
Modern
Front-end
Architecture

Optimize Your Front-end Development
with Components, Storybook, and
Mise en Place Philosophy
—
Ryan Lanciaux

Modern Front-end
Architecture

Optimize Your Front-end
Development with Components,
Storybook, and Mise en Place

Philosophy

Ryan Lanciaux

Modern Front-end Architecture

ISBN-13 (pbk): 978-1-4842-6624-3		 ISBN-13 (electronic): 978-1-4842-6625-0
https://doi.org/10.1007/978-1-4842-6625-0

Copyright © 2021 by Ryan Lanciaux

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484266243. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Ryan Lanciaux
Ann Arbor, MI, USA

https://doi.org/10.1007/978-1-4842-6625-0

This book is dedicated to my family—to my wife, Rachel,
and my amazing kids. They are incredible

blessings from God!

v

Table of Contents

Chapter 1: �The Mise en Place Philosophy��1

Software Is Different, Right?��2

Good Software��2

What Does This Have to Do with Software?���4

Components���5

Storybook���9

Key Takeaways���10

Chapter 2: �Configuring Our Workspace���13

System Requirements��13

Installing Node.js��14

Windows Installation Instructions��15

Confirming Node Version��16

Removing Existing Node.js Installations (Windows)���������������������������������������16

Install nvm-windows��17

Installing Node.js (Windows)��18

Mac/Linux Installation Instructions��20

Leveraging Node.js Built-In Utilities���21

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

vi

Creating Our React Application��22

Running the Application���23

Adding Our Workspace���24

Storybook���24

Installing Storybook���25

Key Takeaways���26

Chapter 3: �Our First Storybook Stories��29

Our First Storybook Stories��32

StoriesOf���33

Component Story Format���34

Storybook Add-ons���39

Story Variants���42

Key Takeaways���44

Chapter 4: �Creating Reusable Components���47

What Makes a Good Component?��47

It All Comes Down to Purpose��47

Additional Components��49

When Should We Abstract Components?���51

Component States��51

How Should We Arrange Our Components?���54

Classifying Component Types���54

Key Takeaways���57

Chapter 5: �Styling��59

CSS��60

Benefits of CSS���61

Drawbacks of CSS��61

Preprocessors���62

Table of Contents

vii

Benefits of Preprocessors��63

Drawbacks of Preprocessors��64

CSS-in-JS���64

Benefits of CSS-in-JS���67

Drawbacks of CSS-in-JS��67

Utility-First Styling Libraries���67

Benefits of Utility-First Libraries���68

Drawbacks of Utility-First Libraries��68

How to Choose a Styling Solution���68

Building a Theme��69

Key Takeaways���72

Chapter 6: �Ensuring the Quality of Our Components���������������������������73

Unit Tests���73

Testing React Components��76

Testing Alongside Storybook��80

Key Takeaways���82

Chapter 7: �Interacting with API Data���83

Some Main Considerations��84

Feature-Based Development���85

Loading Data��87

Container/Presentational Components���91

Mock Data��91

Wrapping Up��93

Table of Contents

viii

Chapter 8: �Building Our Application��95

Navigating Between Pages��95

Routing���98

Updating Our Application to Use Routes��99

Navigation��104

Wrapping Up��106

Chapter 9: �Automating Repetitive Tasks���107

Our Own CLI���108

A Brief Example��109

Building Some Generators for Our Project���111

Adding Additional Variables to Our Generator���114

Wrapping Up��116

Chapter 10: �Communicating Our Components�����������������������������������117

Documenting Our Components��117

More Advanced Documentation���121

MDX��122

Sharing Our Workspace���124

Wrapping Up��124

Index��125

Table of Contents

ix

About the Author

Ryan Lanciaux is an independent software developer based out of Ann

Arbor, Michigan. Concentrating on front-end development, Ryan helps

organizations build scalable applications with a focus on efficiency and

reusability. He regularly speaks at conferences and meet-ups and writes

articles on the Web. You can find him on Twitter at @ryanlanciaux.

xi

About the Technical Reviewer

Mwiza Kumwenda is a full-stack software engineer and content writer.

Over the past decade, he has developed software for the following

industries: banking, maritime, and electronic manufacturing. He is also

interested in enterprise architecture, history, and politics. He likes to read

in his free time.

xiii

Acknowledgments

I’d like to thank my parents for always encouraging me to explore my

interests and my brothers, Nick and Joel, for being the best siblings you

could ask for.

I’m super appreciative of the developer community in Ann Arbor, MI,

and Toledo, OH. While we’re not currently meeting in person due to a

global pandemic, it’s great to have a developer community to learn from

and discuss ideas with.

Also, I’d like to thank Scott Sanzenbacher and Steven Cramer

for helping me solidify my thinking on building applications with

components. Through discussion, debate, and seeing things succeed

or fail in real applications, their insight was instrumental to my current

development processes.

Lastly, I’d like to thank the maintainers of React, Storybook, Cypress,

Testing Library, and all of the other great open source tools that make the

craft of developing software a lot easier and more fun.

1© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_1

CHAPTER 1

The Mise en Place
Philosophy
There is nothing quite like the feeling of creating something that didn’t

exist before.

Whenever someone unfamiliar with coding asks me about why I am

interested in software development, I like to talk about my love for creating

things. While writing code, you can create your own worlds and build

things that didn’t exist previously.

The questioner may gloss over this response and see coding as an

exercise in tedious algorithms, equations, and syntax. To those who write

code and enjoy it, however, I would argue that this is a relatable mindset.

As opposed to software, many industries have years of standards,

structure, and guidelines. Some may question if these principles help in

the creation process. In most cases, they are both necessary and offer a

head start. It would be tragic if someone in the construction industry threw

out years of physics and structural engineering concepts to start with a

“blank slate,” so to speak. I wouldn’t want to go to a dentist who performed

creative root canals.

Think of the medical and aerospace industries. In both industries,

the pace at which they are moving today is staggering. These fields are

achieving great things by applying novel concepts to principles that have

been around for decades. To start anything completely from scratch would

be a terrible mistake.

https://doi.org/10.1007/978-1-4842-6625-0_1#DOI

2

�Software Is Different, Right?
Compared to many fields, software seems different. Software development,

as a profession, is a very young field. Many developers are familiar with

concepts like SOLID and design patterns from the Gang of Four. While

helpful, these philosophies only go back several generations, not hundreds

or thousands of years, as is the case in many other industries.

This relative “newness” of software development can be both freeing

and problematic, especially in front-end development! Time and time

again, a project that started off fun and exciting to work on turns into a

nightmare after years of development. We often rewrite our applications

only to find ourselves in the same situation a couple of years later. As we

progress through this book, we’ll discuss some strategies we can employ to

keep our software both fun to work on and maintainable.

�Good Software
Merely mentioning “good” software can cause fights among the developer

population of the Internet. Many developers have some opinion of what

good software is. While each person’s opinion may be different, there is an

ideal that we often don’t live up to.

We build our computers [systems] the way we build our
cities—over time, without a plan, on top of ruins.

—Ellen Ullman, programmer and author

At various points in my career, I’ve encountered software built like the

proverbial city previously described. In these systems, you could see the

reign of different CTOs in the company. You could tell when frameworks

were popular and when they fell out of favor. It was clear where developers

Chapter 1 The Mise en Place Philosophy

3

gave up attempts to maintain any level of consistency and just tried to

get something accomplished. These shortcomings ultimately led to

applications being rewritten, only to start the process over again.

Have you ever

•	 Found code with the exact same functionality sprinkled

throughout a codebase?

•	 Updated styles for one part of an application only to

find out that you broke an entirely separate part of the

application?

•	 Been on a team that found the challenges of

maintaining a codebase so overwhelming that it

warranted a rewrite? (Bonus question: Did the rewrite

solve all the problems that were encountered?)

I don’t know about you, but I can answer “yes” to all of the preceding

questions. The sad thing about these responses is that things don’t need to

be this way. Few areas in the history of software prepare us for the constant

change that besieges most front-end development teams. Thankfully, we

can leverage ideas from other industries to write better software.

You don’t have to know it all. Just take in the best big ideas
from all these disciplines.

—Charlie Munger, investor

There are many industries that we, software developers, can obtain

inspiration from, but one I particularly like is the culinary world—mise en

place.

For generations, chefs tout the French term mise en place as a mindset

that is critical to success in the kitchen. “What is mise en place?” you might

ask. According to Wikipedia, mise en place means “everything in its place.”

Chapter 1 The Mise en Place Philosophy

4

In many cases, a mise en place could refer to the setup that one takes

before actually cooking a dish. This setup might look like organizing a

workspace, chopping vegetables and other ingredients, and measuring

seasonings, sauces, and other elements. When this workflow is in place,

the final act of preparing a dish can consist of composing parts of the

previous steps.

In some restaurants, the mise en place philosophy is so trusted that

working with an entirely new kitchen staff is not seen as an impediment to

success.

We’ll see as we progress through this book that there are other parts to

the mise en place philosophy we can use in software. For now, however,

this focus on organization is where we’ll start.

While constant staffing turbulence is to be avoided, it would be

excellent to have this sort of resiliency in front-end applications.

�What Does This Have to Do with Software?
You might be thinking, “Okay, this is neat, but what does this have to do

with creating things outside the kitchen?” Adam Savage, the famed cohost

of MythBusters and renowned crafter/maker, is a fan of the mise en place

philosophy. He dedicates a whole chapter of his book to this concept. He

describes the value of this philosophy outside the kitchen this way:

For all the alchemy that goes into building something, the
magic of making is only possible because of the many repetitive
processes we endure in preparation for final assembly.

—Adam Savage

In other words, a great outcome is only possible because of the little

steps we take to build something.

Chapter 1 The Mise en Place Philosophy

5

In software development, there are many repetitive processes that we

undertake. These processes may not always seem like they are helping

us prepare for a great outcome, but with attention to detail and a focus

on the individual aspects of an application, we can achieve great results.

One such way we can focus on aspects of our application individually is by

effectively leveraging components.

�Components
We’re in an exciting time for front-end development. Today’s frameworks

and libraries offer functionality that those developing front-end

applications even five years ago could only dream of. Despite a lot of the

new, fancy features that we get from today’s libraries, the most significant

impact is this convergence around components. Components are a central

concept to Angular, Vue, React, Svelte, and others. Most browsers even

support native web components!

Components let us break down our applications into what seems like a

series of smaller applications. Frameworks like React provide an interface

or contract that allows developers to compose components into other

components. We can craft pages or screens out of a series of components.

Let’s take a look at a product search mockup shown in Figure 1-1.

Chapter 1 The Mise en Place Philosophy

6

How do you imagine we would structure this product search? Do you

visualize this mockup as a single page, or perhaps you see it as a series of

components?

There’s no wrong answer here, but in many cases, we could break this

down into a product search input and search results. Continuing on this

path, we could deconstruct these components to fields (the input and

input label), buttons, photos, heading, text display, and links, as shown in

Figure 1-2.

Figure 1-1.  A mockup of an online coffee retailer product search

Chapter 1 The Mise en Place Philosophy

7

As ingredients in cooking can be used in other dishes, these

components can be used as part of other screens.

This component concept that is foundational to many of today’s

front-end frameworks is great. Unfortunately, using components to build

applications and using components effectively are not one and the same.

�Meetings Don’t Ensure Success

Earlier in my career, I was a front-end developer at an organization

that had multiple teams working against a single codebase. Each team

was responsible for its own part of the application. There should be no

indication to someone using this application that they were switching into

another team’s domain.

Figure 1-2.  Foundational components

Chapter 1 The Mise en Place Philosophy

8

A major challenge was making sure the teams were aligned and

using similar components that looked the same. Every couple of weeks,

some developers from these teams would meet to discuss the challenges

and successes that their teams had. At almost every meeting someone

would speak up, “We made a great component that solves this problem.”

Someone else would speak up, “Our team made one of these also.” In some

cases, it turned out that we had four instances of a component that served

the same purpose!

This meeting was great to align on common, future goals, but it didn’t

help achieve this necessary consistency. There had to be a better way to

not only make applications from a series of components but communicate

what components exist.

�The Workspace

In commercial kitchens, this mise en place philosophy is what promotes

making consistent meals quickly. In many restaurants, there are different

stations for a variety of elements of a meal. There could be stations for

chopping vegetables, stations for cooking meat, stations for operating

grilled items, and so forth. Pieces cooked in these various stations

are composed together, transforming them into the meals served to

customers.

If you’re building web applications with components, you should

consider adding a component workspace. This workspace highlights

the components rather than standard application logic. A component

workspace is a separate web application that you can run in development

instead of your web application.

Chapter 1 The Mise en Place Philosophy

9

Building components in isolation has numerous benefits, but there are

several key things to keep in mind:

•	 Using a component workspace can help us write

truly reusable components. It’s easy to have tunnel

vision while working on a component as part of a

page. Instead of thinking about the responsibilities of

the page, we can focus on the responsibilities of the

component.

•	 Focusing on one component at a time helps us ensure

the quality of the component we are building. Like a

chef in a kitchen taste testing individual parts of a meal

to ensure a stellar outcome, high-quality components

lead to better applications.

•	 A component workspace can communicate with

other developers, designers, and stakeholders

which elements are available in a system. This

communication helps us avoid scenarios where

components are duplicated simply because others were

not aware that they existed.

�Storybook
In this book, we will use Storybook as our component workspace.

Storybook is an open source project to assist in building component

libraries. While there are other ways to build component libraries and

many great tools, Storybook has a mature developer ecosystem and is a

solid choice.

In the next few chapters, we’ll start coding with Storybook and React,

but for now, let’s take a quick look at what Storybook is in Figure 1-3.

Chapter 1 The Mise en Place Philosophy

10

Using Storybook, we interact with our workspace through stories.

Stories are visual representations of a component in a specific state.

By default, we see our stories in a treelist view with all available

component stories on the left and the workspace on the right. Selecting a

different story from the treelist changes the component that’s available in

the workspace. Typically, we will configure our application to run with a

script for launching Storybook by itself. This may look something like npm

run storybook or yarn storybook.

In the next chapter, we’ll begin adding Storybook to a project and

continue to see some of the benefits that this tool unlocks in our codebase.

�Key Takeaways
In this chapter, we talked about some of the challenges that we encounter

in the front end today. Consistency, communication, and developer

productivity can be hard to achieve in a large codebase.

Figure 1-3.  Storybook inside a sample project

Chapter 1 The Mise en Place Philosophy

11

Other industries have strategies for organization and systems in place

to help achieve consistency and quality in an efficient way.

Mise en place is one such strategy that is used in the culinary world

that we can use in software development. Mise en place refers to the

organization and preparation that goes on prior to assembling a meal.

A workspace is an integral part of mise en place in commercial

kitchens. We can think of “mise en place” as both the architecture and

organization we apply to our codebase. Developers can benefit from a

workspace to help focus on parts of the codebase in isolation.

Storybook is an excellent tool that serves as a workspace for our code.

Chapter 1 The Mise en Place Philosophy

13© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_2

CHAPTER 2

Configuring Our
Workspace
Now that we understand a bit more about the mise en place philosophy we

want to emulate, let’s move on to the code. In this chapter, we’re going to

ensure our computer is set up and configured for our success.

�System Requirements
Before we embark on our adventure, let’s ensure that we have a great

JavaScript environment at our fingertips. We’ll walk through operating

system–level details in the following, but from a high level, our

requirements are

•	 Node.js version 8 or higher – In this book, we’re going

to assume you’re using v10.

•	 An editor you feel comfortable using for working
with JavaScript files – Visual Studio Code (https://

code.visualstudio.com) is a solid choice, but any

editor should work. This editor is a great choice

because it works on many operating systems, has a

great set of plugins, and has a large number of users.

https://doi.org/10.1007/978-1-4842-6625-0_2#DOI
https://code.visualstudio.com
https://code.visualstudio.com

14

Note  You should consider only using even-numbered major
versions of Node.js for production applications. According to the
Node.js documentation, even-numbered major releases have long-
term support, or they will receive bug fixes for 30 months. Odd-
numbered releases only have six months of support (https://
nodejs.org/en/about/releases/).

Even though we are not working with Node.js directly, the tools and

libraries that we’ll be using, such as npm (a CLI tool for managing installed

Node packages) and Create React App (CRA), depend on Node.js.

�Installing Node.js
Today, Node.js comes preloaded on many computers and operating

systems. Unfortunately, depending on a system-wide Node.js version can

cause trouble as many codebases depend on a particular version of Node.js.

What happens if we are working on several applications where each

expects a different version of Node.js? How do we know we update Node.js

for one of our projects without changing all of our codebases? These

questions may seem like hard problems to solve. Thankfully, version

managers make this a nonissue.

�Version Managers

A version manager is a software that allows us to install and manage

many Node.js installations on our computer. This software will enable us

to easily use one version of Node.js in one application and a completely

different version in another. We are going to use nvm (https://github.

com/nvm-sh/nvm) on Mac/Linux and nvm-windows (https://github.

com/coreybutler/nvm-windows) on Windows to achieve version

management excellence.

Chapter 2 Configuring Our Workspace

https://nodejs.org/en/about/releases/
https://nodejs.org/en/about/releases/
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows

15

Note  While the names of the projects Node Version Manager (NVM)
and Node Version Manager for Windows are similar, they are entirely
separate projects that have a similar purpose.

Throughout the next several sections, we will walk through how to

configure our device to run Node.js. Feel free to jump to the operating

system you use and skip all the rest.

�Windows Installation Instructions
As noted previously, we’re going to use nvm-windows to manage Node.js

versions on our device. We’ll start out by opening the Command Prompt.

From the Start menu, type cmd and open the Command Prompt, as shown

in Figure 2-1.

Figure 2-1.  Command Prompt application

Chapter 2 Configuring Our Workspace

16

�Confirming Node Version
We want to ensure that we don’t have any existing versions of Node.js

installed. We can check this from the Command Prompt by typing node -v.

This command will show the version of Node.js that is installed on our

device or confirm that Node.js is not present. For instance, the following is

what it looks like if Node.js is currently installed:

> node -v

v10.20.1

whereas a device without Node.js appears as

> node

'node' is not recognized as an internal or external command,

operable program or batch file.

If we see a version listed, it means we currently have Node.js installed

and should remove it before proceeding with a version manager.

�Removing Existing Node.js Installations
(Windows)

Caution P roceed with careful consideration before applying these
changes. Thoughtfully evaluate the impact these changes could
have on your device. While these instructions work for me and
countless others, you are making changes to the software that other
applications on your system may depend on. This operation may be
unnecessary depending on the version of Node.js you have on your
computer.

Chapter 2 Configuring Our Workspace

17

We’ll start off by navigating to Apps & features in Windows Settings to

remove the installed Node.js runtime. Click Node.js and select Remove.

Next, we’ll ensure that Node.js is removed by opening the Command

Prompt again and typing node -v. Upon typing node, we should be

presented with the message that node is not recognized as a command:

> node

'node' is not recognized as an internal or external command,

operable program or batch file.

We’re now ready to install nvm-windows.

�Install nvm-windows
NVM for Windows is a Node.js version manager software running on

the Microsoft Windows operating system. Navigate to the Node Version

Manager for Windows project on GitHub available at https://github.

com/coreybutler/nvm-windows and download the latest nvm-windows

installer (https://github.com/coreybutler/nvm-windows/releases).

Once downloaded, we can run the installer using the default settings.

Figure 2-2.  The Apps & features window

Chapter 2 Configuring Our Workspace

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows/releases

18

Once the installation is complete, we are ready to install Node.js.

�Installing Node.js (Windows)
We’re going to use the command line once again. From the Start menu,

type cmd. Right-click the Command Prompt app (Figure 2-4) listing and

select “Run as administrator.” Node Version Manager requires running as

an admin.

Figure 2-3.  The NVM for Windows installation wizard

Chapter 2 Configuring Our Workspace

19

Once we’re in the Command Prompt, type “nvm.” If everything is

installed as expected, we should see the version of nvm followed by a list of

usage instructions:

> nvm

Running version 1.1.7.

From here, we’re ready to turn nvm on and install a version of Node.js:

> nvm install 10.20.1

Downloading node.js version 10.20.1 (64-bit)...

...

Installation complete. If you want to use this version, type

nvm use 10.20.1

Now, if we run nvm on, nvm will use the version of Node.js we just

installed:

> nvm on

nvm enabled

Now using node v10.20.1 (64-bit)

> node -v

v10.20.1

Figure 2-4.  Start the Command Prompt as an administrator

Chapter 2 Configuring Our Workspace

20

Node.js is now configured and running on our Windows computer.

Feel free to skip the following section on how to configure a Mac or Linux

device.

�Mac/Linux Installation Instructions
If you skimmed through the Windows installation instructions, you may

have noticed that there were quite a few steps to install a Node.js version

manager on Microsoft’s platform. On Mac and most Linux devices, the

installation instructions are much simpler. Following along with the

nvm project’s documentation, we can install nvm on our machine by

downloading and running an install script. Launch the terminal you use

and run the following command:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/

install.sh | bash

This command uses curl to obtain an install script and pipes it into our

bash shell. In other words, it takes the output of the downloaded script and

runs it in bash. At the time of writing, the latest version of nvm is v0.35.3.

The referenced install command references this version. To obtain the

most up-to-date version, please view the nvm project’s documentation on

GitHub: https://github.com/nvm-sh/nvm.

�Verify Version Manager Installation (Mac/Linux)

Continuing with the project’s documented steps, we should now confirm

that our installation is a success. We should start off by either restarting our

terminal or running source ~/.bashrc (or ~/.bash_profile, ~/.zshrc, or the

file containing the shell configuration). From there, run the following:

> command -v nvm

nvm

Chapter 2 Configuring Our Workspace

https://github.com/nvm-sh/nvm

21

If the command output is nvm, it means that the installation was

successful. If you encounter any problems, consult the nvm project

documentation (https://github.com/nvm-sh/nvm) as it contains some

excellent troubleshooting tips.

�Install Node.js (Mac/Linux)

We can now install a version of Node.js and set it as the default version on

our system:

> nvm install v10.20.1

Downloading and installing node v10.20.1...

...

Now using node v10.20.1 (npm v6.14.4)

Since nvm allows us to install many versions of Node.js on our

computer, it can be a good idea to set a default version. Run the following

command to set the recently installed v10.20.1 as the default Node version:

> nvm alias default v10.20.1

default -> v10.20.1

We’re all set up and ready to start creating our application.

�Leveraging Node.js Built-In Utilities
Now that our system is configured, we’re ready to begin creating our

application. Before we do this, however, let’s briefly discuss two built-in

tools that we will use while building our application, npm and npx. The

npx tool allows us to run any command-line library stored in the npm

Chapter 2 Configuring Our Workspace

https://github.com/nvm-sh/nvm

22

registry on our device. Before npx, it was necessary to install a CLI tool

locally before using it. Let’s take a look at how we can create a React app

leveraging npx:

with npx we can create a react app quickly

> npx create-react-app MyApp

previously a command line tool would need to be installed

before it could be used

> npm install -g create-react-app

. . .

> create-react-app MyApp

�Creating Our React Application
We’re finally ready to start constructing the application that we’ll be

building upon throughout this book. We’re going to build a web experience

for a coffee and tea shop—we’ll call it Rocket Coffee.

Most applications have humble beginnings, and ours is no different.

Right now, we simply want to build something that is basically a “Hello

World.” While there are many ways to build a React application, we’re

going to stick with the “Create React App” tool released by the React team

at Facebook (https://create-react-app.dev/).

We’ll start by running the npx command to create our application. This

will handle all of the setup steps that we need to build a React application:

> npx create-react-app rocket-coffee

. . .

Happy Hacking!

This command initialized a new React app. This command took

the steps of creating a new Node.js package, installing the default

dependencies, and providing a starting point for our application. We can

now run our basic application and see it in action.

Chapter 2 Configuring Our Workspace

https://create-react-app.dev/

23

�Running the Application
To run the application, we’ll navigate to our newly created directory,

“rocket-coffee,” and run the script that starts our application. In the root

of our app directory is a package.json file that contains the listing of

dependencies, scripts, and other information about our application:

> cd rocket-coffee

> npm run start

Once the application is running, we should be able to navigate to

http://localhost:3000 to see the default React application as seen in

Figure 2-5.

Figure 2-5.  The default output of the Create React App application
running in a browser

Chapter 2 Configuring Our Workspace

24

Fantastic! Our application environment is now fully operational.

Before we get started on the app-level features, let’s add our component

workspace.

�Adding Our Workspace
Now that we have our dependencies in place and a working “Hello

World”–style application, we should add a component workspace. As we

discussed in Chapter 1, a component workspace can be an incredible asset

in creating excellent software as opposed to building components directly

within the pages where they live.

This component workspace should be a little bit like the different

stations in a restaurant where culinary artists build the elements of a dish.

Similarly, our component workspace will be where we focus on individual

elements of a page/screen.

�Storybook
Storybook is an excellent tool for building component libraries. This tool

is organized around the concept of stories. A story represents a unique

state of a component. A quick look at an example Storybook is seen in

Figure 2-6.

Chapter 2 Configuring Our Workspace

25

Let’s break this down a bit. On the right-hand side of Figure 2-6, we see

the visual output of the story. Each component can have many stories, but

in this example, we only have one.

On the left hand, we see a listing of all possible stories, organized in a

tree view. We can change the active story by selecting a different item in

this tree view.

�Installing Storybook
From the terminal within our project directory, we’ll run the following to

install Storybook in our application:

> npx -p @storybook/cli sb init

Figure 2-6.  Example Storybook implementation (from the Storybook
Examples)

Chapter 2 Configuring Our Workspace

26

This command will analyze our codebase, install Storybook, and add

some scripts to our package.json file to make it easy to run the tool. Let’s

run Storybook from the command line now:

> npm run storybook

After this command completes, we should see the default example

Storybook stories (Figure 2-7).

In the next several chapters, we’ll begin to leverage Storybook to help us

build well-structured, component-based applications. For now, however,

take some time to explore the out-of-the-box Storybook experience.

�Key Takeaways
This chapter was all about preparation. In many cases, using a system-

wide version of Node.js can cause problems that we would like to avoid.

We installed Node.js through a version manager that won’t tie us to a

particular version of the framework.

Figure 2-7.  Default example Storybook stories

Chapter 2 Configuring Our Workspace

27

We created a React application through Create React App and

initialized a default Storybook component workspace. Although preparing

a codebase may not be as fun as writing the code that powers our

applications, it is an integral step in obtaining a great outcome.

Before anything else, preparation is the key to success.

—Alexander Graham Bell

Chapter 2 Configuring Our Workspace

29© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_3

CHAPTER 3

Our First Storybook
Stories
Now that the system configuration is complete and you’ve created

an application and added Storybook, we’ll dive into creating our

real Storybook stories and components that serve as the basis of our

application. In this chapter, we’re going to dive into the code a bit more.

Feel free to follow the steps we’re taking directly, or navigate to github.

com/ryanlanciaux/example-rocket-coffee and view the code on the

branch labeled chapter3.

We are going to create an ecommerce store for a coffee/tea shop called

Rocket Coffee. We’ll pretend our designer gave us some designs to work

with but not much direction outside of that. Let’s take a look at the product

listing in Figure 3-1.

https://doi.org/10.1007/978-1-4842-6625-0_3#DOI
http://github.com/ryanlanciaux/example-rocket-coffee
http://github.com/ryanlanciaux/example-rocket-coffee

30

We don’t want to tackle this entire page at once. For now, we’re going

to focus on building a component for a single product item (Figure 3-2).

Figure 3-1.  Home page design

Chapter 3 Our First Storybook Stories

31

We’ll continue with the React app we started in Chapter 2. Let’s start

off by creating a new folder under src called components. From there, we’ll

add a folder called ProductListItem with two JavaScript files, index.js and

ProductListItem.js. We should end up with something like in Figure 3-3.

You may notice that we’re capitalizing the folders and filenames for

components but using standard pascalCase for other types of files.

Figure 3-2.  Product item

Figure 3-3.  Folder/file structure

Chapter 3 Our First Storybook Stories

32

With our file and folder structure in place, we’re ready to start adding

some code. We’ll begin by adding what amounts to the component

equivalent of a “Hello World” application to ensure that we have everything

wired up properly:

// ProductListItem.js

import React from 'react';

export default function ProductListItem() {

 return <p>Hello from Product List Item!</p>

}

// index.js

export { default } from './ProductListItem';

Note  We could place all our code inside the index.js file and avoid
creating what’s basically a pass-through file. I’ve often found that
storing my code with a very specific filename helps me find that code
later. While a well-structured application will be broken down into
concise folders, creating a separate file for your component can help
you avoid getting lost in a sea of index.js files.

�Our First Storybook Stories
We’re now ready to see these new components in action. Instead of

updating our application screens to include the components while we’re

actively developing them, we’re going to add a story to serve as our

workspace.

There are a couple of ways that we can create Storybook stories. Each

has its own benefits and trade-offs. In the following examples, we’ll end

up with a Storybook workspace that looks like the image in Figure 3-4

Chapter 3 Our First Storybook Stories

33

after running npm run storybook (or yarn storybook) from the command

line. We will create a story for the ProductListItem /src/components/

ProductListItem/ProductListItem.stories.js. You might have noticed that

there is a global stories folder that’s created when we install Storybook.

Some teams prefer to place their stories in a folder outside the main src

directory. We will place our stories next to the components they represent

instead of this global stories folder. This is a personal/team preference

item for discussion, but I often find that it’s easier to navigate stories when

they are near the components they describe.

�StoriesOf
The StoriesOf API is the original way to create stories in Storybook.

StoriesOf uses a custom function, provided by Storybook, to define our

stories and render them in a structured way in our component workspace.

For our example, usage of the StoriesOf methods may look like the

following code example:

Figure 3-4.  First ProductListItem story

Chapter 3 Our First Storybook Stories

34

import React from 'react';

import { storiesOf } from '@storybook/react';

import ProductListItem from './ProductListItem';

storiesOf('Product List Item', module)

.add(‘standard’, () => <ProductListItem />)

The StoriesOf API is a FluentInterface or a mechanism to use method

chaining to define our stories. We supply the story group in the storiesOf

method and the subsequent stories with the chained add method. We

could continue to tack on add methods, but for right now, we’re only

representing one state of our component. We’re supplying the story

name as the first parameter followed by the story method as the second

parameter. The story method can be a standard function, but I find the

arrow functions a little more readable.

�Component Story Format
In 2019, the Storybook team released another strategy for creating stories

called the Component Story Format. The Component Story Format is a

succinct way to create stories using, what is mostly, idiomatic JavaScript.

While the StoriesOf API uses a custom, Storybook-specific interface to

define stories, the Component Story Format uses JavaScript objects and

functions:

import React from 'react';

import ProductListItem from './ProductListItem';

export default { title: 'ProductListItem' };

export const standard = () => <ProductListItem />

Chapter 3 Our First Storybook Stories

35

Using the Component Story Format, we create an object with the story

properties (or metadata) as the default export. In this case, we’ve set the

property of the story title to ProductListItem. Every named export function

will be picked up by Storybook as a story to display.

According to the documentation, this API is the recommended way

to write stories and is how we will write stories throughout the remainder

of this book. There are many great reasons for this recommendation

as we’ll see in later chapters. From a high level, stories written with the

Component Story Format are more portable and reusable in other areas of

our codebase, such as tests, which we’ll explore deeper in Chapter 6.

�Component Code

Now that we’ve wired up our Storybook and ensured that the story and

our component are in sync, we’re ready to create the actual component

code. We’ll start out by thinking about what our component should do.

This ProductListItem is responsible for displaying the product name,

image, price, and a function that will be activated when a shopper clicks

“Add to Cart.” In code, we’ll translate this to the React props, the inputs that

the component receives, as name, price, image, and onAddToCart. Our

example component could look like the following code output. If you’re

not currently running Storybook, now would be a good time to run npm

run storybook (or yarn storybook).

We’ll update ProductListItem.js to the following:

import React from 'react';

import './ProductListItem.css';

export default function ProductListItem({ name, price,

imageUrl, onAddToCart }) {

 return (

 <div className="card">

 <h2>{name}</h2>

Chapter 3 Our First Storybook Stories

36

 <small>{price}</small>

 <button onClick={onAddToCart}>Add to Cart</button>

 </div>

);

}

You may notice that we’re referencing a CSS (Cascading Style Sheets)

file that doesn’t exist yet. The Storybook output should be displaying an

error noting that there’s “No such file or directory” for ProductListItem.

css. Go ahead and create an empty ProductListItem.css file and check the

Storybook output for the ProductListItem story.

Next, we’ll update our story to include values for the necessary props:

import React from 'react';

import ProductListItem from './ProductListItem';

export default { title: 'ProductListItem' };

export const standard = () => (

 <ProductListItem

 name="Standard Coffee"

 price="2.50"

 onAddToCart={() => {

 console.log("CLICKED");

 }}

 imageUrl="https://source.unsplash.com/tNALoIZhqVM/200x100/"

 />

);

We’re supplying some fake values to this component as well as an

excellent coffee image that we’re pulling in from the Unsplash placeholder

image API.

Now, if we go back to Storybook, we should see something like

Figure 3-5 in the content area of the Storybook window.

Chapter 3 Our First Storybook Stories

37

It looks like all the items are present, but the style doesn’t quite match

up. We’ll make this a bit better with the following CSS in our CSS file:

.card {

 display: flex;

 flex-direction: column;

 border: 1px solid #EDEDED;

 padding: 8px;

 max-width: 240px;

}

.card button {

 background-color: #0A84FF;

 color: #fff;

 padding: 8px;

 border-radius: 4px;

}

.card small::before {

 content: '$'

}

Figure 3-5.  First phase of the ProductListItem output in Storybook

Chapter 3 Our First Storybook Stories

38

While there are a lot of things we could improve here, this is

“good enough” styling for now. We’re creating a card style for our

ProductListItem, as well as stating that we want to arrange the component

as a column view. Finally, we’re applying some basic colors and noting

that a “$” should show up before the element that we’re using to display

prices. Our story output should look like Figure 3-6.

Clicking Add to Cart should now be adding log messages with the text

“CLICKED” in the browser’s JavaScript console. This can be accessed on

Chrome by selecting “View ➤ Developer ➤ JavaScript Console” from the

browser’s file menu. While it’s useful to see that our callbacks are working,

there is a much better way to interact with our components.

Figure 3-6.  Updated ProductListItem

Chapter 3 Our First Storybook Stories

39

�Storybook Add-ons
Storybook has a series of add-ons that provide additional capabilities to

the platform. There are a couple that come preinstalled when we installed

Storybook. We’re going to use Storybook’s actions add-on to remove our

log statement in the story while still seeing when our event runs.

We’ll start by importing “@storybook/addon-actions” and referencing

the “action” method instead of “console.log.” We’ll pass the label we want

to apply to the callback as the parameter to this method, “Add to cart

clicked.” When we’re done, our updated story for ProductListItem.stories.js

should look like the following (only relevant updates displayed):

...

import { action } from '@storybook/addon-actions';

export const standard = () => (

 <ProductListItem

 ...

 onAddToCart={action("Add to cart clicked")}

 ...

 />

);

When we click the action, we should see a pane “Actions” at the bottom

of our Storybook window that displays a message when the “Add to Cart”

button is clicked. If additional parameters are sent with the callback, these

values will show up here as well.

Chapter 3 Our First Storybook Stories

40

Now, what if we want to see our component with different names,

prices, and other parameters, without hardcoding a new story for each?

This is a perfect use case for the Knobs Storybook add-on.

We’ll add Knobs to the project npm install —save-dev @storybook/

addon-knobs and import and register it in .storybook/main.js:

module.exports = {

 stories: ['../src/**/*.stories.js'],

 addons: [

 '@storybook/preset-create-react-app',

 '@storybook/addon-actions',

 '@storybook/addon-links',

 '@storybook/addon-knobs'

],

};

Next, we’ll switch back to our story, import Knobs, and register it as

a decorator in our story options. The story options object is our default

export that previously contained the story’s title. The decorators property

is an array of add-ons we wish to register with this story:

import { text, withKnobs } from '@storybook/addon-knobs';

export default {

Figure 3-7.  Storybook Actions output

Chapter 3 Our First Storybook Stories

41

 title: 'ProductListItem',

 decorators: [withKnobs]

};

Following this, we’ll want to switch out our hardcoded text props to

take advantage of the newly imported Knobs. We’ll supply a name to our

knob as well as an initial value:

export const standard = () => (

 <ProductListItem

 name={text("Name", "Standard Coffee")}

 price={text("price", "2.50")}

 onAddToCart={action("Add to cart clicked")}

 �imageUrl={text("imageUrl", "https://source.unsplash.com/

tNALoIZhqVM/200x100/")}

 />

);

We are only using the text knob currently, but the add-on supports

arrays, numbers, Boolean, dates, colors, and many others. Since we

changed .storybook/main.js, we will need to restart our Storybook server.

Once the server is restarted, at the bottom portion of our Storybook

window, we should see the Knobs tab added to the add-ons pane.

Figure 3-8.  Storybook Knobs add-on form

Chapter 3 Our First Storybook Stories

42

Typing in this pane will update our component in real time. Knobs are

a fantastic way to interact with our components, but Storybook provides

other ways that we can see our components in different states as well.

�Story Variants
How should we represent different global states of our component, such as

noting that an item is sold out? In the following example, let’s assume that

we add a prop called isSoldOut to our ProductListItem component. This

prop will determine if the “Add to Cart” button is enabled, as well as what

text should be displayed inside the button:

export default function ProductListItem({

 name,

 price,

 imageUrl,

 onAddToCart,

 isSoldOut

}) {

 return (

 <div className="card">

 <h2>{name}</h2>

 <small>{price}</small>

 <button onClick={onAddToCart} disabled={isSoldOut}>

 {isSoldOut ? "Sold out" : "Add to Cart"}

 </button>

 </div>

);

}

Chapter 3 Our First Storybook Stories

43

We could interact with this property as a Boolean knob, as we did with

our text props. While this would work, it may be clearer to highlight this as

a unique story:

export const soldOut = () => (

 <ProductListItem

 name={text("Name", "Standard Coffee")}

 price={text("price", "2.50")}

 onAddToCart={action("Add to cart clicked")}

 �imageUrl={text("imageUrl", "https://source.unsplash.com/

tNALoIZhqVM/200x100/")}

 isSoldOut

 />

);

Figure 3-9.  Sold out story

Chapter 3 Our First Storybook Stories

44

�When Should We Create a Story vs. a Knob?

You may have noticed that we used different techniques to change how

we’re presenting our components. The distinction between what could

be a knob vs. what warrants a new story can be a nuanced decision. While

they are conceptually the same, in other words, changing which props are

passed into a component, I generally like to use the following criteria:

Knob – For changing props that do not greatly change how a user is

interacting with a component or change the purpose of the component.

Story – When the purpose of the story is impacted by the addition of

a given prop or props. In our case, we slightly changed the purpose of the

ProductListItem when we passed in the isSoldOut prop. Shoppers can no

longer purchase an item by interacting with this component—it’s purely

an indicator noting that there is an item that’s typically available but it’s

currently sold out.

One other mechanism that I use when determining when to use a

knob vs. a new story is whether or not I would like to write unit tests for a

component with the presence of given props. Any time I find it would be

helpful to test a component with specific props, it generally is an indicator

that a separate story would also be useful.

�Key Takeaways
In this chapter, we created our first Storybook stories and discussed the

front-end application that we’ll be working on throughout a good portion

of this book. We walked through a couple different ways that we can

construct our stories and why we’ll be using the Component Story Format

to craft our stories. Finally, we talked about how to supply variants to our

stories through Knobs and creating new stories and some reasons for

choosing one strategy over another.

Chapter 3 Our First Storybook Stories

45

If you’d like to dive in a bit further, there are some ways that you can

make this ProductListItem a little more ready for production.

EXERCISE: HIGHLIGHT A PRODUCT AS ON SALE

We want to call out a product as an item we want to sell. This should be a

little bit like the isSoldOut prop, but it should cause the background color to

change to #E8F6FF and should add the text (On Sale) after the product name.

Create a new story to represent the On Sale state of the ProductListItem. When

complete, Storybook should look like Figure 3-10.

Figure 3-10.  Sale ProductListItem

Chapter 3 Our First Storybook Stories

47© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_4

CHAPTER 4

Creating Reusable
Components
So far, we’ve created a product list component for our Rocket Coffee

example. While this component works, we want to start employing

strategies that ensure reusability and resiliency to change.

�What Makes a Good Component?
Within the front-end ecosystem, there are many opinions about how a

component should be structured. If we polled the community about how

we should structure our product list example, we might receive conflicting

suggestions. Some may say we should simply make one component for

all the product list item concerns. Others may suggest creating a new

component for every HTML element.

Either of these strategies will work, but I find there’s often nuance in

what makes a good component.

�It All Comes Down to Purpose
This is the Unix philosophy: Write programs that do one thing
and do it well. Write programs to work together.

—Doug McIlroy, programmer known
for proposing Unix pipelines

https://doi.org/10.1007/978-1-4842-6625-0_4#DOI

48

I like to structure my components around purpose. Like the Unix

philosophy, components should do one thing well. A series of smaller

components working in concert can serve us better than HTML tag soup

that can plague our front-end code.

Have you ever been involved in a project where adding a feature was

challenging because it was hard to determine which div to place the new

feature in? Building components by purpose can help us clearly see how a

component is structured.

Let’s go back to our product listing that we looked at in Chapter 3. As a

refresher, our ProductListItem looks like this:

import React from 'react';

import './ProductListItem.css';

export default function ProductListItem({ name, price,

imageUrl, onAddToCart }) {

 return (

 <div className="card">

 <h2>{name}</h2>

 <small>{price}</small>

 <button onClick={onAddToCart}>Add to Cart</button>

 </div>

);

}

ProductListItem.js (from Chapter 3)

While this isn’t too complex, we have plans to build a larger

application. Many areas of our codebase will need ways to present content

within a consistent card, display text and headings, handle click/press

interactions, and so on. With that in mind, let’s refactor this component

into a series of reusable components.

Chapter 4 Creating Reusable Components

49

�Additional Components
We’ll start off by moving the reusable elements to be wrapped in their own

components. These will mostly be pass-through components for now—

that is, we’ll simply pass props to the JSX elements. As we progress through

this book, we’ll apply some powerful functionality to these components,

taking advantage of this separation:

function Heading({ children }) {

 return <h2>{children}</h2>;

}

function Card({ children, highlight }) {

 const cardClassName = highlight ? "card sale" : "card";

 return <div className={cardClassName}>{children}</div>;

}

function Text({ children }) {

 return {children};

}

function Button({ onClick, children }) {

 return <button onClick={onClick}>{children}</button>;

}

With this in place, we can update our existing ProductListItem:

export default function ProductListItem({

 name, price, imageUrl, onAddToCart,

 isSoldOut, isOnSale,

}) {

 return (

 <Card highlight={isOnSale}>

 <Heading>

 {name} {isOnSale && "(On Sale)"}

 </Heading>

Chapter 4 Creating Reusable Components

50

 <Text>{price}</Text>

 <Button onClick={onAddToCart} disabled={isSoldOut}>

 {isSoldOut ? "Sold out" : "Add to Cart"}

 </Button>

 </Card>

);

}

You may notice that the structure is relatively close as when we were

using HTML elements in this ProductListItem component. However, we’re

mostly using components that match the purpose they serve. Assuming

we were looking at this code fresh, we’d have a pretty clear understanding

of what it was doing just based on the component structure. Instead of

needing to parse CSS classNames and make sense of the hierarchy, our

component structure gives us some pretty strong clues.

If we type npm run storybook in our terminal, Storybook should load as

it did before.

Figure 4-1.  Storybook output

Chapter 4 Creating Reusable Components

51

�When Should We Abstract Components?
This process of removing some elements from one component into a

new component can be referred to as abstracting a component. There’s a

problem with simply creating a new component out of any element that

could be a new component. It’s important to determine when we should

create an abstraction.

Prefer duplication over the wrong abstraction.

—Sandi Metz, programmer and author

Sandi Metz offers one of my favorite quotes in all of software

development. This warning reminds us that it’s often better to duplicate

code until we know we’ll end up with an abstraction that will be valuable

to our codebase.

The primary factor I use for determining if a new component would be

useful is if there are other components in a codebase that have or will need

a component that serves the same purpose. In our simple example, we can

assume that other components built for Rocket Coffee will need a Card

component. If we aren’t sure that an element will be reused, it’s a safer bet

to wait before creating an abstraction.

�Component States
Many components require the ability to represent different states. It seems

reasonable that we may need to represent a state for when the product list

is loading or when loading failed. Let’s create a ProductList folder next to

the ProductListItem folder in /src/components. We want to have a state for

when the component is loading and when an error has occurred. We could

represent these states with Boolean flags as follows:

Chapter 4 Creating Reusable Components

52

export default function ProductList ({

 isLoading, hasError, ...otherProps

}) {

 if(isLoading) {

 return <Loading />;

 }

 if(hasError) {

 return <Error />;

 }

 return // standard output when data present

}

This can work, but can lead to bugs. What happens if we are technically

in the loading state, but an error occurred? We could end up with both

isLoading and isErrored set to true. Our component should never be in a

state where it’s both loading and an error occurred. To anyone using our

application, this would look like the data is consistently loading, when

they should be presented with a note that there was an error loading the

data. While there are many ways around this, such as error boundaries and

handling errors higher up in the component hierarchy, we should strive to

ensure that our components only end up in one, accurate state.

Taking a cue from state machines and state charts, we can change our

props to take a status prop instead of several Boolean flags. According to

Smashing Magazine, “the machine can have different states, but at a given

time fulfills only one of them” (www.smashingmagazine.com/2018/01/

rise-state-machines/). For our simple example, this means the state or

status of our component is either loading, loaded, or errored. It wouldn’t be

possible to be in both loading and error states at the same time as it would

with Boolean flags that control the component state.

Chapter 4 Creating Reusable Components

http://www.smashingmagazine.com/2018/01/rise-state-machines/
http://www.smashingmagazine.com/2018/01/rise-state-machines/

53

With that philosophy in place, we could update our simple example.

We’ll start by adding a statusTypes object to contain our component states:

export const statusTypes = {

 loading: "loading",

 errored: "errored",

 loaded: "loaded"

};

This object contains all the states that our component can be in. These

values could be any other string, but using the same property name and

value should work well enough for most instances:

export default function ProductList({

status, ...otherProps

}) {

 if (status === statusTypes.loading) {

 return <Loading />;

 }

 if (status === statusTypes.errored) {

 return <Error message="Failed to load data" />;

 }

 return ... // standard output when data present

}

Figure 4-2.  visualization of our simple state machine

Chapter 4 Creating Reusable Components

54

Next, we can create some stories to see our various component states

in action. We’ll create ProductList.stories.js.

�How Should We Arrange Our Components?
By default, React, the library, has very little opinion about where

components should live in our codebase. While some libraries and

frameworks are very opinionated about where things belong, React doesn’t

offer any strong recommendations. I’ve found when building a component

library, there are a couple guidelines I like to follow.

�Classifying Component Types
One guideline I like to follow is grouping like components together. There’s

a problem here—we don’t necessarily have a great metric to ensure that

we’re classifying components the same way.

There’s a fantastic book (https://atomicdesign.bradfrost.com/)

and article (https://bradfrost.com/blog/post/atomic-web-design/)

by Brad Frost called Atomic Design. In Atomic Design, Brad describes a

mechanism for classifying UI elements based on the periodic table of

elements. In this philosophy, he references building design systems out

of components, where the lowest-level components are atoms, which

can be composed into molecules, organisms, and so on. In other words,

the foundational components, or atoms, get composed together into

bigger components, which eventually make up our application screens or

pages. I love this philosophy and find it’s a really useful way to think about

components that make up our applications.

Chapter 4 Creating Reusable Components

https://atomicdesign.bradfrost.com/
https://bradfrost.com/blog/post/atomic-web-design/

55

That all said, I generally use a slightly different naming schema:

Atoms – Inspired by the naming in Atomic Design, I generally call my

foundational components atoms. These are things like buttons, headings,

text, and things that don’t stand up so well on their own, but are necessary

for the success of the other elements in our application.

Patterns – These components are reusable UI patterns that are

composed from the atom-level components. I would classify our

ProductListItem component as a pattern, since it is composed of the Card,

Button, Heading, and Text components and can be valuable in many

contexts.

Screens – These components represent our pages or screens in an

application. A screen could be something like the product listing page that

a user would see. This could consist of a layout, product list, and various

other elements.

While this is the naming schema that I generally use right now,

it’s important to note that this is not a set of definitive rules. The more

important thing is to use consistent naming/classification that works for

you or your team.

With this in mind, we can go ahead and update our ProductList.js and

ProductListItem.js to be in components/patterns.

While we’re at it, we should create new folders that match the other

components we moved out of the main ProductListItem component (but

kept in the ProductListItem.js file). When we’re done, we should end up

with a file structure like this:

Chapter 4 Creating Reusable Components

56

RocketCoffee/

├─ src/
 ├── components/
 ├── atoms/
 ├── Button/
 ├── Card/
 └── Heading/
 ├── patterns/
 ├── ProductList/
 └── ProductListItem/

Once we restart Storybook, everything should be working, using this

structure. It should be noted that we’re only looking at the folder listing for

src right now. These folders should contain the index.js, component, and

{componentName}.stories.js files as we’ve seen with the ProductListItem:

ProductListItem/

 ├── index.js/
 ├── ProductListItem.js/
 └── ProductListItem.stories.js

EXERCISE: HIGHLIGHT A PRODUCT AS ON SALE

Using the ProductListItem folder listing as a guide, create files for the atomic

components in ProductListItem.js. These components should live in the folders

we created in the preceding text under src/components/atoms. Feel free to

reference the Chapter 4 example code if you get stuck.

Chapter 4 Creating Reusable Components

57

�Key Takeaways
In this chapter, we discussed how to write components that scale well.

Taking inspiration from the Unix philosophy, we built components that

focus on one thing and handle that one thing well. We talked about how

a component’s purpose should be clear and focusing on this purpose can

help illuminate what items should exist as unique components. Finally, we

talked about components as a series of states and some strategies we can

use to classify our components.

Chapter 4 Creating Reusable Components

59© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_5

CHAPTER 5

Styling
In this chapter, we’re going to talk about styling front-end applications.

Styling is an exciting topic. It’s fun to see our code change how our

application looks. Unfortunately, merely mentioning CSS can cause

some developers to run away and look for any other development task

to work on. Styling applications has unique challenges that other coding

paradigms do not, but few areas of our code make quite as big of an impact

as quickly as how we style our code.

How we style our applications can be a huge topic too! There are entire

books and volumes of books dedicated to this topic, and many of these

may fall short. To make things more challenging, the front-end landscape

for styling has exploded with options lately regarding how we can style our

apps. Like anything in programming, fans of a particular paradigm will

often suggest that their preference is the best way, making it challenging to

separate useful information from hype.

Navigating the styling landscape can be challenging, but it doesn’t

have to be. In this chapter, we’re going to discuss some of the options

we have and where we may want to choose one over another. We will

mostly be focused on choosing how to style our applications and the

structure we may want to put in place to ensure our styles scale with our

applications. This chapter will not be a deep dive on the syntax of styling

our applications.

https://doi.org/10.1007/978-1-4842-6625-0_5#DOI

60

�CSS
Any discussion around styling web applications should start with CSS

(Cascading Style Sheets). CSS is the browser-supported way to style web

applications. Using CSS, we apply attributes to HTML elements and

define the styles that should be applied to these elements by referring to

them through selectors. A selector is a way that we can refer to an HTML

element. In some cases, this can be through applying a className prop or

an id attribute to an element or finding the element through other means:

// index.html

<div id="login-box">

 <div>

 Login box here...

 </div>

</div>

<ul class="points">

 One

 Two

 Three

/* index.css */

#login-box {

 border: 1px solid #ededed;

 border-radius: 5px;

 ...

}

.points li:nth-child(2) {

 background-color: #ccc;

}

Chapter 5 Styling

61

In the preceding example, we’re using CSS to style some HTML

elements. In the case of login-box, we’re selecting this element with an

id. Element IDs should be unique—we could use a class if we wanted to

select multiple elements by an identifier. We’re also applying a background

color to the second element in list using the nth-child pseudo class. This

allows us to select a single item by its order in a group. This example

only scratches the surface of what we can do with CSS. For a more

exhaustive exploration of CSS, you may want to look at Architecting CSS:

The Programmer’s Guide to Effective Style Sheets by Martine Dowden and

Michael Dowden.

�Benefits of CSS
CSS can be interpreted in just about every browser we will encounter

when developing applications. Many of the other ways we can style an

application, preprocessors and so on, require a translation or compilation

step to work in a browser. By default, CSS needs no such translation.

Additionally, while there is nuance to how different developers use CSS, it’s

a ubiquitous paradigm. Many web developers have some experience with

CSS, where a more specialized styling library may be a foreign concept.

�Drawbacks of CSS
This headline is intentionally misleading. When talking about the

pros and cons of different styling technologies, one of the items that

constantly comes up with CSS is cascading (the C in CSS). Cascading is the

characteristic of CSS that allows properties to overwrite other properties.

This can be confusing to some developers who aren’t aware of this

feature—especially in codebases that treat styling as an afterthought.

While the argument could definitely be made that cascading is one

of the benefits of CSS, we’re discussing it as a drawback as well, as it’s

something that those who may not be as comfortable with CSS may trip

Chapter 5 Styling

62

over as they’re styling applications. Have you ever tried to change the

styling in one area of a codebase only to find that the styles you added were

not getting applied? It’s likely that something else in your application was

overriding your styles. With CSS, the last property that’s interpreted is the

last one that is applied.

Due to how CSS selectors work, it can be easy to have naming conflicts

or misapply styles to elements we’re not intending to style. Careful naming

and code structure should be applied to help avoid conflicts.

Note T here is a technique called BEM (Block Element Modifier) that
can help with element specificity and avoiding conflicts. You can learn
more about BEM at getbem.com.

�Preprocessors
A CSS preprocessor is, as the name implies, something that processes

different styling syntax and converts it to CSS the browser understands.

One common preprocessor is Sass. An example of Sass/SCSS syntax is as

follows:

$heading-color: #00F;

$text-color: #2A2A2A;

.card {

 width: 300px;

 border-radius: 5px;

 border: 1px solid #EDEDED;

 padding: 12px;

 h3 {

 color: $heading-color;

 }

Chapter 5 Styling

http://getbem.com

63

 p {

 color: $text-color;

 }

}

This styling corresponds to the following HTML:

<div class="card">

 <h3>This is the heading</h3>

 <p>This is some text</p>

</div>

At first glance, this code may seem just like CSS. Upon further

inspection, however, it may be apparent that Sass/SCSS and standard

CSS are quite a bit different. Sass gives additional functionality to styling

like variables and nested element styles. This can be a solid option, but

it should be noted that CSS supports custom properties (or variables).

Additionally, as of the writing of this book, the CSS Working Group is

discussing the addition of nesting to CSS.

Note  Sass/SCSS and other CSS preprocessors can add a lot of
useful functionality beyond the items discussed here. That said, the
individual features are outside the scope of this book.

�Benefits of Preprocessors
Preprocessors can add great functionality to CSS. Using a preprocessor

allows us to write styling code in a way that can feel closer to how we

write our application’s logic by providing additional utilities to our styling

code. Some such capabilities that preprocessors unlock are variables,

conditional statements, loops, and property nesting.

Chapter 5 Styling

64

�Drawbacks of Preprocessors
Preprocessors can add extra build steps that may add time or even file size

to our exported code. Additionally, the preprocessor syntax can add new

code that developers may need to learn.

�CSS-in-JS
Handling styles in JavaScript is potentially one of the most controversial

topics in this book. Some developers love pushing more of the front-end

responsibility into JavaScript, while others see it as a high crime.

CSS-in-JS techniques are a popular choice for many React codebases

since they push the “Everything is a component” mentality that often

comes with React. Where other frameworks promote separation of

concerns, React components layer styling, markup, and functionality as

one cohesive unit of code. Using CSS-in-JS pushes this concept a little

further as it treats styles as a responsibility of the component.

One way we can leverage CSS-in-JS is using the React component

style prop:

const Card = () => {

 return (

 <div

 style={{

 backgroundColor: "#EDEDED",

 borderRadius: 5,

 padding: 12

 }}

 >

 ...

 </div>

)

}

Chapter 5 Styling

65

In our preceding card example, we are supplying a background-color,

border-radius, and padding. Notice that we’re using camel case instead of

the traditional CSS property names since dashes are not valid as JavaScript

properties. Also, since this is just a JavaScript object, we could move this

style, so it’s not inline:

const cardStyle = {

 backgroundColor: "#EDEDED",

 ...

}

return (<div style={cardStyle} ...);

In addition to React’s style prop, there are other libraries in the

React ecosystem that provide mechanisms for styling such as emotion

and styled-components. Using styled-components, we can style our

application with tagged template literals and styled’s API. We’ll start off

creating a Card component:

const Card = styled.div`

 width: 300px;

 border-radius: 5px;

 border: 1px solid #EDEDED;

 padding: 12px;

 h3 {

 color: ${(props) => props.headingColor};

 }

 p {

 color: ${(props) => props.textColor}

 }

`;

Chapter 5 Styling

66

After this, we’ll supply default props. Since Card is a React component,

we will use the same API to add defaultProps as we would to any other

React component:

Card.defaultProps = {

 headingColor: "#00F",

 textColor: "#2A2A2A"

}

Finally, we can render our Card component similar to how we would

any other component:

export default function App() {

 return (

 <Card>

 <h3>This is a card heading</h3>

 <p>This is the text description</p>

 </Card>

);

}

It’s worth repeating that this Card we created with styled-components

is a React component. The styled-components API allows us to nest styles

and even receive props! This can be an extremely powerful way to style our

React applications.

Note  We’re only scratching the surface of what we can achieve
using styled-components or emotion. Both libraries have a
mechanism for themes that provides a clear path for providing
consistent styles to varying components. Additionally, there are entire
ecosystems of plugins that these libraries can utilize such as styled-
system, rebass, and theme-ui.

Chapter 5 Styling

67

�Benefits of CSS-in-JS
Using CSS-in-JS to style our components allows us to stick with a single

paradigm to develop and style our components. It can be incredibly useful

to style our components using the same properties that we’re using to

build our component functionality. Additionally, developers who are not

comfortable with the cascading aspects of CSS may feel more at home

using CSS-in-JS.

�Drawbacks of CSS-in-JS
Like preprocessors, CSS-in-JS introduces new syntax that developers need

to learn. Additionally, styling with JavaScript doesn’t necessarily take

advantage of performance benefits that we get by using raw CSS in the

browser.

�Utility-First Styling Libraries
In recent years, utility-first styling libraries have risen to the forefront

of app styling options, popularized by libraries such as Tailwind and

Tachyons. By using a utility-first approach, developers build many small

CSS classes or styling functions that can be used repeatedly throughout a

codebase. Instead of applying styles directly to a component, we reference

a number of utility class names to define how it is styled. Using Tailwind,

we could style a Card component like this:

A Card component using Tailwind

<div class="rounded p-5 m-5 shadow-lg max-w-md">

 <h3 class="text-blue-600 text-xl font-bold">...</h3>

 <p class="text-sm text-gray-600">...</p>

</div>

Chapter 5 Styling

68

What do you think about this approach? My first reaction upon

seeing Tailwind was negative, but having used Tailwind on some projects,

I gradually found it to be a very quick and consistent way to style UI

applications. Utility-first libraries embrace the “Do one thing well”

philosophy that we discussed in Chapter 4 and provide a nice way to build

UIs with composition.

�Benefits of Utility-First Libraries
Leveraging utility-first libraries allows us to quickly build consistent

UI applications. In many cases, the styles that we need to apply are

available, and utilizing the style utilities can help us ensure that all of our

components have the same look and feel.

�Drawbacks of Utility-First Libraries
Oftentimes, utility-first libraries still depend on CSS preprocessors to

achieve their results. This is useful because it can eliminate utilities

that aren’t used, but also adds an additional build step. What’s more,

some developers don’t like having multiple class names to determine a

component or element’s styling.

�How to Choose a Styling Solution
There are trade-offs we must consider when choosing any of these options.

There are many factors that come into play when choosing a method for

styling your application. Unfortunately, there is no way we can come up

with a one-size-fits-all approach to choosing how you or your team should

style your application.

What I often evaluate when recommending a styling solution is the

level of comfort a team may have with CSS vs. JavaScript. Additionally, I

Chapter 5 Styling

69

think about how a team may embrace composing class names to create

components vs. providing unique styles. Finally, I explore the build steps

that must occur to successfully use one of the techniques.

For this book, we’re going to use CSS to style our components. All of

the other options we discussed depend on CSS knowledge. The things we

learn for CSS will almost always be valuable for other libraries, while the

same may not be true of other techniques.

�Building a Theme
When constructing a component library, we want our components to

use consistent colors, spacing, fonts, and so on. Have you ever used an

app where you could tell a different team was responsible for a different

area of the codebase based solely on how it looked? We want to avoid this

scenario, and we’ll achieve this through the use of themes.

We’ll start by creating a CSS file that contains the custom properties

we’ll use in our app to define our global template. We’ll use :root to define

variables that apply to any element in our codebase:

:root {

 --background: #fff;

 --text: #222;

 ...

 --border-default: 1px solid;

 --font-sm: 12px;

 --spacing-sm: 4px;

 ...

 --spacing-xlarge: 48px;

 --shadow-default: 10px 9px 33px -17px rgba(0, 0, 0, 0.75);

 --radius-default: 8px;

}

Chapter 5 Styling

70

Next, we’ll define our card styles:

.card {

 background-color: var(--background);

 color: var(--primary);

 padding: var(--spacing-medium);

 margin: var(--spacing-large);

 border: var(--border-default);

 border-color: var(--light);

 border-radius: var(--radius-default);

 box-shadow: var(--shadow-default);

}

Finally, we’re ready to use this style for our Card component:

import React from "react";

import "../../../theme.css";

import "../../../Card.css";

export default function Card() {

 return (

 <div className="card">

 ...

 </div>

);

}

Now that we have a pretty good handle on how we’re going to style

components in our application, let’s jump back to our Rocket Coffee

example and apply these findings there. We’ll start off by copying our

theme.css file to /src/theme.css. Next, we’ll create a new file under /src/

components/atoms/Card/ called Card.css:

Chapter 5 Styling

71

.card {

 background-color: var(--background);

 color: var(--primary);

 padding: var(--spacing-medium);

 margin: var(--spacing-large);

 border: var(--border-default);

 border-color: var(--light);

 border-radius: var(--radius-default);

 box-shadow: var(--shadow-default);

}

If we run Storybook or the app directly, we’ll notice that our styles are

not showing up. We need to import our theme.css file in both our main

app’s entry point and Storybook’s entry point.

For our main app, navigate to src/index.js and import the following line

after the rest of the imports:

import './theme.css'

For Storybook, navigate to the .storybook directory and add a new file,

config.js. Add the following import statement to the newly created file:

import "../src/theme.css";

Now, if we run npm run storybook, the Card with the styles based on

the theme should be present.

Chapter 5 Styling

72

�Key Takeaways
In this chapter, we discussed the various strategies we can use to style our

applications and some of the pros and cons of the various techniques. We

also discussed why using CSS is a solid choice for our exploration. Finally,

we talked about CSS custom properties and how we can use them to

establish themes for our application.

EXERCISE

So far, we’ve only added the styling for our Card component in Rocket Coffee.

Spend some time and add styles for the rest of the items. Check to ensure that

it’s working with Storybook by running npm run storybook.

Chapter 5 Styling

73© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_6

CHAPTER 6

Ensuring the Quality
of Our Components
So far, we’ve built our components in isolation and have tested them

for quality manually through Storybook. We’ve verified that our code is

working by running our components directly through Storybook, but there

are other techniques we may want to apply to ensure that we’re providing

a quality codebase. Can you imagine checking every component in a web

app before every release?

�Unit Tests
Storybook is an excellent workspace for our components. So far, it’s also

served as the primary method of ensuring our components are working

as expected. This works great for our smaller examples, but we are in

the business of creating professional applications. In these professional

applications, there are generally a lot of components in play. Testing each

thing manually will not scale as well as we would like. Thankfully, we can

automate this process through unit testing.

Unit tests are blocks of code that we can use to test a specific unit of

application code. In other words, we write code to ensure that the various

elements of our codebase are functioning as intended. This may seem odd

to write code to verify that our code functions, but creating tests can result

in code that scales better over time, with lesser bugs and higher resiliency

https://doi.org/10.1007/978-1-4842-6625-0_6#DOI

74

to change. Instead of manually going through all of our components and

features, we can run a test script to verify that our application is working as

intended.

JavaScript has a built-in way that we can perform unit tests:

> console.assert(1 + 3 === 7);

Assertion failed

While this assert works, it suffers from a lack of tooling. We would have

to come up with our own way of running these tests. Thankfully, there are

many open source options that we can leverage to achieve a great testing

experience for our applications.

In our time together, we’ll use Jest to write tests. Jest is an open source

unit testing library created by Facebook. Jest serves as the tool that we

will run our tests with and provides some guidance on how we should

structure our unit test code. It balances ease of use with flexibility and has

a pretty large ecosystem of developers. This large ecosystem generally

results in more people who have encountered and fixed issues and more

plugins.

Let’s take a look at simple calculator and related Jest tests. By

default, Create React App (or CRA), the starting point we are using for

our application, comes with Jest preconfigured. We’ll proceed with the

assumption that we are using Jest under this CRA umbrella.

Note  If you need Jest outside of Create React App, the configuration
is relatively straightforward. Check out the Jest documentation for
more on that at https://jestjs.io/. The information on this site
also provides information on how to use Jest outside of React!

Chapter 6 Ensuring the Quality of Our Components

https://jestjs.io/

75

We’ll also assume that we have a test script in our package.json file that

runs jest for us when we type npm run test from the command line:

export function add(a, b) {

 return a + b;

}

We’re going to write a simple test and ensure that things are working

as expected. But before we check that that things are working as expected,

it can be a good practice to make sure that a scenario that should result

in a failed test actually causes a test failure. I’ve seen tests that appeared

to be working, but failed to catch a number of bugs. Examining the tests

while fixing the bugs, it turned out that the tests always passed. The tests

gave a false sense of security. To help avoid this situation, we’ll start out by

making sure that our test fails before we make it pass:

import { add } from './calculate';

it('adds two numbers correctly', () => {

 expect(add(5, 6)).toEqual(17);

})

We’re using Jest to state that the test adds two numbers correctly. This

is described in the it method. The first parameter to the method is the

test label, or what we’ll see in the output to reference this test. The expect

method is where we will add our assertions. Jest and the testing ecosystem

provide many other extension methods, like toEqual, we can use to verify

our assertions. Additionally, we have an arrow function that performs the

test. Clearly, adding 5 to 6 does not result in 17. First, we want to ensure

that our test fails with incorrect values supplied. We make sure the test

Chapter 6 Ensuring the Quality of Our Components

76

fails initially because want to avoid any scenario where our tests provide us

with false confidence. Running npm run test will result in the following

message:

adds two numbers correctly

 expect(received).toEqual(expected) // deep equality

 Expected: 17

 Received: 11

Excellent. As expected, the test failed as we hoped. We see the title of

the test “adds two numbers correctly” followed by the result. Now, let’s go

ahead and fix this test so it runs:

it('adds two numbers correctly', () => {

 expect(add(5, 6)).toEqual(11);

})

Running npm run test again results in the following message from the

Jest test runner:

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

This is a great way to test standard JavaScript methods and classes, but

how would you approach testing a React component?

�Testing React Components
It’s true that React components are standard JavaScript methods or classes,

but there is more nuance to these components since they have the concept

of a rendering surface. On the Web, React components render to the DOM

(document object model). Tests need some way to handle rendering as

well. There are many things we could do to obtain a rendering surface in

our React component tests. We’re going to focus on React Testing Library.

Chapter 6 Ensuring the Quality of Our Components

77

In my opinion, React Testing Library offers an incredible testing

experience. In this paradigm, we’ll use React Testing Library to render

our components and then interact with our components using the query

methods that React Testing Library provides.

Let’s add some tests to our product listing for Rocket Coffee. We’ll start

off adding Testing Library to our project via the CLI:

npm install —save-dev @testing-library/react

From there, we’ll move on to our code. We’re going to start by adding

tests to the ProductListItem.js component, located in src/components/

patterns/ProductListItem/. For our exploration, this component

has a good balance between number of features within the component

and succinctness. We can cover the items that we wish to without being

overwhelmed.

We’ll start by thinking about the things that can test. Personally, I

usually think about the branching code paths (things that show up in

one context and not another) and the items that have interaction points.

We could add more testing for ensuring things render the items we’re

expecting, but we’ll leave that as an exercise for you.

In this case, we want to test the following:

•	 Show (On Sale) when the component is on sale.

•	 Call onAddToCard when the button is enabled and

clicked.

•	 Disable the button when sold out.

We’ll create a new file ProductListItem.test.js next to the

ProductListItem.js. We’ll open the test file and create our first test. Keep

in mind, we won’t need to import anything for Jest, but we will for React,

React Testing Library, and our component.

One thing that would be good to quickly discuss before we embark on

testing these components: React Testing Library has quite a few helper

Chapter 6 Ensuring the Quality of Our Components

78

methods and functions that we will not be using in these examples. It

would be good to familiarize yourself a bit with the documentation at some

point, as these helper functions may save you a lot of time and debugging

heartache if you’re aware of them.

With that out of the way, let’s continue adding our tests!

it('shows on sale label when isOnSale', () => {

 const { getByText } = render(<ProductListItem

 name="Mocha"

 price={3.50}

 imageUrl="..."

 isOnSale

 />)

 expect(getByText(`(On Sale)`))

 .toBeInTheDocument();

})

Here, we are rendering our component with React Testing Library with

an isOnSale prop. We’re expecting the text “(On Sale)” to exist in the text

rendered here. If we open up our terminal and type in npm run test, we

should be presented with a note that our test passed:

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Note  Keep in mind it can be a good practice to ensure that the test
fails so we don’t think that the test works when it does not. Tests that
provide false security are worse than no tests.

With this test out of the way, let’s continue on. We’ll start with the

test for checking that we disable the button when the isSoldOut prop is

present:

Chapter 6 Ensuring the Quality of Our Components

79

it('disables the button when disabled', () => {

 const { getByText } = render(<ProductListItem

 name="Mocha"

 price={3.50}

 isSoldOut

 />)

 expect(getByText("Sold out"))

 .toHaveAttribute('disabled');

});

The last test we want to add is for ensuring that clicking addToCart actually

fires an event. We’re going to use a Jest mock function. A mock function is

something that we can use while testing in place of a real function. We’ll interact

with the mock function as jest.fn. In the following example, we’re setting a value

onAddToCart to this mock function and referencing it in our component.

In addition to a mock function, we’ll want to click the button in our

test to ensure that the onAddToCart method is being called. React Testing

Library has a fireEvent helper that we will use to achieve our goals:

import { render, fireEvent }

 from '@testing-library/react';

...

it('calls callback when button Add to Cart pressed', () => {

 const onAddToCart = jest.fn();

 const { getByText } = render(<ProductListItem

 name="Mocha"

 price={3.50}

 onAddToCart={onAddToCart}

 />)

 fireEvent.click(getByText("Add to Cart"))

 expect(onAddToCart).toHaveBeenCalled()

})

Chapter 6 Ensuring the Quality of Our Components

80

�Testing Alongside Storybook
These tests may feel a little familiar. That’s because they closely resemble

our Storybook stories. In both the Storybook stories and tests, we’re

examining our component in different states. For instance, we have a

standard state, an “On Sale” state, and a “Sold out” state.

What if we could eliminate the areas where we’re defining the JSX

elements to render and leverage what we already set up for Storybook

instead? We can, and there are a couple of immediate advantages to this:

•	 We can visually “debug” our tests. If one of our tests fails,

instead of logging out the rendered HTML (a common

debugging technique), we could fire up Storybook and

manually step through the same steps. Since the test and the

story are using the same code to determine how an element

should be rendered, we can have confidence that we’re not

out of sync between manually walking through our code and

the automated test.

•	 We keep our stories up to date. I’ve seen many projects

where Storybook eventually became out of sync with the

current state of a product. What started as a useful tool lost its

relevance as developers became less vigilant about creating

and maintaining stories. This is a tragedy as Storybook can

provide a lot of value, but treating Storybook as part of the

testing process helps us ensure that Storybook stays up to date.

•	 It’s less code/less duplication. While duplication is a better

option when things are not the same, we want to run our

components in different states in Storybook. Similarly, we

want to test our components in various states in our unit

tests. Take our example of the ProductListItem. We have one

state of the component when the product is in stock and

another state of the component when the product is sold out.

Chapter 6 Ensuring the Quality of Our Components

81

We’ll make some adjustments to our ProductListItem stories. Instead

of applying the Storybook Knobs and actions directly to our elements, we’ll

bring in the values as default parameters to the story. This way, our tests

can override properties as necessary while still providing the default add-

on values when desired:

export const Standard = ({

 name=text("Name", "Standard Coffee"),

 price=text("price", "2.50"),

 onAddToCart=action("Add to cart clicked"),

 imageUrl=text(

 "imageUrl",

 "https://source.unsplash.com/tNALoIZhqVM/200x100/"

)

}) => (

 <ProductListItem

 name={name}

 price={price}

 onAddToCart={onAddToCart}

 imageUrl={imageUrl}

 />

);

Now, we can import these stories and use them in our test, instead of

duplicating the creation of these elements:

import { OnSale, SoldOut, Standard } from './ProductListItem.

stories';

it('shows on sale label when isOnSale', () => {

 const { getByText } = render(<OnSale />)

 expect(getByText(`(On Sale)`)).toBeInTheDocument();

})

Chapter 6 Ensuring the Quality of Our Components

82

it('disables the button when disabled', () => {

 const { getByText } = render(<SoldOut />)

 expect(getByText("Sold out")).toHaveAttribute('disabled');

});

it('calls onAddToCart when button pressed', () => {

 const onAddToCart = jest.fn();

 const { getByText } = render(<Standard

 onAddToCart={onAddToCart}

 />)

 fireEvent.click(getByText("Add to Cart"))

 expect(onAddToCart).toHaveBeenCalled()

})

While less code isn’t the goal, especially when testing, this is a great

way to share our stories with other areas of our codebase to achieve better

software.

�Key Takeaways
In this chapter, we discussed ways in which we can test our components

automatically and why we may wish to do so. We discussed Jest and React

Testing Library from a high level. Finally, we talked about how we can

leverage our existing Storybook stories to power our unit tests.

EXERCISE: CREATE ADDITIONAL TESTS

So far, we’ve added tests to the ProductListItem only. Go through /src/
components/atoms and src/components/patterns/ProductList and add tests to

the components in those folders.

Be sure to check out the included examples if you get stuck!

Chapter 6 Ensuring the Quality of Our Components

83© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_7

CHAPTER 7

Interacting with
API Data
So far, we’ve worked on very specific components for a small portion of

our application. In this chapter, we’re going to discuss ways that we can

promote consistency beyond simply defining where our components live.

In Chapter 4, we talked about classifying our component types and

how component classification should have some impact on where those

files live in our codebase. In addition, we discussed using atoms, patterns,

and screen or page components. Atoms are lowest-level building block

components in our system, whereas patterns are slightly more complex

reusable components. Lastly, we discussed screens; these would be the

page-level features.

Unfortunately, in very large systems, there can be a lot of space

between what we call patterns and screens. That is, so far, we’ve mostly

focused on creating components in a reusable way and not focused on

how we should glue everything together into a cohesive application. With

anything in software development, there are quite a few options at our

disposal. We’ll discuss a couple of these options and some of the trade-offs

we should consider when employing the various techniques.

https://doi.org/10.1007/978-1-4842-6625-0_7#DOI

84

�Some Main Considerations
Several of the major considerations we need to take into account are how

we’re handling data loading, application state management, and routing

between pages.

Data loading – This part of the code refers to how we interact with

systems outside of our front-end application. This could be something like

API servers or third-party platforms.

State management – One of the trickier things we need to consider

when building applications is how we manage the application state. In

many scenarios, we’ll need to keep track of variables that are shared

between pages and components. Additionally, we need to determine how

to pass application state between various components. There could be

entire books on this topic alone, but in this book, we’ll use React’s built-in

state management.

Additionally, we’ll structure our application in such a way that our

folder hierarchy can help us determine where to place our state variables.

We’ll see this in action more as we progress through this chapter.

Routing – We link our various pages and provide entry points to our

application via the browser’s URL with routing. Our front-end applications,

much like standard static HTML documents, have paths that they respond

to from the browser bar.

We’re going to organize our system around the concept of routing.

What this means is our src/components/pages folder will be arranged to

match the routes that the patrons of our coffee shop will visit to purchase

coffee.

This means that for every main route, we’ll have a corresponding

folder in our pages directory and every subroute will map to a specific

subcomponent within that directory. Let’s assume that we will have a

Checkout screen in our application and the checkout process consists of

a screen where a customer will input their payment information and a

Chapter 7 Interacting with API Data

85

screen where they confirm their order and payment information is correct.

On this second screen is where the purchase will actually occur. Our folder

structure in our pages may look a little bit like this:

RocketCoffee

|_ src

|__ pages

|____ Checkout

|______ Checkout.js

|______ Confirm.js

|______ index.js

|______ PaymentInfo.js

Our screens would then map to /checkout, /checkout/paymentInfo,

and checkout/confirm. A little bit later, we’ll set this up, but for now,

we’re building our mental model of how the various pieces we’re building

connect.

Now, our routing structure is established, but how do we handle

application state and data loading?

�Feature-Based Development
We’re going to take a cue from a technique called feature-based

development to determine where our data loading will occur. In feature-

based development, we arrange our code around features. Features

represent a unit of value in our application and encapsulate everything

that the feature may need.

Applications not embracing this paradigm will often organize files

around technology. This is especially pronounced in applications using

Redux. While we are not using Redux in our application, this example

can illuminate some of the overhead we can incur when arranging our

codebase around the technologies that are in play.

Chapter 7 Interacting with API Data

86

Let’s assume we are building our shopping cart functionality with

Redux. In a traditional application, there are folders for components,

pages, and the various technologies that are used with Redux, actions,

reducers, selectors, and so on. We would end up with something like this:

src

|_ actions

|___ cartActionCreators.js

|_ components

|___ cart

|_____ Cart.js

|_ reducers

|___ cartReducers.js

|_ selectors

|___ cartSelectors.js

Product lists, user accounts, and everything else would theoretically

have files dispersed between actions, reducers, selectors, and so on. This

works and provides some consistency, but it can be trouble when you want

to update, move, or delete things since files are dispersed throughout the

codebase.

In a feature-based codebase, we would end up with a base folder for

our cart, and all of the unique items of the cart would live within that folder

instead of spread out by technology:

src

|_ features/

|___ cart/

|_____ components/

|_____ actionCreators.js

|_____ index.js

|_____ reducer.js

|_____ selectors.js

Chapter 7 Interacting with API Data

87

While we are not going to use feature folders directly, at some level,

we will treat our pages folder a little bit like a feature. That is, everything

distinct to the page will live within the pages folder. What that means is

we’ll keep our data loading and state management mechanisms near the

page they represent.

With this mindset established, we’re going to update our product list

page with data loading that we can use throughout that section of our

application. In Chapter 8, we’ll look at routing and how we can view our

page screens outside of Storybook.

�Loading Data
For the data loading, we’re going to start by performing an API request

directly in a Products component. We’ll create a component named

Products in src/screens/Products/Product.js, along with sibling files for our

Storybook story Products.stories.js and an index.js file.

Inside our Products component, we’ll use our ProductList that we

created earlier and render data fetched from an API. Our initial component

could look a little like this:

import React, { useEffect, useState } from 'react';

import ProductList, { statusTypes } from '../../components/

patterns/ProductList';

export default function Products() {

 const [productState, setProductState] = useState({

 data: [],

 status: statusTypes.loading

 });

Chapter 7 Interacting with API Data

88

 return <ProductList

 data={productState.data}

 status={productState.status}

 />

}

In this component, we’re building state to eventually hold our product

data that we’ll pass to our ProductList component. In our Products.stories.

js file, we will reference the newly created component as follows:

import React from 'react';

import Products from './Products';

export default { title: 'screens/products' }

export const standard = () => {

 return <Products />

}

Now, when we run Storybook and navigate to screens ➤ products from

the tree view, we see our component in a Loading state.

Figure 7-1.  Storybook output

Chapter 7 Interacting with API Data

89

Now, let’s fetch some data in our component. We’re going to assume

that in the production version of our application, we’re running an API on

the same server as our front-end application on the path /api. We’ll add a

useEffect statement in our component directly before the return statement

for interacting with this API:

import React, { useEffect, useState } from 'react';

import ProductList, { statusTypes } from '../../components/

patterns/ProductList';

export default function Products() {

 const [productState, setProductState] = useState({

 data: [],

 status: statusTypes.loading

 });

 useEffect(() => {

 const getData = async () => {

 try {

 const productFetch = await fetch('/api/products');

 const productResponse = await productFetch.json();

 �setProductState({ data: productResponse.data, status:

statusTypes.loaded })

 } catch (ex) {

 console.error(ex);

 setProductState({ data: [], status: statusTypes.errored })

 }

 }

 getData();

 }, []);

 return <ProductList

 data={productState.data}

 status={productState.status}

 />

}

Chapter 7 Interacting with API Data

90

For those who aren’t familiar, useEffect is a little bit like

componentDidMount in class-based React components. We’re defining an

async method to interact with our API and setting our state when we get a

response back. We don’t need to change anything in the return statement,

because we are already basing the results off of the data property on our

productState object.

Note W e normally don’t need to use another method inside a
useEffect statement. When we want to use async/await, however, we
create another method since useEffect cannot be async directly.

Running Storybook may illuminate a problem, however. We our

attempting to interact with an API. In our stories and our tests, we do not

want to use a real API to obtain our data.

Figure 7-2.  Storybook output after attempting to obtain data from
an API

Chapter 7 Interacting with API Data

91

This is great that we can see the component in an error state; however,

we’re trying to see the list of products as the standard view of this screen.

There are a couple of strategies we could employ to ensure that

we could still derive value from Storybook for our screen/page-level

components.

�Container/Presentational Components
The first thing we could attempt is split up our component into a Container

and View component. The Container component would be responsible

for obtaining data, and the View component would only be responsible for

displaying data. With this strategy, we would have distinct files Products.

container.js and Products.js where Products.js is the View component.

This is a strategy that I’ve used successfully on many projects, but

there’s a downside. You’re creating more files than you may need. More

code means there is more surface area for bugs and things you need to

maintain.

�Mock Data
The technique we’re going to use in this book is mocking the API endpoint

for Storybook (and since we’re using Storybook stories to power our tests,

our tests too). This functionality is provided through the open source

tool Mirage JS (miragejs.com). Mirage will allow us to interact with the

endpoint in our components while replacing any calls to the API with the

data when viewing components in Storybook. We’ll install miragejs with

npm:

npm install —save-dev miragejs

Once npm has finished, we’ll update our test to build a mock API

endpoint that’s used in Storybook (Listing 7-1).

Chapter 7 Interacting with API Data

http://miragejs.com

92

Listing 7-1.  Products.stories.js

import { Server } from 'miragejs';

let server = new Server();

server.get('/api/products/', { data:

 [

 {

 id: 1,

 name: "Mocha",

 price: 3.5,

 �imageUrl: "https://source.unsplash.com/tNALoIZhqVM/

200x100/",

 },

 ...

]

});

We import the server from Mirage and set up a mock that says “when I

request /api/products/, respond with this data.” Now if we run Storybook,

we can see our mock data being returned instead of the error we saw

previously.

Chapter 7 Interacting with API Data

93

�Wrapping Up
In this chapter, we discussed how we can load data in our Screen/Page

components. We talked about some of the various techniques we can use

to load data and how we can quickly mock data for Storybook stories and

unit tests.

EXERCISE

So far, we’ve used our mock data to power our Storybook story. The goal

is that we will have a nice test coverage as well. A great exercise would be

creating a series of unit tests that covers this functionality. Using some of the

concepts from this chapter and Chapter 6, create a suite of unit tests that

ensure that we load and display the product list.

Figure 7-3.  Products page

Chapter 7 Interacting with API Data

95© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_8

CHAPTER 8

Building Our
Application
We’ve been working in the safety of our component workspace.

Unfortunately, unless our product is a component library, our users won’t

receive much value from our components unless we place them in our real

application. In this chapter, we’re going to take everything we’ve made so

far using Storybook and apply it to a real application. Our approach with

Storybook is a bit different from how many applications are built, but as

we’ll see in this chapter, when we’re ready to build our actual application,

everything falls into place pretty quickly.

�Navigating Between Pages
One thing that we’ll need in our application is a way for our coffee

shoppers to visit different pages. We could simply show and hide our

components based on which part of our application is active. This could

work for small applications, but would be unmaintainable at scale. There

are some other problems with this strategy that may be more apparent

with a simple example.

Let’s assume we have some basic page components that represent a

Home and About page:

const Home = () => <h1>Hi from the home page!</h1>;

const About = () => <h1>Hi from about!</h1>;

https://doi.org/10.1007/978-1-4842-6625-0_8#DOI

96

Next, we’ll add a basic Navigation component that receives a callback

that’s called when one of the navigation items is clicked. In this case,

we’re going to use a button since we’re currently technically providing

button-like functionality instead of typical link functionality (i.e., we’re not

changing the browser route and instead switching out which content is

present—there’s some nuance here, but we’ll fix this up later):

export const Navigation = ({ onChangeNavigation }) => {

 return (

 <nav>

 �<button onClick={() => onChangeNavigation("home")}>

Home</button>

 �<button onClick={() => onChangeNavigation("about")}>

About</button>

 </nav>

);

};

Next, we’re going to add our Application component as follows. This

Application component will use our pages and our navigation:

function App() {

 const [currentPage, setCurrentPage] = useState("home");

 let content = undefined;

 if (currentPage === "home") {

 content = <Home />;

 }

Chapter 8 Building Our Application

97

 if (currentPage === "about") {

 content = <About />;

 }

 return (

 <div className="App">

 <Navigation onChangeNavigation={setCurrentPage} />

 {content}

 </div>

);

}

export default App;

In the previous App component, we’re defining a variable, content, that

will hold our page-level content and switching the content based on state.

What are some problems you see with this approach?

While this may seem pretty straightforward, there are some definite

challenges that we may run into using this strategy. First and foremost, this

will not scale well. For two pages, it’s pretty clear what’s going on, but how

would we handle this if we had 20 or more pages? Beyond the developer

experience, this technique would not provide a great experience to our

coffee shoppers either.

What would happen if a patron wanted to bookmark the About page?

Every time they tried to visit the bookmark, they would come back to the

main page since this is controlled by the App state unless we created some

mechanism for rehydrating the active page based on a URL parameter.

At that point, we may be asking ourselves, “Are we just reinventing

the concept of a router?” The answer to that question would be “Yes.”

Thankfully, there is an excellent router that we can use.

Chapter 8 Building Our Application

98

�Routing
We’re going to utilize the awesome React Router library. We can now

change our example application to the following:

export default function App() {

 return (

 <BrowserRouter>

 <Navigation />

 <Switch>

 <Route path="/about" component={About} />

 <Route path="/" component={Home} />

 </Switch>

 </BrowserRouter>

);

}

From there, we’ll update our Navigation component to use the React

Router–provided Link component, instead of the button elements we were

previously using:

// still wrapped in existing nav / ul

 <Link to="/">Home</Link>

 <Link to="/about">About</Link>

With this strategy, we define our browser router; this is the top-level

provider for our router and creates our routes contained within a Switch

component. The Switch component basically allows us to say that only

one route is active at a time. Conceptually, we can think of this like a

Chapter 8 Building Our Application

99

switch statement where only one code path will be executed based on

the provided values. The Route components receive a path and the

component that should be active based on the given path.

For our Navigation component, we’ve updated the buttons to the Link

component from React Router. The link renders as an anchor tag and will,

as the name implies, link to another route. We provide the route path to

our Link components via the to prop (i.e., <Link to=“/about”>).

Using a router has numerous benefits over manually handling content

visibility based on state and so on. First, using React Router scales quite

a bit better than manually handling content visibility based on state. We

could continue to add routes to our switch statement or even provide

nested routes (see the React Router documentation for more on nested

routes).

React Router provides URL route updates. You may notice if you

run the preceding router example, clicking a link updates the URL. This

means that users can bookmark the pages that they’re on. Additionally,

the Link component is more sensible, since it’s an actual anchor tag rather

than buttons that manipulate state. Buttons worked well as the element

for calling callbacks, but since we’re actually changing the URL with the

router, an anchor tag is better.

�Updating Our Application to Use Routes
Let’s update our Rocket Coffee application to use routes. Since Chapter 7,

I’ve added some pages for Cart and “My Account.” They’re not hooked up

to a real database or anything, but should suffice for dealing with routing.

Chapter 8 Building Our Application

100

We want to organize our system around the concept of routing. What

this means is our src/components/pages folder will be moved to match the

routes that the patrons of our coffee shop will visit to purchase coffee.

This means that for every main route, we’ll have a corresponding

folder in our pages directory and every subroute will map to a specific

subcomponent within that directory. Our file structure could look like the

following:

RocketCoffee

|_ src/

|__ components/

|____ atoms/

|____ patterns/

|__ screens/

|____ Cart/

|____ Products/

|____ UserProfile/

Each of our screen folders contains a component, an index file, and a

story (and optionally contains a test and style information). We can view

our pages through Storybook, but we want a real functioning application.

Let’s go ahead and add React Router and use our real app outside of

Storybook.

Figure 8-1.  Basic Cart and User Profile components

Chapter 8 Building Our Application

101

We’ll start by adding the react-router-dom package from npm. We’re

building a web application, so the DOM version of React Router is what we

want. It has some areas that interact directly with the browser:

npm install react-router-dom

From there, we’re going to add a new file called Routes.js at the top

level of our src directory. We’re going to include React, BrowserRouter,

Switch, and Route from react-router-dom and our page-level components.

Finally, we’ll return the routes to our pages in the Switch component:

import React from "react";

import { BrowserRouter, Switch, Route } from "react-router-dom";

import Cart from "./screens/Cart";

import Products from "./screens/Products";

import UserProfile from "./screens/UserProfile";

export default function Routes() {

 return (

 <BrowserRouter>

 <Switch>

 <Route path="/cart" component={Cart} />

 <Route path="/userProfile" component={UserProfile} />

 <Route path="/" component={Products} />

 </Switch>

 </BrowserRouter>

);

}

Our application screens depend on an API for the data we present.

Unfortunately, this API doesn’t exist. We’ll use the mocking technique that

we applied in Chapter 7 to provide a mock API to our application. We’ll

start by creating a file, Mock.server.js, in our src directory. This file will be

responsible for

Chapter 8 Building Our Application

102

import { Server } from "miragejs";

const productData = [

 {

 id: 1,

 name: "Mocha",

 price: 3.5,

 imageUrl: "https://source.unsplash.com/tNALoIZhqVM/200x100/",

 },

 {

 id: 2,

 name: "Latte",

 price: 3.5,

 imageUrl: "https://source.unsplash.com/tNALoIZhqVM/200x100/",

 },

 {

 id: 3,

 name: "Vanilla Latte",

 price: 3.5,

 imageUrl: "https://source.unsplash.com/tNALoIZhqVM/200x100/",

 },

];

const server = new Server({

 routes() {

 this.namespace = "/api";

 this.get("/cart", () => ({ data: [productData[1]] }));

 this.get("/products", () => ({ data: productData }));

 this.get("/profile", () => ({

 name: "Saige McDermott",

 memberSince: "June 12th, 2018",

 recentOrders: [

Chapter 8 Building Our Application

103

 { orderId: 12, name: "Latte" },

 { orderId: 27, name: "Cafe Miel" },

],

 }));

 this.get("/users", () => [

 { id: "1", name: "Luke" },

 { id: "2", name: "Leia" },

 { id: "3", name: "Anakin" },

]);

 },

});

export default server;

Next, we need to import this mock server in our app. When we have

our real API, we’ll want to remove the code that imports our mock, but for

now, it works out well:

import React from "react";

import './Mock.server'

import Routes from './Routes';

function App() {

 return (

 <Routes />

);

}

export default App;

Now if we run our application via npm start (or yarn), we should

be able to visit our pages by typing in localhost:3000/, localhost:3000/

userProfile, and localhost:3000/cart, respectively.

Chapter 8 Building Our Application

104

�Navigation
Let’s add a basic navigation using the Link component from React Router

as well. For the sake of example, we’ll do this by creating a Navigation

component under patterns along with a corresponding index.js barrel

file. We’ll go ahead and create patterns/Navigation, an index.js file that

only exports our soon-to-be-created Navigation component, and our

component Navigation.js:

// patterns/Navigation/Navigation.js

import React from "react";

import { Link } from "react-router-dom";

export default function Navigation() {

 return (

 <nav>

 <Link to="/">Products</Link>

 <Link to="/cart">Cart</Link>

 <Link to="/userProfile">Profile</Link>

 </nav>

);

}

Chapter 8 Building Our Application

105

We’ll jump back over to our Routes.js file and add our navigation. We

can use our Products screen from Chapter 7 and other screens from the

example code. From a high level, these screens all obtain data from our

API and use the existing components to present that data to our customers.

We’ll import these screens in our Routes.js file and place them in a React

Router browser router as follows:

import React from "react";

...

import Navigation from "./components/patterns/Navigation/

Navigation";

export default function Routes() {

 return (

 <BrowserRouter>

 <Navigation />

 <Switch>

 <Route path="/cart" component={Cart} />

 <Route path="/userProfile" component={UserProfile} />

 <Route path="/" component={Products} />

 </Switch>

 </BrowserRouter>

);

}

We now have a rudimentary navigation along with routes that can be

bookmarked in our application.

Chapter 8 Building Our Application

106

�Wrapping Up
In this chapter, we discussed how we can start migrating out of Storybook

into our real application. We were able to quickly make pages out of our

existing components and provide navigation through React Router.

EXERCISE

Our navigation is currently pretty rudimentary. We want something a bit

more sophisticated for our real application. Please create a Header/Footer

component that will show up on each page. The header should link to “/” and

the footer should contain the same links as our Navigation component. Finally,

this Header/Footer component should live in a Layout component that will

contain the header, footer, navigation, and page-level content.

Figure 8-2.  Navigation + route output

Chapter 8 Building Our Application

107© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_9

CHAPTER 9

Automating Repetitive
Tasks
In this chapter, we’re going to look into how we can speed up our

development. We’ve discussed constructing our application out of a series

of smaller parts. For every page component, pattern component, and

atom component, we end up creating a component, an index file, a test

file, a story, and in many cases a style file. I don’t know about you, but

that’s a lot of effort that I’d rather not do. It’s weird to say, because it’s not a

complicated task, but it is tedious.

Do not use humans for jobs computers can do better—this is a
waste of human energy and creativity, the only real resource
on this planet, and demeans the human spirit.

—J. Paul Morrison, programmer and inventor

I really appreciate this quote. To me, it brings up thoughts of Tony Stark

(Iron Man’s alter ego) being assisted by computers to do his job way better

so he can focus on more important things like saving the world. I don’t

know about you, but I wish I had a robot assistant. I would love to hand

off tedious work to a computer so I can keep my attention on the more

important things in a project.

https://doi.org/10.1007/978-1-4842-6625-0_9#DOI

108

While we’re not going to be using as sophisticated computing powers

as science fiction stories, we can leverage computers to make our jobs

easier. Constructing our directory structure is not hard. Let’s use some

software to make that job more straightforward.

�Our Own CLI
We’re going to create a CLI specific to our project. A CLI is a command-line

interface, that is, an application that runs in the command line. If you’ve

ever used Create React App, npm, yarn, or git, you have interacted with a

CLI. We’re going to construct one that makes the process of creating our

files and directories in the structure we want a process that requires almost

no thought at all.

There are a number of tools that we could use to achieve this goal, such

as Gluegun, Plop, and others. In this book, however, we’re going to use

Hygen (www.hygen.io/).

Hygen is deemed “The scalable code generator that saves you time”

by its documentation. I’ve used several other generators/CLI tools, and

I appreciate the clear-cut results-driven architecture of Hygen. Let’s take

a look at a simple example where we’ll create a file with a hello world

function in a specific location. Don’t worry. Hello world isn’t exciting,

but we’ll soon be applying these concepts to our Rocket Coffee codebase.

Ideally, we will be able to run Listing 9-1 from the command line to

generate a component in our app.

Listing 9-1.  Theoretical CLI code generator

> yarn generate component UserForm —location atom

 added: src/components/atoms/Button/index.js

 added: src/components/atoms/Button/Button.js

 added: src/components/atoms/Button/Button.stories.js

 added: src/components/atoms/Button/Button.test.js

 added: src/components/atoms/Button/Button.css

Chapter 9 Automating Repetitive Tasks

http://www.hygen.io/

109

�A Brief Example
We’ll start by adding Hygen to our computer. There are a couple of ways we

could handle this, but adding it as a global module via npm works well:

npm install -g hygen

Note I f we don’t want to add the Hygen tool to our computer, we
could take advantage of npx to achieve a similar result. The npx tool
is a way that we can run a CLI tool that’s hosted on the npm registry.
If you prefer to use npx, anywhere where we reference the globally
installed version of the tool in this guide, use npx instead.

For our example, we’re going to use the Rocket Coffee project that

we’ve been building throughout this book. That said, these same steps

should work in any project.

Hygen uses template files and the surrounding folders to generate CLI

commands. For our “hello world” example, we simply want to run hygen

function new HelloWorld. There are some things beyond installing Hygen

that we need to do to initialize our generator. We’ll start off by running the

following:

hygen init self

added: _templates/generator/help/index.ejs.t

added: _templates/generator/with-prompt/hello.ejs.t

added: _templates/generator/with-prompt/prompt.ejs.t

added: _templates/generator/new/hello.ejs.t

This statement initializes Hygen with a generator that we’ll use to

create our other generators. We’re ready to create our function generator:

hygen generator new function

Chapter 9 Automating Repetitive Tasks

110

Hygen will create a new folder in our project. We should navigate to

our _templates/function/new folder and edit “hello.ejs.t.” Hygen uses the

.t filetype to prevent editors from trying to apply additional IDE features to

this file. It’s likely the IDE won’t know about these templates. The generator

command we will soon run corresponds directly to the folder structure. For

instance, we will run hygen function new {Name} where Name is the input

we’ll provide to our generator. You may notice we have a folder for function,

the first statement in our command, and a function for new as well.

Note  For this example, keeping the template name as hello should
be fine. The template name is more important when we plan on
keeping these files around; the name helps our teammates and
“future us” recognize the intent of the template.

We’ll update the code in _templates/function/new/hello.ejs.t to the

following:

to: src/components/<%=name%>.js

console.log("hello world!")

Hygen templates are based on ejs, a popular templating engine for

Node applications. Don’t worry if you’re not familiar with this, as knowing

the ins and outs of ejs is not necessary for building a generator. For our

purposes, we want to understand that code in between <%= %> will be

output to the file. For example, we are using the variable name to populate

the filename for our document.

In addition to ejs, it’s important to realize that this template consists

of two parts. The top part of the template, surrounded in “—-”, is the front

matter section of the template. Template settings belong in this section

of the document. In the front matter for our “hello world” example, we’re

supplying where the generated output of this generator belongs as the

Chapter 9 Automating Repetitive Tasks

111

to property. For this generator, we’re stating that we want a file with a

given name placed in src/components. Now what happens if we run our

generator? If you run into any errors, please ensure that you’ve run the

previous steps, hygen init self and hygiene generator new function. Hygen

will not function as we’re anticipating without these steps:

> hygen function new Test

Loaded templates: _templates

 added: src/components/Test.js

�Building Some Generators for Our Project
With this knowledge in hand, let’s build the generators we want to make

working in our codebase easier. We’ll start by renaming the function

folder used in the preceding text from _templates/function to _templates/

component. You could remove the folder and start the generator process

over again, but I generally prefer this route.

From there, we’ll navigate to _templates/component/new/, rename

the hello.ejs.t file to component.ejs.t, and copy this file to create a basic

index.ejs.t, component.stories.ejs.t, and component.test.ejs.t file. We’ll give

each one of these templates a purpose that relates to its name. We’ll start

by editing the component file. We want it to contain the code in Listing 9-2.

Listing 9-2.  component.ejs.t

to: src/components/atoms/<%=name%>/<%=name%>.js

import React from 'react'

export default function <%= name %> () {

 return <h1>Hello from <%= name %></h1>;

}

Chapter 9 Automating Repetitive Tasks

112

Now, when we run our generator, we see that we create an atom

component in our src folder:

> hygen component new First

Loaded templates: _templates

 added: src/components/atoms/First/First.js

Let’s go ahead and add our basic stories, tests, and index files. These

are definitely not profound, but the time this saves scales as we need more

files in our codebase.

We’ll start with the basic index file (_templates/component/new/

index.ejs.t). For now, we only want this to export the default output from

our component file:

to: src/components/atoms/<%=name%>/index.js

export { default } from './<%=name%>';

Next, we’ll move on to the Storybook stories file (_templates/

component/new/component.stories.ejs.t):

to: src/components/atoms/<%=name%>/<%=name%>.stories.js

import React from 'react'

import <%=name%> from './<%= name %>'

export default { title: 'atoms/<%= name %>'}

export const Standard = () => <<%= name %> />

Lastly, we’ll create our test file (_templates/component/new/

component.test.ejs.t):

Chapter 9 Automating Repetitive Tasks

113

to: src/components/atoms/<%=name%>/<%=name%>.test.js

import React from 'react'

import { screen, render } from '@testing-library/react';

import <%= name %> from './<%= name %>';

describe('<%= name %>', () => {

 it('renders as expected', () => {

 const { container } = render(<<%= name %> />);

 expect(container).toMatchSnapshot();

 })

})

Now, we can run our generator and see that it created a new

component and sibling story/test files:

> hygen component new TextInput

Loaded templates: _templates

 added: src/components/atoms/TextInput/TextInput.js

 added: src/components/atoms/TextInput/TextInput.stories.js

 added: src/components/atoms/TextInput/TextInput.test.js

 added: src/components/atoms/TextInput/index.js

We can run our tests or Storybook and everything works as expected,

and our new tests pass. This is great and can save a lot of time; however,

we have a problem. Remember we are classifying our components as

atoms, patterns, and pages? Unfortunately, we’re currently hardcoding our

generated components to be atoms. Let’s fix that.

Chapter 9 Automating Repetitive Tasks

114

�Adding Additional Variables to Our Generator
We need to make our generator accept an additional parameter, type.

While there are a couple ways we could handle this (such as logic in our

template files), we’re going to build a reusable helper. All of our templates

need to know what type of component is being created, so this reusable

technique will help us avoid duplicating code.

Hygen has a top-level h object that has the default Hygen helpers. We

can add on to this object by creating a file in the root of our project named

.hygen.js and creating a helpers object with the functions we wish to leverage

in our templates (Listing 9-3). We’re going to make two helper functions that

receive the type supplied from the command line: one to obtain the folder path

and one to obtain the name of the type. We’ll create an object to hold the values

for each possible type. That way, we can add on to this later or change things

without needing to update every helper function where a value is present.

Listing 9-3.  .hygen.js in the root of our project

const types = {

 atom: { name: 'atoms', path: 'components/atoms/'},

 pattern: { name: 'patterns', path: 'components/patterns/'},

 screen: { name: 'screens', path: 'screens/'}

}

module.exports = {

 helpers: {

 getTypePath: (type = 'atom') => {

 return types[type].path;

 },

 getType: (type = 'atom') => {

 return types[type].name

 }

 }

}

Chapter 9 Automating Repetitive Tasks

115

Now when we use this helper method, any type that we pass in as an

argument to our generator will be used to determine where the files live. Now,

let’s update the story template to use our helper methods. One thing to note is

we generally could reference our type variable simply as type; however, that

would imply that type is required. We have our generator set up so that when

type is not specified, it will default to an atom. We will use Hygen’s locals object

to obtain our type rather than the type variable directly (Listing 9-4).

Listing 9-4.  _templates/component/new/component.stories.ejs.t

to: src/<%= h.getTypePath(locals.type) %><%=name%>/<%=name%>

.stories.js

import React from 'react'

import <%=name%> from './<%= name %>'

export default { title: '<%= h.getType(locals.type) %>/<%=

name %>'}

export const Standard = () => <<%= name %> />

We can go ahead and update the rest of our templates to use this new

helper method. After that’s complete, running our generator works for

atoms, patterns, and screen components. The following command will

generate a new component under our screens directory with supporting

test, story, and index files:

> hygen component new UserProfile --type screen

Loaded templates: _templates

 added: src/screens/UserProfile/UserProfile.js

 added: src/screens/UserProfile/UserProfile.stories.js

 added: src/screens/UserProfile/UserProfile.test.js

 added: src/screens/UserProfile/index.js

Chapter 9 Automating Repetitive Tasks

116

�Wrapping Up
We now have the ability to generate our files that we’ll use to power our

front-end application. While some may argue that creating files is not

challenging, this now frees us to focus on more important things. We’ve

placed the responsibility of building our app structure on a repeatable

process. Instead of needing to constantly check pull requests for correct

folder structure, we can rely on the “robot doing it just effectively.”

Additionally, the generator can help facilitate communication. When

a new developer is onboarded to our team, we can talk about running

the generator instead of tedious discussions around where different files

belong. Additionally, if we ever want to update where a file belongs, we

can update the template and avoid scenarios where we create files in their

previous schema out of habit.

EXERCISE

Our primary focus has been on the component, test, and story files. We didn’t

address the creation of a style file. Create a template that will generate a local

CSS module as part of the hygen component new command.

Chapter 9 Automating Repetitive Tasks

117© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0_10

CHAPTER 10

Communicating Our
Components
So far, we’ve mostly been focused on strategies to make developing our

applications more straightforward. Success in software development

hinges on much more than merely writing good code, however. Projects

can be a win or a loss, depending on how well people communicate.

Thankfully, Storybook helps us here too.

As you may have guessed, Storybook helps us communicate with other

developers which components exist in a codebase. How many projects

have you been on where the same component or snippet of code lived in

many places, simply because a developer had no idea the functionality

existed elsewhere? Using a component workspace that all the developers

can reference and see a working version of the component helps with

this communication. The strategies we’ve employed so far are useful to

developers, but we can do a bit more.

�Documenting Our Components
We want to help other developers get up to speed with components as

quickly as possible. Only having stories helps in that endeavor, but we

could make the experience a bit nicer than merely directing developers to

look at the code that powers the stories. We’ll start by adding additional

documentation properties to our stories. Using our Rocket Coffee

codebase, let’s start making these updates.

https://doi.org/10.1007/978-1-4842-6625-0_10#DOI

118

Storybook can help us with this documentation also. Remember

that our stories’ default export is an object? We have some additional

properties we can use to provide some documentation with our stories.

To add some detailed documentation to our stories, we’ll need to

include the docs add-on:

> yarn add @storybook/addon-docs

From there, we’ll need to update our Storybook’s main.js file to include

this new add-on in Listing 10-1.

Listing 10-1.  .storybook/main.js

module.exports = {

 stories: ["../src/**/*.stories.js"],

 addons: [

 "@storybook/preset-create-react-app",

 "@storybook/addon-actions",

 "@storybook/addon-links",

 "@storybook/addon-knobs",

 "@storybook/addon-docs"

],

};

Now, if we fire up Storybook, we’ll see a new tab called Docs next to the

main Storybook output. You’ll notice it shows our component, a way to see

the markup for the component, and our args table.

Now, if we fire up Storybook we’ll see a new tab called docs next to the

main Storybook output.

Chapter 10 Communicating Our Components

119

This Docs tab is pretty useful out of the box. We have another view of

our stories and have a way to quickly view the code. Let’s add a description

to the args table at the bottom of the listing.

In addition to the standard, title, and component properties that

we’ve seen before on our story’s default export, we’re going to leverage the

argTypes property (Listing 10-2). This property allows us to provide some

additional metadata to the args table.

Listing 10-2.  Button.stories.js

export default {

 title: "atoms/button",

 component: Button,

 argTypes: {

 children: {

 �description: "The element(s) that should be rendered

within the button",

 default: "undefined",

 },

Figure 10-1.  Storybook’s Docs tab

Chapter 10 Communicating Our Components

120

 onClick: {

 �description: "The action that is fired when the button is

pressed",

 },

 },

};

If we load our Storybook, we will see the descriptions we provided in

the args table.

These descriptions that we’ve provided as part of the argTypes

property support Markdown to provide some light styling to our text.

If you’re not familiar with Markdown, I recommend visiting Mastering

Markdown from GitHub (https://guides.github.com/features/

mastering-markdown/).

Note M arkdown is a nice addition, but it’s not necessary to use
with Storybook docs. Feel free to only dive into learning more about
Markdown if it’s something you want to use.

Taking a similar approach, we can now add an overall description to

the story as well:

export default {

 title: "atoms/button",

 component: Button,

Figure 10-2.  Updated args table

Chapter 10 Communicating Our Components

https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/

121

 parameters: {

 docs: {

 description: {

 component:

 �"The **button** is the component that should fire an

action based on a click event.",

 },

 },

 },

 ...

};

We’ll add a property on our default export parameters.docs.description.

component that contains the description we want to display with our story.

This field also supports Markdown.

�More Advanced Documentation
This works pretty well, but what if we want more control over our

documentation? There’s quite a lot we can do with the Storybook

default object, but it can be tedious to update our docs entirely through

a JavaScript object. Thankfully, we can provide documentation using a

different strategy.

Figure 10-3.  Our story docs with a description

Chapter 10 Communicating Our Components

122

�MDX
We also can use Markdown, or more specifically MDX, to write our stories.

According to the documentation site (mdxjs.com), “MDX is an authorable

format that lets you seamlessly write JSX in your Markdown documents.”

This is an optional way to document Storybook stories, but may be

preferred if the goal is to provide stories alongside documentation.

We’ll start off by updating our .storybook/main.js to add support for

mdx files:

module.exports = {

 �stories: ["../src/**/*.stories.js", "../src/**/*.stories.mdx"],

 addons: [...],

};

Next, we’ll create a new file to contain our MDX documentation at src/

components/atoms/Button/Button.stories.mdx and populate it with the

following MDX content. Remember, MDX is a combination of JSX and

Markdown. We’ll still import our references as we would in any standard

JavaScript file:

import { Meta, Story, Canvas } from "@storybook/addon-docs/blocks";

import Button from "./Button";

<Meta title="atoms/Button" component={Button} />

Button

This is the **Button** component. The intent of the **Button** is ...

<Button onClick={console.log}>Click here</Button>

This is a button outside of the Storybook Canvas

More documentation

<Canvas>

 <Story name="standard">

 <Button

Chapter 10 Communicating Our Components

http://mdxjs.com

123

 onClick={...}

 >

 Click me

 </Button>

 </Story>

</Canvas>

Other markdown like [Links](http://www.google.com) work also!

In the previous example, we’re rendering some standard Markdown,

along with our Button component inline with the Markdown and our

Button component contained within a Storybook canvas.

Now, visiting the Docs tab for the button story displays Figure 10-4.

Figure 10-4.  Storybook docs output

Chapter 10 Communicating Our Components

124

This provides great documenting functionality to our component

workspace. The ease and flexibility of Markdown coupled with the power

of JSX give us documentation superpowers.

�Sharing Our Workspace
We mentioned that one of the goals we have in using Storybook is to use it

as a communication tool, as well as a tool for developers. Unfortunately,

right now, anyone that wants to view the component workspace needs

to pull down our repository from git and run npm run storybook (or yarn

storybook). This works really well for developers, but isn’t so great for those

who don’t want to interact with the code (or git). Thankfully, it’s pretty

straightforward to build our Storybook in a way that we can deploy it to a

server:

npm run build-storybook

We should be notified that Storybook has created a compiled version of

our workspace in storybook-static. We can deploy the code from this folder

to a server or have this happen automatically as part of a CI process. This is

a bit outside the scope of this study, but it is a scenario that is supported by

Storybook.

�Wrapping Up
In this book, we’ve looked at why we should use a component workspace,

how it helps us build better software, and how we can use it to help us

facilitate better communication. It’s interesting that these are things that

we need to write good software. The tooling isn’t the only way that we can

achieve good software, but it certainly helps.

Chapter 10 Communicating Our Components

125© Ryan Lanciaux 2021
R. Lanciaux, Modern Front-end Architecture, https://doi.org/10.1007/978-1-4842-6625-0

Index

A, B
API data

considerations, 84, 85
data loading

container/presentational
components, 91

mock data, 91–93
ProductList component, 88
products component, 87
Storybook output, 88, 90
useEffect statement, 89

argTypes property, 119
Automating repetitive tasks

build generators
adding variables, 114, 115
component file, 111
index file, 112
navigation, 111
run, 112, 113
Storybook stories file, 112
test file, 112, 113

CLI
generator, 108
Hygen, 108
tools, 108

C
Cascading Style Sheets (CSS), 60

benefits, 61
building theme, 69, 70
drawbacks, 61, 62
element IDs, 61
HTML elements, 60
JavaScript

benefits, 67
Card component, 65
defaultProps, 66
drawbacks, 67
emotion, 66
React components, 64
rendering, 66
style, 65
styled-components, 66

login box, 61
preprocessors, 62, 63

benefits, 63
drawbacks, 64

selector, 60
styling solution, 68
utility-first styling

libraries, 67, 68

https://doi.org/10.1007/978-1-4842-6625-0#DOI

126

benefits, 68
drawbacks, 68

Command-line interface
(CLI), 108

Component, documenting,
117–121

Create React App (CRA), 14, 74

D, E
Data loading, 84
Documentation

MDX, 122, 123
workspace, 124

Document object model
(DOM), 76

F, G
Feature-based

development, 85, 86

H, I, J, K, L
Hygen

code, 110
create folder, 110
generator, 109
installation, 109
templates, 109, 110

M
Mac/Linux installation instructions

command, 20
Node js, 21
version, 20, 21

Mise en place philosophy, 3, 4

N, O, P, Q
Navigating between pages

Application component, 96, 97
bookmark, 97
challenges, 97
change navigation, 96
Home/About page, 95
navigation components, 96

Navigation
index.js file, 104
Routes.js file, 105
rudimentary, 105

Node Version Manager (NVM), 15

R
React components, 76

add tests, 77, 78
branching code paths, 77
fireEvent, 79
isSoldOut prop, 78, 79
mock function, 79
onAddToCart, 79

Cascading Style Sheets
(CSS) (cont.)

Index

127

ProductListItem.js, 77
React Testing Library, 77
rendering, 78

React Router library, 98, 99
React Testing Library, 77
Reusable components

abstraction
creation, 51
primary factor, 51

additional components, 49, 50
arranging, 54

components types, 55, 56
component states

Boolean flags, 51
bugs, 52
loading/error, 52
name/value, 53
ProductList folder, 51
state charts, 52
state machines, 52, 53
statusTypes object, 53

ProductListItem, 48
purpose, 48

Routes
basic carts, 99, 100
codebase, 100
import, 103
Mock.server.js, 101–103
react-router-dom

package, 101
Routes.js, 101
screen folders, 100

user profile
components, 99, 100

Routing, 84, 85
benefits, 99
link component, 98
navigation component, 99
switch component, 98
URL, 99

S, T
Software

components, 5
foundational, 6, 7
meeting, 8
workspace, 8, 9

good software, 2–4
newness, 2
processes, 5
product search mockup, 5, 6

State management, 84
Storybook, 9, 10, 24, 73

add-ons
actions, 39, 40
importing, 39
knobs, 40–42
name/value, 41
ProductListItem.stories.js, 39
story options, 40

advantages, 80
components, 31
Component Story Format, 34

Index

128

component code, 36
create object, 35
CSS file, 37
documentation, 35
JavaScript console, 38
JavaScript objects/

functions, 34
values, 36

creation, 32
folder/file structure, 31
home page design, 29, 30
implementation, 24, 25
import, 81, 82
index.js file, 32
installation, 25, 26
less code/duplication, 80
personal/team preference

item, 33
product item, 30, 31
ProductListItem, 33

first phase, 36, 37
updation, 35, 38

ProductListItem stories, 81
StoriesOf API, 33, 34
variants

Add to Cart, 42
Boolean knob, 43
isSoldOut, 42
sold out story, 43
story vs. knob, 44

U
Unit tests, 73

assert works, 74
expect method, 75
JavaScript, 74
Jest, 74, 75
npm run test, 76
test script, 75
write test, 75

V
Version manager, 14, 15

W, X, Y, Z
Windows installation

instructions
Command Prompt

application, 15
Node js, 18–20
Node version, 16
nvm, 17, 18
removing Node js, 16, 17

Workspae
adding, 24
built-in utilities, 21, 22
React application, 22–24
system requirements, 13

Node.js, 14
version manager, 14, 15

Storybook (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: The Mise en Place Philosophy
	Software Is Different, Right?
	Good Software

	What Does This Have to Do with Software?
	Components
	Meetings Don’t Ensure Success
	The Workspace

	Storybook
	Key Takeaways

	Chapter 2: Configuring Our Workspace
	System Requirements
	Installing Node.js
	Version Managers

	Windows Installation Instructions
	Confirming Node Version
	Removing Existing Node.js Installations (Windows)
	Install nvm-windows
	Installing Node.js (Windows)
	Mac/Linux Installation Instructions
	Verify Version Manager Installation (Mac/Linux)
	Install Node.js (Mac/Linux)

	Leveraging Node.js Built-In Utilities
	Creating Our React Application
	Running the Application

	Adding Our Workspace
	Storybook
	Installing Storybook
	Key Takeaways

	Chapter 3: Our First Storybook Stories
	Our First Storybook Stories
	StoriesOf
	Component Story Format
	Component Code

	Storybook Add-ons
	Story Variants
	When Should We Create a Story vs. a Knob?

	Key Takeaways

	Chapter 4: Creating Reusable Components
	What Makes a Good Component?
	It All Comes Down to Purpose
	Additional Components

	When Should We Abstract Components?
	Component States

	How Should We Arrange Our Components?
	Classifying Component Types

	Key Takeaways

	Chapter 5: Styling
	CSS
	Benefits of CSS
	Drawbacks of CSS
	Preprocessors
	Benefits of Preprocessors
	Drawbacks of Preprocessors
	CSS-in-JS
	Benefits of CSS-in-JS
	Drawbacks of CSS-in-JS
	Utility-First Styling Libraries
	Benefits of Utility-First Libraries
	Drawbacks of Utility-First Libraries
	How to Choose a Styling Solution
	Building a Theme

	Key Takeaways

	Chapter 6: Ensuring the Quality of Our Components
	Unit Tests
	Testing React Components
	Testing Alongside Storybook
	Key Takeaways

	Chapter 7: Interacting with API Data
	Some Main Considerations
	Feature-Based Development
	Loading Data
	Container/Presentational Components
	Mock Data

	Wrapping Up

	Chapter 8: Building Our Application
	Navigating Between Pages
	Routing
	Updating Our Application to Use Routes
	Navigation
	Wrapping Up

	Chapter 9: Automating Repetitive Tasks
	Our Own CLI
	A Brief Example
	Building Some Generators for Our Project
	Adding Additional Variables to Our Generator

	Wrapping Up

	Chapter 10: Communicating Our Components
	Documenting Our Components
	More Advanced Documentation
	MDX

	Sharing Our Workspace
	Wrapping Up

	Index

