—
Projects for
Beginners

Create Five Social Web Apps Using
MongoDB, Express.js, React, and Node

Nabendu Biswas

APress

MERN Projects for
Beginners

Create Five Social Web Apps
Using MongoDB, Express.js,
React, and Node

Nabendu Biswas

Apress’

MERN Projects for Beginners: Create Five Social Web Apps Using MongoDB,
Express.js, React, and Node

Nabendu Biswas
Bhopal, India

ISBN-13 (pbk): 978-1-4842-7137-7 ISBN-13 (electronic): 978-1-4842-7138-4
https://doi.org/10.1007/978-1-4842-7138-4

Copyright © 2021 by Nabendu Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza, New
York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7137-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7138-4

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas ix
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss Xi
Chapter 1: MERN Deployment Setup.........ccciummsmmnmmmssssnnmmssssssnsmsssssssssssssssssssssssnnnssss 1
The MERN Stack at @ GIANCe..........cccvvverrirerrnenere s ssans 1
Firebase Hosting INitial SETUDccvcvevririrre s s 2
0Ty 010 D3 2T o RO 6
Creating @ NEW PrOJECT........cccviererrererreres e sessere e sas s e s sae e s e s saesae e s e saesaesae e ssesaesaessssennesaes 6
Database User and NetWOrk ACCESScccccrurrererrererenesree s se s s sens 12
Deploying the Back ENd 10 HErOKU..........ccccieriinin s 16
Deploying the Front End 10 Firebase...........ccoverrvnrenrccsresere s 23
Install NOe.jS @and NPMcoviiericerrceree s 25
SUMIMAIY ...ttt e e be e b e e e e e e Re e e R e e e e e e e e Re e be e nr e e e nrnnn s 31
Chapter 2: Building a Dating App with MERN............cccinnnmmmmmnnssnnnmnssssssnmsssssssnnns 33
Firebase Hosting INitial SETUPccveevevrierere e re s s e e s sa s e e snesee e s saesnes 34
REACE BASIC SEIUPccervierircririsers sttt b e e 34
Creating a Header COMPONENL ... s e 36
Creating the Dating Cards COMPONENT...........cccouorrerrnnererene s 39
Creating the Swipe Buttons COMPONENt ..o s 44
Initial BACK-ENG SETUDvvvererieiirrire st se s s s se s s sss e s s sae s s naennes 47
0T T0 0] D32 (o U 49
T E= LI 10T (== (1o 49
Database User and NetWOrK ACCESSccocrrerererererenerreeresesesseseses e sessesessesesessesessesessssessssesenns 50
MongoDB Schema and ROULES.........cccccorermriererneserese s 51
Integrating the Back End with the Front End ..o 56

iii

TABLE OF CONTENTS

Deploying the Back ENd 10 HErOKU..........cocvveinenininsinse s e s sse s s nnes 58
Deploying the Front End 10 FIreDase..........cccviiiinininnsnsnesssissese s sesse s s e e snes 59
SUIMIMAIY....eeeeeeee e e e e s ae e e e s e e e e e Re e s e e e se e e e nRe e e re e nennnnnnnnens 59
Chapter 3: Building a Short Video App with MERN...........cccccmmmmririnnssssssssnnnnnnsnsnsnns 61
Firebase Hosting INitial SETUPcocvveererererese s 62
REACT BASIC SETUPccvrveerirererrese e sessess s n e 63
Creating aVideo COMPONENT.......ccoeveirierire e sa e sae e e 63
Creating a Video FOOter COMPONENL.........cccccvererrrierierersersere e sessessessessesessessessessssessesaessssessessees 69
Creating a Video Sidebar COmponent...........cccovvrninninnnnnse s sessenens 75
Making Components DYNAMICccccviirinirinnsine s se s s sss e s sre s snes 78
Initial BACK-ENA SETUDcoceiirieircrc sttt s s s s 81
MONGODB SELUP.....ecerveerrrereree e sere e s s e e senne e s n e nne e nranis 83
INitial ROULE SETUPcveriiiecir e e e s e 83
Database User and NETWOrK ACCESS........ccourrererrrrerrrenerreseressesesesessssesessesessssessssesessesessssessanes 84
MongoDB Schema and ROULESc.ccccorererencrnsenrsese s ssssessnnes 85
Integrating the Back End with the Front Endcooeoervenncnnscrs s 90
Deploying the Back ENd t0 HEIOKLUL.........cuecerrerernesnnese s se s 93
Deploying the Front ENd 10 FIrEDASEcccverererieriere s sessese s e sesse e s e e s ssesessessesnes 94
£ 11114 7 94
Chapter 4: Building a Messaging App with MERNcccocccmmmnssnnnnmssssssnssssssssnnnnss 95
Firebase Hosting INitial SETUPc..cocevreeereeree e 96
REACE BASIC SELUD......eiiiircrerie sttt 97
Creating a Sidebar COMPONENT ... 97
Creating a Sidebar Chat COMPONENL.........c.ccoovvrvrirnnnrrere e enes 105
Creating a Chat COMPONENTccccoiererirrererr st s s e s e sae s se e saesae e s e saenaes 108
Creating a Chat Footer Component...........ccocinnnnnsnns e 114
Initial BaCK-ENd SETUDcoceiiriiirire st 117
MONGODB SELUD ... e n s e ne e e 119
INitial ROULE SETUP...c.iiiiiriierr e e e 119

iv

TABLE OF CONTENTS

Database User and Network ACCESSccuumrinrrnnmsesinesee s s s 120
MongoDB Schema and ROULES.........cc.cccvrerrcnircsc st se e 121
Configuring PUSNETcoeccr it e s b s 126
Adding Pusher to the Back ENd..........ccoeoreennenresrcc s 130
Adding Pusher to the Front ENd ... s ssanes 133
Integrating the Back End with the Front ENdcccoovvrvriniennsniene s sessesessessssesenaens 135
0 [0 (T g P TS (1 R 141
Creating a Login COMPONENL.......ccccoivverrrreriereerersere s s re e ses e s ssessesesessessessssessesaesassessessesaes 148
Adding Google Authentication............cccvrinnrninnr s ———— 151
Using Redux and CONEXE APccoeecrreerenererene s e sesssse s sessssenns 155
Using Redux Data in Other COMPONENTScccvvrernsernnennre s 159
Deploying the Back ENA 10 HEIOKUL........cccuceeuvererriserinsesisese e se e sessesenns 166
Deploying the Front ENd 10 FIrEDASEccvcererrirerienieresersese s sessessesessssessessessesessessessessssessesaens 167
£ 1134 7P 168
Chapter 5: Building a Photo-Based Social Network with MERN...........ccccsrnssnnnnnes 169
Firebase Hosting INitial SETUPcovreeecrrerereree e 170
ReACt BASIC SELUD......eivicirirere s s e e e e 172
Creating a Header COMPONENTccvrieemrinernesese e se s e 172
Creating a PoSt COMPONENTcccccoevirrrierere e s se s s sa s s s sa e e nnes 173
Making Components DYNAMICccccvuevirrerrererensersesessssessessessesessessessessssessessessessssessessesssssssessens 177
Firebase Authentication SETUP ... e 180
Creating a Modal fOr SignUP ... s e 182
Sign uP With FIrEDASEcccveeeeereer et 187
Sign in With FIrEDASEcccvveeeriernesisesese s 189
Adding PoStS and IMAQES.......ccverereririereresirnere s sr s s sre st s e s s saesss e saesnens 191
Initial BACK-ENG SETUD ..evverreririirierieresirsese s sss e se e sssse s e ssessesessessesaessssessessesassessessessesssssssesaens 197
L0010 D32 O 199
INitial ROULE SEIUP....ccciveecc et e e e e 199
Database User and NetWOrk ACCESScorererrerererserereresese s sesese s se e ses e ssssessesesessesenns 200

TABLE OF CONTENTS

MongoDB Schema and ROULES........ccvvverreriererinnerseserssessessessessssessessessssessessesssssssessessesssssssesaens 201
Integrating the Back End with the Front End ... 206
Configuring PUSNETcoeecr st e s b s 213
Adding Pusher to the Back ENd............coeoreerninrercc s 213
Adding Pusher to the Front ENd ... s se s sennes 215
o 10 a0 =T =1 OO 217
Deploying the Back ENd £0 HEIOKU..........ccvvererirrerierere s sessesessessssesessessesesessessessssessesaens 218
Deploying the Front End 10 Firebase.........ccccvvirririe st 219
SUMIMANY ..ttt e R e e e R e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 220
Chapter 6: Build a Popular Social Network with MERN........ccccccmmmrrnnssssssnnnnnnnnnnas 221
Firebase Hosting INitial SELUPccccveeerrsernnrere s 222
REACT BASIC SETUPcovrveerrieriresinrese e s 223
Adding a Styled COMPONENT.........oovirirerr e e s ae e nne s 223
Creating a Header COMPONENL.........ccocvivrerierienerieresesesseresseseesessessessesesessessessssessessessesessessesses 224
Creating Sidebar COMPONENLESccccevrerrinrnerire e e 229
Creating a Feed COMPONENT........c.ccoiiiiniinnr e s e 232
AdAING @ WIGEL ..o s e re e nr s 237
Creating @ Messenger COMPONENT..........cccvvernenneneniese s s srs e senns 241
Creating a Post COMPONENTccccvivirinierern e ss s s s e s 245
Google AUthentiCation SETUP......ccverierrrriere e s a e e nnen 250
Creating a Login COMPONENL.......ccccoieveerrieriererersere s ssere e sessesessessesesessesaessssessesaesassessesaesaes 251
Using Redux and COnteXt AP ... 255
Using Redux Data in Other COMPONENTScccceeeerreerenenerenersse s 258
Initial BaCK ENA SEIUPcvveiiriircir ittt 261
MONGODB SELUD ..ttt r e s e e ne e r s 263
INItial ROULE SETUP...coverteierere et sr e e s ae s ae e e e e nne 263
Database User and Network ACCESSccoumrinmrnnmsesissssse s s s 264
Storing Images in MONQODB ... s e 265
MongoDB Schema and ROULES.........ccccciiininninne s st se e snens 271

TABLE OF CONTENTS

Integrating the Back End with the Front End.........cccooviinvninnninsns s 272
[T 10 UL T N U] T O 277
Adding Pusher 0 the Back ENd..........ccooeenneeeee e 277
Adding Pusher to the Front ENd ..o s 279
Deploying the Back ENd 10 HEIOKUL........ccoucevrrenerrismrnsesssese e ss s sessesenns 280
Deploying the Front ENd 10 FIr€DASEccccvevrrierrenern s sesesessssese s ses e s ssessssessesnens 280
Deploying the Front ENd 10 FIrEDASEccvceverirrerrerereserrere s sessessesessssessessessessssessessesssssssessens 281
£ 1§14 7 282
1T - 283

vii

About the Author

Nabendu Biswas is a full-stack JavaScript developer who has been working in the IT
industry for the past 16 years. He has worked for some of the world’s top development
firms and investment banks. Nabendu is a tech blogger who publishes on DEV
Community (dev.to), Medium (medium.com), and The Web Dev(TWD) (thewebdev.
tech). He is an all-around nerd who is passionate about everything JavaScript, React, and
Gatsby. You can find him on Twitter @nabendu82.

ix

About the Technical Reviewer

Alexander Nnakwue is a self-taught software engineer with experience in back-end and
full-stack engineering. With experience spanning more than four years, he loves to solve
problems at scale. Currently, he is interested in startups, open source web development,
and distributed systems. In his spare time, Alexander loves watching soccer and listening
to all genres of music.

xi

CHAPTER 1

MERN Deployment Setup

Welcome to MERN Projects for Beginners, where you learn to build awesome web apps
using the MERN (MongoDB, Express, React, Node.js) framework. This stack is in high
demand in the startup sector because you can make a fully functional web app using it.
A front-end engineer who knows HTML, CSS, and React can quickly learn Node.js and
MongoDB and build a fully production-ready web app.

In this book, you learn how to host a back end using Node.js code in Heroku. The
front-end site uses React code and Firebase hosting. It is also hosted through a cloud
database called MongoDB Atlas. Most of the hosting setups are the same in the next five
chapters, so it won’t be repeated in most chapters.

The MERN Stack at a Glance

Before installing Firebase, let’s discuss the basics of the technologies involved in the
MERN stack.

e MongoDB is an open source document based on the NoSQL database.
It is different from traditional relational databases that store data in
tables. It stores data in JSON-like documents. It is highly scalable and
performance-oriented and thus suited for modern-day web apps.

e Reactis the most popular open source JavaScript library for building
a website’s or web app’s front end or user interface. It is developed
and maintained by Facebook.

e Node.js lets developers write server-side code using JavaScript. It
integrates very well with React or Angular at the front end and with
MongoDB for databases.

o Express is a framework of Node.js, and through it, you can create API
endpoints, which are the basis of any back-end server-side code.

© Nabendu Biswas 2021
N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_1

https://doi.org/10.1007/978-1-4842-7138-4_1#DOI

CHAPTER 1 MERN DEPLOYMENT SETUP

Firebase Hosting Initial Setup

You need a Google account to work with Firebase. Go to https://firebase.google.com
and click Go to console in the top-right corner. You must be logged in to your Google
account to do so, as seen in Figure 1-1.

€= Cc o @I & rrpsy/rebase.google.com . . TR 2 er -

— — = —

Firebase Products = Uso Casos Pricing Docs Support More Q English = Goto console .

Google is committed 10 advancing racial equity for Black communities. See how,

Firebase helps you build
and run successful apps

Backed by Google and loved by app development
teams - from startups to global enterprises

Get started Try demo Watch video

Figure 1-1. Firebase console caption

https://firebase.google.com

CHAPTER 1 MERN DEPLOYMENT SETUP

Click the Add project link on the page, as seen in Figure 1-2.

‘(- = O 6 Q]- a h‘.!r.'--.rr'&.‘!r!'t:r.ltrqoogle.oom

¥ Firebase

Recent projects

tinder-clone PokeSearch
+ tinder-clone-fdt74 pokesearch-46e26

Add project

a Explore a demo project

homemade-recipes Catch Of The Day Nabendu Nabs Social
homemade-recipes-dadsi catch-of-the-day-nabendu nabs-social
> s

All Firebase projects

Catch Of The Day Nabendu homemade-recipes Nabs Social
catch-of-the ﬂ-'l:n’ nabendu homemade-recipes-dadst nabs-social
o s

Figure 1-2. Add project

CHAPTER 1 MERN DEPLOYMENT SETUP

On this page, name the project dating-app-mern, and then click the Continue
button, as seen in Figure 1-3. Note that this is just an installation instruction. You start
building the app in the next chapter.

X Create a project(Step 1 of 3)

Let's start with a name for
your project®

Project name

dating-app-mern

dating-app-merm-453b1

Continue

Figure 1-3. App name

On the next page, click the Create project button, as seen in Figure 1-4.

CHAPTER 1 MERN DEPLOYMENT SETUP

__(—‘_J > Q0 | EJ- & nups/fconsolefirebase.google.com

X Create a project(Step 2 of 2)

Google Analytics
for your Firebase project
Google ics is a free and i lution that enables targ

reporting and more in Firebase Crashiytics, Cloud M In-App M ing, Remote
Config, A/B Testing, P and Cloud Fi

Google Analytics enables.

K AdBiestiag (D X Giashlieeusers (D
s e S TR RO eet] @ X Events Cloud Functions-trggess @
acrose Fimbaca peaduots

P e e]

1B Enable Google Analytics for this project

Recommended

G

Figure 1-4. Create project

It takes some time to create the project, as seen in Figure 1-5.

@ @ hitps/fconsalefiret gl

[4

Provisioning resources...

Figure 1-5. Project created

CHAPTER 1 MERN DEPLOYMENT SETUP

MongoDB Setup

MongoDB is the database that you work with on the cloud. It is also known as

MongoDB Atlas. This is easier to work with than setting up on a local machine. Go to

www.mongodb.com and log in or create a new account.

Creating

a New Project

After logging in, you see a screen similar to the one shown in Figure 1-6. Click the New

Project button.

. i Nabendu's Org - 202 .. » (& Access Manager v Suppon Billing

(current)

View All Projects

SECURITY

Database Access
Network Access

Advanced

Feature Requests 1

Figure 1-6.

- 4% Adas £ Realn 2 Chans

S| SORG- 20201215 >

ters

+ New Project

0%

® Cluster0 t 0.007 W

CONNECT METRICS COLLECTIONS | +++
CLUSTER TIER
sl
TYPE

UNKED REALM APP

MongoDB new project

Create a New Cluster

384 KB

Enhance Your Experience

http://www.mongodb.com

CHAPTER 1

MERN DEPLOYMENT SETUP

Name your project dating-app-mern, and then click the Next button, as seen in

Figure 1-7.

COE -

ORGANIZATION
Projects

Aerts)
Activity Feed
Settings

Access Manager
Billing

Support

Figure 1-7.

© @ hitpsyfdoud mongodbioom/v2# org/SfdBe3fd 64 11267 86eala/project

. 32 Nebendu's Org-202..* €3 AccessManager v Suppon Billing

AENDUS ORG - 2090-T218 > PROIECTS

Create a Project

Name Your Project Add Members

Mame Your Project

Project names have to be unique within the organization (and other restrictions)

datng-app-mem

Project name

= -

--@ﬁ‘il\moolsiﬂl =

All Clumers Nabsndu =

On the next screen, click the Create Project button, as seen in Figure 1-8.

- T Ea T

u e wese

- @ hittps//doud mongadb.comv2#/crg/SidBe3iaboA4 11216 7BGeala/projects

= @ O

. [Nabendu's Org-202... * & AccessManager ¥ Suppon Biling

ORGANIZATION
Projects

Alerts
Activity Feod

Settings

Figure 1-8.

MABENDUS DR - 3030-12.15 » PROJECTS.

Create a Project

+ Name Your Project Add Members

Add Members and Set Permi

Give your members access parmissions balow.

Dgmad com .

{you)

MongoDB Create Project

roject Owner

Cancel

+~ Go Back

+= Go Back

Create Project

Create Project

Project Member Permiasions

Project Owner
Has full administralion access

Project Cluster Manager
Can update clusters

Project Data Access Admin
Can access and moddy a cluster's data
and indexes, and kill operatione

Project Data Access Read/Write
Can access a cluster's data and indezes,
and modify data

Praject Data Access Read Only
Can access a cluster's data and ndezes

Project Read Only
May only modify personal preferences

CHAPTER 1 MERN DEPLOYMENT SETUP

On the next screen, click the Build a Cluster button, as seen in Figure 1-9.

s— e maa .
@ & nhttpsy/doudmongodb.com,v2/5fdal7ae2b326540cd 1cd 1 2c2eclusters = @ ﬁm” -.;W_--l_ﬁ":‘

=Y Ty wTE——

‘ [Nabendu's Org - 202... * & AccessManager * Suppon Biling
o - 25 Adlas £2 Reaim @ Charts L B a4

NABENDUS ORG - 2030-12-15 »
Quickstant & L. E—
Clusters
DATA STORAGE
Q
Clusters

Triggers

Data Lake

SECURITY E
Database Access @

MNetwork Access

Create a cluster

Choose your cloud provider, region, and specs.

Build a Cluster

Once your cluster s up and nnning, lve migrate an existing MongoDB database into
Atias with our Live Migration Service.

Advanced

Figure 1-9. Build a Cluster

On the next screen, select the Free tier, as seen in Figure 1-10.

CHAPTER 1 MERN DEPLOYMENT SETUP

a5 g'fﬁ*i ﬂ._‘!"i_’?‘?,?

MONGODB ATLAS

Choose a path. Adjust anytime.

Available as a fully managed service across 60+ regions on AWS, Azure, and Google Cloud

Dedicated Multi-Region Dedicated Clusters Shared Clusters
Clusters
For teams developing world-class For teams buldding apphcatons that For teams leamang MongeDB or
applications that require multi- need advanced development and developing small applcations.
eQIon resihency or ultra-low nmdmhm-rmdy enwronments
latency.
" Includes al features from v Incledes al features from » Highly avaiable auto-
Shared and Dedicated Shared Clusters healing cluster
Clust
— v Auto-scaling + End-to-end encryption
% Fapicat chls scmes ¥ Network isolation « Role-based access
multiple regions
control

+ Realime perdormance
metrics

+ Globally distributed read
and write operations

« Control data residency at

the document level
Create a cluster Create a cluster Create a cluster
Searting at Suanga Surtogu
$0.18/hr* $0.08/nr* FREE
“swimaied coat $58 Birar “aimated con 880 S4/mans

Advanced Confiquration Optioas Q

Figure 1-10. Free tier

On the next screen, you need to choose the AWS region in which to create the
database. (I chose Mumbai because I live in India, and this gives me low latency.)
Afterward, click the Create Cluster button, as seen in Figure 1-11.

CHAPTER 1 MERN DEPLOYMENT SETUP

= e e -
@ & nttpsyydeoud mangodb.com/v2/5fdal Tae2b326540d 1641 2c2#dusters/fadii *» = ﬁm
" 5% 2 o = = LU SRS LS e - = =

or Cluster

Welcome to MongoDB Atlas! We've recommended some of our most popular options, but feel free to customize your cluster to

your needs. For more inf 1, check our di
Cloud Provider & Region AWS, Mumbai (ap-south-1)
f“_‘f’ﬁ Oocogecows 4 Azure

% Recommended region €3

[evrope _______________Jasa [l NORTHAMERICA

== Frankfurt (eu-central-1) ¥ == Mumbai {ap-gouth-1) =2 N. Virginda (us-east-1) ¥
B ¥ ireland (eu-west-1) % = Singapore (ap-southeast-1) =T Oregon (us-west-2) &
| ausrae |

&l Sydney (ap-scutheast-2) %

Cluster Tier MO Sandbox (Shared RAM, 512 MB Storage)

Encrypled

Additional Settings MeongoDB 4.2, No Backup

3_‘ Cluster Name Clustar0

s ey Sasgies Yod ie Back Create Cluster

FREE e

<

Figure 1-11. Choose region

The next screen shows that the cluster has been created, which takes time. You can
go back and create your first API endpoint, as seen in Figure 1-12.

10

CHAPTER 1

2/5fda1 Tae2b3265404 104 12c2#dusters

. @y

. 2 Nabendu's Org-202... = &

s ot L — —
DATA STORAGE

Clusters

Triggers

Diata Lake

SECURITY
Database Access

Network Access

Advanced

Feature Requests ¥

Figure 1-12.

MERN DEPLOYMENT SETUP

All Chusters Mabenda

L B o

HABENDUS ORG - 2030.12-15 >
Clusters
a

o= Clusterd

Version 4.2.11
Connect | [METRICS || COLLECTIONS || =+

CLUSTER TIER
MO Sandbox (General)

REGICN

AWS | Mumbai (ap-south-1)
TYPE

Reglica Set - 3 nodes
LINKED REALM AP

None Linked

Your cluster is being created.

s take between 1-3 minutes b

System Status: Al Good

©2020 MongoDB, ke, Staus Terms Privecy Atlas Blog Contact Sales

Cluster created

11

CHAPTER 1 MERN DEPLOYMENT SETUP

Database User and Network Access

To create a user in MongoDB, click the Database Access tab and then the Add New
Database User button, as seen in Figure 1-13.

® & hups//doud.mongodb.com/v2/Sfdal Tae2n3265404 104 12c2 #security/d
. 3 Nabendu's Org-202.. v {5 AccessManager v Suppon Biling All Clusters Nabend =
D - £ Atas £2 Realm 4 Chans L2 B o

MABENDU'S ORG - 2020-12-18 »

Database Access

Cickstart @ L.

DATA STORAGE

Clusters Database Users

Triggers

Data Lake

SECURITY

Database Access

Network Access g?
@

Advanced
Create a Database User

Set up database users, permissions, and authentication credentials in order to connect to
your clusters.

Add New Database User

Learn more

Figure 1-13. Create database user

On the next screen, you need to enter a username and a password, as seen in
Figure 1-14. You must remember both. Next, scroll down and click the Add User button.

12

CHAPTER 1

© & nitpsyicoud mongodb.com/vZ/5fdal 7ae2b3265404 1041 22 fsacunty/dat. =ss

Add New Database User

Create a database user 1o gran an apphcation or user, access to databases and collections
in your clusters in this Atlas project. Granular access control can be configured with default
privileges or custom roles. You can grant access to an Atlas project or organization using the

comesponding Access Manager (7'
Authentication Method

uj

MongoDB uses SCRAM as its default authentication methad

Password Authentication

admin

&, Autogenserate Secure Password & Copy

Database User Privileges

Select a built-in role or prvleges for this user

Read and write lo any database

Restrict Access to Specific Clusters/Data Lakes

Enable to apecify the rescurces this user can access. By default, all
resources in this project are accessible.

Temporary User

This user is tempaorary and will be deleted after your specified
duration of 6 hours, 1 day, or 1 week.

Figure 1-14. Add user

AWS 1AM
(MongoDB 4.4 and

MERN DEPLOYMENT SETUP

Next, go to the Network Access tab and click the Add IP Address button, as seen in

Figure 1-15.

13

CHAPTER 1 MERN DEPLOYMENT SETUP

n3 265404 1041 22 #security/ne

3 G @ hrps/doud mongodb.com, 2

. [Nebendu's Org-202... * @ AccessManager » Support Billng

(=] L £ Adas 2 Realm 2% Charts o B A

Cuickstant @ -) W are deploying your changes (current action: configuring MongoDB)

DATA S aE NABENDUS DRG - 2090-K118 >

Clistors Network Access

Thgasw: IP Access List Peering Private Endpaint
Data Lake e

SECURITY

Database Access

Advanced .:_®
Add an IP address

Configure which IP addresses can access your cluster.

Add |P Address

Learn more

Figure 1-15. Network access

In the popup window, click the ALLOW ACCESS FROM ANYWHERE button and
then click the Confirm button, as seen in Figure 1-16.

Add IP Access List Entry

Atlag only allows client connections to a cluster from entries in the project’s IP Access List. Each entry
should either be a single IP address or a CIDR-notated range of addresses. Leam more.

ADD CURRENT |P ADDRESS | ALLOW ACCESS FROM ANYWHERE
Access List Entry: 0.0.0.0/0

Comment: Opbional comment

This entry i temporary and will be deleted in 6 howrs Cancel

Figure 1-16. Allow access
14

CHAPTER 1 MERN DEPLOYMENT SETUP

Next, return to the Cluster tab and click the CONNECT button, which opens the
popup window shown in Figure 1-17. Click the Connect your application tab.

© & nhtipsy/coud mongodbuoom v2/5ida 1 Tae2b32654cd 10d 1 22 bclustersfcon. == @ €

Connect to ClusterQ

" Setup connection security Chooese a connection method Connect

Choose a connection method View documentabon (2

Get yowr pre-formatted connection string by selecting your tool below.

Connect with the monge shell
Interact with your cluster usng MongoDB's interactive Javascript mterface

Connect your application

Caonnect your applicabion to your cluster using MongoDB's native drivers

Connect using MongoDB Compass
Explore, modify, and visualize your data with MongoDB's GUI

Figure 1-17. Connect your application

15

CHAPTER 1 MERN DEPLOYMENT SETUP

Copy the connection URL by clicking the Copy button, as seen in Figure 1-18.

|® & hrtpsyidoud mongodb.com/v2/5idal Tae2b3 265404 104122 #clusters/oon ===

Connect to ClusterQ

+ Setup connection security + Choose a connection method Connect

Q) Select your driver and veraion

DRIVER VERSION
Nodujs ¥ 36orlater

e Add your connection string into your application code

Oinclude full driver code example

29 +//admi -3rtlo.mongoa. net/ (dbnase @) Copy

i 3

Replace <password> with the password for the admin user. Replace <dbname> with the name of
the database that connactions will use by dofault. Ensure any option params are URL encoded.

Having rouble g7 View our

Figure 1-18. Connection string

Deploying the Back End to Heroku

Once you complete the back-end code, go to www. heroku.com to deploy the back end.
Log in to your Heroku account, click the New drop-down menu, and then click the
Create new app button, as seen in Figure 1-19. You can also do this from the command
line using the Heroku CLI, but that is not covered here.

16

http://www.heroku.com

CHAPTER 1 MERN DEPLOYMENT SETUP

c o @ @ nhitpsy/dashboard heroku.com/spps . @t

Jump to Favorites, Apps, Pipelines. Spaces...

| @ create new app

Q Filter apps and pipelings

@ Create new pipetine

() billing-restro-prod-6746347380 container - United States ¢

billingrestro-react-prod (£ Node js - heroku-18 - United States ¢

@

billingrestro-yoga-prod « United States
fathomless-woodland-70102 (7] Node js - heroku-18 - United States ¢

fierce-sands-4 1839 () Node js - heroku-18 - United States ¢

hidden-coast-48928 () Node js - heroku-16 - United States 7t
immense-woodland-45766 heroku-18 - United States ¢
nameless-dusk-36203 (@ Node js - heroku-18 - United States ¢
serene-wildwood-22136 (E] Node js - heroku-16 - United States 7t
sick-fits-nabendu-58d12¢361a container - United States 7y

sick-fits-react-nabs

008 js + horoku-18 - United States
sick-fits-yoga-nabs (%) Node s - heroku-18 - United States ¢

stark-bastion-93462 () Nodejs - horoku-18 - United States ¢

Q000 00 00 00 0 0

thawing-badlands-32093 (F) Nogejs - neroku-18 - United States <t

Figure 1-19. Heroku login

17

CHAPTER 1 MERN DEPLOYMENT SETUP

Next, name the app and click the Create app button, as seen in Figure 1-20.

=E |H

e Dy LM DO® B e€e

Y| HErOKU Jump to Favorites. Apps. Pipelines, Spaces

Create New App

App name

dating-mermn-backend

dating-mern-backend s svallable
Choose a region

ES United States

| Add to pipeline...

Figure 1-20. Heroku app name

The next screen shows all the commands to deploy your app, but you need the
Heroku CLI. Click the link and follow the instructions to install it on your operating
system, as seen in Figure 1-21.

18

CHAPTER 1 MERN DEPLOYMENT SETUP

£ [l SR

-9 % FLMDOS B ES

HEROKU Jump to Favorites, Apps, Pipelines, Spaces... = 0

Depl oy usl ng Heroku Git Install the Heroku CLI
Use git In the command line or a GUL tool to Downboad and install the Hergky CLI

depioy this apg A . i
Mpicy ks 3pp. 1f you haven't already, log in 1o your Heroku account and follow the prompts to create a e S5H public key.

$ heraku login

Create a new Git repository

Initiatize 3 git repository in a new or existing directory
$ cd my-profect/

$ git init
$ heroku git:remcte -a dating-mern-backend

Deploy your application
Commit your code to the repository and deploy it to Heroku U$E'\g Git
$ git add .

$ git commit -om “sake it better”

$ git push heroku master

P You can now change your main degloy branch from “mastor” to "main” for Both manual and automatic deploys, Please
follow the instructions here

Existing Git repasitary

For existing repesitories, simply add the heroku remate

$ heroku git:remcte -a dating-mern-backend

Figure 1-21. Heroku instructions

Run the heroku login command in the backend folder. You are asked for permission
to open the browser. This command asks you to press any key to open in the browser.

19

CHAPTER 1 MERN DEPLOYMENT SETUP

\We use cockies 1o make interactions with our websites and senices easy and meaningful, 1o better understand how they are used and to tailor advertising
You can fead mode and m your cooke choices here By continuing %o use this site you ane giving us your consant 1o do this.

HEROKU

Log in to the Heroku CLI

Figure 1-22.

Here, you can log in with your credentials, as seen in Figure 1-23.

20

CHAPTER 1 MERN DEPLOYMENT SETUP

B web [l Wen2 [Gatshy

s 10 make interactions with our websites and services easy and meaningful, to better understand how they are used and to talor
nore anvd make your cookie chowes here, By continuing to use this site you are giving us your consent to do this

@omail com

Mew to Heroku? Sign Uy

Figure 1-23. Login credentials

After successfully logging in, you see the page shown in Figure 1-24, which you need
to close.

21

CHAPTER 1 MERN DEPLOYMENT SETUP

'We use cookles to make interactions with our websiles and services easy and meaningful, 1o betler understand now they are used and to tallor advertising
You can read more and make oide chiices here. By continuing to use this sile you are giving us your consent to do this.

4]

HEROKU

Logged In

Figure 1-24. Close popup

You need to push the code from your local machine to the Heroku repository. Now
that you are logged in to your account, you can run the following command to connect to
Heroku Git.

heroku git:remote -a dating-mern-backend

Next, let’s run the familiar git command to commit the code. Now, Git is software
that tracks changes in a file; it is a must in software development. The following
commands add code to the staging area, then commits it. The push command pushes it
to remote Heroku servers.

git add .
git commit -m "backend code complete"
git push heroku master

22

CHAPTER 1 MERN DEPLOYMENT SETUP

After the installation is done, click the Open app button, which takes you to the
deploy site, as seen in Figure 1-25.

ckend/deploy/herok. == @ ¥ AL IND S W B €@

H] HEROKU Jump to Favorites, Apps. Pipelines, Spaces. : @

0 Personal & > . dating-merm-backend b o Maore < |

Overview Resources Deploy Maetrics Activity Access Settings

Add this app to a pipeling Add this app to a stage in a pipeline to enable additional features

Create a new pipeline or choose an existing

¥ 5 Pipelings let you connect multiple apps n @ Pipelines connected 1o GitHub can enable review
one and add thiz 3pp Lo 2 stage in It together and premaote code Detween them. apps. and create apps for new pull requests
L Learn more @ ® |leammom

@ Choose a pipeline

Deployment method

e
Deploy using Heroku Git Install the Heroku CLT
Use git in the command line or a GUI teol to Download and install the Heroky CL]
deploy this 3 " " +
ploy PP aven't already, log in to your Hercku account and follow the prompts to create 3 new S5H public key.

§ hercku loein

Figure 1-25. Open back-end app

Deploying the Front End to Firebase

After the front-end project is complete (in an upcoming chapter), you can deploy it
in Firebase. Go to the frontend folder and run the firebase login command in the
terminal. If you are running it for the first time, a popup window opens. Next, run the
firebase init command. Type Y to proceed.

firebase login
firebase init

Use the down arrow key to go to Hosting, as seen in Figure 1-26. Press the spacebar
to select it, and then press the Enter key.

23

CHAPTER 1 MERN DEPLOYMENT SETUP

Figure 1-26. Configure

Select Use an existing project, as seen in Figure 1-27, and press the Enter key.

Figure 1-27. Existing project

Next, select the correct project, which is dating-app-mern-453b1 in my case, as
seen in Figure 1-28.

Figure 1-28. Correct project

Next, choose the public directory, which is build. The following question asks about
a single-page app; answer Yes. The next question is about GitHub deploys; answer No, as
seen in Figure 1-29.

24

CHAPTER 1 MERN DEPLOYMENT SETUP

Figure 1-29. Build

Next, run npm run build in the frontend folder for an optimal production build. The
final command, firebase deploy, deploys the project to Firebase. If successful, the site
is now live, which is shown in upcoming chapters.

Install Node.js and npm

Let’s go over installing Node.js and npm (node package manager) if they are not already
installed on your system. Most of the code in this book requires Node.js and npm. The
React front-end code also requires Node.js. Through npm, you can install many small
open sourced programs, which adds functionality to both React and Node.js.

When you install Node.js, npm is also automatically installed on your system. The
following instructions are for a Windows-based system, although macOS users can find a
similar guide on the Internet.

In your web browser, enter https://nodejs.org/en/download/ and click Windows
Installer, as seen in Figure 1-30. Again, it also installs npm.

25

https://nodejs.org/en/download/

CHAPTER 1 MERN DEPLOYMENT SETUP

« 2 C e @ & hitpsy//nodejs.org/en/downkoad/ i ol MmEOe® B e @

Downloads

114.16.1

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current

Recommended For Most Users Latest Features

Display downloads for Current |

B —
=m @ L
Windows Installer macOs Installer Source Code

Windows Installer (.msi) 32-bit

Windows Binary (.zip) 32-bit

macOSs Installer (.pkg) 64-bit
mac0S Binary (.tar.gz) 64-bit
Linux Binaries (x64) 64-bit
Linux Binaries (ARM) ARMYT ARMyS
Source Code node-v14.16.1 tar.gz

Additional Platforms

Smart0S Binaries 64-bit

e.js Docker Image

Figure 1-30. Node.js installer

The downloaded file is installed in your Download folder by default. Click it, and
then click the Run button, as seen in Figure 1-31.

26

CHAPTER 1 MERN DEPLOYMENT SETUP

This PC Downloads

Open File - Security Waming

Do you want to run this file?

@ Mame: Ci\Users\pc\Downloads\node-v14,16,1
: Publisher: OpenJ$ Foundation

Type Windows Installer Package
From: C:\Users\pc\Downlcads\node-v14.16.1-x64.msi

Always ask before opening this file

' 'While files from the Internet can be useful, this file type can potentially
ﬂ harm your computer. Only run software from publishers you trust
< What's the risk?

Figure 1-31. Run button

In the Node.js installation popup window, click the Next button, as seen in Figure 1-32.

#2 Node js Setup - X

Welcome to the Node.js Setup Wizard

n ‘ d e The Setup Wizard will install Node.js on your computer.
(9

Figure 1-32. Node.js welcome

27

CHAPTER 1 MERN DEPLOYMENT SETUP

Click to accept the end-user license agreement, and then click the Next button, as
seen in Figure 1-33.

Nodejs Setup - X
End-User License Agreement A d
Please read the following license agreement carefully .@ c
Node.js is licensed for use as follows: A

Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject v

(A1 accept the terms in the License Agreement

pint | [Bak |[Next | | cancel

Figure 1-33. Agreement

Next, I advise that you use the installation location shown in Figure 1-34.

28

CHAPTER 1 MERN DEPLOYMENT SETUP

#5 Node js Setup -

X

Choose a custom location or dick Next to install.

Install Node.js to:

Destination Folder ﬂ .
o®dc

IC:‘Program Files\nodejs\

Bock [Neet]

Cancel

Figure 1-34. Installation location

The wizard asks you to choose a package. Keep the defaults, as seen in Figure 1-35.

45 Node,js Setup —

X

Select the way you want features to be installed.

Click the icons in the tree below to change the way features will be installed.

(node.exe).

hard drive. Ithas 1of 1
subfeatures selected. The

hard drive.

Reget Disk Usage Bock [Next |

Custom Setup
nege
d

Install the core Node.js runtime

This feature frees up 125KB on your

subfeatures require OKB on your

Browse...

Cancel

Figure 1-35. Default packages

29

CHAPTER 1 MERN DEPLOYMENT SETUP

Next, click the check box and then the Next button, as seen in Figure 1-36.

#2 Nodejs Setup - X

Tools for Native Modules P d
Optionally install the tools necessary to compile native modules. ‘S e

Some npm modules need to be compiled from C/C++ when installing. If you want to be able
to install such modules, some tools (Python and Visual Studio Build Tools) need to be
installed.

Ewmhmlymumemmds Notehatﬂmswlalsonstald'molatey The

Alternatively, follow the instructions at https: //qithub.com fnodeis/node-qvp £on-windows
to install the dependendes yourself.

gk [Next] [conce

Figure 1-36. Dependencies

Then, click the Install button, as seen in Figure 1-37.

30

CHAPTER 1 MERN DEPLOYMENT SETUP

42 Node,js Setup - X

Ready to install Node.js N ‘@d ¢

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Figure 1-37. Install

Once the installation is done, run the following commands to check the versions and
verify that everything is right.

node -v
npm -v

Summary

In this chapter, we have learnt about all the different technologies to create a
MERN(MongoDB, Express, React]S, Node]JS) project. We have also learnt how to deploy
them in different environments and we will be using them in the next chapters.

31

CHAPTER 2

Building a Dating App
with MERN

Welcome to Chapter 2, where you build a dating app using the MERN (MongoDB,
Express, React, Node.js) framework. The back end is hosted in Heroku, and the front-end
site uses Firebase hosting. The icons in the project come from Material-UI.

The web app has simple functionality and is the first MERN stack project. A
screenshot of the finished app, which is deployed in Firebase, is shown in Figure 2-1.
All the data comes from a MongoDB database, with API endpoints set in Node.js.

be
L

Figure 2-1. Finished app

33
© Nabendu Biswas 2021

N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_2

https://doi.org/10.1007/978-1-4842-7138-4_2#DOI

CHAPTER 2 BUILDING A DATING APP WITH MERN

Let’s review the React front end and then move to the back end. Open your terminal
and create a dating-app-mern folder. Inside it, use create-react-app to create a new app
called dating-app-frontend. The following are the commands to do this.

mkdir dating-app-mern
cd dating-app-mern
npx create-react-app dating-app-frontend

Firebase Hosting Initial Setup

Since the front-end site is hosted through Firebase, let’s create the basic setting while
create-react-app creates the React app. Following the same setup instructions in
Chapter 1, I created dating-app-mern in the Firebase console.

React Basic Setup

Return to the React project and cd to the dating-app-frontend directory. Start the React
app with npm start.

cd dating-app-frontend
npm start

Next, let’s delete some of the files that you don’t need. Figure 2-2 shows how the app
looks on localhost.

34

CHAPTER 2 BUILDING A DATING APP WITH MERN

i
Jo
g

B & %

®

EXPLORER

» OPEN EDITORS
~ DATING-APP-MERN
~ dating-app-frontend
> node_modules
? public
~ src
App.css
5 Appjs
indexcss
5 indexjs

‘i logo.svg
IS reportWebVitals.js

I5 setupTests.js

=
1} package-lockjson
{} packagejson
@ READMEmd

§§i > OUTUINE
> TIMELINE

) File Edit Selection View Go Run Terminal Help setupTests s - dating-app-merm - Visual Studio Code - a X

5 setupTestsjs X 5 M-
dating-app-frontend > src > 15 setuplestsjs
1 // jest-dom adds custom jest matchers for asserting on DOM
nodes.

2 // allows you to do things like:
3 // expect(element).toHaveTextContent(/react/i)
4 // learn more: https://github.com/testing-library/jest-dom
5 import '@testing-library/jest-dom’;
6

Open to the Side Ctrl+Enter

Open With..

Reveal in File Explorer Shift+Alt+R

Open in Integrated Terminal

Select for Compare

Open Timeling

Cut Cirl+X

Copy Ctrl+C

Copy Path Shift+Alt+C

Copy Relative Path Ctrl+K Ctrl+Shift+C

Rename F2

Delete Delete |

Find File References

¥ Fmme & @40 inicol Smwsd4 UFS U jmwsa @Gowe B QO
Figure 2-2. Delete files

Let’s remove all the unnecessary boilerplate code. The index. js file should look like

the following.

import React from 'react’;
import ReactDOM from 'react-dom';

import

./index.css';

import App from './App';

ReactDOM.rendex (

<React.StrictMode>

<App />

</React.StrictMode>,
document.getElementById('root")

)5

35

CHAPTER 2 BUILDING A DATING APP WITH MERN

App.js contains only the text Dating App MERN. All the content from the App.css
file has been removed.

import './App.css’;

function App() {
return (
<div className="app">
<h1>Dating App MERN </h1>
</div>

)s
}

export default App;

In index.css, update the CSS to have margin: 0 at the top.
* A

margin: 0;

Figure 2-3 shows how the app looks on localhost.

B wetz W Gotby B Resct [l Angulse B Work W Tutoss [Project W Tutor

Dating App MERN

Figure 2-3. Initial app

Creating a Header Component

Let’s create a header component. First, you must install Material-UI (https://material-
ui.com), which provides the icons. You need to do two npm installs, as per the Material-
UI documentation. Install the core through the integrated terminal in the dating-app-
frontend folder.

npm i @material-ui/core @material-ui/icons

36

https://material-ui.com
https://material-ui.com

CHAPTER 2 BUILDING A DATING APP WITH MERN

Next, create a components folder inside the src folder. Create two files—Header. js
and Header . css—inside the components folder. Header. js has three things: a person
icon, alogo, and a forum icon. The logo is taken from the project’s public directory,
which contains the React logo by default.

The following is the Header . js file’s content.

import React from 'react’

import './Header.css'

import PersonIcon from '@material-ui/icons/Person’
import IconButton from '@material-ui/core/IconButton’
import ForumIcon from '@material-ui/icons/Forum’

const Header = () => {
return (
<div className="header">
<IconButton>
<PersonIcon fontSize="large" className="header icon" />
</IconButton>

<IconButton>
<ForumIcon fontSize="large" className="header icon" />
</IconButton>
</div>

}

export default Header

Include the Header component in the App. js file and on localhost. The updated
code is marked in bold.

import './App.css’;
import Header from './components/Header’;

function App() {
return (

37

CHAPTER 2 BUILDING A DATING APP WITH MERN

<div className="app">
<Header />
</div>
);
}

export default App;

The Header . css file contains the following content, including simple styles, which
completes the header.

.header({
display: flex;
align-items: center;
justify-content: space-between;
z-index: 100;
border-bottom: 1px solid #f9f9f9;
}

.header logo{
object-fit: contain;
height: 40px;

}

.header _icon{
padding: 20px;

Figure 2-4 shows how the app looks now on localhost.

u] x
React App x +

C 0 @ loahost “ 0> B R

s B D2 B Ood B Ded W Bogs W Web B Wetd B Gatsby W Pesct W Acguw B Work W Totodsk W Progect W Tutorish? [Tutossd Wl Tutd » | W Other bookmarks

4 -

Figure 2-4. Header component

38

CHAPTER 2 BUILDING A DATING APP WITH MERN

Creating the Dating Cards Component

Let’s now work on the second component. Create two files—DatingCards. js and
DatingCards.css—inside the components folder. Then include the DatingCards
component in the App. js file. The updated code is marked in bold.

import './App.css’;
import Header from './components/Header’;

import DatingCards from './components/DatingCards’;

function App() {

return (
<div className="app">
<Header />
< DatingCards />
</div>
)5
}

export default App;

Before moving forward, you need to install a react-tinder-card package. This
package has a feature that provides the swipe effect.

npm i react-tinder-card

Next, put the content in DatingCards. js. Here, inside a people state variable, you store
the name and images of four people. Next, import DatingCard and use it as a component.
Here, you use the props mentioned in the react-tinder-card documentation.

The swiped and outOfFrame functions are required. When looping through each
person, use the imgUrl background image and display the name in the h3 tag.

import React, { useState } from 'react’
import DatingCard from 'react-tinder-card’

import './DatingCards.css’

const DatingCards = () => {
const [people, setPeople] = useState(]

39

CHAPTER 2 BUILDING A DATING APP WITH MERN

D)

40

{ name: "Random Guy", imgUrl: "https://images.unsplash.com/photo-
1520409364224-63400afe26e5?ixid=MnwxMjA3fDB8MHxwaG90by1wYWd1fHx8FGVu
fDB8fHx88ix1ib=rb-1.2.18auto=format8fit=crop8w=6588q=80" },

{ name: "Another Guy", imgUrl: "https://images.unsplash.com/photo-
1519085360753-at0119f7cbe7?ix1ib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90b
y1wYWd1fHx8fGVufDB8fHx88auto=format8fit=cropdw=6348q=80" },

{ name: "Random Girl", imgUrl: "https://images.unsplash.com/photo-
1494790108377-be9c29b29330?1ix1ib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90b
y1wYWd1fHx8fGVufDB8fHx88auto=format8fit=crop8w=6348q=80" },

{ name: "Another Girl", imgUrl: "https://images.unsplash.com/photo-
1529626455594-41f0802cfb7e?ixid=MnwxMjA3fDB8MHxwaG90by1wYWd1fHx8fGVu
fDB8fHx88ix1ib=rb-1.2.18auto=format&8fit=crop8w=6348q=80" }

const swiped = (direction, nameToDelete) => {
console.log("receiving " + nameToDelete)
}
const outOfFrame = (name) => {
console.log(name + " left the screen!!")
}
return (
<div className="datingCards">
<div className="datingCards__container">
{people.map((person) => (
<DatingCard
className="swipe"
key={person.name}
preventSwipe={['up', 'down']}
onSwipe={(dir) => swiped(dir, person.name)}
onCardLeftScreen={() => outOfFrame(person.name)} >
<div style={{ backgroundImage: “url(${person.
imgUrl})"}} className="card">
<h3>{person.name}</h3>

CHAPTER 2 BUILDING A DATING APP WITH MERN

</div>
</DatingCard>

))}

</div>
</divy

}
export default DatingCards

Localhost shows four “people,” as seen in Figure 2-5, but you need to style

everything.

Figure 2-5. All people

Add the first styles in the DatingCards.css file, and make datingCards__container
a flexbox. Next, style each card to contain the image and other things. Note that you are
setting position: relative for each card, which offsets the element relative to itself and
provides width and height.

.datingCards__container{
display: flex;
justify-content: center;
margin-top: 10vh;

}

.card{
position: relative;
background-color: white;
width: 600px;
padding: 20px;

41

CHAPTER 2 BUILDING A DATING APP WITH MERN

max-width: 85vw;

height: 50vh;

box-shadow: Opx 18px 53px Opx rgba(o, 0, 0, 0.3);
border-radius: 20px;

background-size: cover;

background-position: center;

Figure 2-6 shows how this looks on localhost.

Figure 2-6. Images appear

Let’s add three more styles, and out of this swipe is a class within the card class.
Use position: absolute to create the magic of the swipe effect. Add the following
content in the DatingCards.css file

.swipe{
position: absolute;

42

CHAPTER 2 BUILDING A DATING APP WITH MERN

.cardContent{
width: 100%;
height: 100%;

}

.card h3{
position: absolute;
bottom: 0;
margin: 10px;
color: white;

}

The front end is almost complete, as seen in Figure 2-7. It contains the right swipe
and left swipe functionality. Everything is done except the footer, which contains the

swipe buttons.

Figure 2-7. Almost complete

43

CHAPTER 2 BUILDING A DATING APP WITH MERN

Creating the Swipe Buttons Component

Let’s now create the SwipeButtons component, which are the buttons in the footer.

These buttons add to the app’s styling. They won’t be functional since it’s a simple app.
Create two files—SwipeButtons.js and SwipeButtons.css—inside the components

folder. You also need to include it in the App. js file.

The updated content is marked in bold.

import
import
import
import

"./App.css’;

Header from './components/Header';

DatingCards from './components/DatingCards’;
SwipeButtons from './components/SwipeButtons';

function App() {
return (
<div className="app">

<
<

<Header />

DatingCards />
SwipeButtons /»

</div>

)5
}

export

default App;

The content of the SwipeButtons. js file is straightforward. There are five icons from

Material-UI wrapped inside IconButton.

import
import
import
import
import
import
import
import

React from 'react’

"./SwipeButtons.css'

ReplayIcon from '@material-ui/icons/Replay’
CloseIcon from '@material-ui/icons/Close’
StarRateIcon from '@material-ui/icons/StarRate
FavoriteIcon from '@material-ui/icons/Favorite’
FlashOnIcon from '@material-ui/icons/FlashOn'

IconButton from '@material-ui/core/IconButton’

const SwipeButtons = () => {

44

CHAPTER 2 BUILDING A DATING APP WITH MERN

return (
<div className="swipeButtons">
<IconButton className="swipeButtons _repeat”>
<ReplayIcon fontSize="large" />
</IconButton>
<IconButton className="swipeButtons _left">
<CloseIcon fontSize="large" />
</IconButton>
<IconButton className="swipeButtons star">
<StarRateIcon fontSize="large" />
</IconButton>
<IconButton className="swipeButtons__right">
<FavoriteIcon fontSize="large" />
</IconButton>
<IconButton className="swipeButtons lightning">
<FlashOnIcon fontSize="large" />
</IconButton>
</div>

}
export default SwipeButtons

Next, style the buttons in the SwipeButtons.css file. First, style the swipeButtons
class and make it flex with position: fixed. In a fixed position, an element remains
attached where stated (at the bottom in this case), even as the user scrolls. You are also
styling the MuiIconButton-root class, which was created by the package.

In the SwipeButtons.css file, style each button with a different color.

.swipeButtons{
position: fixed;
bottom: 10vh;
display: flex;
width: 100%;
justify-content: space-evenly;

45

CHAPTER 2 BUILDING A DATING APP WITH MERN

.swipeButtons .MuiIconButton-root{

background-color: white;

box-shadow: Opx 10px 53px Opx rgba(o, 0, 0, 0.3) !important;
}

.swipeButtons repeat{
padding: 3vw !important;
color: #f5b748 !important;

}

.swipeButtons left{
padding: 3vw !important;
color: #ec5e6f !important;

}

.swipeButtons star{
padding: 3vw !important;
color: #62b4f9 !important;
}

.swipeButtons right{
padding: 3vw !important;
color: #76e2b3 !important;

}

.swipeButtons_ lightning{
padding: 3vw !important;
color: #915dd1 !important;

Figure 2-8 shows the project on localhost.

46

CHAPTER 2 BUILDING A DATING APP WITH MERN

@ D % bakhost

Je
JL

Random Girl

Figure 2-8. Front end complete

Initial Back-End Setup

Let’s move to the back end by starting with the Node.js code. Open a new terminal
window and create a new dating-app-backend folder in the root directory. Enter git
init because it is required later for Heroku.

mkdir dating-app-backend
cd dating-app-backend
git init

Next, create a package. json file by entering the npm init command in the terminal.
You are asked several questions; for most of them, press the Enter key. You can enter a
description and the author, but it is not mandatory. You can generally make the entry
point at server. js because it is the standard (see Figure 2-9).

47

CHAPTER 2 BUILDING A DATING APP WITH MERN

Figure 2-9. Back-end initial setup

Once package. json is created, you need to create the .gitignore file with node_
modules in it since you don’t want to push node_modules to Heroku later. The following is
the content of the .gitignore file.

node_modules

Next, open package.json. Theline "type": "module" is required to have React-like
imports enabled in Node.js. These modules are known as ECMA modules. The initial
modules with require statements are known as Common]S modules. You can read more
aboutitat https://blog.logrocket.com/how-to-use-ecmascript-modules-with-
node-js/.

You also need to include a start script to run the server. js file. The updated content
is marked in bold.

48

https://blog.logrocket.com/how-to-use-ecmascript-modules-with-node-js/
https://blog.logrocket.com/how-to-use-ecmascript-modules-with-node-js/

CHAPTER 2 BUILDING A DATING APP WITH MERN

"name": "dating-app-backend",
"version": "1.0.0",
"description": "The dating app backend",
"main": "server.js",
"type": "module”,
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",

"start": "node server.js'

1

"author": "Nabendu Biswas",
"license": "ISC"

You need to install two packages before starting. Open the terminal and install
Express and Mongoose in the dating-app-backend folder.

npm i express mongoose

MongoDB Setup

The MongoDB setup is the same as described in Chapter 1. You need to follow it and
create a new project named dating-app-mern.

Before moving forward, install nodemon in the dating-app-backend folder. Whenever
you make any changes to the code in the server. js file, the Node server restarts

instantaneously.

npm i nodemon

Initial Route Setup

Let’s create the initial route, which generally checks whether everything is set up
correctly. The Express package in Node.js allows you to create routes, which is how most
of the Internet works. Most back-end languages like Node.js, Java offer capabilities to
create these routes, which interact with the databases. The initial route doesn’t interact
with the database and simply returns a text when you go to it, using a GET request.

49

CHAPTER 2 BUILDING A DATING APP WITH MERN

Create a server. js file in the dating-app-backend folder. Here, you import the Express
and the Mongoose packages first. Next, use Express to create a port variable to run on
port 8001.

The first API endpoint is a simple GET request created by app.get (), which shows
Hello TheWebDev text if successful.

Then you listen on port 8001 with app.listen().

import express from 'express’
import mongoose from 'mongoose’

//App Config
const app = express()
const port = process.env.PORT || 8001

//Middleware
//DB Config

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

In the terminal, type nodemon server.js. You can see the Listening on localhost:
8001 console log. To check that the route is working correctly, go to http://
localhost:8001/ to see the endpoint text (see Figure 2-10).

© O iecamost:8001 lsnm-m—
mamw ha § = 1 - .

Hello TheWebDev

Figure 2-10. Initial route

Database User and Network Access

In MongoDB, you need to create a database user and provide network access. The
process is the same as in Chapter 1. Follow those instructions and get the user
credentials and connection URL.

50

CHAPTER 2 BUILDING A DATING APP WITH MERN

In server. js, create a connection_url variable and paste the URL within the string
that you got from MongoDB. Enter the password that you saved earlier and provide a
database name. The updated code is marked in bold.

//App Config

const app = express()

const port = process.env.PORT || 8001

const connection_url = 'mongodb+srv://admin:yourpassword@clustero.lggjc.
mongodb.net/datingDB?retrylirites=truedw=majority"

//Middleware

//DB Config

mongoose.connect(connection_url, {
useNewUrlParser: true,
useCreateIndex: true,
useUnifiedTopology: true

}

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

MongoDB Schema and Routes

MongoDB stores data in a JSON format instead of the regular table structure found in a
traditional database like Oracle. You create the schema file required by MongoDB. It tells
you how fields are stored in MongoDB.

Here, cards is considered a collection name, and you store a value like cardSchema in
the database. It consists of an object with a name and imgUr1 keys. These are the names
that you use in MongoDB. Create a dbCards. js file and put the following content in it.

51

CHAPTER 2 BUILDING A DATING APP WITH MERN

import mongoose from 'mongoose’
const cardSchema = mongoose.Schema({
name: String,
imgUrl: String
1)

export default mongoose.model('cards', cardSchema)

You now use the schema to create the endpoint that adds data to the database. The
MVC pattern is followed here; it is the traditional flow of a web application. Read more
aboutitat https://medium.com/createdd-notes/understanding-mvc-architecture-
with-react-6cd38e91fefd.

Next, use a POST request that takes any data from the user and sends it to the
database. You can use any endpoint. For example, if you write an article on Facebook
and hit the POST button, your article is saved in the Facebook database once the POST
request is made.

The GET endpoints fetch all the data from the database. Again, you can give any
endpoint. For example, when you browse through the feed in Facebook, a GET request is
sent to the endpoint, which in turn fetches all posts from the Facebook database.

In server. js, create a POST request to the /dating/cards endpoint. The load is
in req.body to MongoDB. Then you use create() to send dbCard. If it’s a success, you
receive status 201; otherwise, you receive status 500. The updated content is marked in
bold.

Next, create the GET endpoint to /dating/cards to get the data from the database.
You are using find() here and receive a status 200 on success (otherwise, status 500).
The updated content is marked in bold.

import express from 'express'
import mongoose from 'mongoose’
import Cards from './dbCards.js’

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/dating/cards', (req, res) =» {
const dbCard = req.body

52

https://medium.com/createdd-notes/understanding-mvc-architecture-with-react-6cd38e91fefd
https://medium.com/createdd-notes/understanding-mvc-architecture-with-react-6cd38e91fefd

CHAPTER 2 BUILDING A DATING APP WITH MERN

Cards.create(dbCard, (err, data) =»> {
if(err) {
res.status(500).send(err)
} else {
res.status(201).send(data)

)
1

app.get('/dating/cards', (req, res) =» {
Cards.find((err, data) =» {

if(err) {
res.status(500).send(err)
} else {
res.status(200).send(data)
}
)
}
//Listener

app.listen(port, () => console.log(Listening on localhost: ${port}"))

To check the routes, let’s use the Postman app. Download and install it.
Send a GET request to http://localhost:8001 to check that it’s working in
Postman, as seen in Figure 2-11.

53

CHAPTER 2 BUILDING A DATING APP WITH MERN

Figure 2-11. Initial route check

Before moving forward with the POST request, you need to complete two things.
First, implement CORS; otherwise, you get cross-origin errors later when you deploy the
app. CORS (Cross-Origin Resource Sharing) is the mechanism that restricts access from
one domain to another. Suppose you are on http://example.com and want to access
http://mybank.com/accountdetails. CORS won't allow you to do so. It is only allowed
ifhttp://mybank.com allows cross-origin sharing with http://example.com.

Open the terminal and install CORS in the dating-app-backend folder.

npm i cors

In server. js, import CORS and use it in with app.use(). You also need to use the
express.json() middleware. It is required because you need it to parse the incoming
JSON object from MongoDB to read the body.

The updated code is marked in bold.

import express from 'express’
import mongoose from 'mongoose’
import Cors from 'cors’

import Cards from './dbCards.js'

54

http://mybank.com/accountdetails
http://mybank.com

CHAPTER 2 BUILDING A DATING APP WITH MERN

//Middleware
app.use(express.json())
app.use(Cors())

In Postman, change the request to POST, and then add the http://localhost:8001/
dating/cards endpoint.

Next, click Body and select raw. Select JSON(application/json) from the drop-down
menu. In the text editor, copy the data from DatingCards. js file. Make the data JSON by
adding double quotes to the keys.

Next, click the Send button. If everything is correct, you get Status: 201 Created (see
Figure 2-12).

W M Ao e 3

Figure 2-12. POST route

You need to test the GET endpoint. Change the request to GET and click the Send
button. If everything is right, you get Status: 200 OK (see Figure 2-13).

55

CHAPTER 2 BUILDING A DATING APP WITH MERN

Figure 2-13. GET route

Integrating the Back End with the Front End

Let’s hook the back end to the front end. Use the axios package to call from the front
end. Axios is a JavaScript library that makes the API request to the REST endpoint. You
just created two endpoints in the back end. To access them, you need Axios. Open the
dating-app-frontend folder and install it.

npm i axios

Next, create a new axios. js file inside the components folder, and then create an
instance of axios. The base URL is http://localhost:8001.

import axios from 'axios'
const instance = axios.create({
baseURL: "http://localhost:8001"

1)

export default instance

56

CHAPTER 2 BUILDING A DATING APP WITH MERN

In DatingCards.js, getrid of the hard-coded stuff in the people state. Then import
the local axios and use the useEffect hook to do the API call to the /dating/cards
endpoint. Once you receive the data, reset it using the setPeople() function. The
updated code is marked in bold.

import React, { useState, useEffect } from 'react’
import DatingCard from 'react-tinder-card’

import
import axios from './axios'

./DatingCards.css’

const DatingCards = () => {
const [people, setPeople] = useState([])
useEffect(() => {
async function fetchData() {
const req = await axios.get("/dating/cards")

setPeople(req.data)
}
fetchData()
3 [D

const swiped = (direction, nameToDelete) => {

console.log("receiving " + nameToDelete)

Go to http://localhost:3000/ to see the data. The app is now complete (see
Figure 2-14).

57

CHAPTER 2 BUILDING A DATING APP WITH MERN

(€ e @ D D 25 locathost 30¢ - B FLEiMDe® BeEeeR =
et So=

- -

Another Girl

Figure 2-14. App complete

Deploying the Back End to Heroku

Go to www. heroku.com to deploy the back end. You followed the same procedure in
Chapter 1 to create an app named dating-mern-backend.

Return to axios.js and change the endpoint to https://dating-mern-backend.
herokuapp.com. If everything is working fine, your app should run.

import axios from 'axios'
const instance = axios.create({
baseURL: https://dating-mern-backend.herokuapp.com

1)

export default instance

58

http://www.heroku.com
https://dating-mern-backend.herokuapp.com
https://dating-mern-backend.herokuapp.com

CHAPTER 2 BUILDING A DATING APP WITH MERN

Deploying the Front End to Firebase

It’s time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1. After this process, the site should be live and working properly, as seen in

Figure 2-15.

m il =

Another Girl

Figure 2-15. Deployed app

Summary

In this chapter, we have created a dating app in MERN stack. We build the frontend
in React]S and hosted it in Firebase. The backend was build in Node]JS and hosted in
Heroku. The database was build in MongoDB.

59

CHAPTER 3

Building a Short Video
App with MERN

Welcome to your next MERN project, where you build an awesome short video app
using the MERN (MongoDB, Express, React, Node.js) framework. On the back end,
it is hosted in Heroku, and the front-end site uses Firebase hosting. Material-UI
(https://material-ui.com) supplies the icons in the project.

This web app shows short videos stored in MongoDB, which can be played by
clicking on it. You can pause it by clicking it again. This web app also has very smooth
vertical scrolling to show more videos. In Figure 3-1, you can see the final deployed
version of the app.

© Nabendu Biswas 2021
N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_3

61

https://doi.org/10.1007/978-1-4842-7138-4_3#DOI
https://material-ui.com

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

oY T

@thewebdev

e .l'uesda_\f marning editing on kdenlive in Windows

Figure 3-1. Deployed version

Work with React first and then move to the back end. Open your terminal and create
a short-video-mern folder. Inside it, use create-react-app to create a new app called
short-video-frontend. The following are the commands.

mkdir short-video-mern
cd short-video-mern
npx create-react-app short-video-frontend

Firebase Hosting Initial Setup

Since the front-end site is hosted through Firebase, you can create the basic setting while
create-react-app creates the React app. Following the setup instructions in Chapter 1,
I created short-video-mern in the Firebase console.

62

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

React Basic Setup

Go back to the React project and cd to the short-video-frontend directory. Start the
React app with npm start.

cd short-video-frontend
npm start

The deleting of the files and basic setup in index. js, App. js, and App.css is like
what was done in Chapter 2. Follow those instructions.
Figure 3-2 shows how the app looks on localhost.

React App ® +

C t @ localhost

Apps M D2 M On3 W Dot W Blogs W Web [Web2 [Gatsty [Fenct

Short Video App MERN

Figure 3-2. Initial app

Creating a Video Component

Next, create a components folder inside the src folder. Create two files—Video. js and
Video.css—inside the components folder. In the Video. js file, add a video tag and a
vertical video link. T used the link to my YouTube short video on my channel.

The following is the Video. js content.

import React from 'react’

import './Video.css'

const Video = () => {

return (
<div className="video">
<video

src="https://res.cloudinary.com/dxkxvfo2o/video/upload/
v1608169738/videol_cvrjfm.mp4"
className="video player"
loop

63

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

>
</video>
</div>

}
export default Video

Include the Video component in the App. js file and on localhost. The updated code
is marked in bold.

import './App.css’;
import Video from './components/Video';

function App() {
return (
<div className="app">
<div className="app__videos"»
<Video /»
<Video /»
</divy
</div>
);
}

export default App;

Next, put the basic styles in the App.css file, including the styles for scroll-snap-
type, which are for scrolling. You also need to center everything. Next, put some more
styles for the app__videos class and hide the scrollbar.

html{
scroll-snap-type: y mandatory;

}

-app{
height: 100vh;

background-color: black;

64

CHAPTER 3

display: grid;
place-items: center;

}

.app__videos{

position:relative;

height: 800px;

border-radius: 20px;

overflow: scroll;

width: 80%;

max-width: 500px;

scroll-snap-type: y mandatory;
}

.app__videos::-webkit-scrollbar{
display: none;

}

.app__videos{
-ms-overflow-style: none;
scrollbar-width: none;

Figure 3-3 shows how the app looks on localhost.

BUILDING A SHORT VIDEO APP WITH MERN

65

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

% React App X+

3 C 13 @ localhost o

fHidn BUe2 B3 B Ded BoBogs B web B Wtz B Gty B Resct W Al B Work [Tutorsh [l Project [l Tutonah2

Figure 3-3. Video shown

You need to style the video and video __player classes in the Video.css file also.
You are again using scroll-snap-type here.

.video{
position: relative;
background-color: white;
width: 100%;
height:100%;
scroll-snap-align: start;

}

.video player{
object-fit: fill;
width: 100%;
height: 100%;

66

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

The snap feature is done. It smoothly takes you to the next video as you scroll, as
seen in Figure 3-4. Also, the edges have been made perfect on all sides through CSS.

st 7 C O B K Ll

Dewd Blox Web Web2 Gatsby React Angular Work Tutorials Project. Tutoriak? » Other bookmarks. [E Reading kst
ogs ¥ o e il

Figure 3-4. Snap feature

Right now, the videos won't play. To make them play, you must use a reference
(or ref). React works on a virtual DOM. Generally, you only need to access the DOM
(Document Object Model) in special cases, and you use refs to access DOM elements.
In this case, you need to access the <video> HTML element so that you can access the
play() and pause() properties, which are only available through refs.

First, import the useRef and useState hooks to get the videoRef variable, which
is used inside the video element, where you create an onClick handler to fire a
handleVideoPress function.

Inside the handleVideoPress function, use the playing state variable to check if the
video plays, and then set it to pause with videoRef.current.pause() and change the
playing state to false. You do the reverse in the else block.

67

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN
The updated Video. js content is marked in bold.

import React , { useRef, useState } from 'react’
./Video.css'

import

const Video = () => {
const [playing, setPlaying] = useState(false)
const videoRef = useRef(null)
const handleVideoPress = () => {
if(playing){
videoRef.current.pause()
setPlaying(false)
} else {
videoRef.current.play()
setPlaying(true)

}

return (
<div className="video">
<video
src="https://res.cloudinary.com/dxkxvfo2o/video/upload/
v1608169738/videol_cvrjfm.mp4"
className="video player"
loop
ref={videoRef}
onClick={handleVideoPress}
>
</video>
</div>

}
export default Video

Click the video to play it on localhost. Click it again to pause.

68

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

Creating a Video Footer Component

Let’s work on the second component, which shows the username, video title, and a
rolling ticker in the video’s footer.

Create two files—VideoFooter. js and VideoFooter.css—inside the components
folder. Then include the VideoFooter component in the Video. js file. The updated code
is marked in bold.

import React , { useRef, useState } from 'react’
import './Video.css'
import VideoFooter from './VideoFooter’

const Video = () => {

return (
<div className="video">
<video
src="https://res.cloudinary.com/dxkxvfo20/video/upload/
v1608169738/videol_cvrjfm.mp4"
className="video player"
loop
ref={videoRef}
onClick={handleVideoPress}
>
</video>
<VideoFooter /»
</div>

}
export default Video

69

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

Next, add an h3 tag containing the username and a p tag containing the description
in the VideoFooter. js file.

import React from 'react'
import './VideoFooter.css'

const VideoFooter = () => {
return (
<div className="videoFooter">
<div className="videoFooter text">
<h3>@nabendu82</h3>
<p>Macbook Air to new Windows editing beast</p>
</div>
</div>

}

export default VideoFooter
Next, style them in the VideoFooter.css file.

.videoFooter{
position: relative;
color: white;
bottom: 150px;
margin-left: 40px;
display: flex;

}

.videoFooter text{
flex: 1;

}

.videoFooter text > h3{
padding-bottom: 20px;
}

.videoFooter text > p{
padding-bottom: 20px;

70

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

Figure 3-5 shows the text on localhost.

. B Resct 250 x !. +) Can.. %

lels e @ © D= locahes e B

b2
=
(=]
L]
@
]
LY
2
E

=
1l

Figure 3-5. Initial footer

Let’s first install Material-UI, which provides the icons. Do two npm installs as per
the Material-UI documentation. Install the core through the integrated terminal in the
short-video-frontend folder.

npm i @material-ui/core @material-ui/icons

It’s time to use it in the VideoFooter. js file. Include the music note icon,
MusicNoteIcon, inside the videoFooter ticker div, which you imported from
Material-UI.

The updated content is marked in bold.

import React from 'react’
import './VideoFooter.css'
import MusicNoteIcon from '@material-ui/icons/MusicNote’

71

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

const VideoFooter = () => {
return (
<div className="videoFooter">
<div className="videoFooter text">
<h3>@nabendu82</h3>
<p>Macbook Air to new Windows editing beast</p>
<div className="videoFooter__ticker"»
<MusicNoteIcon className="videoFooter__icon" /»
</divy
</div>
</div>

}

export default VideoFooter

The project features a nice ticker. For this, you install a package called react-ticker
in the short-video-frontend folder.

npm i react-ticker

Next, include the ticker as per the documentation and a record (or rotating disc)
image in the VideoFooter. js file. As you can see at the bottom of the news channels,
the ticker is moving text across the screen. A record/rotating disc image is also shown, to
which you add nice animations very shortly.

The updated content is marked in bold.

import React from 'react'

import './VideoFooter.css'

import MusicNoteIcon from '@material-ui/icons/MusicNote’
import Ticker from 'react-ticker'

const VideoFooter = () => {
return (
<div className="videoFooter">
<div className="videoFooter text">
<h3>@nabendu82</h3>
<p>Macbook Air to new Windows editing beast</p>

72

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

<div className="videoFooter ticker"»
<MusicNoteIcon className="videoFooter icon" />
<Ticker mode="smooth"»

{({ index }) => (

<>
<p>I am a Windows PC</p>
</>
)}
</Ticker»
</div>
</div>

<img className="videoFooter__record" src="https://static.
thenounproject.com/png/934821-200.png" alt="video footer" /»

</div>

export default VideoFooter

Next, add styles for both the ticker and the recorded image in the VideoFooter.
css file. Here, you align the ticker with the music icon and add animation to move the

recorded image.
Add the following content to the VideoFooter.css file.

.videoFooter icon{

position: absolute;

.videoFooter ticker > .ticker{
height: fit-content;
margin-left: 30px;
width: 60%;

.videoFooter record{
animation: spinTheRecord infinite 5s linear;
height: 50px;
filter: invert(1);

73

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

position: absolute;
bottom: 0;
right: 20px;

}
@keyframes spinTheRecord {
from {
transform: rotate(odeg)
}
to {
transform: rotate(360deg)
}

Figure 3-6 shows the footer component, including a scrolling ticker and rotating disc,
on localhost.

T T
™ r iy A

@nabendus2

Macbook Air te new Windows editing beast

* J Nindows PC . o

Figure 3-6. Footer complete

74

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

Creating a Video Sidebar Component

Let’s now create a sidebar component, which shows icons on the right side of the video.
Create two files—VideoSidebar. js and VideoSidebar.css—inside the components
folder. You also need to include the Video. js file.
The updated code is marked in bold.

import React , { useRef, useState } from 'react’
import './Video.css'

import VideoFooter from './VideoFooter'

import VideoSidebar from './VideoSidebar’

const Video = () => {

return (
<div className="video">
<video
src="https://res.cloudinary.com/dxkxvfo20/video/upload/
v1608169738/videol_cvrjfm.mp4"
className="video player"
loop
ref={videoRef}
onClick={handleVideoPress}
>
</video>
<VideoFooter />
<VideoSidebar /»
</div>

}
export default Video

Next, update the VideoSidebar. js file. Here, you are using different Material-UI
icons. You also use a state variable that saves whether the like icon has been pressed; if
so, it changes from a hollow icon to a filled icon, and the count also changes.

75

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

import React, { useState } from 'react’

import './VideoSidebar.css'

import FavoritelIcon from '@material-ui/icons/Favorite’

import FavoriteBorderIcon from '@material-ui/icons/FavoriteBorder’
import MessageIcon from '@material-ui/icons/Message’

import ShareIcon from '@material-ui/icons/Share’

const VideoSidebar = () => {
const [liked, setLiked] = useState(false)
return (
<div className="videoSidebar">
<div className="videoSidebar button">
{ liked ? <FavoriteIcon fontSize="large" onClick={e =>
setLiked(false)} /> : <FavoriteBorderIcon fontSize="large'
onClick={e => setLiked(true)} /> }
<p>{liked ? 101 : 100}</p>
</div>
<div className="videoSidebar button">

<MessageIcon fontSize="large" />
<p>345</p>

</div>

<div className="videoSidebar button">
<ShareIcon fontSize="large" />
<p>109</p>

</div>

</div>

}
export default VideoSidebar

Next, update the VideoSidebar.css file.

.videoSidebar{
position: absolute;
top: 50%;

76

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

right: 10px;
color: white;

}

.videoSidebar button{
padding: 20px;
text-align: center;

Figure 3-7 shows these lovely icons, and the video sidebar is done.

P TR

@nabendus2
Machook Air to new Windows editing beast

- 3 1 am a Wingogs PC

Figure 3-7. Sidebar completed

77

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

Making Components Dynamic

All the data from the App. js file is passed to child components. You make the
components dynamic so that you can pass props to them. Like in React, you pass data
from a parent component to a child component with props. The video sidebar is the first
component to work on. In VideoSidebar. js, pass the numbers as props.

The updated content is marked in bold.

const VideoSidebar = ({ likes, shares, messages }) => {
const [liked, setLiked] = useState(false)
return (
<div className="videoSidebar">
<div className="videoSidebar_ button">
{ 1liked ? <FavoriteIcon fontSize="large" onClick={e =>
setLiked(false)} /> : <FavoriteBorderIcon fontSize="large"
onClick={e => setLiked(true)} /> }
<p>{liked ? likes + 1 : likes }</p>
</div>
<div className="videoSidebar button">
<MessageIcon fontSize="large" />
<p>{messages}</p>
</div>
<div className="videoSidebar_ _button">
<ShareIcon fontSize="large" />
<p>{shares}</p>
</div>
</div>

}
export default VideoSidebar

Similarly, pass the strings as props in the VideoFooter. js file.

78

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

The updated content is marked in bold.

const VideoFooter = ({ channel, description, song }) => {
return (
<div className="videoFooter">
<div className="videoFooter text">

<h3>@{channel} </h3>

<p>{description}</p>

<div className="videoFooter ticker"»
<MusicNoteIcon className="videoFooter icon" />
<Ticker mode="smooth">

{({ index }) => (

<o
<p>{song}</p>
</>
)}
</Ticker>
</div>
</div>

<img className="videoFooter record" src="https://static.
thenounproject.com/png/934821-200.png" alt="video footer" />
</div>

}

export default VideoFooter

You want to further drill the props from the app component to have different video
files. Let’s add these props to the Video. js file and use them.
The updated content is marked in bold.

const Video = ({ url, channel, description, song, likes, shares, messages

b = {
;éturn (

79

CHAPTER 3

}

BUILDING A SHORT VIDEO APP WITH MERN

<div className="video">

<video
src={url}
className="video player"
loop
ref={videoRef}
onClick={handleVideoPress}
>
</video>
<VideoFooter channel={channel} description={description}
song={song} />
<VideoSidebar likes={likes} shares={shares}
messages={messages} />

</div>

export default Video

In App. js, you pass all the props and can pass two different videos.

The updated content is marked in bold.

function App() {

80

return (
<div ¢
<div

<V

/>

lassName="app">
className="app__videos">
ideo
url="https://res.cloudinary.com/dxkxvfo20/video/upload/
v1608169738/video1_cvrjfm.mpg"
channel="nabendu82"
description="Macbook Air to new Windows editing beast"
song="I am a Windows PC"
likes={345}
shares={200}
messages={90}

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

<Video
url="https://xres.cloudinary.com/dxkxvfo2o/video/upload/
v1608169739/video2_mecbdo.mp4"
channel="thewebdev"
description="Tuesday morning editing on kdenlive in Windows"
song="Kdenlive is great"
likes={445}
shares={290}
messages={109}
/>
</div>
</div>
);
}
export default App;

The front end is complete, and it’s time to start the back end.

Initial Back-End Setup

Let’s move to the back end, starting with the Node.js code. Open a new terminal window
and create a new short-video-backend folder in the root directory. After moving to the
short-video-backend directory, enter the git init command, which is required for
Heroku later.

mkdir short-video-backend
cd short-video-backend
git init
Next, create the package. json file by entering the npm init command in the
terminal. You are asked a bunch of questions; for most of them, simply press the Enter

key. You can provide the description and the author, but they are not mandatory. You
generally make the entry point at server. js, which is standard (see Figure 3-8).

81

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

Figure 3-8. Initial server setup

Once package. json is created, you need to create the .gitignore file with node_
modules in it since you don’t want to push node_modules to Heroku later. The following is
the content of the . gitignore file.

node_modules

Next, open package.json. The line "type" : "module" is required to have React-like
imports enabled in Node.js. Include a start script to run the server. js file.
The updated content is marked in bold.

"name": "short-video-backend",

"version": "1.0.0",

"description": " The short video app backend",
"main": "server.js",

82

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

"type": "module",

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"start": "node server.js"

}s

"author": "Nabendu Biswas",

"license": "ISC"

You need to install two packages before starting. Open the terminal and install
Express and Mongoose in the short-video-backend folder. As discussed in Chapter 2,
Express is the Node.js framework through which you can easily build back-end code.
Mongoose is the library required to bind Node.js and MongoDB, so it is the bridge
responsible for creating schemas in Node.js code.

npm i express mongoose

MongoDB Setup

The MongoDB setup is the same as described in Chapter 1. Follow those instructions
and create a new project named short-video-mern.

Before moving forward, install nodemon in the short-video-backend folder. It helps
the changes in server. js to restart the Node server instantaneously.

npm i nodemon

Initial Route Setup

Next, create a server. js file in the short-video-backend folder. Here, you import the
Express and Mongoose packages. Then use Express to create a port variable to run on
port 9000.

The first API endpoint is a simple GET request created by app.get (), which shows
the text Hello TheWebDev if successful.

83

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN
Then, listen on port with app.listen().

import express from 'express'
import mongoose from 'mongoose’

//App Config
const app = express()
const port = process.env.PORT || 9000

//Middleware
//DB Config

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

In the terminal, type nodemon server.js to see the Listening on localhost: 9000
console log. To check that the route is working correctly, go to http://localhost:9000/
to see the endpoint text, as shown in Figure 3-9.

© D locathost: “on i |® ® m

Hello TheWebDev

Figure 3-9. localhost

Database User and Network Access

In MongoDB, you need to create a database user and give network access. The process
is the same as explained in Chapter 1. Follow those instructions, and then get the user
credentials and connection URL.

In server. js, create a connection_url variable and paste the URL within the string
from MongoDB. You need to provide the password that you saved earlier and a database
name.

84

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

The updated code is marked in bold.

//App Config

const app = express()

const port = process.env.PORT || 9000

const connection_url = ' mongodb+srv://admin:yourpassword@clustero.ryjag.
mongodb .net/shortVideoDB?retrylirites=truedw=majority"

//Middleware

//DB Config

mongoose.connect(connection_url, {
useNewUrlParser: true,
useCreateIndex: true,
useUnifiedTopology: true

}

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

MongoDB Schema and Routes

Next, let’s create the schema file required by MongoDB. It tells you about the way fields
are stored in MongoDB. Create a dbModel . js file inside the short-video-backend folder.

Here, shortVideos is considered a collection name, and you store a value like
shortVideoSchema in the database. It consists of an object with a URL, channel,
description, song, likes, shares, and message keys.

import mongoose from 'mongoose’
const shortVideoSchema = mongoose.Schema({
url: String,
channel: String,
description: String,
song: String,
likes: String,

85

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

shares: String,
messages: String

1)

export default mongoose.model('shortVideos', shortVideoSchema)

You can now use the schema to create the endpoint that adds data to the database.

In server. js, create a POST request to the /v2/posts endpoint. The load is in req.
body to MongoDB. Then use create() to send dbVideos. Ifit’s a success, you receive
status 201; otherwise, you receive status 500.

Next, create the GET endpoint to /v2/posts to get the data from the database. You
are using find() here. You receive status 200 if successful (otherwise, status 500).

The updated code is marked in bold.

import express from 'express’
import mongoose from 'mongoose’
import Videos from './dbModel.js'

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/v2/posts', (req, res) =» {
const dbVideos = req.body
Videos.create(dbVideos, (err, data) =» {
if(err)
res.status(500).send(err)
else
res.status(201).send(data)

}
})

app.get('/v2/posts’', (req, res) =» {
Videos.find((erxr, data) =» {
if(err) {
res.status(500).send(err)
} else {

86

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

res.status(200).send(data)

)
1

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

To check the routes, let’s use the awesome Postman app. Send a GET request to
http://localhost:9000 to check if it's working in Postman (see Figure 3-10).

88 My Workspace ~

KEY VALUE DESCRIPTION

Pretty Preview Visualize HTML = mQ

1 | Hello TheWebDev

Figure 3-10. Get request

Before moving forward with the POST request, you need to complete two things.
First, implement CORS. Open the terminal and install CORS in the short-video-
backend folder.

npm i cors

87

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

In server.js, import CORS and then use it with app.use(). You also need to use the
express.json() middleware.
The updated code is marked in bold.

import express from 'express’
import mongoose from 'mongoose’
import Cors from 'cors’

import Videos from './dbModel.js'

//Middleware
app.use(express.json())
app.use(Cors())

In Postman, change the request to POST and then add the http://localhost:9000/
v2/posts endpoint.

Next, click Body and select raw. Select JSON(application/json) from the drop-
down menu. In the text editor, copy the data from the App. js file. Make the data JSON by
adding double quotes to the keys.

Then, click the Send button. If everything is correct, you get Status: 201 Created, as
seen in Figure 3-11.

88

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

Figure 3-11. Success Message POST

Iinserted other data similarly. You need to test the GET endpoint. Change the
request to GET and click the Send button. If everything is correct, you get Status: 200
OK, as seen in Figure 3-12.

89

CHAPTER 3 BUILDING A SHORT VIDEQ APP WITH MERN

Figure 3-12. Success Message GET

Integrating the Back End with the Front End

Let’s hook the back end to the front end with the axios package. Open the short-video-
frontend folder and install it.

npm i axios

Next, create a new axios. js file inside the components folder and create an instance
of axios. The base URLis http://localhost:9000.

import axios from 'axios'

const instance = axios.create({
baseURL: "http://localhost:9000"

1)

export default instance

90

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

In App. js, import the local axios. Then use the useEffect hook to do the API call to
/v2/posts endpoint. Once you receive the data, store it in the videos state variable using
setVideos().

In the return statement, get rid of the hard-coded stuff. After that, map through the
videos array and pass the props to the video component.

The updated content is marked in bold.

import React, { useState, useEffect } from 'react';
import './App.css’;

import Video from './components/Video';

import axios from './components/axios';

function App() {
const [videos, setVideos] = useState([])
useEffect(() => {
async function fetchData() {
const res = await axios.get("/v2/posts")
setVideos(res.data)
return res

}
fetchData()

b [D

return (
<div className="app">
<div className="app_videos">
{videos.map(({ url, channel, description, song, likes, shares,
messages }) => (
<Video

key={url}
url={url}
channel={channel}
description={description}
song={song}
likes={likes}
shares={shares}
messages={messages}

91

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

/>
)}

</divy
</div>

)5
}

export default App;

You can see the data at http://localhost:3000/. The app is now complete. But there
is a small issue with the number of likes; it shows 3451 instead of 346 (see Figure 3-13).

@nabendus2

Macbook Air to new Windows editing beast

& T 1 am a Windows PC -,

Figure 3-13.

This issue occurs because string numbers are being passed from the database. In
VideoSidebar.js, add a + in front of the likes to change the string to a number.

92

CHAPTER 3 BUILDING A SHORT VIDEQO APP WITH MERN

<div className="videoSidebar button">
{ liked ? <FavoriteIcon fontSize="large" onClick={e =>
setLiked(false)} /> : <FavoriteBorderIcon fontSize="large"
onClick={e => setLiked(true)} /> }
<p>{liked ? +likes + 1 : likes}</p>

</div>

Deploying the Back End to Heroku

Go to www. heroku. com to deploy the back end. Follow the same procedure that you did
in Chapter 1 and create an app named short-video-backend.
After successfully deploying, go to the link. Figure 3-14 shows the correct text.

- e _— >
© & neipsyshort-video-backend herokuapp.com
LN LDBEEERD. . Rk U o
Hello TheWebDev

Figure 3-14.

In axios. js, change the endpoint to https://short-video-backend.herokuapp.com.
If everything is working fine, your app should run.

import axios from 'axios'
const instance = axios.create({
baseURL: " https://short-video-backend.herokuapp.com”

1)

export default instance

93

http://www.heroku.com
https://short-video-backend.herokuapp.com

CHAPTER 3 BUILDING A SHORT VIDEO APP WITH MERN

Deploying the Front End to Firebase

It's time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1. After this process, the site should be live and working properly, as seen in
Figure 3-15).

U @

@thewebdev

o .l'uesda_\f marning editing on kdenlive in Windows

Figure 3-15.

Summary

In this chapter, we have created a short video sharing app. We build the frontend in
React]S and hosted it in Firebase. The backend was build in Node]S and hosted in
Heroku. The database was build in MongoDB.

94

CHAPTER 4

Building a Messaging
App with MERN

Welcome to your third MERN project, where you build an awesome messaging app using
the MERN framework. The back end is hosted in Heroku, and the front-end site is hosted
in Firebase.

Material-UI provides the icons in the project. Pusher is used since MongoDB is not
areal-time database like Firebase and a chat application requires real-time data. It is a
functional chat application with Google authentication so that different users can log
in with their Google accounts to chat. Figure 4-1 shows a fully functional hosted and
finished app.

95
© Nabendu Biswas 2021

N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_4

https://doi.org/10.1007/978-1-4842-7138-4_4#DOI

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

I de © & % httpsy/messaging on N R mfl\moﬁ BE#eB =
& cm : | @povhe a @
« Lastseen at Sat, 20 Mar 2021 05:57:46 GMT
Q, Search or start new chat Unrwrbdes

B Always ready to help@ oo crascacur
73 DevHelp

- You are welcome

Unemetodes
B4 are welcome® s v non ctassaaur
re—
Bvou are helpful@ w ssvw e spassonn
hewetdes
So, what do you want to ask? e i st
Raberda B ss
What is the difference between var and let? swsomessessrionr
shikha das.
var is functional scoped and let is blocked scoped s 20ue 2001 csar s gum
P
Thanks Shikha for the explanation sw 2us 221 osar30 o0
Maberda s
That was good s w200 s55t3e 5T
ks

You are welcome s om0z ces7as sum

Figure 4-1. Final hosted app

Go to your terminal and create a messaging-app-mexrn folder. Inside it, use the
create-react-app to create a new app called messaging-app-frontend.

mkdir messaging-app-mern
cd messaging-app-mern
npx create-react-app messaging-app-frontend

Firebase Hosting Initial Setup

Since the front-end site is hosted through Firebase, you can create the basic setting while
create-react-app creates the React app. Following the setup instructions from Chapter 1,
I created messaging-app-mern in the Firebase console.

96

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

React Basic Setup

Let’s return to the React project and cd to the messaging-app-frontend directory. Start
the React app with npm start.

cd messaging-app-frontend
npm start

The deleting of the files and basic setup in index. js, App. js, and App.css is like
what was done in Chapter 2. Follow those instructions.

Figure 4-2 shows how the app looks on localhost.

Dot W B

Messaging App MERN

Gatdy W React [l Acguisr [Work

Figure 4-2. Initial app

Creating a Sidebar Component

Let’s create a sidebar component that shows the avatar of the logged-in user and other
icons, including a search bar. Before creating the sidebar component, add the basic
styles in the App. js file. In App. js, create an app__body class that contains all the code.
The updated content is marked in bold.

import './App.css’;

function App() {
return (
<div className="app">
<div className="app__body">

</divy
</div>

)5
}

export default App;

97

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Next, style the container in App.css to get a centered container with a box-shadow.

-app{
display: grid;
place-items: center;
height: 100vh;
background-color: #dadbd3;

}

.app__body{
display: flex;
background-color: #ededed;
margin-top: -50px;
height: 90vh;
width: 90vw;
box-shadow: -1px 4px 20px -6px rgba(o, 0, 0, 0.75);

Go to localhost. You should see the big shadow box shown in Figure 4-3.

98

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

cCh o

fapn MDo2 MOn3 WM Ood BBon BWee W Web2 Il Gty W Resr [Anguise [Work [Tumonish

Figure 4-3. Initial background

Next, create a components folder inside the src folder. Then create two files—
Sidebar.js and Sidebar.css—inside the components folder. Put the content in the
Sidebar. js file. The following is the content for the Sidebar. js file.

import React from 'react'
import './Sidebar.css’

const Sidebar = () => {
return (
<div className="sidebar">
<div className="sidebar header"></div>
<div className="sidebar search"></div>
<div className="sidebar chats"></div>
</div>

}
export default Sidebar

99

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Next, install Material-UI (https://material-ui.com) to get the icons. Do two
npm installs according to the Material-UI documentation. Install the core through the
integrated terminal in the messaging-app-frontend folder.

npm i @material-ui/core @material-ui/icons

Next, let’s use these icons in the Sidebar. js file. Import them and then use them
inside the sidebar _header class. The updated content is marked in bold.

import React from 'react’

import './Sidebar.css'’

import DonutLargeIcon from ‘'@material-ui/icons/DonutLarge’
import ChatIcon from '@material-ui/icons/Chat’

import MoreVertIcon from '@material-ui/icons/MoreVert'
import { Avatar, IconButton } from '@material-ui/core’

const Sidebar = () => {
return (
<div className="sidebar">
<div className="sidebar _header">
<Avatar /»
<div className="sidebar__headerRight"»
<IconButton>
<DonutLargeIcon />
</IconButton>
<IconButton>
<ChatIcon />
</IconButton>
<IconButton»
<MoreVertIcon />
</IconButton>
</divy
</div>
<div className="sidebar search"></div>
<div className="sidebar chats"></div>
</div>

}
export default Sidebar

100

https://material-ui.com

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Let’s add the sidebar header styles in the Sidebar.css file. A flexbox is used to
achieve this.

.sidebar {
display: flex;
flex-direction: column;
flex: 0.35;

}

.sidebar header {
display: flex;
justify-content: space-between;
padding: 20px;
border-right: 1px solid lightgray;
}

.sidebar_headerRight {
display: flex;
align-items: center;
justify-content: space-between;
min-width: 10vw;

}

.sidebar headerRight > .MuiSvgIcon-root{
margin-right: 2vw;
font-size: 24px !important;

Next, let’s import the sidebar component in App. js for it to show on localhost. The
updated content is marked in bold.

import './App.css’;
import Sidebar from './components/Sidebar’;

function App() {
return (
<div className="app">
<div className="app__body">
<Sidebar /»
</div>

101

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

</div>
);
}

export default App;

Figure 4-4 shows the aligned icons on localhost.
Next, create the search bar in Sidebar. js. Import SearchOutlined from Material-UI
and use it with the sidebar _searchContainer class. Place an input box beside it.

Figure 4-4. Icons aligned

import { SearchOutlined } from '@material-ui/icons’

const Sidebar = () => {
return (
<div className="sidebar">
<div className="sidebar header">

102

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<Avatar src="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400.jpg" />
<div className="sidebar headerRight">

</div>
</div>
<div className="sidebar _search">
<div className="sidebar__searchContainer"»
<SearchOutlined />
<input placeholder="Search or start new chat"
type="text" /»
</div>
</div>
<div className="sidebar chats"></div>
</div>

}
export default Sidebar

Iused an image from my Twitter account as the avatar. The updated content is
marked in bold.

The search bar is styled in the Searchbar.css file. A lot of flexboxes are used to style
it. Add this new content to the existing content.

.sidebar search {
display: flex;
align-items: center;
background-color: #f6f616;
height: 39px;
padding: 10px;

}

.sidebar _searchContainer{
display: flex;
align-items: center;
background-color: white;
width: 100%;

103

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

height: 35px;
border-radius: 20px;

}

.sidebar searchContainer > .MuiSvgIcon-root{
color: gray;
padding: 10px;
}
.sidebar searchContainer > input {
border: none;
outline-width: 0;
margin-left: 10px;

Figure 4-5 shows everything on localhost.

Do [l Dot [Blogs [Web [Web? [Gatsty [React [Snguisr | Work | Totorisk [Project [Titosisk?

€ C B

Figure 4-5. Search bar
104

L O+ B

| [Other bockmarks

»

(x]

[E Reading &1

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Creating a Sidebar Chat Component

Let’s build the sidebar chat component now. Inside the components folder, create two
files—SidebarChat. js and SidebarChat.css. Use them in the Sidebar. js file. The
updated content is marked in bold.

import SidebarChat from './SidebarChat’

const Sidebar = () => {
return (
<div className="sidebar">
<div className="sidebar header">

</div>
<div className="sidebar search">

</div>
<div className="sidebar chats">
<SidebarChat /»
<SidebarChat /»
<SidebarChat />
</div>
</div>

}
export default Sidebar

Before coding the sidebar chat component, let’s style the sidebar _chats div, which
contains the SidebarChat component in the Sidebar.css file. Add this new content to

the existing content.

.sidebar chats{
flex: 1;
background-color: white;
overflow: scroll;

105

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

In the SidebarChat. js file, there is a simple, functional component. An API
endpoint provides random avatars if you pass random stings to it. The seed state variable
is used; it changes each time with a random string from within useEffect.

import React, { useEffect, useState } from 'react’
import { Avatar } from '@material-ui/core’
import './SidebarChat.css'

const SidebarChat = () => {
const [seed, setSeed] = useState("")

useEffect(() => {
setSeed(Math.floor(Math.random() * 5000))

b ID

return (
<div className="sidebarChat">
<Avatar src={ https://avatars.dicebear.com/api/human/
b${seed}.svg" } />
<div className="sidebarChat__info">
<h2>Room name</h2>
<p>Last message...</p>
</div>
</div>

}
export default SidebarChat

Next, let’s style the rooms a bit in the SidebarChat.css file. Here, you are again using
a flexbox and a bit of padding.

.sidebarChat{
display: flex;
padding: 20px;
cursor: pointer;
border-bottom: 1px solid #f6f616;

106

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

.sidebarChat:hover{
background-color: #ebebeb;

}

.sidebarChat__info > h2 {
font-size: 16px;
margin-bottom: 8px;

}

.sidebarChat info {

margin-left: 15px;

Figure 4-6 shows the sidebar chat component on localhost.

B Oed B oBogs B Weo B Web2 [Gotby [Rrsct [Angube [Wok W Totoisk [Propct [Tutosih?

@ Roam name

Last message...

)

Room name

v
~

Last message...

Room name

Last message

Figure 4-6. Sidebar chat

107

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Creating a Chat Component

Let’s start working on the chat component. Create two files—Chat. js and Chat.css—
inside the components folder. Put this basic structure in the Chat. js file. Random strings
are used to show a random avatar icon.

import React, { useEffect, useState } from 'react’

import { Avatar, IconButton } from '@material-ui/core’

import { AttachFile, MoreVert, SearchOutlined } from '@material-ui/icons'’
import './Chat.css'

const Chat = () => {
const [seed, setSeed] = useState("")
useEffect(() => {
setSeed(Math.floor(Math.random() * 5000))

b D

return (
<div className="chat">
<div className="chat__header">
<Avatar src={"https://avatars.dicebear.com/api/human/
b${seed}.svg"} />
<div className="chat__headerInfo">
<h3>Room Name</h3>
<p>Last seen at...</p>
</div>
<div className="chat__headerRight">
<IconButton>
<SearchOutlined />
</IconButton>
<IconButton>
<AttachFile />
</IconButton>
<IconButton>
<MoreVert />
</IconButton>
</div>
</div>
108

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<div className="chat__body"></div>
<div className="chat__footer"></div>
</div>

}
export default Chat

Next, style the chat header in the Chat. css file, and add a nice background image to
the chat__body class.

.chat{
display: flex;
flex-direction: column;
flex: 0.65;

}

.chat__header{
padding: 20px;
display: flex;
align-items: center;
border-bottom: 1px solid lightgray;

}

.chat__headerInfo {
flex: 1;
padding-left: 20px;

}

.chat__headerInfo > h3 {
margin-bottom: 3px;
font-weight: 500;

}

.chat__headerInfo > p {
color: gray;

}
.chat__body{

flex: 1;

109

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

background-image: url("https://user-images.githubusercontent.com/
15075759/28719144-86dc0f70-73b1-11e7-911d-60d70fcded21.png");
background-repeat: repeat;

background-position: center;

padding: 30px;

overflow: scroll;

Render the chat component from the App. js file. The updated content is marked in
bold.

import './App.css’;
import Sidebar from './components/Sidebar’;
import Chat from './components/Chat';

function App() {
return (
<div className="app">
<div className="app__body">
<Sidebar />
<Chat /»
</div>
</div>
)
}

export default App;

Head over to localhost. Figure 4-7 shows the header for the chat is done, and a nice
background image is displayed.

110

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

React App x4+

C {t @ localhost
it 2pps M D2 W Do W Ded l Bogs [l Weo [Web2 [Gatshy [React [Angular [Werk [Totoriak
s f;a] Room Name s
€ G B a @
™ Room name
W Last message
@ Room name
Last message
&5 Room name
-

Last message

Figure 4-7. Chat component

Next, go back to the Chat. js file and put the hard-coded message in a p tag in the
chat__message class. Two span tags are used for the name and timestamp.

Note the chat__receiver class for the chat user. The updated content is marked
in bold.

const Chat = () => {
const [seed, setSeed] = useState("")
useEffect(() => {
setSeed(Math.floor(Math.random() * 5000))
oD

return (
<div className="chat">
<div className="chat__header">

111

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

</div>
<div className="chat__body">
<p className="chat__message"»
Nabendu</span»
This is a message
<span className="chat__timestamp"»
{new Date().toUTCString()}
</span»
</p>
<p className="chat__message chat__receiver"»
<span className="chat__name"»Parag</span»
This is a message back
<span className="chat__timestamp"»
{new Date().toUTCString()}
</span»
</p>
<p className="chat__message"»
<span className="chat__name"yNabendu</spany
This is a message again again
<span className="chat__timestamp"»
{new Date().toUTCString()}
</span»
</p>
</div>
<div className="chat__ footer"></div>
</div>

}
export default Chat

Add the styles in the Chat.css file.

.chat__message{
position: relative;
font-size: 16px;

112

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

padding: 10px;

width: fit-content;
border-radius: 10px;
background-color: #fffff;
margin-bottom: 30px;

}

.chat__receiver{
margin-left: auto;
background-color: #dcf8c6;

}

.chat__timestamp{
margin-left: 10px;
font-size: xx-small;

}

.chat__name{
position: absolute;
top: -15px;
font-weight: 800;
font-size: xx-small;

Figure 4-8 shows the three messages on localhost.

113

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

B Ot W oBogs B Wes [l Web? [Gothy [React [Anguiw B Work [l Toteisk [l Projeet [Tutoeiskc?
: &z PRoom Name
® cC B om Na a
This is 3 MeSSaQE ™ 1w 2001 3 sas0 aur
™ Room name Parsg
W Last message.. This is @ message back mw 1 20 sgescur
Moot
Room name
This is 8 MESSAGE BGAIN DYBIN ™ 5w 2507 cEss0 57
Last message...
@8 Room name
W Last message..

Figure 4-8. Chat messages

Creating a Chat Footer Component

Let’s complete the chat __ footer div. There are two more icons and an input box inside a
form. The updated code for Chat.js is marked in bold.

import { AttachFile, MoreVert, SearchOutlined, InsertEmoticon } from
'@material-ui/icons’

import MicIcon from '@material-ui/icons/Mic’

import './Chat.css'

const Chat = () => {

return (

114

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<div className="chat">
<div className="chat__header">

</div>
<div className="chat__body">

</div>
<div className="chat__ footer">
<InsertEmoticon />

<formy
<input
placeholder="Type a message"
type="text"
/>
<button type="submit"»Send a message</button»
</formy
<MicIcon />
</div>

</div>

}
export default Chat

It’s time to style the chat__footer div. Note display: none for the button. Since it is
wrapped in a form, you can use enter in it. Add the following content in the Chat. css file.

.chat__footer{
display: flex;
justify-content: space-between;
align-items:center;
height: 62px;
border-top: 1px solid lightgray;

115

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

.chat__ footer > form {
flex: 1;
display: flex;

}

.chat__footer > form > input {
flex: 1;
outline-width: 0;
border-radius: 30px;
padding: 10px;
border: none;

}

.chat__footer > form > button {
display: none;

}

.chat__footer > .MuiSvgIcon-root {
padding: 10px;
color: gray;

Figure 4-9 shows the footer on localhost.

116

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

2 M D3 W Dot Wl Blogs W Web [l Web? [Gatby [Resct [Anguber | Work W Tutorish [Propct [l Tutonsh?

& C B

N
@

» Room Name

This i5 8 message wiruw 20 sz o
% Room name Puse
Last message... This is a message back s« sz arzass oy

PR
7 Room name =
s is iS 2 MESSAgE AGAIN AGAIN w 1o 2 st o
+ Last message..

Room name

3

Last message.

Figure 4-9. Footer complete

Initial Back-End Setup

Let’s move to the back end, starting with the Node.js code. Open a new terminal window
and create a new messaging-app-backend folder in the root directory. After moving to

the messaging-app-backend directory, enter the git init command, which is required
for Heroku later.

mkdir messaging-app-backend
cd messaging-app-backend
git init

Next, create the package. json file by entering the npm init command in the
terminal. You are asked a bunch of questions; for most of them, simply press the Enter
key. You can provide the description and the author, but they are not mandatory. You
generally make the entry point at server. js, which is standard (see Figure 4-10).

117

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

pkg) aF'bewards ‘to install a package and
ncy in the package.json file.

AC at any time to quit.
nane (-essaging app-backend)

ite to E:\MERN_Projects\messaging-app-mern\ ging-app-backend\package.json:

A 'lessasmg-app-bachend"
1180

": "Messaging app backend”,
rver.js",

{
echo \"Error: no test specified\" && exit 1"

Nabendu Biswas™,
1IPTSET

Figure 4-10. Initial back-end setup

Once package. json is created, you need to create the .gitignore file with node_
modules in it since you don’t want to push node_modules to Heroku later. The following
is the .gitignore file content.

node_modules

Next, open package. json. The line "type": "module is required to have React-like
imports enabled in Node.js. Include a start script to run the server. js file. The updated
content is marked in bold.

{
"name": "messaging-app-backend",
"version": "1.0.0",
"description”: "Messaging app backend",
"main": "server.js",

118

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

"type": "module",

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"start": "node server.js"

}s

"author": "Nabendu Biswas",

"license": "ISC"

Finally, you need to install two packages before starting. Open the terminal and
install Express and Mongoose in the messaging-app-backend folder.

npm i express mongoose

MongoDB Setup

The MongoDB setup is the same as described in Chapter 1. Follow those instructions
and create a new project named messaging-app-mern.

Before moving forward, install nodemon in the messaging-app-backend folder. It
helps the changes in server.js to restart the Node server instantaneously.

npm i nodemon

Initial Route Setup

Create a server. js file in the messaging-app-backend folder, where you import the
Express and Mongoose packages. Then use Express to create a port variable to run on
port 9000.

The first API endpoint is a simple GET request created by app.get (), which shows
the text Hello TheWebDev if successful.

Then, listen on port with app.listen().

import express from 'express’
import mongoose from 'mongoose’

//App Config
const app = express()
const port = process.env.PORT || 9000

119

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

//Middleware
//DB Config

//API Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

In the terminal, type nodemon server.js to see the Listening on localhost: 9000
console log. To check that the route is working correctly, go to http://localhost:9000/
to see the endpoint text, as shown in Figure 4-11.

Hello TheWebDev

Figure 4-11. Initial route

Database User and Network Access

In MongoDB, you need to create a database user and give network access. The process
is the same as explained in Chapter 1. Follow those instructions, and then get the user
credentials and connection URL.

In the server. js file, create a connection_url variable and paste the URL within the
string from MongoDB. You need to provide the password that you saved earlier and a
database name.

The updated code is marked in bold.

//App Config

const app = express()

const port = process.env.PORT || 9000

const connection_url = ' mongodb+srv://admin:<password>@clustexo.ew283.
mongodb.net/messagingDB?retrylrites=true8w=majority'

//Middleware
//DB Config

120

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

mongoose.connect(connection_url, {
useNewUrlParser: true,
useCreateIndex: true,
useUnifiedTopology: true

}

//API Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

MongoDB Schema and Routes

Let’s now create the schema file required by MongoDB. It tells you about the way fields
are stored in MongoDB. Create a dbMessages. js file inside the messaging-app-backend
folder.

Here, messagingmessages is considered a collection name, and you store a value
like messagingSchema in the database. It consists of an object with a message, name,
timestamp, and received keys.

import mongoose from 'mongoose’
const messagingSchema = mongoose.Schema({
message: String,
name: String,
timestamp: String,
received: Boolean

1)

export default mongoose.model('messagingmessages', messagingSchema)

You can now use the schema to create the endpoint that adds data to the database.

In server. js, create a POST request to the /messages/new endpoint. The load is
in req.body to MongoDB. Then use create() to send dbMessage. Ifit’s a success, you
receive status 201; otherwise, you receive status 500.

Next, create the GET endpoint to /messages/sync to get the data from the database.
You are using find() here. You receive status 200 if successful (otherwise, status 500).

121

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN
The updated code is marked in bold.

import express from 'express'
import mongoose from 'mongoose’
import Messages from './dbMessages.js'

//API Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/messages/new', (req, res) =» {
const dbMessage = req.body
Messages.create(dbMessage, (err, data) =» {
if(err)
res.status(500).send(err)
else
res.status(201).send(data)
)
}

app.get('/messages/sync', (req, res) =» {
Messages.find((err, data) =» {

if(err) {
res.status(500).send(err)
} else {
res.status(200).send(data)
}
)
})
//Listener

app.listen(port, () => console.log(Listening on localhost: ${port}"))

To check the routes, use the Postman app. Download it and install it.
Send a GET request to http://localhost:9000 to check if it’s working from
Postman, as seen in Figure 4-12

122

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

BE MyWorkspace ~

VALUE

Figure 4-12. Initial GET request

Before moving forward with the POST request, you need to complete two things.
First, implement CORS; otherwise, you get cross-origin errors when you deploy the app.
Open the terminal and install CORS in the messaging-app-backend folder.

npm i cors

In server.js, import CORS and then use it with app.use(). You also need to use the
express.json() middleware. The updated code is marked in bold.

import express from 'express'’

import mongoose from 'mongoose’

import Cors from 'cors’

import Messages from './dbMessages.js'

123

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

//Middleware
app.use(express.json())
app.use(Cors())

In Postman, you need to change the request to POST and then add the http://
localhost:9000/messages/new endpoint.

Next, click Body and select raw. Select JSON(application/json) from the drop-down
menu. In the text editor, enter the data as shown in Figure 4-13. Make the data JSON by
adding double quotes to the keys.

Next, click the Send button. If everything is correct, you get Status: 201 Created, as
seen in Figure 4-13.

Figure 4-13. POST request

124

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

I similarly inserted other data, but with received as true. You need to test the GET
/messages/sync endpoint. Change the request to GET and click the Send button. If
everything is correct, you get Status: 200 OK, as seen in Figure 4-14.

8 My Workspace ~

Untitled Request

GET v hitpitfocalnost9000/messagesiayr Save v

wEY VALUE DESCRIPTIGN

Figure 4-14. GET request

Sometimes you get a server error with POST requests. The error is
UnhandledPromiseRejectionWarning: MongooseServerSelectionError: connection.
If you get this error, go to your Network Access tab, and click the ADD IP ADDRESS
button. After that, click the ADD CURRENT IP ADDRESS button, and then click
Confirm, as seen in Figure 4-15.

125

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

\‘.(-|-) iy 0 0.:".__n'..tps:.-’fclo-.::.rnangodb.oom-’vlf't'3563|'&':cia-‘-f-d1555::55":Ec_':'_u"-c.'.'.:\x-\ Ll @ ﬁ'_ A In @ ° ' = a € G . E'

Add IP Access List Entry

Atlas only allows client connections to a chester from entries in the project’s IP Access List. Each entry
should edhar be a single IP address or a CIDR-notated range of addresses Learm more

ADD CURRLNT IP ADDRESS

Access List Entry:

Comment:

This entry is temporary and will be deleted in 8 hours

Figure 4-15. Network error fix

Configuring Pusher

Since MongoDB is not a real-time database, it’s time to add a pusher to the app to get
real-time data. Go to https://pusher.comand sign up. The Pusher app dashboard is
shown in Figure 4-16. Click the Manage button.

126

https://pusher.com

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

L
ard pusher.com N

{[‘F‘ PUSHER Feedback Support Docs Account v

-2? Channels SANDBOX PLAN . Beams SANDBOX PLAN

foe - T The cross-platform AP for native programmatic
push notifications.

Get started

Figure 4-16. Pusher dashboard

On the next screen, click the Create app button, as seen in Figure 4-17.

127

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

9 & pusher.com,

ﬂ? PUSHER Home Channels & Feedback Support Docs Account ¥

u‘l"’; Channels sanosox pLan

Overview Apps Stats Plans Settings

Overall usage Live

Peak concurrent connections today Messages sent today

30f100 3% daily limit 0 of 200,000 096 daily limit

iy ar 00:00 UTC

Learn more

[E] How are connections counted? [E] whart are concurrent Channels connections?
[E How are messages counted? [E How are these graphs populated?

[E whart is the message size imit?

Figure 4-17. Create app in Pusher

In the popup window, name the app messaging-app-mern. The front end is React,
and the back end is Node.js, as seen in Figure 4-18.

128

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Create your Channels app

Name your app @
messaging-app-mem
Select a cluster @
ap2 (Asia Pacific (Mumbai))

Create apps for multiple environments? @

Choose your tech stack (opticnal)

Front end Back end

React

Figure 4-18. Front end and back end

In the next screen, you get the code for both the front end and the back end of
Pusher, as seen in Figure 4-19.

129

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

* File tda

B PUSHER Home Channels ¢ ging-app-mem &
. > messaging-app-mern
Overview
Subscribe to events on the client
| Getting Started =]
The snippet below 1o Ch Is and subscribes to a
App Keys channel called 101, listening for an event called
Debug Console B Javascript ~
Error Logs & index.htmi
Webhooks <IDOCTYPE html>
<head>
Collaborators Tle>Pusher Tesat</TiTle>
p Setti <script src="htTps://Js.pusher.com/7. @ /pusher _min.js*></script>
Ap ngs <sCript>
// Enable pusher logging - den't include this in production
Pusher . logToConsole True;
var pusher = new Pusher | (N . |
cluster I
1
var channel = pusher.subscribe('my-channel®);
channel . bind(‘my-event’, function(data) {
alert(JSON. sTringify(data));
i

Figure 4-19. Back-end code

Adding Pusher to the Back End

As explained in the previous section, you need to stop the server and install Pusher. In
the messaging-app-backend folder, install it with the following command.

npm i pusher

In the server. js file, import it and then use the Pusher initialization code. Get the
initialization code from the Pusher website (https://pusher.com). To add the code,
open a database connection with db.once. Then watch the message collection from
MongoDB with watch().

130

https://pusher.com

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Inside changeStream, if operationType is inserted, you insert the data in the pusher.
The updated code is marked in bold.

import Pusher from 'pusher’

//App Config
const app = express()
const port = process.env.PORT || 9000
const connection url = ' mongodb+srv://admin:<password>@clustero.ew283.
mongodb.net/messagingDB?retryWrites=truew=majority’
const pusher = new Pusher({

appId: "1boaxx",

key: "9exxn000mxxxxxx" ,

secret: "b7oooooooooooxxx” ,

cluster: "ap2",

useTLS: true

s

//API Endpoints
const db = mongoose.connection
db.once("open”, () => {
console.log("DB Connected")
const msgCollection = db.collection("messagingmessages")
const changeStream = msgCollection.watch()
changeStream.on('change', change =»> {
console.log(change)
if(change.operationType === "insert") {
const messageDetails = change.fullDocument
pusher.trigger("messages", "inserted", {
name: messageDetails.name,
message: messageDetails.message,
timestamp: messageDetails.timestamp,
received: messageDetails.received

}

131

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

} else {
console.log('Exror trigerring Pusher')

)
1

app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

To test this, you need to send a POST request from Postman. At the same time, you
need to be in the Debug console in Pusher.

Figure 4-20 shows the message displayed in the Debug console log.

E? PUSHER Home < ging-app-merm < Feedback =~ Support Does Account v

Overview

Getting Started

App Keys O Pause © Clear logs () Filter
Stats
4 Event creator v
| Debug Console
Error Logs EVENT DETAILS TIME
Webhooks
Channel: messages, Event: inserted 03:40:21 ~
Collaborators
Settings
APP g "name®: "thewebdav®,
"message”: "@§Always ready to helpd™,

"timestamp™: "Fri, 19 Mar 2021 07:45:02 GMT",
"recaived"”: true

1]

Figure 4-20. Message in Pusher

In the server, the console logs show the same, as seen in Figure 4-21.

132

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

(e J/efMERN_Projects/messaging-app-mern/messaging-app-backend (master)
It nodemon server.js

[nodemon] 2.8.7

[nodemon] to restart at any time, enter “rs”

[nodemon] watching path(s): *.*

fnodemon] watching extensions: js,mis,json

Listening on localhost: 9060

Eﬂ Connected

_id: {
_data:

b
operationType: | £y
clusterTime: Timestamp { _bsontype: » low : 1, high : 1515125221 },
fullDocument: {
_id: 68541e83f8b7a98faszbfals,
message: ' § 4 &,
name : E :
timestamp: 'Fri
received: true,
_w: @
b
ns: { db: i 2 coll:).
documentKey: { _id: 68541e@3f8b7a90f482bfo19 }
'

Figure 4-21. Server logs

Adding Pusher to the Front End

It’s time to move back to the front end and use Pusher. First, you need to install the
pusher-js package in the messaging-app-frontend folder.
npm i pusher-js

Use the following code and insert the new data in the front end in the App. js file.
The updated content is marked in bold.

import React, { useEffect, useState } from 'react’
import Pusher from 'pusher-js’

function App() {
const [messages, setMessages] = useState([])

useEffect(() => {
const pusher = new Pusher('9exxoo000000x "', {
cluster: 'ap2’

H

const channel = pusher.subscribe('messages');
channel.bind('inserted', (data) =»> {

133

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

setMessages([...messages, data])

H

return () => {
channel.unbind_all()
channel.unsubscribe()

}

}> [messages])
console.log(messages)
return (
<div className="app">
</div>
);
}

export default App;

Go to Postman and send another POST request. Figure 4-22 shows the data from the
console log on localhost.

134

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

wgr Ml Web [l Wesz [Gotsty [Fesct [Anguis [Work [l Tutorals [l Project [Tutoelsk?

€ O W i |y RoomName S8

This is & message 15 uw 20 sesaesou
g Room name Fang
Last message. This is a message back s 13 v 0 nesras cur
.
@ Room name 3 . i
This is a message again again & e 22 w80t
Last message...
ﬁ Room name
AF Last message..,
)
=/ Y
a Flenents Console o Network Per dormarce M prb se Red B Comporents W Profi - »
9 we @ &
-} @ Ao, 15526
b8 {rase webdey”™, e $an welcome § et ang L])}

Figure 4-22. Console log

Integrating the Back End with the Front End

You want to get all the messages when the app initially loads, and then push the
messages. You must hit the GET endpoint, and you need Axios for that. Open the
messaging-app-frontend folder and install it.

npm i axios

Next, create a new axios. js file inside the components folder and create an instance
of axios. The base URLis http://localhost:9000.

import axios from 'axios'

const instance = axios.create({
baseURL: "http://localhost:9000"

1)

export default instance

135

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Next, return to App. js and include the local axios first. Then use axios in the
useEffect hook to get all the data from the /messages/sync endpoint. After receiving
the messages, you set it through setMessages (). Finally, pass the messages as props to
the chat component.

The updated content is marked in bold.

import axios from './components/axios’

function App() {
const [messages, setMessages] = useState([])

useEffect(() => {
axios.get("/messages/sync").then(res =» {
setMessages(res.data)

)
b [

useEffect(() => {

},.£$essages])

return (
<div className="app">
<div className="app__body">
<Sidebar />
<Chat messages={messages} />
</div>
</div>
);
}

export default App;

In the Chat. js file, use this message’s props and map through it to display on the
screen.

136

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Add the chat__receiver class if the message contains the received key. The
updated content is marked in bold.

const Chat = ({ messages }) => {
const [seed, setSeed] = useState("")
useEffect(() => {
setSeed(Math.floor(Math.random() * 5000))

b D

return (
<div className="chat">

<div className="chat__header">

</div>

<div className="chat__body">

{messages .map(message =» (
<p className={"chat__message ${message.received &&
"chat__receiver'}" }»
<span className="chat__name"»{message.name}</span»

{message.message}
<span className="chat__timestamp"»
{message.timestamp}
</span»
</p>
N}
</div>

<div className="chat__ footer">

</div>
</divy

}
export default Chat

You can see all the messages on localhost. If you post a new message through
Postman, you get it in the chat, as seen in Figure 4-23.

137

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Feact App x o+

&« C d @ locahost C 0> B K 5t

fl dops M Dn2 B Ded [l Dot [l Blogs W Web [l Web2 [Gatsby

B React W Angis | Work | Tutorsks | Project [Tutossk? » [Otherbockmarks | [F] Readieg it

€ Cm i | Feomtem Q

Gvou are awesomed w1 i ssanee sur
™ Room name

Last message...

B Thats an overkilll # v s ez car

Tneiies
a Room name
i B Always ready 1o help@® o 9w rasc o
= Last message...
wmindes
@ Room name B Al are welcome s o s sesmes g
Last message... ——
Bvou are helpful @ 1vw s sasszaur
@ ’
= v

Figure 4-23. New messages

Add the logic to POST directly from the message box. First, import the local axios
and then create an input state variable.

Then do the value and onChange React thing on input and attach a sendMessage
function to the onClick event handler of the button.

Inside the sendMessage function, do a POST call to the /messages/new endpoint with
the required data. The updated content in Chat. js is marked in bold.

import axios from './axios'

const Chat = ({ messages }) => {
const [seed, setSeed] = useState("")
const [input, setInput] = useState("")

const sendMessage = async (e) => {

138

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

e.preventDefault()

await axios.post('/messages/new’, {
message: input,
name: "thewebdev",
timestamp: new Date().toUTCString(),
received: true

)
setInput("")

}
useEffect(() => {
setSeed(Math.floor(Math.random() * 5000))

b ID

return (
<div className="chat">
<div className="chat__header">
</div>
<div className="chat__body">
</div>
<div className="chat__ footer">
<InsertEmoticon />
<form>
<input
value={input}
onChange={e =» setInput(e.target.value)}
placeholder="Type a message"
type="text"
/>
<button onClick={sendMessage} type="submit">Send a
message</button>
</form>

<MicIcon />
</div>

139

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

</div>

}
export default Chat

You can type text in the input box, and when you press the Enter key, the message is
instantly shown in the chat, as seen in Figure 4-24.

L

3 B Dewt [Bogs I Wes [Wen2 [Gatsty [Resct [Anguise [Work [Tue

€ C B gp feenibane Q

Q, Search or start ow chal rabands
Bvou are awesome) s s uw e sars our
Room name b

= Last message.. B Thats an overkilll s s vemoaner

@ Room name

Last message...

B Always ready to help@® = e

themetder

g Room name 41 are welcome) s 1w sasszaun
B Last message... T

Bvou are helpfull® s 1oum m srases s

et

So. what do you want 10 ask? - e 2201 Iz GT

Figure 4-24. Message from input

140

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Additional Setup

Next, let’s add Google authentication to the project so that the user can log in with their
Google account.

For Google authentication, you need an additional setting in the Firebase console.
Click the Settings icon in the top-right corner of the screen. After that, click the Project
settings button, as seen in Figure 4-25.

s 3
€ ->C e

B Firebase

Project settings -app—mern Spark plan
Users and permissions

Usage and billing

Get started by adding
Firebase to your app

et

Release and monitor

Analytics

Store and sync app data in milliseconds

Cloud Firestore
Realtime updates, powerful queries and automatic scaling 2

Authentication

Authenticate end manage users

Figure 4-25. Additional settings

141

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

On the next page, click the web icon on the bottom of the page, as seen in Figure 4-26.

base.google.com A e T £
— e —— e L

messaging-app-mem = Project settings

Build

= Authentication PESSOO b e of

Firest LD (D messaging-app-merm
Realtime Database 836380569421
Storage

Hao:

) Fu

Machine Learning Public settings

Release and monitor
project- 836380560421 "

Analytics

There are no apps in your project e o‘ @ Q

Upgrada

< -

Figure 4-26. Web icon

On the next page, enter the name of the app (messaging-app-mern in my case).
Select the Firebase hosting check box. Click the Register app button (see Figure 4-27).

142

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

% Add Firebase to your web app

o Register app

App ickname @

messaging-app-mern

.-\Iso set up Firebase Hosting for this app. Learm more [4

Hosting can also be sel up later. Its free to get

ted at any time.

@ messaging-app-mem (No deploys yet -

Register app

@ Add Firebase SDK

Figure 4-27. Firebase hosting

On the next page, click the Next button (see Figure 4-28).

143

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

% Add Firebase to your web app

@ Registerapp

© ArddFirebase SDK

Copy and paste these scripls into the bottom of your <body> tag, but before you use any Firebase services:

<!-- The core Firebase J5 SDK is always required and must be listed first --»
=gcript srcs"/__J/firebase/B.3.1/firebase-app.js°»</script=

«<!== TODD: Add SDKs for Firebase products that you want to use
https://firebase.google.com/docs/web/setupfavailable-libraries -->

<!-- Imtialize Firebase --»

<script sre="/__/firebase/init.js ></script>

LLearn more about Firebase for web: Get started [, Web SDK AP reference [, Samples (4

© install Firebase CLI

o Deploy to Firebase Hosting

Figure 4-28. The next screen

On the next page, run the firebase-tools globally install Firebase from the
terminal. Note that this is a one-time setup on your machine since it is used with the -g
option (see Figure 4-29).

144

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

\nexaging-mpp-misrr = Preje
T &y

L e

psffconsole firebase.google.comyu/0/project/messaging-app-mem,setting

* Add Firebase to your web app

@ Register app
@ Add Firebase SDK

© install Firebase CLI

To host your site with Firebase Hosting, you need the Firebase CUI (a command line tool).

Run the following nom [command 1o install the CLI or update to the latest CLI version.

|S npm install -g firebase-tools ra
Dostrst work? Take a look at the Firebase of change your npm petmissions (4

o Deploy to Firebase Hosting

Figure 4-29. Global install

Ignore the next set of commands, and click the Continue to the console button (see
Figure 4-30).

145

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

% Add Firebase to your web app

@ FRegisterapp
o Add Firebase SDK
@ Install Firebase CLI

o Deploy to Firebase Hosting
‘You can deploy now or later [, To deploy now, open a terminal window, then navigate to or
create a root directory for your web app.
Sign in to Google

5 firebase login |_|:[

Initiate your project
Run this command fram your app's root direclony:

5 firebase init |_D
When you're ready, deploy your web app
Put your static files (&g HTML, CSS, JS) in your app's deploy directory (the default is ‘public’).
Then, run this command from your app’s root directory.

5 firebase deploy rj:[

After deploying, view your app al messaging-ane-memn web apa 4
Need help? Take a look at the Hosting docs (4

Continue to the console

Figure 4-30. Continue

Next, scroll down the page and select the Config radio button. Then copy the
firebaseConfig data, as seen in Figure 4-31.

146

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

firebase googhe.com,

=

messaging-app-mem « Project settings

<,._>. messaging-app-mem messaging-app-mem 4
A/ WebApp

1:8363805609421 web:faa063c60d9de5ii2b1104

&) messaging-app-mem

Firebase SDK snippet
Qaomatic® QcoNnd @

Release and monitor Copy and paste these scripts into the bottom of your <body= tag, but before you use any
Firebase services:

Analytics const firebaseConfig = {
apiKey: “A°

authDomain: “m
projectld:
storageBucket :
messagingSenderld: .
appld: “1:f i TRy

Remove this app

Upgrade

i Delete project

Figure 4-31. Config details

Open the code in Visual Studio Code and create a firebase. js file inside the sxc
folder. Paste the content from VSCode.

Initialize the Firebase app and use the database. Use auth, provider from Firebase.
The following is the firebase. js content.

import firebase from 'firebase/app';

import 'firebase/auth’; // for authentication
import 'firebase/storage’; // for storage
import 'firebase/database’; // for realtime database

import 'firebase/firestore'; // for cloud firestore

const firebaseConfig = {
apikey: "AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
authDomain: "messaging-XXXXXXXXXXXXXXXX.com",

147

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

projectId: "messaging-xxxxx",

storageBucket: "messaging-app-XXXXXXXXXXXXXXXXX" ,
messagingSenderId: "83XXXXXXXXXXXX",

appId: "1:83B6XXXXXXXXXXXXXXXXXXXXXXXXXXXX "

b

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()

const auth = firebase.auth()

const provider = new firebase.auth.GoogleAuthProvider()

export { auth, provider }
export default db

In the terminal, you need to install all the Firebase dependencies in the
messaging-app-frontend folder.

npm i firebase

Creating a Login Component

Create two files—Login. js and Login.css—inside the components folder. In the Login.
js file, there is a simple functional component showing a logo and a Sign in with Google
button. The following is the Login. js content.

import React from 'react’
import { Button } from '@material-ui/core’

import './Login.css'

const Login = () => {
const signIn = () => {
}
return (

<div className="login">
<div className="login_container"»

<div className="login text">

148

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<h1>Sign in to Messaging App</h1>
</div>
<Button onClick={signIn}>Sign In with Google</Button>
</div>
</div>

}
export default Login

Let’s create the styles in the Login.css file. The following is the Login.css content.

.login{
background-color: #f8f8f8;
height: 100vh;
width: 100vw;
display: grid;
place-items: center;

}

.login container{
padding: 100px;
text-align: center;
background-color: white;
border-radius: 10px;
box-shadow: -1px 4px 20px -6px rgba(0, 0, 0, 0.75);

}

.login container > img {
object-fit: contain;
height: 100px;
margin-bottom: 40px;

}

.login container > button {
margin-top: 50px;
text-transform: inherit !important;

149

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

background-color: #0a8d48 !important;
color: white;

Next, let’s show a login component if you receive no user. A temporary state variable
is created to show it in the App. js file. The updated content is marked in bold.

import Login from './components/Login’;

function App() {
const [messages, setMessages] = useState([])
const [user, setUser] = useState(null)
return (
<div className="app">
{ luser ? <Login /> : (
<div className="app__body">
<Sidebar />
<Chat messages={messages} />
</div>
)}
</div>
);
}

export default App;

Figure 4-32 shows the login screen on localhost.

150

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

B Oed B Bogs B Web [Wet2 [Gotby I Rest [Anguls B Wok Wl Tutorsk [Project [Tutorish?

Sign in to Messaging App

Sign In with Google

Figure 4-32. Login screen

Adding Google Authentication

Before using the sign-in method, return to Firebase and click the Authentication tab and
then the Get started button, as seen in Figure 4-33.

151

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

B Firebase

L

Authentication

code

Itime Database

T o mun|k

[g.

Release and monitor

Analytics Learn more

Engage How do | get started?

O

View the docs

How does Authentication
0 work?

What can Authentication
| doforme?

Upgrade

Authenticate and manage users from a
variety of providers without server-side

“ Introducing Firebase Authentication

Figure 4-33. Get started

On the next screen, click the Edit configuration icon for Google authentication, as

seen in Figure 4-34.

152

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

: 3
messaging-app-mem ~ Gotodocs M .

Authentication

Users Sign-in method Templates Usage

Sign-in providers

= Firestore
&2 Realtime Database Provider Status
Py storage B i
©
= LA
2 M earming -~ -
=) > Google Disabled ra
i €
Release and monitor p d
W T
Engage
[]
n
o
2

Authorised domains

Figure 4-34. Google login

In the popup window, click the Enable button. Next, enter your Gmail id and click
the Save button (see Figure 4-35).

import { auth, provider } from '../firebase'
const Login = () => {
const signIn = () => {
auth.signInWithPopup(provider)
.then(result =» console.log(result))
.catch(error =» alert(error.message))

}

return (
<div className="login">
153

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

</divy

}
export default Login

B
»

B Firebase messaging-app-mem ~ Authentication Gotodocs M .
Proj
Build

~
= G
=
. |

fig

2] 1o 2
t..
":-'] ¢ Update the project-level setting below to continue
Release and monitor project

Analytics

Fgmail.com -

Whitelist client IDs from external projects (optional) & -

Web SDK configuration b

Shrctl m

Figure 4-35. Enable Google login

Next, in the Login. js file, you need to import auth, provider from the local
Firebase file. After that, use the signInWithPopup() method to get the results. The
updated content is marked in bold.

Click the Sign in with Google button on localhost. A Gmail authentication popup
window opens. After clicking the username, you see all the information about the
logged-in user in the console, as seen in Figure 4-36.

154

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Using Redux and Context API

Let’s dispatch the user data into the data layer, and here the Redux/Context API comes

into play.

Sign in to Messaging App

e Sources Metwork Pedformance Memory Application Security lighthoute Reduc W Components [Profiler me % P %
Y @ |F Dot levels ¥ o

sages have besn moved to the Iscues pame Yiew dssues

1.
» fuser: Iw, credentiol: Kg, ditionolliserinfo; e, operationfype: ~signin<j | Loeln. 438

Figure 4-36. Google authentication success

You want the user information to be stored in a global state. First, create a new
StateProvider. js file. Use the useContext API to create a StateProvider function. The
following is the content. You can learn more about the useContext hook in my React
hooks YouTube video at www.youtube.com/watch?v=0Sqqs16RejM.

import React, { createContext, useContext, useReducer } from "react"”
export const StateContext = createContext()

export const StateProvider = ({ reducer, initialState, children }) => (

155

http://www.youtube.com/watch?v=oSqqs16RejM

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<StateContext.Provider value={useReducer(reducer, initialState)}>
{children}
</StateContext.Provider>

)

export const useStateValue = () => useContext(StateContext)

Next, create a reducer. js file inside the components folder. This is a concept similar
to the reducer in a Redux component. You can learn more about it at www. youtube.com/
watch?v=mOGOROTchDY. The following is the content.

export const initialState = { user: null }

export const actionTypes = {
SET_USER: "SET_USER"

}

const reducer = (state, action) => {
console.log(action)
switch(action.type) {
case actionTypes.SET USER:

return {
...state,
user: action.user
}
default:

return state

}

export default reducer

In the index. js file, wrap the app component with the StateProvider component
after importing the required files. The updated content is marked in bold.

import { StateProvider } from './components/StateProvider';
import reducer, { initialState } from './components/reducer’;

ReactDOM.render (
<React.StrictMode>

156

http://www.youtube.com/watch?v=m0G0R0TchDY
http://www.youtube.com/watch?v=m0G0R0TchDY

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<StateProvider initialState={initialState} reducer={reducer}>
<App />
</StateProvider>»
</React.StrictMode>,
document.getElementById('root")

)5

When you get the user data back from Google, you dispatch it to the reducer in the
Login.js file, and it is stored in the data layer.

Here, useStateValue is a hook. In fact, it is an example of a custom hook. The
updated content is marked in bold.

import { actionTypes } from './reducer’
import { useStateValue } from './StateProvider’

const Login = () => {
const [{}, dispatch] = useStateValue()

const signIn = () => {
auth.signInWithPopup(provider)
.then(result => {
dispatch({
type: actionTypes.SET_USER,
user: result.user

by
1y
.catch(error => alert(error.message))
}
return (
<div className="login">
</div>
)

}
export default Login

157

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

In the App. js file, use the useStateValue hook, and extract the global user from it.
Then, you log in based on it. The updated content is marked in bold.

import { useStateValue } from './components/StateProvider’;

function App() {
const [messages, setMessages] = useState([])
const [{ user }, dispatch] = useStateValue()

return (
<div className="app">
</div>
);
}

export default App;

If you sign in on localhost, you are taken to the app, as seen in Figure 4-37.

158

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Deit [l Blogs I Web [l Web? [Gotsty [React W Angule [Work [Tutorss [l Proear [l Totoeiak?

; . #= Room Name
€ cm: @& : Q|
a -
Bvou are awesomel s e s sare au
== Room name [y
=¥ Last message... BThats an overkil® w svennnsaor
pre——
Room name
I‘:I B Atways ready 10 help® 1 1 v s srascz vt
Last message...
e tbdee
&% Room name Bail are welcome) s v war s crsss o
W Last message. b
Bvou are helpfull® om0 spases o
ety
So, what do you want to ask? s 1w a0 eur
= 4

Figure 4-37. Logged in

Using Redux Data in Other Components

You have access to the user’s data, so you can use it anywhere. Let’s use the user’s Google
image as the avatar in the Sidebar. js file. Let’s remove the extra rooms because this
project has only one room where everyone can chat.

The updated content is marked in bold.

import { useStateValue } from './StateProvider';

const Sidebar = () => {
const [{ user }, dispatch] = useStateValue()

return (
<div className="sidebar">

159

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

<div className="sidebar header">
<Avatar src={user?.photoURL} />
<div className="sidebar _headerRight">

</div>
</div>
<div className="sidebar search">

</div>
<div className="sidebar__chats"»
<SidebarChat /»
</divy
</div>

}
export default Sidebar

Figure 4-38 shows the logged-in user’s Google image in the top-left corner of the

page on localhost.

160

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

B oedt Wl Sogs [l Web [Web? [Gatsty [l React [Snguiw | Work [Totevisk [Project [Totorial?

= = Room Mame
& o m: g Fom a
Q b e " nabendu
Byvou are awesome vz mass o
™ Room name nsbndy
-
Last message... B Thats an overkil@ = 1w o mumazour

fr—
B Aalways ready to help® i vz s o
pres—"
Bl are welcome® i vz ssasaz o
nsbeadu
Bvou are helpful @ & 1w e mamen
oS,

So, what do you want to ask? s v nazes sur

Figure 4-38. Login image

In Chat. js, use the useStateValue hook to get the user’s display name. Then check
whether message.name is equal to user .displayName to display the chat__receiver class. Fix
the hard-coded Last seen at... message in the chat__header in the Chat. js file; update so that
it shows the time that the last person messaged. Also change the room name to Dev Help.

The updated content is marked in bold.

import { useStateValue } from './StateProvider’;

const Chat = ({ messages }) => {

const [{ user }, dispatch] = useStateValue()

const sendMessage = async (e) => { e.preventDefault()
await axios.post('/messages/new"', {

161

http://message.name

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

message: input,

name: user.displayName,

timestamp: new Date().toUTCString(),
received: true

1)
setInput("")

return (
<div className="chat">
<div className="chat__header">
<Avatar src={ https://avatars.dicebear.com/api/human/
b${seed}.svg" } />
<div className="chat__headerInfo">
<h3>Dev Help</h3»
<p>Last seen at {" "}
{messages[messages.length -1]?.timestamp}
</p>
</div>
</div>
<div className="chat__body">
{messages.map(message => (
<p className={"chat_message ${message.name === user.
displayName &% 'chat_receiver'}" }»
</p>
N}
</div>
<div className="chat_ footer">
</div>
</div>
}
export default Chat

162

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Type something and click Enter. You can see that the message was received.
Figure 4-39 shows the scene has been updated.

twact Agp x +

C 0 @ locahost

apps B Doz B Do B Dot B Bogs W Weo B Web2 W Gatby W Resct W Anguise B Work W Tutorias W Project [Tutoriakd

Q

™% Room name

o Last message.

@

bigd

@™ DevHelp

e

Bvou are awesomel v ssno
ooy

B Thats an overkill@® « v ver 2 ez
[re—

B Atways ready to help@ = sz s cur
[——

Bal are welcome s e s saane e
nas

B vou are helpful@ r nuw e csm o
[———

So, what do you want to ask? i sue 2 nmen
¥

w | I Other bockmars

Habads st

What is the difference between var and let? n 2 varam asvigan

Figure 4-39. Time updates

The last thing to change is the hard-coded message in the sidebar. You need to

show the last message here. First, send the messages from the App. js file to the sidebar

component.

The updated content is marked in bold.

function App() {

return (

<div className="app">

163

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

{ luser ? <Login /> : (
<div className="app__body">
<Sidebar messages={messages} />
<Chat messages={messages} />
</div>
)}
</div>
)
}
export default App;

After that from the Sidebar. js file to the SidebarChat component. The updated
content is marked in bold.

> {
useStateValue()

const Sidebar = ({ messages })
const [{ user }, dispatch]
return (
<div className="sidebar">
<div className="sidebar header">

</div>
<div className="sidebar _search">

</div>
<div className="sidebar chats">
<SidebarChat messages={messages} />
</div>
</div>

}
export default Sidebar

Finally, in the SidebarChat. js file, show the last message instead of the hard-coded
message, and change the room name to Dev Help.
The updated content is marked in bold.

164

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

const SidebarChat = ({ messages }) => {

return (
<div className="sidebarChat">
<Avatar src={"https://avatars.dicebear.com/api/human/b${seed}.
svg'} />
<div className="sidebarChat _info">
<h2>Dev Help</h2>
<p>{messages[messages.length -1]?.message}</p>
</div>
</div>

}
export default SidebarChat

The app is complete. Figure 4-40 shows the latest message in the sidebar. I also
tested my login in a different Google account.

165

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

React App x +

C 1t © localhost
ifps MOz W Oe3 W Oed W Gop W Web [l Web2

S o Ml R e e a ®

Bvou are awesomell i s ua i sk o

ateredy.

|thanks shikha for the explanation B Thats an overkil) s rosey o sezscz o

o
B abways ready to help@® & s i s
hemebies

Bl are welcomel® rosuw i smsssow
—,

Bvou are helpful @ r« 1w 221 sees0s oo

Fhemetiden
So, what do you want to ask? s wewe s mazs e
Maberd Bisma
What is the difference between var and let? i 2o var 2521 sesins s
frever
war is functicnal scoped and let is blocked scoped s 1mw 221 sean 1t ur
Mabaed Bioms
Thanks Shikha for the explanation se e s eas s
& | b)
= v

Figure 4-40. App complete

Deploying the Back End to Heroku

Go to www. heroku.com to deploy the back end. Follow the same procedure that you did
in Chapter 1 and create an app named messaging-app-backend.

After successfully deploying, go to https://messaging-app-backend.herokuapp.com.
Figure 4-41 shows the correct text.

« = C @ @ & nhiips)/messaging-app-backend herckuapp.com w0 ii LD oW B €@ =

Hello TheWebDev

Figure 4-41. Initial route check

166

http://www.heroku.com
https://messaging-app-backend.herokuapp.com

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

In axios.js, change the endpoint to https://messaging-app-backend.herokuapp.
com. If everything is working fine, your app should run.

import axios from 'axios'
const instance = axios.create({

baseURL: ™ https://messaging-app-backend.hexokuapp.com

1)

export default instance

Deploying the Front End to Firebase

It’s time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1. After this process, the site should be live and working properly, as seen in
Figure 4-42.

“« > Q0@ @ & 15 hitpsyjmessaging o m@ﬁmﬂ:mmot B ¢e@A =
$ cm i | e a @
- 35t seen at Sat, 20 Mar 2021 05:57:4¢€ MT
O-, Search or start new chat Urwetsdey

B always ready to help@ w swsn craseraur
73 DevHelp

- You are welcome

Usrwebsdey
B4 are welcome® s v non ctassaaur
atrewiu
Bvou are helpful@ w ssvw e spassonn
Uhrwebdey
So, what do you want to ask? e i st
Haberds Berwas
What is the difference between var and let? su sz sasanon
shibdhs das
var is functional scoped and let is blocked scoped s 2ovssiissarison
‘Mabendsa Bevwas
Thanks Shikha for the explanation sw 2us 221 osar30 o0
Waberda Beow
That was good s w200 s55t3e 5T
shikcha dan

You are welcome s om0z ces7as sum

Figure 4-42. Final app
167

https://messaging-app-backend.herokuapp.com
https://messaging-app-backend.herokuapp.com

CHAPTER 4 BUILDING A MESSAGING APP WITH MERN

Summary

In this chapter, you created a simple but functional chat app. Firebase hosted it on the
Internet. You learned to add Google authentication, by which you can log in with a
Google account. You also learned to store the chats in a MongoDB database with API

routes created using Node.js.

168

CHAPTER 5

Building a Photo-Based
Social Network with MERN

In this chapter, you are going to build an awesome photo-based social network using the
MERN framework. The back end is hosted in Heroku, and the front-end site is hosted
using Firebase. The authentication functionality is also handled by Firebase.

Material-UI provides the icons in the project. Pusher is used since MongoDB is not a
real-time database like Firebase. You want the posts to reflect the moment someone hits
the Submit button.

With this functional photo-based social network, you can upload pictures from your
computer and write a description. The user login is through email. The final hosted app

is shown in Figure 5-1.

169
© Nabendu Biswas 2021
N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_5

https://doi.org/10.1007/978-1-4842-7138-4_5#DOI

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

© & -0 nhips/pheto- app 4 4 i

LOGOUT

test

syer tires,

that never hurts.

testReally great quote. Like it a lot.

Browse... | Quotefancy-16484-38402160.199

< >

Figure 5-1. Final app

First, go to your terminal and create a photo-social-mern folder. Inside, it uses the
create-react-app to create a new app called photo-social-frontend. The following are
the commands.

mkdir photo-social-mern
cd photo-social-mern
npx create-react-app photo-social-frontend

Firebase Hosting Initial Setup

Since the front-end site is hosted through Firebase, you can create the basic setting while
create-react-app creates the React app. Following the setup instructions from Chapter 1,
I created photo-social-mern in the Firebase console.

170

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Since authentication functionality is used, you need to do the additional configuration
mentioned in Chapter 4 and use firebaseConfig, which you need to copy (see Figure 5-2).

googlecom to-soci : ~ 00 Mk L NDOS BT =
h Firebase photo-social-mem - Project settings Gotodocs MR ‘ i

A Pr

to-social-mem photo-socialmem #*

Build
&% Authentication
Firestore

Realtime Database @ photo-social-mern

Firebase SOK snippet

(9 Functions I
Machine Leaming C' Automalic G L) coNG @ onifig

Copy and paste these scripts into the bottom of your <body> tag, but before you use any
Firebase services

=
B
[}
@

Release and monitor

const firebaseConfig
apiKey

Analytics authDomain: “photo-:
projectId: “photo
storageBucket: “photo-
messagingSenderId: “52
Engage appld: ~1:5284°

D

Remove this app

¥ Extensions

i Delete project
Upgrade

Figure 5-2. Config

Open the code in Visual Studio Code (VSCode) and create a firebase. js file inside
the src folder and paste the config content there.

const firebaseConfig = {
apiKey: "AIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY"
authDomain: "photo-XXXXXXXXXXXXXXXXXXXXXXX.com",
projectId: "photo-xxxxxxxxxxx",
storageBucket: "photo-xxxxxxxxxxxx",
messagingSenderId: "52xxxxxxx",
appld: "1:52XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "

};

171

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

React Basic Setup

Return to the React project and cd to the photo-social-frontend directory. Start the
React app with npm start.

cd photo-social-frontend
npm start

The deleting of the files and basic setup in index. js, App.js, and App.css is like
what was done in Chapter 2. Follow those instructions. Figure 5-3 shows how the app
looks on localhost.

& 0

Dot [l Blogr [l wer W web2 W Gatsty W Resct [l feguie [l work [Tutonad e W Propct [Tutesad? » [Otverbockracks | [0] Readeg it

Photo Social Network MERN

Figure 5-3. Initial app

Creating a Header Component

Let’s create the app header, which is a nice logo. In the App. js file, create a div with the
app__header class name and use the React logo from the public folder, which comes
with every React project. The updated content is marked in bold.

import './App.css’;

function App() {
return (
<div className="app">
<div className="app__header"»

</divy
</div>
);
}

export default App;

172

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Next, start writing styles in the App.css file. Here, you are writing styles for the app,
app__header, and the app__headerImage class.

-app {
background-color: #fafafa;

}

.app__header{
background-color: white;
padding: 20px;
border-bottom: 1px solid lightgray;
object-fit: contain;

}

.app__headerImage {
object-fit: contain;
margin-left: 10px;
height: 40px;

}

Figure 5-4 shows the logo on localhost.

i fpos B Cez B Oo3 B Dot B oBogs B Wb B W2 B Gosby B Rescz B Angulsr B Work Bl Twtonals [Proect W Tutonab

Figure 5-4. Perfect logo

Creating a Post Component

Let’s now create the post component, which contains the logged-in user’s avatar,

including a photo and a brief description. Create a components folder inside the src

folder. Then, create two files—Post. js and Post.css—inside the components folder.
The Post. js file is a simple functional component that contains the username,

image, and post.

173

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

import React from 'react’
import './Post.css’
const Post = () => {
return (
<div className="post">
<h3>TWD</h3>
<img className="post image" src="https://www.techlifediary.
com/wp-content/uploads/2020/06/react-js.png" alt="React" />
<h4 className="post__text">thewebdev¥Build a
Messaging app with MERN (MongoDB, Express, React JS, Node JS)
® </h4>
</div>

}
export default Post

In the App. js file, include the Post component three times. The updated content is

marked in bold.

import './App.css’;
import Post from './components/Post’;

function App() {
return (
<div className="app">
<div className="app__header">

</div>
<Post />
<Post />
<Post />
</div>
);
}

export default App;

174

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

The icons come from Material-UI (https://material-ui.com). First, do two npm
installs as per the documentation. Install the core through the integrated terminal in the
photo-social-frontend folder.

npm i @material-ui/core @material-ui/icons

In Post. js, add an avatar icon from Material-UI. You are using it along with the h3
tag inside a post__header div. The updated content is marked in bold.

import { Avatar } from '@material-ui/core’

const Post = () => {
return (
<div className="post">
<div className="post__header"»
<Avatar
className="post__avatar"
alt="TwWD"
src="/static/images/avatar/1.jpg"
/>
<h3>TWD</h3>
</div
<img className="post image" src="https://www.techlifediary.
com/wp-content/uploads/2020/06/react-js.png" alt="React" />

</div>

}
export default Post

175

https://material-ui.com

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN
Next, add the styles in the Post.css file.

.post {
background-color: white;
max-width: 800px;
border: 1px solid lightgray;
margin-bottom: 45px;
}
.post__image {
width: 100%;
object-fit: contain;
border-top: 1px solid lightgray;
border-bottom: 1px solid lightgray;
}
.post_ text {
font-weight: normal;
padding: 20px;

}

.post__header {
display: flex;
align-items: center;
padding: 20px;

}

.post__avatar {
margin-right: 10px;

Figure 5-5 shows how the app now looks on localhost.

176

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

o
React App x +

5 C 0 @ bakhost CO> B N

i dppn Mooz B D3 B Ot I Blogs [l Weo W wetz W Gotity W React W Anguis [l Wesk [Tutonsk [l Prowct [Tubonakd w | | Otterbookmarks [T Reackeg kst

React JS

thewebdev@Build a Messaging app with MERN (MongoDB, Express, React J5, Mode J5) @

TWD

Figure 5-5. Styled post

Making Components Dynamic

Let’s make everything dynamic and pass the username, caption, and image URL as
props. In Post. js, make the following changes. The updated content is marked in bold.

import { Avatar } from '@material-ui/core’

const Post = ({ username, caption, imageUrl }) => {
return (
<div className="post">
<div className="post_ _header">
<Avatar
className="post__avatar"
alt= {username}

177

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

src="/static/images/avatar/1.jpg"

/>

<h3> {username}</h3>
</div>

<h4 className="post__text">{username}
{caption}</h4>

</div>

}
export default Post

Next, let’s optimize the code in App. js. Here, you use the useState hook to create
new state posts. The posts here are objects inside an array.
Inside the return statement, map through the posts array and show each post. The

updated content is marked in bold.

import React, { useEffect, useState } from 'react’;

function App() {
const [posts, setPosts] = useState([

{
username: "TWD",
caption: "®Build a Messaging app with MERN Stack®",
imageUrl: "https://www.techlifediary.com/wp-content/uploads/2020/06/
react-js.png"

}s

{

username: "nabendu82",
caption: "Such a beautiful world",
imageUrl: "https://quotefancy.com/media/wallpaper/3840x2160/126631-
Charles-Dickens-Quote-And-a-beautiful-world-you-live-in-when-it-is.jpg"
}

D

return (

178

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

<div className="app">
<div className="app__header">

</div>
{posts.map(post => (
<Post username={post.username} caption={post.caption}
imageUrl={post.imageUrl} />
N}
</div>
);
}

export default App;

Figure 5-6 shows it on localhost.

B Dot W Biogs [l Wen [Web2 [Gatsby [l React [Angule | Work i Twtodak | Progect [l Tutoriak?

React JS

TWD B Build a Messaging app with MERN Stack

nabendu82

And a beautiful world we live in, when it

is possible, and when many other such

things are possible, and not onl
possible, but done — done, see you! —

under that sky there, every day.

nabendu82Such a beautiful world

Figure 5-6. Everything dynamic
179

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Firebase Authentication Setup

Let’s work on the Firebase authentication, which allows you to log in to the app and
post. This project uses email-based authentication, which is different from the Google
authentication in the previous chapter.

You need to return to Firebase. Click the Authentication tab and then the Get

started button, as seen in Figure 5-7.

FIMDO® B Ee. =

@ Firebase

Authentication

Authenticate and manage users from a
variety of providers without server-side
code

Release and
Analytics Learn more

o How do | get started? b Introducing Firebase Authentication

How does Authentication
o work?

What can Authentication
do for me?

bntication

Watch on (E8YouTube

Figure 5-7. Get started

On the next screen, click the Edit icon for Email/Password, as seen in Figure 5-8.

180

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

google.com, t thent LA b* P o[- B €@ ¥' =
pholo-social-mem - Gotodocs IR 0 i
Authentication @

Users Signinmethod Templates Usage

(4]
S,

i it orbigratan
Machine Leaming S

Release and monitor B

L
Analytics 0
Engage

[L]

=

o .,

2

Upgrade
Authorised domains (3)

L4

Figure 5-8. Email and password

In the popup window, click the Enable button, and then click the Save button, as
seen in Figure 5-9.

181

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

geogle.com/L/0/pre : - © 1 FLMOC® B e =
photo-social-mem ~ Gotodocs MR ’
Authentication 9

users Sign-in method Templates Usage

Sign-in providers

Release and monitor

Analytics Cancel m

Figure 5-9. Enable email and password

Creating a Modal for Signup

Now, let’s show a sign-up modal from Material-UI . The code for this is from https://
material-ui.com/components/modal/#modal

First, import several dependencies and two styles in the App. js file. After that you
have the constant of classes and modalStyle. The open state is initially set to false.

Inside return, set the open state to true for the modal and sign-up button .

The updated content is marked in bold.

import { makeStyles } from '@material-ui/core/styles’;
import Modal from '@material-ui/core/Modal’;
import { Button, Input } from '@material-ui/core’;
function getModalStyle() {
const top = 50;
const left = 50;
return {
top: “${top}%”,
left: “${left}%",

182

https://material-ui.com/components/modal/#modal
https://material-ui.com/components/modal/#modal

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

transform: "translate(-${top}%, -${left}%)",
};
}
const useStyles = makeStyles((theme) =» ({
paper: {
position: 'absolute’,
width: 400,
backgroundColor: theme.palette.background.paper,
boxder: '2px solid #000’',
boxShadow: theme.shadows[5],
padding: theme.spacing(2, 4, 3),
}s
N);

function App() {
const classes = useStyles();
const [modalStyle] = React.useState(getModalStyle);
const [open, setOpen] = useState(false)

return (
<div className="app">
<Modal open={open} onClose={() => setOpen(false)}>
<div style={modalStyle} className={classes.paper}>
<h2sModal Code</h2>
</divy
</Modal>
<div className="app__header">...</div>
<Button onClick={() =» setOpen(true)}»Sign Up</Button>
{posts.map(post => (
<Post ={post.username} caption={post.caption} imageUrl={post.
imageUrl} />
)}
</div>
);
}

export default App;

183

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

On localhost, click the SIGN UP button to get the modal with text (see Figure 5-10).

Figure 5-10. Modal popup

Before creating the form, you need to create three state variables—username, email,
and password—in the App. js file.

Fields for the username, email, and password are inside the modal in the App. js file.
There is also a button that includes an onClick handler calling a signUp function.

The updated content is marked in bold.

function App() {

const [username, setUsername] = useState('')
const [email, setEmail] = useState('')
const [password, setPassword] = useState('')

184

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

const signUp = e => {
e.preventDefault()
}

return (
<div className="app">
<Modal open={open} onClose={() => setOpen(false)}>
<div style={modalStyle} className={classes.paper}>
<form className="app__signup"»
<center»
<img className="app__headerImage" src="logo192.png"
alt="Header" />
</center>

<Input placeholder="username"
type="text"
value={username}
onChange={e =» setUsername(e.target.value)}

/>

<Input placeholder="email"
type="text"
value={email}
onChange={e =» setEmail(e.target.value)}

/>

<Input placeholder="password"
type="password"
value={password}
onChange={e =» setPassword(e.target.value)}

/>

<Button type="submit" onClick={signUp}»Sign Up</Button>

</formy
</div>
</Modal>

185

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

<div className="app header">...</div>
</div>
);
}

export default App;

In the App.css file, add styles for the app__signup class

.app__signup {
display: flex;
flex-direction: column;

}

Figure 5-11 shows that clicking the SIGN UP button on localhost opens a form.

SIGN UF

Figure 5-11. Sign-up form

186

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Sign up with Firebase

Let’s start with the Firebase setup for authentication. First, install all dependencies for
Firebase in the photo-social-frontend folder.

npm i firebase

Next, update the firebase. js file to use the config to initialize the app. The updated
content is marked in bold.

import firebase from 'firebase’;

const firebaseConfig = {

};

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()

const auth = firebase.auth()

const storage = firebase.storage()

export { db, auth, storage }

Let’s add authentication to the app. First, import auth from the local Firebase, and
then add a new user state variable in the App. js file.

Add code to the signUp function that uses createUserWithEmailAndPassword from
Firebase and passes the email and password. After that, update the user and set the
displayName as the username. Use the useEffect hook to monitor any user changes,
and use setUser() to update the user variable.

Inside the return, check if the user is logged in and then show either the Log out
button or the Sign up button.

The updated content is marked in bold.

import { auth } from './firebase’

function App() {

const [user, setUser] = useState(null)

187

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

useEffect(() => {
const unsubscribe = auth.onAuthStateChanged(authUser =» {
if(authUser) {
console.log(authUser)
setUser(authUser)
} else {
setUser(null)
}
)

return () => {
unsubscribe()
}
}»> [user, usexrname])
const signUp = (e) => {
e.preventDefault()
auth.createUserWithEmailAndPassword(email, password)
.then(authUser =» authUser.user.updateProfile({ displayName: username }))
.catch(error =» alert(error.message))

setOpen(false)
}

return (
<div className="app">
<Modal open={open} onClose={() => setOpen(false)}>...</Modal>
<div className="app__header">...</div>
{user ? <Button onClick={() => auth.signOut()}>Logout</Buttons :
<Button onClick={() => setOpen(true)}>Sign Up</Buttony}

</div>
);
}

export default App;

The authentication is working properly on localhost. You can sign up a new user, as

seen in Figure 5-12.

188

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

i ReactApp x +

C 0 © localhost LB+ 4

Il Apps B De? W D3 [Dot [Biogs W Web [Wet2 [Gatsty [React W Anguisr [Work [Tutcrisk W Project [Tutoriai2

TWD

Figure 5-12. User sign-up

Sign in with Firebase

Now let’s work on the sign-in functionality by creating a new sign-in button and a new
modal component in the App. js file.

First, create the openSignIn state variable and function in the App. js file. The
function contains signInWithEmailAndPassword from Firebase.

Note that only email and a password are used, but there is a new openSignIn state
variable and its setOpenSignIn setter. The updated content is marked in bold.

function App() {
const [openSignIn, setOpenSignIn] = useState(false)

189

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

const signIn = e => {
e.preventDefault()
auth.signInWithEmailAndPassword(email, password)
.catch(error =» alert(error.message))
setOpenSignIn(false)

}

return (
<div className="app">
<Modal open={open} onClose={() => setOpen(false)}>...</Modal>
<Modal open={openSignIn} onClose={() =» setOpenSignIn(false)}>
<div style={modalStyle} className={classes.paper}>
<form className="app__signup"»
<center>
<img className="app__headerImage" src="logo192.png"
alt="Header" />
</centers
<Input placeholder="email" type="text" value={email}
onChange={e =» setEmail(e.target.value)} />
<Input placeholder="password" type="password"
value={password}
onChange={e => setPassword(e.target.value)} />
<Button type="submit" onClick={signIn}»Sign In</Button>
</formy
</divy
</Modal>
<div className="app__header">...</div>
{user ? <Button onClick={() => auth.signOut()}>Logout</Button> ¢ (
<div className="app__loginContainer"»
<Button onClick={() =» setOpenSignIn(true)}»Sign In</Button>
<Button onClick={() =» setOpen(true)}»Sign Up</Button>
</divy

)}
</éi;>

190

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN
)s
}
export default App;

There is a new SIGN IN button on localhost. It opens a popup window to enter
credentials (see Figure 5-13). Use the same credentials that you entered for the SIGN IN
button, and you can log in successfully.

test@gmail com

Figure 5-13. Sign-in popup

Adding Posts and Images

The Firebase user authentication is complete. Add the code for the posts and upload the
images. You return to this part once you start the back end.

191

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Create new files—ImageUpload. js and ImageUpload.css—inside the components
folder and import them into the App. js file. Next, pass the prop username from
ImageUpload in the App. js file

In App.js, create a new divwith an app___posts class name, and contain the posts in
it. The updated content of the App. js file is marked in bold.

import ImageUpload from './components/ImageUpload’;
function App() {

return (
<div className="app">

{user ? <Button onClick={() => auth.signOut()}>Logout</Button> :(

)}

<div className="app__posts">
{posts.map(post => (
<Post username={post.username} caption={post.caption}
imageUrl={post.imageUrl} />
)}
</div>
{user?.displayName ? <ImageUpload username={user.displayName} /> :
<h3 className="app__notLogin">Need to login to upload</h3>}
</div>
)
}

export default App;

In the ImageUpload. js file, start with the basic content. There is an input box for the
caption and another for the image. There is also a button and a progress bar.
The following is the content of the ImageUpload. js file.

192

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

import React, { useState } from 'react’
import './ImageUpload.css’
const ImageUpload = ({ username }) => {
const [image, setImage] = useState(null)
const [progress, setProgress] = useState(0)
const [caption, setCaption] = useState('')
const handleChange = e => {
if(e.target.files[0]) {

setImage(e.target.files[0])

}
}
const handleUpload = () => {}
return (
<div className="imageUpload">
<progress className="imageUpload progress" value={progress}
max="100" />
<input
type="text"
placeholder="Enter a caption..."
className="imageUpload input"
value={caption}
onChange={e => setCaption(e.target.value)}
/>
<input className="imageUpload file" type="file"
onChange={handleChange} />
<button className="imageUpload__ button"
onClick={handleUpload}>Upload</button>
</div>
)

}
export default ImageUpload

The front end is almost complete, but you need to complete the styling. First, add
styles in the ImageUpload. css file. The following is the content for this file.

193

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

.imageUpload {
display: flex;
flex-direction: column;
max-width: 800px;
width: 100%;
margin: 10px auto;

}

.imageUpload progress{
width: 100%;
margin-bottom: 10px;

}

.imageUpload _input{
padding: 10px;
margin-bottom: 10px;

}

.imageUpload file {
margin-bottom: 10px;

}

.imageUpload button {
border: none;
color: lightgray;
background-color: #6082a3;
cursor: pointer;
padding: 10px;
font-weight: bolder;
font-size: 0.9rem;

}

.imageUpload_ button:hover {
color: #6082a3;
background-color: lightgray;

Figure 5-14 shows the image upload on localhost.

194

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

nabendu82Such a beautiful world

Browse... Mo file selected.

v
Figure 5-14. Image upload

Add the styles in the App.css file. The updated code is marked in bold. It keeps the
existing code for app__signup and app__headerImage.

-app {
display:grid;
place-items: center;
background-color: #fafafa;

}

.app__header{
display: flex;
justify-content: space-between;
position: sticky;
top: 0;
z-index: 1;
width: 100%;
background-color: white;
padding: 20px;
border-bottom: 1px solid lightgray;
object-fit: contain;

}

.app__notlLogin{
margin-bottom: 20px;

}

195

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

.app__loginContainer{
margin-right: 10px;

}

.app__posts {
padding: 20px;
}

There is a small fix in App. js to move the user code inside the app__header div. The
updated code is marked in bold.

function App() {

return (
<div className="app">

<div className="app__header"»

{user ? <Button onClick={() => auth.signOut()}>Logout</Buttons :(
<div className="app__loginContainer"»
<Button onClick={() =» setOpenSignIn(true)}»Sign In</Button>
<Button onClick={() =» setOpen(true)}»Sign Up</Button>
</divy

)}

</divy
</div>
);
}

export default App;

Figure 5-15 shows the app in desktop view on localhost.

196

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

= o

o @ 1 FLimODew BeEeeR =

' LOGOUT

TWD

React JS

TWD@Build 2 Messaging app with MERN Stack{

nabendus2

Figure 5-15. Front-end complete

Initial Back-End Setup

Let’s move to the back end, starting with the Node.js code. Open a new terminal window
and create a new photo-social-backend folder in the root directory. After moving to the
photo-social-backend directory, enter the git init command, which is required for
Heroku later.

mkdir photo-social-backend
cd photo-social-backend
git init

197

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Next, create the package. json file by entering the npm init command in the
terminal. You are asked a bunch of questions; for most of them, simply press the Enter
key. You can provide the description and the author, but they are not mandatory. You
generally make the entry point at server. js, which is standard (see Figure 5-16).

ot miﬁlemﬂwmnciil-baékmd\'packm.jsom

p Bacihuld"g

specified\” && exit 1"

2 /MERN_Projects/photo-social -mern/photo-social-backend (master)

Figure 5-16. Initial back end

Once package. json is created, you need to create the .gitignore file with node_
modules in it since you don’t want to push node_modules to Heroku later. The following
is the .gitignore file content.

node_modules

”,

Next, open package.json. The line “type”: “module is required to have React-like
imports enabled in Node.js. Include a start script to run the server. js file. The updated
content is marked in bold.

198

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

"name": "messaging-app-backend",
"version": "1.0.0",
"description": "Messaging app backend",

"main": "server.js",
"type": "module”,
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"start": "node server.js'

1

"author": "Nabendu Biswas",
"license": "ISC"

Finally, you need to install two packages before starting. Open the terminal, and
install Express and Mongoose in the photo-social-backend folder.

npm i express mongoose

MongoDB Setup

The MongoDB setup is the same as described in Chapter 1. Follow those instructions
and create a new project named photo-social-mern.

Before moving forward, install nodemon in the photo-social-backend folder. It helps
the changes in server.js to restart the Node server instantaneously.

npm i nodemon

Initial Route Setup

Create a server. js file in the photo-social-backend folder. Here, you import the
Express and Mongoose packages. Then use Express to create a port variable to run on
port 9000.

The first API endpoint is a simple GET request created by app.get (), which shows
the text Hello TheWebDev if successful.

Then listen on port with app.listen().

199

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

import express from 'express'
import mongoose from 'mongoose’

//App Config
const app = express()
const port = process.env.PORT || 9000

//Middleware
//DB Config

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

In the terminal, type nodemon server.js to see the Listening on localhost: 9000
console log. To check that the route is working correctly, go to http://localhost:9000/
to see the endpoint text, as shown in Figure 5-17.

e ca | @ D locanostaooc R FLIMODOC® B €S

Hello TheWebDev

Figure 5-17. Initial route

Database User and Network Access

In MongoDB, you need to create a database user and give network access. The process
is the same as explained in Chapter 1. Follow those instructions, and then get the user
credentials and connection URL.

In the server. js file, create a connection url variable and paste the URL within the
string from MongoDB. You need to provide the password that you saved earlier and a
database name.

The updated code is marked in bold.

200

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

//App Config

const app = express()

const port = process.env.PORT || 9000

const connection_url = ' mongodb+srv://admin:<password>@cluster0.giruc.
mongodb.net/photoDB?retrylirites=truedw=majority"

//Middleware

//DB Config

mongoose.connect(connection_url, {
useNewUrlParser: true,
useCreatelndex: true,
useUnifiedTopology: true

1

//API Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

MongoDB Schema and Routes

Let’s create the model for the post. Create a postModel. js file inside the
photo-social-backend folder.
First, create a schema with the required parameters to be passed, and then export it.

import mongoose from 'mongoose’

const postsModel = mongoose.Schema({
caption: String,
user: String,
image: String

1)

export default mongoose.model('posts’, postsModel)

201

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

You now use the schema to create the endpoint that adds data to the database.

In server. js, create a POST request to the /upload endpoint. The load is in
req.body to MongoDB. Then use create() to send dbPost. Ifit’s a success, you
receive status 201; otherwise, you receive status 500.

Next, create the GET endpoint to /sync to get the data from the database. You are
using find() here. You receive status 200 if successful (otherwise, status 500).

The updated code is marked in bold.

import express from 'express’
import mongoose from 'mongoose’
import Posts from './postModel.js’

//APT Endpoints
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/upload’, (req, res) =»> {
const dbPost = req.body
Posts.create(dbPost, (err, data) =» {
if(err)
res.status(500).send(err)
else
res.status(201).send(data)

b))
}

app.get('/sync', (req, res) =»> {
Posts.find((err, data) =» {

if(err) {
res.status(500).send(err)
} else {
res.status(200).send(data)
}
)
}
//Listener

app.listen(port, () => console.log(Listening on localhost: ${port}"))

202

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Before moving forward with the POST request, you need to complete two things.
First, implement CORS; otherwise, you get cross-origin errors later when you deploy the
app. Open the terminal and install CORS in the photo-social-backend folder.

npm i cors

In server.js, import CORS and then use it with app.use(). You also need to use the
express.json() middleware. The updated code is marked in bold.

import express from 'express'
import mongoose from 'mongoose’
import Cors from 'cors’

import Posts from './postModel.js'

//Middleware
app.use(express.json())
app.use(Cors())

In Postman, you need to change the request to POST and then add the http://
localhost:9000/upload endpoint.

After that, click Body and then select raw. Change to JSON (application/json) from
drop-down menu. In the text editor, enter the data as shown in Figure 5-18. One thing to
change is to make the data JSON by adding double quotes to keys also.

Next, click the Send button. If everything is correct, you get Status: 201 Created, as
seen in Figure 5-18.

203

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

88 My Workspace ~

Figure 5-18. Postman POST

Iinserted other data in a similar way. You need to test the GET /sync endpoint.
Change the request to GET and click the Send button. If everything is correct, you get
Status: 200 OK, as seen in Figure 5-19.

204

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

22 MyWorkspace ~ A imvite

untitled Request

Import Runner pira
i = 5 L - S
GET v hepecathost9000/sy Save

Figure 5-19. Postman GET

Sometimes you get an error in the server while POST requests. The error is
UnhandledPromiseRejectionWarning: MongooseServerSelectionError: connection.

If you get this error, go to your Network Access tab, and click the ADD IP ADDRESS
button. After that, click ADD CURRENT IP ADDRESS button, and click Confirm, as seen
in Figure 5-20.

205

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

{9') ¢ @ :@. & https/doudmongodb.com/v2/605401143c0a404 1563551 #security/network/ac +v & 9 FnBODS® FE ¥ ¢ -l =

Add IP Access List Entry

Atlas only allows chent connections 1o a cluster from entres in the project’s IP Access List. Each entry
should either be a single IP address or a CIDR-notated range of addresses. Leam more.

ADD CURRENT IP ADDRESS

Access List Entry:

Comment:

Thig entry i& temporary and will be deleted in & hours ™

Figure 5-20. Add current IP

Integrating the Back End with the Front End

You want to get all the messages when the app initially loads, and then push the
messages. You need to hit the GET endpoint, and for that you need Axios. Open the
photo-social-frontend folder and install it.

npm i axios

Next, create a new axios. js file inside the src folder and then create an instance of
axios. The base URLis http://localhost:9000.

206

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN
import axios from 'axios'

const instance = axios.create({
baseURL: "http://localhost:9000"

1)

export default instance

In the ImageUpload. js file, import storage from Firebase and Axios. Update
handleUpload(), which fires after you click the Upload button.

First, take the uploaded image path in the uploadTask variable and put it in the
database. Check state_changed because the snapshot changes. Depending on how
much hass uploaded, update the progress bar in setProgress.

After that, you need to do error management. Get the image URL from Firebase.

Next, take the caption, username, and URL and do an axios.post to /upload to push
itin MongoDB.

The updated code is marked in bold.

import { storage } from "../firebase";
import axios from '../axios’
const ImageUpload = ({ username }) => {

const [url, setUrl] = useState("");
const handleChange = e => {...}
const handleUpload = () => {
const uploadTask = storage.ref(” images/${image.name}").put(image);
uploadTask.on(
"state_changed”,
(snapshot) => {
const progress = Math.round(
(snapshot.bytesTransferred / snapshot.totalBytes) * 100

)s

setProgress(progress);

}s

207

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

(erxror) =» {
console.log(error);
}s
0 ={
storage
.ref("images")
.child(image.name)
.getDownloadURL()
+then((url) =» {
setUrl(url);
axios.post('/upload’, {
caption: caption,
user: username,
image: url
}
setProgress(0);
setCaption("");
setImage(null);

}s

};
return (...)

}
export default ImageUpload

You need to set up storage in the Firebase console before testing. First, click the
Storage tab and then the Get started button, which opens the popup window shown in
Figure 5-21. Then, click the Next button.

208

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Set up Cloud Storage

o Secure rules for Cloud Storage 2 Set Cloud Storage location

By default, your rules allow all reads and writes from authenticated users.

After you define your data structure, you will need to write rules to secure your
data Learn more 4

service firebase.storage {
match /b/{bucket}/o {
match /{allPaths=#+} {
allow read, write: if request.auth '= null;

Figure 5-21. Firebase storage

On the next screen, click the Done button, as shown in Figure 5-22.

209

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Set up Cloud Storage
° Secure rules for Cloud Storage ° Set Cloud Storage location
Your location setting is where your default Cloud Storage bucket and its data will be stored,

A After you set this location, you eannot change it later. This location setting will
also be the default location for Cloud Firestore.

Learn more

Cloud Storage location

nam5 (us-central)

gance! m

Figure 5-22. Cloud storage

Go to localhost, upload any images, enter captions, and hit the Upload button. You
can see the post being saved to MongoDB (see Figure 5-23).

210

CHAPTER 5

o .

. 03 Nabendu's Org-202...* 3 AccossMarager » Suppon Biling
B photo-social-mern <5 Ades £2 Realn @ Charts

+ Create Database
Network Access

Advanced

Find

photoDB

posta

T A e ——
I 1) b T © & hitpsido. d.mongodbuoomv2/6055efb 207201 10831497 dbd#metricsfreplic
: T ——— 1 Y em— re—

BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

T ., L T

-

Al Clusters Maberdy =

i A

.
rs

photoDB.posts

6588 3

1-30F 3

Featwe Requests ¥

€

Figure 5-23. MongoDB save

3

In App. js, you need to fetch the posts from MongoDB. First, import the local axios.
Then create a new useEffect hook and make the GET request to the /sync endpoint.

Next, update App . js with the data you
The updated code is marked in bold.

import axios from './axios'
function App() {

const fetchPosts = async () => {

received from MongoDB.

await axios.get("/sync").then(response =» setPosts(response.data))

}

211

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

useEffect(() => {
fetchPosts()

bID
return (
<div className="app">

<div className="app__posts">
{posts.map(post => (
<Post
key={post._id}
username={post.user}
caption={post.caption}
imageUrl={post.image}
/>
N}

</div>

</div>
);
}

export default App;

Figure 5-24 shows the post from the MongoDB database on localhost.

212

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

testCreate a firefox extension

Browse... Mo file selected.

T >

Figure 5-24. Post from MongoDB

Configuring Pusher

Since MongoDB is not a real-time database, it’s time to add a pusher to the app to
get real-time data. Since you already did the setup in Chapter 4, follow the same
instructions, and create an app named photo-social-mern.

Adding Pusher to the Back End

Again, you need to stop the server and install Pusher. In the photo-social-backend
folder, install it with the following command.

npm i pusher

213

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

In the server. js file, import it and then use the Pusher initialization code. Get the
initialization code from the Pusher website (https://pusher.com). To add the code,
open a database connection with db.once. Then watch the message collection from
MongoDB with watch().

Inside changeStream, if operationType is inserted, you insert the data in the pusher.
The updated code is marked in bold.

import Pusher from 'pusher’
//App Config

const pusher = new Pusher({
appId: "11xxxx",
key: "9exxn000mxxxxx" ,
secret: "b7xx000000000xxxx"
cluster: "ap2",
useTLS: true

D

//APT Endpoints
mongoose.connect(connection url, { ...})

mongoose.connection.once('open’, () => {
console.log('DB Connected')
const changeStream = mongoose.connection.collection('posts').watch()
changeStream.on('change', change =»> {
console.log(change)
if(change.operationType === "insert") {
console.log('Trigerring Pusher')
pusher.trigger('posts’, 'inserted’, {
change: change
}
} else {
console.log('Error trigerring Pusher')

)
}

214

https://pusher.com

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))
//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

To test this, you need to upload a new image from the front end. At the same time,
you need to be in the Debug console in Pusher.
Figure 5-25 shows the message displayed in the Debug console log.

- ®

Debug console

Overview

Gertting Started
O Pause ® Clear logs

App Keys

5
Stats Event creator

| Debug Console

DETAILS
Error Logs

‘Webhooks Channed: posts, Event: inserted

Collaborators

App Settings “change": {
=_idm: |
"_data™: "8260560305000000012B022C0100296E5A10041CAEICTARI2T488486169CETF4TERIZE4EE45FE9641

“operationType®: “insart”,
"clusterTime™: "6941745809897553921",
"fullbDocument™: {
»_id": "605609e9£3129331bc28aedd”,
"caption™: "Learn to build a firefox extention in third part of the series.",
Tuser”: “test™,
"image™: "https://firebasestorage.googleapis.com/v0l/b/photo-social-mern.appspot.com/o/image

" w": 0

“ns®: |
"db": “"photoDB®,

"coll": “posts®™

“documentKey®: {
*_id": "605609e9£3129331bc28ae9d"™

Figure 5-25. Pusher log

Adding Pusher to the Front End

It's time to move to the front end and use Pusher. First, you need to install the pusher-js
package in the photo-social-frontend folder.

npm i pusher-js

215

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Get the code from www. pusher. com to put in the front end of the app. Import Pusher
and then use the code in the App. js file, where you have a new useEffect() hook for
Pusher. The updated content is marked in bold.

import Pusher from 'pusher-js’

const pusher = new Pusher('560000000000000x ", {
cluster: 'ap2'

N3
function App() {

const fetchPosts = async () => {
await axios.get("/sync").then(response => setPosts(response.data))

}

useEffect(() => {
const channel = pusher.subscribe('posts');
channel.bind('inserted', (data) =» {
fetchPosts()

H
b I[D

useEffect(() => {
fetchPosts()

N
return (
<div className="app">

</div>
);
}

export default App;

Go to Postman and send another POST request. You see the data from the console log
on localhost. The app is complete. Whenever you post something, it is shown in real time.

216

http://www.pusher.com

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Hiding Secrets

You can hide the secrets before deploying the app to Heroku or pushing it to GitHub,
which is a best practice. Install dotenv in the photo-social-backend folder using the
following command.

npm i dotenv
Then create an .env file in the photo-social-backend folder and add all secrets to it.

DB_CONN="mongodb+srv://admin:<password>@clustero.giruc.mongodb.net/photoDB?
retryhWrites=true8w=majority'

PUSHER_ID="11xxxx"

PUSHER_KEY="56XXXXXXXXXXXXXXXXXX"

PUSHER _SECRET="90XXXXXXXXXXXXXXXXXXX"

In server. js, import dotenv and then use the values from it in place of all secrets.

import Posts from './postModel.js'
import dotenv from 'dotenv’;

//App Config

dotenv.config()

const app = express()

const port = process.env.PORT || 9000
const connection url = process.env.DB_CONN

const pusher = new Pusher({
appld: process.env.PUSHER_ID,
key: process.env.PUSHER_KEY,
secret: process.env.PUSHER_SECRET,

cluster: "ap2",
useTLS: true
1
//Middleware

217

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

Add the .env file in the .gitignore file in the back end. The updated content is
marked in bold.

node_modules
.env

Deploying the Back End to Heroku

Go to www. heroku. com to deploy the back end. Follow the same procedure that you did
Chapter 1 and create an app named photo-social-backend.

Since you have environment variables this time, you must add them in Settings »
Config Vars. Note that you don’t put any quotes around the keys, as seen in Figure 5-26.

© & hupsy/dashboard herokucom apps/photo-se
W Salesforce Platfe
B | HErOKU jump to Favorites, Apps. Pipelines, Spaces.
: % A f |
) rersonal ¢ > phato-social-backend #r | openapp || more 2
App Information App Name

phote-social-backend

Region B8 United States

stack heroku-20

Framework

Slug size

Heroku git URL https://git. hercky. com/phote-social- backend. git

Config Vars '. Hide Config Vars |
Da_CONN mongodbssry: //admin: 3¢l P
PUSHER_ID 1 s %
PUSHER_KEY 56 P
PUSHER_SECRET 98 s x

Figure 5-26. Environment variables in Heroku

218

http://www.heroku.com

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

After successfully deploying, go to https://photo-social-backend.herokuapp.com.
Figure 5-27 shows the correct text.

ConaTmI y._.,.'..L_L

Hello TheWebDev

Figure 5-27. Back end deployed
Go to axios.js and change the endpoint to https://photo-social-backend.
herokuapp.com. If everything is working fine, your app should run.

import axios from 'axios'
const instance = axios.create({
baseURL: " https://photo-social-backend.herokuapp.com

1

export default instance

Deploying the Front End to Firebase

It’s time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1. After this process, the site should be live and working properly, as seen in
Figure 5-28.

219

https://photo-social-backend.herokuapp.com
https://photo-social-backend.herokuapp.com
https://photo-social-backend.herokuapp.com

CHAPTER 5 BUILDING A PHOTO-BASED SOCIAL NETWORK WITH MERN

© & -0 nhips/pheto- app 4 4 i

LOGOUT

test

syer tires,

that never hurts.

testReally great quote. Like it a lot.

Browse... | Quotefancy-16484-38402160.199

< >

Figure 5-28. Final app

Summary

In this chapter, you created a simple but functional photo-based social network. Firebase
hosted it on the Internet. You learned to add email authentication, by which you can log
in with email. You also learned how to store images in Firebase and store links to images
and posts in a MongoDB database with API routes created using Node.js.

220

CHAPTER 6

Build a Popular Social
Network with MERN

Welcome to the final MERN project, where you build an awesome popular social
network using the MERN framework. The back end is hosted in Heroku, and the front-
end site is hosted in Firebase. Firebase also handles the authentication functionality.
Material-UI provides the icons in this project. You also use styled components and CSS.

Pusher is used since MongoDB is not a real-time database like Firebase, and you
want the posts to reflect the moment someone hits the submit.

In this project, you build a social media app that has Google authentication. The
app’s look and feel are similar to a popular social network. In it, you can post an image
along with descriptive text. The final hosted app is shown in Figure 6-1.

221
© Nabendu Biswas 2021

N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4_6

https://doi.org/10.1007/978-1-4842-7138-4_6#DOI

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

c>ee ﬁﬁaa_a i i 7] @ FiMmODCG® BeEee@m =
Q saarch Popusa f]) = (-] @;mmm+ LI
@ <hikha das -fj\f::n:uonGa:sby?ro}e::s

3 covip-19 information Center

I Like Page 0 Learn More
[pages
. Foundation
amw Friends Gatshy

Projects
B Messenger it
E Marketplace @ WhaL'S 08 your mis Br . Foundation Gatsby Projects 0
3 videos 2 W Commest 4 Share
W Live Video B Photo/Video Feeling/Activity
~ More
@ shikha das

Found this video really useful on thewebdev youtube channel

Projects

. Foundation Gatsby Projects 0
Figure 6-1. Final app

Go to your terminal and create a popular-social-mern folder. Inside it,
use create-react-app to create a new app called popular-social-frontend. The
commands are as follows.

mkdir popular-social-mern
cd popular-social-mern
npx create-react-app popular-social-frontend

Firebase Hosting Initial Setup

Since the front-end site is hosted through Firebase, you can create the basic setting while
create-react-app creates the React app. Following the setup instructions from Chapter 1,
I created popular-social-mern in the Firebase console.

Since you also are using authentication functionality, you need to do the additional
configuration mentioned in Chapter 4 and get firebaseConfig, which you need to copy.

222

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Open the code in Visual Studio Code (VSCode) and create a firebase. js file inside
the src folder and paste the config content there.

const firebaseConfig = {
apiKey: "AIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY"
authDomain: "popular-XxXXXXXXXXXXXXXXXXXXXXX.com" ,
projectId: "popular-xxXXXXXxxxx",
storageBucket: "popular-xxxxxxxxxxxx",
messagingSenderId: "19xxxxxxx",
appId: "1:59XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

I

React Basic Setup

Go back to the React project and cd to the popular-social-frontend directory. Then,
start the React app with npm start.

cd popular-social-frontend
npm start

The deleting of the files and basic setup in index. js, App. js, and App.css is like
what was done in Chapter 2. Follow those instructions. Figure 6-2 shows how the app
looks on localhost.

Resct App x +

C (@ localhost

H . Dev2 Dev3 Devd Blogs. Web Web2 Gatsbry React Angular Work Tutcrials Progect Tutoriaks?
o App 4§ ¥ it &

Popular Social Network MERN

Figure 6-2. Initial app

Adding a Styled Component

You are going to use the famous CSS-in-JS library styled-components
(https://styled-components.com) to style the project. This is one of the most popular
alternative ways to use CSS in React projects. Open the integrated terminal and install it
in the popular-social-frontend folder.

npm i styled-components

223

https://styled-components.com

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Then, import the styled components in the App. js file. In place of the div, there is the
AppWrapper component. You style AppWrapper after the function. The updated content is
marked in bold.

import styled from 'styled-components’

function App() {
return (
<Applrapper>
<h1>Popular Social Network MERN</h1>
</AppWrapper >
);
}

const Applirapper = styled.div’
background-colorx: #fif2fs;

~

export default App;

Creating a Header Component

Let’s create a component that displays a nice header in the app. To do this, create a
components folder inside the src folder, and then create a Header. js file inside the
components folder.

The icons are from Material-UI (https://material-ui.com). You need to do two
npm installs, and then install the core and the icons in the popular-social-frontend
folder.

npm i @material-ui/core @material-ui/icons

Alot of code is placed in Header. js, but it is mainly static code and uses Material UI
icons. Note that styled components are used in all the files.

The styled components are like SCSS, where you can nest the internal div inside the
parent element. For example, the HeaderCenter styled component contains styles for the
header option div. Also, note that pseudo-elements like hover are given by &: hover.

224

https://material-ui.com/
https://material-ui.com

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

import React from 'react’

import styled from 'styled-components'

import SearchIcon from '@material-ui/icons/Search’

import HomeIcon from '@material-ui/icons/Home'

import FlagIcon from '@material-ui/icons/Flag’

import SubscriptionsOutlinedIcon from '@material-ui/icons/
SubscriptionsOutlined’

import StorefrontOutlinedIcon from '@material-ui/icons/StorefrontOutlined’
import SupervisedUserCircleIcon from '@material-ui/icons/
SupervisedUserCircle'

import { Avatar, IconButton } from '@material-ui/core’
import AddIcon from '@material-ui/icons/Add’

import ForumIcon from '@material-ui/icons/Flag'

import NotificationsActiveIcon from '@material-ui/icons/
NotificationsActive'

import ExpandMoreIcon from '@material-ui/icons/ExpandMore’

const Header = () => {
return (
<HeaderWrapper>
<HeaderlLeft>

</HeaderLeft>
<HeaderInput>
<SearchIcon />
<input placeholder="Search Popular" type="text" />
</HeaderInput>
<HeaderCenter>
<div className="header option header option--active">
<HomeIcon fontsize="large" />
</div>
<div className="header option">
<FlagIcon fontsize="large" />
</div>
<div className="header option">
<SubscriptionsOutlinedIcon fontsize="large" />
</div>

225

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<div className="header option">
<StorefrontOutlinedIcon fontsize="large" />
</div>
<div className="header option">
<SupervisedUserCircleIcon fontsize="large" />
</div>
</HeaderCenter>
<HeaderRight>
<div className="header _info">
<Avatar src="https://pbs.twimg.com/profile

images/1020939891457241088/fcbu814K_400x400.jpg " />

<h4>Nabendu</h4>
</div>
<IconButton>

<AddIcon />
</IconButton>
<IconButton>

<ForumIcon />
</IconButton>
<IconButton>

<NotificationsActiveIcon />
</IconButton>
<IconButton>

<ExpandMoreIcon />
</IconButton>

</HeaderRight>
</HeaderWrapper>

}

const HeaderWrapper = styled.div"
display: flex;
padding: 15px 20px;
justify-content: space-between;
align-items: center;
position: sticky;

226

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

background-color: white;

z-index: 100;

top: 0;

box-shadow: Opx 5px 8px -9px rgba(0o, 0, 0, 0.75);

const HeaderlLeft = styled.div”
display: flex;
justify-content: space-evenly;
img {
height: 40px;

const HeaderInput = styled.div’
display: flex;
align-items: center;
background-color: #eff2fs;
padding: 10px;
margin-left: 10px;
border-radius: 33px;
input {
border: none;
background-color: transparent;
outline-width: 0;

~

const HeaderCenter = styled.div’

display: flex;

flex: 1;

justify-content: center;

.header option{
display: flex;
align-items: center;
padding: 10px 30px;
cursor: pointer;

227

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

.MuiSvgIcon-root{
color: gray;

}

&:hover{
background-color: #eff2fs;
border-radius: 10px;
align-items: center;
padding: 0 30px;
border-bottom: none;
.MuiSvgIcon-root{

color: #2e81f4;

}

.header option--active{
border-bottom: 4px solid #2e81f4;
.MuiSvgIcon-root{

color: #2e81f4;

~

const HeaderRight = styled.div”
display: flex;
.header _info {
display: flex;
align-items: center;
h4 {
margin-left: 10px;

~

export default Header

228

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Include the Header component in the App. js file. The updated content is marked
in bold.

import styled from 'styled-components'’
import Header from './components/Header’

function App() {
return (
<AppWrapper>
<Header /»
</AppWrapper >
)
}

const AppWrapper = styled.div”
background-color: #fif2fs;

export default App;

Figure 6-3 shows that the header looks awesome on localhost.

React App x4+

o

C f © bahos

iaps Mooz Boed Boed BoBogs Bl wee B w2 B Gouty B Resc: W Angute B work [l Tutorss [Propec: W Tutorsk2

Q Sesieh Poput # [& @ e @ voeoss - mow

Figure 6-3. Beautiful header

Creating Sidebar Components

Let’s create the components to show a nice left sidebar containing the user avatar and
some static information. Create a Sidebar. js file inside the components folder and put
the following content in it. The content is static and mainly contains Material-UI icons
passed to another SidebarRow component.

import React from 'react'
import SidebarRow from './SidebarRow'
import LocalHospitalIcon from '@material-ui/icons/LocalHospital’

229

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

import EmojiFlagsIcon from '@material-ui/icons/EmojiFlags’

import PeopleIcon from '@material-ui/icons/People’

import ChatIcon from '@material-ui/icons/Chat’

import StorefrontIcon from '@material-ui/icons/Storefront’

import VideolibraryIcon from '@material-ui/icons/Videolibrary'

import ExpandMoreOutlined from '@material-ui/icons/ExpandMoreQutlined’
import styled from 'styled-components'’

const Sidebar = () => {
return (

<SidebarWrapper>
<SidebarRow src="https://pbs.twimg.com/profile images/
1020939891457241088/fcbu814K_400x400.jpg" title="Nabendu" />
<SidebarRow Icon={LocalHospitalIcon} title="COVID-19
Information Center" />
<SidebarRow Icon={EmojiFlagsIcon} title="Pages" />
<SidebarRow Icon={PeopleIcon} title="Friends" />
<SidebarRow Icon={ChatIcon} title="Messenger" />
<SidebarRow Icon={StorefrontIcon} title="Marketplace" />
<SidebarRow Icon={VideolLibraryIcon} title="Videos" />
<SidebarRow Icon={ExpandMoreOutlined} title="More" />

</SidebarWrapper>

}

const SidebarWrapper = styled.div™"

export default Sidebar

Create a SidebarRow. js file inside the components folder. Note that the MuiSvgIcon-
root class is on every Material-UI. You are targeting it to add custom styles.

import React from 'react'
import { Avatar } from '@material-ui/core’
import styled from 'styled-components'’
const SidebarRow = ({ src, Icon, title }) => {
return (
<SidebarRowWrapper>

230

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

{src && <Avatar src={src} />}

{Icon && <Icon />}

<p>{title}</p>
</SidebarRowhrapper>

}

const SidebarRowWrapper = styled.div"

display: flex;

align-items: center;

padding: 10px;

cursor: pointer;

&:hover {
background-color: lightgray;
border-radius: 10px;

}
p{
margin-left:20px;
font-weight: 600;
}

.MuiSvgIcon-root{
font-size:xx-large;
color: #2e81f4;

y

export default SidebarRow

In the App. js file, add a sidebar component within an app__body div and add styles
for it in styled components. The updated content is marked in bold.

import styled from 'styled-components'’
import Header from './components/Header'
import Sidebar from './components/Sidebar’

function App() {
return (

<AppWrapper>

<Header />

231

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<div className="app__body">
<Sidebar />
</div>
</AppWrapper >
);
}

const AppWrapper = styled.div’
background-color: #fif2fs;

.app__body {
display: flex;

}
export default App;

Figure 6-4 shows the sidebar on localhost.

C 0 @ lecalhost

fApps B De? B Dn3 B Dot W Blogs W Web B Web? I Gandy [Resct W Angubw [Work [Totorisk [Project [Tutosish?

c Mabendu

COVID-19 Information Center

hl Pages

Friends

|

Messenger

E O

Marketplace

[}

Videos

¥ More

Figure 6-4. Nice sidebar

Creating a Feed Component

Let’s look at the middle part in the app, which adds and shows all the posts. Create a
Feed. js file inside the components folder. Put the following content in it. A FeedWrapper
styled component is wrapping a Stories component.

232

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

import React from 'react’

import Stories from './Stories'

import styled from 'styled-components'’
const Feed = () => {

return (
<FeedWrapper>
<Stories />
</FeedWrapper>
)
}
const FeedWrapper = styled.div”
flex: 1;

padding: 30px 150px;
display: flex;
flex-direction: column;
align-items: center;

export default Feed

Next, create a Stories. js file inside the components folder. Here, you are passing
image, profileSrc, and title to the Story component.

import React from 'react’
import Story from './Story'
import styled from 'styled-components'’
const Stories = () => {
return (
<StoriesWrapper>

<Story
image="https://images.unsplash.com/photo-1602524206684-fdf6393c7d89?ixid=MX
wxMjA3fDF8MHxwaG90by1wYWd1fHx8fGVufDB8fHW%3D&ix1ib=rb-1.2.1&auto=format&fit
=crop&w=13508qg=80"
profileSrc="https://pbs.twimg.com/profile images/1020939891457241088/
fcbu814K_400x400. jpg"

title="Nabendu"
/>

233

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<Story
image="https://images.unsplash.com/photo-1602526430780-
782d6b1783fa?ixid=MXwxMjA3fDF8MHxwaG90by1wYWd1fHx8fGVufDB8fHW%3D&ix1ib=1b-
1.2.1%auto=format&fit=crop8w=13508q=80"
profileSrc="https://pbs.twimg.com/profile images/1020939891457241088/
fcbu814K_400x400.jpg"
title="TWD"
/>
<Story
image="https://www.jonesday.com/-/media/files/
publications/2019/05/when-coding-is-criminal/when-coding-is-criminal.jpg?
h=8008w=1600&1a=en8hash=5522AA91198A168017C511FCBE77E201"
profileSrc="https://pbs.twimg.com/profile images/1020939891457241088/
fcbu814K_400x400. jpg"
title="Nabendu"
/>
</StoriesWrapper>

}

const StoriesWrapper = styled.div’
display: flex;

export default Stories

Next, create the Story. js file inside the components folder. Here, you show the
props. Note that the StoryWrapper is using props in the background image, which shows
the power of styled components. A ternary operator is used to show an image if the
image is passed in props.

import { Avatar } from '@material-ui/core’
import React from 'react’
import styled from 'styled-components'
const Story = ({ image, profileSrc, title }) => {
return (
<StoryWrapper imageUrl={"${image} }>

234

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<Avatar src={profileSrc} className='story avatar' />

<h4>{title}</h4>
</StoryWrapper>
)
}
const StoryWrapper = styled.div’
background-image: url(${props => props.imageUrl ? props.imageUrl : ''});

position: relative;
background-position: center center;
background-size: cover;
background-repeat: no-repeat;
width: 120px;
height: 200px;
box-shadow: Opx 5px 17px -7px rgba(0,0,0,0.75);
border-radius: 10px;
margin-right: 10px;
cursor: pointer;
transition: transform 100ms ease-in;
&:hover {

transform: scale(1.07);
}
.story avatar {

margin: 10px;

border: 5px solid #2e81f4;

}
ha {
position: absolute;
bottom: 20px;
left: 20px;
color: white;
}

export default Story

235

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

In the App. js file, include the Feed component. The updated content is marked in
bold.

import styled from 'styled-components'’
import Header from './components/Header'
import Sidebar from './components/Sidebar’
import Feed from './components/Feed'

function App() {
return (
<AppWrapper>
<Header />
<div className="app__body">
<Sidebar />
<Feed />
</div>
</AppWrapper >
)
}

const AppWrapper = styled.div”

export default App;

Figure 6-5 shows that the stories look great on localhost.

236

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Gatsby [Resct W Anguise W Work W Tutodak I Project [Tutceisk2

c' Mabendu

a

23

B E D

COVID-19 Information Center

Pages

Friends

Messenger

Marketplace

Videos

More

Figure 6-5. Nice image

Adding a Widget

Complete the front of the web app by adding a widget from the page plugin in Facebook.
Add this in the right sidebar so that the app looks complete. Connect using a Facebook
developer account (https://developers.facebook.com/docs/plugins/page-plugin/),

S0 you can use it in any web app.
You need to give the Facebook page URL, width, and height, and then scroll down

and click the Get Code button. I used my Gatsby cookbook page, as seen in Figure 6-6.

237

https://developers.facebook.com/docs/plugins/page-plugin/

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

FACEBOOK for Developers

oEmbed (Legacy)
Child-Directed
Sites
FAQs
Related Topics: Social Pluging FAQS | Other Social Plugins
Deprecated
Facebook Page URL Tabs
hittps. fwwew facabook comigatsbreookboak) Bmeding
Width Height
M0 1500

Use Small Header « Adapt to plugin container width

Hide Cover Photo

|j Foundation G 'y t
Gatsiﬁ;\}

Projects

B R 0 |

Foundation
Gatsby
Projects

. Foundation Gatsby Projects 3

vk 2 @ Comment 4 Share

Gatsbhy

Cookbook

v

£ Founcation Gatsby Projects 3

Figure 6-6. Adding widget

A popup window opens. You need to click the iFrame tab to get the code, as seen in

Figure 6-7.

238

CHAPTER 6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

JavaScript SDK | IFrame |

Step 1: Choose your App ID
Catch of the Day *

This app is in Development Mode and not available pubiicly.
Public Mode can be enabled in e App Dashboard.

Step 2: Flace this code wherever you want the plugin to appear on your page.

<iframe src-"https://ww.facebook.com/plugins/page.php?hrefhttpsXIAR2F

%2Fwww . facebook . conX2F gat shycookbookX2FAtabs=t ime]l inefwidth=3488height 15008
small_header=falsekadapt_container_width=truefhide_cover=falsefshow_facepilestruef
appld=332535@887157151" width="348" height="1588" style="border:none;
overflow:hidden™ scrolling="no” frameborder="8" allowfullscreens"true®
allow="autcplay; clipboard-write; encrypted-media; picture-in-picture; web-share™>
</iframe>

Figure 6-7. Getting iFrame

Create a Widget. js file inside the components folder. Include the IFrame from earlier
but with slight modifications.

import styled from 'styled-components'
const Widget = () => {
return (
<WidgetWrapper>
<iframe
src="https://www.facebook.com/plugins/page.php?href=https%3A%2F%2Fwww.
facebook. com%2Fgatsbycookbook%2F&tabs=timeline8width=3408height=1500&small
header=false8adapt container width=true&hide cover=true&show facepile=true&
appId=332535087157151"
width="340"
height="1500"
239

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

style={{ border: "none", overflow: "hidden" }}
scrolling="no"
frameborder="0"
allow="encrypted-media"
title="Facebook Widget"
>
</iframe>
</WidgetWrapper>

}
const WidgetWrapper = styled.div™"

export default Widget

Figure 6-8 shows a nice widget on localhost.

Apps M Oo2 MO B Dot W o Biogs W Web [Web2 [Gasty [l Reoct [l Anguir [l Work [Tutorals [Project [Twtorals2

- Other bosk

C Nabendu

- Foundation Gatshy Projects |
94 bkas

I Like Page 0 Learm Mor

C Nabendu

u COVID-18 Information Center
]'_‘J Pages

Foundation
- Friends

Gatsby
Projects

E Messenger

E Marketplace . Foundation Gatsby Projects 0
19 Videos w: W ent A Sha
¥ More

Foundation
Gatsby

Projects

. Foundation Gatsby Projects 0 I
Figure 6-8. Widget shown
240

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Creating a Messenger Component

Next, let’s complete the Feed. js file by implementing the component through which the
user can write a description for the post and upload an image. Two more components
are added here. Create a new Messenger . js file in the components folder.

You include it first in the Feed. js file. The updated content is marked in bold.

import React from 'react’
import Stories from './Stories'
import styled from 'styled-components'’
import Messenger from './Messenger’
const Feed = () => {
return (
<FeedWrapper>
<Stories />
< Messenger /»
</FeedWrapper>

}
const FeedWrapper = styled.div’

export default Feed

Let’s create the Messenger. js file. Here, you mainly have the MessengerTop and
MessengerBottom components. In MessengerTop, you mainly have a text box, a file,
and a button. You make the button invisible with display: none in its CSS. Most of the
functionality is in it once you set the back end.

The MessengerBottom component is mainly a static component that shows the icons.

import React, { useState } from 'react’

import { Avatar, Input } from '@material-ui/core’

import VideocamIcon from '@material-ui/icons/Videocam'

import PhotolibraryIcon from '@material-ui/icons/Photolibrary’
import InsertEmoticonIcon from '@material-ui/icons/InsertEmoticon’
import styled from 'styled-components'’

241

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

const Messenger = () => {

const [input, setInput] = useState('")

const [image, setImage] = useState(null)
const handleChange = e => {
if(e.target.files[0])
setImage(e.target.files[0])
}

const handleSubmit = e => {
e.preventDefault()

}

return (
<MessengerWrapper>
<MessengerTop>
<Avatar src=" https://pbs.twimg.com/profile images/
1020939891457241088/fcbu814K_400x400.jpg " />
<form>
<input
type="text"
className="messenger _input"
placeholder="What's on your mind?"
value={input}
onChange={e => setInput(e.target.value)}
/>
<Input
type="file"
className="messenger fileSelector"
onChange={handleChange}
/>
<button onClick={handleSubmit} type="submit">Hidden</
button>
</form>
</MessengerTop>
<MessengerBottom>
<div className="messenger option">

242

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<VideocamIcon style={{ color: 'red' }} />
<h3>Live Video</h3>

</div>

<div className="messenger option">
<PhotolibraryIcon style={{ color: 'green' }} />
<h3>Photo/Video</h3>

</div>

<div className="messenger option">
<InsertEmoticonIcon style={{ color: 'orange' }} />
<h3>Feeling/Activity</h3>

</div>

</MessengerBottom>
</MessengerWrapper>

}

const MessengerWrapper = styled.div’
display: flex;
margin-top: 30px;
flex-direction: column;
background-color: white;
border-radius: 15px;
box-shadow: Opx 5px 7px -7px rgba(0,0,0,0.75);
width: 100%;

const MessengerTop = styled.div’
display: flex;
border-bottom: 1px solid #eff2fs5;
padding: 15px;
form {
flex: 1;
display: flex;
.messenger _input {
flex: 1;
outline-width: 0;
border: none;
padding: 5px 20px;

243

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

margin: O 10px;
border-radius: 999px;
background-color: #eff2fs;
}
.messenger _fileSelector{
width: 20%;

}
button {

display: none;
}

~

const MessengerBottom = styled.div’
display: flex;
justify-content: space-evenly;
.messenger _option{
padding: 20px;
display: flex;
align-items: center;
color: gray;
margin: 5px;
h3{
font-size: medium;
margin-left: 10px;

}

&:hover{
background-color: #eff2fs;
border-radius: 20px;
cursor: pointer;

}

export default Messenger

The localhost is almost complete, and the Messenger component is showing
correctly (see Figure 6-9).

244

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Q Rt - Foundation Gatsby F
ﬂ COVID-19 Information Center
n L 0 Leam s
rtl Pages
.s Foundation
= Friends Gatshy
Projects
B Messenger s T
| r = Foundation Gatsby Projects ﬂ
| 9 marketplace hars on y Choose Fie

[13 videos iz ®
1 ato/Video ling/Activi

v Mare

Foundation
Gatsby

Projects

. Foungatcn Gatsty Frojects

Figure 6-9. Messenger component

Creating a Post Component

Next, let’s show posts in the web app. The Post component is in the Feed. js file. It is
hard-coded now but comes from the back end soon.
The updated content is marked in bold.

import Post from './Post’

const Feed = () => {
return (
<FeedWrapper>
<Stories />
< Messenger />

245

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

}

<Post profilePic="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400.jpg"
message="Awesome post on CSS Animation. Loved it"
timestamp="1609512232424"
imgName="https://res.cloudinary.com/dxkxvfo20/image/upload/
v1598295332/CSS_Animation_xrvhai.png"

username="Nabendu"

/>

<Post profilePic="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400. jpg"
message="BookList app in Vanilla JavaScript"
timestamp="1509512232424"
imgName="https://xes.cloudinary.com/dxkxvfo2o/image/upload/
v1609138312/Booklist-es6_sawxbc.png"

username="TWD"

/>

</FeedWrapper>

const FeedWrapper = styled.div”

export default Feed

Create a new Post. js file inside the components folder. Here, the PostTop section

shows the avatar, username, and time. PostBottom shows the message and an image.

Next, show the icons in PostOptions.

import { Avatar } from '@material-ui/core’

import
import
import
import
import
import
import

246

React from 'react’

styled from 'styled-components'

ThumbUpIcon from '@material-ui/icons/ThumbUp'
ChatBubbleOutlineIcon from '@material-ui/icons/ChatBubbleOutline’
NearMeIcon from '@material-ui/icons/NearMe’

AccountCircleIcon from '@material-ui/icons/AccountCircle’
ExpandMoreOutlined from '@material-ui/icons/ExpandMoreOutlined’

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

const Post = ({ profilePic, message, timestamp, imgName, username }) => {

return (
<PostWrapper>
<PostTop>
<Avatar src={profilePic} className="post avatar" />
<div className="post_topInfo">
<h3>{username}</h3>
<p>{new Date(parseInt(timestamp)).toUTCString()}</p>
</div>
</PostTop>
<PostBottom>
<p>{message}</p>
</PostBottom>
{
imgName ? (
<div className="post__image">

</div>
) (
console.log('DEBUG >>> no image here')
)
}
<PostOptions>

<div className="post option">
<ThumbUpIcon />
<p>Like</p>

</div>

<div className="post_ option">
<ChatBubbleOutlineIcon />
<p>Comment</p>

</div>

<div className="post option">
<NearMeIcon />
<p>Share</p>

</div>

<div className="post option">
<AccountCircleIcon />

247

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<ExpandMoreOutlined />
</div>
</PostOptions>
</PostWrapper>

}

const PostWrapper = styled.div”
width: 100%;
margin-top: 15px;
border-radius: 15px;
background-color: white;
box-shadow: Opx 5px 7px -7px rgba(0,0,0,0.75);
.post__image{
img{
width: 100%

const PostTop = styled.div’
display: flex;
position: relative;
align-items: center;
padding: 15px;
.post__avatar{
margin-right: 10px;

}
.post__topInfo{
h3{
font-size: medium;
}
p{
font-size: small;
color: gray;
}
}

248

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

const PostBottom = styled.div’
margin-top: 10px;
margin-bottom:10px;
padding: 15px 25px;
const PostOptions = styled.div”
padding: 10px;
border-top: 1px solid lightgray;
display: flex;
justify-content: space-evenly;
font-size: medium;
color: gray;
cursor: pointer;
padding: 15px;
.post__option {
display: flex;
align-items: center;
justify-content: center;
padding: 5px;
flex: 1;
p{
margin-left: 10px;
}
&:hover {
background-color: #eff2fs;
border-radius: 10px;

export default Post

Figure 6-10 shows the posts on localhost.

249

CHAPTER 6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Roact App x +

» C Y @ locho

it Apps B D2 B O3 B Dot W Blogs W Web Bl Web? [l Gatsby [React Wl Anguis B Wod W Tutoss B Peoect B Tetes? [l Tutonishd [Tt

Foundation
Gatsby
Projects

Awesome post on C55 Animation. Loved it

CSS ANIMATION
TUTORIAL

. Foundation Gatsty Projects

. Foundation Gatsby Projects 3

M Learn to creat...

Figure 6-10. Posts shown

Google Authentication Setup

Let’s work on the Google authentication, which allows you to log in to the app and post.
Here, you use the process from Chapter 4 and add it to the Firebase console.

Inside the firebase. js file, initialize the app and use auth, provider and the
database. The updated content is marked in bold.

import firebase from 'firebase’
const firebaseConfig = {

};

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()

const auth = firebase.auth()

const provider = new firebase.auth.GoogleAuthProvider()

250

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

export { auth, provider }
export default db

You also need to install all dependencies for Firebase in the terminal. But make sure
you are in the popular-social-frontend folder.

npm i firebase

Creating a Login Component

Let’s create a Login. js file inside the components folder. The Login. js file is a simple,
functional component showing a logo and a sign-in button. As before, you are using
styled components.

import React from 'react’
import styled from 'styled-components'’
import { Button } from '@material-ui/core’

const Login = () => {
const signIn = () => {}
return (
<LoginWrapper>
<div className="login logo">

<h1>Popular Social</h1>
</div>
<Button type='submit' className="login_ btn"
onClick={signIn}>Sign In</Button>
</LoginWrapper>

}

const LoginWrapper = styled.div’
display: grid;
place-items: center;
height: 100vh;
.login_ logo {
display: flex;

251

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

flex-direction: column;
img {
object-fit: contain;
height: 150px;
max-width: 200px;

}
.login_btn {
width: 300px;
background-color: #2e81f4;
color: #eff2fs;
font-weight: 800;
&:hover {
background-color: white;
color: #2e81f4;

~

export default Login

Next, show the Login component if there is no current user. You create a temporary
state variable to show it in the App. js file. The updated content is marked in bold.

import { useState } from 'react’
import Login from './components/Login'

function App() {
const [user, setUser] = useState(null)

return (
<AppWrapper>
{user ? (

<Header />

<div className="app__body">
<Sidebar />
<Feed />

252

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<Widget />
</div>

) s (

<Login />

)}
</AppWrapper>

)
}
const AppWrapper = styled.div™...

export default App;

Figure 6-11 shows the login screen on localhost.

ogs B Web W Webz [Gasby [Rest [Angulsw [Wok [Tutorss I Peoect I Tistesiah

B Tutois il [Tud

Popular Social

Figure 6-11. Login screen

253

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

In the Login. js file, you need to import auth, provider from the local Firebase
file. Then use a signInWithPopup() method to get the results. The updated content is
marked in bold.

import { Button } from '@material-ui/core’
import { auth, provider } from '../firebase'

const Login = () => {
const signIn = () => {
auth.signInWithPopup(provider)
.then(result =» console.log(result))
.catch(error =» alert(error.message))

}

return (...)

}
const LoginWrapper = styled.div ...

export default Login

Click the SIGN IN button on localhost, and a Gmail authentication window pops up.
After clicking the Gmail username, you see all the logged-in user details in the console,
as seen in Figure 6-12.

254

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Popular Social

#: Tm, b: Array(8), evrolledfactors: Mray(8), o £}

Figure 6-12. Login details

Using Redux and Context API

Let’s dispatch the user data into the data layer, and here the Redux/Context API comes
into play.

You want the user information to be stored in a global state. First, create a new
StateProvider. js file. Use the useContext API to create a StateProvider function.
The following is the content. Again, learn more about the useContext hook in my React
hooks YouTube video at www.youtube.com/watch?v=0Sqqs16RejM.

import React, { createContext, useContext, useReducer } from 'react’
export const StateContext = createContext()

export const StateProvider = ({ reducer, initialState, children }) => (
<StateContext.Provider value={useReducer(reducer, initialState)}>
{children}
</StateContext.Provider>

)

export const useStateValue = () => useContext(StateContext)

255

http://www.youtube.com/watch?v=oSqqs16RejM

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Next, create a Reducer. js file inside the src folder. This is a concept similar to the
reducer in a Redux component. Again, you can learn more about it at waw. youtube.com/
watch?v=mOGOROTchDY.

export const initialState = {
user: null,

}

export const actionTypes = {
SET_USER: 'SET_USER'

}

const reducer = (state, action) => {
console.log(action)
switch (action.type) {
case actionTypes.SET_USER:

return {
...State,
user: action.user
}
default:

return state

}

export default reducer

In the index. js file, wrap the app component with the StateProvider component
after importing the required files. The updated content is marked in bold.

import { StateProvider } from './StateProvider';
import reducer, { initialState } from './Reducer’;

ReactDOM.render (
<React.StrictMode>
<StateProvider initialState={initialState} reducer={reducer}»
<App />
</StateProvider>»

256

http://www.youtube.com/watch?v=m0G0R0TchDY
http://www.youtube.com/watch?v=m0G0R0TchDY

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

</React.StrictMode>,
document.getElementById('root")

)5

In the Login. js file, when you get user data back from Google, you dispatch it to the

reducer, and it is stored in the data layer.
Here, useStateValue is a custom hook. The updated content is marked in bold.

import { auth, provider } from '../firebase’
import { useStateValue } from '../StateProvider’
import { actionTypes } from '../Reducer’

const Login = () => {
const [{}, dispatch] = useStateValue()

const signIn = () => {
auth.signInWithPopup(provider)
.then(result => {
console.log(result)
dispatch({
type: actionTypes.SET_USER,
user: result.user

)
)

.catch(error => alert(error.message))

}

return (...)

}
const LoginWrapper = styled.div'...

export default Login

Return to the App. js file and use the useStateValue hook. Extract the global user
from it and base it on your login. The updated content is marked in bold.

import { useStateValue } from './StateProvider';

257

CHAPTER 6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

function App() {
const [{ user }, dispatch] = useStateValue()
return (...);

}
const AppWrapper = styled.div™...

export default App;

If you sign in on localhost, it takes you to the app, as seen in Figure 6-13.

COVID-19 Information Center

B
aw Friends
|E e e
B Foundation Gatsby Projects

0 Marketplace Q ! Choose File . yProincts €
|

||_: Videos k2 W o

B Live Video B photosvides Feeling/Activity
v More
Q Nabendu

‘ Awaseme post on C55 Animation, Loved it Fo u n d a ti 0 n
Gatsby

CSS ANIMATION

Projects
TUTORIAL T

\ 3]

Figure 6-13. Logged in

Using Redux Data in Other Components

You have access to the user’s data, so you can use it anywhere. Let’s use the user’s Google
image as the avatar and the Google username instead of the hard-coded one in the
Header. js file. The updated content is marked in bold.

258

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

import { useStateValue } from '../StateProvider'

const Header = () => {
const [{ user }, dispatch] = useStateValue()

return (
<HeaderWrapper>

<HeaderCenter>

</HeaderCenter>
<HeaderRight>
<div className="header _info">
<Avatar src={user.photoURL} />
<h4>{user.displayName}</h4>
</div>

</HeaderRight>
</HeaderWrapper>

}

const HeaderWrapper = styled.div ...
export default Header

Also, use the user’s Google image as the avatar in the Messenger. js file.

import { useStateValue } from '../StateProvider’

const Messenger = () => {
const [input, setInput] = useState('')
const [image, setImage] = useState(null)
const [{ user }, dispatch] = useStateValue()

return (
<MessengerWrapper>
<MessengerTop>
259

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

<Avatar src={usex.photoURL} />
<formy>

</form>
</MessengerTop>
<MessengerBottom>

</MessengerBottom>
</MessengerWrapper>

}
const MessengerWrapper = styled.div ...~
export default Messenger

The Sidebar. js file includes the user’s username and an avatar.

import { useStateValue } from '../StateProvider’

const Sidebar = () => {
const [{ user }, dispatch] = useStateValue()

return (
<SidebarWrapper>
<SidebarRow src={user.photoURL} title={user.displayName} />
<SidebarRow Icon={LocalHospitalIcon} title="COVID-19
Information Center" />

</SidebarWrapper>

}
const SidebarWrapper = styled.div’

~

export default Sidebar

Figure 6-14 shows the user’s Google image and username in all the correct places on

localhost.

260

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

React Aop x4+

C 0O @ loahst

ops Bl O Wl Dt B Dot [Mo

Bowee [weir [Gatsby [Resct [Anguis [Woi [Tutossh [Propect [l Tetodde [Tutedad

Q

. Nabendu Biswas

[covip-19 information Center

[0 Loseniac
I:] Pages
u Friends
D Messenger
0 Marketplace ha 1 Choose File
|I_: Videos LESR

B Live Video B photosvides Feeling/Activity
hd More

Q Nabendu

Foundation
Gatsby

Awesome post an OS5 Animation. Laved it

CSS ANIMATION
TUTORIAL

R El

Figure 6-14. Login details

Projects

. Founaatien Gatsty Projects {3

Initial Back End Setup

Let’s move to the back end, starting with the Node.js code. Open a new terminal window
and create a new photo-social-backend folder in the root directory. After moving to the
photo-social-backend directory, enter the git init command, which is required for
Heroku later.

mkdir popular-social-backend
cd popular-social-backend
git init

Next, create the package. json file by entering the npm init command in the
terminal. You are asked a bunch of questions; for most of them, simply press the Enter
key. You can provide the description and the author, but they are not mandatory. You
generally make the entry point at server. js, which is standard (see Figure 6-15).

261

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

L CEDESKTOP - 36B3R; fe/MERN_Projects/popular-social-mern/popular-social-backend (master)
$[npn inif]

IThis utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See “npm help init® for definitive documentation on these fields
land exactly what they do.

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press *C at any tise to gquit.

ipackage name: (popular-social-backend)
version: (1.9.9)

idescription: [Py .
lentry point: (index.js
test command:

jgit repository:
keywords :

autror:
license: 1

About to write to E:\MERN_Projects\popular-social-mern\popular-social-backend\package.json:

server.js

{
"name”: "popular-social-backend”,

“version®: "1.8.8",

"description”: "Popular Social App Backend",

“main": "server.js",

"scripts”: {
“test": "echo \"Error: no test specified\" 8& exit 1"

L

"author”: "Nabendu Biswas",

“license™: "ISC"

1

s this 0k? (yes)[yes |

[e/MERN_Projects/popular-social-mern/popular-social-backend (master)

3|

Figure 6-15. Initial back-end setup

Once package. json is created, you need to create the .gitignore file with node_
modules in it since you don’t want to push node_modules to Heroku later. The following
is the .gitignore file content.

node_modules

Next, open package.json. The line "type": "module is required to have React-like
imports enabled in Node.js. Include a start script to run the server. js file. The updated
content is marked in bold.

"name": "popular-social-backend",
"version": "1.0.0",
"description": "Popular Social App Backend",
"main": "server.js",
"type": "module”,
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",

262

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

"start": "node server.js"
}
"author": "Nabendu Biswas",
"license": "ISC"

You need to install some packages before starting. Open the terminal and install
cors, express, gridfs-stream, mongoose, multer, multer-gridfs-storage, nodemon,
path, body-parser, and pusher in the popular-social-backend folder.

npm i body-parser cors express gridfs-stream mongoose multer multer-gridfs-
storage nodemon path pusher

MongoDB Setup

The MongoDB setup is the same as explained in Chapter 1. Follow those instructions
and create a new project named popular-social-mern.

Initial Route Setup

Create a server. js file in the photo-social-backend folder. Here, you import the Express
and Mongoose packages. Then use Express to create a port variable to run on port 9000.
The first API endpoint is a simple GET request created by app.get (), which shows
the text Hello TheWebDev if successful.
Then listen on port 9000 with app.1listen().

//imports

import express from 'express'’

import mongoose from 'mongoose’

import cors from 'cors'

import multer from 'multer’

import GridFsStorage from 'multer-gridfs-storage'
import Grid from 'gridfs-stream’

import bodyParser from 'body-parser’

import path from 'path’

import Pusher from 'pusher’

263

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

//app config

Grid.mongo = mongoose.mongo

const app = express()

const port = process.env.PORT || 9000

//middleware
app.use(bodyParser.json())

app.use(cors())
//DB Config

//api routes
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//1listen
app.listen(port, () => console.log(Listening on localhost: ${port}"))

In the terminal, type nodemon server.js to see the Listening on localhost: 9000
console log. To check that the route is working correctly, go to http://localhost:9000/
to see the endpoint text, as seen in Figure 6-16.

€= C o { D D localhost:s
P T ed

Hello TheWebDev

Figure 6-16. Route test

Database User and Network Access

In MongoDB, you need to create a database user and give network access. The process
is the same as explained in Chapter 1. Follow those instructions, and then get the user
credentials and connection URL.

In the server. js file, create a connection_url variable and paste the URL within the
string from MongoDB. You need to provide the password that you saved earlier and a
database name.

The updated code is marked in bold.

//imports

264

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

//app config

Grid.mongo = mongoose.mongo

const app = express()

const port = process.env.PORT || 9000

const connection_url = 'mongodb+srv://admin:<password>@clustero.quof7.
mongodb.net/myFirstDatabase?retrylirites=truedw=majority"

//middleware

Storing Images in MongoDB

You are using GridFS to store the images. You installed it earlier through the multer-
gridfs-storage package. The gridfs-stream package is responsible for reading and
rendering to the user’s stream.

Two connections are used in the project. The first one is for image upload, and the
second one does other GET and POSTs. The updated code in server. js is marked in
bold.

//middleware
app.use(bodyParser.json())
app.use(cors())

//DB Config

const connection = mongoose.createConnection(connection_url, {
useNewUrlParser: true,
useCreateIndex: true,
useUnifiedTopology: true

})

mongoose.connect(connection_url, {
useNewUrlParser: true,
useCreateIndex: true,
useUnifiedTopology: true

}

//api routes

265

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Complete the code to upload the image. First, create a gfs variable, and then use the
conn variable to connect to the database. Next, use Grid to connect to the database and
then create a collection of images to store the pics.

Next, create the storage variable, which calls a GridFsStorage function with an
object. Here, the connection url variable is used. Inside a promise, create a unique
filename by appending the current date to it. Create a fileInfo object containing the
filename and the bucketName as the earlier create collection images.

Use the multer package to upload the image by passing the variable created earlier.

Build the endpoint to upload the image using POST requests, and upload the
variable created earlier. The updated code in server. js is marked in bold.

//DB Config
const connection = mongoose.createConnection(connection url, {
)
let gfs
connection.once('open’, () => {
console.log('DB Connected')

gfs = Grid(connection.db, mongoose.mongo)
gfs.collection('images"')

}

const storage = new GridFsStorage({
url: connection_url,
file: (req, file) =» {
return new Promise((resolve, reject) =» {

const filename = "image-${Date.now()}${path.extname(file.
originalname)}"
const fileInfo = {

filename: filename,

bucketName: 'images’

}

resolve(fileInfo)

)
}

266

CHAPTER 6 BUILD A POPULAR SOCIAL NETWORK WITH MERN
const upload = multer({ storage })

mongoose.connect(connection url, {

1)

//api routes
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/upload/image', upload.single('file'),(req, res) =» {
res.status(201).send(req.file)

}
//1isten

Check the endpoint in Postman. Open a POST request to http://localhost:9000/
upload/image.

Select Body and then form-data. Next, select a file from the File drop-down menu
and then click Select Files. This opens a popup window in which you must choose an
image file (see Figure 6-17).

28 My Workspace ~

Figure 6-17. POST request

267

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Click the Send button. If everything is successful, you see the image details in
Postman, as shown in Figure 6-18.

: : = i M Eriranment -
= : . bepeiocaber Wiiuplosd @ himpsacathost plosdi- &
posT w hatpeealno o000 ploadfimags ml e[

Figure 6-18. Postimage

You can also check in MongoDB, where the image is saved as images.chunks and the
details are in images.files, as seen in Figure 6-19.

268

DATA STORAGE

Clusters

Data Lake

SECURITY

Database Atcess

Featuro Roquests 1

B populer-scial-maerm

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

0 a mengedbaee,
. 03 Nabendus ©rg- 202+ O AccessManager + Suppen Biling A Clsters S———
5 Ates £ Roaim oo i A
VAREWOU WS - 3508.13:% » FCPULAR.SOCHL NERN » CLUSTERS
Cluster0 AWS Murmb]
Callectio
8l VISUALITE YOUR DATA D REFRESH
+ Crn Dazaba . .
rere e popularDB.images files
38 2 40K
pepular D Lo
‘ INSEHT DOEy
: 2 -
+20F2
LAl |

Figure 6-19. Image chunk

Create the route to get the file. To do this, create a /images/single GET route, which
takes a parameter filename. Then use the findOne method to find the file.

If the file is present, use the gfs.createReadStream() to read the file. Then pass the
res to this read stream using a pipe. The updated code in server. js is marked in bold.

//api routes
app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

app.post('/upload/image', upload.any('file'),(req, res) => {
res.status(201).send(req.file)

1)

app.get('/images/single',(req, res) =» {
gfs.files.findOne({ filename: req.query.name }, (err, file) =» {
if(err) {
res.status(500).send(erxr)
} else {
if(1file || file.length === 0) {

269

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

res.status(404).json({ err: 'file not found' })

} else {
const readstream = gfs.createReadStream(file.filename)
readstream.pipe(res)

)
}

//1isten

Next, let’s test the GET route to receive an image in Postman.

In Postman, open a GET request to http://localhost:9000/images/single. Under
Params, the KEY is name and the VALUE is the image from the MongoDB record. Once
you hit the Send button, the image is returned (see Figure 6-20).

28 MyWorkspace ~ A Iovite

Figure 6-20. GET request

270

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

MongoDB Schema and Routes

Until now, the process was to get the image and save it in MongoDB. Now that you have
the image details, you can save it in MongoDB with other post details.
To do this, you need to create the route to save the post. First, create the model for
the post. Then create a postModel. js file inside the popular-social-backend folder.
Here, you create a schema with the required parameters to be passed and then
export it.

import mongoose from 'mongoose’

const postsModel = mongoose.Schema({
user: String,
imgName: String,
text: String,
avatar: String,
timestamp: String

1)

export default mongoose.model('posts’, postsModel)

You now use the schema to create the endpoint that adds data to the database.

In server. js, create a POST request to the /upload endpoint. The load is in req.
body to MongoDB. Then use create() to send dbPost. Ifit’s a success, you receive status
201; otherwise, you receive status 500.

Next, create the GET endpoint to /sync to get the data from the database. You
are using find() here. You receive status 200 if successful (otherwise, status 500). A
timestamp sorts the posts.

The updated code is marked in bold.

import Posts from './postModel.js’

app.post('/upload/post', (req, res) =» {
const dbPost = req.body
Posts.create(dbPost, (err, data) =» {
if(err)
res.status(500).send(err)

271

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

else
res.status(201).send(data)

)
}

app.get('/posts’, (req, res) =» {
Posts.find((err, data) =» {
if(err) {
res.status(500).send(err)
} else {
data.sort((b,a) => a.timestamp - b.timestamp)
res.status(200).send(data)

b))
}

//1listen
app.listen(port, () => console.log(Listening on localhost: ${port}"))

Integrating the Back End with the Front End

You want to get all the messages when the app initially loads and then push the
messages. You need to hit the GET endpoint, and for that you need Axios. Open the
photo-social-frontend folder and install it.

npm i axios

Next, create a new axios. js file inside the src folder and create an instance of
axios. The base URLis http://localhost:9000.

import axios from 'axios'

const instance = axios.create({
baseURL: "http://localhost:9000"

1)

export default instance

272

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Do the necessary imports in the Feed. js file. After that, you have a postsData state
variable. Next, call a syncFeed function from useEffect once.

The syncFeed function does the GET call to the posts endpoint and sets postsData
with the res.data with setPostsData.

import React, { useEffect, useState } from 'react’
import axios from '../axios'

const Feed = () => {
const [postsData, setPostsData] = useState([])
const syncFeed = () => {
axios.get('/posts')
+then(res =»> {
console.log(res.data)
setPostsData(res.data)
}
}

useEffect(() => {
syncFeed()

b [D

return (
<FeedWrapper>
<Stories />
<Messenger />
{
postsData.map(entry =» (
<Post
profilePic={entry.avatar}
message={entry.text}
timestamp={entry.timestamp}
imgName={entry.imgName}
username={entry.user}
/>

))

273

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

</FeedWrapper>

}
const FeedWrapper = styled.div ...

export default Feed

In Messenger.js, add the imports for axios and FormData, which append the new
image.

Update handleSubmit(). Here, check for the image that you already uploaded—and
then append the image and the image name in the form.

Use axios.post to send the image to the /upload/image endpoint. In the then part,
create a postData object to take the text from the user-entered input. imgName contains
the name of the image from res.data.filename. The user and avatar are taken from the
Firebase data and the timestamp is from Date.now().

Call the savePost () with the postData object. Note that there is an else, where you
are not sending the image to savePost (). This is for cases where the user creates a post
without any image.

In savePost (), you take postData and do a POST call to the /upload/post endpoint.
The updated content is marked in bold.

import axios from '../axios’

import FormData from 'form-data’

const Messenger = () => {

const handleSubmit = e =» {
e.preventDefault()
if(image) {
const imgForm = new FormData()
imgFoxm.append('file',image, image.name)
axios.post('/upload/image', imgForm, {
headers: {
'accept': 'application/json',
'Accept-Language': 'en-US,en;q=0.8"',

274

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

'Content-Type': “multipart/form-data;
boundary=${imgForm._boundary}"

}

}) .then(res =»> {

const postData = {
text: input,
imgName: res.data.filename,
user: user.displayName,
avatar: user.photoURL,
timestamp: Date.now()

}

savePost(postData)

}

} else {

const postData = {
text: input,
user: user.displayName,
avatar: user.photoURL,
timestamp: Date.now()

}

savePost(postData)

}
setInput('')

setImage(null)
}

const savePost = async postData =»> {
await axios.post('/upload/post', postData)
.then(res => {
console.log(res)

1
}

return (...)

}

const MessengerWrapper = styled.div ...

export default Messenger

275

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

The next change is in the Post. js file, where you show the image you get from the
http://localhost:9000/images/single endpoint by passing the image name as a
parameter. The updated content in the Post. js file is marked in bold.

const Post = ({ profilePic, message, timestamp, imgName, username }) => {

return (
{
imgName ? (
<div className="post__image">
<img src={"http://localhost:9000/images/
single?name=${imgName}"} alt="Posts" />
</div>
) (
console.log('DEBUG >>> no image here')
)
}
</PostWrapper>
)

You now have a working application in which you can upload an image and post
messages. It is stored in MongoDB and shown on the homepage. But you have a
problem, and the posts are not reflected in real time. You must refresh the app (see
Figure 6-21).

276

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

b

m" J Foundation
Friends TWD Gatsby
| g Projects

3 B Messenger
R S B Foundation Gatsby Projects

0 Marketplace . T Browse... . 0

[I! Videos "y vz W Comment 4 Share
‘ - - v;o B Photo/Video <) Feeling/Activity

hd Maore

@ shikha das -

' A Foundation

Really cool quote

Gatsby

Projects

. ‘ Foundation Gatsby Projests {3
" T —

i [me. 7 e
. Ecundation Gatsty Prejects €3
| @ shlltia cos " Learn ta create blazing tast websites win
Gatabe IS - hites Umaikchi mpy e arm-to-

Figure 6-21. Problem

Configuring Pusher

Since MongoDB is not a real-time database, it’s time to add a pusher to the app for real-
time data. Since you already did the setup in Chapter 4, follow the same instructions, and
create an app named photo-social-mern.

Adding Pusher to the Back End

Since Pusher is already installed on the back end, you just need to add the code for it

in the server. js file. Use the Pusher initialization code, which you get from the Pusher
website. You use it by creating a new Mongoose connection in server. js. Here, you use
changeStream to monitor all changes in the posts. If there is any change, trigger a pusher.

277

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

//App Config

const pusher = new Pusher({
appId: "1boox",
key: "9exxno00mmxxxx" ,
secret: "b70000000000000x"
cluster: "ap2",
useTLS: true

s

//APT Endpoints
mongoose.connect(connection url, { ...})

mongoose.connection.once('open’, () => {
console.log('DB Connected for pusher')
const changeStream = mongoose.connection.collection('posts').watch()
changeStream.on('change', change =»> {
console.log(change)
if(change.operationType === "insert") {
console.log('Trigerring Pusher')
pusher.trigger('posts’, 'inserted’, {
change: change
)
} else {
console.log('Error trigerring Pusher')

)
}

app.get("/", (req, res) => res.status(200).send("Hello TheWebDev"))

//Listener
app.listen(port, () => console.log(Listening on localhost: ${port}"))

278

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

Adding Pusher to the Front End

It's time to move to the front end and use Pusher. First, you need to install the pusher-js
package in the photo-social-frontend folder.

npm i pusher-js

Import Pusher into Feed. js and then use the unique code. Then use useEffect to
subscribe to the posts. If it changes, call syncFeed(), which gets all the posts again from
the /posts endpoint. The updated code is marked in bold.

import Pusher from 'pusher-js'

const pusher = new Pusher('e6x000000000000x ", {
cluster: 'ap2’

}s;

const Feed = () => {
const [postsData, setPostsData] = useState([])

const syncFeed = () => {
axios.get('/posts")

.then(res => {
console.log(res.data)
setPostsData(res.data)

1)

}

useEffect(() => {
const channel = pusher.subscribe('posts’);
channel.bind('inserted', (data) =»> {
syncFeed()
D3

},[1)
useEffect(() => {

syncFeed()
LoD

279

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

return (...)

}
const FeedWrapper = styled.div ...

export default Feed

And now back in the app, you can post anything in real time.

Deploying the Back End to Heroku

Go to www. heroku. com to deploy the back end. Follow the same procedure that you did
Chapter 1 and create an app named popular-social-backend.

After successfully deploying, go to https://popular-social-backend.herokuapp.
com. Figure 6-22 shows the correct text.

SRR 0 G - poouiar socl backenanerokuapp.com @ FimOes BEe

| Hello TheWebDev

Figure 6-22. Back end deployed

Go back to axios. js and change the endpoint to https://popular-social-
backend.herokuapp.com. If everything is working fine, your app should run.

import axios from 'axios'
const instance = axios.create({
baseURL: "https://popular-social-backend.herokuapp.com”

1)

export default instance

Deploying the Front End to Firebase

It’s time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1.

280

https://popular-social-backend.herokuapp.com
https://popular-social-backend.herokuapp.com
https://popular-social-backend.herokuapp.com
https://popular-social-backend.herokuapp.com

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

You need to update the Post. js file. The updated content is marked in bold.

{
imgName ? (
<div className="post image">
<img src={" https://popular-social-backend.
herokuapp.com/images/single?name=${imgName}" }
alt="Posts" />
</div>
) (
console.log('DEBUG >>> no image here')
)
}

After this process, the site is live and working properly.

Deploying the Front End to Firebase

It’s time to deploy the front end in Firebase. Follow the same procedure that you did in
Chapter 1. After this process, the site should be live and working properly, as seen in

Figure 6-23.

281

CHAPTER6 BUILD A POPULAR SOCIAL NETWORK WITH MERN

c>ee ﬁi:)a_a i i 7] @ FiMmODCG® BeEee@m =
Q) seareh Popuia ft] 5] e @;mmm+ LI)
@ <hikha das -fﬁ\f::ﬂ'-'on Gatsby Projects

3 covip-19 information Center

l Like Page O Learn uore
[pages
. Foundation
amw Friends Gatshy

Projects
B Messenger il
E Marketplace @ WhaL'S 08 your mis Br . Foundation Gatsby Projects 0
3 videos 2 W Commest 4 Share
W Live Video B Photo/Video Feeling/Activity
~ More
@ shikha das

Found this video really useful on thewebdev youtube channel

Projects

. Foundation Gatsby Projects 0

Figure 6-23. Final deployed site

Summary

In this chapter, you created a simple but functional social network. Firebase hosted it on
the Internet. You learned to add Google authentication, by which you can log in with the
Google account. You also learned how to store images in MongoDB and to give real-time
capabilities to MongoDB using Pusher.

282

Index

A B

Axios package, 56, 90

C

Components dynamic, 78-81, 177-179

D, E

Database user, 12-16, 50-51, 84-85,
120-121, 200-201, 264-265

DatingCards.css file, 39, 41, 42

Document Object Model (DOM), 67

F

Firebase
build, 25
configuration, 24
correct project, 24
deploy front end, 59
existing project, 24
front end, 94, 167
hosting, 143
login, 23

Firebase hosting initial setup, 34
add project, 3
app name, 4
console caption, 2
project creation, 4, 5

© Nabendu Biswas 2021

G

Gmail authentication, 154, 254

Google authentication, 141, 151-155,
250-251

Google image, 159, 160, 258, 260

HIJ K
HandleVideoPress function, 67
Heroku
app name, 18
back end, 93
close popup, 21, 22
command, 22
instructions, 18, 19
login credentials, 16, 17, 20, 21
open back-end app, 23

L

Login.css content, 148, 149

MERN
back-end setup, 47-49, 117, 118
chat component, 108, 111
chat messages, 114
dating cards component, 39
deployed version, 62

N. Biswas, MERN Projects for Beginners, https://doi.org/10.1007/978-1-4842-7138-4

283

https://doi.org/10.1007/978-1-4842-7138-4#DOI

INDEX

MERN (cont.)

footer complete, 117

header components, 36-38
icons aligned, 102

sidebar chat component, 105
sidebar component, 97, 101
SwipeButtons component, 44, 45

MERN stack, 1, 33
MongoDB

adding pusher, front end, 133

additional setup, 141

configuring pusher, 126

CORS, 88

database user/network access, 84, 120

front end/back end, 129

GET route, 56

initial route, 49, 120

integrate back end with front end,
90, 92, 135

network error fix, 126

POST route, 55

pusher, 132

route setup, 83, 84

schema/routes, 51-53, 85, 121, 123, 125

server logs, 133

setup, 49, 83, 119
terminal/install CORS, 54
web icon, 142

MongoDB Atlas, 1, 6
MongoDB setup

add user, 12, 13

allow access, 14

build a cluster, 8

choose region, 9, 10

cluster created, 10, 11
connection string, 16
connect your application, 15
database user creation, 12

284

free tier, 8, 9

network access, 13, 14
new project, 6

project creation, 7
project name, 7

N

Network access, 12-16, 50-51, 84-85,
120-121, 200-201, 264-265

Node.js

agreement, 28

default packages, 29

dependencies, 30

installation, 30, 31

installation location, 28, 29

installer, 25, 26

react front-end code, 25

run button, 27

welcome, 27
nodemon server.js, 50, 84, 120, 200, 264
Node package manager (npm), see Node.js

O

outOfFrame functions, 39

P,Q

Photo-based social network, MERN
adding posts/images, 191, 193-196
adding pusher, 215, 216
back end/front end, 197, 198, 206-208,

210-215
components dynamic, 177-179
database user/network access, 200
deploying front end, firebase, 219
Firebase authentication, 180-182

Firebase hosting initial setup, 170, 171

Firebase setup, 187, 188

header component, 172, 173

heroku, 218, 219

hiding secrets, 217

hosted app, 169, 170

Material-UlI, 169

modal signup, 182-186

MongoDB schema/routes, 201-203,
205, 206

MongoDB setup, 199

post component, 173-175, 177

React setup, 172

route setup, 199

sign in Firebase, 189, 191

Popular social network

adding pusher, 277, 279

adding widget, 237, 239, 240

authentication setup, 250

back end setup, 261, 262

database user/network access, 264

feed component, 232, 234-236

final hosted app, 221, 222

Firebase, front end, 280, 282

Firebase hosting initial setup, 222

header component, 224, 226, 227, 229

heroku, back end, 280

hosted app, 221, 222

integrating back end, 272, 274-276

login component, 251-253, 255

messenger component, 241-243, 245

MongoDB schema/routes, 271

MongoDB setup, 263

MongoDB, storing images, 265-267,
269, 270

post component, 245, 247, 248, 250

INDEX

pusher, 221

React basic setup, 223
redux/context API, 255-258
redux data, 258-261

route setup, 263, 264

sidebar component, 229, 230, 232
styled component, 223

R

React
basic setup, 34-36, 63, 97
Record/rotating disc image, 72

S, T,U
setPeople() function, 57
Short-video-backend folder, 81, 83, 85
initial server setup, 82
updated content, 82
Short-video-frontend folder, 71, 72, 90
SidebarChat component, 105, 164
Sidebar component, 75-77, 97-104,
229-232
signInWithPopup() method, 154, 254
signUp function, 184, 187
Snap feature, 67
StateProvider function, 155, 255

VW, X, Y,Z

Video component, 63-68

VideoFooter component, 69-75

Video__player classes, 66

Visual Studio Code (VSCode),
147,171, 223

285

	About the Author
	About the Technical Reviewer
	Chapter 1: MERN Deployment Setup
	The MERN Stack at a Glance
	Firebase Hosting Initial Setup
	MongoDB Setup
	Creating a New Project

	Database User and Network Access
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Install Node.js and npm
	Summary

	Chapter 2: Building a Dating App with MERN
	Firebase Hosting Initial Setup
	React Basic Setup
	Creating a Header Component
	Creating the Dating Cards Component
	Creating the Swipe Buttons Component
	Initial Back-End Setup
	MongoDB Setup
	Initial Route Setup
	Database User and Network Access
	MongoDB Schema and Routes
	Integrating the Back End with the Front End
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Summary

	Chapter 3: Building a Short Video App with MERN
	Firebase Hosting Initial Setup
	React Basic Setup
	Creating a Video Component
	Creating a Video Footer Component
	Creating a Video Sidebar Component
	Making Components Dynamic
	Initial Back-End Setup
	MongoDB Setup
	Initial Route Setup
	Database User and Network Access
	MongoDB Schema and Routes

	Integrating the Back End with the Front End
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Summary

	Chapter 4: Building a Messaging App with MERN
	Firebase Hosting Initial Setup
	React Basic Setup
	Creating a Sidebar Component
	Creating a Sidebar Chat Component
	Creating a Chat Component
	Creating a Chat Footer Component
	Initial Back-End Setup
	MongoDB Setup
	Initial Route Setup
	Database User and Network Access
	MongoDB Schema and Routes
	Configuring Pusher
	Adding Pusher to the Back End
	Adding Pusher to the Front End
	Integrating the Back End with the Front End
	Additional Setup
	Creating a Login Component
	Adding Google Authentication
	Using Redux and Context API
	Using Redux Data in Other Components
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Summary

	Chapter 5: Building a Photo-Based Social Network with MERN
	Firebase Hosting Initial Setup
	React Basic Setup
	Creating a Header Component
	Creating a Post Component
	Making Components Dynamic
	Firebase Authentication Setup
	Creating a Modal for Signup
	Sign up with Firebase
	Sign in with Firebase
	Adding Posts and Images
	Initial Back-End Setup
	MongoDB Setup
	Initial Route Setup
	Database User and Network Access
	MongoDB Schema and Routes
	Integrating the Back End with the Front End
	Configuring Pusher
	Adding Pusher to the Back End
	Adding Pusher to the Front End
	Hiding Secrets
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Summary

	Chapter 6: Build a Popular Social Network with MERN
	Firebase Hosting Initial Setup
	React Basic Setup
	Adding a Styled Component
	Creating a Header Component
	Creating Sidebar Components
	Creating a Feed Component
	Adding a Widget
	Creating a Messenger Component
	Creating a Post Component
	Google Authentication Setup
	Creating a Login Component
	Using Redux and Context API
	Using Redux Data in Other Components
	Initial Back End Setup
	MongoDB Setup
	Initial Route Setup
	Database User and Network Access
	Storing Images in MongoDB
	MongoDB Schema and Routes
	Integrating the Back End with the Front End
	Configuring Pusher
	Adding Pusher to the Back End
	Adding Pusher to the Front End
	Deploying the Back End to Heroku
	Deploying the Front End to Firebase
	Deploying the Front End to Firebase
	Summary

	Index

