces type declaration files when enabled, which describe the types 
for use in other projects.

esModuleInterop This option adds helper code for importing from modules that do not declare a default 
export and is used in conjunction with the allowSyntheticDefaultImports option.

(continued)

https://doi.org/10.1007/978-1-4842-7011-0_14#DOI


Chapter 14 ■ Working With JavaSCript

350

 Preparing for This Chapter
To prepare the project for this chapter, open a new command prompt, navigate to a convenient location, and 
create a folder named usingjs. Run the commands shown in Listing 14-1 to navigate into the new folder and 
tell the Node Package Manager (NPM) to create a package.json file, which will track the packages added to 
the project.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 14-1. Creating the package.json File

cd usingjs
npm init --yes

Run the commands shown in Listing 14-2 in the usingjs folder to download and install the packages 
required for this chapter.

Listing 14-2. Adding Packages

npm install --save-dev typescript@4.2.2
npm install --save-dev tsc-watch@4.2.9

To create a configuration file for the TypeScript compiler, add a file called tsconfig.json to the usingjs 
folder with the content shown in Listing 14-3.

Listing 14-3. The Contents of the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs"
    }
}

Name Description

outDir This option specifies the directory in which the JavaScript files will be placed.

paths This option specifies the locations used to resolve module dependencies.

rootDir This option specifies the root directory that the compiler will use to locate TypeScript 
files.

target This option specifies the version of the JavaScript language that the compiler will 
target in its output.

Table 14-2. (continued)

https://github.com/Apress/essential-typescript-4


Chapter 14 ■ Working With JavaSCript

351

These configuration settings tell the TypeScript compiler to generate code for the most recent JavaScript 
implementations, using the src folder to look for TypeScript files and using the dist folder for its outputs. 
The module setting tells the compiler that the CommonJS modules are required, which is the format 
supported by Node.js.

To configure NPM so that it can start the compiler, add the configuration entry shown in Listing 14-4 to 
the package.json file.

Listing 14-4. Configuring NPM in the package.json File in the usingjs Folder

{
  "name": "usingjs",
  "version": "1.0.0",
  "description": "",
  "main": "index.js",
  "scripts": {
      "start": "tsc-watch --onsuccess \"node dist/index.js\""
  },
  "keywords": [],
  "author": "",
  "license": "ISC",
  "devDependencies": {
    "tsc-watch": "^4.2.9",
    "typescript": "^4.2.2"
  }
}

 Adding the TypeScript Code to the Example Project
Create the usingjs/src folder and add to it a file called product.ts with the code shown in Listing 14-5.

Listing 14-5. The Contents of the product.ts File in the src Folder

export class Product {

    constructor(public id: number,
            public name: string,
            public price: number) {
        // no statements required
    }
}

export enum SPORT {
    Running, Soccer, Watersports, Other
}

export class SportsProduct extends Product {
    private _sports: SPORT[];

    constructor(public id: number,
            public name: string,
            public price: number,



Chapter 14 ■ Working With JavaSCript

352

            ...sportArray: SPORT[]) {
        super(id, name, price);
        this._sports = sportArray;
    }

    usedForSport(s: SPORT): boolean {
        return this._sports.includes(s);
    }

    get sports(): SPORT[] {
        return this._sports;
    }
}

This file is used to define a basic Product class, which is extended by the SportsProduct class that adds 
features specific to sporting goods. Next, add a file called cart.ts to the src folder with the code shown in 
Listing 14-6.

Listing 14-6. The Contents of the cart.ts File in the src Folder

import { SportsProduct } from "./product";

class CartItem {

    constructor(public product: SportsProduct,
            public quantity: number) {
        // no statements required
    }

    get totalPrice(): number {
        return this.quantity * this.product.price;
    }
}

export class Cart {
    private items = new Map<number, CartItem>();

    constructor(public customerName: string) {
        // no statements required
    }

    addProduct(product: SportsProduct, quantity: number): number {
        if (this.items.has(product.id)) {
            let item = this.items.get(product.id);
            item.quantity += quantity;
            return item.quantity;
        } else {
            this.items.set(product.id, new CartItem(product, quantity));
            return quantity;
        }
    }



Chapter 14 ■ Working With JavaSCript

353

    get totalPrice(): number {
        return [...this.items.values()].reduce((total, item) =>
            total += item.totalPrice, 0);
    }

    get itemCount(): number {
        return [...this.items.values()].reduce((total, item) =>
            total += item.quantity, 0);
    }
}

This file defines the Cart class, which tracks a customer’s selection of SportProduct objects using a Map. 
To create the entry point for the project, add a file called index.ts to the src folder with the code shown in 
Listing 14-7.

Listing 14-7. The Contents of the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

console.log(`Cart has ${cart.itemCount} items`);
console.log(`Cart value is $${cart.totalPrice.toFixed(2)}`);

The code in the index.ts file creates some SportsProduct objects, uses them to populate a Cart, and 
writes details of the Cart contents to the console.

Run the command shown in Listing 14-8 in the usingjs folder to start the compiler so that the compiled 
code is executed automatically.

Listing 14-8. Starting the Compiler

npm start

The compiler will start and produce the following output:

7:23:34 AM - Starting compilation in watch mode...7:23:36 AM - Found 0 errors. Watching 
for file changes.
Cart has 4 items
Cart value is $341.30



Chapter 14 ■ Working With JavaSCript

354

 Working with JavaScript
The examples in this book have all assumed that you are working purely in TypeScript. Often, this won’t be 
possible, either because TypeScript is introduced partway through a project or because you need to work 
with JavaScript code that has already been developed in earlier projects.

A project can contain TypeScript and JavaScript code side by side, requiring only changes to the 
TypeScript compiler and some optional steps to describe the types used by the JavaScript code. To 
demonstrate the process, some JavaScript code is required. Add a file called formatters.js to the src folder 
with the code shown in Listing 14-9. 

 ■ Note the file extension for the file in Listing 14-9 is js because this is a pure JavaScript file. it is important 
to use the right extension for the examples in this section.

Listing 14-9. The Contents of the formatters.js File in the src Folder

export function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}

export function costFormatter(thing, cost) {
    writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
}

function writeMessage(message) {
    console.log(message);
}

The JavaScript file exports two formatting functions that write messages to the console. To incorporate 
the JavaScript code into the application, add the statements shown in Listing 14-10 to the index.ts file.

Listing 14-10. Using JavaScript Functions in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter } from "./formatters";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", cart.totalPrice);



Chapter 14 ■ Working With JavaSCript

355

When the changes to the index.ts file are saved, the compiler will run without reporting any problems, 
but the following message will be displayed when the code is executed:

internal/modules/cjs/loader.js:613
    throw err;
    ^
Error: Cannot find module 'dist\index.js'

The TypeScript compiler locates the JavaScript code without difficulty but doesn’t copy the code into 
the dist folder, which means that the Node.js runtime can’t locate the JavaScript code at runtime.

 Including JavaScript in the Compilation Process
The TypeScript compiler uses JavaScript files to resolve dependencies during compilation but doesn’t 
include them in the output it generates. To change this behavior, set the allowJs option in the tsconfig.
json file to true, as shown in Listing 14-11.

Listing 14-11. Changing the Compiler Configuration in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs",
        "allowJs": true
    }
}

This setting includes the JavaScript files in the src folder in the compilation process. The JavaScript files 
don’t contain TypeScript features, but the compiler will transform the JavaScript files to match the JavaScript 
version specified by the target setting and the module format specified by the module property. For this 
example, no code features used in the formatters.js file will change because the target property is set to 
es2018, but the compiler will transform the exports to match the CommonJS module format. If you examine 
the formatters.js file in the dist folder, you will see the changes the compiler has made.

...
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}
exports.sizeFormatter = sizeFormatter;
function costFormatter(thing, cost) {
    writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
}
exports.costFormatter = costFormatter;
function writeMessage(message) {
    console.log(message);
}
...



Chapter 14 ■ Working With JavaSCript

356

Configuring the TypeScript compiler to include JavaScript files allows code to be easily mixed and 
ensures that JavaScript features are versioned consistently.

 Type Checking JavaScript Code
The TypeScript compiler will check JavaScript code for common errors when the checkJs configuration 
option is true, as shown in Listing 14-12. This is not as comprehensive as the features applied to TypeScript 
files, but it can highlight potential problems. 

Listing 14-12. Configuring the Compiler in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs",
        "allowJs": true,
        "checkJs": true
    }
}

The compiler doesn’t detect the change to the checkJs property until it is restarted. Once you have 
saved the tsconfig.json file, use Control+C to stop the compiler; run the command shown in Listing 14-13 
in the usingjs folder to start it again.

Listing 14-13. Starting the Compiler

npm start

The costFormatter function in the formatters.js file calls the writeMessage function defined in the 
same file with more arguments than there are parameters. This is legal JavaScript, which doesn’t enforce 
restrictions on the number of arguments used to invoke a function, but the TypeScript compiler reports an 
error because this is a common error.

src/formatters.js(6,60): error TS2554: Expected 0-1 arguments, but got 2.

This feature is useful only if you can modify the JavaScript files to address the problems the compiler 
reports. You may have code that causes the TypeScript compiler to report an error but that can’t be changed 
because it conforms to the requirements of a third-party library. If you have a mix of JavaScript files you can 
edit and those you cannot, you can add comments to control which JavaScript files are checked. Table 14-3 
describes the comments, which are applied to the top of JavaScript files. 



Chapter 14 ■ Working With JavaSCript

357

Listing 14-14 adds a comment to the formatters.js file to tell the compiler not to check the contents of 
the file. Any other JavaScript files in the project will still be checked unless the same comment is applied.

Listing 14-14. Disabling JavaScript Checks in the formatters.js File in the src Folder

// @ts-nocheck

export function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}

export function costFormatter(thing, cost) {
    writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
}

function writeMessage(message) {
    console.log(message);
}

The compiler will detect the change and run without checking the statements in the JavaScript file, 
producing the following output:

The Cart has 4 items
The Cart costs $341.30

 Describing Types Used in JavaScript Code
The TypeScript compiler will incorporate JavaScript code into a project, but there won’t be static type 
information available. The compiler will do its best to infer the types used in the JavaScript code but will 
struggle and fall back to using any, especially for function parameters and results. The costFormatter 
function defined in the formatters.js file, for example, will be treated as though it had been defined with 
these type annotations: 

...
export function costFormatter(thing: any, cost: any): any {
...

Table 14-3. The Comments Controlling JavaScript Checking

Name Description

//@ts-check This comment tells the compiler to check the contents of a JavaScript file even when the 
checkJs property in the tsconfig.json file is false.

//@ts-nocheck This comment tells the compiler to ignore the contents of a JavaScript file, even when 
the checkJs property in the tsconfig.json file is true.



Chapter 14 ■ Working With JavaSCript

358

Adding JavaScript to a project can create holes in type checking that undermine the benefits of using 
TypeScript. The compiler can’t determine that the costFormatter function assumes that it will receive a 
number value, which can be seen by adding a statement to the index.ts file that provides a string value, as 
shown in Listing 14-15.

Listing 14-15. Using the Wrong Type in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter } from "./formatters";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

The new statement invokes the costFormatter function with two string arguments. The TypeScript 
compiler doesn’t understand this will cause a problem and compiles the code without error. But when the 
code is executed, the costFormatter function invokes the toFixed method without checking that it has 
received a number value, which causes the following runtime error:

formatters.js:9: writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
TypeError: cost.toFixed is not a function

This issue can be resolved by providing the compiler with type information that describes the JavaScript 
code so that its use can be checked during compilation. There are two approaches to describing types in 
JavaScript code, which I demonstrate in the following sections.

 Using Comments to Describe Types
The TypeScript compiler can obtain type information when it is included in JSDoc comments. JSDoc is 
a popular markup language used to annotate JavaScript code as comments. Listing 14-16 adds JSDoc 
comments to the formatters.js file. 

 ■ Tip Many code editors will help generate JSDoc comments. visual Studio Code, for example, responds 
when a comment is created and automatically generates a list of function parameters.



Chapter 14 ■ Working With JavaSCript

359

Listing 14-16. Using JSDoc in the formatters.js File in the src Folder

// @ts-nocheck

export function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}

/**
 * Format something that has a money value
 * @param { string } thing - the name of the item
 * @param { number} cost - the value associated with the item
 */
export function costFormatter(thing, cost) {
    writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
}

function writeMessage(message) {
    console.log(message);
}

The JSDoc specification allows types to be indicated for function parameters. The JSDoc comment in 
Listing 14-16 indicates that the costFormatter function expects to receive string and number parameters. 
The type information is a standard part of JSDoc, but it is usually just to provide guidance.

The TypeScript compiler reads the JSDoc comments to get type information about the JavaScript code. 
When the JSDoc comment in Listing 14-16 is saved, the compiler will run and report the following error:

src/index.ts(15,23): error TS2345: Argument of type 'string' is not assignable to 
parameter of type 'number'.

The compiler has read the JSDoc comment for the costFormatter function and determined that the 
value used to invoke the function in the index.ts file doesn’t use the right data type.

 ■ Tip See https://github.com/Microsoft/TypeScript/wiki/JSDoc- support- in- JavaScript for a 
complete list of the JSDoc tags that the typeScript compiler understands.

JSDoc comments can use the TypeScript syntax to describe more complex types, as shown in  
Listing 14-17, which uses a type union.

Listing 14-17. Describing a Type Union in the formatters.js File in the src Folder

// @ts-nocheck

export function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}

https://github.com/Microsoft/TypeScript/wiki/JSDoc-support-in-JavaScript


Chapter 14 ■ Working With JavaSCript

360

/**
 * Format something that has a money value
 * @param { string } thing - the name of the item
 * @param { number | string } cost - the value associated with the item
 */
export function costFormatter(thing, cost) {
    if (typeof cost === "number") {
        writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
    } else {
        writeMessage(`The ${thing} costs $${cost}`);
    }
}

function writeMessage(message) {
    console.log(message);
}

The costFormatter function has been modified so that it can accept number and string values for its 
cost parameter, which is reflected in the updated JSDoc comment, which specifies the type as number | 
string. When the changes are saved, the code will be compiled, and the following output will be produced:

The Cart has 4 items
The Cart costs $341.3

 Using Type Declaration Files
Declaration files, also referred to as type definition files, provide a way to describe JavaScript code to the 
TypeScript file without having to change the source code file. Type declaration files have the d.ts extension, 
and the name of the file corresponds to the JavaScript file. To create a declaration file for the formatters.
js file, a file named formatters.d.ts must be created. Add a file named formatters.d.ts to the src folder 
with the contents shown in Listing 14-18. 

Listing 14-18. The Contents of the formatters.d.ts File in the src Folder

export declare function sizeFormatter(thing: string, count: number): void;
export declare function costFormatter(thing: string, cost: number | string ): void;

The contents of a type declaration file mirror those of the code file it describes. Each statement contains 
the declare keyword, which tells the compiler that the statement describes the types defined elsewhere. 
Listing 14-18 describes the parameters and result types of the functions that are exported from the 
formatters.js file.

 ■ Tip type declaration files take precedence over JSDoc comments when both are used to describe 
JavaScript code.

When a type declaration file is used, it must describe all the features defined in the corresponding 
JavaScript file that is used by the application because it is the only source of information used by the 
TypeScript compiler, which no longer examines the JavaScript file. For the example project, this means that 



Chapter 14 ■ Working With JavaSCript

361

the type declaration in Listing 14-18 must describe the sizeFormatter and costFormatter functions since 
both are used in the index.ts file. Any feature that is not described in the type declaration file will not be 
visible to the TypeScript compiler. To demonstrate, Listing 14-19 changes the writeMessage function in the 
formatters.js file so that is exported for use in the rest of the application.

 ■ Tip the typeScript compiler trusts that the contents of a type declaration file are accurate, which means 
you are responsible for ensuring the types you select are supported by the JavaScript code and that all of the 
features in the JavaScript code are implemented as you describe.

Listing 14-19. Exporting a Function in the formatters.js File in the src Folder

// @ts-nocheck

export function sizeFormatter(thing, count) {
    writeMessage(`The ${thing} has ${count} items`);
}

/**
 * Format something that has a money value
 * @param { string } thing - the name of the item
 * @param { number | string } cost - the value associated with the item
 */
export function costFormatter(thing, cost) {
    if (typeof cost === "number") {
        writeMessage(`The ${thing} costs $${cost.toFixed(2)}`, true);
    } else {
        writeMessage(`The ${thing} costs $${cost}`);
    }
}

export function writeMessage(message) {
    console.log(message);
}

Listing 14-20 uses the newly exported function in the index.ts file to display a simple message.

Listing 14-20. Using a Function in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./formatters";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);



Chapter 14 ■ Working With JavaSCript

362

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);
writeMessage("Test message");

The compiler will process the changes to the index.ts file when they are saved and report the following 
error:

src/index.ts(3,40): error TS2305: Module '"/usingjs/src/formatters"' has no exported 
member 'writeMessage'.

The compiler relies entirely on the type declaration file to describe the contents of the formatters 
module. A declaration statement in the formatters.d.ts file is required to make the writeMessage 
function visible to the compiler, as shown in Listing 14-21.

Listing 14-21. Adding a Statement in the formatters.d.ts File in the src Folder

export declare function sizeFormatter(thing: string, count: number): void;
export declare function costFormatter(thing: string, cost: number | string ): void;
export declare function writeMessage(message: string): void;

Once the declaration file includes the function, the code in the project will compile and produce the 
following output:

The Cart has 4 items
The Cart costs $341.3
Test message

 Describing Third-Party JavaScript Code
Declaration files can also be used to describe JavaScript code added to the project in third-party packages 
that have been added to the project using NPM. Open a new command prompt, navigate to the usingjs 
folder, and run the command shown in Listing 14-22 to install a new package in the example project. 

Listing 14-22. Adding a Package to the Example Project

npm install debug@4.3.1

The debug package is a utility package that provides decorated debugging output to the JavaScript 
console. I have chosen it for this chapter because it is small but well-written and widely used in JavaScript 
development.

The compiler will try to infer types for third-party packages but will have the same limited success as 
for JavaScript files in the project. A type declaration file can be created for packages installed in the node_
modules folder, although the technique is awkward; a better approach is to use publicly available definitions, 
as described in the next section.

The first step is to reconfigure the way that the TypeScript compiler resolves dependencies on modules, 
as shown in Listing 14-23.



Chapter 14 ■ Working With JavaSCript

363

Listing 14-23. Configuring the Compiler in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs",
        "allowJs": true,
        "checkJs": true,
        "baseUrl": ".",
        "paths": {
            "*": ["types/*"]
        }
    }
}

The paths property is used to specify locations that the TypeScript compiler will use as it tries to 
resolve import statements for modules. The configuration used in the listing tells the compiler to look for 
all packages in a folder called types. When the paths property is used, the baseUrl property must also be 
specified, and the value used in the listing tells the compiler that the location specified by the path property 
can be found in the same folder as the tsconfig.json file.

The next step is to create the usingjs/types/debug folder and add to it a file called index.d.ts. To 
provide the compiler with custom declaration files, the location specified by the paths folder must contain 
a folder that corresponds to the name of the module or package and must contain a type declaration file 
that corresponds to the package’s entry point, which is usually index.js, meaning that the declaration file 
is named index.d.ts. In the case of the debug package, this means the types used by the package will be 
described by the types/debug/index.d.ts file. Once you have created the file, add the contents shown in 
Listing 14-24.

Listing 14-24. The Contents of the index.d.ts File in the types/debug Folder

declare interface Debug {
    (namespace: string): Debugger
}

declare interface Debugger {
    (...args: string[]): void;
    enabled: boolean;
}

declare var debug: { default: Debug };
export = debug;

The process for describing a third-party module can be complicated, not least because the package 
authors may not have anticipated that someone would try to describe their code using static types. To 
further complicate matters, the wide range of JavaScript language versions and module formats means that 
arcane incantations can be required to present TypeScript with descriptions that are useful and accurately 
represent the code in the module.

The two interfaces in Listing 14-24 describe the most basic features of the debug package, allowing a 
simple debugger to be set up and used. The last two statements are required to represent the exports from 
the package to TypeScript.



Chapter 14 ■ Working With JavaSCript

364

 ■ Tip See https://github.com/visionmedia/debug for details of the full api provided by the debug 
package.

To make use of the debug package, add the statements shown in Listing 14-25 to the index.ts file in the 
src folder.

Listing 14-25. Using a Package in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./formatters";
import debug from "debug";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

let db = debug("Example App", true);
db.enabled = true;
db("Message: %0", "Test message");

The TypeScript compiler will locate the declaration file and determine that the debug 
function has been invoked with too many arguments, producing the following error message:...
src/index.ts(18,31): error TS2554: Expected 1 arguments, but got 2.
...

This error would not have been reported without the declaration file because pure JavaScript doesn’t 
require that the number of arguments used to invoke a function matches the number of parameters it 
defines, as explained in Chapter 8.

You don’t have to create a deliberate error to check that the compiler has found the declaration file. 
Instead, open a new command prompt, navigate to the usingjs folder, and run the command shown in 
Listing 14-26.

Listing 14-26. Running the Compiler

tsc --traceResolution

https://github.com/visionmedia/debug


Chapter 14 ■ Working With JavaSCript

365

The traceResolution argument, which can also be used as a configuration setting in the tsconfig.
json file, tells the compiler to report on its progress as it attempts to locate each module. The output can be 
verbose—especially in complex projects—but the trace for the example project will contain this message:

======== Module name 'debug' was successfully resolved to
'C:/usingjs/types/debug/index.d.ts'. ========

You may see different locations reported on your development machine, but the message will confirm 
that the compiler has located the custom declaration file and will use it to resolve dependencies on the 
debug package.

DON’T WRITE DECLARATIONS FOR THIRD-PARTY PACKAGES

the declaration file in Listing 14-24 shows that it is possible to describe publicly available packages, 
but it is not a process that i recommend, to the extent that i don’t provide any detail about the different 
ways that package contents can be described.

First, it can be difficult to accurately represent someone else’s code, and creating an accurate type 
declaration file can require a detailed analysis of a package and a solid understanding of what it does 
and how it works. Second, custom declarations tend to focus on just the features that are immediately 
required, and declaration files get patched up and extended as further features are needed, producing 
results that are difficult to understand and manage. third, each new release means that the declaration 
file must be revisited to ensure that it still accurately reflects the api presented by the package.

But, the most compelling reason not to create your own declaration files is that there is an excellent 
library of high-quality declarations for thousands of JavaScript packages available through the Definitely 
typed project, as described in the next section. and the increased popularity of typeScript means that 
more packages come with type declaration files built in.

if you are determined to write your own files—or you want to contribute to the Definitely typed 
project—then Microsoft has produced a dedicated guide to describing packages, which can be found at 
https://www.typescriptlang.org/docs/handbook/declaration- files/introduction.html.

 Using Definitely Typed Declaration Files
The Definitely Typed project provides declaration files for thousands of JavaScript packages and is a more 
reliable—and quicker—way to use TypeScript with third-party packages than creating your own declaration 
files. Definitely Typed declaration files are installed using the npm install command. To install the 
declaration file for the debug package, run the command shown in Listing 14-27 in the usingjs folder. 

Listing 14-27. Installing a Type Declaration Package

npm install --save-dev @types/debug

The name used for the Definitely Typed package is @types/ followed by the name of the package for 
which a description is required. For the debug package, for example, the Definitely Typed package is called @
types/debug.

https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html


Chapter 14 ■ Working With JavaSCript

366

 ■ Tip notice that a version number for the @types/debug package is not specified in Listing 14-27. When 
installing @types packages, i let npM select the package version.

The compiler won’t use the Definitely Typed declarations until the configuration is changed to stop the 
compiler from looking in the types folder, as shown in Listing 14-28.

 ■ Note the configuration change is required because the project contains custom and Definitely typed 
declarations for the same package. this won’t be a problem in real projects, and you can use the configuration 
settings to choose between custom and Definitely typed declarations for each package you use.

Listing 14-28. Configuring the Compiler in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs",
        "allowJs": true,
        "checkJs": true,
        // "baseUrl": ".",
        // "paths": {
        //     "*": ["types/*"]
        // }
    }
}

Open a new command prompt, navigate to the usingjs folder, and run the command shown in  
Listing 14-29 to see the effect of using the Definitely Typed package.

Listing 14-29. Running the Compiler

tsc --traceResolution

The new trace shows that the compiler has located a different declaration file.

======== Type reference directive 'debug' was successfully resolved to 'C:/usingjs/node_
modules/@types/debug/index.d.ts' with Package ID '@types/debug/index.d.ts@4.1.5', primary: 
true. ========

The compiler looks in the node_modules/@types folder, which contains folders that correspond to each 
of the packages for which there are declaration files, following the same pattern as for custom files. (No 
configuration changes are required to tell the compiler to look in the node_modules@types folder.)



Chapter 14 ■ Working With JavaSCript

367

The result is that the Definitely Typed declaration file is used, which provides a full description of the 
API presented by the debug package. Listing 14-30 corrects the number of arguments used to invoke the 
debug function.

Listing 14-30. Using Package Features in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./formatters";
import debug from "debug";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

let db = debug("Example App");
db.enabled = true;
db("Message: %0", "Test message");

Save the changes and start the TypeScript compiler using the npm start command if it isn’t already 
running. The compiler will run using the new declaration file, which includes a description of the destroy 
method used in the listing. The compiled code produces the following output:

The Cart has 4 items
The Cart costs $341.3
Example App Message: %0 Test message +0ms

 Using Packages That Include Type Declarations
As TypeScript has become more popular, packages have started to include declaration files so that no 
additional downloads are required. The easiest way to see whether a project includes a declaration file 
is to install the package and look in the node_modules folder. As a demonstration, open a new command 
prompt, navigate to the usingjs folder, and run the command shown in Listing 14-31 to add a package to the 
example project.

Listing 14-31. Adding a Package to the Project

npm install chalk@4.1.0



Chapter 14 ■ Working With JavaSCript

368

The Chalk package provides styles for console output. Examine the contents of the node_modules/chalk 
folder, and you will see that it contains a types folder with an index.d.ts file. The node_modules/chalk/
package.json file contains a types property that tells the TypeScript compiler where to find the declaration file.

...
"types": "types/index.d.ts",
...

To confirm that the TypeScript compiler is able to find the Chalk declaration file, add the statements 
shown in Listing 14-32 to the index.ts file in the src folder to confirm.

Listing 14-32. Adding Statements in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./formatters";
import debug from "debug";
import chalk from "chalk";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted message"));
console.log(chalk.notAColor("Formatted message"));

One of the features provided by the Chalk package is coloring for text written to the console. The first 
statement tells Chalk to apply the greenBright color, and the second statement uses a nonexistent property. 
When the changes to the index.ts file are saved, the compiler will use the declaration file and report the 
following error:

src/index.ts(20,19): error TS2339: Property 'notAColor' does not exist on type 'Chalk & { 
supportsColor: ColorSupport; }'.

To enable the compiler support for importing the functionality from the Chalk package, add the 
configuration setting shown in Listing 14-33.

Listing 14-33. Configuring the Compiler in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",



Chapter 14 ■ Working With JavaSCript

369

        "rootDir": "./src",
        "module": "commonjs",
        "allowJs": true,
        "checkJs": true,
        "esModuleInterop": true
    }
}

To see the process by which the compiler locates the declaration file, use the command prompt to run 
the command shown in Listing 14-34 in the usingjs folder.

Listing 14-34. Running the Compiler

tsc --traceResolution

The output from the traceResolution argument is verbose, but if you read through the messages, you 
will see the different locations the compiler checks for declaration files and the effect of the settings in the 
Chalk package.json file.

...
'package.json' has 'types' field 'types/index.d.ts' that references 'C:/usingjs/node_
modules/chalk/types/index.d.ts'.
...
File 'C:/usingjs/node_modules/chalk/index.d.ts' exist - use it as a name resolution result.
...

Listing 14-35 removes the statement that deliberately caused a compiler error so the example 
application can be compiled and executed.

Listing 14-35. Removing a Statement in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./formatters";
import debug from "debug";
import chalk from "chalk";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted message"));
//console.log(chalk.notAColor("Formatted message"));



Chapter 14 ■ Working With JavaSCript

370

The code will be compiled and executed, with the statement formatted by Chalk displayed in bright 
green, as shown in Figure 14-1.

 Generating Declaration Files
If your code is going to be used by other projects, you can ask the compiler to generate declaration files 
alongside the pure JavaScript, which has the effect of preserving the type information for other TypeScript 
programmers but still allowing the project to be used as regular JavaScript.

The compiler won’t generate declaration files when the allowJS option is enabled, which means I have 
to remove the dependency on the formatters.js file so that the project is all TypeScript. Add a file called 
tsFormatters.ts to the src folder and add the code shown in Listing 14-36. 

Listing 14-36. The Contents of the tsFormatters.ts File in the src Folder

export function sizeFormatter(thing: string, count: number): void {
    writeMessage(`The ${thing} has ${count} items`);
}

export function costFormatter(thing: string, cost: number | string): void {
    if (typeof cost === "number") {
        writeMessage(`The ${thing} costs $${cost.toFixed(2)}`);
    } else {
        writeMessage(`The ${thing} costs $${cost}`);
    }
}

export function writeMessage(message: string): void {
    console.log(message);
}

This is the JavaScript code from the formatters.js file but with type annotations. Listing 14-37 updates 
the index.ts file to depend on the TypeScript file instead of the JavaScript file.

Figure 14-1. Using the Chalk package



Chapter 14 ■ Working With JavaSCript

371

 ■ Caution it is important to follow through with the changes in this process because disabling the allowJS 
option only prevents the compiler from adding the JavaScript file to the output folder. it doesn’t prevent any 
of the typeScript code from depending on the JavaScript file, which can lead to runtime errors because the 
JavaScript runtime won’t be able to find all the files it needs.

Listing 14-37. Updating a Dependency in the index.ts File in the src Folder

import { SportsProduct, SPORT } from "./product";
import { Cart } from "./cart";
import { sizeFormatter, costFormatter, writeMessage } from "./tsFormatters";
import debug from "debug";
import chalk from "chalk";

let kayak = new SportsProduct(1, "Kayak", 275, SPORT.Watersports);
let hat =  new SportsProduct(2, "Hat", 22.10, SPORT.Running, SPORT.Watersports);
let ball = new SportsProduct(3, "Soccer Ball", 19.50, SPORT.Soccer);

let cart = new Cart("Bob");
cart.addProduct(kayak, 1);
cart.addProduct(hat, 1);
cart.addProduct(hat, 2);

sizeFormatter("Cart", cart.itemCount);
costFormatter("Cart", `${cart.totalPrice}`);

console.log(chalk.greenBright("Formatted message"));
//console.log(chalk.notAColor("Formatted message"));

Listing 14-38 changes the configuration of the compiler to disable the allowJS and checkJS properties 
and to enable the automatic generation of declaration files.

Listing 14-38. Configuring the Compiler in the tsconfig.json File in the usingjs Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "commonjs",
        // "allowJs": true,
        // "checkJs": true,
        // "baseUrl": ".",
        // "paths": {
        //     "*": ["types/*"]
        // },
        "esModuleInterop": true,
        "declaration": true
    }
}



Chapter 14 ■ Working With JavaSCript

372

The compiler won’t generate the declaration files until it is restarted. Use Control+C to stop the 
compiler and run the command shown in Listing 14-39 in the usingjs folder to start it again.

Listing 14-39. Starting the Compiler

npm start

When the declaration property is true, the compiler will generate declaration files in the dist folder 
that describe the features exported from each TypeScript file, as shown in Figure 14-2.

Figure 14-2. Generating declaration files



Chapter 14 ■ Working With JavaSCript

373

 Summary
In this chapter, I showed you how to work with JavaScript in a TypeScript project. I explained how to 
configure the compiler to process and type check JavaScript files and how declaration files can be used to 
describe JavaScript code to the compiler. In the next part of the book, I build a series of web applications 
that rely on TypeScript, starting with a stand-alone application and then using the Angular, React, and Vue.js 
frameworks.



PART III

Creating Web Applications



377© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_15

CHAPTER 15

Creating a Stand-Alone Web App, 
Part 1

In this part of the book, I show you how TypeScript fits into the development process for the three most 
popular web application frameworks: Angular, React, and Vue.js. In each case, I go through the process of 
creating the project, setting up a web service, and writing a simple web application. In this chapter, I create 
the same web application without using any of these frameworks, providing a baseline for understanding the 
features they provide and context for how TypeScript features are used.

I don’t recommend creating real applications without using a framework, but working on a stand-alone 
application reveals much about TypeScript and its role in modern development and is worthwhile simply to 
learn. For quick reference, Table 15-1 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
To prepare for this chapter, open a new command prompt, navigate to a convenient location, and create a 
folder called webapp. Run the commands shown in Listing 15-1 to move to the webapp folder and to tell the 
Node Package Manager (NPM) to create a file named package.json.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this  
book—from https://github.com/Apress/essential- typescript- 4.

Table 15-1. The TypeScript Compiler Options Used in This Chapter

Name Description
jsx This option specifies how HTML elements in TSX files are processed.

jsxFactory This option specifies the name of the factory function that is used to replace HTML 
elements in TSX files.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate TypeScript files.

target This option specifies the version of the JavaScript language that the compiler will target in 
its output.

https://doi.org/10.1007/978-1-4842-7011-0_15#DOI
https://github.com/Apress/essential-typescript-4


Chapter 15 ■ Creating a Stand-alone Web app, part 1

378

Listing 15-1. Creating the package.json File

cd webapp
npm init --yes

I will be building a toolchain that incorporates the TypeScript compiler in this chapter to show the 
workflow common in web application development. This requires the TypeScript package to be installed 
locally in the project; you cannot rely on the globally installed package from Chapter 1. Run the command 
shown in Listing 15-2 in the webapp folder to install the TypeScript package.

Listing 15-2. Adding Packages Using the Node Package Manager

npm install --save-dev typescript@4.2.2

I will install further packages as the application takes shape, but the TypeScript package is enough for 
now. To configure the TypeScript compiler, add a file named tsconfig.json to the webapp folder with the 
content shown in Listing 15-3.

Listing 15-3. The Contents of the tsconfig.json File in the webapp Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src"
    }
}

The configuration tells the compiler to target the ES2018 version of JavaScript, to find the code files in 
the src folder, and to put the generated files in the dist folder. To prepare the entry point for the application, 
create the src folder and add to it a file called index.ts with the content shown in Listing 15-4.

Listing 15-4. The Contents of the index.ts File in the src Folder

console.log("Web App");

Run the commands shown in Listing 15-5 in the webapp folder to compile the index.ts file and execute 
the contents of the JavaScript file that is produced.

Listing 15-5. Compiling and Executing the Result

tsc
node dist/index.js



Chapter 15 ■ Creating a Stand-alone Web app, part 1

379

The compiled code will generate the following output:

Web App

 Creating the Toolchain
Web application development relies on a chain of tools that compile the code and prepare it for the delivery 
and execution of the application by the JavaScript runtime. The TypeScript compiler is the only development 
tool in the project at present, as shown in Figure 15-1.

The development tools are hidden when you use a framework like Angular, React, or Vue.js, as 
demonstrated in later chapters, but for this chapter, I am going to install and configure each tool and show 
you how they work together.

 Adding a Bundler
When the application is executed using Node.js in the project folder, any import statements can be resolved 
using the JavaScript generated by the TypeScript compiler or by the packages installed in the node_modules 
folder. 

The JavaScript runtime starts with the application entry point—the index.js file that is compiled from 
the index.ts file—and processes the import statements it contains. For each import statement, the runtime 
resolves the dependency and loads the required module, which will be another JavaScript file. Any import 
statements declared in the new JavaScript file are processed in the same way, allowing all the dependencies 
in the application to be resolved so the code can be executed.

The JavaScript runtime doesn’t know in advance what import statements each code file may contain 
and so it doesn’t know which JavaScript files are required. But it doesn’t matter because looking for files to 
resolve dependencies is a relatively quick operation since all the local files are easily accessible.

This approach doesn’t work as well for web applications, which don’t have direct access to the file 
system. Instead, files have to be requested over HTTP, which can be a slow and expensive operation and 
which doesn’t lend itself to easily checking multiple locations to resolve dependencies on files. Instead, 
a bundler is used, which resolves the dependencies during compilation and packages all the files that 
the application uses into a single file. One HTTP request delivers all the JavaScript required to run the 
application, and other content types, such as CSS, can be included in the file produced by the bundler, which 
is known as a bundle. During the bundling process, the code and content can be minified and compressed, 

Figure 15-1. The initial project toolchain



Chapter 15 ■ Creating a Stand-alone Web app, part 1

380

reducing the amount of bandwidth required to deliver the application to the client. Large applications can 
be split into multiple bundles so that optional code or content can be loaded separately and only when it is 
required.

The most widely used bundler is webpack, and it forms a key part of the toolchains used by React, 
Angular, and Vue.js, although you don’t usually need to work with it directly, as you will see in later chapters. 
Webpack can be complex to work with, but it is supported by a wide range of add-on packages that allow 
development toolchains to be created for just about any type of project. Run the commands shown in  
Listing 15-6 in the webapp folder to add webpack packages to the example project.

Listing 15-6. Adding Packages to the Example Project

npm install --save-dev webpack@5.17.0
npm install --save-dev webpack-cli@4.5.0
npm install --save-dev ts-loader@8.0.14

The webpack package contains the main bundler features, and the webpack-cli package adds 
command-line support. Webpack uses packages known as loaders to deal with different content types, and 
the ts-loader package adds support for compiling TypeScript files and feeding the compiled code into 
the bundle created by webpack. To configure webpack, add a file named webpack.config.js to the webapp 
folder with the contents shown in Listing 15-7.

Listing 15-7. The Contents of the webpack.config.js File in the webapp Folder

module.exports = {
    mode: "development",
    devtool: "inline-source-map",
    entry: "./src/index.ts",
    output: { filename: "bundle.js" },
    resolve: { extensions: [".ts", ".js"] },
    module: {
        rules: [
            { test: /\.ts/, use: "ts-loader", exclude: /node_modules/ }
        ]
    }
};

This entry and output settings tell webpack to start with the src/index.ts file when resolving the 
application’s dependencies and to give the bundle file the name bundle.js. The other settings configure 
webpack to use the ts-loader package to process files with the ts file extension.

 ■ Tip See https://webpack.js.org for details of the full range of configuration options that webpack 
supports.

Run the command shown in Listing 15-8 in the webapp folder to run webpack and create the bundle file.

https://webpack.js.org


Chapter 15 ■ Creating a Stand-alone Web app, part 1

381

Listing 15-8. Creating a Bundle File

npx webpack

Webpack works its way through the dependencies in the project and uses the ts-loader package to 
compile the TypeScript files it encounters, producing the following output:

asset bundle.js 788 bytes [emitted] (name: main)
./src/index.ts 25 bytes [built] [code generated]
webpack 5.17.0 compiled successfully in 1865 ms

The bundle.js file is created in the dist folder. Run the command shown in Listing 15-9 in the webapp 
folder to execute the code in the bundle.

Listing 15-9. Executing the Bundle File

node dist/bundle.js

There is only one TypeScript file in the project, but the bundle is self-contained and will remain so even 
as the example application becomes more complex. Executing the bundle produces the following output:

Web App

The addition of webpack and its supporting packages has changed the development toolchain, as 
shown in Figure 15-2. 

Figure 15-2. Adding a bundle to the toolchain



Chapter 15 ■ Creating a Stand-alone Web app, part 1

382

 Adding a Development Web Server
A web server is required to deliver the bundle file to the browser so it can be executed. The Webpack 
Dev Server (WDS) is an HTTP server that is integrated into webpack and includes support for triggering 
automatic browser reloads when a code file changes and a new bundle file is produced. Run the command 
shown in Listing 15-10 in the webapp folder to install the WDS package. 

Listing 15-10. Adding the WDS Package

npm install --save-dev webpack-dev-server@3.11.2

Change the webpack configuration to set up the basic configuration for WDS, as shown in Listing 15-11.

Listing 15-11. Changing the Configuration in the webpack.config.js File in the webapp Folder

module.exports = {
    mode: "development",
    devtool: "inline-source-map",
    entry: "./src/index.ts",
    output: { filename: "bundle.js" },
    resolve: { extensions: [".ts", ".js"] },
    module: {
        rules: [
            { test: /\.ts/, use: "ts-loader", exclude: /node_modules/ }
        ]
    },
    devServer: {
        contentBase: "./assets",
        port: 4500
    }
};

The new configuration settings tell WDS to look for any file that is not a bundle in a folder named 
assets and to listen for HTTP requests on port 4500. To provide WDS with an HTML file that can be used to 
respond to browsers, create a webapp/assets folder and add to it a file named index.html with the content 
shown in Listing 15-12.

Listing 15-12. The Contents of the index.html File in the assets Folder

<!DOCTYPE html>
<html>
<head>
    <title>Web App</title>
    <script src="bundle.js"></script>
</head>
<body>
    <div id="app">Web App Placeholder</div>
</body>
</html>



Chapter 15 ■ Creating a Stand-alone Web app, part 1

383

When the browser receives the HTML file, it will process the contents and encounter the script 
element, which will trigger an HTTP request for the bundle.js file, which contains the application’s 
JavaScript code.

To start the server, run the command shown in Listing 15-13 in the webapp folder.

Listing 15-13. Starting the Development Web Server

npx webpack serve

The HTTP server will start, and the bundle will be created. However, the dist folder is no longer used 
to store the files—the output from the bundling process is held in memory and used to respond to HTTP 
requests without needing to create a file on disk. As the server starts and the application is bundled, you will 
see the following output:

i ⌈wds⌋: Project is running at http://localhost:4500/
i ⌈wds⌋: webpack output is served from /
i ⌈wds⌋: Content not from webpack is served from ./assets
i ⌈wds⌋: asset bundle.js 364 KiB [emitted] (name: main)
runtime modules 430 bytes 3 modules
cacheable modules 335 KiB
  modules by path ./node_modules/webpack-dev-server/client/ 20.9 KiB 10 modules
  modules by path ./node_modules/html-entities/lib/*.js 61 KiB 5 modules
  modules by path ./node_modules/url/ 37.4 KiB 3 modules
  modules by path ./node_modules/querystring/*.js 4.51 KiB
    ./node_modules/querystring/index.js 127 bytes [built] [code generated]
    ./node_modules/querystring/decode.js 2.34 KiB [built] [code generated]
    ./node_modules/querystring/encode.js 2.04 KiB [built] [code generated]
  modules by path ./node_modules/webpack/hot/*.js 1.42 KiB
    ./node_modules/webpack/hot/emitter.js 75 bytes [built] [code generated]
    ./node_modules/webpack/hot/log.js 1.34 KiB [built] [code generated]
./node_modules/webpack/hot/ sync nonrecursive ^\.\/log$ 170 bytes [built] [code generated]
webpack 5.17.0 compiled successfully in 2087 Microsoft
i ⌈wdm⌋: Compiled successfully.

The detail of the messages isn’t important other than to give you a sense of the overall progress. Once 
the server has started, open a new web browser and navigate to http://localhost:4500, which is the 
port on which WDS was configured to listen for HTTP requests. The contents of the index.html file will be 
displayed by the browser, as shown in Figure 15-3.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

384

Open the browser’s F12 development tools and switch to the Console tab to see the output from the 
console.log statement in the index.ts file.

Web App

When WDS is started, webpack is put into a watch mode that builds a new bundle when a change to 
the code files is detected. During the bundling process, WDS injects additional code into the JavaScript file 
that opens a connection back to the server and waits for a signal to reload the browser, which is sent for each 
new bundle. The effect is that the browser is reloaded automatically each time a change is detected and 
processed, which can be seen by adding a statement to the index.ts file, as shown in Listing 15-14.

 ■ Tip the reload feature works only for code files and doesn’t apply to the htMl file in the assets folder. 
Changes to the htMl file take effect only when WdS is restarted.

Listing 15-14. Adding a Statement to the index.ts File in the src Folder

console.log("Web App");
console.log("This is a new statement");

As soon as the index.ts file is saved, webpack builds a new bundle, and the signal is sent to the browser 
to trigger a reload, producing the following output in the browser’s F12 developer tool console:

Web App
This is a new statement

Adding WDS extends the chain of development tools and links the application to the JavaScript runtime 
provided by the browser, as shown in Figure 15-4. 

Figure 15-3. Displaying the HTML file



Chapter 15 ■ Creating a Stand-alone Web app, part 1

385

This toolchain contains the key elements that you will see in most web application projects, although 
the individual parts are often hidden from sight. Notice how the TypeScript compiler is just one part of the 
chain, allowing TypeScript code to be integrated into a set of broader JavaScript development tools.

 Creating the Data Model
The application will retrieve its list of products from a web service using an HTTP request. The user will be 
able to select products to assemble an order, which will be sent back to the web service using another HTTP 
request. To start the data model, I created the src/data folder and added to it a file called entities.ts with 
the code shown in Listing 15-15.

Listing 15-15. The Contents of the entities.ts File in the src/data Folder

export type Product = {
    id: number,
    name: string,
    description: string,
    category: string,
    price: number
};

export class OrderLine {
    constructor(public product: Product, public quantity: number) {
        // no statements required
    }

    get total(): number {
        return this.product.price * this.quantity;
    }
}

Figure 15-4. Adding WDS to the development toolchain



Chapter 15 ■ Creating a Stand-alone Web app, part 1

386

export class Order {
    private lines = new Map<number, OrderLine>();

    constructor(initialLines?: OrderLine[]) {
        if (initialLines) {
            initialLines.forEach(ol => this.lines.set(ol.product.id, ol));
        }
    }

    public addProduct(prod: Product, quantity: number) {
        if (this.lines.has(prod.id)) {
            if (quantity === 0) {
                this.removeProduct(prod.id);
            } else {
                this.lines.get(prod.id)!.quantity += quantity;
            }
        } else {
            this.lines.set(prod.id, new OrderLine(prod, quantity));
        }
    }

    public removeProduct(id: number) {
        this.lines.delete(id);
    }

    get orderLines(): OrderLine[] {
        return [...this.lines.values()];
    }

    get productCount(): number {
        return [...this.lines.values()]
            .reduce((total, ol) => total += ol.quantity, 0);
    }

    get total(): number {
        return [...this.lines.values()].reduce((total, ol) => total += ol.total, 0);
    }
}

The Product, Order, and OrderLine types are all exported so they can be used outside of the code 
file. The Order class represents the user’s product selections, each of which is expressed as an OrderLine 
object that combines a Product and a quantity. I have defined Product as a type alias because this will 
simplify working with data obtained remotely when I introduce a web service in Chapter 15. The Order and 
OrderLine types are defined as classes because they define additional features beyond being a collection of 
related properties.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

387

 Creating the Data Source
I will introduce the web service later in the chapter. For the moment, I will create a class that provides access 
to some local test data. To ease the transition from local to remote data, I will define an abstract class that 
provides the basic features and create concrete implementations for each data source. I added a file called 
abstractDataSource.ts to the src/data folder and used it to define the class shown in Listing 15-16.

Listing 15-16. The Contents of the abstractDataSource.ts File in the src/data Folder

import { Product, Order } from "./entities";

export type ProductProp = keyof Product;

export abstract class AbstractDataSource {
    private _products: Product[];
    private _categories: Set<string>;
    public order: Order;
    public loading: Promise<void>;

    constructor() {
        this._products = [];
        this._categories = new Set<string>();
        this.order = new Order();
        this.loading = this.getData();
    }

    async getProducts(sortProp: ProductProp = "id",
            category? : string): Promise<Product[]> {
        await this.loading;
        return this.selectProducts(this._products, sortProp, category);
    }

    protected async getData(): Promise<void> {
        this._products = [];
        this._categories.clear();
        const rawData = await this.loadProducts();
        rawData.forEach(p => {
            this._products.push(p);
            this._categories.add(p.category);
        });
    }

    protected selectProducts(prods: Product[],
            sortProp: ProductProp, category?: string): Product[] {
        return prods.filter(p=> category === undefined || p.category === category)
                .sort((p1, p2) => p1[sortProp] < p2[sortProp]
                    ? -1 : p1[sortProp] > p2[sortProp] ? 1: 0);
    }



Chapter 15 ■ Creating a Stand-alone Web app, part 1

388

    async getCategories(): Promise<string[]> {
        await this.loading;
        return [...this._categories.values()];
    }

    protected abstract loadProducts(): Promise<Product[]>;
    abstract storeOrder(): Promise<number>;
}

The AbstractDataSource class uses the JavaScript Promise features to fetch data in the background 
and uses the async/await keywords to express the code that depends on those operations. The class 
in Listing 15-16 invokes the abstract loadProducts method in the constructor, and the getProducts 
and getCategories methods wait for the background operation to produce data before returning any 
responses. To create an implementation of the data source class that uses local test data, I added a file called 
localDataSource.ts to the src/data folder and added the code shown in Listing 15-17.

Listing 15-17. The Contents of the localDataSource.ts File in the src/data Folder

import { AbstractDataSource } from "./abstractDataSource";
import { Product } from "./entities";

export class LocalDataSource extends AbstractDataSource {

        loadProducts(): Promise<Product[]> {
            return Promise.resolve([
                { id: 1, name: "P1", category: "Watersports",
                    description: "P1 (Watersports)", price: 3 },
                { id: 2, name: "P2", category: "Watersports",
                    description: "P2 (Watersports)", price: 4 },
                { id: 3, name: "P3", category: "Running",
                    description: "P3 (Running)", price: 5 },
                { id: 4, name: "P4", category: "Chess",
                    description: "P4 (Chess)", price: 6 },
                { id: 5, name: "P5", category: "Chess",
                    description: "P6 (Chess)", price: 7 },
            ]);
        }

        storeOrder(): Promise<number> {
            console.log("Store Order");
            console.log(JSON.stringify(this.order));
            return Promise.resolve(1);
        }
}

This class uses the Promise.resolve method to create a Promise that immediately produces a response 
and allows test data to be easily used. In Chapter 16, I introduce a data source that performs real background 
operations to request data from a web service. To check that the basic features of the data model are 
working, I replaced the code in the index.ts file with the statements shown in Listing 15-18.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

389

Listing 15-18. Replacing the Contents of the index.ts File in the src Folder

import { LocalDataSource } from "./data/localDataSource";

async function displayData(): Promise<string> {
    let ds = new LocalDataSource();
    let allProducts = await ds.getProducts("name");
    let categories = await ds.getCategories();
    let chessProducts = await ds.getProducts("name", "Chess");

    let result = "";

    allProducts.forEach(p => result += `Product: ${p.name}, ${p.category}\n`);
    categories.forEach(c => result += (`Category: ${c}\n`));
    chessProducts.forEach(p => ds.order.addProduct(p, 1));
    result += `Order total: $${ds.order.total.toFixed(2)}`;
    return result;
}

displayData().then(res => console.log(res));

When the changes to the index.ts file are saved, the code will be compiled, and the chain of import 
statements is resolved to include all the JavaScript required by the application in the webpack bundle. A 
browser reload will be triggered, and the following output will be displayed in the browser’s JavaScript 
console:

Product: P1, Watersports
Product: P2, Watersports
Product: P3, Running
Product: P4, Chess
Product: P5, Chess
Category: Watersports
Category: Running
Category: Chess
Order total: $13.00

 Rendering HTML Content Using the DOM API
Few users will want to look in the browser’s JavaScript console window to see the output. Browsers provide 
the Domain Object Model (DOM) API to allow applications to interact with the HTML document displayed 
to the user, generate content dynamically, and respond to user interaction. To create a class that will produce 
an HTML element, I added a file called domDisplay.ts to the src folder and used it to define the class shown 
in Listing 15-19. 



Chapter 15 ■ Creating a Stand-alone Web app, part 1

390

Listing 15-19. The Contents of the domDisplay.ts File in the src Folder

import { Product, Order } from "./data/entities";

export class DomDisplay {

    props: {
        products: Product[],
        order: Order
    }

    getContent(): HTMLElement {
        let elem = document.createElement("h3");
        elem.innerText = this.getElementText();
        elem.classList.add("bg-primary", "text-center", "text-white", "p-2");
        return elem;
    }

    getElementText() {
        return `${this.props.products.length} Products, `
            + `Order total: $${ this.props.order.total }`;
    }
}

The DomDisplay class defines a getContent method whose result is an HTMLElement object, which is the 
type used by the DOM API to represent an HTML element. The getContent method creates an H3 element 
and uses a template string to set its content. The element is added to four classes, which will be used to 
manage the appearance of the element when it is displayed. The data values used in the template string are 
provided through a property named props. This is a convention that was adopted from the React framework, 
which I explain in the “Using JSX to Create HTML Content” section and demonstrate in Chapter 19.

 Adding Support for Bootstrap CSS Styles
The three classes to which the h3 element is assigned in Listing 15-19 correspond to styles defined by 
Bootstrap, which is a high-quality, open-source CSS framework that makes it easy to consistently style 
HTML content.

The webpack configuration can be extended with loaders for additional content types that are included 
in the bundle file, which means that the development toolchain can be extended to include support for CSS 
stylesheets, such as the one that defines the Bootstrap styles applied to the h3 element.

Stop the WDS process using Control+C and run the commands shown in Listing 15-20 in the webapp 
folder to install the CSS loaders and Bootstrap packages.

 ■ Note i use the bootstrap CSS framework in most of my projects because it is easy to work with and 
produces good results. See https://getbootstrap.com for details of the styles available and of the optional 
JavaScript features that are available.

https://getbootstrap.com


Chapter 15 ■ Creating a Stand-alone Web app, part 1

391

Listing 15-20. Adding Packages to the Project

npm install bootstrap@4.6.0
npm install --save-dev css-loader@5.0.1
npm install --save-dev style-loader@2.0.0

The bootstrap package contains the CSS styles that I want to apply to the example project. The 
css-loader and style-loader packages contain the loaders that deal with CSS styles (both are required 
to incorporate CSS into the webpack bundle). Make the changes shown in Listing 15-21 to the webpack 
configuration to add support for including CSS in the bundle file.

Listing 15-21. Adding a Loader in the webpack.config.js File in the webapp Folder

module.exports = {
    mode: "development",
    devtool: "inline-source-map",
    entry: "./src/index.ts",
    output: { filename: "bundle.js" },
    resolve: { extensions: [".ts", ".js", ".css"] },
    module: {
        rules: [
            { test: /\.ts/, use: "ts-loader", exclude: /node_modules/ },
            { test: /\.css$/, use: ["style-loader", "css-loader"] },
        ]
    },
    devServer: {
        contentBase: "./assets",
        port: 4500
    }
};

In Listing 15-22, I have revised the code in the index.ts file to declare a dependency on the CSS 
stylesheet from the Bootstrap package and to use the DomHeader class to render HTML content in the 
browser.

Listing 15-22. Displaying HTML Content in the index.ts File in the src Folder

import { LocalDataSource } from "./data/localDataSource";
import { DomDisplay } from "./domDisplay";
import "bootstrap/dist/css/bootstrap.css";

let ds = new LocalDataSource();

async function displayData(): Promise<HTMLElement> {
    let display = new DomDisplay();
    display.props = {
        products: await ds.getProducts("name"),
        order: ds.order
    }
    return display.getContent();
}



Chapter 15 ■ Creating a Stand-alone Web app, part 1

392

document.onreadystatechange = () => {
    if (document.readyState === "complete") {
        displayData().then(elem => {
            let rootElement = document.getElementById("app");
            rootElement.innerHTML = "";
            rootElement.appendChild(elem);
        });
    }
};

The DOM API provides a complete set of features to work with the HTML document displayed by 
the browser, but the result can be verbose code that is difficult to read, especially when the content to be 
displayed depends on the result of background tasks, such as getting data from a web service.

The code in Listing 15-22 has to wait for two tasks to be completed before it can display any content. 
The browser has to complete processing the HTML document contained in the index.html file before the 
DOM API can be used to manipulate its contents. Browsers process HTML elements in the order in which 
they are defined in the HTML document, which means that the JavaScript code will be executed before 
the browser has processed the elements in the body section of the document. Any attempt to modify the 
document before it has been fully processed can lead to inconsistent results.

 ■ Tip the default settings for the typeScript compiler include type declaration files for the doM api, which 
allows type-safe use of the browser features.

The code in Listing 15-22 also has to wait for the data source to obtain its data. The LocalDataSource 
class uses local test data that is immediately available, but there may be a delay when the data is retrieved 
from a web service, which I implement in Chapter 16.

When both tasks are complete, the placeholder element in the index.html file is removed and replaced 
with the HTMLElement object obtained by creating a DomDisplay object and calling its getContent method.

Save the changes to the index.ts file and run the command shown in Listing 15-23 in the webapp folder 
to start the Webpack Development Server using the configuration created in Listing 15-21.

Listing 15-23. Starting the Development Tools

npx webpack serve

A new bundle that includes the CSS styles will be created. Use the browser to navigate to http://
localhost:4500, and the styled HTML content will be displayed, as shown in Figure 15-5.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

393

 ■ Tip the loaders added to the project deal with CSS by adding JavaScript code that is executed when the 
contents of the bundle file are processed. this code uses an api provided by the browser to create the CSS 
styles. this approach means that the bundle file contains only JavaScript even though it delivers different types 
of content to the client.

 Using JSX to Create HTML Content
Expressing HTML elements using JavaScript statements is awkward, and using the DOM API directly 
produces verbose code that is difficult to understand and prone to errors, even with the static type support 
that TypeScript provides.

The problem isn’t the DOM API itself—although it hasn’t always been designed with ease of use in 
mind—but the difficulty in using code statements to create declarative content like HTML elements. A 
more elegant approach is to use JSX, which stands for JavaScript XML and which allows declarative content 
such as HTML elements to be easily mixed with code statements. JSX is most closely associated with React 
development—as demonstrated in Chapter 19—but the TypeScript compiler provides features that allow it 
to be used in any project. 

 ■ Note JSX isn’t the only way to simplify working with htMl elements, but i have used it in this chapter 
because the typeScript compiler supports it. if you don’t like JSX, you can use one of the many JavaScript 
template packages available (search for mustache templates to get started).

The best way to understand JSX is to start by writing some JSX code. TypeScript files that contain JSX 
content are defined in files with the tsx extension, reflecting the combination of TypeScript and JSX features. 
Add a file called htmlDisplay.tsx to the src folder and add the content shown in Listing 15-24.

Figure 15-5. Generating HTML elements



Chapter 15 ■ Creating a Stand-alone Web app, part 1

394

Listing 15-24. The Contents of the htmlDisplay.tsx File in the src Folder

import { Product, Order } from "./data/entities";

export class HtmlDisplay {

    props: {
        products: Product[],
        order: Order
    }

    getContent(): HTMLElement {
        return <h3 className="bg-secondary text-center text-white p-2">
                 { this.getElementText() }
               </h3>
    }

    getElementText() {
        return `${this.props.products.length} Products, `
            + `Order total: $${ this.props.order.total }`;
    }
}

This file uses JSX to create the same result as the regular TypeScript class. The difference is the 
getContent method, which returns an HTML element expressed directly as an element, instead of using 
the DOM API to create an object and configure it through its properties. The h3 element returned by the 
h3 element is expressed in a way that is similar to an element in an HTML document, with the addition of 
fragments of JavaScript that allow expressions to generate content dynamically based on the values provided 
through the props property.

This file won’t compile because the project has not yet been configured for JSX, but you can see how 
this format can be used to create content more naturally. In the sections that follow, I will explain how JSX 
files are processed and configure the example project to support them.

 Understanding the JSX Workflow
When a TypeScript JSX file is compiled, the compiler processes the HTML elements it contains to transform 
them into JavaScript statements. Each element is parsed and separated into the tag that defines the element 
type, the attributes applied to the element, and the element’s content. 

The compiler replaces each HTML element with a call to a function, known as the factory function,  
that will be responsible for creating the HTML content at runtime. The factory function is conventionally 
named createElement because that’s the name used by the React framework, and it means that the class in 
Listing 15-24 is transformed into this code:

...
import { Product, Order } from "./data/entities";

export class HtmlDisplay {

    props: {
        products: Product[],
        order: Order
    }



Chapter 15 ■ Creating a Stand-alone Web app, part 1

395

    getContent() {
        return createElement("h3",
            { className: "bg-secondary text-center text-white p-2" },
                this.getElementText());
    }

    getElementText() {
        return `${this.props.products.length} Products, `
            + `Order total: $${ this.props.order.total }`;
    }
}
...

The compiler doesn’t know anything about the factory function other than its name. The result of the 
transformation is that the HTML content is replaced with code statements that can be compiled normally 
and executed by a regular JavaScript runtime, as shown in Figure 15-6.

When the application runs, each call to the factory function is responsible for using the tag name, 
attribute, and content parsed by the compiler to create the HTML element the application requires.

UNDERSTANDING PROPS VERSUS ATTRIBUTES

the elements in a JSX file are not standard htMl. the key difference is that the attributes on the 
elements use the JavaScript property names defined by the doM api instead of the corresponding 
attribute names from the htMl specification. Many of the properties and attributes share the same 
name, but there are some important differences, and the one that causes the most confusion is the 
class attribute, which is used to assign elements to one or more classes, typically so they can be 
styled. 

the doM api can’t use class because it is a reserved JavaScript word and so elements are assigned to 
classes using the className property, like this:

...
<h3 className="bg-secondary text-center text-white p-2">
...

this is the reason that typeScript JSX classes receive their data values through the property named 
props, because each prop corresponds to a property that must be set on the HTMLElement object 
created by the factory function. Forgetting to use property names in a JSX file is a common mistake and 
is a good place to start checking when you don’t get the results you expect.

Figure 15-6. Transforming JSX



Chapter 15 ■ Creating a Stand-alone Web app, part 1

396

 Configuring the TypeScript Compiler and the Webpack Loader
The TypeScript compiler won’t process TSX files by default and requires two configuration settings to be set, 
as described in Table 15-2. There are other compiler options for JSX, but these are the two that are required 
to get started.

For this project, I am going to define a factory function called createElement and select the react 
option for the jsx setting so the compiler will replace HTML content with calls to the factory function, as 
shown in Listing 15-25. 

Listing 15-25. Configuring the Compiler in the tsconfig.json File in the webapp Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "jsx": "react",
        "jsxFactory": "createElement"
    }
}

The webpack configuration must be updated so that TSX files will be included in the bundling process, 
as shown in Listing 15-26.

Listing 15-26. Configuring Webpack in the webpack.config.js File in the webapp Folder

module.exports = {
    mode: "development",
    devtool: "inline-source-map",
    entry: "./src/index.ts",
    output: { filename: "bundle.js" },
    resolve: { extensions: [".ts", ".tsx", ".js", ".css"] },
    module: {
        rules: [
            { test: /\.tsx?$/, use: "ts-loader", exclude: /node_modules/ },
            { test: /\.css$/, use: ["style-loader", "css-loader"] },
        ]
    },

Table 15-2. The Compiler Settings for JSX

Name Description
jsx This option determines the way that the compiler handles elements in a TSX file. The react 

setting replaces HTML elements with calls to the factory function and emits a JavaScript file. 
The react-native setting emits a JavaScript file that leaves the HTML elements intact. The 
preserve setting emits a JSX file that leaves the HTML elements intact. The react-jsx and 
react-jsx settings use __jsx as the name of the function that creates elements.

jsxFactory This option specifies the name of the factory function, which the compiler will use when the 
jsx option is set to react.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

397

    devServer: {
        contentBase: "./assets",
        port: 4500
    }
};

The change to the resolve setting tells webpack that TSX files should be included in the bundle, and 
the other change specifies that TSX files will be handled by the ts-loader package, which will use the 
TypeScript compiler.

 Creating the Factory Function
The code generated by the compiler replaces HTML content with calls to the factory function, which allows 
JSX code to be transformed into standard JavaScript. The implementation of the factory function depends 
on the environment in which the application is being run so that React applications, for example, will use 
the factory function that generates content that React can manage. For the example application, I am going 
to create a factory function that simply uses the DMO API to create an HTMLElement object. This is nowhere 
near as elegant or efficient as the way that React and the other frameworks handle dynamic content, but it is 
enough to allow the use of JSX in the application without getting bogged down in the details. To define the 
factory function, I created the src/tools folder and added to it a file named jsxFactory.ts with the code 
shown in Listing 15-27. 

Listing 15-27. The Contents of the jsxFactory.ts File in the src/tools Folder

export function createElement(tag: any, props: Object, ...children : Object[])
        : HTMLElement {

    function addChild(elem: HTMLElement, child: any) {
        elem.appendChild(child instanceof Node ? child
            : document.createTextNode(child.toString()));
    }

    if (typeof tag === "function") {
        return Object.assign(new tag(), { props: props || {}}).getContent();
    }

    const elem = Object.assign(document.createElement(tag), props || {});
    children.forEach(child => Array.isArray(child)
        ? child.forEach(c => addChild(elem, c)) : addChild(elem, child));
    return elem;
}

declare global {
   namespace JSX {
      interface ElementAttributesProperty { props; }
   }
}



Chapter 15 ■ Creating a Stand-alone Web app, part 1

398

The createElement function in Listing 15-27 does the bare minimum to create HTML elements using 
the DOM API without any of the sophisticated features provided by the frameworks used in later chapters. 
The tag parameter can be a function, in which case another class that uses JSX has been specified as the 
element type.

 ■ Tip the last section of code in listing 15-27 is a specific incantation that tells the typeScript compiler  
that it should use the props property to perform type checking on the values assigned to JSX element 
attributes in tSX files. this relies on the typeScript namespace feature, which i have not described in this 
chapter because it has been superseded by the introduction of standard JavaScript modules and is no longer 
recommended for use.

 Using the JSX Class
JSX classes are transformed into standard JavaScript code, which means they can be used in the same way as 
any TypeScript class. In Listing 15-28, I have removed the dependency on the DOM API class and replaced it 
with a JSX class.

Listing 15-28. Using a JSX Class in the index.ts File in the src Folder

import { LocalDataSource } from "./data/localDataSource";
import { HtmlDisplay } from "./htmlDisplay";
import "bootstrap/dist/css/bootstrap.css";

let ds = new LocalDataSource();

async function displayData(): Promise<HTMLElement> {
    let display = new HtmlDisplay();
    display.props = {
        products: await ds.getProducts("name"),
        order: ds.order
    }
    return display.getContent();
}

document.onreadystatechange = () => {
    if (document.readyState === "complete") {
        displayData().then(elem => {
            let rootElement = document.getElementById("app");
            rootElement.innerHTML = "";
            rootElement.appendChild(elem);
        });
    }
};



Chapter 15 ■ Creating a Stand-alone Web app, part 1

399

The JSX class is a drop-in replacement for the class that uses the DOM API directly. In later sections, 
you will see how classes that use JSX can be combined using only elements, but there is always a boundary 
between a regular class and one that contains HTML elements. For the example application, that boundary 
will be between the index file and HtmlDisplay class.

 Importing the Factory Function in the JSX Class
The final change to complete the JSX configuration is to add an import statement for the factory function to 
the JSX class, as shown in Listing 15-29. The TypeScript compiler will convert HTML elements into calls to 
the factory function, but an import statement is required to allow the converted code to be compiled.

Listing 15-29. Adding an import Statement in the htmlDisplay.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product, Order } from "./data/entities";

export class HtmlDisplay {

    props: {
        products: Product[],
        order: Order
    }

    getContent(): HTMLElement {
        return <h3 className="bg-secondary text-center text-white p-2">
                 { this.getElementText() }
               </h3>
    }

    getElementText() {
        return `${this.props.products.length} Products, `
            + `Order total: $${ this.props.order.total }`;
    }
}

An import statement for the factory function is required in every TSX file. Use Control+C to stop the 
webpack development tools and use the command prompt to run the command shown in Listing 15-30 in 
the webapp folder to start them again using the new configuration.

Listing 15-30. Starting the Development Tools

npx webpack serve

Once the bundle has been re-created, use the browser to navigate to http://localhost:4500, and you 
will see the content shown in Figure 15-7, which is styled using a different color from the previous example.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

400

 Adding Features to the Application
Now that the basic structure of the application is in place, I can add features, starting with a display of 
products that can be filtered by category.

 Displaying a Filtered List of Products
Add a file called productItem.tsx in the src folder and add the code shown in Listing 15-31 to create a class 
that will display details of a single product.

Listing 15-31. The Contents of the productItem.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product } from "./data/entities";

export class ProductItem {
    private quantity: number = 1;

    props: {
        product: Product,
        callback: (product: Product, quantity: number) => void
    }

    getContent(): HTMLElement {
        return <div className="card m-1 p-1 bg-light">
            <h4>
                { this.props.product.name }
                <span className="badge badge-pill badge-primary float-right">
                    ${ this.props.product.price.toFixed(2) }
                </span>
            </h4>
            <div className="card-text bg-white p-1">
                { this.props.product.description }
                <button className="btn btn-success btn-sm float-right"
                        onclick={ this.handleAddToCart } >
                    Add To Cart
                </button>

Figure 15-7. Rendering content using JSX



Chapter 15 ■ Creating a Stand-alone Web app, part 1

401

                <select className="form-control-inline float-right m-1"
                        onchange={ this.handleQuantityChange }>
                    <option>1</option>
                    <option>2</option>
                    <option>3</option>
                </select>
            </div>
        </div>
    }

    handleQuantityChange = (ev: Event): void => {
        this.quantity = Number((ev.target as HTMLSelectElement).value);
    }

    handleAddToCart = (): void => {
        this.props.callback(this.props.product, this.quantity);
    }
}

The ProductItem class receives a Product object and a callback function through its props. The 
getContent method renders HTML elements that display the details of the Product object, along with a select 
element that allows a quantity to be selected and a button that the user will click to add items to the order.

The select and button elements are configured with event handling functions using the onchange and 
onclick props. The methods that handle the events are defined using the fat arrow syntax, like this:

...
handleQuantityChange = (ev: Event): void => {
    this.quantity = Number((ev.target as HTMLSelectElement).value);
}
...

The fat arrow syntax ensures that the this keyword refers to the ProductItem object, which allows the 
props and quantity properties to be used. If a conventional method is used to handle an event, this refers 
to the object that describes the event.

The TypeScript type declarations for DOM API event handling are awkward and require a type assertion 
for the target of the event before its features can be accessed.

...
handleQuantityChange = (ev: Event): void => {
    this.quantity = Number((ev.target as HTMLSelectElement).value);
}
...

To read the value property from the select element, I have to apply an assertion to tell the TypeScript 
compiler that the event.target property will return an HTMLSelectElement object.

 ■ Tip the HTMLSelectElement type is one of the standard doM api types, which are described in detail at 
https://developer.mozilla.org/en- US/docs/Web/API/HTMLElement.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement


Chapter 15 ■ Creating a Stand-alone Web app, part 1

402

To display a list of category buttons allowing the user to filter the content, add a file called 
categoryList.tsx to the src folder with the contents shown in Listing 15-32.

Listing 15-32. The Contents of the categoryList.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";

export class CategoryList {

    props: {
        categories: string[];
        selectedCategory: string,
        callback: (selected: string) => void
    }

    getContent(): HTMLElement {
        return <div>
            { ["All", ...this.props.categories].map(c => this.getCategoryButton(c))}
        </div>
    }

    getCategoryButton(cat?: string): HTMLElement {
        let selected = this.props.selectedCategory === undefined
            ? "All": this.props.selectedCategory;
        let btnClass = selected === cat ? "btn-primary": "btn-secondary";
        return <button className={ `btn btn-block ${btnClass}` }
                onclick={ () => this.props.callback(cat)}>
            { cat }
        </button>
    }
}

This class displays a list of button elements that are styled using Bootstrap classes. The props for this 
class provide the list of categories for which buttons should be created, the currently selected category, and a 
callback function to invoke when the user clicks a button.

...
return <button className={ `btn btn-block ${btnClass}` }
    onclick={ () => this.props.callback(cat) }>
...

This pattern is common when JSX is used so that classes render HTML elements using data received 
via props; this props also includes callback functions that are invoked in response to events. In this case, the 
onclick attribute is used to invoke the function received through the callback prop.

To display a list of products and the category buttons, add a file called productList.tsx to the src 
folder with the contents shown in Listing 15-33.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

403

Listing 15-33. The Contents of the productList.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product } from "./data/entities";
import { ProductItem } from "./productItem";
import { CategoryList } from "./categoryList";

export class ProductList {
    props: {
        products: Product[],
        categories: string[],
        selectedCategory: string,
        addToOrderCallback?: (product: Product, quantity: number) => void,
        filterCallback?: (category: string) => void;
    }

    getContent(): HTMLElement {
        return <div className="container-fluid">
            <div className="row">
                <div className="col-3 p-2">
                    <CategoryList categories={ this.props.categories }
                        selectedCategory={ this.props.selectedCategory }
                        callback={ this.props.filterCallback } />
                </div>
                <div className="col-9 p-2">
                    {
                        this.props.products.map(p =>
                            <ProductItem product={ p }
                                callback={ this.props.addToOrderCallback } />)
                    }
                </div>
            </div>
        </div>
    }
}

The getContent method in this class relies on one of the most useful JSX features, which is the ability to 
apply other JSX classes as HTML elements, like this:

...
<div className="col-3 p-2">
    <CategoryList categories={ this.props.categories }
        selectedCategory={ this.props.selectedCategory }
        callback={ this.props.filterCallback } />
</div>
...

When it parses the TSX file, the TypeScript compiler detects that the custom tag creates a statement that 
invokes the factory function with the corresponding class. At runtime, a new instance of the class is created, 
the attributes of the element are assigned to the props property, and the getContent method is called to get 
the content to include in the HTML presented to the user.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

404

 Displaying Content and Handling Updates
I need to create a bridge between the features of the data store and the JSX classes that display content to 
the user, ensuring that the content is updated to reflect changes in the application state. The frameworks 
demonstrated in later chapters take care of handling updates efficiently and minimizing the amount of work 
the browser does to display changes.

I am going to take the simplest approach for the example application, which is to deal with changes by 
destroying and re-creating the HTML elements displayed by the browser, as shown in Listing 15-34, which 
revises the HtmlDisplay class so that it receives a data source and manages the state data required to display 
a list of products filtered by category.

Listing 15-34. Displaying Content in the htmlDisplay.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product, Order } from "./data/entities";
import { AbstractDataSource } from "./data/abstractDataSource";
import { ProductList } from "./productList";

export class HtmlDisplay {
    private containerElem: HTMLElement;
    private selectedCategory: string;

    constructor() {
        this.containerElem = document.createElement("div");
    }

    props: {
        dataSource: AbstractDataSource;
    }

    async getContent(): Promise<HTMLElement> {
        await this.updateContent();
        return this.containerElem;
    }

    async updateContent() {
        let products = await this.props.dataSource.getProducts("id",
            this.selectedCategory);
        let categories = await this.props.dataSource.getCategories();
        this.containerElem.innerHTML = "";
        let content = <div>
            <ProductList products={ products } categories={ categories }
                selectedCategory={ this.selectedCategory }
                addToOrderCallback={ this.addToOrder }
                filterCallback={ this.selectCategory} />
        </div>
        this.containerElem.appendChild(content);
    }



Chapter 15 ■ Creating a Stand-alone Web app, part 1

405

    addToOrder = (product: Product, quantity: number) => {
        this.props.dataSource.order.addProduct(product, quantity);
        this.updateContent();
    }

    selectCategory = (selected: string) => {
        this.selectedCategory = selected === "All" ? undefined : selected;
        this.updateContent();
    }
}

The methods defined by the HtmlDisplay class are used as the callback functions for the ProductList 
class, which passes them on to the ProductItem and CategoryList classes. When these methods are 
invoked, they update the properties that keep track of the application state and then call the updateContent 
method, which replaces the HTML rendered by the class.

To provide the HtmlDisplay class with the props it requires, update the index.ts file, as shown in 
Listing 15-35.

Listing 15-35. Changing Props in the index.ts File in the src Folder

import { LocalDataSource } from "./data/localDataSource";
import { HtmlDisplay } from "./htmlDisplay";
import "bootstrap/dist/css/bootstrap.css";

let ds = new LocalDataSource();

function displayData(): Promise<HTMLElement> {
    let display = new HtmlDisplay();
    display.props = {
        dataSource: ds
    }
    return display.getContent();
}

document.onreadystatechange = () => {
    if (document.readyState === "complete") {
        displayData().then(elem => {
            let rootElement = document.getElementById("app");
            rootElement.innerHTML = "";
            rootElement.appendChild(elem);
        });
    }
};

A new bundle will be created when the changes are saved, triggering a browser reload and displaying 
the content shown in Figure 15-8. As the figure shows, clicking a category button filters the products shown 
to the user.



Chapter 15 ■ Creating a Stand-alone Web app, part 1

406

 Summary
In this chapter, I showed you how to create a simple but effective development toolchain for web application 
development using the TypeScript compiler and webpack. I showed you how the output from the TypeScript 
compiler can be incorporated into a webpack bundle and how the support for JSX can be used to simplify 
working with HTML elements. In the next chapter, I complete the stand-alone web application and prepare 
it for deployment.

Figure 15-8. Displaying products



407© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_16

CHAPTER 16

Creating a Stand-Alone Web App, 
Part 2

In this chapter, I complete the stand-alone web application and prepare it for deployment, demonstrating 
the way that a TypeScript project dovetails with standard development processes for deployment. For quick 
reference, Table 16-1 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
In this chapter, I continue to use the webapp project created in Chapter 15. To prepare for this chapter, open 
a new command prompt, navigate to the webapp folder, and run the commands shown in Listing 16-1 to add 
new packages to the project.

Table 16-1. The TypeScript Compiler Options Used in This Chapter

Name Description
emitDecoratorMetadata This option includes decorator metadata in the JavaScript emitted by the 

compiler.

experimentalDecorators This option enables support for decorators.

jsx This option specifies how HTML elements in TSX files are processed.

jsxFactory This option specifies the name of the factory function that is used to replace 
HTML elements in TSX files.

moduleResolution This option specifies the style of module resolution that should be used to 
resolve dependencies.

outDir This option specifies the directory in which the JavaScript files will be placed.

rootDir This option specifies the root directory that the compiler will use to locate 
TypeScript files.

target This option specifies the version of the JavaScript language that the compiler 
will target in its output.

https://doi.org/10.1007/978-1-4842-7011-0_16#DOI


Chapter 16 ■ Creating a Stand-alone Web app, part 2

408

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 16-1. Adding Packages to the Project

npm install --save-dev json-server@0.16.3
npm install --save-dev npm-run-all@4.1.5

The json-server package is a RESTful web service that will provide data for the application, replacing 
the local test data used in Chapter 15. The npm-run-all package is a useful tool for running multiple NPM 
packages from a single command.

To provide the web service with its data, create a file called data.js in the webapp folder with the 
contents shown in Listing 16-2.

Listing 16-2. The Contents of the data.js File in the webapp Folder

module.exports = function () {
    return {
        products: [
            { id: 1, name: "Kayak", category: "Watersports",
                description: "A boat for one person", price: 275 },
            { id: 2, name: "Lifejacket", category: "Watersports",
                description: "Protective and fashionable", price: 48.95 },
            { id: 3, name: "Soccer Ball", category: "Soccer",
                description: "FIFA-approved size and weight", price: 19.50 },
            { id: 4, name: "Corner Flags", category: "Soccer",
                description: "Give your playing field a professional touch",
                price: 34.95 },
            { id: 5, name: "Stadium", category: "Soccer",
                description: "Flat-packed 35,000-seat stadium", price: 79500 },
            { id: 6, name: "Thinking Cap", category: "Chess",
                description: "Improve brain efficiency by 75%", price: 16 },
            { id: 7, name: "Unsteady Chair", category: "Chess",
                description: "Secretly give your opponent a disadvantage",
                price: 29.95 },
            { id: 8, name: "Human Chess Board", category: "Chess",
                description: "A fun game for the family", price: 75 },
            { id: 9, name: "Bling Bling King", category: "Chess",
                description: "Gold-plated, diamond-studded King", price: 1200 }
        ],
        orders: []
    }
}

The json-server package will be configured to use the data in Listing 16-2, which will cause it to reset 
each time it is restarted. (The package can also store data persistently, but that is not as useful for example 
projects where a known baseline is more useful.)

https://github.com/Apress/essential-typescript-4


Chapter 16 ■ Creating a Stand-alone Web app, part 2

409

To configure the development tools, update the scripts section of the package.json file, as shown in 
Listing 16-3.

Listing 16-3. Configuring the Development Tools in the package.json File in the webapp Folder

...
  "scripts": {
    "json": "json-server data.js -p 4600",
    "wds": "webpack serve",
    "start": "npm-run-all -p json wds"
  },
...

These entries allow both the web service that will provide the data and the webpack HTTP server to be 
started with a single command. Use the command prompt to run the command shown in Listing 16-4 in the 
webapp folder.

Listing 16-4. Starting the Development Tools

npm start

The web service will start, although the data has yet to be integrated into the application. To test the web 
service, use the browser to navigate to http://localhost:4600/products, which will produce the response 
shown in Figure 16-1.

The TypeScript files will be compiled, a bundle will be created, and the development HTTP server will 
start listening for HTTP requests. Open a new browser window and navigate to http://localhost:4500 to 
see the content shown in Figure 16-2.

Figure 16-1. Getting data from the web service



Chapter 16 ■ Creating a Stand-alone Web app, part 2

410

 Adding a Web Service
In Chapter 15, I used local test data to get started. I find this a useful approach to laying the foundation for 
a project, without getting bogged down in the details of getting the data from a server. But now that the 
application is taking shape, it is time to add a web service and start working with remote data. Open a new 
command prompt, navigate to the webapp folder, and run the command shown in Listing 16-5 to add a new 
package to the project.

Listing 16-5. Adding a Package to the Project

npm install axios@0.21.1

Many packages are available for making HTTP requests in JavaScript applications, all of which use APIs 
provided by the browser. In this chapter, I am using the Axios package, which is a popular choice because 
it is easy to work with and comes complete with TypeScript declarations. To create a data source that uses 
HTTP requests, add a file called remoteDataSource.ts in the src/data folder and add the code shown in 
Listing 16-6.

 ■ Tip there are two apis provided by browsers for making http requests. the traditional api is 
XmlHttpRequest and is supported by all browsers, but it difficult to work with. there is a new api, named Fetch, 
that is easier to work with but is not supported by older browsers. You can use either api directly, but packages 
like axios provide an api that is easy to work with while preserving support for older browsers.

Figure 16-2. Running the example application



Chapter 16 ■ Creating a Stand-alone Web app, part 2

411

Listing 16-6. The Contents of the remoteDataSource.ts File in the src/data Folder

import { AbstractDataSource } from "./abstractDataSource";
import { Product, Order } from "./entities";
import Axios from "axios";

const protocol = "http";
const hostname = "localhost";
const port = 4600;

const urls = {
    products: `${protocol}://${hostname}:${port}/products`,
    orders: `${protocol}://${hostname}:${port}/orders`
};

export class RemoteDataSource extends AbstractDataSource {

    loadProducts(): Promise<Product[]> {
        return Axios.get(urls.products).then(response => response.data);
    }

    storeOrder(): Promise<number> {
        let orderData = {
            lines: [...this.order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        return Axios.post(urls.orders, orderData).then(response => response.data.id);
    }
}

The Axios package provides get and post methods that send HTTP requests with the corresponding 
verbs. The implementation of the loadProducts method sends a GET request to the web service to get the 
product data. The storeOrder method transforms the details of the order to a shape that can be easily stored 
and sends the data to the web service as a POST request. The web service will respond with the object that 
has been stored, which includes an id value that uniquely identifies the stored object.

 Incorporating the Data Source into the Application
A configuration change is required so that the TypeScript compiler can resolve the dependency on the Axios 
package, as shown in Listing 16-7.

Listing 16-7. Configuring the TypeScript Compiler in the tsconfig.json File in the webapp Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",



Chapter 16 ■ Creating a Stand-alone Web app, part 2

412

        "jsx": "react",
        "jsxFactory": "createElement",
        "moduleResolution": "node"
    }
}

This change tells the compiler that it can resolve dependencies by looking in the node_modules folder. 
No change is required for webpack. Listing 16-8 updates the index.ts file to use the new data source.

Listing 16-8. Changing the Data Source in the index.ts File in the src Folder

//import { LocalDataSource } from "./data/localDataSource";
import { RemoteDataSource } from "./data/remoteDataSource";
import { HtmlDisplay } from "./htmlDisplay";
import "bootstrap/dist/css/bootstrap.css";

let ds = new RemoteDataSource();

function displayData(): Promise<HTMLElement> {
    let display = new HtmlDisplay();
    display.props = {
        dataSource: ds
    }
    return display.getContent();
}

document.onreadystatechange = () => {
    if (document.readyState === "complete") {
        displayData().then(elem => {
            let rootElement = document.getElementById("app");
            rootElement.innerHTML = "";
            rootElement.appendChild(elem);
        });
    }
};

The development tools must be restarted to apply the configuration change in Listing 16-7. Use 
Control+C to stop the combined web service and webpack process, and run the command shown in  
Listing 16-9 in the webapp folder to start them again.

Listing 16-9. Starting the Development Tools

npm start

Use a browser to navigate to http://localhost:4500, and you will see the data that has been retrieved 
from the web service, as shown in Figure 16-3.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

413

 Using Decorators
In the same way that JSX is most closely associated with React, the decorator feature is associated with 
Angular (although it can also be useful in Vue.js applications, as shown in Chapter 21). Decorators are 
a proposed addition to the JavaScript specification, but they are not widely used outside of Angular 
development and must be enabled with a compiler configuration setting, as shown in Listing 16-10. 

Listing 16-10. Enabling Decorators in the tsconfig.json File in the webapp Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "jsx": "react",
        "jsxFactory": "createElement",
        "moduleResolution": "node",
        "experimentalDecorators": true
    }
}

Decorators are annotations that can be applied to modify classes, methods, properties, and parameters. 
To create a simple decorator for this chapter, I added a file called decorators.ts to the src folder and added 
the code shown in Listing 16-11. 

Figure 16-3. Using remote data



Chapter 16 ■ Creating a Stand-alone Web app, part 2

414

Listing 16-11. The Contents of the decorators.ts File in the src Folder

export const minimumValue = (propName: string, min: number) =>
    (constructor: any, methodName: string, descriptor: PropertyDescriptor): any => {
        const origFunction = descriptor.value;
        descriptor.value = async function wrapper(...args) {
            let results = await origFunction.apply(this, args);
            return results.map(r => ({ ...r, [propName]: r[propName] < min
                ? min : r[propName] }));
        }
    }

Writing decorators can be difficult because they rely on a set of nested functions. The minimumValue 
function receives parameters that contain the name of the property to operate on and the minimum value 
to apply. The result is a function that is invoked at runtime and whose parameters are the class to which the 
decorator has been applied, the name of the method, and a PropertyDescriptor object that describes the 
method. The PropertyDescriptor type is an interface provided by TypeScript that describes the shape of 
JavaScript properties. For methods, the PropertyDescriptor.value property is used to store the function, 
and this is replaced by an implementation that invokes the original method and then processes the result to 
set the minimum property value.

In Listing 16-12, I applied the minimumValue decorator to the method that returns Product objects, 
enforcing a minimum value of 30 for the price property.

Listing 16-12. Applying a Decorator in the abstractDataSource.ts File in the src/data Folder

import { Product, Order } from "./entities";
import { minimumValue } from "../decorators";

export type ProductProp = keyof Product;

export abstract class AbstractDataSource {
    private _products: Product[];
    private _categories: Set<string>;
    public order: Order;
    public loading: Promise<void>;

    constructor() {
        this._products = [];
        this._categories = new Set<string>();
        this.order = new Order();
        this.loading = this.getData();
    }

    @minimumValue("price", 30)
    async getProducts(sortProp: ProductProp = "id",
            category? : string): Promise<Product[]> {
        await this.loading;
        return this.selectProducts(this._products, sortProp, category);
    }

    // ...other methods omitted for brevity...
}



Chapter 16 ■ Creating a Stand-alone Web app, part 2

415

Stop the development tools using Control+C, and run the command shown in Listing 16-13 in the 
webapp folder to start them again using the new compiler configuration.

Listing 16-13. Starting the Development Tools

npm start

The result is that products have a minimum price of $30, as shown in Figure 16-4.

 Using Decorator Metadata
Decorator functions are invoked at runtime, which means they have no access to the type information from 
the TypeScript source files or the types inferred by the compiler. To ease the process of writing decorators, 
the TypeScript compiler can include metadata when decorators are used that provides details of the types 
involved. To enable this feature, change the configuration of the TypeScript compiler, as shown in  
Listing 16-14. 

Figure 16-4. Using a decorator to enforce a minimum value



Chapter 16 ■ Creating a Stand-alone Web app, part 2

416

Listing 16-14. Configuring the TypeScript Compiler in the tsconfig.json File in the webapp Folder

{
    "compilerOptions": {
        "target": "es2020",
        "outDir": "./dist",
        "rootDir": "./src",
        "jsx": "react",
        "jsxFactory": "createElement",
        "moduleResolution": "node",
        "experimentalDecorators": true,
        "emitDecoratorMetadata": true
    }
}

The emitDecoratorMetadata compiler option requires an additional package in the project. Open a 
new command prompt, navigate to the webapp folder, and run the command shown in Listing 16-15.

Listing 16-15. Adding a Package to the Project

npm install reflect-metadata@0.1.13

During compilation, the TypeScript compiler will add metadata to the compiled JavaScript, which is 
accessed using the reflect-metadata package. For the decorator applied to the method in Listing 16-14, the 
compiler adds the metadata items described in Table 16-2.

In Listing 16-16, I have defined a new decorator that relies on the metadata feature.

Listing 16-16. Defining a Decorator in the decorators.ts File in the src Folder

import "reflect-metadata";

export const minimumValue = (propName: string, min: number) =>
    (constructor: any, methodName: string, descriptor: PropertyDescriptor): any => {
        const origFunction = descriptor.value;
        descriptor.value = async function wrapper(...args) {
            let results = await origFunction.apply(this, args);

Table 16-2. The Metadata for a Decorator Applied to a Method

Name Description
design:type This item describes what the decorator has been applied to. For the decorator in 

Listing 16-12, this will be Function.

design:paramtypes This item describes the types of the parameters of the function to which the 
decorator has been applied. For the decorator in Listing 16-12, this will be [String, 
String], indicating two parameters, both of which accept string values.

design:returntype This item describes the result type of the function to which the decorator has been 
applied. For the decorator in Listing 16-12, this will be Promise.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

417

            return results.map(r => ({ ...r, [propName]: r[propName] < min
                ? min : r[propName] }));
        }
    }

export const addClass = (selector: string, ...classNames: string[]) =>
    (constructor: any, methodName: string, descriptor: PropertyDescriptor): any => {
        if (Reflect.getMetadata("design:returntype",
                constructor, methodName) === HTMLElement) {
            const origFunction = descriptor.value;
            descriptor.value = function wrapper(...args) {
                let content: HTMLElement = origFunction.apply(this, args);
                content.querySelectorAll(selector).forEach(elem =>
                    classNames.forEach(c => elem.classList.add(c)));
                return content;
            }
        }
    }

The reflect-metadata package adds methods to Reflect, which is the JavaScript feature that allows 
objects to be inspected. The changes in Listing 16-16 use the Reflect.getMetadata method to get the 
design:returntype item to ensure that the decorator only modifies methods that return HTMLElement 
objects. This decorator accepts a CSS selector that is used to locate specific elements generated by the 
method and add them to one or more classes. Listing 16-17 applies the new decorator to the HTML 
produced by the ProductList class.

Listing 16-17. Applying a Decorator in the productList.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product } from "./data/entities";
import { ProductItem } from "./productItem";
import { CategoryList } from "./categoryList";
import { addClass } from "./decorators";

export class ProductList {
    props: {
        products: Product[],
        categories: string[],
        selectedCategory: string,
        addToOrderCallback?: (product: Product, quantity: number) => void,
        filterCallback?: (category: string) => void;
    }

    @addClass("select", "bg-info", "m-1")
    getContent(): HTMLElement {
        return <div className="container-fluid">
            <div className="row">
                <div className="col-3 p-2">
                    <CategoryList categories={ this.props.categories }
                        selectedCategory={ this.props.selectedCategory }
                        callback={ this.props.filterCallback } />
                </div>



Chapter 16 ■ Creating a Stand-alone Web app, part 2

418

                <div className="col-9 p-2">
                    {
                        this.props.products.map(p =>
                            <ProductItem product={ p }
                                callback={ this.props.addToOrderCallback } />)
                    }
                </div>
            </div>
        </div>
    }
}

This example mixes features that are closely associated with the React and Angular frameworks, 
showing that both are built on standard features and both can be used in the same application (even though 
this is rarely done in real projects).

Stop the development tools using Control+C, and run the command shown in Listing 16-18 in the 
webapp folder to start them again so that the compiler configuration change takes effect.

Listing 16-18. Starting the Development Tools

npm start

A bundle will be created that includes the metadata and the package required to use it. The application 
of the decorator locates the select elements in the result produced by the ProductList class and adds them 
to classes that change the background color and the spacing around the element, as shown in Figure 16-5.

Figure 16-5. Using a decorator to modify HTML elements



Chapter 16 ■ Creating a Stand-alone Web app, part 2

419

 Completing the Application
Much of Chapter 15 was spent setting up the development tools and configuring the project to deal with 
JSX, which makes it easier to work with HTML content in code files. Now that the basic structure of the 
application is in place, adding new features is relatively simple. There are no new TypeScript features in this 
section of the chapter, which just completes the application.

 Adding a Header Class
To display a header that provides the user with a summary of their selections, add a file called header.tsx to 
the src folder with the contents shown in Listing 16-19.

Listing 16-19. The Contents of the header.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Order } from "./data/entities";

export class Header {

    props: {
        order: Order,
        submitCallback: () => void
    }

    getContent(): HTMLElement {
        let count = this.props.order.productCount;
        return <div className="p-1 bg-secondary text-white text-right">
            { count === 0 ? "(No Selection)"
                : `${ count } product(s), $${ this.props.order.total.toFixed(2)}` }
            <button className="btn btn-sm btn-primary m-1"
                    onclick={ this.props.submitCallback }>
                Submit Order
            </button>
        </div>
    }
}

This class receives an Order object and a callback function through its props. A simple summary of the 
Order is displayed, along with a button that invokes the callback function when it is clicked.

 Adding an Order Details Class
To display details of the order, add a file called orderDetails.tsx to the src folder and add the code shown 
in Listing 16-20.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

420

Listing 16-20. The Contents of the orderDetails.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product, Order } from "./data/entities";

export class OrderDetails {

    props: {
        order: Order
        cancelCallback: () => void,
        submitCallback: () => void
    }

    getContent(): HTMLElement {
        return <div>
            <h3 className="text-center bg-primary text-white p-2">
                Order Summary
            </h3>
            <div className="p-3">
                <table className="table table-sm table-striped">
                    <thead>
                        <tr>
                            <th>Quantity</th><th>Product</th>
                            <th className="text-right">Price</th>
                            <th className="text-right">Subtotal</th>
                        </tr>
                    </thead>
                    <tbody>
                        { this.props.order.orderLines.map(line =>
                            <tr>
                                <td>{ line.quantity }</td>
                                <td>{ line.product.name }</td>
                                <td className="text-right">
                                    ${ line.product.price.toFixed(2) }
                                </td>
                                <td className="text-right">
                                    ${ line.total.toFixed(2) }
                                </td>
                            </tr>
                        )}
                    </tbody>
                    <tfoot>
                        <tr>
                            <th className="text-right" colSpan="3">Total:</th>
                            <th className="text-right">
                                ${ this.props.order.total.toFixed(2) }
                            </th>
                        </tr>
                    </tfoot>
                </table>
            </div>



Chapter 16 ■ Creating a Stand-alone Web app, part 2

421

            <div className="text-center">
                <button className="btn btn-secondary m-1"
                        onclick={ this.props.cancelCallback }>
                    Back
                </button>
                <button className="btn btn-primary m-1"
                        onclick={ this.props.submitCallback }>
                    Submit Order
                </button>
            </div>
        </div>
    }
}

The OrderDetails class displays a table containing the details of the order, along with buttons to return 
to the product list or to submit the order.

 Adding a Confirmation Class
To display a message when an order has been submitted, add a file called summary.tsx to the src folder and 
add the code shown in Listing 16-21.

Listing 16-21. The Contents of the summary.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";

export class Summary {

    props: {
        orderId: number,
        callback: () => void
    }

    getContent(): HTMLElement {
        return <div className="m-2 text-center">
            <h2>Thanks!</h2>
            <p>Thanks for placing your order.</p>
            <p>Your order is #{ this.props.orderId }</p>
            <p>We'll ship your goods as soon as possible.</p>
            <button className="btn btn-primary" onclick={ this.props.callback }>
                OK
            </button>
        </div>
    }
}

This class displays a simple message that contains the unique ID assigned by the web service and a 
button that invokes a callback received as a prop when it is clicked.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

422

 Completing the Application
The final step is to add the code that will combine the classes created in the earlier sections, provide them 
with the data and callback functions they require through their props, and display the HTML content they 
generate, as shown in Listing 16-22.

Listing 16-22. Completing the Application in the htmlDisplay.tsx File in the src Folder

import { createElement } from "./tools/jsxFactory";
import { Product, Order } from "./data/entities";
import { AbstractDataSource } from "./data/abstractDataSource";
import { ProductList } from "./productList";
import { Header } from "./header";
import { OrderDetails } from "./orderDetails";
import { Summary } from "./summary";

enum DisplayMode {
    List, Details, Complete
}

export class HtmlDisplay {
    private containerElem: HTMLElement;
    private selectedCategory: string;
    private mode: DisplayMode = DisplayMode.List;
    private orderId: number;

    constructor() {
        this.containerElem = document.createElement("div");
    }

    props: {
        dataSource: AbstractDataSource;
    }

    async getContent(): Promise<HTMLElement> {
        await this.updateContent();
        return this.containerElem;
    }

    async updateContent() {
        let products = await this.props.dataSource
            .getProducts("id", this.selectedCategory);
        let categories = await this.props.dataSource.getCategories();
        this.containerElem.innerHTML = "";
        let contentElem: HTMLElement;
        switch (this.mode) {
            case DisplayMode.List:
                contentElem = this.getListContent(products, categories);
                break;
            case DisplayMode.Details:
                contentElem = <OrderDetails order={ this.props.dataSource.order }
                    cancelCallback={ this.showList }



Chapter 16 ■ Creating a Stand-alone Web app, part 2

423

                    submitCallback={ this.submitOrder } />
                break;
            case DisplayMode.Complete:
                contentElem = <Summary orderId={ this.orderId }
                    callback= { this.showList } />
                break;
        }
        this.containerElem.appendChild(contentElem);
    }

    getListContent(products: Product[], categories: string[]): HTMLElement {
        return <div>
            <Header order={ this.props.dataSource.order }
                submitCallback={ this.showDetails } />
            <ProductList products={ products } categories={ categories }
                selectedCategory={ this.selectedCategory }
                addToOrderCallback={ this.addToOrder }
                filterCallback={ this.selectCategory} />
        </div>
    }

    addToOrder = (product: Product, quantity: number) => {
        this.props.dataSource.order.addProduct(product, quantity);
        this.updateContent();
    }

    selectCategory = (selected: string) => {
        this.selectedCategory = selected === "All" ? undefined : selected;
        this.updateContent();
    }

    showDetails = () => {
        this.mode = DisplayMode.Details;
        this.updateContent();
    }

    showList = () => {
        this.mode = DisplayMode.List;
        this.updateContent();
    }

    submitOrder = () => {
        this.props.dataSource.storeOrder().then(id => {
            this.orderId = id;
            this.props.dataSource.order = new Order();
            this.mode = DisplayMode.Complete;
            this.updateContent();
        });
    }
}



Chapter 16 ■ Creating a Stand-alone Web app, part 2

424

The additions to the HtmlDisplay class are used to determine which JSX classes are used to display 
content to the user. The key is the mode property, which uses the values of the DisplayMode enum to select 
content, combined with the showDetails, showList, and submitOrder methods, which change the mode 
value and update the display.

There can often be a single class in a web application that becomes a point where complexity is 
concentrated, even in a simple application like this one. Using one of the frameworks described in the 
chapters that follow can help but simply expresses it in a different way, most often in a complex set of 
mappings between the URLs the application supports and the content classes that they correspond to.

When all the changes are saved and the browser has loaded the new bundle, you will be able to make 
product selections, review those selections, and submit them to the server, as shown in Figure 16-6.

When you submit an order, you can see the data that the server has stored by navigating to http://
localhost:4600/orders, as shown in Figure 16-7.

 ■ Note the orders are not stored persistently and will be lost when the web service is stopped or restarted. 
persistent storage is added in the next section.

Figure 16-6. Using the example application



Chapter 16 ■ Creating a Stand-alone Web app, part 2

425

 Deploying the Application
The Webpack Development Server and the toolchain that provides it with the bundle cannot be used in 
production, so some additional work is required to prepare an application for deployment, as described in 
the following sections.

 Adding the Production HTTP Server Package
The Webpack Development Server should not be used in production because the features it provides are 
focused on creating bundles dynamically based on changes in the source code. For production, a regular 
HTTP server is required to deliver the HTML, CSS, and JavaScript files to the browser, and a good choice 
for simple projects is the open-source Express server, which is a JavaScript package that is executed by the 
Node.js runtime. Use Control+C to stop the development tools, and use the command prompt to run the 
command shown in Listing 16-23 in the webapp folder to install the express package.

 ■ Note the express package may already be installed because it is used by other tools. even so, it is good 
practice to add the package because it adds a dependency in the project.json file.

Listing 16-23. Adding a Package for Deployment

npm install --save-dev express@4.17.1

Figure 16-7. Inspecting the submitted orders



Chapter 16 ■ Creating a Stand-alone Web app, part 2

426

 Creating the Persistent Data File
The json-server package will store its data persistently when configured to use a JSON file, rather than the 
JavaScript file that allows the data to be reset during development. Add a file called data.json to the webapp 
folder and add the content shown in Listing 16-24.

Listing 16-24. The Contents of the data.json File in the webapp Folder

{
    "products": [
        { "id": 1, "name": "Kayak", "category": "Watersports",
            "description": "A boat for one person", "price": 275 },
        { "id": 2, "name": "Lifejacket", "category": "Watersports",
            "description": "Protective and fashionable", "price": 48.95 },
        { "id": 3, "name": "Soccer Ball", "category": "Soccer",
            "description": "FIFA-approved size and weight", "price": 19.50 },
        { "id": 4, "name": "Corner Flags", "category": "Soccer",
            "description": "Give your playing field a professional touch",
            "price": 34.95 },
        { "id": 5, "name": "Stadium", "category": "Soccer",
            "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
        { "id": 6, "name": "Thinking Cap", "category": "Chess",
            "description": "Improve brain efficiency by 75%", "price": 16 },
        { "id": 7, "name": "Unsteady Chair", "category": "Chess",
            "description": "Secretly give your opponent a disadvantage",
            "price": 29.95 },
        { "id": 8, "name": "Human Chess Board", "category": "Chess",
            "description": "A fun game for the family", "price": 75 },
        { "id": 9, "name": "Bling Bling King", "category": "Chess",
            "description": "Gold-plated, diamond-studded King", "price": 1200 }
    ],
    "orders": []
}

This is the same product information I added to the JavaScript file in Listing 16-2, but it is expressed 
in JSON format, which means that the stored order data won’t be lost when the application is stopped or 
restarted.

 Creating the Server
To create the server that will deliver the application and its data to the browser, create a file called server.js 
in the webapp folder and add the code shown in Listing 16-25.

Listing 16-25. The Contents of the server.js File in the webapp Folder

const express = require("express");
const jsonServer = require("json-server");

const app = express();
app.use("/", express.static("dist"));
app.use("/", express.static("assets"));



Chapter 16 ■ Creating a Stand-alone Web app, part 2

427

const router = jsonServer.router("data.json");
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));

const port = process.argv[3] || 4000;
app.listen(port, () => console.log(`Running on port ${port}`));

The statements in the server.js file configure the express and json-server packages so that the 
contents of the dist and assets folders are used to deliver static files and so URLs prefixed with /api will be 
handled by the web service.

 ■ Tip You can write server code like this in typeScript and then compile it to generate the JavaScript that will 
be executed in production. this is a good idea if you have especially complex server code, but i find working 
directly in JavaScript easier for simple projects that are only combining the features provided by different 
packages.

 Using Relative URLs for Data Requests
The web service that provided the application with data has been running alongside the Webpack 
Development Server. In deployment, I am going to listen for both types of HTTP requests in a single port. In 
preparation, a change is required to the URLs used by the RemoteDataSource class, as shown in Listing 16-26.

Listing 16-26. Using Relative URLs in the remoteDataSource.ts File in the src/data Folder

import { AbstractDataSource } from "./abstractDataSource";
import { Product, Order } from "./entities";
import Axios from "axios";

// const protocol = document.location.protocol;
// const hostname = document.location.hostname;
// const port = 4600;

const urls = {
    // products: `${protocol}//${hostname}:${port}/products`,
    // orders: `${protocol}//${hostname}:${port}/orders`
    products: "/api/products",
    orders: "/api/orders"
};

export class RemoteDataSource extends AbstractDataSource {

    loadProducts(): Promise<Product[]> {
        return Axios.get(urls.products).then(response => response.data);
    }



Chapter 16 ■ Creating a Stand-alone Web app, part 2

428

    storeOrder(): Promise<number> {
        let orderData = {
            lines: [...this.order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        return Axios.post(urls.orders, orderData).then(response => response.data.id);
    }
}

The URLs are specified relative to the one used to request the HTML document, following the common 
convention that data requests are prefixed with /api.

 Building the Application
Run the command shown in Listing 16-27 in the webapp folder to create a bundle that can be used in 
production.

Listing 16-27. Creating the Production Bundle

npx webpack --mode "production"

When the mode argument is production, webpack creates a bundle whose contents are minified, 
meaning that they are optimized for size instead of code readability. The build process can take a 
few moments to complete and will produce the following output, which shows which files have been 
incorporated into the bundle:

asset bundle.js 1.91 MiB [emitted] [minimized] [big] (name: main) 1 related asset
orphan modules 15.7 KiB [orphan] 13 modules
runtime modules 878 bytes 4 modules
modules by path ./node_modules/axios/ 41.3 KiB
  modules by path ./node_modules/axios/lib/helpers/*.js 9.02 KiB 10 modules
  modules by path ./node_modules/axios/lib/core/*.js 12.1 KiB 9 modules
  modules by path ./node_modules/axios/lib/*.js 12.7 KiB 3 modules
  modules by path ./node_modules/axios/lib/cancel/*.js 1.69 KiB 3 modules
  2 modules
modules by path ./node_modules/css-loader/dist/runtime/*.js 3.78 KiB
   ./node_modules/css-loader/dist/runtime/cssWithMappingToString.js 2.21 KiB [built] [code 
generated]

  ./node_modules/css-loader/dist/runtime/api.js 1.57 KiB [built] [code generated]
./src/index.ts + 13 modules 16.4 KiB [built] [code generated]
./node_modules/style-loader/dist/runtime/injectStylesIntoStyleTag.js 6.67 KiB [built] [code 
generated]
./node_modules/css-loader/dist/cjs.js!./node_modules/bootstrap/dist/css/bootstrap.css 707 
KiB [built] [code generated]
./node_modules/reflect-metadata/Reflect.js 50 KiB [built] [code generated]



Chapter 16 ■ Creating a Stand-alone Web app, part 2

429

WARNING in asset size limit: The following asset(s) exceed the recommended size limit  
(244 KiB).
This can impact web performance.
Assets:
  bundle.js (1.91 MiB)
WARNING in entrypoint size limit: The following entrypoint(s) combined asset size exceeds 
the recommended limit (244 KiB). This can impact web performance.
Entrypoints:
  main (1.91 MiB)
      bundle.js
WARNING in webpack performance recommendations:
You can limit the size of your bundles by using import() or require.ensure to lazy load some 
parts of your application.
For more info visit https://webpack.js.org/guides/code-splitting/
webpack 5.17.0 compiled with 3 warnings in 5129 ms

The TypeScript files are compiled into JavaScript, just as they were in development, and the bundle file 
is written to the dist folder. The warnings about the size of the files that have been created can be ignored.

 Testing the Production Build
To make sure that the build process has worked and the configuration changes have taken effect, run the 
command shown in Listing 16-28 in the webapp folder.

Listing 16-28. Starting the Production Server

node server.js

The code from Listing 16-25 will be executed and will produce the following output:

Running on port 4000

Open a new web browser and navigate to http://localhost:4000, which will show the application, as 
illustrated in Figure 16-8.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

430

 Containerizing the Application
To complete this chapter, I am going to create a container for the example application so that it can be 
deployed into production. At the time of writing, Docker is the most popular way to create a container, which 
is a pared-down version of Linux with just enough functionality to run the application. Most cloud platforms 
or hosting engines have support for Docker, and its tools run on the most popular operating systems. 

 Installing Docker
The first step is to download and install the Docker tools on your development machine, which is available 
from www.docker.com/products/docker. There are versions for macOS, Windows, and Linux, and there are 
some specialized versions to work with the Amazon and Microsoft cloud platforms. The free Community 
edition is sufficient for this chapter.

 ■ Caution one drawback of using docker is that the company that produces the software has gained 
a reputation for making breaking changes. this may mean that the example that follows may not work as 
intended with later versions. if you have problems, check the repository for this book for updates (https://
github.com/Apress/essential- typescript- 4) or contact me at adam@adam-freeman.com.

Figure 16-8. Running the production build

http://www.docker.com/products/docker
https://github.com/Apress/essential-typescript-4
https://github.com/Apress/essential-typescript-4


Chapter 16 ■ Creating a Stand-alone Web app, part 2

431

 Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages 
required by the application for use in the container. I created a file called deploy-package.json in the 
webapp folder with the content shown in Listing 16-29.

Listing 16-29. The Contents of the deploy-package.json File in the webapp Folder

{
    "name": "webapp",
    "description": "Stand-Alone Web App",
    "repository": "https://github.com/Apress/essential-typescript",
    "license": "0BSD",
    "devDependencies": {
        "express": "4.17.1",
        "json-server": "0.16.3"
      }
}

The devDependencies section specifies the packages required to run the application in the container. 
All of the packages for which there are import statements in the application’s code files will have been 
incorporated into the bundle created by webpack and are listed. The other fields describe the application, 
and their main use is to prevent a warning when the container is created.

 Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the webapp folder and added 
the content shown in Listing 16-30. 

Listing 16-30. The Contents of the Dockerfile File in the webapp Folder

FROM node:14.15.4

RUN mkdir -p /usr/src/webapp

COPY dist /usr/src/webapp/dist
COPY assets /usr/src/webapp/assets

COPY data.json /usr/src/webapp/
COPY server.js /usr/src/webapp/
COPY deploy-package.json /usr/src/webapp/package.json

WORKDIR /usr/src/webapp

RUN echo 'package-lock=false' >> .npmrc
RUN npm install

EXPOSE 4000

CMD ["node", "server.js"]



Chapter 16 ■ Creating a Stand-alone Web app, part 2

432

The contents of the Dockerfile use a base image that has been configured with Node.js and copies the 
files required to run the application, including the bundle file containing the application and the file that will 
be used to install the NPM packages required to run the application in deployment.

To speed up the containerization process, I created a file called .dockerignore in the webapp folder 
with the content shown in Listing 16-31. This tells Docker to ignore the node_modules folder, which is not 
required in the container and takes a long time to process. 

Listing 16-31. The Contents of the .dockerignore File in the webapp Folder

node_modules

Run the command shown in Listing 16-32 in the webapp folder to create an image that will contain the 
example application, along with all the packages it requires. 

Listing 16-32. Building the Docker Image

docker build . -t webapp -f  Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM 
packages will be downloaded and installed, and the configuration and code files will be copied into the 
image.

 Running the Application
Once the image has been created, create and start a new container using the command shown in  
Listing 16-33. 

Listing 16-33. Starting the Docker Container

docker run -p 4000:4000 webapp

You can test the application by opening http://localhost:4000 in the browser, which will display the 
response provided by the web server running in the container, as shown in Figure 16-9.



Chapter 16 ■ Creating a Stand-alone Web app, part 2

433

To stop the container, run the command shown in Listing 16-34.

Listing 16-34. Listing the Containers

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID    IMAGE     COMMAND                   CREATED
4b9b82772197    webapp    "docker-entrypoint.s…"    33 seconds ago

Using the value in the Container ID column, run the command shown in Listing 16-35.

Listing 16-35. Stopping the Container

docker stop 4b9b82772197

The application is ready to deploy to any platform that supports Docker.

Figure 16-9. Running the containerized application



Chapter 16 ■ Creating a Stand-alone Web app, part 2

434

 Summary
In this chapter, I completed the development of the stand-alone web application by adding a data source 
that consumed a web service and by adding JSX classes that displayed different content to the user. I finished 
by preparing the application for deployment and creating a Docker container image. In the next chapter, I 
build a web application using the Angular framework.



435© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_17

CHAPTER 17

Creating an Angular App, Part 1

In this chapter, I start the process of creating an Angular web application that has the same set of features as 
the example in Chapters 15 and 16. Unlike other frameworks, where using TypeScript is an option, Angular 
puts TypeScript at the heart of web application development and relies on its features, especially decorators. 
For quick reference, Table 17-1 lists the TypeScript compiler options used in this chapter.

 Preparing for This Chapter
Angular projects are most easily created using the angular-cli package. Open a command prompt and run 
the command shown in Listing 17-1 to install the angular-cli package.

Table 17-1. The TypeScript Compiler Options Used in This Chapter

Name Description
baseUrl This option specifies the root location used to resolve module dependencies.

declaration This option produces type declaration files when enabled, which describe the 
types for use in other projects.

downlevelIteration This option enables support for iterators when targeting older versions of 
JavaScript.

experimentalDecorators This option determines whether decorators are enabled.

importHelpers This option determines whether helper code is added to the JavaScript to 
reduce the amount of code that is produced overall.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of module that is used.

moduleResolution This option specifies how modules are resolved.

outDir This option specifies the directory in which the JavaScript files will be placed.

sourceMap This option determines whether the compiler generates source maps for 
debugging.

target This option specifies the version of the JavaScript language that the compiler 
will target in its output.

https://doi.org/10.1007/978-1-4842-7011-0_17#DOI


Chapter 17 ■ Creating an angular app, part 1

436

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this  
book—from https://github.com/Apress/essential- typescript- 4.

Listing 17-1. Installing the Project Creation Package

npm install --global @angular/cli@11.1.1

The Angular package names are prefixed with @. Once you have installed the package, navigate to a 
convenient location and run the command shown in Listing 17-2 to create a new Angular project.

Listing 17-2. Creating a New Project

ng new angularapp

The Angular development tools are used through the ng command, and ng new creates a new project. 
During the setup process, you will be asked to make choices about the way the new project is configured. 
Use the answers from Table 17-2 to prepare the example project for this chapter.

It can take a few minutes for the project to be created because a large number of JavaScript packages 
must be downloaded.

 Configuring the Web Service
Once the creation process is complete, run the commands shown in Listing 17-3 to navigate to the project 
folder and add the packages that will provide the web service and allow multiple packages to be started with 
a single command.

Listing 17-3. Adding Packages to the Project

cd angularapp
npm install --save-dev json-server@0.16.3
npm install --save-dev npm-run-all@4.1.5

To provide the data for the web service, add a file called data.js to the angularapp folder with the 
content shown in Listing 17-4.

Table 17-2. The Project Setup Questions and Answers

Question Answer
Do you want to enforce stricter type checking and stricter bundle budgets in 
the workspace?

No

Would you like to add Angular routing? Yes

Which stylesheet format would you like to use? CSS

https://github.com/Apress/essential-typescript-4


Chapter 17 ■ Creating an angular app, part 1

437

Listing 17-4. The Contents of the data.js File in the angularapp Folder

module.exports = function () {
    return {
        products: [
            { id: 1, name: "Kayak", category: "Watersports",
                description: "A boat for one person", price: 275 },
            { id: 2, name: "Lifejacket", category: "Watersports",
                description: "Protective and fashionable", price: 48.95 },
            { id: 3, name: "Soccer Ball", category: "Soccer",
                description: "FIFA-approved size and weight", price: 19.50 },
            { id: 4, name: "Corner Flags", category: "Soccer",
                description: "Give your playing field a professional touch",
                price: 34.95 },
            { id: 5, name: "Stadium", category: "Soccer",
                description: "Flat-packed 35,000-seat stadium", price: 79500 },
            { id: 6, name: "Thinking Cap", category: "Chess",
                description: "Improve brain efficiency by 75%", price: 16 },
            { id: 7, name: "Unsteady Chair", category: "Chess",
                description: "Secretly give your opponent a disadvantage",
                price: 29.95 },
            { id: 8, name: "Human Chess Board", category: "Chess",
                description: "A fun game for the family", price: 75 },
            { id: 9, name: "Bling Bling King", category: "Chess",
                description: "Gold-plated, diamond-studded King", price: 1200 }
        ],
        orders: []
    }
}

Update the scripts section of the package.json file to configure the development tools so that the 
Angular toolchain and the web service are started at the same time, as shown in Listing 17-5.

Listing 17-5. Configuring Tools in the package.json File in the angularapp Folder

...
"scripts": {
  "ng": "ng",
  "json": "json-server data.js -p 4600",
  "serve": "ng serve",
  "start": "npm-run-all -p serve json",
  "build": "ng build",
  "test": "ng test",
  "lint": "ng lint",
  "e2e": "ng e2e"
},
...

These entries allow both the web service that will provide the data and the Angular development tools 
to be started with a single command.



Chapter 17 ■ Creating an angular app, part 1

438

 Configuring the Bootstrap CSS Package
Use the command prompt to run the command shown in Listing 17-6 in the angularapp folder to add the 
Bootstrap CSS framework to the project.

Listing 17-6. Adding the CSS Package

npm install bootstrap@4.6.0

The Angular development tools require a configuration change to incorporate the Bootstrap CSS 
stylesheet in the application. Open the angular.json file in the angularapp folder and add the item shown 
in Listing 17-7 to the build/styles section.

 ■ Caution there are two styles settings in the angular.json file, and you must take care to change the 
one in the build section and not the test section. if you don’t see styled content when you run the example 
application, the likely cause is that you have edited the wrong section.

Listing 17-7. Adding a Stylesheet in the angular.json File in the angularapp Folder

...
"build": {
    "builder": "@angular-devkit/build-angular:browser",
    "options": {
    "outputPath": "dist/angularapp",
    "index": "src/index.html",
    "main": "src/main.ts",
    "polyfills": "src/polyfills.ts",
    "tsConfig": "src/tsconfig.app.json",
    "assets": [
        "src/favicon.ico",
        "src/assets"
    ],
    "styles": [
        "src/styles.css",
         "node_modules/bootstrap/dist/css/bootstrap.min.css"
    ],
    "scripts": [],
    "es5BrowserSupport": true
    },
...

 Starting the Example Application
Use the command prompt to run the command shown in Listing 17-8 in the angularapp folder.



Chapter 17 ■ Creating an angular app, part 1

439

Listing 17-8. Starting the Development Tools

npm start

The Angular development tools take a moment to start and perform the initial compilation, producing 
output like this:

...
Compiling @angular/core : es2015 as esm2015
Compiling @angular/common : es2015 as esm2015
Compiling @angular/platform-browser : es2015 as esm2015
Compiling @angular/router : es2015 as esm2015
Compiling @angular/platform-browser-dynamic : es2015 as esm2015
√ Browser application bundle generation complete.

Initial Chunk Files   | Names         |      Size
vendor.js             | vendor        |   2.68 MB
styles.css, styles.js | styles        | 489.97 kB
polyfills.js          | polyfills     | 472.88 kB
main.js               | main          |  58.50 kB
runtime.js            | runtime       |   6.15 kB
                      | Initial Total |   3.68 MB

Build at: 2021-01-25T07:18:49.961Z - Hash: 063fb4c85c8d3ffee713 - Time: 19481ms

** Angular Live Development Server is listening on localhost:4200, open your browser on 
http://localhost:4200/ **
√ Compiled successfully.
√ Browser application bundle generation complete.
Initial Chunk Files   | Names  |      Size
styles.css, styles.js | styles | 489.97 kB
4 unchanged chunks
Build at: 2021-01-25T07:18:52.776Z - Hash: 49799edf3d51e390dbad - Time: 2350ms
√ Compiled successfully.
...

Once the initial compilation has been completed, open a browser window and navigate to http://
localhost:4200 to see the placeholder content created by the command in Listing 17-2 and which is shown 
in Figure 17-1.



Chapter 17 ■ Creating an angular app, part 1

440

 Understanding TypeScript in Angular Development
Angular depends on TypeScript decorators, shown in Chapter 15, to describe the different building blocks 
used to create web applications. Look at the contents of the app.module.ts file in the src/app folder, and 
you will see one of the modules that Angular relies on.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';

@NgModule({
  declarations: [AppComponent],
  imports: [BrowserModule, AppRoutingModule],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

Decorators are so important in Angular development that they are applied to classes that contain few 
or even no members, just to help define or configure the application. This is the NgModule decorator, and it 
is used to describe a group of related features in the Angular application (Angular modules exist alongside 
conventional JavaScript modules, which is why this file contains both import statements and the NgModule 
decorator). Another example can be seen in the app.component.ts file in the src/app folder.

Figure 17-1. Running the example application



Chapter 17 ■ Creating an angular app, part 1

441

import { Component } from '@angular/core';

@Component({
  selector: 'app-root',
  templateUrl: './app.component.html',
  styleUrls: ['./app.component.css']
})
export class AppComponent {
  title = 'angularapp';
}

This is the Component decorator, which describes a class that will generate HTML content, similar in 
purpose to the JSX classes I created in the stand-alone web app in Chapters 15 and 16.

 Understanding the Angular TypeScript Compiler Configuration
The toolchain for Angular is similar to the one I used in Chapters 15 and 16 and relies on webpack and 
the Webpack Development Server, with customizations specific to Angular. You can see traces of webpack 
in some of the messages that are omitted by the Angular development tools, but the details—and the 
configuration file—are not exposed directly. You can see and change the configuration used for the 
TypeScript compiler because the project is created with a tsconfig.json file, which is created with the 
following settings:

{
  "compileOnSave": false,
  "compilerOptions": {
    "baseUrl": "./",
    "outDir": "./dist/out-tsc",
    "sourceMap": true,
    "declaration": false,
    "downlevelIteration": true,
    "experimentalDecorators": true,
    "moduleResolution": "node",
    "importHelpers": true,
    "target": "es2015",
    "module": "es2020",
    "lib": [
      "es2018",
      "dom"
    ]
  },
  "angularCompilerOptions": {
    "enableI18nLegacyMessageIdFormat": false
  }
}

The configuration writes the compiled JavaScript files to the dist/out-tsc folder, although you won’t 
see that folder in the project because webpack is used to create a bundle automatically.

The most important setting is experimentalDecorators, which enables decorators, as described in 
Chapter 16. This feature—more than any other feature provided by TypeScript—is essential for Angular 
development.



Chapter 17 ■ Creating an angular app, part 1

442

 ■ Caution Care is required when making changes to the tsconfig.json file because they can break the rest 
of the angular toolchain. Most changes in an angular project are applied through the angular.json File.

 Creating the Data Model
To start the data model, create the src/app/data folder and add to it a file called entities.ts, with the code 
shown in Listing 17-9.

Listing 17-9. The Contents of the entities.ts File in the src/app/data Folder

export type Product = {
    id: number,
    name: string,
    description: string,
    category: string,
    price: number
};

export class OrderLine {
    constructor(public product: Product, public quantity: number) {
        // no statements required
    }

    get total(): number {
        return this.product.price * this.quantity;
    }
}

export class Order {
    private lines = new Map<number, OrderLine>();

    constructor(initialLines?: OrderLine[]) {
        if (initialLines) {
            initialLines.forEach(ol => this.lines.set(ol.product.id, ol));
        }
    }

    public addProduct(prod: Product, quantity: number) {
        if (this.lines.has(prod.id)) {
            if (quantity === 0) {
                this.removeProduct(prod.id);
            } else {
                this.lines.get(prod.id)!.quantity += quantity;
            }
        } else {
            this.lines.set(prod.id, new OrderLine(prod, quantity));
        }
    }



Chapter 17 ■ Creating an angular app, part 1

443

    public removeProduct(id: number) {
        this.lines.delete(id);
    }

    get orderLines(): OrderLine[] {
        return [...this.lines.values()];
    }

    get productCount(): number {
        return [...this.lines.values()]
            .reduce((total, ol) => total += ol.quantity, 0);
    }

    get total(): number {
        return [...this.lines.values()].reduce((total, ol) => total += ol.total, 0);
    }
}

This is the same code used in Chapter 15 and requires no changes because Angular uses regular 
TypeScript classes for its data model entities.

 Creating the Data Source
To create the data source, add a file named dataSource.ts to the src/app/data folder with the code shown 
in Listing 17-10.

Listing 17-10. The Contents of the dataSource.ts File in the src/app/data Folder

import { Observable } from "rxjs";
import { Injectable } from '@angular/core';
import { Product, Order } from "./entities";

export type ProductProp = keyof Product;

export abstract class DataSourceImpl {
    abstract loadProducts(): Observable<Product[]>;
    abstract storeOrder(order: Order): Observable<number>;
}

@Injectable()
export class DataSource {
    private _products: Product[];
    private _categories: Set<string>;
    public order: Order;

    constructor(private impl: DataSourceImpl) {
        this._products = [];
        this._categories = new Set<string>();
        this.order = new Order();
        this.getData();
    }



Chapter 17 ■ Creating an angular app, part 1

444

    getProducts(sortProp: ProductProp = "id", category? : string): Product[] {
        return this.selectProducts(this._products, sortProp, category);
    }

    protected getData(): void {
        this._products = [];
        this._categories.clear();
        this.impl.loadProducts().subscribe(rawData => {
            rawData.forEach(p => {
                this._products.push(p);
                this._categories.add(p.category);
            });
        });
    }

    protected selectProducts(prods: Product[], sortProp: ProductProp,
            category?: string): Product[] {
        return prods.filter(p => category === undefined || p.category === category)
                .sort((p1, p2) => p1[sortProp] < p2[sortProp]
                    ? -1 : p1[sortProp] > p2[sortProp] ? 1: 0);
    }

    getCategories(): string[] {
        return [...this._categories.values()];
    }

    storeOrder(): Observable<number> {
        return this.impl.storeOrder(this.order);
    }
}

Services are one of the key features in Angular development; they allow classes to declare dependencies 
in their constructors that are resolved at runtime, a technique known as dependency injection. The 
DataSource class declares a dependency on a DataSourceImpl object in its constructor, like this:

...
constructor(private impl: DataSourceImpl) {
...

When a new DataSource object is needed, Angular will inspect the constructor, create a 
DataSourceImpl object, and use it to invoke the constructor to create the new object, a process known 
as injection. The Injectable decorator tells Angular that other classes can declare dependencies on the 
DataSource class. The DataSourceImpl class is abstract, and the DataSource class has no idea which 
concrete implementation class will be used to resolve its constructor dependency. The selection of the 
implementation class is made in the application’s configuration, as shown in Listing 17-12. 

One of the key advantages of using a framework for web application development is that updates are 
handled automatically. Angular uses the Reactive Extensions library, known as RxJS, to manage updates, 
allowing changes in data to be handled automatically. The RxJS Observable class is used to describe a 
sequence of values that will be generated over time, including asynchronous activities like requesting 
data from a web service. The loadProducts method defined by the DataSourceImpl class returns an 
Observable<Product[]> object, like this:



Chapter 17 ■ Creating an angular app, part 1

445

...
abstract loadProducts(): Observable<Product[]>;
...

A TypeScript generic type argument is used to specify that the result of the loadProducts method is 
an Observable object that will generate a sequence of Product array objects. The values generated by an 
Observable object are received using the subscribe method, like this:

...
this.impl.loadProducts().subscribe(rawData => {
    rawData.forEach(p => {
        this._products.push(p);
        this._categories.add(p.category);
    });
});
...

In this situation, I am using the Observable class as a direct replacement for the standard JavaScript 
Promise. The Observable class provides sophisticated features for dealing with complex sequences, but the 
advantage here is that Angular will update the content presented to the user when the Observable produces 
a result, which means that the rest of the DataSource class can be written without needing to deal with 
asynchronous tasks.

 Creating the Data Source Implementation Class
To extend the abstract DataSourceImpl class to work with the web service, I added a file named 
remoteDataSource.ts to the src/app/data folder and added the code shown in Listing 17-11.

Listing 17-11. The Contents of the remoteDataSource.ts File in the src/app/data Folder

import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { map } from "rxjs/operators";
import { DataSourceImpl } from "./dataSource";
import { Product, Order } from "./entities";

const protocol = "http";
const hostname = "localhost";
const port = 4600;

const urls = {
    products: `${protocol}://${hostname}:${port}/products`,
    orders: `${protocol}://${hostname}:${port}/orders`
};



Chapter 17 ■ Creating an angular app, part 1

446

@Injectable()
export class RemoteDataSource extends DataSourceImpl {

    constructor(private http: HttpClient) {
        super();
    }

    loadProducts(): Observable<Product[]> {
        return this.http.get<Product[]>(urls.products);
    }

    storeOrder(order: Order): Observable<number> {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        return this.http.post<{ id: number}>(urls.orders, orderData)
            .pipe<number>(map(val => val.id));
    }
}

The RemoteDataSource constructor declares a dependency on an instance of the HttpClient class, 
which is the built-in Angular class for making HTTP requests. The HttpClient class defines get and post 
methods that are used to send HTTP requests with the GET and POST verbs. The data type that is expected is 
specified as a type argument, like this:

...
loadProducts(): Observable<Product[]> {
    return this.http.get<Product[]>(urls.products);
}
...

The type argument is used for the result from the get method, which is an Observable that will generate 
a sequence of the specified type, which is Product[] in this case.

 ■ Tip the generic type arguments for the HttpClient methods are standard typeScript. there is no angular 
magic happening behind the scenes, and the developer remains responsible for specifying a type that will 
correspond to the data received from the server.

The RxJS library contains features that can be used to manipulate the values generated by an 
Observable object, some of which are used in Listing 17-11.

...
return this.http.post<{ id: number}>(urls.orders, orderData)
    .pipe<number>(map(val => val.id));
...



Chapter 17 ■ Creating an angular app, part 1

447

The pipe method is used with the map function to create an Observable that generates values based 
on those from another Observable. This allows me to receive the result from the HTTP POST request and 
extract just the id property from the result.

 ■ Note in the stand-alone web application, i created an abstract data source class and created subclasses 
that provided local or web service data, which was loaded by a method called in the abstract class constructor. 
this is an approach that doesn’t work well in angular because the HttpClient is not assigned to an instance 
property until after the abstract class constructor is invoked with the super keyword, which means the subclass 
is asked to get data before it has been properly set up. to avoid this problem, i separated just the part of the 
data source that deals with the data into the abstract class.

 Configuring the Data Source
The last step of creating the data source is to create an Angular module, which will make the data source 
available for use in the rest of the application and select the implementation of the abstract DataSourceImpl 
class that will be used. Add a file called data.module.ts to the src/app/data folder and add the code shown 
in Listing 17-12.

Listing 17-12. The Contents of the data.module.ts File in the src/app/data Folder

import { NgModule } from "@angular/core";
import { HttpClientModule } from "@angular/common/http";
import { DataSource, DataSourceImpl } from './dataSource';
import { RemoteDataSource } from './remoteDataSource';

@NgModule({
  imports: [HttpClientModule],
  providers: [DataSource, { provide: DataSourceImpl, useClass: RemoteDataSource}]
})
export class DataModelModule { }

The DataModelModule class is defined just so that the NgModule decorator can be applied. The 
decorator’s imports property defines the dependencies that the data model classes require, and the 
providers property defines the classes in the Angular module that can be injected into the constructors of 
other classes in the application. For this module, the imports property tells Angular that the module that 
contains the HttpClient class is required, and the providers property tells Angular that the DataSource 
class can be used for dependency injection and that dependencies on the DataSourceImpl class should be 
resolved using the RemoteDataSource class.

 Displaying a Filtered List of Products
Angular splits the generation of HTML content into two files: a TypeScript class to which the Component 
decorator is applied and an HTML template that is annotated with directives that direct the generation of 
dynamic content. When the application is executed, the HTML template is compiled, and the directives are 
executed using the methods and properties provided by the TypeScript class.



Chapter 17 ■ Creating an angular app, part 1

448

Classes to which the Component decorator is applied are known, logically enough, as components. 
The convention in Angular development is to include the role of the class in the file name, so to create the 
component responsible for the details of a single product to the user, I added a file named productItem.
component.ts in the src/app folder with the code shown in Listing 17-13. 

Listing 17-13. The Contents of the productItem.component.ts File in the src/app Folder

import { Component, Input, Output, EventEmitter } from "@angular/core";
import { Product } from './data/entities';

export type productSelection = {
    product: Product,
    quantity: number
}

@Component({
    selector: "product-item",
    templateUrl: "./productItem.component.html"
})
export class ProductItem {
    quantity: number = 1;

    @Input()
    product: Product;

    @Output()
    addToCart = new EventEmitter<productSelection>();

    handleAddToCart() {
        this.addToCart.emit({ product: this.product,
            quantity: Number(this.quantity)});
    }
}

The Component decorator configures the component. The selector property specifies the CSS selector 
that Angular will use to apply the component to the application’s HTML, and the templateUrl property 
specifies the component’s HTML template. For the ProductItem class, the selector property tells Angular to 
apply this component when it encounters the product-item element and that the component’s HTML template 
can be found in a file called productItem.component.html in the same directory as the TypeScript file.

Angular uses the Input decorator to denote the properties that allow components to receive data 
values through HTML element attributes. The Output decorator is used to denote the flow of data out from 
the component through a custom event. The ProductItem class receives a Product object, whose details 
it displays to the user, and triggers a custom event when the user clicks a button, accessible through the 
addToCart property.

To create the component’s template, create a file called productItem.component.html in the src/app 
folder and add the elements shown in Listing 17-14.



Chapter 17 ■ Creating an angular app, part 1

449

Listing 17-14. The Contents of the productItem.component.html File in the src/app Folder

<div class="card m-1 p-1 bg-light">
    <h4>
        {{ product.name }}
        <span class="badge badge-pill badge-primary float-right">
            ${{ product.price.toFixed(2) }}
        </span>
    </h4>
    <div class="card-text bg-white p-1">
        {{ product.description }}
        <button class="btn btn-success btn-sm float-right"
                (click)="handleAddToCart()">
            Add To Cart
        </button>
        <select class="form-control-inline float-right m-1" [(ngModel)]="quantity">
            <option>1</option>
            <option>2</option>
            <option>3</option>
        </select>
    </div>
</div>

Angular templates use double curly braces to display the results of JavaScript expressions, such as this 
one:

...
<span class="badge badge-pill badge-primary float-right">
    ${{ product.price.toFixed(2) }}
</span>
...

Expressions are evaluated in the context of the component, so this fragment reads the value of the 
product.price property, invokes the toFixed method, and inserts the result into the enclosing span 
element. 

Event handling is done using parentheses around the event name, like this:

...
<button class="btn btn-success btn-sm float-right" (click)="handleAddToCart()">
...

This tells Angular that when the button element emits the click event, the component’s 
handleAddToCart method should be invoked. Form elements have special support in Angular, which you 
can see on the select element.

...
<select class="form-control-inline float-right m-1" [(ngModel)]="quantity">
...



Chapter 17 ■ Creating an angular app, part 1

450

The ngModel directly is applied with square brackets and parentheses and creates a two-way binding 
between the select element and the component’s quantity property. Changes to the quantity property 
will be reflected by the select element, and values picked using the select element are used to update the 
quantity property.

 Displaying the Category Buttons
To create the component that will display the list of category buttons, add a file called categoryList.
component.ts to the src/app folder and add the code shown in Listing 17-15.

Listing 17-15. The Contents of the categoryList.component.ts File in the src/app Folder

import { Component, Input, Output, EventEmitter } from "@angular/core";

@Component({
    selector: "category-list",
    templateUrl: "./categoryList.component.html"
})
export class CategegoryList {

    @Input()
    selected: string

    @Input()
    categories: string[];

    @Output()
    selectCategory = new EventEmitter<string>();

    getBtnClass(category: string): string {
        return  "btn btn-block " +
            (category === this.selected ? "btn-primary" : "btn-secondary");
    }
}

The CategoryList component has Input properties that receive the currently selected category and the 
list of categories to display. The Output decorator has been applied to the selectCategory property to define 
a custom event that will be triggered when the user makes a selection. The getBtnClass method is a helper 
that returns the list of Bootstrap classes that a button element should be assigned to and helps keep the 
component’s template free of complex expressions. To create the template for the component, create a file 
named categoryList.component.html in the src/app folder with the content shown in Listing 17-16.

Listing 17-16. The Contents of the categoryList.component.html File in the src/app Folder

<button *ngFor="let cat of categories" [class]="getBtnClass(cat)"
        (click)="selectCategory.emit(cat)">
    {{ cat }}
</button>



Chapter 17 ■ Creating an angular app, part 1

451

This template uses the ngFor directive to generate a button element for each of the values returned by 
the categories property. The asterisk (the * character) that prefixes ngFor indicates a concise syntax that 
allows the ngFor directive to be applied directly to the element that will be generated.

Angular templates use square brackets to create a one-way binding between an attribute and a data 
value, like this:

...
<button *ngFor="let cat of categories" [class]="getBtnClass(cat)"
    (click)="selectCategory.emit(cat)">
...

The square brackets allow the value of the class attribute to be set using a JavaScript expression, which 
is the result of calling the component’s getBtnClass method.

 Creating the Header Display
To create the component that will display the summary of the user’s product selections and provide the 
means to navigate to the order summary, add a file called header.component.ts in the src/app folder with 
the code shown in Listing 17-17.

Listing 17-17. The Contents of the header.component.ts File in the src/app Folder

import { Component, Input, Output, EventEmitter } from "@angular/core";
import { Order } from './data/entities';

@Component({
    selector: "header",
    templateUrl: "./header.component.html"
})
export class Header {

    @Input()
    order: Order;

    @Output()
    submit = new EventEmitter<void>();

    get headerText(): string {
        let count = this.order.productCount;
        return count === 0 ? "(No Selection)"
            : `${ count } product(s), $${ this.order.total.toFixed(2)}`
    }
}

To create the component’s template, add a file named header.component.html to the src/app folder 
with the content shown in Listing 17-18.



Chapter 17 ■ Creating an angular app, part 1

452

Listing 17-18. The Contents of the header.component.html File in the src/app Folder

<div class="p-1 bg-secondary text-white text-right">
    {{ headerText }}
    <button class="btn btn-sm btn-primary m-1" (click)="submit.emit()">
        Submit Order
    </button>
</div>

 Combining the Product, Category, and Header Components
To define the component that presents the ProductItem, CategoryList, and Header components to the user, 
add a file named productList.component.ts to the src/app folder with the code shown in Listing 17-19.

Listing 17-19. The Contents of the productList.component.ts File in the src/app Folder

import { Component } from "@angular/core";
import { DataSource } from './data/dataSource';
import { Product } from './data/entities';

@Component({
    selector: "product-list",
    templateUrl: "./productList.component.html"
})
export class ProductList {
    selectedCategory = "All";

    constructor(public dataSource: DataSource) {}

    get products(): Product[] {
        return this.dataSource.getProducts("id",
            this.selectedCategory === "All" ? undefined : this.selectedCategory);
    }

    get categories(): string[] {
        return ["All", ...this.dataSource.getCategories()];
    }

    handleCategorySelect(category: string) {
        this.selectedCategory = category;
    }

    handleAdd(data: {product: Product, quantity: number}) {
        this.dataSource.order.addProduct(data.product, data.quantity);
    }

    handleSubmit() {
        console.log("SUBMIT");
    }
}



Chapter 17 ■ Creating an angular app, part 1

453

The ProductList class declares a dependency on the DataSource class and defines products and 
categories methods that return data from the DataSource. There are three methods that respond to user 
interaction: handleCategorySelect will be invoked when the user clicks a category button, handleAdd will 
be invoked when the user adds a product to the order, and handleSubmit will be called when the user wants 
to move on to the order summary. The handleSubmit method writes out a message to the console and will 
be fully implemented in Chapter 18.

To create the component’s template, add a file named productList.component.html to the src/app 
folder with the content shown in Listing 17-20.

Listing 17-20. The Contents of the productList.component.html File in the src/app Folder

<header [order]="dataSource.order" (submit)="handleSubmit()"></header>
<div class="container-fluid">
    <div class="row">
        <div class="col-3 p-2">
            <category-list [selected]="selectedCategory" [categories]="categories"
                (selectCategory)="handleCategorySelect($event)"></category-list>
        </div>
        <div class="col-9 p-2">
            <product-item *ngFor="let p of products" [product]="p"
                (addToCart)="handleAdd($event)"></product-item>
        </div>
    </div>
</div>

This template shows how components are combined to present content to the user. Custom HTML 
elements whose tags correspond to the selector properties in the Component decorators are applied to the 
classes defined in earlier listings, like this:

...
<header [order]="dataSource.order" (submit)="handleSubmit()"></header>
...

The header tag corresponds to the selector setting for the Component decorator applied to the Header 
class in Listing 17-17. The order attribute is used to provide a value for the Input property of the same name 
defined by the Header class and allows ProductList to provide Header with the data it requires. The submit 
attribute corresponds to the Output property defined by the Header class and allows ProductList to receive 
notifications. The ProductList template uses header, category-list, and product-item elements to 
display the Header, CategoryList, and ProductItem components.

 Configuring the Application
The application module is used to register the components the application uses as well as any additional 
modules that have been defined, such as the one I created for the data model earlier in the chapter.  
Listing 17-21 shows the changes to the application module, which is defined in the app.module.ts file. 



Chapter 17 ■ Creating an angular app, part 1

454

Listing 17-21. Configuring the Module in the app.module.ts File in the src/app Folder

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { FormsModule } from "@angular/forms";
import { DataModelModule } from "./data/data.module";
import { ProductItem } from './productItem.component';
import { CategegoryList } from "./categoryList.component";
import { Header } from "./header.component";
import { ProductList } from "./productList.component";

@NgModule({
  declarations: [AppComponent, ProductItem, CategegoryList, Header, ProductList],
  imports: [BrowserModule, AppRoutingModule, FormsModule, DataModelModule],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

The NgModule decorator’s declarations property is used to declare the components that the 
application requires and is used to add the classes defined in the previous sections. The imports property 
is used to list the other modules the application requires and has been updated to include the data model 
module defined in Listing 17-12.

To display the new components to the user, replace the content in the app.component.html file with the 
single element shown in Listing 17-22.

Listing 17-22. Replacing the Contents of the app.component.html File in the src/app Folder

<product-list></product-list>

When the application runs, Angular will encounter the product-list element and compare it to the 
selector properties of the Component decorators configured through the Angular module. The product-
list tag corresponds to the selector property of the Component decorator applied to the ProductList class 
in Listing 17-19. Angular creates a new ProductList object, renders its template content, and inserts it into 
the product-list element defined in Listing 17-22. The HTML that the ProductList component generates 
is inspected, and the header, category-list, and product-item elements are discovered, leading to those 
components being instantiated and their content inserted into each element. The process is repeated until 
all the elements that correspond to components have been resolved and the content can be presented to the 
user, as shown in Figure 17-2.



Chapter 17 ■ Creating an angular app, part 1

455

The user can filter the list of products and add products to the order. Clicking Submit Order only writes 
a message to the browser’s JavaScript console, but I’ll add support for the rest of the application’s workflow 
in the next chapter.

 Summary
In this chapter, I explained the role that TypeScript has in Angular development. I explained that TypeScript 
decorators are used to describe the different building blocks that can be used in an Angular application. 
I also explained that Angular HTML templates are compiled when the browser executes the application, 
which means that TypeScript features have already been removed and cannot be used in templates. In the 
next chapter, I complete the application and prepare it for deployment.

Figure 17-2. Displaying content to the user



457© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_18

CHAPTER 18

Creating an Angular App, Part 2

In this chapter, I continue the development of the Angular web application started in Chapter 17 by adding 
the remaining features and preparing the application for deployment into a container. For quick reference, 
Table 18-1 lists the TypeScript compiler options used in this chapter.

Table 18-1. The TypeScript Compiler Options Used in This Chapter

Name Description
baseUrl This option specifies the root location used to resolve module dependencies.

declaration This option produces type declaration files when enabled, which describe the 
types for use in other projects.

downlevelIteration This option includes helper code to support iterators on older JavaScript 
runtimes.

emitDecoratorMetadata This option determines whether decorator metadata is produced in the 
JavaScript code emitted by the compiler.

experimentalDecorators This option determines whether decorators are enabled.

importHelpers This option determines whether helper code is added to the JavaScript to 
reduce the amount of code that is produced overall.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of module that is used.

moduleResolution This option specifies how modules are resolved.

outDir This option specifies the directory in which the JavaScript files will be placed.

sourceMap This option determines whether the compiler generates source maps for 
debugging.

target This option specifies the version of the JavaScript language that the compiler 
will target in its output.

typeRoots This option specifies the root location that the compiler uses to look for 
declaration files.

https://doi.org/10.1007/978-1-4842-7011-0_18#DOI


Chapter 18 ■ Creating an angular app, part 2

458

 Preparing for This Chapter
For this chapter, I continue working with the angularapp project started in Chapter 17. No changes are 
required to prepare for this chapter. Open a new command prompt, navigate to the angularapp folder, and 
run the command shown in Listing 18-1 to start the web service and the Angular development tools.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this  
book—from https://github.com/Apress/essential- typescript- 4.

Listing 18-1. Starting the Development Tools

npm start

Once the initial build has completed, open a new browser window and navigate to  
http://localhost:4200 to see the example application, as shown in Figure 18-1.

Figure 18-1. Running the example application

https://github.com/Apress/essential-typescript-4


Chapter 18 ■ Creating an angular app, part 2

459

 Completing the Example Application Features
For the component that will display the details of an order, add a file named orderDetails.component.ts to 
the src/app folder with the code shown in Listing 18-2. 

Listing 18-2. The Contents of the orderDetails.component.ts File in the src/app Folder

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { Order } from "./data/entities";
import { DataSource } from './data/dataSource';

@Component({
    selector: "order-details",
    templateUrl: "./orderDetails.component.html"
})
export class OrderDetails {

    constructor(private dataSource: DataSource, private router: Router) {}

    get order() : Order {
        return this.dataSource.order;
    }

    submit() {
        this.dataSource.storeOrder().subscribe(id =>
            this.router.navigateByUrl(`/summary/${id}`));
    }
}

The OrderDetails component receives a DataSource object through its constructor and provides 
an order property to its template. This component makes use of the Angular URL routing system, which 
selects the components displayed to the user based on the current URL. Table 18-2 shows the URLs that the 
example application will support and the purpose of each of them.

Table 18-2. The URLs Supported by the Application

Name Description
/products This URL will display the ProductList component defined in Chapter 17.

/order This URL will display the OrderDetails component, defined in Listing 18-2.

/summary This URL will display a summary of an order once it has been sent to the server. The 
URL will include the number assigned to the order so that an order whose ID is 5 will be 
displayed using the URL /summary/5.

/ The default URL will be redirected to /products so the ProductList component is shown.



Chapter 18 ■ Creating an angular app, part 2

460

The Router object received in the OrderDetails constructor allows the component to use the URL 
routing feature to navigate to a new URL and is used in the submit method.

...
submit() {
    this.dataSource.storeOrder().subscribe(id =>
        this.router.navigateByUrl(`/summary/${id}`));
}
...

This method uses the DataSource to send the user’s order to the server, waits for the response, and then 
uses the Router object’s navigateByUrl method to navigate to the URL that will display the summary to the 
user.

To create the template for the OrderDetails component, add a file named orderDetails.component.
html to the src/app folder with the content shown in Listing 18-3.

Listing 18-3. The Contents of the orderDetails.component.html File in the src/app Folder

<h3 class="text-center bg-primary text-white p-2">Order Summary</h3>
<div class="p-3">
    <table class="table table-sm table-striped">
        <thead>
            <tr>
                <th>Quantity</th><th>Product</th>
                <th class="text-right">Price</th>
                <th class="text-right">Subtotal</th>
            </tr>
        </thead>
        <tbody>
            <tr *ngFor="let line of order.orderLines">
                    <td>{{ line.quantity }}</td>
                    <td>{{ line.product.name }}</td>
                    <td class="text-right">${{ line.product.price.toFixed(2) }}</td>
                    <td class="text-right">${{ line.total.toFixed(2) }}</td>
            </tr>
        </tbody>
        <tfoot>
            <tr>
                <th class="text-right" colSpan="3">Total:</th>
                <th class="text-right">
                    ${{ order.total.toFixed(2) }}
                </th>
            </tr>
        </tfoot>
    </table>
</div>
<div class="text-center">
    <button class="btn btn-secondary m-1" routerLink="/products">Back</button>
    <button class="btn btn-primary m-1" (click)="submit()">Submit Order</button>
</div>



Chapter 18 ■ Creating an angular app, part 2

461

The component displays details of the user’s selected products and buttons that invoke the submit 
method or navigate to the /products list so the ProductList component will be displayed. Navigation is 
configured by applying the routerLink directive to the button element and specifying the URL that the 
browser will navigate to when the element is clicked.

...
<button class="btn btn-secondary m-1" routerLink="/products">Back</button>
...

The routerLink directive is part of the Angular routing feature and allows navigation without the need 
to use a Router object in the component class.

 Adding the Summary Component
To create the component that will be displayed for the /summary URL, add a file named summary.component.
ts to the src/app folder with the code shown in Listing 18-4.

Listing 18-4. The Contents of the summary.component.ts File in the src/app Folder

import { Component } from "@angular/core";
import { Router, ActivatedRoute } from "@angular/router";

@Component({
    selector: "summary",
    templateUrl: "./summary.component.html"
})
export class Summary {

    constructor(private activatedRoute: ActivatedRoute) {}

    get id(): string {
        return this.activatedRoute.snapshot.params["id"];
    }
}

The Summary component declares a dependency on an ActivatedRoute object, which Angular will 
resolve using its dependency injection feature. The ActivatedRoute class is responsible for describing 
the current route, which describes the currently active route through its snapshot property. The Summary 
component reads the value of a parameter named id, which will contain the identifier for the order. For 
a URL of /summary/5, for example, the value of the id parameter will be 5. To provide the template for the 
component, add a file named summary.component.html to the src/app folder with the content shown in 
Listing 18-5.

Listing 18-5. The Contents of the summary.component.html File in the src/app Folder

<div class="m-2 text-center">
    <h2>Thanks!</h2>
    <p>Thanks for placing your order.</p>
    <p>Your order is #{{ id }}</p>
    <p>We'll ship your goods as soon as possible.</p>
    <button class="btn btn-primary" routerLink="/products">OK</button>
</div>



Chapter 18 ■ Creating an angular app, part 2

462

The template displays the value of the id property, which is obtained from the active route, and 
presents a button element that will navigate to the /products URL when clicked.

 Creating the Routing Configuration
To describe the URLs that the application will support and the components that each of them will display, 
make the changes shown in Listing 18-6 to create the configuration for the Angular routing system.

Listing 18-6. Configuring the Application in the app.module.ts File in the src/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { FormsModule } from "@angular/forms";
import { DataModelModule } from "./data/data.module";
import { ProductItem } from './productItem.component';
import { CategegoryList } from "./categoryList.component";
import { Header } from "./header.component";
import { ProductList } from "./productList.component";
import { RouterModule } from "@angular/router"
import { OrderDetails } from "./orderDetails.component";
import { Summary } from "./summary.component";

const routes = RouterModule.forRoot([
    { path: "products", component: ProductList },
    { path: "order", component: OrderDetails},
    { path: "summary/:id", component: Summary},
    { path: "", redirectTo: "/products", pathMatch: "full"}
]);

@NgModule({
    declarations: [AppComponent,  ProductItem, CategegoryList, Header, ProductList,
                   OrderDetails, Summary],
    imports: [BrowserModule, AppRoutingModule, FormsModule, DataModelModule, routes],
    providers: [],
    bootstrap: [AppComponent]
})
export class AppModule { }

The RouterModule.forRoot method is used to describe the URLs and the components that they will 
display, as well as the instruction to redirect the default URL to /products. To tell Angular where to display 
the components specified by the routing configuration, replace the contents of the app.component.html file 
with the element shown in Listing 18-7.

Listing 18-7. Replacing the Contents of the app.component.html File in the src/app Folder

<router-outlet></router-outlet>



Chapter 18 ■ Creating an angular app, part 2

463

The final change is to change the ProductList component so that its submit method uses the Angular 
routing feature to navigate to the /order URL, as shown in Listing 18-8.

Listing 18-8. Navigating to a URL in the productList.component.ts File in the src/app Folder

import { Component } from "@angular/core";
import { DataSource } from './data/dataSource';
import { Product } from './data/entities';
import { Router } from "@angular/router";

@Component({
    selector: "product-list",
    templateUrl: "./productList.component.html"
})
export class ProductList {
    selectedCategory = "All";

    constructor(public dataSource: DataSource, private router: Router) {}

    get products(): Product[] {
        return this.dataSource.getProducts("id",
            this.selectedCategory === "All" ? undefined : this.selectedCategory);
    }

    get categories(): string[] {
        return ["All", ...this.dataSource.getCategories()];
    }

    handleCategorySelect(category: string) {
        this.selectedCategory = category;
    }

    handleAdd(data: {product: Product, quantity: number}) {
        this.dataSource.order.addProduct(data.product, data.quantity);
    }

    handleSubmit() {
        this.router.navigateByUrl("/order");
    }
}

Save the changes and wait while the development tools rebuild the application and reload the browser. 
The example application is complete, so you will be able to select products, see a summary of an order, and 
send it to the server, as shown in Figure 18-2.

 ■ Tip if only the browser url changes when you click the Submit Order button, the likely reason is that you 
did not replace the contents of the app.component.html file as shown in listing 18-7.



Chapter 18 ■ Creating an angular app, part 2

464

 Deploying the Application
The Angular development tools rely on the Webpack Development Server, which is not suitable for hosting 
a production application because it adds features such as automatic reloading to the JavaScript bundles it 
generates. In this section, I work through the process of preparing the Angular application for deployment, 
which is a similar process for any web application. 

 Adding the Production HTTP Server Package
For production, a regular HTTP server is required to deliver the HTML, CSS, and JavaScript files to the 
browser. For this example, I am going to use the Express server, which is the same package I use for all the 
examples in this part of the book and is a good choice for any web application. Use Control+C to stop the 
Angular development tools and use the command prompt to run the command shown in Listing 18-9 in the 
angularapp folder to install the express package.

The second command installs the connect-history-api-fallback package, which is useful when 
deploying applications that use URL routing, and it maps requests for the URLs that the application supports 
to the index.html file, ensuring that reloading the browser doesn’t present the user with a “not found” error.

Listing 18-9. Adding Packages for Deployment

npm install --save-dev express@4.17.1
npm install --save-dev connect-history-api-fallback@1.6.0

 Creating the Persistent Data File
To create the persistent data file for the web service, add a file called data.json to the angularapp folder and 
add the content shown in Listing 18-10.

Figure 18-2. Adding components to the example application



Chapter 18 ■ Creating an angular app, part 2

465

Listing 18-10. The Contents of the data.json File in the angularapp Folder

{
    "products": [
        { "id": 1, "name": "Kayak", "category": "Watersports",
            "description": "A boat for one person", "price": 275 },
        { "id": 2, "name": "Lifejacket", "category": "Watersports",
            "description": "Protective and fashionable", "price": 48.95 },
        { "id": 3, "name": "Soccer Ball", "category": "Soccer",
            "description": "FIFA-approved size and weight", "price": 19.50 },
        { "id": 4, "name": "Corner Flags", "category": "Soccer",
            "description": "Give your playing field a professional touch",
            "price": 34.95 },
        { "id": 5, "name": "Stadium", "category": "Soccer",
            "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
        { "id": 6, "name": "Thinking Cap", "category": "Chess",
            "description": "Improve brain efficiency by 75%", "price": 16 },
        { "id": 7, "name": "Unsteady Chair", "category": "Chess",
            "description": "Secretly give your opponent a disadvantage",
            "price": 29.95 },
        { "id": 8, "name": "Human Chess Board", "category": "Chess",
            "description": "A fun game for the family", "price": 75 },
        { "id": 9, "name": "Bling Bling King", "category": "Chess",
            "description": "Gold-plated, diamond-studded King", "price": 1200 }
    ],
    "orders": []
}

 Creating the Server
To create the server that will deliver the application and its data to the browser, create a file called server.js 
in the angularapp folder and add the code shown in Listing 18-11.

Listing 18-11. The Contents of the server.js File in the angularapp Folder

const express = require("express");
const jsonServer = require("json-server");
const history = require("connect-history-api-fallback");

const app = express();
app.use(history());
app.use("/", express.static("dist/angularapp"));

const router = jsonServer.router("data.json");
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));

const port = process.argv[3] || 4001;
app.listen(port, () => console.log(`Running on port ${port}`));



Chapter 18 ■ Creating an angular app, part 2

466

The statements in the server.js file configure the express and json-server packages to serve the 
content of the dist/angularapp folder, which is where the Angular build process will put the application’s 
JavaScript bundles and the HTML file that tells the browser to load them. URLs prefixed with /api will be 
handled by the web service.

 Using Relative URLs for Data Requests
The web service that provided the application with data has been running alongside the Angular 
development server. To prepare for sending requests to a single port, I changed the RemoteDataSource class, 
as shown in Listing 18-12.

Listing 18-12. Using Relative URLs in the remoteDataSource.ts File in the src/app/data Folder

import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { map } from "rxjs/operators";
import { DataSourceImpl } from "./dataSource";
import { Product, Order } from "./entities";

// const protocol = document.location.protocol;
// const hostname = document.location.hostname;
// const port = 4600;

const urls = {
    // products: `${protocol}//${hostname}:${port}/products`,
    // orders: `${protocol}//${hostname}:${port}/orders`
    products: "/api/products",
    orders: "/api/orders"
};

@Injectable()
export class RemoteDataSource extends DataSourceImpl {

    constructor(private http: HttpClient) {
        super();
    }

    loadProducts(): Observable<Product[]> {
        return this.http.get<Product[]>(urls.products);
    }

    storeOrder(order: Order): Observable<number> {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }



Chapter 18 ■ Creating an angular app, part 2

467

        return this.http.post<{ id: number}>(urls.orders, orderData)
            .pipe<number>(map(val => val.id));
    }
}

The URLs in Listing 18-12 are specified relative to the one used to request the HTML document, 
following the common convention that data requests are prefixed with /api.

 Building the Application
To build the application for deployment, run the command shown in Listing 18-13 in the angularapp folder 
to create the production build of the application.

Listing 18-13. Creating the Production Bundle

ng build --prod

The build process creates a set of optimized files in the dist folder. The build process can take a few 
moments to complete and will produce the following output, which shows which files have been created:

√ Browser application bundle generation complete.
√ Copying assets complete.
√ Index html generation complete.
Initial Chunk Files               | Names         |      Size
main.fae8db30eaa4f8e5a238.js      | main          | 255.33 kB
styles.a5f71e09a5471b3525f6.css   | styles        | 141.60 kB
polyfills.6abdde2583a2e01a2350.js | polyfills     |  35.73 kB
runtime.7b63b9fd40098a2e8207.js   | runtime       |   1.45 kB
                                  | Initial Total | 434.11 kB
Build at: 09:44:57.144Z - Hash: 1ad09b3df3412b22d555 - Time: 24746ms

 Testing the Production Build
To make sure that the build process has worked and the configuration changes have taken effect, run the 
command shown in Listing 18-14 in the angularapp folder.

Listing 18-14. Starting the Production Server

node server.js

The code from Listing 18-14 will be executed and will produce the following output:

Running on port 4001



Chapter 18 ■ Creating an angular app, part 2

468

Open a new web browser and navigate to http://localhost:4001, which will show the application, as 
illustrated in Figure 18-3.

 Containerizing the Application
To complete this chapter, I am going to create a Docker container for the Angular application so that it can 
be deployed into production. If you did not install Docker in Chapter 15, then you must do so now to follow 
the rest of the examples in this chapter.

 Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages 
required by the application for use in the container. I created a file called deploy-package.json in the 
angularapp folder with the content shown in Listing 18-15.

Listing 18-15. The Contents of the deploy-package.json File in the angularapp Folder

{
  "name": "angularapp",
  "description": "Angular Web App",
  "repository": "https://github.com/Apress/essential-typescript",

Figure 18-3. Running the production build



Chapter 18 ■ Creating an angular app, part 2

469

  "license": "0BSD",
  "devDependencies": {
      "express": "4.17.1",
      "json-server": "0.16.3",
      "connect-history-api-fallback": "1.6.0"
   }
}

The devDependencies section specifies the packages required to run the application in the container. 
All of the packages for which there are import statements in the application’s code files will have been 
incorporated into the bundle created by webpack and are listed. The other fields describe the application, 
and their main use is to prevent a warning when the container is created. 

 Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the angularapp folder and 
added the content shown in Listing 18-16.

Listing 18-16. The Contents of the Dockerfile File in the angularapp Folder

FROM node:14.15.4

RUN mkdir -p /usr/src/angularapp

COPY dist /usr/src/angularapp/dist/
COPY data.json /usr/src/angularapp/
COPY server.js /usr/src/angularapp/
COPY deploy-package.json /usr/src/angularapp/package.json

WORKDIR /usr/src/angularapp

RUN echo 'package-lock=false' >> .npmrc
RUN npm install

EXPOSE 4001

CMD ["node", "server.js"]

The contents of Dockerfile use a base image that has been configured with Node.js and that copies the 
files required to run the application into the container, along with the file that lists the packages required for 
deployment.

To speed up the containerization process, I created a file called .dockerignore in the angularapp folder 
with the content shown in Listing 18-17. This tells Docker to ignore the node_modules folder, which is not 
required in the container and takes a long time to process.

Listing 18-17. The Contents of the .dockerignore File in the angularapp Folder

node_modules



Chapter 18 ■ Creating an angular app, part 2

470

Run the command shown in Listing 18-18 in the angularapp folder to create an image that will contain 
the example application, along with all of the packages it requires.

Listing 18-18. Building the Docker Image

docker build . -t angularapp -f  Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM 
packages will be downloaded and installed, and the configuration and code files will be copied into the 
image.

 Running the Application
Once the image has been created, create and start a new container using the command shown in  
Listing 18-19.

Listing 18-19. Starting the Docker Container

docker run -p 4001:4001 angularapp

You can test the application by opening http://localhost:4000 in the browser, which will display the 
response provided by the web server running in the container, as shown in Figure 18-4.



Chapter 18 ■ Creating an angular app, part 2

471

To stop the container, run the command shown in Listing 18-20.

Listing 18-20. Listing the Containers

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID        IMAGE               COMMAND                  CREATED
48dbd2431700        angularapp          "docker-entrypoint.s…"   41 seconds ago

Using the value in the Container ID column, run the command shown in Listing 18-21.

Listing 18-21. Stopping the Container

docker stop 48dbd2431700

Figure 18-4. Running the containerized application



Chapter 18 ■ Creating an angular app, part 2

472

The Angular application is ready to deploy to any platform that supports Docker.

 Summary
In this chapter, I completed the example Angular application by adding components and using the 
URL routing feature to specify when they will be shown to the user. I prepared the production build of 
the application and containerized it so that it can be easily deployed. In the next chapter, I create a web 
application using the React framework.



473© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_19

CHAPTER 19

Creating a React App

In this chapter, I start the process of creating a React application that has the same features as the stand-
alone and Angular examples from earlier chapters. TypeScript is optional in React development, but there is 
good support available, and React development with TypeScript provides a good developer experience. For 
quick reference, Table 19-1 lists the TypeScript compiler options used in this chapter.

Table 19-1. The TypeScript Compiler Options Used in This Chapter

Name Description
allowJs This option includes JavaScript files in the compilation process.

allowSyntheticDefaultImports This option allows imports from modules that do not declare a 
default export. This option is used to increase code compatibility.

esModuleInterop This option adds helper code for importing from modules that do 
not declare a default export and is used in conjunction with the 
allowSyntheticDefaultImports option.

forceConsistentCasingInFileNames This option ensures that names in import statements match the 
case used by the imported file.

isolatedModules This option treats each file as a separate module, which increases 
compatibility with the Babel tool.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of module that is used.

moduleResolution This option specifies the style of module resolution that should be 
used to resolve dependencies.

noEmit This option prevents the compiler from emitting JavaScript code, 
with the result that it checks code only for errors.

resolveJsonModule This option allows JSON files to be imported as though they were 
modules.

skipLibCheck This option speeds up compilation by skipping the normal 
checking of declaration files.

strict This option enables stricter checking of TypeScript code.

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

https://doi.org/10.1007/978-1-4842-7011-0_19#DOI


Chapter 19 ■ Creating a reaCt app

474

 Preparing for This Chapter
React projects are most easily created using the create-react-app package. Open a new command prompt, 
navigate to a convenient location, and run the command shown in Listing 19-1 to install the create-react-
app package.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this  
book—from https://github.com/Apress/essential- typescript- 4.

Listing 19-1. Installing the Project Creation Package

npm install --global create-react-app@4.0.1

Once the package has been installed, run the command shown in Listing 19-2 to create a project named 
reactapp.

Listing 19-2. Creating a React Project

npx create-react-app reactapp --template typescript --use-npm

The --template typescript argument tells the create-react-app package to create a React project 
that is configured for use with TypeScript, which includes installing and configuring the TypeScript compiler 
and the declaration files that describe the React API and its related tools. The --use-npm command installs 
the packages using the NPM package manager, which I have used throughout this book.

 ■ Tip See https://create- react- app.dev/docs/adding- typescript for details of how to add typeScript 
to an existing react project.

 Configuring the Web Service
Once the creation process is complete, run the commands shown in Listing 19-3 to navigate to the project 
folder, add the packages that will provide the web service, and allow multiple packages to be started with a 
single command.

Listing 19-3. Adding Packages to the Project

cd reactapp
npm install --save-dev json-server@0.16.3
npm install --save-dev npm-run-all@4.1.5

To provide the data for the web service, add a file called data.js to the reactapp folder with the content 
shown in Listing 19-4.

https://github.com/Apress/essential-typescript-4
https://create-react-app.dev/docs/adding-typescript


Chapter 19 ■ Creating a reaCt app

475

Listing 19-4. The Contents of the data.js File in the reactapp Folder

module.exports = function () {
    return {
        products: [
            { id: 1, name: "Kayak", category: "Watersports",
                description: "A boat for one person", price: 275 },
            { id: 2, name: "Lifejacket", category: "Watersports",
                description: "Protective and fashionable", price: 48.95 },
            { id: 3, name: "Soccer Ball", category: "Soccer",
                description: "FIFA-approved size and weight", price: 19.50 },
            { id: 4, name: "Corner Flags", category: "Soccer",
                description: "Give your playing field a professional touch",
                price: 34.95 },
            { id: 5, name: "Stadium", category: "Soccer",
                description: "Flat-packed 35,000-seat stadium", price: 79500 },
            { id: 6, name: "Thinking Cap", category: "Chess",
                description: "Improve brain efficiency by 75%", price: 16 },
            { id: 7, name: "Unsteady Chair", category: "Chess",
                description: "Secretly give your opponent a disadvantage",
                price: 29.95 },
            { id: 8, name: "Human Chess Board", category: "Chess",
                description: "A fun game for the family", price: 75 },
            { id: 9, name: "Bling Bling King", category: "Chess",
                description: "Gold-plated, diamond-studded King", price: 1200 }
        ],
        orders: []
    }
}

Update the scripts section of the package.json file to configure the development tools so that the 
React toolchain and the web service are started at the same time, as shown in Listing 19-5.

Listing 19-5. Configuring Tools in the package.json File in the reactapp Folder

...
"scripts": {
  "json": "json-server data.js -p 4600",
  "serve": "react-scripts start",
  "start": "npm-run-all -p serve json",
  "build": "react-scripts build",
  "test": "react-scripts test",
  "eject": "react-scripts eject"
},
...

 Installing the Bootstrap CSS Package
Use the command prompt to run the command shown in Listing 19-6 in the reactapp folder to add the 
Bootstrap CSS framework to the project.



Chapter 19 ■ Creating a reaCt app

476

Listing 19-6. Adding the CSS Package

npm install bootstrap@4.6.0

To ensure the Bootstrap CSS stylesheet is included in the application, add the import statement shown 
in Listing 19-7 to the index.tsx file in the src folder.

Listing 19-7. Declaring a Dependency in the index.tsx File in the src Folder

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import reportWebVitals from './reportWebVitals';
import 'bootstrap/dist/css/bootstrap.css';

ReactDOM.render(
  <React.StrictMode>
    <App />
  </React.StrictMode>,
  document.getElementById('root')
);

reportWebVitals();

 Starting the Example Application
Use the command prompt to run the command shown in Listing 19-8 in the reactapp folder.

Listing 19-8. Starting the Development Tools

npm start

The web service and the React build tools will start, and you will see the following output:

Compiled successfully!
You can now view reactapp in the browser.
  Local:            http://localhost:3000
  On Your Network:  http://172.22.208.1:3000
Note that the development build is not optimized.
To create a production build, use yarn build.

A new browser window will open and navigate to http://localhost:3000, which shows the 
placeholder content provided during the project creation process, as shown in Figure 19-1.



Chapter 19 ■ Creating a reaCt app

477

 Understanding TypeScript in React Development
TypeScript is optional when using React, and this is reflected in the way that the development tools and the 
TypeScript compiler are configured. Behind the scenes, the webpack and Webpack Development are used to 
create the JavaScript bundle and deliver it to the browser.

React development relies on the JSX format, demonstrated in Chapter 15, which allows JavaScript and 
HTML to be mixed in a single file. The React development tools already have the ability to transform JSX files 
into pure JavaScript, which is done using the Babel package. Babel is a JavaScript compiler that allows code 
written using recent versions of JavaScript to be translated into code that works on older browsers, much like 
the version targeting feature provided by the TypeScript compiler. Babel is extensible through plugins, and 
support has grown to translate a wide range of other formats into JavaScript, including JSX files. Figure 19-2 
shows the basic elements of the React development toolchain for a regular JavaScript project. 

The Babel plugin responsible for JSX plays the same role as the JSX factory class I created in Chapter 15  
and replaces the HTML fragments with JavaScript statements, albeit using the more sophisticated and 
efficient React API. The transformation produces pure JavaScript, which is bundled into a file so that it can 

Figure 19-1. Running the example application

Figure 19-2. The JavaScript React development toolchain



Chapter 19 ■ Creating a reaCt app

478

be received and executed by the browser. The bundle also includes JavaScript code to unpack any CSS or 
image resources that the application requires. 

The way that the React toolchain deals with TypeScript is unusual, and you can get a sense of what 
is happening by looking at the TypeScript compiler configuration file that has been added to the project, 
shown here:

{
  "compilerOptions": {
    "target": "es5",
    "lib": ["dom","dom.iterable","esnext"],
    "allowJs": true,
    "skipLibCheck": true,
    "esModuleInterop": true,
    "allowSyntheticDefaultImports": true,
    "strict": true,
    "forceConsistentCasingInFileNames": true,
    "noFallthroughCasesInSwitch": true,
    "module": "esnext",
    "moduleResolution": "node",
    "resolveJsonModule": true,
    "isolatedModules": true,
    "noEmit": true,
    "jsx": "react-jsx"
  },
  "include": ["src"]
}

The setting worth noting is noEmit. When the noEmit setting is true, the TypeScript compiler won’t 
generate JavaScript files. The reason for the unusual compiler setting is that it is the Babel package—and not 
the TypeScript compiler—that is responsible for transforming TypeScript code into JavaScript. The React 
toolchain includes a Babel plugin that transforms TypeScript into pure JavaScript.

Babel can transform TypeScript into JavaScript, but it doesn’t understand the TypeScript features, and it 
doesn’t know how to perform type checking. That task is left to the TypeScript compiler so that responsibility 
for dealing with TypeScript is split: the TypeScript compiler is responsible for detecting type errors, and 
Babel is responsible for creating the JavaScript code the browser will execute, as shown in Figure 19-3.

Figure 19-3. The TypeScript React development toolchain



Chapter 19 ■ Creating a reaCt app

479

The noEmit setting makes sense in this context since the TypeScript compiler doesn’t need to create 
JavaScript files to perform its type checks.

The limitation of this approach is that Babel can’t deal with every TypeScript feature, although there 
are surprisingly few limitations. At the time of writing, enums are not fully supported, and the namespace 
feature cannot be used (namespaces are a deprecated forerunner of JavaScript modules and not covered in 
this book). 

 ■ Note You may have received a warning when starting the development tools that warned you of a 
mismatch between typeScript versions. this warning reflects the possible difference between the type checking 
features implemented by the latest typeScript compiler and the way the typeScript code is translated into 
JavaScript by Babel. For a simple project like this one, there are unlikely to be serious issues, but you should 
consider using only the typeScript versions that are explicitly supported by the create-react-app package.

As in the other chapters in this part of the book, I am going to use the spread operator, which requires a 
change to the TypeScript compiler configuration, as shown in Listing 19-9.

Listing 19-9. Changing the Compiler Configuration in the tsconfig.json File in the reactapp Folder

{
  "compilerOptions": {
    "target": "es6",
    "lib": ["dom","dom.iterable","esnext"],
    "allowJs": true,
    "skipLibCheck": true,
    "esModuleInterop": true,
    "allowSyntheticDefaultImports": true,
    "strict": true,
    "forceConsistentCasingInFileNames": true,
    "noFallthroughCasesInSwitch": true,
    "module": "esnext",
    "moduleResolution": "node",
    "resolveJsonModule": true,
    "isolatedModules": true,
    "noEmit": true,
    "jsx": "react-jsx"
  },
  "include": ["src"]
}

The Babel transformation can deal with the spread operator without needing a configuration change, 
and the effect of the target setting in Listing 19-9 only prevents the TypeScript compiler from generating 
errors.

 Defining the Entity Types
React focuses on presenting HTML content to the user and leaves other tasks, such as managing application 
data and making HTTP requests, to other packages. I’ll add packages to the project later to complete the set 
of features required by the example application, but I am going to start by focusing on the features that React 



Chapter 19 ■ Creating a reaCt app

480

does provide and come back to deal with the ones it doesn’t later. To get started, I need to define the entities 
that the application will use. Create the src/data folder and add to it a file named entities.ts with the 
code shown in Listing 19-10.

Listing 19-10. The Contents of the entities.ts File in the src/data Folder

export type Product = {
    id: number,
    name: string,
    description: string,
    category: string,
    price: number
};

export class OrderLine {
    constructor(public product: Product, public quantity: number) {
        // no statements required
    }

    get total(): number {
        return this.product.price * this.quantity;
    }
}

export class Order {
    private lines = new Map<number, OrderLine>();

    constructor(initialLines?: OrderLine[]) {
        if (initialLines) {
            initialLines.forEach(ol => this.lines.set(ol.product.id, ol));
        }
    }

    public addProduct(prod: Product, quantity: number) {
        if (this.lines.has(prod.id)) {
            if (quantity === 0) {
                this.removeProduct(prod.id);
            } else {
                this.lines.get(prod.id)!.quantity += quantity;
            }
        } else {
            this.lines.set(prod.id, new OrderLine(prod, quantity));
        }
    }

    public removeProduct(id: number) {
        this.lines.delete(id);
    }

    get orderLines(): OrderLine[] {
        return [...this.lines.values()];
    }



Chapter 19 ■ Creating a reaCt app

481

    get productCount(): number {
        return [...this.lines.values()]
            .reduce((total, ol) => total += ol.quantity, 0);
    }

    get total(): number {
        return [...this.lines.values()].reduce((total, ol) => total += ol.total, 0);
    }
}

This is the same set of data types used for the other web applications in this part of the book. Regardless 
of which framework you use, the same set of features can be used to describe data types.

 Displaying a Filtered List of Products
React uses the JSX format to allow HTML elements to be defined alongside JavaScript code, similar to 
the approach that I used when creating the stand-alone web application. During compilation, the HTML 
elements are transformed into JavaScript statements that use the React API to efficiently display content to 
the user, a much more elegant approach than the one I created in Chapter 15. 

The key building block in a React application is the component that is responsible for generating HTML 
content. Components are configured using props; they can respond to user interaction by handling events 
triggered by the HTML elements they render and can define local state data. 

To display the details of a single product, add a file named productItem.tsx to the src folder and add 
the code shown in Listing 19-11 to create a simple React component.

Listing 19-11. The Contents of the productItem.tsx File in the src Folder

import React, { Component, ChangeEvent } from "react";
import { Product } from "./data/entities";

interface Props {
    product: Product,
    callback: (product: Product, quantity: number) => void
}

interface State {
    quantity: number
}

export class ProductItem extends Component<Props, State> {

    constructor(props: Props) {
        super(props);
        this.state = {
            quantity: 1
        }
    }



Chapter 19 ■ Creating a reaCt app

482

    render() {
        return <div className="card m-1 p-1 bg-light">
            <h4>
                { this.props.product.name }
                <span className="badge badge-pill badge-primary float-right">
                    ${ this.props.product.price.toFixed(2) }
                </span>
            </h4>
            <div className="card-text bg-white p-1">
                { this.props.product.description }
                <button className="btn btn-success btn-sm float-right"
                        onClick={ this.handleAddToCart } >
                    Add To Cart
                </button>
                <select className="form-control-inline float-right m-1"
                        onChange={ this.handleQuantityChange }>
                    <option>1</option>
                    <option>2</option>
                    <option>3</option>
                </select>
            </div>
        </div>
    }

    handleQuantityChange = (ev: ChangeEvent<HTMLSelectElement>): void =>
        this.setState({ quantity: Number(ev.target.value) });

    handleAddToCart = (): void =>
        this.props.callback(this.props.product, this.state.quantity);
}

Using TypeScript requires some changes to the way that React components are defined so that data types 
that describe the props and state data are defined and used as generic type arguments to the Component class. 
The ProductItem component receives props that provide it with a Product object and a callback function to 
invoke when the user clicks the Add To Cart button. The ProductItem component has one state data property, 
named quantity, which is used to respond when the user picks a value through the select element. 
The props and state data are described by the Props and State interfaces, which are used as generic type 
parameters to configure the base class for components, like this:

...
export class ProductItem extends Component<Props, State> {
...

The generic type arguments allow the TypeScript compiler to check the component when it is applied 
so that only properties defined by the Props interface are used and to ensure that updates are applied only to 
properties defined by the State interface.

The declaration files for React include types for the events that HTML elements will produce through 
the render method. For the change event triggered by a select element, the handler function will receive 
a ChangeEvent<HTMLSelectElement> object. Changes to a component’s properties must be performed 
through the setState method, which is how React knows that an update has been made.



Chapter 19 ■ Creating a reaCt app

483

...
handleQuantityChange = (ev: ChangeEvent<HTMLSelectElement>): void =>
    this.setState({ quantity: Number(ev.target.value) });
...

The TypeScript compiler will ensure that the right type of event is handled and that updates through the 
setState method are of the right type and update only the properties defined by the State type.

 Using a Functional Component and Hooks
The component in Listing 19-11 is defined using a class, but React also supports components to be 
defined using functions. When using TypeScript, functional components are annotated with the 
FunctionComponent<T> type, where the generic type T describes the props the component will receive. In 
Listing 19-12, I have redefined the ProductItem component so that it is expressed as a function instead of a 
class. 

Listing 19-12. Defining a Functional Component in the productItem.tsx File in the src Folder

import React, { FunctionComponent, useState } from "react";
import { Product } from "./data/entities";

interface Props {
    product: Product,
    callback: (product: Product, quantity: number) => void
}

// interface State {
//     quantity: number
// }

export const ProductItem: FunctionComponent<Props> = (props) => {

    const [quantity, setQuantity] = useState<number>(1);

    return <div className="card m-1 p-1 bg-light">
        <h4>
            { props.product.name }
            <span className="badge badge-pill badge-primary float-right">
                ${ props.product.price.toFixed(2) }
            </span>
        </h4>
        <div className="card-text bg-white p-1">
            { props.product.description }
            <button className="btn btn-success btn-sm float-right"
                    onClick={ () => props.callback(props.product, quantity) }>
                Add To Cart
            </button>
            <select className="form-control-inline float-right m-1"
                    onChange={ (ev) => setQuantity(Number(ev.target.value)) }>
                <option>1</option>
                <option>2</option>



Chapter 19 ■ Creating a reaCt app

484

                <option>3</option>
            </select>
        </div>
    </div>
}

The result of the component’s function is the HTML that should be displayed to the user and that is 
defined using the same combination of elements and expressions that class-based components produce 
from their render method.

Class-based components rely on properties and methods, accessed through this, to implement state 
data and participate in the lifecycle that React provides for applications. Functional components use a 
feature named hooks to achieve the same result, like this:

...
const [quantity, setQuantity] = useState<number>(1);
...

This is an example of a state hook, which provides a functional component with a state data property 
that will trigger a content update when it is modified. The useState function is provided with a generic 
type argument and an initial value, and it returns a property that can be read to get the current value and a 
function that can be invoked to change it. In this case, the property is assigned the name quantity, and the 
update function is assigned the name setQuantity, following a common naming convention. The result is 
that quantity can be used in expressions to get the state data value.

...
onClick={ () => props.callback(props.product, quantity) }>
...

The quantity property is constant, which means that it cannot be modified. Instead, changes must be 
applied through the setQuantity function, like this:

...
<select className="form-control-inline float-right m-1"
    onChange={ (ev) => setQuantity(Number(ev.target.value)) }>
...

The use of separate properties and functions ensures that all changes to state data trigger the React 
update process, and the TypeScript compiler checks the values passed to the function to ensure they 
correspond to the generic type argument provided to the useState function.

 ■ Tip the choice between function and class components is a matter of personal preference, and both are 
fully supported by react. i tend to use classes because that’s the programming model that i am most used to, 
but both approaches have their merits and can be freely mixed in a project.

 Displaying a List of Categories and the Header
To define the component that will display the list of categories, add a file named categoryList.tsx to the 
src folder with the contents shown in Listing 19-13.



Chapter 19 ■ Creating a reaCt app

485

Listing 19-13. The Contents of the categoryList.tsx File in the src Folder

import React, { Component } from "react";

interface Props {
    selected: string,
    categories: string[],
    selectCategory: (category: string) => void;
}

export class CategoryList extends Component<Props> {

    render() {
        return <div>
            { ["All", ...this.props.categories].map(c => {
                let btnClass = this.props.selected === c
                    ? "btn-primary": "btn-secondary";
                return <button key={ c }
                        className={ `btn btn-block ${btnClass}` }
                        onClick={ () => this.props.selectCategory(c) }>
                    { c }
                </button>
            }) }
        </div>
    }
}

The CategoryList component does not define any state data, and its base class is specified using only 
one type argument. To create the header component, add a file named header.tsx to the src folder and add 
the code shown in Listing 19-14.

Listing 19-14. The Contents of the header.tsx File in the src Folder

import React, { Component } from "react";
import { Order } from "./data/entities";

interface Props {
    order: Order
}

export class Header extends Component<Props> {

    render() {
        let count = this.props.order.productCount;
        return <div className="p-1 bg-secondary text-white text-right">
            { count === 0 ? "(No Selection)"
                : `${ count } product(s), $${ this.props.order.total.toFixed(2)}` }
            <button className="btn btn-sm btn-primary m-1">
                Submit Order
            </button>
        </div>
    }
}



Chapter 19 ■ Creating a reaCt app

486

 Composing and Testing the Components
To create the component that will display the header, the list of products, and the category buttons, add a file 
named productList.tsx to the src folder and add the code shown in Listing 19-15.

Listing 19-15. The Contents of the productList.tsx File in the src Folder

import React, { Component } from "react";
import { Header } from "./header";
import { ProductItem } from "./productItem";
import { CategoryList} from "./categoryList";
import { Product, Order } from "./data/entities";

interface Props {
    products: Product[],
    categories: string[],
    order: Order,
    addToOrder: (product: Product, quantity: number) => void
}

interface State {
    selectedCategory: string;
}

export class ProductList extends Component<Props, State> {

    constructor(props: Props) {
        super(props);
        this.state = {
            selectedCategory: "All"
        }
    }

    render() {
        return <div>
            <Header order={ this.props.order } />
            <div className="container-fluid">
                <div className="row">
                    <div className="col-3 p-2">
                        <CategoryList categories={ this.props.categories }
                            selected={ this.state.selectedCategory }
                            selectCategory={ this.selectCategory } />
                    </div>
                    <div className="col-9 p-2">
                        {
                            this.products.map(p =>
                                <ProductItem key={ p.id } product={ p }
                                    callback={ this.props.addToOrder } />)
                        }
                    </div>
                </div>



Chapter 19 ■ Creating a reaCt app

487

            </div>
        </div>
    }

    get products(): Product[] {
        return this.props.products.filter(p => this.state.selectedCategory === "All"
            || p.category === this.state.selectedCategory);
    }

    selectCategory = (cat: string) => {
        this.setState({ selectedCategory: cat});
    }
}

Components are applied using custom HTML elements whose tag matches the component class 
name. Components are configured using props, which can be used to provide data or callback functions, 
just as in Chapter 15 when I created a custom JSX implementation. The ProductList component provides 
its functionality by composing the Header, CategoryList, and ProductItem components, each of which is 
configured using the props the ProductList component receives or its state data.

To make sure that the components can display content to the user, replace the contents of the App.tsx 
file with those shown in Listing 19-16.

Listing 19-16. Replacing the Contents of the App.tsx File in the src Folder

import React, { Component } from 'react';
import { Product, Order } from './data/entities';
import { ProductList } from './productList';

let testData: Product[] = [1, 2, 3, 4, 5].map(num =>
    ({ id: num, name: `Prod${num}`, category: `Cat${num % 2}`,
        description: `Product ${num}`, price: 100}))

interface Props {
    // no props required
}

interface State {
    order: Order
}

export default class App extends Component<Props, State> {

    constructor(props: Props) {
        super(props);
        this.state = {
            order: new Order()
        }
    }



Chapter 19 ■ Creating a reaCt app

488

    render = () =>
        <div className="App">
            <ProductList products={ testData }
                categories={this.categories }
                order={ this.state.order }
                addToOrder= { this.addToOrder } />
        </div>

    get categories(): string[] {
        return [...new Set(testData.map(p => p.category))]
    }

    addToOrder = (product: Product, quantity: number) => {
        this.setState(state => {
            state.order.addProduct(product, quantity);
            return state;
        })
    }
}

The App component has been updated to display a ProductList, which is configured using test data. I’ll 
add support for working with the web service later, but the changes in Listing 19-16 are enough to show the 
list of products, as shown in Figure 19-4. (You may have to reload the browser to see the changes because the 
auto-reload feature isn’t always reliable.)

Figure 19-4. Testing the product list components



Chapter 19 ■ Creating a reaCt app

489

 Creating the Data Store
In most React projects, the application data is managed by a data store. Several data store packages are 
available, but the most widely used is Redux. To add the Redux packages to the project, open a new 
command prompt, navigate to the reactapp folder, and run the commands shown in Listing 19-17. 

Listing 19-17. Adding Packages to the Example Project

npm install redux@4.0.5
npm install react-redux@7.2.2
npm install --save-dev @types/react-redux

The Redux package includes TypeScript declarations, but an additional package is required for the 
React-Redux package, which connects React components to a data store.

Redux data stores separate reading data from the operations that change it. This can feel awkward 
at first, but it is similar to other parts of React development, such as component state data, and it quickly 
becomes second nature. In Redux data stores, actions are objects that are sent to the data store to make 
changes to the data it contains. Actions have types and are created using action creator functions. To 
describe the actions that the data store will support, add a file named types.ts to the src/data folder and 
add the code shown in Listing 19-18.

 ■ Note there are many different ways to create and configure a data store and connect it to react 
components. in this chapter, i have taken the simplest approach and handled the http requests that interact 
with the web service in a separate class. What’s important in this section is not how i use the datastore but how 
i can use typeScript annotations to describe the approach i have selected to the compiler so that type checks 
can be performed.

Listing 19-18. The Contents of the types.ts File in the src/data Folder

import { Product, Order } from "./entities";
import { Action } from "redux";

export interface StoreData {
    products: Product[],
    order: Order
}

export enum ACTIONS {
    ADD_PRODUCTS, MODIFY_ORDER, RESET_ORDER
}

export interface AddProductsAction extends Action<ACTIONS.ADD_PRODUCTS> {
    payload: Product[]
}



Chapter 19 ■ Creating a reaCt app

490

export interface ModifyOrderAction extends Action<ACTIONS.MODIFY_ORDER> {
    payload: {
        product: Product,
        quantity: number
    }
}

export interface ResetOrderAction extends Action<ACTIONS.RESET_ORDER> {}

export type StoreAction = AddProductsAction | ModifyOrderAction | ResetOrderAction;

The StoreData interface describes the data that the data store will manage, which, for the example 
application, defines products and order properties.

The ACTIONS enum defines a set of values, each of which corresponds to an action that the data store 
will support. Each enum value is used as a type argument to the Action type, which is an interface provided 
by the Redux package. The Action interface is extended to describe the characteristics of the object for each 
action type, some of which have a payload property that provides the data that will be required to apply the 
action. The StoreAction type is the intersection of the action interfaces.

The next step is to define the action creator functions that are responsible for creating the action objects 
that describe operations that will change the data store. Add a file named actionCreators.ts to the src/
data folder with the code shown in Listing 19-19. 

Listing 19-19. The Contents of the actionCreators.ts File in the src/data Folder

import { ACTIONS, AddProductsAction, ModifyOrderAction, ResetOrderAction }
    from "./types";
import { Product } from "./entities";

export const addProduct = (...products: Product[]): AddProductsAction => ({
    type: ACTIONS.ADD_PRODUCTS,
    payload: products
});

export const modifyOrder =
    (product: Product, quantity: number): ModifyOrderAction => ({
        type: ACTIONS.MODIFY_ORDER,
        payload: { product, quantity}
    });

export const resetOrder = (): ResetOrderAction => ({
    type: ACTIONS.RESET_ORDER
});

The function defined in Listing 19-19 acts as a bridge between the application’s components and the 
data store, providing a means to create actions that the data store will process to apply changes. Actions are 
processed by functions known as reducers, which receive the current state of the data store, and an action 
object describes the change that is required. To create the reducer for the example application, add a file 
called reducer.ts to the src/data folder and add the code shown in Listing 19-20. 



Chapter 19 ■ Creating a reaCt app

491

Listing 19-20. The Contents of the reducer.ts File in the src/data Folder

import { ACTIONS, StoreData, StoreAction } from "./types";
import { Order } from "./entities";
import { Reducer } from "redux";

export const StoreReducer: Reducer<StoreData, StoreAction>
        = (data: StoreData | undefined , action)  => {

    data = data || { products: [], order: new Order() }
    switch(action.type) {
        case ACTIONS.ADD_PRODUCTS:
            return {
                ...data,
                products: [...data.products, ...action.payload]
            };

        case ACTIONS.MODIFY_ORDER:
            data.order.addProduct(action.payload.product, action.payload.quantity);
            return { ...data };

        case ACTIONS.RESET_ORDER:
            return {
                ...data,
                order: new Order()
            }
        default:
            return data;
    }
}

A reducer function receives the data currently in the data store and an action and returns the modified 
data. This transformation is described by the Reducer<S, A> type, where S is the type that represents the 
shape of the store data and A is the type that represents the actions the store supports. For the example 
application, the type of the reducer function is Reducer<StoreData, StoreAction>.

...
export const StoreReducer: Reducer<StoreData, StoreAction>
        = (data: StoreData | undefined , action): StoreData  => {
...

When the function is invoked, it identifies the action using the type property inherited from the Action 
interface, and it updates the data using the payload property for those actions that provide it. The reducer 
function will also be invoked when the datastore is first created, which provides an opportunity to define the 
initial data the application will use.

The final step is to create the data store so that it can be used by the application. Add a file named 
dataStore.ts to the src/data folder and add the code shown in Listing 19-21.



Chapter 19 ■ Creating a reaCt app

492

Listing 19-21. The Contents of the dataStore.ts File in the src/data Folder

import { createStore, Store } from "redux";
import { StoreReducer } from "./reducer";
import { StoreData, StoreAction } from "./types";

export const dataStore: Store<StoreData, StoreAction> = createStore(StoreReducer);

This file uses the Redux createStore method to create a datastore object, which is exported so that it 
can be used throughout the application.

 Creating the HTTP Request Class
Redux data stores can support actions that handle HTTP requests, but this relies on advanced features 
that don’t reveal anything useful about TypeScript. To keep the example simple, I am going to handle the 
HTTP requests that get the product data and store a user’s order in a separate class. React doesn’t include 
integrated support for HTTP, so open a new command prompt, navigate to the reactapp folder, and run the 
command shown in Listing 19-22 to add the Axios package to the project.

Listing 19-22. Adding a Package to the Project

npm install axios@0.21.1

Once the package has been installed, add a file called httpHandler.ts to the src/data folder and add 
the code shown in Listing 19-23.

Listing 19-23. The Contents of the httpHandler.ts File in the src/data Folder

import Axios from "axios";
import { Product, Order}  from "./entities";

const protocol = "http";
const hostname = "localhost";
const port = 4600;

const urls = {
    products: `${protocol}://${hostname}:${port}/products`,
    orders: `${protocol}://${hostname}:${port}/orders`
};

export class HttpHandler {

    loadProducts(callback: (products: Product[]) => void): void {
        Axios.get(urls.products).then(response => callback(response.data))
    }

    storeOrder(order: Order, callback: (id: number) => void): void {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,



Chapter 19 ■ Creating a reaCt app

493

                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        Axios.post(urls.orders, orderData)
            .then(response => callback(response.data.id));
    }
}

 Connecting the Data Store to the Components
The React-Redux package is responsible for connecting components in a React application to a Redux 
data store. This is a package that doesn’t include TypeScript declaration files, which is why I installed the 
additional type package in Listing 19-17. To connect the ProductList component to the data store, I added a 
file named productListConnector.ts to the src/data folder with the code shown in Listing 19-24.

Listing 19-24. The Contents of the productListConnector.ts File in the src/data Folder

import { StoreData } from "./types";
import { modifyOrder } from "./actionCreators";
import { connect } from "react-redux";
import { ProductList } from "../productList";

const mapStateToProps = (data: StoreData) => ({
    products: data.products,
    categories: [...new Set(data.products.map(p => p.category))],
    order: data.order
})

const mapDispatchToProps = {
    addToOrder: modifyOrder
}

const connectFunction = connect(mapStateToProps, mapDispatchToProps);
export const ConnectedProductList = connectFunction(ProductList);

The connection process maps data properties from the data store and maps action creators to the 
component’s props, producing a component that is configured partly by the props used when it is applied 
as an HTML element and partly from the data store. In the listing, the products, categories, and order 
props are mapped to the datastore products and order properties, and the addToOrder prop is mapped to 
the modifyOrder action creator. The result is a component named ConnectedProductList that connects the 
ProductList component to the data store.

 ■ Tip notice that i have not used type annotations when mapping the component. there are types available, 
but they become convoluted, and i prefer to let the compiler infer the types and warn me only if there is a 
problem.



Chapter 19 ■ Creating a reaCt app

494

To complete the connection to the data store, Listing 19-25 modifies the App component to select the 
store, populate it with data from the web service, and remove the test data and props that are no longer 
required.

Listing 19-25. Applying the Data Store in the App.tsx File in the src Folder

import React, { Component } from 'react';
//import { Product, Order } from './data/entities';
//import { ProductList } from './productList';
import { dataStore } from "./data/dataStore";
import { Provider } from 'react-redux';
import { HttpHandler } from "./data/httpHandler";
import { addProduct } from './data/actionCreators';
import { ConnectedProductList } from './data/productListConnector';

interface Props {
    // no props required
}

export default class App extends Component<Props> {
    private httpHandler = new HttpHandler();

    // constructor(props: Props) {
    //     super(props);
    //     this.state = {
    //         order: new Order()
    //     }
    // }

    componentDidMount = () => this.httpHandler
        .loadProducts(data => {dataStore.dispatch(addProduct(...data))});

    render = () =>
        <div className="App">
            <Provider store={ dataStore }>
                <ConnectedProductList />
            </Provider>
        </div>

    submitCallback = () => {
        console.log("Submit order");
    }
}

The Provider component sets up the data store so that it can be accessed by the ConnectedProductList 
component, allowing the connection features to be used.

...
<Provider store={ dataStore }>
    <ConnectedProductList />
</Provider>
...



Chapter 19 ■ Creating a reaCt app

495

Datastores can be used directly, as well as through mappings to props. In this case, the App component 
gets the data from the web service via the HttpHandler class and explicitly creates and dispatches an action 
to update the data in the store.

...
this.httpHandler.loadProducts(data => dataStore.dispatch(addProduct(...data)));
...

The result is that the data is requested from the server and added to the data store, which triggers an 
update that leads the connected components to display new data, as shown in Figure 19-5.

 Summary
In this chapter, I started a React project that uses TypeScript. I explained the unusual developer tools 
configuration and the effect it has on the TypeScript compiler configuration. I created React components 
that are defined using TypeScript features and connected them to a simple Redux data store. In the next 
chapter, I complete the development of the React project and prepare the application for deployment.

Figure 19-5. Using a data store



497© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_20

CHAPTER 20

Creating a React App, Part 2

In this chapter, I complete the React web application by adding URL routing and the remaining components 
before preparing the application for deployment in a container. For quick reference, Table 20-1 lists the 
TypeScript compiler options used in this chapter.

Table 20-1. The TypeScript Compiler Options Used in This Chapter

Name Description
allowJs This option includes JavaScript files in the compilation process.

allowSyntheticDefaultImports This option allows imports from modules that do not declare a 
default export. This option is used to increase code compatibility.

esModuleInterop This option adds helper code for importing from modules that do 
not declare a default export and is used in conjunction with the 
allowSyntheticDefaultImports option.

forceConsistentCasingInFileNames This option ensures that names in import statements match the 
case used by the imported file.

isolatedModules This option treats each file as a separate module, which increases 
compatibility with the Babel tool.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of modules that are used.

moduleResolution This option specifies the style of module resolution that should be 
used to resolve dependencies.

noEmit This option prevents the compiler from emitting JavaScript code, 
with the result that it only checks code for errors.

resolveJsonModule This option allows JSON files to be imported as though they were 
modules.

skipLibCheck This option speeds up compilation by skipping the normal 
checking of declaration files.

strict This option enables stricter checking of TypeScript code.

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

https://doi.org/10.1007/978-1-4842-7011-0_20#DOI


Chapter 20 ■ Creating a reaCt app, part 2

498

 Preparing for This Chapter
In this chapter, I continue to work with the reactapp project started in Chapter 19. Open a command 
prompt, navigate to the reactapp folder, and run the command shown in Listing 20-1 to start the web service 
and the React development tools.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 20-1. Starting the Development Tools

npm start

After the initial build process, a new browser window will open and display the example application, as 
shown in Figure 20-1.

Figure 20-1. Running the example application

https://github.com/Apress/essential-typescript-4


Chapter 20 ■ Creating a reaCt app, part 2

499

 Configuring URL Routing
Most real React projects rely on URL routing, which uses the browser’s current URL to select the components 
that are displayed to the user. React doesn’t include built-in support for URL routing, but the most commonly 
used package is React Router. Open a new command prompt, navigate to the reactapp folder, and run the 
commands shown in Listing 20-2 to install the React Router package and the type definition files. 

Listing 20-2. Adding a Package to the Project

npm install react-router-dom@5.2.0
npm install --save-dev @types/react-router-dom

The React Router package supports different navigation systems, and the react-router-dom package 
contains the functionality required for web applications. Table 20-2 shows the URLs that the example 
application will support and the purpose of each of them.

Not all the components required by the application have been written, so Listing 20-3 sets up the 
configuration for the /products and / URLs, with the others to be defined in the sections that follow. 

Listing 20-3. Configuring URL Routing in the App.tsx File in the src Folder

import React, { Component } from 'react';
import { dataStore } from "./data/dataStore";
import { Provider } from 'react-redux';
import { HttpHandler } from "./data/httpHandler";
import { addProduct } from './data/actionCreators';
import { ConnectedProductList } from './data/productListConnector';
import { Switch, Route, Redirect, BrowserRouter } from "react-router-dom";

interface Props {
    // no props required
}

export default class App extends Component<Props> {
    private httpHandler = new HttpHandler();

    componentDidMount = () => this.httpHandler
        .loadProducts(data => {dataStore.dispatch(addProduct(...data))});

Table 20-2. The URLs Supported by the Application

Name Description
/products This URL will display the ProductList component defined in Chapter 19.

/order This URL will display a component that displays details of the order.

/summary This URL will display a summary of an order once it has been sent to the server. The 
URL will include the number assigned to the order so that an order whose ID is 5 will be 
displayed using the URL /summary/5.

/ The default URL will be redirected to /products so the ProductList component is shown.



Chapter 20 ■ Creating a reaCt app, part 2

500

    render = () =>
        <div className="App">
            <Provider store={ dataStore }>
                <BrowserRouter>
                    <Switch>
                        <Route path="/products" component={ ConnectedProductList } />
                        <Redirect to="/products" />
                    </Switch>
                </BrowserRouter>
            </Provider>
        </div>

    submitCallback = () => {
        console.log("Submit order");
    }
}

The React Router package relies on components for configuration. The BrowserRouter component 
defines a region of content that is selected by using the browser’s URL. The Route component creates a 
mapping between a URL and a component. The Switch component is equivalent to a JavaScript switch 
block and selects the component from the first Route component whose path prop matches the current 
URL. The Redirect component provides a fallback that directs the browser to a URL if there are no other 
matches. When the changes in Listing 20-3 are saved, the application will be rebuilt, and the browser will be 
redirected to the /products URL, as shown in Figure 20-2.

Figure 20-2. Adding URL routing



Chapter 20 ■ Creating a reaCt app, part 2

501

 Completing the Example Application Features
Now that the application can display components based on the current URL, I can add the remaining 
components to the project. To enable URL navigation from the button displayed by the Header component,  
I added the statements shown in Listing 20-4 to the header.tsx file.

Listing 20-4. Adding Navigation in the header.tsx File in the src Folder

import React, { Component } from "react";
import { Order } from "./data/entities";
import { NavLink } from "react-router-dom";

interface Props {
    order: Order
}

export class Header extends Component<Props> {

    render() {
        let count = this.props.order.productCount;
        return <div className="p-1 bg-secondary text-white text-right">
            { count === 0 ? "(No Selection)"
                : `${ count } product(s), $${ this.props.order.total.toFixed(2)}` }
            <NavLink to="/order" className="btn btn-sm btn-primary m-1">
                Submit Order
            </NavLink>
        </div>
    }
}

The NavLink component produces an anchor element (an element whose tag is a) that navigates to a 
specified URL when it is clicked. The Bootstrap classes applied to the NavLink give the link the appearance 
of a button.

 Adding the Order Summary Component
To display the details of the order to the user, add a file called orderDetails.tsx to the src folder and add 
the code shown in Listing 20-5.

Listing 20-5. The Contents of the orderDetails.tsx File in the src Folder

import React, { Component } from "react";
import { StoreData } from "./data/types";
import { Order } from "./data/entities";
import { connect } from "react-redux";
import { NavLink } from "react-router-dom";

const mapStateToProps = (data: StoreData) => ({
    order: data.order
})



Chapter 20 ■ Creating a reaCt app, part 2

502

interface Props {
    order: Order,
    submitCallback: () => void
}

const connectFunction = connect(mapStateToProps);
export const OrderDetails = connectFunction(
    class extends Component<Props> {
        render() {
            return <div>
            <h3 className="text-center bg-primary text-white p-2">Order Summary</h3>
            <div className="p-3">
                <table className="table table-sm table-striped">
                    <thead>
                        <tr>
                            <th>Quantity</th><th>Product</th>
                            <th className="text-right">Price</th>
                            <th className="text-right">Subtotal</th>
                        </tr>
                    </thead>
                    <tbody>
                        { this.props.order.orderLines.map(line =>
                            <tr key={ line.product.id }>
                                <td>{ line.quantity }</td>
                                <td>{ line.product.name }</td>
                                <td className="text-right">
                                    ${ line.product.price.toFixed(2) }
                                </td>
                                <td className="text-right">
                                    ${ line.total.toFixed(2) }
                                </td>
                            </tr>
                        )}
                    </tbody>
                    <tfoot>
                        <tr>
                            <th className="text-right" colSpan={3}>Total:</th>
                            <th className="text-right">
                                ${ this.props.order.total.toFixed(2) }
                            </th>
                        </tr>
                    </tfoot>
                </table>
            </div>
            <div className="text-center">
                <NavLink to="/products" className="btn btn-secondary m-1">
                    Back
                </NavLink>
                <button className="btn btn-primary m-1"
                        onClick={ this.props.submitCallback }>
                    Submit Order



Chapter 20 ■ Creating a reaCt app, part 2

503

                </button>
            </div>
        </div>
    }});

In Chapter 19, I created a connector for an existing component so that it would receive props that are 
linked to the data store. In Listing 20-5, I have created a component that is always connected to the data 
store, which avoids the need to define a separate connector but does mean that the component can’t be 
used when the datastore isn’t available, such as in another project. This component uses a NavLink to return 
the user to the /products button and invokes a function prop when the user is ready to send the order to the 
web service.

 Adding the Confirmation Component
Add a file named summary.tsx to the src folder and add the code shown in Listing 20-6 to display a message 
to the user once the order has been stored by the web service.

Listing 20-6. The Contents of the summary.tsx File in the src Folder

import React, { Component } from "react";
import { match } from "react-router";
import { NavLink } from "react-router-dom";

interface Params {
    id: string;
}

interface Props {
    match: match<Params>
}

export class Summary extends Component<Props> {
    render() {
        let id = this.props.match.params.id;
        return <div className="m-2 text-center">
            <h2>Thanks!</h2>
            <p>Thanks for placing your order.</p>
            <p>Your order is #{ id }</p>
            <p>We'll ship your goods as soon as possible.</p>
            <NavLink to="/products" className="btn btn-primary">OK</NavLink>
        </div>
    }
}

The Summary component only needs to know the number assigned by the web service to the user’s 
order, which it obtains from the current route. The routing package provides details of the route through 
props, following the established React pattern. The type declarations for the React Router package are used 
to describe the parameter that the component expects, allowing the TypeScript compiler to check types.



Chapter 20 ■ Creating a reaCt app, part 2

504

 Completing the Routing Configuration
In Listing 20-7, I added new Route elements to display the OrderDetails and Summary components, 
completing the routing configuration for the example application.

Listing 20-7. Adding the Remaining Routes in the App.tsx File in the src Folder

import React, { Component } from 'react';
import { dataStore } from "./data/dataStore";
import { Provider } from 'react-redux';
import { HttpHandler } from "./data/httpHandler";
import { addProduct } from './data/actionCreators';
import { ConnectedProductList } from './data/productListConnector';
import { Switch, Route, Redirect, BrowserRouter, RouteComponentProps }
    from "react-router-dom";
import { OrderDetails } from './orderDetails';
import { Summary } from './summary';

interface Props {
    // no props required
}

export default class App extends Component<Props> {
    private httpHandler = new HttpHandler();

    componentDidMount = () => this.httpHandler
        .loadProducts(data => {dataStore.dispatch(addProduct(...data))});

    render = () =>
      <div className="App">
        <Provider store={ dataStore }>
          <BrowserRouter>
            <Switch>
                <Route path="/products" component={ ConnectedProductList } />
                <Route path="/order" render={ (props) =>
                  <OrderDetails { ...props } submitCallback={ () =>
                      this.submitCallback(props) } />
                } />
                <Route path="/summary/:id" component={ Summary } />
                <Redirect to="/products" />
            </Switch>
          </BrowserRouter>
        </Provider>
      </div>

    submitCallback = (routeProps: RouteComponentProps) => {
      this.httpHandler.storeOrder(dataStore.getState().order,
        id => routeProps.history.push( `/summary/${id}`));
    }
}



Chapter 20 ■ Creating a reaCt app, part 2

505

The Route component for the OrderDetails component uses the render function to select the 
component and provide it with a mix of props provided by the routing system and a callback function. The 
submitCallback method requires access to the routing features that are provided as props to components to 
navigate to a new URL, but these are available only within the Browser router component. To work around 
this limitation, I provide the OrderDetails component with an inline function that passes the routing props 
to the submitCallback method, which allows the history.push method to be used. The Route component 
for the Summary component defines a URL with a parameter that provides the order number to display to the 
user.

When the changes are saved, items can be added to the order, and the order can be sent to the web 
service, as shown in Figure 20-3.

 Deploying the Application
The React development tools rely on the Webpack Development Server, which is not suitable for hosting 
a production application because it adds features such as automatic reloading to the JavaScript bundles it 
generates. In this section, I work through the process of preparing the application for deployment, which is a 
similar process for any web application, including those developed using other frameworks. 

 Adding the Production HTTP Server Package
For production, a regular HTTP server is required to deliver the HTML, CSS, and JavaScript files to the 
browser. For this example, I am going to use the Express server, which is the same package I use for the other 
examples in this part of the book and which is a good choice for any web application. Use Control+C to stop 
the development tools and use the command prompt to run the command shown in Listing 20-8 in the 
reactapp folder to install the express package.

The second command installs the connect-history-api-fallback package, which is useful when 
deploying applications that use URL routing because it maps requests for the URLs that the application 
supports to the index.html file, ensuring that reloading the browser doesn’t present the user with a “not 
found” error.

Figure 20-3. Completing the example application



Chapter 20 ■ Creating a reaCt app, part 2

506

Listing 20-8. Adding Packages for Deployment

npm install --save-dev express@4.17.1
npm install --save-dev connect-history-api-fallback@1.6.0

 Creating the Persistent Data File
To create the persistent data file for the web service, add a file called data.json to the reactapp folder and 
add the content shown in Listing 20-9.

Listing 20-9. The Contents of the data.json File in the reactapp Folder

{
    "products": [
        { "id": 1, "name": "Kayak", "category": "Watersports",
            "description": "A boat for one person", "price": 275 },
        { "id": 2, "name": "Lifejacket", "category": "Watersports",
            "description": "Protective and fashionable", "price": 48.95 },
        { "id": 3, "name": "Soccer Ball", "category": "Soccer",
            "description": "FIFA-approved size and weight", "price": 19.50 },
        { "id": 4, "name": "Corner Flags", "category": "Soccer",
            "description": "Give your playing field a professional touch",
            "price": 34.95 },
        { "id": 5, "name": "Stadium", "category": "Soccer",
            "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
        { "id": 6, "name": "Thinking Cap", "category": "Chess",
            "description": "Improve brain efficiency by 75%", "price": 16 },
        { "id": 7, "name": "Unsteady Chair", "category": "Chess",
            "description": "Secretly give your opponent a disadvantage",
            "price": 29.95 },
        { "id": 8, "name": "Human Chess Board", "category": "Chess",
            "description": "A fun game for the family", "price": 75 },
        { "id": 9, "name": "Bling Bling King", "category": "Chess",
            "description": "Gold-plated, diamond-studded King", "price": 1200 }
    ],
    "orders": []
}

 Creating the Server
To create the server that will deliver the application and its data to the browser, create a file called server.js 
in the reactapp folder and add the code shown in Listing 20-10.

Listing 20-10. The Contents of the server.js File in the reactapp Folder

const express = require("express");
const jsonServer = require("json-server");
const history = require("connect-history-api-fallback");



Chapter 20 ■ Creating a reaCt app, part 2

507

const app = express();
app.use(history());
app.use("/", express.static("build"));

const router = jsonServer.router("data.json");
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));

const port = process.argv[3] || 4002;
app.listen(port, () => console.log(`Running on port ${port}`));

The statements in the server.js file configure the express and json-server packages so they use the 
contents of the build folder, which is where the React build process will put the application’s JavaScript 
bundles and the HTML file that tells the browser to load them. URLs prefixed with /api will be handled by 
the web service.

 Using Relative URLs for Data Requests
The web service that provided the application with data has been running alongside the React development 
server. To prepare for sending requests to a single port, I changed the HttpHandler class, as shown in  
Listing 20-11.

Listing 20-11. Using Relative URLs in the httpHandler.ts File in the src/data Folder

import Axios from "axios";
import { Product, Order}  from "./entities";

// const protocol = document.location.protocol;
// const hostname = document.location.hostname;
// const port = 4600;

const urls = {
    // products: `${protocol}//${hostname}:${port}/products`,
    // orders: `${protocol}//${hostname}:${port}/orders`
    products: "/api/products",
    orders: "/api/orders"
};

export class HttpHandler {

    loadProducts(callback: (products: Product[]) => void): void {
        Axios.get(urls.products).then(response => callback(response.data))
    }

    storeOrder(order: Order, callback: (id: number) => void): void {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }



Chapter 20 ■ Creating a reaCt app, part 2

508

        Axios.post(urls.orders, orderData)
            .then(response => callback(response.data.id));
    }
}

The URLs in Listing 20-11 are specified relative to the one used to request the HTML document, 
following the common convention that data requests are prefixed with /api.

 Building the Application
Run the command shown in Listing 20-12 in the reactapp folder to create the production build of the 
application. 

Listing 20-12. Creating the Production Bundle

npm run build

The build process creates a set of optimized files in the build folder. The build process can take a few 
moments to complete and will produce the following output, which shows which files have been created:

Creating an optimized production build...
Compiled successfully.
File sizes after gzip:
  59.35 KB  build\static\js\2.943d36b9.chunk.js
  22.63 KB  build\static\css\2.658248ec.chunk.css
  2.52 KB   build\static\js\main.51b0a5f5.chunk.js
  1.39 KB   build\static\js\3.03f9fbbc.chunk.js
  1.16 KB   build\static\js\runtime-main.e80fc4bd.js
  278 B     build\static\css\main.6dea0f05.chunk.css
The project was built assuming it is hosted at /.
You can control this with the homepage field in your package.json.
The build folder is ready to be deployed.
You may serve it with a static server:
  npm install -g serve
  serve -s build
Find out more about deployment here:
  https://cra.link/deployment

 Testing the Production Build
To make sure that the build process has worked and the configuration changes have taken effect, run the 
command shown in Listing 20-13 in the reactapp folder.

Listing 20-13. Starting the Production Server

node server.js



Chapter 20 ■ Creating a reaCt app, part 2

509

The code from Listing 20-13 will be executed and will produce the following output:

Running on port 4002

Open a new web browser and navigate to http://localhost:4002, which will show the application, as 
illustrated in Figure 20-4.

 Containerizing the Application
To complete this chapter, I am going to create a Docker container for the example application so that it can 
be deployed into production. If you did not install Docker in Chapter 15, then you must do so now to follow 
the rest of the examples in this chapter. 

 Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages 
required by the application for use in the container. I created a file called deploy-package.json in the 
reactapp folder with the content shown in Listing 20-14.

Figure 20-4. Running the production build



Chapter 20 ■ Creating a reaCt app, part 2

510

Listing 20-14. The Contents of the deploy-package.json File in the reactapp Folder

{
    "name": "reactapp",
    "description": "React Web App",
    "repository": "https://github.com/Apress/essential-typescript",
    "license": "0BSD",
    "devDependencies": {
        "express": "4.17.1",
        "json-server": "0.16.3",
        "connect-history-api-fallback": "1.6.0"
     }
}

The devDependencies section specifies the packages required to run the application in the container. 
All of the packages for which there are import statements in the application’s code files will have been 
incorporated into the bundle created by webpack and are listed. The other fields describe the application, 
and their main use is to prevent warnings when the container is created.

 Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the reactapp folder and 
added the content shown in Listing 20-15.

Listing 20-15. The Contents of the Dockerfile File in the reactapp Folder

FROM node:14.15.4

RUN mkdir -p /usr/src/reactapp

COPY build /usr/src/reactapp/build/
COPY data.json /usr/src/reactapp/
COPY server.js /usr/src/reactapp/
COPY deploy-package.json /usr/src/reactapp/package.json

WORKDIR /usr/src/reactapp

RUN echo 'package-lock=false' >> .npmrc
RUN npm install

EXPOSE 4002

CMD ["node", "server.js"]

The contents of the Dockerfile use a base image that has been configured with Node.js and that copies 
the files required to run the application into the container, along with the file that lists the packages required 
for deployment.

To speed up the containerization process, I created a file called .dockerignore in the reactapp folder 
with the content shown in Listing 20-16. This tells Docker to ignore the node_modules folder, which is not 
required in the container and takes a long time to process.



Chapter 20 ■ Creating a reaCt app, part 2

511

Listing 20-16. The Contents of the .dockerignore File in the reactapp Folder

node_modules

Run the command shown in Listing 20-17 in the reactapp folder to create an image that will contain the 
example application, along with all the packages it requires.

Listing 20-17. Building the Docker Image

docker build . -t reactapp -f  Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM 
packages will be downloaded and installed, and the configuration and code files will be copied into the 
image.

 Running the Application
Once the image has been created, create and start a new container using the command shown in  
Listing 20-18.

Listing 20-18. Starting the Docker Container

docker run -p 4002:4002 reactapp

You can test the application by opening http://localhost:4002 in the browser, which will display the 
response provided by the web server running in the container, as shown in Figure 20-5.



Chapter 20 ■ Creating a reaCt app, part 2

512

To stop the container, run the command shown in Listing 20-19.

Listing 20-19. Listing the Containers

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID        IMAGE               COMMAND                    CREATED
82352eba95a2        reactapp            "docker-entrypoint.s…"     51 seconds ago

Using the value in the Container ID column, run the command shown in Listing 20-20.

Listing 20-20. Stopping the Container

docker stop 82352eba95a2

The React application is ready to deploy to any platform that supports Docker.

Figure 20-5. Running the containerized application



Chapter 20 ■ Creating a reaCt app, part 2

513

 Summary
In this chapter, I completed the React application by adding support for URL routing and by defining the 
remaining components. As with the other examples in this part of the book, I prepared the application for 
deployment and created a Docker image that can be readily deployed. In the next chapter, I create the same 
web application using Vue.js and TypeScript.



515© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_21

CHAPTER 21

Creating a Vue.js App, Part 1

In this chapter, I start the process of building the example web application using Vue.js, which is the newest 
of the three main frameworks, but which already has an enthusiastic and committed user base. For quick 
reference, Table 21-1 lists the TypeScript compiler options used in this chapter.

Table 21-1. The TypeScript Compiler Options Used in This Chapter

Name Description
allowSyntheticDefaultImports This option allows imports from modules that do not declare a default 

export. This option is used to increase code compatibility.

baseUrl This option specifies the root location used to resolve module 
dependencies.

esModuleInterop This option adds helper code for importing from modules that do 
not declare a default export and is used in conjunction with the 
allowSyntheticDefaultImports option.

importHelpers This option determines whether helper code is added to the 
JavaScript to reduce the amount of code that is produced overall.

jsx This option specifies how HTML elements in TSX files are processed.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of module that is used.

moduleResolution This option specifies the style of module resolution that should be 
used to resolve dependencies.

paths This option specifies the locations used to resolve module 
dependencies.

skipLibCheck This option speeds up compilation by skipping the normal checking 
of declaration files.

sourceMap This option determines whether the compiler generates source maps 
for debugging.

strict This option enables stricter checking of TypeScript code.

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

types This option specifies a list of declaration files to include in the 
compilation process.

https://doi.org/10.1007/978-1-4842-7011-0_21#DOI


Chapter 21 ■ Creating a Vue.js app, part 1

516

 Preparing for This Chapter
Vue.js projects are most easily created using the Vue Cli package, which has built-in support for creating 
Vue.js projects that include TypeScript support. Open a command prompt and run the command shown in 
Listing 21-1 to install the Vue Cli package. 

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/essential- typescript- 4.

Listing 21-1. Installing the Project Creation Package

npm install --global @vue/cli@4.5.11

The first @ character is part of the package name, @vue-cli. The second @ character is the separator 
between the package name and the version that is required, 4.5.11.

Once the package has been installed, navigate to a convenient location and run the command shown in 
Listing 21-2 to create a new Vue.js project.

Listing 21-2. Creating a New Project

vue create vueapp

The project setup process is interactive. Select the answers to each question shown in Table 21-2.

Table 21-2. The Project Setup Questions and Answers

Question Answers
Please pick a preset. Manually select features.

Check the features needed for your 
project.

Select these features: Babel, TypeScript, Router, Vuex. Do not select 
the linter.
Once you have chosen the features shown, select the Choose Vue 
version option and select Vue 3.x. (Support for Vue.js 3 is in preview 
at the time of writing.)

Use class-style component syntax? N

Use Babel alongside TypeScript? Y

Use history mode for router? Y

Where do you prefer placing config 
for Babel, PostCSS, ESLint, etc.?

In dedicated config files

Save this as a preset for future 
projects?

N

Pick the package manager to use 
when installing dependencies

Use NPM.

https://github.com/Apress/essential-typescript-4


Chapter 21 ■ Creating a Vue.js app, part 1

517

Once you have answered the questions, the project will be created, and the packages it requires will be 
installed.

 Configuring the Web Service
Run the commands shown in Listing 21-3 to navigate to the project folder and add the packages that will 
provide the web service and allow multiple packages to be started with a single command.

Listing 21-3. Adding Packages to the Project

cd vueapp
npm install --save-dev json-server@0.16.3
npm install --save-dev npm-run-all@4.1.5
npm install axios@0.21.1

To provide the data for the web service, add a file called data.js to the vueapp folder with the content 
shown in Listing 21-4.

Listing 21-4. The Contents of the data.js File in the vueapp Folder

module.exports = function () {
    return {
        products: [
            { id: 1, name: "Kayak", category: "Watersports",
                description: "A boat for one person", price: 275 },
            { id: 2, name: "Lifejacket", category: "Watersports",
                description: "Protective and fashionable", price: 48.95 },
            { id: 3, name: "Soccer Ball", category: "Soccer",
                description: "FIFA-approved size and weight", price: 19.50 },
            { id: 4, name: "Corner Flags", category: "Soccer",
                description: "Give your playing field a professional touch",
                price: 34.95 },
            { id: 5, name: "Stadium", category: "Soccer",
                description: "Flat-packed 35,000-seat stadium", price: 79500 },
            { id: 6, name: "Thinking Cap", category: "Chess",
                description: "Improve brain efficiency by 75%", price: 16 },
            { id: 7, name: "Unsteady Chair", category: "Chess",
                description: "Secretly give your opponent a disadvantage",
                price: 29.95 },
            { id: 8, name: "Human Chess Board", category: "Chess",
                description: "A fun game for the family", price: 75 },
            { id: 9, name: "Bling Bling King", category: "Chess",
                description: "Gold-plated, diamond-studded King", price: 1200 }
        ],
        orders: []
    }
}

Update the scripts section of the package.json file to configure the development tools so that the 
toolchain and the web service are started at the same time, as shown in Listing 21-5.



Chapter 21 ■ Creating a Vue.js app, part 1

518

Listing 21-5. Configuring Tools in the package.json File in the vueapp Folder

...
"scripts": {
    "start": "npm-run-all -p serve json",
    "json": "json-server data.js -p 4600",
    "serve": "vue-cli-service serve",
    "build": "vue-cli-service build"
},
...

These entries allow both the web service that will provide the data and the Vue.js development tools to 
be started with a single command.

 Configuring the Bootstrap CSS Package
Use the command prompt to run the command shown in Listing 21-6 in the vueapp folder to add the 
Bootstrap CSS framework to the project.

Listing 21-6. Adding the CSS Package

npm install bootstrap@4.6.0

The Vue.js development tools require a configuration change to incorporate the Bootstrap CSS 
stylesheet in the application. Open the main.ts file in the src folder and add the statement shown in  
Listing 21-7.

Listing 21-7. Adding a Stylesheet in the main.ts File in the src Folder

import { createApp } from 'vue'
import App from './App.vue'
import router from './router'
import store from './store'
import "bootstrap/dist/css/bootstrap.min.css";

createApp(App).use(store).use(router).mount('#app')

 Starting the Example Application
Use the command prompt to run the command shown in Listing 21-8 in the vueapp folder.

Listing 21-8. Starting the Development Tools

npm start



Chapter 21 ■ Creating a Vue.js app, part 1

519

The Vue.js development tools take a moment to start and perform the initial compilation, producing 
output like this:

...
DONE  Compiled successfully in 
2905ms                                                                        17:12:21

  App running at:
  - Local:   http://localhost:8080/
  - Network: http://192.168.1.10:8080/

  Note that the development build is not optimized.
  To create a production build, run npm run build.

No issues found.
...

Once the initial compilation has been completed, open a browser window and navigate to http://
localhost:8080 to see the placeholder content created by the command in Listing 21-2 and which is shown 
in Figure 21-1.

Figure 21-1. Running the example application



Chapter 21 ■ Creating a Vue.js app, part 1

520

 Understanding TypeScript in Vue.js Development
TypeScript isn’t required for Vue.js development, but it has become such a popular choice that the main 
Vue.js packages contain complete type declaration files, and the Vue Cli package can create projects ready-
configured for TypeScript.

Vue.js files don’t have a different file extension when they use TypeScript features and are defined in 
files with the vue extension that can contain template, style, and script elements, known as single-file 
components. The template element contains a template that will be used to render HTML content, the style 
element contains CSS styles for the content, and the script element contains the code that supports the 
template. As an example, here are the contents of the Home.vue file in the src/views folder:

<template>
  <div class="home">
    <img alt="Vue logo" src="../assets/logo.png">
    <HelloWorld msg="Welcome to Your Vue.js + TypeScript App"/>
  </div>
</template>

<script lang="ts">
import { defineComponent } from 'vue';
import HelloWorld from '@/components/HelloWorld.vue'; // @ is an alias to /src

export default defineComponent({
  name: 'Home',
  components: {
    HelloWorld,
  },
});
</script>

The language used for the script element is specified by the lang attribute, like this:

...
<script lang="ts">
...

This value specifies TypeScript and ensures that the code will be processed by the TypeScript compiler. 
Components are defined using the defineComponent function and are expressed using the JavaScript object 
literal syntax. There is support for defining components using classes, but I have not used that feature 
because its future seems uncertain and the literal syntax is more widely used.

 Understanding the TypeScript Vue.js Toolchain
The Vue.js development tools rely on webpack and the Webpack Development Server packages, which I 
used in Chapter 15 and which are also used by the Angular and React development tools. When a project 
is created to use TypeScript, a tsconfig.json file is created to configure the compiler with the following 
settings:

{
  "compilerOptions": {
    "target": "esnext",



Chapter 21 ■ Creating a Vue.js app, part 1

521

    "module": "esnext",
    "strict": true,
    "jsx": "preserve",
    "importHelpers": true,
    "moduleResolution": "node",
    "skipLibCheck": true,
    "esModuleInterop": true,
    "allowSyntheticDefaultImports": true,
    "sourceMap": true,
    "baseUrl": ".",
    "types": ["webpack-env"],
    "paths": {
      "@/*": ["src/*"]
    },
    "lib": ["esnext","dom","dom.iterable","scripthost"
    ]
  },
  "include": ["src/**/*.ts","src/**/*.tsx","src/**/*.vue",
    "tests/**/*.ts","tests/**/*.tsx"
  ],
  "exclude": ["node_modules"]
}

The Vue.js development tools deal with vue files by converting the contents of the template element 
into code statements and using the TypeScript compiler to process the contents of the script element. The 
compiled code is passed to the Babel package, which is used to target a specific version of the JavaScript 
language. Regular TypeScript files and TypeScript JSX files are also supported, and the results are bundled 
into files that are served to the browser through the Webpack Development Server, as shown in Figure 21-2.

 Creating the Entity Classes
To define the data types that the application will manage, create the src/data folder and add to it a file 
called entities.ts with the code shown in Listing 21-9.

Figure 21-2. The Vue.js toolchain



Chapter 21 ■ Creating a Vue.js app, part 1

522

Listing 21-9. The Contents of the entities.ts File in the src/data Folder

export class Product  {
    constructor(
        public id: number,
        public name: string,
        public description: string,
        public category: string,
        public price: number) {}
};

export class OrderLine {
    constructor(public product: Product, public quantity: number) {
        // no statements required
    }

    get total(): number {
        return this.product.price * this.quantity;
    }
}

export class Order {
    private lines: OrderLine[] = [];

    constructor(initialLines?: OrderLine[]) {
        if (initialLines) {
            this.lines.push(...initialLines);
        }
    }

    public addProduct(prod: Product, quantity: number) {
        let index = this.lines.findIndex(ol => ol.product.id === prod.id)
        if (index > -1) {
            if (quantity === 0) {
                this.removeProduct(prod.id);
            } else {
                this.lines[index].quantity += quantity;
            }
        } else {
            this.lines.push(new OrderLine(prod, quantity));
        }
    }

    public removeProduct(id: number) {
        this.lines = this.lines.filter(ol => ol.product.id !== id);
    }

    get orderLines(): OrderLine[] {
        return this.lines;
    }



Chapter 21 ■ Creating a Vue.js app, part 1

523

    get productCount(): number {
        return this.lines.reduce((total, ol) => total += ol.quantity, 0);
    }

    get total(): number {
        return this.lines.reduce((total, ol) => total += ol.total, 0);
    }
}

These types describe products and orders and the relationship between them. Unlike the other chapters 
in this part of the book, Product is defined as a class and not a type alias, because the Vue.js development 
tools rely on concrete types. The Vue.js change detection system doesn’t work well with the JavaScript Map, 
so the Order class for this chapter is written using an array for storage.

 Displaying a Filtered List of Products
Vue.js supports different ways of defining components, which are the key building block for displaying 
content to the user. For this book, I am going to use the most popular, which is the single-file component 
format that combines HTML and its supporting code in one file. (These files can also contain CSS, but I 
won’t be using that feature since I am relying on the Bootstrap package configured in Listing 21-6.)

The convention is to store individual components in the src/components folder and compose them 
together for display to the user using the src/views folder. To display the details of a single product, add a 
file named ProductItem.vue to the src/components folder and add the content shown in Listing 21-10. 

Listing 21-10. The Contents of the ProductItem.vue File in the src/component Folder

<template>
    <div class="card m-1 p-1 bg-light">
        <h4>
            {{ product.name }}
            <span class="badge badge-pill badge-primary float-right">
                ${{ product.price.toFixed(2) }}
            </span>
        </h4>
        <div class="card-text bg-white p-1">
            {{ product.description }}
            <button class="btn btn-success btn-sm float-right"
                    @click="handleAddToCart">
                Add To Cart
            </button>
            <select class="form-control-inline float-right m-1"
                    v-model.number="quantity">
                <option>1</option>
                <option>2</option>
                <option>3</option>
            </select>
        </div>
    </div>
</template>



Chapter 21 ■ Creating a Vue.js app, part 1

524

<script lang="ts">

import { defineComponent, PropType } from "vue";
import { Product } from "../data/entities";

export default defineComponent({
    name: "ProductItem",
    props: {
        product: {
            type: Object as PropType<Product>
        }
    },
    data() {
        return {
            quantity: 1
        }
    },
    methods: {
        handleAddToCart(){
            this.$emit("addToCart",
                { product: this.product, quantity: this.quantity });
        }
    }
});

</script>

A Vue.js component’s template element uses data bindings, denoted by double curly brackets ({{ and 
}}), to display data values and uses event handling attributes, prefixed by the @ character, to handle events. 
The expressions specified by the bindings and the event attributes are evaluated using the featured defined 
by the class in the script element.

This component in Listing 21-10 displays the details of a Product object and emits an event when the 
user clicks the Add To Cart button.

The component’s code is defined in the script element, and the component is created with the 
defineComponent function, which is defined in the vue package.

...
export default defineComponent({
...

The properties of the object passed to the defineComponent function describe different aspects of the 
component’s behavior. The props property is used to describe the data values that the component will 
receive from its parent, like this:

...
props: {
    product: {
        type: Object as PropType<Product>
    }
},
...



Chapter 21 ■ Creating a Vue.js app, part 1

525

This component defines a single prop, named product. To specify the type of the data value that is 
expected, the product property is assigned an object that defines a type parameter and whose value is this 
expression:

...
type: Object as PropType<Product>
...

Vue.js implements simple type checking for props, and to accommodate TypeScript, this expression 
uses the PropType<T> generic type, where the expected type is specified as the type argument. In this case, 
the expression specifies that the expected type of the product prop is Product.

The data property is assigned a function that returns an object used to define the state data that the 
component requires. This component defines a single state data property named quantity, which has an 
initial value of 1.

The methods property is used to define the component’s methods, which can be called in response to 
events. This component defines a method called handleAddToCart, which uses the $emit method to trigger 
a custom event. This method will be invoked when the user clicks the button element in the component’s 
template, for which there is an event handler, like this:

...
<button class="btn btn-success btn-sm float-right" @click="handleAddToCart">
...

The result is that clicking the button causes the component to trigger an event that will be received by 
its parent. The data sent with the event includes the Product object received as a prop and the current value 
of the quantity state data value.

 Displaying a List of Categories and the Header
To display the category buttons, add a file called CategoryList.vue to the src/components folder and add 
the content shown in Listing 21-11.

Listing 21-11. The Contents of the CategoryList.vue File in the src/components Folder

<template>
    <div>
        <button v-for="c in categories"
            v-bind:key="c"
            v-bind:class="getButtonClasses(c)"
            @click="selectCategory(c)">
                {{ c }}
        </button>
    </div>

</template>



Chapter 21 ■ Creating a Vue.js app, part 1

526

<script lang="ts">

import { defineComponent, PropType } from "vue";

export default defineComponent({
    name: "CategoryList",
    props: {
        categories: {
            type: Object as PropType<string[]>
        },
        selected: {
            type: String as PropType<string>
        }
    },
    methods: {
        selectCategory(category: string) {
            this.$emit("selectCategory", category);
        },

        getButtonClasses(category: string): string {
            const btnClass = this.selected === category
                ? "btn-primary": "btn-secondary";
            return `btn btn-block ${btnClass}`;
        }
    }
});
</script>

This component displays a list of buttons and highlights the one that corresponds to the selected 
category. The element attributes in the template section are evaluated as string literal values unless they are 
prefixed with v-bind, which tells Vue.js to create a data binding between the code in the script element and 
the value assigned to the attribute. This is an example of a Vue.js directive, and it allows the result of methods 
defined by the component class to be inserted into the HTML in the template section:

...
v-bind:class="getButtonClasses(c)"
...

This fragment tells Vue.js that the value of the class attribute should be the result of calling the 
getButtonClasses method. The argument for the method is obtained from another directive, v-for, which 
repeats an element for each object in a sequence.

...
<button v-for="c in categories" v-bind:key="c" v-bind:class="getButtonClasses(c)"
    @click="selectCategory(c)">
        {{ c }}
</button>
...



Chapter 21 ■ Creating a Vue.js app, part 1

527

This v-for directive tells Vue.js to create a button element for each value returned in the sequence 
returned by the categories property. To perform efficient updates, Vue.js requires a key attribute to be 
assigned to each element, which is why v-for and v-bind:key are used together.

The result is a series of button elements for each category. Clicking the button invokes the 
selectCategory method, which triggers a custom event and allows a component to signal the user’s 
category selection to another part of the application.

One oddity of the Vue.js type checking for props is that it uses the names of the constructor functions of 
the JavaScript built-in types. This means that String is used when defining a string prop, like this:

...
selected: {
    type: String as PropType<string>
}
...

This can be confusing but quickly becomes second nature as you get into the habit of creating 
components. To denote that a value for the order prop is needed, a required property is added to the prop 
definition, like this:

...
categories: {
    type: Object as PropType<string[]>,
    required: true
},
...

Without the required property, the TypeScript compiler will set the type of the categories prop to 
string[] | undefined, which would then require the expression that sets the selected property to check 
for undefined values to prevent compiler errors.

To create the component that displays the header, add a file named Header.vue to the src/components 
folder with the content shown in Listing 21-12.

Listing 21-12. The Contents of the Header.vue File in the src/components Folder

<template>
    <div class="p-1 bg-secondary text-white text-right">
        {{ displayText }}
        <button class="btn btn-sm btn-primary m-1">
            Submit Order
        </button>
    </div>

</template>

<script lang="ts">

import { defineComponent, PropType} from "vue";
import { Order } from "../data/entities";



Chapter 21 ■ Creating a Vue.js app, part 1

528

export default defineComponent({
    name: "Header",
    props: {
        order: {
            type: Object as PropType<Order>,
            required: true
        }
    },
    computed: {
        displayText(): string {
            const count = this.order.productCount;
            return count === 0 ? "(No Selection)"
                : `${ count } product(s), $${ this.order.total.toFixed(2)}`
        }
    }
})
</script>

The Header component displays a summary of the current order. The computed property is used to 
define functions whose result is derived from the component’s data, including its props. This allows Vue.js 
to cache the values produced by these functions and invoke the functions only when the component’s data 
changes. This Header component defines a computed function named displayText, whose result depends 
on its order prop.

 Composing and Testing the Components
To create the component that will display the header, the list of products, and the category buttons, add a 
file named ProductList.vue to the src/views folder and add the code shown in Listing 21-13. The location 
of this file denotes that it presents a view by composing other components, which is a common convention, 
albeit one that you don’t have to follow in your projects. 

Listing 21-13. The Contents of the ProductList.vue File in the src/views Folder

<template>
    <div>
        <Header v-bind:order="order" />
        <div class="container-fluid">
            <div class="row">
                <div class="col-3 p-2">
                    <CategoryList v-bind:categories="categories"
                        v-bind:selected="selectedCategory"
                        @selectCategory="handleSelectCategory" />
                </div>
                <div class="col-9 p-2">
                    <ProductItem v-for="p in filteredProducts" v-bind:key="p.id"
                        v-bind:product="p" @addToCart="handleAddToCart" />
                </div>
            </div>
        </div>
    </div>
</template>



Chapter 21 ■ Creating a Vue.js app, part 1

529

<script lang="ts">

import { defineComponent } from "vue";
import { Product, Order } from "../data/entities";
import ProductItem from "../components/ProductItem.vue";
import CategoryList from "../components/CategoryList.vue";
import Header from "../components/Header.vue";

export default defineComponent({
    name: "ProductList",
    components: { ProductItem, CategoryList, Header},
    data() {
        const products: Product[] = [];
        [1, 2, 3, 4, 5].map(num =>
            products.push(new Product(num, `Prod${num}`, `Product ${num}`,
                `Cat${num % 2}`, 100)));
        return {
            products,
            selectedCategory: "All",
            order: new Order()
        }
    },
    computed: {
        categories(): string[] {
            return ["All", ...new Set<string>(this.products.map(p => p.category))];
        },

        filteredProducts(): Product[] {
            return this.products.filter(p =>
                this.selectedCategory == "All"
                    || this.selectedCategory === p.category);
        },
    },
    methods: {
        handleSelectCategory(category: string) {
            this.selectedCategory = category;
        },

        handleAddToCart(data: {product: Product, quantity: number}) {
            this.order.addProduct(data.product, data.quantity);
        }

    }
})

</script>



Chapter 21 ■ Creating a Vue.js app, part 1

530

The ProductList component combines the ProductItem, CategoryList, and Header components to 
present content to the user. Using other components is a multistep process. First, the component must be 
imported using an import statement.

...
import Header from "../components/Header.vue";
...

Notice that curly brackets are not used in the import statement and that the file extension is included. 
The object passed to the defineComponent function uses the components property to specify the components 
it requires:

...
components: { ProductItem, CategoryList, Header},
...

The final step is to add elements to the template section of the file to apply the components and provide 
the values for the props, like this:

...
<Header v-bind:order="order" />
...

The Header element applies the Header component. Vue.js uses the v-bind directive to create a data 
binding that sets the Header component’s order prop to the order property defined by the ProductList 
component, allowing one component to provide data values to another.

To make sure that the components can display content to the user, replace the contents of the App.Vue 
file with those shown in Listing 21-14.

Listing 21-14. Replacing the Contents of the App.vue File in the src Folder

<template>
    <ProductList />
</template>

<script lang="ts">

import { defineComponent } from "vue";
import ProductList from "./views/ProductList.vue";

export default defineComponent({
    name: "App",
    components: { ProductList }
});

</script>

The App component has been updated to display a ProductList, replacing the placeholder content 
added to the project when it was set up. When the changes to the App component are saved, the browser will 
be updated with the content shown in Figure 21-3, displaying test data. I’ll add support for the web service 
shortly, but the test data allows the basic features to be tested.



Chapter 21 ■ Creating a Vue.js app, part 1

531

 Creating the Data Store
Data in most Vue.js projects is managed using the Vuex package, which provides data store features that are 
integrated into the Vue.js API. The answers used during project setup added Vuex to the package and set up 
a placeholder data store, which can be seen in the index.ts file in the src/store folder, as shown here:

import { createStore } from 'vuex'

export default createStore({
  state: {
  },
  mutations: {
  },
  actions: {
  },
  modules: {
  }
})

Vuex data stores are set up with four properties: state, mutations, actions, and modules. The state 
property is used to set up the state data managed by the data store, the mutations property is used to define 
functions that modify the state data, and the actions property is used to define asynchronous tasks that use 
mutations to update the store. The modules property is used to manage complex data stores that are defined 
in multiple files, but I don’t use this feature for this example application.

Data stores can also define a getters property, which is used to compute data values from the data 
held in the store. Listing 21-15 adds the basic state data, mutations, and getters required for the example 
application using test data to get the store started.

Figure 21-3. Testing the product list components



Chapter 21 ■ Creating a Vue.js app, part 1

532

Listing 21-15. Setting Up the Data Store in the index.ts File in the src/store Folder

import { createStore, Store } from "vuex";
import { Product, Order } from "../data/entities";

export interface StoreState {
    products: Product[],
    order: Order,
    selectedCategory: string
}

type ProductSelection = {
    product: Product,
    quantity: number
}

export default createStore<StoreState>({
    state: {
        products: [1, 2, 3, 4, 5].map(num => new Product(num, `Store Prod${num}`,
            `Product ${num}`, `Cat${num % 2}`, 450)),
        order: new Order(),
        selectedCategory: "All"
    },
    mutations: {
        selectCategory(currentState: StoreState, category: string) {
            currentState.selectedCategory = category;
        },

        addToOrder(currentState: StoreState, selection: ProductSelection) {
            currentState.order.addProduct(selection.product, selection.quantity);
        }
    },
    getters: {
        categories(state): string[] {
            return ["All", ...new Set(state.products.map(p => p.category))];
        },

        filteredProducts(state): Product[] {
            return state.products.filter(p => state.selectedCategory === "All"
                || state.selectedCategory === p.category);
        }
    },
    actions: {
    },
    modules: {
    }
})



Chapter 21 ■ Creating a Vue.js app, part 1

533

The project has been configured with declaration files for Vuex, which allows a data store to be created 
with a generic type argument that describes the types of the state data, which TypeScript can then use 
to perform type checking. In the listing, I define a StoreState interface that describes the types of the 
product, order, and selectedCategory values the data store will manage, and I use the interface as the type 
argument to create the store.

...
export default createStore<StoreState>({
...

 Connecting Components to the Data Store
Connecting to the data store is done using helper functions that integrate store features seamlessly into the 
functionality provided by the component. Listing 21-16 connects the Header component to the data store. 

Listing 21-16. Connecting to the Data Store in the Header.vue File in the src/components Folder

<template>

    <div class="p-1 bg-secondary text-white text-right">
        {{ displayText }}
        <button class="btn btn-sm btn-primary m-1">
            Submit Order
        </button>
    </div>

</template>

<script lang="ts">

import { defineComponent, PropType} from "vue";
import { Order } from "../data/entities";
import { useStore } from "vuex";

export default defineComponent({
    name: "Header",
    setup() {
        return { store:  useStore() }
    },
    // props: {
    //     order: {
    //         type: Object as PropType<Order>,
    //         required: true
    //     }
    // },
    computed: {
        displayText(): string {
            const count = this.store.state.order.productCount;
            return count === 0 ? "(No Selection)"
                : `${ count } product(s), `
                    + `$${ this.store.state.order.total.toFixed(2)}`;



Chapter 21 ■ Creating a Vue.js app, part 1

534

        }
    }
})
</script>

The setup function defined by the object passed to the defineComponent function is used to perform 
any initial configuration required by the component. The function defined by the Header component calls 
the userStore function to get access to the data store and makes it available to the rest of the component by 
returning an object with a store property.

...
return { store:  useStore() }
...

Instead of using a prop, the displayText function uses the Order state value in the store, which it can 
access using the store property defined by the setup function.

...
const count = this.store.state.order.productCount;
...

The state data properties defined by the store can be accessed using store.state.
In Listing 21-17, I have connected the ProductList component to the data store.

Listing 21-17. Connecting to the Data Store in the ProductList.vue File in the src/views Folder

<template>
    <div>
        <Header />
        <div class="container-fluid">
            <div class="row">
                <div class="col-3 p-2">
                    <CategoryList v-bind:categories="categories"
                        v-bind:selected="selectedCategory"
                        @selectCategory="handleSelectCategory" />
                </div>
                <div class="col-9 p-2">
                    <ProductItem v-for="p in filteredProducts" v-bind:key="p.id"
                        v-bind:product="p" @addToCart="handleAddToCart" />
                </div>
            </div>
        </div>
    </div>
</template>

<script lang="ts">

import { defineComponent } from "vue";
import { Product, Order } from "../data/entities";
import ProductItem from "../components/ProductItem.vue";
import CategoryList from "../components/CategoryList.vue";
import Header from "../components/Header.vue";



Chapter 21 ■ Creating a Vue.js app, part 1

535

import { mapMutations, mapState, mapGetters } from "vuex";
import { StoreState } from "../store";

export default defineComponent({
    name: "ProductList",
    components: { ProductItem, CategoryList, Header},
    // data() {
    //     const products: Product[] = [];
    //     [1, 2, 3, 4, 5].map(num =>
    //         products.push(new Product(num, `Prod${num}`, `Product ${num}`,
    //             `Cat${num % 2}`, 100)));
    //     return {
    //         products,
    //         selectedCategory: "All",
    //         order: new Order()
    //     }
    // },
    computed: {
        ...mapState<StoreState>({
            selectedCategory: (state: StoreState) => state.selectedCategory,
            products: (state: StoreState) => state.products,
            order: (state: StoreState) => state.order
        }),
        ...mapGetters(["filteredProducts", "categories"])
    },
    methods: {
        ...mapMutations({
           handleSelectCategory: "selectCategory",
           handleAddToCart: "addToOrder"
        }),
    }
})

</script>

In the Header component, I obtained a data store object and used it to access a state data value, but 
this can be a tedious process if multiple data store features are required. Vuex provides functions that map 
data store features onto a component. The mapState and mapGetters functions make state data and getters 
accessible as computed properties, and the mapMutations function makes mutations accessible as methods. 
These functions are used with the object spread operator, like this:

...

...mapGetters(["filteredProducts", "categories"])

...

The spread operator ensures that the properties produced by the mapping functions are incorporated 
into the component’s features.

In the component’s template, I have updated the Header element because the component no longer 
receives an Order object as a prop; now it is connected to the user store.

When the changes are saved, the data store will be used and show the test data, as shown in Figure 21-4.



Chapter 21 ■ Creating a Vue.js app, part 1

536

 Adding Support for the Web Service
To prepare the data store for working with the web service, I added the actions shown in Listing 21-18. 
Actions are asynchronous operations that can apply mutations to modify the data store.

Listing 21-18. Adding Actions in the index.ts File in the src/store Folder

import { createStore, Store } from "vuex";
import { Product, Order } from "../data/entities";

export interface StoreState {
    products: Product[],
    order: Order,
    selectedCategory: string,
    storedId: number
}

type ProductSelection = {
    product: Product,
    quantity: number
}

export default createStore<StoreState>({
    state: {
        products: [],
        order: new Order(),
        selectedCategory: "All",
        storedId: -1
    },

Figure 21-4. Using a data store



Chapter 21 ■ Creating a Vue.js app, part 1

537

    mutations: {
        selectCategory(currentState: StoreState, category: string) {
            currentState.selectedCategory = category;
        },

        addToOrder(currentState: StoreState, selection: ProductSelection) {
            currentState.order.addProduct(selection.product, selection.quantity);
        },

        addProducts(currentState: StoreState, products: Product[]) {
            currentState.products = products;
        },

        setOrderId(currentState: StoreState, id: number) {
            currentState.storedId = id;
        },

        resetOrder(currentState: StoreState) {
            currentState.order = new Order();
        }
    },
    getters: {
        categories(state): string[] {
            return ["All", ...new Set(state.products.map(p => p.category))];
        },

        filteredProducts(state): Product[] {
            return state.products.filter(p => state.selectedCategory === "All"
                || state.selectedCategory === p.category);
        }
    },
    actions: {
        async loadProducts(context, task: () => Promise<Product[]>) {
            let data = await task();
            context.commit("addProducts", data);
        },

        async storeOrder(context, task: (order: Order) => Promise<number>) {
            context.commit("setOrderId", await task(context.state.order));
            context.commit("resetOrder");
        }
    },
    modules: {
    }
})

Actions can modify the data store only through mutations. The changes in Listing 21-18 define actions 
that allow products to be loaded and added to the store and that allow orders to be sent to the server.

Vue.js doesn’t include integrated support for HTTP requests. A popular choice for working with HTTP is 
the Axios package, which I have used throughout this part of the book and which was added to the example 
project in Listing 21-3. To define the HTTP operations that the example application requires, I added a file 
called httpHandler.ts to the src/data folder and added the code shown in Listing 21-19.



Chapter 21 ■ Creating a Vue.js app, part 1

538

Listing 21-19. The Contents of the httpHandler.ts File in the src/data Folder

import Axios from "axios";
import { Product, Order}  from "./entities";

const protocol = "http";
const hostname = "localhost";
const port = 4600;

const urls = {
    products: `${protocol}://${hostname}:${port}/products`,
    orders: `${protocol}://${hostname}:${port}/orders`
};

export class HttpHandler {

    loadProducts() : Promise<Product[]> {
        return Axios.get<Product[]>(urls.products).then(response => response.data);
    }

    storeOrder(order: Order): Promise<number> {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        return Axios.post<{id : number}>(urls.orders, orderData)
            .then(response => response.data.id);
    }
}

The changes in Listing 21-20 to the App component load the products data from the web service. 

Listing 21-20. Using the Web Service in the App.vue File in the src Folder

<template>
    <ProductList />
</template>

<script lang="ts">

import { defineComponent, onMounted } from "vue";
import ProductList from "./views/ProductList.vue";
import { HttpHandler } from "./data/httpHandler";
import { useStore } from "vuex";

export default defineComponent({
    name: "App",
    components: { ProductList },



Chapter 21 ■ Creating a Vue.js app, part 1

539

    setup() {
        const store = useStore();
        const handler = new HttpHandler();
        onMounted(() => store.dispatch("loadProducts", handler.loadProducts));
    }
});

</script>

The onMounted function is one of the component lifecycle methods that Vue.js provides, and it accepts 
a function that will be invoked when the component is mounted, which is the point after the component’s 
content is rendered for the first time and which is the conventional point for loading external data. The result 
is that real product data is obtained from the data store, as shown in Figure 21-5.

 Summary
In this chapter, I showed you how to create a Vue.js app that uses TypeScript. The project creation package 
provides integrated support for TypeScript, which I used to create the basic structure of the application. I 
connected the application’s components to a Vuex data store and loaded data from the web service. In the 
next chapter, I complete the Vue.js web project and prepare the application for deployment.

Figure 21-5. Using the web service



541© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0_22

CHAPTER 22

Creating a Vue.js App, Part 2

In this chapter, I complete the Vue.js web application by implementing URL routing and adding the 
remaining components, before preparing for deployment in a container. For quick reference, Table 22-1 lists 
the TypeScript compiler options used in this chapter.

Table 22-1. The TypeScript Compiler Options Used in This Chapter

Name Description
allowSyntheticDefaultImports This option allows imports from modules that do not declare a 

default export. This option is used to increase code compatibility.

baseUrl This option specifies the root location used to resolve module 
dependencies.

esModuleInterop This option adds helper code for importing from modules that do 
not declare a default export and is used in conjunction with the 
allowSyntheticDefaultImports option.

importHelpers This option determines whether helper code is added to the 
JavaScript to reduce the amount of code that is produced overall.

jsx This option specifies how HTML elements in TSX files are processed.

lib This option selects the type declaration files the compiler uses.

module This option determines the style of module that is used.

moduleResolution This option specifies the style of module resolution that should be 
used to resolve dependencies.

paths This option specifies the locations used to resolve module 
dependencies.

skipLibCheck This option speeds up compilation by skipping the normal checking 
of declaration files.

sourceMap This option determines whether the compiler generates source 
maps for debugging.

strict This option enables stricter checking of TypeScript code.

target This option specifies the version of the JavaScript language that the 
compiler will target in its output.

types This option specifies a list of declaration files to include in the 
compilation process.

https://doi.org/10.1007/978-1-4842-7011-0_22#DOI


Chapter 22 ■ Creating a Vue.js app, part 2

542

 Preparing for This Chapter
In this chapter, I continue to work with the vueapp project started in Chapter 21. Open a command prompt, 
navigate to the vueapp folder, and run the command shown in Listing 22-1 to start the web service and the 
React development tools.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this  
book—from https://github.com/Apress/essential- typescript- 4.

Listing 22-1. Starting the Development Tools

npm start

Once the initial compilation has been completed, open a browser window and navigate to  
http://localhost:8080 to see the content shown in Figure 22-1.

Figure 22-1. Running the example application

https://github.com/Apress/essential-typescript-4


Chapter 22 ■ Creating a Vue.js app, part 2

543

 Configuring URL Routing
Most real Vue.js projects rely on URL routing, which uses the browser’s current URL to select the 
components that are displayed to the user. The answers to the questions asked during the project setup 
in Chapter 21 added the Vue Router package to the project and configured it for basic use in the index.ts 
file in the src/router folder. Table 22-2 shows the URLs that the example application will support and the 
purpose of each of them. 

Not all the components required by the application have been written, so Listing 22-2 sets up the 
configuration for the /products and / URLs, with the others to be defined in the sections that follow.

Listing 22-2. Configuring Routing in the index.ts File in the src/router Folder

import { createRouter, createWebHistory, RouteRecordRaw } from 'vue-router'
import Home from '../views/Home.vue'
import ProductList from "../views/ProductList.vue";

const routes: Array<RouteRecordRaw> = [
  { path: '/products', component: ProductList },
  { path: '/', redirect: '/products' }
]

const router = createRouter({
  history: createWebHistory(process.env.BASE_URL),
  routes
})

export default router

The routing configuration sets up the /products URL to show the ProductList component and 
redirects the / URL to /products. To display the component selected by the routing system, changes are 
required to the App component, as shown in Listing 22-3.

Listing 22-3. Displaying the Routed Component in the App.vue File in the src Folder

<template>
    <router-view />
</template>

<script lang="ts">

Table 22-2. The URLs Supported by the Application

Name Description
/products This URL will display the ProductList component defined in Chapter 21.

/order This URL will display a component that displays details of the order.

/summary This URL will display a summary of an order once it has been sent to the server.

/ The default URL will be redirected to /products so the ProductList component is shown.



Chapter 22 ■ Creating a Vue.js app, part 2

544

import { defineComponent, onMounted } from "vue";
import ProductList from "./views/ProductList.vue";
import { HttpHandler } from "./data/httpHandler";
import { useStore } from "vuex";

export default defineComponent({
    name: "App",
    //components: { ProductList },
    setup() {
        const store = useStore();
        const handler = new HttpHandler();
        onMounted(() => store.dispatch("loadProducts", handler.loadProducts));
    }
});

</script>

The router-view element displays the selected component. When the changes are saved, the browser 
will display the /products URL and show the content presented by the ProductList component, as shown 
in Figure 22-2.

 Completing the Example Application Features
Now that the application can display components based on the current URL, I can add the remaining 
components to the project. To enable URL navigation from the button displayed by the Header component,  
I added the statements shown in Listing 22-4 to the Header.vue file.

Figure 22-2. Using URL routing



Chapter 22 ■ Creating a Vue.js app, part 2

545

Listing 22-4. Adding URL Navigation in the Header.vue File in the src/components Folder

<template>

    <div class="p-1 bg-secondary text-white text-right">
        {{ displayText }}
        <router-link to="/order" class="btn btn-sm btn-primary m-1">
            Submit Order
        </router-link>
    </div>

</template>

<script lang="ts">

import { defineComponent, PropType} from "vue";
import { Order } from "../data/entities";
import { useStore } from "vuex";

export default defineComponent({
    name: "Header",
    setup() {
        return { store:  useStore() }
    },
    computed: {
        displayText(): string {
            const count = this.store.state.order.productCount;
            return count === 0 ? "(No Selection)"
                : `${ count } product(s), `
                    + `$${ this.store.state.order.total.toFixed(2)}`;
        }
    }
})
</script>

The router-link element renders an HTML element that navigates to the specified URL when it is 
clicked and that is styled to appear as a button using the Bootstrap CSS framework.

 Adding the Order Summary Component
To display the details of the order to the user, add a file named OrderDetails.vue in the src/views folder 
with the content shown in Listing 22-5.

Listing 22-5. The Contents of the OrderDetails.vue File in the src/views Folder

<template>
    <div>
        <h3 class="text-center bg-primary text-white p-2">Order Summary</h3>
        <div class="p-3">
            <table class="table table-sm table-striped">
                <thead>



Chapter 22 ■ Creating a Vue.js app, part 2

546

                    <tr>
                        <th>Quantity</th><th>Product</th>
                        <th class="text-right">Price</th>
                        <th class="text-right">Subtotal</th>
                    </tr>
                </thead>
                <tbody>
                    <tr v-for="line in order.lines" v-bind:key="line.product.id">
                        <td>{{ line.quantity }}</td>
                        <td>{{ line.product.name }}</td>
                        <td class="text-right">
                            ${{ line.product.price.toFixed(2) }}
                        </td>
                        <td class="text-right">
                            ${{ line.total.toFixed(2) }}
                        </td>
                    </tr>
                </tbody>
                <tfoot>
                    <tr>
                        <th class="text-right" colSpan="3">Total:</th>
                        <th class="text-right">
                            ${{ order.total.toFixed(2) }}
                        </th>
                    </tr>
                </tfoot>
            </table>
        </div>
        <div class="text-center">
            <router-link to="/products" class="btn btn-secondary m-1">
                Back
            </router-link>
            <button class="btn btn-primary m-1" @click="submit">
                Submit Order
            </button>
        </div>
    </div>
</template>

<script lang="ts">

import { defineComponent, } from "vue";
import { Order } from "../data/entities";
import { HttpHandler } from '../data/httpHandler';
import { mapState, mapActions } from "vuex";
import { StoreState } from "../store";

export default defineComponent({
    name: "OrderDetails",
    computed: {
        ...mapState<StoreState>({



Chapter 22 ■ Creating a Vue.js app, part 2

547

            order: (state: StoreState) => state.order
        })
    },
    methods: {
        ...mapActions(["storeOrder"]),
        submit() {
            this.storeOrder((order: Order) => {
                return new HttpHandler().storeOrder(order).then(id => {
                    this.$router.push("/summary");
                    return id;
                });
            });
        }
    }
})

</script>

The OrderDetails component uses the Vuex mapActions function to create a method that invokes the 
storeOrder action. It also defines a method named submit that invokes the mapped storeOrder method, 
uses the HttpHandler class to send the Order to the web service, and redirects to the /summary URL.

 Adding the Confirmation Component
Add a file named Summary.vue to the src/views folder and add the content shown in Listing 22-6 to display 
a message to the user once the order has been stored by the web service.

Listing 22-6. The Contents of the Summary.vue File in the src/views Folder

<template>

<div class="m-2 text-center">
            <h2>Thanks!</h2>
            <p>Thanks for placing your order.</p>
            <p>Your order is #{{ id }}</p>
            <p>We'll ship your goods as soon as possible.</p>
            <router-link to="/products" class="btn btn-primary">OK</router-link>
        </div>
</template>

<script lang="ts">

import { defineComponent } from "vue";
import { mapState } from "vuex";
import { StoreState } from "../store";

export default defineComponent({
    name: "Summary",
    computed: {
        ...mapState<StoreState>({



Chapter 22 ■ Creating a Vue.js app, part 2

548

            id: (state: StoreState) => state.storedId
        })
    }
})

</script>

The Summary component only needs to know the number assigned by the web service to the user’s 
order, which it obtains from the data store. The router-link element allows the user to return to the /
products URL.

 Completing the Routing Configuration
The final step is to complete the routing configuration by adding the mapping between the URLs supported 
by the application and their components, as shown in Listing 22-7.

Listing 22-7. Completing the Routing Configuration in the index.ts File in the src/router Folder

import { createRouter, createWebHistory, RouteRecordRaw } from 'vue-router'
import Home from '../views/Home.vue'
import ProductList from "../views/ProductList.vue";
import OrderDetails from "../views/OrderDetails.vue";
import Summary from "../views/Summary.vue";

const routes: Array<RouteRecordRaw> = [
  { path: '/products', component: ProductList },
  { path: "/order", component: OrderDetails },
  { path: "/summary", component: Summary },
  { path: "/", redirect: "/products"}
]

const router = createRouter({
  history: createWebHistory(process.env.BASE_URL),
  routes
})

export default router

When the changes are saved, items can be added to the order, and the order can be sent to the web 
service, as shown in Figure 22-3.



Chapter 22 ■ Creating a Vue.js app, part 2

549

 Deploying the Application
The Vue.js development tools rely on the Webpack Development Server, which is not suitable for hosting 
a production application because it adds features such as automatic reloading to the JavaScript bundles it 
generates. In this section, I work through the process of preparing the application for deployment, which is a 
similar process for any web application, including those developed using other frameworks. 

 Adding the Production HTTP Server Package
For production, a regular HTTP server is required to deliver the HTML, CSS, and JavaScript files to the 
browser. For this example, I am going to use the Express server, which is the same package I use for the other 
examples in this part of the book and which is a good choice for any web application. Use Control+C to stop 
the development tools and use the command prompt to run the command shown in Listing 22-8 in the 
vueapp folder to install the express package.

The second command installs the connect-history-api-fallback package, which is useful when 
deploying applications that use URL routing because it maps requests for the URLs that the application 
supports to the index.html file, ensuring that reloading the browser doesn’t present the user with a “not 
found” error.

Listing 22-8. Adding Packages for Deployment

npm install --save-dev express@4.17.1
npm install --save-dev connect-history-api-fallback@1.6.0

Figure 22-3. Completing the example application



Chapter 22 ■ Creating a Vue.js app, part 2

550

 Creating the Persistent Data File
To create the persistent data file for the web service, add a file called data.json to the vueapp folder and add 
the content shown in Listing 22-9.

Listing 22-9. The Contents of the data.json File in the vueapp Folder

{
    "products": [
        { "id": 1, "name": "Kayak", "category": "Watersports",
            "description": "A boat for one person", "price": 275 },
        { "id": 2, "name": "Lifejacket", "category": "Watersports",
            "description": "Protective and fashionable", "price": 48.95 },
        { "id": 3, "name": "Soccer Ball", "category": "Soccer",
            "description": "FIFA-approved size and weight", "price": 19.50 },
        { "id": 4, "name": "Corner Flags", "category": "Soccer",
            "description": "Give your playing field a professional touch",
            "price": 34.95 },
        { "id": 5, "name": "Stadium", "category": "Soccer",
            "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
        { "id": 6, "name": "Thinking Cap", "category": "Chess",
            "description": "Improve brain efficiency by 75%", "price": 16 },
        { "id": 7, "name": "Unsteady Chair", "category": "Chess",
            "description": "Secretly give your opponent a disadvantage",
            "price": 29.95 },
        { "id": 8, "name": "Human Chess Board", "category": "Chess",
            "description": "A fun game for the family", "price": 75 },
        { "id": 9, "name": "Bling Bling King", "category": "Chess",
            "description": "Gold-plated, diamond-studded King", "price": 1200 }
    ],
    "orders": []
}

 Creating the Server
To create the server that will deliver the application and its data to the browser, create a file called server.js 
in the vueapp folder and add the code shown in Listing 22-10.

Listing 22-10. The Contents of the server.js File in the vueapp Folder

const express = require("express");
const jsonServer = require("json-server");
const history = require("connect-history-api-fallback");

const app = express();
app.use(history());
app.use("/", express.static("dist"));

const router = jsonServer.router("data.json");
app.use(jsonServer.bodyParser)
app.use("/api", (req, resp, next) => router(req, resp, next));



Chapter 22 ■ Creating a Vue.js app, part 2

551

const port = process.argv[3] || 4003;
app.listen(port, () => console.log(`Running on port ${port}`));

The statements in the server.js file configure the express and json-server packages so they use 
the content of the dist folder, which is where the Vue.js build process will put the application’s JavaScript 
bundles and the HTML file that tells the browser to load them. URLs prefixed with /api will be handled by 
the web service.

 Using Relative URLs for Data Requests
The web service that provided the application with data has been running alongside the Vue.js development 
server. To prepare for sending requests to a single port, I changed the HttpHandler class, as shown in  
Listing 22-11.

Listing 22-11. Using Relative URLs in the httpHandler.ts File in the src/data Folder

import Axios from "axios";
import { Product, Order}  from "./entities";

// const protocol = document.location.protocol;
// const hostname = document.location.hostname;
// const port = 4600;

const urls = {
    // products: `${protocol}//${hostname}:${port}/products`,
    // orders: `${protocol}//${hostname}:${port}/orders`
    products: "/api/products",
    orders: "/api/orders"
};

export class HttpHandler {

    loadProducts() : Promise<Product[]> {
        return Axios.get<Product[]>(urls.products).then(response => response.data);
    }

    storeOrder(order: Order): Promise<number> {
        let orderData = {
            lines: [...order.orderLines.values()].map(ol => ({
                productId: ol.product.id,
                productName: ol.product.name,
                quantity: ol.quantity
            }))
        }
        return Axios.post<{id : number}>(urls.orders, orderData)
            .then(response => response.data.id);
    }
}

The URLs in Listing 22-11 are specified relative to the one used to request the HTML document, 
following the common convention that data requests are prefixed with /api.



Chapter 22 ■ Creating a Vue.js app, part 2

552

 Building the Application
Run the command shown in Listing 22-12 in the vueapp folder to create the production build of the 
application.

Listing 22-12. Creating the Production Bundle

npm run build

The build process creates a set of optimized files in the dist folder. The build process can take a few 
moments to complete.

 Testing the Production Build
To make sure that the build process has worked and the configuration changes have taken effect, run the 
command shown in Listing 22-13 in the vueapp folder. 

Listing 22-13. Starting the Production Server

node server.js

The code from Listing 22-13 will be executed and will produce the following output:

Running on port 4003

Open a new web browser and navigate to http://localhost:4003, which will show the application, as 
illustrated in Figure 22-4.



Chapter 22 ■ Creating a Vue.js app, part 2

553

 Containerizing the Application
To complete this chapter, I am going to create a Docker container for the example application so that it can 
be deployed into production. If you did not install Docker in Chapter 15, then you must do so now to follow 
the rest of the examples in this chapter. 

 Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages 
required by the application for use in the container. I created a file called deploy-package.json in the 
vueapp folder with the content shown in Listing 22-14.

Listing 22-14. The Contents of the deploy-package.json File in the vueapp Folder

{
    "name": "vueapp",
    "description": "Vue.js Web App",
    "repository": "https://github.com/Apress/essential-typescript",
    "license": "0BSD",

Figure 22-4. Running the production build



Chapter 22 ■ Creating a Vue.js app, part 2

554

    "devDependencies": {
        "express": "4.17.1",
        "json-server": "0.16.3",
        "connect-history-api-fallback": "1.6.0"
     }
}

The devDependencies section specifies the packages required to run the application in the container. 
All of the packages for which there are import statements in the application’s code files will have been 
incorporated into the bundle created by webpack and are listed. The other fields describe the application, 
and their main use is to prevent warnings when the container is created.

 Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the vueapp folder and added 
the content shown in Listing 22-15.

Listing 22-15. The Contents of the Dockerfile File in the vueapp Folder

FROM node:14.15.4

RUN mkdir -p /usr/src/vueapp

COPY dist /usr/src/vueapp/dist/
COPY data.json /usr/src/vueapp/
COPY server.js /usr/src/vueapp/
COPY deploy-package.json /usr/src/vueapp/package.json

WORKDIR /usr/src/vueapp

RUN echo 'package-lock=false' >> .npmrc
RUN npm install

EXPOSE 4003

CMD ["node", "server.js"]

The contents of the Dockerfile use a base image that has been configured with Node.js and that copies 
the files required to run the application into the container, along with the file that lists the packages required 
for deployment. To speed up the containerization process, I created a file called .dockerignore in the 
vueapp folder with the content shown in Listing 22-16. This tells Docker to ignore the node_modules folder, 
which is not required in the container and takes a long time to process.

Listing 22-16. The Contents of the .dockerignore File in the vueapp Folder

node_modules

Run the command shown in Listing 22-17 in the vueapp folder to create an image that will contain the 
example application, along with all the packages it requires.



Chapter 22 ■ Creating a Vue.js app, part 2

555

Listing 22-17. Building the Docker Image

docker build . -t vueapp -f  Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM 
packages will be downloaded and installed, and the configuration and code files will be copied into the 
image.

 Running the Application
Once the image has been created, create and start a new container using the command shown in  
Listing 22-18.

Listing 22-18. Starting the Docker Container

docker run -p 4003:4003 vueapp

You can test the application by opening http://localhost:4002 in the browser, which will display the 
response provided by the web server running in the container, as shown in Figure 22-5.

Figure 22-5. Running the containerized application



Chapter 22 ■ Creating a Vue.js app, part 2

556

To stop the container, run the command shown in Listing 22-19.

Listing 22-19. Listing the Containers

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID        IMAGE         COMMAND                    CREATED
09761b008ab4        vueapp        "docker-entrypoint.s…"     43 seconds ago

Using the value in the Container ID column, run the command shown in Listing 22-20.

Listing 22-20. Stopping the Container

docker stop 09761b008ab4

The React application is ready to deploy to any platform that supports Docker.

 Summary
In this chapter, I completed the Vue.js and TypeScript project and prepared the application for deployment 
into a Docker container. Each of the web applications created in this part of the book shows a different 
approach to integrating TypeScript into the development process and emphasizes different TypeScript 
features. The result, however, has been the same: an improved developer experience that can improve 
productivity and help avoid common JavaScript errors.

And that is all I have to teach you about TypeScript. I started by creating a simple application and 
then took you on a comprehensive tour of the different features that TypeScript provides and how they are 
applied to the JavaScript type system. I wish you every success in your TypeScript projects, and I can only 
hope that you have enjoyed reading this book as much as I enjoyed writing it.



557© Adam Freeman 2021 
A. Freeman, Essential TypeScript 4, https://doi.org/10.1007/978-1-4842-7011-0

Index

��������� A
Abstract classes, 268–270, 273, 279, 285
Access control keywords, 257, 260
Angular, 440

components, 448
container, 469
data binding, 449, 464
decorators, 440
injection, 444
modules, 453
RxJS, 444
URL routing, 459

any Type, 157
disabling implicit use, 160
implicit use, 159

Arrays, 197
empty arrays, 201
syntax, 199
types, 198

inferred types, 199

��������� B
Bundles, 379, 380, 466

��������� C
Classes, 8, 256

abstract classes, 268
access control, 257

type guarding, 270
concise constructors, 264
concise syntax, 9
index signatures, 281
inheritance, 265
read-only properties, 262

Collections, 317–319
Compiler, 107

automatic code execution, 118

configuration, 6, 127
configuration file, 108, 113
declaration files, 113, 122
errors, 115
library files setting, 122
modules

format, 124
resolution, 127
supported formats, 126

polyfilling, 123
running the compiler, 114
tsconfig.json, 6
type inference, 12
watch mode, 116

Conditional types, 192, 315, 337–340
Constructor functions, 82, 83, 88, 225, 253

��������� D
Debugging, 132

break points, 132
debugger keyword, 132
remote debugging, 135
source maps, 132
using Node.js, 135
using Visual Studio Code, 133

Declaration files, 253, 315, 349, 360, 370
Decorators

defining, 413
enabling, 413
metadata, 415
uses, 413

Definite assignment assertions, 150, 174
Docker, 430

configuration file, 431
creating an image, 432
exclusions, 432
starting a container, 432

Domain Object Model (DOM) API, 389

https://doi.org/10.1007/978-1-4842-7011-0#DOI


558

■ INDEX

��������� E
Enums, 207

constant enums, 213
implementation, 208
limitations, 212
string enums, 211
using specific values, 210

Errata, reporting, 40
Examples, complete listings, 38
Examples, GitHub repository, 40
Examples, omitted content, 39
Examples, partial listings, 39

��������� F
Functions

assert functions, 192
implicit results, 188
overloading types, 190
parameters, 181

default values, 183
null values, 186
optional, 182
rest parameters, 184
type annotations, 185

redefining, 179
results, 187

type annotations, 189
void functions, 189

��������� G, H
Generic types, 13, 291

collections, 317
conditional types, 337
extending classes, 301
indexed access operator, 325
index type queries, 323
index types, 323
interfaces, 310
iterables, 321, 322
iterators, 319
method parameters, 299
type arguments, 293
type guards, 306
type inference, 300
type mappings, 329
type parameters, 292

constraining, 294
methods, 299
multiple parameters, 297

Git, installing, 3, 4

��������� I
Index access operator, 325–327
Index signatures, 281, 283
Index types, 315, 323
Inferred types, 156, 199
Interfaces, 271

abstract interfaces, 279
extending, 275
multiple interfaces, 273
optional methods, 277
optional properties, 277

Intersections, 239
correlation, 241
merging, 242

methods, 247
properties, 243

Iterators, generic types, 319

��������� J, K
JavaScript

arrays, 57
destructuring, 59
methods, 58
rest expression, 60
spreading, 59

built-in types, 45
checking for errors, 356
classes

defining, 87
inheritance, 88
static methods, 89

collections, 95
Map, 96
Set, 98
using objects, 95

constructor functions, chaining, 83
describing types, 357

declaration files, 360
definitely typed packages, 365
generating declaration files, 370
third-party code, 362
using comments, 358

functions, 52
arguments, 52
arrow functions, 56
default parameter values, 54
lambda expressions, 56
parameters, 52
rest parameters, 54
results, 53

generators, 91
including in compilation, 354, 356



559

■ INDEX

iterable objects, 93
iterators, 90
modules, 100–102
objects

constructor functions, 82
getters and setters, 66
inheritance, 78
instance properties, 86
literal syntax, 61
methods, 67
private properties, 67
properties, 62
prototypes, 79
static properties, 86
type checking, 85

optional chaining, 63
primitive types, 46
private fields, 260
Symbol, 97
this keyword, 69

arrow functions, 73
bind method, 73
call method, 73
methods, 71
stand-alone functions, 70

type coercion, 48
falsy values, 51
intentional, 50
nullish operator, 51
unintentional, 49

typeof keyword, 48
JavaScript XML Files, 393

compiler options, 396
factory function, 396, 397
props, 395
with TypeScript, 393
workflow, 394

JSDoc comments, 358

��������� L
Linting, 138

configuration, 138
rule sets, 138

disabling rules, 139
installing TSLint, 138
running the linter, 139

Literal value types, 215
functions, 216
template strings, 219
type overrides, 218

��������� M
Modules, 99–101

��������� N
never type, 167, 168, 176, 190, 202
Node.js, installing, 3
Node Package Manager, 110

commands, 111
configuration file, 110
local and global packages, 110
versions, 111

Nullable types, 169
removing from a union, 172
restricting, 170

��������� O
Object literals, see Shape types
Objects, 225

classes, 256
constructor functions, 253
methods, 228
optional properties, 227
shape types, 226
shape type unions, 232
type aliases, 230
type comparisons, 227
type excess property errors, 231
type guards, 234

in keyword, 235
predicate functions, 238

��������� P, Q
Packages

Editor, 4
Git, 3
Node.js, 3
Node Package Manager, 3

��������� R
React

Babel, 479
components, 481

hooks, 483
containerization, 509
deployment, 505, 509
hooks, 483
JSX, 481
production build, 508
Redux, 489

action creators, 490
React-Redux package, 489
reducer, 490
types, 489

toolchain, 478



560

■ INDEX

with TypeScript, 477
URL routing, 499

configuration, 499
Read-only properties, 262, 263

��������� S
Shape types, 17, 18, 223, 226, 227

��������� T
tsconfig.json File, 6, 113
Tuples, 202

optional elements, 205
using, 203
using as a type, 204

Type aliases, 19, 220
Type annotations, 154, 155, 185, 189
Type definitions, 22, 29, 30, 33, 122, 123, 360
Type predicate functions, 238, 287, 307
Types

aliases, 220
conditional types, 337
generic types, 291
guards, 166, 306
index types, 323
inference, 155
intersections, 239
literal values, 215
shape types, 226
type mappings, 329

Type unions
asserting outside the union, 164
defining, 161
using, 163

��������� U
Unit testing, 141

configuration, 142
creating unit tests, 143
installing the test packages, 142
matching functions, 143
performing tests, 144

unknown Type, 150, 159, 165, 168

��������� V
Version targeting

configuration, 120
targets, 121

Vue.js
components, 523

lifecycle, 538
composition, 528
containerization, 553
creating the project, 516
datastore, 531

connecting components, 533
mapping functions, 535

deployment, 549
directives, 526
production build, 552
toolchain, 520
with TypeScript, 516
URL routing, 543
Vuex, 531

��������� W, X, Y, Z
Webpack, 379

development server, 382
workflow, 381, 384

React (cont.)


	Table of Contents
	About the Author
	About the Technical Reviewer
	Part I: Getting Started with TypeScript
	Chapter 1: Your First TypeScript Application
	Getting Ready for This Book
	Step 1: Install Node.js
	Step 2: Install Git
	Step 3: Install TypeScript
	Step 4: Install a Programmer’s Editor

	Creating the Project
	Initializing the Project
	Creating the Compiler Configuration File
	Adding a TypeScript Code File
	Compiling and Executing the Code
	Defining the Data Model
	Creating the Todo Item Collection Class
	Checking the Basic Data Model Features

	Adding Features to the Collection Class
	Providing Access to To-Do Items
	Removing Completed Tasks
	Providing Item Counts


	Using a Third-Party Package
	Adding Type Declarations for the JavaScript Package

	Adding Commands
	Filtering Items
	Adding Tasks
	Marking Tasks Complete

	Persistently Storing Data
	Applying the Persistent Collection Class

	Summary

	Chapter 2: Understanding TypeScript
	Should You Use TypeScript?
	Understanding the TypeScript Developer Productivity Features
	Understanding the Limitations of the Productivity Features

	Understanding the JavaScript Version Features
	Understanding the Limitations of the Version Features


	What Do You Need to Know?
	How Do You Set Up Your Development Environment?
	What Is the Structure of This Book?
	Are There Lots of Examples?
	Where Can You Get the Example Code?
	What If You Have Problems Following the Examples?
	What If You Find an Error in the Book?
	How Do You Contact the Author?
	What If You Really Enjoyed This Book?
	What If This Book Has Made You Angry and You Want to Complain?
	Summary

	Chapter 3: JavaScript Primer, Part 1
	Preparing for This Chapter
	Getting Confused by JavaScript
	Understanding JavaScript Types
	Working with Primitive Data Types
	Understanding Type Coercion
	Avoiding Unintentional Type Coercion
	Appreciating the Value of Explicitly Applied Type Coercion
	Understanding Nullish Coalescing

	Working with Functions
	Working with Function Results
	Avoiding Argument Mismatch Problems
	Using Arrow Functions


	Working with Arrays
	Using the Spread Operator on Arrays
	Destructuring Arrays
	Ignoring Elements When Destructuring an Array
	Assigning Remaining Elements to an Array


	Working with Objects
	Adding, Changing, and Deleting Object Properties
	Guarding Against Undefined Objects and Properties

	Using the Spread and Rest Operators on Objects
	Defining Getters and Setters
	Defining Methods

	Understanding the this Keyword
	Understanding the this Keyword in Stand-Alone Functions
	Understanding this in Methods
	Changing the Behavior of the this Keyword
	Understanding this in Arrow Functions
	Returning to the Original Problem

	Summary

	Chapter 4: JavaScript Primer, Part 2
	Preparing for This Chapter
	Understanding JavaScript Object Inheritance
	Inspecting and Modifying an Object’s Prototype
	Creating Custom Prototypes
	Using Constructor Functions
	Chaining Constructor Functions

	Checking Prototype Types
	Defining Static Properties and Methods
	Using JavaScript Classes
	Using Inheritance in Classes
	Defining Static Methods


	Using Iterators and Generators
	Using a Generator
	Defining Iterable Objects

	Using JavaScript Collections
	Storing Data by Key Using an Object
	Storing Data by Key Using a Map
	Using Symbols for Map Keys

	Storing Data by Index

	Using Modules
	Creating a JavaScript Module
	Using a JavaScript Module
	Exporting Named Features from a Module
	Defining Multiple Named Features in a Module

	Summary

	Chapter 5: Using the TypeScript Compiler
	Preparing for This Chapter
	Understanding the Project Structure
	Using the Node Package Manager
	Understanding the TypeScript Compiler Configuration File
	Compiling TypeScript Code
	Understanding Compiler Errors
	Using Watch Mode and Executing the Compiled Code
	Automatically Executing Code After Compilation
	Starting the Compiler Using NPM


	Using the Version Targeting Feature
	Setting the Library Files for Compilation

	Selecting a Module Format
	Useful Compiler Configuration Settings
	Summary

	Chapter 6: Testing and Debugging TypeScript
	Preparing for This Chapter
	Debugging TypeScript Code
	Preparing for Debugging
	Adding Breakpoints

	Using Visual Studio Code for Debugging
	Using the Integrated Node.js Debugger
	Using the Remote Node.js Debugging Feature

	Using the TypeScript Linter
	Disabling Linting Rules

	Unit Testing TypeScript
	Configuring the Test Framework
	Creating Unit Tests
	Starting the Test Framework

	Summary


	Part II: Working with TypeScript
	Chapter 7: Understanding Static Types
	Preparing for This Chapter
	Understanding Static Types
	Creating a Static Type with a Type Annotation
	Using Implicitly Defined Static Types
	Using the any Type
	Using Implicitly Defined Any Types
	Disabling Implicit Any Types


	Using Type Unions
	Using Type Assertions
	Asserting to an Unexpected Type

	Using a Type Guard
	Understanding the Never Type

	Using the unknown Type
	Using Nullable Types
	Restricting Nullable Assignments
	Removing null from a Union with an Assertion
	Removing null from a Union with a Type Guard
	Using the Definite Assignment Assertion

	Summary

	Chapter 8: Using Functions
	Preparing for This Chapter
	Defining Functions
	Redefining Functions
	Understanding Function Parameters
	Using Optional Parameters
	Using a Parameter with a Default Value
	Using a Rest Parameter
	Applying Type Annotations to Function Parameters
	Controlling Null Parameter Values

	Understanding Function Results
	Disabling Implicit Returns
	Using Type Annotations for Function Results
	Defining Void Functions

	Overloading Function Types
	Understanding Assert Functions

	Summary

	Chapter 9: Using Arrays, Tuples, and Enums
	Preparing for This Chapter
	Working with Arrays
	Using Inferred Typing for Arrays
	Avoiding Problems with Inferred Array Types
	Avoiding Problems with Empty Arrays
	Understanding the never Array Type Pitfall


	Working with Tuples
	Processing Tuples
	Using Tuple Types
	Using Tuples with Optional Elements
	Defining Tuples with Rest Elements

	Using Enums
	Understanding How Enums Work
	Using Specific Enum Values

	Using String Enums
	Understanding the Limitations of Enums
	Understanding the Value-Checking Limitation
	Understanding the Type Guard Limitation
	Using Constant Enums


	Using Literal Value Types
	Using Literal Value Types in Functions
	Mixing Value Types in a Literal Value Type
	Using Overrides with Literal Value Types
	Using Template Literal String Types

	Using Type Aliases
	Summary

	Chapter 10: Working with Objects
	Preparing for This Chapter
	Working with Objects
	Using Object Shape Type Annotations
	Understanding How Shape Types Fit
	Using Optional Properties for Irregular Shapes
	Including Methods in Shape Types
	Enforcing Strict Checking for Methods


	Using Type Aliases for Shape Types
	Dealing with Excess Properties
	Using Shape Type Unions
	Understanding Union Property Types
	Using Type Guards for Objects
	Type Guarding by Checking Properties
	Type Guarding with a Type Predicate Function


	Using Type Intersections
	Using Intersections for Data Correlation
	Understanding Intersection Merging
	Merging Properties with the Same Type
	Merging Properties with Different Types
	Merging Methods


	Summary

	Chapter 11: Working with Classes and Interfaces
	Preparing for This Chapter
	Using Constructor Functions
	Using Classes
	Using the Access Control Keywords
	Using JavaScript Private Fields
	Defining Read-Only Properties
	Simplifying Class Constructors
	Using Class Inheritance
	Understanding Type Inference for Subclasses

	Using an Abstract Class
	Type Guarding an Abstract Class


	Using Interfaces
	Implementing Multiple Interfaces
	Extending Interfaces
	Defining Optional Interface Properties and Methods
	Defining an Abstract Interface Implementation
	Type Guarding an Interface

	Dynamically Creating Properties
	Enabling Index Value Checking

	Summary

	Chapter 12: Using Generic Types
	Preparing for This Chapter
	Understanding the Problem
	Adding Support for Another Type

	Creating Generic Classes
	Understanding Generic Type Arguments
	Using Different Type Arguments
	Constraining Generic Type Values
	Constraining Generic Types Using a Shape

	Defining Multiple Type Parameters
	Applying a Type Parameter to a Method

	Allowing the Compiler to Infer Type Arguments
	Extending Generic Classes
	Adding Extra Features to the Existing Type Parameters
	Fixing the Generic Type Parameter
	Restricting the Generic Type Parameter

	Type Guarding Generic Types
	Defining a Static Method on a Generic Class

	Defining Generic Interfaces
	Extending Generic Interfaces
	Implementing a Generic Interface
	Passing on the Generic Type Parameter
	Restricting or Fixing the Generic Type Parameter
	Creating an Abstract Interface Implementation


	Summary

	Chapter 13: Advanced Generic Types
	Preparing for This Chapter
	Using Generic Collections
	Using Generic Iterators
	Combining an Iterable and an Iterator
	Creating an Iterable Class

	Using Index Types
	Using the Index Type Query
	Explicitly Providing Generic Type Parameters for Index Types
	Using the Indexed Access Operator
	Using an Index Type for the Collection<T> Class

	Using Type Mapping
	Changing Mapping Names and Types
	Using a Generic Type Parameter with a Mapped Type
	Changing Property Optionality and Mutability
	Using the Basic Built-in Mappings
	Mapping Specific Properties

	Combining Transformations in a Single Mapping
	Creating Types with a Type Mapping

	Using Conditional Types
	Nesting Conditional Types
	Using Conditional Types in Generic Classes
	Using Conditional Types with Type Unions
	Using the Built-in Distributive Conditional Types

	Using Conditional Types in Type Mappings
	Identifying Properties of a Specific Type
	Inferring Additional Types in Conditions
	Inferring Types of Functions


	Summary

	Chapter 14: Working with JavaScript
	Preparing for This Chapter
	Adding the TypeScript Code to the Example Project

	Working with JavaScript
	Including JavaScript in the Compilation Process
	Type Checking JavaScript Code

	Describing Types Used in JavaScript Code
	Using Comments to Describe Types
	Using Type Declaration Files
	Describing Third-Party JavaScript Code
	Using Definitely Typed Declaration Files
	Using Packages That Include Type Declarations

	Generating Declaration Files
	Summary


	Part III: Creating Web Applications
	Chapter 15: Creating a Stand-Alone Web App, Part 1
	Preparing for This Chapter
	Creating the Toolchain
	Adding a Bundler
	Adding a Development Web Server
	Creating the Data Model
	Creating the Data Source

	Rendering HTML Content Using the DOM API
	Adding Support for Bootstrap CSS Styles

	Using JSX to Create HTML Content
	Understanding the JSX Workflow
	Configuring the TypeScript Compiler and the Webpack Loader
	Creating the Factory Function
	Using the JSX Class
	Importing the Factory Function in the JSX Class

	Adding Features to the Application
	Displaying a Filtered List of Products
	Displaying Content and Handling Updates

	Summary

	Chapter 16: Creating a Stand-Alone Web App, Part 2
	Preparing for This Chapter
	Adding a Web Service
	Incorporating the Data Source into the Application

	Using Decorators
	Using Decorator Metadata

	Completing the Application
	Adding a Header Class
	Adding an Order Details Class
	Adding a Confirmation Class
	Completing the Application

	Deploying the Application
	Adding the Production HTTP Server Package
	Creating the Persistent Data File
	Creating the Server
	Using Relative URLs for Data Requests
	Building the Application
	Testing the Production Build

	Containerizing the Application
	Installing Docker
	Preparing the Application
	Creating the Docker Container
	Running the Application

	Summary

	Chapter 17: Creating an Angular App, Part 1
	Preparing for This Chapter
	Configuring the Web Service
	Configuring the Bootstrap CSS Package
	Starting the Example Application

	Understanding TypeScript in Angular Development
	Understanding the Angular TypeScript Compiler Configuration

	Creating the Data Model
	Creating the Data Source
	Creating the Data Source Implementation Class
	Configuring the Data Source

	Displaying a Filtered List of Products
	Displaying the Category Buttons
	Creating the Header Display
	Combining the Product, Category, and Header Components

	Configuring the Application
	Summary

	Chapter 18: Creating an Angular App, Part 2
	Preparing for This Chapter
	Completing the Example Application Features
	Adding the Summary Component
	Creating the Routing Configuration

	Deploying the Application
	Adding the Production HTTP Server Package
	Creating the Persistent Data File
	Creating the Server
	Using Relative URLs for Data Requests
	Building the Application
	Testing the Production Build

	Containerizing the Application
	Preparing the Application
	Creating the Docker Container
	Running the Application

	Summary

	Chapter 19: Creating a React App
	Preparing for This Chapter
	Configuring the Web Service
	Installing the Bootstrap CSS Package
	Starting the Example Application

	Understanding TypeScript in React Development
	Defining the Entity Types
	Displaying a Filtered List of Products
	Using a Functional Component and Hooks
	Displaying a List of Categories and the Header
	Composing and Testing the Components

	Creating the Data Store
	Creating the HTTP Request Class
	Connecting the Data Store to the Components

	Summary

	Chapter 20: Creating a React App, Part 2
	Preparing for This Chapter
	Configuring URL Routing
	Completing the Example Application Features
	Adding the Order Summary Component
	Adding the Confirmation Component
	Completing the Routing Configuration

	Deploying the Application
	Adding the Production HTTP Server Package
	Creating the Persistent Data File
	Creating the Server
	Using Relative URLs for Data Requests
	Building the Application
	Testing the Production Build

	Containerizing the Application
	Preparing the Application
	Creating the Docker Container
	Running the Application

	Summary

	Chapter 21: Creating a Vue.js App, Part 1
	Preparing for This Chapter
	Configuring the Web Service
	Configuring the Bootstrap CSS Package
	Starting the Example Application

	Understanding TypeScript in Vue.js Development
	Understanding the TypeScript Vue.js Toolchain

	Creating the Entity Classes
	Displaying a Filtered List of Products
	Displaying a List of Categories and the Header
	Composing and Testing the Components

	Creating the Data Store
	Connecting Components to the Data Store

	Adding Support for the Web Service
	Summary

	Chapter 22: Creating a Vue.js App, Part 2
	Preparing for This Chapter
	Configuring URL Routing
	Completing the Example Application Features
	Adding the Order Summary Component
	Adding the Confirmation Component
	Completing the Routing Configuration

	Deploying the Application
	Adding the Production HTTP Server Package
	Creating the Persistent Data File
	Creating the Server
	Using Relative URLs for Data Requests
	Building the Application
	Testing the Production Build

	Containerizing the Application
	Preparing the Application
	Creating the Docker Container
	Running the Application

	Summary


	Index



