

 [image: Cover image]
 Book cover of Pro Angular

 Adam Freeman

Pro Angular
Build Powerful and Dynamic Web Apps
5th ed.
[image:]Logo of the publisher

Adam FreemanLondon, UK

				ISBN 978-1-4842-8175-8e-ISBN 978-1-4842-8176-5
https://doi.org/10.1007/978-1-4842-8176-5
© Adam Freeman 2017, 2018, 2020, 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Dedicated to my lovely wife, Jacqui Griffyth. (And also to Peanut.)

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (Github.com/apress). For more detailed information, please visit www.apress.com/source-code.
Table of Contents

Part I: Getting Ready1
Chapter 1:​ Getting Ready3
Understanding Where Angular Excels4
Understanding Round-Trip and Single-Page Applications4

Comparing Angular to React and Vue.​js5

What Do You Need to Know?​5

What Is the Structure of This Book?​5
Part 1:​ Getting Started with Angular5

Part 2:​ Angular in Detail5

Part 3:​ Advanced Angular Features6

What Doesn’t This Book Cover?​6

What Software Do I Need for Angular Development?​6

How Do I Set Up the Development Environment?​6

What If I Have Problems Following the Examples?​6

What If I Find an Error in the Book?​7

Are There Lots of Examples?​7

Where Can You Get the Example Code?​9

How Do I Contact the Author?​9

What If I Really Enjoyed This Book?​9

What If This Book Has Made Me Angry and I Want to Complain?​10

Summary10

Chapter 2:​ Jumping Right In11
Getting Ready11
Installing Node.​js11

Installing an Editor13

Installing the Angular Development Package13

Choosing a Browser13

Creating an Angular Project14
Opening the Project for Editing14

Starting the Angular Development Tools15

Adding Features to the Application17
Creating a Data Model17

Displaying Data to the User19

Updating the Component20

Styling the Application Content24
Applying Angular Material Components25

Defining the Spacer CSS Style27

Displaying the List of To-Do Items28
Defining Additional Styles30

Creating a Two-Way Data Binding31

Filtering Completed To-Do Items34

Adding To-Do Items35

Finishing Up38

Summary41

Chapter 3:​ Primer, Part 143
Preparing the Example Project43

Understanding HTML45
Understanding Void Elements47

Understanding Attributes47

Applying Attributes Without Values47

Quoting Literal Values in Attributes48

Understanding Element Content48

Understanding the Document Structure48

Understanding CSS and the Bootstrap Framework50

Understanding TypeScript/​JavaScript51
Understanding the TypeScript Workflow51

Understanding JavaScript vs.​ TypeScript52

Understanding the Basic TypeScript/​JavaScript Features60

Defining Variables and Constants60

Dealing with Unassigned and Null Values60

Using the JavaScript Primitive Types62

Using the JavaScript Operators64

Summary72

Chapter 4:​ Primer, Part 273
Preparing for This Chapter73

Defining and Using Functions74
Defining Optional Function Parameters75

Defining Default Parameter Values76

Defining Rest Parameters76

Defining Functions That Return Results77

Using Functions as Arguments to Other Functions77

Working with Arrays79
Reading and Modifying the Contents of an Array80

Enumerating the Contents of an Array81

Using the Spread Operator82

Using the Built-in Array Methods83

Working with Objects84
Understanding Literal Object Types85

Defining Classes87

Checking Object Types91

Working with JavaScript Modules92
Creating and Using Modules92

Working with Reactive Extensions94
Understanding Observables95

Understanding Observers96

Understanding Subjects96

Summary98

Chapter 5:​ SportsStore:​ A Real Application99
Preparing the Project99
Installing the Additional NPM Packages100

Preparing the RESTful Web Service101

Preparing the HTML File103

Creating the Folder Structure104

Running the Example Application104

Starting the RESTful Web Service105

Preparing the Angular Project Features105
Updating the Root Component106

Inspecting the Root Module106

Inspecting the Bootstrap File107

Starting the Data Model108
Creating the Model Classes108

Creating the Dummy Data Source109

Creating the Model Repository110

Creating the Feature Module111

Starting the Store111
Creating the Store Component and Template112

Creating the Store Feature Module113

Updating the Root Component and Root Module114

Adding Store Features the Product Details115
Displaying the Product Details115

Adding Category Selection117

Adding Product Pagination119

Creating a Custom Directive122

Summary126

Chapter 6:​ SportsStore:​ Orders and Checkout127
Preparing the Example Application127

Creating the Cart127
Creating the Cart Model128

Creating the Cart Summary Components130

Integrating the Cart into the Store131

Adding URL Routing134
Creating the Cart Detail and Checkout Components135

Creating and Applying the Routing Configuration136

Navigating Through the Application137

Guarding the Routes140

Completing the Cart Detail Feature142

Processing Orders145
Extending the Model145

Collecting the Order Details148

Using the RESTful Web Service152
Applying the Data Source153

Summary154

Chapter 7:​ SportsStore:​ Administration155
Preparing the Example Application155
Creating the Module155

Configuring the URL Routing System158

Navigating to the Administration URL159

Implementing Authentication161
Understanding the Authentication System161

Extending the Data Source162

Creating the Authentication Service163

Enabling Authentication164

Extending the Data Source and Repositories167

Installing the Component Library170

Creating the Administration Feature Structure172
Creating the Placeholder Components173

Preparing the Common Content and the Feature Module174

Implementing the Product Table Feature178

Implementing the Product Editor185

Implementing the Order Table Feature190

Summary194

Chapter 8:​ SportsStore:​ Progressive Features and Deployment195
Preparing the Example Application195

Adding Progressive Features195
Installing the PWA Package195

Caching the Data URLs196

Responding to Connectivity Changes197

Preparing the Application for Deployment199
Creating the Data File199

Creating the Server200

Changing the Web Service URL in the Repository Class202

Building and Testing the Application203
Testing the Progressive Features204

Containerizing the SportsStore Application206
Installing Docker206

Preparing the Application206

Creating the Docker Container207

Running the Application208

Summary209

Part II: Working with Angular211
Chapter 9:​ Understanding Angular Projects and Tools213
Creating a New Angular Project213

Understanding the Project Structure214
Understanding the Source Code Folder217

Understanding the Packages Folder218

Using the Development Tools223
Understanding the Development HTTP Server223

Understanding the Build Process224

Using the Linter230

Understanding How an Angular Application Works235
Understanding the HTML Document236

Understanding the Application Bootstrap237

Understanding the Root Angular Module238

Understanding the Angular Component239

Understanding Content Display239

Understanding the Production Build Process241
Running the Production Build242

Starting Development in an Angular Project242
Creating the Data Model242

Creating a Component and Template245

Configuring the Root Angular Module247

Summary248

Chapter 10:​ Using Data Bindings249
Preparing for This Chapter250

Understanding One-Way Data Bindings251
Understanding the Binding Target253

Understanding the Expression254

Understanding the Brackets255

Understanding the Host Element256

Using the Standard Property and Attribute Bindings256
Using the Standard Property Binding257

Using the String Interpolation Binding258

Using the Attribute Binding259

Setting Classes and Styles261
Using the Class Bindings261

Using the Style Bindings266

Updating the Data in the Application270

Summary273

Chapter 11:​ Using the Built-in Directives275
Preparing the Example Project276

Using the Built-in Directives278
Using the ngIf Directive279

Using the ngSwitch Directive281

Using the ngFor Directive284

Using the ngTemplateOutlet​ Directive294

Using Directives Without an HTML Element296

Understanding One-Way Data Binding Restrictions297
Using Idempotent Expressions297

Understanding the Expression Context300

Summary302

Chapter 12:​ Using Events and Forms303
Preparing the Example Project304
Importing the Forms Module304

Preparing the Component and Template305

Using the Event Binding306
Using Event Data310

Handling Events in the Component312

Using Template Reference Variables314

Using Two-Way Data Bindings315
Using the ngModel Directive317

Working with Forms319
Adding a Form to the Example Application319

Adding Form Data Validation322

Validating the Entire Form331

Completing the Form337

Summary339

Chapter 13:​ Creating Attribute Directives341
Preparing the Example Project342

Creating a Simple Attribute Directive344
Applying a Custom Directive345

Accessing Application Data in a Directive347
Reading Host Element Attributes347

Creating Data-Bound Input Properties350

Responding to Input Property Changes353

Creating Custom Events355
Binding to a Custom Event357

Creating Host Element Bindings358

Creating a Two-Way Binding on the Host Element360

Exporting a Directive for Use in a Template Variable364

Summary366

Chapter 14:​ Creating Structural Directives367
Preparing the Example Project368

Creating a Simple Structural Directive369
Implementing the Structural Directive Class371

Enabling the Structural Directive373

Using the Concise Structural Directive Syntax375

Creating Iterating Structural Directives376
Providing Additional Context Data379

Using the Concise Structure Syntax382

Dealing with Property-Level Data Changes383

Dealing with Collection-Level Data Changes384

Querying the Host Element Content395
Querying Multiple Content Children399

Receiving Query Change Notifications401

Summary403

Chapter 15:​ Understanding Components405
Preparing the Example Project406

Structuring an Application with Components407
Creating New Components408

Defining Templates413

Completing the Component Restructure424

Using Component Styles425
Defining External Component Styles427

Using Advanced Style Features428

Querying Template Content436

Summary438

Chapter 16:​ Using and Creating Pipes439
Preparing the Example Project440

Understanding Pipes444

Creating a Custom Pipe445
Registering a Custom Pipe446

Applying a Custom Pipe447

Combining Pipes449

Creating Impure Pipes449

Using the Built-in Pipes454
Formatting Numbers454

Formatting Currency Values458

Formatting Percentages461

Formatting Dates463

Changing String Case469

Serializing Data as JSON471

Slicing Data Arrays472

Formatting Key-Value Pairs474

Selecting Values475

Pluralizing Values477

Using the Async Pipe479

Summary482

Chapter 17:​ Using Services483
Preparing the Example Project484

Understanding the Object Distribution Problem485
Demonstrating the Problem485

Distributing Objects as Services Using Dependency Injection491

Declaring Dependencies in Other Building Blocks497

Understanding the Test Isolation Problem504
Isolating Components Using Services and Dependency Injection505

Completing the Adoption of Services508
Updating the Root Component and Template509

Updating the Child Components509

Summary511

Chapter 18:​ Using Service Providers513
Preparing the Example Project514

Using Service Providers516
Using the Class Provider519

Using the Value Provider528

Using the Factory Provider530

Using the Existing Service Provider533

Using Local Providers534
Understanding the Limitations of Single Service Objects534

Creating Local Providers in a Component536

Understanding the Provider Alternatives538

Controlling Dependency Resolution543

Summary545

Chapter 19:​ Using and Creating Modules547
Preparing the Example Project548

Understanding the Root Module550
Understanding the imports Property552

Understanding the declarations Property552

Understanding the providers Property553

Understanding the bootstrap Property553

Creating Feature Modules555
Creating a Model Module557

Creating a Utility Feature Module563

Creating a Feature Module with Components570

Summary575

Part III: Advanced Angular Features577
Chapter 20:​ Creating the Example Project579
Starting the Example Project579
Adding and Configuring the Bootstrap CSS Package579

Creating the Project Structure580

Creating the Model Module580
Creating the Product Data Type580

Creating the Data Source and Repository581

Completing the Model Module583

Creating the Messages Module583
Creating the Message Model and Service583

Creating the Component and Template584

Completing the Message Module585

Creating the Core Module585
Creating the Shared State Service585

Creating the Table Component586

Creating the Form Component588

Completing the Core Module590

Completing the Project591

Summary592

Chapter 21:​ Using the Forms API, Part 1593
Preparing for This Chapter594

Understanding the Reactive Forms API595

Rebuilding the Form Using the API596
Responding to Form Control Changes599

Managing Control State602

Managing Control Validation605

Adding Additional Controls610

Working with Multiple Form Controls612
Using a Form Group with a Form Element616

Accessing the Form Group from the Template618

Displaying Validation Messages with a Form Group622

Nesting Form Controls625

Summary631

Chapter 22:​ Using the Forms API, Part 2633
Preparing for This Chapter633

Creating Form Components Dynamically634
Using a Form Array635

Adding and Removing Form Controls641

Validating Dynamically Created Form Controls643

Filtering the FormArray Values644

Creating Custom Form Validation648
Creating a Directive for a Custom Validator650

Validating Across Multiple Fields654

Performing Validation Asynchronously660

Summary664

Chapter 23:​ Making HTTP Requests665
Preparing the Example Project666
Configuring the Model Feature Module667

Creating the Data File667

Running the Example Project668

Understanding RESTful Web Services669

Replacing the Static Data Source670
Creating the New Data Source Service670

Configuring the Data Source673

Using the REST Data Source673

Saving and Deleting Data675

Consolidating HTTP Requests678

Making Cross-Origin Requests680
Using JSONP Requests681

Configuring Request Headers683

Handling Errors685
Generating User-Ready Messages686

Handling the Errors688

Summary690

Chapter 24:​ Routing and Navigation:​ Part 1691
Preparing the Example Project692

Getting Started with Routing693
Creating a Routing Configuration694

Creating the Routing Component696

Updating the Root Module696

Completing the Configuration696

Adding Navigation Links698

Understanding the Effect of Routing700

Completing the Routing Implementation702
Handling Route Changes in Components702

Using Route Parameters705

Navigating in Code713

Receiving Navigation Events716

Removing the Event Bindings and Supporting Code719

Summary721

Chapter 25:​ Routing and Navigation:​ Part 2723
Preparing the Example Project723
Adding Components to the Project728

Using Wildcards and Redirections731
Using Wildcards in Routes731

Using Redirections in Routes734

Navigating Within a Component735
Responding to Ongoing Routing Changes736

Styling Links for Active Routes738

Fixing the All Button741

Creating Child Routes743
Creating the Child Route Outlet744

Accessing Parameters from Child Routes746

Summary750

Chapter 26:​ Routing and Navigation:​ Part 3751
Preparing the Example Project751

Guarding Routes752
Delaying Navigation with a Resolver753

Preventing Navigation with Guards760

Loading Feature Modules Dynamically773
Creating a Simple Feature Module773

Loading the Module Dynamically774

Guarding Dynamic Modules777

Targeting Named Outlets780
Creating Additional Outlet Elements781

Navigating When Using Multiple Outlets783

Summary785

Chapter 27:​ Using Animations787
Preparing the Example Project788
Disabling the HTTP Delay788

Simplifying the Table Template and Routing Configuration789

Getting Started with Angular Animation791
Enabling the Animation Module792

Creating the Animation792

Applying the Animation796

Testing the Animation Effect799

Understanding the Built-in Animation States801

Understanding Element Transitions802
Creating Transitions for the Built-in States802

Controlling Transition Animations804

Understanding Animation Style Groups809
Defining Common Styles in Reusable Groups810

Using Element Transformations811

Applying CSS Framework Styles813

Summary817

Chapter 28:​ Working with Component Libraries819
Preparing for This Chapter820
Installing the Component Library822

Adjusting the HTML File823

Running the Project824

Using the Library Components825
Using the Angular Button Directive825

Using the Angular Material Table829

Matching the Component Library Theme839
Creating the Custom Component839

Using the Angular Material Theme841

Applying the Ripple Effect846

Summary848

Chapter 29:​ Angular Unit Testing849
Preparing the Example Project850

Running a Simple Unit Test852

Working with Jasmine854

Testing an Angular Component855
Working with the TestBed Class856

Testing Data Bindings860

Testing a Component with an External Template862

Testing Component Events864

Testing Output Properties867

Testing Input Properties869

Testing an Angular Directive871

Summary873

Index875

About the Author

Adam Freeman[image:]

is an experienced IT professional who has held senior positions in a range of companies, most recently serving as chief technology officer and chief operating officer of a global bank. Now retired, he spends his time writing and long-distance running.

About the Technical Reviewer

Fabio Claudio Ferracchiatiis a senior consultant and a senior analyst/developer using Microsoft technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and international magazines and coauthored more than ten books on a variety of computer topics.

Part IGetting Ready

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_1

1. Getting Ready

Adam Freeman1
(1)London, UK

Angular taps into some of the best aspects of server-side development and uses them to enhance HTML in the browser, creating a foundation that makes building rich applications simpler and easier. Angular applications are built around a clear design pattern that emphasizes creating applications that are	Extendable: It is easy to figure out how even a complex Angular app works once you understand the basics—and that means you can easily enhance applications to create new and useful features for your users.

	Maintainable: Angular apps are easy to debug and fix, which means that long-term maintenance is simplified.

	Testable: Angular has good support for unit and end-to-end testing, meaning you can find and fix defects before your users do.

	Standardized: Angular builds on the innate capabilities of the web browser without getting in your way, allowing you to create standards-compliant web apps that take advantage of the latest HTML and features, as well as popular tools and frameworks.

Angular is an open-source JavaScript library that is sponsored and maintained by Google. It has been used in some of the largest and most complex web apps around. In this book, I show you everything you need to know to get the benefits of Angular in your projects.
This Book and the Angular Release Schedule
Google has adopted an aggressive release schedule for Angular. This means there is an ongoing stream of minor releases and a major release every six months. Minor releases should not break any existing features and should largely contain bug fixes. The major releases can contain substantial changes and may not offer backward compatibility.
It doesn’t seem fair or reasonable to ask readers to buy a new edition of this book every six months, especially since most Angular features are unlikely to change even in a major release. Instead, I am going to post updates following the major releases to the GitHub repository for this book, https://github.com/Apress/pro-angular-5ed.
This is an ongoing experiment for me (and for Apress), but the goal is to extend the life of this book by supplementing the examples it contains.
I am not making any promises about what the updates will be like, what form they will take, or how long I will produce them before folding them into a new edition of this book. Please keep an open mind and check the repository for this book when new Angular versions are released. If you have ideas about how the updates could be improved, then email me at adam@adam-freeman.com and let me know.

Understanding Where Angular Excels
Angular isn’t the solution to every problem, and it is important to know when you should use Angular and when you should seek an alternative. Angular delivers the kind of functionality that used to be available only to server-side developers, but delivers it entirely in the browser. This means Angular has a lot of work to do each time an HTML document to which Angular has been applied is loaded—the HTML elements have to be compiled, the data bindings have to be evaluated, components and other building blocks need to be executed, and so on.
This kind of work takes time to perform, and the amount of time depends on the complexity of the HTML document, on the associated JavaScript code, and—critically—on the quality of the browser and the processing capability of the device. You won’t notice any delay when using the latest browsers on a capable desktop machine, but old browsers on underpowered smartphones can slow down the initial setup of an Angular app.
The goal is to perform this setup as infrequently as possible and deliver as much of the app as possible to the user when it is performed. This means giving careful thought to the kind of web application you build. In broad terms, there are two kinds of web applications: round-trip and single-page.
Understanding Round-Trip and Single-Page Applications
For a long time, web apps were developed to follow a round-trip model. The browser requests an initial HTML document from the server. User interactions—such as clicking a link or submitting a form—led the browser to request and receive a completely new HTML document. In this kind of application, the browser is essentially a rending engine for HTML content, and all of the application logic and data resides on the server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML documents dynamically.
Some current web development is still for round-trip applications, not least because they require little from the browser, which ensures the widest possible client support. But there are some drawbacks to round-trip applications: they make the user wait while the next HTML document is requested and loaded, they require a large server-side infrastructure to process all the requests and manage all the application state, and they require more bandwidth because each HTML document has to be self-contained (leading to a lot of the same content being included in each response from the server).
Single-page applications take a different approach. An initial HTML document is sent to the browser, along with JavaScript code, but user interactions lead to Ajax requests for small fragments of HTML or data inserted into the existing set of elements being displayed to the user. The initial HTML document is never reloaded or replaced, and the user can continue to interact with the existing HTML while the Ajax requests are being performed asynchronously, even if that just means seeing a “data loading” message. The single-page application model is perfect for Angular.
Tip
Another phrase you may encounter is progressive web applications (PWAs). Progressive applications continue to work even when disconnected from the network and have access to features such as push notifications. PWAs are not specific to Angular, but I demonstrate how to use simple PWA features in Chapter 8.

Comparing Angular to React and Vue.js
There are two main competitors to Angular: React and Vue.js. There are some low-level differences between them, but, for the most part, all of these frameworks are excellent, all of them work in similar ways, and all of them can be used to create rich and fluid client-side applications.
The main difference between these frameworks is the developer experience. Angular requires you to use TypeScript to be effective, for example. If you are used to using a language like C# or Java, then TypeScript will be familiar, and it addresses some of the oddities of the JavaScript language. Vue.js and React don’t require TypeScript (although it is supported by both frameworks) but lean toward mixing HTML, JavaScript, and CSS content together in a single file, which not everyone likes.
My advice is simple: pick the framework that you like the look of the most and switch to one of the others if you don’t get on with it. That may seem like an unscientific approach, but there isn’t a bad choice to make, and you will find that many of the core concepts carry over between frameworks even if you switch.
What Do You Need to Know?
Before reading this book, you should be familiar with the basics of web development, have an understanding of how HTML and CSS work, and have a working knowledge of JavaScript. If you are a little hazy on some of these details, I provide primers for the HTML and TypeScript/JavaScript I use in this book in Chapters 3 and 4. You won’t find a comprehensive reference for HTML elements and CSS properties, though, because there just isn’t the space in a book about Angular to cover all of HTML.
What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.
Part 1: Getting Started with Angular
Part 1 of this book provides the information you need to get ready for the rest of the book. It includes this chapter and primers/refreshers for key technologies, including HTML and TypeScript, which is a superset of JavaScript used in Angular development. I also show you how to build your first Angular application and take you through the process of building a more realistic application, called SportsStore.
Part 2: Angular in Detail
Part 2 of this book takes you through the building blocks provided by Angular for creating applications, working through each of them in turn. Angular includes a lot of built-in functionality, which I describe in-depth, and provides endless customization options, all of which I demonstrate.
Part 3: Advanced Angular Features
Part 3 of this book explains how advanced features can be used to create more complex and scalable applications. I demonstrate how to make asynchronous HTTP requests in an Angular application, how to use URL routing to navigate around an application, and how to animate HTML elements when the state of the application changes.
What Doesn’t This Book Cover?
This book is for experienced web developers who are new to Angular. It doesn’t explain the basics of web applications or programming, although there are primer chapters on HTML and TypeScript/JavaScript. I don’t describe server-side development in any detail—see my other books if you want to create the back-end services required to support Angular applications.
And, as much as I like to dive into the detail in my books, not every Angular feature is useful in mainstream development, and I have to keep my books to a printable size. When I decide to omit a feature, it is because I don’t think it is important or because the same outcome can be achieved using a technique that I do cover.
What Software Do I Need for Angular Development?
You will need a code editor and the tools described in Chapter 2. Everything required for Angular development is available without charge and can be used on Windows, macOS, and Linux.
How Do I Set Up the Development Environment?
Chapter 2 introduces Angular by creating a simple application, and, as part of that process, I tell you how to create a development environment for working with Angular.
What If I Have Problems Following the Examples?
The first thing to do is to go back to the start of the chapter and begin again. Most problems are caused by missing a step or not fully following a listing. Pay close attention to the emphasis in code listings, which highlight the changes that are required.
Next, check the errata/corrections list, which is included in the book’s GitHub repository. Technical books are complex, and mistakes are inevitable, despite my best efforts and those of my editors. Check the errata list for the list of known errors and instructions to resolve them.
If you still have problems, then download the project for the chapter you are reading from the book’s GitHub repository, https://github.com/Apress/pro-angular-5ed, and compare it to your project. I created the code for the GitHub repository by working through each chapter, so you should have the same files with the same contents in your project.
If you still can’t get the examples working, then you can contact me at adam@adam-freeman.com for help. Please make it clear in your email which book you are reading and which chapter/example is causing the problem. Remember that I get a lot of emails and that I may not respond immediately.
What If I Find an Error in the Book?
You can report errors to me by email at adam@adam-freeman.com, although I ask that you first check the errata/corrections list for this book, which you can find in the book’s GitHub repository at https://github.com/Apress/pro-angular-5ed, in case it has already been reported.
I add errors that are likely to confuse readers, especially problems with example code, to the errata/corrections file on the GitHub repository, with a grateful acknowledgment to the first reader who reported it. I keep a list of less serious issues, which usually means errors in the text surrounding examples, and I use them when I write a new edition.
Errata Bounty
Apress has agreed to give a free ebook to readers who are the first to report errors that make it onto the GitHub errata list for this book. Readers can select any Apress ebook available through Springerlink.​com, not just my books.
This is an entirely discretional and experimental program. Discretional means that only I decide which errors are listed in the errata and which reader is the first to make a report. Experimental means Apress may decide not to give away any more books at any time for any reason. There are no appeals, and this is not a promise or a contract or any kind of formal offer or competition. Put another way, this is a nice and informal way to say thank-you and to encourage readers to report mistakes that I have missed when writing this book.

Are There Lots of Examples?
There are loads of examples. The best way to learn Angular is by example, and I have packed as many of them as I can into this book. To maximize the number of examples in this book, I have adopted a simple convention to avoid listing the contents of files over and over. The first time I use a file in a chapter, I’ll list the complete contents, just as I have in Listing 1-1. I include the name of the file in the listing’s header and the folder in which you should create it. When I make changes to the code, I show the altered statements in bold. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 1-1A Complete Example Document

This listing is taken from Chapter 5. Don’t worry about what it does; just be aware that this is a complete listing, which shows the entire contents of the file.
When I make a series of changes to the same file or when I make a small change to a large file, I show you just the elements that change, to create a partial listing. You can spot a partial listing because it starts and ends with an ellipsis (...), as shown in Listing 1-2. ...
class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;

 setInterval(() => {
 this.odd = !this.odd; this.even = !this.even;
 this.$implicit.price++;
 }, 2000);
 }
}
...

Listing 1-2A Partial Listing

Listing 1-2 is from a later chapter. You can see that just a section of the file is shown and that I have highlighted several statements. This is how I draw your attention to the part of the listing that has changed or emphasize the part of an example that shows the feature or technique I am describing. In some cases, I need to make changes to different parts of the same file, in which case I omit some elements or statements for brevity, as shown in Listing 1-3. import { Component, Input } from "@angular/core";
import { NgForm, FormControl, Validators } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 });

 // ...constructor and methods omitted for brevity...
}

Listing 1-3Omitting Statements for Brevity

This convention lets me pack in more examples, but it does mean it can be hard to locate a specific technique. To this end, the chapters in which I describe Angular features in Parts 2 and 3 begin with a summary table that describes the techniques contained in the chapter and the listings that demonstrate how they are used.
Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/Apress/pro-angular-5ed.
How Do I Contact the Author?
You can email me at adam@adam-freeman.com. It has been a few years since I first published an email address in my books. I wasn’t entirely sure that it was a good idea, but I am glad that I did it. I have received emails from around the world, from readers working or studying in every industry, and—for the most part, anyway—the emails are positive, polite, and a pleasure to receive.
I try to reply promptly, but I get many emails and sometimes I get a backlog, especially when I have my head down trying to finish writing a book. I always try to help readers who are stuck with an example in the book, although I ask that you follow the steps described earlier in this chapter before contacting me.
While I welcome reader emails, there are some common questions for which the answers will always be “no.” I am afraid that I won’t write the code for your new startup, help you with your college assignment, get involved in your development team’s design dispute, or teach you how to program.
What If I Really Enjoyed This Book?
Please email me at adam@adam-freeman.com and let me know. It is always a delight to hear from a happy reader, and I appreciate the time it takes to send those emails. Writing these books can be difficult, and those emails provide essential motivation to persist at an activity that can sometimes feel impossible.
What If This Book Has Made Me Angry and I Want to Complain?
You can still email me at adam@adam-freeman.com, and I will still try to help you. Bear in mind that I can help only if you explain what the problem is and what you would like me to do about it. You should understand that sometimes the only outcome is to accept I am not the writer for you and that we will have closure only when you return this book and select another. I’ll give careful thought to whatever has upset you, but after 25 years of writing books, I have come to understand that not everyone enjoys reading the books I like to write.
Summary
In this chapter, I outlined the content and structure of this book. The best way to learn Angular development is by example, so in the next chapter, I jump right in and show you how to set up your development environment and use it to create your first Angular application.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_2

2. Jumping Right In

Adam Freeman1
(1)London, UK

The best way to get started with Angular is to dive in and create a web application. In this chapter, I show you how to set up your development environment and take you through the process of creating a basic application. In Chapters 5–8, I show you how to create a more complex and realistic Angular application, but for now, a simple example will suffice to demonstrate the major components of an Angular app and set the scene for the other chapters in this part of the book.
Don’t worry if you don’t follow everything that happens in this chapter. Angular has a steep learning curve, so the purpose of this chapter is just to introduce the basic flow of Angular development and give you a sense of how things fit together. It won’t all make sense right now, but by the time you have finished reading this book, you will understand every step I take in this chapter and much more besides.
Getting Ready
There is some preparation required for Angular development. In the sections that follow, I explain how to get set up and ready to create your first project. There is wide support for Angular in popular development tools, and you can pick your favorites.
Installing Node.js
Node.js is a JavaScript runtime for server-side applications and is used by most web application frameworks, including Angular.
The version of Node.js I have used in this book is 16.13.0, which is the current Long-Term Support (LTS) release at the time of writing. There may be a later version available by the time you read this, but you should stick to the 16.13.0 release for the examples in this book. A complete set of 16.13.0 releases, with installers for Windows and macOS and binary packages for other platforms, is available at https://nodejs.org/dist/v16.13.0.
Download and run the installer and ensure that the “npm package manager” option and the two Add to PATH options are selected, as shown in Figure 2-1.[image:]
Figure 2-1Installing Node.js

When the installation is complete, open a new command prompt and run the command shown in Listing 2-1.node -v

Listing 2-1Running Node.js

If the installation has gone as it should, then you will see the following version number displayed:v16.13.0

The Node.js installer includes the Node Package Manager (NPM), which is used to manage the packages in a project. Run the command shown in Listing 2-2 to ensure that NPM is working. npm -v

Listing 2-2Running NPM

If everything is working as it should, then you will see the following version number:8.1.0

Installing an Editor
Angular development can be done with any programmer’s editor, from which there is an endless number to choose. Some editors have enhanced support for working with Angular, including highlighting key terms and good tool integration.
When choosing an editor, one of the most important considerations is the ability to filter the content of the project so that you can focus on a subset of the files. There can be a lot of files in an Angular project, and many have similar names, so being able to find and edit the right file is essential. Editors make this possible in different ways, either by presenting a list of the files that are open for editing or by providing the ability to exclude files with specific extensions.
The examples in this book do not rely on any specific editor, and all the tools I use are run from the command line. If you don’t already have a preferred editor for web application development, then I recommend using Visual Studio Code, which is provided without charge by Microsoft and has excellent support for Angular development. You can download Visual Studio Code from https://code.visualstudio.com.
Installing the Angular Development Package
The Angular team provides a complete set of command-line tools that simplify Angular development. These tools are distributed in a package named @angular/cli. Run the command shown in Listing 2-3 to install the Angular development tools. npm install --global @angular/cli@13.0.3

Listing 2-3Installing the Angular Development Package

Notice that there are two hyphens before the global argument. If you are using Linux or macOS, you may need to use sudo, as shown in Listing 2-4.sudo npm install --global @angular/cli@13.0.3

Listing 2-4Using sudo to Install the Angular Development Package

Choosing a Browser
The final choice to make is the browser that you will use to check your work during development. All the current-generation browsers have good developer support and work well with Angular. I have used Google Chrome throughout this book, and this is the browser I recommend you use as well.
Creating an Angular Project
Angular development is done as part of a project, which contains all of the files required to build and execute an application, along with configuration files and static content (like HTML and CSS files). To create a new project, open a command prompt, navigate to a convenient location, and run the command shown in Listing 2-5. Pay close attention to the use of double and single hyphens when typing this command. ng new todo --routing false --style css --skip-git --skip-tests

Listing 2-5Creating a New Angular Project

The ng command is part of the @angular-cli package, and ng new sets up a new project. The arguments configure the project, selecting options that are suitable for a first project (the configuration options are described in Chapter 9). The process of creating a new project can take some time because there are a large number of other packages required, all of which must be downloaded the first time you run the ng new command.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Opening the Project for Editing
Once the ng new command has finished, use your preferred code editor to open the todo folder that has been created and that contains the new project. The todo folder contains configuration files for the tools that are used in Angular development (described in Chapter 9), but it is the src/app folder that contains the application’s code and content and is the folder in which most development is done. Figure 2-2 shows the initial content of the project folder as it appears in Visual Studio Code and highlights the src/app folder. You may see a slightly different view with other editors, some of which hide files and folders that are not often used directly during development, such as the node_modules folder, which contains the packages on which the Angular development tools rely.[image:]
Figure 2-2The initial contents of an Angular project

Starting the Angular Development Tools
The final part of the setup process is to start the development tools, which will compile the placeholder content added to the project by the ng new command. To start the Angular development tools, use a command prompt to run the command shown in Listing 2-6 in the todo folder. ng serve

Listing 2-6Starting the Angular Development Tools

This command starts the Angular development tools, which include a compiler and a web server that is used to test the Angular application in the browser. The development tools go through an initial startup process, which can take a moment to complete. During the startup process, you will see messages like these displayed by the ng serve command:Browser application bundle generation complete.
Initial Chunk Files | Names | Size
vendor.js | vendor | 1.83 MB
polyfills.js | polyfills | 339.11 kB
styles.css, styles.js | styles | 212.38 kB
main.js | main | 51.42 kB
runtime.js | runtime | 6.84 kB
 | Initial Total | 2.43 MB
Build at: 2021-11-25T17:35:50.484Z - Hash: 8c7aa6b9cef0e8e7 - Time: 13641ms
** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4200/ **
Compiled successfully.

Don’t worry if you don’t see the same output, just as long as you see the “compiled successfully” message at the end of the process. The integrated web server listens for requests on port 4200, so open a new browser window and request http://localhost:4200, which will show the placeholder content shown in Figure 2-3.[image:]
Figure 2-3The placeholder content in a new Angular project

Adding Features to the Application
Now that the development tools are running, I am going to work through the process of creating a simple Angular application that will manage a to-do list. The user will be able to see the list of to-do items, check off items that are complete, and create new items. To keep the application simple, I assume that there is only one user and that I don’t have to worry about preserving the state of the data in the application, which means that changes to the to-do list will be lost if the browser window is closed or reloaded. (Later examples, including the SportsStore application developed in Chapters 5–8, demonstrate persistent data storage.)
Creating a Data Model
The starting point for most applications is the data model, which describes the domain on which the application operates. Data models can be large and complex, but for my to-do application, I need to describe only two things: a to-do item and a list of those items.
Angular applications are written in TypeScript, which is a superset of JavaScript. I introduce TypeScript in Chapters 3 and 4, but its main advantage is that it supports static data types, which makes JavaScript development more familiar to C# and Java developers. (JavaScript has a prototype-based type system that many developers find confusing.) The ng new command includes the packages required to compile TypeScript code into pure JavaScript that can be executed by browsers.
To start the data model for the application, add a file called todoItem.ts to the todo/src/app folder with the contents shown in Listing 2-7. (TypeScript files have the .ts extension.)export class TodoItem {

 constructor(public task: string, public complete: boolean = false) {
 // no statements required
 }
}

Listing 2-7The Contents of the todoItem.ts File in the src/app Folder

The language features used in Listing 2-7 are a mix of standard JavaScript features and extra features that TypeScript provides. When the code is compiled, the TypeScript features are removed, and the result is JavaScript code that can be executed by browsers.
The export, class, and constructor keywords, for example, are standard JavaScript. Not all browsers support these features, so the build process for Angular applications can translate this type of feature into code that older browsers can understand, as I explain in Chapter 9.
The export keyword relates to JavaScript modules. When using modules, each TypeScript or JavaScript file is considered to be a self-contained unit of functionality, and the export keyword is used to identify data or types that you want to use elsewhere in the application. JavaScript modules are used to manage the dependencies that arise between files in a project. See Chapter 4 for details of how JavaScript modules are used.
The class keyword declares a class, and the constructor keyword denotes a class constructor. Unlike other languages, such as C#, JavaScript doesn’t use the name of the class to denote the constructor.
Tip
Don’t worry if you are not familiar with these JavaScript/TypeScript features. Chapters 3 and 4 provide a primer for the JavaScript and TypeScript features that are most used in Angular development.

Other features in Listing 2-7 are provided by TypeScript. One of the most jarring features when you first start using TypeScript is its concise constructor feature, although you will quickly come to rely on it. The TodoItem class defines a constructor that receives two parameters, named task and complete. The values of these parameters are assigned to public properties of the same names. If no value is provided for the complete parameter, then a default value of false will be used: ...
constructor(public task: string, public complete: boolean = false) {
...

The concise constructor avoids a block of boilerplate code that would otherwise be required to define properties and assign them values that are received by the constructor.
The concise constructor syntax is helpful, but the headline TypeScript feature is static types. Both of the constructor parameters in Listing 2-7 are annotated with a data type:...
constructor(public task: string, public complete: boolean = false) {
...

In standard JavaScript, values have types and can be assigned to any variable, which is a source of confusion to programmers who are used to variables that are defined to hold a specific data type. TypeScript adopts a more conventional approach to data types, and the TypeScript compiler will report an error if incompatible types are used. This may seem obvious if you are coming to Angular development from C# or Java, but it isn’t the way that JavaScript usually works.
Creating the To-Do List Class
To create a class that represents a list of to-do items, add a file named todoList.ts to the src/app folder with the contents shown in Listing 2-8.import { TodoItem } from "./todoItem";

export class TodoList {

 constructor(public user: string, private todoItems: TodoItem[] = []) {
 // no statements required
 }

 get items(): readonly TodoItem[] {
 return this.todoItems;
 }

 addItem(task: string) {
 this.todoItems.push(new TodoItem(task));
 }
}

Listing 2-8The Contents of the todoList.ts File in the src/app Folder

The import keyword declares a dependency on the TodoItem class. The TodoList class defines a constructor that receives the initial set of to-do items. I don’t want to give unrestricted access to the array of TodoItem objects, so I have defined a property named items that returns a read-only array, which is done using the readonly keyword. The TypeScript compiler will generate an error for any statement that attempts to modify the contents of the array, and if you are using an editor that has good TypeScript support, such as Visual Studio Code, then the autocomplete features of the editor won’t present methods and properties that would trigger a compiler error.
Displaying Data to the User
I need a way to display the data values in the model to the user. In Angular, this is done using a template, which is a fragment of HTML that contains expressions that are evaluated by Angular and that inserts the results into the content that is sent to the browser.
When the project was created, the ng new command added a template file named app.component.html to the src/app folder. Open this file for editing and replace the contents with those shown in Listing 2-9. <h3>
 {{ username }}'s To Do List
 <h6>{{ itemCount }} Items</h6>
</h3>

Listing 2-9Replacing the Contents of the app.component.html File in the src/app Folder

I’ll add features to the template shortly, but this is enough to get started. Displaying data in a template is done using double braces—{{ and }}—and Angular evaluates whatever you put between the double braces to get the value to display.
The {{ and }} characters are an example of a data binding, which means they create a relationship between the template and a data value. Data bindings are an important Angular feature, and you will see more of them in this chapter as I add features to the example application (and I describe them in detail in Part 2 of this book). In this case, the data bindings tell Angular to get the value of the username and itemCount properties and insert them into the content of the h3 and div elements.
As soon as you save the file, the Angular development tools will try to build the project. The compiler will generate the following errors:Error: src/app/app.component.html:2:6 - error TS2339: Property 'username' does not exist on type 'AppComponent'.
2 {{ username }}'s To Do List
       ~~~~~~~~
  src/app/app.component.ts:5:16
    5   templateUrl: './app.component.html',
                     ~~~~~~~~~~~~~~~~~~~~~~
 Error occurs in the template of component AppComponent.
Error: src/app/app.component.html:3:10 - error TS2339: Property 'itemCount' does not exist on type 'AppComponent'.
3 <h6>{{ itemCount }} Items</h6>
           ~~~~~~~~~
  src/app/app.component.ts:5:16
    5   templateUrl: './app.component.html',
                     ~~~~~~~~~~~~~~~~~~~~~~
 Error occurs in the template of component AppComponent.

These errors occur because the expressions within the data bindings rely on properties that don’t exist. I’ll fix this problem in the next section, but these errors show an important Angular characteristic, which is that templates are included in the compilation process and that any errors in the template are handled just like errors in regular code files.
Updating the Component
An Angular component is responsible for managing a template and providing it with the data and logic it needs. If that seems like a broad statement, it is because components are the part of an Angular application that does most of the heavy lifting. As a consequence, they can be used for all sorts of tasks.
In this case, I need a component to act as a bridge between the data model classes and the template so that I can create an instance of the TodoList class, populate it with some sample TodoItem objects, and, in doing so, provide the template with the username and itemCount properties it needs.
When the project was created, the ng new command added a file named app.component.ts to the src/app folder. As the name of the file suggests, this is a component. Apply the changes shown in Listing 2-10 to the app.component.ts file.import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items
 .filter(item => !item.complete).length;
 }
}

Listing 2-10Editing the Contents of the app.component.ts File in the src/app Folder

The code in the listing can be broken into three main regions, as described in the following sections.
Understanding the Imports
The import keyword declares dependencies on JavaScript modules, both within the project and in third-party packages. The import keyword is used three times in Listing 2-10:...
import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";
...

The first import statement is used in the listing to load the @angular/core module, which contains the key Angular functionality, including support for components. When working with modules, the import statement specifies the types that are imported between curly braces. In this case, the import statement is used to load the Component type from the module. The @angular/core module contains many classes that have been packaged together so that the browser can load them all in a single JavaScript file.
The other import statements are used to declare dependencies on the data model classes defined earlier. The target for this kind of import starts with ./, which indicates that the module is defined relative to the current file.
Notice that the import statements do not include file extensions. This is because the relationship between the target of an import statement and the file that is loaded by the browser is handled by the Angular build tools, which I explain in more detail in Chapter 9.
Understanding the Decorator
The oddest-looking part of the code in the listing is this:...
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
...

This is an example of a decorator, which provides metadata about a class. This is the @Component decorator, and, as its name suggests, it tells Angular that this is a component. The decorator provides configuration information through its properties. This @Component decorator specifies three properties: selector, templateUrl, and styleUrls.
The selector property specifies a CSS selector that matches the HTML element to which the component will be applied.
When you request http://localhost:4200, the browser receives the contents of the index.html file, which was added to the src folder when the project was created. This file contains a custom HTML element, like this:<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Todo</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-root></app-root>
</body>
</html>

The Angular development tools automatically add script elements to this HTML, which instruct the browser to request the JavaScript files that provide the Angular framework and the custom features defined in the project.
When the Angular code is executed, the value of the selector property defined by the component is used to locate the specified element in the HTML document, and it is this element into which the content generated by the application is introduced. I am skipping over some details for brevity in this chapter, but I return to this topic in more detail in later chapters. For now, it is enough to understand that the value of the component decorator’s selector property corresponds to the element in the HTML document.
The templateUrl property is to specify the component’s template, which is the app.component.html file for this component and is the file edited in Listing 2-9.
The styleUrls property specifies one or more CSS stylesheets that are used to style the elements produced by the component and its template. The setting in this component specifies a file named app.component.css, which I use later in the chapter to create CSS styles.
Understanding the Class
The final part of the listing defines a class that Angular can instantiate to create the component....
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items.filter(item => !item.complete).length;
 }
}
...

These statements define a class called AppComponent that has a private list property, which is assigned a TodoList object and is populated with an array of TodoItem objects. The AppComponent class defines read-only properties named username and itemCount that rely on the TodoList object to produce their values. The username property returns the value of the TodoList.user property, and the itemCount property uses the standard JavaScript array features to filter the Todoitem objects managed by the TodoList to select those that are incomplete and returns the number of matching objects it finds.
The value for the itemCount property is produced using a lambda function, also known as a fat arrow function, which is a more concise way of expressing a standard JavaScript function. The arrow in the lambda expressions is read as “goes to” such as “item goes to not item.complete.”
When you save the changes to the TypeScript file, the Angular development tools will build the project. There should be no errors this time because the component has defined the properties that the template requires. The browser window will be automatically reloaded, showing the output in Figure 2-4.[image:]
Figure 2-4Generating content in the example application

Styling the Application Content
To style the HTML content produced by the application, I am going to use the Angular Material package, which contains a set of components for use in Angular applications. Angular Material is as close as you can get to an “official” component library, and it has the advantage of being free to use, full of useful features, and well-integrated into the rest of the Angular framework.
Note
Angular Material isn’t the only component package available, and as you will see in later chapters, you don’t need to use third-party components at all if that is your preference.

Use Control+C to stop the Angular development tools, and use the command prompt to run the command shown in Listing 2-11 in the todo folder. ng add @angular/material@13.0.2 --defaults

Listing 2-11Adding the Angular Material Package

When prompted, press Y to install the package. Once the package has been installed, open the app.module.ts file in the src folder and make the changes shown in Listing 2-12. These changes declare dependencies on the Angular Material features that are used in this chapter. Confusingly, this file is also called a module, which means that there are two types of modules in an Angular project: JavaScript modules and Angular modules. This is an example of an Angular module, which is described in more detail in Chapter 9. For this chapter, it is enough to know that this is how features from the Angular Material package are included in the example project.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { FormsModule } from '@angular/forms'
import { MatButtonModule } from '@angular/material/button';
import { MatToolbarModule } from '@angular/material/toolbar';
import { MatIconModule } from '@angular/material/icon';
import { MatBadgeModule } from '@angular/material/badge';
import { MatTableModule } from '@angular/material/table';
import { MatCheckboxModule } from '@angular/material/checkbox';
import { MatFormFieldModule } from '@angular/material/form-field';
import { MatInputModule } from '@angular/material/input';
import { MatSlideToggleModule } from '@angular/material/slide-toggle';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule,
 MatButtonModule, MatToolbarModule, MatIconModule, MatBadgeModule,
 MatTableModule, MatCheckboxModule, MatFormFieldModule, MatInputModule,
 MatSlideToggleModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 2-12Adding Dependencies in the app.module.ts File in the src Folder

Each feature used by the application increases the amount of JavaScript code that must be downloaded by the browser, which is why features are enabled individually. You must pay close attention to the changes shown in Listing 2-12 because errors will prevent the example application from working as expected. If you encounter issues, then compare your file with the one included in the GitHub repository for this book, which can be found at https://github.com/Apress/pro-angular-5ed.
Applying Angular Material Components
The next step is to use components contained in the Angular Material package to style the content produced by the application. Components are applied using HTML elements and attributes in the template file, as shown in Listing 2-13.<mat-toolbar color="primary" class="mat-elevation-z3">
 {{ username }}'s To Do List
 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

Listing 2-13Applying Components in the app.components.html File in the src/app Folder

The new template content relies on features from the Angular Material package, each of which is applied differently. The first feature is the toolbar, which is applied using the mat-toolbar element, with the contents of the toolbar contained within the opening and closing tag:...
<mat-toolbar color="primary" class="mat-elevation-z3">
...
</mat-toolbar>
...

The color attribute is used to specify the color for the toolbar. The Angular Material package uses color themes, and the primary value used to configure the toolbar represents the predominant color of the theme.
The class that the mat-toolbar element has been assigned applies a style provided by the Angular Material package for creating a raised appearance for content:...
<mat-toolbar color="primary" class="mat-elevation-z3">
...

The other features are an icon and a badge, which are used together to indicate how many incomplete items are in the user’s to-do list. The icon is applied using the mat-icon element:...
<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
...

Icons are selected by specifying a name as the content of the mat-icon element. In this case, the checklist icon has been selected:...
<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
...

You can see the complete set of icons that are available by visiting https://fonts.google.com/icons?selected=Material+Icons. Icons are distributed using font files, and the command used to add Angular Material to the project in Listing 2-13 adds the links required for these files to the index.html file in the src folder.
The badge is applied as an option to the mat-icon element using the matBadge and matBadgeColor attributes:...
<mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
...

Badges are small circular status indicators, used to present the user with a number or characters, which makes them ideal for indicating how many to-do items there are. The value of the matBadge attribute sets the content of the badge, and the matBadgeColor attribute is used to set the color, which is accent in this case, denoting the theme color that is used for highlighting.
Save the changes to the template file and use the ng serve command to start the Angular development tools. Once the tool startup sequence is complete, use a browser to request http://localhost:4200, and you will see the content shown in Figure 2-5.[image:]
Figure 2-5Introducing Angular Material components

I improve the layout in the next section, but the addition of the Angular Material components is already an improvement over the raw HTML content. Notice that the template in Listing 2-13 still contains the same data bindings introduced earlier in the chapter, and they still work in the same way, providing access to the data provided by the component.
Defining the Spacer CSS Style
The Angular Material package is generally comprehensive, but one omission is spacers to help position content. I want to position the span element that contains the user’s name centrally within the title bar and have the icon and badge appear on the right. The first step is to create a CSS class that will configure HTML elements to grow to fill available space. As noted earlier, the decorator in the app.component.ts file contains a styleUrls property, which is used to select CSS files that are applied to the component’s template. Add the style shown in Listing 2-14 to the app.component.css file, which is the file specified by default when the project is created..spacer { flex: 1 1 auto }

Listing 2-14Adding a CSS Style in the app.component.css File in the src/app Folder

The addition in Listing 2-14 applies a style to any element assigned to a class named spacer. The style sets the flex property, which is part of the CSS flexible box feature, also known as flexbox. Flexbox is used to lay out HTML elements so they adapt to the space that is available and can respond to changes, such as when a browser window is resized or a device screen is rotated. The setting in Listing 2-14 configures an element to grow to fill any available space, and if there are multiple HTML elements in the same container assigned to the spacer class, then the available space will be allocated evenly between them. Add the elements shown in Listing 2-15 to the template file to introduce spacers into the layout.<mat-toolbar color="primary" class="mat-elevation-z3">

 {{ username }}'s To Do List

 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

Listing 2-15Adding Elements in the app.component.html File in the src/app Folder

When you save the file, the Angular development tools will detect the changes, recompile the project, and trigger a browser reload, producing the new layout shown in Figure 2-6.[image:]
Figure 2-6Adding spacers to the component layout

Displaying the List of To-Do Items
The next step is to display the to-do items. Listing 2-16 adds a property to the component that provides access to the items in the list.import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items.filter(item => !item.complete).length;
 }

 get items(): readonly TodoItem[] {
 return this.list.items;
 }
}

Listing 2-16Adding a Property in the app.component.ts File in the src/app Folder

To display details of each item to the user, I am going to use the Angular Material table component, as shown in Listing 2-17, which makes it easy to present the user with tabular data. (I explain how you can create your own equivalent to the table component in Part 2, using the same Angular features as the Angular Material package.)<mat-toolbar color="primary" class="mat-elevation-z3">

 {{ username }}'s To Do List

 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

<div class="tableContainer">
 <table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">

 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>#</th>
 <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>
 </ng-container>

 <ng-container matColumnDef="task">
 <th mat-header-cell *matHeaderCellDef>Task</th>
 <td mat-cell *matCellDef="let item"> {{ item.task }} </td>
 </ng-container>

 <ng-container matColumnDef="done">
 <th mat-header-cell *matHeaderCellDef>Done</th>
 <td mat-cell *matCellDef="let item"> {{ item.complete }} </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>
 </table>
</div>

Listing 2-17Adding a Table in the app.component.html File in the src/app Folder

The Angular Material table component is applied by adding the mat-table attribute to a standard HTML table element, and the data the table will contain is specified using the dataSource attribute:...
<table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">
...

The square brackets (the [and] characters) denote an attribute binding, which is a data binding that is used to set an element attribute, providing the Angular Material table component with the data that it will display. Angular defines a range of data bindings for use in different situations, and these are all described in detail in Part 2. This binding configures the table to display the values returned by the items property defined in Listing 2-16.
The table component is configured by defining the columns that will be displayed to the user. The ng-container element is used to group content together, and, in this case, it is used to group the elements that define a header and a content cell for a column, like this:...
<ng-container matColumnDef="task">
 <th mat-header-cell *matHeaderCellDef>Task</th>
 <td mat-cell *matCellDef="let item"> {{ item.task }} </td>
</ng-container>
...

This arrangement of elements defines the header and content table cells for a column named task. The header cell is defined using a th element to which the mat-header-cell and *matHeaderCellDef attributes have been applied:...
<th mat-header-cell *matHeaderCellDef>Task</th>
...

The effect of the mat-header-cell attribute is to configure the appearance of the header cell so that it matches the rest of the table. The effect of the *matHeaderCellDef attribute is to configure the behavior of the cell.
Note
When you start working with Angular, the template syntax can feel arcane and impenetrable, with endless combinations of curly braces, square braces, and asterisks. All of these features are described in later chapters, but for now, make sure you don’t omit the asterisks from the attributes when they are shown in the listings.

The content cell is defined using a td element to which the mat-cell and *matCellDef attributes are applied. The *matCellDef attribute is used to select the content that will be displayed in each table cell:...
<td mat-cell *matCellDef="let item"> {{ item.task }} </td>
...

I explain how this feature works in detail in Part 2, but for the moment, it is enough to know that the expression assigned to the *matCellDef attribute will be evaluated for each element in the data source, which will be assigned to a variable named item, and this variable is used in a data binding to populate the table cell. In this case, the value of the task property will be displayed in the table cell.
The Angular Material table component provides additional context data as it creates table rows, including the index of the data item for which the current row is being created and which can be accessed like this:...
<td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>
...

The expression used for this table cell assigns the index value provided by the table component to a variable named i, which is used in the data binding to produce a simple counter.
The columns for the table header and body are selected by applying attributes to tr elements, like this:...
<tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>
<tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>
...

These elements select the id, task, and done rows defined in Listing 2-17. It may seem odd that the columns are not applied automatically, but this approach is useful when you want to select different columns based on user input.
Defining Additional Styles
The final step of setting up the table is to define additional CSS styles, as shown in Listing 2-18..spacer { flex: 1 1 auto }
.tableContainer { padding: 15px }
.fullWidth { width: 100% }

Listing 2-18Defining Styles in the app.component.css File in the src/app Folder

The first new style selects any element that has been assigned to the tableContainer class and applies padding around it. There is a div element in Listing 2-18 that I added to this class and that contains the table element. The second new style sets elements assigned to the fullwidth class to occupy 100 percent of the width available to them.
Save the changes, and the Angular development tools will compile the project and reload the browser, producing the content shown in Figure 2-7.[image:]
Figure 2-7Displaying the list of to-do items

Creating a Two-Way Data Binding
At the moment, the template contains only one-way data bindings, which means they are used to display a data value but are unable to change it. Angular also supports two-way data bindings, which can be used to display a data value and change it, too. Two-way bindings are used with HTML form elements, and Listing 2-19 adds an Angular Material checkbox to the template that allows users to mark a to-do item as complete. <mat-toolbar color="primary" class="mat-elevation-z3">

 {{ username }}'s To Do List

 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

<div class="tableContainer">
 <table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">

 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>#</th>
 <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>
 </ng-container>

 <ng-container matColumnDef="task">
 <th mat-header-cell *matHeaderCellDef>Task</th>
 <td mat-cell *matCellDef="let item"> {{ item.task }} </td>
 </ng-container>

 <ng-container matColumnDef="done">
 <th mat-header-cell *matHeaderCellDef>Done</th>
 <td mat-cell *matCellDef="let item">
 <mat-checkbox [(ngModel)]="item.complete" color="primary">
 {{ item.complete }}
 </mat-checkbox>
 </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>
 </table>
</div>

Listing 2-19Adding a Checkbox in the app.component.html File in the src/app Folder

The mat-checkbox element applies the Angular Material checkbox component. The two-way binding is expressed using a special attribute:...
<mat-checkbox [(ngModel)]="item.complete" color="primary">
...

The combination of brackets is known as the banana-in-a-box because the round brackets look like a banana contained in a box made by the square brackets. These brackets denote a two-way data binding, and ngModel is an Angular feature and is used to set up two-way bindings on form elements, such as checkboxes.
Save the changes to the file, and the Angular development tools will recompile the project and reload the browser to display the content shown in Figure 2-8. The effect is that the complete property of each to-do item is used to set a checkbox when it is displayed to the user. The appropriate complete property will also be updated when the user toggles the checkbox.[image:]
Figure 2-8Using two-way bindings

I left the true/false values in the output to demonstrate an important aspect of how Angular deals with changes. Each time you toggle a checkbox, the corresponding text value changes and so does the counter displayed by the badge, as shown in Figure 2-9.[image:]
Figure 2-9Toggling a checkbox

This behavior reveals an important Angular feature: the data model is live. This means data bindings—even one-way data bindings—are updated when the data model is changed. This simplifies web application development because it means you don’t have to worry about ensuring that you display updates when the application state changes.
It can be easy to forget that underneath the templates and components and the live data model, Angular is using the browser’s JavaScript API to create and display regular HTML elements. Right-click one of the checkboxes in the browser window and select Inspect or Inspect Element from the pop-up menu (the exact menu item will depend on your chosen browser). The browser’s developer tools will open, and you can explore the HTML content displayed by the browser. You may have to dig around a little by expanding elements to see their contents, but you will see that the effect of applying an Angular Material checkbox in the template is a regular HTML checkbox, like this:...
<input type="checkbox" class="mat-checkbox-input cdk-visually-hidden"
 id="mat-checkbox-1-input" tabindex="0" aria-checked="false">
...

If you find yourself confused by the way an Angular application behaves, then a good place to start is to examine the elements displayed by the browser, which reveals the effects created by your templates and components. There are other diagnostic tools available, as I explain in Chapter 9, but this is a simple and effective way to understand what an application is doing.
Filtering Completed To-Do Items
The checkboxes allow the data model to be updated, and the next step is to remove to-do items once they have been marked as done. Listing 2-20 changes the component’s items property so that it filters out any items that have been completed.import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items.filter(item => !item.complete).length;
 }

 get items(): readonly TodoItem[] {
 return this.list.items.filter(item => !item.complete);
 }
}

Listing 2-20Filtering To-Do Items in the app.component.ts File in the src/app Folder

The filter method is a standard JavaScript array feature. This is the same expression I used previously in the itemCount property. I could rework this property to avoid duplication, but I will add support for choosing whether completed tasks should be shown later in the chapter, which will require the items and itemCount properties to process the list of to-do items differently.
Since the data model is live and changes are reflected in data bindings immediately, checking the checkbox for an item removes it from view, as shown in Figure 2-10.[image:]
Figure 2-10Filtering the to-do items

Adding To-Do Items
A to-do application isn’t much use without the ability to add new items to the list. Listing 2-21 uses Angular Material components to present the user with an input element, into which a task description can be entered, and with a button that will use the description to create a new to-do item.<mat-toolbar color="primary" class="mat-elevation-z3">

 {{ username }}'s To Do List

 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

<div class="inputContainer">
 <mat-form-field class="fullWidth">
 <mat-label style="padding-left: 5px;">New To Do</mat-label>
 <input matInput placeholder="Enter to-do description" #todoText>
 <button matSuffix mat-raised-button color="accent" class="addButton"
 (click)="addItem(todoText.value); todoText.value = ''">
 Add
 </button>
 </mat-form-field>
</div>

<div class="tableContainer">
 <table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">

 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>#</th>
 <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>
 </ng-container>

 <ng-container matColumnDef="task">
 <th mat-header-cell *matHeaderCellDef>Task</th>
 <td mat-cell *matCellDef="let item"> {{ item.task }} </td>
 </ng-container>

 <ng-container matColumnDef="done">
 <th mat-header-cell *matHeaderCellDef>Done</th>
 <td mat-cell *matCellDef="let item">
 <mat-checkbox [(ngModel)]="item.complete" color="primary">
 {{ item.complete }}
 </mat-checkbox>
 </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>
 </table>
</div>

Listing 2-21Adding Elements in the app.component.html File in the src/app Folder

The new elements display an input element and a button element. The mat-form-field element and the mat* attributes on the other elements configure the Angular Material styling.
The input element has an attribute whose name starts with the # character, which is used to define a variable to refer to the element in the template’s data bindings: ...
<input matInput placeholder="Enter to-do description" #todoText>
...

The name of the variable is todoText, and it is used by the binding that has been applied to the button element....
<button matSuffix mat-raised-button color="accent" class="addButton"
 (click)="addItem(todoText.value); todoText.value = ''">
...

This is an example of an event binding, and it tells Angular to invoke a component method called addItem, using the value property of the input element as the method argument, and then to clear the input element by setting its value property to the empty string.
Custom CSS styles are required to manage the layout of the new elements, as shown in Listing 2-22..spacer { flex: 1 1 auto }
.tableContainer { padding: 15px }
.fullWidth { width: 100% }
.inputContainer { margin: 15px 15px 5px }
.addButton { margin: 5px }

Listing 2-22Defining Styles in the app.component.css File in the src/app Folder

Listing 2-23 adds the method called by the event binding to the component.
Tip
Don’t worry about telling the bindings apart for now. I explain the different types of binding that Angular supports in Part 2 and the meaning of the different types of brackets or parentheses that each requires. They are not as complicated as they first appear, especially once you have seen how they fit into the rest of the Angular framework.

import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items.filter(item => !item.complete).length;
 }

 get items(): readonly TodoItem[] {
 return this.list.items.filter(item => !item.complete);
 }

 addItem(newItem: string) {
 if (newItem != "") {
 this.list.addItem(newItem);
 }
 }
}

Listing 2-23Adding a Method in the app.component.ts File in the src/app Folder

The addItem method receives the text sent by the event binding in the template and uses it to add a new item to the to-do list. The result of these changes is that you can create new to-do items by entering text in the input element and clicking the Add button, as shown in Figure 2-11.[image:]
Figure 2-11Creating a to-do item

Finishing Up
The basic features are in place, and now it is time to wrap up the project. In Listing 2-24, I removed the true/false text from the Done column in the table from the template and added an option to show completed tasks.<mat-toolbar color="primary" class="mat-elevation-z3">

 {{ username }}'s To Do List

 <mat-icon matBadge="{{ itemCount }}" matBadgeColor="accent">checklist</mat-icon>
</mat-toolbar>

<div class="inputContainer">
 <mat-form-field class="fullWidth">
 <mat-label style="padding-left: 5px;">New To Do</mat-label>
 <input matInput placeholder="Enter to-do description" #todoText>
 <button matSuffix mat-raised-button color="accent" class="addButton"
 (click)="addItem(todoText.value); todoText.value = ''">
 Add
 </button>
 </mat-form-field>
</div>

<div class="tableContainer">
 <table mat-table [dataSource]="items" class="mat-elevation-z3 fullWidth">

 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>#</th>
 <td mat-cell *matCellDef="let i = index"> {{ i + 1 }} </td>
 </ng-container>

 <ng-container matColumnDef="task">
 <th mat-header-cell *matHeaderCellDef>Task</th>
 <td mat-cell *matCellDef="let item"> {{ item.task }} </td>
 </ng-container>

 <ng-container matColumnDef="done">
 <th mat-header-cell *matHeaderCellDef>Done</th>
 <td mat-cell *matCellDef="let item">
 <mat-checkbox [(ngModel)]="item.complete" color="primary">
 <!-- {{ item.complete }} -->
 </mat-checkbox>
 </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="['id', 'task', 'done']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['id', 'task', 'done'];"></tr>
 </table>
</div>

<div class="toggleContainer">

 <mat-slide-toggle [(ngModel)]="showComplete">
 Show Completed Items
 </mat-slide-toggle>

</div>

Listing 2-24Modifying the Template in the app.component.html File in the src/app Folder

The new elements present a toggle switch that has a two-way data binding for a property named showComplete. Listing 2-25 adds the definition for the showComplete property to the component and uses its value to determine whether completed tasks are displayed to the user.import { Component } from '@angular/core';
import { TodoList } from "./todoList";
import { TodoItem } from "./todoItem";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 private list = new TodoList("Bob", [
 new TodoItem("Go for run", true),
 new TodoItem("Get flowers"),
 new TodoItem("Collect tickets"),
]);

 get username(): string {
 return this.list.user;
 }

 get itemCount(): number {
 return this.list.items.filter(item => !item.complete).length;
 }

 get items(): readonly TodoItem[] {
 return this.list.items.filter(item => this.showComplete || !item.complete);
 }

 addItem(newItem: string) {
 if (newItem != "") {
 this.list.addItem(newItem);
 }
 }

 showComplete: boolean = false;
}

Listing 2-25Showing Completed Tasks in the app.component.ts File in the src/app Folder

Additional CSS styles are required to lay out the toggle switch, as shown in Listing 2-26..spacer { flex: 1 1 auto }
.tableContainer { padding: 15px }
.fullWidth { width: 100% }
.inputContainer { margin: 15px 15px 5px }
.addButton { margin: 5px }
.toggleContainer { margin: 15px; display: flex }

Listing 2-26Adding Styles in the app.component.css File in the src/app Folder

The result is that the user can decide whether to see completed tasks, as shown in Figure 2-12.[image:]
Figure 2-12Showing completed tasks

Summary
In this chapter, I showed you how to create your first simple Angular app, which lets the user create new to-do items and mark existing items as complete. Don’t worry if not everything in this chapter makes sense. What’s important to understand at this stage is the general shape of an Angular application, which is built around a data model, components, and templates. If you keep these three key building blocks in mind and remember that the result is standard HTML elements, then you will have a solid foundation for everything that follows. In the next chapter, I put Angular in context and describe the structure of this book.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_3

3. Primer, Part 1

Adam Freeman1
(1)London, UK

Developers come to the world of web app development via many paths and are not always grounded in the basic technologies that web apps rely on. In this chapter, I provide a brief overview of HTML, introduce the basics of JavaScript and TypeScript, and give you the foundation you need to understand the examples in the rest of the book, continuing with more advanced features in Chapter 4. If you are already familiar with HTML and TypeScript, you can jump right to Chapter 5, where I use Angular to create a more complex and realistic application.
Preparing the Example Project
To create the example project for this chapter, open a new command prompt, navigate to a convenient location, and run the command shown in Listing 3-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

ng new Primer --routing false --style css --skip-git --skip-tests

Listing 3-1Creating the Example Project

This command creates a project called Primer that is set up for Angular development. I don’t do any Angular development in this chapter, but I am going to use the Angular development tools as a convenient way to demonstrate different HTML, JavaScript, and TypeScript features.
Next, run the command shown in Listing 3-2 in the Primer folder to add the Bootstrap CSS package to the project. This is the package that I use to manage the appearance of content throughout this book.npm install bootstrap@5.1.3

Listing 3-2Installing the Bootstrap CSS Package

Run the command shown in Listing 3-3 to integrate Bootstrap into the application, taking care to enter the command as it is shown, without any extra spaces or quotes.ng config projects.example.architect.build.options.styles `
'[""src/styles.css"",
""node_modules/bootstrap/dist/css/bootstrap.min.css""]'

Listing 3-3Changing the Application Configuration

If you are using Windows, then use a PowerShell prompt to run the command shown in Listing 3-4 in the example folder.ng config projects.Primer.architect.build.options.styles `
'[""src/styles.css"",
""node_modules/bootstrap/dist/css/bootstrap.min.css""]'

Listing 3-4Changing the Application Configuration Using PowerShell

Run the command shown in Listing 3-5 in the Primer folder to start the Angular development compiler and HTTP server.ng serve --open

Listing 3-5Starting the Development Tools

After an initial build process, the Angular tools will open a browser window, which displays placeholder content added to the project when it was created, as shown in Figure 3-1.[image:]
Figure 3-1Running the example application

Understanding HTML
Use your code editor to open the Primer folder and replace the contents of index.html in the src folder with the content shown in Listing 3-6.<!DOCTYPE html>
<html>
<head>
 <title>ToDo</title>
 <meta charset="utf-8" />
</head>
<body class="m-1">
 <h3 class="bg-primary text-white p-3">Adam's To Do List</h3>
 <div class="my-1">
 <input class="form-control" />
 <button class="btn btn-primary mt-1">Add</button>
 </div>
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
 </thead>
 <tbody>
 <tr><td>Buy Flowers</td><td>No</td></tr>
 <tr><td>Get Shoes</td><td>No</td></tr>
 <tr><td>Collect Tickets</td><td>Yes</td></tr>
 <tr><td>Call Joe</td><td>No</td></tr>
 </tbody>
 </table>
</body>
</html>

Listing 3-6Replacing the Contents of the index.html File in the src Folder

Reload the browser and you will see the content shown in Figure 3-2. You will see some errors in the browser’s JavaScript console if you have it open, but these can be ignored and will be resolved later in the chapter.[image:]
Figure 3-2Understanding HTML

At the heart of HTML is the element, which tells the browser what kind of content each part of an HTML document represents. Here is an element from the example HTML document: ...
<td>Buy Flowers</td>
...

As illustrated in Figure 3-3, this element has three parts: the start tag, the end tag, and the content.[image:]
Figure 3-3The anatomy of a simple HTML element

The name of this element (also referred to as the tag name or just the tag) is td, and it tells the browser that the content between the tags should be treated as a table cell. You start an element by placing the tag name in angle brackets (the < and > characters) and end an element by similarly using the tag, except that you also add a / character after the left-angle bracket (<). Whatever appears between the tags is the element’s content, which can be text (such as Buy Flowers in this case) or other HTML elements.
Understanding Void Elements
The HTML specification includes elements that are not permitted to contain content. These are called void or self-closing elements, and they are written without a separate end tag, like this:...
<input />
...

A void element is defined in a single tag, and you add a / character before the last angle bracket (the > character). The input element is the most used void element, and its purpose is to allow the user to provide input, through a text field, radio button, or checkbox. You will see lots of examples of working with this element in later chapters.
Understanding Attributes
You can provide additional information to the browser by adding attributes to your elements. Here is an element with an attribute from the example document:...
<meta charset="utf-8" />
...

This is a meta element, and it describes the HTML document. There is one attribute, which I have emphasized so it is easier to see. Attributes are always defined as part of the start tag, and these attributes have a name and a value.
The name of the attribute in this example is charset. For the meta element, the charset attribute specifies the character encoding, which is UTF-8 in this case.
Applying Attributes Without Values
Not all attributes are applied with a value; just adding them to an element tells the browser that you want a certain kind of behavior. Here is an example of an element with such an attribute (not from the example document; I just made up this example element):...
<input class="form-control" required />
...

This element has two attributes. The first is class, which is assigned a value just like the previous example. The other attribute is just the word required. This is an example of an attribute that doesn’t need a value.
Quoting Literal Values in Attributes
Angular relies on HTML element attributes to apply a lot of its functionality. Most of the time, the values of attributes are evaluated as JavaScript expressions, such as with this element, taken from Chapter 2:...
<td [ngSwitch]="item.complete">
...

The attribute applied to the td element tells Angular to read the value of a property called complete on an object that has been assigned to a variable called item. There will be occasions when you need to provide a specific value rather than have Angular read a value from the data model, and this requires additional quoting to tell Angular that it is dealing with a literal value, like this:...
<td [ngSwitch]="'Apples'">
...

The attribute value contains the string Apples, which is quoted in both single and double quotes. When Angular evaluates the attribute value, it will see the single quotes and process the value as a literal string.
Understanding Element Content
Elements can contain text, but they can also contain other elements, like this:...
<thead>
 <tr>
 <th>Description</th>
 <th>Done</th>
 </tr>
</thead>
...

The elements in an HTML document form a hierarchy. The html element contains the body element, which contains content elements, each of which can contain other elements, and so on. In the listing, the thead element contains tr elements that, in turn, contain th elements. Arranging elements is a key concept in HTML because it imparts the significance of the outer element to those contained within.
Understanding the Document Structure
There are some key elements that define the basic structure of an HTML document: the DOCTYPE, html, head, and body elements. Here is the relationship between these elements with the rest of the content removed:<!DOCTYPE html>
<html>
<head>
 ...head content...
</head>
<body>
 ...body content...
</body>
</html>

Each of these elements has a specific role to play in an HTML document. The DOCTYPE element tells the browser that this is an HTML document and, more specifically, that this is an HTML5 document. Earlier versions of HTML required additional information. For example, here is the DOCTYPE element for an HTML4 document:...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
...

The html element denotes the region of the document that contains the HTML content. This element always contains the other two key structural elements: head and body. As I explained at the start of the chapter, I am not going to cover the individual HTML elements. There are too many of them, and describing HTML5 completely took me more than 1,000 pages in my HTML book. That said, Table 3-1 provides brief descriptions of the elements I used in the index.html file in Listing 3-2 to help you understand how elements tell the browser what kind of content they represent.
Understanding the Document Object Model
When the browser loads and processes an HTML document, it creates the Document Object Model (DOM). The DOM is a model in which JavaScript objects are used to represent each element in the document, and the DOM is the mechanism by which you can programmatically engage with the content of an HTML document.
You rarely work directly with the DOM in Angular, but it is important to understand that the browser maintains a live model of the HTML document represented by JavaScript objects. When Angular modifies these objects, the browser updates the content it displays to reflect the modifications. This is one of the key foundations of web applications. If we were not able to modify the DOM, we would not be able to create client-side web apps.

Table 3-1HTML Elements Used in the Example Document

	Element
	Description

	DOCTYPE
	Indicates the type of content in the document

	body
	Denotes the region of the document that contains content elements

	button
	Denotes a button; often used to submit a form to the server

	div
	A generic element; often used to add structure to a document for presentation purposes

	h3
	Denotes a header

	head
	Denotes the region of the document that contains metadata

	html
	Denotes the region of the document that contains HTML (which is usually the entire document)

	input
	Denotes a field used to gather a single data item from the user

	link
	Imports content into the HTML document

	meta
	Provides descriptive data about the document, such as the character encoding

	table
	Denotes a table, used to organize content into rows and columns

	tbody
	Denotes the body of the table (as opposed to the header or footer)

	td
	Denotes a content cell in a table row

	th
	Denotes a header cell in a table row

	thead
	Denotes the header of a table

	title
	Denotes the title of the document; used by the browser to set the title of the window or tab

	tr
	Denotes a row in a table

Understanding CSS and the Bootstrap Framework
HTML elements tell the browser what kind of content they represent, but they don’t provide any information about how that content should be displayed. The information about how to display elements is provided using Cascading Style Sheets (CSS). CSS consists of properties that can be used to configure every aspect of an element’s appearance and selectors that allow those properties to be applied.
CSS is flexible and powerful, but it requires time and close attention to detail to get good, consistent results, especially as some legacy browsers implement features inconsistently. CSS frameworks provide a set of styles that can be easily applied to produce consistent effects throughout a project.
Throughout this book, I use the Bootstrap CSS framework, which consists of CSS classes that can be applied to elements to style them consistently, and JavaScript code that performs additional enhancements. I use the Bootstrap CSS styles in this book because they let me style my examples without having to define custom styles in each chapter. I don’t use the Bootstrap JavaScript features at all in this book since the interactive parts of the examples are provided using Angular.
I don’t go into detail about Bootstrap because it isn’t the topic of this book, but you will see that many of the HTML elements used in examples throughout this book are assigned to classes like this:...
<h3 class="bg-primary text-white p-3">Adam's To Do List</h3>
...

The bg-primary, text-white, and p-3 classes all apply styles defined by the Bootstrap framework, setting the background color, text color, and padding, respectively. Unless noted in the description of an example, you can ignore the classes to which elements are assigned. See https://getbootstrap.com for details of the Bootstrap framework.
Understanding TypeScript/JavaScript
Angular applications are written in TypeScript, which is a superset of JavaScript that adds support for static types. In this section, I describe the relationship between TypeScript and JavaScript and introduce the basic features that you will need to understand to begin Angular development, continuing in Chapter 4. This is not a comprehensive guide to TypeScript or JavaScript, but it addresses the basics, and it will give you the knowledge you need to get started.
Understanding the TypeScript Workflow
Angular projects are set up with the TypeScript compiler, which is used to generate the JavaScript code that will be sent to the browser. There is no Angular development in this chapter, but I am going to take advantage of the TypeScript support to demonstrate important language features. The key file for this process is named main.ts and is found in the src folder. Replace the contents of the main.ts file with the statements shown in Listing 3-7.console.log("Hello");

Listing 3-7Replacing the Contents of the main.ts File in the src Folder

The basic JavaScript building block is the statement. Each statement represents a single command, and statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes your code easier to read and allows for multiple statements on a single line.
When you save the file, the change is detected, and the Angular tools rebuild the project, sending the results to the browser to execute. The statement in Listing 3-7 calls the console.log function, which writes a message to the browser’s JavaScript console. Open your browser’s F12 developer tools (which is typically done by pressing the F12 key) and select the Console; you will see the output shown in Figure 3-4.[image:]
Figure 3-4A message in the JavaScript console

The output from the statement in the main.ts file is displayed, along with additional messages generated by the automatic reloading process, which will automatically update the browser when a change is detected. Listing 3-8 adds another statement to the main.ts file.console.log("Hello");
console.log("Hello, World");

Listing 3-8Adding a Statement in the main.ts File in the src Folder

When you save the file, the project will be recompiled, and the browser will automatically reload, producing the following output in the JavaScript console:Hello
Hello, World

Understanding JavaScript vs. TypeScript
JavaScript has an unusual approach to data types, which means that, for example, any variable can be assigned any value, regardless of type. As a simple demonstration, I am going to work outside of the Angular tools for a moment. Open a new command prompt, navigate to a convenient location, and create a file named example.js with the content shown in Listing 3-9. It doesn’t matter where you put this file, as long as it isn’t in the Primer project folder. function myFunction(param) {
 let result = param + 100;
 console.log("My result: " + result);
}

Listing 3-9The Contents of the example.js File

This listing defines a JavaScript function, which receives a value as a parameter, uses the addition operator to add 10 to the value, and then writes out the result to the JavaScript console. Notice that there are no data types specified in this code. The function, which is named myFunction, can receive any data type, as shown in Listing 3-10.function myFunction(param) {
 let result = param + 100;
 console.log("My result: " + result);
}

myFunction(1);
myFunction("London");

Listing 3-10Invoking the Function in the example.js File

The first new statement invokes myFunction with a number, 10. The second new statement invokes myFunction with a string, London. Using the command prompt, execute the JavaScript code by running the command shown in Listing 3-11 in the folder in which you created the example.js file.node example.js

Listing 3-11Executing the JavaScript Code

This command will produce the following output as the JavaScript statements are executed:My result: 101
My result: London100

When the function received a number, the addition operator combined one number, 1, with another number, 100, and produced the result 101. But when the function received a string, the addition operator was asked to combine values with two different data types. It produced its result by converting the number 100 into a string and concatenating it with the parameter value to produce the result London100. JavaScript does provide the means to check whether a value is of a specific type, as shown in Listing 3-12.function myFunction(param) {
 if (typeof(param) == "number") {
 let result = param + 100;
 console.log("My result: " + result);
 } else {
 throw ("Expected a number: " + param)
 }
}

myFunction(1);
myFunction("London");

Listing 3-12Checking a Type in the example.js File

The typeof function is used to check that the parameter is a number value, and the throw keyword is used to create an error if it is not, which you can see by running the command in Listing 3-11 again, which produces the following output:My result: 101
C:\javascript.js:6
 throw ("Expected a number: " + param)
 ^
Expected a number: London
(Use `node --trace-uncaught ...` to show where the exception was thrown)

The behavior of the function has changed so that it only accepts numbers, but this change is enforced at runtime, and there is no way for a programmer calling the function to know what it expects without reading the source code.
Compiling the Function with TypeScript
TypeScript is a superset of JavaScript that requires types to be specified so they can be checked by a compiler. Returning to the Angular project, replace the contents of the main.ts file with those shown in Listing 3-13.function myFunction(param) {
 if (typeof(param) == "number") {
 let result = param + 100;
 console.log("My result: " + result);
 } else {
 throw ("Expected a number: " + param)
 }
}

myFunction(1);
myFunction("London");

Listing 3-13Replacing the Contents of the main.ts File in the src Folder

This is the same code that I used in the JavaScript file in the previous section. When the file is saved, the Angular development tools detect the change and rebuild the project, which includes using the TypeScript compiler to compile files with the .ts extension. The compiler reports the following error:Error: src/main.ts:1:21 - error TS7006: Parameter 'param' implicitly has an 'any' type.
1 function myFunction(param) {
                      ~~~~~



TypeScript is a layer on top of JavaScript but doesn’t change the way that JavaScript works. So, TypeScript functions are allowed to accept any data type because that is how JavaScript functions work. The difference is that TypeScript requires the developer to explicitly declare that is the behavior that is required, as shown in Listing 3-14. function myFunction(param: any) {
    if (typeof(param) == "number") {
        let result = param + 100;
        console.log("My result: " + result);
    } else {
        throw ("Expected a number: " + param)
    }
}

myFunction(1);
myFunction("London");

Listing 3-14Specifying the Function Parameter Type in the main.ts File in the src Folder




The type for the parameter is specified after the name, separated by a colon, which is known as a type annotation. The type specified in this listing is any, which indicates that the function can accept any data type. The behavior of the function hasn’t changed, but the any keyword satisfies the TypeScript compiler. When the file is saved, the code will be compiled, sent to the browser, and executed, producing the following output in the browser’s JavaScript console:My result: 101
Uncaught Expected a number: London



TypeScript features are erased during the compilation process so that pure JavaScript remains. Most F12 developer tools allow you to inspect the JavaScript code received by the browser, which reveals that the compilation process has removed the any keyword, as shown in Figure 3-5.[image: ]
Figure 3-5Examining the compiled code


Using a More Specific Type
TypeScript requires the any keyword to make sure that you really want the default JavaScript behavior. Most of the time, however, TypeScript code is written with more specific data types, as shown in Listing 3-15. function myFunction(param: number) {
    if (typeof(param) == "number") {
        let result = param + 100;
        console.log("My result: " + result);
    } else {
        throw ("Expected a number: " + param)
    }
}

myFunction(1);
myFunction("London");

Listing 3-15Specifying a Single Type in the main.ts File in the src Folder




JavaScript defines five core primitive types: string, number, boolean, undefined, and null. In Listing 3-15, I have changed the type annotation to replace any with the JavaScript primitive type number, which tells TypeScript that the function only expects to receive number values. 
Tip
There are also bigint and symbol primitive types, but I don’t use them in this book. The bigint type is used to represent numbers expressed in arbitrary precision format, and the symbol type is used to represent unique token values.

The TypeScript compiler will report the following error when the code is compiled:Error: src/main.ts:11:12 - error TS2345: Argument of type 'string' is not assignable to parameter of type 'number'.
11 myFunction("London");
              ~~~~~~~~


The TypeScript compiler has inspected the types of the arguments used to invoke the function and determined that one of them doesn’t match the number type annotation. The type annotation also allows me to simplify the function code, as shown in Listing 3-16, because I can rely on the TypeScript compiler to check types, rather than do so at runtime.function myFunction(param: number) {
 //if (typeof(param) == "number") {
 let result = param + 100;
 console.log("My result: " + result);
 // } else {
 // throw ("Expected a number: " + param)
 // }
}

myFunction(1);
//myFunction("London");

Listing 3-16Simplifying the Function in the main.ts File in the src Folder

When the file is saved and compiled, the following output will be displayed in the browser’s JavaScript console:My result: 101

Using a Type Union
TypeScript is a compile-time gatekeeper that helps you make your use of types explicit so that problems that would otherwise cause runtime errors can be detected. And, since TypeScript compiles into pure JavaScript and doesn’t change the way that JavaScript works, everything that can be done in JavaScript can be described in TypeScript. This is important because many developers assume that TypeScript is similar to languages such as C# or Java. That’s not the case—TypeScript is just a layer, albeit a useful one, that allows the programmer to annotate JavaScript code to explain to the compiler what types are expected in a given section of code so that the compiler can warn the programmer when different types are used.
As an example, earlier examples in this section have covered two extreme situations: that myFunction can accept all parameter types (denoted with the any keyword) and myFunction can accept only number parameters (denoted with the number type). But it is possible to write JavaScript functions so they can deal with combinations of types, as shown in Listing 3-17. function myFunction(param: number) {
 if (typeof(param) == "number" || typeof(param) == "string") {
 let result = param + 100;
 console.log("My result: " + result);
 } else {
 throw ("Expected a number or a string: " + param)
 }
}

myFunction(1);
//myFunction("London");

Listing 3-17Supporting Multiple Types in the main.ts File in the src Folder

There is now a mismatch between the code in the function and its parameter type annotation. To describe situations where multiple types are acceptable, TypeScript supports type unions, as shown in Listing 3-18.function myFunction(param: number | string) {
 if (typeof(param) == "number" || typeof(param) == "string") {
 let result = param + 100;
 console.log("My result: " + result);
 } else {
 throw ("Expected a number or a string: " + param)
 }
}

myFunction(1);
myFunction("London");

Listing 3-18Using a Type Union in the main.ts File in the src Folder

Type unions combine multiple types with the | character so that the type annotation number | string tells the compiler that myFunction will accept both number and string values. But the TypeScript compiler is clever, and it knows that JavaScript will do different things when it applies the addition operator to two number values or a string and a number, which means that this statement produces an ambiguous result:...
let result = param + 100;
...

TypeScript is designed to avoid ambiguity, and the compiler will generate the following error when compiling the code:...
Error: src/main.ts:3:22 - error TS2365: Operator '+' cannot be applied to types 'string | number' and 'number'.
...

Remember that the purpose of TypeScript is only to highlight potential problems, not to enforce any particular solution to a problem. There are several ways to resolve this ambiguity, but the one that I want to illustrate in this section is shown in Listing 3-19, which is to tell the TypeScript compiler that everything is going to be alright.function myFunction(param: number | string) {
 if (typeof(param) == "number" || typeof(param) == "string") {
 let result = (param as any) + 100;
 console.log("My result: " + result);
 } else {
 throw ("Expected a number or a string: " + param)
 }
}

myFunction(1);
myFunction("London");

Listing 3-19Addressing the Ambiguity in the main.ts File in the src Folder

The as keyword tells the TypeScript compiler that its knowledge of the param value is incomplete and that it should treat it as a type that I specify. In this case, I have specified the any type, which has the effect of telling the TypeScript that the ambiguity is expected and prevents it from producing an error. This code produces the following output in the browser’s JavaScript console:My result: 101
My result: London100

Using the as keyword should be done with caution because the TypeScript compiler is sophisticated and usually has a pretty solid understanding of how data types are being used. Equally, using the any type can be dangerous because it essentially stops the TypeScript compiler from checking types. And, it should go without saying, when you tell the TypeScript compiler that you know more about the code, then you need to make sure that you are right; otherwise, you will return to the runtime-error issue that led to the introduction of TypeScript in the first place.
Accessing Type Features
Unions are a useful way to describe combinations of types, but TypeScript will only allow the use of features that are shared by all of the types in the union. So, for example, for a value whose type is the union number | string, the TypeScript compiler will only allow the use of features that are defined by both the number and string types. To demonstrate, Listing 3-20 attempts to use the toFixed method, which is defined by the number type and which is not defined by the string type.function myFunction(param: number | string) {
 if (typeof(param) == "number" || typeof(param) == "string") {
 let fixed = param.toFixed(2);
 console.log("My result: " + fixed);
 } else {
 throw ("Expected a number or a string: " + param)
 }
}

myFunction(1);
myFunction("London");

Listing 3-20Accessing a Type Feature in the main.ts File in the src Folder

The TypeScript compiler is guarding against ambiguity again. It knows that the param value will be either a number or a string and that calling the toFixed method when the value is a string will cause an error. The compiler produces the following error when the code is compiled:Error: src/main.ts:3:27 - error TS2339: Property 'toFixed' does not exist on type 'string | number'.

To resolve this issue, either I can use only features that are available for both number and string values or I can check the type param value within the function to eliminate the ambiguity, as shown in Listing 3-21.function myFunction(param: number | string) {
 if (typeof(param) == "number") {
 let numberResult = param.toFixed(2);
 console.log("My result: " + numberResult);
 } else {
 let stringResult = param + 100;
 console.log("My result: " + stringResult);
 }
}

myFunction(1);
myFunction("London");

Listing 3-21Checking a Type in the main.ts File in the src Folder

I need to remove the ambiguity about the parameter value’s type so that I call the toFixed method only when the function receives a number. This code produces the following output in the browser’s JavaScript console when it is compiled and executed:My result: 1.00
My result: London100

Understanding the Basic TypeScript/JavaScript Features
Now that you understand the relationship between TypeScript and JavaScript, it is time to describe the basic language features you will need to follow the examples in this book. This is not a comprehensive guide to either TypeScript or JavaScript, but it should be enough to get you started as you learn how the features provided by Angular fit together.
Defining Variables and Constants
The let keyword is used to define variables, and the const keyword is used to define a constant value that will not change, as shown in Listing 3-22.let condition = true;
let person = "Bob";
const age = 40;

Listing 3-22Defining Variables and Constants in the main.ts File in the src Folder

The TypeScript compiler infers the type of each variable or constant from the value it is assigned and will generate an error if a value of a different type is assigned. Types can be specified explicitly, as shown in Listing 3-23.let condition: boolean = true;
let person: string = "Bob";
const age: number = 40;

Listing 3-23Specifying Types in the main.ts File in the src Folder

Dealing with Unassigned and Null Values
In JavaScript, variables that have been defined but not assigned a value are assigned the special value undefined, whose type is undefined, as shown in Listing 3-24.let condition: boolean = true;
let person: string = "Bob";
const age: number = 40;

let place;
console.log("Place value: " + place + " Type: " + typeof(place));
place = "London";
console.log("Place value: " + place + " Type: " + typeof(place));

Listing 3-24Defining a Variable Without a Value in the main.ts File in the src Folder

This code produces the following output in the browser’s JavaScript console:Place value: undefined Type: undefined
Place value: London Type: string

This behavior may seem nonsensical in isolation, but it is consistent with the rest of JavaScript, where values have types, and any value can be assigned to a variable. JavaScript also defines a separate special value, null, which can be assigned to variables to indicate no value or result, as shown in Listing 3-25.let condition: boolean = true;
let person: string = "Bob";
const age: number = 40;

let place;
console.log("Place value: " + place + " Type: " + typeof(place));
place = "London";
console.log("Place value: " + place + " Type: " + typeof(place));
place = null;
console.log("Place value: " + place + " Type: " + typeof(place));

Listing 3-25Assigning Null in the main.ts File in the src Folder

I can generally provide a robust defense of the way that JavaScript features work, but there is an oddity of the null value that makes little sense, which can be seen in the output this code produces in the browser’s JavaScript console:Place value: undefined Type: undefined
Place value: London Type: string
Place value: null Type: object

The oddity is that the type of the special null value is object. I introduce the JavaScript support for objects in Chapter 4, but this JavaScript quirk dates back to the first version of JavaScript and hasn’t been addressed because so much code has been written that depends on it.
Leaving aside this inconsistency, when the TypeScript compiler processes the code in Listing 3-25, it determines that values of different types are assigned to the place variable and infers the variable’s type as any.
As I explained, the any type allows values of any type to be used, which effectively disables the TypeScript compiler’s type checks. A type union can be used to restrict the values that can be used, while still allowing undefined and null to be used, as shown in Listing 3-26.let condition: boolean = true;
let person: string = "Bob";
const age: number = 40;

let place: string | undefined | null;
console.log("Place value: " + place + " Type: " + typeof(place));
place = "London";
console.log("Place value: " + place + " Type: " + typeof(place));
place = null;
console.log("Place value: " + place + " Type: " + typeof(place));

Listing 3-26Using a Type Union in the main.ts File in the src Folder

This type union allows the place variable to be assigned string values or undefined or null. Notice that null is specified by value in the type union. This listing produces the same output in the JavaScript console as Listing 3-26.
Using the JavaScript Primitive Types
As noted earlier, JavaScript defines a small set of primitive types: string, number, boolean, undefined, and null. This may seem like a short list, but JavaScript manages to fit a lot of flexibility into these three types.
Working with Booleans
The boolean type has two values: true and false. Listing 3-27 shows both values being used, but this type is most useful when used in conditional statements, such as an if statement. There is no console output from this listing. let firstBool = true;
let secondBool = false;

Listing 3-27Defining boolean Values in the main.ts File in the src Folder

Working with Strings
You define string values using either the double or single quote characters, as shown in Listing 3-28. let firstString = "This is a string";
let secondString = 'And so is this';

Listing 3-28Defining string Variables in the main.ts File in the src Folder

The quote characters you use must match. You can’t start a string with a single quote and finish with a double quote, for example. There is no output from this listing.
JavaScript provides string objects with a basic set of properties and methods, the most useful of which are described in Table 3-2.Table 3-2Useful string Properties and Methods

	Name
	Description

	length
	This property returns the number of characters in the string.

	charAt(index)
	This method returns a string containing the character at the specified index.

	concat(string)
	This method returns a new string that concatenates the string on which the method is called and the string provided as an argument.

	indexOf(term, start)
	This method returns the first index at which term appears in the string or -1 if there is no match. The optional start argument specifies the start index for the search.

	replace(term, newTerm)
	This method returns a new string in which all instances of term are replaced with newTerm.

	slice(start, end)
	This method returns a substring containing the characters between the start and end indices.

	split(term)
	This method splits up a string into an array of values that were separated by term.

	toUpperCase()
toLowerCase()
	These methods return new strings in which all the characters are uppercase or lowercase.

	trim()
	This method returns a new string from which all the leading and trailing whitespace characters have been removed.

Using Template Strings
A common programming task is to combine static content with data values to produce a string that can be presented to the user. The traditional way to do this is through string concatenation, which is the approach I have been using in the examples so far in this chapter, as follows: ...
console.log("Place value: " + place + " Type: " + typeof(place));
...

JavaScript also supports template strings, which allow data values to be specified inline, which can help reduce errors and result in a more natural development experience. Listing 3-29 shows the use of a template string.let place: string | undefined | null;
console.log(`Place value: ${place} Type: ${typeof(place)}`);

Listing 3-29Using a Template String in the main.ts File in the src Folder

Template strings begin and end with backticks (the ` character), and data values are denoted by curly braces preceded by a dollar sign. This string, for example, incorporates the value of the place variable and its type into the template string:...
console.log(`Place value: ${place} Type: ${typeof(place)}`);
...

This example produces the following output:Place value: undefined Type: undefined

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real numbers). Listing 3-30 provides a demonstration. let daysInWeek = 7;
let pi = 3.14;
let hexValue = 0xFFFF;

Listing 3-30Defining number Values in the main.ts File in the src Folder

You don’t have to specify which kind of number you are using. You just express the value you require, and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point value, and prefixed a value with 0x to denote a hexadecimal value. Listing 3-30 doesn’t produce any output.
Working with Null and Undefined Values
The null and undefined values have no features, such as properties or methods, but the unusual approach taken by JavaScript means that you can only assign these values to variables whose type is a union that includes null or undefined, as shown in Listing 3-31. let person1 = "Alice";
let person2: string | undefined = "Bob";

Listing 3-31Assigning Null and Undefined Values in the main.ts File in the src Folder

The TypeScript compiler will infer the type of the person1 variable as string because that is the type of the value assigned to it. This variable cannot be assigned the null or undefined value.
The person2 variable is defined with a type annotation that specifies string or undefined values. This variable can be assigned undefined but not null, since null is not part of the type union.
Using the JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful in Table 3-3. Table 3-3Useful JavaScript Operators

	Operator
	Description

	++, --
	Pre- or post-increment and decrement

	+, -, *, /, %
	Addition, subtraction, multiplication, division, remainder

	<, <=, >, >=
	Less than, less than or equal to, more than, more than or equal to

	==, !=
	Equality and inequality tests

	===, !==
	Identity and nonidentity tests

	&&, ||
	Logical AND and OR

	||,??
	Null and null-ish coalescing operators

	?
	Optional chaining operator

	=
	Assignment

	+
	String concatenation

	?:
	Three-operand conditional statement

Using Conditional Statements
Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend to use the if/else and switch statements. Listing 3-32 shows the use of both, which will be familiar if you have worked with pretty much any programming language. let firstName = "Adam";

if (firstName == "Adam") {
 console.log("firstName is Adam");
} else if (firstName == "Jacqui") {
 console.log("firstName is Jacqui");
} else {
 console.log("firstName is neither Adam or Jacqui");
}

switch (firstName) {
 case "Adam":
 console.log("firstName is Adam");
 break;
 case "Jacqui":
 console.log("firstName is Jacqui");
 break;
 default:
 console.log("firstName is neither Adam or Jacqui");
 break;
}

Listing 3-32Using the if/else and switch Conditional Statements in the main.ts File in the src Folder

The results from the listing are as follows:firstName is Adam
firstName is Adam

The Equality Operator vs. the Identity Operator
In JavaScript, the equality operator (==) will attempt to coerce (convert) operands to the same type to assess equality. This can be a useful feature, but it is widely misunderstood and often leads to unexpected results. Listing 3-33 shows the equality operator in action. let firstVal: any = 5;
let secondVal: any = "5";

if (firstVal == secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

Listing 3-33Using the Equality Operator in the main.ts File in the src Folder

The output from this script is as follows:They are the same

JavaScript is converting the two operands into the same type and comparing them. In essence, the equality operator tests that values are the same irrespective of their type.
If you want to test to ensure that the values and the types are the same, then you need to use the identity operator (===, three equal signs, rather than the two of the equality operator), as shown in Listing 3-34.let firstVal: any = 5;
let secondVal: any = "5";

if (firstVal === secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

Listing 3-34Using the Identity Operator in the main.ts File in the src Folder

In this example, the identity operator will consider the two variables to be different. This operator doesn’t coerce types. The result from this script is as follows:They are NOT the same

To demonstrate how JavaScript works, I had to use the any type when declaring the firstVal and secondVal variables, because TypeScript restricts the use of the equality operator so that it can be used only on two values of the same type. Listing 3-35 removes the variable type annotations and allows TypeScript to infer the types from the assigned values.let firstVal = 5;
let secondVal = "5";

if (firstVal === secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

Listing 3-35Removing the Type Annotations in the main.ts File in the src Folder

The TypeScript compiler detects that the variable types are not the same and generates the following error:Error: src/main.ts:4:5 - error TS2367: This condition will always return 'false' since the types 'number' and 'string' have no overlap.

Understanding Truthy And Falsy
The comparison operator presents another pitfall for the unwary, which is that expressions can be truthy or falsy. The following results are always falsy: 	The false (boolean) value

	The 0 (number) value

	The empty string ("")

	null

	undefined

	NaN (a special number value)

All other values are truthy, which can be confusing. For example, "false" (a string whose content is the word false) is truthy. The best way to avoid confusion is to only use expressions that evaluate to the boolean values true and false.

Explicitly Converting Types
The string concatenation operator (+) has higher precedence than the addition operator (also +), which means JavaScript will concatenate variables in preference to adding. This can confuse because JavaScript will also convert types freely to produce a result—and not always the result that is expected, as shown in Listing 3-36. let myData1 = 5 + 5;
let myData2 = 5 + "5";

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);
console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);

Listing 3-36String Concatenation Operator Precedence in the main.ts File in the src Folder

This code produces the following output in the browser’s JavaScript console:Result 1: 10, Type: number
Result 2: 55, Type: string

The second result is the kind that confuses. What might be intended to be an addition operation is interpreted as string concatenation through a combination of operator precedence and type conversion. The TypeScript compiler understands the way the JavaScript operators behave and correctly infers the data types it produces, but, unlike the equally confusing equality operator, TypeScript doesn’t prevent the type conversion.
To avoid this, you can explicitly convert the types of values to ensure you perform the right kind of operation, as described in the following sections.
Converting Numbers to Strings
If you are working with multiple number variables and want to concatenate them as strings, then you can convert the numbers to strings with the toString method, as shown in Listing 3-37.let myData1 = (5).toString() + String(5);
let myData2 = 5 + "5";

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);
console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);

Listing 3-37Using the number.toString Method in the main.ts File in the src Folder

Notice that I placed the numeric value in parentheses, and then I called the toString method. This is because you have to allow JavaScript to convert the literal value into a number before you can call the methods that the number type defines. I have also shown an alternative approach to achieve the same effect, which is to call the String function and pass in the numeric value as an argument. Both of these techniques have the same effect, which is to convert a number to a string, meaning that the + operator is used for string concatenation and not addition. The output from this script is as follows:Result 1: 55, Type: string
Result 2: 55, Type: string

Other methods allow you to exert more control over how a number is represented as a string. I briefly describe these methods in Table 3-4. All of the methods shown in the table are defined by the number type.Table 3-4Useful Number-to-String Methods

	Method
	Description

	toString()
	This method returns a string that represents a number in base 10.

	toString(2)
toString(8)
toString(16)
	This method returns a string that represents a number in binary, octal, or hexadecimal notation.

	toFixed(n)
	This method returns a string representing a real number with the n digits after the decimal point.

	toExponential(n)
	This method returns a string that represents a number using exponential notation with one digit before the decimal point and n digits after.

	toPrecision(n)
	This method returns a string that represents a number with n significant digits, using exponential notation if required.

Converting Strings to Numbers
The complementary technique is to convert strings to numbers so that you can perform addition rather than concatenation, as shown in Listing 3-38.let myData1 = (5).toString() + String(5);
let myData2 = Number("5") + parseInt("5");

console.log(`Result 1: ${myData1}, Type: ${typeof(myData1)}`);
console.log(`Result 2: ${myData2}, Type: ${typeof(myData2)}`);

Listing 3-38Converting Strings to Numbers in the main.ts File in the src Folder

The output from this script is as follows:Result 1: 55, Type: string
Result 2: 10, Type: number

The Number function is strict in the way that it parses string values, but there are two other functions you can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt and parseFloat. I have described all three methods in Table 3-5.Table 3-5Useful String to Number Methods

	Method
	Description

	Number(str)
	This method parses the specified string to create an integer or real value.

	parseInt(str)
	This method parses the specified string to create an integer value.

	parseFloat(str)
	This method parses the specified string to create an integer or real value.

Using the Null and Nullish Coalescing Operators
The logical OR operator (||) has been traditionally used as a null coalescing operator in JavaScript, allowing a fallback value to be used in place of null or undefined values, as shown in Listing 3-39.
Note
If you move the mouse pointer over the variable in code editors such as Visual Studio Code, you will see that the TypeScript compiler is smart enough to infer when the variables in the next few examples are null or undefined. This is because all of the statements in the main.ts file are executed in sequence, allowing the compiler to use a more specific combination of types than have been used in the type annotations. This doesn’t happen in real projects, where code is defined in functions or methods.

let val1: string | undefined;
let val2: string | undefined = "London";

let coalesced1 = val1 || "fallback value";
let coalesced2 = val2 || "fallback value";

console.log(`Result 1: ${coalesced1}`);
console.log(`Result 2: ${coalesced2}`);

Listing 3-39Using the Null Coalescing Operator in the main.ts File in the src Folder

The || operator returns the left-hand operand if it evaluates as truthy and otherwise returns the right-hand operand. When the operator is applied to val1, the right-hand operand is returned because no value has been assigned to the variable, meaning that it is undefined. When the operator is applied to val2, the left-hand operand is returned because the variable has been assigned the string London, which evaluates as truthy. This code produces the following output in the browser’s JavaScript console:Result 1: fallback value
Result 2: London

The problem with using the || operator this way is that truthy and falsy values can produce unexpected results, as shown in Listing 3-40.let val1: string | undefined;
let val2: string | undefined = "London";
let val3: number | undefined = 0;

let coalesced1 = val1 || "fallback value";
let coalesced2 = val2 || "fallback value";
let coalesced3 = val3 || 100;

console.log(`Result 1: ${coalesced1}`);
console.log(`Result 2: ${coalesced2}`);
console.log(`Result 3: ${coalesced3}`);

Listing 3-40An Unexpected Null Coalescing Result in the main.ts File in the src Folder

The new coalescing operation returns the fallback value, even though the val3 variable is neither null nor undefined, because 0 evaluates as falsy. The code produces the following results in the browser’s JavaScript console:Result 1: fallback value
Result 2: London
Result 3: 100

The nullish-coalescing operator (??) addresses this issue by returning the right-hand operand only if the left-hand operand is null or undefined, as shown in Listing 3-41.let val1: string | undefined;
let val2: string | undefined = "London";
let val3: number | undefined = 0;

let coalesced1 = val1 ?? "fallback value";
let coalesced2 = val2 ?? "fallback value";
let coalesced3 = val3 ?? 100;

console.log(`Result 1: ${coalesced1}`);
console.log(`Result 2: ${coalesced2}`);
console.log(`Result 3: ${coalesced3}`);

Listing 3-41Using the Nullish-Coalescing Operator in the main.ts File in the src Folder

The nullish operator doesn’t consider truthy and falsy outcomes and looks only for the null and undefined values. This code produces the following output in the browser’s JavaScript console:Result 1: fallback value
Result 2: London
Result 3: 0

Using the Optional Chaining Operator
As explainer earlier, TypeScript won’t let null or undefined to be assigned to variables unless they have been defined with a suitable type union. Further, TypeScript will only allow methods and properties defined by all of the types in the union to be used. This combination of features means that you have to guard against null or undefined values before you can use the features provided by any other type in a union, as demonstrated in Listing 3-42. let count: number | undefined | null = 100;
if (count != null && count != undefined) {
 let result1: string = count.toFixed(2);
 console.log(`Result 1: ${result1}`);
}

Listing 3-42Guarding Against Null or Undefined Values in the main.ts File in the src Folder

To invoke the toFixed method, I have to make sure that the count variable hasn’t been assigned null or undefined. The TypeScript compiler understands the meaning of the expressions in the if statement and knows that excluding null and undefined values means that the value assigned to count must be a number, meaning that the toFixed method can be used safely. This code produces the following output in the browser’s JavaScript console:Result 1: 100.00

The optional chaining operator (the ? character) simplifies the guarding process, as shown in Listing 3-43.let count: number | undefined | null = 100;
if (count != null && count != undefined) {
 let result1: string = count.toFixed(2);
 console.log(`Result 1: ${result1}`);
}

let result2: string | undefined = count?.toFixed(2);
console.log(`Result 2: ${result2}`);

Listing 3-43Using the Optional Chaining Operator in the main.ts File in the src Folder

The operator is applied between the variable and the method call and will return undefined if the value is null or undefined, preventing the method from being invoked:...
let result2: string | undefined = count?.toFixed(2);
...

If the value isn’t null or undefined, then the method call will proceed as normal. The result from an expression that includes the optional chaining operator is a type union of undefined and the result from the method. In this case, the union will be string | undefined because the toFixed method returns a string. The code in Listing 3-43 produces the following output in the browser’s JavaScript console:Result 1: 100.00
Result 2: 100.00

Summary
In this chapter, I described some of the basic features of the foundation on which Angular is built. I described the basic structure of HTML elements and explained the relationship between JavaScript and TypeScript, before introducing the basic JavaScript/TypeScript features. In the next chapter, I continue to describe useful JavaScript and TypeScript features and provide a brief overview of an important JavaScript library that you will encounter in Angular development.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_4

4. Primer, Part 2

Adam Freeman1
(1)London, UK

In this chapter, I continue to describe the basic features of TypeScript and JavaScript that are required for Angular development and briefly touch on the RxJS package, which is used extensively by Angular and is required for some advanced features.
Preparing for This Chapter
This chapter uses the Primer project created in Chapter 4. No changes are required for this chapter. Open a new command prompt, navigate to the Primer folder, and run the command shown in Listing 4-1 to start the Angular development tools.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

ng serve --open

Listing 4-1Starting the Development Tools

After an initial build process, the Angular tools will open a browser window and display the content shown in Figure 4-1.[image:]
Figure 4-1Running the example application

This chapter continues to use the browser’s JavaScript console. Press F12 to open the browser’s developers tools and switch to the console; you will see the following results (you may have to reload the browser):Result 1: 100.00
Result 2: 100.00

Defining and Using Functions
When the browser receives JavaScript code, it executes the statements it contains in the order in which they have been defined. In common with most languages, JavaScript allows statements to be grouped into a function, which won’t be executed until a statement that invokes the function is executed, as shown in Listing 4-2. function writeValue(val: string | null) {
 console.log(`Value: ${val ?? "Fallback value"}`)
}

writeValue("London");
writeValue(null);

Listing 4-2Defining a Function in the main.ts File in the src Folder

Functions are defined with the function keyword and are given a name. If a function defines parameters, then TypeScript requires type annotations, which are used to enforce consistency in the use of the function. The function in Listing 4-2 is named writeValue, and it defines a parameter that will accept string or null values. The statement inside of the function isn’t executed until the browser reaches a statement that invokes the function. The code in Listing 4-2 produces the following output in the browser’s JavaScript console:Value: London
Value: Fallback value

Defining Optional Function Parameters
By default, TypeScript will allow functions to be invoked only when the number of arguments matches the number of parameters the function defines. This may seem obvious if you are used to other mainstream languages, but a function can be called with any number of arguments in pure JavaScript, regardless of how many parameters have been defined. The ? character is used to denote an optional parameter, as shown in Listing 4-3. function writeValue(val?: string) {
 console.log(`Value: ${val ?? "Fallback value"}`)
}

writeValue("London");
writeValue();

Listing 4-3Defining an Optional Parameter in the main.ts File in the src Folder

The ? operator has been applied to the val parameter, which means that the function can be invoked with zero or one argument. Within the function, the parameter type is string | undefined, because the value will be undefined if the function is invoked without an argument.
Note
Don’t confuse val?: string, which is an optional parameter, with val: string | undefined, which is a type union of string and undefined. The type union requires the function to be invoked with an argument, which may be the value undefined, whereas the optional parameter allows the function to be invoked without an argument.

The code in Listing 4-3 produces the following output in the browser’s JavaScript console:Value: London
Value: Fallback value

Defining Default Parameter Values
Parameters can be defined with a default value, which will be used when the function is invoked without a corresponding argument. This can be a useful way to avoid dealing with undefined values, as shown in Listing 4-4. function writeValue(val: string = "default value") {
 console.log(`Value: ${val}`)
}

writeValue("London");
writeValue();

Listing 4-4Defining a Default Parameter Value in the main.ts File in the src Folder

The default value will be used when the function is invoked without an argument. This means that the type of the parameter in the example will always be string, so I don’t have to check for undefined values. The code in Listing 4-4 produces the following output in the browser’s JavaScript console:Value: London
Value: default value

Defining Rest Parameters
Rest parameters are used to capture any additional arguments when a function is invoked with additional arguments, as shown in Listing 4-5. function writeValue(val: string, ...extraInfo: string[]) {
 console.log(`Value: ${val}, Extras: ${extraInfo}`)
}

writeValue("London", "Raining", "Cold");
writeValue("Paris", "Sunny");
writeValue("New York");

Listing 4-5Using a Rest Parameter in the main.ts File in the src Folder

The rest parameter must be the last parameter defined by the function, and its name is prefixed with an ellipsis (three periods, ...). The rest parameter is an array to which any extra arguments will be assigned. In the listing, the function prints out each extra argument to the console, producing the following results:Value: London, Extras: Raining,Cold
Value: Paris, Extras: Sunny
Value: New York, Extras:

Defining Functions That Return Results
You can return results from functions by declaring the return data type and using the return keyword within the function body, as shown in Listing 4-6. function composeString(val: string) : string {
 return `Composed string: ${val}`;
}

function writeValue(val?: string) {
 console.log(composeString(val ?? "Fallback value"));
}

writeValue("London");
writeValue();

Listing 4-6Returning a Result in the main.ts File in the src Folder

The new function defines one parameter, which is a string, and returns a result, which is also a string. The type of the result is defined using a type annotation after the parameters:...
function composeString(val: string) : string {
...

TypeScript will check the use of the return keyword to ensure that the function returns a result and that the result is of the expected type. This code produces the following output in the browser’s JavaScript console:Composed string: London
Composed string: Fallback value

Using Functions as Arguments to Other Functions
JavaScript functions are values, which means you can use one function as the argument to another, as demonstrated in Listing 4-7. function getUKCapital() : string {
 return "London";
}

function writeCity(f: () => string) {
 console.log(`City: ${f()}`)
}

writeCity(getUKCapital);

Listing 4-7Using a Function as an Argument to Another Function in the main.ts File in the src Folder

The writeCity function defines a parameter called f, which is a function that it invokes to get the value to insert into the string that it writes out. TypeScript requires the function parameter to be described so that the types of its parameters and results are declared:...
function writeCity(f: () => string) {
...

This is the arrow syntax, also known as fat arrow syntax or the lambda expression syntax. There are three parts to an arrow function: the input parameters surrounded by parentheses, then an equal sign and a greater-than sign (the “arrow”), and finally the function result. The parameter function doesn’t define any parameters, so the parentheses are empty. This means that the type of the parameter f is a function that accepts no parameters and returns a string result. The parameter function is invoked within a template string:...
console.log(`City: ${f()}`)
...

Only functions with the specified combination of parameters and result can be used as an argument to writeCity. The getUKCapital function has the correct characteristics:...
writeCity(getUKCapital);
...

Notice that only the name of the function is used as the argument. If you follow the function name with parentheses, writeCity(getUKCapital()), then you are telling JavaScript to invoke the getUKCapital function and pass the result to the writeCity function. TypeScript will detect that the result from the getUKCapital function doesn’t match the parameter type defined by the writeCity function and will produce an error when the code is compiled. The code in Listing 4-7 produces the following output in the browser’s JavaScript console:City: London

Defining Functions Using the Arrow Syntax
The arrow syntax can also be used to define functions, not just to describe them, and this is a useful way to define functions inline, as shown in Listing 4-8.function getUKCapital() : string {
 return "London";
}

function writeCity(f: () => string) {
 console.log(`City: ${f()}`)
}

writeCity(getUKCapital);
writeCity(() => "Paris");

Listing 4-8Defining an Arrow Function in the main.ts File in the src Folder

This inline function receives no parameters and returns the literal string value Paris, allowing me to define a function that can be used as an argument to the writeCity function. The code in Listing 4-8 produces the following output in the browser’s JavaScript console:City: London
City: Paris

Understanding Value Closure
Functions can access values that are defined in the surrounding code, using a feature called closure, as demonstrated in Listing 4-9. function getUKCapital() : string {
 return "London";
}

function writeCity(f: () => string) {
 console.log(`City: ${f()}`)
}

writeCity(getUKCapital);
writeCity(() => "Paris");
let myCity = "Rome";
writeCity(() => myCity);

Listing 4-9Using a Closure in the main.ts File in the src Folder

The new arrow function returns the value of the variable named myCity, which is defined in the surrounding code. This is a powerful feature that means you don’t have to define parameters on functions to pass around data values, but caution is required because it is easy to get unexpected results when using common variable names like counter or index, where you may not realize that you are reusing a variable name from the surrounding code. This example produces the following output in the browser’s JavaScript console:City: London
City: Paris
City: Rome

Working with Arrays
JavaScript arrays work like arrays in most other programming languages. Listing 4-10 demonstrates how to create and populate an array. let myArray = [];
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

Listing 4-10Creating an Populating an Array in the main.ts File in the src Folder

I have created a new and empty array using the literal syntax, which uses square brackets, and assigned the array to a variable named myArray. In the subsequent statements, I assign values to various index positions in the array. (There is no console output from this listing.)
There are a couple of things to note in this example. First, I didn’t need to declare the number of items in the array when I created it. JavaScript arrays will resize themselves to hold any number of items. The second point is that I didn’t have to declare the data types that the array will hold. Any JavaScript array can hold any mix of data types. In the example, I have assigned three items to the array: a number, a string, and a boolean. The TypeScript compiler infers the type of the array as any[], denoting any array that can hold values of all types. The example can be written with the type annotation shown in Listing 4-11.let myArray: any[] = [];
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

Listing 4-11Using a Type Annotation in the main.ts File in the src Folder

Arrays can be restricted to hold values of specific types, as shown in Listing 4-12.let myArray: (number | string | boolean)[] = [];
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

Listing 4-12Restricting Array Value Types in the main.ts File in the src Folder

The type union restricts the array so that it can hold only number, string, and boolean values. Notice that I have put the type union in parentheses because the union number | string | boolean[] denotes a value that can be assigned a number, a string, or an array of boolean values, which is not what is intended.
Arrays can be defined and populated in a single statement, as shown in Listing 4-13.let myArray: (number | string | boolean)[] = [100, "Adam", true];

Listing 4-13Populating a New Array in the main.ts File in the src Folder

If you omit the type annotation, TypeScript will infer the array type from the values used to populate the array. You should rely on this feature with caution for arrays that are intended to hold multiple types because it requires that the full range of types is used when creating the array.
Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between the braces, as shown in Listing 4-14. let myArray: (number | string | boolean)[] = [100, "Adam", true];

let val = myArray[0];
console.log(`Value: ${val}`);

Listing 4-14Reading the Data from an Array Index in the main.ts File in the src Folder

The TypeScript compiler infers the type of values in the array so that the type of the val variable in Listing 4-14 is number | string | boolean. This code produces the following output in the browser’s JavaScript console:Value: 100

You can modify the data held in any position in a JavaScript array simply by assigning a new value to the index, as shown in Listing 4-15. The TypeScript compiler will check that the type of the value you assign matches the array element type.let myArray: (number | string | boolean)[] = [100, "Adam", true];

myArray[0] = "Tuesday";

let val = myArray[0];
console.log(`Value: ${val}`);

Listing 4-15Modifying the Contents of an Array in the main.ts File in the src Folder

In this example, I have assigned a string to position 0 in the array, a position that was previously held by a number. This code produces the following output in the browser’s JavaScript console:Value: Tuesday

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop or using the forEach method, which receives a function that is called to process each element in the array. Listing 4-16 shows both approaches. let myArray: (number | string | boolean)[] = [100, "Adam", true];

for (let i = 0; i < myArray.length; i++) {
 console.log("Index " + i + ": " + myArray[i]);
}

console.log("---");

myArray.forEach((value, index) => console.log("Index " + index + ": " + value));

Listing 4-16Enumerating the Contents of an Array in the main.ts File in the src Folder

The JavaScript for loop works just the same way as loops in many other languages. You determine how many elements there are in the array using its length property.
The function passed to the forEach method is given two arguments: the value of the current item to be processed and the position of that item in the array. In this listing, I have used an arrow function as the argument to the forEach method, which is the kind of use for which they excel (and you will see used throughout this book). The output from the listing is as follows:Index 0: 100
Index 1: Adam
Index 2: true

Index 0: 100
Index 1: Adam
Index 2: true

Using the Spread Operator
The spread operator is used to expand an array so that its contents can be used as function arguments or combined with other arrays. In Listing 4-17, I used the spread operator to expand an array so that its items can be combined into another array. let myArray: (number | string | boolean)[] = [100, "Adam", true];
let otherArray = [...myArray, 200, "Bob", false];

// for (let i = 0; i < myArray.length; i++) {
// console.log("Index " + i + ": " + myArray[i]);
// }

// console.log("---");

otherArray.forEach((value, index) => console.log("Index " + index + ": " + value));

Listing 4-17Using the Spread Operator in the main.ts File in the src Folder

The spread operator is an ellipsis (a sequence of three periods), and it causes the array to be unpacked....
let otherArray = [...myArray, 200, "Bob", false];
...

Using the spread operator, I can specify myArray as an item when I define otherArray, with the result that the contents of the first array will be unpacked and added as items to the second array. This example produces the following results:Index 0: 100
Index 1: Adam
Index 2: true
Index 3: 200
Index 4: Bob
Index 5: false

Using the Built-in Array Methods
JavaScript arrays define a number of methods, the most useful of which are described in Table 4-1. Table 4-1Useful Array Methods

	Method
	Description

	concat(otherArray)
	This method returns a new array that concatenates the array on which it has been called with the array specified as the argument. Multiple arrays can be specified.

	join(separator)
	This method joins all the elements in the array to form a string. The argument specifies the character used to delimit the items.

	pop()
	This method removes and returns the last item in the array.

	shift()
	This method removes and returns the first element in the array.

	push(item)
	This method appends the specified item to the end of the array.

	unshift(item)
	This method inserts a new item at the start of the array.

	reverse()
	This method returns a new array that contains the items in reverse order.

	slice(start,end)
	This method returns a section of the array.

	sort()
	This method sorts the array. An optional comparison function can be used to perform custom comparisons.

	splice(index, count)
	This method removes count items from the array, starting at the specified index. The removed items are returned as the result of the method.

	unshift(item)
	This method inserts a new item at the start of the array.

	every(test)
	This method calls the test function for each item in the array and returns true if the function returns true for all of them and false otherwise.

	some(test)
	This method returns true if calling the test function for each item in the array returns true at least once.

	filter(test)
	This method returns a new array containing the items for which the test function returns true.

	find(test)
	This method returns the first item in the array for which the test function returns true.

	findIndex(test)
	This method returns the index of the first item in the array for which the test function returns true.

	foreach(callback)
	This method invokes the callback function for each item in the array, as described in the previous section.

	includes(value)
	This method returns true if the array contains the specified value.

	map(callback)
	This method returns a new array containing the result of invoking the callback function for every item in the array.

	reduce(callback)
	This method returns the accumulated value produced by invoking the callback function for every item in the array.

Since many of the methods in Table 4-1 return a new array, these methods can be chained together to process a filtered data array, as shown in Listing 4-18.let myArray: (number | string | boolean)[] = [100, "Adam", true];
let otherArray = [...myArray, 200, "Bob", false];

let sum: number = otherArray
 .filter(val => typeof(val) == "number")
 .reduce((total: number, val) => total + (val as number), 0)

console.log(`Sum: ${sum}`);

Listing 4-18Processing a Data Array in the main.ts File in the src Folder

I use the filter method to select the number in the array and use the reduce method to determine the total, producing the following output in the browser’s JavaScript console:Sum: 300

Notice that I have had to give the TypeScript compiler some help with a type annotation and the as keyword. The compiler is sophisticated but doesn’t always correctly infer the types in this type of operation.
Working with Objects
JavaScript objects are a collection of properties, each of which has a name and value. The simplest way to create an object is to use the literal syntax, as shown in Listing 4-19. let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: 100
}

console.log(`Name: ${hat.name}, Price: ${hat.price}`);
console.log(`Name: ${boots.name}, Price: ${boots.price}`);

Listing 4-19Creating an Object in the main.ts File in the src Folder

The literal syntax uses braces to contain a list of property names and values. Names are separated from their values with colons and from other properties with commas. Two objects are defined in Listing 4-19 and assigned to variables named hat and boots. The properties defined by the object can be accessed through the variable name, as shown in this statement:...
console.log(`Name: ${hat.name}, Price: ${hat.price}`);
...

The code in Listing 4-19 produces the following output:Name: Hat, Price: 100
Name: Boots, Price: 100

Understanding Literal Object Types
When the TypeScript encounters a literal object, it infers its type, using the combination of property names and the values to which they are assigned. This combination can be used in type annotations, allowing the shape of objects to be described as, for example, function parameters, as shown in Listing 4-20.
Tip
In Angular development, you will most frequently create objects using classes, which are described in the “Defining Classes” section.

let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: 100
}

function printDetails(product : { name: string, price: number}) {
 console.log(`Name: ${product.name}, Price: ${product.price}`);
}

printDetails(hat);
printDetails(boots);

Listing 4-20Describing an Object Type in the main.ts File in the src Folder

The type annotation specifies that the product parameter can accept objects that define a string property called name, and a number property named price. This example produces the same output as Listing 4-19.
A type annotation that describes a combination of property names and types just sets out a minimum threshold for objects, which can define additional properties and still be conform to the type, as shown in Listing 4-21.let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: 100,
 category: "Snow Gear"
}

function printDetails(product : { name: string, price: number}) {
 console.log(`Name: ${product.name}, Price: ${product.price}`);
}

printDetails(hat);
printDetails(boots);

Listing 4-21Adding a Property in the main.ts File in the src Folder

The listing adds a new property to the objects assigned to the boots variable, but since the object defines the properties described in the type annotation, this object can still be used as an argument to the printDetails function. This example produces the same output as Listing 4-19.
Defining Optional Properties in a Type Annotation
A question mark can be used to denote an optional property, as shown in Listing 4-22, allowing objects that don’t define the property to still conform to the type. let hat = {
 name: "Hat",
 price: 100
};

let boots = {
 name: "Boots",
 price: 100,
 category: "Snow Gear"
}

function printDetails(product : { name: string, price: number, category?: string}) {
 if (product.category != undefined) {
 console.log(`Name: ${product.name}, Price: ${product.price}, ` +
 `Category: ${product.category}`);
 } else {
 console.log(`Name: ${product.name}, Price: ${product.price}`);
 }
}

printDetails(hat);
printDetails(boots);

Listing 4-22Defining an Optional Property in the main.ts File in the src Folder

The type annotation adds an optional category property, which is marked as optional. This means that the type of the property is string | undefined, and the function can test to see if a category value has been provided using the language features described in Chapter 3. This code produces the following output in the browser’s JavaScript console:Name: Hat, Price: 100
Boots, Price: 100, Category: Snow Gear

Defining Classes
Classes are templates used to create objects, providing an alternative to the literal syntax. Support for classes is a recent addition to the JavaScript specification and is intended to make working with JavaScript more consistent with other mainstream programming languages. Listing 4-23 defines a class and uses it to create objects. class Product {

 constructor(name: string, price: number, category?: string) {
 this.name = name;
 this.price = price;
 this.category = category;
 }

 name: string
 price: number
 category?: string
}

let hat = new Product("Hat", 100);

let boots = new Product("Boots", 100, "Snow Gear");

function printDetails(product : { name: string, price: number, category?: string}) {
 if (product.category != undefined) {
 console.log(`Name: ${product.name}, Price: ${product.price}, ` +
 `Category: ${product.category}`);
 } else {
 console.log(`Name: ${product.name}, Price: ${product.price}`);
 }
}

printDetails(hat);
printDetails(boots);

Listing 4-23Defining a Class in the main.ts File in the src Folder

JavaScript classes will be familiar if you have used another mainstream language such as Java or C#. The class keyword is used to declare a class, followed by the name of the class, which is Product in this example.
The constructor function is invoked when a new object is created using the class, and it provides an opportunity to receive data values and do any initial setup that the class requires. In the example, the constructor defines name, price, and category parameters that are used to assign values to properties defined with the same names.
The new keyword is used to create an object from a class, like this:...
let hat = new Product("Hat", 100);
...

This statement creates a new object using the Product class as its template. Product is used as a function in this situation, and the arguments passed to it will be received by the constructor function defined by the class. The result of this expression is a new object that is assigned to a variable called hat.
Notice that the objects created from the class can still be used as arguments to the printDetails function. Introducing a class has changed the way that objects are created, but those objects have the same combination of property names and types and still match the type annotation for the function parameters. The code in Listing 4-23 produces the following output in the browser’s JavaScript console:Name: Hat, Price: 100
Name: Boots, Price: 100, Category: Snow Gear

Adding Methods to a Class
I can simplify the code in the example by moving the functionality defined by the printDetails function into a method defined by the Product class, as shown in Listing 4-24.class Product {

 constructor(name: string, price: number, category?: string) {
 this.name = name;
 this.price = price;
 this.category = category;
 }

 name: string
 price: number
 category?: string

 printDetails() {
 if (this.category != undefined) {
 console.log(`Name: ${this.name}, Price: ${this.price}, ` +
 `Category: ${this.category}`);
 } else {
 console.log(`Name: ${this.name}, Price: ${this.price}`);
 }
 }
}

let hat = new Product("Hat", 100);

let boots = new Product("Boots", 100, "Snow Gear");

// function printDetails(product : { name: string, price: number, category?: string}) {
// if (product.category != undefined) {
// console.log(`Name: ${product.name}, Price: ${product.price}, ` +
// `Category: ${product.category}`);
// } else {
// console.log(`Name: ${product.name}, Price: ${product.price}`);
// }
// }

hat.printDetails();
boots.printDetails();

Listing 4-24Defining a Method in the main.ts File in the src Folder

Methods are invoked through the object, like this:...
hat.printDetails();
...

The method accesses the properties defined by the object through the this keyword:...
console.log(`Name: ${this.name}, Price: ${this.price}`);
...

This example produces the following output in the browser’s JavaScript console:Name: Hat, Price: 100
Name: Boots, Price: 100, Category: Snow Gear

Access Controls and Simplified Constructors
TypeScript provides support for access controls using the public, private, and protected keywords. The public class gives unrestricted access to the properties and methods defined by a class, meaning they can be accessed by any other part of the application. The private keyword restricts access to features so they can be accessed only within the class that defines them. The protected keyword restricts access so that features can be accessed within the class or a subclass.
By default, the features defined by a class are accessible by any part of the application, as though the public keyword has been applied. You won’t see the access control keywords applied to methods and properties in this book because access controls are not essential in an Angular application. But there is a related feature that I use often, which allows classes to be simplified by applying the access control keyword to the constructor parameters, as shown in Listing 4-25.class Product {

 constructor(public name: string, public price: number, public category?: string) {
 // this.name = name;
 // this.price = price;
 // this.category = category;
 }

 // name: string
 // price: number
 // category?: string

 printDetails() {
 if (this.category != undefined) {
 console.log(`Name: ${this.name}, Price: ${this.price}, ` +
 `Category: ${this.category}`);
 } else {
 console.log(`Name: ${this.name}, Price: ${this.price}`);
 }
 }
}

let hat = new Product("Hat", 100);

let boots = new Product("Boots", 100, "Snow Gear");

hat.printDetails();
boots.printDetails();

Listing 4-25Simplifying the Class in the main.ts File in the src Folder

Adding one of the access control keywords to a constructor parameter has the effect of creating a property with the same name, type, and access level. So, adding the public keyword to the price parameter, for example, creates a public property named price, which can be assigned number values. The value received through the constructor is used to initialize the property. This is a useful feature that eliminates the need to copy parameter values to initialize properties, and it is a feature that I wish other languages would adopt. The code in Listing 4-25 produces the same output as Listing 4-24, and only the way that the name, price, and category properties are defined has changed.
Using Class Inheritance
Classes can inherit behavior from other classes using the extends keyword, as shown in Listing Listing 4-26. class Product {

 constructor(public name: string, public price: number, public category?: string) {
 }

 printDetails() {
 if (this.category != undefined) {
 console.log(`Name: ${this.name}, Price: ${this.price}, ` +
 `Category: ${this.category}`);
 } else {
 console.log(`Name: ${this.name}, Price: ${this.price}`);
 }
 }
}

class DiscountProduct extends Product {

 constructor(name: string, price: number, private discount: number) {
 super(name, price - discount);
 }
}

let hat = new DiscountProduct("Hat", 100, 10);

let boots = new Product("Boots", 100, "Snow Gear");

hat.printDetails();
boots.printDetails();

Listing 4-26Using Class Inheritance in the main.ts File in the src Folder

The extends keyword is used to declare the class that will be inherited from, known as the superclass or base class. In the listing, DiscountProduct inherits from Product. The super keyword is used to invoke the superclass’s constructor and methods. The DiscountProduct builds on the Product functionality to add support for a price reduction, producing the following results in the browser’s JavaScript console:Name: Hat, Price: 90
Name: Boots, Price: 100, Category: Snow Gear

Checking Object Types
When applied to an object, the typeof function will return object. To determine whether an object has been derived from a class, the instanceof keyword can be used, as shown in Listing 4-27.class Product {

 constructor(public name: string, public price: number, public category?: string) {
 }

 printDetails() {
 if (this.category != undefined) {
 console.log(`Name: ${this.name}, Price: ${this.price}, ` +
 `Category: ${this.category}`);
 } else {
 console.log(`Name: ${this.name}, Price: ${this.price}`);
 }
 }
}

class DiscountProduct extends Product {

 constructor(name: string, price: number, private discount: number) {
 super(name, price - discount);
 }
}

let hat = new DiscountProduct("Hat", 100, 10);

let boots = new Product("Boots", 100, "Snow Gear");

// hat.printDetails();
// boots.printDetails();

console.log(`Hat is a Product? ${hat instanceof Product}`);
console.log(`Hat is a DiscountProduct? ${hat instanceof DiscountProduct}`);
console.log(`Boots is a Product? ${boots instanceof Product}`);
console.log(`Boots is a DiscountProduct? ${boots instanceof DiscountProduct}`);

Listing 4-27Checking an Object Type in the main.ts File in the src Folder

The instanceof keyword is used with an object value and a class, and the expression returns true if the object was created from the class or a superclass. The code in Listing 4-27 produces the following output in the browser’s JavaScript console:Hat is a Product? True
Hat is a DiscountProduct? True
Boots is a Product? True
Boots is a DiscountProduct? false

Working with JavaScript Modules
JavaScript modules are used to manage the dependencies in a web application, which means you don’t need to manage a large set of individual code files to ensure that the browser downloads all the code for the application. Instead, during the compilation process, all of the JavaScript files that the application requires are combined into a larger file, known as a bundle, and it is this that is downloaded by the browser.
Creating and Using Modules
Each TypeScript or JavaScript file that you add to a project is treated as a module. To demonstrate, I created a folder called modules in the src folder, added to it a file called NameAndWeather.ts, and added the code shown in Listing 4-28. export class Name {
 constructor(public first: string, public second: string) {}

 get nameMessage() {
 return `Hello ${this.first} ${this.second}`;
 }
}

export class WeatherLocation {
 constructor(public weather: string, public city: string) {}

 get weatherMessage() {
 return `It is ${this.weather} in ${this.city}`;
 }
}

Listing 4-28The Contents of the NameAndWeather.ts File in the src/modules Folder

The classes, functions, and variables defined in a JavaScript or TypeScript file can be accessed only within that file by default. The export keyword is used to make features accessible outside of the file so that they can be used by other parts of the application. In the example, I have applied the export keyword to the Name and WeatherLocation classes, which means they are available to be used outside of the module.
Tip
I have defined two classes in the NameAndWeather.ts file, which has the effect of creating a module that contains two classes. The convention in Angular applications is to put each class into its own file, which means that each class is defined in its own module.

The import keyword is used to declare a dependency on the features that a module provides. In Listing 4-29, I have used the Name and WeatherLocation classes in the main.ts file, and that means I have to use the import keyword to declare a dependency on them and the module they come from. import { Name, WeatherLocation } from "./modules/NameAndWeather";

let name = new Name("Adam", "Freeman");
let loc = new WeatherLocation("raining", "London");

console.log(name.nameMessage);
console.log(loc.weatherMessage);

Listing 4-29Importing Specific Types in the main.ts File in the src Folder

This is the way that I use the import keyword in most of the examples in this book. The keyword is followed by curly braces that contain a comma-separated list of the features that the code in the current files depends on, followed by the from keyword, followed by the module name. In this case, I have imported the Name and WeatherLocation classes from the NameAndWeather module in the modules folder. Notice that the file extension is not included when specifying the module.
When the main.ts file is compiled, the Angular development tools detect the dependency on the code in the NameAndWeather.ts file. This dependency ensures that the Name and WeatherLocation classes are included in the JavaScript bundle file, and you will see the following output in the browser’s JavaScript console, showing that code in the module was used to produce the result:Hello Adam Freeman
It is raining in London

Notice that I didn’t have to include the NameAndWeather.ts file in a list of files to be sent to the browser. Just using the import keyword is enough to declare the dependency and ensure that the code required by the application is included in the JavaScript file sent to the browser.
Understanding Module Resolution
You will see two different ways of specifying modules in the import statements in this book. The first is a relative module, in which the name of the module is prefixed with ./, like this example from Listing 4-29: ...
import { Name, WeatherLocation } from "./modules/NameAndWeather";
...

This statement specifies a module located relative to the file that contains the import statement. In this case, the NameAndWeather.ts file is in the modules directory, which is in the same directory as the main.ts file. The other type of import is nonrelative. Here is an example of a nonrelative import from Chapter 2 and one that you will see throughout this book:...
import { Component } from "@angular/core";
...

The module in this import statement doesn’t start with ./, and the build tools resolve the dependency by looking for a package in the node_modules folder. In this case, the dependency is on a feature provided by the @angular/core package, which is added to the project when it is created by the ng new command.

Working with Reactive Extensions
Angular relies on a package named RxJS, also known as Reactive Extensions, or ReactiveX. The Reactive Extensions library is useful in Angular applications because it provides a simple and unambiguous system for sending and receiving notifications. It doesn’t sound like a huge achievement, but it underpins most of the built-in Angular functionality, which needs to change the HTML content displayed to the user when the state of the application changes.
You won’t often need to work with RxJS directly, but there are some features described in this book that rely on RxJS, and a basic knowledge of the building blocks RxJS provides can be useful. (See https://rxjs.dev for a full description of the features provided by the RxJS package.)
Understanding Observables
The key Reactive Extensions building block is an Observable<T>, which represents an observable sequence of events that occur over a period of time. This is most often encountered when using the Angular support for making HTTP requests, described in Chapter 23, where the outcome of the request is presented through an Observable<T> object. The generic type argument <T> denotes the type of event that the observable produces so that an Observable<string> will produce a series of string values, for example.
An object can subscribe to an Observable and receive a notification each time an event occurs, allowing it to respond only when the event has been observed. In the case of an HTTP request, for example, the use of the Observable allows the response to be handled when it arrives, without the handler code needing to periodically check whether the request has completed.
Note
If you are familiar with JavaScript, you may wonder if an Observable is the same as a Promise, which is the typical way of dealing with asynchronous operations. The key difference is that an Observable represents a series of events, rather than a single result, which better suits the way that Angular works. HTTP requests can be handled equally well with an Observable or a Promise, but other Angular features require ongoing notifications, which is where RxJS excels.

The basic method provided by an Observable is subscribe, which accepts an object whose properties are set to functions that respond to the sequence of events. The property names and the purpose of the functions are described in Table 4-2. If you only need to specify a function that receives events, then you can pass that function as the argument to the subscribe method. Table 4-2The Observable subscribe Argument Properties

	Name
	Description

	next
	This function is invoked when a new event occurs.

	error
	This function is invoked when an error occurs.

	complete
	This function is invoked when the sequence of events ends.

Listing 4-30 defines a function that receives an Observable<string> and writes out the sequence of string values that are received.import { Observable } from "rxjs";

function recieveEvents(observable: Observable<string>) {
 observable.subscribe({
 next: str => {
 console.log(`Event received: ${str}`);
 },
 complete: () => console.log("Sequence ended")
 });
}

Listing 4-30Using an Observable in the main.ts File in the src Folder

The RxJS package is added to the project when it is created. The recieveEvents function defines an Observable<string> parameter and calls the subscribe method, providing functions that write out messages when an event is received and when the event sequence ends.
Understanding Observers
The Reactive Extensions Observer<T> class provides the mechanism by which updates are created, using the methods described in Table 4-3. Table 4-3The Observer Methods

	Name
	Description

	next(value)
	This method creates a new event using the specified value.

	error(errorObject)
	This method reports an error, described using the argument, which can be any object.

	complete()
	This method ends the sequence, indicating that no further events will be sent.

Listing 4-31 defines a function that receives an Observer<string> and uses it to send a series of events before calling the complete method.import { Observable, Observer } from "rxjs";

function recieveEvents(observable: Observable<string>) {
 observable.subscribe({
 next: str => {
 console.log(`Event received: ${str}`);
 },
 complete: () => console.log("Sequence ended")
 });
}

function sendEvents(observer: Observer<string>) {
 let count = 5;
 for (let i = 0; i < count; i++) {
 observer.next(`${i + 1} of ${count}`);
 }
 observer.complete();
}

Listing 4-31Using an Observer in the main.ts File in the src Folder

Understanding Subjects
The Reactive Extensions library provides the Subject<T> class, which implements both the Observer and Observable functionality. A Subject is useful when you are working with RxJS in your own code, rather than using an Observer or Observable provided through the Angular API. In Listing 4-32, I have created a Subject<string> and used it as the argument to invoke the functions defined in the previous sections.
The Different Types Of Subject
Listing 4-32 uses the Subject class, which is the simplest way to create an object that is both an Observer and an Observable. Its main limitation is that when a new subscriber is created using the subscribe method, it won’t receive an event until the next time the next method is called. This can be unhelpful if you are creating instances of components or directives dynamically and you want them to have some context data as soon as they are created.
The Reactive Extensions library includes some specialized implementations of the Subject class that can be used to work around this problem. The BehaviorSubject class keeps track of the last event it processed and sends it to new subscribers as soon as they call the subscribe method. The ReplaySubject class does something similar, except that it keeps track of all of its events and sends them all to new subscribers, allowing them to catch up with any events that were sent before they subscribed.

import { Observable, Observer, Subject } from "rxjs";

function recieveEvents(observable: Observable<string>) {
 observable.subscribe({
 next: str => {
 console.log(`Event received: ${str}`);
 },
 complete: () => console.log("Sequence ended")
 });
}

function sendEvents(observer: Observer<string>) {
 let count = 5;
 for (let i = 0; i < count; i++) {
 observer.next(`${i + 1} of ${count}`);
 }
 observer.complete();
}

let subject = new Subject<string>();
recieveEvents(subject);
sendEvents(subject);

Listing 4-32Using a Subject in the main.ts File in the src Folder

The new statements connect together the functions, and the Subject<string> acts as the conduit that carries the events between functions, producing the following output in the browser’s JavaScript console:Event received: 1 of 5
Event received: 2 of 5
Event received: 3 of 5
Event received: 4 of 5
Event received: 5 of 5
Sequence ended

Summary
In this chapter, I continued to describe the key features provided by TypeScript and JavaScript, including functions, arrays, objects, and modules. I also briefly described the RxJS package, which is used for some of the advanced features described later in the book.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_5

5. SportsStore: A Real Application

Adam Freeman1
(1)London, UK

In Chapter 2, I built a quick and simple Angular application. Small and focused examples allow me to demonstrate specific Angular features, but they can lack context. To help overcome this problem, I am going to create a simple but realistic e-commerce application.
My application, called SportsStore, will follow the classic approach taken by online stores everywhere. I will create an online product catalog that customers can browse by category and page, a shopping cart where users can add and remove products, and a checkout where customers can enter their shipping details and place their orders. I will also create an administration area that includes create, read, update, and delete (CRUD) facilities for managing the catalog—and I will protect it so that only logged-in administrators can make changes. Finally, I show you how to prepare and deploy an Angular application.
My goal in this chapter and those that follow is to give you a sense of what real Angular development is like by creating as realistic an example as possible. I want to focus on Angular, of course, and so I have simplified the integration with external systems, such as the data store, and omitted others entirely, such as payment processing.
The SportsStore example is one that I use in a few of my books, not least because it demonstrates how different frameworks, languages, and development styles can be used to achieve the same result. You don’t need to have read any of my other books to follow this chapter, but you will find the contrasts interesting if you already own my Pro ASP.NET Core 3 book, for example.
The Angular features that I use in the SportsStore application are covered in-depth in later chapters. Rather than duplicate everything here, I tell you just enough to make sense of the example application and refer you to other chapters for in-depth information. You can either read the SportsStore chapters from end to end to get a sense of how Angular works or jump to and from the detailed chapters to get into the depth of each feature. Either way, don’t expect to understand everything right away—Angular has lots of moving parts, and the SportsStore application is intended to show you how they fit together without diving too deeply into the details that I spend the rest of the book describing.
Preparing the Project
To create the SportsStore project, open a command prompt, navigate to a convenient location, and run the following command: ng new SportsStore --routing false --style css --skip-git --skip-tests

The angular-cli package will create a new project for Angular development, with configuration files, placeholder content, and development tools. The project setup process can take some time since there are many NPM packages to download and install.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Installing the Additional NPM Packages
Additional packages are required for the SportsStore project, in addition to the core Angular packages and build tools set up by the ng new command. Run the following commands to navigate to the SportsStore folder and add the required packages:cd SportsStore
npm install bootstrap@5.1.3
npm install @fortawesome/fontawesome-free@6.0.0
npm install --save-dev json-server@0.17.0
npm install --save-dev jsonwebtoken@8.5.1

It is important to use the version numbers shown in the listing. You may see warnings about unmet peer dependencies as you add the packages, but you can ignore them. Some of the packages are installed using the --save-dev argument, which indicates they are used during development and will not be part of the SportsStore application.
Adding the CSS Style Sheets to the Application
Once the packages have been installed, run the command shown in Listing 5-1 in the SportsStore folder to add the Bootstrap CSS stylesheet to the project.ng config projects.SportsStore.architect.build.options.styles \
'["src/styles.css",'\
'"node_modules/@fortawesome/fontawesome-free/css/all.min.css",'\
'"node_modules/bootstrap/dist/css/bootstrap.min.css"]'

Listing 5-1Changing the Application Configuration

If you are using Windows, then use a PowerShell prompt to run the command shown in Listing 5-2 in the example folder.ng config projects.SportsStore.architect.build.options.styles `
'[""src/styles.css"",
""node_modules/@fortawesome/fontawesome-free/css/all.min.css"",
""node_modules/bootstrap/dist/css/bootstrap.min.css""]'

Listing 5-2Changing the Application Configuration Using PowerShell

Run the command shown in Listing 5-3 in the SportsStore folder to ensure the configuration changes have been applied correctly.ng config projects.SportsStore.architect.build.options.styles

Listing 5-3Checking the Configuration Changes

The output from this command should contain the three files listed in Listing 5-1 and Listing 5-2, like this:[
 "src/styles.css",
 "node_modules/@fortawesome/fontawesome-free/css/all.min.css",
 "node_modules/bootstrap/dist/css/bootstrap.min.css"
]

Preparing the RESTful Web Service
The SportsStore application will use asynchronous HTTP requests to get model data provided by a RESTful web service. As I describe in Chapter 23, REST is an approach to designing web services that uses the HTTP method or verb to specify an operation and the URL to select the data objects that the operation applies to.
I added the json-server package to the project in the previous section. This is an excellent package for creating web services from JSON data or JavaScript code. Add the statement shown in Listing 5-4 to the scripts section of the package.json file so that the json-server package can be started from the command line. ...
"scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "watch": "ng build --watch --configuration development",
 "test": "ng test",
 "json": "json-server data.js -p 3500 -m authMiddleware.js"
},
...

Listing 5-4Adding a Script in the package.json File in the SportsStore Folder

To provide the json-server package with data to work with, I added a file called data.js in the SportsStore folder and added the code shown Listing 5-5, which will ensure that the same data is available whenever the json-server package is started so that I have a fixed point of reference during development.
Tip
It is important to pay attention to the filenames when creating the configuration files. Some have the .json extension, which means they contain static data formatted as JSON. Other files have the .js extension, which means they contain JavaScript code. Each tool required for Angular development has expectations about its configuration file.

module.exports = function () {
 return {
 products: [
 { id: 1, name: "Kayak", category: "Watersports",
 description: "A boat for one person", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports",
 description: "Protective and fashionable", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer",
 description: "FIFA-approved size and weight", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer",
 description: "Give your playing field a professional touch",
 price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer",
 description: "Flat-packed 35,000-seat stadium", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess",
 description: "Improve brain efficiency by 75%", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess",
 description: "Secretly give your opponent a disadvantage",
 price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess",
 description: "A fun game for the family", price: 75 },
 { id: 9, name: "Bling King", category: "Chess",
 description: "Gold-plated, diamond-studded King", price: 1200 }
],
 orders: []
 }
}

Listing 5-5The Contents of the data.js File in the SportsStore Folder

This code defines two data collections that will be presented by the RESTful web service. The products collection contains the products for sale to the customer, while the orders collection will contain the orders that customers have placed (but which is currently empty).
The data stored by the RESTful web service needs to be protected so that ordinary users can’t modify the products or change the status of orders. The json-server package doesn’t include any built-in authentication features, so I created a file called authMiddleware.js in the SportsStore folder and added the code shown in Listing 5-6.const jwt = require("jsonwebtoken");

const APP_SECRET = "myappsecret";
const USERNAME = "admin";
const PASSWORD = "secret";

const mappings = {
 get: ["/api/orders", "/orders"],
 post: ["/api/products", "/products", "/api/categories", "/categories"]
}

function requiresAuth(method, url) {
 return (mappings[method.toLowerCase()] || [])
 .find(p => url.startsWith(p)) !== undefined;
}

module.exports = function (req, res, next) {
 if (req.url.endsWith("/login") && req.method == "POST") {
 if (req.body && req.body.name == USERNAME && req.body.password == PASSWORD) {
 let token = jwt.sign({ data: USERNAME, expiresIn: "1h" }, APP_SECRET);
 res.json({ success: true, token: token });
 } else {
 res.json({ success: false });
 }
 res.end();
 return;
 } else if (requiresAuth(req.method, req.url)) {
 let token = req.headers["authorization"] || "";
 if (token.startsWith("Bearer<")) {
 token = token.substring(7, token.length - 1);
 try {
 jwt.verify(token, APP_SECRET);
 next();
 return;
 } catch (err) { }
 }
 res.statusCode = 401;
 res.end();
 return;
 }
 next();
}

Listing 5-6The Contents of the authMiddleware.js File in the SportsStore Folder

This code inspects HTTP requests sent to the RESTful web service and implements some basic security features. This is server-side code that is not directly related to Angular development, so don’t worry if its purpose isn’t immediately obvious. I explain the authentication and authorization process in Chapter 7, including how to authenticate users with Angular.
Caution
Don’t use the code in Listing 5-6 other than for the SportsStore application. It contains weak passwords that are hardwired into the code. This is fine for the SportsStore project because the emphasis is on client-side development with Angular, but this is not suitable for real projects.

Preparing the HTML File
Every Angular web application relies on an HTML file that is loaded by the browser and that loads and starts the application. Edit the index.html file in the SportsStore/src folder to remove the placeholder content and to add the elements shown in Listing 5-7.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>SportsStore</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body class="p-2">
 <app>SportsStore Will Go Here</app>
</body>
</html>

Listing 5-7Preparing the index.html File in the src Folder

The HTML document includes an app element, which is the placeholder for the SportsStore functionality. There is also a base element, which is required by the Angular URL routing features, which I add to the SportsStore project in Chapter 6.
Creating the Folder Structure
An important part of setting up an Angular application is to create the folder structure. The ng new command sets up a project that puts all of the application’s files in the src folder, with the Angular files in the src/app folder. To add some structure to the project, create the additional folders shown in Table 5-1. Table 5-1The Additional Folders Required for the SportsStore Project

	Folder
	Description

	SportsStore/src/app/model
	This folder will contain the code for the data model.

	SportsStore/src/app/store
	This folder will contain the functionality for basic shopping.

	SportsStore/src/app/admin
	This folder will contain the functionality for administration.

Running the Example Application
Make sure that all the changes have been saved, and run the following command in the SportsStore folder:ng serve --open

This command will start the development tools set up by the ng new command, which will automatically compile and package the code and content files in the src folder whenever a change is detected. A new browser window will open and show the content illustrated in Figure 5-1.[image:]
Figure 5-1Running the example application

The development web server will start on port 4200, so the URL for the application will be http://localhost:4200. You don’t have to include the name of the HTML document because index.html is the default file that the server responds with. (You will see errors in the browser’s JavaScript console, which can be ignored for the moment.)
Starting the RESTful Web Service
To start the RESTful web service, open a new command prompt, navigate to the SportsStore folder, and run the following command:npm run json

The RESTful web service is configured to run on port 3500. To test the web service request, use the browser to request the URL http://localhost:3500/products/1. The browser will display a JSON representation of one of the products defined in Listing 5-5, as follows:{
 "id": 1,
 "name": "Kayak",
 "category": "Watersports",
 "description": "A boat for one person",
 "price": 275
}

Preparing the Angular Project Features
Every Angular project requires some basic preparation. In the sections that follow, I replace the placeholder content to build the foundation for the SportsStore application.
Updating the Root Component
The root component is the Angular building block that will manage the contents of the app element in the HTML document from Listing 5-7. An application can contain many components, but there is always a root component that takes responsibility for the top-level content presented to the user. I edited the file called app.component.ts in the SportsStore/src/app folder and replaced the existing code with the statements shown in Listing 5-8. import { Component } from "@angular/core";

@Component({
 selector: "app",
 template: `<div class="bg-success p-2 text-center text-white">
 This is SportsStore
 </div>`
})
export class AppComponent { }

Listing 5-8Replacing the Contents of the app.component.ts File in the src/app Folder

The @Component decorator tells Angular that the AppComponent class is a component, and its properties configure how the component is applied. All the component properties are described in Chapter 15, but the properties shown in the listing are the most basic and most frequently used. The selector property tells Angular how to apply the component in the HTML document, and the template property defines the HTML content the component will display. Components can define inline templates, like this one, or they use external HTML files, which can make managing complex content easier.
There is no code in the AppComponent class because the root component in an Angular project exists just to manage the content shown to the user. Initially, I’ll manage the content displayed by the root component manually, but in Chapter 6, I use a feature called URL routing to adapt the content automatically based on user actions.
Inspecting the Root Module
There are two types of Angular modules: feature modules and the root module. Feature modules are used to group related application functionality to make the application easier to manage. I create feature modules for each major functional area of the application, including the data model, the store interface presented to users, and the administration interface.
The root module is used to describe the application to Angular. The description includes which feature modules are required to run the application, which custom features should be loaded, and the name of the root component. The conventional name of the root module file is app.module.ts, which is created in the SportsStore/src/app folder. No changes are required to this file for the moment; Listing 5-9 shows its initial content. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 5-9The Initial Contents of the app.module.ts File in the src/app Folder

Similar to the root component, there is no code in the root module’s class. That’s because the root module only really exists to provide information through the @NgModule decorator. The imports property tells Angular that it should load the BrowserModule feature module, which contains the core Angular features required for a web application.
The declarations property tells Angular that it should load the root component, the providers property tells Angular about the shared objects used by the application, and the bootstrap property tells Angular that the root component is the AppComponent class. I’ll add information to this decorator’s properties as I add features to the SportsStore application, but this basic configuration is enough to start the application.
Inspecting the Bootstrap File
The next piece of plumbing is the bootstrap file, which starts the application. This book is focused on using Angular to create applications that work in web browsers, but the Angular platform can be ported to different environments. The bootstrap file uses the Angular browser platform to load the root module and start the application. No changes are required for the contents of the main.ts file, which is in the SportsStore/src folder, as shown in Listing 5-10. import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.error(err));

Listing 5-10The Contents of the main.ts File in the src Folder

The development tools detect the changes to the project’s file, compile the code files, and automatically reload the browser, producing the content shown in Figure 5-2.[image:]
Figure 5-2Starting the SportsStore application

Starting the Data Model
The best place to start any new project is the data model. I want to get to the point where you can see some Angular features at work, so rather than define the data model from end to end, I am going to put some basic functionality in place using dummy data. I’ll use this data to create user-facing features and then return to the data model to wire it up to the RESTful web service in Chapter 6.
Creating the Model Classes
Every data model needs classes that describe the types of data that will be contained in the data model. For the SportsStore application, this means classes that describe the products sold in the store and the orders that are received from customers.
Being able to describe products will be enough to get started with the SportsStore application, and I’ll create other model classes to support features as I implement them. I created a file called product.model.ts in the SportsStore/src/app/model folder and added the code shown in Listing 5-11.export class Product {

 constructor(
 public id?: number,
 public name?: string,
 public category?: string,
 public description?: string,
 public price?: number) { }
}

Listing 5-11The Contents of the product.model.ts File in the src/app/model Folder

The Product class defines a constructor that accepts id, name, category, description, and price properties, which correspond to the structure of the data used to populate the RESTful web service. The question marks (the ? characters) that follow the parameter names indicate that these are optional parameters that can be omitted when creating new objects using the Product class, which can be useful when writing applications where model object properties will be populated using HTML forms.
Creating the Dummy Data Source
To prepare for the transition from dummy to real data, I am going to feed the application data using a data source. The rest of the application won’t know where the data is coming from, which will make the switch to getting data using HTTP requests seamless.
I added a file called static.datasource.ts to the SportsStore/src/app/model folder and defined the class shown in Listing 5-12. import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Observable, from } from "rxjs";

@Injectable()
export class StaticDataSource {
 private products: Product[] = [
 new Product(1, "Product 1", "Category 1", "Product 1 (Category 1)", 100),
 new Product(2, "Product 2", "Category 1", "Product 2 (Category 1)", 100),
 new Product(3, "Product 3", "Category 1", "Product 3 (Category 1)", 100),
 new Product(4, "Product 4", "Category 1", "Product 4 (Category 1)", 100),
 new Product(5, "Product 5", "Category 1", "Product 5 (Category 1)", 100),
 new Product(6, "Product 6", "Category 2", "Product 6 (Category 2)", 100),
 new Product(7, "Product 7", "Category 2", "Product 7 (Category 2)", 100),
 new Product(8, "Product 8", "Category 2", "Product 8 (Category 2)", 100),
 new Product(9, "Product 9", "Category 2", "Product 9 (Category 2)", 100),
 new Product(10, "Product 10", "Category 2", "Product 10 (Category 2)", 100),
 new Product(11, "Product 11", "Category 3", "Product 11 (Category 3)", 100),
 new Product(12, "Product 12", "Category 3", "Product 12 (Category 3)", 100),
 new Product(13, "Product 13", "Category 3", "Product 13 (Category 3)", 100),
 new Product(14, "Product 14", "Category 3", "Product 14 (Category 3)", 100),
 new Product(15, "Product 15", "Category 3", "Product 15 (Category 3)", 100),
];

 getProducts(): Observable<Product[]> {
 return from([this.products]);
 }
}

Listing 5-12The Contents of the static.datasource.ts File in the src/app/model Folder

The StaticDataSource class defines a method called getProducts, which returns the dummy data. The result of calling the getProducts method is an Observable<Product[]>, which is an Observable that produces arrays of Product objects.
The Observable class is provided by the Reactive Extensions package, which is used by Angular to handle state changes in applications, as described in Chapter 4. An Observable object represents an asynchronous task that will produce a result at some point in the future. Angular exposes its use of Observable objects for some features, including making HTTP requests, and this is why the getProducts method returns an Observable<Product[]> rather than simply returning the data synchronously.
The @Injectable decorator has been applied to the StaticDataSource class. This decorator is used to tell Angular that this class will be used as a service, which allows other classes to access its functionality through a feature called dependency injection, which is described in Chapters 17 and 18. You’ll see how services work as the application takes shape.
Tip
Notice that I have to import Injectable from the @angular/core JavaScript module so that I can apply the @Injectable decorator. I won’t highlight all the different Angular classes that I import for the SportsStore example, but you can get full details in the chapters that describe the features they relate to.

Creating the Model Repository
The data source is responsible for providing the application with the data it requires, but access to that data is typically mediated by a repository, which is responsible for distributing that data to individual application building blocks so that the details of how the data has been obtained are kept hidden. I added a file called product.repository.ts in the SportsStore/src/app/model folder and defined the class shown in Listing 5-13.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class ProductRepository {
 private products: Product[] = [];
 private categories: string[] = [];

 constructor(private dataSource: StaticDataSource) {
 dataSource.getProducts().subscribe(data => {
 this.products = data;
 this.categories = data.map(p => p.category ?? "(None)")
 .filter((c, index, array) => array.indexOf(c) == index).sort();
 });
 }

 getProducts(category?: string): Product[] {
 return this.products
 .filter(p => category == undefined || category == p.category);
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => p.id == id);
 }

 getCategories(): string[] {
 return this.categories;
 }
}

Listing 5-13The Contents of the product.repository.ts File in the src/app/model Folder

When Angular needs to create a new instance of the repository, it will inspect the class and see that it needs a StaticDataSource object to invoke the ProductRepository constructor and create a new object. The repository constructor calls the data source’s getProducts method and then uses the subscribe method on the Observable object that is returned to receive the product data.
Creating the Feature Module
I am going to define an Angular feature model that will allow the data model functionality to be easily used elsewhere in the application. I added a file called model.module.ts in the SportsStore/src/app/model folder and defined the class shown in Listing 5-14.
Tip
Don’t worry if all the filenames seem similar and confusing. You will get used to the way that Angular applications are structured as you work through the other chapters in the book, and you will soon be able to look at the files in an Angular project and know what they are all intended to do.

import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";

@NgModule({
 providers: [ProductRepository, StaticDataSource]
})
export class ModelModule { }

Listing 5-14The Contents of the model.module.ts File in the src/app/model Folder

The @NgModule decorator is used to create feature modules, and its properties tell Angular how the module should be used. There is only one property in this module, providers, and it tells Angular which classes should be used as services for the dependency injection feature, which is described in Chapters 17 and 18. Feature modules—and the @NgModule decorator—are described in Chapter 19.
Starting the Store
Now that the data model is in place, I can start to build out the store functionality, which will let the user see the products for sale and place orders for them. The basic structure of the store will be a two-column layout, with category buttons that allow the list of products to be filtered and a table that contains the list of products, as illustrated by Figure 5-3.[image:]
Figure 5-3The basic structure of the store

In the sections that follow, I’ll use Angular features and the data in the model to create the layout shown in the figure.
Creating the Store Component and Template
As you become familiar with Angular, you will learn that features can be combined to solve the same problem in different ways. I try to introduce some variety into the SportsStore project to showcase some important Angular features, but I am going to keep things simple for the moment in the interest of being able to get the project started quickly.
With this in mind, the starting point for the store functionality will be a new component, which is a class that provides data and logic to an HTML template, which contains data bindings that generate content dynamically. I created a file called store.component.ts in the SportsStore/src/app/store folder and defined the class shown in Listing 5-15.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {

 constructor(private repository: ProductRepository) { }

 get products(): Product[] {
 return this.repository.getProducts();
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }
}

Listing 5-15The Contents of the store.component.ts File in the src/app/store Folder

The @Component decorator has been applied to the StoreComponent class, which tells Angular that it is a component. The decorator’s properties tell Angular how to apply the component to HTML content (using an element called store) and how to find the component’s template (in a file called store.component.html).
The StoreComponent class provides the logic that will support the template content. The constructor receives a ProductRepository object as an argument, provided through the dependency injection feature described in Chapters 17 and 18. The component defines products and categories properties that will be used to generate HTML content in the template, using data obtained from the repository. To provide the component with its template, I created a file called store.component.html in the SportsStore/src/app/store folder and added the HTML content shown in Listing 5-16.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 bg-info p-2">
 {{categories.length}} Categories
 </div>
 <div class="col-9 bg-success p-2">
 {{products.length}} Products
 </div>
 </div>
</div>

Listing 5-16The Contents of the store.component.html File in the src/app/store Folder

The template is simple, just to get started. Most of the elements provide the structure for the store layout and apply some Bootstrap CSS classes. There are only two Angular data bindings at the moment, which are denoted by the {{ and }} characters. These are string interpolation bindings, and they tell Angular to evaluate the binding expression and insert the result into the element. The expressions in these bindings display the number of products and categories provided by the store component.
Creating the Store Feature Module
There isn’t much store functionality in place yet, but even so, some additional work is required to wire it up to the rest of the application. To create the Angular feature module for the store functionality, I created a file called store.module.ts in the SportsStore/src/app/store folder and added the code shown in Listing 5-17.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent],
 exports: [StoreComponent]
})
export class StoreModule { }

Listing 5-17The Contents of the store.module.ts File in the src/app/store Folder

The @NgModule decorator configures the module, using the imports property to tell Angular that the store module depends on the model module as well as BrowserModule and FormsModule, which contain the standard Angular features for web applications and for working with HTML form elements. The decorator uses the declarations property to tell Angular about the StoreComponent class, and the exports property tells Angular the class can be also used in other parts of the application, which is important because it will be used by the root module.
Updating the Root Component and Root Module
Applying the basic model and store functionality requires updating the application’s root module to import the two feature modules and also requires updating the root module’s template to add the HTML element to which the component in the store module will be applied. Listing 5-18 shows the change to the root component’s template.import { Component } from "@angular/core";

@Component({
 selector: "app",
 template: "<store></store>"
})
export class AppComponent { }

Listing 5-18Adding an Element in the app.component.ts File in the src/app Folder

The store element replaces the previous content in the root component’s template and corresponds to the value of the selector property of the @Component decorator in Listing 5-15. Listing 5-19 shows the change required to the root module so that Angular loads the feature module that contains the store functionality.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { StoreModule } from "./store/store.module";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, StoreModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 5-19Importing Feature Modules in the app.module.ts File in the src/app Folder

When you save the changes to the root module, Angular will have all the details it needs to load the application and display the content from the store module, as shown in Figure 5-4.
If you don’t see the expected result, then stop the Angular development tools and use the ng serve command to start them again. This will repeat the build process for the project and should reflect the changes you have made.
All the building blocks created in the previous section work together to display the—admittedly simple—content, which shows how many products there are and how many categories they fit in to.[image:]
Figure 5-4Basic features in the SportsStore application

Adding Store Features the Product Details
The nature of Angular development begins with a slow start as the foundation of the project is put in place and the basic building blocks are created. But once that’s done, new features can be created relatively easily. In the sections that follow, I add features to the store so that the user can see the products on offer.
Displaying the Product Details
The obvious place to start is to display details for the products so that the customer can see what’s on offer. Listing 5-20 adds HTML elements to the store component’s template with data bindings that generate content for each product provided by the component. <div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 bg-info p-2">
 {{categories.length}} Categories
 </div>
 <div class="col-9 p-2 text-dark">
 <div *ngFor="let product of products" class="card m-1 p-1 bg-light">
 <h4>
 {{product.name}}

 {{ product.price | currency:"USD":"symbol":"2.2-2" }}

 </h4>
 <div class="card-text bg-white p-1">{{product.description}}</div>
 </div>
 </div>
 </div>
</div>

Listing 5-20Adding Elements in the store.component.html File in the src/app/store Folder

Most of the elements control the layout and appearance of the content. The most important change is the addition of an Angular data binding expression....
<div *ngFor="let product of products" class="card m-1 p-1 bg-light">
...

This is an example of a directive, which transforms the HTML element it is applied to. This specific directive is called ngFor, and it transforms the div element by duplicating it for each object returned by the component’s products property. Angular includes a range of built-in directives that perform the most commonly required tasks, as described in Chapter 11.
As it duplicates the div element, the current object is assigned to a variable called product, which allows it to be referred to in other data bindings, such as this one, which inserts the value of the current product’s name description property as the content of the div element:...
<div class="card-text p-1 bg-white">{{product.description}}</div>
...

Not all data in an application’s data model can be displayed directly to the user. Angular includes a feature called pipes, which are classes used to transform or prepare a data value for its use in a data binding. There are several built-in pipes included with Angular, including the currency pipe, which formats number values as currencies, like this:...
{{ product.price | currency:"USD":"symbol":"2.2-2" }}
...

The syntax for applying pipes can be a little awkward, but the expression in this binding tells Angular to format the price property of the current product using the currency pipe, with the currency conventions from the United States. Save the changes to the template, and you will see a list of the products in the data model displayed as a long list, as illustrated in Figure 5-5.[image:]
Figure 5-5Displaying product information

Adding Category Selection
Adding support for filtering the list of products by category requires preparing the store component so that it keeps track of which category the user wants to display and requires changing the way that data is retrieved to use that category, as shown in Listing 5-21. import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {
 selectedCategory: string | undefined;

 constructor(private repository: ProductRepository) { }

 get products(): Product[] {
 return this.repository.getProducts(this.selectedCategory);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }
}

Listing 5-21Adding Category Filtering in the store.component.ts File in the src/app/store Folder

The changes are simple because they build on the foundation that took so long to create at the start of the chapter. The selectedCategory property is assigned the user’s choice of category (where undefined means all categories) and is used in the updateData method as an argument to the getProducts method, delegating the filtering to the data source. The changeCategory method brings these two members together in a method that can be invoked when the user makes a category selection.
Listing 5-22 shows the corresponding changes to the component’s template to provide the user with the set of buttons that change the selected category and show which category has been picked.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 p-2">
 <div class="d-grid gap-2">
 <button class="btn btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 </div>
 </div>
 <div class="col-9 p-2 text-dark">
 <div *ngFor="let product of products" class="card m-1 p-1 bg-light">
 <h4>
 {{product.name}}

 {{ product.price | currency:"USD":"symbol":"2.2-2" }}

 </h4>
 <div class="card-text bg-white p-1">{{product.description}}</div>
 </div>
 </div>
 </div>
</div>

Listing 5-22Adding Category Buttons in the store.component.html File in the src/app/store Folder

There are two new button elements in the template. The first is a Home button, and it has an event binding that invokes the component’s changeCategory method when the button is clicked. No argument is provided to the method, which has the effect of setting the category to null and selecting all the products.
The ngFor binding has been applied to the other button element, with an expression that will repeat the element for each value in the array returned by the component’s categories property. The button has a click event binding whose expression calls the changeCategory method to select the current category, which will filter the products displayed to the user. There is also a class binding, which adds the button element to the active class when the category associated with the button is the selected category. This provides the user with visual feedback when the categories are filtered, as shown in Figure 5-6.[image:]
Figure 5-6Selecting product categories

Adding Product Pagination
Filtering the products by category has helped make the product list more manageable, but a more typical approach is to break the list into smaller sections and present each of them as a page, along with navigation buttons that move between the pages. Listing 5-23 enhances the store component so that it keeps track of the current page and the number of items on a page. import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {
 selectedCategory: string | undefined;
 productsPerPage = 4;
 selectedPage = 1;

 constructor(private repository: ProductRepository) { }

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageNumbers(): number[] {
 return Array(Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage))
 .fill(0).map((x, i) => i + 1);
 }
}

Listing 5-23Adding Pagination Support in the store.component.ts File in the src/app/store Folder

There are two new features in this listing. The first is the ability to get a page of products, and the second is to change the size of the pages, allowing the number of products that each page contains to be altered.
There is an oddity that the component has to work around. There is a limitation in the built-in ngFor directive that Angular provides, which can generate content only for the objects in an array or a collection, rather than using a counter. Since I need to generate numbered page navigation buttons, this means I need to create an array that contains the numbers I need, like this:...
return Array(Math.ceil(this.repository.getProducts(this.selectedCategory).length
 / this.productsPerPage)).fill(0).map((x, i) => i + 1);
...

This statement creates a new array, fills it with the value 0, and then uses the map method to generate a new array with the number sequence. This works well enough to implement the pagination feature, but it feels awkward, and I demonstrate a better approach in the next section. Listing 5-24 shows the changes to the store component’s template to implement the pagination feature.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 p-2">
 <div class="d-grid gap-2">
 <button class="btn btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 </div>
 </div>
 <div class="col-9 p-2 text-dark">
 <div *ngFor="let product of products" class="card m-1 p-1 bg-light">
 <h4>
 {{product.name}}

 {{ product.price | currency:"USD":"symbol":"2.2-2" }}

 </h4>
 <div class="card-text bg-white p-1">{{product.description}}</div>
 </div>
 <div class="form-inline float-start mr-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($any($event).target.value)">
 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>
 <div class="btn-group float-end">
 <button *ngFor="let page of pageNumbers" (click)="changePage(page)"
 class="btn btn-outline-primary"
 [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
 </div>
 </div>
</div>

Listing 5-24Adding Pagination in the store.component.html File in the src/app/store Folder

The new elements add a select element that allows the size of the page to be changed and a set of buttons that navigate through the product pages. The new elements have data bindings to wire them up to the properties and methods provided by the component. The result is a more manageable set of products, as shown in Figure 5-7.
Tip
The select element in Listing 5-24 is populated with option elements that are statically defined, rather than created using data from the component. One impact of this is that when the selected value is passed to the changePageSize method, it will be a string value, which is why the argument is parsed to a number before being used to set the page size in Listing 5-23. Care must be taken when receiving data values from HTML elements to ensure they are of the expected type. TypeScript type annotations don’t help in this situation because the data binding expression is evaluated at runtime, long after the TypeScript compiler has generated JavaScript code that doesn’t contain the extra type information.

[image:]
Figure 5-7Pagination for products

Creating a Custom Directive
In this section, I am going to create a custom directive so that I don’t have to generate an array full of numbers to create the page navigation buttons. Angular provides a good range of built-in directives, but it is a simple process to create your own directives to solve problems that are specific to your application or to support features that the built-in directives don’t have. I added a file called counter.directive.ts in the src/app/store folder and used it to define the class shown in Listing 5-25. import {
 Directive, ViewContainerRef, TemplateRef, Input, SimpleChanges
} from "@angular/core";

@Directive({
 selector: "[counterOf]"
})
export class CounterDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {
 }

 @Input("counterOf")
 counter: number = 0;

 ngOnChanges(changes: SimpleChanges) {
 this.container.clear();
 for (let i = 0; i < this.counter; i++) {
 this.container.createEmbeddedView(this.template,
 new CounterDirectiveContext(i + 1));
 }
 }
}

class CounterDirectiveContext {
 constructor(public $implicit: any) { }
}

Listing 5-25The Contents of the counter.directive.ts File in the src/app/store Folder

This is an example of a structural directive, which is described in detail in Chapter 14. This directive is applied to elements through a counter property and relies on special features that Angular provides for creating content repeatedly, just like the built-in ngFor directive. In this case, rather than yield each object in a collection, the custom directive yields a series of numbers that can be used to create the page navigation buttons.
Tip
This directive deletes all the content it has created and starts again when the number of pages changes. This can be an expensive process in more complex directives, and I explain how to improve performance in Chapter 14.

To use the directive, it must be added to the declarations property of its feature module, as shown in Listing 5-26.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective],
 exports: [StoreComponent]
})
export class StoreModule { }

Listing 5-26Registering the Custom Directive in the store.module.ts File in the src/app/store Folder

Now that the directive has been registered, it can be used in the store component’s template to replace the ngFor directive, as shown in Listing 5-27.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 p-2">
 <div class="d-grid gap-2">
 <button class="btn btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 </div>
 </div>
 <div class="col-9 p-2 text-dark">
 <div *ngFor="let product of products" class="card m-1 p-1 bg-light">
 <h4>
 {{product.name}}

 {{ product.price | currency:"USD":"symbol":"2.2-2" }}

 </h4>
 <div class="card-text bg-white p-1">{{product.description}}</div>
 </div>
 <div class="form-inline float-start mr-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($any($event).target.value)">
 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>
 <div class="btn-group float-end">
 <button *counter="let page of pageCount" (click)="changePage(page)"
 class="btn btn-outline-primary"
 [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
 </div>
 </div>
</div>

Listing 5-27Replacing the Built-in Directive in the store.component.html File in the src/app/store Folder

The new data binding relies on a property called pageCount to configure the custom directive. In Listing 5-28, I have replaced the array of numbers with a simple number that provides the expression value.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {
 selectedCategory: string | undefined;
 productsPerPage = 4;
 selectedPage = 1;

 constructor(private repository: ProductRepository) { }

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 // get pageNumbers(): number[] {
 // return Array(Math.ceil(this.repository
 // .getProducts(this.selectedCategory).length / this.productsPerPage))
 // .fill(0).map((x, i) => i + 1);
 // }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }
}

Listing 5-28Supporting the Custom Directive in the store.component.ts File in the src/app/store Folder

There is no visual change to the SportsStore application, but this section has demonstrated that it is possible to supplement the built-in Angular functionality with custom code that is tailored to the needs of a specific project.
Summary
In this chapter, I started the SportsStore project. The early part of the chapter was spent creating the foundation for the project, including creating the root building blocks for the application and starting work on the feature modules. Once the foundation was in place, I was able to rapidly add features to display the dummy model data to the user, add pagination, and filter the products by category. I finished the chapter by creating a custom directive to demonstrate how the built-in features provided by Angular can be supplemented by custom code. In the next chapter, I continue to build the SportsStore application.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_6

6. SportsStore: Orders and Checkout

Adam Freeman1
(1)London, UK

In this chapter, I continue adding features to the SportsStore application that I created in Chapter 5. I add support for a shopping cart and a checkout process and replace the dummy data with the data from the RESTful web service.
Preparing the Example Application
No preparation is required for this chapter, which continues using the SportsStore project from Chapter 5. To start the RESTful web service, open a command prompt and run the following command in the SportsStore folder:npm run json

Open a second command prompt and run the following command in the SportsStore folder to start the development tools and HTTP server:ng serve --open

Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Creating the Cart
The user needs a cart into which products can be placed and used to start the checkout process. In the sections that follow, I’ll add a cart to the application and integrate it into the store so that the user can select the products they want.
Creating the Cart Model
The starting point for the cart feature is a new model class that will be used to gather together the products that the user has selected. I added a file called cart.model.ts in the src/app/model folder and used it to define the class shown in Listing 6-1.import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class Cart {
 public lines: CartLine[] = [];
 public itemCount: number = 0;
 public cartPrice: number = 0;

 addLine(product: Product, quantity: number = 1) {
 let line = this.lines.find(line => line.product.id == product.id);
 if (line != undefined) {
 line.quantity += quantity;
 } else {
 this.lines.push(new CartLine(product, quantity));
 }
 this.recalculate();
 }

 updateQuantity(product: Product, quantity: number) {
 let line = this.lines.find(line => line.product.id == product.id);
 if (line != undefined) {
 line.quantity = Number(quantity);
 }
 this.recalculate();
 }

 removeLine(id: number) {
 let index = this.lines.findIndex(line => line.product.id == id);
 this.lines.splice(index, 1);
 this.recalculate();
 }

 clear() {
 this.lines = [];
 this.itemCount = 0;
 this.cartPrice = 0;
 }

 private recalculate() {
 this.itemCount = 0;
 this.cartPrice = 0;
 this.lines.forEach(l => {
 this.itemCount += l.quantity;
 this.cartPrice += l.lineTotal;
 })
 }
}

export class CartLine {

 constructor(public product: Product,
 public quantity: number) {}

 get lineTotal() {
 return this.quantity * (this.product.price ?? 0);
 }
}

Listing 6-1The Contents of the cart.model.ts File in the src/app/model Folder

Individual product selections are represented as an array of CartLine objects, each of which contains a Product object and a quantity. The Cart class keeps track of the total number of items that have been selected and their total cost.
There should be a single Cart object used throughout the entire application, ensuring that any part of the application can access the user’s product selections. To achieve this, I am going to make the Cart a service, which means that Angular will take responsibility for creating an instance of the Cart class and will use it when it needs to create a component that has a Cart constructor argument. This is another use of the Angular dependency injection feature, which can be used to share objects throughout an application and which is described in detail in Chapters 17 and 18. The @Injectable decorator, which has been applied to the Cart class in the listing, indicates that this class will be used as a service.
Note
Strictly speaking, the @Injectable decorator is required only when a class has its own constructor arguments to resolve, but it is a good idea to apply it anyway because it serves as a signal that the class is intended for use as a service.

Listing 6-2 registers the Cart class as a service in the providers property of the model feature module class.import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";

@NgModule({
 providers: [ProductRepository, StaticDataSource, Cart]
})
export class ModelModule { }

Listing 6-2Registering the Cart as a Service in the model.module.ts File in the src/app/model Folder

Creating the Cart Summary Components
Components are the essential building blocks for Angular applications because they allow discrete units of code and content to be easily created. The SportsStore application will show users a summary of their product selections in the title area of the page, which I am going to implement by creating a component. I added a file called cartSummary.component.ts in the src/app/store folder and used it to define the component shown in Listing 6-3. import { Component } from "@angular/core";
import { Cart } from "../model/cart.model";

@Component({
 selector: "cart-summary",
 templateUrl: "cartSummary.component.html"
})
export class CartSummaryComponent {

 constructor(public cart: Cart) { }
}

Listing 6-3The Contents of the cartSummary.component.ts File in the src/app/store Folder

When Angular needs to create an instance of this component, it will have to provide a Cart object as a constructor argument, using the service that I configured in the previous section by adding the Cart class to the feature module’s providers property. The default behavior for services means that a single Cart object will be created and shared throughout the application, although there are different service behaviors available (as described in Chapter 18).
To provide the component with a template, I created an HTML file called cartSummary.component.html in the same folder as the component class file and added the markup shown in Listing 6-4.<div class="float-end">
 <small class="fs-6">
 Your cart:
 0">
 {{ cart.itemCount }} item(s)
 {{ cart.cartPrice | currency:"USD":"symbol":"2.2-2" }}

 (empty)

 </small>
 <button class="btn btn-sm bg-dark text-white" [disabled]="cart.itemCount == 0">
 <i class="fa fa-shopping-cart"></i>
 </button>
</div>

Listing 6-4The Contents of the cartSummary.component.html File in the src/app/store Folder

This template uses the Cart object provided by its component to display the number of items in the cart and the total cost. There is also a button that will start the checkout process when I add it to the application later in the chapter.
Tip
The button element in Listing 6-4 is styled using classes defined by Font Awesome, which is one of the packages in the package.json file from Chapter 5. This open-source package provides excellent support for icons in web applications, including the shopping cart I need for the SportsStore application. See http://fontawesome.io for details.

Listing 6-5 registers the new component with the store feature module, in preparation for using it in the next section.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartSummary.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent],
 exports: [StoreComponent]
})
export class StoreModule { }

Listing 6-5Registering the Component in the store.module.ts File in the src/app/store Folder

Integrating the Cart into the Store
The store component is the key to integrating the cart and the cart widget into the application. Listing 6-6 updates the store component so that its constructor has a Cart parameter and defines a method that will add a product to the cart.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";
import { Cart } from "../model/cart.model";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {
 selectedCategory: string | undefined;
 productsPerPage = 4;
 selectedPage = 1;

 constructor(private repository: ProductRepository,
 private cart: Cart) { }

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }

 addProductToCart(product: Product) {
 this.cart.addLine(product);
 }
}

Listing 6-6Adding Cart Support in the store.component.ts File in the src/app/store Folder

To complete the integration of the cart into the store component, Listing 6-7 adds the element that will apply the cart summary component to the store component’s template and adds a button to each product description with the event binding that calls the addProductToCart method.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">

 SPORTS STORE
 <cart-summary></cart-summary>

 </div>
 </div>
 <div class="row text-white">
 <div class="col-3 p-2">
 <div class="d-grid gap-2">
 <button class="btn btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 </div>
 </div>
 <div class="col-9 p-2 text-dark">
 <div *ngFor="let product of products" class="card m-1 p-1 bg-light">
 <h4>
 {{product.name}}

 {{ product.price | currency:"USD":"symbol":"2.2-2" }}

 </h4>
 <div class="card-text bg-white p-1">
 {{product.description}}
 <button class="btn btn-success btn-sm float-end"
 (click)="addProductToCart(product)">
 Add To Cart
 </button>
 </div>
 </div>
 <div class="form-inline float-start mr-1">
 <select class="form-control" [value]="productsPerPage"
 (change)="changePageSize($any($event).target.value)">
 <option value="3">3 per Page</option>
 <option value="4">4 per Page</option>
 <option value="6">6 per Page</option>
 <option value="8">8 per Page</option>
 </select>
 </div>
 <div class="btn-group float-end">
 <button *counter="let page of pageCount" (click)="changePage(page)"
 class="btn btn-outline-primary"
 [class.active]="page == selectedPage">
 {{page}}
 </button>
 </div>
 </div>
 </div>
</div>

Listing 6-7Applying the Component in the store.component.html File in the src/app/store Folder

The result is a button for each product that adds it to the cart, as shown in Figure 6-1. The full cart process isn’t complete yet, but you can see the effect of each addition in the cart summary at the top of the page.[image:]
Figure 6-1Adding cart support to the SportsStore application

Notice how clicking one of the Add To Cart buttons updates the summary component’s content automatically. This happens because there is a single Cart object being shared between two components, and changes made by one component are reflected when Angular evaluates the data binding expressions in the other component.
Adding URL Routing
Most applications need to show different content to the user at different times. In the case of the SportsStore application, when the user clicks one of the Add To Cart buttons, they should be shown a detailed view of their selected products and given the chance to start the checkout process.
Angular supports a feature called URL routing, which uses the current URL displayed by the browser to select the components that are displayed to the user. This is an approach that makes it easy to create applications whose components are loosely coupled and easy to change without needing corresponding modifications elsewhere in the applications. URL routing also makes it easy to change the path that a user follows through an application.
For the SportsStore application, I am going to add support for three different URLs, which are described in Table 6-1. This is a simple configuration, but the routing system has a lot of features, which are described in detail in Chapters 24 to 26. Table 6-1The URLs Supported by the SportsStore Application

	URL
	Description

	/store
	This URL will display the list of products.

	/cart
	This URL will display the user’s cart in detail.

	/checkout
	This URL will display the checkout process.

In the sections that follow, I create placeholder components for the SportsStore cart and order checkout stages and then integrate them into the application using URL routing. Once the URLs are implemented, I will return to the components and add more useful features.
Creating the Cart Detail and Checkout Components
Before adding URL routing to the application, I need to create the components that will be displayed by the /cart and /checkout URLs. I only need some basic placeholder content to get started, just to make it obvious which component is being displayed. I started by adding a file called cartDetail.component.ts in the src/app/store folder and defined the component shown in Listing 6-8.import { Component } from "@angular/core";

@Component({
 template: `<div><h3 class="bg-info p-1 text-white">Cart Detail Component</h3></div>`
})
export class CartDetailComponent {}

Listing 6-8The Contents of the cartDetail.component.ts File in the src/app/store Folder

Next, I added a file called checkout.component.ts in the src/app/store folder and defined the component shown in Listing 6-9.import { Component } from "@angular/core";

@Component({
 template: `<div><h3 class="bg-info p-1 text-white">Checkout Component</h3></div>`
})
export class CheckoutComponent { }

Listing 6-9The Contents of the checkout.component.ts File in the src/app/store Folder

This component follows the same pattern as the cart component and displays a placeholder message. Listing 6-10 registers the components in the store feature module and adds them to the exports property, which means they can be used elsewhere in the application.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartSummary.component";
import { CartDetailComponent } from "./cartDetail.component";
import { CheckoutComponent } from "./checkout.component";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent,
 CartDetailComponent, CheckoutComponent],
 exports: [StoreComponent, CartDetailComponent, CheckoutComponent]
})
export class StoreModule { }

Listing 6-10Registering Components in the store.module.ts File in the src/app/store Folder

Creating and Applying the Routing Configuration
Now that I have a range of components to display, the next step is to create the routing configuration that tells Angular how to map URLs into components. Each mapping of a URL to a component is known as a URL route or just a route. In Part 3, where I create more complex routing configurations, I define the routes in a separate file, but for this project, I am going to follow a simpler approach and define the routes within the @NgModule decorator of the application’s root module, as shown in Listing 6-11.
Tip
The Angular routing feature requires a base element in the HTML document, which provides the base URL against which routes are applied. This element was added to the index.html file by the ng new command when I created the SportsStore project in Chapter 5. If you omit the element, Angular will report an error and be unable to apply the routes.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 { path: "store", component: StoreComponent },
 { path: "cart", component: CartDetailComponent },
 { path: "checkout", component: CheckoutComponent },
 { path: "**", redirectTo: "/store" }
])],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 6-11Creating the Routing Configuration in the app.module.ts File in the src/app Folder

The RouterModule.forRoot method is passed a set of routes, each of which maps a URL to a component. The first three routes in the listing match the URLs from Table 6-1. The final route is a wildcard that redirects any other URL to /store, which will display StoreComponent.
When the routing feature is used, Angular looks for the router-outlet element, which defines the location in which the component that corresponds to the current URL should be displayed. Listing 6-12 replaces the store element in the root component’s template with the router-outlet element.import { Component } from "@angular/core";

@Component({
 selector: "app",
 template: "<router-outlet></router-outlet>"
})
export class AppComponent { }

Listing 6-12Defining the Routing Target in the app.component.ts File in the src/app Folder

Angular will apply the routing configuration when you save the changes and the browser reloads the HTML document. The content displayed in the browser window hasn’t changed, but if you examine the browser’s URL bar, you will be able to see that the routing configuration has been applied, as shown in Figure 6-2.[image:]
Figure 6-2The effect of URL routing

Navigating Through the Application
With the routing configuration in place, it is time to add support for navigating between components by changing the browser’s URL. The URL routing feature relies on a JavaScript API provided by the browser, which means the user can’t simply type the target URL into the browser’s URL bar. Instead, the navigation has to be performed by the application, either by using JavaScript code in a component or other building block or by adding attributes to HTML elements in the template.
When the user clicks one of the Add To Cart buttons, the cart detail component should be shown, which means that the application should navigate to the /cart URL. Listing 6-13 adds navigation to the component method that is invoked when the user clicks the button.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";
import { Cart } from "../model/cart.model";
import { Router } from "@angular/router";

@Component({
 selector: "store",
 templateUrl: "store.component.html"
})
export class StoreComponent {
 selectedCategory: string | undefined;
 productsPerPage = 4;
 selectedPage = 1;

 constructor(private repository: ProductRepository,
 private cart: Cart,
 private router: Router) { }

 get products(): Product[] {
 let pageIndex = (this.selectedPage - 1) * this.productsPerPage
 return this.repository.getProducts(this.selectedCategory)
 .slice(pageIndex, pageIndex + this.productsPerPage);
 }

 get categories(): string[] {
 return this.repository.getCategories();
 }

 changeCategory(newCategory?: string) {
 this.selectedCategory = newCategory;
 }

 changePage(newPage: number) {
 this.selectedPage = newPage;
 }

 changePageSize(newSize: number) {
 this.productsPerPage = Number(newSize);
 this.changePage(1);
 }

 get pageCount(): number {
 return Math.ceil(this.repository
 .getProducts(this.selectedCategory).length / this.productsPerPage)
 }

 addProductToCart(product: Product) {
 this.cart.addLine(product);
 this.router.navigateByUrl("/cart");
 }
}

Listing 6-13Navigating Using JavaScript in the store.component.ts File in the app/src/store Folder

The constructor has a Router parameter, which is provided by Angular through the dependency injection feature when a new instance of the component is created. In the addProductToCart method, the Router.navigateByUrl method is used to navigate to the /cart URL.
Navigation can also be done by adding the routerLink attribute to elements in the template. In Listing 6-14, the routerLink attribute has been applied to the cart button in the cart summary component’s template.<div class="float-end">
 <small class="fs-6">
 Your cart:
 0">
 {{ cart.itemCount }} item(s)
 {{ cart.cartPrice | currency:"USD":"symbol":"2.2-2" }}

 (empty)

 </small>
 <button class="btn btn-sm bg-dark text-white"
 [disabled]="cart.itemCount == 0" routerLink="/cart">
 <i class="fa fa-shopping-cart"></i>
 </button>
</div>

Listing 6-14Adding Navigation in the cartSummary.component.html File in the src/app/store Folder

The value specified by the routerLink attribute is the URL that the application will navigate to when the button is clicked. This particular button is disabled when the cart is empty, so it will perform the navigation only when the user has added a product to the cart.
To add support for the routerLink attribute, the RouterModule module must be imported into the feature module, as shown in Listing 6-15.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { StoreComponent } from "./store.component";
import { CounterDirective } from "./counter.directive";
import { CartSummaryComponent } from "./cartSummary.component";
import { CartDetailComponent } from "./cartDetail.component";
import { CheckoutComponent } from "./checkout.component";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [ModelModule, BrowserModule, FormsModule, RouterModule],
 declarations: [StoreComponent, CounterDirective, CartSummaryComponent,
 CartDetailComponent, CheckoutComponent],
 exports: [StoreComponent, CartDetailComponent, CheckoutComponent]
})
export class StoreModule { }

Listing 6-15Importing the Router Module in the store.module.ts File in the src/app/store Folder

To see the effect of the navigation, save the changes of the files, and once the browser has reloaded the HTML document, click one of the Add To Cart buttons. The browser will navigate to the /cart URL, as shown in Figure 6-3.[image:]
Figure 6-3Using URL routing

Guarding the Routes
Remember that navigation can be performed only by the application. If you change the URL directly in the browser’s URL bar, the browser will request the URL you enter from the web server. The Angular development server that is responding to HTTP requests will respond to any URL that doesn’t correspond to a file by returning the contents of index.html. This is generally a useful behavior because it means you won’t receive an HTTP error when the browser’s reload button is clicked. But it can cause problems if the application expects the user to navigate through the application following a specific path.
As an example, if you click one of the Add To Cart buttons and then click the browser’s reload button, the HTTP server will return the contents of the index.html file, and Angular will immediately jump to the cart detail component, skipping over the part of the application that allows the user to select products.
For some applications, being able to start using different URLs makes sense, but if that’s not the case, then Angular supports route guards, which are used to govern the routing system.
To prevent the application from starting with the /cart or /order URL, I added a file called storeFirst.guard.ts in the SportsStore/src/app folder and defined the class shown in Listing 6-16.import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { StoreComponent } from "./store/store.component";

@Injectable()
export class StoreFirstGuard {
 private firstNavigation = true;

 constructor(private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): boolean {
 if (this.firstNavigation) {
 this.firstNavigation = false;
 if (route.component != StoreComponent) {
 this.router.navigateByUrl("/");
 return false;
 }
 }
 return true;
 }
}

Listing 6-16The Contents of the storeFirst.guard.ts File in the src/app Folder

There are different ways to guard routes, as described in Chapter 26, and this is an example of a guard that prevents a route from being activated, which is implemented as a class that defines a canActivate method. The implementation of this method uses the context objects that Angular provides that describe the route that is about to be navigated to and checks to see whether the target component is a StoreComponent. If this is the first time that the canActivate method has been called and a different component is about to be used, then the Router.navigateByUrl method is used to navigate to the root URL.
The @Injectable decorator has been applied in the listing because route guards are services. Listing 6-17 registers the guard as a service using the root module’s providers property and guards each route using the canActivate property.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { StoreModule } from "./store/store.module";

import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";
import { StoreFirstGuard } from "./storeFirst.guard";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 {
 path: "store", component: StoreComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "cart", component: CartDetailComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "checkout", component: CheckoutComponent,
 canActivate: [StoreFirstGuard]
 },
 { path: "**", redirectTo: "/store" }
])],
 providers: [StoreFirstGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 6-17Guarding Routes in the app.module.ts File in the src/app Folder

If you reload the browser after clicking one of the Add To Cart buttons now, then you will see the browser is automatically directed back to safety, as shown in Figure 6-4.[image:]
Figure 6-4Guarding routes

Completing the Cart Detail Feature
Now that the application has navigation support, it is time to complete the view that details the contents of the user’s cart. Listing 6-18 removes the inline template from the cart detail component, specifies an external template in the same directory, and adds a Cart parameter to the constructor, which will be accessible in the template through a property called cart.import { Component } from "@angular/core";
import { Cart } from "../model/cart.model";

@Component({
 templateUrl: "cartDetail.component.html"
})
export class CartDetailComponent {

 constructor(public cart: Cart) { }
}

Listing 6-18Changing the Template in the cartDetail.component.ts File in the src/app/store Folder

To complete the cart detail feature, I created an HTML file called cartDetail.component.html in the src/app/store folder and added the content shown in Listing 6-19.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
 <div class="row">
 <div class="col mt-2">
 <h2 class="text-center">Your Cart</h2>
 <table class="table table-bordered table-striped p-2">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Product</th>
 <th class="text-end">Price</th>
 <th class="text-end">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngIf="cart.lines.length == 0">
 <td colspan="4" class="text-center">
 Your cart is empty
 </td>
 </tr>
 <tr *ngFor="let line of cart.lines">
 <td>
 <input type="number" class="form-control-sm"
 style="width:5em" [value]="line.quantity"
 (change)="cart.updateQuantity(line.product,
 $any($event).target.value)" />
 </td>
 <td>{{line.product.name}}</td>
 <td class="text-end">
 {{line.product.price | currency:"USD":"symbol":"2.2-2"}}
 </td>
 <td class="text-end">
 {{(line.lineTotal) | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-sm btn-danger"
 (click)="cart.removeLine(line.product.id ?? 0)">
 Remove
 </button>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-end">Total:</td>
 <td class="text-end">
 {{cart.cartPrice | currency:"USD":"symbol":"2.2-2"}}
 </td>
 </tr>
 </tfoot>
 </table>
 </div>
 </div>
 <div class="row">
 <div class="col">
 <div class="text-center">
 <button class="btn btn-primary m-1" routerLink="/store">
 Continue Shopping
 </button>
 <button class="btn btn-secondary m-1" routerLink="/checkout"
 [disabled]="cart.lines.length == 0">
 Checkout
 </button>
 </div>
 </div>
 </div>
</div>

Listing 6-19The Contents of the cartDetail.component.html File in the src/app/store Folder

This template displays a table showing the user’s product selections. For each product, there is an input element that can be used to change the quantity, and there is a Remove button that deletes it from the cart. There are also two navigation buttons that allow the user to return to the list of products or continue to the checkout process, as shown in Figure 6-5. The combination of the Angular data bindings and the shared Cart object means that any changes made to the cart take immediate effect, recalculating the prices; and if you click the Continue Shopping button, the changes are reflected in the cart summary component shown above the list of products.
Tip
If you receive an error after you have saved the template, then stop and restart the ng serve command.

[image:]
Figure 6-5Completing the cart detail feature

Processing Orders
Being able to receive orders from customers is the most important aspect of an online store. In the sections that follow, I build on the application to add support for receiving the final details from the user and checking them out. To keep the process simple, I am going to avoid dealing with payment and fulfillment platforms, which are generally back-end services that are not specific to Angular applications.
Extending the Model
To describe orders placed by users, I added a file called order.model.ts in the src/app/model folder and defined the code shown in Listing 6-20.import { Injectable } from "@angular/core";
import { Cart } from "./cart.model";

@Injectable()
export class Order {
 public id?: number;
 public name?: string;
 public address?: string;
 public city?: string;
 public state?: string;
 public zip?: string;
 public country?: string;
 public shipped: boolean = false;

 constructor(public cart: Cart) { }

 clear() {
 this.id = undefined;
 this.name = this.address = this.city = undefined;
 this.state = this.zip = this.country = undefined;
 this.shipped = false;
 this.cart.clear();
 }
}

Listing 6-20The Contents of the order.model.ts File in the src/app/model Folder

The Order class will be another service, which means there will be one instance shared throughout the application. When Angular creates the Order object, it will detect the Cart constructor parameter and provide the same Cart object that is used elsewhere in the application.
Updating the Repository and Data Source
To handle orders in the application, I need to extend the repository and the data source so they can receive Order objects. Listing 6-21 adds a method to the data source that receives an order. Since this is still the dummy data source, the method simply produces a JSON string from the order and writes it to the JavaScript console. I’ll do something more useful with the objects in the next section when I create a data source that uses HTTP requests to communicate with the RESTful web service.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Observable, from } from "rxjs";
import { Order } from "./order.model";

@Injectable()
export class StaticDataSource {
 private products: Product[] = [
 new Product(1, "Product 1", "Category 1", "Product 1 (Category 1)", 100),
 new Product(2, "Product 2", "Category 1", "Product 2 (Category 1)", 100),
 new Product(3, "Product 3", "Category 1", "Product 3 (Category 1)", 100),
 new Product(4, "Product 4", "Category 1", "Product 4 (Category 1)", 100),
 new Product(5, "Product 5", "Category 1", "Product 5 (Category 1)", 100),
 new Product(6, "Product 6", "Category 2", "Product 6 (Category 2)", 100),
 new Product(7, "Product 7", "Category 2", "Product 7 (Category 2)", 100),
 new Product(8, "Product 8", "Category 2", "Product 8 (Category 2)", 100),
 new Product(9, "Product 9", "Category 2", "Product 9 (Category 2)", 100),
 new Product(10, "Product 10", "Category 2", "Product 10 (Category 2)", 100),
 new Product(11, "Product 11", "Category 3", "Product 11 (Category 3)", 100),
 new Product(12, "Product 12", "Category 3", "Product 12 (Category 3)", 100),
 new Product(13, "Product 13", "Category 3", "Product 13 (Category 3)", 100),
 new Product(14, "Product 14", "Category 3", "Product 14 (Category 3)", 100),
 new Product(15, "Product 15", "Category 3", "Product 15 (Category 3)", 100),
];

 getProducts(): Observable<Product[]> {
 return from([this.products]);
 }

 saveOrder(order: Order): Observable<Order> {
 console.log(JSON.stringify(order));
 return from([order]);
 }
}

Listing 6-21Handling Orders in the static.datasource.ts File in the src/app/model Folder

To manage orders, I added a file called order.repository.ts to the src/app/model folder and used it to define the class shown in Listing 6-22. There is only one method in the order repository at the moment, but I will add more functionality in Chapter 7 when I create the administration features.
Tip
You don’t have to use different repositories for each model type in the application, but I often do so because a single class responsible for multiple model types can become complex and difficult to maintain.

import { Injectable } from "@angular/core";
import { Observable } from "rxjs";
import { Order } from "./order.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class OrderRepository {
 private orders: Order[] = [];

 constructor(private dataSource: StaticDataSource) {}

 getOrders(): Order[] {
 return this.orders;
 }

 saveOrder(order: Order): Observable<Order> {
 return this.dataSource.saveOrder(order);
 }
}

Listing 6-22The Contents of the order.repository.ts File in the src/app/model Folder

Updating the Feature Module
Listing 6-23 registers the Order class and the new repository as services using the providers property of the model feature module.import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";

@NgModule({
 providers: [ProductRepository, StaticDataSource, Cart, Order, OrderRepository]
})
export class ModelModule { }

Listing 6-23Registering Services in the model.module.ts File in the src/app/model Folder

Collecting the Order Details
The next step is to gather the details from the user required to complete the order. Angular includes built-in directives for working with HTML forms and validating their contents. Listing 6-24 prepares the checkout component, switching to an external template, receiving the Order object as a constructor parameter, and providing some additional support to help the template.import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { OrderRepository } from "../model/order.repository";
import { Order } from "../model/order.model";

@Component({
 templateUrl: "checkout.component.html",
 styleUrls: ["checkout.component.css"]
})
export class CheckoutComponent {
 orderSent: boolean = false;
 submitted: boolean = false;

 constructor(public repository: OrderRepository,
 public order: Order) {}

 submitOrder(form: NgForm) {
 this.submitted = true;
 if (form.valid) {
 this.repository.saveOrder(this.order).subscribe(order => {
 this.order.clear();
 this.orderSent = true;
 this.submitted = false;
 });
 }
 }
}

Listing 6-24Preparing for a Form in the checkout.component.ts File in the src/app/store Folder

The submitOrder method will be invoked when the user submits a form, which is represented by an NgForm object. If the data that the form contains is valid, then the Order object will be passed to the repository’s saveOrder method, and the data in the cart and the order will be reset.
The @Component decorator’s styleUrls property is used to specify one or more CSS stylesheets that should be applied to the content in the component’s template. To provide validation feedback for the values that the user enters into the HTML form elements, I created a file called checkout.component.css in the src/app/store folder and defined the styles shown in Listing 6-25.input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Listing 6-25The Contents of the checkout.component.css File in the src/app/store Folder

Angular adds elements to the ng-dirty, ng-valid, and ng-valid classes to indicate their validation status. The full set of validation classes is described in Chapter 12, but the effect of the styles in Listing 6-25 is to add a green border around input elements that are valid and a red border around those that are invalid.
The final piece of the puzzle is the template for the component, which presents the user with the form fields required to populate the properties of an Order object, as shown in Listing 6-26.<div class="container-fluid">
 <div class="row">
 <div class="bg-dark text-white p-2">
 SPORTS STORE
 </div>
 </div>
</div>

<div *ngIf="orderSent" class="m-2 text-center">
 <h2>Thanks!</h2>
 <p>Thanks for placing your order.</p>
 <p>We'll ship your goods as soon as possible.</p>
 <button class="btn btn-primary" routerLink="/store">Return to Store</button>
</div>
<form *ngIf="!orderSent" #form="ngForm" novalidate
 (ngSubmit)="submitOrder(form)" class="m-2">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" #name="ngModel" name="name"
 [(ngModel)]="order.name" required />

 Please enter your name

 </div>
 <div class="form-group">
 <label>Address</label>
 <input class="form-control" #address="ngModel" name="address"
 [(ngModel)]="order.address" required />

 Please enter your address

 </div>
 <div class="form-group">
 <label>City</label>
 <input class="form-control" #city="ngModel" name="city"
 [(ngModel)]="order.city" required />

 Please enter your city

 </div>
 <div class="form-group">
 <label>State</label>
 <input class="form-control" #state="ngModel" name="state"
 [(ngModel)]="order.state" required />

 Please enter your state

 </div>
 <div class="form-group">
 <label>Zip/Postal Code</label>
 <input class="form-control" #zip="ngModel" name="zip"
 [(ngModel)]="order.zip" required />

 Please enter your zip/postal code

 </div>
 <div class="form-group">
 <label>Country</label>
 <input class="form-control" #country="ngModel" name="country"
 [(ngModel)]="order.country" required />

 Please enter your country

 </div>
 <div class="text-center">
 <button class="btn btn-secondary m-1" routerLink="/cart">Back</button>
 <button class="btn btn-primary m-1" type="submit">Complete Order</button>
 </div>
</form>

Listing 6-26The Contents of the checkout.component.html File in the src/app/store Folder

The form and input elements in this template use Angular features to ensure that the user provides values for each field, and they provide visual feedback if the user clicks the Complete Order button without completing the form. Part of this feedback comes from applying the styles that were defined in Listing 6-25, and part comes from span elements that remain hidden until the user tries to submit an invalid form.
Tip
Requiring values is only one of the ways that Angular can validate form fields, and as I explained in Chapter 12, you can easily add your own custom validation as well.

To see the process, start with the list of products and click one of the Add To Cart buttons to add a product to the cart. Click the Checkout button, and you will see the HTML form shown in Figure 6-6. Click the Complete Order button without entering text into any of the input elements, and you will see the validation feedback messages. Fill out the form and click the Complete Order button; you will see the confirmation message shown in the figure.
Tip
Restart the ng serve command if you see an error after saving the template.

[image:]
Figure 6-6Completing an order

If you look at the browser’s JavaScript console, you will see a JSON representation of the order like this:{"cart":
 {"lines":[
 {"product":{"id":1,"name":"Product 1","category":"Category 1",
 "description":"Product 1 (Category 1)","price":100},"quantity":1}],
 "itemCount":1,"cartPrice":100},
 "shipped":false,
 "name":"Joe Smith","address":"123 Main Street",
 "city":"Smallville","state":"NY","zip":"10036","country":"USA"
}

Using the RESTful Web Service
Now that the basic SportsStore functionality is in place, it is time to replace the dummy data source with one that gets its data from the RESTful web service that was created during the project setup in Chapter 5.
To create the data source, I added a file called rest.datasource.ts in the src/app/model folder and added the code shown in Listing 6-27. import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";
import { Order } from "./order.model";

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;

 constructor(private http: HttpClient) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 getProducts(): Observable<Product[]> {
 return this.http.get<Product[]>(this.baseUrl + "products");
 }

 saveOrder(order: Order): Observable<Order> {
 return this.http.post<Order>(this.baseUrl + "orders", order);
 }
}

Listing 6-27The Contents of the rest.datasource.ts File in the src/app/model Folder

Angular provides a built-in service called HttpClient that is used to make HTTP requests. The RestDataSource constructor receives the HttpClient service and uses the global location object provided by the browser to determine the URL that the requests will be sent to, which is port 3500 on the same host that the application has been loaded from.
The methods defined by the RestDataSource class correspond to the ones defined by the static data source but are implemented using the HttpClient service, described in Chapter 23.
Tip
When obtaining data via HTTP, it is possible that network congestion or server load will delay the request and leave the user looking at an application that has no data. In Chapter 26, I explain how to configure the routing system to prevent this problem.

Applying the Data Source
To complete this chapter, I am going to apply the RESTful data source by reconfiguring the application so that the switch from the dummy data to the REST data is done with changes to a single file. Listing 6-28 changes the behavior of the data source service in the model feature module.import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";
import { RestDataSource } from "./rest.datasource";
import { HttpClientModule } from "@angular/common/http";

@NgModule({
 imports: [HttpClientModule],
 providers: [ProductRepository, StaticDataSource, Cart, Order, OrderRepository,
 { provide: StaticDataSource, useClass: RestDataSource }]
})
export class ModelModule { }

Listing 6-28Changing the Service Configuration in the model.module.ts File in the src/app/model Folder

The imports property is used to declare a dependency on the HttpClientModule feature module, which provides the HttpClient service used in Listing 6-27. The change to the providers property tells Angular that when it needs to create an instance of a class with a StaticDataSource constructor parameter, it should use a RestDataSource instead. Since both objects define the same methods, the dynamic JavaScript type system means that the substitution is seamless. When all the changes have been saved and the browser reloads the application, you will see the dummy data has been replaced with the data obtained via HTTP, as shown in Figure 6-7.[image:]
Figure 6-7Using the RESTful web service

If you go through the process of selecting products and checking out, you can see that the data source has written the order to the web service by navigating to this URL:http://localhost:3500/db

This will display the full contents of the database, including the collection of orders. You won’t be able to request the /orders URL because it requires authentication, which I set up in the next chapter.
Tip
Remember that the data provided by the RESTful web service is reset when you stop the server and start it again using the npm run json command.

Summary
In this chapter, I continued adding features to the SportsStore application, adding support for a shopping cart into which the user can place products and a checkout process that completes the shopping process. To complete the chapter, I replaced the dummy data source with one that sends HTTP requests to the RESTful web service. In the next chapter, I create administration features that allow the SportsStore data to be managed.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_7

7. SportsStore: Administration

Adam Freeman1
(1)London, UK

In this chapter, I continue building the SportsStore application by adding administration features. Relatively few users will need to access the administration features, so it would be wasteful to force all users to download the administration code and content when it is unlikely to be used. Instead, I am going to put the administration features in a separate module that will be loaded only when it is required.
Preparing the Example Application
No preparation is required for this chapter, which continues using the SportsStore project from Chapter 6. To start the RESTful web service, open a command prompt and run the following command in the SportsStore folder:npm run json

Open a second command prompt and run the following command in the SportsStore folder to start the development tools and HTTP server:ng serve --open

Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Creating the Module
The process for creating the feature module follows the same pattern you have seen in earlier chapters. The key difference is that it is important that no other part of the application has dependencies on the module or the classes it contains, which would undermine the dynamic loading of the module and cause the JavaScript module to load the administration code, even if it is not used.
The starting point for the administration features will be authentication, which will ensure that only authorized users can administer the application. I created a file called auth.component.ts in the src/app/admin folder and used it to define the component shown in Listing 7-1. import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Router } from "@angular/router";

@Component({
 templateUrl: "auth.component.html"
})
export class AuthComponent {
 username?: string;
 password?: string;
 errorMessage?: string;

 constructor(private router: Router) {}

 authenticate(form: NgForm) {
 if (form.valid) {
 // perform authentication
 this.router.navigateByUrl("/admin/main");
 } else {
 this.errorMessage = "Form Data Invalid";
 }
 }
}

Listing 7-1The Content of the auth.component.ts File in the src/app/admin Folder

The component defines properties for the username and password that will be used to authenticate the user, an errorMessage property that will be used to display messages when there are problems, and an authenticate method that will perform the authentication process (but that does nothing at the moment).
To provide the component with a template, I created a file called auth.component.html in the src/app/admin folder and added the content shown in Listing 7-2.<div class="bg-info p-2 text-center text-white">
 <h3>SportsStore Admin</h3>
</div>
<div class="bg-danger mt-2 p-2 text-center text-white" *ngIf="errorMessage != null">
 {{errorMessage}}
</div>
<div class="p-2">
 <form novalidate #form="ngForm" (ngSubmit)="authenticate(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="username"
 [(ngModel)]="username" required />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input class="form-control" type="password" name="password"
 [(ngModel)]="password" required />
 </div>
 <div class="text-center p-2">
 <button class="btn btn-secondary m-1" routerLink="/">Go back</button>
 <button class="btn btn-primary m-1" type="submit">Log In</button>
 </div>
 </form>
</div>

Listing 7-2The Content of the auth.component.html File in the src/app/admin Folder

The template contains an HTML form that uses two-way data binding expressions for the component’s properties. There is a button that will submit the form, a button that navigates back to the root URL, and a div element that is visible only when there is an error message to display.
To create a placeholder for the administration features, I added a file called admin.component.ts in the src/app/admin folder and defined the component shown in Listing 7-3.import { Component } from "@angular/core";

@Component({
 templateUrl: "admin.component.html"
})
export class AdminComponent {}

Listing 7-3The Contents of the admin.component.ts File in the src/app/admin Folder

The component doesn’t contain any functionality at the moment. To provide a template for the component, I added a file called admin.component.html to the src/app/admin folder and the placeholder content shown in Listing 7-4.<div class="bg-info p-2 text-white">
 <h3>Placeholder for Admin Features</h3>
</div>

Listing 7-4The Contents of the admin.component.html File in the src/app/admin Folder

To define the feature module, I added a file called admin.module.ts in the src/app/admin folder and added the code shown in Listing 7-5.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 { path: "main", component: AdminComponent },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 declarations: [AuthComponent, AdminComponent]
})
export class AdminModule { }

Listing 7-5The Contents of the admin.module.ts File in the src/app/admin Folder

The RouterModule.forChild method is used to define the routing configuration for the feature module, which is then included in the module’s imports property.
A dynamically loaded module must be self-contained and include all the information that Angular requires, including the routing URLs that are supported and the components they display. If any other part of the application depends on the module, then it will be included in the JavaScript bundle with the rest of the application code, which means that all users will have to download code and resources for features they won’t use.
However, a dynamically loaded module is allowed to declare dependencies on the main part of the application. This module relies on the functionality in the data model module, which has been added to the module’s imports so that components can access the model classes and the repositories.
Configuring the URL Routing System
Dynamically loaded modules are managed through the routing configuration, which triggers the loading process when the application navigates to a specific URL. Listing 7-6 extends the routing configuration of the application so that the /admin URL will load the administration feature module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { StoreModule } from "./store/store.module";
import { StoreComponent } from "./store/store.component";
import { CheckoutComponent } from "./store/checkout.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { RouterModule } from "@angular/router";
import { StoreFirstGuard } from "./storeFirst.guard";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, StoreModule,
 RouterModule.forRoot([
 {
 path: "store", component: StoreComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "cart", component: CartDetailComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "checkout", component: CheckoutComponent,
 canActivate: [StoreFirstGuard]
 },
 {
 path: "admin",
 loadChildren: () => import("./admin/admin.module")
 .then(m => m.AdminModule),
 canActivate: [StoreFirstGuard]
 },
 { path: "**", redirectTo: "/store" }
])],
 providers: [StoreFirstGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 7-6Configuring a Dynamically Loaded Module in the app.module.ts File in the src/app Folder

The new route tells Angular that when the application navigates to the /admin URL, it should load a feature module defined by a class called AdminModule from the admin/admin.module.ts file, whose path is specified relative to the app.module.ts file. When Angular processes the admin module, it will incorporate the routing information it contains into the overall set of routes and complete the navigation.
Navigating to the Administration URL
The final preparatory step is to provide the user with the ability to navigate to the /admin URL so that the administration feature module will be loaded and its component displayed to the user. Listing 7-7 adds a button to the store component’s template that will perform the navigation....
<div class="d-grid gap-2">
 <button class="btn btn-outline-primary" (click)="changeCategory()">
 Home
 </button>
 <button *ngFor="let cat of categories"
 class="btn btn-outline-primary"
 [class.active]="cat == selectedCategory"
 (click)="changeCategory(cat)">
 {{cat}}
 </button>
 <button class="btn btn-danger mt-5" routerLink="/admin">
 Admin
 </button>
</div>
...

Listing 7-7Adding a Navigation Button in the store.component.html File in the src/app/store Folder

To reflect the changes, stop the development tools and restart them by running the following command in the SportsStore folder:ng serve

Use the browser to navigate to http://localhost:4200 and use the browser’s F12 developer tools to see the network requests made by the browser as the application is loaded. The files for the administration module will not be loaded until you click the Admin button, at which point Angular will request the files and display the login page shown in Figure 7-1.[image:]
Figure 7-1Using a dynamically loaded module

Enter any name and password into the form fields and click the Log In button to see the placeholder content, as shown in Figure 7-2. If you leave either of the form fields empty, a warning message will be displayed.[image:]
Figure 7-2The placeholder administration features

Implementing Authentication
The RESTful web service has been configured so that it requires authentication for the requests that the administration feature will require. In the sections that follow, I add support for authenticating the user by sending an HTTP request to the RESTful web service.
Understanding the Authentication System
When the RESTful web service authenticates a user, it will return a JSON Web Token (JWT) that the application must include in subsequent HTTP requests to show that authentication has been successfully performed. You can read the JWT specification at https://tools.ietf.org/html/rfc7519, but for the SportsStore application, it is enough to know that the Angular application can authenticate the user by sending a POST request to the /login URL, including a JSON-formatted object in the request body that contains name and password properties. There is only one set of valid credentials in the authentication code I added to the application in Chapter 5, which is shown in Table 7-1. Table 7-1The Authentication Credentials Supported by the RESTful Web Service

	Username
	Password

	admin
	secret

As I noted in Chapter 5, you should not hard-code credentials in real projects, but this is the username and password that you will need for the SportsStore application.
If the correct credentials are sent to the /login URL, then the response from the RESTful web service will contain a JSON object like this:{
 "success": true,
 "token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLCJleHBpcmVz
 SW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtdWrz0312p_DG5tKypGv6cA
 NgOyzlg8"
}

The success property describes the outcome of the authentication operation, and the token property contains the JWT, which should be included in subsequent requests using the Authorization HTTP header in this format:Authorization: Bearer<eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLC
 JleHBpcmVzSW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-
 bHBtdWrz0312p_DG5tKypGv6cANgOyzlg8>

I configured the JWT tokens returned by the server so they expire after one hour. If the wrong credentials are sent to the server, then the JSON object returned in the response will just contain a success property set to false, like this:{
 "success": false
}

Extending the Data Source
The RESTful data source will do most of the work because it is responsible for sending the authentication request to the /login URL and including the JWT in subsequent requests. Listing 7-8 adds authentication to the RestDataSource class and defines a variable that will store the JWT once it has been obtained.import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { map, Observable } from "rxjs";
import { Product } from "./product.model";
import { Order } from "./order.model";

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;
 auth_token?: string;

 constructor(private http: HttpClient) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 getProducts(): Observable<Product[]> {
 return this.http.get<Product[]>(this.baseUrl + "products");
 }

 saveOrder(order: Order): Observable<Order> {
 return this.http.post<Order>(this.baseUrl + "orders", order);
 }

 authenticate(user: string, pass: string): Observable<boolean> {
 return this.http.post<any>(this.baseUrl + "login", {
 name: user, password: pass
 }).pipe(map(response => {
 this.auth_token = response.success ? response.token : null;
 return response.success;
 }));
 }
}

Listing 7-8Adding Authentication in the rest.datasource.ts File in the src/app/model Folder

The pipe method and map function are provided by the RxJS package, and they allow the response event from the server, which is presented through an Observable<any> to be transformed into an event in the Observable<bool> that is the result of the authenticate method.
Creating the Authentication Service
Rather than expose the data source directly to the rest of the application, I am going to create a service that can be used to perform authentication and determine whether the application has been authenticated. I added a file called auth.service.ts in the src/app/model folder and added the code shown in Listing 7-9.import { Injectable } from "@angular/core";
import { Observable } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class AuthService {

 constructor(private datasource: RestDataSource) {}

 authenticate(username: string, password: string): Observable<boolean> {
 return this.datasource.authenticate(username, password);
 }

 get authenticated(): boolean {
 return this.datasource.auth_token != null;
 }

 clear() {
 this.datasource.auth_token = undefined;
 }
}

Listing 7-9The Contents of the auth.service.ts File in the src/app/model Folder

The authenticate method receives the user’s credentials and passes them on to the data source authenticate method, returning an Observable that will yield true if the authentication process has succeeded and false otherwise. The authenticated property is a getter-only property that returns true if the data source has obtained an authentication token. The clear method removes the token from the data source.
Listing 7-10 registers the new service with the model feature module. It also adds a providers entry for the RestDataSource class, which has been used only as a substitute for the StaticDataSource class in earlier chapters. Since the AuthService class has a RestDataSource constructor parameter, it needs its own entry in the module.import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";
import { RestDataSource } from "./rest.datasource";
import { HttpClientModule } from "@angular/common/http";
import { AuthService } from "./auth.service";

@NgModule({
 imports: [HttpClientModule],
 providers: [ProductRepository, StaticDataSource, Cart, Order, OrderRepository,
 { provide: StaticDataSource, useClass: RestDataSource },
 RestDataSource, AuthService]
})
export class ModelModule { }

Listing 7-10Configuring the Services in the model.module.ts File in the src/app/model Folder

Enabling Authentication
The next step is to wire up the component that obtains the credentials from the user so that it will perform authentication through the new service, as shown in Listing 7-11.import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Component({
 templateUrl: "auth.component.html"
})
export class AuthComponent {
 username?: string;
 password?: string;
 errorMessage?: string;

 constructor(private router: Router,
 private auth: AuthService) { }

 authenticate(form: NgForm) {
 if (form.valid) {
 this.auth.authenticate(this.username ?? "", this.password ?? "")
 .subscribe(response => {
 if (response) {
 this.router.navigateByUrl("/admin/main");
 }
 this.errorMessage = "Authentication Failed";
 })
 } else {
 this.errorMessage = "Form Data Invalid";
 }
 }
}

Listing 7-11Enabling Authentication in the auth.component.ts File in the src/app/admin Folder

To prevent the application from navigating directly to the administration features, which will lead to HTTP requests being sent without a token, I added a file called auth.guard.ts in the src/app/admin folder and defined the route guard shown in Listing 7-12.import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot,
 Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Injectable()
export class AuthGuard {

 constructor(private router: Router,
 private auth: AuthService) { }

 canActivate(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): boolean {

 if (!this.auth.authenticated) {
 this.router.navigateByUrl("/admin/auth");
 return false;
 }
 return true;
 }
}

Listing 7-12The Contents of the auth.guard.ts File in the src/app/admin Folder

Listing 7-13 applies the route guard to one of the routes defined by the administration feature module.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 { path: "main", component: AdminComponent },
 { path: "main", component: AdminComponent, canActivate: [AuthGuard] },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 declarations: [AuthComponent, AdminComponent],
 providers: [AuthGuard]
})
export class AdminModule { }

Listing 7-13Guarding a Route in the admin.module.ts File in the src/app/admin Folder

To test the authentication system, click the Admin button, enter some credentials, and click the Log In button. If the credentials are the ones from Table 7-1, then you will see the placeholder for the administration features. If you enter other credentials, you will see an error message. Figure 7-3 illustrates both outcomes.
Tip
The token isn’t stored persistently, so if you can, reload the application in the browser to start again and try a different set of credentials.

[image:]
Figure 7-3Testing the authentication feature

Extending the Data Source and Repositories
With the authentication system in place, the next step is to extend the data source so that it can send authenticated requests and to expose those features through the order and product repository classes. Listing 7-14 adds methods to the data source that include the authentication token.import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { map, Observable } from "rxjs";
import { Product } from "./product.model";
import { Order } from "./order.model";
import { HttpHeaders } from '@angular/common/http';

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;
 auth_token?: string;

 constructor(private http: HttpClient) {
 this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 }

 getProducts(): Observable<Product[]> {
 return this.http.get<Product[]>(this.baseUrl + "products");
 }

 saveOrder(order: Order): Observable<Order> {
 return this.http.post<Order>(this.baseUrl + "orders", order);
 }

 authenticate(user: string, pass: string): Observable<boolean> {
 return this.http.post<any>(this.baseUrl + "login", {
 name: user, password: pass
 }).pipe(map(response => {
 this.auth_token = response.success ? response.token : null;
 return response.success;
 }));
 }

 saveProduct(product: Product): Observable<Product> {
 return this.http.post<Product>(this.baseUrl + "products",
 product, this.getOptions());
 }

 updateProduct(product: Product): Observable<Product> {
 return this.http.put<Product>(`${this.baseUrl}products/${product.id}`,
 product, this.getOptions());
 }

 deleteProduct(id: number): Observable<Product> {
 return this.http.delete<Product>(`${this.baseUrl}products/${id}`,
 this.getOptions());
 }

 getOrders(): Observable<Order[]> {
 return this.http.get<Order[]>(this.baseUrl + "orders", this.getOptions());
 }

 deleteOrder(id: number): Observable<Order> {
 return this.http.delete<Order>(`${this.baseUrl}orders/${id}`,
 this.getOptions());
 }

 updateOrder(order: Order): Observable<Order> {
 return this.http.put<Order>(`${this.baseUrl}orders/${order.id}`,
 order, this.getOptions());
 }

 private getOptions() {
 return {
 headers: new HttpHeaders({
 "Authorization": `Bearer<${this.auth_token}>`
 })
 }
 }
}

Listing 7-14Adding New Operations in the rest.datasource.ts File in the src/app/model Folder

Listing 7-15 adds new methods to the product repository class that allow products to be created, updated, or deleted. The saveProduct method is responsible for creating and updating products, which is an approach that works well when using a single object managed by a component, which you will see demonstrated later in this chapter. The listing also changes the type of the constructor argument to RestDataSource.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
//import { StaticDataSource } from "./static.datasource";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class ProductRepository {
 private products: Product[] = [];
 private categories: string[] = [];

 constructor(private dataSource: RestDataSource) {
 dataSource.getProducts().subscribe(data => {
 this.products = data;
 this.categories = data.map(p => p.category ?? "(None)")
 .filter((c, index, array) => array.indexOf(c) == index).sort();
 });
 }

 getProducts(category?: string): Product[] {
 return this.products
 .filter(p => category == undefined || category == p.category);
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => p.id == id);
 }

 getCategories(): string[] {
 return this.categories;
 }

 saveProduct(product: Product) {
 if (product.id == null || product.id == 0) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product)
 .subscribe(p => {
 this.products.splice(this.products.
 findIndex(p => p.id == product.id), 1, product);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(p => {
 this.products.splice(this.products.
 findIndex(p => p.id == id), 1);
 })
 }
}

Listing 7-15Adding New Operations in the product.repository.ts File in the src/app/model Folder

Listing 7-16 makes the corresponding changes to the order repository, adding methods that allow orders to be modified and deleted.import { Injectable } from "@angular/core";
import { Observable } from "rxjs";
import { Order } from "./order.model";
//import { StaticDataSource } from "./static.datasource";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class OrderRepository {
 private orders: Order[] = [];
 private loaded: boolean = false;

 constructor(private dataSource: RestDataSource) { }

 loadOrders() {
 this.loaded = true;
 this.dataSource.getOrders()
 .subscribe(orders => this.orders = orders);
 }

 getOrders(): Order[] {
 if (!this.loaded) {
 this.loadOrders();
 }
 return this.orders;
 }

 saveOrder(order: Order): Observable<Order> {
 this.loaded = false;
 return this.dataSource.saveOrder(order);
 }

 updateOrder(order: Order) {
 this.dataSource.updateOrder(order).subscribe(order => {
 this.orders.splice(this.orders.
 findIndex(o => o.id == order.id), 1, order);
 });
 }

 deleteOrder(id: number) {
 this.dataSource.deleteOrder(id).subscribe(order => {
 this.orders.splice(this.orders.findIndex(o => id == o.id), 1);
 });
 }
}

Listing 7-16Adding New Operations in the order.repository.ts File in the src/app/model Folder

The order repository defines a loadOrders method that gets the orders from the repository and that ensures the request isn’t sent to the RESTful web service until authentication has been performed.
Installing the Component Library
All the features presented to the user so far have been written using the Angular API and styled using the features provided by the Bootstrap CSS package. An alternative approach is to use a component library that contains commonly required features, such as tables and layouts, which lets you focus on the features that are unique to your project. The advantage of using a component library is that you can get a project up and running quickly, but the drawbacks are that you must fit your data and code into the model expected by the component library and that it can be difficult to perform customizations.
In this chapter, I am going to use the Angular Material component library. There are other good packages available for Angular, but Angular Material is the most popular package and has features that suit most projects. To add Angular Material to the project, stop the ng serve command and run the command shown in Listing 7-17 in the SportsStore folder. ng add @angular/material@13.0.2

Listing 7-17Installing the Component Library Package

The installation process asks several questions. The first question is just a request to confirm that you want to install the package:Using package manager: npm
Package information loaded.
The package @angular/material@13.0.2 will be installed and executed.
Would you like to proceed? (Y/n)

The rest of the questions are specific to Angular Material and allow the theme to be selected and configure typography and animation options:? Choose a prebuilt theme name, or "custom" for a custom theme: (Use arrow keys)
> Indigo/Pink [Preview: https://material.angular.io?theme=indigo-pink]
 Deep Purple/Amber [Preview: https://material.angular.io?theme=deeppurple-amber]
 Pink/Blue Grey [Preview: https://material.angular.io?theme=pink-bluegrey]
 Purple/Green [Preview: https://material.angular.io?theme=purple-green]
 Custom
? Set up global Angular Material typography styles? (y/N)
? Set up browser animations for Angular Material? (Y/n)

For the SportsStore project, select the default options.
Each feature provided by Angular Material is defined in its own module, and the simplest way to deal with this is to define a separate module that is used just to select the Angular Material features that are required by a project. Add a file named material.module.ts to the src/app/admin folder with the content shown in Listing 7-18.import { NgModule } from "@angular/core";

const features: any[] = [];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-18The Contents of the material.module.ts File in the src/app/admin Folder

No Angular Material features are selected at present, but I’ll add to this file as I work through the administration features. In Listing 7-19, I have incorporated the module into the application.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";
import { MaterialFeatures } from "./material.module";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 { path: "main", component: AdminComponent },
 { path: "main", component: AdminComponent, canActivate: [AuthGuard] },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing, MaterialFeatures],
 declarations: [AuthComponent, AdminComponent],
 providers: [AuthGuard]
})
export class AdminModule { }

Listing 7-19Using Material Features in the admin.module.ts File in the src/app/admin Folder

Save the changes and run the ng serve command in the SportsStore folder to start the Angular development tools again.
Creating the Administration Feature Structure
Now that the authentication system is in place and the repositories provide the full range of operations, I can create the structure that will display the administration features, which I create by building on the existing URL routing configuration. Table 7-2 lists the URLs that I am going to support and the functionality that each will present to the user.Table 7-2The URLs for Administration Features

	Name
	Description

	/admin/main/products
	Navigating to this URL will display all the products in a table, along with buttons that allow an existing product to be edited or deleted and a new product to be created.

	/admin/main/products/create
	Navigating to this URL will present the user with an empty editor for creating a new product.

	/admin/main/products/edit/1
	Navigating to this URL will present the user with a populated editor for editing an existing product.

	/admin/main/orders
	Navigating to this URL will present the user with all the orders in a table, along with buttons to mark an order shipped and to cancel an order by deleting it.

Creating the Placeholder Components
I find the easiest way to add features to an Angular project is to define components that have placeholder content and build the structure of the application around them. Once the structure is in place, then I return to the components and implement the features in detail. For the administration features, I started by adding a file called productTable.component.ts to the src/app/admin folder and defined the component shown in Listing 7-20. This component will be responsible for showing a list of products, along with buttons required to edit and delete them or to create a new product.import { Component } from "@angular/core";

@Component({
 template: `
 <h3 style="padding-top: 10px">
 Product Table Placeholder
 </h3>
 `
})
export class ProductTableComponent {}

Listing 7-20The Contents of the productTable.component.ts File in the src/app/admin Folder

I added a file called productEditor.component.ts in the src/app/admin folder and used it to define the component shown in Listing 7-21, which will be used to allow the user to enter the details required to create or edit a component.import { Component } from "@angular/core";

@Component({
 template: `<h3 style="padding-top: 10px">
 Product Editor Placeholder
 </h3>`
})
export class ProductEditorComponent { }

Listing 7-21The Contents of the productEditor.component.ts File in the src/app/admin Folder

To create the component that will be responsible for managing customer orders, I added a file called orderTable.component.ts to the src/app/admin folder and added the code shown in Listing 7-22.import { Component } from "@angular/core";

@Component({
 template: `<h3 style="padding-top: 10px">
 Order Table Placeholder
 </h3>`
})
export class OrderTableComponent { }

Listing 7-22The Contents of the orderTable.component.ts File in the src/app/admin Folder

Preparing the Common Content and the Feature Module
The components created in the previous section will be responsible for specific features. To bring those features together and allow the user to navigate between them, I need to modify the template of the placeholder component that I have been using to demonstrate the result of a successful authentication attempt. I replaced the placeholder content with the elements shown in Listing 7-23.<mat-toolbar color="primary">
 <button mat-icon-button *ngIf="sidenav.mode === 'over'"
 (click)="sidenav.toggle()">
 <mat-icon *ngIf="!sidenav.opened">menu</mat-icon>
 <mat-icon *ngIf="sidenav.opened">close</mat-icon>
 </button>

 SportsStore Administration

</mat-toolbar>

<mat-sidenav-container>
 <mat-sidenav #sidenav="matSidenav" class="mat-elevation-z8">

 <button mat-button class="menu-button"
 routerLink="/admin/main/products"
 routerLinkActive="mat-accent"
 (click)="sidenav.close()">
 <mat-icon>shopping_cart</mat-icon>
 Products
 </button>

 <button mat-button class="menu-button"
 routerLink="/admin/main/orders"
 routerLinkActive="mat-accent"
 (click)="sidenav.close()">
 <mat-icon>local_shipping</mat-icon>
 Orders
 </button>

 <mat-divider></mat-divider>

 <button mat-button class="menu-button logout" (click)="logout()">
 <mat-icon>logout</mat-icon>
 Logout
 </button>

 </mat-sidenav>
 <mat-sidenav-content>
 <div class="content">
 <router-outlet></router-outlet>
 </div>
 </mat-sidenav-content>
</mat-sidenav-container>

Listing 7-23Replacing the Content in the admin.component.html File in the src/app/admin Folder

When you first start working with a component library, it can take a while to make sense of how the components are applied. This template relies on the Angular Material toolbar, applied using the mat-toolbar element, and the sidenav component, which is applied through the mat-sidenav-container, mat-sidenav, and mat-sidenav-content elements. A sidenav is a collapsible panel that contains navigation content that will allow the user to select different administration features.
This template also contains a router-outlet element that will be used to display the components from the previous section. The sidenav panel contains buttons to which the mat-button directive has been applied, which formats the buttons to match the rest of the Angular Material theme. These buttons are configured with routerLink attributes that target the router-outlet element and are styled with the routerLinkAttribute attribute to indicate which feature has been selected.
Listing 7-24 adds dependencies on the Angular Material features used in this template.import { NgModule } from "@angular/core";
import { MatToolbarModule } from "@angular/material/toolbar";
import { MatSidenavModule } from "@angular/material/sidenav";
import { MatIconModule } from '@angular/material/icon';
import { MatDividerModule } from '@angular/material/divider';
import { MatButtonModule } from "@angular/material/button";

const features: any[] = [MatToolbarModule,MatSidenavModule,MatIconModule,
 MatDividerModule, MatButtonModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-24Adding Features in the material.module.ts File in the src/app/admin Folder

One drawback of the Angular Material package is that it requires CSS styles to be applied to fine-tune the component layout. Listing 7-25 defines the styles required to lay out the components used in Listing 7-23.html, body { height: 100%}
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

mat-toolbar span { flex: 1 1 auto; }

.menu-button { width: 100%; font-size: 1rem; }
.menu-button .mat-icon { margin-right: 10px; }
.menu-button span { flex: 1 1 auto; }

mat-sidenav { margin: 16px; width: 175px; border-right: none;
 border-radius: 4px; padding: 4px;
}
mat-sidenav .mat-divider { margin-top: 20px; margin-bottom: 5px; }
mat-sidenav-container { height: calc(100vh - 60px); }
mat-sidenav .mat-button-wrapper {
 display: flex; width: 100%; justify-content: baseline; align-content: center;
}
mat-sidenav .mat-button-wrapper mat-icon { margin-top: 5px; }
mat-sidenav .mat-button-wrapper span { text-align: start; }

Listing 7-25Defining Styles in the styles.css File in the src Folder

These styles can be awkward to determine, and I find the most useful approach is to use the browser’s F12 developer tools to work out how to select the elements I am interested in and determine how they are styled.
The sidenav panel defined in Listing 7-23 contains a Logout button that has an event binding that targets a method called logout. Listing 7-26 adds this method to the component, which uses the authentication service to remove the bearer token and navigates the application to the default URL.import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { AuthService } from "../model/auth.service";

@Component({
 templateUrl: "admin.component.html"
})
export class AdminComponent {

 constructor(private auth: AuthService,
 private router: Router) { }

 logout() {
 this.auth.clear();
 this.router.navigateByUrl("/");
 }
}

Listing 7-26Implementing the Logout Method in the admin.component.ts File in the src/app/admin Folder

Listing 7-27 enables the placeholder components that will be used for each administration feature and extends the URL routing configuration to implement the URLs from Table 7-2.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { FormsModule } from "@angular/forms";
import { RouterModule } from "@angular/router";
import { AuthComponent } from "./auth.component";
import { AdminComponent } from "./admin.component";
import { AuthGuard } from "./auth.guard";
import { MaterialFeatures } from "./material.module";
import { ProductTableComponent } from "./productTable.component";
import { ProductEditorComponent } from "./productEditor.component";
import { OrderTableComponent } from "./orderTable.component";

let routing = RouterModule.forChild([
 { path: "auth", component: AuthComponent },
 // { path: "main", component: AdminComponent },
 // { path: "main", component: AdminComponent, canActivate: [AuthGuard] },
 {
 path: "main", component: AdminComponent, canActivate: [AuthGuard],
 children: [
 { path: "products/:mode/:id", component: ProductEditorComponent },
 { path: "products/:mode", component: ProductEditorComponent },
 { path: "products", component: ProductTableComponent },
 { path: "orders", component: OrderTableComponent },
 { path: "**", redirectTo: "products" }
]
 },
 { path: "**", redirectTo: "auth" }
]);

@NgModule({
 imports: [CommonModule, FormsModule, routing, MaterialFeatures],
 declarations: [AuthComponent, AdminComponent, ProductTableComponent,
 ProductEditorComponent, OrderTableComponent],
 providers: [AuthGuard]
})
export class AdminModule { }

Listing 7-27Configuring the Feature Module in the admin.module.ts File in the src/app/admin Folder

Individual routes can be extended using the children property, which is used to define routes that will target a nested router-outlet element, which I describe in Chapter 24. As you will see, components can get details of the active route from Angular so they can adapt their behavior. Routes can include route parameters, such as :mode or :id, that match any URL segment and that can be used to provide information to components that can be used to change their behavior.
When all the changes have been saved, click the Admin button and authenticate as admin with the password secret. You will see the new layout, as shown in Figure 7-4. Click the button on the left side of the toolbar to display the navigation panel, and click the Orders button to change the selected component, or the Logout button to exit the administration area.[image:]
Figure 7-4The administration layout structure

Implementing the Product Table Feature
The initial administration feature presented to the user will be a table of products, with the ability to create a new product and delete or edit an existing one. Listing 7-28 adds the Angular Material table component to the application.import { NgModule } from "@angular/core";
import { MatToolbarModule } from "@angular/material/toolbar";
import { MatSidenavModule } from "@angular/material/sidenav";
import { MatIconModule } from '@angular/material/icon';
import { MatDividerModule } from '@angular/material/divider';
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";

const features: any[] = [MatToolbarModule,MatSidenavModule,MatIconModule,
 MatDividerModule, MatButtonModule, MatTableModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-28Adding Features in the material.module.ts File in the src/app/admin Folder

To provide the template that defines the table, I added a file called productTable.component.html in the src/app/admin folder and added the markup shown in Listing 7-29.<table mat-table [dataSource]="dataSource">

 <mat-text-column name="id"></mat-text-column>
 <mat-text-column name="name"></mat-text-column>
 <mat-text-column name="category"></mat-text-column>

 <ng-container matColumnDef="price">
 <th mat-header-cell *matHeaderCellDef>Price</th>
 <td mat-cell *matCellDef="let item"> {{item.price | currency:"USD"}} </td>
 </ng-container>

 <ng-container matColumnDef="buttons">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let p">
 <button mat-flat-button color="accent"
 (click)="deleteProduct(p.id)">
 Delete
 </button>
 <button mat-flat-button color="warn"
 [routerLink]="['/admin/main/products/edit', p.id]">
 Edit
 </button>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
 <tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>
</table>

<button mat-flat-button color="primary" routerLink="/admin/main/products/create">
 Create New Product
</button>

Listing 7-29The Contents of the productTable.component.html File in the src/app/admin Folder

The table relies on the features provided by the Angular Material table component, which has an unusual approach to defining the table contents, but one that provides a good foundation for extra features, as I demonstrate shortly. The table defines columns that display the details of products, and each row contains a Delete button that invokes a component method named delete method, and an Edit button that navigates to a URL that targets the editor component. The editor component is also the target of the Create New Product button, although a different URL is used.
Once again, custom CSS styles are required to fine-tune the layout of the table, as shown in Listing 7-30.html, body { height: 100%}
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

mat-toolbar span { flex: 1 1 auto; }

.menu-button { width: 100%; font-size: 1rem; }
.menu-button .mat-icon { margin-right: 10px; }
.menu-button span { flex: 1 1 auto; }

mat-sidenav { margin: 16px; width: 175px; border-right: none;
 border-radius: 4px; padding: 4px;
}
mat-sidenav .mat-divider { margin-top: 20px; margin-bottom: 5px; }
mat-sidenav-container { height: calc(100vh - 60px); }
mat-sidenav .mat-button-wrapper {
 display: flex; width: 100%; justify-content: baseline; align-content: center;
}
mat-sidenav .mat-button-wrapper mat-icon { margin-top: 5px; }
mat-sidenav .mat-button-wrapper span { text-align: start; }

table[mat-table] { width: 100%; table-layout: auto; }
table[mat-table] button { margin-left: 5px;}
table[mat-table] th.mat-header-cell { font-size: large; font-weight: bold;}
table[mat-table] .mat-column-name { width: 25%; }
table[mat-table] .mat-column-buttons { width: 30%; }
table[mat-table] + button[mat-flat-button] { margin-top: 10px;}

Listing 7-30Defining Styles in the styles.css File in the src Folder

As I explained when I installed the Angular Material package, using a component library means that you have to adapt your application or data to the expectations of the package. Taking full advantage of the Angular Material table requires the use of a data source class, which can require work when the data displayed in the table is obtained via an HTTP request. In Part 3, I demonstrate how to avoid this issue using observables, including with the Angular Material table in Chapter 28. For this chapter, I am going to demonstrate a different approach, which is to use the features that Angular provides for detecting and processing updates. Listing 7-31 removes the placeholder content from the product table component and adds the logic required to implement this feature.import { Component, IterableDiffer, IterableDiffers } from "@angular/core";
import { MatTableDataSource } from "@angular/material/table";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
 colsAndRows: string[] = ['id', 'name', 'category', 'price', 'buttons'];
 dataSource = new MatTableDataSource<Product>(this.repository.getProducts());
 differ: IterableDiffer<Product>;

 constructor(private repository: ProductRepository, differs: IterableDiffers) {
 this.differ = differs.find(this.repository.getProducts()).create();
 }

 ngDoCheck() {
 let changes = this.differ?.diff(this.repository.getProducts());
 if (changes != null) {
 this.dataSource.data = this.repository.getProducts();
 }
 }

 deleteProduct(id: number) {
 this.repository.deleteProduct(id);
 }
}

Listing 7-31Adding Features in the productTable.component.ts File in the src/app/admin Folder

The colsAndRows property is used to specify the columns that are displayed in the table. I have selected all of the columns that were defined, but this feature can be used to programmatically alter the structure of the table.
The MatTableDataSource<Product> class connects the data in the application with the table. The data source object is created with the data in the repository, but this isn’t helpful if the component is displayed before the application receives the data from the server. Angular has an efficient change-detection system, which it uses to ensure that updates are processed with the minimum of work, and the ngDoCheck method allows me to hook into that system and check to see if the data in the repository has been changed, using features that are described in context in Chapter 13. If there is a change in the data, then I refresh the data source, which has the effect of updating the table.
Save the changes and log into the administration features, and you will see the table shown in Figure 7-5.[image:]
Figure 7-5Displaying the product table

Using the Table Component Features
Getting a library component working can require effort, but once the initial work is done, it becomes relatively simple to take advantage of the additional features that are provided. In the case of the Angular Material table, these features include filtering, sorting, and paginating data. I demonstrate the filtering support when implementing the orders feature, but in this section, I am going to use the pagination feature. The first step is to add the pagination feature to the application, as shown in Listing 7-32.import { NgModule } from "@angular/core";
import { MatToolbarModule } from "@angular/material/toolbar";
import { MatSidenavModule } from "@angular/material/sidenav";
import { MatIconModule } from '@angular/material/icon';
import { MatDividerModule } from '@angular/material/divider';
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";
import { MatPaginatorModule } from "@angular/material/paginator";

const features: any[] = [MatToolbarModule,MatSidenavModule,MatIconModule,
 MatDividerModule, MatButtonModule, MatTableModule, MatPaginatorModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-32Adding a Feature in the material.module.ts File in the src/app/admin Folder

The next step is to add a paginator to the component that displays the table, as shown in Listing 7-33.<table mat-table [dataSource]="dataSource">

 <mat-text-column name="id"></mat-text-column>
 <mat-text-column name="name"></mat-text-column>
 <mat-text-column name="category"></mat-text-column>

 <ng-container matColumnDef="price">
 <th mat-header-cell *matHeaderCellDef>Price</th>
 <td mat-cell *matCellDef="let item"> {{item.price | currency:"USD"}} </td>
 </ng-container>

 <ng-container matColumnDef="buttons">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let p">
 <button mat-flat-button color="accent"
 (click)="deleteProduct(p.id)">
 Delete
 </button>
 <button mat-flat-button color="warn"
 [routerLink]="['/admin/main/products/edit', p.id]">
 Edit
 </button>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
 <tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>
</table>
<div class="bottom-box">
 <button mat-flat-button color="primary" routerLink="/admin/main/products/create">
 Create New Product
 </button>
 <mat-paginator [pageSize]="5" [pageSizeOptions]="[3, 5, 10]">
 </mat-paginator>
</div>

Listing 7-33Adding Pagination in the productTable.component.html File in the src/app/admin Folder

The paginator must be associated with the data source that is used by the table, which is done in the component, as shown in Listing 7-34.import { Component, IterableDiffer, IterableDiffers, ViewChild } from "@angular/core";
import { MatTableDataSource } from "@angular/material/table";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";
import { MatPaginator } from "@angular/material/paginator";

@Component({
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
 colsAndRows: string[] = ['id', 'name', 'category', 'price', 'buttons'];

 dataSource = new MatTableDataSource<Product>(this.repository.getProducts());
 differ: IterableDiffer<Product>;

 @ViewChild(MatPaginator)
 paginator? : MatPaginator

 constructor(private repository: ProductRepository, differs: IterableDiffers) {
 this.differ = differs.find(this.repository.getProducts()).create();
 }

 ngDoCheck() {
 let changes = this.differ?.diff(this.repository.getProducts());
 if (changes != null) {
 this.dataSource.data = this.repository.getProducts();
 }
 }

 ngAfterViewInit() {
 if (this.paginator) {
 this.dataSource.paginator = this.paginator;
 }
 }

 deleteProduct(id: number) {
 this.repository.deleteProduct(id);
 }
}

Listing 7-34Connecting the Paginator in the productTable.component.ts File in the src/app/admin Folder

The ViewChild decorator is used to query the component’s template content, as described in Chapter 15, and is used here to find the paginator component. The ngAfterViewInit method is called after Angular has finished processing the template, as described in Chapter 13, by which time the paginator component will have been created and can be associated with the data source.
And, of course, some additional CSS styles are required to manage the layout, as shown in Listing 7-35.html, body { height: 100%}
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

mat-toolbar span { flex: 1 1 auto; }

.menu-button { width: 100%; font-size: 1rem; }
.menu-button .mat-icon { margin-right: 10px; }
.menu-button span { flex: 1 1 auto; }

mat-sidenav { margin: 16px; width: 175px; border-right: none;
 border-radius: 4px; padding: 4px;
}
mat-sidenav .mat-divider { margin-top: 20px; margin-bottom: 5px; }
mat-sidenav-container { height: calc(100vh - 60px); }
mat-sidenav .mat-button-wrapper {
 display: flex; width: 100%; justify-content: baseline; align-content: center;
}
mat-sidenav .mat-button-wrapper mat-icon { margin-top: 5px; }
mat-sidenav .mat-button-wrapper span { text-align: start; }

table[mat-table] { width: 100%; table-layout: auto; }
table[mat-table] button { margin-left: 5px;}
table[mat-table] th.mat-header-cell { font-size: large; font-weight: bold;}
table[mat-table] .mat-column-name { width: 25%; }
table[mat-table] .mat-column-buttons { width: 30%; }
/* table[mat-table] + button[mat-flat-button] { margin-top: 10px;} */

.bottom-box { background-color: white; padding-bottom: 20px;}
.bottom-box > button[mat-flat-button] { margin-top: 10px;}
.bottom-box mat-paginator { float: right; font-size: 14px; }

Listing 7-35Defining Styles in the styles.css File in the src Folder

Save the changes, and you will see that the initial work adapting the application to work in the model expected by Angular Material has paid off, and I am able to use the built-in support for pagination, as shown in Figure 7-6.[image:]
Figure 7-6Using the Angular Material table paginator

Implementing the Product Editor
Components can receive information about the current routing URL and adapt their behavior accordingly. The editor component needs to use this feature to differentiate between requests to create a new component and edit an existing one.
Listing 7-36 adds the functionality to the editor component required to create or edit products.import { Component } from "@angular/core";
import { Router, ActivatedRoute } from "@angular/router";
import { Product } from "../model/product.model";
import { ProductRepository } from "../model/product.repository";

@Component({
 templateUrl: "productEditor.component.html"
})
export class ProductEditorComponent {
 editing: boolean = false;
 product: Product = new Product();

 constructor(private repository: ProductRepository,
 private router: Router,
 activeRoute: ActivatedRoute) {

 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 if (this.editing) {
 Object.assign(this.product,
 repository.getProduct(activeRoute.snapshot.params["id"]));
 }
 }

 save() {
 this.repository.saveProduct(this.product);
 this.router.navigateByUrl("/admin/main/products");
 }
}

Listing 7-36Adding Functionality in the productEditor.component.ts File in the src/app/admin Folder

Angular will provide an ActivatedRoute object as a constructor argument when it creates a new instance of the component class, and this object can be used to inspect the activated route. In this case, the component works out whether it should be editing or creating a product and, if editing, retrieves the current details from the repository. There is also a save method, which uses the repository to save changes that the user has made.
An HTML form will be used to allow the user to edit products. The Angular Material package provides support for form fields; Listing 7-37 adds those features to the SportsStore application.import { NgModule } from "@angular/core";
import { MatToolbarModule } from "@angular/material/toolbar";
import { MatSidenavModule } from "@angular/material/sidenav";
import { MatIconModule } from '@angular/material/icon';
import { MatDividerModule } from '@angular/material/divider';
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";
import { MatPaginatorModule } from "@angular/material/paginator";
import { MatFormFieldModule } from '@angular/material/form-field';
import { MatInputModule } from '@angular/material/input';

const features: any[] = [MatToolbarModule,MatSidenavModule,MatIconModule,
 MatDividerModule, MatButtonModule, MatTableModule, MatPaginatorModule,
 MatFormFieldModule, MatInputModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-37Adding a Feature in the material.module.ts File in the src/app/admin Folder

To define the template with the form, add a file called productEditor.component.html in the src/app/admin folder and add the markup shown in Listing 7-38.<h3 class="heading">{{editing ? "Edit" : "Create"}} Product</h3>

<form (ngSubmit)="save()">

 <mat-form-field *ngIf="editing">
 <mat-label>ID</mat-label>
 <input matInput name="id" [(ngModel)]="product.id" disabled />
 </mat-form-field>

 <mat-form-field>
 <mat-label>Name</mat-label>
 <input matInput name="name" [(ngModel)]="product.name" />
 </mat-form-field>

 <mat-form-field>
 <mat-label>Category</mat-label>
 <input matInput name="category" [(ngModel)]="product.category" />
 </mat-form-field>

 <mat-form-field>
 <mat-label>Description</mat-label>
 <input name="description" matInput [(ngModel)]="product.description"/>
 </mat-form-field>

 <mat-form-field>
 <mat-label>Price</mat-label>
 <input matInput name="price" [(ngModel)]="product.price" />
 </mat-form-field>

 <button type="submit" mat-flat-button color="primary">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" mat-stroked-button routerLink="/admin/main/products">
 Cancel
 </button>
</form>

Listing 7-38The Contents of the productEditor.component.html File in the src/app/admin Folder

The template contains a form with fields for the properties defined by the Product model class. The field for the id property is shown only when editing an existing product and is disabled because the value cannot be changed. Listing 7-39 defines the styles that are required to lay out the form.html, body { height: 100%}
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

mat-toolbar span { flex: 1 1 auto; }

.menu-button { width: 100%; font-size: 1rem; }
.menu-button .mat-icon { margin-right: 10px; }
.menu-button span { flex: 1 1 auto; }

mat-sidenav { margin: 16px; width: 175px; border-right: none;
 border-radius: 4px; padding: 4px;
}
mat-sidenav .mat-divider { margin-top: 20px; margin-bottom: 5px; }
mat-sidenav-container { height: calc(100vh - 60px); }
mat-sidenav .mat-button-wrapper {
 display: flex; width: 100%; justify-content: baseline; align-content: center;
}
mat-sidenav .mat-button-wrapper mat-icon { margin-top: 5px; }
mat-sidenav .mat-button-wrapper span { text-align: start; }

table[mat-table] { width: 100%; table-layout: auto; }
table[mat-table] button { margin-left: 5px;}
table[mat-table] th.mat-header-cell { font-size: large; font-weight: bold;}
table[mat-table] .mat-column-name { width: 25%; }
table[mat-table] .mat-column-buttons { width: 30%; }
/* table[mat-table] + button[mat-flat-button] { margin-top: 10px;} */

.bottom-box { background-color: white; padding-bottom: 20px;}
.bottom-box > button[mat-flat-button] { margin-top: 10px;}
.bottom-box mat-paginator { float: right; font-size: 14px; }

mat-form-field { width: 100%;}
mat-form-field:first-child { margin-top: 20px;}
form button[mat-flat-button] { margin-top: 10px; margin-right: 10px;}
h3.heading { margin-top: 20px; }

Listing 7-39Defining Styles in the styles.css File in the src Folder

To see how the component works, authenticate to access the Admin features and click the Create New Product button that appears under the table of products. Fill out the form, click the Create button, and the new product will be sent to the RESTful web service where it will be assigned an ID property and displayed in the product table, as shown in Figure 7-7.
Tip
Restart the ng serve command if you see an error after saving these changes.

[image:]
Figure 7-7Creating a new product

The editing process works in a similar way. Click one of the Edit buttons to see the current details, edit them using the form fields, and click the Save button to save the changes, as shown in Figure 7-8.[image:]
Figure 7-8Editing an existing product

Implementing the Order Table Feature
The order management feature is nice and simple. It requires a table that lists the set of orders, along with buttons that will set the shipped property or delete an order entirely. The table will be displayed with a checkbox that will include shipped orders in the table. Listing 7-40 adds the Angular Material checkbox feature to the SportsStore project.import { NgModule } from "@angular/core";
import { MatToolbarModule } from "@angular/material/toolbar";
import { MatSidenavModule } from "@angular/material/sidenav";
import { MatIconModule } from '@angular/material/icon';
import { MatDividerModule } from '@angular/material/divider';
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";
import { MatPaginatorModule } from "@angular/material/paginator";
import { MatFormFieldModule } from '@angular/material/form-field';
import { MatInputModule } from '@angular/material/input';
import { MatCheckboxModule } from '@angular/material/checkbox';

const features: any[] = [MatToolbarModule,MatSidenavModule,MatIconModule,
 MatDividerModule, MatButtonModule, MatTableModule, MatPaginatorModule,
 MatFormFieldModule, MatInputModule, MatCheckboxModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 7-40Adding a Feature in the material.module.ts File in the src/app/admin Folder

To create the template, I added a file called orderTable.component.html to the src/app/admin folder with the content shown in Listing 7-41.<mat-checkbox [(ngModel)]="includeShipped">Display Shipped Orders</mat-checkbox>

<table class="orders" mat-table [dataSource]="dataSource">

 <mat-text-column name="name"></mat-text-column>
 <mat-text-column name="zip"></mat-text-column>

 <ng-container matColumnDef="cart_p">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let order">
 <table mat-table [dataSource]="order.cart.lines">
 <ng-container matColumnDef="p">
 <th mat-header-cell *matHeaderCellDef>Product</th>
 <td mat-cell *matCellDef="let line">{{ line.product.name }}</td>
 </ng-container>
 <tr mat-header-row *matHeaderRowDef="['p']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['p']"></tr>
 </table>
 </td>
 </ng-container>

 <ng-container matColumnDef="cart_q">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let order">
 <table mat-table [dataSource]="order.cart.lines">
 <ng-container matColumnDef="q">
 <th mat-header-cell *matHeaderCellDef>Quantity</th>
 <td mat-cell *matCellDef="let line">{{ line.quantity }}</td>
 </ng-container>
 <tr mat-header-row *matHeaderRowDef="['q']"></tr>
 <tr mat-row *matRowDef="let row; columns: ['q']"></tr>
 </table>
 </td>
 </ng-container>

 <ng-container matColumnDef="buttons">
 <th mat-header-cell *matHeaderCellDef>Actions</th>
 <td mat-cell *matCellDef="let o">
 <button mat-flat-button color="primary" (click)="toggleShipped(o)">
 {{ o.shipped ? "Unship" : "Ship" }}
 </button>
 <button mat-flat-button color="warn" (click)="delete(o.id)">
 Delete
 </button>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
 <tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>

 <tr class="mat-row" *matNoDataRow>
 <td class="mat-cell no-data" colspan="4">No orders to display</td>
 </tr>
</table>

Listing 7-41The Contents of the orderTable.component.html File in the src/app/admin Folder

This template contains tables within a table, which allows me to produce a variable number of rows for each order, reflecting the customer’s product selections. There is also a checkbox that sets a property named includeShipped, which is defined in Listing 7-42, along with the rest of the features required to support the template.import { Component, IterableDiffer, IterableDiffers } from "@angular/core";
import { MatTableDataSource } from "@angular/material/table";
import { Order } from "../model/order.model";
import { OrderRepository } from "../model/order.repository";

@Component({
 templateUrl: "orderTable.component.html"
})
export class OrderTableComponent {
 colsAndRows: string[] = ['name', 'zip','cart_p','cart_q', 'buttons'];

 dataSource = new MatTableDataSource<Order>(this.repository.getOrders());
 differ: IterableDiffer<Order>;

 constructor(private repository: OrderRepository, differs: IterableDiffers) {
 this.differ = differs.find(this.repository.getOrders()).create();
 this.dataSource.filter = "true";
 this.dataSource.filterPredicate = (order, include) => {
 return !order.shipped || include.toString() == "true"
 };
 }

 get includeShipped(): boolean {
 return this.dataSource.filter == "true";
 }

 set includeShipped(include: boolean) {
 this.dataSource.filter = include.toString()
 }

 toggleShipped(order: Order) {
 order.shipped = !order.shipped;
 this.repository.updateOrder(order);
 }

 delete(id: number) {
 this.repository.deleteOrder(id);
 }

 ngDoCheck() {
 let changes = this.differ?.diff(this.repository.getOrders());
 if (changes != null) {
 this.dataSource.data = this.repository.getOrders();
 }
 }
}

Listing 7-42Adding Features in the orderTable.component.ts File in the src/app/admin Folder

The way that data is filtered in this example is a good example of adapting to the way the component library works. The support for filtering data provided by the Angular Material table is intended to search for strings in the table and to update the filtered data only when a new search string is specified. I have replaced the function used to filter rows and ensure that filtering is applied by binding changes from the checkbox so that the search string is altered each time.
The final step is to define yet more CSS to control the layout of the table and its contents, as shown in Listing 7-43.html, body { height: 100%}
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

mat-toolbar span { flex: 1 1 auto; }

.menu-button { width: 100%; font-size: 1rem; }
.menu-button .mat-icon { margin-right: 10px; }
.menu-button span { flex: 1 1 auto; }

mat-sidenav { margin: 16px; width: 175px; border-right: none;
 border-radius: 4px; padding: 4px;
}
mat-sidenav .mat-divider { margin-top: 20px; margin-bottom: 5px; }
mat-sidenav-container { height: calc(100vh - 60px); }
mat-sidenav .mat-button-wrapper {
 display: flex; width: 100%; justify-content: baseline; align-content: center;
}
mat-sidenav .mat-button-wrapper mat-icon { margin-top: 5px; }
mat-sidenav .mat-button-wrapper span { text-align: start; }

table[mat-table] { width: 100%; table-layout: auto; }
table[mat-table] button { margin-left: 5px;}
table[mat-table] th.mat-header-cell { font-size: large; font-weight: bold;}
table[mat-table] .mat-column-name { width: 25%; }
table[mat-table] .mat-column-buttons { width: 30%; }
/* table[mat-table] + button[mat-flat-button] { margin-top: 10px;} */

.bottom-box { background-color: white; padding-bottom: 20px;}
.bottom-box > button[mat-flat-button] { margin-top: 10px;}
.bottom-box mat-paginator { float: right; font-size: 14px; }

mat-form-field { width: 100%;}
mat-form-field:first-child { margin-top: 20px;}
form button[mat-flat-button] { margin-top: 10px; margin-right: 10px;}
h3.heading { margin-top: 20px; }

mat-checkbox { margin: 10px; font-size: large;}
td.no-data { font-size: large;}
table.orders tbody, table.orders thead { vertical-align: top }
table.orders td { padding-top: 10px;}
table.orders table th:first-of-type, table.orders table td:first-of-type {
 margin: 0; padding: 0;
}

Listing 7-43Defining Styles in the styles.css File in the src Folder

Remember that the data presented by the RESTful web service is reset each time the process is started, which means you will have to use the shopping cart and check out to create orders. Once that’s done, you can inspect and manage them using the Orders section of the administration tool, as shown in Figure 7-9.[image:]
Figure 7-9Managing orders

Summary
In this chapter, I created a dynamically loaded Angular feature module that contains the administration tools required to manage the catalog of products and process orders. In the next chapter, I finish the SportsStore application and prepare it for deployment into production.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_8

8. SportsStore: Progressive Features and Deployment

Adam Freeman1
(1)London, UK

In this chapter, I prepare the SportsStore application for deployment by adding progressive features that will allow it to work while offline and show you how to prepare and deploy the application into a Docker container, which can be used on most hosting platforms.
Preparing the Example Application
No preparation is required for this chapter, which continues using the SportsStore project from Chapter 7.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Adding Progressive Features
A progressive web application (PWA) behaves more like a native application, which means it can continue working when there is no network connectivity, its code and content are cached so it can start immediately, and it can use features such as notifications. Progressive web application features are not specific to Angular, but in the sections that follow, I add progressive features to the SportsStore application to show you how it is done.
Tip
The process for developing and testing a PWA can be laborious because it can be done only when the application is built for production, which means that the automatic build tools cannot be used.

Installing the PWA Package
The Angular team provides an NPM package that can be used to bring PWA features to Angular projects. Run the command shown in Listing 8-1 in the SportsStore folder to download and install the PWA package.
Tip
Notice that this command is ng add, rather than the npm install command that I use elsewhere for adding packages. The ng add command is used specifically to install packages, such as @angular/pwa, that have been designed to enhance or reconfigure an Angular project.

ng add @angular/pwa

Listing 8-1Installing a Package

Caching the Data URLs
The @angular/pwa package configures the application so that HTML, JavaScript, and CSS files are cached, which will allow the application to be started even when there is no network available. I also want the product catalog to be cached so that the application has data to present to the user. In Listing 8-2, I added a new section to the ngsw-config.json file, which is used to configure the PWA features for an Angular application and is added to the project by the @angular/pwa package. {
 "$schema": "./node_modules/@angular/service-worker/config/schema.json",
 "index": "/index.html",
 "assetGroups": [
 {
 "name": "app",
 "installMode": "prefetch",
 "resources": {
 "files": [
 "/favicon.ico",
 "/index.html",
 "/manifest.webmanifest",
 "/*.css",
 "/*.js"
]
 }
 },
 {
 "name": "assets",
 "installMode": "lazy",
 "updateMode": "prefetch",
 "resources": {
 "files": [
 "/assets/**",
 "/*.(svg|cur|jpg|jpeg|png|apng|webp|avif|gif|otf|ttf|woff|woff2)"
]
 }
 }
],
 "dataGroups": [
 {
 "name": "api-product",
 "urls": ["/api/products"],
 "cacheConfig" : {
 "maxSize": 100,
 "maxAge": "5d"
 }
 }],
 "navigationUrls": ["/**"]
}

Listing 8-2Caching the Data URLs in the ngsw-config.json File in the SportsStore Folder

The PWA’s code and content required to run the application are cached and updated when new versions are available, ensuring that updates are applied consistently when they are available, using the configuration in the assetGroups section of the configuration file.
The application’s data is cached using the dataGroups section of the configuration file, which allows data to be managed using its own cache settings. In this listing, I configured the cache so that it will contain data from 100 requests, and that data will be valid for five days. The final configuration section is navigationUrls, which specifies the range of URLs that will be directed to the index.html file. In this example, I used a wildcard to match all URLs.
Note
I am just touching the surface of the cache features that you can use in a PWA. There are lots of choices available, including the ability to try to connect to the network and then fall back to cached data if there is no connection. See https://angular.io/guide/service-worker-intro for details.

Responding to Connectivity Changes
The SportsStore application isn’t an ideal candidate for progressive features because connectivity is required to place an order. To avoid user confusion when the application is running without connectivity, I am going to disable the checkout process. The APIs that are used to add progressive features provide information about the state of connectivity and send events when the application goes offline and online. To provide the application with details of its connectivity, I added a file called connection.service.ts to the src/app/model folder and used it to define the service shown in Listing 8-3. import { Injectable } from "@angular/core";
import { Observable, Subject } from "rxjs";

@Injectable()
export class ConnectionService {
 private connEvents: Subject<boolean>;

 constructor() {
 this.connEvents = new Subject<boolean>();
 window.addEventListener("online",
 (e) => this.handleConnectionChange(e));
 window.addEventListener("offline",
 (e) => this.handleConnectionChange(e));
 }

 private handleConnectionChange(event: any) {
 this.connEvents.next(this.connected);
 }

 get connected() : boolean {
 return window.navigator.onLine;
 }

 get Changes(): Observable<boolean> {
 return this.connEvents;
 }
}

Listing 8-3The Contents of the connection.service.ts File in the src/app/model Folder

This service presets the connection status to the rest of the application, obtaining the status through the browser’s navigator.onLine property and responding to the online and offline events, which are triggered when the connection state changes and which are accessed through the addEventListener method provided by the browser. In Listing 8-4, I added the new service to the module for the data model.import { NgModule } from "@angular/core";
import { ProductRepository } from "./product.repository";
import { StaticDataSource } from "./static.datasource";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { OrderRepository } from "./order.repository";
import { RestDataSource } from "./rest.datasource";
import { HttpClientModule } from "@angular/common/http";
import { AuthService } from "./auth.service";
import { ConnectionService } from "./connection.service";

@NgModule({
 imports: [HttpClientModule],
 providers: [ProductRepository, StaticDataSource, Cart, Order, OrderRepository,
 { provide: StaticDataSource, useClass: RestDataSource },
 RestDataSource, AuthService, ConnectionService]
})
export class ModelModule { }

Listing 8-4Adding a Service in the model.module.ts File in the src/app/model Folder

To prevent the user from checking out when there is no connection, I updated the cart detail component so that it receives the connection service in its constructor, as shown in Listing 8-5.import { Component } from "@angular/core";
import { Cart } from "../model/cart.model";
import { ConnectionService } from "../model/connection.service";

@Component({
 templateUrl: "cartDetail.component.html"
})
export class CartDetailComponent {
 public connected: boolean = true;

 constructor(public cart: Cart, private connection: ConnectionService) {
 this.connected = this.connection.connected;
 connection.Changes.subscribe((state) => this.connected = state);
 }
}

Listing 8-5Receiving a Service in the cartDetail.component.ts File in the src/app/store Folder

The component defines a connected property that is set from the service and then updated when changes are received. To complete this feature, I changed the checkout button so that it is disabled when there is no connectivity, as shown in Listing 8-6....
<div class="row">
 <div class="col">
 <div class="text-center">
 <button class="btn btn-primary m-1" routerLink="/store">
 Continue Shopping
 </button>
 <button class="btn btn-secondary m-1" routerLink="/checkout"
 [disabled]="cart.lines.length == 0 || !connected">
 {{ connected ? 'Checkout' : 'Offline' }}
 </button>
 </div>
</div>
...

Listing 8-6Reflecting Connectivity in the cartDetail.component.html File in the src/app/store Folder

Preparing the Application for Deployment
In the sections that follow, I prepare the SportsStore application so that it can be deployed.
Creating the Data File
When I created the RESTful web service, I provided the json-server package with a JavaScript file, which is executed each time the server starts and ensures that the same data is always used. That isn’t helpful in production, so I added a file called serverdata.json to the SportsStore folder with the contents shown in Listing 8-7. When the json-server package is configured to use a JSON file, any changes that are made by the application will be persisted. {
 "products": [
 { "id": 1, "name": "Kayak", "category": "Watersports",
 "description": "A boat for one person", "price": 275 },
 { "id": 2, "name": "Lifejacket", "category": "Watersports",
 "description": "Protective and fashionable", "price": 48.95 },
 { "id": 3, "name": "Soccer Ball", "category": "Soccer",
 "description": "FIFA-approved size and weight", "price": 19.50 },
 { "id": 4, "name": "Corner Flags", "category": "Soccer",
 "description": "Give your playing field a professional touch",
 "price": 34.95 },
 { "id": 5, "name": "Stadium", "category": "Soccer",
 "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
 { "id": 6, "name": "Thinking Cap", "category": "Chess",
 "description": "Improve brain efficiency by 75%", "price": 16 },
 { "id": 7, "name": "Unsteady Chair", "category": "Chess",
 "description": "Secretly give your opponent a disadvantage",
 "price": 29.95 },
 { "id": 8, "name": "Human Chess Board", "category": "Chess",
 "description": "A fun game for the family", "price": 75 },
 { "id": 9, "name": "Bling Bling King", "category": "Chess",
 "description": "Gold-plated, diamond-studded King", "price": 1200 }
],
 "orders": []
}

Listing 8-7The Contents of the serverdata.json File in the SportsStore Folder

Creating the Server
When the application is deployed, I am going to use a single HTTP port to handle the requests for the application and its data, rather than the two ports that I have been using in development. Using separate ports is simpler in development because it means that I can use the Angular development HTTP server without having to integrate the RESTful web service. Angular doesn’t provide an HTTP server for deployment, and since I have to provide one, I am going to configure it so that it will handle both types of request and include support for HTTP and HTTPS connections, as explained in the sidebar.
Using Secure Connections For Progressive Web Applications
When you add progressive features to an application, you must deploy it so that it can be accessed over secure HTTP connections. If you do not, the progressive features will not work because the underlying technology—called service workers—won’t be allowed by the browser over regular HTTP connections.
You can test progressive features using localhost, as I demonstrate shortly, but an SSL/TLS certificate is required when you deploy the application. If you do not have a certificate, then a good place to start is https://letsencrypt.org, where you can get one for free, although you should note that you also need to own the domain or hostname that you intend to deploy to generate a certificate. For this book, I deployed the SportsStore application with its progressive features to sportsstore.adam-freeman.com, which is a domain that I use for development testing and receiving emails. This is not a domain that provides public HTTP services, and you won’t be able to access the SportsStore application through this domain.

Run the commands shown in Listing 8-8 in the SportsStore folder to install the packages that are required to create the HTTP/HTTPS server.npm install --save-dev express@4.17.3
npm install --save-dev connect-history-api-fallback@1.6.0
npm install --save-dev https@1.0.0

Listing 8-8Installing Additional Packages

I added a file called server.js to the SportsStore with the content shown in Listing 8-9, which uses the newly added packages to create an HTTP and HTTPS server that includes the json-server functionality that will provide the RESTful web service. (The json-server package is specifically designed to be integrated into other applications.)const express = require("express");
const https = require("https");
const fs = require("fs");
const history = require("connect-history-api-fallback");
const jsonServer = require("json-server");
const bodyParser = require('body-parser');
const auth = require("./authMiddleware");
const router = jsonServer.router("serverdata.json");

const enableHttps = false;

const ssloptions = {}

if (enableHttps) {
 ssloptions.cert = fs.readFileSync("./ssl/sportsstore.crt");
 ssloptions.key = fs.readFileSync("./ssl/sportsstore.pem");
}

const app = express();

app.use(bodyParser.json());
app.use(auth);
app.use("/api", router);
app.use(history());
app.use("/", express.static("./dist/SportsStore"));

app.listen(80,
 () => console.log("HTTP Server running on port 80"));

if (enableHttps) {
 https.createServer(ssloptions, app).listen(443,
 () => console.log("HTTPS Server running on port 443"));
} else {
 console.log("HTTPS disabled")
}

Listing 8-9The Contents of the server.js File in the SportsStore Folder

The server can read the details of the SSL/TLS certificate from files in the ssl folder, which is where you should place the files for your certificate. If you do not have a certificate, then you can disable HTTPS by setting the enableHttps value to false. You will still be able to test the application using the local server, but you won’t be able to use the progressive features in deployment.
Changing the Web Service URL in the Repository Class
Now that the RESTful data and the application’s JavaScript and HTML content will be delivered by the same server, I need to change the URL that the application uses to get its data, as shown in Listing 8-10.import { Injectable } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";
import { Cart } from "./cart.model";
import { Order } from "./order.model";
import { map } from "rxjs/operators";
import { HttpHeaders } from '@angular/common/http';

const PROTOCOL = "http";
const PORT = 3500;

@Injectable()
export class RestDataSource {
 baseUrl: string;
 auth_token: string;

 constructor(private http: HttpClient) {
 //this.baseUrl = `${PROTOCOL}://${location.hostname}:${PORT}/`;
 this.baseUrl = "/api/"
 }

 // ...methods omitted for brevity...
}

Listing 8-10Changing the URL in the rest.datasource.ts File in the src/app/model Folder

Fixing The Browser Version Issue
At the time of writing, there is a bug that prevents the build process from parsing the output from one of the tools it depends on. Add these entries shown to the .browserslistrc file in the SportsStore folder:# This file is used by the build system to adjust CSS and JS output to support the specified browsers below.
For additional information regarding the format and rule options, please see:
https://github.com/browserslist/browserslist#queries

For the full list of supported browsers by the Angular framework, please see:
https://angular.io/guide/browser-support

You can see what browsers were selected by your queries by running:
npx browserslist

last 1 Chrome version
last 1 Firefox version
last 2 Edge major versions
last 2 Safari major versions
last 2 iOS major versions
Firefox ESR

not ios_saf 15.2-15.3
not safari 15.2-15.3

This issue may have been resolved by the time you read this book, but the changes allow the build process to complete.

Building and Testing the Application
To build the application for production, run the command shown in Listing 8-11 in the SportsStore folder. ng build

Listing 8-11Building the Application for Production

This command builds an optimized version of the application without the additions that support the development tools. The output from the build process is placed in the dist/SportsStore folder. In addition to the JavaScript files, there is an index.html file that has been copied from the SportsStore/src folder and modified to use the newly built files.
Note
Angular provides support for server-side rendering, where the application is run in the server, rather than the browser. This is a technique that can improve the perception of the application’s startup time and can improve indexing by search engines. This is a feature that should be used with caution because it has serious limitations and can undermine the user experience. For these reasons, I have not covered server-side rendering in this book. You can learn more about this feature at https://angular.io/guide/universal.

The build process can take a few minutes to complete. Once the build is ready, run the command shown in Listing 8-12 in the SportsStore folder to start the HTTP server. If you have not configured the server to use a valid SSL/TLS certificate, you should change the value of the enableHttps constant in the server.js file and then run the command in Listing 8-12.node server.js

Listing 8-12Starting the Production HTTP Server

Once the server has started, open a new browser window and navigate to http://localhost, and you will see the familiar content shown in Figure 8-1.[image:]
Figure 8-1Testing the application

Testing the Progressive Features
Open the F12 development tools, navigate to the Network tab, click the arrow to the right of Online, and select Offline, as shown in Figure 8-2. This simulates a device without connectivity, but since SportsStore is a progressive web application, it has been cached by the browser, along with its data.[image:]
Figure 8-2Going offline

Once the application is offline, the application will be loaded from the browser’s cache. If you click an Add To Cart button, you will see that the Checkout button is disabled, as shown in Figure 8-3. Uncheck the Offline checkbox, and the button’s text will change so that the user can place an order.[image:]
Figure 8-3Reflecting the connection status in the application

Containerizing the SportsStore Application
To complete this chapter, I am going to create a container for the SportsStore application so that it can be deployed into production. At the time of writing, Docker is the most popular way to create containers, which is a pared-down version of Linux with just enough functionality to run the application. Most cloud platforms or hosting engines have support for Docker, and its tools run on the most popular operating systems.
Installing Docker
The first step is to download and install the Docker tools on your development machine, which are available from www.docker.com/products. There are versions for macOS, Windows, and Linux, and there are some specialized versions to work with the Amazon and Microsoft cloud platforms. The free Community edition of Docker Desktop is sufficient for this chapter.
Preparing the Application
The first step is to create a configuration file for NPM that will be used to download the additional packages required by the application for use in the container. I created a file called deploy-package.json in the SportsStore folder with the content shown in Listing 8-13. {
 "dependencies": {
 "@fortawesome/fontawesome-free": "6.0.0",
 "bootstrap": "5.1.3"
 },

 "devDependencies": {
 "json-server": "0.17.0",
 "jsonwebtoken": "8.5.1",
 "express": "4.17.3",
 "https": "1.0.0",
 "connect-history-api-fallback": "1.6.0"
 },

 "scripts": {
 "start": "node server.js"
 }
}

Listing 8-13The Contents of the deploy-package.json File in the SportsStore Folder

The dependencies section omits Angular and all of the other runtime packages that were added to the package.json file when the project was created because the build process incorporates all of the JavaScript code required by the application into the files in the dist/SportsStore folder. The devDependencies section includes the tools required by the production HTTP/HTTPS server.
The scripts section of the deploy-package.json file is set up so that the npm start command will start the production server, which will provide access to the application and its data.
Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the SportsStore folder and added the content shown in Listing 8-14. FROM node:16.3.0

RUN mkdir -p /usr/src/sportsstore

COPY dist/SportsStore /usr/src/sportsstore/dist/SportsStore
COPY ssl /usr/src/sportsstore/ssl

COPY authMiddleware.js /usr/src/sportsstore/
COPY serverdata.json /usr/src/sportsstore/
COPY server.js /usr/src/sportsstore/server.js
COPY deploy-package.json /usr/src/sportsstore/package.json

WORKDIR /usr/src/sportsstore

RUN npm install

EXPOSE 80

CMD ["node", "server.js"]

Listing 8-14The Contents of the Dockerfile File in the SportsStore Folder

The contents of the Dockerfile use a base image that has been configured with Node.js and copies the files required to run the application, including the bundle file containing the application and the package.json file that will be used to install the packages required to run the application in deployment.
To speed up the containerization process, I created a file called .dockerignore in the SportsStore folder with the content shown in Listing 8-15. This tells Docker to ignore the node_modules folder, which is not required in the container and takes a long time to process.node_modules

Listing 8-15The Contents of the .dockerignore File in the SportsStore Folder

Run the command shown in Listing 8-16 in the SportsStore folder to create an image that will contain the SportsStore application, along with all of the tools and packages it requires.
Tip
The SportsStore project must contain an ssl directory, even if you have not installed a certificate. This is because there is no way to check to see whether a file exists when using the COPY command in the Dockerfile.

docker build . -t sportsstore -f Dockerfile

Listing 8-16Building the Docker Image

An image is a template for containers. As Docker processes the instructions in the Dockerfile, the NPM packages will be downloaded and installed, and the configuration and code files will be copied into the image.
Running the Application
Once the image has been created, create and start a new container using the command shown in Listing 8-17.
Tip
Make sure you stop the test server you started in Listing 8-12 before starting the Docker container since both use the same ports to listen for requests.

docker run -p 80:80 -p 443:443 sportsstore

Listing 8-17Starting the Docker Container

You can test the application by opening http://localhost in the browser, which will display the response provided by the web server running in the container, as shown in Figure 8-4.[image:]
Figure 8-4Running the containerized SportsStore application

To stop the container, run the command shown in Listing 8-18.docker ps

Listing 8-18Listing the Containers

You will see a list of running containers, like this (I have omitted some fields for brevity):CONTAINER ID IMAGE COMMAND CREATED
ecc84f7245d6 sportsstore "docker-entrypoint.s..." 33 seconds ago

Using the value in the Container ID column, run the command shown in Listing 8-19.docker stop ecc84f7245d6

Listing 8-19Stopping the Container

The application is ready to deploy to any platform that supports Docker, although the progressive features will work only if you have configured an SSL/TLS certificate for the domain to which the application is deployed.
Summary
This chapter completes the SportsStore application, showing how an Angular application can be prepared for deployment and how easy it is to put an Angular application into a container such as Docker. That’s the end of this part of the book. In Part 2, I begin the process of digging into the details and show you how the features I used to create the SportsStore application work in depth.

Part IIWorking with Angular

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_9

9. Understanding Angular Projects and Tools

Adam Freeman1
(1)London, UK

In this chapter, I explain the structure of an Angular project and the tools that are used for development. By the end of the chapter, you will understand how the parts of a project fit together and have a foundation on which to apply the more advanced features that are described in the chapters that follow.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Creating a New Angular Project
The angular-cli package you installed in Chapter 1 contains all the functionality required to create a new Angular project that contains some placeholder content to jump-start development, and it contains a set of tightly integrated tools that are used to build, test, and prepare Angular applications for deployment.
To create a new Angular project, open a command prompt, navigate to a convenient location, and run the command shown in Listing 9-1.ng new example --routing false --style css --skip-git --skip-tests

Listing 9-1Creating a Project

The ng new command creates new projects, and the argument is the project name, which is example in this case. The ng new command has a set of arguments that shape the project that is created; Table 9-1 describes the most useful.Table 9-1Useful ng new Options

	Argument
	Description

	--directory
	This option is used to specify the name of the directory for the project. It defaults to the project name.

	--force
	When true, this option overwrites any existing files.

	--minimal
	This option creates a project without adding support for testing frameworks.

	--package-manager
	This option is used to specify the package manager that will be used to download and install the packages required by Angular. If omitted, NPM will be used. Other options are yarn, pnpm, and cnpm. The default package manager is suitable for most projects.

	--prefix
	This option applies a prefix to all of the component selectors, as described in the “Understanding How an Angular Application Works” section.

	--routing
	This option is used to create a routing module in the project. I explain how the routing feature works in detail in Chapters 24–26.

	--skip-git
	Using this option prevents a Git repository from being created in the project. You must install the Git tools if you create a project without this option.

	--skip-install
	This option prevents the initial operation that downloads and installs the packages required by Angular applications and the project’s development tools.

	--skip-tests
	This option prevents the addition of the initial configuration for testing tools.

	--style
	This option specifies how stylesheets are handled. I use the css option throughout this book, but popular CSS preprocessors such as SCSS, SASS, and LESS also are supported. Chapter 28 contains an advanced example that uses SCSS.

The project initialization process performed by the ng new command can take some time to complete because there are a large number of packages required by the project, both to run the Angular application and for the development and testing tools that I describe in this chapter.
Understanding the Project Structure
Use your preferred code editor to open the example folder, and you will see the files and folder structure shown in Figure 9-1. The figure shows the way that Visual Studio Code presents the project; other editors may present the project contents differently. [image:]
Figure 9-1The contents of a new Angular project

Table 9-2 describes the files and folders that are added to a new project by the ng new command and that provide the starting point for most Angular development. Table 9-2The Files and Folders in a New Angular Project

	Name
	Description

	node_modules
	This folder contains the NPM packages that are required for the application and for the Angular development tools, as described in the “Understanding the Packages Folder” section.

	src
	This folder contains the application’s source code, resources, and configuration files, as described in the “Understanding the Source Code Folder” section.

	.browserslistrc
	This file is used to specify the browsers that the application will support, which can alter the way that code is compiled and prepared for distribution. The default settings are suitable for most projects, but you can find details of how to change the target browsers at https://github.com/browserslist/browserslist.

	.editorconfig
	This file contains settings that configure text editors. Not all editors respond to this file, but it may override the preferences you have defined. You can learn more about the editor settings that can be set in this file at http://editorconfig.org.

	.gitignore
	This file contains a list of files and folders that are excluded from version control when using Git.

	angular.json
	This file contains the configuration for the Angular development tools.

	karma.conf.js
	This file configures the Karma test runner. See Chapter 29 for details of unit testing in Angular projects.

	package.json
	This file contains details of the NPM packages required by the application and the development tools and defines the commands that run the development tools, as described in the “Understanding the Packages Folder” section.

	package-lock.json
	This file contains version information for all the packages that are installed in the node_modules folder, as described in the “Understanding the Packages Folder” section.

	README.md
	This is a readme file that contains the list of commands for the development tools, which are described in the “Using the Development Tools” section.

	tsconfig.json
	This file contains the configuration settings for the TypeScript compiler. You don’t need to change the compiler configuration in most Angular projects.

	tsconfig.app.json
	This file contains additional configuration options for the TypeScript compiler related to the locations of source files, type definition files, and where compiled output will be written.

	tsconfig.spec.json
	This file contains additional configuration options for the TypeScript compiler related to the locations of source files for unit tests.

You won’t need all these files in every project, and you can remove the ones you don’t require. I tend to remove the README.md, .editorconfig, and .gitignore files, for example, because I am already familiar with the tool commands, I prefer not to override my editor settings, and I don’t use Git for version control.
Understanding the Source Code Folder
The src folder contains the application’s files, including the source code and static assets, such as images. This folder is the focus of most development activities, and Figure 9-2 shows the contents of the src folder created using the ng new command. [image:]
Figure 9-2The contents of the src folder

The app folder is where you will add the custom code and content for your application, and its structure becomes more complex as you add features. The other files support the development process, as described in Table 9-3. Table 9-3The Files and Folders in the src Folder

	Name
	Description

	app
	This folder contains an application’s source code and content. The contents of this folder are the topic of the “Understanding How an Angular Application Works” section and other chapters in this part of the book.

	assets
	This folder is used for the static resources required by the application, such as images.

	environments
	This folder contains configuration files that define settings for different environments. By default, the only configuration setting is the production flag, which is set to true when the application is built for deployment, as explained in the “Understanding the Application Bootstrap” section.

	favicon.ico
	This file contains an icon that browsers will display in the tab for the application. The default image is the Angular logo.

	index.html
	This is the HTML file that is sent to the browser during development, as explained in the “Understanding the HTML Document” section.

	main.ts
	This file contains the TypeScript statements that start the application when they are executed, as described in the “Understanding the Application Bootstrap” section.

	polyfills.ts
	This file is used to include polyfills in the project to provide support for features that are not available natively in some browsers.

	styles.css
	This file is used to define CSS styles that are applied throughout the application.

	tests.ts
	This is the configuration file for the Karma test package, which I describe in Chapter 29.

Understanding the Packages Folder
The world of JavaScript application development depends on a rich ecosystem of packages, some of which contain the Angular framework that will be sent to the browser through small packages that are used behind the scenes during development. A lot of packages are required for an Angular project; the example project created at the start of this chapter, for example, requires more than 850 packages.
Many of these packages are just a few lines of code, but there is a complex hierarchy of dependencies between them that is too large to manage manually, so a package manager is used. The package manager is given an initial list of packages required for the project. Each of these packages is then inspected for its dependencies, and the process continues until the complete set of packages has been created. All the required packages are downloaded and installed in the node_modules folder.
The initial set of packages is defined in the package.json file using the dependencies and devDependencies properties. The dependencies property is used to list the packages that the application will require to run. Here are the dependencies packages from the package.json file in the example application, although you may see different version numbers in your project:...
"dependencies": {
 "@angular/animations": "~13.0.0",
 "@angular/common": "~13.0.0",
 "@angular/compiler": "~13.0.0",
 "@angular/core": "~13.0.0",
 "@angular/forms": "~13.0.0",
 "@angular/platform-browser": "~13.0.0",
 "@angular/platform-browser-dynamic": "~13.0.0",
 "@angular/router": "~13.0.0",
 "rxjs": "~7.4.0",
 "tslib": "^2.3.0",
 "zone.js": "~0.11.4"
},
...

Most of the packages provide Angular functionality, with a handful of supporting packages that are used behind the scenes. For each package, the package.json file includes details of the version numbers that are acceptable, using the format described in Table 9-4. Table 9-4The Package Version Numbering System

	Format
	Description

	13.0.0
	Expressing a version number directly will accept only the package with the exact matching version number, e.g., 13.0.0.

	*
	Using an asterisk accepts any version of the package to be installed.

	>13.0.0 >=13.0.0
	Prefixing a version number with > or >= accepts any version of the package that is greater than or greater than or equal to a given version.

	<13.0.0 <=13.0.0
	Prefixing a version number with < or <= accepts any version of the package that is less than or less than or equal to a given version.

	~13.0.0
	Prefixing a version number with a tilde (the ~ character) accepts versions to be installed even if the patch level number (the last of the three version numbers) doesn’t match. For example, specifying ~13.0.0 means you will accept version 13.0.1 or 13.0.2 (which would contain patches to version 13.0.0) but not version 13.1.0 (which would be a new minor release).

	^13.0.0
	Prefixing a version number with a caret (the ^ character) will accept versions even if the minor release number (the second of the three version numbers) or the patch number doesn’t match. For example, specifying ^13.0.0 means you will accept versions 13.1.0, and 13.2.0, for example, but not version 14.0.0.

The version numbers specified in the dependencies section of the package.json file will accept minor updates and patches. Version flexibility is more important when it comes to the devDependencies section of the file, which contains a list of the packages that are required for development but which will not be part of the finished application. There are 19 packages listed in the devDependencies section of the package.json file in the example application, each of which has a range of acceptable versions....
"devDependencies": {
 "@angular-devkit/build-angular": "~13.0.3",
 "@angular/cli": "~13.0.3",
 "@angular/compiler-cli": "~13.0.0",
 "@types/jasmine": "~3.10.0",
 "@types/node": "^12.11.1",
 "jasmine-core": "~3.10.0",
 "karma": "~6.3.0",
 "karma-chrome-launcher": "~3.1.0",
 "karma-coverage": "~2.0.3",
 "karma-jasmine": "~4.0.0",
 "karma-jasmine-html-reporter": "~1.7.0",
 "typescript": "~4.4.3"
}
...

Once again, you may see different details, but the key point is that the management of dependencies between packages is too complex to do manually and is delegated to a package manager. The most widely used package manager is NPM, which is installed alongside Node.js and was part of the preparations for this book in Chapter 2.
The packages required for basic development are automatically downloaded and installed into the node_modules folder when you create a project, but Table 9-5 lists some commands that you may find useful during development. All these commands should be run inside the project folder, which is the one that contains the package.json file.
Understanding Global And Local Packages
NPM can install packages so they are specific to a single project (known as a local install) or so they can be accessed from anywhere (known as a global install). Few packages require global installs, but one exception is the @angular/cli package installed in Chapter 2 as part of the preparations for this book. The @angular-cli package requires a global install because it is used to create new projects. The individual packages required for the project are installed locally, into the node_modules folder.

Table 9-5Useful NPM Commands

	Command
	Description

	npm install
	This command performs a local install of the packages specified in the package.json file.

	npm install package@version
	This command performs a local install of a specific version of a package and updates the package.json file to add the package to the dependencies section.

	npm install package@version --save-dev
	This command performs a local install of a specific version of a package and updates the package.json file to add the package to the devDependencies section.

	npm install --global package@version
	This command performs a global install of a specific version of a package.

	npm list
	This command lists all of the local packages and their dependencies.

	npm run <script name>
	This command executes one of the scripts defined in the package.json file, as described next.

	npx package@version
	This command downloads and executes a package.

The last two commands described in Table 9-5 are oddities, but package managers have traditionally included support for running commands that are defined in the scripts section of the package.json file. In an Angular project, this feature is used to provide access to the tools that are used during development and that prepare the application for deployment. Here is the scripts section of the package.json file in the example project: ...
"scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "watch": "ng build --watch --configuration development",
 "test": "ng test"
},
...

Table 9-6 summarizes these commands, and I demonstrate their use in later sections of this chapter or in later chapters in this part of the book.Table 9-6The Commands in the scripts Section of the package.json File

	Name
	Description

	ng
	This command runs the ng command, which provides access to the Angular development tools.

	start
	This command starts the development tools and is equivalent to the ng serve command.

	build
	This command performs the production build process.

	test
	This command starts the unit testing tools, which are described in Chapter 29, and is equivalent to the ng test command.

These commands are run by using npm run followed by the name of the command that you require, and this must be done in the folder that contains the package.json file. So, if you want to run the test command in the example project, navigate to the example folder and type npm run test. You can get the same result by using the command ng test.
The npx command is useful for downloading and executing a package in a single command, which I use in the “Running the Production Build” section later in the chapter. Not all packages are set up for use with npx, which is a recent feature.
Adding Packages with Schematics to an Angular Project
As noted in Table 9-5, the npm install command can be used to add a JavaScript package to the project. Packages installed with this command are added to the node_modules folder and then typically require some manual integration to make them part of the Angular application. You can see an example of this in the “Understanding the Styles Bundle” section, where I install the popular Bootstrap CSS framework and configure Angular to include its CSS stylesheet in the content sent to the browser.
Some JavaScript packages take advantage of the schematics API provided by the @angular/cli package to automate the integration process. Typically, this is because the package provides Angular-specific functionality, such as the Angular Material package, but some package authors provide schematics because Angular is so widely used. The npm install command doesn’t understand the schematics API, so the ng add command is used to download these packages and perform the integration. Run the command shown in Listing 9-2 in the example folder to install the Angular Material package.ng add @angular/material@13.0.2

Listing 9-2Installing the Angular Material Package

The schematics API allows package authors to ask the user questions and use the responses during the integration process. As you go through the setup for Angular Material, you will be asked four questions, and you can press the Enter key to select the default answer for each one.
The first question is just a request to confirm that you want to install the package:Using package manager: npm
Package information loaded.
The package @angular/material@13.0.2 will be installed and executed.
Would you like to proceed? (Y/n)

The ng add command uses the package manager selected when the Angular project was created to download the package. The example project was created to use the npm package manager, but, as noted earlier, other package managers can be selected, and these will be used automatically by the ng add command.
The remaining questions are specific to Angular Material and allow the theme to be selected and typography and animation options to be configured:? Choose a prebuilt theme name, or "custom" for a custom theme: (Use arrow keys)
> Indigo/Pink [Preview: https://material.angular.io?theme=indigo-pink]
 Deep Purple/Amber [Preview: https://material.angular.io?theme=deeppurple-amber]
 Pink/Blue Grey [Preview: https://material.angular.io?theme=pink-bluegrey]
 Purple/Green [Preview: https://material.angular.io?theme=purple-green]
 Custom
? Set up global Angular Material typography styles? (y/N)
? Set up browser animations for Angular Material? (Y/n)

Each package that uses the schematics API will ask questions, and once you have made your choices, the package will be integrated into the Angular project, and the list of files that are changed is shown:UPDATE src/app/app.module.ts (423 bytes)
UPDATE angular.json (3770 bytes)
UPDATE src/index.html (552 bytes)
UPDATE src/styles.css (181 bytes)

I describe all of these files in later sections, and you will see the additions that the Angular Material package has made to each of them.
Note
You don’t need to understand the schematics API to add packages to an Angular project. But if you are interested in publishing a package for use by Angular developers, then you can learn about the features available at https://angular.io/guide/schematics-authoring.

Using the Development Tools
Projects created using the ng new command include a complete set of development tools that monitor the application’s files and build the project when a change is detected. Run the command shown in Listing 9-3 in the example folder to start the development tools. ng serve

Listing 9-3Starting the Development Tools

The command starts the build process, which produces messages like these at the command prompt:...
Generating browser application bundles (phase: building)...
...

At the end of the process, you will see a summary of the bundles that have been created, like this:...
Browser application bundle generation complete.

Initial Chunk Files | Names | Size
vendor.js | vendor | 1.89 MB
polyfills.js | polyfills | 339.12 kB
styles.css, styles.js | styles | 289.27 kB
main.js | main | 51.79 kB
runtime.js | runtime | 6.85 kB

 | Initial Total | 2.57 MB

Build at: 2021-12-05T07:51:57.541Z - Hash: 5762f0ed7a6c45f4 - Time: 10531ms

** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4200/ **

Compiled successfully.
...

Understanding the Development HTTP Server
To simplify the development process, the project incorporates an HTTP server that is tightly integrated with the build process. After the initial build process, the HTTP server is started, and a message is displayed that tells you which port is being used to listen for requests, like this:...
** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4200/ **
...

The default is port 4200, but you may see a different message if you are already using port 4200. Open a new browser window and request http://localhost:4200; you will see the placeholder content added to the project by the ng new command, as shown in Figure 9-3.[image:]
Figure 9-3Using the HTTP development server

Understanding the Build Process
When you run ng serve, the project is built so that it can be used by the browser. This is a process that requires three important tools: the TypeScript compiler, the Angular compiler, and a package named webpack.
Angular applications are created using TypeScript files and HTML templates containing expressions, neither of which can be understood by browsers. The TypeScript compiler is responsible for compiling the TypeScript files into JavaScript, and the Angular compiler is responsible for transforming templates into JavaScript statements that use the browser APIs to create the HTML elements in the template file and evaluate the expressions they contain.
The build process is managed through webpack, which is a module bundler, meaning that it takes the compiled output and consolidates it into a module that can be sent to the browser. This process is known as bundling, which is a bland description for an important function, and it is one of the key tools that you will rely on while developing an Angular application, albeit one that you won’t deal with directly since it is managed for you by the Angular development tools.
When you run the ng serve command, you will see a series of messages as webpack processes the application. Webpack starts with the code in the main.ts file, which is the entry point for the application and follows the import statements it contains to discover its dependencies, repeating this process for each file on which there is a dependency. Webpack works its way through the import statements, compiling each TypeScript and template file on which a dependency is declared to produce JavaScript code for the entire application.
Note
This section describes the development build process. See the “Understanding the Production Build Process” section for details of the process used to prepare an application for deployment.

The output from the main.ts compilation process is combined into a single file, known as a bundle. During the bundling process, webpack generates multiple bundles, each of which contains resources required by the application. At the end of the process, you will see a summary of the bundles that have been created, like this:...
Initial Chunk Files | Names | Size
vendor.js | vendor | 1.89 MB
polyfills.js | polyfills | 339.12 kB
styles.css, styles.js | styles | 289.27 kB
main.js | main | 51.79 kB
runtime.js | runtime | 6.85 kB
 | Initial Total | 2.57 MB
...

The initial build process can take a while to complete because five bundles are produced, as described in Table 9-7.Table 9-7The Bundles Produced by the Angular Build Process

	Name
	Description

	main.js
	This file contains the compiled output produced from the src/app folder.

	polyfills.js
	This file contains JavaScript polyfills required for features used by the application that are not supported by the target browsers.

	runtime.js
	This file contains the code that loads the other modules.

	styles.js
	This file contains JavaScript code that adds the application’s global CSS stylesheets.

	vendor.js
	This file contains the third-party packages the application depends on, including the Angular packages.

Understanding the Application Bundle
The full build process is performed only when the ng serve command is first run. Thereafter, bundles are rebuilt if the files they are composed of change. You can see this by replacing the contents of the app.component.html file with the elements shown in Listing 9-4.<div>
 Hello, World
</div>

Listing 9-4Replacing the Contents of the app.component.html File in the src/app Folder

When you save the changes, only the affected bundles will be rebuilt, and you will see messages at the command prompt like this:Initial Chunk Files | Names | Size
runtime.js | runtime | 6.85 kB
main.js | main | 5.96 kB
3 unchanged chunks
Build at: 2021-12-05T08:34:49.753Z - Hash: 387bffb37bb32d06 - Time: 243ms
Compiled successfully.

Selectively compiling files and preparing bundles ensures that the effect of changes during development can be seen quickly. Figure 9-4 shows the effect of the change in Listing 9-4.[image:]
Figure 9-4Changing a file used in the main.js bundle

Understanding Hot Reloading
During development, the Angular development tools add support for a feature called hot reloading. This is the feature that meant you saw the effect of the change in Listing 9-4 automatically. The JavaScript code added to the bundle opens a connection back to the Angular development HTTP server. When a change triggers a build, the server sends a signal over the HTTP connection, which causes the browser to reload the application automatically.

Understanding the Polyfills Bundle
The Angular build process targets the most recent versions of browsers by default, which can be a problem if you need to provide support for older browsers (something that commonly arises in corporate applications where old browsers are often). The polyfills.js bundle is used to provide implementations of JavaScript features to older versions that do not have native support. The content of the polyfills.js file is determined by the polyfills.ts file, which can be found in the src folder. Only one polyfill is enabled by default, which enables the Zone.js library, which is used by Angular to perform change detection in browsers. You can add your own polyfills to the bundle by adding import statements to the polyfills.ts file.
Understanding the Styles Bundle
The styles.js bundle is used to add CSS stylesheets to the application. The bundle file contains JavaScript code that uses the browser API to define styles, along with the contents of the CSS stylesheets the application requires. (It may seem counterintuitive to use JavaScript to distribute a CSS file, but it works well and has the advantage of making the application self-contained so that it can be deployed as a series of JavaScript files that do not rely on additional assets to be set up on the deployment web servers.)
CSS stylesheets are added to the application using the styles section of the angular.json file. Run the command shown in Listing 9-5 in the example folder to see the current set of stylesheets included in the styles bundle. ng config "projects.example.architect.build.options.styles"

Listing 9-5Displaying the Configured Stylesheets

The ng config command is used to get and change configuration settings in the angular.json file. The argument to the ng config command in Listing 9-5 selects the projects.example.architect.build.options.styles setting, which defines the stylesheets that are included in the styles bundle and produces the following results:[
 "./node_modules/@angular/material/prebuilt-themes/indigo-pink.css",
 "src/styles.css"
]

The indigo-pink.css file was added to the list when the Angular Material package was installed. The styles.css file was added to the list as part of the initial configuration when the project was created.
The structure of the angular.json file and the effect of the settings it contains are described at https://angular.io/guide/workspace-config. Using this description, I was able to determine the configuration option for the CSS stylesheets.
Many projects require no direct changes to the angular.json file and can rely on the default settings. One exception is when manual integration is required for packages that don’t use the schematics API. Run the command shown in Listing 9-6 in the example folder to install the popular Bootstrap CSS framework.npm install bootstrap@5.1.3

Listing 9-6Adding a Package to the Project

The Bootstrap package isn’t specific to Angular development and doesn’t use the schematics API, which means that a manual change must be made to the angular.config file to include the Bootstrap CSS stylesheet in the styles bundle, which is done by running the command shown in Listing 9-7 in the example folder. Take care to enter the command exactly as shown and do not introduce additional spaces or quotes.ng config projects.example.architect.build.options.styles \
'["./node_modules/@angular/material/prebuilt-themes/indigo-pink.css",'\
'"src/styles.css",'\
'"node_modules/bootstrap/dist/css/bootstrap.min.css"]'

Listing 9-7Changing the Application Configuration

If you are using Windows, then use a PowerShell prompt to run the command shown in Listing 9-8 in the example folder.ng config projects.example.architect.build.options.styles `
'[""./node_modules/@angular/material/prebuilt-themes/indigo-pink.css"",
""src/styles.css"",
""node_modules/bootstrap/dist/css/bootstrap.min.css""]'

Listing 9-8Changing the Application Configuration Using PowerShell

Check that the stylesheet has been added to the configuration by running the command in Listing 9-5 again, which should produce the following result:[
 "./node_modules/@angular/material/prebuilt-themes/indigo-pink.css",
 "src/styles.css",
 "node_modules/bootstrap/dist/css/bootstrap.min.css"
]

Editing The Configuration File Directly
The commands to edit the configuration can be difficult to enter correctly, and it is easy to mistype the character escape sequences required to ensure that the command prompt passes the setting to the ng config command in the format it expects.
An alternative approach is to edit the angular.json file directly and add the stylesheet to the styles section, like this:...
"architect": {
"build": {
 "builder": "@angular-devkit/build-angular:browser",
 "options": {
 "outputPath": "dist/example",
 "index": "src/index.html",
 "main": "src/main.ts",
 "polyfills": "src/polyfills.ts",
 "tsConfig": "tsconfig.app.json",
 "assets": [
 "src/favicon.ico",
 "src/assets"
],
 "styles": [
 "./node_modules/@angular/material/prebuilt-themes/indigo-pink.css",
 "src/styles.css",
 "node_modules/bootstrap/dist/css/bootstrap.min.css"
],
 "scripts": []
 },
...

There are two styles sections in the angular.json file, and you must make sure to add the filename to the one closest to the top of the file. Save the changes to the file and run the command shown in Listing 9-5 to check that you have edited the correct styles section. If you don’t see the new stylesheet in the output, then you have edited the wrong part of the file.

Add the classes shown in Listing 9-9 to the div element in the app.component.html file. These classes apply styles defined by the Bootstrap CSS framework.<div class="bg-primary text-white text-center">
 Hello, World
</div>

Listing 9-9Adding Classes in the app.component.html File in the src/app Folder

The development tools do not detect changes to the angular.json file, so stop them by typing Control+C and run the command shown in Listing 9-10 in the example folder to start them again.ng serve

Listing 9-10Starting the Angular Development Tools

A new styles.js bundle will be created during the initial startup. Reload the browser window if the browser doesn’t reconnect to the development HTTP server, and you will see the effect of the new styles, as shown in Figure 9-5. (These styles were applied by the classes I added to the div element in Listing 9-9.)[image:]
Figure 9-5Adding a stylesheet

The original bundle contained just the styles.css file in the src folder, which is empty by default (but which was modified by the Angular Material installation), and the stylesheet from the Angular Material package. Now that the bundle contains the Bootstrap stylesheet, the bundle is larger, as shown by the build message:...
styles.css, styles.js | styles | 450.86 kB
...

This may seem like a large file just for some styles, but it is this size only during development, as I explain in the “Understanding the Production Build Process” section.
Using the Linter
A linter is a tool that inspects source code to ensure that it conforms to a set of coding conventions and rules. Run the command shown in Listing 9-11 in the example folder, which installs the popular ESLint linter package and uses the schematics API to configure the project. ng add @angular-eslint/schematics@13.0.1

Listing 9-11Adding the Linter Package

As part of the integration process, the linter package creates a configuration file named .eslintrc.json in the example folder. Two changes are required to configure the linter, as shown in Listing 9-12.{
 "root": true,
 "ignorePatterns": [
 "projects/**/*",
 "src/test.ts"
],
 "overrides": [
 {
 "files": [
 "*.ts"
],
 "parserOptions": {
 "project": [
 "tsconfig.json"
],
 "createDefaultProgram": true
 },
 "extends": [
 "plugin:@angular-eslint/ng-cli-compat",
 "plugin:@angular-eslint/recommended",
 "plugin:@angular-eslint/template/process-inline-templates"
],
 "rules": {
 "@angular-eslint/directive-selector": [
 "error",
 {
 "type": "attribute",
 "prefix": "app",
 "style": "camelCase"
 }
],
 "@angular-eslint/component-selector": [
 "error",
 {
 "type": "element",
 "prefix": "app",
 "style": "kebab-case"
 }
]
 }
 },
 {
 "files": [
 "*.html"
],
 "extends": [
 "plugin:@angular-eslint/template/recommended"
],
 "rules": {}
 }
]
}

Listing 9-12Configuring the Linter in the .eslintrc.json File in the example Folder

The first change excludes the test.ts file from linting. This file is created by the ng new command to support unit tests, and its contents will produce linting warnings. The second change expands the set of rules applied by the linter.
Additional JavaScript packages are required to support the expanded set of linting rules. Install these packages by running the command shown in Listing 9-13 in the example folder.npm install eslint-plugin-import eslint-plugin-jsdoc eslint-plugin-prefer-arrow

Listing 9-13Installing Additional Packages

To demonstrate how the linter works, I made two changes to a TypeScript file, as shown in Listing 9-14.import { Component } from '@angular/core';

debugger

@Component({
 selector: 'approot',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'example';
}

Listing 9-14Making Changes in the app.component.ts File in the src/app Folder

I added a debugger statement and changed the value of the selector property in the Component decorator. These changes illustrate the range of issues that can be detected by the linter. The debugger statement can cause problems when the application is deployed because it can halt code execution.
The change to the selector value breaks the style convention for Angular applications, where the selector should be specified in kebab-case, meaning that each word is separated by a hyphen. This is only a convention, however, and it doesn’t prevent the application from working. (However, since I have changed only the app.component.ts file and not made a corresponding change in the HTML file, the application will build but not run as expected. I explain the relationship between the selector property and the HTML file in the next section of this chapter.)
Run the command shown in Listing 9-15 in the example folder to run the linter.ng lint

Listing 9-15Running the Linter

The linter inspects the files in the project and reports any problems that it encounters. The changes in Listing 9-14 result in the following messages:...

Linting "example"...

C:\example\src\app\app.component.ts
 3:1 error Unexpected 'debugger' statement no-debugger
 6:13 error The selector should be kebab-case
 (https://angular.io/guide/styleguide#style-05-02)
 @angular-eslint/component-selector

2 problems (2 errors, 0 warnings)
Lint errors found in the listed files.
...

Linting isn’t integrated into the regular build process and is performed manually. The most common use for linting is to check for potential problems before committing changes to a version control system, although some project teams make broader use of the linting facility by integrating it into other processes.
You may find that there are individual statements that cause the linter to report an error but that you are not able to change. Rather than disable the rule entirely, you can add a comment to the code that tells the linter to ignore the next line, like this:...
// eslint-disable-next-line
...

If you have a file that is full of problems but you cannot make changes—often because there are constraints applied from some other part of the application—then you can disable linting for the entire file by adding this comment at the top of the page:...
/* eslint-disable */
...

These comments allow you to ignore code that doesn’t conform to the rules but that cannot be changed, while still linting the rest of the project.
You can also disable rules for the entire project in the .eslintrc file. Each rule has a name, which is included in the linter’s error report. The name of the rule that checks for the debugger statement, for example, is no-debugger:...
3:1 error Unexpected 'debugger' statement no-debugger
...

The rules section of the .eslintrc file can be used to disable rules, as shown in Listing 9-16.
Understanding The Linter Rules
The linter rules that are provided by the ESLint package are described at https://eslint.org/docs/rules, and each description includes examples of code that will pass and fail the rule. Rules whose names begin with @angular are defined by the @angular-eslint package and are described at https://github.com/angular-eslint/angular-eslint/tree/master/packages/eslint-plugin/docs/rules.

...
"rules": {
"@angular-eslint/directive-selector": [
 "error",
 {
 "type": "attribute", "prefix": "app", "style": "camelCase"
 }
],
"@angular-eslint/component-selector": [
 "error",
 {
 "type": "element", "prefix": "app", "style": "kebab-case"
 }
],
"no-debugger": "off"
}
...

Listing 9-16Disabling a Rule in the .eslintrc File in the example Folder

Save the configuration file and run the ng lint command in the example folder. The new configuration disables the no-debugger rule, so the only warning is for the selector naming convention:Linting "example"...
C:\example\src\app\app.component.ts
 6:13 error The selector should be kebab-case (https://angular.io/guide/styleguide#style-05-02) @angular-eslint/component-selector
1 problem (1 error, 0 warnings)
Lint errors found in the listed files.

To address the remaining linter warning, I have changed the selector property back to its original value, as shown in Listing 9-17. I have also commented out the debugger statement, even though it will no longer be detected by the linter.import { Component } from '@angular/core';

//debugger

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'example';
}

Listing 9-17Changing a Property in the app.component.ts File in the src/app Folder

The Joy and Misery Of Linting
Linters can be a powerful tool for good, especially in a development team with mixed levels of skill and experience. Linters can detect common problems and subtle errors that lead to unexpected behavior or long-term maintenance issues. A good example is the difference between the JavaScript == and === operators, where a linter can warn when the wrong type of comparison has been performed. I like this kind of linting, and I like to run my code through the linting process after I have completed a major application feature or before I commit my code into version control.
But linters can also be a tool of division and strife. In addition to detecting coding errors, linters can be used to enforce rules about indentation, brace placement, the use of semicolons and spaces, and dozens of other style issues. Most developers have style preferences—I certainly do: I like four spaces for indentation, and I like opening braces to be on the same line and the expression they relate to. I know that some programmers have different preferences, just as I know those people are plain wrong and will one day see the light and start formatting their code correctly.
Linters allow people with strong views about formatting to enforce them on others, generally under the banner of being “opinionated,” which can tend toward “obnoxious.” The logic is that developers waste time arguing about different coding styles and everyone is better off being forced to write in the same way, which is typically the way preferred by the person with the strong views and ignores the fact that developers will just argue about something else because arguing is fun.
I especially dislike linting of formatting, which I see as divisive and unnecessary. I often help readers when they can’t get book examples working (my email address is adam@adam-freeman.com if you need help), and I see all sorts of coding style every week. But rather than forcing readers to code my way, I just get my code editor to reformat the code to the format that I prefer, which is a feature that every capable editor provides.
My advice is to use linting sparingly and focus on the issues that will cause real problems. Leave formatting decisions to the individuals and rely on code editor reformatting when you need to read code written by a team member who has different preferences.

Understanding How an Angular Application Works
Angular can seem like magic when you first start using it, and it is easy to become wary of making changes to the project files for fear of breaking something. Although there are lots of files in an Angular application, they all have a specific purpose, and they work together to do something far from magic: display HTML content to the user. In this section, I explain how the example Angular application works and how each part works toward the end result.
If you stopped the Angular development tools to run the linter in the previous section, run the command shown in Listing 9-18 in the example folder to start them again.ng serve

Listing 9-18Starting the Angular Development Tools

Once the initial build is complete, use a browser to request http://localhost:4200, and you will see the content shown in Figure 9-6.[image:]
Figure 9-6Running the example application

In the sections that follow, I explain how the files in the project are combined to produce the response shown in the figure.
Understanding the HTML Document
The starting point for running the application is the index.html file, which is found in the src folder. When the browser sent the request to the development HTTP server, it received this file, which contains the following elements: <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Example</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
</head>
<body>
 <app-root></app-root>
</body>
</html>

The header contains link elements for font files, which are required by the Angular Material package. The most important part of the file is the app-root element in the document body, whose purpose will become clear shortly.
The contents of the index.html file are modified as they are sent to the browser to include script elements for JavaScript files, like this:<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Example</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link href="https://fonts.googleapis.com/css2?
 family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
<link rel="stylesheet" href="styles.css"></head>
<body>
 <app-root></app-root>
 <script src="runtime.js" type="module"></script>
 <script src="polyfills.js" type="module"></script>
 <script src="styles.js" defer></script>
 <script src="vendor.js" type="module"></script>
 <script src="main.js" type="module"></script>
</body>
</html>

Understanding the Application Bootstrap
Browsers execute JavaScript files in the order in which their script elements appear, starting with the runtime.js file, which contains the code that processes the contents of the other JavaScript files.
Next comes the polyfills.js file, which contains code that provides implementations of features that the browser doesn’t support, and then the styles.js file, which contains the CSS styles the application needs. The vendor.js file contains the third-party code the application requires, including the Angular framework. This file can be large during development because it contains all the Angular features, even if they are not required by the application. An optimization process is used to prepare an application for deployment, as described later in this chapter.
The final file is the main.js bundle, which contains the custom application code. The name of the bundle is taken from the entry point for the application, which is the main.ts file in the src folder. Once the other bundle files have been processed, the statements in the main.ts file are executed to initialize Angular and run the application. Here is the content of the main.ts file as it is created by the ng new command:import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.error(err));

The import statements declare dependencies on other JavaScript modules, providing access to Angular features (the dependencies on @angular modules, which are included in the vendor.js file) and the custom code in the application (the AppModule dependency). The final import is for environment settings, which are used to create different configuration settings for development, test, and production platforms, such as this code:...
if (environment.production) {
 enableProdMode();
}
...

Angular has a production mode that disables some useful checks that are performed during development and that are described in later chapters. Production mode is enabled by calling the enableProdMode function, which is imported from the @angular/core module.
To work out whether production mode should be enabled, a check is performed to see whether environment.production is true. This check corresponds to the contents of the environment.prod.ts file in the src/environments folder, which sets this value and is applied when the application is built in preparation for deployment. The result is that production mode will be enabled if the application has been built for production but disabled the rest of the time.
The remaining statement in the main.ts file is responsible for starting the application....
platformBrowserDynamic().bootstrapModule(AppModule).catch(err => console.error(err));
...

The platformBrowserDynamic function initializes the Angular platform for use in a web browser and is imported from the @angular/platform-browser-dynamic module. Angular has been designed to run in a range of different environments, and calling the platformBrowserDynamic function is the first step in starting an application in a browser.
The next step is to call the bootstrapModule method, which accepts the Angular root module for the application, which is AppModule by default; AppModule is imported from the app.module.ts file in the src/app folder and described in the next section. The bootstrapModule method provides Angular with the entry point into the application and represents the bridge between the functionality provided by the @angular modules and the custom code and content in the project. The final part of this statement uses the catch keyword to handle any bootstrapping errors by writing them to the browser’s JavaScript console.
Understanding the Root Angular Module
The term module does double duty in an Angular application and refers to both a JavaScript module and an Angular module. JavaScript modules are used to track dependencies in the application and ensure that the browser receives only the code it requires. Angular modules are used to configure a part of the Angular application.
Every application has a root Angular module, which is responsible for describing the application to Angular. For applications created with the ng new command, the root module is called AppModule, and it is defined in the app.module.ts file in the src/app folder, which contains the following code:import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 BrowserAnimationsModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The AppModule class doesn’t define any members, but it provides Angular with essential information through the configuration properties of its @NgModule decorator. I describe the different properties that are used to configure an Angular module in later chapters, but the one that is of interest now is the bootstrap property, which tells Angular that it should load a component called AppComponent as part of the application startup process. Components are the main building block in Angular applications, and the content provided by the component called AppComponent will be displayed to the user.
Understanding the Angular Component
The component called AppComponent, which is selected by the root Angular module, is defined in the app.component.ts file in the src/app folder. Here are the contents of the app.component.ts file, which I edited earlier in the chapter to demonstrate linting: import { Component } from '@angular/core';

//debugger

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'example';
}

The properties for the @Component decorator configure its behavior. The selector property tells Angular that this component will be used to replace an HTML element called app-root. The templateUrl and styleUrls properties tell Angular that the HTML content that the component wants to present to the user can be found in a file called app.component.html and that the CSS styles to apply to the HTML content are defined in a file called app.component.css (although the CSS file is empty in new projects).
Here is the content of the app.component.html file, which I edited earlier in the chapter to demonstrate hot reloading and the use of CSS styles:<div class="bg-primary text-white text-center">
 Hello, World
</div>

This file contains regular HTML elements, but, as you will learn, Angular features are applied by using custom HTML elements or by adding attributes to regular HTML elements.
Understanding Content Display
When the application starts, Angular processes the index.html file, locates the element that matches the root component’s selector property, and replaces it with the contents of the files specified by the root component’s templateUrl and styleUrls properties. This is done using the Domain Object Model (DOM) API provided by the browser for JavaScript applications, and the changes can be seen only by right-clicking in the browser window and selecting Inspect from the pop-up menu, producing the following result:<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Example</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link href="https://fonts.googleapis.com/css2?
 family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
 rel="stylesheet">
 <link rel="stylesheet" href="styles.css">
 <style>
 /*# sourceMappingURL=data:application/json;
 base64,eyJ2ZXJzaW9uIjozLCJzb3VyY2VzIjpbXSwibmFtZXMiOltdLCJtY
 XBwaW5ncyI6IiIsImZpbGUiOiJhcHAuY29tcG9uZW50LmNzcyJ9 */
 </style>
</head>
<body>
 <app-root _nghost-ogl-c11="" ng-version="13.0.3">
 <div _ngcontent-ogl-c11="" class="bg-primary text-white text-center">
 Hello, World
 </div>
 </app-root>
 <script src="runtime.js" type="module"></script>
 <script src="polyfills.js" type="module"></script>
 <script src="styles.js" defer=""></script>
 <script src="vendor.js" type="module"></script>
 <script src="main.js" type="module"></script>
</body>

The app-root element contains the div element from the component’s template, and the attributes are added by Angular during the initialization process.
The style elements represent the contents of the styles.css file in the app folder, the app.component.css file in the src/app folder, and the Angular Material and Bootstrap stylesheets added using the angular.json file.
The combination of the dynamically generated div element and the class attributes I specified in the template produces the result shown in Figure 9-7.[image:]
Figure 9-7Displaying a component’s content

Understanding the Production Build Process
During development, the emphasis is on fast compilation so that the results can be displayed as quickly as possible in the browser, leading to a good iterative development process. During development with the ng serve command, the compilers and the bundler don’t apply any optimizations, which is why the bundle files are so large. The size doesn’t matter because the browser is running on the same machine as the server and will load immediately.
Before an application is deployed, it is built using an optimizing process. To run this type of build, run the command shown in Listing 9-19 in the example folder.ng build

Listing 9-19Performing the Production Build

The ng build command performs the production compilation process, and the bundles it produces are smaller and contain only the code that is required by the application.
Note
The angular.json command defines default build modes for commands, and the default configuration uses development mode for the ng serve command and production mode for the ng build command. You can edit the configuration file to change these settings or override them on the command line with the --configuation argument.

You can see the details of the bundles that are produced in the messages generated by the compiler....
Initial Chunk Files | Names | Size
styles.2bbd6476e9a18d40.css | styles | 230.36 kB
main.dcffd5dba104918c.js | main | 171.02 kB
polyfills.221f478e3706b78e.js | polyfills | 36.19 kB
runtime.a2e8a93eb7a8cc89.js | runtime | 1.04 kB
 | Initial Total | 438.62 kB
...

Features such as hot reloading are not added to the bundles, and the large vendor.js bundle is no longer produced. Instead, the main.js bundle contains the application and just the parts of third-party code it relies on.
Understanding Ahead-of-Time Compilation
The development build process leaves the decorators, which describe the building blocks of an Angular application, in the output. These are then transformed into API calls by the Angular runtime in the browser, which is known as just-in-time (JIT) compilation. The production build process enables a feature named ahead-of-time (AOT) compilation, which transforms the decorators so that it doesn’t have to be done every time the application runs.
Combined with the other build optimizations, the result is an Angular application that loads faster and starts up faster. The drawback is that the additional compilation requires time, which can be frustrating if you enable optimizing builds during development.

Running the Production Build
To test the production build, run the command shown in Listing 9-20 in the example folder.npx http-server@14.0.0 dist/example --port 5000

Listing 9-20Running the Production Build

This command will download and execute version 14.0.0 of the http-server package, which provides a simple, self-contained HTTP server. The command tells the http-server package to serve the contents of the dist/example folder and listen for requests on port 5000. Open a new web browser and request http://localhost:5000; you will see the production version of the example application, as shown in Figure 9-8 (although, unless you examine the HTTP requests sent by the browser to get the bundle files, you won’t see any differences from the development version shown in earlier figures).[image:]
Figure 9-8Running the production build

Once you have tested the production build, stop the HTTP server using Control+C.
Starting Development in an Angular Project
You have seen how the initial building blocks of an Angular application fit together and how the bootstrap process results in content being displayed to the user. In this section, I add a simple data model to the project, which is the typical starting point for most developers, and add features to the component, beyond the static content added earlier in the chapter.
Creating the Data Model
Of all the building blocks in an application, the data model is the one for which Angular is the least prescriptive. Elsewhere in the application, Angular requires specific decorators to be applied or parts of the API to be used, but the only requirement for the model is that it provides access to the data that the application requires; the details of how this is done and what that data looks like is left to the developer.
This can feel a little odd, and it can be difficult to know how to begin, but, at its heart, the model can be broken into three parts.	One or more classes that describe the data in the model

	A data source that loads and saves data, typically to a server

	A repository that allows the data in the model to be manipulated

In the following sections, I create a simple model, which provides the functionality that I need to describe Angular features in the chapters that follow.
Creating the Descriptive Model Class
Descriptive classes, as the name suggests, describe the data in the application. In a real project, there will usually be a lot of classes to fully describe the data that the application operates on. To get started for this chapter, I am going to create a single, simple class as the foundation for the data model. I added a file named product.model.ts to the src/app folder with the code shown in Listing 9-21.
The name of the file follows the Angular descriptive naming convention. The product and model parts of the name tell you that this is the part of the data model that relates to products, and the .ts extension denotes a TypeScript file. You don’t have to follow this convention, but Angular projects usually contain a lot of files, and cryptic names make it difficult to navigate around the source code.export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number) { }
}

Listing 9-21The Contents of the product.model.ts File in the src/app Folder

The Product class defines properties for a product identifier, the name of the product, its category, and the price. The properties are defined as optional constructor arguments, which is a useful approach if you are creating objects using an HTML form, which I demonstrate in Chapter 12.
Creating the Data Source
The data source provides the application with the data. The most common type of data source uses HTTP to request data from a web service, which I describe in Chapter 23. For this chapter, I need something simpler that I can reset to a known state each time the application is started to ensure that you get the expected results from the examples. I added a file called datasource.model.ts to the src/app folder with the code shown in Listing 9-22.import { Product } from "./product.model";

export class SimpleDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Listing 9-22The Contents of the datasource.model.ts File in the src/app Folder

The data in this class is hardwired, which means that any changes that are made in the application will be lost when the browser is reloaded. This is far from useful in a real application, but it is ideal for book examples.
Creating the Model Repository
The final step to complete the simple model is to define a repository that will provide access to the data from the data source and allow it to be manipulated in the application. I added a file called repository.model.ts in the src/app folder and used it to define the class shown in Listing 9-23.import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";

export class Model {
 private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p: Product, id: number | any) => p.id == id;

 constructor() {
 this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();
 this.products.push(product);
 } else {
 let index = this.products.findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

Listing 9-23The Contents of the repository.model.ts File in the src/app Folder

The Model class defines a constructor that gets the initial data from the data source class and provides access to it through a set of methods. These methods are typical of those defined by a repository and are described in Table 9-8.Table 9-8The Types of Web Forms Code Nuggets

	Name
	Description

	getProducts
	This method returns an array containing all the Product objects in the model.

	getProduct
	This method returns a single Product object based on its ID.

	saveProduct
	This method updates an existing Product object or adds a new one to the model.

	deleteProduct
	This method removes a Product object from the model based on its ID.

The implementation of the repository may seem odd because the data objects are stored in a standard JavaScript array, but the methods defined by the Model class present the data as though it were a collection of Product objects indexed by the id property. There are two main considerations when writing a repository for model data. The first is that it should present the data that will be displayed as efficiently as possible. For the example application, this means presenting all the data in the model in a form that can be iterated, such as an array. This is important because the iteration can happen often, as I explain in later chapters. The other operations of the Model class are inefficient, but they will be used less often.
The second consideration is being able to present unchanged data for Angular to work with. I explain why this is important in Chapter 11, but in terms of implementing the repository, it means that the getProducts method should return the same object when it is called multiple times unless one of the other methods or another part of the application has made a change to the data that the getProducts method provides. If a method returns a different object each time it is returned, even if they are different arrays containing the same objects, then Angular will report an error. Taking both points into account means that the best way to implement the repository is to store the data in an array and accept the inefficiencies.
Creating a Component and Template
Templates contain the HTML content that a component wants to present to the user. Templates can range from a single HTML element to a complex block of content.
To create a template, I added a file called template.html to the src/app folder and added the HTML elements shown in Listing 9-24.<div class="bg-info text-white p-2">
 There are {{model.getProducts().length}} products in the model
</div>

Listing 9-24The Contents of the template.html File in the src/app Folder

Most of this template is standard HTML, but the part between the double brace characters (the {{ and }} in the div element) is an example of a data binding. When the template is displayed, Angular will process its content, discover the binding, and evaluate the expression that it contains to produce the content that will be displayed by the data binding.
The logic and data required to support the template are provided by its component, which is a TypeScript class to which the @Component decorator has been applied. To provide a component for the template, I added a file called component.ts to the src/app folder and defined the class shown in Listing 9-25.import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();
}

Listing 9-25The Contents of the component.ts File in the src/app Folder

The @Component decorator configures the component. The selector property specifies the HTML element that the directive will be applied to, which is app. The templateUrl property in the @Component directive specifies the content that will be used as the contents of the app element, and, for this example, this property specifies the template.html file.
The component class, which is ProductComponent for this example, is responsible for providing the template with the data and logic needed for its bindings. The ProductComponent class defines a single property, called model, which provides access to a Model object.
The app element I used for the component’s selector isn’t the same element that the ng new command uses when it creates a project and that is expected in the index.html file. In Listing 9-26, I have modified the index.html file to introduce an app element to match the component’s selector.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Example</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link href="https://fonts.googleapis.com/css2?
 family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
 rel="stylesheet">
</head>
<body>
 <app></app>
</body>
</html>

Listing 9-26Changing the Custom Element in the index.html File in the app Folder

This isn’t something you need to do in a real project, but it further demonstrates that Angular applications fit together in simple and predictable ways and that you can change any part.
Configuring the Root Angular Module
The component that I created in the previous section won’t be part of the application until I register it with the root Angular module. In Listing 9-27, I have used the import keyword to import the component, and I have used the @NgModule configuration properties to register the component.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';

@NgModule({
 declarations: [ProductComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 9-27Registering a Component in the app.module.ts File in the src/app Folder

I used the name ProductComponent in the import statement, and I added this name to the declarations array, which configures the set of components and other features in the application. I also changed the value of the bootstrap property so that the new component is the one that is used when the application starts.
Run the command shown in Listing 9-28 in the example folder to start the Angular development tools.ng serve

Listing 9-28Starting the Angular Development Tools

Once the initial build process is complete, use a web browser to request http://localhost:4200, which will produce the response shown in Figure 9-9.[image:]
Figure 9-9The effect of a new component and template

The standard Angular bootstrap sequence is performed, but the custom component and template that I created in the previous section are used, rather than the ones set up when the project was created.
Summary
In this chapter, I created an Angular project and used it to introduce the tools that it contains and explain how a simple Angular application works. In the next chapter, I start digging into the Angular features, starting with data bindings.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_10

10. Using Data Bindings

Adam Freeman1
(1)London, UK

The example application in the previous chapter contains a simple template that was displayed to the user and that contained a data binding that showed how many objects were in the data model. In this chapter, I describe the basic data bindings that Angular provides and demonstrate how they can be used to produce dynamic content. In later chapters, I describe more advanced data bindings and explain how to extend the Angular binding system with custom features. Table 10-1 puts data bindings in context.Table 10-1Putting Data Bindings in Context

	Question
	Answer

	What are they?
	Data bindings are expressions embedded into templates and are evaluated to produce dynamic content in the HTML document.

	Why are they useful?
	Data bindings provide the link between the HTML elements in the HTML document and in template files with the data and code in the application.

	How are they used?
	Data bindings are applied as attributes on HTML elements or as special sequences of characters in strings.

	Are there any pitfalls or limitations?
	Data bindings contain simple JavaScript expressions that are evaluated to generate content. The main pitfall is including too much logic in a binding because such logic cannot be properly tested or used elsewhere in the application. Data binding expressions should be as simple as possible and rely on components (and other Angular features such as pipes) to provide complex application logic.

	Are there any alternatives?
	No. Data bindings are an essential part of Angular development.

Table 10-2 summarizes the chapter.Table 10-2Chapter Summary

	Problem
	Solution
	Listing

	Displaying data dynamically in the HTML document
	Define a data binding
	1–4

	Configuring an HTML element
	Use a standard property or attribute binding
	5, 8

	Setting the contents of an element
	Use a string interpolation binding
	6, 7

	Configuring the classes to which an element is assigned
	Use a class binding
	9–13

	Configuring the individual styles applied to an element
	Use a style binding
	14–17

	Manually triggering a data model update
	Use the browser’s JavaScript console
	18, 19

Preparing for This Chapter
For this chapter, I continue using the example project from Chapter 9. To prepare for this chapter, I added a method to the component class, as shown in Listing 10-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(): string {
 return this.model.getProducts().length == 5 ? "bg-success" : "bg-warning";
 }
}

Listing 10-1Adding a Method in the component.ts File in the src/app Folder

Run the following command in the example folder to start the Angular development tools:ng serve

Open a new browser and navigate to http://localhost:4200 to see the content, shown in Figure 10-1, that will be displayed.[image:]
Figure 10-1Running the example application

Understanding One-Way Data Bindings
One-way data bindings are used to generate content for the user and are the basic feature used in Angular templates. The term one-way refers to the fact that the data flows in one direction, meaning that data flows from the component to the data binding so that it can be displayed in a template.
Tip
There are other types of Angular data binding, which I describe in later chapters. Event bindings flow in the other direction, from the elements in the template into the rest of the application, and they allow user interaction. Two-way bindings allow data to flow in both directions and are most often used in forms. See Chapters 11 and 12 for details of other bindings.

To get started with one-way data bindings, I have replaced the content of the template, as shown in Listing 10-2. <div [ngClass]="getClasses()" >
 Hello, World.
</div>

Listing 10-2The Contents of the template.html File in the src/app Folder

When you save the changes to the template, the development tools will rebuild the application and trigger a browser reload, displaying the output shown in Figure 10-2.[image:]
Figure 10-2Using a one-way data binding

This is a simple example, but it shows the basic structure of a data binding, which is illustrated in Figure 10-3. [image:]
Figure 10-3The anatomy of a data binding

A data binding has these four parts:	The host element is the HTML element that the binding will affect, by changing its appearance, content, or behavior.

	The square brackets tell Angular that this is a one-way data binding. When Angular sees square brackets in a data binding, it will evaluate the expression and pass the result to the binding’s target so that it can modify the host element.

	The target specifies what the binding will do. There are two different types of target: a directive or a property binding.

	The expression is a fragment of JavaScript that is evaluated using the template’s component to provide context, meaning that the component’s property and methods can be included in the expression, like the getClasses method in the example binding.

Looking at the binding in Listing 10-2, you can see that the host element is a div element, meaning that’s the element that the binding is intended to modify. The expression invokes the component’s getClasses method, which was defined at the start of the chapter. This method returns a string containing a Bootstrap CSS class based on the number of objects in the data model....
getClasses(): string {
 return this.model.getProducts().length == 5 ? "bg-success" : "bg-warning";
}
...

If there are five objects in the data model, then the method returns bg-success, which is a Bootstrap class that applies a green background. Otherwise, the method returns bg-warning, which is a Bootstrap class that applies an amber background.
The target for the data binding is a directive, which is a class that is specifically written to support a data binding. Angular comes with some useful built-in directives, and you can create your own to provide custom functionality. The names of the built-in directives start with ng, which tells you that the ngClass target is one of the built-in directives. The target usually gives an indication of what the directive does, and as its name suggests, the ngClass directive will add or remove the host element from the class or classes whose names are returned when the expression is evaluated.
Putting it all together, the data binding will add the div element to the bg-success or bg-warning classes based on the number of items in the data model.
Since there are five objects in the model when the application starts (because the initial data is hard-coded into the SimpleDataSource class created in Chapter 9), the getClasses method returns bg-success and produces the result shown in Figure 10-3, adding a green background to the div element.
Understanding the Binding Target
When Angular processes the target of a data binding, it starts by checking to see whether it matches a directive. Most applications will rely on a mix of the built-in directives provided by Angular and custom directives that provide application-specific features. You can usually tell when a directive is the target of a data binding because the name will be distinctive and give some indication of what the directive is for. The built-in directives can be recognized by the ng prefix. The binding in Listing 10-2 gives you a hint that the target is a built-in directive that is related to the class membership of the host element. For quick reference, Table 10-3 describes the basic built-in Angular directives and where they are described in this book. (There are other directives described in later chapters, but these are the simplest and the ones you will use most often.) Table 10-3The Basic Built-in Angular Directives

	Name
	Description

	ngClass
	This directive is used to assign host elements to classes, as described in the “Setting Classes and Styles” section.

	ngStyle
	This directive is used to set individual styles, as described in the “Setting Classes and Styles” section.

	ngIf
	This directive is used to insert content in the HTML document when its expression evaluates as true, as described in Chapter 11.

	ngFor
	This directive inserts the same content into the HTML document for each item in a data source, as described in Chapter 11.

	ngSwitch
ngSwitchCase
ngSwitchDefault
	These directives are used to choose between blocks of content to insert into the HTML document based on the value of the expression, as described in Chapter 11.

	ngTemplateOutlet
	This directive is used to repeat a block of content, as described in Chapter 11.

Understanding Property Bindings
If the binding target doesn’t correspond to a directive, then Angular checks to see whether the target can be used to create a property binding. There are five different types of property binding, which are listed in Table 10-4, along with the details of where they are described in detail. Table 10-4The Angular Property Bindings

	Name
	Description

	[property]
	This is the standard property binding, which is used to set a property on the JavaScript object that represents the host element in the Document Object Model (DOM), as described in the “Using the Standard Property and Attribute Bindings” section.

	[attr.name]
	This is the attribute binding, which is used to set the value of attributes on the host HTML element for which there are no DOM properties, as described in the “Using the Attribute Binding” section.

	[class.name]
	This is the special class property binding, which is used to configure class membership of the host element, as described in the “Using the Class Bindings” section.

	[style.name]
	This is the special style property binding, which is used to configure style settings of the host element, as described in the “Using the Style Bindings” section.

Understanding the Expression
The expression in a data binding is a fragment of JavaScript code that is evaluated to provide a value for the target. The expression has access to the properties and methods defined by the component, which is how the binding in Listing 10-2 can invoke the getClasses method to provide the ngClass directive with the name of the class that the host element should be added to.
Expressions are not restricted to calling methods or reading properties from the component; they can also perform most standard JavaScript operations. As an example, Listing 10-3 shows an expression that has a literal string value being concatenated with the result of the getClasses method.<div [ngClass]="'text-white p-2 ' + getClasses()" >
 Hello, World.
</div>

Listing 10-3Performing an Operation in the template.html File in the src/app Folder

The expression is enclosed in double quotes, which means that the string literal has to be defined using single quotes. The JavaScript concatenation operator is the + character, and the result from the expression will be the combination of both strings, like this:text-white p-2 bg-success

The effect is that the ngClass directive will add the host element to four classes: text-white, m-2, and p-2, which Bootstrap uses to set the text color and add margin and padding around an element’s content; and bg-success, which sets the background color. Figure 10-4 shows the combination of these classes.[image:]
Figure 10-4Combining classes in a JavaScript expression

It is easy to get carried away when writing expressions and include complex logic in the template. This can cause problems because the expressions are not checked by the TypeScript compiler nor can they be easily unit tested, which means that bugs are more likely to remain undetected until the application has been deployed. To avoid this issue, expressions should be as simple as possible and, ideally, used only to retrieve data from the component and format it for display. All the complex retrieval and processing logic should be defined in the component or the model, where it can be compiled and tested.
Understanding the Brackets
The square brackets (the [and] characters) tell Angular that this is a one-way data binding that has an expression that should be evaluated. Angular will still process the binding if you omit the brackets and the target is a directive, but the expression won’t be evaluated, and the content between the quote characters will be passed to the directive as a literal value. Listing 10-4 adds an element to the template with a binding that doesn’t have square brackets. <div [ngClass]="'text-white p-2 ' + getClasses()">
 Hello, World.
</div>
<div ngClass="'text-white p-2 ' + getClasses()">
 Hello, World.
</div>

Listing 10-4Omitting the Brackets in a Data Binding in the template.html File in the src/app Folder

If you examine the HTML element in the browser’s DOM viewer (by right-clicking in the browser window and selecting Inspect or Inspect Element from the pop-up menu), you will see that its class attribute has been set to the literal string, like this:class="'text-white p-2 ' + getClasses()"

The browser will try to process the classes to which the host element has been assigned, but the element’s appearance won’t be as expected since the classes won’t correspond to the names used by Bootstrap. This is a common mistake to make, so it is the first thing to check whether a binding doesn’t have the effect you expected.
The square brackets are not the only ones that Angular uses in data bindings. For quick reference, Table 10-5 provides the complete set of brackets, the meaning of each, and where they are described in detail.Table 10-5The Angular Brackets

	Name
	Description

	[target]="expr"
	The square brackets indicate a one-way data binding where data flows from the expression to the target. The different forms of this type of binding are the topic of this chapter.

	{{expression}}
	This is the string interpolation binding, which is described in the “Using the String Interpolation Binding” section.

	(target) ="expr"
	The round brackets indicate a one-way binding where the data flows from the target to the destination specified by the expression. This is the binding used to handle events, as described in Chapter 12.

	[(target)] ="expr"
	This combination of brackets—known as the banana-in-a-box—indicates a two-way binding, where data flows in both directions between the target and the destination specified by the expression, as described in Chapter 12.

Understanding the Host Element
The host element is the simplest part of a data binding. Data bindings can be applied to any HTML element in a template, and an element can have multiple bindings, each of which can manage a different aspect of the element’s appearance or behavior. You will see elements with multiple bindings in later examples.
Using the Standard Property and Attribute Bindings
If the target of a binding doesn’t match a directive, Angular will try to apply a property binding. The sections that follow describe the most common property bindings: the standard property binding and the attribute binding.
Using the Standard Property Binding
The browser uses the Document Object Model to represent the HTML document. Each element in the HTML document, including the host element, is represented using a JavaScript object in the DOM. Like all JavaScript objects, the ones used to represent HTML elements have properties. These properties are used to manage the state of the element so that the value property, for example, is used to set the contents of an input element. When the browser parses an HTML document, it encounters each new HTML element, creates an object in the DOM to represent it, and uses the element’s attributes to set the initial values for the object’s properties.
The standard property binding lets you set the value of a property for the object that represents the host element, using the result of an expression. For example, setting the target of a binding to value will set the content of an input element, as shown in Listing 10-5.<div [ngClass]="'text-white p-2 ' + getClasses()">
 Hello, World.
</div>
<div class="form-group m-2">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name ?? 'None'" />
</div>

Listing 10-5Using the Standard Property Binding in the template.html File in the src/app Folder

The new binding in this example specifies that the value property should be bound to the result of an expression that calls a method on the data model to retrieve a data object from the repository by specifying a key. It is possible that there is no data object with that key, in which case the repository method will return null.
To guard against using null for the host element’s value property, the binding uses the null conditional operator (the ? character) to safely navigate the result returned by the method, like this:...
<input class="form-control" [value]="model.getProduct(1)?.name ?? 'None'" />
...

If the result from the getProduct method isn’t null, then the expression will read the value of the name property and use it as the result. But if the result from the method is null, then the name property won’t be read, and the nullish coalescing operator (the ?? characters) will set the result to None instead.
Getting To Know The Html Element Properties
Using property bindings can require some work figuring out which property you need to set because there are inconsistencies in the HTML specification. The name of most properties matches the name of the attribute that sets their initial value so that if you are used to setting the value attribute on an input element, for example, then you can achieve the same effect by setting the value property. But some property names don’t match their attribute names, and some properties are not configured by attributes at all.
The Mozilla Foundation provides a useful reference for all the objects that are used to represent HTML elements in the DOM at https://developer.mozilla.org/en-US/docs/Web/API. For each element, Mozilla provides a summary of the properties that are available and what each is used for. Start with HTMLElement (https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement), which provides the functionality common to all elements. You can then branch out into the objects that are for specific elements, such as HTMLInputElement, which is used to represent input elements.

When you save the changes to the template, the browser will reload and display an input element whose content is the name property of the data object with the key of 1 in the model repository, as shown in Figure 10-5.[image:]
Figure 10-5Using the standard property binding

Using the String Interpolation Binding
Angular provides a special version of the standard property binding, known as the string interpolation binding, that is used to include expression results in the text content of host elements. To understand why this special binding is useful, it helps to think about how the content of an element is set using the standard property binding. The textContent property is used to set the content of HTML elements, which means that the content of an element can be set using a data binding like the one shown in Listing 10-6. <div [ngClass]="'text-white p-2 ' + getClasses()"
 [textContent]="'Name: ' + (model.getProduct(1)?.name ?? 'None')">
</div>
<div class="form-group m-2">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name ?? 'None'" />
</div>

Listing 10-6Setting an Element’s Content in the template.html File in the src/app Folder

The expression in the new binding concatenates a literal string with the results of a method call to set the content of the div element.
The expression in this example is awkward to write, requiring careful attention to quotes, spaces, and brackets to ensure that the expected result is displayed in the output. The problem becomes worse for more complex bindings, where multiple dynamic values are interspersed among blocks of static content.
The string interpolation binding simplified this process by allowing fragments of expressions to be defined within the content of an element, as shown in Listing 10-7.<div [ngClass]="'text-white p-2 ' + getClasses()">
 Name: {{ model.getProduct(1)?.name ?? 'None' }}
</div>
<div class="form-group m-2">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name ?? 'None'" />
</div>

Listing 10-7Using the String Interpolation Binding in the template.html File in the src/app Folder

The string interpolation binding is denoted using pairs of curly brackets ({{ and }}). A single element can contain multiple string interpolation bindings.
Angular combines the content of the HTML element with the contents of the brackets to create a binding for the textContent property. The result is the same as Listing 10-6, which is shown in Figure 10-6, but the process of writing the binding is simpler and less error-prone.[image:]
Figure 10-6Using the string interpolation binding

Using the Attribute Binding
There are some oddities in the HTML and DOM specifications that mean that not all HTML element attributes have equivalent properties in the DOM API. For these situations, Angular provides the attribute binding, which is used to set an attribute on the host element rather than setting the value of the JavaScript object that represents it in the DOM.
The most often used attribute without a corresponding property is colspan, which is used to set the number of columns that a td element will occupy in a table. Listing 10-8 shows using the attribute binding to set the colspan element based on the number of objects in the data model. <div [ngClass]="'text-white p-2 ' + getClasses()">
 Name: {{ model.getProduct(1)?.name ?? 'None' }}
</div>
<div class="form-group m-2">
 <label>Name:</label>
 <input class="form-control" [value]="model.getProduct(1)?.name ?? 'None'" />
</div>
<table class="table mt-2">
 <tr>
 <th>1</th><th>2</th><th>3</th><th>4</th><th>5</th>
 </tr>
 <tr>
 <td [attr.colspan]="model.getProducts().length">
 {{model.getProduct(1)?.name ?? 'None'}}
 </td>
 </tr>
</table>

Listing 10-8Using an Attribute Binding in the template.html File in the src/app Folder

The attribute binding is applied by defining a target that prefixes the name of the attribute with attr. (the term attr, followed by a period). In the listing, I have used the attribute binding to set the value of the colspan element on one of the td elements in the table, like this:...
<td [attr.colspan]="model.getProducts().length">
...

Angular will evaluate the expression and set the value of the colspan attribute to the result. Since the data model is hardwired to start with five data objects, the effect is that the colspan attribute creates a table cell that spans five columns, as shown in Figure 10-7.[image:]
Figure 10-7Using an attribute binding

Setting Classes and Styles
Angular provides special support in property bindings for assigning the host element to classes and for configuring individual style properties. I describe these bindings in the sections that follow, along with details of the ngClass and ngStyle directives, which provide closely related features.
Using the Class Bindings
There are three different ways in which you can use data bindings to manage the class memberships of an element: the standard property binding, the special class binding, and the ngClass directive. All three are described in Table 10-6, and each works in a slightly different way and is useful in different circumstances, as described in the sections that follow.Table 10-6The Angular Class Bindings

	Example
	Description

	<div [class]="expr"></div>
	This binding evaluates the expression and uses the result to replace any existing class memberships.

	<div [class.myClass]="expr"></div>
	This binding evaluates the expression and uses the result to set the element’s membership of myClass.

	<div [ngClass]="map"></div>
	This binding sets class membership of multiple classes using the data in a map object.

Setting All of an Element’s Classes with the Standard Binding
The standard property binding can be used to set all of an element’s classes in a single step, which is useful when you have a method or property in the component that returns all of the classes to which an element should belong in a single string, with the names separated by spaces. Listing 10-9 shows the revision of the getClasses method in the component that returns a different string of class names based on the price property of a Product object.import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 }
}

Listing 10-9Providing All Classes in a Single String in the component.ts File in the src/app Folder

The result from the getClasses method will include the p-2 class, which adds padding around the host element’s content, for all Product objects. If the value of the price property is less than 50, the bg-info class will be included in the result, and if the value is 50 or more, the bg-warning class will be included (these classes set different background colors). You must ensure that the names of the classes are separated by spaces.
Listing 10-10 replaces the contents of the template.html file to show the standard property binding being used to set the class property of host elements using the component’s getClasses method.<div class="text-white">
 <div [class]="getClasses(1)">
 The first product is {{model.getProduct(1)?.name}}.
 </div>
 <div [class]="getClasses(2)">
 The second product is {{model.getProduct(2)?.name}}
 </div>
</div>

Listing 10-10Setting Class Memberships in the template.html File in the src/app Folder

When the standard property binding is used to set the class property, the result of the expression replaces any previous classes that an element belonged to, which means that it can be used only when the binding expression returns all the classes that are required, as in this example, producing the result shown in Figure 10-8.[image:]
Figure 10-8Setting class memberships

Setting Individual Classes Using the Special Class Binding
The special class binding provides finer-grained control than the standard property binding and allows membership of a single class to be managed using an expression. This is useful if you want to build on the existing class memberships of an element, rather than replace them entirely. Listing 10-11 shows the use of the special class binding.<div class="text-white">
 <div [class]="getClasses(1)">
 The first product is {{model.getProduct(1)?.name}}.
 </div>
 <div class="p-2"
 [class.bg-success]="(model.getProduct(2)?.price ?? 0) < 50"
 [class.bg-info]="(model.getProduct(2)?.price ?? 0) >= 50">
 The second product is {{model.getProduct(2)?.name}}
 </div>
</div>

Listing 10-11Using the Special Class Binding in the template.html File in the src/app Folder

The special class binding is specified with a target that combines the term class, followed by a period, followed by the name of the class whose membership is being managed. In the listing, there are two special class bindings, which manage the membership of the bg-success and bg-info classes.
The special class binding will add the host element to the specified class if the result of the expression is truthy (as described in the “Understanding Truthy and Falsy” sidebar). In this case, the host element will be a member of the bg-success class if the price property is less than 50 and a member of the bg-info class if the price property is 50 or more.
These bindings act independently from one another and do not interfere with any existing classes that an element belongs to, such as the p-2 class, which Bootstrap uses to add padding around an element’s content.
Understanding Truthy and Falsy
As explained in Chapter 3, JavaScript has an odd feature, where the result of an expression can be truthy or falsy, providing a pitfall for the unwary. The following results are always falsy: 	The false (boolean) value

	The 0 (number) value

	The empty string ("")

	null

	undefined

	NaN (a special number value)

All other values are truthy, which can be confusing. For example, "false" (a string whose content is the word false) is truthy. The best way to avoid confusion is to only use expressions that evaluate to the Boolean values true and false.

Setting Classes Using the ngClass Directive
The ngClass directive is a more flexible alternative to the standard and special property bindings and behaves differently based on the type of data that is returned by the expression, as described in Table 10-7. Table 10-7The Expression Result Types Supported by the ngClass Directive

	Name
	Description

	String
	The host element is added to the classes specified by the string. Multiple classes are separated by spaces.

	Array
	Each object in the array is the name of a class that the host element will be added to.

	Object
	Each property on the object is the name of one or more classes, separated by spaces. The host element will be added to the class if the value of the property is truthy.

The string and array features are useful, but it is the ability to use an object (known as a map) to create complex class membership policies that make the ngClass directive especially useful. Listing 10-12 shows the addition of a component method that returns a map object.
Understanding The Nullish Operator Precedence Pitfall
Care must be taken when using the nullish operator when it is combined with other JavaScript operations, especially when the results are combined to form strings. Here is an example of a problem statement:...
return "p-2 " + (product?.price ?? 0 < 50 ? "bg-info" : "bg-warning");
...

The problem arises because the nullish operator has a lower precedence than the less than operator. Here is the same statement with the addition of parentheses that show how the statement is evaluated:...
return "p-2 " + ((product?.price ?? (0 < 50)) ? "bg-info" : "bg-warning");
...

The effect is that the less than operator is applied only when the product.price property is null, and, even then, it is used only to determine if 0 is less than 50. Since JavaScript comparisons work on truthiness, the outcome from the ternary operator is always true: the product.price property will be truthy when it is not null, and the 0 < 50 expression is truthy when the product.price property is null. The effect is that the statement always returns the string "p-2 bg-info".
The solution is to use parentheses to group related terms together and avoid relying on JavaScript operator precedence, like this:...
return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
...

This ensures that the expression evaluated by the ternary operator behaves as intended.

import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 }

 getClassMap(key: number): Object {
 let product = this.model.getProduct(key);
 return {
 "text-center bg-danger": product?.name == "Kayak",
 "bg-info": (product?.price ?? 0) < 50
 };
 }
}

Listing 10-12Returning a Class Map Object in the component.ts File in the src/app Folder

The getClassMap method returns an object with properties whose values are one or more class names, with values based on the property values of the Product object whose key is specified as the method argument. As an example, when the key is 1, the method returns this object:...
{
 "text-center bg-danger":true,
 "bg-info":false
}
...

The first property will assign the host element to the text-center class (which Bootstrap uses to center the text horizontally) and the bg-danger class (which sets the element’s background color). The second property evaluates to false, which means that the host element will not be added to the bg-info class. It may seem odd to specify a property that doesn’t result in an element being added to a class, but, as you will see shortly, the value of expressions is automatically updated to reflect changes in the application, and being able to define a map object that specifies memberships this way can be useful.
Listing 10-13 shows the getClassMap and the map objects it returns used as the expression for data bindings that target the ngClass directive.<div class="text-white">
 <div class="p-2" [ngClass]="getClassMap(1)">
 The first product is {{model.getProduct(1)?.name}}.
 </div>
 <div class="p-2" [ngClass]="getClassMap(2)">
 The second product is {{model.getProduct(2)?.name}}.
 </div>
 <div class="p-2" [ngClass]="{'bg-success': (model.getProduct(3)?.price ?? 0) < 50,
 'bg-info': (model.getProduct(3)?.price ?? 0) >= 50}">
 The third product is {{model.getProduct(3)?.name}}
 </div>
</div>

Listing 10-13Using the ngClass Directive in the template.html File in the src/app Folder

The first two div elements have bindings that use the getClassMap method. The third div element shows an alternative approach, which is to define the map in the template. For this element, membership of the bg-info and bg-warning classes is tied to the value of the price property of a Product object, as shown in Figure 10-9. Care should be taken with this technique because the expression contains JavaScript logic that cannot be readily tested.[image:]
Figure 10-9Using the ngClass directive

Using the Style Bindings
There are three different ways in which you can use data bindings to set style properties of the host element: the standard property binding, the special style binding, and the ngStyle directive. All three are described in Table 10-8 and demonstrated in the sections that follow. Table 10-8The Angular Style Bindings

	Example
	Description

	<div [style.myStyle]="expr"></div>
	This is the standard property binding, which is used to set a single style property to the result of the expression.

	<div [style.myStyle.units]="expr"></div>
	This is the special style binding, which allows the units for the style value to be specified as part of the target.

	<div [ngStyle]="map"></div>
	This binding sets multiple style properties using the data in a map object.

Setting a Single Style Property
The standard property binding and the special style bindings are used to set the value of a single style property. The difference between these bindings is that the standard property binding must include the units required for the style, while the special binding allows for the units to be included in the binding target. To demonstrate the difference, Listing 10-14 adds two new properties to the component.import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 }

 getClassMap(key: number): Object {
 let product = this.model.getProduct(key);
 return {
 "text-center bg-danger": product?.name == "Kayak",
 "bg-info": (product?.price ?? 0) < 50
 };
 }

 fontSizeWithUnits: string = "30px";
 fontSizeWithoutUnits: string= "30";
}

Listing 10-14Adding Properties in the component.ts File in the src/app Folder

The fontSizeWithUnits property returns a value that includes a quantity and the units that quantity is expressed in: 30 pixels. The fontSizeWithoutUnits property returns just the quantity, without any unit information. Listing 10-15 replaces the contents of the template.html file to show how these properties can be used with the standard and special bindings.
Caution
Do not try to use the standard property binding to target the style property to set multiple style values. The object returned by the style property of the JavaScript object that represents the host element in the DOM is read-only. Some browsers will ignore this and allow changes to be made, but the results are unpredictable and cannot be relied on. If you want to set multiple style properties, then create a binding for each of them or use the ngStyle directive.

<div class="text-white">
 <div class="p-2 bg-warning">
 The first
 product is {{model.getProduct(1)?.name}}.
 </div>
 <div class="p-2 bg-info">
 The second
 product is {{model.getProduct(2)?.name}}.
 </div>
</div>

Listing 10-15Using Style Bindings in the template.html File in the src/app Folder

The target for the binding is style.fontSize, which sets the size of the font used for the host element’s content. The expression for this binding uses the fontSizeWithUnits property, whose value includes the units, px for pixels, required to set the font size.
The target for the special binding is style.fontSize.px, which tells Angular that the value of the expression specifies the number in pixels. This allows the binding to use the component’s fontSizeWithoutUnits property, which doesn’t include units.
Tip
You can specify style properties using the JavaScript property name format ([style.fontSize]) or using the CSS property name format ([style.font-size]).

The result of both bindings is the same, which is to set the font size of the span elements to 30 pixels, producing the result shown in Figure 10-10.[image:]
Figure 10-10Setting individual style properties

Setting Styles Using the ngStyle Directive
The ngStyle directive allows multiple style properties to be set using a map object, similar to the way that the ngClass directive works. Listing 10-16 shows the addition of a component method that returns a map containing style settings.import { Component } from "@angular/core";
import { Model } from "./repository.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getClasses(key: number): string {
 let product = this.model.getProduct(key);
 return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 }

 // getClassMap(key: number): Object {
 // let product = this.model.getProduct(key);
 // return {
 // "text-center bg-danger": product?.name == "Kayak",
 // "bg-info": (product?.price ?? 0) < 50
 // };
 // }

 // fontSizeWithUnits: string = "30px";
 // fontSizeWithoutUnits: string= "30";

 getStyles(key: number) {
 let product = this.model.getProduct(key);
 return {
 fontSize: "30px",
 "margin.px": 100,
 color: (product?.price?? 0) > 50 ? "red" : "green"
 };
 }
}

Listing 10-16Creating a Style Map Object in the component.ts File in the src/app Folder

The map object returned by the getStyle method shows that the ngStyle directive is able to support both of the formats that can be used with property bindings, including either the units in the value or the property name. Here is the map object that the getStyles method produces when the value of the key argument is 1:...
{
 "fontSize":"30px",
 "margin.px":100,
 "color":"red"
}
...

Listing 10-17 shows data bindings in the template that use the ngStyle directive and whose expressions call the getStyles method.<div class="text-white">
 <div class="p-2 bg-warning">
 The first
 product is {{model.getProduct(1)?.name}}.
 </div>
 <div class="p-2 bg-info">
 The second
 product is {{model.getProduct(2)?.name}}.
 </div>
</div>

Listing 10-17Using the ngStyle Directive in the template.html File in the src/app Folder

The result is that each span element receives a tailored set of styles, based on the argument passed to the getStyles method, as shown in Figure 10-11.[image:]
Figure 10-11Using the ngStyle directive

Updating the Data in the Application
When you start out with Angular, it can seem like a lot of effort to deal with the data bindings, remembering which binding is required in different situations. You might be wondering if it is worth the effort.
Bindings are worth understanding because their expressions are re-evaluated when the data they depend on changes. As an example, if you are using a string interpolation binding to display the value of a property, then the binding will automatically update when the value of the property is changed.
To provide a demonstration, I am going to jump ahead and show you how to take manual control of the updating process. This is not a technique that is required in normal Angular development, but it provides a solid demonstration of why bindings are so important. Listing 10-18 shows some changes to the component that enables the demonstration.import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 constructor(ref: ApplicationRef) {
 (<any>window).appRef = ref;
 (<any>window).model = this.model;
 }

 getProductByPosition(position: number): Product {
 return this.model.getProducts()[position];
 }

 getClassesByPosition(position: number): string {
 let product = this.getProductByPosition(position);
 return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 }

 // getClasses(key: number): string {
 // let product = this.model.getProduct(key);
 // return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 // }

 // getStyles(key: number) {
 // let product = this.model.getProduct(key);
 // return {
 // fontSize: "30px",
 // "margin.px": 100,
 // color: (product?.price?? 0) > 50 ? "red" : "green"
 // };
 // }
}

Listing 10-18Preparing the Component in the component.ts File in the src/app Folder

I have imported the ApplicationRef type from the @angular/core module. When Angular performs the bootstrapping process, it creates an ApplicationRef object to represent the application. Listing 10-18 adds a constructor to the component that receives an ApplicationRef object as an argument, using the Angular dependency injection feature, which I describe in Chapter 17. Without going into detail now, declaring a constructor argument like this tells Angular that the component wants to receive the ApplicationRef object when a new instance is created.
Within the constructor, there are two statements that make a demonstration possible but would undermine many of the benefits of using TypeScript and Angular if used in a real project....
(<any>window).appRef = ref;
(<any>window).model = this.model;
...

These statements define variables in the global namespace and assign the ApplicationRef and Model objects to them. It is good practice to keep the global namespace as clear as possible, but exposing these objects allows them to be manipulated through the browser’s JavaScript console, which is important for this example.
The other methods added to the constructor allow a Product object to be retrieved from the repository based on its position, rather than by its key, and to generate a class map that differs based on the value of the price property.
Listing 10-19 shows the corresponding changes to the template, which uses the ngClass directive to set class memberships and the string interpolation binding to display the value of the Product.name property.<div class="text-white">
 <div [ngClass]="getClassesByPosition(0)">
 The first product is {{getProductByPosition(0).name}}.
 </div>
 <div [ngClass]="getClassesByPosition(1)">
 The second product is {{getProductByPosition(1).name}}
 </div>
</div>

Listing 10-19Preparing for Changes in the template.html File in the src/app Folder

Save the changes to the component and template. Once the browser has reloaded the page, enter the following statement into the browser’s JavaScript console and press Return:model.products.shift()

This statement calls the shift method on the array of Product objects in the model, which removes the first item from the array and returns it. You won’t see any changes yet because Angular doesn’t know that the model has been modified. To tell Angular to check for changes, enter the following statement into the browser’s JavaScript console and press Return:appRef.tick()

The tick method starts the Angular change detection process, where Angular looks at the data in the application and the expressions in the data binding and processes any changes. The data bindings in the template use specific array indexes to display data, and now that an object has been removed from the model, the bindings will be updated to display new values, as shown in Figure 10-12.[image:]
Figure 10-12Manually updating the application model

It is worth taking a moment to think about what happened when the change detection process ran. Angular re-evaluated the expressions on the bindings in the template and updated their values. In turn, the ngClass directive and the string interpolation binding reconfigured their host elements by changing their class memberships and displaying new content.
This happens because Angular data bindings are live, meaning that the relationship between the expression, the target, and the host element continues to exist after the initial content is displayed to the user and dynamically reflects changes to the application state. This effect is, I admit, much more impressive when you don’t have to make changes using the JavaScript console. I explain how Angular allows the user to trigger changes using events and forms in Chapter 12.
Summary
In this chapter, I described the structure of Angular data bindings and showed you how they are used to create relationships between the data in the application and the HTML elements that are displayed to the user. I introduced the property bindings and described how two of the built-in directives—ngClass and ngStyle—are used. In the next chapter, I explain how more of the built-in directives work.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_11

11. Using the Built-in Directives

Adam Freeman1
(1)London, UK

In this chapter, I describe the built-in directives that are responsible for some of the most commonly required functionality for creating web applications: selectively including content, choosing between different fragments of content, and repeating content. I also describe some limitations that Angular puts on the expressions that are used for one-way data bindings and the directives that provide them. Table 11-1 puts the built-in template directives in context.Table 11-1Putting the Built-in Directives in Context

	Question
	Answer

	What are they?
	The built-in directives described in this chapter are responsible for selectively including content, selecting between fragments of content, and repeating content for each item in an array. There are also directives for setting an element’s styles and class memberships, as described in Chapter 11.

	Why are they useful?
	The tasks that can be performed with these directives are the most common and fundamental in web application development, and they provide the foundation for adapting the content shown to the user based on the data in the application.

	How are they used?
	The directives are applied to HTML elements in templates. There are examples throughout this chapter (and in the rest of the book).

	Are there any pitfalls or limitations?
	The syntax for using the built-in template directives requires you to remember that some of them (including ngIf and ngFor) must be prefixed with an asterisk, while others (including ngClass, ngStyle, and ngSwitch) must be enclosed in square brackets. I explain why this is required in the “Understanding Micro-Template Directives” sidebar, but it is easy to forget and get an unexpected result.

	Are there any alternatives?
	You could write your own custom directives—a process that I described in Chapters 13 and 14—but the built-in directives are well-written and comprehensively tested. For most applications, using the built-in directives is preferable, unless they cannot provide exactly the functionality that is required.

Table 11-2 summarizes the chapter.Table 11-2Chapter Summary

	Problem
	Solution
	Listing

	Conditionally displaying content based on a data binding expression
	Use the ngIf directive
	1–3

	Choosing between different content based on the value of a data binding expression
	Use the ngSwitch directive
	4, 5

	Generating a section of content for each object produced by a data binding expression
	Use the ngFor directive
	6–12

	Repeating a block of content
	Use the ngTemplateOutlet directive
	13–14

	Apply a directive without using an HTML element
	Use the ng-container element
	15

	Preventing template errors
	Avoid modifying the application state as a side effect of a data binding expression
	16–20

	Avoiding context errors
	Ensure that data binding expressions use only the properties and methods provided by the template’s component
	21–23

Preparing the Example Project
This chapter relies on the example project that was created in Chapter 9 and modified in Chapter 10. To prepare for the topic of this chapter, Listing 11-1 shows changes to the component class that remove features that are no longer required and adds new methods and a property.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 constructor(ref: ApplicationRef) {
 (<any>window).appRef = ref;
 (<any>window).model = this.model;
 }

 getProductByPosition(position: number): Product {
 return this.model.getProducts()[position];
 }

 // getClassesByPosition(position: number): string {
 // let product = this.getProductByPosition(position);
 // return "p-2 " + ((product?.price ?? 0) < 50 ? "bg-info" : "bg-warning");
 // }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 getProductCount(): number {
 return this.getProducts().length;
 }

 targetName: string = "Kayak";
}

Listing 11-1Changes in the component.ts File in the src/app Folder

Listing 11-2 shows the contents of the template file, which displays the number of products in the data model by calling the component’s new getProductCount method.<div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>
</div>

Listing 11-2The Contents of the template.html File in the src/app Folder

Run the following command from the command line in the example folder to start the TypeScript compiler and the development HTTP server:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 11-1.[image:]
Figure 11-1Running the example application

Using the Built-in Directives
Angular comes with a set of built-in directives that provide features commonly required in web applications. Table 11-3 describes the directives that are available, which I demonstrate in the sections that follow (except for the ngClass and ngStyle directives, which are covered in Chapter 10). Table 11-3The Built-in Directives

	Example
	Description

	<div *ngIf="expr"></div>
	The ngIf directive is used to include an element and its content in the HTML document if the expression evaluates as true. The asterisk before the directive name indicates that this is a micro-template directive, as described in the “Understanding Micro-Template Directives” sidebar.

	<div [ngSwitch]="expr">

</div>
	The ngSwitch directive is used to choose between multiple elements to include in the HTML document based on the result of an expression, which is then compared to the result of the individual expressions defined using ngSwitchCase directives. If none of the ngSwitchCase values matches, then the element to which the ngSwitchDefault directive has been applied will be used. The asterisks before the ngSwitchCase and ngSwitchDefault directives indicate they are micro-template directives, as described in the “Understanding Micro-Template Directives” sidebar.

	<div *ngFor="#item of expr"></div>
	The ngFor directive is used to generate the same set of elements for each object in an array. The asterisk before the directive name indicates that this is a micro-template directive, as described in the “Understanding Micro-Template Directives” sidebar.

	<div ngClass="expr"></div>
	The ngClass directive is used to manage class membership, as described in Chapter 10.

	<div ngStyle="expr"></div>
	The ngStyle directive is used to manage styles applied directly to elements (as opposed to applying styles through classes), as described in Chapter 10.

	<ng-template [ngTemplateOutlet]="myTempl">
</ngtemplate>
	The ngTemplateOutlet directive is used to repeat a block of content in a template.

Using the ngIf Directive
ngIf is the simplest of the built-in directives and is used to include a fragment of HTML in the document when an expression evaluates as true, as shown in Listing 11-3. <div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div *ngIf="getProductCount() > 4" class="bg-info p-2 mt-1">
 There are more than 4 products in the model
 </div>

 <div *ngIf="getProductByPosition(0).name != 'Kayak'" class="bg-info p-2 mt-1">
 The first product isn't a Kayak
 </div>
</div>

Listing 11-3Using the ngIf Directive in the template.html File in the src/app Folder

The ngIf directive has been applied to two div elements, with expressions that check the number of Product objects in the model and whether the name of the first Product is Kayak.
The first expression evaluates as true, which means that div element and its content will be included in the HTML document; the second expression evaluates as false, which means that the second div element will be excluded. Figure 11-2 shows the result.
Note
The ngIf directive adds and removes elements from the HTML document, rather than just showing or hiding them. Use the property or style bindings, described in Chapter 10, if you want to leave elements in place and control their visibility, either by setting the hidden element property to true or by setting the display style property to none.

[image:]
Figure 11-2Using the ngIf directive

Understanding Micro-Template Directives
Some directives, such as ngFor, ngIf, and the nested directives used with ngSwitch, are prefixed with an asterisk, as in *ngFor, *ngIf, and *ngSwitch. The asterisk is shorthand for using directives that rely on content provided as part of the template, known as a micro-template. Directives that use micro-templates are known as structural directives, a description that I revisit in Chapter 14 when I show you how to create them.
Listing 11-3 applied the ngIf directive to div elements, telling the directive to use the div element and its content as the micro-template for each of the objects that it processes. Behind the scenes, Angular expands the micro-template and the directive like this:...
<ng-template ngIf="model.getProductCount() > 4">
 <div class="bg-info p-2 mt-1">
 There are more than 4 products in the model
 </div>
</ng-template>
...

You can use either syntax in your templates, but if you use the compact syntax, then you must remember to use the asterisk. I explain how to create your own micro-template directives in Chapter 12.

Like all directives, the expression used for ngIf will be re-evaluated to reflect changes in the data model. Run the following statements in the browser’s JavaScript console to remove the first data object and to run the change detection process:model.products.shift()
appRef.tick()

The effect of modifying the model is to remove the first div element because there are too few Product objects now and to add the second div element because the name property of the first Product in the array is no longer Kayak. Figure 11-3 shows the change.[image:]
Figure 11-3The effect of reevaluating directive expressions

Using the ngSwitch Directive
The ngSwitch directive selects one of several elements based on the expression result, similar to a JavaScript switch statement. Listing 11-4 shows the ngSwitch directive being used to choose an element based on the number of objects in the model. <div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="bg-info p-2 mt-1" [ngSwitch]="getProductCount()">
 There are two products
 There are five products
 This is the default
 </div>
</div>

Listing 11-4Using the ngSwitch Directive in the template.html File in the src/app Folder

The ngSwitch directive syntax can be confusing to use. The element that the ngSwitch directive is applied to is always included in the HTML document, and the directive name isn’t prefixed with an asterisk. It must be specified within square brackets, like this:...
<div class="bg-info p-2 mt-1" [ngSwitch]="getProductCount()">
...

Each of the inner elements, which are span elements in this example, is a micro-template, and the directives that specify the target expression result are prefixed with an asterisk, like this:...
There are five products
...

The ngSwitchCase directive is used to specify an expression result. If the ngSwitch expression evaluates to the specified result, then that element and its contents will be included in the HTML document. If the expression doesn’t evaluate to the specified result, then the element and its contents will be excluded from the HTML document.
The ngSwitchDefault directive is applied to a fallback element—equivalent to the default label in a JavaScript switch statement—which is included in the HTML document if the expression result doesn’t match any of the results specified by the ngSwitchCase directives.
For the initial data in the application, the directives in Listing 11-4 produce the following HTML:...
<div class="bg-info p-2 mt-1" ng-reflect-ng-switch="5">
 There are five products
</div>
...

The div element, to which the ngSwitch directive has been applied, is always included in the HTML document. For the initial data in the model, the span element whose ngSwitchCase directive has a result of 5 is also included, producing the result shown on the left of Figure 11-4.[image:]
Figure 11-4Using the ngSwitch directive

The ngSwitch binding responds to changes in the data model, which you can test by executing the following statements in the browser’s JavaScript console:model.products.shift()
appRef.tick()

These statements remove the first item from the model and force Angular to run the change detection process. Neither of the results for the two ngSwitchCase directives matches the result from the getProductCount expression, so the ngSwitchDefault element is included in the HTML document, as shown on the right of Figure 11-4.
Avoiding Literal Value Problems
A common problem arises when using the ngSwitchCase directive to specify literal string values, and care must be taken to get the right result, as shown in Listing 11-5. <div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="bg-info p-2 mt-1" [ngSwitch]="getProduct(1)?.name">
 Kayak
 Lifejacket
 Other Product
 </div>
</div>

Listing 11-5Component and String Literal Values in the template.html File in the src/app Folder

The values assigned to the ngSwitchCase directives are also expressions, which means you can invoke methods, perform simple inline operations, and read property values, just as you would for the basic data bindings.
As an example, this expression tells Angular to include the span element to which the directive has been applied when the result of evaluating the ngSwitch expression matches the value of the targetName property defined by the component:...
Kayak
...

If you want to compare a result to a specific string, then you must double quote it, like this:...
Lifejacket
...

This expression tells Angular to include the span element when the value of the ngSwitch expression is equal to the literal string value Lifejacket, producing the result shown in Figure 11-5.[image:]
Figure 11-5Using expressions and literal values with the ngSwitch directive

Using the ngFor Directive
The ngFor directive repeats a section of content for each object in an array, providing the template equivalent of a foreach loop. In Listing 11-6, I have used the ngFor directive to populate a table by generating a row for each Product object in the model. <div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="p-1">
 <table class="table table-sm table-bordered text-dark">
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 11-6Using the ngFor Directive in the template.html File in the src/app Folder

The expression used with the ngFor directive is more complex than for the other built-in directives, but it will start to make sense when you see how the different parts fit together. Here is the directive that I used in the example:...
<tr *ngFor="let item of getProducts()">
...

The asterisk before the name is required because the directive is using a micro-template, as described in the “Understanding Micro-Template Directives” sidebar. This will make more sense as you become familiar with Angular, but at first, you just have to remember that this directive requires an asterisk (or, as I often do, forget until you see an error displayed in the browser’s JavaScript console and then remember).
For the expression itself, there are two distinct parts, joined with the of keyword. The right-hand part of the expression provides the data source that will be enumerated. ...
<tr *ngFor="let item of getProducts()">
...

This example specifies the component’s getProducts method as the source of data, which allows content to be for each of the Product objects in the model. The right-hand side is an expression in its own right, which means you can prepare data or perform simple manipulation operations within the template.
The left-hand side of the ngFor expression defines a template variable, denoted by the let keyword, which is how data is passed between elements within an Angular template. ...
<tr *ngFor="let item of getProducts()">
...

The ngFor directive assigns the variable to each object in the data source so that it is available for use by the nested elements. The local template variable in the example is called item, and it is used to access the Product object’s properties for the td elements, like this: ...
<td>{{item.name}}</td>
...

Put together, the directive in the example tells Angular to enumerate the objects returned by the component’s getProducts method, assign each of them to a variable called item, and then generate a tr element and its td children, evaluating the template expressions they contain.
For the example in Listing 11-6, the result is a table where the ngFor directive is used to generate table rows for each of the Product objects in the model and where each table row contains td elements that display the value of the Product object’s name, category, and price properties, as shown in Figure 11-6.[image:]
Figure 11-6Using the ngFor directive to create table rows

Using Other Template Variables
The most important template variable is the one that refers to the data object being processed, which is item in the previous example. But the ngFor directive supports a range of other values that can also be assigned to variables and then referred to within the nested HTML elements, as described in Table 11-4 and demonstrated in the sections that follow. Table 11-4The ngFor Local Template Values

	Name
	Description

	index
	This number value is assigned to the position of the current object.

	count
	This number value is assigned the number of elements in the data source.

	odd
	This boolean value returns true if the current object has an odd-numbered position in the data source.

	even
	This boolean value returns true if the current object has an even-numbered position in the data source.

	first
	This boolean value returns true if the current object is the first one in the data source.

	last
	This boolean value returns true if the current object is the last one in the data source.

Using the Index and Count Value
The index value is set to the position of the current data object and is incremented for each object in the data source. The count value is set to the number of data values in the data source.
In Listing 11-7, I have defined a table that is populated using the ngFor directive and that assigns the index and count values to local template variables, which are then used in a string interpolation binding.<div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="p-1">
 <table class="table table-sm table-bordered text-dark">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index; let c = count">
 <td>{{ i + 1 }} of {{ c }}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 11-7Using the Index Value in the template.html File in the src/app Folder

A new term is added to the ngFor expression, separated using a semicolon (the ; character). The new expressions uses the let keyword to assign the index value to a local template variable called i and the count value to a local template variable named c, like this:...
<tr *ngFor="let item of getProducts(); let i = index; let c = count">
...

This allows the values to be accessed within the nested elements using bindings, like this:...
<td>{{ i + 1 }} of {{ c }}</td>
...

The index value is zero-based, and adding 1 to the template variable creates a simple counter, producing the result shown in Figure 11-7.[image:]
Figure 11-7Using the index value

Using the Odd and Even Values
The odd value is true when the index value for a data item is odd. Conversely, the even value is true when the index value for a data item is even. In general, you only need to use either the odd or even value since they are boolean values where odd is true when even is false, and vice versa. In Listing 11-8, the odd value is used to manage the class membership of the tr elements in the table.<div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="p-1">
 <table class="table table-sm table-bordered text-dark">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index;
 let c = count; let odd = odd"
 class="text-white" [class.bg-primary]="odd"
 [class.bg-info]="!odd">
 <td>{{ i + 1 }} of {{ c }}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 11-8Using the odd Value in the template.html File in the src/app Folder

I have used a semicolon and added another term to the ngFor expression that assigns the odd value to a local template variable that is also called odd....
<tr *ngFor="let item of getProducts(); let i = index;
 let c = count; let odd = odd"
 class="text-white" [class.bg-primary]="odd"
 [class.bg-info]="!odd">
...

This may seem redundant, but you cannot access the ngFor values directly and must use a local variable even if it has the same name. I use the class binding and the odd variable to assign alternate rows to the bg-primary and bg-info classes, which are Bootstrap background color classes that stripe the table rows, as shown in Figure 11-8.[image:]
Figure 11-8Using the odd value

Expanding The *ngFor Directive
Notice that in Listing 11-8, I can use the template variable in expressions applied to the same tr element that defines it. This is possible because ngFor is a micro-template directive—denoted by the * that precedes the name—and so Angular expands the HTML so that it looks like this: ...
<table class="table table-sm table-bordered text-dark">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <ng-template ngFor let-item [ngForOf]="getProducts()"
 let-i="index" let-c="count" let-odd="odd">
 <tr class="text-white" [class.bg-primary]="odd" [class.bg-info]="!odd">
 <td>{{ i + 1 }} of {{ c }}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </ng-template>
</table>
...

You can see that the ng-template element defines the variables, using the somewhat awkward let-<name> attributes, which are then accessed by the tr and td elements within it. As with so much in Angular, what appears to happen by magic turns out to be straightforward once you understand what is going on behind the scenes, and I explain these features in detail in Chapter 14. A good reason to use the *ngFor syntax is that it provides a more elegant way to express the directive expression, especially when there are multiple template variables.

Using the First and Last Values
The first value is true only for the first object in the sequence provided by the data source and is false for all other objects. Conversely, the last value is true only for the last object in the sequence. Listing 11-9 uses these values to treat the first and last objects differently from the others in the sequence.<div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="p-1">
 <table class="table table-sm table-bordered text-dark">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index;
 let c = count; let odd = odd; let first = first;
 let last = last"
 class="text-white" [class.bg-primary]="odd"
 [class.bg-info]="!odd"
 [class.bg-warning]="first || last">
 <td>{{ i + 1 }} of {{ c }}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td *ngIf="!last">{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 11-9Using the first and last Values in the template.html File in the src/app Folder

The new terms in the ngFor expression assign the first and last values to template variables called first and last. These variables are then used by a class binding on the tr element, which assigns the element to the bg-warning class when either is true, and are used by the ngIf directive on one of the td elements, which will exclude the element for the last item in the data source, producing the effect shown in Figure 11-9.[image:]
Figure 11-9Using the first and last values

Minimizing Element Operations
When there is a change to the data model, the ngFor directive evaluates its expression and updates the elements that represent its data objects. The update process can be expensive, especially if the data source is replaced with one that contains different objects representing the same data. Replacing the data source may seem like an odd thing to do, but it happens often in web applications, especially when the data is retrieved from a web service, like the ones I describe in Chapter 23. The same data values are represented by new objects, which presents an efficiency problem for Angular. To demonstrate the problem, I added a method to the component that replaces one of the Product objects in the data model, as shown in Listing 11-10. import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";

export class Model {
 private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p: Product, id: number | any) => p.id == id;

 constructor() {
 this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 // ...methods omitted for brevity...

 swapProduct() {
 let p = this.products.shift();
 if (p != null) {
 this.products.push(new Product(p.id, p.name, p.category, p.price));
 }
 }
}

Listing 11-10Replacing an Object in the repository.model.ts File in the src/app Folder

The swapProduct method removes the first object from the array and adds a new object that has the same values for the id, name, category, and price properties. This is an example of data values being represented by a new object.
Run the following statements using the browser’s JavaScript console to modify the data model and run the change-detection process:model.swapProduct()
appRef.tick()

When the ngFor directive examines its data source, it sees it has two operations to perform to reflect the change to the data. The first operation is to destroy the HTML elements that represent the first object in the array. The second operation is to create a new set of HTML elements to represent the new object at the end of the array.
Angular has no way of knowing that the data objects it is dealing with have the same values and that it could perform its work more efficiently by simply moving the existing elements within the HTML document.
This problem affects only two elements in this example, but the problem is much more severe when the data in the application is refreshed from an external data source, such as a web service, where all the data model objects can be replaced each time that a response is received. Since it is not aware that there have been few real changes, the ngFor directive has to destroy all of its HTML elements and create new ones, which can be an expensive and time-consuming operation.
To improve the efficiency of an update, you can define a component method that will help Angular determine when two different objects represent the same data, as shown in Listing 11-11.import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...constructor and methods omitted for brevity...

 targetName: string = "Kayak";

 getKey(index: number, product: Product) {
 return product.id;
 }
}

Listing 11-11Adding the Object Comparison Method in the component.ts File in the src/app Folder

The method has to define two parameters: the position of the object in the data source and the data object. The result of the method uniquely identifies an object, and two objects are considered to be equal if they produce the same result.
Two Product objects will be considered equal if they have the same id value. Telling the ngFor expression to use the comparison method is done by adding a trackBy term to the expression, as shown in Listing 11-12.<div class="text-white">
 <div class="bg-info p-2">
 There are {{getProductCount()}} products.
 </div>

 <div class="p-1">
 <table class="table table-sm table-bordered text-dark">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index;
 let c = count; let odd = odd; let first = first;
 let last = last; trackBy:getKey"
 class="text-white" [class.bg-primary]="odd"
 [class.bg-info]="!odd"
 [class.bg-warning]="first || last">
 <td>{{ i + 1 }} of {{ c }}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td *ngIf="!last">{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 11-12Providing an Equality Method in the template.html File in the src/app Folder

With this change, the ngFor directive will know that the Product that is removed from the array using the swapProduct method defined in Listing 11-12 is equivalent to the one that is added to the array, even though they are different objects. Rather than delete and create elements, the existing elements can be moved, which is a much simpler and quicker task to perform.
Changes can still be made to the elements—such as by the ngIf directive, which will remove one of the td elements because the new object will be the last item in the data source, but even this is faster than treating the objects separately.
Testing The Equality Method
Checking whether the equality method has an effect is a little tricky. The best way that I have found requires using the browser’s F12 developer tools, in this case using the Chrome browser.
Once the application has loaded, right-click the td element that contains the word Kayak in the browser window and select Inspect from the pop-up menu. This will open the Developer Tools window and show the Elements panel.
Click the ellipsis button (marked ...) in the left margin and select Add Attribute from the menu. Add an id attribute with the value old. This will result in an element that looks like this:<td id="old">Kayak</td>

Adding an id attribute makes it possible to access the object that represents the HTML element using the JavaScript console. Switch to the Console panel and enter the following statement:window.old

When you hit Return, the browser will locate the element by its id attribute value and display the following result:<td id="old">Kayak</td>

Now execute the following statements in the JavaScript console, hitting Return after each one:model.swapProduct()
appRef.tick()

Once the change to the data model has been processed, executing the following statement in the JavaScript console will determine whether the td element to which the id attribute was added has been moved or destroyed:window.old

If the element has been moved, then you will see the element shown in the console, like this:<td id="old">Kayak</td>

If the element has been destroyed, then there won’t be an element whose id attribute is old, and the browser will display the word undefined.

Using the ngTemplateOutlet Directive
The ngTemplateOutlet directive is used to repeat a block of content at a specified location, which can be useful when you need to generate the same content in different places and want to avoid duplication. Listing 11-13 replaces the contents of the template.html file to show the ngTemplateOutlet directive in use. <ng-template #titleTemplate>
 <h4 class="p-2 bg-success text-white">Repeated Content</h4>
 </ng-template>

 <ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>

 <div class="bg-info p-2 m-2 text-white">
 There are {{getProductCount()}} products.
 </div>

<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>

Listing 11-13Replacing the Contents of the template.html File in the src/app Folder

The first step is to define the template that contains the content that you want to repeat using the directive. This is done using the ng-template element and assigning it a name using a reference variable, like this: ...
<ng-template #titleTemplate let-title="title">
 <h4 class="p-2 bg-success text-white">Repeated Content</h4>
</ng-template>
...

When Angular encounters the reference variable, it sets its value to the element to which it has been defined, which is the ng-template element in this case. The second step is to insert the content into the HTML document, using the ngTemplateOutlet directive, like this:...
<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>
...

The expression is the name of the reference variable that was assigned to the content that should be inserted. The directive replaces the host element with the contents of the specified ng-template element. Neither the ng-template element that contains the repeated content nor the one that is the host element for the binding is included in the HTML document. Figure 11-10 shows how the directive has used the repeated content.[image:]
Figure 11-10Using the ngTemplateOutlet directive

Providing Context Data
The ngTemplateOutlet directive can be used to provide the repeated content with a context object that can be used in data bindings defined within the ng-template element, as shown in Listing 11-14. <ng-template #titleTemplate let-text="title">
 <h4 class="p-2 bg-success text-white">{{text}}</h4>
</ng-template>

<ng-template [ngTemplateOutlet]="titleTemplate"
 [ngTemplateOutletContext]="{title: 'Header'}">
</ng-template>

<div class="bg-info p-2 m-2 text-white">
 There are {{getProductCount()}} products.
</div>

<ng-template [ngTemplateOutlet]="titleTemplate"
 [ngTemplateOutletContext]="{title: 'Footer'}">
</ng-template>

Listing 11-14Providing Context Data in the template.html File in the src/app Folder

To receive the context data, the ng-template element that contains the repeated content defines a let- attribute that specifies the name of a variable, similar to the expanded syntax used for the ngFor directive. The value of the expression assigns the let- variable a value, like this:...
<ng-template #titleTemplate let-text="title">
...

The let- attribute in this example creates a variable called text, which is assigned a value by evaluating the expression title. To provide the data against which the expression is evaluated, the ng-template element to which the ngTemplateOutletContext directive has been applied provides a map object, like this:...
<ng-template [ngTemplateOutlet]="titleTemplate"
 [ngTemplateOutletContext]="{title: 'Footer'}">
</ng-template>
...

The target of this new binding is ngTemplateOutletContext, which looks like another directive but is actually an example of an input property, which some directives use to receive data values and that I describe in detail in Chapter 13. The expression for the binding is a map object whose property name corresponds to the let- attribute on the other ng-template element. The result is that the repeated content can be tailored using bindings, as shown in Figure 11-11.[image:]
Figure 11-11Providing context data for repeated content

Using Directives Without an HTML Element
The ng-container element can be used to apply directives without using an HTML element, which can be useful when you want to generate content without adding to the structure of the HTML document displayed by the browser, as shown in Listing 11-15, which replaces the contents of the template.html file.<div class="bg-info p-2 text-white">
 Product Names:
 <ng-container *ngFor="let item of getProducts(); let last = last">
 {{ item.name}}<ng-container *ngIf="!last">,</ng-container>
 </ng-container>
</div>

Listing 11-15Generating Content Without an Element in the template.html File in the src/app Folder

The ng-container element doesn’t appear in the HTML displayed by the browser, which means that it can be used to generate content within elements. In this example, the ng-container element is used to apply the ngFor directive, and the content it produces contains a second ng-container element that applies the ngIf directive. The result is a string that introduces no new elements, as shown in Figure 11-12. [image:]
Figure 11-12Using directives without an HTML element

Understanding One-Way Data Binding Restrictions
Although the expressions used in one-way data binding and directives look like JavaScript code, you can’t use all the JavaScript—or TypeScript—language features. I explain the restrictions and the reasons for them in the sections that follow.
Using Idempotent Expressions
One-way data bindings must be idempotent, meaning that they can be evaluated repeatedly without changing the state of the application. To demonstrate why, I added a debugging statement to the component’s getProducts method, as shown in Listing 11-16.
Note
Angular does support modifying the application state, but it must be done using the techniques I describe in Chapter 12.

...
getProducts(): Product[] {
 console.log("getProducts invoked");
 return this.model.getProducts();
}
...

Listing 11-16Adding a Statement in the component.ts File in the src/app Folder

When the changes are saved and the browser reloads the page, you will see a long series of messages like these in the browser’s JavaScript console:...
getProducts invoked
getProducts invoked
getProducts invoked
getProducts invoked
...

As the messages show, Angular evaluates the binding expression several times before displaying the content in the browser. If an expression modifies the state of an application, such as removing an object from a queue, you won’t get the results you expect by the time the template is displayed to the user. To avoid this problem, Angular restricts the way that expressions can be used. In Listing 11-17, I added a counter property to the component to help demonstrate.import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...members omitted for brevity...

 getKey(index: number, product: Product) {
 return product.id;
 }

 counter: number = 1;
}

Listing 11-17Adding a Property in the component.ts File in the src/app Folder

In Listing 11-18, I added a binding whose expression increments the counter when it is evaluated.<div class="bg-info p-2 text-white">
 Product Names:
 <ng-container *ngFor="let item of getProducts(); let last = last">
 {{ item.name}}<ng-container *ngIf="!last">,</ng-container>
 </ng-container>
</div>

<div class="bg-info p-2">
 Counter: {{counter = counter + 1}}
</div>

Listing 11-18Adding a Binding in the template.html File in the src/app Folder

When the browser loads the page, you will see the following error:...
Error: src/app/template.html:9:5 - error NG5002: Parser Error:
 Bindings cannot contain assignments at column 11 in
 [Counter: {{counter = counter + 1}}] in C:\example\src\app\template.html@8:4
 9 Counter: {{counter = counter + 1}}
       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10   </div>
   ~~
  src/app/component.ts:7:15
    7  templateUrl: "template.html"
                    ~~~~~~~~~~~~~~~
 Error occurs in the template of component ProductComponent.
...

Angular will report an error if a data binding expression contains an operator that can be used to perform an assignment, such as =, +=, -+, ++, and --. In addition, when Angular is running in development mode, it performs an additional check to make sure that one-way data bindings have not been modified after their expressions are evaluated. To demonstrate, Listing 11-19 adds a property to the component that removes and returns a Product object from the model array.import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...members omitted for brevity...

 counter: number = 1;

 get nextProduct(): Product | undefined {
 return this.model.getProducts().shift();
 }
}

Listing 11-19Modifying Data in the component.ts File in the src/app Folder

In Listing 11-20, you can see the data binding that I used to read the nextProduct property.<div class="bg-info p-2 text-white">
 Product Names:
 <ng-container *ngFor="let item of getProducts(); let last = last">
 {{ item.name}}<ng-container *ngIf="!last">,</ng-container>
 </ng-container>
</div>

<div class="bg-info p-2 text-white">
 Next Product is {{nextProduct?.name}}
</div>

Listing 11-20Binding to a Property in the template.html File in the src/app Folder

When the browser reloads, you will see the following error in the JavaScript console:...
ERROR Error: NG0100: ExpressionChangedAfterItHasBeenCheckedError: Expression has changed after it was checked. Previous value: 'Lifejacket'. Current value: 'Corner Flags'.. Find more at https://angular.io/errors/NG0100
...

Understanding the Expression Context
When Angular evaluates an expression, it does so in the context of the template’s component, which is how the template can access methods and properties without any kind of prefix, like this: ...
<div class="bg-info p-2 text-white">
 Next Product is {{nextProduct?.name}}
</div>
...

When Angular processes these expressions, the component provides the nextProduct property, which Angular incorporates into the HTML document. The component is said to provide the template’s expression context.
The expression context means you can’t access objects defined outside of the template’s component, and in particular, templates can’t access the global namespace. The global namespace is used to define common utilities, such as the console object, which defines the log method I have been using to write out debugging information to the browser’s JavaScript console. The global namespace also includes the Math object, which provides access to some useful arithmetic methods, such as min and max.
To demonstrate this restriction, Listing 11-21 adds a string interpolation binding to the template that relies on the Math.floor method to round down a number value to the nearest integer.<div class="bg-info p-2 text-white">
 Product Names:
 <ng-container *ngFor="let item of getProducts(); let last = last">
 {{ item.name}}<ng-container *ngIf="!last">,</ng-container>
 </ng-container>
</div>

<div class='bg-info p-2'>
 The rounded price is {{Math.floor(getProduct(1)?.price)}}
</div>

Listing 11-21Accessing the Global Namespace in the template.html File in the src/app Folder

When Angular processes the template, it will produce the following error in the browser’s JavaScript console:error TS2339: Property 'Math' does not exist on type 'ProductComponent'.

The error message doesn’t specifically mention the global namespace. Instead, Angular has tried to evaluate the expression using the component as the context and failed to find a Math property.
If you want to access functionality in the global namespace, then it must be provided by the component, acting on behalf of the template. In the case of the example, the component could just define a Math property that is assigned to the global object, but template expressions should be as clear and simple as possible, so a better approach is to define a method that provides the template with the specific functionality it requires, as shown in Listing 11-22.import { ApplicationRef, Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...members omitted for brevity...

 get nextProduct(): Product | undefined {
 return this.model.getProducts().shift();
 }

 getProductPrice(index: number): number {
 return Math.floor(this.getProduct(index)?.price ?? 0);
 }
}

Listing 11-22Defining a Method in the component.ts File in the src/app Folder

In Listing 11-23, I have changed the data binding in the template to use the newly defined method.<div class="bg-info p-2 text-white">
 Product Names:
 <ng-container *ngFor="let item of getProducts(); let last = last">
 {{ item.name}}<ng-container *ngIf="!last">,</ng-container>
 </ng-container>
</div>

<div class="bg-info p-2">
 The rounded price is {{getProductPrice(2)}}
</div>

Listing 11-23Access Global Namespace Functionality in the template.html File in the src/app Folder

When Angular processes the template, it will call the getProductPrice method and indirectly take advantage of the Math object in the global namespace, producing the result shown in Figure 11-13.[image:]
Figure 11-13Accessing global namespace functionality

Summary
In this chapter, I explained how to use the built-in template directives. I showed you how to select content with the ngIf and ngSwitch directives and how to repeat content using the ngFor directive. I explained why some directive names are prefixed with an asterisk and described the limitations that are placed on template expressions used with these directives and with one-way data bindings in general. In the next chapter, I describe how data bindings are used for events and form elements.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_12

12. Using Events and Forms

Adam Freeman1
(1)London, UK

In this chapter, I continue describing the basic Angular functionality, focusing on features that respond to user interaction. I explain how to create event bindings and how to use two-way bindings to manage the flow of data between the model and the template. One of the main forms of user interaction in a web application is the use of HTML forms, and I explain how event bindings and two-way data bindings are used to support them and validate the content that the user provides. Table 12-1 puts events and forms in context.Table 12-1Putting Event Bindings and Forms in Context

	Question
	Answer

	What are they?
	Event bindings evaluate an expression when an event is triggered, such as a user pressing a key, moving the mouse, or submitting a form. The broader form-related features build on this foundation to create forms that are automatically validated to ensure that the user provides useful data.

	Why are they useful?
	These features allow the user to change the state of the application, changing or adding to the data in the model.

	How are they used?
	Each feature is used differently. See the examples for details.

	Are there any pitfalls or limitations?
	In common with all Angular bindings, the main pitfall is using the wrong kind of bracket to denote a binding. Pay close attention to the examples in this chapter and check the way you have applied bindings when you don’t get the results you expect.

	Are there any alternatives?
	No. These features are a core part of Angular.

Table 12-2 summarizes the chapter.Table 12-2Chapter Summary

	Problem
	Solution
	Listing

	Enabling forms support
	Add the @angular/forms module to the application
	1–3

	Responding to an event
	Use an event binding
	4–6

	Getting details of an event
	Use the $event object
	7–9

	Referring to elements in the template
	Define template variables
	10

	Enabling the flow of data in both directions between the element and the component
	Use a two-way data binding
	11, 12

	Capturing user input
	Use an HTML form
	13, 14

	Validating the data provided by the user
	Perform form validation
	15–26

Preparing the Example Project
For this chapter, I will continue using the example project that I created in Chapter 9 and have been modifying in the chapters since.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Importing the Forms Module
The features demonstrated in this chapter rely on the Angular forms module, which must be imported to the Angular module, as shown in Listing 12-1. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule } from "@angular/forms";

@NgModule({
 declarations: [ProductComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 12-1Declaring a Dependency in the app.module.ts File in the src/app Folder

The imports property of the NgModule decorator specifies the dependencies of the application. Adding FormsModule to the list of dependencies enables the form features and makes them available for use throughout the application.
Preparing the Component and Template
Listing 12-2 removes the constructor and some of the methods from the component class and adds a new property, named selectedProduct.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 selectedProduct: string | undefined;
}

Listing 12-2Simplifying the Component in the component.ts File in the src/app Folder

Listing 12-3 simplifies the component’s template, leaving just a table that is populated using the ngFor directive.<div class="p-2">
 <table class="table table-sm table-bordered">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
</div>

Listing 12-3Simplifying the Template in the template.html File in the src/app Folder

To start the development server, open a command prompt, navigate to the example folder, and run the following command:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the table shown in Figure 12-1.[image:]
Figure 12-1Running the example application

Using the Event Binding
The event binding is used to respond to the events sent by the host element. Listing 12-4 demonstrates the event binding, which allows a user to interact with an Angular application. <div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{selectedProduct ?? '(None)'}}
 </div>
 <table class="table table-sm table-bordered">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
</div>

Listing 12-4Using the Event Binding in the template.html File in the src/app Folder

When you save the changes to the template, you can test the binding by moving the mouse pointer over the first column in the HTML table, which displays a series of numbers. As the mouse moves from row to row, the name of the product displayed in that row is displayed at the top of the page, as shown in Figure 12-2.[image:]
Figure 12-2Using an event binding

This is a simple example, but it shows the structure of an event binding, which is illustrated in Figure 12-3. [image:]
Figure 12-3The anatomy of an event binding

An event binding has these four parts:	The host element is the source of events for the binding.

	The round brackets tell Angular that this is an event binding, which is a form of one-way binding where data flows from the element to the rest of the application.

	The event specifies which event the binding is for.

	The expression is evaluated when the event is triggered.

Looking at the binding in Listing 12-4, you can see that the host element is a td element, meaning that this is the element that will be the source of events. The binding specifies the mouseover event, which is triggered when the mouse pointer moves over the part of the screen occupied by the host element.
Unlike one-way bindings, the expressions in event bindings can make changes to the state of the application and can contain assignment operators, such as =. The expression for the binding assigns the value of the item.name property to a variable called selectedProduct. The selectedProduct variable is used in a string interpolation binding at the top of the template, like this:...
<div class="bg-info text-white p-2">
 Selected Product: {{selectedProduct ?? '(None)'}}
</div>
...

The value displayed by the string interpolation binding is updated when the value of the selectedProduct variable is changed by the event binding. Manually starting the change detection process using the ApplicationRef.tick method is no longer required because the bindings and directives in this chapter take care of the process automatically.
Working With DOM Events
If you are unfamiliar with the events that an HTML element can send, then there is a good summary available at https://developer.mozilla.org/en-US/docs/Web/Events. There are a lot of events, however, and not all of them are supported widely or consistently in all browsers. A good place to start is the “DOM Events” and “HTML DOM Events” sections of the mozilla.org page, which define the basic interactions that a user has with an element (clicking, moving the pointer, submitting forms, and so on) and that can be relied on to work in most browsers.
If you use the less common events, then you should make sure they are available and work as expected in your target browsers. The excellent http://caniuse.com provides details of which features are implemented by different browsers, but you should also perform thorough testing.

The expression that displays the selected product uses the nullish coalescing operator to ensure that the user always sees a message, even when no product is selected. A neater approach is to define a method that performs this check, as shown in Listing 12-5.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 selectedProduct: string | undefined;

 getSelected(product: Product): boolean {
 return product.name == this.selectedProduct;
 }
}

Listing 12-5Enhancing the Component in the component.ts File in the src/app Folder

I have defined a method called getSelected that accepts a Product object and compares its name to the selectedProduct property. In Listing 12-6, the getSelected method is used by a class binding to control membership of the bg-info class, which is a Bootstrap class that assigns a background color to an element.<div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{selectedProduct ?? '(None)'}}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
</div>

Listing 12-6Setting Class Membership in the template.html File in the src/app Folder

The result is that tr elements are added to the bg-info class when the selectedProduct property value matches the Product object used to create them, which is changed by the event binding when the mouseover event is triggered, as shown in Figure 12-4.[image:]
Figure 12-4Highlighting table rows through an event binding

This example shows how user interaction drives new data into the application and starts the change-detection process, causing Angular to reevaluate the expressions used by the string interpolation and class bindings. This flow of data is what brings Angular applications to life: the bindings and directives described in Chapters 10 and 11 respond dynamically to changes in the application state, creating content generated and managed entirely within the browser.
Using Event Data
The previous example used the event binding to connect two pieces of data provided by the component: when the mouseevent is triggered, the binding’s expression sets the selectedProduct property using a data value that was provided to the ngfor directive by the component’s getProducts method.
The event binding can also be used to introduce new data into the application from the event itself, using details that are provided by the browser. Listing 12-7 adds an input element to the template and uses the event binding to listen for the input event, which is triggered when the content of the input element changes. <div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{selectedProduct ?? '(None)'}}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control"
 (input)="selectedProduct=$any($event).target.value" />
 </div>
</div>

Listing 12-7Using an Event Object in the template.html File in the src/app Folder

When the browser triggers an event, it provides an Event object that describes it. There are different types of event objects for different categories of events (mouse events, keyboard events, form events, and so on), but all events share the three properties described in Table 12-3. Table 12-3The Properties Common to All DOM Event Objects

	Name
	Description

	type
	This property returns a string that identifies the type of event that has been triggered.

	target
	This property returns the object that triggered the event, which will generally be the object that represents the HTML element in the DOM.

	timeStamp
	This property returns a number that contains the time that the event was triggered, expressed as milliseconds since January 1, 1970.

The Event object is assigned to a template variable called $event, and the binding expression in Listing 12-7 uses this variable to access the event and its target property, like this:...
<input class="form-control" (input)="selectedProduct=$any($event).target.value" />
...

This expression highlights a limitation of the way that data types are checked in Angular templates.
When the input element is triggered, the browser’s DOM API creates an InputEvent object, and it is this object that is assigned to the $event variable. The InputEvent.target property returns an HTMLInputElement object, which is how the DOM represents the input element that triggered the event. The HTMLInputElement.value property returns the content of the input element. Putting these types together means that reading the value of $event.target.value will produce the contents of the input element that triggered the event.
Unfortunately, Angular assumes that the $event variable is always assigned an Event object, which defines the features common to all events. The Event.target property returns an InputTarget object, which defines just the methods required to set up event handlers and doesn’t provide access to element-specific features.
TypeScript was designed to accommodate this sort of problem using type assertions, as I explained in Chapter 3. But Angular doesn’t allow the use of the as keyword in template expressions, which means that I am unable to tell the Angular and TypeScript build tools that the $event variable contains an InputEvent object.
Angular templates do support the special $any function, which disables type checking by treating a value as the special any type:...
<input class="form-control" (input)="selectedProduct=$any($event).target.value" />
...

By passing $event to the $any function, I can read the target.value property without causing a compiler error. Care must be taken when using the $any function because it effectively disables the compiler’s type checks, which can result in errors if the specified property or methods names do not exist at runtime.
The effect of the event binding is that the selectedProduct variable is assigned the contents of the input element after each keystroke. As the user types into the input element, the text that has been entered is displayed at the top of the browser window using the string interpolation binding.
The ngClass binding applied to the tr elements sets the background color of the table rows when the selectedProduct property matches the name of the product they represent. And, now that the value of the selectedProduct property is driven by the contents of the input element, typing the name of a product will cause the appropriate row to be highlighted, as shown in Figure 12-5.[image:]
Figure 12-5Using event data

Using different bindings to work together is at the heart of effective Angular development and makes it possible to create applications that respond immediately to user interaction and to changes in the data model.
Handling Events in the Component
Although type assertions cannot be performed in templates, they can be used in the component class, as shown in Listing 12-8, which provides a way to handle events without needing to use the any type.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 selectedProduct: string | undefined;

 getSelected(product: Product): boolean {
 return product.name == this.selectedProduct;
 }

 handleInputEvent(ev: Event) {
 if (ev.target instanceof HTMLInputElement) {
 this.selectedProduct = ev.target.value
 }
 }
}

Listing 12-8Defining a Method in the component.ts File in the src/app Folder

The handleInputEvent method receives an Event object and uses the instanceof operator to determine if the event’s target property returns an HTMLInputElement. If it does, then the value property is assigned to the selectedProduct property. Listing 12-9 updates the template to use the new method to handle events.<div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{selectedProduct ?? '(None)'}}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control" (input)="handleInputEvent($event)" />
 </div>
</div>

Listing 12-9Handling an Event with a Method in the template.html File in the src/app Folder

The effect is the same as the previous example, but the event is handled without disabling type checking.
Using Template Reference Variables
In Chapter 11, I explained how template variables are used to pass data around within a template, such as defining a variable for the current object when using the ngFor directive. Template reference variables are a form of template variable that can be used to refer to elements within the template, as shown in Listing 12-10. <div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{product.value ?? '(None)'}}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="product.value == item.name">
 <td (mouseover)="product.value = item.name ?? ''">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 <div class="form-group">
 <label>Product Name</label>
 <input #product class="form-control" (input)="false" />
 </div>
</div>

Listing 12-10Using a Template Variable in the template.html File in the src/app Folder

Reference variables are defined using the # character, followed by the variable name. In the listing, I defined a variable called product like this:...
<input #product class="form-control" (input)="false" />
...

When Angular encounters a reference variable in a template, it sets its value to the element to which it has been applied. For this example, the product reference variable is assigned the object that represents the input element in the DOM, the HTMLInputElement object. Reference variables can be used by other bindings in the same template. This is demonstrated by the string interpolation binding, which also uses the product variable, like this:...
Selected Product: {{product.value ?? '(None)'}}
...

This binding displays the value property defined by the HTMLInputElement that has been assigned to the product variable or the string (None) if the value property returns null or undefined. Template variables can also be used to change the state of the element, as shown in this binding:...
<td (mouseover)="product.value = item.name ?? ''">{{i + 1}}</td>
...

The event binding responds to the mouseover event by setting the value property on the HTMLInputElement that has been assigned to the product variable. The result is that moving the mouse over one of the td elements in the first table column will update the contents of the input element.
There is one awkward aspect to this example, which is the binding for the input event on the input element....
<input #product class="form-control" (input)="false" />
...

Angular won’t update the data bindings in the template when the user edits the contents of the input element unless there is an event binding on that element. Setting the binding to false gives Angular something to evaluate just so the update process will begin and distribute the current contents of the input element throughout the template. This is a quirk of stretching the role of a template reference variable a little too far and isn’t something you will need to do in most real projects. Most data bindings rely on variables defined by the template’s component, as demonstrated in the previous section.
Filtering Key Events
The input event is triggered every time the content in the input element is changed. This provides an immediate and responsive set of changes, but it isn’t what every application requires, especially if updating the application state involves expensive operations.
The event binding has built-in support to be more selective when binding to keyboard events, which means that updates will be performed only when a specific key is pressed. Here is a binding that responds to every keystroke: ...
<input #product class="form-control" (keyup)="selectedProduct=product.value" />
...

The keyup event is a standard DOM event, and the result is that application is updated as the user releases each key while typing in the input element. I can be more specific about which key I am interested in by specifying its name as part of the event binding, like this:...
<input #product class="form-control"
 (keyup.enter)="selectedProduct=product.value" />
...

The key that the binding will respond to is specified by appending a period after the DOM event name, followed by the name of the key. This binding is for the Enter key, and the result is that the changes in the input element won’t be pushed into the rest of the application until that key is pressed.

Using Two-Way Data Bindings
Bindings can be combined to create a two-way flow of data for a single element, allowing the HTML document to respond when the application model changes and also allowing the application to respond when the element emits an event, as shown in Listing 12-11. <div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{ selectedProduct ?? '(None)' }}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control"
 (input)="selectedProduct=$any($event).target.value"
 [value]="selectedProduct ?? ''" />
 </div>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control"
 (input)="selectedProduct=$any($event).target.value"
 [value]="selectedProduct ?? ''" />
 </div>
</div>

Listing 12-11Creating a Two-Way Binding in the template.html File in the src/app Folder

Each of the input elements has an event binding and a property binding. The event binding responds to the input event by updating the component’s selectedProduct property. The property binding ties the value of the selectedProduct property to the element’s value property.
The result is that the contents of the two input elements are synchronized, and editing one causes the other to be updated as well. And, since there are other bindings in the template that depend on the selectedProduct property, editing the contents of an input element also changes the data displayed by the string interpolation binding and changes the highlighted table row, as shown in Figure 12-6.[image:]
Figure 12-6Creating a two-way data binding

This is an example that makes the most sense when you experiment with it in the browser. Enter some text into one of the input elements, and you will see the same text displayed in the other input element and in the div element whose content is managed by the string interpolation binding. If you enter the name of a product into one of the input elements, such as Kayak or Lifejacket, then you will also see the corresponding row in the table highlighted.
The event binding for the mouseover event still takes effect, which means as you move the mouse pointer over the first row in the table, the changes to the selectedProduct value will cause the input elements to display the product name.
Using the ngModel Directive
The ngModel directive is used to simplify two-way bindings so that you don’t have to apply both an event and a property binding to the same element. Listing 12-12 shows how to replace the separate bindings with the ngModel directive. <div class="p-2">
 <div class="bg-info text-white p-2">
 Selected Product: {{ selectedProduct ?? '(None)' }}
 </div>
 <table class="table table-sm table-bordered">
 <tr *ngFor="let item of getProducts(); let i = index"
 [class.bg-info]="getSelected(item)">
 <td (mouseover)="selectedProduct=item.name">{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control" [(ngModel)]="selectedProduct" />
 </div>
 <div class="form-group">
 <label>Product Name</label>
 <input class="form-control" [(ngModel)]="selectedProduct" />
 </div>
</div>

Listing 12-12Using the ngModel Directive in the template.html File in the src/app Folder

Using the ngModel directive requires combining the syntax of the property and event bindings, as illustrated in Figure 12-7.[image:]
Figure 12-7The anatomy of a two-way data binding

A combination of square and round brackets is used to denote a two-way data binding, with the round brackets placed inside the square ones: [(and)]. The Angular development team refers to this as the banana-in-a-box binding because that’s what the brackets and parentheses look like when placed like this [()]. Well, sort of.
The target for the binding is the ngModel directive, which is included in Angular to simplify creating two-way data bindings on form elements, such as the input elements used in the example.
The expression for a two-way data binding is the name of a property, which is used to set up the individual bindings behind the scenes. When the contents of the input element change, the new content will be used to update the value of the selectedProduct property. Equally, when the value of the selectedProduct value changes, it will be used to update the contents of the element.
The ngModel directive knows the combination of events and properties that the standard HTML elements define. Behind the scenes, an event binding is applied to the input event, and a property binding is applied to the value property.
Tip
You must remember to use both brackets and parentheses with the ngModel binding. If you use just parentheses—(ngModel)—then you are setting an event binding for an event called ngModel, which doesn’t exist. The result is an element that won’t be updated or won’t update the rest of the application. You can use the ngModel directive with just square brackets—[ngModel]—and Angular will set the initial value of the element but won’t listen for events, which means that changes made by the user won’t be automatically reflected in the application model.

Working with Forms
Most web applications rely on forms for receiving data from users, and the two-way ngModel binding described in the previous section provides the foundation for using forms in Angular applications. In this section, I create a form that allows new products to be created and added to the application’s data model and then describe some of the more advanced form features that Angular provides.
Adding a Form to the Example Application
Listing 12-13 shows some enhancements to the component that will be used when the form is created and removes some features that are no longer required.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 // selectedProduct: string | undefined;

 // getSelected(product: Product): boolean {
 // return product.name == this.selectedProduct;
 // }

 // handleInputEvent(ev: Event) {
 // if (ev.target instanceof HTMLInputElement) {
 // this.selectedProduct = ev.target.value
 // }
 // }

 newProduct: Product = new Product();

 get jsonProduct() {
 return JSON.stringify(this.newProduct);
 }

 addProduct(p: Product) {
 console.log("New Product: " + this.jsonProduct);
 }
}

Listing 12-13Enhancing the Component in the component.ts File in the src/app Folder

The listing adds a new property called newProduct, which will be used to store the data entered into the form by the user. There is also a jsonProduct property with a getter that returns a JSON representation of the newProduct property and that will be used in the template to show the effect of the two-way bindings. (I can’t create a JSON representation of an object directly in the template because the JSON object is defined in the global namespace, which, as I explained in Chapter 11, cannot be accessed directly from template expressions.)
The final addition is an addProduct method that writes out the value of the jsonProduct method to the console; this will let me demonstrate some basic form-related features before adding support for updating the data model later in the chapter.
In Listing 12-14, the template content has been replaced with a series of input elements for each of the properties defined by the Product class.<div class="p-2">
 <div class="bg-info text-white mb-2 p-2">Model Data: {{jsonProduct}}</div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" (click)="addProduct(newProduct)">
 Create
 </button>
</div>

Listing 12-14Replacing the Contents of the template.html File in the src/app Folder

Each input element is grouped with a label and contained in a div element, which is styled using the Bootstrap form-group class. Individual input elements are assigned to the Bootstrap form-control class to manage the layout and style.
The ngModel binding has been applied to each input element to create a two-way binding with the corresponding property on the component’s newProduct object, like this:...
<input class="form-control" [(ngModel)]="newProduct.name" />
...

There is also a button element, which has a binding for the click event that calls the component’s addProduct method, passing in the newProduct value as an argument....
<button class="btn btn-primary" (click)="addProduct(newProduct)">Create</button>
...

Finally, a string interpolation binding is used to display a JSON representation of the component’s newProduct property at the top of the template, like this:...
<div class="bg-info text-white mb-2 p-2">Model Data: {{jsonProduct}}</div>
...

The overall result, illustrated in Figure 12-8, is a set of input elements that update the properties of a Product object managed by the component, which are reflected immediately in the JSON data.[image:]
Figure 12-8Using the form elements to create a new object in the data model

When the Create button is clicked, the JSON representation of the component’s newProduct property is written to the browser’s JavaScript console, producing a result like this:New Product: {"name":"Running Shoes","category":"Running","price":"120.23"}

Adding Form Data Validation
At the moment, any data can be entered into the input elements in the form. Data validation is essential in web applications because users will enter a surprising range of data values, either in error or because they want to get to the end of the process as quickly as possible and enter garbage values to proceed.
Angular provides an extensible system for validating the content of form elements, based on the approach used by the HTML5 standard. Table 12-4 lists the attributes that you can add to input elements, each of which defines a validation rule.Table 12-4The Built-in Angular Validation Attributes

	Attribute
	Description

	email
	This attribute is used to specify a well-formatted email address.

	required
	This attribute is used to specify a value that must be provided.

	minlength
	This attribute is used to specify a minimum number of characters.

	maxlength
	This attribute is used to specify a maximum number of characters. This type of validation cannot be applied directly to form elements because it conflicts with the HTML5 attribute of the same name. It can be used with model-based forms, which are described later in the chapter.

	min
	This attribute is used to specify a minimum value.

	max
	This attribute is used to specify a maximum value.

	pattern
	This attribute is used to specify a regular expression that the value provided by the user must match.

You may be familiar with these attributes because they are part of the HTML specification, but Angular builds on these properties with some additional features. Listing 12-15 removes all but one of the input elements to demonstrate the process of adding validation to the form as simply as possible. (I restore the missing elements at the end of the chapter.)<div class="p-2">
 <div class="bg-info text-white mb-2 p-2">Model Data: {{jsonProduct}}</div>

 <form (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
 </form>
</div>

Listing 12-15Adding Form Validation in the template.html File in the src/app Folder

Angular requires elements being validated to define the name attribute, which is used to identify the element in the validation system. Since this input element is being used to capture the value of the Product.name property, the name attribute on the element has been set to name.
This listing adds three of the validation attributes to the input element. The required attribute specifies that the user must provide a value, the minlength attribute specifies that there should be at least three characters, and the pattern attribute specifies that only alphabetic characters and spaces are allowed.
Finally, notice that a form element has been added to the template. Although you can use input elements independently, the Angular validation features work only when there is a form element present, and Angular will report an error if you add the ngControl directive to an element that is not contained in a form.
When using a form element, the convention is to use an event binding for a special event called ngSubmit like this:...
<form (ngSubmit)="addProduct(newProduct)">
...

The ngSubmit binding handles the form element’s submit event. You can achieve the same effect binding to the click event on individual button elements within the form if you prefer.
Styling Elements Using Validation Classes
Once you have saved the template changes in Listing 12-15 and the browser has reloaded the HTML, right-click the input element in the browser window and select Inspect or Inspect Element from the pop-up window. The browser will display the HTML representation of the element in the Developer Tools window, and you will see that the input element has been added to three classes, like this: ...
<input name="name" required="" minlength="5" pattern="^[A-Za-z]+$"
 class="form-control ng-pristine ng-invalid ng-touched" ng-reflect-required=""
 ng-reflect-minlength="5" ng-reflect-pattern="^[A-Za-z]+$" ng-reflect-name="name">
...

The classes to which an input element is assigned provide details of its validation state. There are three pairs of validation classes, which are described in Table 12-5. Elements will always be members of one class from each pair, for a total of three classes. The same classes are applied to the form element to show the overall validation status of all the elements it contains. As the status of the input element changes, the ngControl directive switches the classes automatically for both the individual elements and the form element.Table 12-5The Angular Form Validation Classes

	Name
	Description

	ng-untouchedng-touched
	An element is assigned to the ng-untouched class if it has not been visited by the user, which is typically done by tabbing through the form fields. Once the user has visited an element, it is added to the ng-touched class.

	ng-pristineng-dirty
	An element is assigned to the ng-pristine class if its contents have not been changed by the user and to the ng-dirty class otherwise. Once the contents have been edited, an element remains in the ng-dirty class, even if the user then returns to the previous contents.

	ng-validng-invalid
	An element is assigned to the ng-valid class if its contents meet the criteria defined by the validation rules that have been applied to it and to the ng-invalid class otherwise.

	ng-pending
	Elements are assigned to the ng-pending class when their contents are being validated asynchronously. See Chapters 21 and 22 for details.

These classes can be used to style form elements to provide the user with validation feedback. Add the styles shown in Listing 12-16 to the styles.css file in the src folder.html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Listing 12-16Defining Validation Feedback Styles in the styles.css File in the src/app Folder

These styles set green and red borders for input elements whose content has been edited and is valid (and so belong to both the ng-dirty and ng-valid classes) and whose content is invalid (and so belong to the ng-dirty and ng-invalid classes). Using the ng-dirty class means that the appearance of the elements won’t be changed until after the user has entered some content.
Angular validates the contents and changes the class memberships of the input elements after each keystroke or focus change. The browser detects the changes to the elements and applies the styles dynamically, which provides users with validation feedback as they enter data into the form, as shown in Figure 12-9.[image:]
Figure 12-9Providing validation feedback

As I start to type, the input element is shown as invalid because there are not enough characters to satisfy the minlength attribute. Once there are five characters, the border is green, indicating that the data is valid. When I type the 2 character, the border turns red again because the pattern attribute is set to allow only letters and spaces.
Tip
If you look at the JSON data at the top of the page in Figure 12-9, you will see that the data bindings are still being updated, even when the data values are not valid. Validation runs alongside data bindings, and you should not act on form data without checking that the overall form is valid, as described in the “Validating the Entire Form” section.

Displaying Field-Level Validation Messages
Using colors to provide validation feedback tells the user that something is wrong but doesn’t provide any indication of what the user should do about it. The ngModel directive provides access to the validation status of the elements it is applied to, which can be used to display guidance to the user. Listing 12-17 adds validation messages for each of the attributes applied to the input element using the support provided by the ngModel directive.<div class="p-2">
 <div class="bg-info text-white mb-2 p-2">Model Data: {{jsonProduct}}</div>

 <form (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 <ul class="text-danger list-unstyled mt-1"
 *ngIf="name.dirty && name.invalid">
 <li *ngIf="name.errors?.['required']">
 You must enter a product name

 <li *ngIf="name.errors?.['pattern']">
 Product names can only contain letters and spaces

 <li *ngIf="name.errors?.['minlength']">
 Product names must be at least
 {{ name.errors?.['minlength'].requiredLength }} characters

 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
 </form>
</div>

Listing 12-17Adding Validation Messages in the template.html File in the src/app Folder

To get validation working, I have to create a template reference variable to access the validation state in expressions, which I do like this:...
<input class="form-control" name="name" [(ngModel)]="newProduct.name"
 #name="ngModel" required minlength="5" pattern="^[A-Za-z]+$"/>
...

I create a template reference variable called name and set its value to ngModel. This use of an ngModel value is a little confusing: it is a feature provided by the ngModel directive to give access to the validation status. This will make more sense once you have read Chapters 13 and 16, in which I explain how to create custom directives and you see how they provide access to their features. For this chapter, it is enough to know that to display validation messages, you need to create a template reference variable and assign it ngModel to access the validation data for the input element. The object that is assigned to the template reference variable defines the properties that are described in Table 12-6. All of the properties described in the table are nullable.Table 12-6The Validation Object Properties

	Name
	Description

	path
	This property returns the name of the element.

	valid
	This property returns true if the element’s contents are valid and false otherwise.

	invalid
	This property returns true if the element’s contents are invalid and false otherwise.

	pristine
	This property returns true if the element’s contents have not been changed.

	dirty
	This property returns true if the element’s contents have been changed.

	touched
	This property returns true if the user has visited the element.

	untouched
	This property returns true if the user has not visited the element.

	errors
	This property returns a ValidationErrors object whose properties correspond to each attribute for which there is a validation error.

	value
	This property returns the value of the element, which is used when defining custom validation rules, as described in the “Creating Custom Form Validators” section.

Listing 12-17 displays the validation messages in a list. The list should be shown only if there is at least one validation error, so I applied the ngIf directive to the ul element, with an expression that uses the dirty and invalid properties, like this:...
<ul class="text-danger list-unstyled mt-1" *ngIf="name.dirty && name.invalid">
...

Within the ul element, there is an li element that corresponds to each validation error that can occur. Each li element has an ngIf directive that uses the errors property described in Table 12-6, like this:...
<li *ngIf="name.errors?.['required']">
 You must enter a product name

...

The errors.[required] property will be defined only if the element’s contents have failed the required validation check, which ties the visibility of the li element to the outcome of that validation check.
Each property defined by the errors object returns an object whose properties provide details of why the content has failed the validation check for its attribute, which can be used to make the validation messages more helpful to the user. Table 12-7 describes the error properties provided for each attribute.Table 12-7The Angular Form Validation Error Description Properties

	Name
	Description

	email
	This property returns true if the email attribute has been applied to the input element. This is not especially useful because this can be deduced from the fact that the property exists.

	required
	This property returns true if the required attribute has been applied to the input element. This is not especially useful because this can be deduced from the fact that the property exists.

	minlength.requiredLength
	This property returns the number of characters required to satisfy the minlength attribute.

	minlength.actualLength
	This property returns the number of characters entered by the user.

	maxlength.requiredLength
	This property returns the number of characters required to satisfy the maxlength attribute.

	maxlength.actualLength
	This property returns the number of characters entered by the user.

	min.actual
	This property returns the value entered by the user.

	min.min
	This property returns the minimum value required to satisfy the min attribute.

	max.actual
	This property returns the value entered by the user.

	max.max
	This property returns the minimum value required to satisfy the max attribute.

	pattern.requiredPattern
	This property returns the regular expression that has been specified using the pattern attribute.

	pattern.actualValue
	This property returns the contents of the element.

These properties are not displayed directly to the user, who is unlikely to understand an error message that includes a regular expression, although they can be useful during development to figure out validation problems. The exception is the minlength.requiredLength property, which can be useful for avoiding the duplication of the value assigned to the minlength attribute on the element, like this:...
<li *ngIf="name.errors?.['minlength']">
 Product names must be at least
 {{ name.errors?.['minlength'].requiredLength }} characters

...

The overall result is a set of validation messages that are shown as soon as the user starts editing the input element and that change to reflect each new keystroke, as illustrated in Figure 12-10.[image:]
Figure 12-10Displaying validation messages

Using the Component to Display Validation Messages
Including separate elements for all possible validation errors quickly becomes verbose in complex forms. A better approach is to add logic to the component to prepare the validation messages in a method, which can then be displayed to the user through the ngFor directive in the template. Listing 12-18 shows the addition of a component method that accepts the validation state for an input element and produces an array of validation messages.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { NgModel, ValidationErrors } from "@angular/forms";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 get jsonProduct() {
 return JSON.stringify(this.newProduct);
 }

 addProduct(p: Product) {
 console.log("New Product: " + this.jsonProduct);
 }

 getMessages(errs : ValidationErrors | null, name: string) : string[] {
 let messages: string[] = [];
 for (let errorName in errs) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errs['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 }
 }
 return messages;
 }

 getValidationMessages(state: NgModel, thingName?: string) {
 let thing: string = state.path?.[0] ?? thingName;
 return this.getMessages(state.errors, thing)
 }
}

Listing 12-18Generating Validation Messages in the component.ts File in the src/app Folder

The getValidationMessages and getMessages methods use the properties described in Table 12-6 to produce validation messages for each error, returning them in a string array. To make this code as widely applicable as possible, the method accepts a value that describes the data item that an input element is intended to collect from the user, which is then used to generate error messages, like this:...
messages.push(`You must enter a ${name}`);
...

This is an example of the JavaScript string interpolation feature, which allows strings to be defined like templates, without having to use the + operator to include data values. Note that the template string is denoted with backtick characters (the ` character and not the regular JavaScript ' character). The getValidationMessages method defaults to using the path property as the descriptive string if an argument isn’t received when the method is invoked, like this:...
let thing: string = state.path?.[0] ?? thingName;
...

Listing 12-19 shows how the getValidationMessages can be used in the template to generate validation error messages for the user without needing to define separate elements and bindings for each one.<div class="p-2">
 <div class="bg-info text-white mb-2 p-2">Model Data: {{jsonProduct}}</div>

 <form (ngSubmit)="addProduct(newProduct)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 <ul class="text-danger list-unstyled mt-1"
 *ngIf="name.dirty && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
 </form>
</div>

Listing 12-19Getting Validation Messages in the template.html File in the src/app Folder

There is no visual change, but the same method can be used to produce validation messages for multiple elements, which results in a simpler template that is easier to read and maintain.
Validating the Entire Form
Displaying validation error messages for individual fields is useful because it helps emphasize where problems need to be fixed. But it can also be useful to validate the entire form. Care must be taken not to overwhelm the user with error messages until they try to submit the form, at which point a summary of any problems can be useful. In preparation, Listing 12-20 adds two new members to the component. import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { NgModel, ValidationErrors, NgForm } from "@angular/forms";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...other methods omitted for brevity...

 formSubmitted: boolean = false;

 submitForm(form: NgForm) {
 this.formSubmitted = true;
 if (form.valid) {
 this.addProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 this.formSubmitted = false;
 }
 }
}

Listing 12-20Enhancing the Component in the component.ts File in the src/app Folder

The formSubmitted property will be used to indicate whether the form has been submitted and will be used to prevent validation of the entire form until the user has tried to submit.
The submitForm method will be invoked when the user submits the form and receives an NgForm object as its argument. This object represents the form and defines the set of validation properties; these properties are used to describe the overall validation status of the form so that, for example, the invalid property will be true if there are validation errors on any of the elements contained by the form. In addition to the validation property, NgForm provides the resetForm method, which resets the validation status of the form and returns it to its original and pristine state.
The effect is that the whole form will be validated when the user performs a submit, and if there are no validation errors, a new object will be added to the data model before the form is reset so that it can be used again. Listing 12-21 shows the changes required to the template to take advantage of these new features and implement form-wide validation.<div class="p-2">
 <form #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger text-white p-2 mb-2"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form
 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 <ul class="text-danger list-unstyled mt-1"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
 </form>
</div>

Listing 12-21Performing Form-Wide Validation in the template.html File in the src/app Folder

The form element now defines a reference variable called form, which has been assigned to ngForm. This is how the ngForm directive provides access to its functionality, through a process that I describe in Chapter 13. For now, however, it is important to know that the validation information for the entire form can be accessed through the form reference variable.
The listing also changes the expression for the ngSubmit binding so that it calls the submitForm method defined by the controller, passing in the template variable, like this:...
<form ngForm="productForm" #form="ngForm" (ngSubmit)="submitForm(form)">
...

It is this object that is received as the argument of the submitForm method and that is used to check the validation status of the form and to reset the form so that it can be used again.
Listing 12-21 also adds a div element that uses the formSubmitted property from the component along with the valid property (provided by the form template variable) to show a warning message when the form contains invalid data, but only after the form has been submitted.
In addition, the ngIf binding has been updated to display the field-level validation messages so that they will be shown when the form has been submitted, even if the element itself hasn’t been edited. The result is a validation summary that is shown only when the user submits the form with invalid data, as illustrated by Figure 12-11.[image:]
Figure 12-11Displaying a validation summary message

Displaying Summary Validation Messages
In a complex form, it can be helpful to provide the user with a summary of all the validation errors that have to be resolved. The NgForm object assigned to the form template reference variable provides access to the individual elements through a property named controls. This property returns an object that has properties for each of the individual elements in the form. For example, there is a name property that represents the input element in the example, which is assigned an object that represents that element and defines the same validation properties that are available for individual elements. In Listing 12-22, I have added a method to the component that receives the object assigned to the form element’s template reference variables and uses its controls property to generate a list of error messages for the entire form.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { NgModel, ValidationErrors, NgForm } from "@angular/forms";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 // ...other methods omitted for brevity...

 getFormValidationMessages(form: NgForm): string[] {
 let messages: string[] = [];
 Object.keys(form.controls).forEach(k => {
 this.getMessages(form.controls[k].errors, k)
 .forEach(m => messages.push(m));
 });
 return messages;
 }
}

Listing 12-22Generating Form-Wide Validation Messages in the component.ts File in the src/app Folder

The getFormValidationMessages method builds its list of messages by calling the getMessages method for each control in the form. The Object.keys method creates an array from the properties defined by the object returned by the controls property, which is enumerated using the forEach method.
In Listing 12-23, I have used this method to include the individual messages at the top of the form, which will be visible once the user clicks the Create button.<div class="p-2">
 <form #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger text-white p-2 mb-2"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of getFormValidationMessages(form)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 <ul class="text-danger list-unstyled mt-1"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
 </form>
</div>

Listing 12-23Displaying Form-Wide Validation Messages in the template.html File in the src/app Folder

The result is that validation messages are displayed alongside the input element and collected at the top of the form once it has been submitted, as shown in Figure 12-12.[image:]
Figure 12-12Displaying an overall validation summary

Disabling the Submit Button
The next step is to disable the button once the user has submitted the form, preventing the user from clicking it again until all the validation errors have been resolved. This is a commonly used technique even though it has little bearing on the example application, which won’t accept the data from the form while it contains invalid values but provides useful reinforcement to the user that they cannot proceed until the validation problems have been resolved. In Listing 12-24, I have used the property binding on the button element.<div class="p-2">
 <form #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger text-white p-2 mb-2"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of getFormValidationMessages(form)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 <ul class="text-danger list-unstyled mt-1"
 *ngIf="(formSubmitted || name.dirty) && name.invalid">
 <li *ngFor="let error of getValidationMessages(name)">
 {{error}}

 </div>
 <button class="btn btn-primary mt-2" type="submit"
 [disabled]="formSubmitted && form.invalid"
 [class.btn-secondary]="formSubmitted && form.invalid">
 Create
 </button>
 </form>
</div>

Listing 12-24Disabling the Button in the template.html File in the src/app Folder

For extra emphasis, I used the class binding to add the button element to the btn-secondary class when the form has been submitted and has invalid data. This class applies a Bootstrap CSS style, as shown in Figure 12-13.[image:]
Figure 12-13Disabling the submit button

Completing the Form
Now that the validation features are done, I can complete the form. Listing 12-25 restores the input elements for the category and price fields, which I removed earlier in the chapter. I also removed the validation messages for the name element so that only the form-wide error messages are displayed.<div class="p-2">
 <form #form="ngForm" (ngSubmit)="submitForm(form)">

 <div class="bg-danger text-white p-2 mb-2"
 *ngIf="formSubmitted && form.invalid">
 There are problems with the form

 <li *ngFor="let error of getFormValidationMessages(form)">
 {{error}}

 </div>

 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name"
 [(ngModel)]="newProduct.name"
 #name="ngModel"
 required
 minlength="5"
 pattern="^[A-Za-z]+$" />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="newProduct.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="newProduct.price" required type="number"/>
 </div>

 <button class="btn btn-primary mt-2" type="submit"
 [disabled]="formSubmitted && form.invalid"
 [class.btn-secondary]="formSubmitted && form.invalid">
 Create
 </button>
 </form>
</div>

Listing 12-25Adding Form Elements in the template.html File in the src/app Folder

The final change is to adjust the selectors for the CSS styles that indicate valid and invalid input elements, as shown in Listing 12-26. html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

form.ng-submitted input.ng-invalid { border: 2px solid #ff0000 }
form.ng-submitted input.ng-valid { border: 2px solid #6bc502 }

Listing 12-26Adjusting the CSS Selectors in the styles.css File in the src Folder

In addition to the classes described in Table 12-5, Angular adds form elements to the ng-submitted class when they have been submitted. This allows me to select elements that are invalid once the form has been submitted, regardless of whether the user has edited the elements.
Save the changes and click the Create button; you will see the validation messages and CSS styles shown in Figure 12-14. As you address each validation error, the input elements will turn green, and you will be able to submit the form when there are no validation errors remaining.[image:]
Figure 12-14Finishing the form

Summary
In this chapter, I introduced the way that Angular supports user interaction using events and forms. I explained how to create event bindings, how to create two-way bindings, and how they can be simplified using the ngModel directive. I also described the support that Angular provides for managing and validating HTML forms. In the next chapter, I explain how to create custom directives.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_13

13. Creating Attribute Directives

Adam Freeman1
(1)London, UK

In this chapter, I describe how custom directives can be used to supplement the functionality provided by the built-in ones of Angular. The focus of this chapter is attribute directives, which are the simplest type that can be created and that change the appearance or behavior of a single element. In Chapter 14, I explain how to create structural directives, which are used to change the layout of the HTML document. Components are also a type of directive, and I explain how they work in Chapter 15.
Throughout these chapters, I describe how custom directives work by re-creating the features provided by some of the built-in directives. This isn’t something you would typically do in a real project, but it provides a useful baseline against which the process can be explained. Table 13-1 puts attribute directives into context.Table 13-1Putting Attribute Directives in Context

	Question
	Answer

	What are they?
	Attribute directives are classes that can modify the behavior or appearance of the element they are applied to. The style and class bindings described in Chapter 10 are examples of attribute directives.

	Why are they useful?
	The built-in directives cover the most common tasks required in web application development but don’t deal with every situation. Custom directives allow application-specific features to be defined.

	How are they used?
	Attribute directives are classes to which the @Directive decorator has been applied. They are enabled in the directives property of the component responsible for a template and applied using a CSS selector.

	Are there any pitfalls or limitations?
	The main pitfall when creating a custom directive is the temptation to write code to perform tasks that can be better handled using directive features such as input and output properties and host element bindings.

	Are there any alternatives?
	Angular supports two other types of directive—structural directives and components—that may be more suitable for a given task. You can sometimes combine the built-in directives to create a specific effect if you prefer to avoid writing custom code, although the result can be brittle and lead to complex HTML that is hard to read and maintain.

Table 13-2 summarizes the chapter.Table 13-2Chapter Summary

	Problem
	Solution
	Listing

	Creating an attribute directive
	Apply @Directive to a class
	1–5

	Accessing host element attribute values
	Apply the @Attribute decorator to a constructor parameter
	6–9

	Creating a data-bound input property
	Apply the @Input decorator to a class property
	10–11

	Receiving a notification when a data-bound input property value changes
	Implement the ngOnChanges method
	12

	Defining an event
	Apply the @Output decorator
	13, 14

	Creating a property binding or event binding on the host element
	Apply the @HostBinding or @HostListener decorator
	15–19

	Exporting a directive’s functionality for use in the template
	Use the exportAs property of the @Directive decorator
	20, 21

Preparing the Example Project
As I have been doing throughout this part of the book, I will continue using the example project from the previous chapter. To prepare for this chapter, I have redefined the form so that it updates the component’s newProduct property rather than the model-based form used in Chapter 12, as shown in Listing 13-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

<div class="row p-2">
 <div class="col-6">
 <form class="m-2" (ngSubmit)="submitForm()">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary" type="submit">Create</button>
 </form>
 </div>

 <div class="col">
 <table class="table table-sm table-bordered table-striped">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </table>
 </div>
</div>

Listing 13-1Replacing the Contents of the template.html File in the src/app Folder

This listing uses the Bootstrap grid layout to position the form and the table side by side. Listing 13-2 simplifies the component and updates the component’s addProduct method so that it adds a new object to the data model.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 submitForm() {
 this.addProduct(this.newProduct);
 }
}

Listing 13-2Replacing the Contents of the component.ts File in the src/app Folder

To start the application, navigate to the example project folder and run the following command:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the form in Figure 13-1. A new item will be added to the data model and displayed in the table when you submit the form. When the form is submitted, the CSS validation styles will be displayed because Angular adds form elements to the validation classes, even when no validation is performed.[image:]
Figure 13-1Running the example application

Creating a Simple Attribute Directive
The best place to start is to jump in and create a directive to see how they work. I added a file called attr.directive.ts to the src/app folder with the code shown in Listing 13-3. The name of the file indicates that it contains a directive. I set the first part of the filename to attr to indicate that this is an example of an attribute directive. import { Directive, ElementRef } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef) {
 element.nativeElement.classList.add("table-success", "fw-bold");
 }
}

Listing 13-3The Contents of the attr.directive.ts File in the src/app Folder

Directives are classes to which the @Directive decorator has been applied. The decorator requires the selector property, which is used to specify how the directive is applied to elements, expressed using a standard CSS style selector. The selector I used is [pa-attr], which will match any element that has an attribute called pa-attr, regardless of the element type or the value assigned to the attribute.
Custom directives are given a distinctive prefix so they can be easily recognized. The prefix can be anything meaningful to your application. I have chosen the prefix Pa for my directive, reflecting the title of this book, and this prefix is used in the attribute specified by the selector decorator property and the name of the attribute class. The case of the prefix is changed to reflect its use so that an initial lowercase character is used for the selector attribute name (pa-attr) and an initial uppercase character is used in the name of the directive class (PaAttrDirective).
Note
The prefix Ng/ng is reserved for use for built-in Angular features and should not be used.

The directive constructor defines a single ElementRef parameter, which Angular provides when it creates a new instance of the directive and which represents the host element. The ElementRef class defines a single property, nativeElement, which returns the object used by the browser to represent the element in the Domain Object Model. This object provides access to the methods and properties that manipulate the element and its contents, including the classList property, which can be used to manage the class membership of the element, like this:...
element.nativeElement.classList.add("table-success", "fw-bold");
...

To summarize, the PaAttrDirective class is a directive that is applied to elements that have a pa-attr attribute and adds those elements to the table-success and fw-bold classes, which the Bootstrap CSS library uses to assign background color and font weight to elements.
Applying a Custom Directive
There are two steps to apply a custom directive. The first is to update the template so that there are one or more elements that match the selector that the directive uses. In the case of the example directive, this means adding the pa-attr attribute to an element, as shown in Listing 13-4....
<div class="col">
 <table class="table table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index" pa-attr>
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>
...

Listing 13-4Adding a Directive Attribute in the template.html File in the src/app Folder

The directive’s selector matches any element that has the pa-attr attribute, regardless of whether a value has been assigned to it or what that value is. The second step to applying a directive is to change the configuration of the Angular module, as shown in Listing 13-5.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 13-5Configuring the Component in the app.module.ts File in the src/app Folder

The declarations property of the NgModule decorator declares the directives and components that the application will use. Don’t worry if the relationship and differences between directives and components seem muddled at the moment; this will all become clear in Chapter 15.
Once both steps have been completed, the effect is that the pa-attr attribute applied to the tr element in the template will trigger the custom directive, which uses the DOM API to add the element to the bg-success and text-white classes. Since the tr element is part of the micro-template used by the ngFor directive, all the rows in the table are affected, as shown in Figure 13-2. (You may have to restart the Angular development tools to see the change.)[image:]
Figure 13-2Applying a custom directive

Accessing Application Data in a Directive
The example in the previous section shows the basic structure of a directive, but it doesn’t do anything that couldn’t be performed just by using a class property binding on the tr element. Directives become useful when they can interact with the host element and with the rest of the application.
Reading Host Element Attributes
The simplest way to make a directive more useful is to configure it using attributes applied to the host element, which allows each instance of the directive to be provided with its own configuration information and to adapt its behavior accordingly.
As an example, Listing 13-6 applies the directive to some of the td elements in the template table and adds an attribute that specifies the class that the host element should be added to. The directive’s selector means that it will match any element that has the pa-attr attribute, regardless of the tag type, and will work as well on td elements as it does on tr elements. This listing also removes the pa-attr attribute from the tr element....
<tbody>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td pa-attr pa-attr-class="table-warning">{{item.category}}</td>
 <td pa-attr pa-attr-class="table-info">{{item.price}}</td>
 </tr>
</tbody>
...

Listing 13-6Adding Attributes in the template.html File in the src/app Folder

The pa-attr attribute has been applied to two of the td elements, along with a new attribute called pa-attr-class, which has been used to specify the class to which the directive should add the host element. Listing 13-7 shows the changes required to the directive to get the value of the pa-attr-class attribute and use it to change the element.import { Directive, ElementRef, Attribute } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef, @Attribute("pa-attr-class") bgClass: string) {
 element.nativeElement.classList.add(bgClass || "table-success", "fw-bold");
 }
}

Listing 13-7Reading an Attribute in the attr.directive.ts File in the src/app Folder

To receive the value of the pa-attr-class attribute, I added a new constructor parameter called bgClass to which the @Attribute decorator has been applied. This decorator is defined in the @angular/core module, and it specifies the name of the attribute that should be used to provide a value for the constructor parameter when a new instance of the directive class is created. Angular creates a new instance of the decorator for each element that matches the selector and uses that element’s attributes to provide the values for the directive constructor arguments that have been decorated with @Attribute.
Within the constructor, the value of the attribute is passed to the classList.add method, with a default value that allows the directive to be applied to elements that have the pa-attr attribute but not the pa-attr-class attribute. Notice that I used the null coalescing operator (||) and not the nullish operator (??) in Listing 13-7. I want the fallback value to be used if an element defines the pa-attr-class attribute but does not assign it a value, in which case the bgClass parameter will be set to the empty string, which the || operator evaluates as false.
The result is that the class to which elements are added can now be specified using an attribute, producing the result shown in Figure 13-3.[image:]
Figure 13-3Configuring a directive using a host element attribute

Using a Single Host Element Attribute
Using one attribute to apply a directive and another to configure it is redundant, and it makes more sense to make a single attribute do double duty, as shown in Listing 13-8.import { Directive, ElementRef, Attribute } from "@angular/core";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 constructor(element: ElementRef, @Attribute("pa-attr") bgClass: string) {
 element.nativeElement.classList.add(bgClass || "table-success", "fw-bold");
 }
}

Listing 13-8Reusing an Attribute in the attr.directive.ts File in the src/app Folder

The @Attribute decorator now specifies the pa-attr attribute as the source of the bgClass parameter value. In Listing 13-9, I have updated the template to reflect the dual-purpose attribute....
<tbody>
 <tr *ngFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td pa-attr pa-attr-class="table-warning">{{item.category}}</td>
 <td pa-attr pa-attr-class="table-info">{{item.price}}</td>
 </tr>
</tbody>
...

Listing 13-9Applying a Directive in the template.html File in the src/app Folder

There is no visual change in the result produced by this example, but it has simplified the way that the directive is applied in the HTML template.
Creating Data-Bound Input Properties
The main limitation of reading attributes with @Attribute is that values are static. The real power in Angular directives comes through support for expressions that are updated to reflect changes in the application state and that can respond by changing the host element.
Directives receive expressions using data-bound input properties, also known as input properties or, simply, inputs. Listing 13-10 changes the application’s template so that the pa-attr attributes applied to the tr and td elements contain expressions, rather than just static class names. ...
<tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'table-success' : 'table-warning'">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
</tbody>
...

Listing 13-10Using Expressions in the template.html File in the src/app Folder

There are three expressions in the listing. The first, which is applied to the tr element, uses the number of objects returned by the component’s getProducts method to select a class....
<tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'table-success' : 'table-warning'">
...

The second expression, which is applied to the td element for the Category column, specifies the table-info class for Product objects whose Category property returns Soccer and null for all other values....
<td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
...

The third and final expression returns a fixed string value, which I have enclosed in single quotes, since this is an expression and not a static attribute value....
<td [pa-attr]="'table-info'">{{item.price}}</td>
...

Notice that the attribute name is enclosed in square brackets. That’s because the way to receive an expression in a directive is to create a data binding, just like the built-in directives that are described in Chapters 11 and 12.
Tip
Forgetting to use the square brackets is a common mistake. Without them, Angular will just pass the raw text of the expression to the directive without evaluating it. This is the first thing to check if you encounter an error when applying a custom directive.

Implementing the other side of the data binding means creating an input property in the directive class and telling Angular how to manage its value, as shown in Listing 13-11.import { Directive, ElementRef, Input } from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {}

 @Input("pa-attr")
 bgClass: string | null = "";

 ngOnInit() {
 this.element.nativeElement.classList.add(this.bgClass || "table-success",
 "fw-bold");
 }
}

Listing 13-11Defining an Input Property in the attr.directive.ts File in the src/app Folder

Input properties are defined by applying the @Input decorator to a property and using it to specify the name of the attribute that contains the expression. This listing defines a single input property, which tells Angular to set the value of the directive’s bgClass property to the value of the expression contained in the pa-attr attribute.
Tip
You don’t need to provide an argument to the @Input decorator if the name of the property corresponds to the name of the attribute on the host element. So, if you apply @Input() to a property called myVal, then Angular will look for a myVal attribute on the host element.

The role of the constructor has changed in this example. When Angular creates a new instance of a directive class, the constructor is invoked to create a new directive object, and only then is the value of the input property set. This means that the constructor cannot access the input property value because its value will not be set by Angular until after the constructor has completed and the new directive object has been produced. To address this, directives can implement lifecycle hook methods, which Angular uses to provide directives with useful information after they have been created and while the application is running, as described in Table 13-3. Table 13-3The Directive Lifecycle Hook Methods

	Name
	Description

	ngOnInit
	This method is called after Angular has set the initial value for all the input properties that the directive has declared.

	ngOnChanges
	This method is called when the value of an input property has changed and also just before the ngOnInit method is called.

	ngDoCheck
	This method is called when Angular runs its change detection process so that directives have an opportunity to update any state that isn’t directly associated with an input property.

	ngAfterContentInit
	This method is called when the directive’s content has been initialized. See the “Receiving Query Change Notifications” section in Chapter 14 for an example that uses this method.

	ngAfterContentChecked
	This method is called after the directive’s content has been inspected as part of the change detection process.

	ngOnDestroy
	This method is called immediately before Angular destroys a directive.

To set the class on the host element, the directive in Listing 13-11 implements the ngOnInit method, which is called after Angular has set the value of the bgClass property. The constructor is still needed to receive the ElementRef object that provides access to the host element, which is assigned to a property called element.
The result is that Angular will create a directive object for each tr element, evaluate the expressions specified in the pa-attr attribute, use the results to set the value of the input properties, and then call the ngOnInit methods, which allows the directives to respond to the new input property values.
To see the effect, use the form to add a new product to the example application. Since there are initially five items in the model, the expression for the tr element will select the bg-success class. When you add a new item, Angular will create another instance of the directive class and evaluate the expression to set the value of the input property; since there are now six items in the model, the expression will select the bg-warning class, which provides the new row with a different background color, as shown in Figure 13-4.[image:]
Figure 13-4Using an input property in a custom directive

Responding to Input Property Changes
Something odd happened in the previous example: adding a new item affected the appearance of the new elements but not the existing elements. Behind the scenes, Angular has updated the value of the bgClass property for each of the directives that it created—one for each td element in the table column—but the directives didn’t notice because changing a property value doesn’t automatically cause directives to respond.
To handle changes, a directive must implement the ngOnChanges method to receive notifications when the value of an input property changes, as shown in Listing 13-12.import { Directive, ElementRef, Input, SimpleChanges } from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {}

 @Input("pa-attr")
 bgClass: string | null = "";

 // ngOnInit() {
 // this.element.nativeElement.classList.add(this.bgClass || "table-success",
 // "fw-bold");
 // }

 ngOnChanges(changes: SimpleChanges) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;
 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

Listing 13-12Receiving Change Notifications in the attr.directive.ts File in the src/app Folder

The ngOnChanges method is called once before the ngOnInit method and then called again each time there are changes to any of a directive’s input properties. The ngOnChanges parameter is a SimpleChanges object, which is a map whose keys refer to each changed input property and whose values are SimpleChange objects, which are defined in the @angular/core module. The SimpleChange class defines the members shown in Table 13-4.Table 13-4The Properties and Method of the SimpleChange Class

	Name
	Description

	previousValue
	This property returns the previous value of the input property.

	currentValue
	This property returns the current value of the input property.

	isFirstChange()
	This method returns true if this is the call to the ngOnChanges method that occurs before the ngOnInit method.

When responding to changes to the input property value, a directive has to make sure to account for the effect of previous updates. In the case of the example directive, this means removing the element from the previousValue class and adding it to the currentValue class instead.
It is important to use the isFirstChange method so that you don’t undo a value that hasn’t actually been applied since the ngOnChanges method is called the first time a value is assigned to the input property.
The result of handling these change notifications is that the directive responds when Angular reevaluates the expressions and updates the input properties. Now when you add a new product to the application, the background colors for all the tr elements are updated, as shown in Figure 13-5.[image:]
Figure 13-5Responding to input property changes

Creating Custom Events
Output properties are the Angular feature that allows directives to add custom events to their host elements, through which details of important changes can be sent to the rest of the application. Output properties are defined using the @Output decorator, which is defined in the @angular/core module, as shown in Listing 13-13. import { Directive, ElementRef, Input, SimpleChanges, Output, EventEmitter }
 from "@angular/core";
import { Product } from "./product.model";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) {
 this.element.nativeElement.addEventListener("click", () => {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 });
 }

 @Input("pa-attr")
 bgClass: string | null = "";

 @Input("pa-product")
 product: Product = new Product();

 @Output("pa-category")
 click = new EventEmitter<string>();

 ngOnChanges(changes: SimpleChanges) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;
 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

Listing 13-13Defining an Output Property in the attr.directive.ts File in the src/app Folder

The EventEmitter<T> interface provides the event mechanism for Angular directives. The listing creates an EventEmitter<string> object and assigns it to a variable called click, like this:...
@Output("pa-category")
click = new EventEmitter<string>();
...

The string type parameter indicates that listeners to the event will receive a string when the event is triggered. Directives can provide any type of object to their event listeners, but common choices are string and number values, data model objects, and JavaScript Event objects.
The custom event in the listing is triggered when the mouse button is clicked on the host element, and the event provides its listeners with the category of the Product object that was used to create the table row using the ngFor directive. The effect is that the directive is responding to a DOM event on the host element and generating its own custom event in response. The listener for the DOM event is set up in the directive class constructor using the browser’s standard addEventListener method, like this:...
constructor(private element: ElementRef) {
 this.element.nativeElement.addEventListener("click", () => {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 });
}
...

The directive defines an input property to receive the Product object whose category will be sent in the event. (The directive can refer to the value of the input property value in the constructor because Angular will have set the property value before the function assigned to handle the DOM event is invoked.)
The most important statement in the listing is the one that uses the EventEmitter<string> object to send the event, which is done using the EventEmitter.emit method, which is described in Table 13-5 for quick reference. The argument to the emit method is the value that you want the event listeners to receive, which is the value of the category property for this example. Table 13-5The EventEmitter Method

	Name
	Description

	emit(value)
	This method triggers the custom event associated with the EventEmitter, providing the listeners with the object or value received as the method argument.

Tying everything together is the @Output decorator, which creates a mapping between the directive’s EventEmitter<string> property and the name that will be used to bind to the event in the template, like this:...
@Output("pa-category")
click = new EventEmitter<string>();
...

The argument to the decorator specifies the attribute name that will be used in event bindings applied to the host element. You can omit the argument if the TypeScript property name is also the name you want for the custom event. I have specified pa-category in the listing, which allows me to refer to the event as click within the directive class but requires a more meaningful name externally.
Binding to a Custom Event
Angular makes it easy to bind to custom events in templates by using the same binding syntax that is used for built-in events, which was described in Chapter 12. Listing 13-14 adds the pa-product attribute to the tr element in the template to provide the directive with its Product object and adds a binding for the pa-category event....
<tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
</tbody>
...

Listing 13-14Binding to a Custom Event in the template.html File in the src/app Folder

The term $event is used to access the value the directive passed to the EventEmitter<string>.emit method. That means $event will be a string value containing the product category in this example. The value received from the event is used to set the value of the category input element, meaning that clicking a row in the table displays the product’s category in the form, as shown in Figure 13-6.[image:]
Figure 13-6Defining and receiving a custom event using an output property

Note
Behind the scenes, Angular uses the Reactive Extensions package to distribute events. The EventEmitter<T> interface extends the RxJS Subject<T> interface, which, in turn, extends the Observable<T> interface.

Creating Host Element Bindings
The example directive relies on the browser’s DOM API to manipulate its host element, both to add and remove class memberships and to receive the click event. Working with the DOM API in an Angular application is a useful technique, but it does mean that your directive can be used only in applications that are run in a web browser. Angular is intended to be run in a range of different execution environments, and not all of them can be assumed to provide the DOM API.
Even if you are sure that a directive will have access to the DOM, the same results can be achieved in a more elegant way using standard Angular directive features: property and event bindings. Rather than use the DOM to add and remove classes, a class binding can be used on the host element. And rather than use the addEventListener method, an event binding can be used to deal with the mouse click.
Behind the scenes, Angular implements these features using the DOM API when the directive is used in a web browser—or some equivalent mechanism when the directive is used in a different environment.
Bindings on the host element are defined using two decorators, @HostBinding and @HostListener, both of which are defined in the @angular/core module, as shown in Listing 13-15. import { Directive, ElementRef, Input, SimpleChanges, Output,
 EventEmitter, HostListener, HostBinding } from "@angular/core";
import { Product } from "./product.model";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 // constructor(private element: ElementRef) {
 // this.element.nativeElement.addEventListener("click", () => {
 // if (this.product != null) {
 // this.click.emit(this.product.category);
 // }
 // });
 // }

 @Input("pa-attr")
 @HostBinding("class")
 bgClass: string | null = "";

 @Input("pa-product")
 product: Product = new Product();

 @Output("pa-category")
 click = new EventEmitter<string>();

 // ngOnChanges(changes: SimpleChanges) {
 // let change = changes["bgClass"];
 // let classList = this.element.nativeElement.classList;
 // if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 // classList.remove(change.previousValue);
 // }
 // if (!classList.contains(change.currentValue)) {
 // classList.add(change.currentValue);
 // }
 // }

 @HostListener("click")
 triggerCustomEvent() {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 }
}

Listing 13-15Creating Host Bindings in the attr.directive.ts File in the src/app Folder

The @HostBinding decorator is used to set up a property binding on the host element and is applied to a directive property. The listing sets up a binding between the class property on the host element and the decorator’s bgClass property.
Tip
If you want to manage the contents of an element, you can use the @HostBinding decorator to bind to the textContent property. See Chapter 17 for an example.

The @HostListener decorator is used to set up an event binding on the host element and is applied to a method. The listing creates an event binding for the click event that invokes the triggerCustomEvent method when the mouse button is pressed and released. The triggerCustomEvent method uses the EventEmitter.emit method to dispatch the custom event through the output property.
Using the host element bindings means that the directive constructor can be removed since there is no longer any need to access the HTML element via the ElementRef object. Instead, Angular takes care of setting up the event listener and setting the element’s class membership through the property binding.
Although the directive code is much simpler, the effect of the directive is the same: clicking a table row sets the value of one of the input elements, and adding a new item using the form triggers a change in the background color of the table cells for products that are not part of the Soccer category.
Creating a Two-Way Binding on the Host Element
Directives can support two-way bindings, which means they can be used with the banana-in-a-box bracket style that ngModel uses and can bind to a model property in both directions.
The two-way binding feature relies on a naming convention. To demonstrate how it works, Listing 13-16 adds some new elements and bindings to the template.html file....
<div class="col">

 <div class="form-group bg-info text-white p-2">
 <label>Name:</label>
 <input class="bg-primary text-white form-control"
 [paModel]="newProduct.name"
 (paModelChange)="newProduct.name = $event" />
 </div>

 <table class="table table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6
 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>
...

Listing 13-16Applying a Directive in the template.html File in the src/app Folder

The binding whose target is paModel will be updated when the value of the newProduct.name property changes, which provides a flow of data from the application to the directive and will be used to update the contents of the input element. The custom event, paModelChange, will be triggered when the user changes the contents of the name input element and will provide a flow of data from the directive to the rest of the application.
To implement the directive, I added a file called twoway.directive.ts to the src/app folder and used it to define the directive shown in Listing 13-17.import {
 Input, Output, EventEmitter, Directive,
 HostBinding, HostListener, SimpleChange
} from "@angular/core";

@Directive({
 selector: "input[paModel]"
})
export class PaModel {

 @Input("paModel")
 modelProperty: string | undefined = "";

 @HostBinding("value")
 fieldValue: string = "";

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["modelProperty"];
 if (change.currentValue != this.fieldValue) {
 this.fieldValue = changes["modelProperty"].currentValue || "";
 }
 }

 @Output("paModelChange")
 update = new EventEmitter<string>();

 @HostListener("input", ["$event.target.value"])
 updateValue(newValue: string) {
 this.fieldValue = newValue;
 this.update.emit(newValue);
 }
}

Listing 13-17The Contents of the twoway.directive.ts File in the src/app Folder

This directive uses features that have been described previously. The selector property for this directive specifies that it will match input elements that have a paModel attribute. The built-in ngModel two-way directive has support for a range of form elements and knows which events and properties each of them uses, but I want to keep this example simple, so I am going to support just input elements, which define a value property that gets and sets the element content.
The paModel binding is implemented using an input property and the ngOnChanges method, which responds to changes in the expression value by updating the contents of the input element through a host binding on the input element’s value property.
The paModelChange event is implemented using a host listener on the input event, which then sends an update through an output property. Notice that the method invoked by the event can receive the event object by specifying an additional argument to the @HostListener decorator, like this:...
@HostListener("input", ["$event.target.value"])
updateValue(newValue: string) {
...

The first argument to the @HostListener decorator specifies the name of the event that will be handled by the listener. The second argument is an array that will be used to provide the decorated methods with arguments. In this example, the input event will be handled by the listener, and when the updateValue method is invoked, its newValue argument will be set to the target.value property of the Event object, which is referred to using $event.
To enable the directive, I added it to the Angular module, as shown in Listing 13-18.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 13-18Registering the Directive in the app.module.ts File in the src/app Folder

When you save the changes and the browser has reloaded, you will see a new input element that responds to changes to a model property and updates the model property if its host element’s content is changed. The expressions in the bindings specify the same model property used by the Name field in the form on the left side of the HTML document, which provides a convenient way to test the relationship between them, as shown in Figure 13-7.[image:]
Figure 13-7Testing the two-way flow of data

Tip
You may need to stop the Angular development tools, restart them, and reload the browser for this example. The Angular development tools don’t always process the changes correctly.

The final step is to simplify the bindings and apply the banana-in-a-box style of brackets, as shown in Listing 13-19....
<div class="col">

 <div class="form-group bg-info text-white p-2">
 <label>Name:</label>
 <input class="bg-primary text-white form-control"
 [(paModel)]="newProduct.name" />
 </div>

 <table class="table table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6
 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>
...

Listing 13-19Simplifying the Bindings in the template.html File in the src/app Folder

When Angular encounters the [()] brackets, it expands the binding to match the format used in Listing 13-16, targeting the paModel input property and setting up the paModelChange event. As long as a directive exposes these to Angular, it can be targeted using the banana-in-a-box brackets, producing a simpler template syntax.
Exporting a Directive for Use in a Template Variable
In earlier chapters, I used template variables to access functionality provided by built-in directives, such as ngForm. As an example, here is an element from Chapter 12:...
<form #form="ngForm" (ngSubmit)="submitForm(form)">
...

The form template variable is assigned ngForm, which is then used to access validation information for the HTML form. This is an example of how a directive can provide access to its properties and methods so they can be used in data bindings and expressions.
Listing 13-20 modifies the directive from the previous section so that it provides details of whether it has expanded the text in its host element.import {
 Input, Output, EventEmitter, Directive,
 HostBinding, HostListener, SimpleChange
} from "@angular/core";

@Directive({
 selector: "input[paModel]",
 exportAs: "paModel"
})
export class PaModel {

 direction: string = "None";

 @Input("paModel")
 modelProperty: string | undefined = "";

 @HostBinding("value")
 fieldValue: string = "";

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["modelProperty"];
 if (change.currentValue != this.fieldValue) {
 this.fieldValue = changes["modelProperty"].currentValue || "";
 this.direction = "Model";
 }
 }

 @Output("paModelChange")
 update = new EventEmitter<string>();

 @HostListener("input", ["$event.target.value"])
 updateValue(newValue: string) {
 this.fieldValue = newValue;
 this.update.emit(newValue);
 this.direction = "Element";
 }
}

Listing 13-20Exporting a Directive in the twoway.directive.ts File in the src/app Folder

The exportAs property of the @Directive decorator specifies a name that will be used to refer to the directive in template variables. This example uses paModel as the value—also known as the identifier—for the exportAs property, and you should try to use names that make it clear which directive is providing the functionality.
The listing adds a property called direction to the directive, which used to indicate when data is flowing from the model to the element or from the element to the model.
When you use the exportAs decorator, you are providing access to all the methods and properties defined by the directive to be used in template expressions and data bindings. Some developers prefix the names of the methods and properties that are not for use outside of the directive with an underscore (the _ character) or apply the private keyword. This is an indication to other developers that some methods and properties should not be used but isn’t enforced by Angular. Listing 13-21 creates a template variable for the directive’s exported functionality and uses it in a style binding....
<div class="form-group bg-info text-white p-2">
 <label>Name:</label>
 <input class="bg-primary text-white form-control"
 [(paModel)]="newProduct.name" #paModel="paModel" />
 <div class="bg-info text-white p-1">Direction: {{paModel.direction}}</div>
</div>
...

Listing 13-21Using Exported Directive Functionality in the template.html File in the src/app Folder

The template variable is called paModel, and its value is the name used in the directive’s exportAs property....
#paModel="paModel"
...

Tip
You don’t have to use the same names for the variable and the directive, but it does help to make the source of the functionality clear.

Once the template variable has been defined, it can be used in interpolation bindings or as part of a binding expression. I opted for a string interpolation binding whose expression uses the value of the directive’s direction property....
<div class="bg-info text-white p-1">Direction: {{paModel.direction}}</div>
...

The result is that you can see the effect of typing text into the two input elements that are bound to the newProduct.name model property. When you type into the one that uses the ngModel directive, then the string interpolation binding will display Model. When you type into the element that uses the paModel directive, the string interpolation binding will display Element, as shown in Figure 13-8.[image:]
Figure 13-8Exporting functionality from a directive

Summary
In this chapter, I described how to define and use attribute directives, including the use of input and output properties and host bindings. In the next chapter, I explain how structural directives work and how they can be used to change the layout or structure of the HTML document.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_14

14. Creating Structural Directives

Adam Freeman1
(1)London, UK

Structural directives change the layout of the HTML document by adding and removing elements. They build on the core features available for attribute directives, described in Chapter 13, with additional support for micro-templates, which are small fragments of contents defined within the templates used by components. You can recognize when a structural directive is being used because its name will be prefixed with an asterisk, such as *ngIf or *ngFor. In this chapter, I explain how structural directives are defined and applied, how they work, and how they respond to changes in the data model. Table 14-1 puts structural directives in context.Table 14-1Putting Structural Directives in Context

	Question
	Answer

	What are they?
	Structural directives use micro-templates to add content to the HTML document.

	Why are they useful?
	Structural directives allow content to be added conditionally based on the result of an expression or for the same content to be repeated for each object in a data source, such as an array.

	How are they used?
	Structural directives are applied to an ng-template element, which contains the content and bindings that comprise its micro-template. The template class uses objects provided by Angular to control the inclusion of the content or to repeat the content.

	Are there any pitfalls or limitations?
	Unless care is taken, structural directives can make a lot of unnecessary changes to the HTML document, which can ruin the performance of a web application. It is important to make changes only when they are required, as explained in the “Dealing with Collection-Level Data Changes” section later in the chapter.

	Are there any alternatives?
	You can use the built-in directives for common tasks, but writing custom structural directives provides the ability to tailor behavior to your application.

Table 14-2 summarizes the chapter.Table 14-2Chapter Summary

	Problem
	Solution
	Listing

	Creating a structural directive
	Apply the @Directive decorator to a class that receives view container and template constructor parameters
	1–6

	Creating an iterating structural directive
	Define a ForOf input property in a structural directive class and iterate over its value
	7–12

	Handling data changes in a structural directive
	Use a differ to detect changes in the ngDoCheck method
	13–19

	Querying the content of the host element to which a structural directive has been applied
	Use the @ContentChild or @ContentChildren decorator
	20–26

Preparing the Example Project
In this chapter, I continue working with the example project that I created in Chapter 9 and have been using since. To prepare for this chapter, I simplified the template to remove the form, leaving only the table, as shown in Listing 14-1. (I’ll add the form back in later in the chapter.)
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

<div class="p-2">
 <table class="table table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>

Listing 14-1Simplifying the Template in the template.html File in the src/app Folder

Run the following command in the example folder to start the development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 14-1.[image:]
Figure 14-1Running the example application

Creating a Simple Structural Directive
A good place to start with structural directives is to re-create the functionality provided by the ngIf directive, which is relatively simple, is easy to understand, and provides a good foundation for explaining how structural directives work. I start by making changes to the template and working backward to write the code that supports it. Listing 14-2 shows the template changes. <div class="p-2">

 <div class="form-check m-2">
 <input type="checkbox" class="form-check-input" [(ngModel)]="showTable" />
 <label class="form-check-label">Show Table</label>
 </div>

 <ng-template [paIf]="showTable">
 <table class="table table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6
 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
 </tbody>
 </table>
 </ng-template>
</div>

Listing 14-2Applying a Structural Directive in the template.html File in the src/app Folder

This listing uses the full template syntax, in which the directive is applied to an ng-template element, which contains the content that will be used by the directive. In this case, the ng-template element contains the table element and all its contents, including bindings, directives, and expressions. (There is also a concise syntax, which I use later in the chapter.)
The ng-template element has a standard one-way data binding, which targets a directive called paIf, like this:...
<ng-template [paIf]="showTable">
...

The expression for this binding uses the value of a property called showTable. This is the same property that is used in the other new binding in the template, which has been applied to a checkbox, as follows:...
<input type="checkbox" class="form-check-input" [(ngModel)]="showTable" />
...

The objectives in this section are to create a structural directive that will add the contents of the ng-template element to the HTML document when the showTable property is true, which will happen when the checkbox is checked, and to remove the contents of the ng-template element when the showTable property is false, which will happen when the checkbox is unchecked. Listing 14-3 adds the showTable property to the component.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();
 showTable: boolean = false;

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 submitForm() {
 this.addProduct(this.newProduct);
 }
}

Listing 14-3Adding a Property in the component.ts File in the src/app Folder

Implementing the Structural Directive Class
You know from the template what the directive should do. To implement the directive, I added a file called structure.directive.ts in the src/app folder and added the code shown in Listing 14-4.import {
 Directive, SimpleChanges, ViewContainerRef, TemplateRef, Input
} from "@angular/core";

@Directive({
 selector: "[paIf]"
})
export class PaStructureDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("paIf")
 expressionResult: boolean | undefined;

 ngOnChanges(changes: SimpleChanges) {
 let change = changes["expressionResult"];
 if (!change.isFirstChange() && !change.currentValue) {
 this.container.clear();
 } else if (change.currentValue) {
 this.container.createEmbeddedView(this.template);
 }
 }
}

Listing 14-4The Contents of the structure.directive.ts File in the src/app Folder

The selector property of the @Directive decorator is used to match host elements that have the paIf attribute; this corresponds to the template additions that I made in Listing 14-1.
There is an input property called expressionResult, which the directive uses to receive the results of the expression from the template. The directive implements the ngOnChanges method to receive change notifications so it can respond to changes in the data model.
The first indication that this is a structural directive comes from the constructor, which asks Angular to provide parameters using some new types....
constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}
...

The ViewContainerRef object is used to manage the contents of the view container, which is the part of the HTML document where the ng-template element appears and for which the directive is responsible.
As its name suggests, the view container is responsible for managing a collection of views. A view is a region of HTML elements that contains directives, bindings, and expressions, and they are created and managed using the methods and properties provided by the ViewContainerRef class, the most useful of which are described in Table 14-3. Table 14-3Useful ViewContainerRef Methods and Properties

	Name
	Description

	element
	This property returns an ElementRef object that represents the container element.

	createEmbeddedView(template)
	This method uses a template to create a new view. See the text after the table for details. This method also accepts optional arguments for context data (as described in the “Creating Iterating Structural Directives” section) and an index position that specifies where the view should be inserted. The result is a ViewRef object that can be used with the other methods in this table.

	clear()
	This method removes all the views from the container.

	length
	This property returns the number of views in the container.

	get(index)
	This method returns the ViewRef object representing the view at the specified index.

	indexOf(view)
	This method returns the index of the specified ViewRef object.

	insert(view, index)
	This method inserts a view at the specified index.

	remove(Index)
	This method removes and destroys the view at the specified index.

	detach(index)
	This method detaches the view from the specified index without destroying it so that it can be repositioned with the insert method.

Two of the methods from Table 14-3 are required to re-create the ngIf directive’s functionality: createEmbeddedView to show the ng-template element’s content to the user and clear to remove it again.
The createEmbeddedView method adds a view to the view container. This method’s argument is a TemplateRef object, which represents the content of the ng-template element.
The directive receives the TemplateRef object as one of its constructor arguments, for which Angular will provide a value automatically when creating a new instance of the directive class.
Putting everything together, when Angular processes the template.html file, it discovers the ng-template element, examines its binding, and determines that it needs to create a new instance of the PaStructureDirective class. Angular examines the PaStructureDirective constructor and can see that it needs to provide it with ViewContainerRef and TemplateRef objects....
constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) {}
...

The ViewContainerRef object represents the place in the HTML document occupied by the ng-template element, and the TemplateRef object represents the ng-template element’s contents. Angular passes these objects to the constructor and creates a new instance of the directive class.
Angular then starts processing the expressions and data bindings. As described in Chapter 13, Angular invokes the ngOnChanges method during initialization (just before the ngOnInit method is invoked) and again whenever the value of the directive’s expression changes.
The PaStructureDirective class’s implementation of the ngOnChanges method uses the SimpleChanges object that it receives to show or hide the contents of the ng-template element based on the current value of the expression. When the expression is true, the directive displays the ng-template element’s content by adding them to the container view....
this.container.createEmbeddedView(this.template);
...

When the result of the expression is false, the directive clears the view container, which removes the elements from the HTML document....
this.container.clear();
...

The directive doesn’t have any insight into the contents of the ng-template element and is responsible only for managing its visibility.
Enabling the Structural Directive
The directive must be enabled in the Angular module before it can be used, as shown in Listing 14-5.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel, PaStructureDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 14-5Enabling the Directive in the app.module.ts File in the src/app Folder

Structural directives are enabled in the same way as attribute directives and are specified in the module’s declarations array.
Once you save the changes, the browser will reload the HTML document, and you can see the effect of the new directive: the table element, which is the content of the ng-template element, will be shown only when the checkbox is checked, as shown in Figure 14-2. (If you don’t see the changes or the table isn’t shown when you check the box, restart the Angular development tools and then reload the browser window.)
Note
The contents of the ng-template element are being destroyed and re-created, not simply hidden and revealed. If you want to show or hide content without removing it from the HTML document, then you can use a style binding to set the display or visibility property.

[image:]
Figure 14-2Creating a structural directive

Using the Concise Structural Directive Syntax
The use of the ng-template element helps illustrate the role of the view container in structural directives. The concise syntax does away with the ng-template element and applies the directive and its expression to the outermost element that it would contain, as shown in Listing 14-6.
Tip
The concise structural directive syntax is intended to be easier to use and read, but it is just a matter of preference as to which syntax you use.

<div class="p-2">

 <div class="form-check m-2">
 <input type="checkbox" class="form-check-input" [(ngModel)]="showTable" />
 <label class="form-check-label">Show Table</label>
 </div>

 <table *paIf="showTable" class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts(); let i = index"
 [pa-attr]="getProducts().length < 6
 ? 'table-success' : 'table-warning'"
 [pa-product]="item" (pa-category)="newProduct.category = $event">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td [pa-attr]="item.category == 'Soccer' ? 'table-info' : null">
 {{item.category}}
 </td>
 <td [pa-attr]="'table-info'">{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>

Listing 14-6Using the Concise Structural Directive Syntax in the template.html File in the src/app Folder

The ng-template element has been removed, and the directive has been applied to the table element, like this:...
<table *paIf="showTable" class="table table-sm table-bordered table-striped">
...

The directive’s name is prefixed with an asterisk (the * character) to tell Angular that this is a structural directive that uses the concise syntax. When Angular parses the template.html file, it discovers the directive and the asterisk and handles the elements as though there were an ng-template element in the document. No changes are required to the directive class to support the concise syntax.
Creating Iterating Structural Directives
Angular provides special support for directives that need to iterate over a data source. The best way to demonstrate this is to re-create another of the built-in directives: ngFor.
To prepare for the new directive, I have removed the ngFor directive from the template.html file, inserted an ng-template element, and applied a new directive attribute and expression, as shown in Listing 14-7.<div class="m-2">
 <div class="checkbox">
 <label>
 <input type="checkbox" [(ngModel)]="showTable" />
 Show Table
 </label>
 </div>

 <table *paIf="showTable" class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <ng-template [paForOf]="getProducts()" let-item>
 <tr><td colspan="4">{{item.name}}</td></tr>
 </ng-template>
 </tbody>
 </table>
</div>

Listing 14-7Preparing for a New Structural Directive in the template.html File in the src/app Folder

The full syntax for iterating structural directives is a little odd. In the listing, the ng-template element has two attributes that are used to apply the directive. The first is a standard binding whose expression obtains the data required by the directive, bound to an attribute called paForOf....
<ng-template [paForOf]="getProducts()" let-item>
...

The name of this attribute is important. When using an ng-template element, the name of the data source attribute must end with Of to support the concise syntax, which I will introduce shortly.
The second attribute is used to define the implicit value, which allows the currently processed object to be referred to within the ng-template element as the directive iterates through the data source. Unlike other template variables, the implicit variable isn’t assigned a value, and its purpose is only to define the variable name....
<ng-template [paForOf]="getProducts()" let-item>
...

In this example, I have used let-item to tell Angular that I want the implicit value to be assigned to a variable called item, which is then used within a string interpolation binding to display the name property of the current data item....
<td colspan="4">{{item.name}}</td>
...

Looking at the ng-template element, you can see that the purpose of the new directive is to iterate through the component’s getProducts method and generate a table row for each of them that displays the name property. To implement this functionality, I created a file called iterator.directive.ts in the src/app folder and defined the directive shown in Listing 14-8.import { Directive, ViewContainerRef, TemplateRef, Input}
 from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i]));
 }
 }
}

class PaIteratorContext {
 constructor(public $implicit: any) { }
}

Listing 14-8The Contents of the iterator.directive.ts File in the src/app Folder

The selector property in the @Directive decorator matches elements with the paForOf attribute, which is also the source of the data for the dataSource input property and which provides the source of objects that will be iterated.
The ngOnInit method will be called once the value of the input property has been set, and the directive empties the view container using the clear method and adds a new view for each object using the createEmbeddedView method.
When calling the createEmbeddedView method, the directive provides two arguments: the TemplateRef object received through the constructor and a context object. The TemplateRef object provides the content to insert into the container, and the context object provides the data for the implicit value, which is specified using a property called $implicit. It is this object, with its $implicit property, that is assigned to the item template variable and that is referred to in the string interpolation binding. To provide templates with the context object in a type-safe way, I defined a class called PaIteratorContext, whose only property is called $implicit.
The ngOnInit method reveals some important aspects of working with view containers. First, a view container can be populated with multiple views—in this case, one view per object in the data source. The ViewContainerRef class provides the functionality required to manage these views once they have been created, as you will see in the sections that follow.
Second, a template can be reused to create multiple views. In this example, the contents of the ng-template element will be used to create identical tr and td elements for each object in the data source. The td element contains a data binding, which is processed by Angular when each view is created and is used to tailor the content to its data object.
Third, the directive has no special knowledge about the data it is working with and no knowledge of the content that is being generated. Angular takes care of providing the directive with the context it needs from the rest of the application, providing the data source through the input property and providing the content for each view through the TemplateRef object.
Enabling the directive requires an addition to the Angular module, as shown in Listing 14-9.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel, PaStructureDirective,
 PaIteratorDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 14-9Adding a Custom Directive in the app.module.ts File in the src/app Folder

The result is that the directive iterates through the objects in its data source and uses the ng-template element’s content to create a view for each of them, providing rows for the table, as shown in Figure 14-3. You will need to check the box to show the table. (If you don’t see the changes, then start the Angular development tools and reload the browser window.)[image:]
Figure 14-3Creating an iterating structural directive

Providing Additional Context Data
Structural directives can provide templates with additional values to be assigned to template variables and used in bindings. For example, the ngFor directive provides odd, even, first, and last values. Context values are provided through the same object that defines the $implicit property, and in Listing 14-10, I have re-created the same set of values that ngFor provides. import { Directive, ViewContainerRef, TemplateRef, Input}
 from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i],
 i, this.dataSource.length));
 }
 }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

Listing 14-10Providing Context Data in the iterator.directive.ts File in the src/app Folder

This listing defines additional properties in the PaIteratorContext class and expands its constructor so that it receives additional parameters, which are used to set the property values.
The effect of these additions is that context object properties can be used to create template variables, which can then be referred to in binding expressions, as shown in Listing 14-11.<div class="p-2">

 <div class="form-check m-2">
 <input type="checkbox" class="form-check-input" [(ngModel)]="showTable" />
 <label class="form-check-label">Show Table</label>
 </div>

 <table *paIf="showTable" class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <ng-template [paForOf]="getProducts()" let-item let-i="index"
 let-odd="odd" let-even="even">
 <tr [class.table-info]="odd" [class.table-warning]="even">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </ng-template>
 </tbody>
 </table>
</div>

Listing 14-11Using Structural Directive Context Data in the template.html File in the src/app Folder

Template variables are created using the let-<name> attribute syntax and assigned one of the context data values. In this listing, I used the odd and even context values to create template variables of the same name, which are then incorporated into class bindings on the tr element, resulting in striped table rows, as shown in Figure 14-4. The listing also adds table cells to display all the Product properties.[image:]
Figure 14-4Using directive context data

Using the Concise Structure Syntax
Iterating structural directives support the concise syntax and omit the ng-template element, as shown in Listing 14-12.<div class="p-2">

 <div class="form-check m-2">
 <input type="checkbox" class="form-check-input" [(ngModel)]="showTable" />
 <label class="form-check-label">Show Table</label>
 </div>

 <table *paIf="showTable" class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd"
 [class.table-warning]="even">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </tbody>
 </table>
</div>

Listing 14-12Using the Concise Syntax in the template.html File in the src/app Folder

This is a more substantial change than the one required for attribute directives. The biggest change is in the attribute used to apply the directive. When using the full syntax, the directive was applied to the ng-template element using the attribute specified by its selector, like this:...
<ng-template [paForOf]="getProducts()" let-item let-i="index" let-odd="odd"
 let-even="even">
...

When using the concise syntax, the Of part of the attribute is omitted, the name is prefixed with an asterisk, and the brackets are omitted....
<tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even">
...

The other change is to incorporate all the context values into the directive’s expression, replacing the individual let- attributes. The main data value becomes part of the initial expression, with additional context values separated by semicolons.
No changes are required to the directive to support the concise syntax, whose selector and input property still specify an attribute called paForOf. Angular takes care of expanding the concise syntax, and the directive doesn’t know or care whether an ng-template element has been used.
Dealing with Property-Level Data Changes
There are two kinds of changes that can occur in the data sources used by iterating structural directives. The first kind happens when the properties of an individual object change. This has a knock-on effect on the data bindings contained within the ng-template element, either directly through a change in the implicit value or indirectly through the additional context values provided by the directive. Angular takes care of these changes automatically, reflecting any changes in the context data in the bindings that depend on them.
To demonstrate, in Listing 14-13 I have added a call to the standard JavaScript setInterval function in the constructor of the context class. The function passed to setInterval alters the odd and even properties and changes the value of the price property of the Product object that is used as the implicit value. ...
class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;

 setInterval(() => {
 this.odd = !this.odd; this.even = !this.even;
 this.$implicit.price++;
 }, 2000);
 }
}
...

Listing 14-13Modifying Individual Objects in the iterator.directive.ts File in the src/app Folder

Once every two seconds, the values of the odd and even properties are inverted, and the price value is incremented. When you save the changes, you will see that the colors of the table rows change and the prices slowly increase, as illustrated in Figure 14-5.[image:]
Figure 14-5Automatic change detection for individual data source objects

Dealing with Collection-Level Data Changes
The second type of change occurs when the objects within the collection are added, removed, or replaced. Angular doesn’t detect this kind of change automatically, which means the iterating directive’s ngOnChanges method won’t be invoked.
Receiving notifications about collection-level changes is done by implementing the ngDoCheck method, which is called whenever a data change is detected in the application, regardless of where that change occurs or what kind of change it is. The ngDoCheck method allows a directive to respond to changes even when they are not automatically detected by Angular. Implementing the ngDoCheck method requires caution, however, because it represents a pitfall that can destroy the performance of a web application. To demonstrate the problem, Listing 14-14 implements the ngDoCheck method so that the directive updates the content it displays when there is a change.import { Directive, ViewContainerRef, TemplateRef, Input}
 from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.updateContent();
 }

 ngDoCheck() {
 console.log("ngDoCheck Called");
 this.updateContent();
 }

 private updateContent() {
 this.container.clear();
 for (let i = 0; i < this.dataSource.length; i++) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(this.dataSource[i],
 i, this.dataSource.length));
 }
 }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;

 // setInterval(() => {
 // this.odd = !this.odd; this.even = !this.even;
 // this.$implicit.price++;
 // }, 2000);
 }
}

Listing 14-14Implementing the ngDoCheck Methods in the iterator.directive.ts File in the src/app Folder

The ngOnInit and ngDoCheck methods both call a new updateContent method that clears the contents of the view container and generates new template content for each object in the data source. I have also commented out the call to the setInterval function in the PaIteratorContext class.
To understand the problem with collection-level changes and the ngDoCheck method, I need to restore the form to the component’s template, as shown in Listing 14-15. I also removed the checkbox and removed the directive from the table so that it is always displayed.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4">
 <form class="m-2" (ngSubmit)="submitForm()">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">Create</button>
 </form>
 </div>

 <div class="col">
 <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index;
 let odd = odd; let even = even" [class.table-info]="odd"
 [class.table-warning]="even">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

Listing 14-15Restoring the HTML Form in the template.html File in the src/app Folder

When you save the changes to the template, the HTML form will be displayed alongside the table of products, as shown in Figure 14-6.[image:]
Figure 14-6Restoring the table in the template

The problem with the ngDoCheck method is that it is invoked every time Angular detects a change anywhere in the application—and those changes happen more often than you might expect.
To demonstrate how often changes occur, I added a call to the console.log method within the directive’s ngDoCheck method in Listing 14-14 so that a message will be displayed in the browser’s JavaScript console each time the ngDoCheck method is called. Use the HTML form to create a new product and see how many messages are written out to the browser’s JavaScript console, each of which represents a change detected by Angular and which results in a call to the ngDoCheck method.
A new message is displayed each time an input element gets the focus, each time a key event is triggered, each time a validation check is performed, and so on. A quick test adding a Running Shoes product in the Running category with a price of 100 generates 27 messages on my system, although the exact number will vary based on how you navigate between elements, whether you need to correct typos, and so on.
For each of those 27 times, the structural directive destroys and re-creates its content, which means producing new tr and td elements with new directive and binding objects.
There are only a few rows of data in the example application, but these are expensive operations, and a real application can grind to a halt as the content is repeatedly destroyed and re-created. The worst part of this problem is that all the changes except one were unnecessary because the content in the table didn’t need to be updated until the new Product object was added to the data model. For all the other changes, the directive destroyed its content and created an identical replacement.
Fortunately, Angular provides some tools for managing updates more efficiently and updating content only when it is required. The ngDoCheck method will still be called for all changes in the application, but the directive can inspect its data to see whether any changes that require new content have occurred, as shown in Listing 14-16.import { Directive, ViewContainerRef, TemplateRef, Input,
 IterableDiffer, IterableDiffers, IterableChangeRecord }
 from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {
 private differ: IterableDiffer<any> | undefined;

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>,
 private differs: IterableDiffers) { }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.differ =
 <IterableDiffer<any>> this.differs.find(this.dataSource).create();
 }

 ngDoCheck() {
 let changes = this.differ?.diff(this.dataSource);
 if (changes != null) {
 console.log("ngDoCheck called, changes detected");
 let arr: IterableChangeRecord<any>[] = [];
 changes.forEachAddedItem(addition => arr.push(addition));
 arr.forEach(addition => {
 if (addition.currentIndex != null) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(addition.item, addition.currentIndex,
 arr.length));
 }
 });
 }
 }

 // private updateContent() {
 // this.container.clear();
 // for (let i = 0; i < this.dataSource.length; i++) {
 // this.container.createEmbeddedView(this.template,
 // new PaIteratorContext(this.dataSource[i],
 // i, this.dataSource.length));
 // }
 // }
}

class PaIteratorContext {
 odd: boolean; even: boolean;
 first: boolean; last: boolean;

 constructor(public $implicit: any,
 public index: number, total: number) {

 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

Listing 14-16Minimizing Content Changes in the iterator.directive.ts File in the src/app Folder

The idea is to work out whether there have been objects added, removed, or moved from the collection. This means the directive has to do some work every time the ngDoCheck method is called to avoid unnecessary and expensive DOM operations when there are no collection changes to process.
The process starts in the constructor, which receives two new arguments whose values will be provided by Angular when a new instance of the directive class is created. The IterableDiffers object is used to set up change detection on the data source collection in the ngOnInit method, like this:...
ngOnInit() {
 this.differ = <IterableDiffer<any>> this.differs.find(this.dataSource).create();
}
...

Angular includes built-in classes, known as differs, that can detect changes in different types of objects. The IterableDiffers.find method accepts an object and returns an IterableDifferFactory object that is capable of creating a differ class for that object. The IterableDifferFactory class defines a create method that returns a IterableDiffer object that will perform the change detection.
The important part of this incantation is the IterableDiffer object, which was assigned to a property called differ so that it can be used when the ngDoCheck method is called....
ngDoCheck() {
 let changes = this.differ?.diff(this.dataSource);
 if (changes != null) {
 console.log("ngDoCheck called, changes detected");
 let arr: IterableChangeRecord<any>[] = [];
 changes.forEachAddedItem(addition => arr.push(addition));
 arr.forEach(addition => {
 if (addition.currentIndex != null) {
 this.container.createEmbeddedView(this.template,
 new PaIteratorContext(addition.item, addition.currentIndex,
 arr.length));
 }
 });
 }
}
...

The IterableDiffer.diff method accepts an object for comparison and returns an IterableChanges object, which contains a list of the changes, or null if there have been no changes. Checking for the null result allows the directive to avoid unnecessary work when the ngDoCheck method is called for changes elsewhere in the application. The IterableChanges object returned by the diff method provides methods described in Table 14-4 for processing changes.Table 14-4The IterableChanges Methods and Properties

	Name
	Description

	forEachItem(func)
	This method invokes the specified function for each object in the collection.

	forEachPreviousItem(func)
	This method invokes the specified function for each object in the previous version of the collection.

	forEachAddedItem(func)
	This method invokes the specified function for each new object in the collection.

	forEachMovedItem(func)
	This method invokes the specified function for each object whose position has changed.

	forEachRemovedItem(func)
	This method invokes the specified function for each object that was removed from the collection.

	forEachIdentityChange(func)
	This method invokes the specified function for each object whose identity has changed.

The functions that are passed to the methods described in Table 14-4 will receive an IterableChangeRecord object that describes an item and how it has changed, using the properties shown in Table 14-5.Table 14-5The IterableChangeRecord Properties

	Name
	Description

	item
	This property returns the data item.

	trackById
	This property returns the identity value if a trackBy function is used.

	currentIndex
	This property returns the current index of the item in the collection.

	previousIndex
	This property returns the previous index of the item in the collection.

The code in Listing 14-16 only needs to deal with new objects in the data source since that is the only change that the rest of the application can perform. If the result of the diff method isn’t null, then I use the forEachAddedItem method to invoke a fat arrow function for each new object that has been detected. The function is called once for each new object and uses the properties in Table 14-5 to create new views in the view container.
The changes in Listing 14-16 included a new console message that is written to the browser’s JavaScript console only when there has been a data change detected by the directive. If you repeat the process of adding a new product, you will see that the message is displayed only when the application first starts and when the Create button is clicked. The ngDoCheck method is still being called, and the directive has to check for data changes every time, so there is still unnecessary work going on. But these operations are much less expensive and time-consuming than destroying and then re-creating HTML elements.
Keeping Track of Views
Handling change detection is simple when you are handling the creation of new data items. Other operations—such as dealing with deletions or modifications—are more complex and require the directive to keep track of which view is associated with which data object.
To demonstrate, I am going to add support for deleting a Product object from the data model. First, Listing 14-17 adds a method to the component to delete a product using its key. This isn’t a requirement because the template could access the repository through the component’s model property, but it can help make applications easier to understand when all of the data is accessed and used in the same way.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();
 showTable: boolean = false;

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 submitForm() {
 this.addProduct(this.newProduct);
 }
}

Listing 14-17Adding a Delete Method in the component.ts File in the src/app Folder

Listing 14-18 updates the template so that the content generated by the structural directive contains a column of button elements that will delete the data object associated with the row that contains it....
<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd"
 [class.table-warning]="even" class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>
...

Listing 14-18Adding a Delete Button in the template.html File in the src/app Folder

The button elements have click event bindings that call the component’s deleteProduct method. I also assigned the tr element to the align-middle class so the text in the table cells is aligned with the button text. The final step is to process the data changes in the structural directive so that it responds when an object is removed from the data source, as shown in Listing 14-19.import { Directive, ViewContainerRef, TemplateRef, Input,
 IterableDiffer, IterableDiffers, ChangeDetectorRef, IterableChangeRecord,
 ViewRef } from "@angular/core";

@Directive({
 selector: "[paForOf]"
})
export class PaIteratorDirective {
 private differ: IterableDiffer<any> | undefined;
 private views: Map<any, PaIteratorContext> = new Map<any, PaIteratorContext>();

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>,
 private differs: IterableDiffers,
 private changeDetector: ChangeDetectorRef) { }

 @Input("paForOf")
 dataSource: any;

 ngOnInit() {
 this.differ =
 <IterableDiffer<any>> this.differs.find(this.dataSource).create();
 }

 ngDoCheck() {
 let changes = this.differ?.diff(this.dataSource);
 if (changes != null) {
 let arr: IterableChangeRecord<any>[] = [];
 changes.forEachAddedItem(addition => arr.push(addition));
 arr.forEach(addition => {
 if (addition.currentIndex != null) {
 let context = new PaIteratorContext(addition.item,
 addition.currentIndex, arr.length);
 context.view = this.container.createEmbeddedView(this.template,
 context);
 this.views.set(addition.trackById, context);
 }
 });
 let removals = false;
 changes.forEachRemovedItem(removal => {
 removals = true;
 let context = this.views.get(removal.trackById);
 if (context != null && context.view != null) {
 this.container.remove(this.container.indexOf(context.view));
 this.views.delete(removal.trackById);
 }
 });
 if (removals) {
 let index = 0;
 this.views.forEach(context =>
 context.setData(index++, this.views.size));
 }
 }
 }
}

class PaIteratorContext {
 index: number = 0;
 odd: boolean = false; even: boolean = false;
 first: boolean = false; last: boolean = false;
 view: ViewRef | undefined;

 constructor(public $implicit: any,
 public position: number, total: number) {
 this.setData(position, total);
 }

 setData(index: number, total: number) {
 this.index = index;
 this.odd = index % 2 == 1;
 this.even = !this.odd;
 this.first = index == 0;
 this.last = index == total - 1;
 }
}

Listing 14-19Responding to a Removed Item in the iterator.directive.ts File in the src/app Folder

Two tasks are required to handle removed objects. The first task is updating the set of views by removing the ones that correspond to the items provided by the forEachRemovedItem method. This means keeping track of the mapping between the data objects and the views that represent them, which I have done by adding a ViewRef property to the PaIteratorContext class and using a Map to collect them, indexed by the value of the IterableChangeRecord.trackById property.
When processing the collection changes, the directive handles each removed object by retrieving the corresponding PaIteratorContext object from the Map, getting its ViewRef object, and passing it to the ViewContainerRef.remove element to remove the content associated with the object from the view container.
The second task is to update the context data for those objects that remain so that the bindings that rely on a view’s position in the view container are updated correctly. The directive calls the PaIteratorContext.setData method for each context object left in the Map to update the view’s position in the container and to update the total number of views that are in use. Without these changes, the properties provided by the context object wouldn’t accurately reflect the data model, which means the background colors for the rows wouldn’t be striped and the Delete buttons wouldn’t target the right objects.
The effect of these changes is that each table row contains a Delete button that removes the corresponding object from the data model, which in turn triggers an update of the table, as shown in Figure 14-7.[image:]
Figure 14-7Removing objects from the data model

Querying the Host Element Content
Directives can query the contents of their host element to access the directives it contains, known as the content children, which allows directives to coordinate themselves to work together.
Tip
Directives can also work together by sharing services, which I describe in Chapter 17.

To demonstrate how content can be queried, I added a file called cellColor.directive.ts to the src/app folder and used it to define the directive shown in Listing 14-20.import { Directive, HostBinding } from "@angular/core";

@Directive({
 selector: "td"
})
export class PaCellColor {

 @HostBinding("class")
 bgClass: string = "";

 setColor(dark: Boolean) {
 this.bgClass = dark ? "table-dark" : "";
 }
}

Listing 14-20The Contents of the cellColor.directive.ts File in the src/app Folder

The PaCellColor class defines a simple attribute directive that operates on td elements and that binds to the class property of the host element. The setColor method accepts a Boolean parameter that, when the value is true, sets the class property to table-dark, which is the Bootstrap class for a dark background.
The PaCellColor class will be the directive that is embedded in the host element’s content in this example. The goal is to write another directive that will query its host element to locate the embedded directive and invoke its setColor method. To that end, I added a file called cellColorSwitcher.directive.ts to the src/app folder and used it to define the directive shown in Listing 14-21.import { Directive, Input, SimpleChanges, ContentChild } from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean | undefined;

 @ContentChild(PaCellColor)
 contentChild: PaCellColor | undefined;

 ngOnChanges(changes: SimpleChanges) {
 if (this.contentChild != null) {
 this.contentChild.setColor(changes["modelProperty"].currentValue);
 }
 }
}

Listing 14-21The Contents of the cellColorSwitcher.directive.ts File in the src/app Folder

The PaCellColorSwitcher class defines a directive that operates on table elements and that defines an input property called paCellDarkColor. The important part of this directive is the contentChild property. ...
@ContentChild(PaCellColor)
contentChild: PaCellColor | undefined;
...

The @ContentChild decorator tells Angular that the directive needs to query the host element’s content and assign the first result of the query to the property. The argument to the @ContentChild director is one or more directive classes. In this case, the argument to the @ContentChild decorator is PaCellColor, which tells Angular to locate the first PaCellColor object contained within the host element’s content and assign it to the decorated property.
Tip
You can also query using template variable names, such that @ContentChild("myVariable") will find the first directive that has been assigned to myVariable.

The query result provides the PaCellColorSwitcher directive with access to the child component and allows it to call the setColor method in response to changes to the input property.
Tip
If you want to include the descendants of children in the results, then you can configure the query, like this: @ContentChild(PaCellColor, { descendants: true}).

In Listing 14-22, I altered the checkbox in the template so it uses the ngModel directive to set a variable that is bound to the PaCellColorSwitcher directive’s input property....
<div class="col">

 <div class="form-check">
 <label class="form-check-label">Dark Cell Color</label>
 <input type="checkbox" class="form-check-input" [(ngModel)]="darkColor" />
 </div>

 <table class="table table-sm table-bordered table-striped"
 [paCellDarkColor]="darkColor">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd"
 [class.table-warning]="even" class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
 </table>
</div>
...

Listing 14-22Applying the Directives in the template.html File in the src/app Folder

Listing 14-23 adds the darkColor property to the component.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();
 showTable: boolean = false;
 darkColor: boolean = false;

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 deleteProduct(key: number) {
 this.model.deleteProduct(key);
 }

 submitForm() {
 this.addProduct(this.newProduct);
 }
}

Listing 14-23Defining a Property in the component.ts File in the src/app Folder

The final step is to register the new directives with the Angular module’s declarations property, as shown in Listing 14-24.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 14-24Registering New Directives in the app.module.ts File in the src/app Folder

When you save the changes, you will see a new checkbox above the table. When you check the box, the ngModel directive will cause the PaCellColorSwitcher directive’s input property to be updated, which will call the setColor method of the PaCellColor directive object that was found using the @ContentChild decorator. The visual effect is small because only the first PaCellColor directive is affected, which is the cell that displays the number 1, at the top-left corner of the table, as shown in Figure 14-8. (If you don’t see the color change, then restart the Angular development tools and reload the browser.)[image:]
Figure 14-8Operating on a content child

Querying Multiple Content Children
The @ContentChild decorator finds the first directive object that matches the argument and assigns it to the decorated property. If you want to receive all the directive objects that match the argument, then you can use the @ContentChildren decorator instead, as shown in Listing 14-25. import { Directive, Input, SimpleChanges, ContentChildren, QueryList }
 from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean | undefined;

 @ContentChildren(PaCellColor, {descendants: true})
 contentChildren: QueryList<PaCellColor> | undefined;

 ngOnChanges(changes: SimpleChanges) {
 this.updateContentChildren(changes["modelProperty"].currentValue);
 }

 private updateContentChildren(dark: Boolean) {
 if (this.contentChildren != null && dark != undefined) {
 this.contentChildren.forEach((child, index) => {
 child.setColor(index % 2 ? dark : !dark);
 });
 }
 }
}

Listing 14-25Querying Multiple Children in the cellColorSwitcher.directive.ts File in the src/app Folder

When you use the @ContentChildren decorator, the results of the query are provided through a QueryList, which provides access to the directive objects using the methods and properties described in Table 14-6. The descendants configuration property is used to select descendant elements, and without this value, only direct children are selected.Table 14-6The QueryList Members

	Name
	Description

	length
	This property returns the number of matched directive objects.

	first
	This property returns the first matched directive object.

	last
	This property returns the last matched directive object.

	map(function)
	This method calls a function for each matched directive object to create a new array, equivalent to the Array.map method.

	filter(function)
	This method calls a function for each matched directive object to create an array containing the objects for which the function returns true, equivalent to the Array.filter method.

	reduce(function)
	This method calls a function for each matched directive object to create a single value, equivalent to the Array.reduce method.

	forEach(function)
	This method calls a function for each matched directive object, equivalent to the Array.forEach method.

	some(function)
	This method calls a function for each matched directive object and returns true if the function returns true at least once, equivalent to the Array.some method.

	changes
	This property is used to monitor the results for changes, as described in the upcoming “Receiving Query Change Notifications” section.

In the listing, the directive responds to changes in the input property value by calling the updateContentChildren method, which in turn uses the forEach method on the QueryList and invokes the setColor method on every second directive that has matched the query. Figure 14-9 shows the effect when the checkbox is selected.[image:]
Figure 14-9Operating on multiple content children

Receiving Query Change Notifications
The results of content queries are live, meaning that they are automatically updated to reflect additions, changes, or deletions in the host element’s content. Receiving a notification when there is a change in the query results requires using the Observable interface, which is provided by the Reactive Extensions package, as described in Chapter 4.
In Listing 14-26, I have updated the PaCellColorSwitcher directive so that it receives notifications when the set of content children in the QueryList changes.import { Directive, Input, SimpleChanges, ContentChildren, QueryList } from "@angular/core";
import { PaCellColor } from "./cellColor.directive";

@Directive({
 selector: "table"
})
export class PaCellColorSwitcher {

 @Input("paCellDarkColor")
 modelProperty: Boolean | undefined;

 @ContentChildren(PaCellColor, {descendants: true})
 contentChildren: QueryList<PaCellColor> | undefined;

 ngOnChanges(changes: SimpleChanges) {
 this.updateContentChildren(changes["modelProperty"].currentValue);
 }

 ngAfterContentInit() {
 if (this.modelProperty != undefined) {
 this.contentChildren?.changes.subscribe(() => {
 this.updateContentChildren(this.modelProperty as Boolean);
 });
 }
 }

 private updateContentChildren(dark: Boolean) {
 if (this.contentChildren != null && dark != undefined) {
 this.contentChildren.forEach((child, index) => {
 child.setColor(index % 2 ? dark : !dark);
 });
 }
 }
}

Listing 14-26Receiving Notifications in the cellColorSwitcher.directive.ts File in the src/app Folder

The value of a content child query property isn’t set until the ngAfterContentInit lifecycle method is invoked, so I use this method to set up the change notification. The QueryList class defines a changes method that returns a Reactive Extensions Observable object, which defines a subscribe method. This method accepts a function that is called when the contents of the QueryList change, meaning that there is some change in the set of directives matched by the argument to the @ContentChildren decorator. The function that I passed to the subscribe method calls the updateContentChildren method to set the colors.
The result of these changes is that the dark coloring is automatically applied to new table cells that are created when the HTML form is used, as shown in Figure 14-10.[image:]
Figure 14-10Acting on content query change notifications

Summary
In this chapter, I explained how structural directives work by re-creating the functionality of the built-in ngIf and ngFor directives. I explained the use of view containers and templates, described the full and concise syntax for applying structural directives, and showed you how to create a directive that iterates over a collection of data objects and how directives can query the content of their host element. In the next chapter, I introduce components and explain how they differ from directives.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_15

15. Understanding Components

Adam Freeman1
(1)London, UK

Components are directives that have their own templates, rather than relying on content provided from elsewhere. Components have access to all the directive features described in earlier chapters and still have a host element, can still define input and output properties, and so on. But they also define their own content using templates.
It can be easy to underestimate the importance of the template, but attribute and structural directives have limitations. Directives can do useful and powerful work, but they don’t have much insight into the elements they are applied to. Directives are most useful when they are general-purpose tools, such the ngModel directive, which can be applied to any data model property and any form element, without regard to what the data or the element is being used for.
Components, by contrast, are closely tied to the contents of their templates. Components provide the data and logic that will be used by the data bindings that are applied to the HTML elements in the template, which provide the context used to evaluate data binding expressions and act as the glue between the directives and the rest of the application. Components are also a useful tool in allowing large Angular projects to be broken up into manageable chunks.
In this chapter, I explain how components work and explain how to restructure an application by introducing some additional components. Table 15-1 puts components in context.Table 15-1Putting Components in Context

	Question
	Answer

	What are they?
	Components are directives that define their own HTML content and, optionally, CSS styles.

	Why are they useful?
	Components make it possible to define self-contained blocks of functionality, which makes projects more manageable and allows for functionality to be more readily reused.

	How are they used?
	The @Component decorator is applied to a class, which is registered in the application’s Angular module.

	Are there any pitfalls or limitations?
	No. Components provide all the functionality of directives, with the addition of providing their own templates.

	Are there any alternatives?
	An Angular application must contain at least one component, which is used in the bootstrap process. Aside from this, you don’t have to add additional components, although the resulting application becomes unwieldy and difficult to manage.

Table 15-2 summarizes the chapter.Table 15-2Chapter Summary

	Problem
	Solution
	Listing

	Creating a component
	Apply the @Component directive to a class
	1–5

	Defining the content displayed by a component
	Create an inline or external template
	6–8

	Including data in a template
	Use a data binding in the component’s template
	9

	Coordinating between components
	Use input or output properties
	10–16

	Displaying content in an element to which a component has been applied
	Project the host element’s content
	17–21

	Styling component content
	Create component styles
	22–31

	Querying the content in the component’s template
	Use the @ViewChildren decorator
	32

Preparing the Example Project
In this chapter, I continue using the example project that I created in Chapter 9 and have been modifying since. No changes are required to prepare for this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Run the following command in the example folder to start the Angular development tools:ng serve

Open a new browser and navigate to http://localhost:4200 to see the content in Figure 15-1.[image:]
Figure 15-1Running the example project

Structuring an Application with Components
At the moment, the example project contains only one component and one template. Angular applications require at least one component, known as the root component, which is the entry point specified in the Angular module.
The problem with having only one component is that it ends up containing the logic required for all the application’s features, with its template containing all the markup required to expose those features to the user. The result is that a single component and its template are responsible for handling a lot of tasks. The component in the example application is responsible for the following: 	Providing Angular with an entry point into the application, as the root component

	Providing access to the application’s data model so that it can be used in data bindings

	Defining the HTML form used to create new products

	Defining the HTML table used to display products

	Defining the layout that contains the form and the table

	Maintaining state information used to prevent invalid data from being used to create data

	Maintaining state information about whether the table should be displayed

There is a lot going on for such a simple application, and not all of these tasks are related. This effect tends to creep up gradually as development proceeds, but it means that the application is harder to test because individual features can’t be isolated effectively, and it is harder to enhance and maintain because the code and markup become increasingly complex.
Adding components to the application allows features to be separated into building blocks that can be used repeatedly in different parts of the application and tested in isolation. In the sections that follow, I create components that break up the functionality contained in the example application into manageable, reusable, and self-contained units. Along the way, I’ll explain the different features that components provide beyond those available to directives. To prepare for these changes, I have simplified the existing component’s template, as shown in Listing 15-1.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 bg-success text-white">
 Form will go here
 </div>
 <div class="col p-2 bg-primary text-white">
 Table will go here
 </div>
 </div>
</div>

Listing 15-1Simplifying the Content of the template.html File in the src/app Folder

When you save the changes to the template, you will see the content in Figure 15-2. The placeholders will be replaced with application functionality as I develop the new components and add them to the application.[image:]
Figure 15-2Simplifying the existing template

Creating New Components
To create a new component, I added a file called productTable.component.ts to the src/app folder and used it to define the component shown in Listing 15-2. import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 template: "<div>This is the table component</div>"
})
export class ProductTableComponent {

}

Listing 15-2The Contents of the productTable.component.ts File in the src/app Folder

A component is a class to which the @Component decorator has been applied. This is as simple as a component can get, and it provides just enough functionality to count as a component without doing anything useful.
The naming convention for the files that define components is to use a descriptive name that suggests the purpose of the component, followed by a period and then component.ts. For this component, which will be used to generate the table of products, the filename is productTable.component.ts. The name of the class should be equally descriptive. This component’s class is named ProductTableComponent.
The @Component decorator describes and configures the component. The most useful decorator properties are described in Table 15-3, which also includes details of where they are described (not all of them are covered in this chapter).Table 15-3Useful Component Decorator Properties

	Name
	Description

	animations
	This property is used to configure animations, as described in Chapter 27.

	encapsulation
	This property is used to change the view encapsulation settings, which control how component styles are isolated from the rest of the HTML document. See the “Setting View Encapsulation” section for details.

	selector
	This property is used to specify the CSS selector used to match host elements, as described after the table.

	styles
	This property is used to define CSS styles that are applied only to the component’s template. The styles are defined inline, as part of the TypeScript file. See the “Using Component Styles” section for details.

	styleUrls
	This property is used to define CSS styles that are applied only to the component’s template. The styles are defined in separate CSS files. See the “Using Component Styles” section for details.

	template
	This property is used to specify an inline template, as described in the “Defining Templates” section.

	templateUrl
	This property is used to specify an external template, as described in the “Defining Templates” section.

	providers
	This property is used to create local providers for services, as described in Chapter 17.

	viewProviders
	This property is used to create local providers for services that are available only to view children, as described in Chapter 18.

For the second component, I created a file called productForm.component.ts in the src/app folder and added the code shown in Listing 15-3.import { Component } from "@angular/core";

@Component({
 selector: "paProductForm",
 template: "<div>This is the form component</div>"
})
export class ProductFormComponent {

}

Listing 15-3The Contents of the productForm.component.ts File in the src/app Folder

This component is equally simple and is just a placeholder for the moment. Later in the chapter, I’ll add some more useful features. To enable the components, they must be declared in the application’s Angular module, as shown in Listing 15-4.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 15-4Enabling New Components in the app.module.ts File in the src/app Folder

The component class is brought into scope using an import statement and is added to the NgModule decorator’s declarations array. The final step is to add an HTML element that matches the component’s selector property, as shown in Listing 15-5, which will provide the component with its host element.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 bg-success text-white">
 <paProductForm></paProductForm>
 </div>
 <div class="col p-2 bg-primary text-white">
 <paProductTable></paProductTable>
 </div>
 </div>
</div>

Listing 15-5Adding a Host Element in the template.html File in the src/app Folder

When all the changes have been saved, the browser will display the content shown in Figure 15-3, which shows that parts of the HTML document are now under the management of the new components.[image:]
Figure 15-3Adding new components

Understanding the New Application Structure
The new components have changed the structure of the application. Previously, the root component was responsible for all the HTML content displayed by the application. Now, however, there are three components, and responsibility for some of the HTML content has been delegated to the new additions, as illustrated in Figure 15-4.[image:]
Figure 15-4The new application structure

When the browser loads the index.html file, the Angular bootstrap process starts, and Angular processes the application’s module, which provides a list of the components that the application requires. Angular inspects the decorator for each component in its configuration, including the value of the selector property, which is used to identify which elements will be hosts.
Angular then begins processing the body of the index.html file and finds the app element, which is specified by the selector property of the ProductComponent component. Angular populates the app element with the component’s template, which is contained in the template.html file. Angular inspects the contents of the template.html file and finds the paProductForm and paProductTable elements, which match the selector properties of the newly added components. Angular populates these elements with each component’s template, producing the placeholder content shown in Figure 15-3.
There are some important new relationships to understand. First, the HTML content that is displayed in the browser window is now composed of several templates, each of which is managed by a component. Second, the ProductComponent is now the parent component to the ProductFormComponent and ProductTableComponent objects, a relationship that is formed by the fact that the host elements for the new components are defined in the template.html file, which is the ProductComponent template. Equally, the new components are children of the ProductComponent. The parent-child relationship is an important one when it comes to Angular components, as you will see as I describe how components work in later sections.
Defining Templates
Although there are new components in the application, they don’t have much impact at the moment because they display only placeholder content. Each component has its own template, which defines the content that will be used to replace its host element in the HTML document. There are two different ways to define templates: inline within the @Component decorator or externally in an HTML file.
The new components that I added use templates, where a fragment of HTML is assigned to the template property of the @Component decorator, like this:...
template: "<div>This is the form component</div>"
...

The advantage of this approach is simplicity: the component and the template are defined in a single file, and there is no way that the relationship between them can be confused. The drawback of inline templates is that they can get out of control and be hard to read if they contain more than a few HTML elements.
Note
Another problem is that editors that highlight syntax errors as you type usually rely on the file extension to figure out what type of checking should be performed and won’t realize that the value of the template property is HTML and will simply treat it as a string.

If you are using TypeScript, then you can use multiline strings to make inline templates more readable. Multiline strings are denoted with the backtick character (the ` character, which is also known as the grave accent), and they allow strings to spread over multiple lines, as shown in Listing 15-6.import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 template: `<div class='bg-info p-2'>
 This is a multiline template
 </div>`
})
export class ProductTableComponent {

}

Listing 15-6Using a Multiline String in the productTable.component.ts File in the src/app Folder

Multiline strings allow the structure of the HTML elements in a template to be preserved, which makes it easier to read and increase the size of the template that can be practically included inline before it becomes too unwieldy to manage. Figure 15-5 shows the effect of the template in Listing 15-6.[image:]
Figure 15-5Using a multiline inline template

My advice is to use external templates (explained in the next section) for any template that contains more than two or three simple elements, largely to take advantage of the HTML editing and syntax highlighting features provided by modern editors, which can go a long way to reduce the number of errors you discover when running the application.
Defining External Templates
External templates are defined in a different file from the rest of the component. The advantage of this approach is that the code and HTML are not mixed together, which makes both easier to read and unit test, and it also means that code editors will know they are working with HTML content when you are working on a template file, which can help reduce coding-time errors by highlighting errors.
The drawback of external templates is that you have to manage more files in the project and ensure that each component is associated with the correct template file. The best way to do this is to follow a consistent filenaming strategy so that it is immediately obvious that a file contains a template for a given component. The convention for Angular is to create pairs of files using the convention <componentname>.component.<type> so that when you see a file called productTable.component.ts, you know it contains a component called Products written in TypeScript, and when you see a file called productTable.component.html, you know that it contains an external template for the Products component.
Tip
The syntax and features for both types of template are the same, and the only difference is where the content is stored, either in the same file as the component code or in a separate file.

To define an external template using the naming convention, I created a file called productTable.component.html in the src/app folder and added the markup shown in Listing 15-7.<div class="bg-info p-2">
 This is an external template
</div>

Listing 15-7The Contents of the productTable.component.html File in the src/app Folder

This is the kind of template that I have been using for the root component since Chapter 9. To specify an external template, the templateURL property is used in the @Component decorator, as shown in Listing 15-8.import { Component } from "@angular/core";

@Component({
 selector: "paProductTable",
 // template: `<div class='bg-info p-2'>
 // This is a multiline template
 // </div>`
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

}

Listing 15-8Using an External Template in the productTable.component.ts File in the src/app Folder

Notice that different properties are used: template is for inline templates, and templateUrl is for external templates. Figure 15-6 shows the effect of using an external template.[image:]
Figure 15-6Using an external template

Using Data Bindings in Component Templates
A component’s template can contain the full range of data bindings and target any of the built-in directives or custom directives that have been registered in the application’s Angular module. Each component class provides the context for evaluating the data binding expressions in its template, and by default, each component is isolated from the others. This means the component doesn’t have to worry about using the same property and method names that other components use and can rely on Angular to keep everything separate. As an example, Listing 15-9 shows the addition of a property called model to the form child component, which would conflict with the property of the same name in the root component were they not kept separate. import { Component } from "@angular/core";

@Component({
 selector: "paProductForm",
 template: "<div>{{model}}</div>"
})
export class ProductFormComponent {

 model: string = "This is the model";
}

Listing 15-9Adding a Property in the productForm.component.ts File in the src/app Folder

The component class uses the model property to store a message that is displayed in the template using a string interpolation binding. Figure 15-7 shows the result.[image:]
Figure 15-7Using a data binding in a child component

Using Input Properties to Coordinate Between Components
Few components exist in isolation and need to share data with other parts of the application. Components can define input properties to receive the value of data binding expressions on their host elements. The expression will be evaluated in the context of the parent component, but the result will be passed to the child component’s property.
To demonstrate, Listing 15-10 adds an input property to the table component, which it will use to receive the model data that it should display. import { Component, Input } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 showTable: boolean = true;
}

Listing 15-10Defining an Input Property in the productTable.component.ts File in the src/app Folder

The component now defines an input property that will be assigned the value expression assigned to the model attribute on the host element. The getProduct, getProducts, and deleteProduct methods use the input property to provide access to the data model to bindings in the component’s template, which is modified in Listing 15-11. The showTable property is used when I enhance the template in Listing 15-14 later in the chapter.There are {{getProducts()?.length}} items in the model

Listing 15-11Adding a Data Binding in the productTable.component.html File in the src/app Folder

Providing the child component with the data that it requires means adding a binding to its host element, which is defined in the template of the parent component, as shown in Listing 15-12.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 bg-success text-white">
 <paProductForm></paProductForm>
 </div>
 <div class="col p-2 bg-primary text-white">
 <paProductTable [model]="model"></paProductTable>
 </div>
 </div>
</div>

Listing 15-12Adding a Data Binding in the template.html File in the src/app Folder

The effect of this binding is to provide the child component with access to the parent component’s model property. This can be a confusing feature because it relies on the fact that the host element is defined in the parent component’s template but that the input property is defined by the child component, as illustrated by Figure 15-8.[image:]
Figure 15-8Sharing data between parent and child components

The child component’s host element acts as the bridge between the parent and child components, and the input property allows the component to provide the child with the data it needs, producing the result shown in Figure 15-9.[image:]
Figure 15-9Sharing data from a parent to a child component

Using Directives in a Child Component Template
Once the input property has been defined, the child component can use the full range of data bindings and directives, either by using the data provided through the parent component or by defining its own. In Listing 15-13, I have restored the original table functionality from earlier chapters that displays a list of the Product objects in the data model, along with a checkbox that determines whether the table is displayed. This functionality was previously managed by the root component and its template.<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price}}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 15-13Restoring the Table in the productTable.component.html File in the src/app Folder

The same HTML elements, data bindings, and directives (including custom directives like paIf and paFor) are used, producing the result shown in Figure 15-10. The key difference is not in the appearance of the table but in the way that it is now managed by a dedicated component.[image:]
Figure 15-10Restoring the table display

Using Output Properties to Coordinate Between Components
Child components can use output properties that define custom events that signal important changes and that allow the parent component to respond when they occur. Listing 15-14 changes the form component, adding an external template and an output property that will be triggered when the user creates a new Product object when invoking the submitForm method. import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";

@Component({
 selector: "paProductForm",
 templateUrl: "productForm.component.html"
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 15-14Defining an Output Property in the productForm.component.ts File in the src/app Folder

The output property is called newProductEvent, and the component triggers it when the submitForm method is called. Aside from the output property, the additions in the listing are based on the logic in the root controller, which previously managed the form. I also removed the inline template and created a file called productForm.component.html in the src/app folder, with the content shown in Listing 15-15.<form #form="ngForm" (ngSubmit)="submitForm(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control"
 name="category" [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
</form>

Listing 15-15The Contents of the productForm.component.html File in the src/app Folder

The form contains standard elements, configured using two-way bindings. The child component’s host element acts as the bridge to the parent component, which can register interest in the custom event, as shown in Listing 15-16.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <paProductForm (paNewProduct)="addProduct($event)"></paProductForm>
 </div>
 <div class="col p-2">
 <paProductTable [model]="model"></paProductTable>
 </div>
 </div>
</div>

Listing 15-16Registering for the Custom Event in the template.html File in the src/app Folder

The new binding handles the custom event by passing the event object to the addProduct method. The child component is responsible for managing the form elements and validating their contents. When the data passes validation, the custom event is triggered, and the data binding expression is evaluated in the context of the parent component, whose addProduct method adds the new object to the model. Since the model has been shared with the table child component through its input property, the new data is displayed to the user, as shown in Figure 15-11. (You may need to restart the Angular development tools to include the new template file in the build process.)[image:]
Figure 15-11Using a custom event in a child component

Projecting Host Element Content
If the host element for a component contains content, it can be included in the template using the special ng-content element. This is known as content projection, and it allows components to be created that combine the content in their template with the content in the host element. To demonstrate, I added a file called toggleView.component.ts to the src/app folder and used it to define the component shown in Listing 15-17. import { Component } from "@angular/core";

@Component({
 selector: "paToggleView",
 templateUrl: "toggleView.component.html"
})
export class PaToggleView {

 showContent: boolean = true;
}

Listing 15-17The Contents of the toggleView.component.ts File in the src/app Folder

This component defines a showContent property that will be used to determine whether the host element’s content will be displayed within the template. To provide the template, I added a file called toggleView.component.html to the src/app folder and added the elements shown in Listing 15-18.<div class="form-check">
 <label class="form-check-label">Show Content</label>
 <input class="form-check-input" type="checkbox" [(ngModel)]="showContent" />
</div>
<ng-content *ngIf="showContent"></ng-content>

Listing 15-18The Contents of the toggleView.component.html File in the src/app Folder

The important element is ng-content, which Angular will replace with the content of the host element. The ngIf directive has been applied to the ng-content element so that it will be visible only if the checkbox in the template is checked. Listing 15-19 registers the component with the Angular module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 15-19Registering the Component in the app.module.ts File in the src/app Folder

The final step is to apply the new component to a host element that contains content, as shown in Listing 15-20.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <paProductForm (paNewProduct)="addProduct($event)"></paProductForm>
 </div>
 <div class="col p-2">
 <paToggleView>
 <paProductTable [model]="model"></paProductTable>
 </paToggleView>
 </div>
 </div>
</div>

Listing 15-20Adding a Host Element with Content in the template.html File in the src/app Folder

The paToggleView element is the host for the new component, and it contains the paProductTable element, which applies the component that creates the product table. The result is that there is a checkbox that controls the visibility of the table, as shown in Figure 15-12. The new component has no knowledge of the content of its host element, and its inclusion in the template is possible only through the ng-content element.[image:]
Figure 15-12Including host element content in the template

Selecting Components Dynamically
The ViewContainerRef class, introduced in Chapter 14, defines the createComponent method, which can be used to select a component programmatically, without having to specify a fixed element in a template. I have not demonstrated this feature because it has serious limitations and causes more problems than it addresses, at least in my experience. If you want to explore this feature, see the Angular documentation at https://angular.io/guide/dynamic-component-loader, but proceed with caution.

Completing the Component Restructure
The functionality that was previously contained in the root component has been distributed to the new child components. All that remains is to tidy up the root component to remove the code that is no longer required, as shown in Listing 15-21.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {
 model: Model = new Model();
 // showTable: boolean = false;
 // darkColor: boolean = false;

 // getProduct(key: number): Product | undefined {
 // return this.model.getProduct(key);
 // }

 // getProducts(): Product[] {
 // return this.model.getProducts();
 // }

 // newProduct: Product = new Product();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }

 // deleteProduct(key: number) {
 // this.model.deleteProduct(key);
 // }

 // submitForm() {
 // this.addProduct(this.newProduct);
 // }
}

Listing 15-21Removing Obsolete Code in the component.ts File in the src/app Folder

Many of the responsibilities of the root component have been moved elsewhere in the application. Of the original list from the start of the chapter, only the following remain the responsibility of the root component:	Providing Angular with an entry point into the application, as the root component

	Providing access to the application’s data model so that it can be used in data bindings

The child components have assumed the rest of the responsibilities, providing self-contained blocks of functionality that are simpler, easier to develop, and easier to maintain and that can be reused as required.
Using Component Styles
Components can define styles that apply only to the content in their templates, which allows content to be styled by a component without it being affected by the styles defined by its parents or other antecedents and without affecting the content in its child and other descendant components. Styles can be defined inline using the styles property of the @Component decorator, as shown in Listing 15-22. import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";

@Component({
 selector: "paProductForm",
 templateUrl: "productForm.component.html",
 styles: ["div { background-color: lightgreen }"]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 15-22Defining Inline Styles in the productForm.component.ts File in the src/app Folder

The styles property is set to an array, where each item contains a CSS selector and one or more properties. In the listing, I have specified styles that set the background color of div elements to lightgreen. Even though there are div elements throughout the combined HTML document, this style will affect only the elements in the template of the component that defines them, which is the form component in this case, as shown in Figure 15-13.[image:]
Figure 15-13Defining inline component styles

Tip
The styles included in the bundles created by the development tools are still applied, which is why the elements are still styled using Bootstrap.

Defining External Component Styles
Inline styles offer the same benefits and drawbacks as inline templates: they are simple and keep everything in one file, but they can be hard to read, can be hard to manage, and can confuse code editors.
The alternative is to define styles in a separate file and associate them with a component using the styleUrls property in its decorator. External style files follow the same naming convention as templates and code files. I added a file called productForm.component.css to the src/app folder and used it to define the styles shown in Listing 15-23. div {
 background-color: lightcoral;
}

Listing 15-23The Contents of the productForm.component.css File in the src/app Folder

This is the same style that was defined inline but with a different color value to confirm that this is the CSS being used by the component. In Listing 15-24, the component’s decorator has been updated to specify the styles file.import { Component, Output, EventEmitter } from "@angular/core";
import { Product } from "./product.model";

@Component({
 selector: "paProductForm",
 templateUrl: "productForm.component.html",
 //styles: ["div { background-color: lightgreen }"],
 styleUrls: ["productForm.component.css"]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 15-24Using External Styles in the productForm.component.ts File in the src/app Folder

The styleUrls property is set to an array of strings, each of which specifies a CSS file. Figure 15-14 shows the effect of adding the external styles file.[image:]
Figure 15-14Defining external component styles

Using Advanced Style Features
Defining styles in components is a useful feature, but you won’t always get the results you expect. Some advanced features allow you to take control of how component styles work.
Setting View Encapsulation
By default, component-specific styles are implemented by writing the CSS that has been applied to the component so that it targets special attributes, which Angular then adds to all of the top-level elements contained in the component’s template. If you inspect the DOM using the browser’s F12 developer tools, you will see that the contents of the external CSS file in Listing 15-23 have been rewritten like this: ...
<style>
 div[_ngcontent-oni-c43] {
 background-color: lightcoral;
 }
</style>
...

The selector has been modified so that it matches div elements with an attribute called _ngcontent-oni-c43 (although you may see a different name in your browser since the name of the attribute is generated dynamically by Angular).
To ensure that the CSS in the style element affects only the HTML elements managed by the component, the elements in the template are modified so they have the same dynamically generated attribute, like this:...
<div _ngcontent-oni-c43="" class="form-group">
 <label _ngcontent-oni-c43="">Name</label>
 <input _ngcontent-oni-c43="" name="name" class="form-control ng-untouched
 ng-pristine ng-valid" ng-reflect-name="name">
</div>

<div _ngcontent-jwe-c40="" class="form-group">
 <label _ngcontent-jwe-c40="">Name</label>
 <input _ngcontent-jwe-c40="" name="name" class="form-control ng-untouched
 ng-pristine ng-valid" ng-reflect-name="name">
</div>
...

This is known as the component’s view encapsulation behavior, and what Angular is doing is emulating a feature known as the shadow DOM, which allows sections of the Domain Object Model to be isolated so they have their own scope, meaning that JavaScript, styles, and templates can be applied to part of the HTML document.
The shadow DOM feature is supported by most modern browsers, but its path to adoption has been messy, and Angular emulates the feature to ensure consistency. There are two other encapsulation options in addition to emulation, which are set using the encapsulation property in the @Component decorator.
Tip
You can learn more about the shadow DOM at http://developer.mozilla.org/en-US/docs/Web/Web_Components/Shadow_DOM. You can see which browsers support the shadow DOM feature at https://caniuse.com/shadowdomv1.

The encapsulation property is assigned a value from the ViewEncapsulation enumeration, which is defined in the @angular/core module, and it defines the values described in Table 15-4.Table 15-4The ViewEncapsulation Values

	Name
	Description

	Emulated
	When this value is specified, Angular emulates the shadow DOM by writing content and styles to add attributes, as described earlier. This is the default behavior if no encapsulation value is specified in the @Component decorator.

	ShadowDom
	When this value is specified, Angular uses the browser’s shadow DOM feature. This will work only if the browser implements the shadow DOM.

	None
	When this value is specified, Angular simply adds the unmodified CSS styles to the head section of the HTML document and lets the browser figure out how to apply the styles using the normal CSS precedence rules.

The ShadowDom and None values should be used with caution. Browser support for the shadow DOM feature is improving but has been patchy and was made more complex because there was an earlier version of the shadow DOM feature that was abandoned in favor of the current approach.
The None option adds all the styles defined by components to the head section of the HTML document and lets the browser figure out how to apply them. This has the benefit of working in all browsers, but the results are unpredictable, and there is no isolation between the styles defined by different components.
One important consideration is that the Emulated setting doesn’t produce the same results as enabling native shadow DOM support with the ShadowDom setting. The Emulated setting ensures that styles defined for a specific component are not applied to elements generated by other components, but it still allows elements to be styled by the global CSS styles, such as those defined by the Bootstrap CSS package. When the ShadowDom setting is used, the browser completely isolated an element, which prevents elements from being affected by global CSS styles. To demonstrate, Listing 15-25 enables the ShadowDom mode.import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 styleUrls: ["productForm.component.css"],
 encapsulation: ViewEncapsulation.ShadowDom
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 15-25Setting View Encapsulation in the productForm.component.ts File in the src/app Folder

The selectors for components that use the ShadowDom setting must be all lowercase and contain a hyphen, which is why I changed the selector to pa-productform. Listing 15-26 updates the template to match the new selector.<div class="container-fluid">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <pa-productform (paNewProduct)="addProduct($event)"></pa-productform>
 </div>
 <div class="col p-2">
 <paToggleView>
 <paProductTable [model]="model"></paProductTable>
 </paToggleView>
 </div>
 </div>
</div>

Listing 15-26Updating an Element in the template.html File in the src/app Folder

Figure 15-15 shows how the styles defined in the productForm.component.css file are applied to the HTML elements generated by the component, but the globally defined Bootstrap styles, added to the project in Chapter 9, are not.[image:]
Figure 15-15Enabling the native shadow DOM feature

Using the Shadow DOM CSS Selectors
Using the shadow DOM means that there are boundaries that regular CSS selectors do not operate across. To help address this, there are special CSS selectors that are useful when using styles that rely on the shadow DOM (even when it is being emulated), as described in Table 15-5 and demonstrated in the sections that follow.Table 15-5The Shadow DOM CSS Selectors

	Name
	Description

	:host
	This selector is used to match the component’s host element.

	:host-context(classSelector)
	This selector is used to match the ancestors of the host element that are members of a specific class.

	/deep/ , >>>, or ::ng-deep
	These selectors are used by a parent component to define styles that affect the elements in child component templates. This selector should be used only when the @Component decorator’s encapsulation property is set to emulated, as described in the “Setting View Encapsulation” section.

Selecting the Host Element
A component’s host element appears outside of its template, which means that the selectors in its styles apply only to elements that the host element contains and not the element itself. This can be addressed by using the :host selector, which matches the host element. Listing 15-27 defines a style that is applied only when the mouse pointer is hovering over the host element, which is specified by combining the :host and :hover selectors.div {
 background-color: lightcoral;
}
:host :hover {
 font-size: 25px;
}

Listing 15-27Matching the Host Element in the productForm.component.css File in the src/app Folder

When the mouse pointer is over the host element, its font-size property will be set to 25px, which increases the text size to 25 points for all the elements in the form, as shown in Figure 15-16.[image:]
Figure 15-16Selecting the host element in a component style

Selecting the Host Element’s Ancestors
The :host-context selector is used to style elements within the component’s template based on the class membership of the host element’s ancestors (which are outside the template). This is a more limited selector than :host and cannot be used to specify anything other than a class selector, without support for matching tag types, attributes, or any other selector. Listing 15-28 shows the use of the :host-context selector.div {
 background-color: lightcoral;
}
:host:hover {
 font-size: 25px;
}
:host-context(.angularApp) input {
 background-color: lightgray;
}

Listing 15-28Selecting Ancestors in the productForm.component.css File in the src/app Folder

The selector in the listing sets the background-color property of input elements within the component’s template to lightgrey only if one of the host element’s ancestor elements is a member of a class called angularApp. In Listing 15-29, I have added a div element in the template.html file to the angularApp class.<div class="container-fluid angularApp">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <pa-productform (paNewProduct)="addProduct($event)"></pa-productform>
 </div>
 <div class="col p-2">
 <paToggleView>
 <paProductTable [model]="model"></paProductTable>
 </paToggleView>
 </div>
 </div>
</div>

Listing 15-29Adding the Host Element to a Class in the template.html File in the src/app Folder

Figure 15-17 shows the effect of the selector before and after the changes in Listing 15-29.[image:]
Figure 15-17Selecting the host element’s ancestors

Pushing a Style into the Child Component’s Template
Styles defined by a component are not automatically applied to the elements in the child component’s templates. As a demonstration, Listing 15-30 adds a style to the @Component decorator of the root component.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
 styles: ["div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

Listing 15-30Defining Styles in the component.ts File in the src/app Folder

The selector matches all div elements and applies a border and changes the font style. Figure 15-18 shows the result.[image:]
Figure 15-18Applying regular CSS styles

Some CSS style properties, such as font-style, are inherited by default, which means that setting such a property in a parent component will affect the elements in child component templates because the browser automatically applies the style.
Other properties, such as border, are not inherited by default, and setting such a property in a parent component does not affect child component templates unless the /deep/ or >>> selector is used, as shown in Listing 15-31. (These selectors are aliases of one another and have the same effect.)import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
 styles: ["/deep/ div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

Listing 15-31Pushing a Style into Child Templates in the component.ts File in the src/app Folder

The selector for the style uses /deep/ to push the styles into the child components’ templates, which means that all the div elements are given a border, as shown in Figure 15-19.[image:]
Figure 15-19Pushing a style into child component templates

Querying Template Content
Components can query the content of their templates to locate instances of directives or components, which are known as view children. These are similar to the directive content children queries that were described in Chapter 14 but with some important differences.
In Listing 15-32, I have added some code to the component that manages the table that queries for the PaCellColor directive that was created to demonstrate directive content queries. This directive is still registered in the Angular module and selects td elements, so Angular will have applied it to the cells in the table component’s content.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { PaCellColor } from "./cellColor.directive";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 showTable: boolean = true;

 @ViewChildren(PaCellColor)
 viewChildren: QueryList<PaCellColor> | undefined;

 ngAfterViewInit() {
 this.viewChildren?.changes.subscribe(() => {
 this.updateViewChildren();
 });
 this.updateViewChildren();
 }

 private updateViewChildren() {
 setTimeout(() => {
 this.viewChildren?.forEach((child, index) => {
 child.setColor(index % 2 ? true : false);
 })
 }, 0);
 }
}

Listing 15-32Selecting View Children in the productTable.component.ts File in the src/app Folder

Two property decorators are used to query for directives or components defined in the template, as described in Table 15-6. Table 15-6The View Children Query Property Decorators

	Name
	Description

	@ViewChild(class)
	This decorator tells Angular to query for the first directive or component object of the specified type and assign it to the property. The class name can be replaced with a template variable. Multiple classes or variable names can be separated by commas.

	@ViewChildren(class)
	This decorator assigns all the directive and component objects of the specified type to the property. Template variables can be used instead of classes, and multiple values can be separated by commas. The results are provided in a QueryList object, described in Chapter 14.

In the listing, I used the @ViewChildren decorator to select all the PaCellColor objects from the component’s template. Aside from the different property decorators, components have two different lifecycle methods that are used to provide information about how the template has been processed, as described in Table 15-7. Table 15-7The Additional Component Lifecycle Methods

	Name
	Description

	ngAfterViewInit
	This method is called when the component’s view has been initialized. The results of the view queries are set before this method is invoked.

	ngAfterViewChecked
	This method is called after the component’s view has been checked as part of the change detection process.

In the listing, I implement the ngAfterViewInit method to ensure that Angular has processed the component’s template and set the result of the query. Within the method I perform the initial call to the updateViewChildren method, which operates on the PaCellColor objects, and I set up the function that will be called when the query results change, using the QueryList.changes property, as described in Chapter 14. The view children are updated within a call to the setTimeout function, which ensures that the changes are applied without triggering the change detection guard. The result is that the color of every second table cell is changed, as shown in Figure 15-20.[image:]
Figure 15-20Querying for view children

Tip
You may need to combine view child and content child queries if you have used the ng-content element. The content defined in the template is queried using the technique shown in Listing 15-32, but the project content—which replaces the ng-content element—is queried using the child queries described in Chapter 14.

Summary
In this chapter, I revisited the topic of components and explained how to combine all the features of directives with the ability to provide their own templates. I explained how to structure an application to create small module components and how components can coordinate between themselves using input and output properties. I also showed how components can define CSS styles that are applied only to their templates and no other parts of the application. In the next chapter, I introduce pipes, which are used to prepare data for display in templates.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_16

16. Using and Creating Pipes

Adam Freeman1
(1)London, UK

Pipes are small fragments of code that transform data values so they can be displayed to the user in templates. Pipes allow transformation logic to be defined in self-contained classes so that it can be applied consistently throughout an application. Table 16-1 puts pipes in context.Table 16-1Putting Pipes in Context

	Question
	Answer

	What are they?
	Pipes are classes that are used to prepare data for display to the user.

	Why are they useful?
	Pipes allow preparation logic to be defined in a single class that can be used throughout an application, ensuring that data is presented consistently.

	How are they used?
	The @Pipe decorator is applied to a class and used to specify a name by which the pipe can be used in a template.

	Are there any pitfalls or limitations?
	Pipes should be simple and focused on preparing data. It can be tempting to let the functionality creep into areas that are the responsibility of other building blocks, such as directives or components.

	Are there any alternatives?
	You can implement data preparation code in components or directives, but that makes it harder to reuse in other parts of the application.

Table 16-2 summarizes the chapter.Table 16-2Chapter Summary

	Problem
	Solution
	Listing

	Formatting a data value for inclusion in a template
	Use a pipe in a data binding expression
	1–6

	Creating a custom pipe
	Apply the @Pipe decorator to a class
	7–9

	Formatting a data value using multiple pipes
	Chain the pipe names together using the bar character
	10

	Specifying when Angular should reevaluate the output from a pipe
	Use the pure property of the @Pipe decorator
	11–14

	Formatting numerical values
	Use the number pipe
	15, 16

	Formatting currency values
	Use the currency pipe
	17, 18

	Formatting percentage values
	Use the percent pipe
	19

	Formatting dates
	Use the date pipe
	20–22

	Changing the case of strings
	Use the uppercase or lowercase pipe
	23, 24

	Serializing objects into the JSON format
	Use the json pipe
	25

	Selecting elements from an array
	Use the slice pipe
	26

	Formatting an object or map as key-value pairs
	Use the keyvalue pipe
	27

	Selecting a value to display for a string or number value
	Use the i18nSelect or i18nPlural pipe
	28–31

	Display events from an observable
	Use the async pipe
	32–34

Preparing the Example Project
I am going to continue working with the example project that was first created in Chapter 9 and that has been expanded and modified in the chapters since. In the final examples in the previous chapter, component styles and view children queries left the application with a strikingly garish appearance that I am going to tone down for this chapter. In Listing 16-1, I have disabled the inline component styles applied to the form elements.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 // styleUrls: ["productForm.component.css"],
 // encapsulation: ViewEncapsulation.ShadowDom
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 @Output("paNewProduct")
 newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 this.newProductEvent.emit(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 16-1Disabling CSS Styles in the productForm.component.ts File in the src/app Folder

To disable the checkerboard coloring of the table cells, I changed the selector for the PaCellColor directive so that it matches an attribute that is not currently applied to the HTML elements, as shown in Listing 16-2.import { Directive, HostBinding } from "@angular/core";

@Directive({
 selector: "td[paApplyColor]"
})
export class PaCellColor {

 @HostBinding("class")
 bgClass: string = "";

 setColor(dark: Boolean) {
 this.bgClass = dark ? "table-dark" : "";
 }
}

Listing 16-2Changing the Selector in the cellColor.directive.ts File in the src/app Folder

Listing 16-3 disables the deep styles defined by the root component.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
 //styles: ["/deep/ div { border: 2px black solid; font-style:italic }"]
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

Listing 16-3Disabling CSS Styles in the component.ts File in the src/app Folder

The next change is to simplify the ProductTableComponent class to remove methods and properties that are no longer required and add new properties that will be used in later examples, as shown in Listing 16-4.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
//import { PaCellColor } from "./cellColor.directive";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 // showTable: boolean = true;

 // @ViewChildren(PaCellColor)
 // viewChildren: QueryList<PaCellColor> | undefined;

 // ngAfterViewInit() {
 // this.viewChildren?.changes.subscribe(() => {
 // this.updateViewChildren();
 // });
 // this.updateViewChildren();
 // }

 // private updateViewChildren() {
 // setTimeout(() => {
 // this.viewChildren?.forEach((child, index) => {
 // child.setColor(index % 2 ? true : false);
 // })
 // }, 0);
 // }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 16-4Simplifying the Code in the productTable.component.ts File in the src/app Folder

Finally, I have removed one of the component elements from the root component’s template to disable the checkbox that shows and hides the table, as shown in Listing 16-5.<div class="container-fluid angularApp">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <pa-productform (paNewProduct)="addProduct($event)"></pa-productform>
 </div>
 <div class="col p-2">
 <!-- <paToggleView> -->
 <paProductTable [model]="model"></paProductTable>
 <!-- </paToggleView> -->
 </div>
 </div>
</div>

Listing 16-5Simplifying the Elements in the template.html File in the src/app Folder

Run the following command in the example folder to start the Angular development tools:ng serve

Open a new browser tab and navigate to http://localhost:4200 to see the content shown in Figure 16-1.[image:]
Figure 16-1Running the example application

Understanding Pipes
Pipes are classes that transform data before it is received by a directive or component. That may not sound like an important job, but pipes can be used to perform some of the most commonly required development tasks easily and consistently.
As a quick example to demonstrate how pipes are used, Listing 16-6 applies one of the built-in pipes to transform the values in the Price column of the table displayed by the application. <table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD":"symbol" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-6Using a Pipe in the productTable.component.html File in the src/app Folder

The syntax for applying a pipe is similar to the style used by command prompts, where a value is “piped” for transformation using the vertical bar symbol (the | character). Figure 16-2 shows the structure of the data binding that contains the pipe.[image:]
Figure 16-2The anatomy of data binding with a pipe

The name of the pipe used in Listing 16-6 is currency, and it formats numbers into currency values. Arguments to the pipe are separated by colons (the : character). The first pipe argument specifies the currency code that should be used, which is USD in this case, representing U.S. dollars. The second pipe argument, which is symbol, specifies whether the currency symbol, rather than its code, should be displayed.
When Angular processes the expression, it obtains the data value and passes it to the pipe for transformation. The result produced by the pipe is then used as the expression result for the data binding. In the example, the bindings are string interpolations, and Figure 16-3 shows the results.[image:]
Figure 16-3The effect of using the currency pipe

Creating a Custom Pipe
I will return to the built-in pipes that Angular provides later in the chapter, but the best way to understand how pipes work and what they are capable of is to create a custom pipe. I added a file called addTax.pipe.ts in the src/app folder and defined the class shown in Listing 16-7. import { Pipe } from "@angular/core";

@Pipe({
 name: "addTax"
})
export class PaAddTaxPipe {

 defaultRate: number = 10;

 transform(value: any, rate?: any): number {
 let valueNumber = Number.parseFloat(value);
 let rateNumber = rate == undefined ?
 this.defaultRate : Number.parseInt(rate);
 return valueNumber + (valueNumber * (rateNumber / 100));
 }
}

Listing 16-7The Contents of the addTax.pipe.ts File in the src/app Folder

Pipes are classes to which the Pipe decorator has been applied and that implement a method called transform. The Pipe decorator defines two properties, which are used to configure pipes, as described in Table 16-3. Table 16-3The Pipe Decorator Properties

	Name
	Description

	name
	This property specifies the name by which the pipe is applied in templates.

	pure
	When true, this pipe is reevaluated only when its input value or its arguments are changed. This is the default value. See the “Creating Impure Pipes” section for details.

The example pipe is defined in a class called PaAddTaxPipe, and its decorator name property specifies that the pipe will be applied using addTax in templates. The transform method must accept at least one argument, which Angular uses to provide the data value that the pipe formats. The pipe does its work in the transform method, and its result is used by Angular in the binding expression. In this example, the transform method accepts a number value, and its result is the received value plus sales tax.
The transform method can also define additional arguments that are used to configure the pipe. In the example, the optional rate argument can be used to specify the sales tax rate, which defaults to 10 percent.
Caution
Be careful when dealing with the arguments received by the transform method and make sure that you parse or convert them to the types you need. The TypeScript type annotations are not enforced at runtime, and Angular will pass you whatever data values it is working with.

Registering a Custom Pipe
Pipes are registered using the declarations property of the Angular module, as shown in Listing 16-8.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 16-8Registering a Custom Pipe in the app.module.ts File in the src/app Folder

Applying a Custom Pipe
Once a custom pipe has been registered, it can be used in data binding expressions. In Listing 16-9, I have applied the pipe to the price value in the tables and added a select element that allows the tax rate to be specified.<div class="my-2">
 <label>Tax Rate:</label>
 <select class="form-select" [value]="taxRate || 0"
 (change)="taxRate=$any($event).target.value">
 <option value="0">None</option>
 <option value="10">10%</option>
 <option value="20">20%</option>
 <option value="50">50%</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | addTax:(taxRate || 0) }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-9Applying the Custom Pipe in the productTable.component.html File in the src/app Folder

Just for variety, I defined the tax rate entirely within the template. The select element has a binding that sets its value property to a component variable called taxRate or defaults to 0 if the property has not been defined. The event binding handles the change event and sets the value of the taxRate property. You cannot specify a fallback value when using the ngModel directive, which is why I have split up the bindings.
In applying the custom pipe, I have used the vertical bar character, followed by the value specified by the name property in the pipe’s decorator. The name of the pipe is followed by a colon, which is followed by an expression that is evaluated to provide the pipe with its argument. In this case, the taxRate property will be used if it has been defined, with a fallback value of zero.
Pipes are part of the dynamic nature of Angular data bindings, and the pipe’s transform method will be called to get an updated value if the underlying data value changes or if the expression used for the arguments changes. The dynamic nature of pipes can be seen by changing the value displayed by the select element, which will define or change the taxRate property, which will, in turn, update the amount added to the price property by the custom pipe, as shown in Figure 16-4.[image:]
Figure 16-4Using a custom pipe

Combining Pipes
The addTax pipe is applying the tax rate, but the fractional amounts that are produced by the calculation are unsightly—and unhelpful since few tax authorities insist on accuracy to 15 fractional digits.
I could fix this by adding support to the custom pipe to format the number values as currencies, but that would require duplicating the functionality of the built-in currency pipe that I used earlier in the chapter. A better approach is to combine the functionality of both pipes so that the output from the custom addTax pipe is fed into the built-in currency pipe, which is then used to produce the value displayed to the user.
Pipes are chained together in this way using the vertical bar character, and the names of the pipes are specified in the order that data should flow, as shown in Listing 16-10....
<td>{{item.price | addTax:(taxRate || 0) | currency:"USD":"symbol" }}</td>
...

Listing 16-10Combining Pipes in the productTable.component.html File in the src/app Folder

The value of the item.price property is passed to the addTax pipe, which adds the sales tax, and then to the currency pipe, which formats the number value into a currency amount, as shown in Figure 16-5.[image:]
Figure 16-5Combining the functionality of pipes

Creating Impure Pipes
The pure decorator property is used to tell Angular when to call the pipe’s transform method. The default value for the pure property is true, which tells Angular that the pipe’s transform method will generate a new value only if the input data value—the data value before the vertical bar character in the template—changes or when one or more of its arguments is modified. This is known as a pure pipe because it has no independent internal state and all its dependencies can be managed using the Angular change detection process.
Setting the pure decorator property to false creates an impure pipe and tells Angular that the pipe has its own state data or that it depends on data that may not be picked up in the change detection process when there is a new value.
When Angular performs its change detection process, it treats impure pipes as sources of data values in their own right and invokes the transform methods even when there has been no data value or argument changes.
The most common need for impure pipes is when they process the contents of arrays and the elements in the array change. As you saw in Chapter 14, Angular doesn’t automatically detect changes that occur within arrays and won’t invoke a pure pipe’s transform method when an array element is added, edited, or deleted because it just sees the same array object being used as the input data value.
Caution
Impure pipes should be used sparingly because Angular has to call the transform method whenever there is any data change or user interaction in the application, just in case it might result in a different result from the pipe. If you do create an impure pipe, then keep it as simple as possible. Performing complex operations, such as sorting an array, can devastate the performance of an Angular application.

As a demonstration, I added a file called categoryFilter.pipe.ts in the src/app folder and used it to define the pipe shown in Listing 16-11.import { Pipe } from "@angular/core";
import { Product } from "./product.model";

@Pipe({
 name: "filter",
 pure: true
})
export class PaCategoryFilterPipe {

 transform(products: Product[] | undefined, category: string | undefined):
 Product[] {
 if (products == undefined) {
 return [];
 }
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Listing 16-11The Contents of the categoryFilter.pipe.ts File in the src/app Folder

This is a pure filter that receives an array of Product objects and returns only the ones whose category property matches the category argument. Listing 16-12 shows the new pipe registered in the Angular module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 16-12Registering a Pipe in the app.module.ts File in the src/app Folder

Listing 16-13 shows the application of the new pipe to the binding expression that targets the ngFor directive as well as a new select element that allows the filter category to be selected.<div class="my-2">
 <label>Tax Rate:</label>
 <select class="form-select" [value]="taxRate || 0"
 (change)="taxRate=$any($event).target.value">
 <option value="0">None</option>
 <option value="10">10%</option>
 <option value="20">20%</option>
 <option value="50">50%</option>
 </select>
</div>

<div class="my-2">
 <label>Category Filter:</label>
 <select class="form-select" [(ngModel)]="categoryFilter">
 <option>Watersports</option>
 <option>Soccer</option>
 <option>Chess</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>
 {{item.price | addTax:(taxRate || 0) | currency:"USD":"symbol" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-13Applying a Pipe in the productTable.component.html File in the src/app Folder

To see the problem, use the select element to filter the products in the table so that only those in the Soccer category are shown. Then use the form elements to create a new product in that category. Clicking the Create button will add the product to the data model, but the new product won’t be shown in the table, as illustrated in Figure 16-6.[image:]
Figure 16-6A problem caused by a pure pipe

The table isn’t updated because, as far as Angular is concerned, none of the inputs to the filter pipe has changed. The component’s getProducts method returns the same array object, and the categoryFilter property is still set to Soccer. The fact that there is a new object inside the array returned by the getProducts method isn’t recognized by Angular.
The solution is to set the pipe’s pure property to false, as shown in Listing 16-14.import { Pipe } from "@angular/core";
import { Product } from "./product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[] | undefined, category: string | undefined): Product[] {
 if (products == undefined) {
 return [];
 }
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Listing 16-14Marking a Pipe as Impure in the categoryFilter.pipe.ts File in the src/app Folder

If you repeat the test, you will see that the new product is now correctly displayed in the table, as shown in Figure 16-7.[image:]
Figure 16-7Using an impure pipe

Using the Built-in Pipes
Angular includes a set of built-in pipes that perform commonly required tasks. These pipes are described in Table 16-4 and demonstrated in the sections that follow.Table 16-4The Built-in Pipes

	Name
	Description

	number
	This pipe performs location-sensitive formatting of number values. See the “Formatting Numbers” section for details.

	currency
	This pipe performs location-sensitive formatting of currency amounts. See the “Formatting Currency Values” section for details.

	percent
	This pipe performs location-sensitive formatting of percentage values. See the “Formatting Percentages” section for details.

	date
	This pipe performs location-sensitive formatting of dates. See the “Formatting Dates” section for details.

	uppercase
	This pipe transforms all the characters in a string to uppercase. See the “Changing String Case” section for details.

	Lowercase
	This pipe transforms all the characters in a string to lowercase. See the “Changing String Case” section for details.

	titlecase
	This pipe transforms all the characters in a string to title case. See the “Changing String Case” section for details.

	json
	This pipe transforms an object into a JSON string. See the “Serializing Data as JSON” section for details.

	slice
	This pipe selects items from an array or characters from a string, as described in the “Slicing Data Arrays” section.

	keyvalue
	This pipe transforms an object or map into a series of key-value pairs, as described in the “Formatting Key-Value Pairs” section.

	i18nSelect
	This pipe selects a text value to display for a set of values, as described in the “Selecting Values” section.

	i18nPlural
	This pipe selects a pluralized string for a value, as described in the “Pluralizing Values” section.

	async
	This pipe subscribes to an observable or a promise and displays the most recent value it produces.

Formatting Numbers
The number pipe formats number values using locale-sensitive rules. Listing 16-15 shows the use of the number pipe, along with the argument that specifies the formatting that will be used. I have removed the custom pipes and the associated select elements from the template. <!-- <div class="my-2">
 <label>Tax Rate:</label>
 <select class="form-select" [value]="taxRate || 0"
 (change)="taxRate=$any($event).target.value">
 <option value="0">None</option>
 <option value="10">10%</option>
 <option value="20">20%</option>
 <option value="50">50%</option>
 </select>
</div>

<div class="my-2">
 <label>Category Filter:</label>
 <select class="form-select" [(ngModel)]="categoryFilter">
 <option>Watersports</option>
 <option>Soccer</option>
 <option>Chess</option>
 </select>
</div> -->

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | number:"3.2-2" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-15Using the number Pipe in the productTable.component.html File in the src/app Folder

The number pipe accepts a single argument that specifies the number of digits that are included in the formatted result. The argument is in the following format (note the period and hyphen that separate the values and that the entire argument is quoted as a string):"<minIntegerDigits>.<minFactionDigits>-<maxFractionDigits>"

Table 16-5 describes each element of the formatting argument.Table 16-5The Elements of the number Pipe Argument

	Name
	Description

	minIntegerDigits
	This value specifies the minimum number of digits. The default value is 1.

	minFractionDigits
	This value specifies the minimum number of fractional digits. The default value is 0.

	maxFractionDigits
	This value specifies the maximum number of fractional digits. The default value is 3.

The argument used in the listing is "3.2-2", which specifies that at least three digits should be used to display the integer portion of the number and that two fractional digits should always be used. This produces the result shown in Figure 16-8.[image:]
Figure 16-8Formatting number values

The number pipe is location-sensitive, which means that the same format argument will produce differently formatted results based on the user’s locale setting. Angular applications default to the en-US locale by default and require other locales to be loaded explicitly, as shown in Listing 16-16.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [{ provide: LOCALE_ID, useValue: "fr-FR" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 16-16Setting the Locale in the app.module.ts File in the src/app Folder

Setting the locale consists of importing the locale you require from the modules that contain each region’s data and registering it by calling the registerLocaleData function, which is imported from the @angular/common module. In the listing, I have imported the fr-FR locale, which is for French as it is spoken in France. The final step is to configure the providers property, which I describe in Chapter 17, but the effect of the configuration in Listing 16-16 is to enable the fr-FR locale, which changes the formatting of the numerical values, as shown in Figure 16-9.[image:]
Figure 16-9Locale-sensitive formatting

You can override the application’s locale setting by specifying a locale as a configuration option for the pipe, like this:...
<td>{{item.price | number:"3.2-2":"en-US" }}</td>
...

Formatting Currency Values
The currency pipe formats number values that represent monetary amounts. Listing 16-6 used this pipe to introduce the topic, and Listing 16-17 shows another application of the same pipe but with the addition of number format specifiers. <table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD":"symbol":"2.2-2" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-17Using the currency Pipe in the productTable.component.html File in the src/app Folder

The currency pipe can be configured using four arguments, which are described in Table 16-6.Table 16-6The Types of Web Forms Code Nuggets

	Name
	Description

	currencyCode
	This string argument specifies the currency using an ISO 4217 code. The default value is USD if this argument is omitted. You can see a list of currency codes at http://en.wikipedia.org/wiki/ISO_4217.

	display
	This string indicates whether the currency symbol or code should be displayed. The supported values are code (use the currency code), symbol (use the currency symbol), and symbol-narrow (which shows the concise form when a currency has narrow and wide symbols). You can also specify a string to use. The default value is symbol.

	digitInfo
	This string argument specifies the formatting for the number, using the same formatting instructions supported by the number pipe, as described in the “Formatting Numbers” section.

	locale
	This string argument specifies the locale for the currency. This defaults to the LOCALE_ID value, the configuration of which is shown in Listing 16-16.

The arguments specified in Listing 16-17 tell the pipe to use the U.S. dollar as the currency (which has the ISO code USD), to display the symbol rather than the code in the output, and to format the number so that it has at least two integer digits and exactly two fraction digits.
This pipe relies on the Internationalization API to get details of the currency—especially its symbol—but doesn’t select the currency automatically to reflect the user’s locale setting.
This means that the formatting of the number and the position of the currency symbol are affected by the application’s locale setting, regardless of the currency that has been specified by the pipe. The example application is still configured to use the fr-FR locale, which produces the results shown in Figure 16-10.[image:]
Figure 16-10Location-sensitive currency formatting

To revert to the default locale, Listing 16-18 removes the fr-FR setting from the application’s root module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 //providers: [{ provide: LOCALE_ID, useValue: "fr-FR" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 16-18Removing the locale Setting in the app.module.ts File in the src/app Folder

Figure 16-11 shows the result.[image:]
Figure 16-11Formatting currency values

Formatting Percentages
The percent pipe formats number values as percentages, where values between 0 and 1 are formatted to represent 0 to 100 percent. This pipe has optional arguments that are used to specify the number formatting options, using the same format as the number pipe, and override the default locale. Listing 16-19 re-introduces the custom sales tax filter and populates the associated select element with option elements whose content is formatted with the percent filter. <div class="my-2">
 <label>Tax Rate:</label>
 <select class="form-select" [value]="taxRate || 0"
 (change)="taxRate=$any($event).target.value">
 <option value="0">None</option>
 <option value="10">{{ 0.1 | percent }}</option>
 <option value="20">{{ 0.2 | percent }}</option>
 <option value="50">{{ 0.5 | percent }}</option>
 <option value="150">{{ 1.5 | percent }}</option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-19Formatting Percentages in the productTable.component.html File in the src/app Folder

Values that are greater than 1 are formatted into percentages greater than 100 percent. You can see this in the last item shown in Figure 16-12, where the value 1.5 produces a formatted value of 150 percent.[image:]
Figure 16-12Formatting percentage values

The formatting of percentage values is location-sensitive, although the differences between locales can be subtle. As an example, while the en-US locale produces a result such as 10 percent, with the numerals and the percent sign next to one another, many locales, including fr-FR, will produce a result such as 10 %, with a space between the numerals and the percent sign.
Formatting Dates
The date pipe performs location-sensitive formatting of dates. Dates can be expressed using JavaScript Date objects, as a number value representing milliseconds since the beginning of 1970 or as a well-formatted string. Listing 16-20 adds three properties to the ProductTableComponent class, each of which encodes a date in one of the formats supported by the date pipe. import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;

 dateObject: Date = new Date(2020, 1, 20);
 dateString: string = "2020-02-20T00:00:00.000Z";
 dateNumber: number = 1582156800000;
}

Listing 16-20Defining Dates in the productTable.component.ts File in the src/app Folder

All three properties describe the same date, which is February 20, 2020. No time has been specified, which means that these values will represent midnight, with no time specified. In Listing 16-21, I have used the date pipe to format all three properties.<div class="bg-info p-2 text-white">
 <div>Date formatted from object: {{ dateObject | date }}</div>
 <div>Date formatted from string: {{ dateString | date }}</div>
 <div>Date formatted from number: {{ dateNumber | date }}</div>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-21Formatting Dates in the productTable.component.html File in the src/app Folder

The pipe works out which data type it is working with, parses the value to get a date, and then formats it, as shown in Figure 16-13.[image:]
Figure 16-13Formatting dates

If you are in a time zone that is to the left of GMT, then you will see Feb 19, 2020, for two of the dates. The first date is expressed relative to the application’s time zone, but the others are expressed in the UTC time zone, which means that the dates will be adjusted, as shown in Figure 16-14.[image:]
Figure 16-14The effect of a different time zone

The date pipe accepts an argument that specifies the date format that should be used. Individual date components can be selected for the output using the symbols described in Table 16-7. A complete set of supported symbols can be found in the Angular API documentation at https://angular.io/api/common/DatePipe.Table 16-7Useful Date Pipe Format Symbols

	Name
	Description

	y, yy, yyyy
	These symbols select the year.

	M, MMM, MMMM
	These symbols select the month.

	d, dd
	These symbols select the day (as a number).

	E, EE, EEE, EEEE, EEEEE
	These symbols select the day (as a name).

	h, hh, H, HH
	These symbols select the hour in 12- and 24-hour forms.

	m, mm
	These symbols select the minutes.

	s, ss
	These symbols select the seconds.

	Z
	This symbol selects the time zone.

The symbols in Table 16-7 provide access to the date components in differing levels of brevity so that M will return 2 if the month is February, MM will return 02, MMM will return Feb, and MMMM will return February, assuming that you are using the en-US locale. The date pipe also supports predefined date formats for commonly used combinations, the most useful of which are described in Table 16-8.Table 16-8Useful Predefined date Pipe Formats

	Name
	Description

	short
	This format is equivalent to the component string M/d/yy, h:mm a. It presents the date in a concise format, including the time component.

	medium
	This format is equivalent to the component string MMM d, y, h:mm:ss a. It presents the date as a more expansive format, including the time component.

	shortDate
	This format is equivalent to the component string M/d/yy. It presents the date in a concise format and excludes the time component.

	mediumDate
	This format is equivalent to the component string MMM d, y. It presents the date in a more expansive format and excludes the time component.

	longDate
	This format is equivalent to the component string MMMM d, y. It presents the date and excludes the time component.

	fullDate
	This format is equivalent to the component string EEEE, MMMM d, y. It presents the date fully and excludes the date format.

	shortTime
	This format is equivalent to the component string h:mm a.

	mediumTime
	This format is equivalent to the component string h:mm:ss a.

The date pipe also accepts arguments that specify a time zone and a locale. Listing 16-22 shows the use of the predefined formats as arguments to the date pipe, rendering the same date in different ways and with different locale settings.
Tip
The time zone argument has to be specified in order to set the locale. Use the empty string ("") as the time zone if you want to use the application’s default time zone.

<div class="bg-info p-2 text-white">
 <div>Date formatted from object: {{ dateObject | date:"shortDate" }}</div>
 <div>Date formatted from string: {{ dateString | date:"mediumDate" }}</div>
 <div>Date formatted from number: {{ dateNumber | date:"longDate" }}</div>
</div>

<div class="bg-info p-2 text-white">
 <div>
 Date formatted from object: {{ dateObject | date:"shortDate":"UTC":"fr-FR" }}
 </div>
 <div>
 Date formatted from string: {{ dateString | date:"mediumDate":"UTC":"fr-FR" }}
 </div>
 <div>
 Date formatted from number: {{ dateNumber | date:"longDate":"UTC":"fr-FR" }}
 </div>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-22Formatting Dates in the productTable.component.html File in the src/app Folder

Formatting arguments are specified as literal strings. Take care to capitalize the format string correctly because shortDate will be interpreted as one of the predefined formats from Table 16-8, but shortdate (with a lowercase letter d) will be interpreted as a series of characters from Table 16-7 and produce nonsensical output.
Caution
Date parsing/formatting is a complex and time-consuming process. As a consequence, the pure property for the date pipe is true; as a result, changes to individual components of a Date object won’t trigger an update. If you need to reflect changes in the way that a date is displayed, then you must change the reference to the Date object that the binding containing the date pipe refers to.

Figure 16-15 shows the formatted dates, in the en-US and fr-FR locales.[image:]
Figure 16-15Location-sensitive date formatting

Understanding The Impact Of Lazy Localization
Localizing a product takes time, effort, and resources, and it needs to be done by someone who understands the linguistic, cultural, and monetary conventions of the target country or region. If you don’t localize properly, then the result can be worse than not localizing at all.
It is for this reason that I don’t describe localization features in detail in this book—or any of my books. Describing features outside of the context in which they will be used feels like setting up readers for a self-inflicted disaster. At least if a product isn’t localized, the user knows where they stand and doesn’t have to try to figure out whether you just forgot to change the currency code or whether those prices are really in U.S. dollars. (This is an issue that I see all the time living in the United Kingdom.)
You should localize your products. Your users should be able to do business or perform other operations in a way that makes sense to them. But you must take it seriously and allocate the time and effort required to do it properly.

Changing String Case
The uppercase, lowercase, and titlecase pipes convert all the characters in a string to uppercase or lowercase, respectively. Listing 16-23 shows the first two pipes applied to cells in the product table. This listing also removes the dates used in the previous section. <!-- <div class="bg-info p-2 text-white">
 <div>Date formatted from object: {{ dateObject | date:"shortDate" }}</div>
 <div>Date formatted from string: {{ dateString | date:"mediumDate" }}</div>
 <div>Date formatted from number: {{ dateNumber | date:"longDate" }}</div>
</div>

<div class="bg-info p-2 text-white">
 <div>Date formatted from object: {{ dateObject | date:"shortDate":"UTC":"fr-FR" }}</div>
 <div>Date formatted from string: {{ dateString | date:"mediumDate":"UTC":"fr-FR" }}</div>
 <div>Date formatted from number: {{ dateNumber | date:"longDate":"":"fr-FR" }}</div>
</div> -->

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name | uppercase }}</td>
 <td>{{item.category | lowercase }}</td>
 <td>
 {{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-23Changing Character Case in the productTable.component.html File in the src/app Folder

These pipes use the standard JavaScript string methods toUpperCase and toLowerCase, which are not sensitive to locale settings, as shown in Figure 16-16.[image:]
Figure 16-16Changing character case

The titlecase pipe capitalizes the first character of each word and uses lowercase for the remaining characters. Listing 16-24 applies the titlecase pipe to the table cells.<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name | titlecase }}</td>
 <td>{{item.category | lowercase }}</td>
 <td>
 {{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-24Applying the Pipe in the productTable.component.html File in the src/app Folder

Figure 16-17 shows the effect of the pipe.[image:]
Figure 16-17Using the titlecase pipe

Serializing Data as JSON
The json pipe creates a JSON representation of a data value. No arguments are accepted by this pipe, which uses the browser’s JSON.stringify method to create the JSON string. Listing 16-25 applies this pipe to create a JSON representation of the objects in the data model. <div class="bg-info p-2 text-white">
 <div>{{ getProducts() | json }}</div>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | filter:categoryFilter;
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name | titlecase }}</td>
 <td>{{item.category | lowercase }}</td>
 <td>{{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-25Creating a JSON String in the productTable.component.html File in the src/app Folder

This pipe is useful during debugging, and its decorator’s pure property is false so that any change in the application will cause the pipe’s transform method to be invoked, ensuring that even collection-level changes are shown. Figure 16-18 shows the JSON generated from the objects in the example application’s data model.[image:]
Figure 16-18Generating JSON strings for debugging

Slicing Data Arrays
The slice pipe operates on an array or string and returns a subset of the elements or characters it contains. This is an impure pipe, which means it will reflect any changes that occur within the data object it is operating on but also means that the slice operation will be performed after any change in the application, even if that change was not related to the source data.
The objects or characters selected by the slice pipe are specified using two arguments, which are described in Table 16-9.Table 16-9The Slice Pipe Arguments

	Name
	Description

	start
	This argument must be specified. If the value is positive, the start index for items to be included in the result counts from the first position in the array. If the value is negative, then the pipe counts back from the end of the array.

	end
	This optional argument is used to specify how many items from the start index should be included in the result. If this value is omitted, all the items after the start index (or before in the case of negative values) will be included.

Listing 16-26 demonstrates the use of the slice pipe in combination with a select element that specifies how many items should be displayed in the product table.<div class="form-group my-2">
 <label>Number of items:</label>
 <select class="form-select" [value]="itemCount ?? 1"
 (change)="itemCount=$any($event).target.value">
 <option *ngFor="let item of getProducts(); let i = index" [value]="i + 1"
 [selected]="(i + 1) === itemCount">
 {{i + 1}}
 </option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead class="table-light">
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts() | slice:0:(itemCount ?? 1);
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
 <td>{{i + 1}}</td>
 <td>{{item.name | titlecase }}</td>
 <td>{{item.category | lowercase }}</td>
 <td>{{item.price | addTax:(taxRate ?? 0)
 | currency:"USD":"symbol":"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 16-26Using the slice Pipe in the productTable.component.html File in the src/app Folder

The select element is populated with option elements created with the ngFor directive. This directive doesn’t directly support iterating a specific number of times, so I have used the index variable to generate the values that are required. The select element sets a property called itemCount, which is used as the second argument of the slice pipe, like this:...
<tr *paFor="let item of getProducts() | slice:0:(itemCount ?? 1);
 let i = index; let odd = odd;
 let even = even" [class.table-info]="odd" [class.table-warning]="even"
 class="align-middle">
...

The effect is that changing the value displayed by the select element changes the number of items displayed in the product table, as shown in Figure 16-19.[image:]
Figure 16-19Using the slice pipe

Formatting Key-Value Pairs
The keyvalue pipe operates on an object or a map and returns a sequence of key-value pairs. Each object in the sequence is represented as an object with key and value properties, and Listing 16-27 replaces the contents of the productTable.component.html file to demonstrate the use of the pipe to enumerate the contents of the array returned by the getProducts method. <table class="table table-sm table-bordered table-striped">
 <thead><tr><th>Key</th><th>Value</th></tr></thead>
 <tbody>
 <tr *paFor="let item of getProducts() | keyvalue">
 <td>{{ item.key }}</td>
 <td>{{ item.value | json }}</td>
 </tr>
 </tbody>
</table>

Listing 16-27Using the keyvalue Pipe in the productTable.component.html File in the src/app Folder

When used on an array, the keys are the array indexes, and the values are the objects in the array. The objects in the array are formatted using the json filter, producing the results shown in Figure 16-20.[image:]
Figure 16-20Using the keyvalue pipe

Selecting Values
The i18nSelect pipe selects a string based on a value, allowing context-sensitive values to be displayed to the user. The mapping between values and strings is defined as a simple map, as shown in Listing 16-28. import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;

 // dateObject: Date = new Date(2020, 1, 20);
 // dateString: string = "2020-02-20T00:00:00.000Z";
 // dateNumber: number = 1582156800000;

 selectMap = {
 "Watersports": "stay dry",
 "Soccer": "score goals",
 "other": "have fun"
 }
}

Listing 16-28Mapping Values to Strings in the productTable.component.ts File in the src/app Folder

The other mapping is used as a fallback when there is no match with the other values. In Listing 16-29, I have applied the pipe to select a message to display to the user.<table class="table table-sm table-bordered table-striped">
 <thead><tr><th>Name</th><th>Category</th><th>Message</th></tr></thead>
 <tbody>
 <tr *paFor="let item of getProducts()">
 <td>{{ item.name }}</td>
 <td>{{ item.category }}</td>
 <td>Helps you {{ item.category | i18nSelect:selectMap }} </td>
 </tr>
 </tbody>
</table>

Listing 16-29Using the Pipe in the productTable.component.html File in the src/app Folder

The pipe is provided with the map as an argument and produces the response shown in Figure 16-21.[image:]
Figure 16-21Selecting values using the i18nSelect pipe

Pluralizing Values
The i18nPlural pipe is used to select an expression that describes a numeric value. The mapping between values and expressions is expressed as a simple map, as shown in Listing 16-30. import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 // ...other statments omitted for brevity...

 selectMap = {
 "Watersports": "stay dry",
 "Soccer": "score goals",
 "other": "have fun"
 }

 numberMap = {
 "=1": "one product",
 "=2": "two products",
 "other": "# products"
 }
}

Listing 16-30Mapping Numbers to Strings in the productTable.component.ts File in the src/app Folder

Each mapping is expressed with an equals sign followed by the number. The other value is a fallback, and the result it produces can refer to the number value using the # placeholder character. Listing 16-31 shows the results that can be produced using the example mappings.<table class="table table-sm table-bordered table-striped">
 <thead> <tr><th>Name</th><th>Category</th><th>Message</th></tr></thead>
 <tbody>
 <tr *paFor="let item of getProducts()">
 <td>{{ item.name }}</td>
 <td>{{ item.category }}</td>
 <td>Helps you {{ item.category | i18nSelect:selectMap }} </td>
 </tr>
 </tbody>
</table>

<div class="bg-info text-white p-2">
 <div>There are {{ 1 | i18nPlural:numberMap }} </div>
 <div>There are {{ 2 | i18nPlural:numberMap }} </div>
 <div>There are {{ 100 | i18nPlural:numberMap }} </div>
</div>

Listing 16-31Using the Pipe in the productTable.component.html File in the src/app Folder

The mapping is specified as the argument to the pipe, and the values in Listing 16-31 produce the result shown in Figure 16-22.[image:]
Figure 16-22Selecting values using the i18nPlural pipe

Using the Async Pipe
Angular includes the async pipe, which can be used to consume Observable objects directly in a view, selecting the last object received from the event sequence. This is an impure pipe because its changes are driven from outside of the view in which it is used, meaning that its transform method will be called often, even if a new event has not been received from the Observable.
You can see this pipe used in later chapters to receive events from observables provided by the Angular API, but for this chapter, I am going to generate test events. Listing 16-32 adds a Subject<number> property to the ProductTableComponent class and uses it to generate a sequence of events. import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
import { Subject } from "rxjs";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;

 selectMap = {
 "Watersports": "stay dry",
 "Soccer": "score goals",
 "other": "have fun"
 }

 numberMap = {
 "=1": "one product",
 "=2": "two products",
 "other": "# products"
 }

 numbers: Subject<number> = new Subject<number>();

 ngOnInit() {
 let counter = 100;
 setInterval(() => {
 this.numbers.next(counter += 10)
 }, 1000);
 }
}

Listing 16-32Adding a Subject in the productTable.component.ts File in the src/app Folder

Listing 16-33 applies the async pipe to display the values received from the observable. <table class="table table-sm table-bordered table-striped">
 <thead> <tr><th>Name</th><th>Category</th><th>Message</th></tr></thead>
 <tbody>
 <tr *paFor="let item of getProducts()">
 <td>{{ item.name }}</td>
 <td>{{ item.category }}</td>
 <td>Helps you {{ item.category | i18nSelect:selectMap }} </td>
 </tr>
 </tbody>
</table>

<div class="bg-info text-white p-2">
 <div> Counter: {{ numbers | async }} </div>
</div>

Listing 16-33Using the Async Pipe in the productTable.component.html File in the src/app Folder

The string interpolation binding expression gets the numbers property from the component and passes it to the async pipe, which keeps track of the most recent event that has been received, as shown in Figure 16-23.[image:]
Figure 16-23Using the async pipe

The async pipe can be used with other pipes, such as the currency pipe shown in Listing 16-34.<table class="table table-sm table-bordered table-striped">
 <thead> <tr><th>Name</th><th>Category</th><th>Message</th></tr></thead>
 <tbody>
 <tr *paFor="let item of getProducts()">
 <td>{{ item.name }}</td>
 <td>{{ item.category }}</td>
 <td>Helps you {{ item.category | i18nSelect:selectMap }} </td>
 </tr>
 </tbody>
</table>

<div class="bg-info text-white p-2">
 <div> Counter: {{ numbers | async | currency:"USD":"symbol":"2.2-2" }} </div>
</div>

Listing 16-34Combining Pipes in the productTable.component.html File in the src/app Folder

As each event is received, it is passed from the async pipe to the currency pipe, producing the result shown in Figure 16-24.[image:]
Figure 16-24Combining pipes

Summary
In this chapter, I introduced pipes and explained how they are used to transform data values so they can be presented to the user in the template. I demonstrated the process for creating custom pipes, explained how some pipes are pure and others are not, and demonstrated the built-in pipes that Angular provides for handling common tasks. In the next chapter, I introduce services, which can be used to simplify the design of Angular applications and allow building blocks to easily collaborate.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_17

17. Using Services

Adam Freeman1
(1)London, UK

Services are objects that provide common functionality to support other building blocks in an application, such as directives, components, and pipes. What’s important about services is the way that they are used, which is through a process called dependency injection. Using services can increase the flexibility and scalability of an Angular application, but dependency injection can be a difficult topic to understand. To that end, I start this chapter slowly and explain the problems that services and dependency injection can be used to solve, how dependency injection works, and why you should consider using services in your own projects. In Chapter 18, I introduce some more advanced features that Angular provides for service. Table 17-1 puts services in context.Table 17-1Putting Services in Context

	Question
	Answer

	What are they?
	Services are objects that define the functionality required by other building blocks such as components or directives. What separates services from regular objects is that they are provided to building blocks by an external provider, rather than being created directly using the new keyword or received by an input property.

	Why are they useful?
	Services simplify the structure of applications, make it easier to move or reuse functionality, and make it easier to isolate building blocks for effective unit testing.

	How are they used?
	Classes declare dependencies on services using constructor parameters, which are then resolved using the set of services for which the application has been configured. Services are classes to which the @Injectable decorator has been applied.

	Are there any pitfalls or limitations?
	Dependency injection is a contentious topic, and not all developers like using it. If you don’t perform unit tests or if your applications are relatively simple, the extra work required to implement dependency injection is unlikely to pay any long-term dividends.

	Are there any alternatives?
	Services and dependency injection are hard to avoid because Angular uses them to provide access to built-in functionality. But you are not required to define services for your own custom functionality if that is your preference.

Table 17-2 summarizes the chapter.Table 17-2Chapter Summary

	Problem
	Solution
	Listing

	Avoiding the need to distribute shared objects manually
	Use services
	1–14, 21–28

	Declaring a dependency on a service
	Add a constructor parameter with the type of the service you require
	15–20

Preparing the Example Project
I continue using the example project in this chapter that I have been working with since Chapter 9. To prepare for this chapter, I have replaced the contents of the template for the ProductTable component with the elements shown in Listing 17-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD":"symbol" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

Listing 17-1Replacing the Contents of the productTable.component.html File in the src/app Folder

Run the following command in the example folder to start the TypeScript compiler and the development HTTP server:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 17-1.[image:]
Figure 17-1Running the example application

Understanding the Object Distribution Problem
In Chapter 15, I added components to the project to help break up the monolithic structure of the application. In doing this, I used input and output properties to connect components, using host elements to bridge the isolation that Angular enforces between a parent component and its children. I also showed you how to query the contents of the template for view children, which complements the content children feature described in Chapter 14.
These techniques for coordinating between directives and components can be powerful and useful if applied carefully. But they can also end up as a general tool for distributing shared objects throughout an application, where the result is to increase the complexity of the application and to tightly bind components together.
Demonstrating the Problem
To help demonstrate the problem, I am going to add a shared object to the project and two components that rely on it. I created a file called discount.service.ts to the src/app folder and defined the class shown in Listing 17-2. I’ll explain the significance of the service part of the filename later in the chapter.export class DiscountService {
 private discountValue: number = 10;

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue ?? 0;
 }

 public applyDiscount(price: number) {
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 17-2The Contents of the discount.service.ts File in the src/app Folder

The DiscountService class defines a private property called discountValue that is used to store a number that will be used to reduce the product prices in the data model. This value is exposed through getters and setters called discount, and there is a convenience method called applyDiscount that reduces a price while ensuring that a price is never less than $5.
For the first component that makes use of the DiscountService class, I added a file called discountDisplay.component.ts to the src/app folder and added the code shown in Listing 17-3.import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info text-white p-2 my-2">
 The discount is {{discounter?.discount }}
 </div>`
})
export class PaDiscountDisplayComponent {

 @Input("discounter")
 discounter?: DiscountService;
}

Listing 17-3The Contents of the discountDisplay.component.ts File in the src/app Folder

The DiscountDisplayComponent uses an inline template to display the discount amount, which is obtained from a DiscountService object received through an input property.
For the second component that makes use of the DiscountService class, I added a file called discountEditor.component.ts to the src/app folder and added the code shown in Listing 17-4.import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <ng-template [ngIf]="discounter?.discount ?? false">
 <input [(ngModel)]="discounter!.discount"
 class="form-control" type="number" />
 </ng-template>
 </div>`
})
export class PaDiscountEditorComponent {

 @Input("discounter")
 discounter?: DiscountService;
}

Listing 17-4The Contents of the discountEditor.component.ts File in the src/app Folder

The DiscountEditorComponent uses an inline template with an input element that allows the discount amount to be edited. The input element has a two-way binding on the DiscountService.discount property that targets the ngModel directive. Listing 17-5 shows the new components being enabled in the Angular module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 // providers: [{ provide: LOCALE_ID, useValue: "fr-FR" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 17-5Enabling the Components in the app.module.ts File in the src/app Folder

To get the new components working, I added them to the parent component’s template, positioning the new content underneath the table that lists the products, which means that I need to edit the productTable.component.html file, as shown in Listing 17-6.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD":"symbol" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

<paDiscountEditor [discounter]="discounter"></paDiscountEditor>
<paDiscountDisplay [discounter]="discounter"></paDiscountDisplay>

Listing 17-6Adding Component Elements in the productTable.component.html File in the src/app Folder

These elements correspond to the components’ selector properties in Listing 17-3 and Listing 17-4 and use data bindings to set the value of the input properties. The final step is to create an object in the parent component that will provide the value for the data binding expressions, as shown in Listing 17-7.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
//import { Subject } from "rxjs";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
 discounter: DiscountService = new DiscountService();

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;

 // selectMap = {
 // "Watersports": "stay dry",
 // "Soccer": "score goals",
 // "other": "have fun"
 // }

 // numberMap = {
 // "=1": "one product",
 // "=2": "two products",
 // "other": "# products"
 // }

 // numbers: Subject<number> = new Subject<number>();

 // ngOnInit() {
 // let counter = 100;
 // setInterval(() => {
 // this.numbers.next(counter += 10)
 // }, 1000);
 // }
}

Listing 17-7Creating the Shared Object in the productTable.component.ts File in the src/app Folder

Figure 17-2 shows the content from the new components. Changes to the value in the input element provided by one of the components will be reflected in the content presented by the other component, reflecting the use of the shared DiscountService object and its discount property.[image:]
Figure 17-2Adding components to the example application

The process for adding the new components and the shared object was straightforward and logical, until the final stage. The problem arises in the way that I had to create and distribute the shared object: the instance of the DiscountService class.
Because Angular isolates components from one another, I had no way to share the DiscountService object directly between the DiscountEditorComponent and DiscountDisplayComponent. Each component could have created its own DiscountService object, but that means changes from the editor component wouldn’t be shown in the display component.
That is what led me to create the DiscountService object in the product table component, which is the first shared ancestor of the discount editor and display components. This allowed me to distribute the DiscountService object through the product table component’s template, ensuring that a single object was shared with both of the components that need it.
But there are a couple of problems. The first is that the ProductTableComponent class doesn’t actually need or use a DiscountService object to deliver its own functionality. It just happens to be the first common ancestor of the components that do need the object. And creating the shared object in the ProductTableComponent class makes that class slightly more complex and slightly more difficult to test effectively. This is a modest increment of complexity, but it will occur for every shared object that the application requires—and a complex application can depend on a lot of shared objects, each of which ends up being created by components that just happen to be the first common ancestor of the classes that depend on them.
The second problem is hinted at by the term first common ancestor. The ProductTableComponent class happens to be the parent of both of the classes that depend on the DiscountService object, but think about what would happen if I wanted to move the DiscountEditorComponent so that it was displayed under the form rather than the table. In this situation, I have to work my way up the tree of components until I find a common ancestor, which would end up being the root component. Then I would have to work my way down the component tree adding input properties and modifying templates so that each intermediate component could receive the DiscountService object from its parent and pass it on to any children that have descendants that need it. The same applies to any directives that depend on receiving a DiscountService object, where any component whose template contains data bindings that target that directive must make sure they are part of the distribution chain, too.
The result is that the components and directives in the application become tightly bound together. A major refactoring is required if you need to move or reuse a component in a different part of the application and the management of the input properties and data bindings becomes unmanageable.
Distributing Objects as Services Using Dependency Injection
There is a better way to distribute objects to the classes that depend on them, which is to use dependency injection, where objects are provided to classes from an external source. Angular includes a built-in dependency injection system and supplies the external source of objects, known as providers. In the sections that follow, I rework the example application to provide the DiscountService object without needing to use the component hierarchy as a distribution mechanism.
Preparing the Service
Any object that is managed and distributed through dependency injection is called a service, which is why I selected the name DiscountService for the class that defines the shared object and why that class is defined in a file called discount.service.ts. Angular denotes service classes using the @Injectable decorator, as shown in Listing 17-8. The @Injectable decorator doesn’t define any configuration properties. import { Injectable } from "@angular/core";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 17-8Preparing a Class as a Service in the discount.service.ts File in the src/app Folder

Tip
Strictly speaking, the @Injectable decorator is required only when a class has its own constructor arguments to resolve, but it is a good idea to apply it anyway because it serves as a signal that the class is intended for use as a service.

Preparing the Dependent Components
A class declares dependencies using its constructor. When Angular needs to create an instance of the class—such as when it finds an element that matches the selector property defined by a component—its constructor is inspected, and the type of each argument is examined. Angular then uses the services that have been defined to try to satisfy the dependencies. The term dependency injection arises because each dependency is injected into the constructor to create the new instance.
For the example application, it means that the components that depend on a DiscountService object no longer require input properties and can declare a constructor dependency instead. Listing 17-9 shows the changes to the DiscountDisplayComponent class.import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info text-white p-2 my-2">
 The discount is {{discounter?.discount }}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(public discounter: DiscountService) { }

 // @Input("discounter")
 // discounter?: DiscountService;
}

Listing 17-9Declaring a Dependency in the discountDisplay.component.ts File in the src/app Folder

The same change can be applied to the DiscountEditorComponent class, replacing the input property with a dependency declared through the constructor, as shown in Listing 17-10.import { Component, Input } from "@angular/core";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(public discounter: DiscountService) { }

 // @Input("discounter")
 // discounter?: DiscountService;
}

Listing 17-10Declaring a Dependency in the discountEditor.component.ts File in the src/app Folder

These are small changes, but they avoid the need to distribute objects using templates and input properties and produce a more flexible application. And, since the value of the discounter property is set in the constructor, I can simplify the template so that it doesn’t need to deal with undefined values.
I can now remove the DiscountService object from the product table component, as shown in Listing 17-11.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
//import { Subject } from "rxjs";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
 //discounter: DiscountService = new DiscountService();

 @Input("model")
 dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 17-11Removing the Shared Object in the productTable.component.ts File in the src/app Folder

Since the parent component is no longer providing the shared object through data bindings, I can remove them from the template, as shown in Listing 17-12.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD":"symbol" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Listing 17-12Removing the Data Bindings in the productTable.component.html File in the src/app Folder

Registering the Service
The final change is to configure the dependency injection feature so that it can provide DiscountService objects to the components that require them. To make the service available throughout the application, it is registered in the Angular module, as shown in Listing 17-13. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 17-13Registering a Service in the app.module.ts File in the src/app Folder

The NgModule decorator’s providers property is set to an array of the classes that will be used as services. There is only one service at the moment, which is provided by the DiscountService class.
When you save the changes to the application, there won’t be any visual changes, but the dependency injection feature will be used to provide the components with the DiscountService object they require.
Reviewing the Dependency Injection Changes
Angular seamlessly integrates dependency injection into its feature set. Each time that Angular encounters an element that requires a new building block, such as a component or a pipe, it examines the class constructor to check what dependencies have been declared and uses its services to try to resolve them. The set of services used to resolve dependencies includes the custom services defined by the application, such as the DiscountService service that was registered in Listing 17-13, and a set of built-in services provided by Angular that will be described in later chapters.
The changes to introduce dependency injection in the previous section didn’t result in a big-bang change in the way that the application works—or any visible change at all. But there is a profound difference in the way that the application is put together that makes it more flexible and fluid. The best demonstration of this is to add the components that require the DiscountService to a different part of the application, as shown in Listing 17-14.<form #form="ngForm" (ngSubmit)="submitForm(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control"
 name="category" [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
</form>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Listing 17-14Adding Components in the productForm.component.html File in the src/app Folder

These new elements duplicate the discount display and editor components so they appear below the form used to create new products, as shown in Figure 17-3.[image:]
Figure 17-3Duplicating components with dependencies

There are two points of note. First, using dependency injection made this a simple process of adding elements to a template, without needing to modify the ancestor components to provide a DiscountService object using input properties.
The second point of note is that all the components in the application that have declared a dependency on DiscountService have received the same object. If you edit the value in either of the input elements, the changes will be reflected in the other input element and in the string interpolation bindings, as shown in Figure 17-4.[image:]
Figure 17-4Checking that the dependency is resolved using a shared object

Declaring Dependencies in Other Building Blocks
It isn’t just components that can declare constructor dependencies. Once you have defined a service, you can use it more widely, including other building blocks in the application, such as pipes and directives, as demonstrated in the sections that follow.
Declaring a Dependency in a Pipe
Pipes can declare dependencies on services by defining a constructor with arguments for each required service. To demonstrate, I added a file called discount.pipe.ts to the src/app folder and used it to define the pipe shown in Listing 17-15. import { Pipe } from "@angular/core";
import { DiscountService } from "./discount.service";

@Pipe({
 name: "discount",
 pure: false
})
export class PaDiscountPipe {

 constructor(private discount: DiscountService) { }

 transform(price: number): number {
 return this.discount.applyDiscount(price);
 }
}

Listing 17-15The Contents of the discount.pipe.ts File in the src/app Folder

The PaDiscountPipe class is a pipe that receives a price and generates a result by calling the DiscountService.applyDiscount method, where the service is received through the constructor. The pure property in the Pipe decorator is false, which means that the pipe will be asked to update its result when the value stored by the DiscountService changes, which won’t be recognized by the Angular change-detection process.
Tip
This feature should be used with caution because it means that the transform method will be called after every change in the application, not just when the service is changed.

Listing 17-16 shows the new pipe being registered in the application’s Angular module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 17-16Registering a Pipe in the app.module.ts File in the src/app Folder

Listing 17-17 shows the new pipe applied to the Price column in the product table.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | discount | currency:"USD":"symbol" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Listing 17-17Applying a Pipe in the productTable.component.html File in the src/app Folder

The discount pipe processes the price to apply the discount and then passes on the value to the currency pipe for formatting. You can see the effect of using the service in the pipe by changing the value in one of the discount input elements, as shown in Figure 17-5.[image:]
Figure 17-5Using a service in a pipe

Declaring Dependencies in Directives
Directives can also use services. As I explained in Chapter 15, components are just directives with templates, so anything that works in a component will also work in a directive.
To demonstrate using a service in a directive, I added a file called discountAmount.directive.ts to the src/app folder and used it to define the directive shown in Listing 17-18.import { Directive, Input,SimpleChange, KeyValueDiffer,
 KeyValueDiffers } from "@angular/core";
import { DiscountService } from "./discount.service";

@Directive({
 selector: "td[pa-price]",
 exportAs: "discount"
})
export class PaDiscountAmountDirective {
 private differ?: KeyValueDiffer<any, any>;

 constructor(private keyValueDiffers: KeyValueDiffers,
 private discount: DiscountService) { }

 @Input("pa-price")
 originalPrice?: number;

 discountAmount?: number;

 ngOnInit() {
 this.differ =
 this.keyValueDiffers.find(this.discount).create();
 }

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 if (changes["originalPrice"] != null) {
 this.updateValue();
 }
 }

 ngDoCheck() {
 if (this.differ?.diff(this.discount) != null) {
 this.updateValue();
 }
 }

 private updateValue() {
 this.discountAmount = this.discount.applyDiscount(this.originalPrice ?? 0);
 }
}

Listing 17-18The Contents of the discountAmount.directive.ts File in the src/app Folder

Directives don’t have an equivalent to the pure property used by pipes and must take direct responsibility for responding to changes propagated through services. This directive displays the discounted amount for a product. The selector property matches td elements that have a pa-price attribute, which is also used as an input property to receive the price that will be discounted. The directive exports its functionality using the exportAs property and provides a property called discountAmount whose value is set to the discount that has been applied to the product.
There are two other points to note about this directive. The first is that the DiscountService object isn’t the only constructor parameter in the directive’s class....
constructor(private keyValueDiffers: KeyValueDiffers,
 private discount: DiscountService) { }
...

The KeyValueDiffers parameter is also a dependency that Angular will have to resolve when it creates a new instance of the directive class. This is an example of the built-in services that Angular provides that deliver commonly required functionality.
The second point of note is what the directive does with the services it receives. The components and the pipe that use the DiscountService service don’t have to worry about tracking updates, either because Angular automatically evaluates the expressions of the data bindings and updates them when the discount rate change (for the components) or because any change in the application triggers an update (for the impure pipe). The data binding for this directive is on the price property, which will trigger a change if is altered. But there is also a dependency on the discount property defined by the DiscountService class. Changes in the discount property are detected using the service received through the constructor, which tracks changes as described in Chapter 14. When Angular invokes the ngDoCheck method, the directive uses the key-value pair differ to see whether there has been a change. (This change direction could also have been handled by keeping track of the previous update in the directive class, but I wanted to provide an example of using the key-value differ feature.)
The directive also implements the ngOnChanges method so that it can respond to changes in the value of the input property. For both types of update, the updateValue method is called, which calculates the discounted price and assigns it to the discountAmount property.
Listing 17-19 registers the new directive in the application’s Angular module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 17-19Registering a Directive in the app.module.ts File in the src/app Folder

To apply the new directive, Listing 17-20 adds a new column to the table, using a string interpolation binding to access the property provided by the directive and to pass it to the currency pipe.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td [pa-price]="item.price" #discount="discount">
 {{ discount.discountAmount | currency:"USD":"symbol"}}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

<paDiscountEditor></paDiscountEditor>
<paDiscountDisplay></paDiscountDisplay>

Listing 17-20Creating a New Column in the productTable.component.html File in the src/app Folder

The directive could have created a host binding on the textContent property to set the contents of its host element, but that would have prevented the currency pipe from being used. Instead, the directive is assigned to the discount template variable, which is then used in the string interpolation binding to access and then format the discountAmount value. Figure 17-6 shows the results. Changes to the discount amount in either of the discount editor input elements will be reflected in the new table column.[image:]
Figure 17-6Using a service in a directive

Understanding the Test Isolation Problem
The example application contains a related problem that services and dependency injection can be used to solve. Consider how the Model class is used in the root component:import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
})
export class ProductComponent {
 model: Model = new Model();

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

The root component is defined as the ProductComponent class, and it sets up a value for its model property by creating a new instance of the Model class. This works—and is a legitimate way to create an object—but it makes it harder to perform unit testing effectively.
Unit testing works best when you can isolate one small part of the application and focus on it to perform tests. But when you create an instance of the ProductComponent class, you are implicitly creating an instance of the Model class as well. If you were to run tests on the root component’s addProduct method and find a problem, you would have no indication of whether the problem was in the ProductComponent or Model class.
Isolating Components Using Services and Dependency Injection
The underlying problem is that the ProductComponent class is tightly bound to the Model class, which is, in turn, tightly bound to the SimpleDataSource class. Dependency injection can be used to tease apart the building blocks in an application so that each class can be isolated and tested on its own. In the sections that follow, I walk through the process of breaking up these tightly coupled classes, following essentially the same process as in the previous section but delving deeper into the example application.
Preparing the Services
The @Injectable decorator is used to denote services, just as in the previous example. Listing 17-21 shows the decorator applied to the SimpleDataSource class.import { Product } from "./product.model";
import { Injectable } from "@angular/core";

@Injectable()
export class SimpleDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Listing 17-21Denoting a Service in the datasource.model.ts File in the src/app Folder

No other changes are required. Listing 17-22 shows the same decorator being applied to the data repository, and since this class has a dependency on the SimpleDataSource class, it declares it as a constructor dependency rather than creating an instance directly.import { Product } from "./product.model";
import { SimpleDataSource } from "./datasource.model";
import { Injectable } from "@angular/core";

@Injectable()
export class Model {
 //private dataSource: SimpleDataSource;
 private products: Product[];
 private locator = (p: Product, id: number | any) => p.id == id;

 constructor(private dataSource: SimpleDataSource) {
 //this.dataSource = new SimpleDataSource();
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 // ...other members omitted for brevity...
}

Listing 17-22Denoting a Service and Dependency in the repository.model.ts File in the src/app Folder

The important point to note in this listing is that services can declare dependencies on other services. When Angular comes to create a new instance of a service class, it inspects the constructor and tries to resolve the services in the same way as when dealing with a component or directive.
Registering the Services
These services must be registered so that Angular knows how to resolve dependencies on them, as shown in Listing 17-23.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 17-23Registering the Services in the app.module.ts File in the src/app Folder

Preparing the Dependent Component
Rather than create a Model object directly, the root component can declare a constructor dependency that Angular will resolve using dependency injection when the application starts, as shown in Listing 17-24.import { Component } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
})
export class ProductComponent {
 //model: Model = new Model();

 constructor(public model: Model) { }

 addProduct(p: Product) {
 this.model.saveProduct(p);
 }
}

Listing 17-24Declaring a Service Dependency in the component.ts File in the src/app Folder

There is now a chain of dependencies that Angular has to resolve. When the application starts, the Angular module specifies that the ProductComponent class needs a Model object. Angular inspects the Model class and finds that it needs a SimpleDataSource object. Angular inspects the SimpleDataSource object and finds that there are no declared dependencies and therefore knows that this is the end of the chain. It creates a SimpleDataSource object and passes it as an argument to the Model constructor to create a Model object, which can then be passed to the ProductComponent class constructor to create the object that will be used as the root component. All of this happens automatically, based on the constructors defined by each class and the use of the @Injectable decorator.
These changes don’t create any visible changes in the way that the application works, but they do allow a completely different way of performing unit tests. The ProductComponent class requires that a Model object is provided as a constructor argument, which allows for a mock object to be used.
Breaking up the direct dependencies between the classes in the application means that each of them can be isolated for the purposes of unit testing and provided with mock objects through their constructor, allowing the effect of a method or some other feature to be consistently and independently assessed.
Completing the Adoption of Services
Once you start using services in an application, the process generally takes on a life of its own, and you start to examine the relationships between the building blocks you have created. The extent to which you introduce services is—at least in part—a matter of personal preference.
A good example is the use of the Model class in the root component. Although the component does implement a method that uses the Model object, it does so because it needs to handle a custom event from one of its child components. The only other reason that the root component has for needing a Model object is to pass it on via its template to the other child component using an input property.
This situation isn’t an enormous problem, and your preference may be to have these kinds of relationships in a project. After all, each of the components can be isolated for unit testing, and there is some purpose, however limited, to the relationships between them. This kind of relationship between components can help make sense of the functionality that an application provides.
On the other hand, the more you use services, the more the building blocks in your project become self-contained and reusable blocks of functionality, which can ease the process of adding or changing functionality as the project matures.
There is no absolute right or wrong, and you must find the balance that suits you, your team, and, ultimately, your users and customers. Not everyone likes using dependency injection, and not everyone performs unit testing.
My preference is to use dependency injection as widely as possible. I find that the final structure of my applications can differ significantly from what I expect when I start a new project and that the flexibility offered by dependency injection helps me avoid repeated periods of refactoring. So, to complete this chapter, I am going to push the use of the Model service into the rest of the application, breaking the coupling between the root component and its immediate children.
Updating the Root Component and Template
The first changes I will make are to remove the Model object from the root component, along with the method that uses it and the input property in the template that distributes the model to one of the child components. Listing 17-25 shows the changes to the component class.import { Component } from "@angular/core";
// import { Model } from "./repository.model";
// import { Product } from "./product.model";

@Component({
 selector: "app",
 templateUrl: "template.html",
})
export class ProductComponent {
 // constructor(public model: Model) { }

 // addProduct(p: Product) {
 // this.model.saveProduct(p);
 // }
}

Listing 17-25Removing the Model Object from the component.ts File in the src/app Folder

The revised root component class doesn’t define any functionality and now exists only to provide the top-level application content in its template. Listing 17-26 shows the corresponding changes in the root template to remove the custom event binding and the input property.<div class="container-fluid angularApp">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <pa-productform></pa-productform>
 </div>
 <div class="col p-2">
 <paProductTable></paProductTable>
 </div>
 </div>
</div>

Listing 17-26Removing the Data Bindings in the template.html File in the src/app Folder

Updating the Child Components
The component that provides the form for creating new Product objects relied on the root component to handle its custom event and update the model. Without this support, the component must now declare a Model dependency and perform the update itself, as shown in Listing 17-27.import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { Model } from "./repository.model";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 // styleUrls: ["productForm.component.css"],
 // encapsulation: ViewEncapsulation.ShadowDom
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model) { }

 // @Output("paNewProduct")
 // newProductEvent = new EventEmitter<Product>();

 submitForm(form: any) {
 // this.newProductEvent.emit(this.newProduct);
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 17-27Working with the Model in the productForm.component.ts File in the src/app Folder

The component that manages the table of product objects used an input property to receive a Model object from its parent but must now obtain it directly by declaring a constructor dependency, as shown in Listing 17-28.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
//import { Subject } from "rxjs";
import { DiscountService } from "./discount.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
 //discounter: DiscountService = new DiscountService();

 constructor(private dataModel: Model) { }

 // @Input("model")
 // dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 17-28Declaring a Model Dependency in the productTable.component.ts File in the src/app Folder

You will see the same functionality displayed in the browser window when all the changes have been saved and the browser reloads the Angular application—but the way that the functionality is wired up has changed substantially, with each component obtaining the share objects it needs through the dependency injection feature, rather than relying on its parent component to provide it.
Summary
In this chapter, I explained the problems that dependency injection can be used to address and demonstrated the process of defining and consuming services. I described how services can be used to increase the flexibility in the structure of an application and how dependency injection makes it possible to isolate building blocks so they can be unit tested effectively. In the next chapter, I describe the advanced features that Angular provides for working with services.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_18

18. Using Service Providers

Adam Freeman1
(1)London, UK

In the previous chapter, I introduced services and explained how they are distributed using dependency injection. When using dependency injection, the objects that are used to resolve dependencies are created by service providers, known more commonly as providers. In this chapter, I explain how providers work, describe the different types of providers available, and demonstrate how providers can be created in different parts of the application to change the way that services behave. Table 18-1 puts providers in context.
Why You Should Consider Skipping This Chapter
Dependency injection provokes strong reactions in developers and polarizes opinion. If you are new to dependency injection and have yet to form your own opinion, then you might want to skip this chapter and just use the features that I described in Chapter 17. That’s because features like the ones I describe in this chapter are exactly why many developers dread using dependency injection and form a strong preference against its use.
The basic Angular dependency injection features are easy to understand and have an immediate and obvious benefit in making applications easier to write and maintain. The features described in this chapter provide fine-grained control over how dependency injection works, but they also make it possible to sharply increase the complexity of an Angular application and, ultimately, undermine many of the benefits that the basic features offer.
If you decide that you want all of the gritty details, then read on. But if you are new to the world of dependency injection, you may prefer to skip this chapter until you find that the basic features from Chapter 17 don’t deliver the functionality you require.

Table 18-1Putting Service Providers in Context

	Question
	Answer

	What are they?
	Providers are classes that create service objects the first time that Angular needs to resolve a dependency.

	Why are they useful?
	Providers allow the creation of service objects to be tailored to the needs of the application. The simplest provider just creates an instance of a specified class, but there are other providers that can be used to tailor the way that service objects are created and configured.

	How are they used?
	Providers are defined in the providers property of the Angular module’s decorator. They can also be defined by components and directives to provide services to their children, as described in the “Using Local Providers” section.

	Are there any pitfalls or limitations?
	It is easy to create unexpected behavior, especially when working with local providers. If you encounter problems, check the scope of the local providers you have created and make sure that your dependencies and providers are using the same tokens.

	Are there any alternatives?
	Many applications will require only the basic dependency injection features described in Chapter 17. You should use the features in this chapter only if you cannot build your application using the basic features and only if you have a solid understanding of dependency injection.

Table 18-2 summarizes the chapter.Table 18-2Chapter Summary

	Problem
	Solution
	Listing

	Changing the way that services are created
	Use a service provider
	1–3

	Specifying a service using a class
	Use the class provider
	4–6, 10–13

	Defining arbitrary tokens for services
	Use the InjectionToken class
	7–9

	Specifying a service using an object
	Use the value provider
	14–15

	Specifying a service using a function
	Use the factory provider
	16–18

	Specifying one service using another
	Use the existing service provider
	19

	Changing the scope of a service
	Use a local service provider
	20–28

	Controlling the resolution of dependencies
	Use the @Host, @Optional, or @SkipSelf decorator
	29–30

Preparing the Example Project
As with the other chapters in this part of the book, I am going to continue working with the project created in Chapter 11 and most recently modified in Chapter 19. To prepare for this chapter, I added a file called log.service.ts to the src/app folder and used it to define the service shown in Listing 18-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Injectable } from "@angular/core";

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 logInfoMessage(message: string) {
 this.logMessage(LogLevel.INFO, message);
 }

 logDebugMessage(message: string) {
 this.logMessage(LogLevel.DEBUG, message);
 }

 logErrorMessage(message: string) {
 this.logMessage(LogLevel.ERROR, message);
 }

 logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Message (${LogLevel[level]}): ${message}`);
 }
 }
}

Listing 18-1The Contents of the log.service.ts File in the src/app Folder

This service writes out log messages, with differing levels of severity, to the browser’s JavaScript console. I will register and use this service later in the chapter.
When you have created the service and saved the changes, run the following command in the example folder to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the application, as shown in Figure 18-1.[image:]
Figure 18-1Running the example application

Using Service Providers
As I explained in the previous chapters, classes declare dependencies on services using their constructor arguments. When Angular needs to create a new instance of the class, it inspects the constructor and uses a combination of built-in and custom services to resolve each argument. Listing 18-2 updates the DiscountService class so that it depends on the LogService class created in the previous section. import { Injectable } from "@angular/core";
import { LogService } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue ?? 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 18-2Creating a Dependency in the discount.service.ts File in the src/app Folder

The changes in Listing 18-2 prevent the application from running. Angular processes the HTML document and starts creating the hierarchy of components, each with their templates that require directives and data bindings, and it encounters the classes that depend on the DiscountService class. But it can’t create an instance of DiscountService because its constructor requires a LogService object, and it doesn’t know how to handle this class.
When you save the changes in Listing 18-2, you will see an error like this one in the browser’s JavaScript console:NullInjectorError: No provider for LogService!

Angular delegates responsibility for creating the objects needed for dependency injection to providers, each of which managed a single type of dependency. When it needs to create an instance of the DiscountService class, it looks for a suitable provider to resolve the LogService dependency. Since there is no such provider, Angular can’t create the objects it needs to start the application and reports the error.
The simplest way to create a provider is to add the service class to the array assigned to the Angular module’s providers property, as shown in Listing 18-3. (I have taken the opportunity to remove some of the statements that are no longer required in the module.)import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService } from "./log.service";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model, LogService],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-3Creating a Provider in the app.module.ts File in the src/app Folder

When you save the changes, you will have defined the provider that Angular requires to handle the LogService dependency, and you will see messages like this one shown in the browser’s JavaScript console:Message (INFO): Discount 10 applied to price: 16

You might wonder why the configuration step in Listing 18-3 is required. After all, Angular could just assume that it should create a new LogService object the first time it needs one.
In fact, Angular provides a range of different providers, each of which creates objects in a different way to let you take control of the service creation process. Table 18-3 describes the set of available providers, which are described in the sections that follow.Table 18-3The Angular Providers

	Name
	Description

	Class provider
	This provider is configured using a class. Dependencies on the service are resolved by an instance of the class, which Angular creates.

	Value provider
	This provider is configured using an object, which is used to resolve dependencies on the service.

	Factory provider
	This provider is configured using a function. Dependencies on the service are resolved using an object that is created by invoking the function.

	Existing service provider
	This provider is configured using the name of another service and allows aliases for services to be created.

Using the Class Provider
This provider is the most commonly used and is the one I applied by adding the class names to the module’s providers property in Listing 18-3. This listing shows the shorthand syntax, and there is also a literal syntax that achieves the same result, as shown in Listing 18-4. ...
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LogService, useClass: LogService }],
 bootstrap: [ProductComponent]
})
...

Listing 18-4Using the Class Provider Literal Syntax in the app.module.ts File in the src/app Folder

Providers are defined as classes, but they can be specified and configured using the JavaScript object literal format, like this:...
{ provide: LogService, useClass: LogService }
...

The class provider supports three properties, which are described in Table 18-4 and explained in the sections that follow.Table 18-4The Class Provider’s Properties

	Name
	Description

	provide
	This property is used to specify the token, which is used to identify the provider and the dependency that will be resolved. See the “Understanding the Token” section.

	useClass
	This property is used to specify the class that will be instantiated to resolve the dependency by the provider. See the “Understanding the useClass Property” section.

	multi
	This property can be used to deliver an array of service objects to resolve dependencies. See the “Resolving a Dependency with Multiple Objects” section.

Understanding the Token
All providers rely on a token, which Angular uses to identify the dependency that the provider can resolve. The simplest approach is to use a class as the token, which is what I did in Listing 18-4. However, you can use any object as the token, which allows the dependency and the type of the object to be separated. This has the effect of increasing the flexibility of the dependency injection configuration because it allows a provider to supply objects of different types, which can be useful with some of the more advanced providers described later in the chapter. As a simple example, Listing 18-5 uses the class provider to register the log service created at the start of the chapter using a string as a token, rather than a class. ...
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: "logger", useClass: LogService }],
 bootstrap: [ProductComponent]
})
...

Listing 18-5Registering a Service with a Token in the app.module.ts File in the src/app Folder

In the listing, the provide property of the new provider is set to logger. Angular will automatically match providers whose token is a class, but it needs some additional help for other token types. Listing 18-6 shows the DiscountService class updated with a dependency on the logging service, accessed using the logger token.import { Injectable, Inject } from "@angular/core";
import { LogService } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(@Inject("logger") private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue ?? 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 18-6Using a String Provider Token in the discount.service.ts File in the src/app Folder

The @Inject decorator is applied to the constructor argument and used to specify the token that should be used to resolve the dependency. When Angular needs to create an instance of the DiscountService class, it will inspect the constructor and use the @Inject decorator argument to select the provider that will be used to resolve the dependency, resolving the dependency on the LogService class.
Using Opaque Tokens
When using simple types as provider tokens, there is a chance that two different parts of the application will try to use the same token to identify different services, which means that the wrong type of object may be used to resolve dependencies and cause errors.
To help work around this, Angular provides the InjectionToken class, which provides an object wrapper around a string value and can be used to create unique token values. In Listing 18-7, I have used the InjectionToken class to create a token that will be used to identify dependencies on the LogService class.import { Injectable, InjectionToken } from "@angular/core";

export const LOG_SERVICE = new InjectionToken("logger");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 // ...methods omitted for brevity...
}

Listing 18-7Using the InjectionToken Class in the log.service.ts File in the src/app Folder

The constructor for the InjectionToken class accepts a string value that describes the service, but it is the InjectionToken object that will be the token. Dependencies must be declared on the same InjectionToken that is used to create the provider in the module; this is why the token has been created using the const keyword, which prevents the object from being modified. Listing 18-8 shows the provider configuration using the new token.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE } from "./log.service";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: LogService }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-8Creating a Provider Using an InjectionToken in the app.module.ts File in the src/app Folder

Finally, Listing 18-9 shows the DiscountService class updated to declare a dependency using the InjectionToken instead of a string.import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;

 constructor(@Inject(LOG_SERVICE) private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue || 0;
 }

 public applyDiscount(price: number) {
 this.logger.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 18-9Declaring a Dependency in the discount.service.ts File in the src/app Folder

There is no difference in the functionality offered by the application, but using the InjectionToken means that there will be no confusion between services.
Understanding the useClass Property
The class provider’s useClass property specifies the class that will be instantiated to resolve dependencies. The provider can be configured with any class, which means you can change the implementation of a service by changing the provider configuration. This feature should be used with caution because the recipients of the service object will be expecting a specific type and a mismatch won’t result in an error until the application is running in the browser. (TypeScript type enforcement has no effect on dependency injection because it occurs at runtime after the type annotations have been processed by the TypeScript compiler.)
The most common way to change classes is to use different subclasses. In Listing 18-10, I extended the LogService class to create a service that writes a different format of message in the browser’s JavaScript console.import { Injectable, InjectionToken } from "@angular/core";

export const LOG_SERVICE = new InjectionToken("logger");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 logInfoMessage(message: string) {
 this.logMessage(LogLevel.INFO, message);
 }

 logDebugMessage(message: string) {
 this.logMessage(LogLevel.DEBUG, message);
 }

 logErrorMessage(message: string) {
 this.logMessage(LogLevel.ERROR, message);
 }

 logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Message (${LogLevel[level]}): ${message}`);
 }
 }
}

@Injectable()
export class SpecialLogService extends LogService {

 constructor() {
 super()
 this.minimumLevel = LogLevel.DEBUG;
 }

 override logMessage(level: LogLevel, message: string) {
 if (level >= this.minimumLevel) {
 console.log(`Special Message (${LogLevel[level]}): ${message}`);
 }
 }
}

Listing 18-10Creating a Subclassed Service in the log.service.ts File in the src/app Folder

The SpecialLogService class extends LogService and provides its own implementation of the logMessage method. Listing 18-11 updates the provider configuration so that the useClass property specifies the new service.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService } from "./log.service";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: SpecialLogService }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-11Configuring the Provider in the app.module.ts File in the src/app Folder

The combination of token and class means that dependencies on the LOG_SERVICE opaque token will be resolved using a SpecialLogService object. When you save the changes, you will see messages like this one displayed in the browser’s JavaScript console, indicating that the derived service has been used:Special Message (INFO): Discount 10 applied to price: 275

Care must be taken when setting the useClass property to specify a type that the dependent classes are expecting. Specifying a subclass is the safest option because the functionality of the base class is guaranteed to be available.
Resolving a Dependency with Multiple Objects
The class provider can be configured to deliver an array of objects to resolve a dependency, which can be useful if you want to provide a set of related services that differ in how they are configured. To provide an array, multiple class providers are configured using the same token and with the multi property set as true, as shown in Listing 18-12. ...
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_SERVICE, useClass: LogService, multi: true },
 { provide: LOG_SERVICE, useClass: SpecialLogService, multi: true }],
 bootstrap: [ProductComponent]
})
...

Listing 18-12Configuring Multiple Service Objects in the app.module.ts File in the src/app Folder

The Angular dependency injection system will resolve dependencies on the LOG_SERVICE token by creating LogService and SpecialLogService objects, placing them in an array, and passing them to the dependent class’s constructor. The class that receives the services must be expecting an array, as shown in Listing 18-13.import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE, LogLevel } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;
 private logger?: LogService;

 constructor(@Inject(LOG_SERVICE) loggers: LogService[]) {
 this.logger = loggers.find(l => l.minimumLevel == LogLevel.DEBUG);
 }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue ?? 0;
 }

 public applyDiscount(price: number) {
 this.logger?.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 18-13Receiving Multiple Services in the discount.service.ts File in the src/app Folder

The services are received as an array by the constructor, which uses the array’s find method to locate the first logger whose minimumLevel property is LogLevel.Debug and assign it to the logger property. The applyDiscount method calls the service’s logDebugMessage method, which results in messages like this one being displayed in the browser’s JavaScript console:Special Message (INFO): Discount 10 applied to price: 275

Using the Value Provider
The value provider is used when you want to take responsibility for creating the service objects yourself, rather than leaving it to the class provider. This can also be useful when services are simple types, such as string or number values, which can be a useful way of providing access to common configuration settings. The value provider can be applied using a literal object and supports the properties described in Table 18-5. Table 18-5The Value Provider Properties

	Name
	Description

	provide
	This property defines the service token, as described in the “Understanding the Token” section earlier in the chapter.

	useValue
	This property specifies the object that will be used to resolve the dependency.

	multi
	This property is used to allow multiple providers to be combined to provide an array of objects that will be used to resolve a dependency on the token. See the “Resolving a Dependency with Multiple Objects” section earlier in the chapter for an example.

The value provider works in the same way as the class provider except that it is configured with an object rather than a type. Listing 18-14 shows the use of the value provider to create an instance of the LogService class that is configured with a specific property value.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService, LogLevel } from "./log.service";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LogService, useValue: logger }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-14Using the Value Provider in the app.module.ts File in the src/app Folder

This value provider is configured to resolve dependencies on the LogService token with a specific object that has been created and configured outside of the module class.
The value provider—and, in fact, all of the providers—can use any object as the token, as described in the previous section, but I have returned to using types as tokens because it is the most commonly used technique and because it works so nicely with TypeScript constructor parameter typing. Listing 18-15 shows the corresponding change to the DiscountService, which declares a dependency using a typed constructor argument.import { Injectable, Inject } from "@angular/core";
import { LogService, LOG_SERVICE, LogLevel } from "./log.service";

@Injectable()
export class DiscountService {
 private discountValue: number = 10;
 //private logger?: LogService;

 constructor(private logger: LogService) { }

 public get discount(): number {
 return this.discountValue;
 }

 public set discount(newValue: number) {
 this.discountValue = newValue ?? 0;
 }

 public applyDiscount(price: number) {
 this.logger?.logInfoMessage(`Discount ${this.discount}`
 + ` applied to price: ${price}`);
 return Math.max(price - this.discountValue, 5);
 }
}

Listing 18-15Declaring a Dependency Using a Type in the discount.service.ts File in the src/app Folder

Using the Factory Provider
The factory provider uses a function to create the object required to resolve a dependency. This provider supports the properties described in Table 18-6. Table 18-6The Factory Provider Properties

	Name
	Description

	provide
	This property defines the service token, as described in the “Understanding the Token” section earlier in the chapter.

	deps
	This property specifies an array of provider tokens that will be resolved and passed to the function specified by the useFactory property.

	useFactory
	This property specifies the function that will create the service object. The objects produced by resolving the tokens specified by the deps property will be passed to the function as arguments. The result returned by the function will be used as the service object.

	multi
	This property is used to allow multiple providers to be combined to provide an array of objects that will be used to resolve a dependency on the token. See the “Resolving a Dependency with Multiple Objects” section earlier in the chapter for an example.

This is the provider that gives the most flexibility in how service objects are created because you can define functions that are tailored to your application’s requirements. Listing 18-16 shows a factory function that creates LogService objects....
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 {
 provide: LogService, useFactory: () => {
 let logger = new LogService();
 logger.minimumLevel = LogLevel.DEBUG;
 return logger;
 }
 }],
 bootstrap: [ProductComponent]
})
...

Listing 18-16Using the Factory Provider in the app.module.ts File in the src/app Folder

The function in this example is simple: it receives no arguments and just creates a new LogService object. The real flexibility of this provider comes when the deps property is used, which allows for dependencies to be created on other services. In Listing 18-17, I have defined a token that specifies a debugging level.import { Injectable, InjectionToken } from "@angular/core";

export const LOG_SERVICE = new InjectionToken("logger");
export const LOG_LEVEL = new InjectionToken("log_level");

export enum LogLevel {
 DEBUG, INFO, ERROR
}

@Injectable()
export class LogService {
 minimumLevel: LogLevel = LogLevel.INFO;

 // ...methods omitted for brevity...
}

@Injectable()
export class SpecialLogService extends LogService {

 // ...methods omitted for brevity...
}

Listing 18-17Defining a Logging-Level Service in the log.service.ts File in the src/app Folder

In Listing 18-18, I have defined a value provider that creates a service using the LOG_LEVEL token and used that service in the factory function that creates the LogService object.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.DEBUG },
 { provide: LogService,
 deps: [LOG_LEVEL],
 useFactory: (level: LogLevel) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }}],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-18Using Factory Dependencies in the app.module.ts File in the src/app Folder

The LOG_LEVEL token is used by a value provider to define a simple value as a service. The factory provider specifies this token in its deps array, which the dependency injection system resolves and provides as an argument to the factory function, which uses it to set the minimumLevel property of a new LogService object.
Using the Existing Service Provider
This provider is used to create aliases for services so they can be targeted using more than one token, using the properties described in Table 18-7. Table 18-7The Existing Provider Properties

	Name
	Description

	provide
	This property defines the service token, as described in the “Understanding the Token” section earlier in the chapter.

	useExisting
	This property is used to specify the token of another provider, whose service object will be used to resolve dependencies on this service.

	multi
	This property is used to allow multiple providers to be combined to provide an array of objects that will be used to resolve a dependency on the token. See the “Resolving a Dependency with Multiple Objects” section earlier in the chapter for an example.

This provider can be useful when you want to refactor the set of providers but don’t want to eliminate all the obsolete tokens to avoid refactoring the rest of the application. Listing 18-19 shows the use of this provider....
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.DEBUG },
 { provide: "debugLevel", useExisting: LOG_LEVEL },
 { provide: LogService,
 deps: ["debugLevel"],
 useFactory: (level: LogLevel) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }}],
 bootstrap: [ProductComponent]
})
...

Listing 18-19Creating a Service Alias in the app.module.ts File in the src/app Folder

The token for the new service is the string debugLevel, and it is aliased to the provider with the LOG_LEVEL token. Using either token will result in the dependency being resolved with the same value.
Using Local Providers
When Angular creates a new instance of a class, it resolves any dependencies using an injector. It is an injector that is responsible for inspecting the constructors of classes to determine what dependencies have been declared and resolving them using the available providers.
So far, all the dependency injection examples have relied on providers configured in the application’s Angular module. But the Angular dependency injection system is more complex: there is a hierarchy of injectors corresponding to the application’s tree of components and directives. Each component and directive can have its own injector, and each injector can be configured with its own set of providers, known as local providers.
When there is a dependency to resolve, Angular uses the injector for the nearest component or directive. The injector first tries to resolve the dependency using its own set of local providers. If no local providers have been set up or there are no providers that can be used to resolve this specific dependency, then the injector consults the parent component’s injector. The process is repeated—the parent component’s injector tries to resolve the dependency using its own set of local providers. If a suitable provider is available, then it is used to provide the service object required to resolve the dependency. If there is no suitable provider, then the request is passed up to the next level in the hierarchy to the grandparent of the original injector. At the top of the hierarchy is the root Angular module, whose providers are the last resort before reporting an error.
Defining providers in the Angular module means that all dependencies for a token within the application will be resolved using the same object. As I explain in the following sections, registering providers further down the injector hierarchy can change this behavior and alter the way that services are created and used.
Understanding the Limitations of Single Service Objects
Using a single service object can be a powerful tool, allowing building blocks in different parts of the application to share data and respond to user interactions. But some services don’t lend themselves to being shared so widely. As a simple example, Listing 18-20 adds a dependency on LogService to one of the pipes created in Chapter 16.import { Pipe, Injectable } from "@angular/core";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";

@Pipe({
 name: "discount",
 pure: false
})
export class PaDiscountPipe {

 constructor(private discount: DiscountService,
 private logger: LogService) { }

 transform(price: number): number {
 if (price > 100) {
 this.logger.logInfoMessage(`Large price discounted: ${price}`);
 }
 return this.discount.applyDiscount(price);
 }
}

Listing 18-20Adding a Service Dependency in the discount.pipe.ts File in the src/app Folder

The pipe’s transform method uses the LogService object, which is received as a constructor argument, to generate logging messages when the price value it transforms is greater than 100.
The problem is that these log messages are drowned out by the messages generated by the DiscountService object, which creates a message every time a discount is applied. The obvious thing to do is to change the minimum level in the LogService object when it is created by the module provider’s factory function, as shown in Listing 18-21....
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model,
 { provide: LOG_LEVEL, useValue: LogLevel.ERROR },
 { provide: "debugLevel", useExisting: LOG_LEVEL },
 { provide: LogService,
 deps: ["debugLevel"],
 useFactory: (level: LogLevel) => {
 let logger = new LogService();
 logger.minimumLevel = level;
 return logger;
 }}],
 bootstrap: [ProductComponent]
})
...

Listing 18-21Changing the Logging Level in the app.module.ts File in the src/app Folder

Of course, this doesn’t have the desired effect because the same LogService object is used throughout the application and filtering the DiscountService messages means that the pipe messages are filtered too.
I could enhance the LogService class so there are different filters for each source of logging messages, but that quickly becomes complicated. Instead, I am going to solve the problem by creating a local provider so that there are multiple LogService objects in the application, each of which can then be configured separately.
Creating Local Providers in a Component
Components can define local providers, which allow separate servers to be created and used by part of the application. Components support two decorator properties for creating local providers, as described in Table 18-8.Table 18-8The Component Decorator Properties for Local Providers

	Name
	Description

	providers
	This property is used to create a provider used to resolve dependencies of view and content children.

	viewProviders
	This property is used to create a provider used to resolve dependencies of view children.

The simplest way to address my LogService issue is to use the providers property to set up a local provider, as shown in Listing 18-22.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./repository.model";
import { Product } from "./product.model";
//import { Subject } from "rxjs";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html",
 providers:[LogService]
})
export class ProductTableComponent {

 constructor(private dataModel: Model) { }

 // @Input("model")
 // dataModel: Model | undefined;

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 18-22Creating a Local Provider in the productTable.component.ts File in the src/app Folder

When Angular needs to create a new pipe object, it detects the dependency on LogService and starts working its way up the application hierarchy, examining each component it finds to determine whether they have a provider that can be used to resolve the dependency. The ProductTableComponent does have a LogService provider, which is used to create the service used to resolve the pipe’s dependency. This means there are now two LogService objects in the application, each of which can be configured separately, as shown in Figure 18-2.[image:]
Figure 18-2Creating a local provider

The LogService object created by the component’s provider uses the default value for its minimumLevel property and will display LogLevel.INFO messages. The LogService object created by the module, which will be used to resolve all other dependencies in the application, including the one declared by the DiscountService class, is configured so that it will display only LogLevel.ERROR messages. When you save the changes, you will see the logging messages from the pipe (which receives the service from the component) but not from DiscountService (which receives the service from the module).
Understanding the Provider Alternatives
As described in Table 18-8, there are two properties that can be used to create local providers. To demonstrate how these properties differ, I added a file called valueDisplay.directive.ts to the src/app folder and used it to define the directive shown in Listing 18-23.import { Directive, InjectionToken, Inject, HostBinding} from "@angular/core";

export const VALUE_SERVICE = new InjectionToken("value_service");

@Directive({
 selector: "[paDisplayValue]"
})
export class PaDisplayValueDirective {

 constructor(@Inject(VALUE_SERVICE) serviceValue: string) {
 this.elementContent = serviceValue;
 }

 @HostBinding("textContent")
 elementContent: string;
}

Listing 18-23The Contents of the valueDisplay.directive.ts File in the src/app Folder

The VALUE_SERVICE opaque token will be used to define a value-based service, on which the directive in this listing declares a dependency so that it can be displayed in the host element’s content. Listing 18-24 shows the service being defined and the directive being registered in the Angular module. I have also simplified the LogService provider in the module for brevity.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 18-24Registering the Directive and Service in the app.module.ts File in the src/app Folder

The provider sets up a value of Apples for the VALUE_SERVICE service. The next step is to apply the new directive so there is an instance that is a view child of a component and another that is a content child. Listing 18-25 sets up the content child instance.<div class="container-fluid angularApp">
 <div class="row p-2">
 <div class="col-4 p-2 text-dark">
 <pa-productform>

 </pa-productform>
 </div>
 <div class="col p-2">
 <paProductTable></paProductTable>
 </div>
 </div>
</div>

Listing 18-25Applying a Content Child Directive in the template.html File in the src/app Folder

Listing 18-26 projects the host element’s content and adds a view child instance of the new directive.<form #form="ngForm" (ngSubmit)="submitForm(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control"
 name="category" [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
</form>

<div class="bg-info text-white m-2 p-2">
 View Child Value:
</div>
<div class="bg-info text-white m-2 p-2">
 Content Child Value: <ng-content></ng-content>
</div>

Listing 18-26Adding Directives in the productForm.component.html File in the src/app Folder

When you save the changes, you will see the new elements, as shown in Figure 18-3, both of which show the same value because the only provider for VALUE_SERVICE is defined in the module.[image:]
Figure 18-3View and content child directives

Creating a Local Provider for All Children
The @Component decorator’s providers property is used to define providers that will be used to resolve service dependencies for all children, regardless of whether they are defined in the template (view children) or projected from the host element (content children). Listing 18-27 defines a VALUE_SERVICE provider in the parent component for two new directive instances. import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 providers: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model) { }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 18-27Defining a Provider in the productForm.component.ts File in the src/app Folder

The new provider changes the service value. When Angular comes to create the instances of the new directive, it begins its search for providers by working its way up the application hierarchy and finds the VALUE_SERVICE provider defined in Listing 18-27. The service value is used by both instances of the directive, as shown in Figure 18-4.[image:]
Figure 18-4Defining a provider for all children in a component

Creating a Provider for View Children
The viewProviders property defines providers that are used to resolve dependencies for view children but not content children. Listing 18-28 uses the viewProviders property to define a provider for VALUE_SERVICE. import { Component, Output, EventEmitter, ViewEncapsulation } from "@angular/core";
import { Product } from "./product.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model) { }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 18-28Defining a View Child Provider in the productForm.component.ts File in the src/app Folder

Angular uses the provider when resolving dependencies for view children but not for content children. This means dependencies for content children are referred up the application’s hierarchy as though the component had not defined a provider. In the example, this means that the view child will receive the service created by the component’s provider, and the content child will receive the service created by the module’s provider, as shown in Figure 18-5.
Caution
Defining providers for the same service using both the providers and viewProviders properties is not supported. If you do this, the view and content children both will receive the service created by the viewProviders provider.

[image:]
Figure 18-5Defining a provider for view children

Controlling Dependency Resolution
Angular provides three decorators that can be used to provide instructions about how a dependency is resolved. These decorators are described in Table 18-9 and demonstrated in the following sections.Table 18-9The Dependency Resolution Decorators

	Name
	Description

	@Host
	This decorator restricts the search for a provider to the nearest component.

	@Optional
	This decorator stops Angular from reporting an error if the dependency cannot be resolved.

	@SkipSelf
	This decorator excludes the providers defined by the component/directive whose dependency is being resolved.

Restricting the Provider Search
The @Host decorator restricts the search for a suitable provider so that it stops once the closest component has been reached. The decorator is typically combined with @Optional, which prevents Angular from throwing an exception if a service dependency cannot be resolved. Listing 18-29 shows the addition of both decorators to the directive in the example. import { Directive, InjectionToken, Inject,
 HostBinding, Host, Optional} from "@angular/core";

export const VALUE_SERVICE = new InjectionToken("value_service");

@Directive({
 selector: "[paDisplayValue]"
})
export class PaDisplayValueDirective {

 constructor(@Inject(VALUE_SERVICE) @Host() @Optional() serviceValue: string) {
 this.elementContent = serviceValue || "No Value";
 }

 @HostBinding("textContent")
 elementContent: string;
}

Listing 18-29Adding Dependency Decorators in the valueDisplay.directive.ts File in the src/app Folder

When using the @Optional decorator, you must ensure that the class is able to function if the service cannot be resolved, in which case the constructor argument for the service is undefined. The nearest component defines a service for its view children but not content children, which means that one instance of the directive will receive a service object and the other will not, as illustrated in Figure 18-6. [image:]
Figure 18-6Controlling how a dependency is resolved

Skipping Self-Defined Providers
By default, the providers defined by a component are used to resolve its dependencies. The @SkipSelf decorator can be applied to constructor arguments to tell Angular to ignore the local providers and start the search at the next level in the application hierarchy, which means that the local providers will be used only to resolve dependencies for children. In Listing 18-30, I have added a dependency on the VALUE_SERVICE provider that is decorated with @SkipSelf. import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./product.model";
import { Model } from "./repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model,
 @Inject(VALUE_SERVICE) @SkipSelf() private serviceValue: string) {
 console.log("Service Value: " + serviceValue);
 }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 18-30Skipping Local Providers in the productForm.component.ts File in the src/app Folder

When you save the changes and the browser reloads the page, you will see the following message in the browser’s JavaScript console, showing that the service value defined locally (Oranges) has been skipped and allowing the dependency to be resolved by the Angular module:Service Value: Apples

Summary
In this chapter, I explained the role that providers play in dependency injection and explained how they can be used to change how services are used to resolve dependencies. I described the different types of providers that can be used to create service objects and demonstrated how directives and components can define their own providers to resolve their own dependencies and those of their children. In the next chapter, I describe modules, which are the final building block for Angular applications.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_19

19. Using and Creating Modules

Adam Freeman1
(1)London, UK

In this chapter, I describe the last of the Angular building blocks: modules. In the first part of the chapter, I describe the root module, which every Angular application uses to describe the configuration of the application to Angular. In the second part of the chapter, I describe feature modules, which are used to add structure to an application so that related features can be grouped as a single unit. Table 19-1 puts modules in context.Table 19-1Putting Modules in Context

	Question
	Answer

	What are they?
	Modules provide configuration information to Angular.

	Why are they useful?
	The root module describes the application to Angular, setting up essential features such as components and services. Feature modules are useful for adding structure to complex projects, which makes them easier to manage and maintain.

	How are they used?
	Modules are classes to which the @NgModule decorator has been applied. The properties used by the decorator have different meanings for root and feature modules.

	Are there any pitfalls or limitations?
	There is no module-wide scope for providers, which means that the providers defined by a feature module will be available as though they had been defined by the root module.

	Are there any alternatives?
	Every application must have a root module, but the use of feature modules is entirely optional. However, if you don’t use feature modules, then the files in an application can become difficult to manage.

Table 19-2 summarizes the chapter.Table 19-2Chapter Summary

	Problem
	Solution
	Listing

	Describing an application and the building blocks it contains
	Use the root module
	1–7

	Grouping related features together
	Create a feature module
	8–28

Preparing the Example Project
As with the other chapters in this part of the book, I am going to use the example project that was created in Chapter 9 and has been expanded and extended in each chapter since.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

To prepare for this chapter, I have removed some functionality from the component templates. Listing 19-1 shows the template for the product table, in which I have commented out the elements for the discount editor and display components.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr><th></th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody>
 <tr *paFor="let item of getProducts(); let i = index">
 <td>{{i + 1}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td [pa-price]="item.price" #discount="discount">
 {{ discount.discountAmount | currency:"USD":"symbol"}}
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
</table>

<!-- <paDiscountEditor></paDiscountEditor> -->
<!-- <paDiscountDisplay></paDiscountDisplay> -->

Listing 19-1The Contents of the productTable.component.html File in the src/app Folder

Listing 19-2 shows the template from the product form component, in which I have commented out the elements that I used to demonstrate the difference between providers for view children and content children in Chapter 18.<form #form="ngForm" (ngSubmit)="submitForm(form)">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control"
 name="category" [(ngModel)]="newProduct.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control"
 name="name" [(ngModel)]="newProduct.price" />
 </div>
 <button class="btn btn-primary mt-2" type="submit">
 Create
 </button>
</form>

<!-- <div class="bg-info text-white m-2 p-2">
 View Child Value:
</div>
<div class="bg-info text-white m-2 p-2">
 Content Child Value: <ng-content></ng-content>
</div> -->

Listing 19-2The Contents of the productForm.component.html File in the src/app Folder

Run the following command in the example folder to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 19-1.[image:]
Figure 19-1Running the example application

Understanding the Root Module
Every Angular has at least one module, known as the root module. The root module is conventionally defined in a file called app.module.ts in the src/app folder, and it contains a class to which the @NgModule decorator has been applied. Listing 19-3 shows the root module from the example application. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductComponent]
})
export class AppModule { }

Listing 19-3The Root Module in the app.module.ts File in the src/app Folder

There can be multiple modules in a project, but the root module is the one used in the bootstrap file, which is conventionally called main.ts and is defined in the src folder. Listing 19-4 shows the main.ts file for the example project.import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.error(err));

Listing 19-4The Angular Bootstrap in the main.ts File in the src Folder

Angular applications can be run in different environments, such as web browsers and native application containers. The job of the bootstrap file is to select the platform and identify the root module. The platformBrowserDynamic method creates the browser runtime, and the bootstrapModule method is used to specify the module, which is the AppModule class from Listing 19-3.
When defining the root module, the @NgModule decorator properties described in Table 19-3 are used. (There are additional decorator properties, which are described later in the chapter.) Table 19-3The @NgModule Decorator Root Module Properties

	Name
	Description

	imports
	This property specifies the Angular modules that are required to support the directives, components, and pipes in the application.

	declarations
	This property is used to specify the directives, components, and pipes that are used in the application.

	providers
	This property defines the service providers that will be used by the module’s injector. These are the providers that will be available throughout the application and used when no local provider for a service is available, as described in Chapter 18.

	bootstrap
	This property specifies the root components for the application.

Understanding the imports Property
The imports property is used to list the other modules that the application requires. In the example application, these are all modules provided by the Angular framework....
imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
...

The BrowserModule provides the functionality required to run Angular applications in web browsers. The BrowserAnimationsModule module was added to the project by the Angular Material package and enables the animation features described in Chapter 27. The other two modules provide support for working with HTML forms. There are other Angular modules, which are introduced in later chapters.
The imports property is also used to declare dependencies on custom modules, which are used to manage complex Angular applications and to create units of reusable functionality. I explain how custom modules are defined in the “Creating Feature Modules” section.
Understanding the declarations Property
The declarations property is used to provide Angular with a list of the directives, components, and pipes that the application requires, known collectively as the declarable classes. The declarations property in the example project root module contains a long list of classes, each of which is available for use elsewhere in the application only because it is listed here. ...
declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
...

Notice that the built-in declarable classes, such as the directives described in Chapter 11 and the pipes described in Chapter 16, are not included in the declarations property for the root module. This is because they are part of the BrowserModule module, and when you add a module to the imports property, its declarable classes are automatically available for use in the application.
Understanding the providers Property
The providers property is used to define the service providers that will be used to resolve dependencies when there are no suitable local providers available. The use of providers for services is described in detail in Chapters 17 and 19.
Understanding the bootstrap Property
The bootstrap property specifies the root component or components for the application. When Angular processes the main HTML document, which is conventionally called index.html, it inspects the root components and applies them using the value of the selector property in the @Component decorators.
Tip
The components listed in the bootstrap property must also be included in the declarations list.

Here is the bootstrap property from the example project’s root module:...
bootstrap: [ProductComponent]
...

The ProductComponent class provides the root component, and its selector property specifies the app element, as shown in Listing 19-5.import { Component } from "@angular/core";

@Component({
 selector: "app",
 templateUrl: "template.html"
})
export class ProductComponent {

}

Listing 19-5The Root Component in the component.ts File in the src/app Folder

When I started the example project in Chapter 9, the root component had a lot of functionality. But since the introduction of additional components, the role of this component has been reduced, and it is now essentially a placeholder that tells Angular to project the contents of the app/template.html file into the app element in the HTML document, which allows the components that do the real work in the application to be loaded.
There is nothing wrong with this approach, but it does mean the root component in the application doesn’t have a great deal to do. If this kind of redundancy feels untidy, then you can specify multiple root components in the root module, and all of them will be used to target elements in the HTML document. To demonstrate, I have removed the existing root component from the root module’s bootstrap property and replaced it with the component classes that are responsible for the product form and the product table, as shown in Listing 19-6....
@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }
...

Listing 19-6Specifying Multiple Root Components in the app.module.ts File in the src/app Folder

Listing 19-7 reflects the change in the root components in the main HTML document. The inconsistent element names are from an earlier chapter, where I changed the selector for the form component to demonstrate the use of the shadow DOM feature.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Example</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link
 href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500&display=swap"
 rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
 rel="stylesheet">
</head>
<body class="container-fluid">
 <div class="row">
 <div class="col-8 p-2">
 <paProductTable></paProductTable>
 </div>
 <div class="col-4 p-2">
 <pa-productform></pa-productform>
 </div>
 </div>
</body>
</html>

Listing 19-7Changing the Root Component Elements in the index.html File in the src Folder

I have reversed the order in which these components appear compared to previous examples, just to create a detectable change in the application’s layout. When all the changes are saved and the browser has reloaded the page, you will see the new root components displayed, as illustrated by Figure 19-2.[image:]
Figure 19-2Using multiple root components

The module’s service providers are used to resolve dependencies for all root components. In the case of the example application, this means there is a single Model service object that is shared throughout the application and that allows products created with the HTML form to be displayed automatically in the table, even though these components have been promoted to be root components.
Creating Feature Modules
The root module has become increasingly complex as I added features in earlier chapters, with a long list of import statements to load JavaScript modules and a set of classes in the declarations property of the @NgModule decorator that spans several lines, as shown in Listing 19-8. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule
],
 providers: [DiscountService, SimpleDataSource, Model, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Listing 19-8The Contents of the app.module.ts File in the src/app Folder

Feature modules are used to group related functionality so that it can be used as a single entity, just like the Angular modules such as BrowserModule. When I need to use the features for working with forms, for example, I don’t have to add import statements and declarations entries for each individual directive, component, or pipe. Instead, I just add BrowserModule to the decorator’s imports property, and all of the functionality it contains is available throughout the application.
When you create a feature module, you can choose to focus on an application function or elect to group a set of related building blocks that provide your application’s infrastructure. I’ll do both in the sections that follow because they work in slightly different ways and have different considerations. Feature modules use the same @NgModule decorator but with an overlapping set of configuration properties, some of which are new and some of which are used in common with the root module but have a different effect. I explain how these properties are used in the following sections, but Table 19-4 provides a summary for quick reference.Table 19-4The @NgModule Decorator Properties for Feature Modules

	Name
	Description

	imports
	This property is used to import the modules that are required by the classes in the modules.

	providers
	This property is used to define the module’s providers. When the feature module is loaded, the set of providers is combined with those in the root module, which means that the feature module’s services are available throughout the application (and not just within the module).

	declarations
	This property is used to specify the directives, components, and pipes in the module. This property must contain the classes that are used within the module and those that are exposed by the module to the rest of the application.

	exports
	This property is used to define the public exports from the module. It contains some or all of the directives, components, and pipes from the declarations property and some or all of the modules from the imports property.

Creating a Model Module
The term model module might be a tongue twister, but it is generally a good place to start when refactoring an application using feature modules because just about every other building block in the application depends on the model.
The first step is to create the folder that will contain the module. Module folders are defined within the src/app folder and are given a meaningful name. For this module, I created an src/app/model folder by running the following command in the example folder:mkdir src/app/model

The naming conventions used for Angular files make it easy to move and delete multiple files. Run the following command in the example folder to move the files (they will work in Windows PowerShell, Linux, and macOS):mv src/app/*.model.ts src/app/model/

The result is that the files listed in Table 19-5 are moved to the model folder.Table 19-5The File Moves Required for the Module

	File
	New Location

	src/app/datasource.model.ts
	src/app/model/datasource.model.ts

	src/app/product.model.ts
	src/app/model/product.model.ts

	src/app/repository.model.ts
	src/app/model/repository.model.ts

If you try to build the project once you have moved the files, the TypeScript compiler will list a series of compiler errors because some of the key declarable classes are unavailable. I’ll deal with these problems shortly.
Creating the Module Definition
The next step is to define a module that brings together the functionality in the files that have been moved to the new folder. I added a file called model.module.ts in the src/app/model folder and defined the module shown in Listing 19-9.import { NgModule } from "@angular/core";
import { SimpleDataSource } from "./datasource.model";
import { Model } from "./repository.model";

@NgModule({
 providers: [Model, SimpleDataSource]
})
export class ModelModule { }

Listing 19-9The Contents of the model.module.ts File in the src/app/model Folder

The purpose of a feature module is to selectively expose the contents of the folder to the rest of the application. The @NgModule decorator for this module uses only the providers property to define class providers for the Model and SimpleDataSource services. When you use providers in a feature module, they are registered with the root module’s injector, which means they are available throughout the application, which is exactly what is required for the data model in the example application.
Tip
A common mistake is to assume that services defined in a module are accessible only to the classes within that module. There is no module scope in Angular. Providers defined by a feature module are used as though they were defined by the root module. Local providers defined by directives and components in the feature module are available to their view and content children even if they are defined in other modules.

Updating the Other Classes in the Application
Moving classes into the model folder has broken import statements in other parts of the application. The next step is to update those import statements to point to the new module. There are four affected files: attr.directive.ts, categoryFilter.pipe.ts, productForm.component.ts, and productTable.component.ts. Listing 19-10 shows the changes required to the attr.directive.ts file.import { Directive, ElementRef, Input, SimpleChanges, Output,
 EventEmitter, HostListener, HostBinding } from "@angular/core";
import { Product } from "./model/product.model";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 @Input("pa-attr")
 @HostBinding("class")
 bgClass: string | null = "";

 @Input("pa-product")
 product: Product = new Product();

 @Output("pa-category")
 click = new EventEmitter<string>();

 @HostListener("click")
 triggerCustomEvent() {
 if (this.product != null) {
 this.click.emit(this.product.category);
 }
 }
}

Listing 19-10Updating the Import Reference in the attr.directive.ts File in the src/app Folder

The only change that is required is to update the path used in the import statement to reflect the new location of the code file. Listing 19-11 shows the same change applied to the categoryFilter.pipe.ts file.import { Pipe } from "@angular/core";
import { Product } from "./model/product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[] | undefined, category: string | undefined): Product[] {
 if (products == undefined) {
 return [];
 }
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Listing 19-11Updating the Import Reference in the categoryFilter.pipe.ts File in the src/app Folder

Listing 19-12 updates the import statements in the productForm.component.ts file.import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./model/product.model";
import { Model } from "./model/repository.model";
import { VALUE_SERVICE } from "./valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model,
 @Inject(VALUE_SERVICE) @SkipSelf() private serviceValue: string) {
 console.log("Service Value: " + serviceValue);
 }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 19-12Updating Import Paths in the productForm.component.ts File in the src/app Folder

Listing 19-13 updates the paths in the final file, productTable.component.ts.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./model/repository.model";
import { Product } from "./model/product.model";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html",
 providers:[LogService]
})
export class ProductTableComponent {

 // ...statements omitted for brevity...
}

Listing 19-13Updating Import Paths in the productTable.component.ts File in the src/app Folder

Using a Javascript Module with an Angular Module
Creating an Angular module allows related application features to be grouped together but still requires that each one is imported from its own file when it is needed elsewhere in the application, as you have seen in the listings in this section.
You can also define a JavaScript module that exports the public-facing features of the Angular module so they can be accessed with the same kind of import statement that is used for the @angular/core module, for example. To use a JavaScript module, add a file called index.ts alongside the TypeScript file that defines the Angular module, which is the src/app/model folder for the examples in this section. For each of the application features that you want to use outside of the application, add an export...from statement, like this:...
export { ModelModule } from "./model.module";
export { Product } from "./product.model";
export { SimpleDataSource } from "./datasource.model";
export { Model } from "./repository.model";
...

These statements export the contents of the individual TypeScript files. You can then import the features you require without having to specify individual files, like this:...
import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product, Model } from "./model";
import { VALUE_SERVICE } from "./valueDisplay.directive";
...

Using the filename index.ts means that you only have to specify the name of the folder in the import statement, producing a result that is neater and more consistent with the Angular core packages.
That said, I don’t use this technique in my own projects. Using an index.ts file means you have to remember to add every feature to both the Angular and JavaScript modules, which is an extra step that I often forget to do. Instead, I use the approach shown in this chapter and import directly from the files that contain the application’s features.

Updating the Root Module
The final step is to update the root module so that the services defined in the feature module are made available throughout the application. Listing 19-14 shows the required changes.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { PaAttrDirective } from "./attr.directive";
import { PaModel } from "./twoway.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { DiscountService } from "./discount.service";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
// import { SimpleDataSource } from "./datasource.model";
// import { Model } from "./repository.model";
import { LogService, LOG_SERVICE, SpecialLogService,
 LogLevel, LOG_LEVEL} from "./log.service";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";
import { ModelModule } from "./model/model.module";

let logger = new LogService();
logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, PaAttrDirective, PaModel,
 PaStructureDirective, PaIteratorDirective,
 PaCellColor, PaCellColorSwitcher, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaAddTaxPipe,
 PaCategoryFilterPipe, PaDiscountDisplayComponent, PaDiscountEditorComponent,
 PaDiscountPipe, PaDiscountAmountDirective, PaDisplayValueDirective],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule, ModelModule
],
 providers: [DiscountService, LogService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Listing 19-14Updating the Root Module in the app.module.ts File in the src/app Folder

I imported the feature module and added it to the root module’s imports list. Since the feature module defines providers for Model and SimpleDataSource, I removed the entries from the root module’s providers list and removed the associated import statements.
Once you have saved the changes, you can run ng serve to start the Angular development tools. The application will compile, and the revised root module will provide access to the model service. There are no visible changes to the content displayed in the browser, and the changes are limited to the structure of the project. (You may need to restart the Angular development tools and reload the browser to see the changes.)
Creating a Utility Feature Module
A model module is a good place to start because it demonstrates the basic structure of a feature module and how it relates to the root module. The impact on the application was slight, however, and not a great deal of simplification was achieved.
The next step up in complexity is a utility feature module, which groups together all of the common functionality in the application, such as pipes and directives. In a real project, you might be more selective about how you group these types of building blocks together so that there are several modules, each containing similar functionality. For the example application, I am going to move all of the pipes, directives, and services into a single module.
Creating the Module Folder and Moving the Files
As with the previous module, the first step is to create the folder. For this module, I created a folder called src/app/common and moved code files for the pipes and directives by running the following commands in the example folder:mkdir src/app/common
mv src/app/*.pipe.ts src/app/common/
mv src/app/*.directive.ts src/app/common/

These commands should work in Windows PowerShell, Linux, and macOS. Some of the directives and pipes in the application rely on the DiscountService and LogServices classes, which are provided to them through dependency injection. Run the following command in the example folder to move the TypeScript file for the service into the module folder:mv src/app/*.service.ts src/app/common/

The result is that the files listed in Table 19-6 are moved to the common module folder.Table 19-6The File Moves Required for the Module

	File
	New Location

	app/addTax.pipe.ts
	app/common/addTax.pipe.ts

	app/attr.directive.ts
	app/common/attr.directive.ts

	app/categoryFilter.pipe.ts
	app/common/categoryFilter.pipe.ts

	app/cellColor.directive.ts
	app/common/cellColor.directive.ts

	app/cellColorSwitcher.directive.ts
	app/common/cellColorSwitcher.directive.ts

	app/discount.pipe.ts
	app/common/discount.pipe.ts

	app/discountAmount.directive.ts
	app/common/discountAmount.directive.ts

	app/iterator.directive.ts
	app/common/iterator.directive.ts

	app/structure.directive.ts
	app/common/structure.directive.ts

	app/twoway.directive.ts
	app/common/twoway.directive.ts

	app/valueDisplay.directive.ts
	app/common/valueDisplay.directive.ts

	app/discount.service.ts
	app/common/discount.service.ts

	app/log.service.ts
	app/common/log.service.ts

Updating the Classes in the New Module
Some of the classes that have been moved into the new folder have import statements that have to be updated to reflect the new path to the model module. Listing 19-15 shows the change required to the attr.directive.ts file.import { Directive, ElementRef, Input, SimpleChanges, Output,
 EventEmitter, HostListener, HostBinding } from "@angular/core";
import { Product } from "../model/product.model";

@Directive({
 selector: "[pa-attr]",
})
export class PaAttrDirective {

 // ...statements omitted for brevity...
}

Listing 19-15Updating the Imports in the attr.directive.ts File in the src/app/common Folder

Listing 19-16 shows the corresponding change to the categoryFilter.pipe.ts file.import { Pipe } from "@angular/core";
import { Product } from "../model/product.model";

@Pipe({
 name: "filter",
 pure: false
})
export class PaCategoryFilterPipe {

 transform(products: Product[] | undefined, category: string | undefined):
 Product[] {
 if (products == undefined) {
 return [];
 }
 return category == undefined ?
 products : products.filter(p => p.category == category);
 }
}

Listing 19-16Updating the Imports in the categoryFilter.pipe.ts File in the src/app/common Folder

Creating the Module Definition
The next step is to define a module that brings together the functionality in the files that have been moved to the new folder. I added a file called common.module.ts in the src/app/common folder and defined the module shown in Listing 19-17.import { NgModule } from "@angular/core";
import { PaAddTaxPipe } from "./addTax.pipe";
import { PaAttrDirective } from "./attr.directive";
import { PaCategoryFilterPipe } from "./categoryFilter.pipe";
import { PaCellColor } from "./cellColor.directive";
import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { PaDiscountPipe } from "./discount.pipe";
import { PaDiscountAmountDirective } from "./discountAmount.directive";
import { PaIteratorDirective } from "./iterator.directive";
import { PaStructureDirective } from "./structure.directive";
import { PaModel } from "./twoway.directive";
import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";
import { DiscountService } from "./discount.service";
import { LogService } from "./log.service";
import { ModelModule } from "../model/model.module";

@NgModule({
 imports: [ModelModule],
 providers: [LogService, DiscountService,
 { provide: VALUE_SERVICE, useValue: "Apples" }],
 declarations: [PaAddTaxPipe, PaAttrDirective, PaCategoryFilterPipe,
 PaCellColor, PaCellColorSwitcher, PaDiscountPipe,
 PaDiscountAmountDirective, PaIteratorDirective, PaStructureDirective,
 PaModel, PaDisplayValueDirective],
 exports: [PaAddTaxPipe, PaAttrDirective, PaCategoryFilterPipe,
 PaCellColor, PaCellColorSwitcher, PaDiscountPipe,
 PaDiscountAmountDirective, PaIteratorDirective, PaStructureDirective,
 PaModel, PaDisplayValueDirective]
})
export class CommonModule { }

Listing 19-17The Contents of the common.module.ts File in the src/app/common Folder

This is a more complex module than the one required for the data model. In the sections that follow, I describe the values that are used for each of the decorator’s properties.
Understanding the Imports
Some of the directives and pipes in the module depend on the services defined in the model module, created earlier in this chapter. To ensure that the features in that module are available, I have added to the common module’s imports property.
Understanding the Providers
The providers property ensures that the services, directives, and pipes in the feature module have access to the services they require. This means adding class providers to create LogService and DiscountService services, which will be added to the root module’s providers when the module is loaded. Not only will the services be available to the directives and pipes in the common module; they will also be available throughout the application.
Understanding the Declarations
The declarations property is used to provide Angular with a list of the directives and pipes (and components, if there are any) in the module. In a feature module, this property has two purposes: it enables the declarable classes for use in any templates contained within the module, and it allows a module to make those declarable classes available outside of the module. I create a module that contains template content later in this chapter, but for this module, the value of the declarations property is that it must be used to prepare for the exports property, described in the next section.
Understanding the Exports
For a module that contains directives and pipes intended for use elsewhere in the application, the exports property is the most important in the @NgModule decorator because it defines the set of directives, components, and pipes that the module provides for use when it is imported elsewhere in the application. The exports property can contain individual classes and module types, although both must already be listed in the declarations or imports property. When the module is imported, the types listed behave as though they had been added to the importing module’s declarations property.
Updating the Other Classes in the Application
Now that the module has been defined, I can update the other files in the application that contain import statements for the types that are now part of the common module. Listing 19-18 shows the changes required to the discountDisplay.component.ts file.import { Component, Input } from "@angular/core";
import { DiscountService } from "./common/discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info text-white p-2 my-2">
 The discount is {{discounter?.discount }}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(public discounter: DiscountService) { }
}

Listing 19-18Updating the Import in the discountDisplay.component.ts File in the src/app Folder

Listing 19-19 shows the changes to the discountEditor.component.ts file.import { Component, Input } from "@angular/core";
import { DiscountService } from "./common/discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(public discounter: DiscountService) { }
}

Listing 19-19Updating the Import Reference in the discountEditor.component.ts File in the src/app Folder

Listing 19-20 shows the changes to the productForm.component.ts file.import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "./model/product.model";
import { Model } from "./model/repository.model";
import { VALUE_SERVICE } from "./common/valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model,
 @Inject(VALUE_SERVICE) @SkipSelf() private serviceValue: string) {
 console.log("Service Value: " + serviceValue);
 }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 19-20Updating the Import Reference in the productForm.component.ts File in the src/app Folder

The final change is to the productTable.component.ts file, as shown in Listing 19-21.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "./model/repository.model";
import { Product } from "./model/product.model";
import { DiscountService } from "./common/discount.service";
import { LogService } from "./common/log.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html",
 providers:[LogService]
})
export class ProductTableComponent {

 constructor(private dataModel: Model) { }

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 19-21Updating the Import Reference in the productTable.component.ts File in the src/app Folder

Updating the Root Module
The final step is to update the root module so that it loads the common module to provide access to the directives and pipes it contains, as shown in Listing 19-22.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
// import { PaAttrDirective } from "./attr.directive";
// import { PaModel } from "./twoway.directive";
// import { PaStructureDirective } from "./structure.directive";
// import { PaIteratorDirective } from "./iterator.directive";
// import { PaCellColor } from "./cellColor.directive";
// import { PaCellColorSwitcher } from "./cellColorSwitcher.directive";
import { ProductTableComponent } from "./productTable.component";
import { ProductFormComponent } from "./productForm.component";
import { PaToggleView } from "./toggleView.component";
// import { PaAddTaxPipe } from "./addTax.pipe";
// import { PaCategoryFilterPipe } from "./categoryFilter.pipe";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
// import { DiscountService } from "./discount.service";
// import { PaDiscountPipe } from "./discount.pipe";
// import { PaDiscountAmountDirective } from "./discountAmount.directive";

// import { LogService, LOG_SERVICE, SpecialLogService,
// LogLevel, LOG_LEVEL} from "./log.service";
// import { VALUE_SERVICE, PaDisplayValueDirective} from "./valueDisplay.directive";
import { ModelModule } from "./model/model.module";
import { CommonModule } from "./common/common.module";

// let logger = new LogService();
// logger.minimumLevel = LogLevel.DEBUG;

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent, ProductTableComponent,
 ProductFormComponent, PaToggleView, PaDiscountDisplayComponent,
 PaDiscountEditorComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule, ModelModule, CommonModule
],
 // providers: [DiscountService, LogService,
 // { provide: VALUE_SERVICE, useValue: "Apples" }],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Listing 19-22Importing a Feature Module in the app.module.ts File in the src/app Folder

The root module has been substantially simplified with the creation of the common module, which has been added to the imports list. All of the individual classes for directives and pipes have been removed from the declarations list, and their associated import statements have been removed from the file. When the common module is imported, all of the types listed in its exports property will be added to the root module’s declarations property.
Once you have saved the changes in this section, you can run the ng serve command to start the Angular development tools. Once again, there is no visible change in the content presented to the user, and the differences are all in the structure of the application.
Creating a Feature Module with Components
The final module that I am going to create will contain the application’s components. The process for creating the module is the same as in the previous examples, as described in the sections that follow.
Creating the Module Folder and Moving the Files
The module will be called components, and I created the folder src/app/components to contain the files. Run the following commands in the example folder to create the folder; move the directive TypeScript, HTML, and CSS files into the new folder; and delete the corresponding JavaScript files:mkdir src/app/components
mv src/app/*.component.ts src/app/components/
mv src/app/*.component.html src/app/components/
mv src/app/*.component.css src/app/components/

The result of these commands is that the component code files, templates, and style sheets are moved into the new folder, as listed in Table 19-7.Table 19-7The File Moves Required for the Component Module

	File
	New Location

	src/app/app.component.ts
	src/app/components/app.component.ts

	src/app/app.component.html
	src/app/components/app.component.html

	src/app/app.component.css
	src/app/components/app.component.css

	src/app /discountDisplay.component.ts
	src/app/components /discountDisplay.component.ts

	src/app/discountEditor.component.ts
	src/app/components/discountEditor.component.ts

	src/app/productForm.component.ts
	src/app/components/productForm.component.ts

	src/app/productForm.component.html
	src/app/components/productForm.component.html

	src/app/productForm.component.css
	src/app/components/productForm.component.css

	src/app/productTable.component.ts
	src/app/components/productTable.component.ts

	src/app/productTable.component.html
	src/app/components/productTable.component.html

	src/app/productTable.component.css
	src/app/components/productTable.component.css

	src/app/toggleView.component.ts
	src/app/components/toggleView.component.ts

	src/app/toggleView.component.html
	src/app/components/toggleView.component.ts

Creating the Module Definition
To create the module, I added a file called components.module.ts to the src/app/components folder and added the statements shown in Listing 19-23.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { CommonModule } from "../common/common.module";
import { FormsModule, ReactiveFormsModule } from "@angular/forms"
import { PaDiscountDisplayComponent } from "./discountDisplay.component";
import { PaDiscountEditorComponent } from "./discountEditor.component";
import { ProductFormComponent } from "./productForm.component";
import { ProductTableComponent } from "./productTable.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule, CommonModule],
 declarations: [PaDiscountDisplayComponent, PaDiscountEditorComponent,
 ProductFormComponent, ProductTableComponent],
 exports: [ProductFormComponent, ProductTableComponent]
})
export class ComponentsModule { }

Listing 19-23The Contents of the components.module.ts File in the src/app/components Folder

This module imports BrowserModule and CommonModule to ensure that the directives have access to the services and the declarable classes they require. It exports the ProductFormComponent and ProductTableComponent components, which are the two components used in the root component’s bootstrap property. The other components are private to the module.
Updating the Other Classes
Moving the TypeScript files into the components folder requires some changes to the paths in the import statements. Listing 19-24 shows the change required for the discountDisplay.component.ts file.import { Component, Input } from "@angular/core";
import { DiscountService } from "../common/discount.service";

@Component({
 selector: "paDiscountDisplay",
 template: `<div class="bg-info text-white p-2 my-2">
 The discount is {{discounter?.discount }}
 </div>`
})
export class PaDiscountDisplayComponent {

 constructor(public discounter: DiscountService) { }
}

Listing 19-24Updating a Path in the discountDisplay.component.ts File in the src/app/component Folder

Listing 19-25 shows the change required to the discountEditor.component.ts file.import { Component, Input } from "@angular/core";
import { DiscountService } from "../common/discount.service";

@Component({
 selector: "paDiscountEditor",
 template: `<div class="form-group">
 <label>Discount</label>
 <input [(ngModel)]="discounter.discount"
 class="form-control" type="number" />
 </div>`
})
export class PaDiscountEditorComponent {

 constructor(public discounter: DiscountService) { }
}

Listing 19-25Updating a Path in the discountEditor.component.ts File in the src/app/component Folder

Listing 19-26 shows the changes required for the productForm.component.ts file.import { Component, Output, EventEmitter, ViewEncapsulation,
 Inject, SkipSelf } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { VALUE_SERVICE } from "../common/valueDisplay.directive";

@Component({
 selector: "pa-productform",
 templateUrl: "productForm.component.html",
 viewProviders: [{ provide: VALUE_SERVICE, useValue: "Oranges" }]
})
export class ProductFormComponent {
 newProduct: Product = new Product();

 constructor(private model: Model,
 @Inject(VALUE_SERVICE) @SkipSelf() private serviceValue: string) {
 console.log("Service Value: " + serviceValue);
 }

 submitForm(form: any) {
 this.model.saveProduct(this.newProduct);
 this.newProduct = new Product();
 form.resetForm();
 }
}

Listing 19-26Updating a Path in the productForm.component.ts File in the src/app/component Folder

Listing 19-27 shows the changes required to the productTable.component.ts file.import { Component, Input, QueryList, ViewChildren } from "@angular/core";
import { Model } from "../model/repository.model";
import { Product } from "../model/product.model";
import { DiscountService } from "../common/discount.service";
import { LogService } from "../common/log.service";

@Component({
 selector: "paProductTable",
 templateUrl: "productTable.component.html",
 providers:[LogService]
})
export class ProductTableComponent {

 constructor(private dataModel: Model) { }

 getProduct(key: number): Product | undefined {
 return this.dataModel?.getProduct(key);
 }

 getProducts(): Product[] | undefined {
 return this.dataModel?.getProducts();
 }

 deleteProduct(key: number) {
 this.dataModel?.deleteProduct(key);
 }

 taxRate: number = 0;
 categoryFilter: string | undefined;
 itemCount: number = 3;
}

Listing 19-27Updating a Path in the productTable.component.ts File in the src/app/component Folder

Updating the Root Module
The final step is to update the root module to remove the outdated references to the individual files and to import the new module, as shown in Listing 19-28.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

//import { AppComponent } from './app.component';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { ProductComponent } from './component';
import { FormsModule, ReactiveFormsModule } from "@angular/forms";

import { ProductTableComponent } from "./components/productTable.component";
import { ProductFormComponent } from "./components/productForm.component";
// import { PaToggleView } from "./toggleView.component";

import { LOCALE_ID } from "@angular/core";
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';

// import { PaDiscountDisplayComponent } from "./discountDisplay.component";
// import { PaDiscountEditorComponent } from "./discountEditor.component";

import { ModelModule } from "./model/model.module";
import { CommonModule } from "./common/common.module";
import { ComponentsModule } from "./components/components.module";

registerLocaleData(localeFr);

@NgModule({
 declarations: [ProductComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 FormsModule, ReactiveFormsModule, ModelModule, CommonModule,
 ComponentsModule
],
 bootstrap: [ProductFormComponent, ProductTableComponent]
})
export class AppModule { }

Listing 19-28Importing a Feature Module in the app.module.ts File in the src/app Folder

Restart the Angular development tools to build and display the application. Adding modules to the application has radically simplified the root module and allows related features to be defined in self-contained blocks, which can be extended or modified in relative isolation from the rest of the application.
Summary
In this chapter, I described the last of the Angular building blocks: modules. I explained the role of the root module and demonstrated how to create feature modules to add structure to an application. In the next part of the book, I describe the features that Angular provides to shape the building blocks into complex and responsive applications.

Part IIIAdvanced Angular Features

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_20

20. Creating the Example Project

Adam Freeman1
(1)London, UK

Throughout the chapters in the previous part of the book, I added classes and content to the example project to demonstrate different Angular features and then, in Chapter 19, introduced feature modules to add some structure to the project. The result is a project with a lot of redundant and unused functionality, and for this part of the book, I am going to start a new project that takes some of the core features from earlier chapters and provides a clean foundation on which to build in the chapters that follow.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Starting the Example Project
To create the project and populate it with tools and placeholder content, open a new command prompt, navigate to a convenient location, and run the command shown in Listing 20-1.ng new exampleApp --routing false --style css --skip-git --skip-tests

Listing 20-1Creating the Example Project

To distinguish the project used in this part of the book from earlier examples, I created a project called exampleApp. The project initialization process will take a while to complete as all the required packages are downloaded.
Adding and Configuring the Bootstrap CSS Package
I continue to use the Bootstrap CSS framework to style the HTML elements in this chapter and the rest of the book. Run the command shown in Listing 20-2 in the exampleApp folder to add the Bootstrap package to the project.npm install bootstrap@5.1.3

Listing 20-2Adding a Package to the Project

The Bootstrap package isn’t specific to Angular development and doesn’t use the schematics API, which means that a manual change must be made to the angular.config file to include the Bootstrap CSS stylesheet in the styles bundle. Run the command shown in Listing 20-3 in the exampleApp folder. Take care to enter the command exactly as shown and do not introduce additional spaces or quotes.ng config projects.exampleApp.architect.build.options.styles \
'["src/styles.css",'\
'"node_modules/bootstrap/dist/css/bootstrap.min.css"]'

Listing 20-3Changing the Application Configuration

If you are using Windows, then use a PowerShell prompt to run the command shown in Listing 20-4 in the exampleApp folder.ng config projects.exampleApp.architect.build.options.styles `
'[""src/styles.css"", ""node_modules/bootstrap/dist/css/bootstrap.min.css""]'

Listing 20-4Changing the Application Configuration Using PowerShell

Creating the Project Structure
Create the folders shown in Table 20-1 in preparation for the feature modules that the example project will contain.Table 20-1The Folders Created for the Example Application

	Name
	Description

	src/app/model
	This folder will contain a feature module containing the data model.

	src/app/core
	This folder will contain a feature module containing components that provide the core features of the application.

	src/app/messages
	This folder will contain a feature module that is used to display messages and errors to the user.

Creating the Model Module
The first feature module will contain the project’s data model, which is similar to the one used in Part 2.
Creating the Product Data Type
To define the basic data type around which the application is based, I added a file called product.model.ts to the src/app/model folder and defined the class shown in Listing 20-5.export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number) { }
}

Listing 20-5The Contents of the product.model.ts File in the src/app/model Folder

Creating the Data Source and Repository
To provide the application with some initial data, I created a file called static.datasource.ts in the src/app/model folder and defined the service shown in Listing 20-6. This class will be used as the data source until Chapter 23, where I explain how to use asynchronous HTTP requests to request data from web services.
Tip
I am more relaxed about following the name conventions for Angular files when creating files within a feature module, especially if the purpose of the module is obvious from its name.

import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class StaticDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Listing 20-6The Contents of the static.datasource.ts File in the src/app/model Folder

The next step is to define the repository, through which the rest of the application will access the model data. I created a file called repository.model.ts in the src/app/model folder and used it to define the class shown in Listing 20-7.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;

 constructor(private dataSource: StaticDataSource) {
 this.products = new Array<Product>();
 this.dataSource.getData().forEach(p => this.products.push(p));
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();
 this.products.push(product);
 } else {
 let index = this.products
 .findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

Listing 20-7The Contents of the repository.model.ts File in the src/app/model Folder

Completing the Model Module
To complete the data model, I need to define the module. I created a file called model.module.ts in the src/app/model folder and used it to define the Angular module shown in Listing 20-8.import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";

@NgModule({
 providers: [Model, StaticDataSource]
})
export class ModelModule { }

Listing 20-8The Contents of the model.module.ts File in the src/app/model Folder

Creating the Messages Module
The messages module will contain a service that is used to report messages or errors that should be displayed to the user and a component that presents them.
Creating the Message Model and Service
To represent messages that should be displayed to the user, I added a file called message.model.ts to the src/app/messages folder and added the code shown in Listing 20-9.export class Message {

 constructor(public text: string,
 public error: boolean = false) { }
}

Listing 20-9The Contents of the message.model.ts File in the src/app/messages Folder

The Message class defines properties that present the text that will be displayed to the user and whether the message represents an error. Next, I created a file called message.service.ts in the src/app/messages folder and used it to define the service shown in Listing 20-10, which will be used to register messages that should be displayed to the user.import { Injectable } from "@angular/core";
import { Message } from "./message.model";
import { Observable, ReplaySubject, Subject } from "rxjs";

@Injectable()
export class MessageService {

 messages: Observable<Message> = new ReplaySubject<Message>(1);

 reportMessage(msg: Message) {
 (this.messages as Subject<Message>).next(msg);
 }
}

Listing 20-10The Contents of the message.service.ts File in the src/app/messages Folder

Angular services don’t support output properties but can still use the features provided by the RxJS package to send events. This service defines a reportMessage method that sends a new event through a ReplaySubject<Message> that is presented to the rest of the application as an Observable<Message>. I used a ReplaySubject so that new subscribers will immediately receive the most recent message.
This service is essentially used to provide access to the observable/subject, and I could have made this object available directly as a service using the service provider features described in Chapter 18. However, I prefer to introduce a lightweight service as a wrapper around the observable so that I can easily alter the way that events are created by modifying the reportMessage method.
Creating the Component and Template
Now that I have a source of messages, I can create a component that will display them to the user. I added a file called message.component.ts to the src/app/messages folder and defined the component shown in Listing 20-11.import { Component } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";

@Component({
 selector: "paMessages",
 templateUrl: "message.component.html",
})
export class MessageComponent {
 lastMessage?: Message;

 constructor(messageService: MessageService) {
 messageService.messages.subscribe(msg => this.lastMessage = msg);
 }
}

Listing 20-11The Contents of the message.component.ts File in the src/app/messages Folder

The component receives a MessageService object as its constructor argument and subscribes to the events it emits in order to receive messages, the most recent of which is assigned to a property called lastMessage. To provide a template for the component, I created a file called message.component.html in the src/app/messages folder and added the markup shown in Listing 20-12, which displays the message to the user.<div *ngIf="lastMessage"
 class="bg-primary text-white p-2 text-center"
 [class.bg-danger]="lastMessage.error">
 <h4>{{lastMessage.text}}</h4>
</div>

Listing 20-12The Contents of the message.component.html File in the src/app/messages Folder

Completing the Message Module
I added a file called message.module.ts in the src/app/messages folder and defined the module shown in Listing 20-13.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { MessageComponent } from "./message.component";
import { MessageService } from "./message.service";

@NgModule({
 imports: [BrowserModule],
 declarations: [MessageComponent],
 exports: [MessageComponent],
 providers: [MessageService]
})
export class MessageModule { }

Listing 20-13The Contents of the message.module.ts File in the src/app/messages Folder

Creating the Core Module
The core module will contain the central functionality of the application, built on features that were described in Part 2, that presents the user with a list of the products in the model and the ability to create and edit them.
Creating the Shared State Service
To help the components in this module to collaborate, I am going to add a service that records the current mode, noting whether the user is editing or creating a product. I added a file called sharedState.service.ts to the src/app/core folder and defined the enum and class shown in Listing 20-14.import { Injectable } from "@angular/core";
import { Observable, Subject } from "rxjs"

export enum MODES {
 CREATE, EDIT
}

export interface StateUpdate {
 mode: MODES
 id?: number
}

@Injectable()
export class SharedState {
 private modeValue: MODES = MODES.EDIT;
 private idValue?: number;

 constructor() {
 this.changes = new Subject<StateUpdate>();
 }

 get id(): number | undefined { return this.idValue };
 get mode(): MODES { return this.modeValue };

 changes: Observable<StateUpdate>

 update(mode: MODES, id?: number) {
 this.modeValue = mode;
 this.idValue = id;
 (this.changes as Subject<StateUpdate>).next({
 mode: this.modeValue, id: this.idValue
 });
 }
}

Listing 20-14The Contents of the sharedState.service.ts File in the src/app/core Folder

The SharedState class contains two get-only properties that reflect the current mode and the ID of the data model object that is being operated on. These properties return the values of private fields. The state is changed using the update method, which sends out events through an RXJS Subject, which is publicly presented as an Observable to present other components from creating their own events.
Creating the Table Component
This component will present the user with the table that lists all the products in the application and that will be the main focal point in the application, providing access to other areas of functionality through buttons that allow objects to be created, edited, or deleted. Listing 20-15 shows the contents of the table.component.ts file, which I created in the src/app/core folder.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { MODES, SharedState } from "./sharedState.service";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html"
})
export class TableComponent {

 constructor(private model: Model, private state: SharedState) { }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 editProduct(key?: number) {
 this.state.update(MODES.EDIT, key)
 }

 createProduct() {
 this.state.update(MODES.CREATE);
 }
}

Listing 20-15The Contents of the table.component.ts File in the src/app/core Folder

This component provides the same basic functionality used in Part 2, with the addition of the editProduct and createProduct methods. These methods update the shared state service when the user wants to edit or create a product.
Creating the Table Component Template
To provide the table component with a template, I added an HTML file called table.component.html to the src/app/core folder and added the markup shown in Listing 20-16.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary mt-1" (click)="createProduct()">
 Create New Product
</button>

Listing 20-16The Contents of the table.component.html File in the src/app/core Folder

This template uses the ngFor directive to create rows in a table for each product in the data model, including buttons that call the deleteProduct and editProduct methods. There is also a button element outside of the table that calls the component’s createProduct method when it is clicked.
Creating the Form Component
For this project, I am going to create a form component that will manage an HTML form that will allow new products to be created and allow existing products to be modified. To define the component, I added a file called form.component.ts to the src/app/core folder and added the code shown in Listing 20-17.import { Component } from "@angular/core";
import { NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 }
 }

 submitForm(form: NgForm) {
 if (form.valid) {
 this.model.saveProduct(this.product);
 this.product = new Product();
 form.resetForm();
 }
 }
}

Listing 20-17The Contents of the form.component.ts File in the src/app/core Folder

A single component will present a form used to both create new products and edit existing ones. The component depends on two services. The SharedState service provides events that are used to change the details of the form shown to the user, based on whether a product is being created or edited. The MessageService service is used to send messages that indicate the create/edit mode so they can be displayed to the user.
Notice that an initial message is sent via the MessageService object using the JavaScript setTimeout method. This prevents the message from being lost.
Creating the Form Component Template
To provide the component with a template, I added an HTML file called form.component.html to the src/app/core folder and added the markup shown in Listing 20-18.<form #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="form.resetForm()" >
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name"
 [(ngModel)]="product.name" required />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category"
 [(ngModel)]="product.category" required />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" name="price"
 [(ngModel)]="product.price"
 required pattern="^[0-9\.]+$" />
 </div>

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing" [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1">Cancel</button>
 </div>
</form>

Listing 20-18The Contents of the form.component.html File in the src/app/core Folder

The most important part of this template is the form element, which contains input elements for the name, category, and price properties required to create or edit a product. The header at the top of the template and the submit button for the form change their content and appearance based on the editing mode to distinguish between different operations.
Creating the Form Component Styles
To keep the example simple, I have used the basic form validation without any error messages. Instead, I rely on CSS styles that are applied using Angular validation classes. I added a file called form.component.css to the src/app/core folder and defined the styles shown in Listing 20-19.input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Listing 20-19The Contents of the form.component.css File in the src/app/core Folder

Completing the Core Module
To define the module that contains the components, I added a file called core.module.ts to the src/app/core folder and created the Angular module shown in Listing 20-20.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule],
 declarations: [TableComponent, FormComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 20-20The Contents of the core.module.ts File in the src/app/core Folder

This module imports the core Angular functionality, the Angular form features, and the application’s data model, created earlier in the chapter. It also sets up a provider for the SharedState service.
Completing the Project
To bring all the different modules together, I made the changes shown in Listing 20-21 to the root module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

//import { AppComponent } from './app.component';

import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";

@NgModule({
 declarations: [],
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule],
 providers: [],
 bootstrap: [TableComponent, FormComponent, MessageComponent]
})
export class AppModule { }

Listing 20-21Configuring the Application in the app.module.ts File in the src/app Folder

The module imports the feature modules created in this chapter and specifies three bootstrap components, two of which were defined in CoreModule and one from MessageModule. These will display the product table and form and any messages or errors.
The final step is to update the HTML file so that it contains elements that will be matched by the selector properties of the bootstrap components, as shown in Listing 20-22.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>ExampleApp</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <paMessages></paMessages>
 <div class="row m-2">
 <div class="col-8 p-2">
 <paTable></paTable>
 </div>
 <div class="col-4 p-2">
 <paForm></paForm>
 </div>
 </div>
</body>
</html>

Listing 20-22Adding Custom Elements in the index.html File in the src Folder

Run the following command in the exampleApp folder to start the Angular development tools and build the project:ng serve

Once the initial build process has completed, open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 20-1.[image:]
Figure 20-1Running the example application

Fill out the form and click the Create button to add a product to the repository. You can also click the Edit button to select a product for editing and click the Delete button to remove a button.
Summary
In this chapter, I created the example project that I will use in this part of the book. The basic structure is the same as the example used in earlier chapters but without the redundant code and markup that I used to demonstrate earlier features. In the next chapter, I describe the advanced features Angular provides for working with forms.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_21

21. Using the Forms API, Part 1

Adam Freeman1
(1)London, UK

In this chapter, I describe the Angular forms API, which provides an alternative to the template-based approach to forms introduced in Chapter 12. The forms API is a more complicated way of creating forms, but it allows fine-grained control over how forms behave, how they respond to user interaction, and how they are validated. Table 21-1 puts the forms API in context.Table 21-1Putting the Forms API in Context

	Question
	Answer

	What is it?
	The forms API allows for the creation of reactive forms, which are managed using the code in a component class.

	Why is it useful?
	The forms API provides a component with more control over the elements in forms and allows their behavior to be customized.

	How is it used?
	FormControl and FormGroup objects are created by the component class and associated with elements in the template using directives.

	Are there any pitfalls or limitations?
	The forms API is complex, and additional work is required to ensure that features such as validation behave consistently.

	Are there any alternatives?
	The forms API is optional. Forms can be defined using the basic features described in Chapter 12.

Table 21-2 summarizes the chapter.Table 21-2Chapter Summary

	Problem
	Solution
	Listing

	Creating a reactive form
	Create a FormControl object in the component class and associate it with a form element in the template using the formControl directive
	1–3

	Responding to element value changes
	Use the observable valueChanges property defined by the FormControl class
	4, 5

	Managing element state
	Use the properties defined by the FormControl class
	6

	Responding to element validation changes
	Use the observable statusChanges property defined by the FormControl class
	7–13

	Defining multiple related form elements
	Use a FormGroup object
	14–18, 22–26

	Displaying validation messages for controls in a group
	Obtain a FormControl object through the enclosing FormGroup object
	19–20, 27, 28

Preparing for This Chapter
For this chapter, I will continue using the exampleApp project that I created in Chapter 20. No changes are required for this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

To start the development server, open a command prompt, navigate to the exampleApp folder, and run the following command:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 21-1.[image:]
Figure 21-1Running the example application

Understanding the Reactive Forms API
The simplest way to use HTML forms is to use Angular two-way bindings to connect input elements to component properties, which is the approach I demonstrated in Chapter 12 and which I used to create the form in the example project in Chapter 20. These are known as template-driven forms.
For more complex forms, Angular provides a complete API that exposes the state of HTML forms and allows their data and structure to be managed, known as reactive forms. You can get a glimpse of the API in the way that the form element is defined in the form.component.html file in the src/app folder:...
<form #form="ngForm" (ngSubmit)="submitForm(form)" (reset)="form.resetForm()">
...

The template variable named form is assigned the value ngForm, which is then used in the event bindings, as a method argument in the ngSubmit event or to invoke a method in the reset event. The ngForm value and the events themselves are defined as part of the Angular form API.
One of the themes of this book has been that nothing in Angular is magic. Every feature is implanted using the capabilities of the browser or builds on other Angular features. This includes ngForm, which is a directive that acts as a wrapper around a FormGroup object, exposing its capabilities using the directive features described in Chapter 12. The FormGroup class, which is defined in the @angular/forms package, provides an API for working with a form and can be used directly in a component class, allowing forms to be manipulated in code and not just through HTML elements in a template. In turn, the FormGroup is a container for FormControl objects, each of which represents an element in the form. As you will learn, the FormGroup and FormControl classes are the building blocks of the reactive forms API, and the ngForm directive, with which you are already familiar, simply presents this API so it can be used easily in templates.
Rebuilding the Form Using the API
The simplest way to get started is with a single form element so you can understand the basic building blocks of the API. The reactive form features require a new module, ReactiveFormsModule, as shown in Listing 21-1. import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule],
 declarations: [TableComponent, FormComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 21-1Importing a Module in the core.module.ts File in the src/app/core Folder

Listing 21-2 simplifies the form template so that it contains only a single input element, along with a label and a div element.<div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [formControl]="nameField" />
</div>

Listing 21-2Simplifying the HTML Template in the form.component.html File in the src/app/core Folder

In addition to simplifying the template, Listing 21-1 makes an important change in the way that the input element is configured. The ngModel directive isn’t used with the forms API, and a different directive is applied: ...
<input class="form-control" name="name" [formControl]="nameField" />
...

The formControl directive creates the relationship between the HTML element in the template and a FormControl property in the component class, through which the element will be managed. Listing 21-3 simplifies the component, adds a property for the formControl component to use, and takes advantage of one of the features provided by the FormControl class. import { Component } from "@angular/core";
import { FormControl, NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("Initial Value");

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 this.nameField.setValue(this.product.name);
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 this.nameField.setValue("");
 }
 }

 // submitForm(form: NgForm) {
 // if (form.valid) {
 // this.model.saveProduct(this.product);
 // this.product = new Product();
 // form.resetForm();
 // }
 // }
}

Listing 21-3Using the Forms API in the form.components.ts File in the src/app/core Folder

Individual form controls are represented by FormControl properties, and Listing 21-3 defines such a property with the name specified by the formControl directive in Listing 21-2, creating the relationship between the HTML element and the component class. The constructor accepts an optional argument that sets the initial value for the element:...
nameField: FormControl = new FormControl("Initial Value");
...

When the input element is presented to the user, it will contain the string Initial Value.
The reactive forms API provides direct access to the features that were previously managed through the ngForm and ngModel directives. In this case, I have used the setValue method to set the contents of the input element when the user clicks an Edit button:...
this.nameField.setValue(this.product.name);
...

As its name suggests, the setValue method sets the value of the form control, which was previously done by the ngModel directive. The setValue method is one of the basic features provided by the FormControl class, the most useful of which are described in Table 21-3 and which I describe in the following sections.Table 21-3Useful Basic FormControl Members

	Name
	Description

	value
	This property returns the current value of the form control, defined using the any type.

	setValue(value)
	This method sets the value of the form control.

	valueChanges
	This property returns an Observable<any>, through which changes can be observed.

	enabled
	This property returns true if the form control is enabled.

	disabled
	This property returns true if the form control is disabled.

	enable()
	This method enables the form control.

	disable()
	This method disables the form control.

	reset(value)
	This method resets the form control, with an optional value. The form control will be reset to its default state if the value argument is omitted.

Note
Some of the methods described in Table 21-3 and later tables take an optional argument that manages the effect of changes. I don’t describe these options because they are not typically required, but see the Angular API description for the FormControl class (https://angular.io/api/forms/FormControl) for details.

The overall effect is to transfer control of the input element from the template to the component, through the FormControl property. When the form component is displayed, the input element is populated with an initial value, which is replaced when the user clicks one of the Edit buttons, as shown in Figure 21-2.[image:]
Figure 21-2Using a FormControl

Responding to Form Control Changes
The valueChanges property returns an observable that emits new values from the form control. Components can observe these changes to respond to user interaction, as shown in Listing 21-4. import { Component } from "@angular/core";
import { FormControl, NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("Initial Value");

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 ngOnInit() {
 this.nameField.valueChanges.subscribe(newValue => {
 this.messageService.reportMessage(new Message(newValue || "(Empty)"));
 });
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 this.nameField.setValue(this.product.name);
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 this.nameField.setValue("");
 }
 }
}

Listing 21-4Observing Changes in the form.component.ts File in the src/app/core Folder

In the ngOnInit method, the component subscribes to the Observable<any> returned by the valueChanges property and passes on the values it receives to the message service. As the user types into the input element, the changed value is displayed at the top of the layout, as shown in Figure 21-3.[image:]
Figure 21-3Responding to form control changes

By default, the observable will emit a new event in response to the HTML element’s change event, but this can be altered by configuring the FormControl with a constructor argument, as shown in Listing 21-5.import { Component, Input } from "@angular/core";
import { NgForm, FormControl } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("Initial Value", {
 updateOn: "blur"
 });

 // ...methods omitted for brevity...
}

Listing 21-5Configuring a FormControl in the form.component.ts File in the src/app/core Folder

The new argument to the FormControl constructor implements the AbstractControlOptions interface, which defines the properties described in Table 21-4. Those properties are all optional, which means you can omit those you do not need to change. Table 21-4The Properties Defined by the AbstractControlOptions Interface

	Name
	Description

	validators
	This property is used to configure the validation for the form control, as described in the “Managing Control Validation” section.

	asyncValidators
	This property is used to configure the async validation for the form control, as described in Chapter 22.

	updateOn
	This property is used to configure when the valueChanges observable will emit a new value. It can be set to change, the default; blur; or submit. The submit value is used with form elements.

In Listing 21-5, I used the blur value for the updateOn property, which means that the observable will emit new values only when the input element loses focus, such as when the user tabs to another element, as shown in Figure 21-4.[image:]
Figure 21-4Changing the update setting

Managing Control State
In Chapter 12, I showed you how form elements are added to classes to denote their state. The FormControl class defines properties that indicate the state of the HTML element and methods for manually changing the state, as described in Table 21-5. Table 21-5The FormControl Members for Element State

	Name
	Description

	untouched
	This property returns true if the HTML element is untouched, meaning that the element has not been selected.

	touched
	This property returns true if the HTML element has been touched, meaning that the element has been selected.

	markAsTouched()
	Calling method marks the element as touched.

	markAsUntouched()
	Calling this method marks the element as untouched.

	pristine
	This property returns true if the element contents have not been edited by the user.

	dirty
	This property returns true if the element contents have been edited by the user.

	markAsPristine()
	Calling this method marks the element as pristine.

	markAsDirty()
	Calling this method marks the element as dirty.

One benefit of using the reactive forms API is that you can control the way that the form features are applied, tailoring the behavior to the needs of your project. As a simple demonstration, Listing 21-6 changes the state of the element based on the number of characters in the value.import { Component } from "@angular/core";
import { FormControl, NgForm } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("Initial Value", {
 updateOn: "change"
 });

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 ngOnInit() {
 this.nameField.valueChanges.subscribe(newValue => {
 this.messageService.reportMessage(new Message(newValue || "(Empty)"));
 if (typeof(newValue) == "string" && newValue.length % 2 == 0) {
 this.nameField.markAsPristine();
 }
 });
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 this.nameField.setValue(this.product.name);
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 this.nameField.setValue("");
 }
 }
}

Listing 21-6Changing Element State in the form.component.ts File in the src/app/core Folder

I have changed the updateOn property so that a new value is emitted via the observable after every change, and I added an if expression to the subscriber function that calls the FormControl.markAsPristine method if the length of the character is an even number. The effect is that the border of the input element toggles on and off as the user types, as shown in Figure 21-5.[image:]
Figure 21-5Changing element state

The reason the border color changes is that Angular marks form elements as valid, even if no validation requirements have been applied. This means that for an odd number of characters, the input element is added to the ng-valid, ng-touched, and ng-dirty classes, like this:...
<input name="name" class="form-control ng-valid ng-touched ng-dirty">
...

This combination is matched by the selector for one of the styles defined in the form.component.css file, which I added to the project in Chapter 20:...
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
...

When there is an even number of characters, the call to the markAsPristine method creates a different combination of element classes:...
<input name="name" class="form-control ng-valid ng-touched ng-pristine">
...

This doesn’t match the CSS selector, and no border is displayed. This example demonstrates that you can customize the behavior of form elements by using the reactive forms API, even if this particular behavior is unlikely to be required in many projects.
Managing Control Validation
Form elements can be subject to validation, even when using the reactive forms API. Validation constraints can be added to the template, as described in Chapter 12, or applied through the FormControl constructor, using the validators and asyncValidators properties of the AbstractControlOptions interface.
Listing 21-7 uses this feature to apply validation to the example form element, using the validators property. (I explain the use of the asyncValidators property in Chapter 22.)import { Component, Input } from "@angular/core";
import { NgForm, FormControl, Validators } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 });

 // ...constructor and methods omitted for brevity...
}

Listing 21-7Applying Validation in the form.component.ts File in the src/app/core Folder

The built-in validators are defined as static properties of the Validators class, where each property name corresponds to the validation attributes described in Chapter 12. Validation rules are specified using the validators property of the AbstractControlOptions constructor argument, which is assigned an array of validators. In Listing 21-7, I used the required, minLength, and pattern properties to set the validation policy for the input element. I have also changed the first constructor argument so that the input element is empty when it is first presented to the user.
In addition to the constructor, the validators applied to a form control can be managed through the FormControl properties and methods described in Table 21-6. For each entry in the table, there is a corresponding member for managing asynchronous validators, which I describe in Chapter 22.Table 21-6The FormControl Members for Managing Validators

	Name
	Description

	validator
	This property returns a function that combines all of the configured validators so that the form control can be validated with a single function call.

	hasValidator(v)
	This function returns true if the form control has been configured with the specified validator.

	setValidators(vals)
	This method sets the form control validators. The argument can be a single validator or an array of validators.

	addValidators(v)
	This method adds one or more validators to the form control.

	removeValidators(v)
	This method removes one or more validators from the control.

	clearValidators()
	This method removes all of the validators from the form control.

The validation state of a FormControl is determined and managed through the members described in Table 21-7.Table 21-7The FormControl Members for Validation State

	Name
	Description

	status
	This property returns the validation state of the form control, expressed using a FormControlStatus value, which will be VALID, INVALID, PENDING, or DISABLED.

	statusChanges
	This property returns an Observable<FormControlStatus>, which will emit a FormControlStatus value when the state of the form control changes.

	valid
	This property returns true if the form control’s value passes validation.

	invalid
	This property returns true if the form control’s value fails validation.

	pending
	This property returns true if the form control’s value is being validated asynchronously, as described in Chapter 22.

	errors
	This property returns a ValidationErrors object that contains the errors generated by the form control’s validators, or null if there are no errors.

	getError(v)
	This method returns the error message, if there is one, for the specified validator. This method accepts an optional path for use with nested form controls, as described in the “Working with Multiple Form Controls” section.

	hasError(v)
	This method returns true if the specified validator has generated an error message. This method accepts an optional path for use with nested form controls, as described in the “Working with Multiple Form Controls” section.

	setErrors(errs)
	This method is used to add errors to the form control’s validation status, which is useful when performing manual validation in the component. This method accepts an optional path for use with nested form controls, as described in the “Working with Multiple Form Controls” section.

The effect of the validators configured in Listing 21-7 can be determined through the features described in Table 21-7. Listing 21-8 uses a subscription to the statusChanges observable to generate messages summarizing the validation state of the form control....
ngOnInit() {
 this.nameField.statusChanges.subscribe(newStatus => {
 if (newStatus == "INVALID" && this.nameField.errors != null) {
 let errs = Object.keys(this.nameField.errors).join(", ");
 this.messageService.reportMessage(new Message(`INVALID: ${errs}`))
 } else {
 this.messageService.reportMessage(new Message(newStatus));
 }
 })
 // this.nameField.valueChanges.subscribe(newValue => {
 // this.messageService.reportMessage(new Message(newValue || "(Empty)"));
 // if (typeof(newValue) == "string" && newValue.length % 2 == 0) {
 // this.nameField.markAsPristine();
 // }
 // });
}
...

Listing 21-8Generating Validation Messages in the form.component.ts File in the src/app/core Folder

In response to status changes, a message is sent that details the status and, if it is INVALID, includes a list of the validators that have reported an error, as shown in Figure 21-6. (See Chapter 12 for details of how to process a ValidationErrors object to display validation messages that are more usefully presented to the user.)[image:]
Figure 21-6Responding to status changes

The message shown in Figure 21-6 isn’t especially useful to the user, but the formControl directive uses the exportAs property to provide an identifier named ngForm for use in template variables, and this can be used to generate more helpful validation messages for a control. To prepare, add a file named validation_helper.ts to the src/app/core folder with the content shown in Listing 21-9, which creates a pipe to format validation messages.import { Pipe } from "@angular/core";
import { FormControl, ValidationErrors } from "@angular/forms";

@Pipe({
 name: "validationFormat"
})
export class ValidationHelper {

 transform(source: any, name: any) : string[] {
 if (source instanceof FormControl) {
 return this.formatMessages((source as FormControl).errors, name)
 }
 return this.formatMessages(source as ValidationErrors, name)
 }

 formatMessages(errors: ValidationErrors | null, name: string): string[] {
 let messages: string[] = [];
 for (let errorName in errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 }
 }
 return messages;
 }
}

Listing 21-9The Contents of the validation_helper.ts File in the src/app/core Folder

This code is based on the approach I took in Chapter 12 to generate user-friendly messages for template-driven forms. Listing 21-10 registers the pipe so that it will be available in the rest of the module.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule],
 declarations: [TableComponent, FormComponent, ValidationHelper],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 21-10Registering a Pipe in the core.modules.ts File in the src/app/core Folder

Listing 21-11 uses a template variable to obtain a reference for the FormControl object, which is used to get validation messages that can be displayed to the user.<div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [formControl]="nameField"
 #name="ngForm" />
 <ul class="text-danger list-unstyled mt-1" *ngIf="name.dirty && name.invalid">
 <li *ngFor="let err of name.errors | validationFormat:'name'">
 {{ err }}

</div>

Listing 21-11Generating Error Messages in the form.component.html File in the src/app/core Folder

The formControl directive defines properties that correspond to those described in Table 21-5 and Table 21-7, which provides access to the validation state and errors, which are formatted using the new pipe. Validation messages are displayed to the user, as shown in Figure 21-7, achieving the same result as with the template-based form from earlier chapters.[image:]
Figure 21-7Displaying validation messages

Adding Additional Controls
The advantage of using the forms API is that you can customize the way that your forms work, and this extends to using the state of one control to determine the state of another. To prepare, Listing 21-12 introduces another input element to the template.<div class="form-group">
 <label>Name</label>
 <input class="form-control" name="name" [formControl]="nameField"
 #name="ngForm" />
 <ul class="text-danger list-unstyled mt-1" *ngIf="name.dirty && name.invalid">
 <li *ngFor="let err of name.errors | validationFormat:'name'">
 {{ err }}

</div>

<div class="form-group">
 <label>Category</label>
 <input class="form-control" name="category" [formControl]="categoryField" />
</div>

Listing 21-12Adding an Element in the form.component.html File in the src/app/core Folder

The new input element is configured with a formControl binding that specifies a property named categoryField. Listing 21-13 defines this property and uses the features provided by the FormControl class to change the element’s state based on the name field.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 });
 categoryField: FormControl = new FormControl();

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 ngOnInit() {
 this.nameField.statusChanges.subscribe(newStatus => {
 if (newStatus == "INVALID") {
 this.categoryField.disable();
 } else {
 this.categoryField.enable();
 }
 })
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 this.nameField.setValue(this.product.name);
 this.categoryField.setValue(this.product.category);
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 this.nameField.setValue("");
 this.categoryField.setValue("");
 }
 }
}

Listing 21-13Adding a FormControl in the form.component.ts File in the src/app/core Folder

The category input element is enabled and disabled based on the validation status of the name element. To see the effect, start typing characters into the Name field, which will be disabled by the error produced by the minlength validator. Once the minimum length is reached, the Name field will pass validation, and the Category field will be enabled, as shown in Figure 21-8.[image:]
Figure 21-8Working with multiple controls

Working with Multiple Form Controls
Manipulating individual FormControl objects can be a powerful technique, but it can also be cumbersome in more complex forms, where there can be many objects to create and manage. The reactive forms API includes the FormGroup class, which represents a group of form controls, which can be manipulated individually or as a combined group. Listing 21-14 introduces a FormGroup property to the example component. import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 nameField: FormControl = new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 });
 categoryField: FormControl = new FormControl();

 productForm: FormGroup = new FormGroup({
 name: this.nameField, category: this.categoryField
 });

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 ngOnInit() {
 this.productForm.statusChanges.subscribe(newStatus => {
 if (newStatus == "INVALID") {
 let invalidControls: string[] = [];
 for (let controlName in this.productForm.controls) {
 if (this.productForm.controls[controlName].invalid) {
 invalidControls.push(controlName)
 }
 }
 this.messageService.reportMessage(
 new Message(`INVALID: ${invalidControls.join(", ")}`))
 } else {
 this.messageService.reportMessage(new Message(newStatus));
 }
 })
 }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 // this.nameField.setValue(this.product.name);
 // this.categoryField.setValue(this.product.category);
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 // this.nameField.setValue("");
 // this.categoryField.setValue("");
 }
 this.productForm.reset(this.product);
 }
}

Listing 21-14Using a FormGroup in the form.component.ts File in the src/app/core Folder

This is the simplest use of a FormGroup, where a property is used to group existing FormControl objects so they can be processed collectively. The individual FormControl objects are passed to the FormGroup constructor, in a map that assigns each a key. Controls can also be added, removed, and inspected in the FormGroup using the members defined in Table 21-8.Table 21-8FormGroup Members for Adding and Removing Controls

	Name
	Description

	addControl(name, ctrl)
	This method adds a control to the FormGroup with the specified name. No action is taken if there is already a control with this name.

	setControl(name, ctrl)
	This method adds a control to the FormGroup with the specified name, replacing any existing control with this name.

	removeControl(name)
	This method removes the control with the specified name.

	controls
	This property returns a map containing the controls in the group, using their names as keys.

	get(name)
	This property returns the control with the specified name.

In Listing 21-14, I created a FormGroup and added the existing FormControl objects with name and category keys:...
productForm: FormGroup = new FormGroup({
 name: this.nameField, category: this.categoryField
});
...

The names used to register FormControl objects make it easy to get and set values for all the individual controls in a single step, using the property and methods described in Table 21-9. Table 21-9FormGroup Methods for Managing Control Values

	Name
	Description

	value
	This method returns an object containing the values of the form controls in the group, using the names given to each control as the names of the properties.

	setValue(val)
	This method sets the contents of the form controls using an object, whose property names correspond to the names given to each control. The specified value object must define properties for all the form controls in the group.

	patchValue(val)
	This method sets the contents of the form controls using an object, whose property names correspond to the names given to each control. Unlike the setValue method, values are not required for all form controls.

	reset(val)
	This method resets the form to its pristine and untouched state and uses the specified value to populate the form controls.

Being able to get and set all the form control values together makes it easier to work with complex forms. I used the reset method to populate or clear the form controls when the user clicks the Create New Product or Edit button:...
this.productForm.reset(this.product);
...

The reset method looks for properties in the object it receives whose names correspond to those used for regular FormControl objects with the FormGroup. The value of each property is used to set the control value, as shown in Figure 21-9.[image:]
Figure 21-9Using a form group

The FormGroup and FormControl classes share a common base class, which means that many of the properties and methods provided by FormControl are also available on a FormGroup object, but applied to all of the controls in the group. In Listing 21-14, I subscribed to the FormGroup’s statusChanges observable to receive events that indicate the status of the form, which Angular determines by examining all of the controls in the group:...
this.productForm.statusChanges.subscribe(newStatus => {
 if (newStatus == "INVALID") {
...

If any of the individual controls are invalid, then the overall form status will be invalid, which allows me to assess the validation results without needing to inspect controls individually. But access to the individual controls is still available using the controls property, which lets me build up a list of invalid controls:...
for (let controlName in this.productForm.controls) {
 if (this.productForm.controls[controlName].invalid) {
 invalidControls.push(controlName)
 }
}
...

The result is that a list of invalid form controls is shown to the user, as illustrated by Figure 21-10.[image:]
Figure 21-10Assessing validation status using the form group

Using a Form Group with a Form Element
The formGroup directive associates a FormGroup object with an element in the template, in the same way the formControl directive is used with a FormControl object, as shown in Listing 21-15. <form [formGroup]="productForm">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" formControlName="name" />
 <!-- <ul class="text-danger list-unstyled mt-1" *ngIf="name.dirty -->
 <!-- && name.invalid"> -->
 <!-- <li *ngFor="let err of name.errors | validationFormat:'name'"> -->
 <!-- {{ err }} -->
 <!-- -->
 <!-- -->
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" formControlName="category" />
 </div>
</form>

Listing 21-15Introducing a Form Element in the form.component.html File in the src/app/core Folder

The formGroup directive is used to specify the FormGroup object, and the individual form elements are associated with their FormControl objects using the formControlName attribute, specifying the name used when adding the FormControl to the FormGroup.
Using the formControlName attribute means that I don’t have to define properties for each FormControl object in the controller class, allowing me to simplify the code, as shown in Listing 21-16.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 // nameField: FormControl = new FormControl("", {
 // validators: [
 // Validators.required,
 // Validators.minLength(3),
 // Validators.pattern("^[A-Za-z]+$")
 //],
 // updateOn: "change"
 // });
 // categoryField: FormControl = new FormControl();

 // productForm: FormGroup = new FormGroup({
 // name: this.nameField, category: this.categoryField
 // });

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl()
 });

 // ...constructor and methods omitted for brevity...
}

Listing 21-16Removing Properties in the form.component.ts File in the src/app/core Folder

There is no change in the output produced by the application, and this change just consolidates the individual form controls within the form group.
Accessing the Form Group from the Template
In addition to simplifying the application code, the formGroup directive defines some useful properties that allow me to complete the transition to the reactive forms API, restoring the features that were present when the form was managed solely through a template. Table 21-10 describes the most useful features provided by the formGroup directive.Table 21-10Use Features Provided by the formGroup Directive

	Name
	Description

	ngSubmit
	This event is triggered when the form is submitted.

	submitted
	This property returns true if the form has been submitted.

	control
	This property returns the FormControl object that has been associated with the directive.

These features ensure that the reactive forms API can still be used effectively in a template, while still providing the ability to customize the form behavior in the component class. Listing 21-17 restores the price input element that was present at the start of the chapter, along with the buttons that submit and reset the form.<form [formGroup]="productForm" #form="ngForm"
 (ngSubmit)="submitForm()" (reset)="resetForm()">

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" formControlName="name" />
 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" formControlName="category" />
 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" formControlName="price" />
 </div>

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1">Cancel</button>
 </div>
</form>

Listing 21-17Using the FormGroup Features in the form.component.html File in the src/app/core Folder

I used the directive’s ngForm property to create a template variable named form, through which I can check the overall validation status for the Save/Create button. The ngSubmit form is used to invoke a method named submitForm, and I used the form element’s reset event to invoke a method named resetForm. Listing 21-18 shows the changes required to the component class to support the additions to the template.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", { validators: Validators.required }),
 price: new FormControl("", {
 validators: [Validators.required, Validators.pattern("^[0-9\.]+$")]
 })
 });

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 // ngOnInit() {
 // this.productForm.statusChanges.subscribe(newStatus => {
 // if (newStatus == "INVALID") {
 // let invalidControls: string[] = [];
 // for (let controlName in this.productForm.controls) {
 // if (this.productForm.controls[controlName].invalid) {
 // invalidControls.push(controlName)
 // }
 // }
 // this.messageService.reportMessage(
 // new Message(`INVALID: ${invalidControls.join(", ")}`))
 // } else {
 // this.messageService.reportMessage(new Message(newStatus));
 // }
 // })
 // }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 }
 this.productForm.reset(this.product);
 }

 submitForm() {
 if (this.productForm.valid) {
 Object.assign(this.product, this.productForm.value);
 this.model.saveProduct(this.product);
 this.product = new Product();
 this.productForm.reset();
 }
 }

 resetForm() {
 this.editing = true;
 this.product = new Product();
 this.productForm.reset();
 }
}

Listing 21-18Completing the Form in the form.component.ts File in the src/app/core Folder

This listing adds a FormControl named price, adds validation to the category control, and defines the submitForm and resetForm method that will be invoked by the event bindings defined in Listing 21-17. The effect is to complete the form and restore the functionality that was previously defined using only the template form features, as shown in Figure 21-11.[image:]
Figure 21-11Using the reactive forms API

Displaying Validation Messages with a Form Group
The formControlName directive doesn’t export an identifier for use in a template variable, which complicates the process of displaying validation messages. Instead, errors must be obtained through the FormGroup, using the optional path argument for the error-related methods, which I have repeated in Table 21-11 for quick reference. Table 21-11The FormGroup Methods for Dealing with Errors

	Name
	Description

	getError(v, path)
	This method returns the error message, if there is one, for the specified validator. The optional path argument is used to identify the control.

	hasError(v, path)
	This method returns true if the specified validator has generated an error message. The optional path argument is used to identify the control.

These methods require the error to be specified, which means that it is possible to determine if a specific control has a specific error, like this:...
form.getError("required", "category")
...

This expression would return details of errors reported by the required validator on the category control, which is identified by the name used to register the control in the FormGroup. This isn’t a useful approach for the example application, where I want to display validation messages by getting all of the errors for a single FormControl object. For this, I can use the get method defined by the FormGroup class, although this can produce verbose and repetitive templates and so the best approach is to create a directive. Add a file named validationErrors.directive.ts to the src/app/core folder with the code shown in Listing 21-19.import { Directive, Input, TemplateRef, ViewContainerRef } from "@angular/core";
import { FormGroup } from "@angular/forms";
import { ValidationHelper } from "./validation_helper";

@Directive({
 selector:"[validationErrors]"
})
export class ValidationErrorsDirective {

 constructor(private container: ViewContainerRef,
 private template: TemplateRef<Object>) { }

 @Input("validationErrorsControl")
 name: string = ""

 @Input("validationErrorsLabel")
 label?: string;

 @Input("validationErrors")
 formGroup?: FormGroup;

 ngOnInit() {
 let formatter = new ValidationHelper();
 if (this.formGroup && this.name) {
 let control = this.formGroup?.get(this.name);
 if (control) {
 control.statusChanges.subscribe(() => {
 if (this.container.length > 0) {
 this.container.clear();
 }
 if (control && control.dirty && control.invalid
 && control.errors) {
 formatter.formatMessages(control.errors,
 this.label ?? this.name).forEach(err => {
 this.container.createEmbeddedView(this.template,
 { $implicit: err });

 })
 }
 })
 }
 }
 }
}

Listing 21-19The Contents of the validationErrors.directive.ts File in the src/app/core Folder

The new directive obtains a FormControl object via its FormGroup and subscribes to the observable for status changes. Each time the status changes, the validation state is checked, and any error messages are formatted and used to generate template content.
This is a simple task in code, but it is more difficult to achieve in a template without creating long expressions. Listing 21-20 registers the directive so that it can be used in the module.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 21-20Registering a Directive in the core.module.ts File in the src/app/core Folder

Listing 21-21 uses the new directive to display validation messages for each form element.<form [formGroup]="productForm" #form="ngForm"
 (ngSubmit)="submitForm()" (reset)="resetForm()">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" formControlName="name" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'name'; let err">
 {{ err }}

 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" formControlName="category" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'category'; let err">
 {{ err }}

 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" formControlName="price" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'price'; let err">
 {{ err }}

 </div>

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1">Cancel</button>
 </div>
</form>

Listing 21-21Displaying Validation Messages in the form.component.html File in the src/app/core Folder

The directive is configured with the FormGroup property defined by the component class and the name of the FormControl object for which errors are required. This is an indirect way of working, but it works as seamlessly as dealing with individual elements once the building blocks are in place, as shown in Figure 21-12.[image:]
Figure 21-12Displaying validation messages from a form group

Nesting Form Controls
The FormGroup methods described Table 21-8 accept the AbstractControl class, which is the base class for both FormGroup and FormControl and which allows FormGroup objects to be nested, which can be a useful way to group related controls. To prepare, Listing 21-22 adds features to the Product model class. export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number,
 public details?: Details) { }
}

export class Details {
 constructor(public supplier?: string,
 public keywords?: string) {}
}

Listing 21-22Expanding the Model in the product.model.ts File in the src/app/model Folder

The details property will be used to collect additional information about a product. Listing 21-23 adds values to the static data source for the new properties.import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class StaticDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275,
 { supplier: "Acme", keywords: "boat, small"}),
 new Product(2, "Lifejacket", "Watersports", 48.95),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Listing 21-23Adding Data in the static.datasource.ts File in the src/app/model Folder

Listing 21-24 adds elements to the table template to display the new properties.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 <button class="btn btn-primary mt-1" (click)="createProduct()">
 Create New Product
 </button>

Listing 21-24Displaying Details in the table.component.html File in the src/app/core Folder

Listing 21-25 adds a nested FormGroup to the form component and populates it with FormControl objects that correspond to the new model properties....
productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", { validators: Validators.required }),
 price: new FormControl("", {
 validators: [Validators.required, Validators.pattern("^[0-9\.]+$")]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: new FormControl("", { validators: Validators.required })
 })
});
...

Listing 21-25Adding a Nested Form Group in the form.component.ts File in the src/app/core Folder

To complete the process, Listing 21-26 adds new elements to the component’s template.<form [formGroup]="productForm" #form="ngForm"
 (ngSubmit)="submitForm()" (reset)="resetForm()">

 <!-- existing input elements omitted for brevity... -->

 <ng-container formGroupName="details">
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" formControlName="supplier" />
 </div>
 <div class="form-group">
 <label>Keywords</label>
 <input class="form-control" formControlName="keywords" />
 </div>
 </ng-container>

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1">Cancel</button>
 </div>
</form>

Listing 21-26Adding Elements in the form.component.html File in the src/app/core Folder

The nested FormGroup is associated with an element using the formGroupName directive, which I have applied to an ng-container element so that I don’t introduce any elements into the form. Within the ng-container element, input elements are associated with FormControl objects using the formControlName directive. Angular takes care of dealing with the nested names, and the supplier input element within the details ng-container element is mapped to the supplier FormControl within the details FormGroup object.
When the value of the top-level FormGroup object is read or set, Angular also maps the nested FormGroup/FormControl objects to nested properties on the data object. Click the Edit button for the Kayak product, and you will see that the Supplier and Keywords fields are populated using the nested model properties defined, as shown in Figure 21-13. Change the values and click Save, and you will see that the mapping works in both directions.[image:]
Figure 21-13Using a nested form group

Validating Nested Form Controls
Nested form groups can be used to assess the status of the elements they contain, which means that the top-level FormGroup will report on all of the FormControl objects, including the nested ones, and the nested FormGroup will report on just its controls. Listing 21-27 generates messages to denote the validation status of the nested controls.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup } from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 // ...form groups and controls omitted for brevity...

 ngOnInit() {
 this.productForm.get("details")?.statusChanges.subscribe(newStatus => {
 this.messageService.reportMessage(new Message(`Details ${newStatus}`));
 })
 }

 // ...constructor and methods omitted for brevity...
}

Listing 21-27Monitoring a Nested FormGroup in the form.component.ts File in the src/app/core Folder

Click the Edit button for the Kayak product and clear the Name field. The form is invalid, but no message is generated because the controls managed by the nested FormGroup have values. Clear the Supplier field to change the status of the nested group and produce a message, as shown in Figure 21-14.[image:]
Figure 21-14Monitoring a nested form group

Validation messages can be displayed in the template by specifying the path to the nested controls, which is done by combining the name of the nested group with the control, as shown in Listing 21-28....
<ng-container formGroupName="details">
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" formControlName="supplier" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.supplier';
 label: 'supplier'; let err">
 {{ err }}

 </div>
 <div class="form-group">
 <label>Keywords</label>
 <input class="form-control" formControlName="keywords" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.keywords';
 label: 'keyword'; let err">
 {{ err }}

 </div>
</ng-container>
...

Listing 21-28Nested Validation Messages in the form.component.html File in the src/app/core Folder

The path for the nested control combines the name of the form group, followed by the name of the control, separated by a period:...
<li *validationErrors="productForm; control:'details.keywords';
 label: 'keyword'; let err">
...

One issue with nested controls is that the control path can’t be used in error messages, which is why I added an optional label property in the directive in Listing 21-19. Click the Edit button for the Kayak product and clear the Supplier and Keywords fields to see the error messages, as shown in Figure 21-15.[image:]
Figure 21-15Displaying validation messages for nested controls

Summary
In this chapter, I introduced the Angular reactive forms API and showed you how it can be used to create and manage forms, providing a more code-centered approach than the standard template-driven forms described in Chapter 12. I explained the use of the FormControl and FormGroup classes and demonstrated their use in managing form elements. In the next chapter, I continue to describe the forms API, explaining how to create controls dynamically and how to create custom validators.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_22

22. Using the Forms API, Part 2

Adam Freeman1
(1)London, UK

In this chapter, I continue to describe the Angular forms API, explaining how to create form controls dynamically and how to create custom validation. Table 22-1 summarizes the chapter.Table 22-1Chapter Summary

	Problem
	Solution
	Listing

	Creating and managing form controls dynamically
	Use a FormArray object
	1–6

	Validating dynamically created form controls
	Use a control’s position in its enclosing FormArray as identification during the validation process
	7, 8

	Altering the values produced by dynamically created controls
	Override the methods defined by the FormArray class
	9, 10

	Creating custom form validation
	Create a function that returns an implementation of the ValidatorFn interface, which performs validation on a control’s value
	11–13

	Applying a custom validator in a template-driven form
	Create a directive that calls the validator function
	14–17

	Validating multiple related fields
	Perform validation on a FormGroup or FormArray
	18–23

	Performing complex or remote validation
	Create an asynchronous validator
	24–27

Preparing for This Chapter
For this chapter, I will continue using the exampleApp project from Chapter 21. No changes are required for this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

To start the development server, open a command prompt, navigate to the exampleApp folder, and run the following command:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 22-1.[image:]
Figure 22-1Running the example application

Creating Form Components Dynamically
The FormGroup class is useful when the structure and number of elements in the form are known in advance. For applications that need to dynamically add and remove elements, Angular provides the FormArray class. Both FormArray and FormControl are derived from the AbstractControl class and provide the same features for managing FormGroup objects; the difference is that the FormArray class allows FormControl objects to be created without specifying names and stores its controls as an array, making it easier to add and remove controls. To prepare, Listing 22-1 changes a model property to an array so that it can be used to store multiple values.export class Product {

 constructor(public id?: number,
 public name?: string,
 public category?: string,
 public price?: number,
 public details?: Details) { }
}

export class Details {
 constructor(public supplier?: string,
 public keywords?: string[]) {}
}

Listing 22-1Changing a Property Type in the product.model.ts File in the src/app/model Folder

Listing 22-2 updates the static example data to reflect the change to the keywords property.import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class StaticDataSource {
 private data: Product[];

 constructor() {
 this.data = new Array<Product>(
 new Product(1, "Kayak", "Watersports", 275,
 { supplier: "Acme", keywords: ["boat", "small"]}),
 new Product(2, "Lifejacket", "Watersports", 48.95,
 { supplier: "Smoot Co", keywords: ["safety"]}),
 new Product(3, "Soccer Ball", "Soccer", 19.50),
 new Product(4, "Corner Flags", "Soccer", 34.95),
 new Product(5, "Thinking Cap", "Chess", 16));
 }

 getData(): Product[] {
 return this.data;
 }
}

Listing 22-2Updating the Example Data in the static.datasource.ts File in the src/app/model Folder

Using a Form Array
The FormArray class stores its child controls in an array and provides the properties and methods described in Table 22-2 for managing the array, in addition to those it inherits from the AbstractControl class and that are shared with the FormGroup and FormControl classes. Table 22-2Useful FormArray Members for Managing Controls

	Name
	Description

	controls
	This property returns an array containing the child controls.

	length
	This property returns the number of controls that are in the FormArray.

	at(index)
	This property returns the control at the specified index in the FormArray.

	push(control)
	This method adds a control to the end of the array.

	insert(index, control)
	This method inserts a control at the specified index.

	setControl(index, control)
	This method replaces the control at the specified index.

	removeAt(index)
	This method removes the control at the specified index.

	clear()
	This method removes all of the controls from the FormArray.

The FormArray class also provides methods for setting the values of the controls it manages using arrays, rather than name-value maps, as described in Table 22-3.Table 22-3The FormArray Methods for Setting Values

	Name
	Description

	setValue(values)
	This method accepts an array of values and uses them to set the values of the child controls based on the order in which they are defined. The number of elements in the values array must match the number of controls in the FormArray.

	patchValue(values)
	This method accepts an array of values and uses them to set the values of the child controls based on the order in which they are defined. Unlike the setValue method, the number of elements in the values array does not have to match the number of controls in the FormArray, and this method will ignore values for which there are no controls and will ignore controls for which there are no values.

	reset(values)
	This method resets the controls in the FormArray and sets their values using the optional array argument. The number of elements in the values array does not have to match the number of controls in the FormArray. Values for which there are no controls are ignored, and controls for which there are no values are reset to their default state.

Listing 22-3 uses the features described in these tables to vary the number of controls displayed for the keywords model property.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FormArray([
 this.createKeywordFormControl()
])

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", { validators: Validators.required }),
 price: new FormControl("", {
 validators: [Validators.required, Validators.pattern("^[0-9\.]+$")]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
 })
 });

 constructor(private model: Model, private state: SharedState,
 private messageService: MessageService) {
 this.state.changes.subscribe((upd) => this.handleStateChange(upd))
 this.messageService.reportMessage(new Message("Creating New Product"));
 }

 // ngOnInit() {
 // this.productForm.get("details")?.statusChanges.subscribe(newStatus => {
 // this.messageService.reportMessage(new Message(`Details ${newStatus}`));
 // })
 // }

 handleStateChange(newState: StateUpdate) {
 this.editing = newState.mode == MODES.EDIT;
 this.keywordGroup.clear();
 if (this.editing && newState.id) {
 Object.assign(this.product, this.model.getProduct(newState.id)
 ?? new Product());
 this.messageService.reportMessage(
 new Message(`Editing ${this.product.name}`));
 this.product.details?.keywords?.forEach(val => {
 this.keywordGroup.push(this.createKeywordFormControl());
 })
 } else {
 this.product = new Product();
 this.messageService.reportMessage(new Message("Creating New Product"));
 }
 if (this.keywordGroup.length == 0) {
 this.keywordGroup.push(this.createKeywordFormControl());
 }
 this.productForm.reset(this.product);
 }

 submitForm() {
 if (this.productForm.valid) {
 Object.assign(this.product, this.productForm.value);
 this.model.saveProduct(this.product);
 this.product = new Product();
 this.keywordGroup.clear();
 this.keywordGroup.push(this.createKeywordFormControl());
 this.productForm.reset();
 }
 }

 resetForm() {
 this.keywordGroup.clear();
 this.keywordGroup.push(this.createKeywordFormControl());
 this.editing = true;
 this.product = new Product();
 this.productForm.reset();
 }

 createKeywordFormControl(): FormControl {
 return new FormControl();
 }
}

Listing 22-3Using a FormArray in the form.components.ts File in the src/app/core Folder

I have defined a FormArray property so that I can access it in the template, which is important because there are no built-in directives that export the FormArray for use as a template variable:...
keywordGroup = new FormArray([
 this.createKeywordFormControl()
])
...

The FormArray is initialized with the initial set of controls it will manage, expressed as an array. Notice that controls are not given names, and the features described in Table 22-2 and Table 22-3 all work on arrays. Consistency is important when creating controls, so I define the createKeywordFormControl method, which creates the FormControl objects:...
createKeywordFormControl(): FormControl {
 return new FormControl();
}
...

Using a method to create the FormControl objects ensures that I can easily alter the control configuration without having to figure out all of the places where controls are created.
Note
Angular includes the FormBuilder class, which can be used to simplify creating and configuring FormArray objects and the controls it contains. I don’t find this class useful, which is why I don’t describe it in this chapter, but you may feel differently. See https://angular.io/api/forms/FormBuilder for details.

The FormArray is added to the overall structure of controls in the same way as a nested FormGroup:...
details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
})
...

Within the component, I can manage the array of controls in the FormArray to match the selected Product object, ensuring that there is at least one control in the array so the user can add values to Product objects that don’t currently have any keyword values.
Listing 22-4 uses the FormArray property to create the HTML elements to match the number of FormControl objects.<form [formGroup]="productForm" #form="ngForm"
 (ngSubmit)="submitForm()" (reset)="resetForm()">

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" formControlName="name" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'name'; let err">
 {{ err }}

 </div>

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" formControlName="category" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'category'; let err">
 {{ err }}

 </div>

 <div class="form-group">
 <label>Price</label>
 <input class="form-control" formControlName="price" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'price'; let err">
 {{ err }}

 </div>

 <ng-container formGroupName="details">
 <div class="form-group">
 <label>Supplier</label>
 <input class="form-control" formControlName="supplier" />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.supplier';
 label: 'supplier'; let err">
 {{ err }}

 </div>

 <ng-container formGroupName="keywords">
 <div class="form-group" *ngFor="let c of keywordGroup.controls;
 let i = index">
 <label>Keyword {{ i + 1 }}</label>
 <input class="form-control" [formControlName]="i" [value]="c.value" />
 </div>
 </ng-container>

 </ng-container>

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1">Cancel</button>
 </div>
</form>

Listing 22-4Creating Elements in the form.component.html File in the src/app/core Folder

It is important to reflect the structure of the FormGroup and FormArray objects when creating HTML elements, ensuring that each is correctly configured with the formGroupName directive. I used the ng-container element to avoid introducing an HTML element for the FormArray object and used the ngFor directive to create elements for each FormControl in the FormArray:...
<div class="form-group" *ngFor="let c of keywordGroup.controls; let i = index">
...

Each input element must be configured with the formControlName directive, using an array position as its value, instead of a name:...
<input class="form-control" [formControlName]="i" [value]="c.value" />
...

The result is that the number of form controls displayed to the user varies based on the Product value that is selected, as shown in Figure 22-2. Notice that Angular correctly populates the input elements through the FormArray, mapping the values in the keywords model array to the elements in the form.[image:]
Figure 22-2Using a form array

Adding and Removing Form Controls
To complete the support for multiple keywords, I am going to allow the user to add and remove controls. Listing 22-5 adds methods to the control class. import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 // ...formgroup, constructor, and methods omitted for brevity...

 createKeywordFormControl(): FormControl {
 return new FormControl();
 }

 addKeywordControl() {
 this.keywordGroup.push(this.createKeywordFormControl());
 }

 removeKeywordControl(index: number) {
 this.keywordGroup.removeAt(index);
 }
}

Listing 22-5Adding Methods in the form.component.ts File in the src/app/core Folder

The new methods use the FormArray features described in Table 22-2 to add and remove FormGroup objects. Listing 22-6 adds elements to the template that will invoke the new component methods and allow the user to manage the number of keywords fields....
<ng-container formGroupName="keywords">
 <button class="btn btn-sm btn-primary my-2"
 (click)="addKeywordControl()" type="button">
 Add Keyword
 </button>
 <div class="form-group" *ngFor="let c of keywordGroup.controls;
 let i = index; let count = count">
 <label>Keyword {{ i + 1 }}</label>
 <div class="input-group">
 <input class="form-control" [formControlName]="i" [value]="c.value" />
 <button class="btn btn-danger" type="button" *ngIf="count > 1"
 (click)="removeKeywordControl(i)">
 Delete
 </button>
 </div>
 </div>
</ng-container>
...

Listing 22-6Adding Elements in the form.component.html File in the src/app/core Folder

I use the count variable exported by the ngForm directive to display a Delete button only when there are multiple controls in the form array. The number of keyword fields will be initially determined by the selected Product object, after which the user can add and remove fields, as shown in Figure 22-3.[image:]
Figure 22-3Adding and removing form controls in a form array

Validating Dynamically Created Form Controls
Validation for the controls in a FormArray is similar to validating the controls in a FormGroup, as shown in Listing 22-7. ...
createKeywordFormControl(): FormControl {
 return new FormControl("", { validators: Validators.pattern("^[A-Za-z]+$") });
}
...

Listing 22-7Adding Validation in the form.component.ts File in the src/app/core Folder

The advantage of using a method to create FormControl objects for the FormArray is that I can define the validation policy in a single place. Listing 22-8 displays validation messages to the user....
<ng-container formGroupName="keywords">
 <button class="btn btn-sm btn-primary my-2" (click)="addKeywordControl()"
 type="button">
 Add Keyword
 </button>
 <div class="form-group" *ngFor="let c of keywordGroup.controls;
 let i = index; let count = count">
 <label>Keyword {{ i + 1 }}</label>
 <div class="input-group">
 <input class="form-control" [formControlName]="i" [value]="c.value" />
 <button class="btn btn-danger" type="button" *ngIf="count > 1"
 (click)="removeKeywordControl(i)">
 Delete
 </button>
 </div>
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.keywords.' + i;
 label: 'keyword'; let err">
 {{ err }}

 </div>
</ng-container>
...

Listing 22-8Displaying Validation Messages in the form.component.html File in the src/app/core Folder

The path to the control uses the position in the array, rather than a name, like this:...
<li *validationErrors="productForm; control:'details.keywords.' + i;
 label: 'keyword'; let err">
...

It is important to ensure you specify the correct position; otherwise, you will display validation messages for a different control. The user is presented with a validation error if a disallowed character is entered into a keyword field, as shown in Figure 22-4.[image:]
Figure 22-4Validation for a form array control

Filtering the FormArray Values
When dealing with variable numbers of controls in a FormArray, the user may create controls and then not use them, which can cause a problem when processing the contents of the form. Figure 22-5 illustrates the problem.[image:]
Figure 22-5The effect of empty fields in form array controls

I left one of the keyword fields empty when I submitted the form, which means that an empty string has been included in the array of values assigned to the Product model object’s keywords field.
I could prevent this problem using the required validator, but this requires the user to remove any empty controls before submitting the form, which would be an awkward interruption to their workflow.
My preference is to give the user some flexibility and create a custom class that will filter out unwanted values. Add a file named filteredFormArray.ts to the src/app/core folder with the contents shown in Listing 22-9.import { FormArray } from "@angular/forms";

export type ValueFilter = (value: any) => boolean;

export class FilteredFormArray extends FormArray {

 filter: ValueFilter | undefined = (val) => val == "" || val == null;

 _updateValue() {
 (this as {value: any}).value =
 this.controls.filter((control) =>
 (control.enabled || this.disabled) && !this.filter?.(control.value)
).map((control) => control.value);
 }
}

Listing 22-9The Contents of the filteredFormArray.ts File in the src/app/core Folder

The FilteredFormArray class defines an _updateValue method, which applies a filter function that, by default, excludes empty string and null values.
The code in Listing 22-9 is on the edge of what I would consider acceptable meddling with the Angular API. You won’t see the _updateValue method in the API documentation for the FormArray class because it is part of the internal API defined, which was originally defined as an abstract method in the AbstractControl class and then overridden in the FormArray class. These methods are marked as internal, and I located them by looking at the Angular source code to figure out how these classes set the value property.
There are two issues with using methods like this. The first is that internal methods are subject to change or removal without notice, which means that figure releases of Angular may remove the _updateValue method and break the code in Listing 22-9.
The second issue is that the Angular packages are compiled using a TypeScript setting that excludes internal methods from the type declaration files that are used during project development. This means that the TypeScript compiler doesn’t know that the FormArray class defines an _updateValue method and won’t allow the use of the override or the super keywords. For this reason, I have had to copy the original code from the FormArray class and integrate support for filtering, rather than just calling the FormArray implementation of the method and filtering the result.
I am comfortable with these issues when it comes to small changes in functionality. You must make your own assessment of the issues and decide whether relying on internal features is reasonable for your projects.
But, even if you are not comfortable using this approach in your projects, this example does let me illustrate that, once again, there is nothing magical about the way that Angular works. In this case, I relied on the fact that Angular applications are compiled into pure JavaScript and that the JavaScript rules for locating a method apply, even if TypeScript has been configured to exclude the method from the type declaration files.
Listing 22-10 replaces the standard FormArray object with one that filters values.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl()
])

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", { validators: Validators.required }),
 price: new FormControl("", {
 validators: [Validators.required, Validators.pattern("^[0-9\.]+$")]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
 })
 });

 // ...constructor and methods omitted for brevity...
}

Listing 22-10Using a Customized Form Array in the form.component.ts File in the src/app/core Folder

The use of the filter prevents empty values from being included in the keywords array, as shown in Figure 22-6.[image:]
Figure 22-6Filtering values

Creating Custom Form Validation
Angular supports custom form validators, which can be used to enforce a validation policy that is specific to the application, rather than the general-purpose validation that the built-in validators provide. A good way to understand how custom validation works is to re-create the functionality provided by one of the built-in validators.
Create the src/app/validation folder and add to it a file named limit.ts with the contents shown in Listing 22-11. import { AbstractControl, ValidationErrors, ValidatorFn } from "@angular/forms";

export class LimitValidator {

 static Limit(limit:number) : ValidatorFn {
 return (control: AbstractControl) : ValidationErrors | null => {
 let val = parseFloat(control.value);
 if (isNaN(val) || val > limit) {
 return {"limit": {"limit": limit, "actualValue": val}};
 }
 return null;
 }
 }
}

Listing 22-11The Contents of the limit.ts File in the src/app/validation Folder

Custom validators are functions that implement the ValidatorFn interface, which describes a factory function that creates functions that perform validation. The factory function accepts parameters that allow validation to be configured and returns functions that accept an AbstractControl parameter and return a ValidationErrors | null result:...
static Limit(limit:number) : ValidatorFn {
 return (control: AbstractControl) : ValidationErrors | null => {
...

The factory function in this example is named Limit, and it defines a parameter named limit that specifies a maximum acceptable value, similar to the way that the built-in min validator works.
Listing 22-12 adds support for translating the validation results produced by the custom validator into messages that can be displayed to the user.import { Pipe } from "@angular/core";
import { FormControl, ValidationErrors } from "@angular/forms";

@Pipe({
 name: "validationFormat"
})
export class ValidationHelper {

 transform(source: any, name: any) : string[] {
 if (source instanceof FormControl) {
 return this.formatMessages((source as FormControl).errors, name)
 }
 return this.formatMessages(source as ValidationErrors, name)
 }

 formatMessages(errors: ValidationErrors | null, name: string): string[] {
 let messages: string[] = [];
 for (let errorName in errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 case "limit":
 messages.push(`The ${name} must be less than
 ${errors['limit'].limit}`);
 break;

 }
 }
 return messages;
 }
}

Listing 22-12Adding Support for a New Validator in the validation_helper.ts File in the src/app/core Folder

Custom validators are applied in the same way as those built into Angular, as shown in Listing 22-13.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl()
])

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", { validators: Validators.required }),
 price: new FormControl("", {
 validators: [
 Validators.required, Validators.pattern("^[0-9\.]+$"),
 LimitValidator.Limit(300)
]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
 })
 });

 // ...constructor and methods omitted for brevity...
}

Listing 22-13Using a Custom Validator in the form.component.ts File in the src/app/core Folder

To see the effect of the custom validator, enter a value in the Price field that exceeds the limit set in Listing 22-13, as shown in Figure 22-7.[image:]
Figure 22-7Using a custom validator

Creating a Directive for a Custom Validator
A directive is required to apply a custom validator to a template element when the reactive forms API isn’t used. Add a file named hilow.ts to the src/app/validation folder with the content shown in Listing 22-14. import { Directive, Input, SimpleChanges } from "@angular/core";
import { AbstractControl, NG_VALIDATORS, ValidationErrors,
 Validator, ValidatorFn } from "@angular/forms";

export class HiLowValidator {

 static HiLow(high:number, low: number) : ValidatorFn {
 return (control: AbstractControl) : ValidationErrors | null => {
 let val = parseFloat(control.value);
 if (isNaN(val) || val > high || val < low) {
 return {"hilow": {"high": high, "low": low, "actualValue": val}};
 }
 return null;
 }
 }
}

@Directive({
 selector: 'input[high][low]',
 providers: [{provide: NG_VALIDATORS, useExisting: HiLowValidatorDirective,
 multi: true}]
})
export class HiLowValidatorDirective implements Validator {

 @Input()
 high: number | string | undefined

 @Input()
 low: number | string | undefined

 validator?: (control: AbstractControl) => ValidationErrors | null;

 ngOnChanges(changes: SimpleChanges): void {
 if ("high" in changes || "low" in changes) {
 let hival = typeof(this.high) == "string"
 ? parseInt(this.high) : this.high;
 let loval = typeof(this.low) == "string"
 ? parseInt(this.low) : this.low;
 this.validator = HiLowValidator.HiLow(hival ?? Number.MAX_VALUE,
 loval ?? 0);
 }
 }

 validate(control: AbstractControl): ValidationErrors | null {
 return this.validator?.(control) ?? null;
 }
}

Listing 22-14The Contents of the hilow.ts File in the src/app/validation Folder

The HiLowValidator class defines a HiLow factory function that can be used with reactive forms. This listing also defines the HiLowValidatorDirective class, which implements the Validator interface and the validate method it defines. The ngOnChanges method is used to create a new validator when the input value changes, which is used in the validate method to assess the contents of a control.
Validation directives must use the providers property to register the NG_VALIDATORS service, like this:...
providers: [{provide: NG_VALIDATORS,
 useExisting: HiLowValidatorDirective, multi: true}]
...

Without this property, Angular will not use the directive for validation. Listing 22-15 registers the validation directive so that it can be used in templates.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 22-15Registering a Directive in the core.module.ts File in the src/app/core Folder

Listing 22-16 adds support for producing a validation message that can be displayed to the user.import { Pipe } from "@angular/core";
import { FormControl, ValidationErrors } from "@angular/forms";

@Pipe({
 name: "validationFormat"
})
export class ValidationHelper {

 transform(source: any, name: any) : string[] {
 if (source instanceof FormControl) {
 return this.formatMessages((source as FormControl).errors, name)
 }
 return this.formatMessages(source as ValidationErrors, name)
 }

 formatMessages(errors: ValidationErrors | null, name: string): string[] {
 let messages: string[] = [];
 for (let errorName in errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 case "limit":
 messages.push(`The ${name} must be less than
 ${errors['limit'].limit}`);
 break;
 case "hilow":
 messages.push(`The ${name} must be between
 ${errors['hilow'].low} and ${errors['hilow'].high}`);
 break;

 }
 }
 return messages;
 }
}

Listing 22-16Adding a Validation Message in the validation_helper.ts File in the src/app/core Folder

Finally, Listing 22-17 applies the validation directive in a template....
<div class="form-group">
 <label>Price</label>
 <input class="form-control" formControlName="price" [high]=300 [low]=10 />
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'price'; let err">
 {{ err }}

</div>
...

Listing 22-17Applying a Directive in the form.component.html File in the src/app/core Folder

As you enter values into the Price field, the HiLowValidatorDirective uses the HiLow factory function for validation, as shown in Figure 22-8.[image:]
Figure 22-8Applying a custom validator with a directive

Validating Across Multiple Fields
Custom validators can be used to enforce policies that apply to multiple fields. This type of validator is applied to the FormGroup or FormArray that is the parent to the controls that are validated. Add a file named unique.ts to the src/app/validation folder with the contents shown in Listing 22-18. import { AbstractControl, FormArray, ValidationErrors, ValidatorFn }
 from "@angular/forms";

export class UniqueValidator {

 static unique() : ValidatorFn {
 return (control: AbstractControl) : ValidationErrors | null => {
 if (control instanceof FormArray) {
 let badElems = control.controls.filter((child, index) => {
 return control.controls.filter((c, i2) => i2 != index)
 .some(target => target.value != ""
 && target.value == child.value);
 });
 if (badElems.length > 0) {
 return {"unique": {}};
 }
 }
 return null;
 }
 }
}

Listing 22-18The Contents of the unique.ts File in the src/app/validation Folder

The validator function looks for duplicate values in the array of controls managed by the FormArray and produces an error if there are duplicates. Listing 22-19 applies the validator to the FormArray in the component class.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl(),
], {
 validators: UniqueValidator.unique()
 })

 // ...form structure, constructor and methods omitted for brevity...
}

Listing 22-19Applying a Validator in the form.component.ts File in the src/app/core Folder

Listing 22-20 adds a validation message that can be presented to the user.import { Pipe } from "@angular/core";
import { FormControl, ValidationErrors } from "@angular/forms";

@Pipe({
 name: "validationFormat"
})
export class ValidationHelper {

 transform(source: any, name: any) : string[] {
 if (source instanceof FormControl) {
 return this.formatMessages((source as FormControl).errors, name)
 }
 return this.formatMessages(source as ValidationErrors, name)
 }

 formatMessages(errors: ValidationErrors | null, name: string): string[] {
 let messages: string[] = [];
 for (let errorName in errors) {
 switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 case "limit":
 messages.push(`The ${name} must be less than
 ${errors['limit'].limit}`);
 break;
 case "hilow":
 messages.push(`The ${name} must be between
 ${errors['hilow'].low} and ${errors['hilow'].high}`);
 break;
 case "unique":
 messages.push(`The ${name} must be unique`);
 break;
 }
 }
 return messages;
 }
}

Listing 22-20Adding a Validation Message in the validation_helper.ts File in the src/app/core Folder

The final step is to display validation messages for the form array in the template, as shown in Listing 22-21....
<ng-container formGroupName="keywords">
 <button class="btn btn-sm btn-primary my-2" (click)="addKeywordControl()"
 type="button">
 Add Keyword
 </button>
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.keywords';
 label: 'keywords' let err">
 {{ err }}

 <div class="form-group" *ngFor="let c of keywordGroup.controls;
 let i = index; let count = count">
 <label>Keyword {{ i + 1 }}</label>
 <div class="input-group">
 <input class="form-control" [formControlName]="i" [value]="c.value" />
 <button class="btn btn-danger" type="button" *ngIf="count > 1"
 (click)="removeKeywordControl(i)">
 Delete
 </button>
 </div>
 <ul class="text-danger list-unstyled mt-1">
 <li *validationErrors="productForm; control:'details.keywords.' + i;
 label: 'keyword'; let err">
 {{ err }}

 </div>
</ng-container>
...

Listing 22-21Displaying Validation Messages in the form.component.html File in the src/app/core Folder

To see the effect, click the Edit button for the Kayak product and change the value of the second keyword field to boat. The validator will detect the duplicate value and display a validation message, as shown in Figure 22-9.[image:]
Figure 22-9Validating across fields

The validator works as expected, but there is an important mismatch between the validation message and the color coding applied to the individual elements, which I will improve upon in the next section.
Improving Cross-Field Validation
Improving the cross-field validation experience can be done, but it requires careful navigation around the way that Angular expects groups of form controls to behave. Unlike an earlier example in this chapter, no internal methods are used, but the code relies on the SetTimeout method to trigger changes after the current update cycle to perform updates without creating an infinite update loop.
The problem is that Angular expects changes to propagate up through the structure of form controls so that the user edits a field, which triggers validation in the FormControl, and then in its enclosing FormGroup or FormArray, working its way to the top-level FormGroup. To achieve the effect I want, I have to push updates in the opposite direction so that a change in validation status in the FormArray triggers validation updates in the enclosed FormControl objects. Listing 22-22 updates the unique custom validator so that it alters the validation status of contained FormControl elements that contain the same value.import { AbstractControl, FormArray, ValidationErrors, ValidatorFn }
 from "@angular/forms";

export class UniqueValidator {

 static uniquechild(control: AbstractControl) : ValidationErrors | null {
 return control.parent?.hasError("unique") ? {"unique-child": {}} : null;
 }

 static unique() : ValidatorFn {
 return (control: AbstractControl) : ValidationErrors | null => {
 let badElems: AbstractControl[] = [];
 let goodElems: AbstractControl[] = [];
 if (control instanceof FormArray) {
 control.controls.forEach((child, index) => {
 if (control.controls.filter((c, i2) => i2 != index)
 .some(target => target.value != ""
 && target.value == child.value)) {
 badElems.push(child);
 } else {
 goodElems.push(child);
 }
 })
 setTimeout(() => {
 badElems.forEach(c => {
 if (!c.hasValidator(this.uniquechild)) {
 c.markAsDirty();
 c.addValidators(this.uniquechild)
 c.updateValueAndValidity({onlySelf: true,
 emitEvent: false});
 }
 })
 goodElems.forEach(c => {
 if (c.hasValidator(this.uniquechild)) {
 c.removeValidators(this.uniquechild);
 }
 c.updateValueAndValidity({ onlySelf: true,
 emitEvent: false})
 })

 }, 0);
 }
 return badElems.length > 0 ? {"unique": {}} : null;
 }
 }
}

Listing 22-22Improving Validation in the unique.ts File in the src/app/validation Folder

The approach I have chosen is to add a validator to child controls that have duplicate values, which will ensure they are marked in red. The additional code in Listing 22-22 takes care of adding and removing the validator and triggering validation updates when there are changes, which I do through the updateValueAndValidity method. This method, which I have described in Table 22-4 for quick reference, updates a control’s value property and performs validation. This method is defined by the AbstractControl class, which means that it can be used on FormControl, FormGroup, and FormArray objects.Table 22-4The AbstractControl Method for Manual Updates

	Name
	Description

	updateValueAndValidity(opts)
	This method causes a control to update its value and perform validation. The optional argument can be used to restrict propagating the change up the form hierarchy by setting the onlySelf property to true and preventing events by setting the emitEvent property to false.

To ensure that the validation status is maintained correctly when the user adds and removes keyword fields, Listing 22-23 overrides the push and removeAt methods defined by the FormArray class.import { AbstractControl, FormArray } from "@angular/forms";

export type ValueFilter = (value: any) => boolean;

export class FilteredFormArray extends FormArray {

 filter: ValueFilter | undefined = (val) => val == "" || val == null;

 _updateValue() {
 (this as {value: any}).value =
 this.controls.filter((control) =>
 (control.enabled || this.disabled) && !this.filter?.(control.value)
).map((control) => control.value);
 }

 override push(control: AbstractControl,
 options?: { emitEvent?: boolean | undefined; }): void {
 super.push(control, options);
 this.controls.forEach(c => c.updateValueAndValidity());
 }

 override removeAt(index: number,
 options?: { emitEvent?: boolean | undefined; }): void {
 super.removeAt(index, options);
 this.controls.forEach(c => c.updateValueAndValidity());
 }
}

Listing 22-23Refreshing Controls in the filteredFormArray.ts File in the src/app/core Folder

The changes in Listing 22-22 and Listing 22-23 ensure that individual controls with the form array are marked as invalid when they contain duplicate values, as shown in Figure 22-10.[image:]
Figure 22-10Improving the cross-field validation experience

Performing Validation Asynchronously
Asynchronous validation is useful for complex validation tasks or where the amount of time taken to perform validation is subject to delay, such as when a call to a remote HTTP service is required.
Add a file named prohibited.ts to the src/app/validation folder with the contents shown in Listing 22-24.import { AbstractControl, AsyncValidatorFn, ValidationErrors } from "@angular/forms";
import { Observable, Subject } from "rxjs";

export class ProhibitedValidator {

 static prohibitedTerms: string[] = ["ski", "swim"]

 static prohibited(): AsyncValidatorFn {
 return (control: AbstractControl): Promise<ValidationErrors | null>
 | Observable<ValidationErrors | null> => {
 let subject = new Subject<ValidationErrors | null>();
 setTimeout(() => {
 let match = false;
 this.prohibitedTerms.forEach(word => {
 if ((control.value as string).toLowerCase().indexOf(word) > -1) {
 subject.next({"prohibited": { prohibited: word}})
 match = true;
 }
 });
 if (!match) {
 subject.next(null);
 }
 subject.complete();
 }, 1000);
 return subject;
 }
 }
}

Listing 22-24The Contents of the prohibited.ts File in the src/app/validation Folder

Asynchronous validators produce their results through a Promise, which is useful when using non-Angular packages, or an Observable, which is useful when using the Angular features provided for making HTTP requests. For simplicity, the validator in Listing 22-24 simulates an asynchronous operation using the setTimeout function and compares the value it receives with a list of prohibited terms.
When performing asynchronous validation, it is important to produce a ValidationErrors object or, if there are no errors, null, so that Angular knows that the validation process is complete. Listing 22-25 introduces a new validation message that can be displayed to the user....
switch (errorName) {
 case "required":
 messages.push(`You must enter a ${name}`);
 break;
 case "minlength":
 messages.push(`A ${name} must be at least
 ${errors['minlength'].requiredLength}
 characters`);
 break;
 case "pattern":
 messages.push(`The ${name} contains
 illegal characters`);
 break;
 case "limit":
 messages.push(`The ${name} must be less than
 ${errors['limit'].limit}`);
 break;
 case "hilow":
 messages.push(`The ${name} must be between
 ${errors['hilow'].low} and ${errors['hilow'].high}`);
 break;
 case "unique":
 messages.push(`The ${name} must be unique`);
 break;
 case "prohibited":
 messages.push(`The ${name} may not contain
 "${errors["prohibited"].prohibited}"`);
 break;
}
...

Listing 22-25Adding a Message in the validaton_helper.ts File in the src/app/core Folder

Listing 22-26 applies the asynchronous validator to a FormControl, which is done using the asyncValidators property.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";
import { ProhibitedValidator } from "../validation/prohibited";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl(),
], {
 validators: UniqueValidator.unique()
 })

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", {
 validators: Validators.required,
 asyncValidators: ProhibitedValidator.prohibited()
 }),
 price: new FormControl("", {
 validators: [
 Validators.required, Validators.pattern("^[0-9\.]+$"),
 LimitValidator.Limit(300)
]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
 })
 });

 // ...constructor and methods omitted for brevity...
}

Listing 22-26Applying a Validator in the form.component.ts File in the src/app/core Folder

While waiting for an asynchronous validation result, Angular puts the FormControl object into the pending state, which adds the HTML element to the ng-pending class. Listing 22-27 defines a new CSS style that will be applied to pending elements.input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }
input.ng-pending { border: 2px solid #ffc107 }

Listing 22-27Adding a Style in the form.component.css File in the src/app/core Folder

To see the asynchronous validator working, start typing into the Category field. The HTML element will be displayed with an amber border during validation, and an error will be displayed if the text you enter contains the terms ski or swim, as shown in Figure 22-11.[image:]
Figure 22-11Using an asynchronous validator

There are two points of note when using an asynchronous validator. The first point is that asynchronous validation is performed only when no synchronous validator has returned an error, which can create a confusing sequence of validation messages unless the interaction between validators has been thought through.
The second point is that asynchronous validation is performed after every change to the form control (as long as there are no synchronous validation errors). This can result in a large number of validation operations, which may be slow or expensive to perform. If this is a concern, then you can change the update frequency using the updateOn option described in Chapter 21.
Summary
In this chapter, I described the Angular forms API features for creating controls dynamically using a FormArray and explained the different ways in which custom validation can be performed, including the use of asynchronous validators. In the next chapter, I describe the features that Angular provides for making HTTP requests.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_23

23. Making HTTP Requests

Adam Freeman1
(1)London, UK

All the examples since Chapter 9 have relied on static data that has been hardwired into the application. In this chapter, I demonstrate how to use asynchronous HTTP requests, often called Ajax requests, to interact with a web service to get real data into an application. Table 23-1 puts HTTP requests in context.Table 23-1Putting Asynchronous HTTP Requests in Context

	Question
	Answer

	What are they?
	Asynchronous HTTP requests are HTTP requests sent by the browser on behalf of the application. The term asynchronous refers to the fact that the application continues to operate while the browser is waiting for the server to respond.

	Why are they useful?
	Asynchronous HTTP requests allow Angular applications to interact with web services so that persistent data can be loaded into the application and changes can be sent to the server and saved.

	How are they used?
	Requests are made using the HttpClient class, which is delivered as a service through dependency injection. This class provides an Angular-friendly wrapper around the browser’s XMLHttpRequest feature.

	Are there any pitfalls or limitations?
	Using the Angular HTTP feature requires the use of Reactive Extensions Observable objects.

	Are there any alternatives?
	You can work directly with the browser’s XMLHttpRequest object if you prefer, and some applications—those that don’t need to deal with persistent data—can be written without making HTTP requests at all.

Table 23-2 summarizes the chapter.Table 23-2Chapter Summary

	Problem
	Solution
	Listing

	Sending HTTP requests in an Angular application
	Use the Http service
	1–8

	Performing REST operations
	Use the HTTP method and URL to specify an operation and a target for that operation
	9–11

	Making cross-origin requests
	Use the HttpClient service to support CORS automatically (JSONP requests are also supported)
	12–13

	Including headers in a request
	Set the headers property in the Request object
	14–15

	Responding to an HTTP error
	Create an error handler class
	16–19

Preparing the Example Project
This chapter uses the exampleApp project created in Chapter 22. For this chapter, I rely on a server that responds to HTTP requests with JSON data. Run the command shown in Listing 23-1 in the exampleApp folder to add the json-server package to the project.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

npm install json-server@0.17.0

Listing 23-1Adding a Package to the Project

I added an entry in the scripts section of the package.json file to run the json-server package, as shown in Listing 23-2....
"scripts": {
"ng": "ng",
"start": "ng serve",
"build": "ng build",
"watch": "ng build --watch --configuration development",
"test": "ng test",
"json": "json-server --p 3500 restData.js"
},
...

Listing 23-2Adding a Script Entry in the package.json File in the exampleApp Folder

Configuring the Model Feature Module
The @angular/common/http JavaScript module contains an Angular module called HttpClientModule, which must be imported into the application in either the root module or one of the feature modules before HTTP requests can be created. In Listing 23-3, I imported the module to the model module, which is the natural place in the example application because I will be using HTTP requests to populate the model with data.import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";
import { HttpClientModule } from "@angular/common/http";

@NgModule({
 imports: [HttpClientModule],
 providers: [Model, StaticDataSource]
})
export class ModelModule { }

Listing 23-3Importing a Module in the model.module.ts File in the src/app/model Folder

Creating the Data File
To provide the json-server package with some data, I added a file called restData.js to the exampleApp folder and added the code shown in Listing 23-4.module.exports = function () {
 var data = {
 products: [
 { id: 1, name: "Kayak", category: "Watersports", price: 275,
 details: { supplier: "Acme", keywords: ["boat", "small"]} },
 { id: 2, name: "Lifejacket", category: "Watersports", price: 48.95,
 details: { supplier: "Smoot Co", keywords: ["safety"]} },
 { id: 3, name: "Soccer Ball", category: "Soccer", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer", price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess", price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess", price: 1200 }
]
 }
 return data
}

Listing 23-4The Contents of the restData.js File in the exampleApp Folder

The json-server package can work with JSON or JavaScript files. If you use a JSON file, then its contents will be modified to reflect change requests made by clients. I have chosen the JavaScript option, which allows data to be generated programmatically and means that restarting the process will return to the original data.
Running the Example Project
Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the data server:npm run json

This command will start the json-server, which will listen for HTTP requests on port 3500. Open a new browser window and navigate to http://localhost:3500/products/2. The server will respond with the following data:{
 "id": 2,
 "name": "Lifejacket",
 "category": "Watersports",
 "price": 48.95,
 "details": {
 "supplier": "Smoot Co",
 "keywords": [
 "safety"
]
 }
}

Leave the json-server running and use a separate command prompt to start the Angular development tools by running the following command in the exampleApp folder:ng serve

Use the browser to navigate to http://localhost:4200 to see the content illustrated in Figure 23-1.[image:]
Figure 23-1Running the example application

Understanding RESTful Web Services
The most common approach for delivering data to an application is to use the Representational State Transfer pattern, known as REST, to create a data web service. There is no detailed specification for REST, which leads to a lot of different approaches that fall under the RESTful banner. There are, however, some unifying ideas that are useful in web application development.
The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request methods—also known as verbs—specify an operation for the server to perform, and the request URL specifies one or more data objects to which the operation will be applied.
As an example, here is a URL that might refer to a specific product in the example application:http://localhost:3500/products/2

The first segment of the URL—products—is used to indicate the collection of objects that will be operated on and allows a single server to provide multiple services, each with separate data. The second segment—2—selects an individual object within the products collection. In the example, it is the value of the id property that uniquely identifies an object and that will be used in the URL, in this case, specifying the Lifejacket object.
The HTTP verb or method used to make the request tells the RESTful server what operation should be performed on the specified object. When you tested the RESTful server in the previous section, the browser sent an HTTP GET request, which the server interprets as an instruction to retrieve the specified object and send it to the client. It is for this reason that the browser displayed a JSON representation of the Lifejacket object.
Table 23-3 shows the most common combination of HTTP methods and URLs and explains what each of them does when they are sent to a RESTful server. Table 23-3Common HTTP Verbs and Their Effect in a RESTful Web Service

	Verb
	URL
	Description

	GET
	/products
	This combination retrieves all the objects in the products collection.

	GET
	/products/2
	This combination retrieves the object whose id is 2 from the products collection.

	POST
	/products
	This combination is used to add a new object to the products collection. The request body contains a JSON representation of the new object.

	PUT
	/products/2
	This combination is used to replace the object in the products collection whose id is 2. The request body contains a JSON representation of the replacement object.

	PATCH
	/products/2
	This combination is used to update a subset of the properties of the object in the products collection whose id is 2. The request body contains a JSON representation of the properties to update and the new values.

	DELETE
	/products/2
	This combination is used to delete the product whose id is 2 from the products collection.

Caution is required because there can be considerable differences in the way that some RESTful web services work, caused by differences in the frameworks used to create them and the preferences of the development team. It is important to confirm how a web service uses verbs and what is required in the URL and request body to perform operations.
Some common variations include web services that won’t accept any request bodies that contain id values (to ensure they are generated uniquely by the server’s data store) or any web services that don’t support all of the verbs (it is common to ignore PATCH requests and only accept updates using the PUT verb).
Replacing the Static Data Source
The best place to start with HTTP requests is to replace the static data source in the example application with one that retrieves data from the RESTful web service. This will provide a foundation for describing how Angular supports HTTP requests and how they can be integrated into an application.
Creating the New Data Source Service
To create a new data source, I added a file called rest.datasource.ts in the src/app/model folder and added the statements shown in Listing 23-6.import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.http.get<Product[]>(this.url);
 }
}

Listing 23-6The Contents of the rest.datasource.ts File in the src/app/model Folder

This is a simple-looking class, but there are some important features at work, which I described in the sections that follow.
Setting Up the HTTP Request
Angular provides the ability to make asynchronous HTTP requests through the HttpClient class, which is defined in the @angular/common/http JavaScript module and is provided as a service in the HttpClientModule feature module. The data source declared a dependency on the HttpClient class using its constructor, like this: ...
constructor(private http: HttpClient, @Inject(REST_URL) private url: string) { }
...

The other constructor argument is used so that the URL that requests are sent to doesn’t have to be hardwired into the data source. I’ll create a provider using the REST_URL opaque token when I configure the feature module. The HttpClient object received through the constructor is used to make an HTTP GET request in the data source’s getData method, like this:...
getData(): Observable<Product[]> {
 return this.http.get<Product[]>(this.url);
}
...

The HttpClient class defines a set of methods for making HTTP requests, each of which uses a different HTTP verb, as described in Table 23-4.
Tip
The methods in Table 23-4 accept an optional configuration object, as demonstrated in the “Configuring Request Headers” section.

Table 23-4The HttpClient Methods

	Name
	Description

	get(url)
	This method sends a GET request to the specified URL.

	post(url, body)
	This method sends a POST request using the specified object as the body.

	put(url, body)
	This method sends a PUT request using the specified object as the body.

	patch(url, body)
	This method sends a PATCH request using the specified object as the body.

	delete(url)
	This method sends a DELETE request to the specified URL.

	head(url)
	This method sends a HEAD request, which has the same effect as a GET request except that the server will return only the headers and not the request body.

	options(url)
	This method sends an OPTIONS request to the specified URL.

	request(method, url, options)
	This method can be used to send a request with any verb, as described in the “Consolidating HTTP Requests” section.

Processing the Response
The methods described in Table 23-4 accept a type parameter, which the HttpClient class uses to parse the response received from the server. The RESTful web server returns JSON data, which has become the de facto standard used by web services, and the HttpClient object will automatically convert the response into an Observable that yields an instance of the type parameter when it completes. This means that if you call the get method, for example, with a Product[] type parameter, then the response from the get method will be an Observable<Product[]> that represents the eventual response from the HTTP request....
getData(): Observable<Product[]> {
 return this.http.get<Product[]>(this.url);
}
...

Caution
The methods in Table 23-4 prepare an HTTP request, but it isn’t sent to the server until the Observer object’s subscribe method is invoked. Be careful, though, because the request will be sent once per call to the subscribe method, which makes it easy to inadvertently send the same request multiple times.

Configuring the Data Source
The next step is to configure a provider for the new data source and to create a value-based provider to configure it with a URL to which requests will be sent. Listing 23-7 shows the changes to the model.module.ts file.import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";
import { HttpClientModule } from "@angular/common/http";
import { RestDataSource, REST_URL } from "./rest.datasource";

@NgModule({
 imports: [HttpClientModule],
 providers: [Model, RestDataSource,
 { provide: REST_URL, useValue: `http://${location.hostname}:3500/products` }]
})
export class ModelModule { }

Listing 23-7Configuring the Data Source in the model.module.ts File in the src/app/model Folder

The two new providers enable the RestDataSource class as a service and use the REST_URL opaque token to configure the URL for the web service. I removed the provider for the StaticDataSource class, which is no longer required.
Using the REST Data Source
The final step is to update the repository class so that it declares a dependency on the new data source and uses it to get the application data, as shown in Listing 23-8.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";
import { Observable } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;

 constructor(private dataSource: RestDataSource) {
 this.products = new Array<Product>();
 // this.dataSource.getData().forEach(p => this.products.push(p));
 this.dataSource.getData().subscribe(data => this.products = data);
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 product.id = this.generateID();
 this.products.push(product);
 } else {
 let index = this.products
 .findIndex(p => this.locator(p, product.id));
 this.products.splice(index, 1, product);
 }
 }

 deleteProduct(id: number) {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 }

 private generateID(): number {
 let candidate = 100;
 while (this.getProduct(candidate) != null) {
 candidate++;
 }
 return candidate;
 }
}

Listing 23-8Using the New Data Source in the repository.model.ts File in the src/app/model Folder

The constructor dependency has changed so that the repository will receive a RestDataSource object when it is created. Within the constructor, the data source’s getData method is called, and the subscribe method is used to receive the data objects that are returned from the server and process them.
When you save the changes, the browser will reload the application, and the new data source will be used. An asynchronous HTTP request will be sent to the RESTful web service, which will return the larger set of data objects shown in Figure 23-2.[image:]
Figure 23-2Getting the application data

Saving and Deleting Data
The data source can get data from the server, but it also needs to send data the other way, persisting changes that the user makes to objects in the model and storing new objects that are created. Listing 23-9 adds methods to the data source class to send HTTP requests to save or update objects using the Angular HttpClient class.import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {

 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.http.get<Product[]>(this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.http.post<Product>(this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.http.put<Product>(`${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.http.delete<Product>(`${this.url}/${id}`);
 }
}

Listing 23-9Sending Data in the rest.datasource.ts File in the src/app/model Folder

The saveProduct, updateProduct, and deleteProduct methods follow the same pattern: they call one of the HttpClient class methods and return an Observable<Product> as the result.
When saving a new object, the ID of the object is generated by the server so that it is unique and clients don’t inadvertently use the same ID for different objects. In this situation, the POST method is used, and the request is sent to the /products URL. When updating or deleting an existing object, the ID is already known, and a PUT request is sent to a URL that includes the ID. So, a request to update the object whose ID is 2, for example, is sent to the /products/2 URL. Similarly, to remove that object, a DELETE request would be sent to the same URL.
What these methods have in common is that the server is the authoritative data store, and the response from the server contains the official version of the object that has been saved by the server. It is this object that is returned as the result of these methods, provided through the Observable<Product>.
Listing 23-10 shows the corresponding changes in the repository class that take advantage of the new data source features.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";
import { Observable } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;

 constructor(private dataSource: RestDataSource) {
 this.products = new Array<Product>();
 // this.dataSource.getData().forEach(p => this.products.push(p));
 this.dataSource.getData().subscribe(data => this.products = data);
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product).subscribe(p => {
 let index = this.products
 .findIndex(item => this.locator(item, p.id));
 this.products.splice(index, 1, p);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(() => {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 });
 }

 // private generateID(): number {
 // let candidate = 100;
 // while (this.getProduct(candidate) != null) {
 // candidate++;
 // }
 // return candidate;
 // }
}

Listing 23-10Using the Data Source Features in the repository.model.ts File in the src/app/model Folder

The changes use the data source to send updates to the server and use the results to update the locally stored data so that it is displayed by the rest of the application. To test the changes, click the Edit button for the Kayak product and change its name to Green Kayak. Click the Save button, and the browser will send an HTTP PUT request to the server, which will return a modified object that is added to the repository’s products array and is displayed in the table, as shown in Figure 23-3.[image:]
Figure 23-3Sending a PUT request to the server

You can check that the server has stored the changes by using the browser to request http://localhost:3500/products/1, which will produce the following representation of the object:{
 "id": 1,
 "name": "Green Kayak",
 "category": "Watersports",
 "price": 275,
 "details": {
 "supplier": "Acme",
 "keywords": [
 "boat",
 "small"
]
 }
}

Consolidating HTTP Requests
Each of the methods in the data source class duplicates the same basic pattern of sending an HTTP request using a verb-specific HttpClient method. This means that any change to the way that HTTP requests are made has to be repeated in four different places, ensuring that the requests that use the GET, POST, PUT, and DELETE verbs are all correctly updated and performed consistently.
The HttpClient class also defines the request method, which allows the HTTP verb to be specified as an argument. Listing 23-11 uses the request method to consolidate the HTTP requests in the data source class. import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest<Product[]>("GET", this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {
 return this.http.request<T>(verb, url, {
 body: body
 });
 }
}

Listing 23-11Consolidating HTTP Requests in the rest.datasource.ts File in the src/app/model Folder

The request method accepts the HTTP verb, the URL for the request, and an optional object that is used to configure the request. The configuration object is used to set the request body using the body property, and the HttpClient will automatically take care of encoding the body object and including a serialized representation of it in the request.
Table 23-5 describes the most useful properties that can be specified to configure an HTTP request made using the request method.Table 23-5Useful Request Method Configuration Object Properties

	Name
	Description

	headers
	This property returns an HttpHeaders object that allows the request headers to be specified, as described in the “Configuring Request Headers” section.

	body
	This property is used to set the request body. The object assigned to this property will be serialized as JSON when the request is sent.

	withCredentials
	When true, this property is used to include authentication cookies when making cross-site requests. This setting must be used only with servers that include the Access-Control-Allow-Credentials header in responses, as part of the Cross-Origin Resource Sharing (CORS) specification. See the “Making Cross-Origin Requests” section for details.

	responseType
	This property is used to specify the type of response expected from the server. The default value is json, indicating the JSON data format.

Making Cross-Origin Requests
By default, browsers enforce a security policy that allows JavaScript code to make asynchronous HTTP requests only within the same origin as the document that contains them. This policy is intended to reduce the risk of cross-site scripting (CSS) attacks, where the browser is tricked into executing malicious code. The details of this attack are beyond the scope of this book, but the article available at http://en.wikipedia.org/wiki/Cross-site_scripting provides a good introduction to the topic.
For Angular developers, the same-origin policy can be a problem when using web services because they are typically outside of the origin that contains the application’s JavaScript code. Two URLs are considered to be in the same origin if they have the same protocol, host, and port and have different origins if this is not the case. The URL for the HTML file that contains the example application’s JavaScript code is http://localhost:3000/index.html. Table 23-6 summarizes how similar URLs have the same or different origins, compared with the application’s URL. Table 23-6URLs and Their Origins

	URL
	Origin Comparison

	http://localhost:3000/otherfile.html
	Same origin

	http://localhost:3000/app/main.js
	Same origin

	https://localhost:3000/index.html
	Different origin; protocol differs

	http://localhost:3500/products
	Different origin; port differs

	http://angular.io/index.html
	Different origin; host differs

As the table shows, the URL for the RESTful web service, http://localhost:3500/products, has a different origin because it uses a different port from the main application.
HTTP requests made using the Angular HttpClient class will automatically use Cross-Origin Resource Sharing to send requests to different origins. With CORS, the browser includes headers in the asynchronous HTTP request that provide the server with the origin of the JavaScript code. The response from the server includes headers that tell the browser whether it is willing to accept the request. The details of CORS are outside the scope of this book, but there is a good introduction to the topic at https://en.wikipedia.org/wiki/Cross-origin_resource_sharing.
For the Angular developer, CORS is something that is taken care of automatically, just as long as the server that receives asynchronous HTTP requests supports the specification. The json-server package that has been providing the RESTful web service for the examples supports CORS and will accept requests from any origin, which is why the examples have been working. If you want to see CORS in action, use the browser’s F12 developer tools to watch the network requests that are made when you edit or create a product. You may see a request made using the OPTIONS verb, known as the preflight request, which the browser uses to check that it is allowed to make the POST or PUT request to the server. This request and the subsequent request that sends the data to the server will contain an Origin header, and the response will contain one or more Access-Control-Allow headers, through which the server sets out what it is willing to accept from the client.
All of this happens automatically, and the only configuration option is the withCredentials property that was described in Table 23-5. When this property is true, the browser will include authentication cookies, and headers from the origin will be included in the request to the server.
Using JSONP Requests
CORS is available only if the server to which the HTTP requests are sent supports it. For servers that don’t implement CORS, Angular also provides support for JSONP, which allows a more limited form of cross-origin requests.
JSONP works by adding a script element to the Document Object Model that specifies the cross-origin server in its src attribute. The browser sends a GET request to the server, which returns JavaScript code that, when executed, provides the application with the data it requires. JSONP is, essentially, a hack that works around the browser’s same-origin security policy. JSONP can be used only to make GET requests, and it presents greater security risks than CORS. As a consequence, JSONP should be used only when CORS isn’t available.
The Angular support for JSONP is defined in a feature module called HttpClientJsonpModule, which is defined in the @angular/common/http JavaScript module. To enable JSONP, Listing 23-12 adds HttpClientJsonpModule to the set of imports for the model module.import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";
import { HttpClientJsonpModule, HttpClientModule } from "@angular/common/http";
import { RestDataSource, REST_URL } from "./rest.datasource";

@NgModule({
 imports: [HttpClientModule, HttpClientJsonpModule],
 providers: [Model, RestDataSource,
 { provide: REST_URL, useValue: `http://${location.hostname}:3500/products` }]
})
export class ModelModule { }

Listing 23-12Enabling JSONP in the model.module.ts File in the src/app/model Folder

Angular provides support for JSONP through the HttpClient service, which takes care of managing the JSONP HTTP request and processing the response, which can otherwise be a tedious and error-prone process. Listing 23-13 shows the data source using JSONP to request the initial data for the application.import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.http.jsonp<Product[]>(this.url, "callback");
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {
 return this.http.request<T>(verb, url, {
 body: body
 });
 }
}

Listing 23-13Making a JSONP Request in the rest.datasource.ts File in the src/app/model Folder

JSONP can be used only for GET requests, which are sent using the HttpClient.jsonp method. When you call this method, you must provide the URL for the request and the name for the callback parameter, which must be set to callback, like this:...
return this.http.jsonp<Product[]>(this.url, "callback");
...

When Angular makes the HTTP request, it creates a URL with the name of a dynamically generated function. If you look at the network requests that the browser makes, you will see that the initial request is sent to a URL like this one:http://localhost:3500/products?callback=ng_jsonp_callback_0

The server JavaScript function matches the name used in the URL and passes it the data received from the request. JSONP is a more limited way to make cross-origin requests, and, unlike CORS, it skirts around the browser’s security policy, but it can be a useful fallback in a pinch.
Configuring Request Headers
If you are using a commercial RESTful web service, you will often have to set a request header to provide an API key so that the server can associate the request with your application for access control and billing. You can set this kind of header—or any other header—by configuring the configuration object that is passed to the request method, as shown in Listing 23-14. (This listing also returns to using the request method for all requests, rather than JSONP.)import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient, HttpHeaders } from "@angular/common/http";
import { Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest<Product[]>("GET", this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {
 return this.http.request<T>(verb, url, {
 body: body,
 headers: new HttpHeaders({
 "Access-Key": "<secret>",
 "Application-Name": "exampleApp"
 })
 });
 }
}

Listing 23-14Setting a Request Header in the rest.datasource.ts File in the src/app/model Folder

The headers property is set to an HttpHeaders object, which can be created using a map object of properties that correspond to header names and the values that should be used for them. If you use the browser’s F12 developer tools to inspect the asynchronous HTTP requests, you will see that the two headers specified in the listing are sent to the server along with the standard headers that the browser creates, like this:...
Accept:*/*
Accept-Encoding:gzip, deflate, sdch, br
Accept-Language:en-US,en;q=0.8
access-key:<secret>
application-name:exampleApp
Connection:keep-alive
...

If you have more complex demands for request headers, then you can use the methods defined by the HttpHeaders class, as described in Table 23-7.Table 23-7The HttpHeaders Methods

	Name
	Description

	keys()
	Returns all the header names in the collection

	get(name)
	Returns the first value for the specified header

	getAll(name)
	Returns all the values for the specified header

	has(name)
	Returns true if the collection contains the specified header

	set(header, value)
	Returns a new HttpHeaders object that replaces all existing values for the specified header with a single value

	set(header, values)
	Returns a new HttpHeaders object that replaces all existing values for the specified header with an array of values

	append(name, value)
	Appends a value to the list of values for the specified header

	delete(name)
	Removes the specified header from the collection

HTTP headers can have multiple values, which is why there are methods that append values for headers or replace all the values in the collection. Listing 23-15 creates an empty HttpHeaders object and populates it with headers that have multiple values....
private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {

 let myHeaders = new HttpHeaders();
 myHeaders = myHeaders.set("Access-Key", "<secret>");
 myHeaders = myHeaders.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request<T>(verb, url, {
 body: body,
 headers: myHeaders
 });
}
...

Listing 23-15Setting Multiple Header Values in the rest.datasource.ts File in the src/app/model Folder

When the browser sends requests to the server, they will include the following headers:...
Accept:*/*
Accept-Encoding:gzip, deflate, sdch, br
Accept-Language:en-US,en;q=0.8
access-key:<secret>
application-names:exampleApp,proAngular
Connection:keep-alive
...

Handling Errors
At the moment, there is no error handling in the application, which means that Angular doesn’t know what to do if there is a problem with an HTTP request. To make it easy to generate an error, I have added a button to the product table that will lead to an HTTP request to delete an object that doesn’t exist at the server, as shown in Listing 23-16. <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary m-1" (click)="createProduct()">
 Create New Product
</button>
<button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Listing 23-16Adding an Error Button in the table.component.html File in the src/app/core Folder

The button element invokes the component’s deleteProduct method with an argument of -1. The component will ask the repository to delete this object, which will lead to an HTTP DELETE request being sent to /products/-1, which does not exist. If you open the browser’s JavaScript console and click the Generate HTTP Error button, you will see the response from the server displayed, like this:DELETE http://localhost:3500/products/-1 404 (Not Found)

Improving this situation means detecting this kind of error when one occurs and notifying the user, who won’t typically be looking at the JavaScript console. A real application might also respond to errors by logging them so they can be analyzed later, but I am going to keep things simple and just display an error message.
Generating User-Ready Messages
The first step in handling errors is to convert the HTTP exception into something that can be displayed to the user. The default error message, which is the one written to the JavaScript console, contains too much information to display to the user. Users don’t need to know the URL that the request was sent to; just having a sense of the kind of problem that has occurred will be enough.
The best way to transform error messages is to use the catchError method. The catchError method is used with the pipe method to receive any errors that occur within an Observable sequence, as shown in Listing 23-17.import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient, HttpHeaders } from "@angular/common/http";
import { catchError, Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest<Product[]>("GET", this.url);
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {

 let myHeaders = new HttpHeaders();
 myHeaders = myHeaders.set("Access-Key", "<secret>");
 myHeaders = myHeaders.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request<T>(verb, url, {
 body: body,
 headers: myHeaders
 }).pipe(catchError((error: Response) => {
 throw(`Network Error: ${error.statusText} (${error.status})`)
 }));
 }
}

Listing 23-17Transforming Errors in the rest.datasource.ts File in the src/app/model Folder

The function passed to the catchError method is invoked when there is an error and receives the Response object that describes the outcome, which in this case is used to generate an error message that contains the HTTP status code and status text from the response.
If you save the changes and then click the Generate HTTP Error button again, the error message will still be written to the browser’s JavaScript console but will have changed to the format produced by the catchError method.EXCEPTION: Network Error: Not Found (404)

Handling the Errors
The errors have been transformed but not handled, which is why they are still being reported as exceptions in the browser’s JavaScript console. There are two ways in which the errors can be handled. The first is to provide an error-handling function to the subscribe method for the Observable objects created by the HttpClient object. This is a useful way to localize the error and provide the repository with the opportunity to retry the operation or try to recover in some other way.
The second approach is to replace the built-in Angular error-handling feature, which responds to any unhandled errors in the application and, by default, writes them to the console. It is this feature that writes out the messages shown in the previous sections.
For the example application, I want to override the default error handler with one that uses the message service. I created a file called errorHandler.ts in the src/app/messages folder and used it to define the class shown in Listing 23-18.import { ErrorHandler, Injectable, NgZone } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";

@Injectable()
export class MessageErrorHandler implements ErrorHandler {

 constructor(private messageService: MessageService, private ngZone: NgZone) {
 }

 handleError(error: any) {
 let msg = error instanceof Error ? error.message : error.toString();
 this.ngZone.run(() => this.messageService
 .reportMessage(new Message(msg, true)), 0);
 }
}

Listing 23-18The Contents of the errorHandler.ts File in the src/app/messages Folder

The ErrorHandler class is defined in the @angular/core module and responds to errors through a handleError method. The class shown in the listing replaces the default implementation of this method with one that uses the MessageService to report an error.
Redefining the error handler presents a problem. I want to display a message to the user, which requires the Angular change detection process to be triggered. But the message is produced by a service, and Angular doesn’t keep track of the state of services as it does for components and directives. To resolve this issue, I defined an NgZone constructor parameter and used its run method to create the error message:...
this.ngZone.run(() => this.messageService.reportMessage(new Message(msg, true)), 0);
...

The run method executes the function it receives and then triggers the Angular change detection process. For this example, the result is that the new message will be displayed to the user. Without the use of the NgZone object, the error message would be created but would not be displayed to the user until the next time the Angular detection process runs, which is usually in response to user interaction.
To replace the default ErrorHandler, I used a class provider in the message module, as shown in Listing 23-19.import { NgModule, ErrorHandler } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { MessageComponent } from "./message.component";
import { MessageService } from "./message.service";
import { MessageErrorHandler } from "./errorHandler";

@NgModule({
 imports: [BrowserModule],
 declarations: [MessageComponent],
 exports: [MessageComponent],
 providers: [MessageService,
 { provide: ErrorHandler, useClass: MessageErrorHandler }]
})
export class MessageModule { }

Listing 23-19Configuring an Error Handler in the message.module.ts File in the src/app/messages Folder

The error handling function uses the MessageService to report an error message to the user. Once these changes have been saved, clicking the Generate HTTP Error button produces an error that the user can see, as shown in Figure 23-4.[image:]
Figure 23-4Handling an HTTP error

Summary
In this chapter, I explained how to make asynchronous HTTP requests in Angular applications. I introduced RESTful web services and the methods provided by the Angular HttpClient class that can be used to interact with them. I explained how the browser restricts requests to different origins and how Angular supports CORS and JSONP to make requests outside of the application’s origin. In the next chapter, I introduce the URL routing feature, which allows for navigating complex applications.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_24

24. Routing and Navigation: Part 1

Adam Freeman1
(1)London, UK

The Angular routing feature allows applications to change the components and templates that are displayed to the user by responding to changes to the browser’s URL. This allows complex applications to be created that adapt the content they present openly and flexibly, with minimal coding. To support this feature, data bindings and services can be used to change the browser’s URL, allowing the user to navigate around the application.
Routing is useful as the complexity of a project increases because it allows the structure of an application to be defined separately from the components and directives, meaning that changes to the structure can be made in the routing configuration and do not have to be applied to the individual components.
In this chapter, I demonstrate how the basic routing system works and apply it to the example application. In Chapters 25 and 26, I explain the more advanced routing features. Table 24-1 puts routing in context.Table 24-1Putting Routing and Navigation in Context

	Question
	Answer

	What is it?
	Routing uses the browser’s URL to manage the content displayed to the user.

	Why is it useful?
	Routing allows the structure of an application to be kept apart from the components and templates in the application. Changes to the structure of the application are made in the routing configuration rather than in individual components and directives.

	How is it used?
	The routing configuration is defined as a set of fragments that are used to match the browser’s URL and to select a component whose template is displayed as the content of an HTML element called router-outlet.

	Are there any pitfalls or limitations?
	The routing configuration can become unmanageable, especially if the URL schema is being defined gradually on an ad hoc basis.

	Are there any alternatives?
	You don’t have to use the routing feature. You could achieve similar results by creating a component whose view selects the content to display to the user with the ngIf or ngSwitch directive, although this approach becomes more difficult than using routing as the size and complexity of an application increases.

Table 24-2 summarizes the chapter.Table 24-2Chapter Summary

	Problem
	Solution
	Listing

	Using URL navigation to select the content shown to users
	Use URL routing
	1–4

	Navigating using an HTML element
	Apply the routerLink attribute
	5–7

	Responding to route changes
	Use the routing services to receive notifications
	8

	Including information in URLs
	Use route parameters
	9–17

	Navigating using code
	Use the Router service
	18

	Receiving notifications of routing activity
	Handle the routing events
	19–22

Preparing the Example Project
This chapter uses the exampleApp project created in Chapter 23. No changes are required for this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 24-1.[image:]
Figure 24-1Running the example application

Getting Started with Routing
At the moment, all the content in the application is visible to the user all of the time. For the example application, this means that both the table and the form are always visible, and it is up to the user to keep track of which part of the application they are using for the task at hand.
That’s fine for a simple application, but it becomes unmanageable in a complex project, which can have many areas of functionality that would be overwhelming if they were all displayed at once.
URL routing adds structure to an application using a natural and well-understood aspect of web applications: the URL. In this section, I am going to introduce URL routing by applying it to the example application so that either the table or the form is visible, with the active component being chosen based on the user’s actions. This will provide a good basis for explaining how routing works and set the foundation for more advanced features.
Creating a Routing Configuration
The first step when applying routing is to define the routes, which are mappings between URLs and the components that will be displayed to the user. Routing configurations are conventionally defined in a file called app.routing.ts, defined in the src/app folder. I created this file and added the statements shown in Listing 24-1. import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 { path: "form/edit", component: FormComponent },
 { path: "form/create", component: FormComponent },
 { path: "", component: TableComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 24-1The Contents of the app.routing.ts File in the src/app Folder

The Routes class defines a collection of routes, each of which tells Angular how to handle a specific URL. This example uses the most basic properties, where the path specifies the URL and the component property specifies the component that will be displayed to the user.
The path property is specified relative to the rest of the application, which means that the configuration in Listing 24-1 sets up the routes shown in Table 24-3.Table 24-3The Routes Created in the Example

	URL
	Displayed Component

	http://localhost:4200/form/edit
	FormComponent

	http://localhost:4200/form/create
	FormComponent

	http://localhost:4200/
	TableComponent

The routes are packaged into a module using the RouterModule.forRoot method. The forRoot method produces a module that includes the routing service. There is also a forChild method that doesn’t include the service and that is demonstrated in Chapter 25, where I explain how to create routes for feature modules.
Although the path and component properties are the most commonly used when defining routes, there is a range of additional properties that can be used to define routes with advanced features. These properties are described in Table 24-4, along with details of where they are described. Table 24-4The Routes Properties Used to Define Routes

	Name
	Description

	path
	This property specifies the path for the route.

	component
	This property specifies the component that will be selected when the active URL matches the path.

	pathMatch
	This property tells Angular how to match the current URL to the path property. There are two allowed values: full, which requires the path value to completely match the URL, and prefix, which allows the path value to match the URL, even if the URL contains additional segments that are not part of the path value. This property is required when using the redirectTo property, as demonstrated in Chapter 25.

	redirectTo
	This property is used to create a route that redirects the browser to a different URL when activated. See Chapter 25 for details.

	children
	This property is used to specify child routes, which display additional components in nested router-outlet elements contained in the template of the active component, as demonstrated in Chapter 25.

	outlet
	This property is used to support multiple outlet elements, as described in Chapter 26.

	resolve
	This property is used to define work that must be completed before a route can be activated, as described in Chapter 26.

	canActivate
	This property is used to control when a route can be activated, as described in Chapter 26.

	canActivateChild
	This property is used to control when a child route can be activated, as described in Chapter 26.

	canDeactivate
	This property is used to control when a route can be deactivated so that a new route can be activated, as described in Chapter 26.

	loadChildren
	This property is used to configure a module that is loaded only when it is needed, as described in Chapter 26.

	canLoad
	This property is used to control when an on-demand module can be loaded.

Understanding Route Ordering
The order in which routes are defined is significant. Angular compares the URL to which the browser has navigated with the path property of each route in turn until it finds a match. This means that the most specific routes should be defined first, with the routes that follow decreasing in specificity. This isn’t a big deal for the routes in Listing 24-1, but it becomes significant when using route parameters (described in the “Using Route Parameters” section of this chapter) or adding child routes (described in Chapter 25).
If you find that your routing configuration doesn’t result in the behavior you expect, then the order in which the routes have been defined is the first thing to check.

Creating the Routing Component
When using routing, the root component is dedicated to managing the navigation between different parts of the application. This is the typical purpose of the app.component.ts file that was added to the project by the ng new command when it was created. This component is a vehicle for its template, which is the app.component.html file in the src/app folder. In Listing 24-2, I have replaced the default contents. <paMessages></paMessages>
<router-outlet></router-outlet>

Listing 24-2Replacing the Contents of the app.component.html File in the src/app File

The paMessages element displays any messages and errors in the application. For the purposes of routing, it is the router-outlet element—known as the outlet—that is important because it tells Angular that this is where the component matched by the routing configuration should be displayed.
Updating the Root Module
The next step is to update the root module so that the new root component is used to bootstrap the application, as shown in Listing 24-3, which also imports the module that contains the routing configuration.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { AppComponent } from './app.component';
import { routing } from "./app.routing";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule, routing],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 24-3Enabling Routing in the app.module.ts File in the src/app Folder

Completing the Configuration
The final step is to update the index.html file, as shown in Listing 24-4.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>ExampleApp</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body class="m-1">
 <app-root></app-root>
</body>
</html>

Listing 24-4Configuring Routing in the index.html File in the src Folder

The app element applies the new root component, whose template contains the router-outlet element. When you save the changes and the browser reloads the application, you will see just the product table, as illustrated by Figure 24-2. The default URL for the application corresponds to the route that shows the product table.
Tip
You may need to stop the Angular development tools, start them again using the ng serve command, and then reload the browser for this example.

[image:]
Figure 24-2Using routing to display components to the user

Adding Navigation Links
The basic routing configuration is in place, but there is no way to navigate around the application: nothing happens when you click the Create New Product or Edit button.
The next step is to add links to the application that will change the browser’s URL and, in doing so, trigger a routing change that will display a different component to the user. Listing 24-5 adds these links to the table component’s template. <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 routerLink="/form/edit">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary m-1" (click)="createProduct()"
 routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Listing 24-5Adding Navigation Links in the table.component.html File in the src/app/core Folder

The routerLink attribute applies a directive from the routing package that performs the navigation change. This directive can be applied to any element, although it is typically applied to button and anchor (a) elements. The expression for the routerLink directive applied to the Edit buttons tells Angular to target the /form/edit route....
<button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 routerLink="/form/edit">
 Edit
</button>
...

The same directive applied to the Create New Product button tells Angular to target the /create route....
<button class="btn btn-primary m-1" (click)="createProduct()"
 routerLink="/form/create">
 Create New Product
</button>
...

The routing links added to the table component’s template will allow the user to navigate to the form. The addition to the form component’s template shown in Listing 24-6 will allow the user to navigate back again using the Cancel button....
<div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="reset" class="btn btn-secondary m-1" routerLink="/">
 Cancel
 </button>
</div>
...

Listing 24-6Adding a Navigation Link in the form.component.html File in the src/app/core Folder

The value assigned to the routerLink attribute targets the route that displays the product table. Listing 24-7 updates the feature module that contains the template so that it imports the RouterModule, which is the Angular module that contains the directive that selects the routerLink attribute.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [SharedState]
})
export class CoreModule { }

Listing 24-7Enabling the Routing Directive in the core.module.ts File in the src/app/core Folder

Understanding the Effect of Routing
Restart the Angular development tools, and you will be able to navigate around the application using the Edit, Create New Product, and Cancel buttons, as shown in Figure 24-3.[image:]
Figure 24-3Using routes to navigate around the application

Not all the features in the application work yet, but this is a good time to explore the effect of adding routing to the application. Enter the root URL for the application (http://localhost:4200) and then click the Create New Product button. When you clicked the button, the Angular routing system changed the URL that the browser displays to this:http://localhost:4200/form/create

If you watch the requests made by the application in the F12 development tools during the transition, you will notice that no requests are sent to the server for new content. This change is done entirely within the Angular application and does not produce any new HTTP requests.
The new URL is processed by the Angular routing system, which can match the new URL to this route from the app.routing.ts file.{ path: "form/create", component: FormComponent },

The routing system takes into account the base element in the index.html file when it matches the URL to a route. The base element is configured with an href value of / that is combined with the path in the route to make a match when the URL is /form/create.
The component property tells the Angular routing system that it should display the FormComponent to the user. A new instance of the FormComponent class is created, and its template content is used as the content for the router-outlet element in the root component’s template.
If you click the Cancel button below the form, then the process is repeated, but this time, the browser returns to the root URL for the application, which is matched by the route whose path component is the empty string.{ path: "", component: TableComponent }

This route tells Angular to display the TableComponent to the user. A new instance of the TableComponent class is created, and its template is used as the content of the router-outlet element, displaying the model data to the user.
This is the essence of routing: the browser’s URL changes, which causes the routing system to consult its configuration to determine which component should be displayed to the user. Lots of options and features are available, but this is the core purpose of routing, and you won’t go too far wrong if you keep this in mind.
The Perils of Changing the URL Manually
The routerLink directive sets the URL using a JavaScript API that tells the browser that this is a change relative to the current document and not a change that requires an HTTP request to the server.
If you enter a URL that matches the routing system into the browser window, you will see an effect that looks like the expected change but is actually something else entirely. Keep an eye on the network requests in the F12 development tools while manually entering the following URL into the browser:http://localhost:4200/form/create

Rather than handling the change within the Angular application, the browser sends an HTTP request to the server, which reloads the application. Once the application is loaded, the routing system inspects the browser’s URL, matches one of the routes in the configuration, and then displays the FormComponent.
The reason this works is that the development HTTP server will return the contents of the index.html file for URLs that don’t correspond to files on the disk. As an example, request this URL:http://localhost:4200/this/does/not/exist

The browser will display an error because the request has provided the browser with the contents of the index.html file, which it has used to load and start the example Angular application. When the routing system inspects the URL, it finds no matching route and creates an error.
There are two important points to note. The first is that when you test your application’s routing configuration, you should check the HTTP requests that the browser is making because you will sometimes see the right result for the wrong reasons. On a fast machine, you may not even realize that the application has been reloaded and restarted by the browser.
Second, you must remember that the URL must be changed using the routerLink directive (or one of the similar features provided by the router module) and not manually, using the browser’s URL bar.
Finally, since users won’t know about the difference between programmatic and manual URL changes, your routing configuration should be able to deal with URLs that don’t correspond to routes, as described in Chapter 25.

Completing the Routing Implementation
Adding routing to the application is a good start, but a lot of the application features just don’t work. For example, clicking an Edit button displays the form, but it isn’t populated, and it doesn’t show the color cue that indicates editing. In the sections that follow, I use features provided by the routing system to finish wiring up the application so that everything works as expected.
Handling Route Changes in Components
The form component isn’t working properly because it isn’t being notified that the user has clicked a button to edit a product. This problem occurs because the routing system creates new instances of component classes only when it needs them, which means the FormComponent object is created only after the Edit button is clicked. If you click the Cancel button under the form and then click an Edit button in this table again, a second instance of the FormComponent will be created.
This leads to a timing issue in the way that the product component and the table component communicate, via a Reactive Extensions Subject. A Subject only passes events to subscribers that arrive after the subscribe method has been called. The introduction of routing means that the FormComponent object is created after the event describing the edit operation has already been sent.
This problem could be solved by replacing the Subject with a BehaviorSubject, which sends the most recent event to subscribers when they call the subscribe method. But a more elegant approach—especially since this is a chapter on the routing system—is to use the URL to collaborate between components.
Angular provides a service that components can receive to get details of the current route. The relationship between the service and the types that it provides access to may seem complicated at first, but it will make sense as you see how the examples unfold and some of the different ways that routing can be used.
The class on which components declare a dependency is called ActivatedRoute. For this section, it defines one important property, which is described in Table 24-5. There are other properties, too, which are described later in the chapter but which you can ignore for the moment. Table 24-5The ActivatedRoute Property

	Name
	Description

	snapshot
	This property returns an ActivatedRouteSnapshot object that describes the current route.

The snapshot property returns an instance of the ActivatedRouteSnapshot class, which provides information about the route that led to the current component being displayed to the user using the properties described in Table 24-6.Table 24-6The Basic ActivatedRouteSnapshot Properties

	Name
	Description

	url
	This property returns an array of UrlSegment objects, each of which describes a single segment in the URL that matched the current route.

	params
	This property returns a Params object, which describes the URL parameters, indexed by name.

	queryParams
	This property returns a Params object, which describes the URL query parameters, indexed by name.

	fragment
	This property returns a string containing the URL fragment.

The url property is the one that is most important for this example because it allows the component to inspect the segments of the current URL and extract the information from them that is required to perform an operation. The url property returns an array of UrlSegment objects, which provide the properties described in Table 24-7.Table 24-7The URLSegment Properties

	Name
	Description

	path
	This property returns a string that contains the segment value.

	parameters
	This property returns an indexed collection of parameters, as described in the “Using Route Parameters” section.

To determine what route has been activated by the user, the form component can declare a dependency on ActivatedRoute and then use the object it receives to inspect the segments of the URL, as shown in Listing 24-8.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";
import { ProhibitedValidator } from "../validation/prohibited";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 // ...form structure omitted for brevity...

 constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.url[1].path == "edit";
 }

 // handleStateChange(newState: StateUpdate) {
 // this.editing = newState.mode == MODES.EDIT;
 // this.keywordGroup.clear();
 // if (this.editing && newState.id) {
 // Object.assign(this.product, this.model.getProduct(newState.id)
 // ?? new Product());
 // this.messageService.reportMessage(
 // new Message(`Editing ${this.product.name}`));
 // this.product.details?.keywords?.forEach(val => {
 // this.keywordGroup.push(this.createKeywordFormControl());
 // })
 // } else {
 // this.product = new Product();
 // this.messageService.reportMessage(new Message("Creating New Product"));
 // }
 // if (this.keywordGroup.length == 0) {
 // this.keywordGroup.push(this.createKeywordFormControl());
 // }
 // this.productForm.reset(this.product);
 // }

 // ...other methods omitted for brevity...
}

Listing 24-8Inspecting the Active Route in the form.component.ts File in the src/app/core Folder

The component no longer uses the shared state service to receive events. Instead, it inspects the second segment of the active route’s URL to set the value of the editing property, which determines whether it should display its create or edit mode. If you click an Edit button in the table, you will now see the correct coloring displayed, as shown in Figure 24-4, although the fields are not yet populated with data.[image:]
Figure 24-4Using the active route in a component

Using Route Parameters
When I set up the routing configuration for the application, I defined two routes that targeted the form component, like this:...
{ path: "form/edit", component: FormComponent },
{ path: "form/create", component: FormComponent },
...

When Angular is trying to match a route to a URL, it looks at each segment in turn and checks to see that it matches the URL that is being navigated to. Both of these URLs are made up of static segments, which means they have to match the navigated URL exactly before Angular will activate the route.
Angular routes can be more flexible and include route parameters, which allow any value for a segment to match the corresponding segment in the navigated URL. This means routes that target the same component with similar URLs can be consolidated into a single route, as shown in Listing 24-9.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 // { path: "form/edit", component: FormComponent },
 // { path: "form/create", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 24-9Consolidating Routes in the app.routing.ts File in the src/app Folder

The second segment of the modified URL defines a route parameter, denoted by the colon (the : character) followed by a name. In this case, the route parameter is called mode. This route will match any URL that has two segments where the first segment is form, as summarized in Table 24-8. The content of the second segment will be assigned to a parameter called mode.Table 24-8URL Matching with the Route Parameter

	URL
	Result

	http://localhost:4200/form
	No match—too few segments

	http://localhost:4200/form/create
	Matches, with create assigned to the mode parameter

	http://localhost:4200/form/london
	Matches, with london assigned to the mode parameter

	http://localhost:4200/product/edit
	No match—the first segment is not form

	http://localhost:4200/form/edit/1
	No match—too many segments

Using route parameters makes it simpler to handle routes programmatically because the value of the parameter can be obtained using its name, as shown in Listing 24-10....
constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
}
...

Listing 24-10Reading a Route Parameter in the form.component.ts File in the src/app/core Folder

The component doesn’t need to know the structure of the URL to get the information it needs. Instead, it can use the params property provided by the ActivatedRouteSnapshot class to get a collection of the parameter values, indexed by name. The component gets the value of the mode parameter and uses it to set the editing property.
Using Multiple Route Parameters
To tell the form component which product has been selected when the user clicks an Edit button, I need to use a second route parameter. Since Angular matches URLs based on the number of segments they contain, this means I need to split up the routes that target the form component again, as shown in Listing 24-11. This cycle of consolidating and then expanding routes is typical of most development projects as you increase the amount of information that is included in routed URLs to add functionality to the application.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 24-11Adding a Route in the app.routing.ts File in the src/app Folder

The new route will match any URL that has three segments where the first segment is form. To create URLs that target this route, I need to use a different approach for the routerLink expressions in the template because I need to generate the third segment dynamically for each Edit button in the product table, as shown in Listing 24-12....
<td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
</td>
...

Listing 24-12Generating Dynamic URLs in the table.component.html File in the src/app/core Folder

The routerLink attribute is now enclosed in square brackets, telling Angular that it should treat the attribute value as a data binding expression. The expression is set out as an array, with each element containing the value for one segment. The first two segments are literal strings and will be included in the target URL without modification. The third segment will be evaluated to include the id property value for the current Product object being processed by the ngIf directive, just like the other expressions in the template. The routerLink directive will combine the individual segments to create a URL such as /form/edit/2.
Listing 24-13 shows how the form component gets the value of the new route parameter and uses it to select the product that is to be edited....
constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 Object.assign(this.product, model.getProduct(id) || new Product());
 this.productForm.patchValue(this.product);
 }
}
...

Listing 24-13Using the New Route Parameter in the form.component.ts File in the src/app/core Folder

When the user clicks an Edit button, the routing URL that is activated tells the form component that an edit operation is required and specifies the product is to be modified, allowing the form to be populated correctly, as shown in Figure 24-5.[image:]
Figure 24-5Using URLs segments to provide information

Dealing with Direct Data Access
The introduction of routing has revealed a problem with the way that data is obtained from the web service. If the user starts by requesting http://localhost:4200 and clicks one of the Edit buttons, then the application works as expected and the form is correctly populated with data.
But if the user navigates directly to the URL for editing a product, such as http://localhost:4200/form/edit/2, then the form is never populated with data. This is because the RestDataSource class has been written to assume that individual Product objects will be accessed only by clicking an Edit button, which can be done only once the data has been received from the web service.
In Chapter 26, I explain how you can stop routes from being activated until a specific condition is true, such as the arrival of the data, but another approach is to use observables to ensure that data values can be requested directly. The first step is to enhance the repository, as shown in Listing 24-14.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";
import { Observable, ReplaySubject } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;
 private replaySubject: ReplaySubject<Product[]>;

 constructor(private dataSource: RestDataSource) {
 this.products = new Array<Product>();
 this.replaySubject = new ReplaySubject<Product[]>(1);
 this.dataSource.getData().subscribe(data => {
 this.products = data
 this.replaySubject.next(data);
 this.replaySubject.complete();
 });
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 getProductObservable(id: number): Observable<Product | undefined> {
 let subject = new ReplaySubject<Product | undefined>(1);
 this.replaySubject.subscribe(products => {
 subject.next(products.find(p => this.locator(p, id)));
 subject.complete();
 });
 return subject;
 }

 // ...other methods omitted for brevity...
}

Listing 24-14Using Observables in the repository.model.ts File in the src/app/model Folder

The changes rely on the ReplaySubject class to ensure that individual Product objects can be received even if the call to the new getProductObservable method is made before the data requested by the constructor has arrived. The ReplaySubject is useful for this problem because it allows subsequent calls to the getProductObservable method to benefit from the data already produced. Listing 24-15 updates the form component to use the new repository method....
constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 model.getProductObservable(id).subscribe(p => {
 Object.assign(this.product, p || new Product());
 this.productForm.patchValue(this.product);
 });
 }
}
...

Listing 24-15Supporting Direct Access in the form.component.ts File in the src/app/core Folder

The use of multiple observables is a little awkward, but the effect is that the user can request a URL such as http://localhost:4200/form/edit/2 directly and see the data they expect, as shown in Figure 24-6.[image:]
Figure 24-6Providing direct access to data

Using Optional Route Parameters
Optional route parameters allow URLs to include information to provide hints or guidance to the rest of the application, but this is not essential for the application to work.
This type of route parameter is expressed using URL matrix notation, which isn’t part of the specification for URLs but which browsers support nonetheless. Here is an example of a URL that has optional route parameters: http://localhost:4200/form/edit/2;name=Lifejacket;price=48.95

The optional route parameters are separated by semicolons (the ; character), and this URL includes optional parameters called name and price.
As a demonstration of how to use optional parameters, Listing 24-16 shows the addition of an optional route parameter that includes the object to be edited as part of the URL....
<button class="btn btn-warning btn-sm" (click)="editProduct(item.id)"
 [routerLink]="['/form', 'edit', item.id,
 {name: item.name, category: item.category, price: item.price}]">
 Edit
</button>
...

Listing 24-16An Optional Route Parameter in the table.component.html File in the src/app/core Folder

The optional values are expressed as literal objects, where property names identify the optional parameter. In this example, there are name, category, and price properties, and their values are set.
Listing 24-17 shows how the form component checks to see whether the optional parameters are present. If they have been included in the URL, then the parameter values are used to avoid a request to the data model....
constructor(private model: Model, activeRoute: ActivatedRoute) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 model.getProductObservable(id).subscribe(p => {
 Object.assign(this.product, p || new Product());
 this.product.name = activeRoute.snapshot.params["name"]
 ?? this.product.name;
 this.product.category = activeRoute.snapshot.params["category"]
 ?? this.product.category;
 let price = activeRoute.snapshot.params["price"];
 if (price != null) {
 this.product.price == Number.parseFloat(price);
 }
 this.productForm.patchValue(this.product);
 });
 }
}
...

Listing 24-17Receiving Optional Parameters in the form.component.ts File in the src/app/core Folder

The optional parameters in Listing 24-16 will produce a URL like this one for the Edit buttons:http://localhost:4200/form/edit/5;name=Stadium;category=Soccer;price=79500

Optional route parameters are accessed in the same way as required parameters, and it is the responsibility of the component to check to see whether they are present and to proceed anyway if they are not part of the URL. In this case, the component uses the optional parameter values to override the values from the repository, which you can see by requesting this URL:http://localhost:4200/form/edit/5;category=Football

The supplied value for the category parameter overrides the value provided by the repository, as shown in Figure 24-7.[image:]
Figure 24-7Using optional route parameters

Navigating in Code
Using the routerLink attribute makes it easy to set up navigation in templates, but applications will often need to initiate navigation on behalf of the user within a component or directive.
To give access to the routing system to building blocks such as directives and components, Angular provides the Router class, which is available as a service through dependency injection and whose most useful methods and properties are described in Table 24-9.Table 24-9Selected Router Methods and Properties

	Name
	Description

	navigated
	This boolean property returns true if there has been at least one navigation event and false otherwise.

	url
	This property returns the active URL.

	isActive(url, exact)
	This method returns true if the specified URL is the URL defined by the active route. The exact argument specified whether all the segments in the specified URL must match the current URL for the method to return true.

	events
	This property returns an Observable<Event> that can be used to monitor navigation changes. See the “Receiving Navigation Events” section for details.

	navigateByUrl(url, extras)
	This method navigates to the specified URL. The result of the method is a Promise, which resolves with true when the navigation is successful and false when it is not, and which is rejected when there is an error.

	navigate(commands, extras)
	This method navigates using an array of segments. The extras object can be used to specify whether the change of URL is relative to the current route. The result of the method is a Promise, which resolves with true when the navigation is successful and false when it is not, and which is rejected when there is an error.

The navigate and navigateByUrl methods make it easy to perform navigation inside a building block such as a component. Listing 24-18 shows the use of the Router in the form component to redirect the application back to the table after a product has been created or updated.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";
import { ProhibitedValidator } from "../validation/prohibited";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 // ...form structure omitted for brevity...

 constructor(private model: Model, activeRoute: ActivatedRoute,
 private router: Router) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 model.getProductObservable(id).subscribe(p => {
 Object.assign(this.product, p || new Product());
 this.product.name = activeRoute.snapshot.params["name"]
 ?? this.product.name;
 this.product.category = activeRoute.snapshot.params["category"]
 ?? this.product.category;
 let price = activeRoute.snapshot.params["price"];
 if (price != null) {
 this.product.price == Number.parseFloat(price);
 }
 this.productForm.patchValue(this.product);
 });
 }
 }

 submitForm() {
 if (this.productForm.valid) {
 Object.assign(this.product, this.productForm.value);
 this.model.saveProduct(this.product);
 // this.product = new Product();
 // this.keywordGroup.clear();
 // this.keywordGroup.push(this.createKeywordFormControl());
 // this.productForm.reset();
 this.router.navigateByUrl("/");
 }
 }

 // ...methods omitted for brevity...
}

Listing 24-18Navigating Programmatically in the form.component.ts File in the src/app/core Folder

The component receives the Router object as a constructor argument and uses it in the submitForm method to navigate back to the application’s root URL. The statements that have been commented out in the submitForm method are no longer required because the routing system will destroy the form component once it is no longer on display, which means that resetting the form’s state is not required.
The result is that clicking the Save or Create button in the form will cause the application to display the product table, as shown in Figure 24-8.[image:]
Figure 24-8Navigating programmatically

Receiving Navigation Events
In many applications, there will be components or directives that are not directly involved in the application’s navigation but that still need to know when navigation occurs. The example application contains an example in the message component, which displays notifications and errors to the user. This component always displays the most recent message, even when that information is stale and unlikely to be helpful to the user. To see the problem, click the Generate HTTP Error button and then click the Create New Product button or one of the Edit buttons; the error message remains on display even though you have navigated elsewhere in the application, as shown in Figure 24-9. [image:]
Figure 24-9An outdated error message

The events property defined by the Router class returns an Observable<Event>, which emits a sequence of Event objects describing changes from the routing system. Table 24-10 describes the most useful events.Table 24-10Useful Events Provided by the Router Observer

	Name
	Description

	NavigationStart
	This event is sent when the navigation process starts.

	RoutesRecognized
	This event is sent when the routing system matches the URL to a route.

	NavigationEnd
	This event is sent when the navigation process completes successfully.

	NavigationError
	This event is sent when the navigation process produces an error.

	NavigationCancel
	This event is sent when the navigation process is canceled.

	NavigationError
	This event is sent when an error arises during navigation.

All the event classes define an id property, which returns a number that is incremented for each navigation, and a url property, which returns the target URL. The RoutesRecognized and NavigationEnd events also define a urlAfterRedirects property, which returns the URL that has been navigated to.
To address the issue with the messaging system, Listing 24-19 subscribes to the Observer provided by the Router.events property and clears the message displayed to the user when the NavigationEnd or NavigationCancel event is received.import { Component } from "@angular/core";
import { MessageService } from "./message.service";
import { Message } from "./message.model";
import { Router, NavigationEnd, NavigationCancel } from "@angular/router";

@Component({
 selector: "paMessages",
 templateUrl: "message.component.html",
})
export class MessageComponent {
 lastMessage?: Message;

 constructor(messageService: MessageService, router: Router) {
 messageService.messages.subscribe(msg => this.lastMessage = msg);
 router.events.subscribe(e => {
 if (e instanceof NavigationEnd || e instanceof NavigationCancel) {
 this.lastMessage = undefined;
 }
 })
 }
}

Listing 24-19Responding to Events in the message.component.ts File in the src/app/messages Folder

The result of these changes is that messages are shown to the user only until the next navigation event, as shown in Figure 24-10.[image:]
Figure 24-10Responding to navigation events

Removing the Event Bindings and Supporting Code
One of the benefits of using the routing system is that it can simplify applications, replacing event bindings and the methods they invoke with navigation changes. The final change to complete the routing implementation is to remove the last traces of the previous mechanism that was used to coordinate between components. Listing 24-20 removes the event bindings from the table component’s template, which were used to respond when the user clicked the Create New Product or Edit button. (The event binding for the Delete buttons is still required because this feature does not relate to navigation.)<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>

Listing 24-20Removing Event Bindings in the table.component.html File in the src/app/core Folder

Listing 24-21 shows the corresponding changes in the component, which remove the methods that the event bindings invoked and remove the dependency on the service that was used to signal when a product should be edited or created.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
//import { MODES, SharedState } from "./sharedState.service";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html"
})
export class TableComponent {

 constructor(private model: Model) { }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts();
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 // editProduct(key?: number) {
 // this.state.update(MODES.EDIT, key)
 // }

 // createProduct() {
 // this.state.update(MODES.CREATE);
 // }
}

Listing 24-21Removing Event Handling Code in the table.component.ts File in the src/app/core Folder

The service used for coordination by the components is no longer required, and Listing 24-22 disables it from the core module.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective],
 exports: [ModelModule, TableComponent, FormComponent],
 //providers: [SharedState]
})
export class CoreModule { }

Listing 24-22Removing the Shared State Service in the core.module.ts File in the src/app/core Folder

The result is that the coordination between the table and form components is handled entirely through the routing system, which is now responsible for displaying the components and managing the navigation between them.
Summary
In this chapter, I introduced the Angular routing feature and demonstrated how to navigate to a URL in an application to select the content that is displayed to the user. I showed you how to create navigation links in templates, how to perform navigation in a component or directive, and how to respond to navigation changes programmatically. In the next chapter, I continue to describe the Angular routing system.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_25

25. Routing and Navigation: Part 2

Adam Freeman1
(1)London, UK

In the previous chapter, I introduced the Angular URL routing system and explained how it can be used to control the components that are displayed to the user. The routing system has a lot of features, which I continue to describe in this chapter and Chapter 26. This emphasis in this chapter is about creating more complex routes, including routes that will match any URL, routes that redirect the browser to other URLs, routes that navigate within a component, and routes that select multiple components. Table 25-1 summarizes the chapter.Table 25-1Chapter Summary

	Problem
	Solution
	Listing

	Matching multiple URLs with a single route
	Use routing wildcards
	1–8

	Redirecting one URL to another
	Use a redirection route
	9

	Navigating within a component
	Use a relative URL
	10

	Receiving notifications when the activated URL changes
	Use the Observable objects provided by the ActivatedRoute class
	11

	Styling an element when a specific route is active
	Use the routerLinkActive attribute
	12–15

	Using the routing system to display nested components
	Define child routes and use the router-outlet element
	16–20

Preparing the Example Project
For this chapter, I will continue using the exampleApp project that was created in Chapter 20 and has been modified in each subsequent chapter. To prepare for this chapter, I have added two methods to the repository class, as shown in Listing 25-1.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";
import { Observable, ReplaySubject } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;
 private replaySubject: ReplaySubject<Product[]>;

 constructor(private dataSource: RestDataSource) {
 this.products = new Array<Product>();
 this.replaySubject = new ReplaySubject<Product[]>(1);
 this.dataSource.getData().subscribe(data => {
 this.products = data
 this.replaySubject.next(data);
 this.replaySubject.complete();
 });
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 getProductObservable(id: number): Observable<Product | undefined> {
 let subject = new ReplaySubject<Product | undefined>(1);
 this.replaySubject.subscribe(products => {
 subject.next(products.find(p => this.locator(p, id)));
 subject.complete();
 });
 return subject;
 }

 getNextProductId(id?: number): Observable<number> {
 let subject = new ReplaySubject<number>(1);
 this.replaySubject.subscribe(products => {
 let nextId = 0;
 let index = products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 nextId = products[products.length > index + 1
 ? index + 1 : 0].id ?? 0;
 } else {
 nextId = id || 0;
 }
 subject.next(nextId);
 subject.complete();
 });
 return subject;
 }

 getPreviousProductid(id?: number): Observable<number> {
 let subject = new ReplaySubject<number>(1);
 this.replaySubject.subscribe(products => {
 let nextId = 0;
 let index = products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 nextId = products[index > 0
 ? index - 1 : products.length - 1].id ?? 0;
 } else {
 nextId = id || 0;
 }
 subject.next(nextId);
 subject.complete();
 });
 return subject;
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product).subscribe(p => {
 let index = this.products
 .findIndex(item => this.locator(item, p.id));
 this.products.splice(index, 1, p);
 });
 }
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(() => {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 }
 });
 }
}

Listing 25-1Adding Methods in the repository.model.ts File in the src/app/model Folder

The new methods accept an ID value, locate the corresponding product, and then return observables that produce the IDs of the next and previous objects in the array that the repository uses to collect the data model objects. I will use this feature later in the chapter to allow the user to page through the set of objects in the data model.
To simplify the example, Listing 25-2 removes the statements in the form component that receive the details of the product to edit using optional route parameters. I also changed the access level for the constructor parameters so I can use them directly in the component’s template.import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";
import { ProhibitedValidator } from "../validation/prohibited";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl(),
], {
 validators: UniqueValidator.unique()
 })

 productForm: FormGroup = new FormGroup({
 name: new FormControl("", {
 validators: [
 Validators.required,
 Validators.minLength(3),
 Validators.pattern("^[A-Za-z]+$")
],
 updateOn: "change"
 }),
 category: new FormControl("", {
 validators: Validators.required,
 asyncValidators: ProhibitedValidator.prohibited()
 }),
 price: new FormControl("", {
 validators: [
 Validators.required, Validators.pattern("^[0-9\.]+$"),
 LimitValidator.Limit(300)
]
 }),
 details: new FormGroup({
 supplier: new FormControl("", { validators: Validators.required }),
 keywords: this.keywordGroup
 })
 });

 constructor(public model: Model, activeRoute: ActivatedRoute,
 public router: Router) {
 this.editing = activeRoute.snapshot.params["mode"] == "edit";
 let id = activeRoute.snapshot.params["id"];
 if (id != null) {
 model.getProductObservable(id).subscribe(p => {
 Object.assign(this.product, p || new Product());
 // this.product.name = activeRoute.snapshot.params["name"]
 // ?? this.product.name;
 // this.product.category = activeRoute.snapshot.params["category"]
 // ?? this.product.category;
 // let price = activeRoute.snapshot.params["price"];
 // if (price != null) {
 // this.product.price == Number.parseFloat(price);
 // }
 this.productForm.patchValue(this.product);
 });
 }
 }

 submitForm() {
 if (this.productForm.valid) {
 Object.assign(this.product, this.productForm.value);
 this.model.saveProduct(this.product);
 this.router.navigateByUrl("/");
 }
 }

 resetForm() {
 this.keywordGroup.clear();
 this.keywordGroup.push(this.createKeywordFormControl());
 this.editing = true;
 this.product = new Product();
 this.productForm.reset();
 }

 createKeywordFormControl(): FormControl {
 return new FormControl("", { validators:
 Validators.pattern("^[A-Za-z]+$") });
 }

 addKeywordControl() {
 this.keywordGroup.push(this.createKeywordFormControl());
 }

 removeKeywordControl(index: number) {
 this.keywordGroup.removeAt(index);
 }
}

Listing 25-2Removing Optional Parameters in the form.component.ts File in the src/app/core Folder

Adding Components to the Project
I need to add some components to the application to demonstrate some of the features covered in this chapter. These components are simple because I am focusing on the routing system, rather than adding useful features to the application. I created a file called productCount.component.ts in the src/app/core folder and used it to define the component shown in Listing 25-3.
Tip
You can omit the selector attribute from the @Component decorator if a component is going to be displayed only through the routing system. I tend to add it anyway so that I can apply the component using an HTML element as well.

import {
 Component, KeyValueDiffer, KeyValueDiffers, ChangeDetectorRef
} from "@angular/core";
import { Model } from "../model/repository.model";

@Component({
 selector: "paProductCount",
 template: `<div class="bg-info text-white p-2">There are
 {{count}} products
 </div>`
})
export class ProductCountComponent {
 private differ?: KeyValueDiffer<any, any>;
 count: number = 0;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef) { }

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create();
 }

 ngDoCheck() {
 if (this.differ?.diff(this.model.getProducts()) != null) {
 this.updateCount();
 }
 }

 private updateCount() {
 this.count = this.model.getProducts().length;
 }
}

Listing 25-3The Contents of the productCount.component.ts File in the src/app/core Folder

This component uses an inline template to display the number of products in the data model, which is updated when the data model changes. Next, I added a file called categoryCount.component.ts in the src/app/core folder and defined the component shown in Listing 25-4.import {
 Component, KeyValueDiffer, KeyValueDiffers, ChangeDetectorRef
} from "@angular/core";
import { Model } from "../model/repository.model";

@Component({
 selector: "paCategoryCount",
 template: `<div class="bg-primary p-2 text-white">
 There are {{count}} categories
 </div>`
})
export class CategoryCountComponent {
 private differ?: KeyValueDiffer<any, any>;
 count: number = 0;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef) { }

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create();
 }

 ngDoCheck() {
 if (this.differ?.diff(this.model.getProducts()) != null) {
 this.count = this.model.getProducts()
 .map(p => p.category)
 .filter((category, index, array) => array.indexOf(category) == index)
 .length;
 }
 }
}

Listing 25-4The Contents of the categoryCount.component.ts File in the src/app/core Folder

This component uses a differ to track changes in the data model and count the number of unique categories, which is displayed using a simple inline template. For the final component, I added a file called notFound.component.ts in the src/app/core folder and used it to define the component shown in Listing 25-5.import { Component } from "@angular/core";

@Component({
 selector: "paNotFound",
 template: `<h3 class="bg-danger text-white p-2">Sorry, something went wrong</h3>
 <button class="btn btn-primary" routerLink="/">Start Over</button>`
})
export class NotFoundComponent {}

Listing 25-5The notFound.component.ts File in the src/app/core Folder

This component displays a static message that will be shown when something goes wrong with the routing system. Listing 25-6 adds the new components to the core module.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";
import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective, ProductCountComponent,
 CategoryCountComponent, NotFoundComponent],
 exports: [ModelModule, TableComponent, FormComponent],
})
export class CoreModule { }

Listing 25-6Declaring Components in the core.module.ts File in the src/app/core Folder

Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 25-1.[image:]
Figure 25-1Running the example application

Using Wildcards and Redirections
The routing configuration in an application can quickly become complex and contain redundancies and oddities to cater to the structure of an application. Angular provides two useful tools that can help simplify routes and also deal with problems when they arise, as described in the following sections.
Using Wildcards in Routes
The Angular routing system supports a special path, denoted by two asterisks (the ** characters), that allows routes to match any URL. The basic use of the wildcard path is to deal with navigation that would otherwise create a routing error. Listing 25-7 adds a button to the table component’s template that navigates to a route that hasn’t been defined by the application’s routing configuration. <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>
<button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
</button>
<button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
</button>
<button class="btn btn-danger m-1" routerLink="/does/not/exist">
 Generate Routing Error
</button>

Listing 25-7Adding a Button in the table.component.html File in the src/app/core Folder

Clicking the button will ask the application to navigate to the URL /does/not/exist, for which there is no route configured. When a URL doesn’t match a URL, an error is thrown, which is then picked up and processed by the error handling class, which leads to a warning being displayed by the message component, as shown in Figure 25-2.[image:]
Figure 25-2The default navigation error

This isn’t a useful way to deal with an unknown route because the user won’t know what routes are and may not realize that the application was trying to navigate to the problem URL.
A better approach is to use the wildcard route to handle navigation for URLs that have not been defined and select a component that will present a more useful message to the user, as illustrated in Listing 25-8.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "", component: TableComponent },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 25-8Adding a Wildcard Route in the app.routing.ts File in the src/app Folder

The new route in the listing uses the wildcard to select the NotFoundComponent, which displays the message shown in Figure 25-3 when the Generate Routing Error button is clicked.[image:]
Figure 25-3Using a wildcard route

Clicking the Start Over button navigates to the / URL, which will select the table component for display.
Using Redirections in Routes
Routes do not have to select components; they can also be used as aliases that redirect the browser to a different URL. Redirections are defined using the redirectTo property in a route, as shown in Listing 25-9. import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 25-9Using Route Redirection in the app.routing.ts File in the src/app Folder

The redirectTo property is used to specify the URL that the browser will be redirected to. When defining redirections, the pathMatch property must also be specified, using one of the values described in Table 25-2.Table 25-2The pathMatch Values

	Name
	Description

	prefix
	This value configures the route so that it matches URLs that start with the specified path, ignoring any subsequent segments.

	full
	This value configures the route so that it matches only the URL specified by the path property.

The first route added in Listing 25-9 specifies a pathMatch value of prefix and a path of does, which means it will match any URL whose first segment is does, such as the /does/not/exist URL that is navigated to by the Generate Routing Error button. When the browser navigates to a URL that has this prefix, the routing system will redirect it to the /form/create URL, as shown in Figure 25-4.[image:]
Figure 25-4Performing a route redirection

The other routes in Listing 25-9 redirect the empty path to the /table URL, which displays the table component. This is a common technique that makes the URL schema more obvious because it matches the default URL (http://localhost:4200/) and redirects it to something more meaningful and memorable to the user (http://localhost:4200/table). In this case, the pathMatch property value is full, although this has no effect since it has been applied to the empty path.
Navigating Within a Component
The examples in the previous chapter navigated between different components so that clicking a button in the table component navigates to the form component and vice versa.
This isn’t the only kind of navigation that’s possible; you can also navigate within a component. To demonstrate, Listing 25-10 adds buttons to the form component that allow the user to edit the previous or next data objects. <div *ngIf="editing" class="p-2">
 <button class="btn btn-secondary m-1"
 [routerLink]="['/form', 'edit',
 model.getPreviousProductid(product.id) | async]">
 Previous
 </button>
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit',
 model.getNextProductId(product.id) | async]">
 Next
 </button>
</div>

<form [formGroup]="productForm" #form="ngForm"
 (ngSubmit)="submitForm()" (reset)="resetForm()">

 <!-- ...elements omitted for brevity... -->

</form>

Listing 25-10Adding Buttons to the form.component.html File in the src/app/core Folder

These buttons have bindings for the routerLink directive with expressions that target the previous and next objects in the data model, using the async pipe to get results from the observables returned added to the repository at the start of the chapter. This means that if you click the Edit button in the table for the lifejacket, for example, the Next button will navigate to the URL that edits the soccer ball, and the Previous button will navigate to the URL for the kayak.
Responding to Ongoing Routing Changes
Although the URL changes when the Previous and Next buttons are clicked, there is no change in the data displayed to the user. Angular tries to be efficient during navigation, and it knows that the URLs that the Previous and Next buttons navigate to are handled by the same component that is currently displayed to the user. Rather than create a new instance of the component, it simply tells the component that the selected route has changed.
This is a problem because the form component isn’t set up to receive change notifications. Its constructor receives the ActivatedRoute object that Angular uses to provide details of the current route, but only its snapshot property is used. The component’s constructor has long been executed by the time that Angular updates the values in the ActivatedRoute object, which means that it misses the notification. This worked when the configuration of the application meant that a new form component would be created each time the user wanted to create or edit a product, but it is no longer sufficient.
Fortunately, the ActivatedRoute class defines a set of properties allowing interested parties to receive notifications through Reactive Extensions Observable objects. These properties correspond to the ones provided by the ActivatedRouteSnapshot object returned by the snapshot property but send new events when there are any subsequent changes, as described in Table 25-3. Table 25-3The Observable Properties of the ActivatedRoute Class

	Name
	Description

	url
	This property returns an Observable<UrlSegment[]>, which provides the set of URL segments each time the route changes.

	params
	This property returns an Observable<Params>, which provides the URL parameters each time the route changes.

	queryParams
	This property returns an Observable<Params>, which provides the URL query parameters each time the route changes.

	fragment
	This property returns an Observable<string>, which provides the URL fragment each time the route changes.

These properties can be used by components that need to handle navigation changes that don’t result in a different component being displayed to the user, as shown in Listing 25-11.
Tip
If you need to combine different data elements from the route, such as using both segments and parameters, then subscribe to the Observer for one data element and use the snapshot property to get the rest of the data you require.

...
constructor(public model: Model, activeRoute: ActivatedRoute,
 public router: Router) {

 activeRoute.params.subscribe(params => {
 this.editing = params["mode"] == "edit";
 let id = params["id"];
 if (id != null) {
 model.getProductObservable(id).subscribe(p => {
 Object.assign(this.product, p || new Product());
 this.productForm.patchValue(this.product);
 });
 }
 })
}
...

Listing 25-11Observing Route Changes in the form.component.ts File in the src/app/core Folder

The component subscribes to the Observer<Params> that sends a new Params object to subscribers each time the active route changes. The Observer objects returned by the ActivatedRoute properties send details of the most recent route change when the subscribe method is called, ensuring that the component’s constructor doesn’t miss the initial navigation that led to it being called.
The result is that the component can react to route changes that don’t cause Angular to create a new component, meaning that clicking the Next or Previous button changes the product that has been selected for editing, as shown in Figure 25-5.
Tip
The effect of navigation is obvious when the activated route changes the component that is displayed to the user. It may not be so obvious when just the data changes. To help emphasize changes, Angular can apply animations that draw attention to the effects of navigation. See Chapter 27 for details.

[image:]
Figure 25-5Responding to route changes

Styling Links for Active Routes
A common use for the routing system is to display multiple navigation elements alongside the content that they select. To demonstrate, Listing 25-12 adds a new route to the application that will allow the table component to be targeted with a URL that contains a category filter. import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table/:category", component: TableComponent },
 { path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 25-12Defining a Route in the app.routing.ts File in the src/app Folder

Listing 25-13 updates the TableComponent class so that it uses the routing system to get details of the active route and assigns the value of the category route parameter to a category property that can be accessed in the template. The category property is used in the getProducts method to filter the objects in the data model.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html"
})
export class TableComponent {
 category: string | null = null;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): (string) [] {
 return (this.model.getProducts()
 .map(p => p.category)
 .filter((c, index, array) => c != undefined
 && array.indexOf(c) == index)) as string[];
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }
}

Listing 25-13Adding Category Filter Support in the table.component.ts File in the src/app/core Folder

There is also a new categories property that will be used in the template to generate the set of categories for filtering. The final step is to add the HTML elements to the template that will allow the user to apply a filter, as shown in Listing 25-14.<div class="container-fluid">
 <div class="row">
 <div class="col-auto">
 <div class="d-grid gap-2">
 <button class="btn btn-secondary"
 routerLink="/" routerLinkActive="bg-primary">
 All
 </button>
 <button *ngFor="let category of categories"
 class="btn btn-secondary"
 [routerLink]="['/table', category]"
 routerLinkActive="bg-primary">
 {{category}}
 </button>
 </div>
 </div>
 <div class="col">
 <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>
<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger m-1" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
</div>

Listing 25-14Adding Filter Elements in the table.component.html File in the src/app/core Folder

The important part of this example is the use of the routerLinkActive attribute, which is used to specify a CSS class that the element will be assigned to when the URL specified by the routerLink attribute matches the active route.
The listing specifies a class called bg-primary, which changes the appearance of the button and makes the selected category more obvious. When combined with the functionality added to the component in Listing 25-13, the result is a set of buttons allowing the user to view products in a single category, as shown in Figure 25-6.[image:]
Figure 25-6Filtering products

If you click the Soccer button, the application will navigate to the /table/Soccer URL, and the table will display only those products in the Soccer category. The Soccer button will also be highlighted since the routerLinkActive attribute means that Angular will add the button element to the Bootstrap bg-primary class.
Fixing the All Button
The navigation buttons reveal a common problem, which is that the All button is always added to the active class, even when the user has filtered the table to show a specific category.
This happens because the routerLinkActive attribute performs partial matches on the active URL by default. In the case of the example, the / URL will always cause the All button to be activated because it is at the start of all URLs. This problem can be fixed by configuring the routerLinkActive directive, as shown in Listing 25-15....
<div class="d-grid gap-2">
 <button class="btn btn-secondary"
 routerLink="/table" routerLinkActive="bg-primary"
 [routerLinkActiveOptions]="{exact: true}">
 All
 </button>
 <button *ngFor="let category of categories"
 class="btn btn-secondary"
 [routerLink]="['/table', category]"
 routerLinkActive="bg-primary">
 {{category}}
 </button>
</div>
...

Listing 25-15Configuring the Directive in the table.component.html File in the src/app/core Folder

The configuration is performed using a binding on the routerLinkActiveOptions attribute, which accepts a literal object. The exact property is the only available configuration setting and is used to control matching the active route URL. Setting this property to true will add the element to the class specified by the routerLinkActive attribute only when there is an exact match with the active route’s URL, which is changed to /table. With this change, the All button will be highlighted only when all of the products are shown, as illustrated by Figure 25-7.[image:]
Figure 25-7Fixing the All button problem

Creating Child Routes
Child routes allow components to respond to part of the URL by embedding router-outlet elements in their templates, creating more complex arrangements of content. I am going to use the simple components I created at the start of the chapter to demonstrate how child routes work. These components will be displayed above the product table, and the component that is shown will be specified in the URLs shown in Table 25-4. Table 25-4The URLs and the Components They Will Select

	URL
	Component

	/table/products
	The ProductCountComponent will be displayed.

	/table/categories
	The CategoryCountComponent will be displayed.

	/table
	Neither component will be displayed.

Listing 25-16 shows the changes to the application’s routing configuration to implement the routing strategy in the table.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 {
 path: "table",
 component: TableComponent,
 children: [
 { path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent }
]
 },
 { path: "table/:category", component: TableComponent },
 { path: "table", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 25-16Configuring Routes in the app.routing.ts File in the src/app Folder

Child routes are defined using the children property, which is set to an array of routes defined in the same way as the top-level routes. When Angular uses the entire URL to match a route that has children, there will be a match only if the URL to which the browser navigates contains segments that match both the top-level segment and the segments specified by one of the child routes.
Tip
Notice that I have added the new route before the one whose path is table/:category. Angular tries to match routes in the order in which they are defined. The table/:category path would match both the /table/products and /table/categories URLs and lead the table component to filter the products for nonexistent categories. By placing the more specific route first, the /table/products and /table/categories URLs will be matched before the table/:category path is considered.

Creating the Child Route Outlet
The components selected by child routes are displayed in a router-outlet element defined in the template of the component selected by the parent route. In the case of the example, this means the child routes will target an element in the table component’s template, as shown in Listing 25-17, which also adds elements that will navigate to the new routes. <div class="container-fluid">
 <div class="row">
 <div class="col-auto">
 <div class="d-grid gap-2">
 <button class="btn btn-secondary"
 routerLink="/table" routerLinkActive="bg-primary"
 [routerLinkActiveOptions]="{exact: true}">
 All
 </button>
 <button *ngFor="let category of categories"
 class="btn btn-secondary"
 [routerLink]="['/table', category]"
 routerLinkActive="bg-primary">
 {{category}}
 </button>
 </div>
 </div>
 <div class="col">

 <button class="btn btn-info mx-1" routerLink="/table/products">
 Count Products
 </button>
 <button class="btn btn-primary mx-1" routerLink="/table/categories">
 Count Categories
 </button>
 <button class="btn btn-secondary mx-1" routerLink="/table">
 Count Neither
 </button>
 <div class="my-2">
 <router-outlet></router-outlet>
 </div>

 <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>
<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger m-1" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
</div>

Listing 25-17Adding an Outlet in the table.component.html File in the src/app/core Folder

The button elements have routerLink attributes that specify the URLs listed in Table 25-4, and there is also a router-outlet element, which will be used to display the selected component, as shown in Figure 25-8, or no component if the browser navigates to the /table URL.[image:]
Figure 25-8Using child routes

Accessing Parameters from Child Routes
Child routes can use all the features available to the top-level routes, including defining route parameters and even having their own child routes. Route parameters are worth special attention in child routes because of the way that Angular isolates children from their parents. For this section, I am going to add support for the URLs described in Table 25-5. Table 25-5The New URLs Supported by the Example Application

	Name
	Description

	/table/:category/products
	This route will filter the contents of the table and select the ProductCountComponent.

	/table/:category/categories
	This route will filter the contents of the table and select the CategoryCountComponent.

Listing 25-18 defines the routes that support the URLs shown in the table.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";

const childRoutes: Routes = [
 { path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }
];

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 // {
 // path: "table",
 // component: TableComponent,
 // children: [
 // { path: "products", component: ProductCountComponent },
 // { path: "categories", component: CategoryCountComponent }
 //]
 // },
 // { path: "table/:category", component: TableComponent },
 // { path: "table", component: TableComponent },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 25-18Adding Routes in the app.routing.ts File in the src/app Folder

The type of the children property is a Routes object, which makes it easy to minimize duplication in the route configuration when you need to apply the same set of child routes in different parts of the URL schema. In the listing, I have defined the child routes in a Routes object called childRoutes and used it as the value for the children property in two different top-level routes.
To make it possible to target these new routes, Listing 25-19 changes the targets of the buttons that appear above the table so they navigate relative to the current URL. I have removed the Count Neither button since the ProductCountComponent will be shown when the empty path child route matches the URL....
<div class="col">
 <button class="btn btn-info mx-1" routerLink="products">
 Count Products
 </button>
 <button class="btn btn-primary mx-1" routerLink="categories">
 Count Categories
 </button>
 <button class="btn btn-secondary mx-1" routerLink="/table">
 Count Neither
 </button>
 <div class="my-2">
 <router-outlet></router-outlet>
 </div>

 <table class="table table-sm table-bordered table-striped">
...

Listing 25-19Using Relative URLs in the table.component.html File in the src/app/core Folder

When Angular matches routes, the information it provides to the components that are selected through the ActivatedRoute object is segregated so that each component receives details of only the part of the route that selected it.
In the case of the routes added in Listing 25-19, this means the ProductCountComponent and CategoryCountComponent receive an ActivatedRoute object that describes only the child route that selected them, with the single segment of /products or /categories. Equally, the TableComponent component receives an ActivatedRoute object that doesn’t contain the segment that was used to match the child route.
Fortunately, the ActivatedRoute class provides some properties that offer access to the rest of the route, allowing parents and children to access the rest of the routing information, as described in Table 25-6.Table 25-6The ActivatedRoute Properties for Child-Parent Route Information

	Name
	Description

	pathFromRoot
	This property returns an array of ActivatedRoute objects representing all the routes used to match the current URL.

	parent
	This property returns an ActivatedRoute representing the parent of the route that selected the component.

	firstChild
	This property returns an ActivatedRoute representing the first child route used to match the current URL.

	children
	This property returns an array of ActivatedRoute objects representing all the child routes used to match the current URL.

Listing 25-20 shows how the ProductCountComponent component can access the wider set of routes used to match the current URL to get a value for the category route parameter and adapt its output when the contents of the table are filtered for a single category.import {
 Component, KeyValueDiffer, KeyValueDiffers, ChangeDetectorRef
} from "@angular/core";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paProductCount",
 template: `<div class="bg-info text-white p-2">There are
 {{count}} products
 </div>`
})
export class ProductCountComponent {
 private differ?: KeyValueDiffer<any, any>;
 count: number = 0;
 private category?: string;

 constructor(private model: Model,
 private keyValueDiffers: KeyValueDiffers,
 private changeDetector: ChangeDetectorRef,
 activeRoute: ActivatedRoute) {
 activeRoute.pathFromRoot.forEach(route => route.params.subscribe(params => {
 if (params["category"] != null) {
 this.category = params["category"];
 this.updateCount();
 }
 }))
 }

 ngOnInit() {
 this.differ = this.keyValueDiffers
 .find(this.model.getProducts())
 .create();
 }

 ngDoCheck() {
 if (this.differ?.diff(this.model.getProducts()) != null) {
 this.updateCount();
 }
 }

 private updateCount() {
 this.count = this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category)
 .length;
 }
}

Listing 25-20Ancestor Routes in the productCount.component.ts File in the src/app/core Folder

The pathFromRoot property is especially useful because it allows a component to inspect all the routes that have been used to match the URL. Angular minimizes the routing updates required to handle navigation, which means that a component that has been selected by a child route won’t receive a change notification through its ActivatedRoute object if only its parent has changed. It is for this reason that I have subscribed to updates from all the ActivatedRoute objects returned by the pathFromRoot property, ensuring that the component will always detect changes in the value of the category route parameter.
To see the result, save the changes, click the Watersports button to filter the contents of the table, and then click the Count Products button, which selects the ProductCountComponent. This number of products reported by the component will correspond to the number of rows in the table, as shown in Figure 25-9.[image:]
Figure 25-9Accessing the other routes used to match a URL

Summary
In this chapter, I continued to describe the features provided by the Angular URL routing system, going beyond the basic features described in the previous chapter. I explained how to create wildcard and redirection routes, how to create routes that navigate relative to the current URL, and how to create child routes to display nested components. In the next chapter, I finish describing the URL routing system, focusing on the most advanced features.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_26

26. Routing and Navigation: Part 3

Adam Freeman1
(1)London, UK

In this chapter, I continue to describe the Angular URL routing system, focusing on the most advanced features. I explain how to control route activation, how to load feature modules dynamically, and how to use multiple outlet elements in a template. Table 26-1 summarizes the chapter.Table 26-1Chapter Summary

	Problem
	Solution
	Listing

	Delaying navigation until a task is complete
	Use a route resolver
	1–6

	Preventing route activation
	Use an activation guard
	7–13

	Preventing the user from navigating away from the current content
	Use a deactivation guard
	14–18

	Deferring loading a feature module until it is required
	Create a dynamically loaded module
	19–24

	Controlling when a dynamically loaded module is used
	Use a loading guard
	25–27

	Using routing to manage multiple router outlets
	Use named outlets in the same template
	28–33

Preparing the Example Project
For this chapter, I will continue using the exampleApp project that was created in Chapter 20 and has been modified in each subsequent chapter. No changes are required for this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 26-1.[image:]
Figure 26-1Running the example application

Guarding Routes
At the moment, the user can navigate anywhere in the application at any time. This isn’t always a good idea, either because some parts of the application may not always be ready or because some parts of the application are restricted until specific actions are performed. To control the use of navigation, Angular supports guards, which are specified as part of the route configuration using the properties defined by the Routes class, described in Table 26-2. Table 26-2The Routes Properties for Guards

	Name
	Description

	resolve
	This property is used to specify guards that will delay route activation until some operation has been completed, such as loading data from a server.

	canActivate
	This property is used to specify the guards that will be used to determine whether a route can be activated.

	canActivateChild
	This property is used to specify the guards that will be used to determine whether a child route can be activated.

	canDeactivate
	This property is used to specify the guards that will be used to determine whether a route can be deactivated.

	canLoad
	This property is used to guard routes that load feature modules dynamically, as described in the “Loading Feature Modules Dynamically” section.

Delaying Navigation with a Resolver
A common reason for guarding routes is to ensure that the application has received the data that it requires before a route is activated. The example application loads data from the RESTful web service asynchronously, which means there can be a delay between the moment at which the browser is asked to send the HTTP request and the moment at which the response is received and the data is processed. You may not have noticed this delay as you followed the examples because the browser and the web service are running on the same machine. In a deployed application, there is a much greater prospect of there being a delay, caused by network congestion, a high server load, or a dozen other factors.
To simulate network congestion, Listing 26-1 modifies the RESTful data source class to introduce a delay after the response is received from the web service. import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient, HttpHeaders } from "@angular/common/http";
import { catchError, delay, Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest<Product[]>("GET", this.url).pipe(delay(5000));
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {

 let myHeaders = new HttpHeaders();
 myHeaders = myHeaders.set("Access-Key", "<secret>");
 myHeaders = myHeaders.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request<T>(verb, url, {
 body: body,
 headers: myHeaders
 }).pipe(catchError((error: Response) => {
 throw(`Network Error: ${error.statusText} (${error.status})`)
 }));
 }
}

Listing 26-1Adding a Delay in the rest.datasource.ts File in the src/app/model Folder

The delay is added using the Reactive Extensions delay method and is applied to create a five-second delay, which is long enough to create a noticeable pause without being too painful to wait for every time the application is reloaded. To change the delay, increase or decrease the argument for the delay method, which is expressed in milliseconds.
The effect of the delay is that the user is presented with an incomplete and confusing layout while the application is waiting for the data to load, as shown in Figure 26-2.[image:]
Figure 26-2Waiting for data

Creating a Resolver Service
A resolver is used to ensure that a task is performed before a route can be activated. To create a resolver, I added a file called model.resolver.ts in the src/app/model folder and defined the class shown in Listing 26-2.import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot } from "@angular/router";
import { Observable } from "rxjs";
import { Model } from "./repository.model"
import { Product } from "./product.model";

@Injectable()
export class ModelResolver {

 constructor(private model: Model) { }

 resolve(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<Product | undefined> {

 return this.model.getProductObservable(1);
 }
}

Listing 26-2The Contents of the model.resolver.ts File in the src/app/model Folder

Resolvers are classes that define a resolve method that accepts two arguments. The first argument is an ActivatedRouteSnapshot object, which describes the route that is being navigated to using the properties described in Chapter 24. The second argument is a RouterStateSnapshot object, which describes the current route through a single property called url. These arguments can be used to adapt the resolver to the navigation that is about to be performed, although neither is required by the resolver in the listing, which uses the same behavior regardless of the routes that are being navigated to and from.
Note
All of the guards described in this chapter can implement interfaces defined in the @angular/router module. For example, resolvers can implement an interface called Resolve. These interfaces are optional, and I have not used them in this chapter.

The resolve method can return three different types of result, as described in Table 26-3.Table 26-3The Result Types Allowed by the resolve Method

	Result Type
	Description

	Observable<any>
	The browser will activate the new route when the Observer emits an event.

	Promise<any>
	The browser will activate the new route when the Promise resolves.

	Any other result
	The browser will activate the new route as soon as the method produces a result.

The Observable and Promise results are useful when dealing with asynchronous operations, such as requesting data using an HTTP request. Angular waits until the asynchronous operation is complete before activating the new route. Any other result is interpreted as the result of a synchronous operation, and Angular will activate the new route immediately.
The resolver in Listing 26-2 uses its constructor to receive a Model object via dependency injection. When the resolve method is called, it calls the getProductObservable method, which returns an observable that will emit a result only once data has been received. Angular will subscribe to the Observable and delay activating the new route until it emits an event.
The observable returned by the getProductObservable method will emit an event immediately once data has been received, which is important because Angular will call the guard’s resolve method every time that the application tries to navigate to a route to which the resolver has been applied.
Notice that I don’t care about the data produced by the repository through the observable. All that matters from the perspective of the guard is that the observable returned by the getProductObservable method will emit an event that indicates data has been received.
Registering the Resolver Service
The next step is to register the resolver as a service in its feature module, as shown in Listing 26-3.import { NgModule } from "@angular/core";
import { StaticDataSource } from "./static.datasource";
import { Model } from "./repository.model";
import { HttpClientJsonpModule, HttpClientModule } from "@angular/common/http";
import { RestDataSource, REST_URL } from "./rest.datasource";
import { ModelResolver } from "./model.resolver";

@NgModule({
 imports: [HttpClientModule, HttpClientJsonpModule],
 providers: [Model, RestDataSource,
 { provide: REST_URL, useValue: `http://${location.hostname}:3500/products` },
 ModelResolver]
})
export class ModelModule { }

Listing 26-3Registering the Resolver in the model.module.ts File in the src/app/model Folder

Applying the Resolver
The resolver is applied to routes using the resolve property, as shown in Listing 26-4.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";

const childRoutes: Routes = [
 { path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 { path: "form/:mode/:id", component: FormComponent },
 { path: "form/:mode", component: FormComponent },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-4Applying a Resolver in the app.routing.ts File in the src/app Folder

The resolve property accepts a map object whose property values are the resolver classes that will be applied to the route. (The property names do not matter.) I want to apply the resolver to all the views that display the product table, so to avoid duplication, I created a route with the resolve property and used it as the parent for the existing child routes.
The effect is that the user will see no content until the data has been received from the web service and processed by the application, as shown in Figure 26-3.[image:]
Figure 26-3Using a route guard

Displaying Placeholder Content
Angular uses the resolver before activating any of the routes to which it has been applied, which prevents the user from seeing the product table until the model has been populated with the data from the RESTful web service. Sadly, that just means the user sees an empty window while the browser is waiting for the server to respond. To address this, Listing 26-5 enhances the resolver to use the message service to tell the user what is happening when the data is being loaded. import { Injectable } from "@angular/core";
import { ActivatedRouteSnapshot, RouterStateSnapshot } from "@angular/router";
import { Observable } from "rxjs";
import { Model } from "./repository.model"
import { Product } from "./product.model";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";

@Injectable()
export class ModelResolver {

 constructor(private model: Model,
 private messages: MessageService) { }

 resolve(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<Product | undefined> {
 this.messages.reportMessage(new Message("Loading data..."));
 return this.model.getProductObservable(1);
 }
}

Listing 26-5Displaying a Message in the model.resolver.ts File in the src/app/model Folder

The guard uses the message service to give the user an indication that something is happening and relies on the way that the service removes messages when navigation events are received. The result is that the user sees a loading message until data is received, as shown in Figure 26-4.[image:]
Figure 26-4Displaying a loading message

Using a Resolver to Prevent URL Entry Problems
A resolver can be applied more broadly so that it protects multiple routes, which extends the loading message when the user navigates directly to a URL for a specific product, as shown in Listing 26-6.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";

const childRoutes: Routes = [
 { path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-6Applying the Resolver to Other Routes in the app.routing.ts File in the src/app Folder

Applying the ModelResolver class to the routes that target FormComponent ensures that the user is shown the placeholder message while the data is loaded, as shown in Figure 26-5.[image:]
Figure 26-5Expanding the use of a resolver

Preventing Navigation with Guards
Resolvers are used to delay navigation while the application performs some prerequisite work, such as loading data. The other guards that Angular provides are used to control whether navigation can occur at all, which can be useful when you want to alert the user to prevent potentially unwanted operations (such as abandoning data edits) or limit access to parts of the application unless the application is in a specific state, such as when a user has been authenticated.
Many uses for route guards introduce an additional interaction with the user, either to gain explicit approval to perform an operation or to obtain additional data, such as authentication credentials. For this chapter, I am going to handle this kind of interaction by extending the message service so that messages can require user input. In Listing 26-7, I have added an optional responses constructor argument/property to the Message model class, which will allow messages to contain prompts to the user and callbacks that will be invoked when they are selected. The responses property is an array of TypeScript tuples, where the first value is the name of the response, which will be presented to the user, and the second value is the callback function, which will be passed the name as its argument.export class Message {

 constructor(public text: string,
 public error: boolean = false,
 public responses?: [string, (r: string) => void][]) { }
}

Listing 26-7Adding Responses in the message.model.ts File in the src/app/messages Folder

The only other change required to implement this feature is to present the response options to the user. Listing 26-8 adds button elements below the message text for each response. Clicking the buttons will invoke the callback function.<div *ngIf="lastMessage"
 class="bg-primary text-white p-2 text-center"
 [class.bg-danger]="lastMessage.error">
 <h4>{{lastMessage.text}}</h4>
</div>
<div class="text-center my-2">
 <button *ngFor="let resp of lastMessage?.responses; let i = index"
 (click)="resp[1](resp[0])"
 class="btn btn-primary m-2" [class.btn-secondary]="i > 0">
 {{resp[0]}}
 </button>
</div>

Listing 26-8Presenting Responses in the message.component.html File in the src/app/core Folder

Preventing Route Activation
Guards can be used to prevent a route from being activated, helping to protect the application from entering an unwanted state or warning the user about the impact of performing an operation. To demonstrate, I am going to guard the /form/create URL to prevent the user from starting the process of creating a new product unless the user agrees to the application’s terms and conditions.
Guards for route activation are classes that define a method called canActivate, which receives the same ActivatedRouteSnapshot and RouterStateSnapshot arguments as resolvers. The canActivate method can be implemented to return three different result types, as described in Table 26-4.Table 26-4The Result Types Allowed by the canActivate Method

	Result Type
	Description

	boolean
	This type of result is useful when performing synchronous checks to see whether the route can be activated. A true result will activate the route, and a result of false will not, effectively ignoring the navigation request.

	Observable<boolean>
	This type of result is useful when performing asynchronous checks to see whether the route can be activated. Angular will wait until the Observable emits a value, which will be used to determine whether the route is activated. When using this kind of result, it is important to terminate the Observable by calling the complete method; otherwise, Angular will just keep waiting.

	Promise<boolean>
	This type of result is useful when performing asynchronous checks to see whether the route can be activated. Angular will wait until the Promise is resolved and activate the route if it yields true. If the Promise yields false, then the route will not be activated, effectively ignoring the navigation request.

To get started, I added a file called terms.guard.ts to the src/app folder and defined the class shown in Listing 26-9.import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

@Injectable()
export class TermsGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.params["mode"] == "create") {

 return new Promise<boolean>((resolve) => {
 let responses: [string, () => void][]
 = [["Yes", () => resolve(true)], ["No", () => resolve(false)]];
 this.messages.reportMessage(
 new Message("Do you accept the terms & conditions?",
 false, responses));
 });
 } else {
 return true;
 }
 }
}

Listing 26-9The Contents of the terms.guard.ts File in the src/app Folder

The canActivate method can return two different types of results. The first type is a boolean, which allows the guard to respond immediately for routes that it doesn’t need to protect, which in this case is any that lacks a parameter called mode whose value is create. If the URL matched by the route doesn’t contain this parameter, the canActivate method returns true, which tells Angular to activate the route. This is important because the edit and create features both rely on the same routes, and the guard should not interfere with edit operations.
The other type of result is a Promise<boolean>, which I have used instead of Observable<true> for variety. The Promise uses the modifications to the message service to solicit a response from the user, confirming they accept the (unspecified) terms and conditions. There are two possible responses from the user. If the user clicks the Yes button, then the Promise will resolve and yield true, which tells Angular to activate the route, displaying the form that is used to create a new product. The Promise will resolve and yield false if the user clicks the No button, which tells Angular to ignore the navigation request.
Listing 26-10 registers the TermsGuard as a service so that it can be used in the application’s routing configuration.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { AppComponent } from './app.component';
import { routing } from "./app.routing";
import { TermsGuard } from "./terms.guard"

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule, routing],
 providers: [TermsGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 26-10Registering the Guard as a Service in the app.module.ts File in the src/app Folder

Listing 26-11 applies the guard to the routing configuration. Activation guards are applied to a route using the canActivate property, which is assigned an array of guard services. The canActivate method of all the guards must return true (or return an Observable or Promise that eventually yields true) before Angular will activate the route.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";

const childRoutes: Routes = [
 { path: "",
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-11Applying the Guard to a Route in the app.routing.ts File in the src/app Folder

The effect of creating and applying the activation guard is that the user is prompted when clicking the Create New Product button, as shown in Figure 26-6. If they respond by clicking the Yes button, then the navigation request will be completed, and Angular will activate the route that selects the form component, which will allow a new product to be created. If the user clicks the No button, then the navigation request will be canceled. In both cases, the routing system emits an event that is received by the component that displays the messages to the user, which clears its display and ensures that the user doesn’t see stale messages.[image:]
Figure 26-6Guarding route activation

Consolidating Child Route Guards
If you have a set of child routes, you can guard against their activation using a child route guard, which is a class that defines a method called canActivateChild. The guard is applied to the parent route in the application’s configuration, and the canActivateChild method is called whenever any of the child routes are about to be activated. The method receives the same ActivatedRouteSnapshot and RouterStateSnapshot objects as the other guards and can return the set of result types described in Table 26-4.
This guard in this example is more readily dealt with by changing the configuration before implementing the canActivateChild method, as shown in Listing 26-12.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";

const childRoutes: Routes = [
 { path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver }
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-12Guarding Child Routes in the app.routing.ts File in the src/app Folder

Child route guards are applied to a route using the canActivateChild property, which is set to an array of service types implementing the canActivateChild method. This method will be called before Angular activates any of the route’s children. Listing 26-13 adds the canActivateChild method to the guard class from the previous section.import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

@Injectable()
export class TermsGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.params["mode"] == "create") {

 return new Promise<boolean>((resolve) => {
 let responses: [string, () => void][]
 = [["Yes", () => resolve(true)], ["No", () => resolve(false)]];
 this.messages.reportMessage(
 new Message("Do you accept the terms & conditions?",
 false, responses));
 });
 } else {
 return true;
 }
 }

 canActivateChild(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
 Promise<boolean> | boolean {

 if (route.url.length > 0
 && route.url[route.url.length - 1].path == "categories") {

 return new Promise<boolean>((resolve, reject) => {
 let responses: [string, (arg: string) => void][] = [
 ["Yes", () => resolve(true)],
 ["No ", () => resolve(false)]
];

 this.messages.reportMessage(
 new Message("Do you want to see the categories component?",
 false, responses));
 });
 } else {
 return true;
 }
 }
}

Listing 26-13Implementing Child Route Guards in the terms.guard.ts File in the src/app Folder

The guard only protects the categories child route and will return true immediately for any other route. The guard prompts the user using the message service but does something different if the user clicks the No button. In addition to rejecting the active route, the guard navigates to a different URL using the Router service, which is received as a constructor argument. This is a common pattern for authentication when the user is redirected to a component that will solicit security credentials if a restricted operation is attempted. The example is simpler in this case, and the guard navigates to a sibling route that shows a different component. (You can see an example of using route guards for navigation in the SportsStore application.)
To see the effect of the guard, click the Count Categories button, as shown in Figure 26-7. Responding to the prompt by clicking the Yes button will show the CategoryCountComponent, which displays the number of categories in the table. Clicking No will reject the active route and navigate to a route that displays the ProductCountComponent instead.
Note
Guards are applied only when the active route changes. So, for example, if you click the Count Categories button when the /table URL is active, then you will see the prompt, and clicking Yes will change the active route. But nothing will happen if you click the Count Categories button again because Angular doesn’t trigger a route change when the target route and the active route are the same.

[image:]
Figure 26-7Guarding child routes

Preventing Route Deactivation
When you start working with routes, you will tend to focus on the way that routes are activated to respond to navigation and present new content to the user. But equally important is route deactivation, which occurs when the application navigates away from a route.
The most common use for deactivation guards is to prevent the user from navigating when there are unsaved edits to data. In this section, I will create a guard that warns the user when they are about to abandon unsaved changes when editing a product. In preparation for this, Listing 26-14 changes the FormComponent class to simplify the work of the guard. import { Component } from "@angular/core";
import { FormControl, NgForm, Validators, FormGroup, FormArray }
 from "@angular/forms";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model"
import { Message } from "../messages/message.model"
import { MessageService } from "../messages/message.service";
import { MODES, SharedState, StateUpdate } from "./sharedState.service";
import { FilteredFormArray } from "./filteredFormArray";
import { LimitValidator } from "../validation/limit";
import { UniqueValidator } from "../validation/unique";
import { ProhibitedValidator } from "../validation/prohibited";
import { ActivatedRoute, Router } from "@angular/router";

@Component({
 selector: "paForm",
 templateUrl: "form.component.html",
 styleUrls: ["form.component.css"]
})
export class FormComponent {
 product: Product = new Product();
 editing: boolean = false;

 keywordGroup = new FilteredFormArray([
 this.createKeywordFormControl(),
], {
 validators: UniqueValidator.unique()
 })

 // ...form structure and methods omitted for brevity...

 // resetForm() {
 // this.keywordGroup.clear();
 // this.keywordGroup.push(this.createKeywordFormControl());
 // this.editing = true;
 // this.product = new Product();
 // this.productForm.reset();
 // }

 unsavedChanges(): boolean {
 return this.productForm.dirty;
 }

 createKeywordFormControl(): FormControl {
 return new FormControl("", { validators:
 Validators.pattern("^[A-Za-z]+$") });
 }

 addKeywordControl() {
 this.keywordGroup.push(this.createKeywordFormControl());
 }

 removeKeywordControl(index: number) {
 this.keywordGroup.removeAt(index);
 }
}

Listing 26-14Preparing for the Guard in the form.component.ts File in the src/app/core Folder

The unsavedChanges method will be used to indicate whether the user has made changes since editing began, which is determined by checking the state of the top-level FormGroup.
A corresponding change is required in the template so that the Cancel button doesn’t invoke the form’s reset event handler, as shown in Listing 26-15.<div *ngIf="editing" class="p-2">
 <button class="btn btn-secondary m-1"
 [routerLink]="['/form', 'edit',
 model.getPreviousProductid(product.id) | async]">
 Previous
 </button>
 <button class="btn btn-secondary"
 [routerLink]="['/form', 'edit',
 model.getNextProductId(product.id) | async]">
 Next
 </button>
</div>
<form [formGroup]="productForm" #form="ngForm" (ngSubmit)="submitForm()">

 <!-- ...elements omitted for brevity... -->

 <div class="mt-2">
 <button type="submit" class="btn btn-primary"
 [class.btn-warning]="editing"
 [disabled]="form.invalid">
 {{editing ? "Save" : "Create"}}
 </button>
 <button type="button" class="btn btn-secondary m-1" routerLink="/">
 Cancel
 </button>
 </div>
</form>

Listing 26-15Disabling Form Reset in the form.component.html File in the src/app/core Folder

To create the guard, I added a file called unsaved.guard.ts in the src/app/core folder and defined the class shown in Listing 26-16.import { Injectable } from "@angular/core";
import {
 ActivatedRouteSnapshot, RouterStateSnapshot,
 Router
} from "@angular/router";
import { Observable, Subject } from "rxjs";
import { MessageService } from "../messages/message.service";
import { Message } from "../messages/message.model";
import { FormComponent } from "./form.component";

@Injectable()
export class UnsavedGuard {

 constructor(private messages: MessageService,
 private router: Router) { }

 canDeactivate(component: FormComponent, route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<boolean> | boolean {

 if (component.editing && component.unsavedChanges()) {
 let subject = new Subject<boolean>();

 let responses: [string, (r: string) => void][] = [
 ["Yes", () => {
 subject.next(true);
 subject.complete();
 }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 subject.next(false);
 subject.complete();
 }]
];
 this.messages.reportMessage(new Message("Discard Changes?",
 true, responses));
 return subject;
 }
 return true;
 }
}

Listing 26-16The Contents of the unsaved.guard.ts File in the src/app/core Folder

Deactivation guards define a class called canDeactivate that receives three arguments: the component that is about to be deactivated and the ActivatedRouteSnapshot and RouteStateSnapshot objects. This guard checks to see whether there are unsaved edits in the component and prompts the user if there are. For variety, this guard uses an Observable<true>, implemented as a Subject<true> instead of a Promise<true>, to tell Angular whether it should activate the route, based on the response selected by the user.
Tip
Notice that I call the complete method on the Subject after calling the next method. Angular will wait indefinitely for the complete method to be called, effectively freezing the application.

The next step is to register the guard as a service in the module that contains it, as shown in Listing 26-17.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";
import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";
import { UnsavedGuard } from "./unsaved.guard";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective, ProductCountComponent,
 CategoryCountComponent, NotFoundComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [UnsavedGuard]
})
export class CoreModule { }

Listing 26-17Registering the Guard as a Service in the core.module.ts File in the src/app/core Folder

Finally, Listing 26-18 applies the guard to the application’s routing configuration. Deactivation guards are applied to routes using the canDeactivate property, which is set to an array of guard services.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";

const childRoutes: Routes = [
 { path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-18Applying the Guard in the app.routing.ts File in the src/app Folder

To see the effect of the guard, click one of the Edit buttons in the table; edit the data in one of the text fields; then click the Cancel, Next, or Previous button. The guard will prompt you before allowing Angular to activate the route you selected, as shown in Figure 26-8.[image:]
Figure 26-8Guarding route deactivation

Loading Feature Modules Dynamically
Angular supports loading feature modules only when they are required, known as dynamic loading or lazy loading. This can be useful for functionality that is unlikely to be required by all users. In the sections that follow, I create a simple feature module and demonstrate how to configure the application so that Angular will load the module only when the application navigates to a specific URL.
Note
Loading modules dynamically is a trade-off. The application will be smaller and faster to download for most users, improving their overall experience. But users who require the dynamically loaded features will have to wait while Angular gets the module and its dependencies. The effect can be jarring because the user has no idea that some features have been loaded and others have not. When you create dynamically loaded modules, you are balancing improving the experience for some users against making it worse for others. Consider how your users fall into these groups and take care not to degrade the experience of your most valuable and important customers.

Creating a Simple Feature Module
Dynamically loaded modules must contain only functionality that not all users require. I can’t use the existing modules because they provide the core functionality for the application, which means that I need a new module for this part of the chapter. I started by creating a folder called ondemand in the src/app folder. To give the new module a component, I added a file called ondemand.component.ts in the example/app/ondemand folder and added the code shown in Listing 26-19.
Caution
It is important not to create dependencies between other parts of the application and the classes in the dynamically loaded module so that the JavaScript module loader doesn’t try to load the module before it is required.

import { Component } from "@angular/core";

@Component({
 selector: "ondemand",
 templateUrl: "ondemand.component.html"
})
export class OndemandComponent { }

Listing 26-19The Contents of the ondemand.component.ts File in the src/app/ondemand Folder

To provide the component with a template, I added a file called ondemand.component.html and added the markup shown in Listing 26-20.<div class="bg-primary text-white p-2">This is the ondemand component</div>
<button class="btn btn-primary m-2" routerLink="/" >Back</button>

Listing 26-20The ondemand.component.html File in the src/app/ondemand Folder

The template contains a message that will make it obvious when the component is selected and that contains a button element that will navigate back to the application’s root URL when clicked.
To define the module, I added a file called ondemand.module.ts and added the code shown in Listing 26-21.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";

@NgModule({
 imports: [CommonModule],
 declarations: [OndemandComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Listing 26-21The Contents of the ondemand.module.ts File in the src/app/ondemand Folder

The module imports the CommonModule functionality, which is used instead of the browser-specific BrowserModule to access the built-in directives in feature modules that are loaded on-demand.
Loading the Module Dynamically
There are two steps to set up dynamically loading a module. The first is to set up a routing configuration inside the feature module to provide the rules that will allow Angular to select a component when the module is loaded. Listing 26-22 adds a single route to the feature module.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";

let routing = RouterModule.forChild([
 { path: "", component: OndemandComponent }
]);

@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Listing 26-22Defining Routes in the ondemand.module.ts File in the src/app/ondemand Folder

Routes in dynamically loaded modules are defined using the same properties as in the main part of the application and can use all the same features, including child components, guards, and redirections. The route defined in the listing matches the empty path and selects the OndemandComponent for display.
One important difference is the method used to generate the module that contains the routing information, as follows:...
let routing = RouterModule.forChild([
 { path: "", component: OndemandComponent }
]);
...

When I created the application-wide routing configuration, I used the RouterModule.forRoot method. This is the method that is used to set up the routes in the root module of the application. When creating dynamically loaded modules, the RouterModule.forChild method must be used; this method creates a routing configuration that is merged into the overall routing system when the module is loaded.
Creating a Route to Dynamically Load a Module
The second step to set up a dynamically loaded module is to create a route in the main part of the application that provides Angular with the module’s location, as shown in Listing 26-23. import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";

const childRoutes: Routes = [
 { path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: () => import("./ondemand/ondemand.module")
 .then(m => m.OndemandModule)
 },
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-23Creating an On-Demand Route in the app.routing.ts File in the src/app Folder

The loadChildren property is used to provide Angular with details of how the module should be loaded. The property is assigned a function that invokes import, passing in the path to the module. The result is a Promise whose then method is used to select the module after it has been imported. The function in the listing tells Angular to load the OndemandModule class from the ondemand/ondemand.module file.
Using a Dynamically Loaded Module
All that remains is to add support for navigating to the URL that will activate the route for the on-demand module, as shown in Listing 26-24, which adds a button to the template for the table component. <div class="container-fluid">
 <!-- ...elements omitted for brevity... -->
</div>
<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
 <button class="btn btn-danger m-1" (click)="deleteProduct(-1)">
 Generate HTTP Error
 </button>
 <button class="btn btn-danger m-1" routerLink="/does/not/exist">
 Generate Routing Error
 </button>
 <button class="btn btn-danger" routerLink="/ondemand">
 Load Module
 </button>
</div>

Listing 26-24Adding Navigation in the table.component.html File in the src/app/core Folder

No special measures are required to target a route that loads a module, and the Load Module button in the listing uses the standard routerLink attribute to navigate to the URL specified by the route added in Listing 26-23.
Click the Load Module button, and you will see an HTTP request in the browser’s F12 developer tools window for the new module. When the button is clicked, Angular uses the routing configuration to load the module, inspect its routing configuration, and select the component that will be displayed to the user, as shown in Figure 26-9.[image:]
Figure 26-9Loading a module dynamically

Guarding Dynamic Modules
You can guard against dynamically loading modules to ensure that they are loaded only when the application is in a specific state or when the user has explicitly agreed to wait while Angular does the loading (this latter option is typically used only for administration functions, where the user can be expected to have some understanding of how the application is structured).
The guard for the module must be defined in the main part of the application, so I added a file called load.guard.ts in the src/app folder and defined the class shown in Listing 26-25.import { Injectable } from "@angular/core";
import { Route, Router } from "@angular/router";
import { MessageService } from "./messages/message.service";
import { Message } from "./messages/message.model";

@Injectable()
export class LoadGuard {
 private loaded: boolean = false;

 constructor(private messages: MessageService,
 private router: Router) { }

 canLoad(route: Route): Promise<boolean> | boolean {

 return this.loaded || new Promise<boolean>((resolve, reject) => {
 let responses: [string, (r: string) => void] [] = [
 ["Yes", () => {
 this.loaded = true;
 resolve(true);
 }],
 ["No", () => {
 this.router.navigateByUrl(this.router.url);
 resolve(false);
 }]
];

 this.messages.reportMessage(
 new Message("Do you want to load the module?",
 false, responses));
 });
 }
}

Listing 26-25The Contents of the load.guard.ts File in the src/app Folder

Dynamic loading guards are classes that implement a method called canLoad, which is invoked when Angular needs to activate the route to which it is applied, and is provided with a Route object that describes the route.
The guard is required only when the URL that loads the module is first activated, so it defines a loaded property that is set to true when the module has been loaded so that subsequent requests are immediately approved. Otherwise, this guard follows the same pattern as earlier examples and returns a Promise that will be resolved when the user clicks one of the buttons displayed by the message service. Listing 26-26 registers the guard as a service in the root module.import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { AppComponent } from './app.component';
import { routing } from "./app.routing";
import { TermsGuard } from "./terms.guard"
import { LoadGuard } from "./load.guard";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule, routing],
 providers: [TermsGuard, LoadGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 26-26Registering the Guard as a Service in the app.module.ts File in the src/app Folder

Applying a Dynamic Loading Guard
Guards for dynamic loading are applied to routes using the canLoad property, which accepts an array of guard types. Listing 26-27 applies the LoadGuard class, which was defined in Listing 26-25, to the route that dynamically loads the module.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { ProductCountComponent } from "./core/productCount.component";
import { CategoryCountComponent } from "./core/categoryCount.component";
import { ModelResolver } from "./model/model.resolver";
import { TermsGuard } from "./terms.guard";
import { UnsavedGuard } from "./core/unsaved.guard";
import { LoadGuard } from "./load.guard";

const childRoutes: Routes = [
 { path: "",
 canActivateChild: [TermsGuard],
 children: [{ path: "products", component: ProductCountComponent },
 { path: "categories", component: CategoryCountComponent },
 { path: "", component: ProductCountComponent }],
 resolve: { model: ModelResolver }
 }
];

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: () => import("./ondemand/ondemand.module")
 .then(m => m.OndemandModule),
 canLoad: [LoadGuard]
 },
 {
 path: "form/:mode/:id", component: FormComponent,
 resolve: { model: ModelResolver },
 canDeactivate: [UnsavedGuard]
 },
 {
 path: "form/:mode", component: FormComponent,
 resolve: { model: ModelResolver },
 canActivate: [TermsGuard]
 },
 { path: "does", redirectTo: "/form/create", pathMatch: "prefix" },
 { path: "table", component: TableComponent, children: childRoutes },
 { path: "table/:category", component: TableComponent, children: childRoutes },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }]

export const routing = RouterModule.forRoot(routes);

Listing 26-27Guarding the Route in the app.routing.ts File in the src/app Folder

The result is that the user is prompted to determine whether they want to load the module the first time that Angular tries to activate the route, as shown in Figure 26-10.[image:]
Figure 26-10Guarding dynamic loading

Targeting Named Outlets
A template can contain more than one router-outlet element, which allows a single URL to select multiple components to be displayed to the user.
To demonstrate this feature, I need to add two new components to the ondemand module. I started by creating a file called first.component.ts in the src/app/ondemand folder and using it to define the component shown in Listing 26-28. import { Component } from "@angular/core";

@Component({
 selector: "first",
 template: `<div class="bg-primary text-white p-2">First Component</div>`
})
export class FirstComponent { }

Listing 26-28The Contents of the first.component.ts File in the src/app/ondemand Folder

This component uses an inline template to display a message whose purpose is simply to make it clear which component has been selected by the routing system. Next, I created a file called second.component.ts in the src/app/ondemand folder and created the component shown in Listing 26-29.import { Component } from "@angular/core";

@Component({
 selector: "second",
 template: `<div class="bg-info text-white p-2">Second Component</div>`
})
export class SecondComponent { }

Listing 26-29The Contents of the second.component.ts File in the src/app/ondemand Folder

This component is almost identical to the one in Listing 26-28, differing only in the message that it displays through its inline template.
Creating Additional Outlet Elements
When you are using multiple outlet elements in the same template, Angular needs some way to tell them apart. This is done using the name attribute, which allows an outlet to be uniquely identified, as shown in Listing 26-30.<div class="bg-primary text-white p-2">This is the ondemand component</div>
<div class="container-fluid">
 <div class="row">
 <div class="col-12 p-2">
 <router-outlet></router-outlet>
 </div>
 </div>
 <div class="row">
 <div class="col-6 p-2">
 <router-outlet name="left"></router-outlet>
 </div>
 <div class="col-6 p-2">
 <router-outlet name="right"></router-outlet>
 </div>
 </div>
</div>
<button class="btn btn-primary m-2" routerLink="/">Back</button>

Listing 26-30Adding Outlets in the ondemand.component.html File in the src/app/ondemand Folder

The new elements create three new outlets. There can be at most one router-outlet element without a name element, which is known as the primary outlet. This is because omitting the name attribute has the same effect as applying it with a value of primary. All the routing examples so far in this book have relied on the primary outlet to display components to the user.
All other router-outlet elements must have a name element with a unique name. The names I have used in the listing are left and right because the classes applied to the div elements that contain the outlets use CSS to position these two outlets side by side.
The next step is to create a route that includes details of which component should be displayed in each outlet element, as shown in Listing 26-31. If Angular can’t find a route that matches a specific outlet, then no content will be shown in that element.import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";
import { FirstComponent } from "./first.component";
import { SecondComponent } from "./second.component";

let routing = RouterModule.forChild([
 {
 path: "",
 component: OndemandComponent,
 children: [
 { path: "",
 children: [
 { outlet: "primary", path: "", component: FirstComponent, },
 { outlet: "left", path: "", component: SecondComponent, },
 { outlet: "right", path: "", component: SecondComponent, },
]},
]
 },
]);

@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent, FirstComponent, SecondComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Listing 26-31Targeting Outlets in the ondemand.module.ts File in the src/app/ondemand Folder

The outlet property is used to specify the outlet element that the route applies to. The routing configuration in the listing matches the empty path for all three outlets and selects the newly created components for them: the primary outlet will display FirstComponent, and the left and right outlets will display SecondComponent, as shown in Figure 26-11. To see the effect yourself, click the Load Module button and click the Yes button when prompted. (If you don’t see the expected content, reload the browser and try again.)
Tip
If you omit the outlet property, then Angular assumes that the route targets the primary outlet. I tend to include the outlet property on all routes to emphasize which routes match an outlet element.

[image:]
Figure 26-11Using multiple router outlets

When Angular activates the route, it looks for matches for each outlet. All three of the new outlets have routes that match the empty path, which allows Angular to present the components shown in the figure.
Navigating When Using Multiple Outlets
Changing the components that are displayed by each outlet means creating a new set of routes and then navigating to the URL that contains them. Listing 26-32 sets up a route that will match the path /ondemand/swap and that will switch the components displayed by the three outlets. import { NgModule } from "@angular/core";
import { CommonModule } from "@angular/common";
import { OndemandComponent } from "./ondemand.component";
import { RouterModule } from "@angular/router";
import { FirstComponent } from "./first.component";
import { SecondComponent } from "./second.component";
let routing = RouterModule.forChild([
 {
 path: "",
 component: OndemandComponent,
 children: [
 {
 path: "",
 children: [
 { outlet: "primary", path: "", component: FirstComponent, },
 { outlet: "left", path: "", component: SecondComponent, },
 { outlet: "right", path: "", component: SecondComponent, },
]
 },
 {
 path: "swap",
 children: [
 { outlet: "primary", path: "", component: SecondComponent, },
 { outlet: "left", path: "", component: FirstComponent, },
 { outlet: "right", path: "", component: FirstComponent, },
]
 },
]
 },
]);
@NgModule({
 imports: [CommonModule, routing],
 declarations: [OndemandComponent, FirstComponent, SecondComponent],
 exports: [OndemandComponent]
})
export class OndemandModule { }

Listing 26-32Setting Routes for Outlets in the ondemand.module.ts File in the src/app/ondemand Folder

Listing 26-33 adds button elements to the component’s template that will navigate to the two sets of routes in Listing 26-32, alternating the set of components displayed to the user.<div class="bg-primary text-white p-2">This is the ondemand component</div>
<div class="container-fluid">
 <div class="row">
 <div class="col-12 p-2">
 <router-outlet></router-outlet>
 </div>
 </div>
 <div class="row">
 <div class="col-6 p-2">
 <router-outlet name="left"></router-outlet>
 </div>
 <div class="col-6 p-2">
 <router-outlet name="right"></router-outlet>
 </div>
 </div>
</div>
<button class="btn btn-secondary m-2" routerLink="/ondemand">Normal</button>
<button class="btn btn-secondary m-2" routerLink="/ondemand/swap">Swap</button>
<button class="btn btn-primary m-2" routerLink="/">Back</button>

Listing 26-33Navigating to Outlets in the ondemand.component.html File in the src/app/ondemand Folder

The result is that clicking the Swap and Normal buttons will navigate to routes whose children tell Angular which components should be displayed by each of the outlet elements, as illustrated by Figure 26-12.[image:]
Figure 26-12Using navigation to target multiple outlet elements

Summary
In this chapter, I finished describing the Angular URL routing features and explaining how to guard routes to control when a route is activated, how to load modules only when they are needed, and how to use multiple outlet elements to display components to the user. In the next chapter, I show you how to apply animations to Angular applications.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_27

27. Using Animations

Adam Freeman1
(1)London, UK

In this chapter, I describe the Angular animation system, which uses data bindings to animate HTML elements to reflect changes in the state of the application. In broad terms, animations have two roles in an Angular application: to emphasize changes in content and to smooth them out.
Emphasizing changes is important when the content changes in a way that may not be obvious to the user. In the example application, using the Previous and Next buttons when editing a product changes the data fields but doesn’t create any other visual change, which results in a transition that the user may not notice. Animations can be used to draw the eye to this kind of change, helping the user notice the results of an action.
Smoothing out changes can make an application more pleasant to use. When the user clicks the Edit button to start editing a product, the content displayed by the example application switches in a way that can be jarring. Using animations to slow down the transition can help provide a sense of context for the content change and make it less abrupt. In this chapter, I explain how the animation system works and how it can be used to draw the user’s eye or take the edge off of sudden transitions. Table 27-1 puts Angular animations in context.Table 27-1Putting Angular Animations in Context

	Question
	Answer

	What are they?
	The animation system can change the appearance of HTML elements to reflect changes in the application state.

	Why are they useful?
	Used judiciously, animations can make applications more pleasant to use.

	How are they used?
	Animations are defined using functions defined in a platform-specific module, registered using the animations property in the @Component decorator and applied using a data binding.

	Are there any pitfalls or limitations?
	The main limitation is that Angular animations are fully supported by few browsers and, as a consequence, cannot be relied on to work properly on all the browsers that Angular supports for its other features.

	Are there any alternatives?
	The only alternative is not to animate the application.

Table 27-2 summarizes the chapter.Table 27-2Chapter Summary

	Problem
	Solution
	Listing

	Drawing the user’s attention to a transition in the state of an element
	Apply an animation
	1–9

	Animating the change from one element state to another
	Use an element transition
	9–14

	Performing animations in parallel
	Use animation groups
	15

	Using the same styles in multiple animations
	Use common styles
	16

	Animating the position or size of elements
	Use element transformations
	17

	Using animations to apply CSS framework styles
	Use the DOM and CSS APIs
	18–21

Preparing the Example Project
In this chapter, I continue using the exampleApp project that was first created in Chapter 20 and has been the focus of every chapter since. The changes in the following sections prepare the example application for the features described in this chapter.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

Disabling the HTTP Delay
The first preparatory step for this chapter is to disable the delay added to asynchronous HTTP requests, as shown in Listing 27-1.import { Injectable, Inject, InjectionToken } from "@angular/core";
import { HttpClient, HttpHeaders } from "@angular/common/http";
import { catchError, delay, Observable } from "rxjs";
import { Product } from "./product.model";

export const REST_URL = new InjectionToken("rest_url");

@Injectable()
export class RestDataSource {
 constructor(private http: HttpClient,
 @Inject(REST_URL) private url: string) { }

 getData(): Observable<Product[]> {
 return this.sendRequest<Product[]>("GET", this.url);//.pipe(delay(5000));
 }

 saveProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("POST", this.url, product);
 }

 updateProduct(product: Product): Observable<Product> {
 return this.sendRequest<Product>("PUT",
 `${this.url}/${product.id}`, product);
 }

 deleteProduct(id: number): Observable<Product> {
 return this.sendRequest<Product>("DELETE", `${this.url}/${id}`);
 }

 private sendRequest<T>(verb: string, url: string, body?: Product)
 : Observable<T> {

 let myHeaders = new HttpHeaders();
 myHeaders = myHeaders.set("Access-Key", "<secret>");
 myHeaders = myHeaders.set("Application-Names", ["exampleApp", "proAngular"]);

 return this.http.request<T>(verb, url, {
 body: body,
 headers: myHeaders
 }).pipe(catchError((error: Response) => {
 throw(`Network Error: ${error.statusText} (${error.status})`)
 }));
 }
}

Listing 27-1Disabling the Delay in the rest.datasource.ts File in the src/app/model Folder

Simplifying the Table Template and Routing Configuration
Many of the examples in this chapter are applied to the elements in the table of products. The final preparation for this chapter is to simplify the template for the table component so that I can focus on a smaller amount of content in the listings.
Listing 27-2 shows the simplified template, which removes the buttons that generated HTTP and routing errors and the button and outlet element that counted the categories or products. The listing also removes the buttons that allow the table to be filtered by category.<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>

<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
</div>

Listing 27-2Simplifying the Template in the table.component.html File in the src/app/core Folder

Listing 27-3 updates the URL routing configuration for the application so that the routes don’t target the outlet element that has been removed from the table component’s template.import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { UnsavedGuard } from "./core/unsaved.guard";

const routes: Routes = [
 {
 path: "form/:mode/:id", component: FormComponent,
 canDeactivate: [UnsavedGuard]
 },
 { path: "form/:mode", component: FormComponent },
 { path: "table", component: TableComponent },
 { path: "table/:category", component: TableComponent },
 { path: "", redirectTo: "/table", pathMatch: "full" },
 { path: "**", component: NotFoundComponent }
]

export const routing = RouterModule.forRoot(routes);

Listing 27-3Updating the Routing Configuration in the app.routing.ts File in the src/app Folder

Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 27-1.[image:]
Figure 27-1Running the example application

Getting Started with Angular Animation
As with most Angular features, the best place to start is with an example, which will let me introduce how animation works and how it fits into the rest of the Angular functionality. In the sections that follow, I create a basic animation that will affect the rows in the table of products. Once you have seen how the basic features work, I will dive into the details of each of the different configuration options and explain how they work in depth.
But to get started, I am going to add a select element to the application that allows the user to select a category. When a category is selected, the table rows for products in that category will be shown in one of two styles, as described in Table 27-3. Table 27-3The Styles for the Animation Example

	Description
	Styles

	The product is in the selected category.
	The table row will have a green background and larger text.

	The product is not in the selected category.
	The table row will have a red background and smaller text.

Enabling the Animation Module
The animation features are contained in their own module that must be imported in the application’s root module, as shown in Listing 27-4. import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { ModelModule } from "./model/model.module";
import { CoreModule } from "./core/core.module";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { MessageModule } from "./messages/message.module";
import { MessageComponent } from "./messages/message.component";
import { AppComponent } from './app.component';
import { routing } from "./app.routing";
import { TermsGuard } from "./terms.guard"
import { LoadGuard } from "./load.guard";
import { BrowserAnimationsModule } from "@angular/platform-browser/animations";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, ModelModule, CoreModule, MessageModule, routing,
 BrowserAnimationsModule],
 providers: [TermsGuard, LoadGuard],
 bootstrap: [AppComponent]
})
export class AppModule { }

Listing 27-4Importing the Animation Module in the app.module.ts File in the src/app Folder

Creating the Animation
To get started with the animation, I created a file called table.animations.ts in the src/app/core folder and added the code shown in Listing 27-5. import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 transition("selected => notselected", animate("200ms")),
 transition("notselected => selected", animate("400ms"))
]);

Listing 27-5The Contents of the table.animations.ts File in the src/app/core Folder

The syntax used to define animations can be dense and relies on a set of functions defined in the @angular/animations module. In the following sections, I start at the top and work my way down through the details to explain each of the animation building blocks used in the listing.
Tip
Don’t worry if all the building blocks described in the following sections don’t make immediate sense. This is an area of functionality that starts to make more sense only when you see how all the parts fit together.

Defining Style Groups
The heart of the animation system is the style group, which is a set of CSS style properties and values that will be applied to an HTML element. Style groups are defined using the style function, which accepts a JavaScript object literal that provides a map between property names and values, like this: ...
style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})
...

This style group tells Angular to set the background color to lightgreen and to set the font size to 20 pixels.
CSS Property Name Conventions
There are two ways to specify CSS properties when using the style function. You can use the JavaScript property naming convention, such that the property to set the background color of an element is specified as backgroundColor (all one word, no hyphens, and subsequent words capitalized). This is the convention I used in Listing 27-5:...
style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})),
...

Alternatively, you can use the CSS convention, where the same property is expressed as background-color (all lowercase with hyphens between words). If you use the CSS format, then you must enclose the property names in quotes to stop JavaScript from trying to interpret the hyphens as arithmetic operators, like this:...
state("green", style({
 "background-color": "lightgreen",
 "font-size": "20px"
})),
...

It doesn’t matter which name convention you use, just as long as you are consistent. At the time of writing, Angular does not correctly apply styles if you mix and match property name conventions. To get consistent results, pick a naming convention and use it for all the style properties you set throughout your application.

Defining Element States
Angular needs to know when it needs to apply a set of styles to an element. This is done by defining an element state, which provides a name by which the set of styles can be referred. Element states are created using the state function, which accepts the name and the style set that should be associated with it. This is one of the two element states that are defined in Listing 27-5: ...
state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
})),
...

There are two states in the listing, called selected and notselected, which will correspond to whether the product described by a table row is in the category selected by the user.
Defining State Transitions
When an HTML element is in one of the states created using the state function, Angular will apply the CSS properties in the state’s style group. The transition function is used to tell Angular how the new CSS properties should be applied. There are two transitions in Listing 27-5. ...
transition("selected => notselected", animate("200ms")),
transition("notselected => selected", animate("400ms"))
...

The first argument passed to the transition function tells Angular which states this instruction applies to. The argument is a string that specifies two states and an arrow that expresses the relationship between them. Two kinds of arrow are available, as described in Table 27-4.Table 27-4The Animation Transition Arrow Types

	Arrow
	Example
	Description

	=>
	selected => notselected
	This arrow specifies a one-way transition between two states, such as when the element moves from the selected state to the notselected state.

	<=>
	selected <=> notselected
	This array specifies a two-way transition between two states, such as when the element moves from the selected state to the notselected state and from the notselected state to the selected state.

The transitions defined in Listing 27-5 use one-way arrows to tell Angular how it should respond when an element moves from the selected state to the notselected state and from the notselected state to the selected state.
The second argument to the transition function tells Angular what action it should take when the state change occurs. The animate function tells Angular to gradually transition between the properties defined in the CSS style set defined by two element states. The arguments passed to the animate function in Listing 27-5 specify the period of time that this gradual transition should take, either 200 milliseconds or 400 milliseconds.
Guidance for Applying Animations
Developers often get carried away when applying animations, resulting in applications that users find frustrating. Animations should be applied sparingly, they should be simple, and they should be quick. Use animations to help the user make sense of your application and not as a vehicle to demonstrate your artistic skills. Users, especially for corporate line-of-business applications, have to perform the same task repeatedly, and excessive and long animations just get in the way.
I suffer from this tendency, and, unchecked, my applications behave like Las Vegas slot machines. I have two rules that I follow to keep the problem under control. The first is that I perform the major tasks or workflows in the application 20 times in a row. In the case of the example application, that might mean creating 20 products and then editing 20 products. I remove or shorten any animation that I find myself having to wait to complete before I can move on to the next step in the process.
The second rule is that I don’t disable animations during development. It can be tempting to comment out an animation when I am working on a feature because I will be performing a series of quick tests as I write the code. But any animation that gets in my way will also get in the user’s way, so I leave the animations in place and adjust them—generally reducing their duration—until they become less obtrusive and annoying.
You don’t have to follow my rules, of course, but it is important to make sure that the animations are helpful to the user and not a barrier to working quickly or a distracting annoyance.

Defining the Trigger
The final piece of plumbing is the animation trigger, which packages up the element states and transitions and assigns a name that can be used to apply the animation in a component. Triggers are created using the trigger function, like this:...
export const HighlightTrigger = trigger("rowHighlight", [...])
...

The first argument is the name by which the trigger will be known, which is rowHighlight in this example, and the second argument is the array of states and transitions that will be available when the trigger is applied.
Applying the Animation
Once you have defined an animation, you can apply it to one or more components by using the animations property of the @Component decorator. Listing 27-6 applies the animation defined in Listing 27-5 to the table component and adds some additional features that are needed to support the animation.import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
import { HighlightTrigger } from "./table.animations";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html",
 animations: [HighlightTrigger]
})
export class TableComponent {
 category: string | null = null;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): (string) [] {
 return (this.model.getProducts()
 .map(p => p.category)
 .filter((c, index, array) => c != undefined
 && array.indexOf(c) == index)) as string[];
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 highlightCategory: string = "";

 getRowState(category: string | undefined): string {
 return this.highlightCategory == "" ? "" :
 this.highlightCategory == category ? "selected" : "notselected";
 }
}

Listing 27-6Applying an Animation in the table.component.ts File in the src/app/core Folder

The animations property is set to an array of triggers. You can define animations inline, but they can quickly become complex and make the entire component hard to read, which is why I used a separate file and exported a constant value from it, which I then assign to the animations property.
The other changes are to provide a mapping between the category selected by the user and the animation state that will be assigned to elements. The value of the highlightCategory property will be set using a select element and is used in the getRowState method to tell Angular which of the animation states defined in Listing 27-7 should be assigned based on a product category. If a product is in the selected category, then the method returns selected; otherwise, it returns notselected. If the user has not selected a category, then the empty string is returned.
The final step is to apply the animation to the component’s template, telling Angular which elements are going to be animated, as shown in Listing 27-7. This listing also adds a select element that sets the value of the component’s highlightCategory property using the ngModel binding.<div class="form-group bg-info text-white p-2">
 <label>Category</label>
 <select [(ngModel)]="highlightCategory" class="form-control">
 <option value="">None</option>
 <option *ngFor="let category of categories">
 {{category}}
 </option>
 </select>
</div>

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()"
 [@rowHighlight]="getRowState(item.category)">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>

<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
</div>

Listing 27-7Applying an Animation in the table.component.html File in the src/app/core Folder

Animations are applied to templates using special data bindings, which associate an animation trigger with an HTML element. The binding’s target tells Angular which animation trigger to apply, and the binding’s expression tells Angular how to work out which state an element should be assigned to, like this:...
<tr *ngFor="let item of getProducts()" [@rowHighlight]="getRowState(item.category)">
...

The target of the binding is the name of the animation trigger, prefixed with the @ character, which denotes an animation binding. This binding tells Angular that it should apply the rowHighlight trigger to the tr element. The expression tells Angular that it should invoke the component’s getRowState method to work out which state the element should be assigned to, using the item.category value as an argument. Figure 27-2 illustrates the anatomy of an animation data binding for quick reference.[image:]
Figure 27-2The anatomy of an animation data binding

Testing the Animation Effect
The changes in the previous section add a select element above the product table. To see the effect of the animation, restart the Angular development tools, request http://localhost:4200, and then select Soccer from the list at the top of the window. Angular will use the trigger to figure out which of the animation states each element should be applied to. Table rows for products in the Soccer category will be assigned to the selected state, while the other rows will be assigned to the notselected state, creating the effect shown in Figure 27-3.[image:]
Figure 27-3Selecting a product category

The new styles are applied suddenly. To see a smoother transition, select the Chess category from the list, and you will see a gradual animation as the Chess rows are assigned to the selected state and the other rows are assigned to the notselected state. This happens because the animation trigger contains transitions between these states that tell Angular to animate the change in CSS styles, as illustrated in Figure 27-4. There is no transition for the earlier change, so Angular defaults to applying the new styles immediately.
Tip
It is impossible to capture the effect of animations in a series of screenshots, and the best I can do is present some of the intermediate states. This is a feature that requires firsthand experimentation to understand. I encourage you to download the project for this chapter from GitHub and create your own animations.

[image:]
Figure 27-4A gradual transition between animation states

To understand the Angular animation system, you need to understand the relationship between the different building blocks used to define and apply an animation, which can be described like this:	1.
Evaluating the data binding expression tells Angular which animation state the host element is assigned to.

	2.
The data binding target tells Angular which animation target defines CSS styles for the element’s state.

	3.
The state tells Angular which CSS styles should be applied to the element.

	4.
The transition tells Angular how it should apply CSS styles when evaluating the data binding expression results in a change to the element’s state.

Keep these four points in mind as you read through the rest of the chapter, and you will find the animation system easier to understand.
Understanding the Built-in Animation States
Animation states are used to define the end result of an animation, grouping together the styles that should be applied to an element with a name that can be selected by an animation trigger. There are two built-in states that Angular provides that make it easier to manage the appearance of elements, as described in Table 27-5. Table 27-5The Built-in Animation States

	State
	Description

	*
	This is a fallback state that will be applied if the element isn’t in any of the other states defined by the animation trigger.

	void
	Elements are in the void state when they are not part of the template. When the expression for an ngIf directive evaluates as false, for example, the host element is in the void state. This state is used to animate the addition and removal of elements, as described in the next section.

An asterisk (the * character) is used to denote a special state that Angular should apply to elements that are not in any of the other states defined by an animation trigger. Listing 27-8 adds the fallback state to the animations in the example application.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("*", style({
 border: "solid black 2px"
 })),
 transition("selected => notselected", animate("200ms")),
 transition("notselected => selected", animate("400ms"))
]);

Listing 27-8Using the Fallback State in the table.animations.ts File in the src/app/core Folder

In the example application, elements are assigned only to the selected or notselected state once the user has picked a value with the select element. The fallback state defines a style group that will be applied to elements until they are entered into one of the other states, as shown in Figure 27-5.[image:]
Figure 27-5Using the fallback state

Understanding Element Transitions
The transitions are the real power of the animation system; they tell Angular how it should manage the change from one state to another. In the sections that follow, I describe different ways in which transitions can be created and used.
Creating Transitions for the Built-in States
The built-in states described in Table 27-5 can be used in transitions. The fallback state can be used to simplify the animation configuration by representing any state, as shown in Listing 27-9.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("*", style({
 border: "solid black 2px"
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms"))
]);

Listing 27-9Using the Fallback State in the table.animations.ts File in the src/app/core Folder

The transitions in the listing tell Angular how to deal with the change from any state into the notselected and selected states.
Animating Element Addition and Removal
The void state is used to define transitions for when an element is added to or removed from the template, as shown in Listing 27-10. import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms")),
 transition("void => *", animate("500ms"))
]);

Listing 27-10Using the Void State in the table.animations.ts File in the src/app/core Folder

This listing includes a definition for the void state that sets the opacity property to zero, which makes the element transparent and, as a consequence, invisible. There is also a transition that tells Angular to animate the change from the void state to any other state. The effect is that the rows in the table fade into view as the browser gradually increases the opacity value until the fill opacity is reached, as shown in Figure 27-6.[image:]
Figure 27-6Animating element addition

Controlling Transition Animations
All the examples so far in this chapter have used the animate function in its simplest form, which is to specify how long a transition between two states should take, like this:...
transition("void => *", animate("500ms"))
...

The string argument passed to the animate method can be used to exercise finer-grained control over the way that transitions are animated by providing an initial delay and specifying how intermediate values for the style properties are calculated.
Expressing Animation Durations
Durations for animations are expressed using CSS time values, which are string values containing one or more numbers followed by either s for seconds or ms for milliseconds. This value, for example, specifies a duration of 500 milliseconds:...
transition("void => *", animate("500ms"))
...

Durations are expressed flexibly, and the same value could be expressed as a fraction of a second, like this:...
transition("void => *", animate("0.5s"))
...

My advice is to stick to one set of units throughout a project to avoid confusion, although it doesn’t matter which one you use.

Specifying a Timing Function
The timing function is responsible for calculating the intermediate values for CSS properties during the transition. The timing functions, which are defined as part of the Web Animations specification, are described in Table 27-6. Table 27-6The Animation Timing Functions

	Name
	Description

	linear
	This function changes the value in equal amounts. This is the default.

	ease-in
	This function starts with small changes that increase over time, resulting in an animation that starts slowly and speeds up.

	ease-out
	This function starts with large changes that decrease over time, resulting in an animation that starts quickly and then slows down.

	ease-in-out
	This function starts with large changes that become smaller until the midway point, after which they become larger again. The result is an animation that starts quickly, slows down in the middle, and then speeds up again at the end.

	cubic-bezier
	This function is used to create intermediate values using a Bezier curve. See http://w3c.github.io/web-animations/#time-transformations for details.

Listing 27-11 applies a timing function to one of the transitions in the example application. The timing function is specified after the duration in the argument to the animate function.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms ease-in")),
 transition("void => *", animate("500ms"))
]);

Listing 27-11Applying a Timing Function in the table.animations.ts File in the src/app/core Folder

Specifying an Initial Delay
An initial delay can be provided to the animate method, which can be used to stagger animations when there are multiple transitions being performed simultaneously. The delay is specified as the second value in the argument passed to the animate function, as shown in Listing 27-12.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms 200ms ease-in")),
 transition("void => *", animate("500ms"))
]);

Listing 27-12Adding an Initial Delay in the table.animations.ts File in the src/app/core Folder

The 200-millisecond delay in this example corresponds to the duration of the animation used when an element transitions to the notselected state. The effect is that changing the selected category will show elements returning to the notselected state before the selected elements are changed.
Using Additional Styles During Transition
The animate function can accept a style group as its second argument, as shown in Listing 27-13. These styles are applied to the host element gradually, over the duration of the animation.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected",
 animate("400ms 200ms ease-in",
 style({
 backgroundColor: "lightblue",
 fontSize: "25px"
 }))
),
 transition("void => *", animate("500ms"))
]);

Listing 27-13Defining Transition Styles in the table.animations.ts File in the src/app/core Folder

The effect of this change is that when an element is transitioning into the selected state, its appearance will be animated so that the background color will be lightblue and its font size will be 25 pixels. At the end of the animation, the styles defined by the selected state will be applied all at once, creating a snap effect.
The sudden change in appearance at the end of the animation can be jarring. An alternative approach is to change the second argument of the transition function to an array of animations. This defines multiple animations that will be applied to the element in sequence, and as long as it doesn’t define a style group, the final animation will be used to transition to the styles defined by the state. Listing 27-14 uses this feature to add two animations to the transition, the last of which will apply the styles defined by the selected state.import { trigger, style, state, transition, animate } from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected",
 [animate("400ms 200ms ease-in",
 style({
 backgroundColor: "lightblue",
 fontSize: "25px"
 })),
 animate("250ms", style({
 backgroundColor: "lightcoral",
 fontSize: "30px"
 })),
 animate("200ms")]
),
 transition("void => *", animate("500ms"))
]);

Listing 27-14Using Multiple Animations in the table.animations.ts File in the src/app/core Folder

There are three animations in this transition, and the last one will apply the styles defined by the selected state. Table 27-7 describes the sequence of animations.Table 27-7The Sequence of Animations in the Transition to the selected State

	Duration
	Style Properties and Values

	400 milliseconds
	backgroundColor: lightblue; fontSize: 25px

	250 milliseconds
	backgroundColor: lightcoral; fontSize: 30px

	200 milliseconds
	backgroundColor: lightgreen; fontSize: 20px

Pick a category using the select element to see the sequence of animations. Figure 27-7 shows one frame from each animation.[image:]
Figure 27-7Using multiple animations in a transition

Performing Parallel Animations
Angular can perform animations at the same time, which means you can have different CSS properties change over different time periods. Parallel animations are passed to the group function, as shown in Listing 27-15. import { trigger, style, state, transition, animate, group }
 from "@angular/animations";

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style({
 backgroundColor: "lightgreen",
 fontSize: "20px"
 })),
 state("notselected", style({
 backgroundColor: "lightsalmon",
 fontSize: "12px"
 })),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected",
 [animate("400ms 200ms ease-in",
 style({
 backgroundColor: "lightblue",
 fontSize: "25px"
 })),
 group([
 animate("250ms", style({
 backgroundColor: "lightcoral",
 })),
 animate("450ms", style({
 fontSize: "30px"
 })),
]),
 animate("200ms")]
),
 transition("void => *", animate("500ms"))
]);

Listing 27-15Performing Parallel Animations in the table.animations.ts File in the src/app/core Folder

The listing replaces one of the animations in sequence with a pair of parallel animations. The animations for the backgroundColor and fontSize properties will be started at the same time but last for differing durations. When both of the animations in the group have completed, Angular will move on to the final animation, which will target the styles defined in the state.
Understanding Animation Style Groups
The outcome of an Angular animation is that an element is put into a new state and styled using the properties and values in the associated style group. In this section, I explain some different ways in which style groups can be used.
Tip
Not all CSS properties can be animated, and of those that can be animated, some are handled better by the browser than others. As a rule of thumb, the best results are achieved with properties whose values can be easily interpolated, which allows the browser to provide a smooth transition between element states. This means you will usually get good results using properties whose values are colors or numerical values, such as background, text and font colors, opacity, element sizes, and borders. See https://www.w3.org/TR/css3-transitions/#animatable-properties for a complete list of properties that can be used with the animation system.

Defining Common Styles in Reusable Groups
As you create more complex animations and apply them throughout your application, you will inevitably find that you need to apply some common CSS property values in multiple places. The style function can accept an array of objects, all of which are combined to create the overall set of styles in the group. This means you can reduce duplication by defining objects that contain common styles and use them in multiple style groups, as shown in Listing 27-16. (To keep the example simple, I have also removed the sequence of styles defined in the previous section.)import { trigger, style, state, transition, animate, group }
 from "@angular/animations";

const commonStyles = {
 border: "black solid 4px",
 color: "white"
};

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style([commonStyles, {
 backgroundColor: "lightgreen",
 fontSize: "20px"
 }])),
 state("notselected", style([commonStyles, {
 backgroundColor: "lightsalmon",
 fontSize: "12px",
 color: "black"
 }])),
 state("void", style({
 opacity: 0
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms 200ms ease-in")),
 transition("void => *", animate("500ms"))
]);

Listing 27-16Defining Common Styles in the table.animations.ts File in the src/app/core Folder

The commonStyles object defines values for the border and color properties and is passed to the style function in an array along with the regular style objects. Angular processes the style objects in order, which means you can override a style value by redefining it in a later object. As an example, the second style object for the notselected state overrides the common value for the color property with a custom value. The result is that the styles for both animation states incorporate the common value for the border property, and the styles for the selected state also use the common value for the color property, as shown in Figure 27-8.[image:]
Figure 27-8Defining common properties

Using Element Transformations
All the examples so far in this chapter have animated properties that have affected an aspect of an element’s appearance, such as background color, font size, or opacity. Animations can also be used to apply CSS element transformation effects, which are used to move, resize, rotate, or skew an element. These effects are applied by defining a transform property in a style group, as shown in Listing 27-17.import { trigger, style, state, transition, animate, group }
 from "@angular/animations";

const commonStyles = {
 border: "black solid 4px",
 color: "white"
};

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style([commonStyles, {
 backgroundColor: "lightgreen",
 fontSize: "20px"
 }])),
 state("notselected", style([commonStyles, {
 backgroundColor: "lightsalmon",
 fontSize: "12px",
 color: "black"
 }])),
 state("void", style({
 transform: "translateX(-50%)"
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms 200ms ease-in")),
 transition("void => *", animate("500ms"))
]);

Listing 27-17Using an Element Transformation in the table.animations.ts File in the src/app/core Folder

The value of the transform property is translateX(50%), which tells Angular to move the element 50 percent of its length along the x-axis. The transform property has been applied to the void state, which means that it will be used on elements as they are being added to the template. The animation contains a transition from the void state to any other state and tells Angular to animate the changes over 500 milliseconds. The result is that new elements will be shifted to the left initially and then slid back into their default position over a period of half a second, as illustrated in Figure 27-9.[image:]
Figure 27-9Transforming an element

Table 27-8 describes the set of transformations that can be applied to elements.
Tip
Multiple transformations can be applied in a single transform property by separating them with spaces, like this: transform: "scale(1.1, 1.1) rotate(10deg)".

Table 27-8The CSS Transformation Functions

	Function
	Description

	translateX(offset)
	This function moves the element along the x-axis. The amount of movement can be specified as a percentage or as a length (expressed in pixels or one of the other CSS length units). Positive values translate the element to the right, negative values to the left.

	translateY(offset)
	This function moves the element along the y-axis.

	translate(xOffset, yOffset)
	This function moves the element along both axes.

	scaleX(amount)
	This function scales the element along the x-axis. The scaling size is expressed as a fraction of the element’s regular size, such that 0.5 reduces the element to 50 percent of the original width and 2.0 will double the width.

	scaleY(amount)
	This function scales the element along the y-axis.

	scale(xAmount, yAmount)
	This function scales the element along both axes.

	rotate(angle)
	This function rotates the element clockwise. The amount of rotation is expressed as an angle, such as 90deg or 3.14rad.

	skewX(angle)
	This function skews the element along the x-axis by a specified angle, expressed in the same way as for the rotate function.

	skewY(angle)
	This function skews the element along the y-axis by a specified angle, expressed in the same way as for the rotate function.

	skew(xAngle, yAngle)
	This function skews the element along both axes.

Applying CSS Framework Styles
If you are using a CSS framework like Bootstrap, you may want to apply classes to elements, rather than having to define groups of properties. There is no built-in support for working directly with CSS classes, but the Document Object Model (DOM) and the CSS Object Model (CSSOM) provide API access to inspect the CSS stylesheets that have been loaded and to see whether they apply to an HTML element. To get the set of styles defined by classes, I created a file called animationUtils.ts to the src/app/core folder and added the code shown in Listing 27-18.
Caution
This technique can require substantial processing in an application that uses a lot of complex stylesheets, and you may need to adjust the code to work with different browsers and different CSS frameworks.

export const stateClassMap : {[key: string]: string[] | string} = {
 selected: ["table-success", "h2"],
 notselected: ["table-info"]
};

export function getStylesFromClasses(names: string | string[],
 elementType: string = "div") : { [key: string]: string | number } {
 return findStylesOrProps(names, elementType, (name) => !name.startsWith("--"))
}

export function setPropertiesFromClasses(state: string, target: HTMLElement) {
 let props = findStylesOrProps(stateClassMap[state], "div",
 (name) => name.startsWith("--"));
 Object.keys(props).forEach(k => {
 target.style.setProperty(k, props[k]);
 })
}

function findStylesOrProps(names: string | string[], elementType: string,
 selector: (name: string) => boolean) : { [key: string]: string } {

 let elem = document.createElement(elementType);
 (typeof names == "string" ? [names] : names)
 .forEach(c => elem.classList.add(c));

 let result : { [key: string]: string } = {};

 for (let i = 0; i < document.styleSheets.length; i++) {
 let sheet = document.styleSheets[i] as CSSStyleSheet;
 let rules = sheet.cssRules || sheet.cssRules;
 for (let j = 0; j < rules.length; j++) {
 if (rules[j] instanceof CSSStyleRule) {
 let styleRule = rules[j] as CSSStyleRule;
 if (elem.matches(styleRule.selectorText)) {
 for (let k = 0; k < styleRule.style.length; k++) {
 let name = styleRule.style[k];
 if (selector(name)) {
 result[name] = styleRule.style.getPropertyValue(name);
 }
 }
 }
 }
 }
 }
 return result;
}

Listing 27-18The Contents of the animationUtils.ts File in the src/app/core Folder

The getStylesFromClass method accepts a single class name or an array of class names and the element type to which they should be applied, which defaults to a div element. An element is created and assigned to the classes and then inspected to see which of the CSS rules defined in the CSS stylesheets apply to it. One complication of applying the Bootstrap styles in an animation is they rely on custom CSS properties, which are not supported for animation. To work around this issue, the getStylesFromClasses method skips styles whose name begins with --, and the setPropertiesFromClasses is used to set these properties on the element to be animated. This is an inefficient and error-prone approach, but it is the best that I have been able to find. I hope future releases of Angular will address this problem directly.
The style properties for each matching style are added to an object that can be used to create Angular animation style groups, as shown in Listing 27-19.import { trigger, style, state, transition, animate, group }
 from "@angular/animations";
import { getStylesFromClasses, stateClassMap } from "./animationUtils";

// const commonStyles = {
// border: "black solid 4px",
// color: "white"
// };

export const HighlightTrigger = trigger("rowHighlight", [
 state("selected", style(getStylesFromClasses(stateClassMap["selected"]))),
 state("notselected", style(getStylesFromClasses(stateClassMap["notselected"]))),
 state("void", style({
 transform: "translateX(-50%)"
 })),
 transition("* => notselected", animate("200ms")),
 transition("* => selected", animate("400ms 200ms ease-in")),
 transition("void => *", animate("500ms"))
]);

Listing 27-19Using Bootstrap Classes in the table.animations.ts File in the src/app/core Folder

The selected state and unselected states use the styles defined in Listing 27-18. To ensure that the custom properties are set correctly, Listing 27-20 updates the table component.import { Component, ElementRef } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
import { HighlightTrigger } from "./table.animations";
import { setPropertiesFromClasses, stateClassMap } from "./animationUtils";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html",
 animations: [HighlightTrigger]
})
export class TableComponent {
 category: string | null = null;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 .filter(p => this.category == null || p.category == this.category);
 }

 get categories(): (string) [] {
 return (this.model.getProducts()
 .map(p => p.category)
 .filter((c, index, array) => c != undefined
 && array.indexOf(c) == index)) as string[];
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 highlightCategory: string = "";

 getRowState(category: string | undefined, elem: HTMLTableRowElement): string {
 let state = this.highlightCategory == "" ? "" :
 this.highlightCategory == category ? "selected" : "notselected"
 if (state != "") {
 setPropertiesFromClasses(state, elem);
 }
 return state;
 }
}

Listing 27-20Setting Custom Properties in the table.component.ts File in the src/app/core Folder

The getRowState method has been modified to receive the element that is being modified. Listing 27-21 updates the template to provide the additional argument using a template variable....
<tbody>
 <tr *ngFor="let item of getProducts()" #elem
 [@rowHighlight]="getRowState(item.category, elem)">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
...

Listing 27-21Adding a Template Variable in the table.component.html File in the src/app/core Folder

The effect is that the Bootstrap styles are applied to the rows in the table, based on the selected category, as shown in Figure 27-10.[image:]
Figure 27-10Using CSS framework styles in Angular animations

Summary
I described the Angular animation system in this chapter and explained how it uses data bindings to animate changes in the application’s state. In the next chapter, I describe the features that Angular provides to support unit testing.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_28

28. Working with Component Libraries

Adam Freeman1
(1)London, UK

Component libraries are packages that contain Angular components and directives, such as buttons, tables, and layouts. Throughout this book, I have been creating custom components and directives to demonstrate Angular features, but component libraries use these same features to provide building blocks that you can use to simplify the development process.
One of the recurring themes in this book is that nothing in Angular is magic, and this extends to component libraries, which are written using the same features that you used in earlier chapters. Component libraries are useful because they mean you don’t have to write code and templates for basic tasks, such as creating a button, for example, and can focus on dealing with what happens when the user clicks the button.
In this chapter, I use the Angular Material component library to add components to the project and explain how to use CSS to give a custom component an appearance that is consistent with the library components. Table 28-1 puts the use of component libraries in context.Table 28-1Putting Component Libraries in Context

	Question
	Answer

	What are they?
	Component libraries are packages containing commonly required user interface features for Angular applications.

	Why are they useful?
	Component libraries can speed up project development and ensure a consistent appearance in the finished application.

	How are they used?
	Features are presented as Angular components or directives, which are applied in the same way as custom components and directives.

	Are there any pitfalls or limitations?
	Component libraries can require data to be presented in a specific way or for the application to be structured using a specific pattern. These restrictions may not suit all projects.

	Are there any alternatives?
	Component libraries are entirely optional and are not required for Angular development.

Note
This chapter is not a detailed description of Angular Material or any other component library. There are several good component libraries available for Angular and each has its own set of features and its own API.

Table 28-2 summarizes the chapter.Table 28-2Chapter Summary

	Problem
	Solution
	Listing

	Applying the features provided by a component library
	Use the components or directives provided contained in the library package
	4–11

	Using the advanced features provided by a component library
	Adopt the structure or API that the component library provides for integration
	12–15

	Styling custom components to match the theme used by the component library
	Use the CSS styles provided by the component library, which are typically provided for use with Sass
	16–24

Preparing for This Chapter
In this chapter, I continue using the exampleApp project that was first created in Chapter 20 and has been the focus of every chapter since. To prepare for this chapter, Listing 28-1 removes the animations added in Chapter 27 and simplifies the table component to remove features that are no longer required.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Component, ElementRef } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
// import { HighlightTrigger } from "./table.animations";
// import { setPropertiesFromClasses, stateClassMap } from "./animationUtils";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html",
 // animations: [HighlightTrigger]
})
export class TableComponent {
 category: string | null = null;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 // .filter(p => this.category == null || p.category == this.category);
 }

 // get categories(): (string) [] {
 // return (this.model.getProducts()
 // .map(p => p.category)
 // .filter((c, index, array) => c != undefined
 // && array.indexOf(c) == index)) as string[];
 // }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 // highlightCategory: string = "";

 // getRowState(category: string | undefined, elem: HTMLTableRowElement): string {

 // let state = this.highlightCategory == "" ? "" :
 // this.highlightCategory == category ? "selected" : "notselected"
 // if (state != "") {
 // setPropertiesFromClasses(state, elem);
 // }
 // return state
 // }
}

Listing 28-1Simplifying the Component in the table.component.ts File in the src/app/core Folder

Listing 28-2 makes the corresponding changes to the template.<!-- <div class="form-group bg-info text-white p-2">
 <label>Category</label>
 <select [(ngModel)]="highlightCategory" class="form-control">
 <option value="">None</option>
 <option *ngFor="let category of categories">
 {{category}}
 </option>
 </select>
</div> -->

<table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button class="btn btn-danger btn-sm m-1"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button class="btn btn-warning btn-sm"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>

<div class="p-2 text-center">
 <button class="btn btn-primary m-1" routerLink="/form/create">
 Create New Product
 </button>
</div>

Listing 28-2Simplifying the Template in the table.component.html File in the src/app/core Folder

Installing the Component Library
Open a new command prompt, navigate to the exampleApp folder, and run the following command to download and install the Angular Material package: ng add @angular/material@13.0.2

The Angular Material package uses the schematics API to configure the project. The installation process presents several queries, the first of which is to confirm the package installation:Using package manager: npm
Package information loaded.
The package @angular/material@13.0.2 will be installed and executed.
Would you like to proceed? (Y/n)

Press Y to confirm the installation. Select the default option for the remaining questions to complete the installation.
Choosing a Component Library
I have used Angular Material because it is the most popular Angular component library. There are several other packages available. Teradata Covalent (https://teradata.github.io/covalent) is an open-source library that follows the same Material Design standard as Angular Material, but with the addition of good charting components. Some packages present the features of the Bootstrap CSS package using Angular features, such as ng-bootstrap (https://ng-bootstrap.github.io) and ngx-bootstrap (https://valor-software.com/ngx-bootstrap), and each provides a different approach to developing components. There are also commercial packages, such as Kendo UI (https://www.telerik.com/kendo-angular-ui), which can be useful for development teams that require support.
If you don’t know where to start, then try Angular Material. The documentation (https://material.angular.io) is good, and the package contains the components required by most projects.

Adjusting the HTML File
Installing the Angular Material package requires a change to the index.html file to resolve a conflict with the Bootstrap CSS styles that causes a scrollbar to be displayed even when the content fits within the browser window, caused by styles added to the styles.css file. Listing 28-3 changes the class to which the body element is assigned to resolve the issue.<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>ExampleApp</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="preconnect" href="https://fonts.gstatic.com">
 <link href=
 "https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500&display=swap"
 rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
 rel="stylesheet">
</head>
<body class="p-1">
 <app-root></app-root>
</body>
</html>

Listing 28-3Changing an Element Class in the index.html File in the src Folder

Running the Project
Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 28-1.[image:]
Figure 28-1Running the example application

Using the Library Components
The simplest approach to using a component library is, as you might expect, to use the components it provides. In this section, I demonstrate how to integrate two features from the Angular Material library into the example project.
Using the Angular Button Directive
The Angular Material support for buttons is provided as a directive applied to button or anchor elements, as shown in Listing 28-4. <table class="table table-sm table-bordered table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 <th>Details</th><th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let item of getProducts()">
 <td>{{item.id}}</td>
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency:"USD" }}</td>
 <td>
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 <td class="text-center">
 <button mat-flat-button color="accent" (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button mat-flat-button color="warn"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
</table>

<div class="p-2 text-center">
 <button mat-flat-button color="primary" routerLink="/form/create">
 Create New Product
 </button>
</div>

Listing 28-4Using the Angular Material Button in the table.component.html File in the src/app/core Folder

Angular Material provides several different styles of button, which are applied using the attributes described in Table 28-3.Table 28-3The Angular Material Button Attributes

	Name
	Description

	mat-button
	This attribute creates a simple borderless button, whose text is styled using an Angular Material theme color.

	mat-stroked-button
	This attribute adds a rectangular border to the mat-button style.

	mat-raised-button
	This attribute creates a button that appears to be raised from the page, displayed with a small amount of shadow. The button background is styled using an Angular Material theme color.

	mat-flat-button
	This attribute creates a button without the raised shadow and whose background is styled using an Angular Material theme color.

	mat-icon-button
	This attribute creates a button with a transparent background, intended to display an icon, which is styled using an Angular Material theme color.

	mat-fab
	This attribute creates a circular button with a shadow, whose background is styled using an Angular Material theme color.

	mat-mini-fab
	This button creates a small circular button with a shadow and a background styled using an Angular Material theme color.

Angular Material uses a color theme that is selected when the package is installed and which defines three color names, as described in Table 28-4.Table 28-4The Angular Material Color Names

	Name
	Description

	primary
	This name refers to the color used most often throughout the application.

	accent
	This name refers to the color used to highlight key parts of the user interface.

	warn
	This name refers to the color used for warnings and errors or to denote operations that require caution.

In Listing 28-4, I applied the mat-flat-button attribute, which will create a button whose appearance most closely matches the buttons I created using the Bootstrap styles. The theme color is specified using the color attribute, like this:...
<button mat-flat-button color="accent" (click)="deleteProduct(item.id)">
...

The Angular Material button is applied to a regular HTML button element, which means that the click event is used to respond to user interaction.
Adding the Margin Style
Angular Material doesn’t include utility styles for adding margins or padding to elements. Listing 28-5 defines a new global style that adds space around flat buttons.
Caution
You may be tempted to mix and match styles from different packages, such as applying the Bootstrap m-1 style to button elements to which the mat-flat-button attribute has been added. Care must be taken because package styles are rarely written with this kind of combination in mind and there can be odd interactions.

html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

button.mat-flat-button { margin: 2px; }

Listing 28-5Adding Styles in the styles.css File in the src Folder

Angular Material adds elements to classes that correspond to the attribute names described in Table 28-3, which means that I can use class selectors to locate button elements and apply a margin.
Importing the Component Module
Angular Material uses separate modules for each feature, which means that an application includes only the features it requires and doesn’t add unused code to the download required by the client.
In a complex project, there can be a large number of dependencies on a component library, and they can be spread throughout the project’s modules. To make it easier to manage the dependencies, it is a good idea to use a separate module. Add a file named material.module.ts in the src/app folder with the content shown in Listing 28-6.import { NgModule } from "@angular/core";
import { MatButtonModule } from "@angular/material/button";

const features = [MatButtonModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 28-6The Contents of the material.module.ts File in the src/app Folder

The MaterialFeatures module imports and exports the MatButtonModule module from the Angular Material package. Listing 28-7 adds a dependency on the new module, which will be the only change to the core module to enable Angular Material features.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";
import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";
import { UnsavedGuard } from "./unsaved.guard";
import { MaterialFeatures } from "../material.module"

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule, MaterialFeatures],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective, ProductCountComponent,
 CategoryCountComponent, NotFoundComponent],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [UnsavedGuard]
})
export class CoreModule { }

Listing 28-7Importing a Module in the core.module.ts File in the src/app/core Folder

Save the changes, and the Angular Material button will be displayed when the application is reloaded, as shown in Figure 28-2.[image:]
Figure 28-2Using a component library

The Angular Material button feature is simple, but it shows the basic pattern to follow when using a component from a package: apply the component, add some tuning CSS styles, and import the feature module.
Note
Styles provided by the Bootstrap CSS package are still being used in the example, with classes such as p-2 and text-center, which are used to center content and add padding. Most projects will use a single package, but Bootstrap and Angular Material will coexist.

Using the Angular Material Table
Buttons are relatively simple, and the main benefit of using the Angular Material button is consistency. Other components are more complex and provide more features, such as tables. Listing 28-8 removes the Bootstrap CSS styles from the table that displays product details and introduces the Angular Material table feature.<table mat-table [dataSource]="getProducts()">

 <mat-text-column name="id"></mat-text-column>
 <mat-text-column name="name"></mat-text-column>
 <mat-text-column name="category"></mat-text-column>

 <ng-container matColumnDef="price">
 <th mat-header-cell *matHeaderCellDef>Price</th>
 <td mat-cell *matCellDef="let item"> {{item.price | currency:"USD"}} </td>
 </ng-container>

 <ng-container matColumnDef="details">
 <th mat-header-cell *matHeaderCellDef>Details</th>
 <td mat-cell *matCellDef="let item">
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 </ng-container>

 <ng-container matColumnDef="buttons">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let item">
 <button mat-flat-button color="accent"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button mat-flat-button color="warn"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
 <tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>
</table>

<div class="p-2 text-center">
 <button mat-flat-button color="primary" routerLink="/form/create" >
 Create New Product
 </button>
</div>

Listing 28-8Changing the Table in the table.component.html File in the src/app/core Folder

Angular Material tables are created by applying the mat-table attribute to a table element and creating a dataSource data binding that selects an array of values to display.
Angular Material focuses on defining columns to describe the contents of a table. A mat-text-column element is used for simple columns, where the column header is the name of the data property and the value is displayed without modification, like this:...
<mat-text-column name="id"></mat-text-column>
...

The name attribute selects the property to be displayed and sets the name by which the column is identified. For more complex columns, the matColumnDef attribute is applied to an ng-container element that contains th and td elements that are included in the table head and body, respectively:...
<ng-container matColumnDef="price">
 <th mat-header-cell *matHeaderCellDef>Price</th>
 <td mat-cell *matCellDef="let item"> {{item.price | currency:"USD"}} </td>
</ng-container>
...

The th element is given the mat-header-cell attribute, and the concise syntax is used to apply the matHeaderCellDef directive. The td element is given the mat-cell attribute, and the matCellDef directive is used to create an expression that selects the data used to create the contents of a table cell. There is an implicit value that provides the current data value, and, for the price column, this is formatted as a currency value using a pipe. This approach allows data values to be formatted or composed from multiple data source properties.
If you jump directly to using a component library without taking the time to understand how Angular works, the steps required to set up complex features can be impenetrable. But the knowledge you gained in earlier chapters helps reveal how the Angular Material table works, using features such as the concise directive syntax and implicit values to map the data in the data source to the content in the column descriptions.
The next step is to define the templates for the header and body rows, like this:...
<tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
<tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>
...

Columns are not shown unless they are configured with a row template. Columns are selected using an array containing the names assigned to the column’s template, and Listing 28-9 adds a property to the component class to select all of the columns defined in Listing 28-8.import { Component, ElementRef } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html",
})
export class TableComponent {
 category: string | null = null;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): Product[] {
 return this.model.getProducts()
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 colsAndRows: string[] = ['id', 'name', 'category', 'price', 'details', 'buttons'];
}

Listing 28-9Selecting Columns in the table.component.ts File in the src/app/core Folder

The next step is to define CSS styles that will supplement those used by Angular Material and style the table, as shown in Listing 28-10.html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

button.mat-flat-button { margin: 2px; }

table.mat-table { width: 100%; }
th.mat-header-cell { font-size: large; font-weight: bold;}
td.mat-column-price { font-style: italic;}

Listing 28-10Defining Styles in the styles.css File in the src Folder

The table element is added to the mat-table class, which allows me to set the width of the table. As the Angular Material generates the content for the table, it adds the elements it creates to classes that make it easy to adjust the appearance. The mat-cell and mat-header-cell classes are used to denote cells in the header and body. Elements are also added to classes that indicate which column a cell belongs to so that cells for the price column, for example, are added to the mat-column-price class. I use these classes to change the font settings for all th elements in the header and to italicize the values in the price column.
To finish up applying the Angular Material table, Listing 28-11 imports the module that contains the table features.import { NgModule } from "@angular/core";
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";

const features = [MatButtonModule, MatTableModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 28-11Importing the Component Module in the material.module.ts File in the src/app Folder

When the application reloads, the Angular Material features are used to generate the table content, as shown in Figure 28-3.[image:]
Figure 28-3Using the Angular Material table

Using the Built-in Table Features
The basic table features don’t offer much beyond the code with which I started the chapter. But one of the reasons for using a component library is to take advantage of features that are provided by the library authors, which you would otherwise have to write yourself.
The Angular Material table has some useful capabilities, including integrated support for paginating and sorting data. In Listing 28-12, I have declared dependencies on the Angular Material modules that provide these features. import { NgModule } from "@angular/core";
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";
import { MatPaginatorModule } from "@angular/material/paginator"
import { MatSortModule } from "@angular/material/sort"

const features = [MatButtonModule, MatTableModule, MatPaginatorModule, MatSortModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 28-12Adding Dependencies in the material.module.ts File in the src/app Folder

Next, I need to expand the use of the observable in the repository, as shown in Listing 28-13. The Angular Material table will work with an array of data values, as the previous section showed, but its other features require a different approach, which is most easily achieved using the observable added to the repository.import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { StaticDataSource } from "./static.datasource";
import { Observable, ReplaySubject } from "rxjs";
import { RestDataSource } from "./rest.datasource";

@Injectable()
export class Model {
 private products: Product[];
 private locator = (p: Product, id?: number) => p.id == id;
 private replaySubject: ReplaySubject<Product[]>;

 constructor(private dataSource: RestDataSource) {
 this.products = new Array<Product>();
 this.replaySubject = new ReplaySubject<Product[]>(1);
 this.dataSource.getData().subscribe(data => {
 this.products = data
 this.replaySubject.next(data);
 //this.replaySubject.complete();
 });
 }

 getProducts(): Product[] {
 return this.products;
 }

 getProduct(id: number): Product | undefined {
 return this.products.find(p => this.locator(p, id));
 }

 getProductObservable(id: number): Observable<Product | undefined> {
 let subject = new ReplaySubject<Product | undefined>(1);
 this.replaySubject.subscribe(products => {
 subject.next(products.find(p => this.locator(p, id)));
 subject.complete();
 });
 return subject;
 }

 getProductsObservable(): Observable<Product[]> {
 return this.replaySubject;
 }

 getNextProductId(id?: number): Observable<number> {
 let subject = new ReplaySubject<number>(1);
 this.replaySubject.subscribe(products => {
 let nextId = 0;
 let index = products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 nextId = products[products.length > index + 1
 ? index + 1 : 0].id ?? 0;
 } else {
 nextId = id || 0;
 }
 subject.next(nextId);
 subject.complete();
 });
 return subject;
 }

 getPreviousProductid(id?: number): Observable<number> {
 let subject = new ReplaySubject<number>(1);
 this.replaySubject.subscribe(products => {
 let nextId = 0;
 let index = products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 nextId = products[index > 0
 ? index - 1 : products.length - 1].id ?? 0;
 } else {
 nextId = id || 0;
 }
 subject.next(nextId);
 subject.complete();
 });
 return subject;
 }

 saveProduct(product: Product) {
 if (product.id == 0 || product.id == null) {
 this.dataSource.saveProduct(product)
 .subscribe(p => this.products.push(p));
 } else {
 this.dataSource.updateProduct(product).subscribe(p => {
 let index = this.products
 .findIndex(item => this.locator(item, p.id));
 this.products.splice(index, 1, p);
 });
 }
 this.replaySubject.next(this.products);
 }

 deleteProduct(id: number) {
 this.dataSource.deleteProduct(id).subscribe(() => {
 let index = this.products.findIndex(p => this.locator(p, id));
 if (index > -1) {
 this.products.splice(index, 1);
 this.replaySubject.next(this.products);
 }
 });
 }
}

Listing 28-13Updating the Repository in the repository.model.ts File in the src/app/model Folder

These changes ensure that a new array of Product objects is sent via the observable when there is a change. Listing 28-14 changes the template that displays the table to add support for sorting data by the price column and for paginating data.<table mat-table [dataSource]="getProducts()" matSort>

 <mat-text-column name="id"></mat-text-column>
 <mat-text-column name="name"></mat-text-column>
 <mat-text-column name="category"></mat-text-column>

 <ng-container matColumnDef="price">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Price</th>
 <td mat-cell *matCellDef="let item"> {{item.price | currency:"USD"}} </td>
 </ng-container>

 <ng-container matColumnDef="details">
 <th mat-header-cell *matHeaderCellDef>Details</th>
 <td mat-cell *matCellDef="let item">
 <ng-container *ngIf="item.details else empty">
 {{ item.details?.supplier }}, {{ item.details?.keywords}}
 </ng-container>
 <ng-template #empty>(None)</ng-template>
 </td>
 </ng-container>

 <ng-container matColumnDef="buttons">
 <th mat-header-cell *matHeaderCellDef></th>
 <td mat-cell *matCellDef="let item">
 <button mat-flat-button color="accent"
 (click)="deleteProduct(item.id)">
 Delete
 </button>
 <button mat-flat-button color="warn"
 [routerLink]="['/form', 'edit', item.id]">
 Edit
 </button>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="colsAndRows"></tr>
 <tr mat-row *matRowDef="let row; columns: colsAndRows"></tr>
</table>

<mat-paginator [pageSize]="5" [pageSizeOptions]="[3, 5, 10]">
</mat-paginator>

<div class="p-2 text-center">
 <button mat-flat-button color="primary" routerLink="/form/create" >
 Create New Product
 </button>
</div>

Listing 28-14Enhancing the Table in the table.component.html File in the src/app/core Folder

The matSort attribute is applied to the table element, and the mat-sort-header attribute is added to headers that will allow the user to sort data. The mast-paginator component displays pagination controls for the table data.
The final step is to create a data source that supports sorting and pagination and that is populated with data through the observable exposed by the repository, as shown in Listing 28-15.import { Component, ElementRef, ViewChild } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { ActivatedRoute } from "@angular/router";
import { MatTableDataSource } from "@angular/material/table";
import { MatPaginator } from "@angular/material/paginator";
import { MatSort } from "@angular/material/sort";

@Component({
 selector: "paTable",
 templateUrl: "table.component.html",
})
export class TableComponent {
 category: string | null = null;
 dataSource: MatTableDataSource<Product>;

 constructor(public model: Model, activeRoute: ActivatedRoute) {
 activeRoute.params.subscribe(params => {
 this.category = params["category"] || null;
 })
 this.dataSource = new MatTableDataSource<Product>();
 this.model.getProductsObservable().subscribe(newData => {
 this.dataSource.data = newData;
 })
 }

 getProduct(key: number): Product | undefined {
 return this.model.getProduct(key);
 }

 getProducts(): MatTableDataSource<Product> {
 return this.dataSource;
 }

 deleteProduct(key?: number) {
 if (key != undefined) {
 this.model.deleteProduct(key);
 }
 }

 colsAndRows: string[] = ['id', 'name', 'category', 'price', 'details', 'buttons'];

 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;

 ngAfterViewInit() {
 this.dataSource.paginator = this.paginator;
 this.dataSource.sort = this.sort;
 }
}

Listing 28-15Creating a Data Source in the table.component.ts File in the src/app/core Folder

The MatTableDataSource<Product> object represents a data source for Product objects, and its data property is used to update the data the table displays. The paginator and sort properties are used to associate the MatPaginator component and MatSort directive with the data source, which I do in the ngAfterViewInit method, to ensure that the child content is queried and assigned to the ViewChild properties. The result is that the data in the table is paginated and can be sorted by clicking the header for the Price column, as shown in Figure 28-4.[image:]
Figure 28-4Using built-in table features

Writing your own pagination and sorting code isn’t difficult—I demonstrated a simple paginator in the SportsStore application, for example—but using a component library means that you can rely on out-of-the-box features that are already tested. The trade-off is that you generally have to fit into a predefined model of how data will be expressed to get the most benefit, such as using the MatTableDataSource<T> class with Angular Material.
Matching the Component Library Theme
You can get a long way using just the features provided by a good component library, but some projects require more specialized features, which leads to custom Angular directives or components.
Most component libraries provide access to the underlying themes they use to style content, often expressed using Sass, which is a superset of CSS that makes it easier to create complex sets of styles without endless duplication of CSS properties. Sass files have the .scss extension and are compiled when the project is built to generate standard CSS stylesheets that the browser can understand. (Confusingly, Sass also supports a closely related syntax in files with the .sass file extension. The history of CSS and attempts to improve it are long and complex and can be ignored.)
I am not going to describe Sass in detail in this book—see https://sass-lang.com for full details—but I will explain the features that are required to style custom components with the Angular Material theme.
Creating the Custom Component
I am going to create a custom button component, which will let me show the use of themes without getting bogged down in the component itself. Add a file named customButton.component.ts to the src/app/core folder, with the content shown in Listing 28-16.import { Component, ElementRef, Input, ViewChild } from "@angular/core";

@Component({
 selector: "customButton",
 templateUrl: "customButton.component.html"
})
export class CustomButton {

 @Input("themeColor")
 themeColor: string = "primary"

 @ViewChild("buttonTarget")
 button?: ElementRef

 ngAfterViewInit() {
 this.button?.nativeElement.classList.add(`custom-button-${this.themeColor}`);
 }
}

Listing 28-16The Contents of the customButton.component.ts File in the src/app/core Folder

The component queries its template to locate a button element and assigns it to a class based on the value received through an input property.
To define the template for the component, add a file named customButton.component.html to the src/app/core folder with the content shown in Listing 28-17.<button #buttonTarget>
 <ng-content></ng-content>
</button>

Listing 28-17The Contents of the customButton.component.html File in the src/app/core Folder

Listing 28-18 adds the custom button component to the core module.import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { FormsModule, ReactiveFormsModule } from "@angular/forms";
import { ModelModule } from "../model/model.module";
import { TableComponent } from "./table.component";
import { FormComponent } from "./form.component";
//import { SharedState } from "./sharedState.service";
import { ValidationHelper } from "./validation_helper";
import { ValidationErrorsDirective } from "./validationErrors.directive";
import { HiLowValidatorDirective } from "../validation/hilow";
import { RouterModule } from "@angular/router";
import { ProductCountComponent } from "./productCount.component";
import { CategoryCountComponent } from "./categoryCount.component";
import { NotFoundComponent } from "./notFound.component";
import { UnsavedGuard } from "./unsaved.guard";
import { MaterialFeatures } from "../material.module"
import { CustomButton } from "./customButton.component";

@NgModule({
 imports: [BrowserModule, FormsModule, ModelModule, ReactiveFormsModule,
 RouterModule, MaterialFeatures],
 declarations: [TableComponent, FormComponent, ValidationHelper,
 ValidationErrorsDirective, HiLowValidatorDirective, ProductCountComponent,
 CategoryCountComponent, NotFoundComponent, CustomButton],
 exports: [ModelModule, TableComponent, FormComponent],
 providers: [UnsavedGuard]
})
export class CoreModule { }

Listing 28-18Adding the Component to the Module in the core.module.ts File in the src/app/core Folder

The final preparatory step is to use the new component, as shown in Listing 28-19.<table mat-table [dataSource]="getProducts()" matSort>

 <!-- ...elements omitted for brevity... -->

</table>

<mat-paginator [pageSize]="5" [pageSizeOptions]="[3, 5, 10]">
</mat-paginator>

<div class="p-2 text-center">
 <button mat-flat-button color="primary" routerLink="/form/create" >
 Create New Product
 </button>

 <customButton themeColor="primary" routerLink="/form/create">
 Create New Product
 </customButton>

</div>

Listing 28-19Applying the Custom Component in the table.component.html File in the src/app/core Folder

Save the changes, and you will see the new (unstyled) button shown alongside the standard Angular Material button, as shown in Figure 28-5.[image:]
Figure 28-5Applying a custom component

Using the Angular Material Theme
The Angular build tools have integrated support for working with SCSS files, which is the file format used by SASS. Add a file named customButton.component.scss to the src/app/core folder with the content shown in Listing 28-20.
Figuring out Theme Details
An investment of time is required to figure out how to apply the Angular Material themes to custom components, so do not rush into this process expecting it to be quick and easy.
To figure out how to create the styles I needed for the button component, I relied on the Angular Material theme documentation (https://material.angular.io/guide/theming-your-components) and the Material Design theme description (https://material.io/design/material-theming/overview.html), both of which contain useful guidance. But I spent most of the time reading through the SCSS files in the Angular Material package (https://github.com/angular/components) to figure out the purpose of different functions and to understand how the styles for the built-in components are generated. It was also helpful to use the browser F12 developer tools to see how HTML elements are styled.
But don’t be put off. Once you have worked your way through the process for one component, you will have learned enough to make subsequent components much simpler.

@use "@angular/material" as material;

$primary: material.define-palette(material.$indigo-palette);
$accent: material.define-palette(material.$pink-palette, A200, A100, A400);
$warn: material.define-palette(material.$red-palette);

$typography: material.define-typography-config();

button[class*="custom-button-"] {
 padding: 7px 12px;
 border: none;
 border-radius: 4px;
 margin: 2px;
}

button.custom-button {
 @each $name, $palette in (primary: $primary, accent: $accent, warn: $warn) {
 &-#{$name} {
 background-color: material.get-color-from-palette($palette, default);
 color: material.get-color-from-palette($palette, default-contrast);
 font: {
 family: material.font-family($typography, button);
 size: material.font-size($typography, button);
 weight: material.font-weight($typography, button);
 }
 }
 }
}

$bg: material.$light-theme-background-palette;
$fg: material.$light-theme-foreground-palette;

:host[disabled] button[class*="custom-button-"],
 button[class*="custom-button-"]:disabled {
 background-color: material.get-color-from-palette($bg, disabled-button);
 color: material.get-color-from-palette($fg, disabled-button);
}

Listing 28-20The Contents of the customButton.component.scss File in the src/app/core Folder

Sass has a concise syntax, which can make it difficult to understand what is happening in the listing until you have at least a little experience. The first statement is an @use expression:...
@use "@angular/material" as material;
...

Sass support function and variables, which can be used to generate CSS styles, and the @use expression provides access to the Sass features that Angular Material provides. The next group of statements create the primary, accent, and warn palettes from the Angular Material theme:...
$primary: material.define-palette(material.$indigo-palette);
$accent: material.define-palette(material.$pink-palette, A200, A100, A400);
$warn: material.define-palette(material.$red-palette);
...

Angular Material defines a set of base palettes, which contain a range of hues for a single color. The term material.$indigo-palette, for example, refers to the set of indigo hues. (The material prefix was specified in the @use expression and allows me to access Angular Material Sass features, and the $ sign indicates a variable so that material.$indigo-palette refers to a variable named indigo-palette defined by the Angular Material package.) The define-palette function is used to select specific hues and give them convenient names, such as default and text, which help ensure consistency when applying styles. The indigo and pink palettes correspond to the default theme, which was chosen when the Angular Material package was installed. If you select a different theme for a project, then you will need to use the palettes that correspond to the colors of that theme.
The next step is to get the font configuration that Angular Material applies to its components:...
$typography: material.define-typography-config();
...

The define-typography-config function returns a map where the keys are the names of styles that can be applied to text. A complete list of these styles can be found at https://material.angular.io/guide/typography, but the style name I want for this example is button, which provides the font settings for buttons.
Not all of the styles applied to buttons are specific to a palette, and I have used a selector that will match all of the palette-specific classes to apply these styles:...
button[class*="custom-button-"] {
 padding: 7px 12px;
 border: none;
 border-radius: 4px;
 margin: 2px;
}
...

The next expression is the most complex and is responsible for generating the styles that are specific to a palette:...
button.custom-button {
 @each $name, $palette in (primary: $primary, accent: $accent, warn: $warn) {
 &-#{$name} {
 background-color: material.get-color-from-palette($palette, default);
 color: material.get-color-from-palette($palette, default-contrast);
 font: {
 family: material.font-family($typography, button);
 size: material.font-size($typography, button);
 weight: material.font-weight($typography, button);
 }
 }
 }
}
...

The effect of this expression is to generate a style for each of the primary, accent, and warn palettes, which contains background-color, color, and font properties that are specific to each palette. The get-color-from-palette function is used to get a color from a palette, either by hue or by using one of the names created by the define-palette function. The name default refers to the default color, and the default-contrast name refers to a color that can be used for text:...
background-color: material.get-color-from-palette($palette, default);
color: material.get-color-from-palette($palette, default-contrast);
...

The values for the font properties are obtained using the font-family, font-size, and font-weight functions, which read values from the typography configuration settings.
Two more palettes are required to deal with disabled buttons:...
$bg: material.$light-theme-background-palette;
$fg: material.$light-theme-foreground-palette;
...

The themes that Angular Material provides are categorized as either light or dark, and there are additional palettes of foreground and background colors that are shared by these light and dark themes, such as the colors for disabled buttons. The default indigo/pink theme is light, so I have assigned the light theme palettes to variables named fg and bg. These palettes are used to create a style that is applied to disabled buttons:...
:host[disabled] button[class*="custom-button-"],
 button[class*="custom-button-"]:disabled {
 background-color: material.get-color-from-palette($bg, disabled-button);
 color: material.get-color-from-palette($fg, disabled-button);
}
...

The foreground and background palettes contain colors named disabled-button, which are used to set the background-color and color properties when a button is disabled. The selector matches button elements that are disabled or whose host element is disabled. The :host selector is required by the Angular view encapsulation feature and allows the component to be disabled by applying the disabled attribute to the customButton element.
SCSS files are applied to the component in just the same way as regular CSS files, as shown in Listing 28-21.import { Component, ElementRef, Input, ViewChild } from "@angular/core";

@Component({
 selector: "customButton",
 templateUrl: "customButton.component.html",
 styleUrls: ["customButton.component.scss"]
})
export class CustomButton {

 @Input("themeColor")
 themeColor: string = "primary"

 @ViewChild("buttonTarget")
 button?: ElementRef

 ngAfterViewInit() {
 this.button?.nativeElement.classList.add(`custom-button-${this.themeColor}`);
 }
}

Listing 28-21Applying Styles in the customButton.component.ts File in the src/app/core Folder

During the build process, the SCSS files are processed to generate CSS files that can be sent to the browser. Figure 28-6 shows the built-in Angular Material button alongside the styles custom component.[image:]
Figure 28-6Applying a theme to a custom component

Applying the Ripple Effect
To finish off this chapter, I am going to add an animation effect to my custom button. Angular Material includes a ripple effect that is used to highlight user interaction, such as when a button is clicked. It is difficult to show this on a printed page, but Figure 28-7 gives an idea of how the color of a built-in Angular Material button is progressively changed when it is clicked.[image:]
Figure 28-7The Angular Material button ripple effect

When the user clicks a button, a circle of lighter color spreads out from the pointer. The best way to see this effect is to hold the mouse button down because the animation will be terminated when the mouse is released.
Angular Material makes the ripple feature available as a directive that can be applied to any component. Listing 28-22 imports the ripple module from the Angular Material package.import { NgModule } from "@angular/core";
import { MatButtonModule } from "@angular/material/button";
import { MatTableModule } from "@angular/material/table";
import { MatPaginatorModule } from "@angular/material/paginator"
import { MatSortModule } from "@angular/material/sort"
import { MatRippleModule } from "@angular/material/core";

const features = [MatButtonModule, MatTableModule, MatPaginatorModule, MatSortModule,
 MatRippleModule];

@NgModule({
 imports: [features],
 exports: [features]
})
export class MaterialFeatures {}

Listing 28-22Adding a Dependency in the material.module.ts File in the src/app Folder

Listing 28-23 applies the ripple directive to the button element in the custom component’s template.<button #buttonTarget matRipple>
 <ng-content></ng-content>
</button>

Listing 28-23Applying a Ripple in the customButton.component.html File in the src/core/app Folder

Ripples work by adding a div element inside the button, to which the animation is applied. The color used for the ripple is derived from the palette used for the button, as shown in Listing 28-24.@use "@angular/material" as material;

$primary: material.define-palette(material.$indigo-palette);
$accent: material.define-palette(material.$pink-palette, A200, A100, A400);
$warn: material.define-palette(material.$red-palette);

$typography: material.define-typography-config();

button[class*="custom-button-"] {
 padding: 7px 12px;
 border: none;
 border-radius: 4px;
 margin: 2px;
}

button.custom-button {
 @each $name, $palette in (primary: $primary, accent: $accent, warn: $warn) {
 &-#{$name} {
 background-color: material.get-color-from-palette($palette, default);
 color: material.get-color-from-palette($palette, default-contrast);
 font: {
 family: material.font-family($typography, button);
 size: material.font-size($typography, button);
 weight: material.font-weight($typography, button);
 }
 }

 &-#{$name} ::ng-deep .mat-ripple-element {
 background-color: material.get-color-from-palette($palette,
 default-contrast, 0.1);
 }
 }
}

$bg: material.$light-theme-background-palette;
$fg: material.$light-theme-foreground-palette;

:host[disabled] button[class*="custom-button-"],
 button[class*="custom-button-"]:disabled {
 background-color: material.get-color-from-palette($bg, disabled-button);
 color: material.get-color-from-palette($fg, disabled-button);
}

Listing 28-24Defining a Style in the customButton.component.scss File in the src/app/core Folder

The ::ng-deep pseudoclass is used to prevent Angular from modifying the name of the mat-ripple-element class selector for view encapsulation. (The /deep/ and >>> selectors are not supported by Sass.) The get-color-from-palette function is used to get a color from the chosen palette with an opacity value, which was chosen to match the one used by the built-in Angular Material button feature. The result is that the custom button displays a ripple when clicked, as shown in Figure 28-8.[image:]
Figure 28-8Applying a ripple effect to a custom component

Summary
In this chapter, I demonstrated how a component library such as Angular Material can be introduced into a project to supplement or replace custom components. I also explained how the theme provided by Angular Material can be applied to custom components to ensure consistency across the application. In the next chapter, I explain how to perform unit testing in an Angular project.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
A. FreemanPro Angular https://doi.org/10.1007/978-1-4842-8176-5_29

29. Angular Unit Testing

Adam Freeman1
(1)London, UK

In this chapter, I describe the tools that Angular provides for unit testing components and directives. Some Angular building blocks, such as pipes and services, can be readily tested in isolation using the basic testing tools that I set up at the start of the chapter. Components (and, to a lesser extent, directives) have complex interactions with their host elements and with their template content and require special features. Table 29-1 puts Angular unit testing in context.Table 29-1Putting Angular Unit Testing Context

	Question
	Answer

	What is it?
	Angular components and directives require special support for testing so that their interactions with other parts of the application infrastructure can be isolated and inspected.

	Why is it useful?
	Isolated unit tests can assess the basic logic provided by the class that implements a component or directive but do not capture the interactions with host elements, services, templates, and other important Angular features.

	How is it used?
	Angular provides a test bed that allows a realistic application environment to be created and then used to perform unit tests.

	Are there any pitfalls or limitations?
	Like much of Angular, the unit testing tools are complex. It can take some time and effort to get to the point where unit tests are easily written and run and you are sure that you have isolated the correct part of the application for testing.

	Are there any alternatives?
	As noted, you don’t have to unit test your projects. But if you do want to unit testing, then you will need to use the Angular features described in this chapter.

Deciding Whether to Unit Test
Unit testing is a contentious topic. This chapter assumes you do want to do unit testing and shows you how to set up the tools and apply them to Angular components and directives. It isn’t an introduction to unit testing, and I make no effort to persuade skeptical readers that unit testing is worthwhile. If you would like an introduction to unit testing, then there is a good article here: https://en.wikipedia.org/wiki/Unit_testing.
I like unit testing, and I use it in my own projects—but not all of them and not as consistently as you might expect. I tend to focus on writing unit tests for features and functions that I know will be hard to write and that are likely to be the source of bugs in deployment. In these situations, unit testing helps structure my thoughts about how to best implement what I need. I find that just thinking about what I need to test helps produce ideas about potential problems, and that’s before I start dealing with actual bugs and defects.
That said, unit testing is a tool and not a religion, and only you know how much testing you require. If you don’t find unit testing useful or if you have a different methodology that suits you better, then don’t feel you need to unit test just because it is fashionable. (However, if you don’t have a better methodology and you are not testing at all, then you are probably letting users find your bugs, which is rarely ideal.)

Table 29-2 summarizes the chapter.Table 29-2Chapter Summary

	Problem
	Solution
	Listing

	Performing a basic test on a component
	Initialize a test module and create an instance of the component. If the component has an external template, an additional compilation step must be performed.
	1–9, 11–13

	Testing a component’s data bindings
	Use the DebugElement class to query the component’s template.
	10

	Testing a component’s response to events
	Trigger the events using the debug element.
	14–16

	Testing a component’s output properties
	Subscribe to the EventEmitter created by the component.
	17, 18

	Testing a component’s input properties
	Create a test component whose template applies the component under test.
	19, 20

	Testing a directive
	Create a test component whose template applies the directive under test.
	21, 22

Preparing the Example Project
I continue to use the exampleApp project from earlier chapters. I need a simple target to focus on for unit testing, so Listing 29-1 changes the routing configuration so that the ondemand feature module is loaded by default.
Tip
You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/Apress/pro-angular-5ed. See Chapter 1 for how to get help if you have problems running the examples.

import { Routes, RouterModule } from "@angular/router";
import { TableComponent } from "./core/table.component";
import { FormComponent } from "./core/form.component";
import { NotFoundComponent } from "./core/notFound.component";
import { UnsavedGuard } from "./core/unsaved.guard";

const routes: Routes = [
 {
 path: "ondemand",
 loadChildren: () => import("./ondemand/ondemand.module")
 .then(m => m.OndemandModule)
 },
 { path: "", redirectTo: "/ondemand", pathMatch: "full" }
]

export const routing = RouterModule.forRoot(routes);

Listing 29-1Changing the Routing Configuration in the app.routing.ts File in the src/app Folder

This module contains some simple components that I will use to demonstrate different unit testing features. To keep the content shown by the application simple, Listing 29-2 tidies up the template displayed by the top-level component in the feature module.<div class="container-fluid">
 <div class="row">
 <div class="col-12 p-2">
 <router-outlet></router-outlet>
 </div>
 </div>
 <div class="row">
 <div class="col-6 p-2">
 <router-outlet name="left"></router-outlet>
 </div>
 <div class="col-6 p-2">
 <router-outlet name="right"></router-outlet>
 </div>
 </div>
</div>
<button class="btn btn-secondary m-2" routerLink="/ondemand">Normal</button>
<button class="btn btn-secondary m-2" routerLink="/ondemand/swap">Swap</button>

Listing 29-2Simplifying the ondemand.component.html File in the src/app/ondemand Folder

Open a new command prompt, navigate to the exampleApp folder, and run the following command to start the server that provides the RESTful web server:npm run json

The RESTful web service isn’t used directly in this chapter, but running it prevents errors. Open a separate command prompt, navigate to the exampleApp folder, and run the following command to start the Angular development tools:ng serve

Open a new browser window and navigate to http://localhost:4200 to see the content shown in Figure 29-1.[image:]
Figure 29-1Running the example application

Running a Simple Unit Test
When a new project is created using the ng new command, all the packages and tools required for unit testing are installed, based on the Jasmine test framework. To create a simple unit test to confirm that everything is working, I created the src/app/tests folder and added to it a file named app.component.spec.ts with the contents shown in Listing 29-3. The naming convention for unit tests makes it obvious which file the tests apply to.describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(true));
});

Listing 29-3The Contents of the app.component.spec.ts File in the src/app/tests Folder

I explain the basics of working with the Jasmine API shortly, and you can ignore the syntax for the moment. Using a new command prompt, navigate to the exampleApp folder, and run the following command:ng test

This command starts the Karma test runner, which opens a new browser tab with the content shown in Figure 29-2.[image:]
Figure 29-2Starting the Karma test runner

The browser window is used to run the tests, but the important information is written out to the command prompt used to start the test tools, where you will see a message like this:Chrome 98.0.4758.82 (Windows 10): Executed 1 of 1 SUCCESS (0.106 secs / 0.001 secs)

This shows that the single unit test in the project has been located and executed successfully. Whenever you make a change that updates one of the JavaScript files in the project, the unit tests will be located and executed, and any problems will be written to the command prompt. To show what an error looks like, Listing 29-4 changes the unit test so that it will fail.describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(false));
});

Listing 29-4Making a Unit Test Fail in the app.component.spec.ts File in the src/app/tests Folder

This test will fail and will result in the following output, which indicates the test that has failed and what went wrong:Chrome 98.0.4758.82 (Windows 10) Jasmine Test Environment is working FAILED
 Error: Expected true to be false.
 at <Jasmine>
 at UserContext.<anonymous> (src/app/tests/app.component.spec.ts:2:41)
 at ZoneDelegate.invoke (node_modules/zone.js/fesm2015/zone.js:372:1)
 at ProxyZoneSpec.onInvoke (node_modules/zone.js/fesm2015/zone-testing.js:287:1)
Chrome 98.0.4758.82 (Windows 10): Executed 1 of 1 (1 FAILED)
TOTAL: 1 FAILED, 0 SUCCESS

Working with Jasmine
The API that Jasmine provides chains together JavaScript methods to define unit tests. You can find the full documentation for Jasmine at http://jasmine.github.io, but Table 29-3 describes the most useful functions for Angular testing. Table 29-3Useful Jasmine Methods

	Name
	Description

	describe(description, function)
	This method is used to group a set of related tests.

	beforeEach(function)
	This method is used to specify a task that is performed before each unit test.

	afterEach(function)
	This method is used to specify a test that is performed after each unit test.

	it(description, function)
	This method is used to perform the test action.

	expect(value)
	This method is used to identify the result of the test.

	toBe(value)
	This method specifies the expected value of the test.

You can see how the methods in Table 29-3 were used to create the unit test in Listing 29-4....
describe("Jasmine Test Environment", () => {
 it("is working", () => expect(true).toBe(false));
});
...

You can also see why the test has failed since the expect and toBe methods have been used to check that true and false are equal. Since this cannot be the case, the test fails.
The toBe method isn’t the only way to evaluate the result of a unit test. Table 29-4 shows other evaluation methods provided by Angular.Table 29-4Useful Jasmine Evaluation Methods

	Name
	Description

	toBe(value)
	This method asserts that a result is the same as the specified value (but need not be the same object).

	toEqual(object)
	This method asserts that a result is the same object as the specified value.

	toMatch(regexp)
	This method asserts that a result matches the specified regular expression.

	toBeDefined()
	This method asserts that the result has been defined.

	toBeUndefined()
	This method asserts that the result has not been defined.

	toBeNull()
	This method asserts that the result is null.

	toBeTruthy()
	This method asserts that the result is truthy, as described in Chapter 3.

	toBeFalsy()
	This method asserts that the result is falsy, as described in Chapter 3.

	toContain(substring)
	This method asserts that the result contains the specified substring.

	toBeLessThan(value)
	This method asserts that the result is less than the specified value.

	toBeGreaterThan(value)
	This method asserts that the result is more than the specified value.

Listing 29-5 shows how these evaluation methods can be used in tests, replacing the failing test from the previous section.describe("Jasmine Test Environment", () => {
 it("test numeric value", () => expect(12).toBeGreaterThan(10));
 it("test string value", () => expect("London").toMatch("^Lon"));
});

Listing 29-5Replacing the Unit Test in the app.component.spec.ts File in the src/app/tests Folder

When you save the changes to the file, the tests will be executed, and the results will be shown in the command prompt.
Testing an Angular Component
The building blocks of an Angular application can’t be tested in isolation because they depend on the underlying features provided by Angular and by the other parts of the project, including the services, directives, templates, and modules it contains. As a consequence, testing a building block such as a component means using testing utilities that are provided by Angular to re-create enough of the application to let the component function so that tests can be performed against it. In this section, I walk through the process of performing a unit test on the FirstComponent class in the OnDemand feature module. As a reminder, here is the definition of the component: import { Component } from "@angular/core";

@Component({
 selector: "first",
 template: `<div class="bg-primary text-white p-2">First Component</div>`
})
export class FirstComponent { }

This component is so simple that it doesn’t have functionality of its own to test, but it is enough to demonstrate how the test process is applied.
Working with the TestBed Class
At the heart of Angular unit testing is a class called TestBed, which is responsible for simulating the Angular application environment so that tests can be performed. Table 29-5 describes the most useful methods provided by the TestBed method, all of which are static. Table 29-5Useful TestBed Methods

	Name
	Description

	configureTestingModule
	This method is used to configure the Angular testing module.

	createComponent
	This method is used to create an instance of the component.

	compileComponents
	This method is used to compile components, as described in the “Testing a Component with an External Template” section.

The configureTestingModule method is used to configure the Angular module that is used in testing, using the same properties supported by the @NgModel decorator. Just like in a real application, a component cannot be used in a unit test unless it has been added to the declarations property of the module. This means that the first step in most unit tests is to configure the testing module. To demonstrate, I added a file named first.component.spec.ts to the src/app/tests folder with the content shown in Listing 29-6.import { TestBed } from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";

describe("FirstComponent", () => {

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent]
 });
 });
});

Listing 29-6The Contents of the first.component.spec.ts File in the src/app/tests Folder

The TestBed class is defined in the @angular/core/testing module, and the configureTestingModule accepts an object whose declarations property tells the test module that the FirstComponent class is going to be used.
Tip
Notice that the TestBed class is used within the beforeEach function. If you try to use the TestBed outside of this function, you will see an error about using Promises.

The next step is to create a new instance of the component so that it can be used in tests. This is done using the createComponent method, as shown in Listing 29-7.import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent]
 });
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 });

 it("is defined", () => {
 expect(component).toBeDefined()
 });
});

Listing 29-7Creating a Component in the first.component.spec.ts File in the src/app/tests Folder

The argument to the createComponent method tells the test bed which component type it should instantiate, which is FirstComponent in this case. The result is a ComponentFixture<FirstComponent> object, which provides features for testing a component, using the methods and properties described in Table 29-6.Table 29-6Useful ComponentFixture Methods and Properties

	Name
	Description

	componentInstance
	This property returns the component object.

	debugElement
	This property returns the test host element for the component.

	nativeElement
	This property returns the DOM object representing the host element for the component.

	detectChanges()
	This method causes the test bed to detect state changes and reflect them in the component’s template.

	whenStable()
	This method returns a Promise that is resolved when the effect of an operation has been fully applied.

In the listing, I use the componentInstance property to get the FirstComponent object that has been created by the test bed and perform a simple test to ensure that it has been created by using the expect method to select the component object as the target of the test and the toBeDefined method to perform the test. I demonstrate the other methods and properties in the sections that follow.
Configuring the Test Bed for Dependencies
One of the most important features of Angular applications is dependency injection, which allows components and other building blocks to receive services by declaring dependencies on them using constructor parameters. Listing 29-8 adds a dependency on the data model repository service to the FirstComponent class. import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 template: `<div class="bg-primary p-a-1">
 There are
 {{getProducts().length}}
 products
 </div>`
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }
}

Listing 29-8Adding a Service Dependency in the first.component.ts File in the src/app/ondemand Folder

The component uses the repository to provide a filtered collection of Product objects, which are exposed through a method called getProducts and filtered using a category property. The inline template has a corresponding data binding that displays the number of products that the getProducts method returns.
Being able to unit test the component means providing it with a repository service. The Angular test bed will take care of resolving dependencies as long as they are configured through the test module. Effective unit testing generally requires components to be isolated from the rest of the application, which means that mock or fake objects (also known as test doubles) are used as substitutes for real services in unit tests. Listing 29-9 configures the test bed so that a fake repository is used to provide the component with its service.import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "..//model/product.model";
import { Model } from "../model/repository.model";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 });

 it("filters categories", () => {
 component.category = "Chess"
 expect(component.getProducts().length).toBe(1);
 component.category = "Soccer";
 expect(component.getProducts().length).toBe(2);
 component.category = "Running";
 expect(component.getProducts().length).toBe(0);
 });
});

Listing 29-9Providing a Service in the first.component.spec.ts File in the src/app/tests Folder

The mockRepository variable is assigned an object that provides a getProducts method that returns fixed data that can be used to test for known outcomes. To provide the component with the service, the providers property for the object passed to the TestBed.configureTestingModule method is configured in the same way as a real Angular module, using the value provider to resolve dependencies on the Model class using the mockRepository variable. The test invokes the component’s getProducts method and compares the results with the expected outcome, changing the value of the category property to check different filters.
Testing Data Bindings
The previous example showed how a component’s properties and methods can be used in a unit test. This is a good start, but many components will also include small fragments of functionality in the data binding expressions contained in their templates, and these should be tested as well. Listing 29-10 checks that the data binding in the component’s template correctly displays the number of products in the mock data model. import { TestBed, ComponentFixture} from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let bindingElement: HTMLSpanElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 bindingElement = debugElement.query(By.css("span")).nativeElement;
 });

 it("filters categories", () => {
 component.category = "Chess"
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(1);
 expect(bindingElement.textContent).toContain("1");

 component.category = "Soccer";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(2);
 expect(bindingElement.textContent).toContain("2");

 component.category = "Running";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(0);
 expect(bindingElement.textContent).toContain("0");
 });
});

Listing 29-10Unit Testing a Data Binding in the first.component.spec.ts File in the src/app/tests Folder

The ComponentFixture.debugElement property returns a DebugElement object that represents the root element from the component’s template, and Table 29-7 lists the most useful methods and properties described by the DebugElement class.
Tip
If you don’t see the test output, then restart the ng test command.

Table 29-7Useful DebugElement Properties and Methods

	Name
	Description

	nativeElement
	This property returns the object that represents the HTML element in the DOM.

	children
	This property returns an array of DebugElement objects representing the children of this element.

	query(selectorFunction)
	The selectorFunction is passed a DebugElement object for each HTML element in the component’s template, and this method returns the first DebugElement for which the function returns true.

	queryAll(selectorFunction)
	This is similar to the query method, except the result is all the DebugElement objects for which the function returns true.

	triggerEventHandler(name, event)
	This method triggers an event. See the “Testing Component Events” section for details.

Locating elements is done through the query and queryAll methods, which accept functions that inspect DebugElement objects and return true if they should be included in the results. The By class, defined in the @angular/platform-browser module, makes it easier to locate elements in the component’s template through the static methods described in Table 29-8.Table 29-8The By Methods

	Name
	Description

	By.all()
	This method returns a function that matches any element.

	By.css(selector)
	This method returns a function that uses a CSS selector to match elements.

	By.directive(type)
	This method returns a function that matches elements to which the specified directive class has been applied, as demonstrated in the “Testing Input Properties” section.

In the listing, I use the By.css method to locate the first span element in the template and access the DOM object that represents it through the nativeElement property so that I can check the value of the textContent property in the unit tests.
Notice that after each change to the component’s category property, I call the ComponentFixture object’s detectChanges method, like this:...
component.category = "Soccer";
fixture.detectChanges();
expect(component.getProducts().length).toBe(2);
expect(bindingElement.textContent).toContain("2");
...

This method tells the Angular testing environment to process any changes and evaluate the data binding expressions in the template. Without this method call, the change to the value of the category component would not be reflected in the template, and the test would fail.
Testing a Component with an External Template
Angular components are compiled into factory classes, either within the browser or by the ahead-of-time compiler that I demonstrated in Chapter 8. As part of this process, Angular processes any external templates and includes them as text in the JavaScript code that is generated similar to an inline template. When unit testing a component with an external template, the compilation step must be performed explicitly. In Listing 29-11, I changed the @Component decorator applied to the FirstComponent class so that it specifies an external template. import { Component } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }
}

Listing 29-11Specifying a Template in the first.component.ts File in the src/app/ondemand Folder

To provide the template, I created a file called first.component.html in the exampleApp/app/ondemand folder and added the elements shown in Listing 29-12.<div class="bg-primary text-white p-2">
 There are
 {{getProducts().length}}
 products
</div>

Listing 29-12The first.component.html File in the exampleApp/app/ondemand Folder

This is the same content that was previously defined inline. Listing 29-13 updates the unit test for the component to deal with the external template by explicitly compiling the component.import { TestBed, ComponentFixture, waitForAsync } from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "..//model/product.model";
import { Model } from "../model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let bindingElement: HTMLSpanElement;
 let spanElement: HTMLSpanElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(waitForAsync(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 spanElement = debugElement.query(By.css("span")).nativeElement;
 });
 }));

 it("filters categories", () => {
 component.category = "Chess"
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(1);
 expect(bindingElement.textContent).toContain("1");

 component.category = "Soccer";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(2);
 expect(bindingElement.textContent).toContain("2");

 component.category = "Running";
 fixture.detectChanges();
 expect(component.getProducts().length).toBe(0);
 expect(bindingElement.textContent).toContain("0");
 });
});

Listing 29-13Compiling a Component in the first.component.spec.ts File in the src/app/tests Folder

Components are compiled using the TestBed.compileComponents method. The compilation process is asynchronous, and the compileComponents method returns a Promise, which must be used to complete the test setup when the compilation is complete. To make it easier to work with asynchronous operations in unit tests, the @angular/core/testing module contains a function called waitForAsync, which is used with the beforeEach method.
Testing Component Events
To demonstrate how to test for a component’s response to events, I defined a new property in the FirstComponent class and added a method to which the @HostBinding decorator has been applied, as shown in Listing 29-14. import { Component, HostListener} from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";
 highlighted: boolean = false;

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }

 @HostListener("mouseenter", ["$event.type"])
 @HostListener("mouseleave", ["$event.type"])
 setHighlight(type: string) {
 this.highlighted = type == "mouseenter";
 }
}

Listing 29-14Adding Event Handling in the first.component.ts File in the src/app/ondemand Folder

The setHighlight method has been configured so that it will be invoked when the host element’s mouseenter and mouseleave events are triggered. Listing 29-15 updates the component’s template so that it uses the new property in a data binding.<div class="bg-primary text-white p-2" [class.bg-success]="highlighted">
 There are
 {{getProducts().length}}
 products
</div>

Listing 29-15Binding to a Property in the first.component.html File in the src/app/ondemand Folder

Events can be triggered in unit tests through the triggerEventHandler method defined by the DebugElement class, as shown in Listing 29-16.import { TestBed, ComponentFixture, waitForAsync } from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "..//model/product.model";
import { Model } from "../model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 // let bindingElement: HTMLSpanElement;
 // let spanElement: HTMLSpanElement;
 let divElement: HTMLDivElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(waitForAsync(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 //spanElement = debugElement.query(By.css("span")).nativeElement;
 divElement = debugElement.children[0].nativeElement;
 });
 }));

 // it("filters categories", () => {
 // component.category = "Chess"
 // fixture.detectChanges();
 // expect(component.getProducts().length).toBe(1);
 // expect(bindingElement.textContent).toContain("1");

 // component.category = "Soccer";
 // fixture.detectChanges();
 // expect(component.getProducts().length).toBe(2);
 // expect(bindingElement.textContent).toContain("2");

 // component.category = "Running";
 // fixture.detectChanges();
 // expect(component.getProducts().length).toBe(0);
 // expect(bindingElement.textContent).toContain("0");
 // });

 it("handles mouse events", () => {
 expect(component.highlighted).toBeFalsy();
 expect(divElement.classList.contains("bg-success")).toBeFalsy();
 debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 fixture.detectChanges();
 expect(component.highlighted).toBeTruthy();
 expect(divElement.classList.contains("bg-success")).toBeTruthy();
 debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));
 fixture.detectChanges();
 expect(component.highlighted).toBeFalsy();
 expect(divElement.classList.contains("bg-success")).toBeFalsy();
 });

});

Listing 29-16Triggering Events in the first.component.spec.ts File in the src/app/tests Folder

The test in this listing checks the initial state of the component and the template and then triggers the mouseenter and mouseleave events, checking the effect that each has.
Testing Output Properties
Testing output properties is a simple process because the EventEmitter objects used to implement them are Observable objects that can be subscribed to in unit tests. Listing 29-17 adds an output property to the component under test. import { Component, HostListener, Output, EventEmitter} from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 templateUrl: "first.component.html"
})
export class FirstComponent {

 constructor(private repository: Model) {}

 category: string = "Soccer";
 highlighted: boolean = false;

 @Output("pa-highlight")
 change = new EventEmitter<boolean>();

 getProducts(): Product[] {
 return this.repository.getProducts()
 .filter(p => p.category == this.category);
 }

 @HostListener("mouseenter", ["$event.type"])
 @HostListener("mouseleave", ["$event.type"])
 setHighlight(type: string) {
 this.highlighted = type == "mouseenter";
 this.change.emit(this.highlighted);
 }
}

Listing 29-17Adding an Output Property in the first.component.ts File in the src/app/ondemand Folder

The component defines an output property called change, which is used to emit an event when the setHighlight method is called. Listing 29-18 shows a unit test that targets the output property.import { TestBed, ComponentFixture, waitForAsync } from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "..//model/product.model";
import { Model } from "../model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";

describe("FirstComponent", () => {

 let fixture: ComponentFixture<FirstComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let divElement: HTMLDivElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(waitForAsync(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(FirstComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement;
 divElement = debugElement.children[0].nativeElement;
 });
 }));

 // it("handles mouse events", () => {
 // expect(component.highlighted).toBeFalsy();
 // expect(divElement.classList.contains("bg-success")).toBeFalsy();
 // debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 // fixture.detectChanges();
 // expect(component.highlighted).toBeTruthy();
 // expect(divElement.classList.contains("bg-success")).toBeTruthy();
 // debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));
 // fixture.detectChanges();
 // expect(component.highlighted).toBeFalsy();
 // expect(divElement.classList.contains("bg-success")).toBeFalsy();
 // });

 it("implements output property", () => {
 let highlighted: boolean = false;
 component.change.subscribe(value => highlighted = value);
 debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 expect(highlighted).toBeTruthy();
 debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));
 expect(highlighted).toBeFalsy();
 });
});

Listing 29-18Testing an Output Property in the first.component.spec.ts File in the src/app/tests Folder

I could have invoked the component’s setHighlight method directly in the unit test, but instead I have chosen to trigger the mouseenter and mouseleave events, which will activate the output property indirectly. Before triggering the events, I use the subscribe method to receive the event from the output property, which is then used to check for the expected outcomes.
Testing Input Properties
The process for testing input properties requires a little extra work. To get started, I added an input property to the FirstComponent class that is used to receive the data model repository, replacing the service that was received by the constructor, as shown in Listing 29-19. I have also removed the host event bindings and the output property to keep the example simple. import { Component, Input } from "@angular/core";
import { Product } from "../model/product.model";
import { Model } from "../model/repository.model";

@Component({
 selector: "first",
 templateUrl: "first.component.html"
})
export class FirstComponent {
 constructor(private repository: Model) {}

 category: string = "Soccer";
 highlighted: boolean = false;

 // @Output("pa-highlight")
 // change = new EventEmitter<boolean>();

 getProducts(): Product[] {
 return this.model == null ? [] : this.model.getProducts()
 .filter(p => p.category == this.category);
 }

 // @HostListener("mouseenter", ["$event.type"])
 // @HostListener("mouseleave", ["$event.type"])
 // setHighlight(type: string) {
 // this.highlighted = type == "mouseenter";
 // this.change.emit(this.highlighted);
 // }

 @Input("pa-model")
 model?: Model;
}

Listing 29-19Adding an Input Property in the first.component.ts File in the src/app/ondemand Folder

The input property is set using an attribute called pa-model and is used within the getProducts method. Listing 29-20 shows how to write a unit test that targets the input property.import { TestBed, ComponentFixture, waitForAsync } from "@angular/core/testing";
import { FirstComponent } from "../ondemand/first.component";
import { Product } from "..//model/product.model";
import { Model } from "../model/repository.model";
import { DebugElement } from "@angular/core";
import { By } from "@angular/platform-browser";
import { Component, ViewChild } from "@angular/core";

@Component({
 template: `<first [pa-model]="model"></first>`
})
class TestComponent {

 constructor(public model: Model) { }

 @ViewChild(FirstComponent)
 firstComponent!: FirstComponent;
}

describe("FirstComponent", () => {

 let fixture: ComponentFixture<TestComponent>;
 let component: FirstComponent;
 let debugElement: DebugElement;
 let divElement: HTMLDivElement;

 let mockRepository = {
 getProducts: function () {
 return [
 new Product(1, "test1", "Soccer", 100),
 new Product(2, "test2", "Chess", 100),
 new Product(3, "test3", "Soccer", 100),
]
 }
 }

 beforeEach(waitForAsync(() => {
 TestBed.configureTestingModule({
 declarations: [FirstComponent, TestComponent],
 providers: [
 { provide: Model, useValue: mockRepository }
]
 });
 TestBed.compileComponents().then(() => {
 fixture = TestBed.createComponent(TestComponent);
 fixture.detectChanges();
 component = fixture.componentInstance.firstComponent;
 debugElement = fixture.debugElement.query(By.directive(FirstComponent));
 });
 }));

 // it("implements output property", () => {
 // let highlighted: boolean = false;
 // component.change.subscribe(value => highlighted = value);
 // debugElement.triggerEventHandler("mouseenter", new Event("mouseenter"));
 // expect(highlighted).toBeTruthy();
 // debugElement.triggerEventHandler("mouseleave", new Event("mouseleave"));
 // expect(highlighted).toBeFalsy();
 // });

 it("receives the model through an input property", () => {
 component.category = "Chess";
 fixture.detectChanges();
 let products = mockRepository.getProducts()
 .filter(p => p.category == component.category);
 let componentProducts = component.getProducts();
 for (let i = 0; i < componentProducts.length; i++) {
 expect(componentProducts[i]).toEqual(products[i]);
 }
 expect(debugElement.query(By.css("span")).nativeElement.textContent)
 .toContain(products.length);
 });
});

Listing 29-20Testing an Input Property in the first.component.spec.ts File in the src/app/tests Folder

The trick here is to define a component that is only required to set up the test and whose template contains an element that matches the selector of the component you want to target. In this example, I defined a component class called TestComponent with an inline template defined in the @Component decorator that contains a first element with a pa-model attribute, which corresponds to the @Input decorator applied to the FirstComponent class.
The test component class is added to the declarations array for the testing module, and an instance is created using the TestBed.createComponent method. I used the @ViewChild decorator in the TestComponent class so that I can get hold of the FirstComponent instance I require for the test. To get the FirstComponent root element, I used the DebugElement.query method with the By.directive method.
The result is that I can access both the component and its root element for the test, which sets the category property and then validates the results both from the component and via the data binding in its template.
Testing an Angular Directive
The process for testing directives is similar to the one required to test input properties, in that a test component and template are used to create an environment for testing in which the directive can be applied. To have a directive to test, I added a file called attr.directive.ts to the src/app/ondemand folder and added the code shown in Listing 29-21.
Note
I have shown an attribute directive in this example, but the technique in this section can be used to test structural directives equally well.

import {
 Directive, ElementRef, Attribute, Input, SimpleChange
} from "@angular/core";

@Directive({
 selector: "[pa-attr]"
})
export class PaAttrDirective {

 constructor(private element: ElementRef) { }

 @Input("pa-attr")
 bgClass?: string;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {
 let change = changes["bgClass"];
 let classList = this.element.nativeElement.classList;
 if (!change.isFirstChange() && classList.contains(change.previousValue)) {
 classList.remove(change.previousValue);
 }
 if (!classList.contains(change.currentValue)) {
 classList.add(change.currentValue);
 }
 }
}

Listing 29-21The Contents of the attr.directive.ts File in the src/app/ondemand Folder

This is an attribute directive based on an example from Chapter 13. To create a unit test that targets the directive, I added a file called attr.directive.spec.ts to the src/app/tests folder and added the code shown in Listing 29-22.import { TestBed, ComponentFixture } from "@angular/core/testing";
import { Component, DebugElement, ViewChild } from "@angular/core";
import { By } from "@angular/platform-browser";
import { PaAttrDirective } from "../ondemand/attr.directive";

@Component({
 template: `<div>Test Content</div>`
})
class TestComponent {
 className = "initialClass"

 @ViewChild(PaAttrDirective)
 attrDirective!: PaAttrDirective;
}

describe("PaAttrDirective", () => {

 let fixture: ComponentFixture<TestComponent>;
 let directive: PaAttrDirective;
 let spanElement: HTMLSpanElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [TestComponent, PaAttrDirective],
 });
 fixture = TestBed.createComponent(TestComponent);
 fixture.detectChanges();
 directive = fixture.componentInstance.attrDirective;
 spanElement = fixture.debugElement.query(By.css("span")).nativeElement;
 });

 it("generates the correct number of elements", () => {
 fixture.detectChanges();
 expect(directive.bgClass).toBe("initialClass");
 expect(spanElement.className).toBe("initialClass");

 fixture.componentInstance.className = "nextClass";
 fixture.detectChanges();
 expect(directive.bgClass).toBe("nextClass");
 expect(spanElement.className).toBe("nextClass");
 });
});

Listing 29-22The Contents of the attr.directive.spec.ts File in the src/app/tests Folder

The text component has an inline template that applies the directive and a property that is referred to in the data binding. The @ViewChild decorator provides access to the directive object that Angular creates when it processes the template, and the unit test can check that changing the value used by the data binding has an effect on the directive object and the element it has been applied to.
Summary
In this chapter, I demonstrated the different ways in which Angular components and directives can be unit tested. I explained the process of installing the test framework and tools and how to create the testbed through which tests are applied. I demonstrated how to test the different aspects of components and how the same techniques can be applied to directives as well.
That is all I have to teach you about Angular. I started by creating a simple application and then took you on a comprehensive tour of the different building blocks in the framework, showing you how they can be created, configured, and applied to create web applications.
I wish you every success in your Angular projects, and I can only hope that you have enjoyed reading this book as much as I enjoyed writing it.

Index

A

Ajax
SeeWeb services

@angular/cli
installing
ng new
ng serve command

@angular/forms module

Angular Material

Animations
adding and removing elements
applying framework styles
built-in states
defining
element states
enabling
guidance for use
parallel effects
style groups
timing functions
transitions
triggers

Applications
round-trip
single-page

Authentication
SeeSportsStore

B

Bootstrap CSS framework

Browser, choosing

Building application, production

C

Cascading Style Sheets (CSS)

Change detection, NgZone class

Component libraries
additional styles
Angular Material
choosing
Covalent
data APIs
feature modules
installing
Material Design
mixing styles packages
ng-bootstrap
ngx-bootstrap
sass files
scss files
themes
using components

Components
application structure
@Component decorator
content projection
creating
decorator
dynamic
input properties
lifecycle methods
ngAfterViewChecked
ngAfterViewInit
output properties
styles
external
inline
shadow DOM
view encapsulation
template queries
@ViewChild decorator
@ViewChildren decorator
templates
data bindings
external
inline

Cross-origin HTTP requests (CORS)

CSS stylesheets
configuring
style bundle

D

Data bindings
attribute bindings
class bindings
classes
directive
event binding
brackets
event data
expression
filtering key events
host element
template references variables
expressions
host element
live data updates
one-way bindings
property bindings
restrictions
idempotent expressions
limited expression context
square brackets
string interpolation
style bindings
styles
target
two-way bindings

Data model

Dependency injection
SeeServices

Development environment

Directives
attribute directives
data-bound inputs
host element attributes
built-in directives
custom directive
custom events
@Directive decorator
host element bindings
host element content
@ContentChild decorator
@ContentChildren decorator
@Input decorator
lifecycle hooks
micro-templates
ngClass
ngClass directive
ng-container element
ngFor directive
even variable
expanding micro-template syntax
first variable
index variable
of keyword
let keyword
minimizing changes
odd variable
trackBy
using variables in child elements
ngIf directive
ngModel directive
ngStyle directive
ngSwitch directive
ngTemplateOutlet
ngTemplateOutlet directive
context data
ng-template element
@Output decorator
structural directives
collection changes
concise syntax
context data
detecting changes
iterating directives
ngDoCheck method
ng-template element
property changes
ViewContainerRef class
using services

Docker containers

DOM Events, common properties

E

Editor, choosing

Errata, reporting

Events

F, G

Forms
API
dynamic forms
FormArray class
adding controls
methods
properties
removing controls
validating controls
FormControl class
change frequency
constructor
events
state
updateOn property
formControl directive
formControlName directive
FormGroup class
resetting
setting values
formGroup directive
nesting form elements
observable properties
reactive forms
ReactiveFormsModule
validation
asynchronous
custom
directives
validation classes
whole-form validation

H, I

HTML
attributes
literal values
without values
document object model
document structure
elements
content
hierarchy
tags
void elements

J, K

JavaScript
access control
arrays
built-in methods
enumerating
modifying
reading
spread operator
boolean type
classes
inheritance
closures
coalescing values
conditional statements
constructor
functions
as arguments to other functions
default parameters
defining
optional parameters
rest parameters
results
literal values in directive expressions
modules
export keyword
import keyword
NPM packages
resolution
null
null coalescing operator
nullish coalescing operator
number type
objects
literal syntax
optional properties
operators
optional chaining operator
primitive types
statements, conditional
string type
template strings
truthy and falsy values
types
booleans
converting explicitly
null
numbers
strings
undefined
undefined
variable closure
variables and constants

JSON Web Token

L

Linting, ESLint

Listings
complete
partial

Live data model

M

Material Design

Micro-templates, use by directives

Modules
bootstrap property
declarations property
dynamic
SeeURL routing
dynamic loading, SportsStore
feature modules, creating
imports property
JavaScript modules
@NgModule decorator
providers property
root module

N, O

ng add Command

ng command

ng config Command

ng-container element

ng lint command

ng new command

ng serve command

Node.js
installing
NPM
package manager

Node Package Manager (NPM)

P, Q

Pipes
applying
async pipe
combining
creating
formatting currency amounts
formatting dates
formatting numbers
formatting percentages
formatting string case
impure pipes
JSON serialization
key/value pairs
@Pipe decorator
pluralizing values
pure pipes
selecting values
slicing arrays
using services

Polyfills

Progressive Web Applications

Projects
ahead-of-time compilation
angular.json file
AoT compilation
build process
bundles
components
contents
data model
development tools
.editorconfig file
.gitignore file
hot reloading
HTML document
node_modules folder
package.json file
packages
global packages
scripts
versions
root module
src/app folder
src/assets folder
src/environments folder
src folder
src/index.html file
src/main.ts file
structure
tsconfig.json file
tslint.json file
webpack

R

React

Reactive extensions
async pipe
Observable, subscribe method
Observer
Subject, types of

Reactive forms

REST
SeeWeb services

RESTful web services
SeeWeb services

Root module

Round-trip applications

RxJS

S

Sass

Schematics API

Services
component isolation
dependency injection
@Host decorator
@Injectable decorator
local providers
providers property
viewProviders property
@Optional decorator
providers
class provider
existing service provider
factory provider
multiple service objects
service tokens
value provider
providers property
receiving services
registering services
services in directives
services in pipes
shared object problem
@SkipSelf decorator

Single-page applications

SportsStore
additional packages
Angular Material
authentication, JSON Web Token
bootstrap file
cart, summary component
category selection
component library
containerizing
creating the container
creating the image
deployment packages
Dockerfile
stopping the container
creating the project
data model
data source
displaying products
dynamic module
navigation
orders
pagination
persistent data
production build
progressive features
caching
connectivity
project structure
REST data
root component
root module
route guard
URL routing
web service

String interpolation

T

Templates, variables

TypeScript
any type
concise constructor
specific types
type annotation
type union
variables and constants

U

Unit testing
components
configuring dependencies
data bindings
events
input properties
output properties
templates
directives
Jasmine
Karma test runner
ng test command
TestBed class

URL routing
ActivatedRoute class
basic configuration
change notifications
child routes
parameters
route outlets
dynamic modules
guarding
specifying
using
guarding
guards
displaying a loading message
preventing navigation
preventing route activation
resolvers
named outlets
navigating within a component
navigation events
navigation links
optional URL segments
programmatic navigation
redirections
route parameters
routerLink directive
router-outlet element
Routes class
styles for active elements
wildcard routes

V

Vue.js

W, X, Y, Z

Web services
cross-origin requests
errors
HttpClient class
consolidating requests
methods
responses
HTTP verbs
JSONP requests
NgZone class
request headers

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig1_HTML.jpg
0 Example

&€ > C ® localhost:4200 % @& :

There are 5 pro

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig4_HTML.jpg
’ Y SportsStore x
<

C @ localhost:4200/admin/n

Product Table Rlaceholde

® Orders

&

[> Logout

Y SportsStore

&

rtsStore Administration

Order Table Placeholder

C _§ localhost:4200/admin/main/orders Y

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig6_HTML.jpg
a Example X

< C @ localhost:4200

This is the form component

w

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig13_HTML.jpg
0y Example X

&

C ® localhost:4200

Name

..

Y Example X

&

C @ localhost:4200

There are problems with the form

e You must enter a name

Name

You must enter a name

 Create

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig17_HTML.jpg
m

& 5> C ® localhost:4200 % @
Name Name Category Price

1| Kayak watersports $275.00
Category

2| Lifejacket watersports $48.95
Price 3| Soccer Ball soccer $19.50

4| Corner Flags soccer $34.95
5| Thinking Cap chess $16.00

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig4_HTML.jpg
0 SportsStore p 4
/ a SportsStore X

2 1 1} 3.4
< @D A & > G localhost:4200/store # @

SPORTS STORE Your cart: (empty) =

‘ 1 Product 1

‘ Category 1 | Product 1 (Category 1)

e o e == 4
» ' a ansrn N e y

i 4

OEBPS/images/421542_5_En_8_Chapter/421542_5_En_8_Fig4_HTML.jpg
Y SportsStore X
& > C ® localhost/store
SPORTS STORE
i Kayak
Chess A boat for one person
Soccer Lifejacket
Watersports Protective and fashionable

Soccer Ball

FIFA-approved size and weight

Corner Flags

Give your playing field a professional touch

4 per Page

& % @

Your cart: (empty) =

$275.00

Add To Cart

$48.95

Add To Cart

$19.50

Add To Cart

$34.95

Add To Cart

o
-]

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig1_HTML.jpg
G ExampleApp X

& > C @ localhost:4200 +* @
ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat .
2 Lifejacket Watersports $48.95 Smoot Co, safety .

3 Soccer Ball Soccer $19.50 (None) .
4 Corner Flags Soccer $34.95 (None) .
5 Stadium Soccer $79,500.00 (None) .
6 Thinking Cap Chess $16.00 (None) .
7 Unsteady Chair Chess $29.95 (None) -
8 Human Chess Board Chess $75.00 (None) .
9 Bling Bling King Chess $1,200.00 (None) .

Create New Product Generate HTTP Error

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig1_HTML.jpg
Example X
_

& - C @ localhost:4200

Name

Category

Discount

10

w ®
Name Category Price
1 Kayak Watersports $265.00
2 Lifejacket Watersports $38.95
3 Soccer Ball Soccer $9.50
4 Corner Flags Soccer $24.95
5 Thinking Cap Chess $6.00
Discount
10

The discount is 10
The discount is 10

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig4_HTML.jpg
0} Example X

& > C @ localhost:4200 VA

Hello, World

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig2_HTML.jpg
1 - Visual Studio Code

@

EXPLORER:TO.. [B3 O &

> node_modules
v src
> app
> assets
> environments
* favicon.ico
<> index.html
TS main.ts
TS polyfills.ts
styles.css
TS testts
.browserslistrc
£ .editorconfig
© .gitignore
{} angular,json
K karma.confjs
{} package-lock.json
{} package,json
@ README.md
{} tsconfig.app.json
B3 tsconfig,json
{} tsconfig.spec.json

:2 UTF-8 LF JSON with Comments v/ Spell

EXPLORER:TO.. [B3 O &

> node_modules
Vv sIC
Vv app
app.component.css
app.component.html
app.component.ts
app.moduleits
> assets
> environments
* favicon.ico
<> index.html
TS main.ts
TS polyfills.ts
styles.css
TS test.ts
.browserslistrc
£ .editorconfig
© gitignore
{} angularjson
X karma.confjs
{} package-lock.json
{} packagejson
® README.md
{} tsconfig.app.json
B tsconfigjson

{} tsconfig.spec.json

paces:2 UTF-8 CRLF CSS V/ Spell

& 0

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig5_HTML.jpg
m

& > C ® localhost:4200 * @ :
ol Tax Rate:
None v
Category
Name Category Price

Price 1 Kayak Watersports $275.00

2 Lifejacket Watersports $48.95
3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95

5 Thinking Cap Chess $16.00

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig10_HTML.jpg
a Example X
< C ® localhost:4200 % o

The f| rst product is Kayak.

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig9_HTML.jpg
e

Name
Edit

Category
Edit
Edit

PrQueT s S

Name

dnsmd

Lifejacket
Edit
Category
Edit Watersports
Edit
,.f.-ug,_/ﬁ A/" \f-\ -—’\.».f'

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig4_HTML.jpg
m

& S5 C @ localhost:4200/form/edit w & ¢

Name

Category

Price

Supplier

Add Keyword
Keyword 1
| |
-

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig9_HTML.jpg
e Example
< C

Name

Category

Price

X

@ localhost:4200

Dark Cell Color

Name Category Price

Watersports

Lifejacket Watersports

Delete

Soccer Ball

Corner Flags

Thinking Cap

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig2_HTML.jpg
e SportsStore X |

< C @ localhost:4200 A ™

This is SportsStore

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig4_HTML.jpg
‘ 4 Corner Flags Soccer $34.95 Delete

5 Thinking Cap Chess $16.00 Delete
Discount
) | Discount
12 |
b — 12

Aal

The discount is 12

The discount is 12

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig3_HTML.jpg
B ExampleApp X

= C @ localhost:4200/does/not/exist w &

Sorry, something went wrong

Start Over

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig2_HTML.jpg
& > C @ localhost:4200/admin/auth

Name

admin

Password

Eoem—

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig8_HTML.jpg
Price

]

The price must be between 10 and 300

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig2_HTML.jpg
¥} SportsStore X

< C @ localhost:4200/store w o
Product 1
Product 1 (Category 1)

. P gonge | Produd = b o 2~ TN

OEBPS/images/421542_5_En_3_Chapter/421542_5_En_3_Fig2_HTML.jpg
0y Todo

X

& > C ® localhost:4200

Adam's To Do List

*

IS

Add

Description Done

Buy Flowers No

Get Shoes No

Collect Tickets Yes
No

Call Joe

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig7_HTML.jpg
Create New PLoduct Create New Product Create New Product Create New Product Create New Product
4))

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig8_HTML.jpg
ProductComponent

ProductTableComponent

l

!

<paProductTable [model]="model">

Y

There are {{getProducts().length}}
items in the model

</paProductTable>

OEBPS/images/421542_5_En_8_Chapter/421542_5_En_8_Fig2_HTML.jpg
9 DevTools - localhost/store

w ﬂ | Elements Console Sources Network Performance Memory » IB‘I || t o JN
® O | ¥ Q | OpPreservelog | O Disable cache Nothrotting ¥ =% | # % | £
Filter O Invert () Hide data URL{ Disabled
= No throttling
L‘A_jlj] Fetch/XHR JS CSS Img Media Font Doc WS Wal presets gr (D Has blocked cookies
(O Blocked Requests (J 3rd-party requests Fast 3G
10ms 20ms 30ms 4O ms S0ms %« ms A0 ms 100 ms 110
Custom
Add...
P B Gemrnton P o P e PP

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig2_HTML.jpg
a Example p 4 ‘

< C @ localhost:4200 Q v ©

.
.
_

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig2_HTML.jpg
& > C ® localhost:4200/table

] e [o

.
There are 0 products

D Name Category Price Details

Create New Product Generate HTTP Error Generate Routing Error

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig3_HTML.jpg
View Child Value: Apples

Content Child Value: Apples

I

5 Thinking Cap

Discount

10

The discount is 10

Chess

$6.00

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig2_HTML.jpg
BXPOR. (3 B3 O @ -

> node_modules

V' app

app.component.css
<> app.component.html
TS app.component.ts
TS app.module.ts

> assets

v environments

TS environment.prod.ts
TS environment.ts

* favicon.ico

<> index.html

TS main.ts

TS polyfills.ts

styles.css

TS testts

= .browserslistrc

_ ¥ .editorconfig -

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig7_HTML.jpg
Example X
B Eemp

& > C @ localhost:4200

Name

Tax Rate|
Soccer Boots ‘ None
Category
— Categor|
Soccer ‘ e
— Socce
Price N —
100 ‘ Nar|

(o]

& 2> C @ localhost:4200

Name

Category

Price

e Example X

Tax Rate:

None

Category Filter:

(
| Soccer

2 Corner Flags

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig5_HTML.jpg
g ExampleApp X

& > C @ localhost:4200/table 4 @ :

Id Name Category Price Details

2 Lifejacket Watersports $48.95 Smoot Co, safety m
3 Soccer Ball Soccer $79.50 (None) m
4 Corner Flags Soccer $34.95 (None) m
5 Stadium Soccer $79,500.00 (None) m
6 Thinking Cap Chess $76.00 (None)

Items per page: 5 - 1-50f8 < >

Create New Product | Create New Product l

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig22_HTML.jpg
Name Category Message

Kayak Watersports Helps you stay dry
Lifejacket Watersports Helps you stay dry
Soccer Ball Soccer Helps you score goals
Corner Flags Soccer Helps you score goals
Thinking Cap Chess Helps you have fun

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig5_HTML.jpg
Name

Running Sh
Edit
Edit
RO JEGER, | s et o

Name

Running Sho

bo o safinn oo 4R ob ./A’

Name

’ Running Shoe

Y ™

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig1_HTML.jpg
@ ExampleApp X

& > C @® localhost:4200/table w &
ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat,small -
2 Lifejacket Watersports $48.95 Smoot Co, safety .

3 Soccer Ball Soccer $19.50 (None) -
4 Corner Flags Soccer $34.95 (None) .
5 Stadium Soccer $79,500.00 (None) .
6 Thinking Cap Chess $16.00 (None) -
7 Unsteady Chair Chess $29.95 (None) .
8 Human Chess Board Chess $75.00 (None) -
9 Bling Bling King Chess $1,200.00 (None) .

Create New Product

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig2_HTML.jpg
Y Example °
< c =T @ Bample € 2> C © localhost:4200 * ™
. localhost:
€ 2> C Qlcahori Selected Product: Soccer Ball
Selected Product: (None)
Name Categq Selected Product: Lifejacket Name 4 Category Price
T Kayak T~ Name 7 Categor] 1 Kayak / Watersports 275
12 Lifejackeg/ Watersports 48.95
2 Lifejacket Waters Watersp = - =
3 Soccer Ball Soccer | 2 I!ifejacket Watersg{ o e occer -
T orner Flags Soccer 34.95
4 Corner Flags Soccer | 3 Soccer Ball Soccer
5 Thinking Cap Chess 16
5 Thinking Cap Chess | 4 Corner Flags Soccer
5 Thinking Cap Chess o

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig5_HTML.jpg
Example
QY Eamp

¢« > c

@ localhost:

e Example X

& > C @® localhost:4200 Y
Show Table
Show Table
Name
Name Categor Price
1 Kayak _——
i Kayak Watersports 282
2 Lifejacket i -
2 Lifejacket Watersports 55.95
8 Soccer Ball
8 Soccer Ball Soccer 26.5
4 Corner Flags
s 4 Corner Flags Soccer 41.95
5 Thinking Cap
5 Thinking Cap Chess 23

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig6_HTML.jpg
m

& > C ® localhost:4200/form/edit/2 w s

Name

Lifejacket

Category
Watersports

Price

48.95

Supplier

Smoot Co

Add Keyword

Keyword 1

safety

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig6_HTML.jpg
Example X
_

& - C @ localhost:4200 w ®
Name Name Category Price

1 Kayak Watersports $255.00 Delete
Category

2 Lifejacket Watersports $28.95 Delete

Price 3 Soccer Ball Soccer $5.00 Delete

4 Corner Flags $14.95 Delete

5 Thinking Cap

Discount

Chess $5.00 Delete

Discount

20 - / " 1

The discount is 20 ‘
The discount is 20

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig6_HTML.jpg
g SportsStore

e =

a SportsStore

SPORTS STORE & 5> C ® localhost:4200/checkout * & ¢

SPORTS STORE

SPORTS RE
Name
Please enter your name Joe Smith Thanks!
Address Address

Thanks for placing your order.

123 Main Street . .
l ain Stree We'll ship your goods as soon as possible.

Please enter your address City
State

Please enter your city
State I NY l
Zip/Postal Code

Please enter your state l 10036 l
Zip/Postal Code Country
l USA l

Please enter your zip/postal code
Back Complete Order
Country

Please enter your country

—_—
Complete Order |

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig5_HTML.jpg
&€ > C ® localhost:4200 % @& :

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig6_HTML.jpg
0 Todo X

& > C ® localhost:4200

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig8_HTML.jpg
a ExampleApp

7

@ localhost:4200/table

Watersports
ID Name Category Price Details
1 |Kayak Watersports $275.00 Acme, boat,small Delete T3

Delete m

Delete m

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig8_HTML.jpg
m

& - C ® localhost:4200 % &

Name Name:

Running

Category

Price

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig4_HTML.jpg
ru ExampleApp

> C 0o

localhost:4200/table

Loading data...

a ExampleApp

- C @ localhost:4200/table

Ao T g

* @
e
| |
ID Name Category Price Details
1 Kayak Watersports $275.00 Acme, boat,small Edit
2 Lifejacket Watersports $48.95 Smoot Co, safety 7E,ditr

e P SOV PR O ..‘W IO, Capatrittnmaa TN gt \,\“‘ M

OEBPS/images/978-1-4842-8176-5_CoverFigure.jpg
Build Powerful and Dynamic Web Apps
Fifth Edition

Adarm Er s
Adam Freeman

OEBPS/images/421542_5_En_23_Chapter/421542_5_En_23_Fig3_HTML.jpg
a ExampleApp

X

< C ® localhost:4200

ID Name

1 Green Kayak
2 Lifejacket

3 Soccer Ball

ooy ~ v

Category Price

Watersports $275.00

Watersports $48.95

Soccer $19.50

M aemasiitai, A " f’”“"“ .

Editing Kayak

Details

Acme, boat,small
Smoot Co, safety

(None)

———_

Edit

Edit

Edit

Name

Category

Price

T N Y

oY

W

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig10_HTML.jpg
a Todo X

<« C ® localhost:4200 ! x

Get flowers

1 Collect tickets [false
2 Collect tickets 0 false

OEBPS/images/421542_5_En_29_Chapter/421542_5_En_29_Fig2_HTML.jpg
5
X%
be

WK Karma *

‘ & 2> C ® localhost:9876/2id=36772291
‘ Chrome is being controlled by automated test software.
‘ Chrome 98.0.4758.82 (Windows 10) is idle
}

3.10.1

@Jasmine
finished in 0.007s

.

1 spec, 0 failures, randomized with seed 62584

Jasmine Test Environment
* is working

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig15_HTML.jpg
G Example X

& > C ©® localhost:4200

Name q

Category

Price

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig9_HTML.jpg
m

& > C @ localhost:4200 w s
Name Name Category Price

1 Kayak Watersports 275,00
Category

2 Lifejacket Watersports 048,95
Price 3 Soccer Ball Soccer 019,50

4 Corner Flags Soccer 034,95
5 ThinkingCap Chess 016,00

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig4_HTML.jpg
g Example X

< C @® localhost:4200 Q v ©

Hello, World.

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig7_HTML.jpg
_

€ > C © localhost:4200/table % ®

want to see the categories c onent?
o
e

All

Watersports

Couri Categories

@Y ExampleApp
é.

@Y ExampleApp

%x ®

C ® localhosty#200/table

)
I) T
ID Name Category &

¥ =
T 1 Kayak Watersports, @ Edit
DB i fp o B e, J""“\.’

€ 5 C @ localhost4200/table/categories

Count Catego. ‘es

All

ID Name Category Price Details

m 1 Kayak Watersports $275.00 Acme, bo
it AT mat® DD I s,

‘J Count Products

There are 3 categories

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig12_HTML.jpg
Example X
0 e g Example
< C @ localhost:4200 (o}

The first product is Kayak.

X

& C ® localhost:4200

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig10_HTML.jpg
e Example
< C

Name

Category

Price

X

@ localhost:4200

Dark Cell Color

Name Category Price

Watersports

Lifejacket Watersports

Delete

Soccer Ball

Corner Flags

Thinking Cap

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig11_HTML.jpg
Y Example X

e Example X
& > C © localhost:4200
& 5 C @ localhost:4200 QA v M
Name Name
) Name Name Category Price
Running Shoes
1 Kayak
Category 1 Kayak Watersports 275
. 2 Lifejacket | Category
Running : 2 Lifejacket Watersports ~ 48.95
Pri 3 Soccer Bal
s Price 3 Soccer Ball Soccer 19.5
100 4 Corner Fla
4 Corner Flags Soccer 34.95
Create 5 Thinking ¢
- 2 5 Thinking Cap Chess 16
$| 6 Running Shoes Running 100 |

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig11_HTML.jpg
Example X
QY Bemp

& > C ® localhost:4200

Example ¥
€Y Exampl

€& 2> C ©® localhost:4200 % &

/I There are problems with the form

Name

222

A name must be at least 5 characters
The name contains illegal characters

-

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig3_HTML.jpg
m

& > C @ localhost:4200 w s
Name Name Category Price

1 Kayak Watersports $275.00
Category

2 Lifejacket Watersports $48.95
Price 3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95
5 Thinking Cap Chess $16.00

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig4_HTML.jpg
a SportsStore X

- C @ localhost:4200 & @

SPORTS STORE

15 Products

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig11_HTML.jpg
e ExampleApp X

& > C ® localhost:4200

5 Thinking Cap Chess

Create New Product

ID Name Category Price

1 Kayak Watersports $275.00 -
2 Lifejacket Watersports ~ $48.95 -
3 Soccer Ball Soccer $19.50 .
4 Corner Flags Soccer $34.95

O T

Name

Category

w

»

Creating New Product

Price

(o [0
Create Cancel

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig10_HTML.jpg
0 ExampleApp
« > ¢

want to load the module?

All

Watersports

=N -

$19.50 (None) e
s s, L) i i e, |

@ localhost:4200/table

Name Catego
1 Kayak Watersj
2 Lifejacket Watersj|

3

Soccer Ball

> C @ locallpst:4200/ondemand

This is the ondemand component

Soccer

OEBPS/images/421542_5_En_3_Chapter/421542_5_En_3_Fig4_HTML.jpg
@ DevTools - localhost4200/

[x ﬂ] Elements Console Sources Network Performance > ‘EH e
[© |topY | ® | Filter Defaultlevels v || 11ssue: B1]| | €%
> i= 2 messages Hello main.
' > O 2user mess [webpack-dev-server] Live Reloading enabled. index.js:548
© Noerrors ’
A No warnings
v @ 2info
. main,js 1
B polyf. 1

¥ No verbose

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig14_HTML.jpg
Details VALID

. Details Name

00 Acme, boat, small -- [

You must enter a name

L\]

You must enter a\\ame

(None) Category
Category Watersports

.0 (None) Watersports

Price

_> (None) Price 275
275

)0 (None) Supplier
Supplier I
Acme Keywords
Keywords boat, small
boat, small

- CanCEl

-

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig6_HTML.jpg
Supplier

Acme

Add Keyword

Keyword 1

boat

Keyword 2

Delete

Delete

Keyword 3

/

single person

.

rice Details

Editing Kayak

ﬁ@l Acme, boat,single person

¥8.95 Smoot Co, safety
9.50 (None)
4.95 (None)
6.00 (None)

=
oo IO
o IO
oo
oo I

Categov
4

vice
{

3

Suppliéi‘

4
Keyworox

|MAI‘MW‘M’* ,J P \‘,,\’n_,—‘\v}

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig7_HTML.jpg
r €Y ExampleApp X

ID Name

All

Kayak

Watersports

Lifejackg

Soccer §

& > C ® localhost4200/table

6 Thinkin
7 Unstead
8 Human

& > C @ localhost:4200/table/Soccer * &

Details

Name Category Price Details

Soccer Ball Soccer $19.50 (None)

Corner Flags Soccer $34.95 (None) -
Stadium Soccer $79,500.00 (None) -

Create New Product Generate HTTP Error Generate Routing Error

9 Bling Bling King

Chess

Create New Product Generate HTTP Error Generate Routing Error

$1,200.00 (None) .

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig7_HTML.jpg
m

€< - C ® localhost:4200 *
Name Category Price
10f5 Kayak Watersports 275
20of5 Lifejacket Watersports 48.95
3of5 Soccer Ball Soccer 19.5
40of5 Corner Flags Soccer 34.95
50f5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig4_HTML.jpg
0} ExampleApp

& > C @ localho

Category

Soccer

ID Name

Kayak

Lifejacket

1
2
6
7

Thinking Cap
Unsteady Chair
8 Human Chess Board
9 Bling Bling King

e

9

O ExampleApp

Category

Chess

> C @ loc

Name

Kayak

Thinking Cap
Unsteady Chair
Human Chess B

Bling Bling King

6

a ExampleApp

Category

C @ lod

Name

Kayak
Lifejacket
Soccer Ball
Corner Flags
Stadium
Thinking Ca;
Unsteady Ch
Human Ches

Bling Bling K

€Y ExampleApp X

& > C @ localhost:4200/table

Category
Chess «
-
1
. 4
ID Name Category Price
1 Kayak Watersports $275.00 g
2 Lifejacket Watersports $48.95 4
]
3 Soccer Ball Soccer $1950
5 \d
Corner Flags Soccer $34.95 {
5 Stadium Soccer $79, :C{

Create New Product /
Bl

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig9_HTML.jpg
Example X
) Eemp

< C @ localhost:4200 Q v @&

The first product is Kayak.

The third product is Soccer Ball

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig2_HTML.jpg
. Name
Price Name
N Lifejacket

$275.00 Initial Value Edit
Edit

Edit
$48.95 Edit

Edit

$19.50 = '

$34.95 it
. Edit.

/‘*««/W il S —— d

—n? - P o b~ B

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig9_HTML.jpg
Display Shipped Orders

& > C @® localhost:4200/admin/main/orders

SportsStore Administration

Product

Kayak

Stadium

Product

Bling King

Lifejacket

OOl - [-

Thinking Cap

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig1_HTML.jpg
m

&€ > C ® localhost:4200 % &~
T— Dark Cell Color
Name Category Price
Category 1 Kayak Watersports 275
2 Lifejacket Watersports 4895
Price
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig8_HTML.jpg
' Y ExampleApp X

€& > C @ localhost:4200/table/products * &

Watersports {

1
-

- C @ localhost:4200/table/categories

==

1 LY g

& > C @ localhost:4200/table

5 | (= T
7 3 ID Name Category Price Details

, 4 1 Kayak Watersports $275.00 Acme, boat Delete TS
2 5 2 Lifejacket Watersports $48.95 Smoot Co, safety m et

3 Soccer Ball Soccer $19.50 (None) M
BT PP N Ny PP S PR Bl SR R Pt N »

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig6_HTML.jpg
' Y ExampleApp x

& - C ® localhost:4200/table * &
you accept the terms & ?

@) Eempleipp

[= =l
n -
< J
\:

Soccer ID Name Category Price

1 Kayak Watersports $275.00 C|
Category

2 Lifejacket Watersports $48.95 Si
I N e A',....‘-J““"

I“JAJ'WM_J“"“-‘—“)

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig3_HTML.jpg
m

& S5 C @ localhost:4200 w &

Show Table

Name Category Price

Kayak
Lifejacket
Soccer Ball
Corner Flags

Thinking Cap

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig24_HTML.jpg
Name Category Message

Kayak Watersports Helps you stay dry
Lifejacket Watersports Helps you stay dry
Soccer Ball Soccer Helps you score goals
Corner Flags Soccer Helps you score goals
Thinking Cap Chess Helps you have fun

Counter: $120.00

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig2_HTML.jpg
Example X

< C @ localhost:4200 Q W

Form will go here Table will go here

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig9_HTML.jpg
G ExampleApp X

& - C ® localhost:4200/table/Watersports * o
DR .o | oo
ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat -

2 Lifejacket Watersports $48.95 Smoot Co, safety .

Create New Product Generate HTTP Error Generate Routing Error

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig2_HTML.jpg
Host Element
@ Character

Trigger Name Expression

,

<tr [@rowHighlight]="getRowState(item.category)">
4 4

I
Square Brackets

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig4_HTML.jpg
3 v - o

\’7 Q) EBample X Q) Bample x S
“« C ® localhost:4200) @ Eample x e &« C @ localhost:4200 w &
1 &« C ® localhost:4200
Name Category ‘ Name Category Price
1 Kayak Watersports \ Name Categor| 1 Kayak Watersports 275
2 Lifejacket Watersports \ l"\\rKayak Waterspl 2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer \ 2 " Lifejacket Waterspi 3\Soccer Ball Soccer 195
4 Corner Flags Soccer | 3 Soccer Ball Soccer | 4 Corner Flags Soccer 34.95
5 Thinking Cap Chess [4 Corner Flags Soccer | 5 Thinking Cap Chess 16
! 5 Thinking Cap Chess
\

OEBPS/images/421542_5_En_23_Chapter/421542_5_En_23_Fig1_HTML.jpg
G ExampleApp X

& > C ® localhost:4200

Creating New Product

ID Name Category Price Details Name

1 Kayak Watersports ~ $275.00 Acme, boat,small -

2 Lifejacket Watersports $48.95 Smoot Co, safety Category

3 Soccer Ball Soccer $19.50 (None)
Price

4 Corner Flags Soccer $34.95 (None)

5 Thinking Cap Chess $16.00 (None) Supplier
Keyword 1

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig8_HTML.jpg
Example X
Y Eemp

< C @ localhost:4200 Q w ©

The first product is Kayak.

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig6_HTML.jpg
5 Thinking Cap

Discount

10

Chess

$6.00

R oA, o)

OEBPS/css/envelope.png

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig8_HTML.jpg
D) Todo X

& > C @® localhost:4200

Bob's To Do List

7 Task Done
1 Go for run true
2 Get flowers [false

3 Collect tickets [false

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig8_HTML.jpg
a SportsStore

Edit Product

Name
Deluxe Rocket Shoes

& 2> C @ localhost:4200/admin/main/products/edit/10

Category
Runni

Descrigtion

Secyre a podium finish

Pricef
279

v

€Y SportsStore

& > C @ localhost:4200/admin/main/products

Id Name

6 Thinking Cap

7 Unsteady Chair

8 Human Chess Board

9 Bling King

49| Deluxe Rocket Shoes

Create New Product

SportsStore Administration

Category
Chess
Chess
Chess
Chess

Running

Price

$16.00

$29.95

$75.00

$1,200.00

$275.00

Items per page: 5

v

o [o
=
=3
=
=

6-100f11

<

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig5_HTML.jpg
G Exampl,

& > C @ localhost:4200/form/edit/2

eApp

Loading data...

G ExampleApp
e

= C ® localhost:4200/form/edit/2

Name

Lifejacket

Category

Watersports

Price

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig1_HTML.jpg
0 ExampleApp X

& > C @ localhost:4200/table w &
ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat,small -
2 Lifejacket Watersports $48.95 Smoot Co, safety .

3 Soccer Ball Soccer $19.50 (None) -
4 Corner Flags Soccer $34.95 (None) -
5 Stadium Soccer $79,500.00 (None) .
6 Thinking Cap Chess $16.00 (None) -
7 Unsteady Chair Chess $29.95 (None) .
8 Human Chess Board Chess $75.00 (None) -
9 Bling Bling King Chess $1,200.00 (None) .

Create New Product

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig6_HTML.jpg
m

& S5 C @ localhost:4200 w
Name Name Category Price
1 Kayak Watersports 275

Catego

2 Lifejacket Watersports | 48.95

Soccer

Soccer Soccer N 19.5

4 Corner Flags Soccer 34.95

\
5 Thinking Cap Chess | 16

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig11_HTML.jpg
- T] pame
pelete \ ?
meE ’
Do

Swi I Category

Price

@ . ' \ The category may not contain “swim”

Price

Suppller ’

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig10_HTML.jpg
g ExampleApp X

& C @ localhost:4200
INVALID: name

ID Name Category Price Name

1 Kayak Watersports $275.00 Edit Ru

2 Lifejacket Watersports $48.95 Edit

Category

3 Soccer Ball Soccer $19.50 Edit

4 Corner Flags Soccer $34.95 it

ol BN g s amanmase T aa peh g, NRSERE ;ESI ™ memdnndb 20 Bl o e

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig1_HTML.jpg
) SportsStore X

w o
‘ & C ® localhost:4200 w &
Your cart: 1 item(s) $100.00 W
SPORTS STORE Your cart: (empty) =
Product 1
Add To Cart
Category 1 | Product 1 (Category 1) -
Product 2 00.00
Product 2 (Category 1) Add To Cart
= B ol SN S 2o andd r Y .

it . omandP i

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig13_HTML.jpg
m

& > C ® localhost:4200 #r ™
Show Content
Name Category Price
Category 1 Kayak Watersports 275
_ 2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
- 4 Corner Flags Soccer 34.95
Create
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_19_Chapter/421542_5_En_19_Fig2_HTML.jpg
m

& > C ©® localhost:4200 w &
Name Category Price Name
1 Kayak Watersports $265.00
Category
2 Lifejacket Watersports $38.95
3 Soccer Ball Soccer $9.50 Price
4 Corner Flags Soccer $24.95
5 Thinking Cap Chess $6.00

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig19_HTML.jpg
m

& > C ® localhost:4200 w @&
p Show Content]
Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig14_HTML.jpg
m

& > C ® localhost:4200 4 @

.
.
.

Name

Category

Price

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig10_HTML.jpg
w ExampleApp X

& C ® localhost:4200/table * &

Category

Soccer

ID Name Category Price Details
1 Kayak Watersports $275.00 Acme, boat,small .

2 Lifejacket Watersports $48.95 Smoot Co, safety -
3 Soccer Ball Soccer $19.50 (None) [Derete 1Y
4 Corner Flags Soccer $34.95 (None) [Detere I
5 Stadium Soccer $79,500.00 (None) 2 e
6 Thinking Cap Chess $16.00 (None) -
7 Unsteady Chair Chess $29.95 (None) .

8 Human Chess Board Chess $75.00 (None) -
9 Bling Bling King Chess $1,200.00 (None) .

Create New Product

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig7_HTML.jpg
Y Example X

& > C ® localhost:4200

Category

Name:

Running

Price

4 Corner Flags

1 Kayak
2 Lifejacket

3 Soccer Ball

5 Thinking Cap

Y Eample

& 2> C @ localhost:4200

Name
Running Shoes

Category

Price

Name:

Running Shoes

Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig7_HTML.jpg
0 SportsStore

X

& > C @® localhost:4200/store w

SPORTS STORE Your cart: (empty) ™
Home Kayak $275.00
Chess A boat for one person
Soccer Lifejacket $48.95
Watersports Protective and fashionable
Soccer Ball m
FIFA-approved size and weight
3 per Page .Z

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig4_HTML.jpg
Add Keyword

Keyword 1

The keyword contains illegal characters

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig12_HTML.jpg
m

& > C ® localhost:4200 Q % =
Name Show Content
Name Category Price
Category 1 Kayak Watersports 275
2 Lifejacket Watersports 48.95 Delete
Price J & -
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig3_HTML.jpg
Host Element Expression

Event

y

<td (mouseover)="selectedProduct=item.name">

A | A

Round Brackets

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig13_HTML.jpg
g Example X

& > C ® localhost:4200

Name

Category

Price

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig9_HTML.jpg
r“ Example

[& 5 C O localhost:4200 &€ > C @ localhost:4200

Running2

Running L

Create

Create

. g
3

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig19_HTML.jpg
m

&€ 2> C @ localhost:4200 r &
i Number of items:

3 v
Category

Name Category Price

Price 1 Kayak watersports $275.00

2 Lifejacket watersports $48.95
3 Soccer Ball soccer $19.50

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig18_HTML.jpg
m

& > C @ localhost:4200 v o
Show Content
Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig15_HTML.jpg
| O |- - $34.55

5 Thinking Cap Chess $16.00

Create New Product

AR > |-
o EIER

275

Supplier

|

You must enter a supplier

Keywords

|

You must enter a keyword

-

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig1_HTML.jpg
m

€ > C @ localhost:4200 4 @
Name Name Category Price
iy S 1 Kayak Watersports 275
Category
. 2 Lifejacket Watersports 48.95
Running
Price 3 Soccer Ball Soccer 19.5
100 4 Corner Flags Soccer 34.95

5 Thinking Cap Chess 16
\ 6 Running Shoes Running 100

OEBPS/images/421542_5_En_23_Chapter/421542_5_En_23_Fig2_HTML.jpg
G ExampleApp

X

& > C ©® localhost:4200

ID Name

Creating New Product

Category Price Details Name

1 Kayak

2 Lifejacket

3 Soccer Ball

4 Corner Flags

5 Stadium

6 Thinking Cap

7 Unsteady Chair

8 Human Chess Board

9 Bling Bling King

Create New Product

Watersports $275.00 Acme, boat,small .
Watersports $48.95 Smoot Co, safety . Caegory
Soccer $19.50 (None) -

Price
Soccer $34.95 (None) .
Soccer $79,500.00 (None) . Supplier

Chess $16.00 (None) -
Chess $29.95 (None) .

Chess $75.00 (None) T . Keyword 1

Chess $1,200.00 (None) -

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig10_HTML.jpg
Add Keyword

The keywords must be unique

Keyword 1

boat Delete

Keyword 2

-

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig6_HTML.jpg
rﬂ SportsStore

~

SPORTS STORE
Home
| Category 1
Category 2

Category 3

C ® localhost:4200

s P>

X

Product 1

Product 1 (Cat
Product 2
Product 2 (Cat
Product 3

Product 3 (Cat

Product 4

Product 4 (Cat

T v

Y SportsStore X

< C ® localhost:4200

SPORTS STORE

€Y SportsStore

X

< C ® localhost:4200

Home
Category 1

Category 2

Category 3

SPORTS STORE

Product 11

Product 11 (Category 3)

Product 12

Product 12 (Category 3)

Product 13

Product 13 (Category 3)

Product 14

P S l’Ei’}V‘i‘(ﬁiie%’Yj' ——n g e

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig6_HTML.jpg
€Y Exampledpp X

& S5 C ® localhost:4200/table 4 @ :

Id Name Category Price Details

2 Lifejacket Watersports $48.95 Smoot Co, safety m
3 Soccer Ball Soccer $879.50 (None) m
4 Corner Flags Soccer $34.95 (None)
5 Stadium Soccer $79,500.00 (None)
6 Thinking Cap Chess $876.00 (None)

Items per page: 5 - 1-50f8 £ >

Create New Product Create New Product

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig5_HTML.jpg
Caner . cer FYZ

5 Thinking Cap Chess $6.00
View Child Value: Oranges Discount
10
Content Child Value: Apples

The discount is 10

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig7_HTML.jpg
e Todo %

& > C @ localhost:4200

Bob's To Do List

Task Done
1 Go for run true
2 Get flowers false

3 Collect tickets false

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig6_HTML.jpg
X

@ localhost:4200

Hello, World

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig2_HTML.jpg
Example X
_

& - C @ localhost:4200 w ®
Name Name Category Price

1 Kayak Watersports $275.00
Category

2 Lifejacket Watersports $48.95
Pice . 3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95
5 Thinking Cap Chess $16.00

Discount

10
The discount is 10

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig3_HTML.png
X

ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boatsmall Edit
i

2 Lifejacket Watersports $48.95 Smoot Co, safety Edit
i

6 Thinking Caj Chess $16.00 None)
gCap (tang) Edit
U Unsteady Chair Chess $29.95 (None) :
Edit
8 Human Chess Board Chess $75.00 (None) i
elete 1]
9 Bling Bling Kinq Chess $1,200.00 None] =
g Biing King (None) Edit

Create New Product

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig4_HTML.jpg
& > C @ localhost:4200

Show Table

w

m

o

Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 4895
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig7_HTML.jpg
g ExampleApp X

< C ® localhost:4200

INVALID: minlength, pattern

ID Name Category Price Name
1 Kayak Watersports ~ $275.00 : = -
2 Lifejacket Watersports $48.95 Edit

3 Soccer Ball Soccer S1‘50 Edit
) sandP ﬁ ¥ i N f/u i - — V e ,___A/hﬁ A hf ~ f"‘

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig6_HTML.jpg
Example X
m

& - C ® localhost:4200 » @&
Name Category Price
Kayak Watersports 275
Lifejacket Watersports 48.95
Soccer Ball Soccer 19.5
Corner Flags Soccer 34.95
Thinking Cap Chess 16

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig9_HTML.png
@ compieien

x

€5 C O lanossoyabe ~-n F—— "
o somieie x € 5 C @ locahostaz0stable * ® :
€ > C @ localhost4200/table
None
D Name Category b
None
$275.00 ‘Acme, boatsmall [o I L D Name Category Price Details
poee s Smoct Cor sl ID_|Name Category Price 1 Kayak Watersports 5275.00 Acme, boat.small
sl Watersports 27500 ‘Acme, boatsmall
Fere's . 2 Lifejacket Watersports s4895 Smoot Co, safety
: n
@ions) Watersports 4895 Smoot Co, safety
proys o) 3 SoccerBall Soccer 51950 (None)
! one)
Soccer s19350 (None)
P 4 ComerFlags Soccer 53495 (None)
) " Soccer $3495 (None)
povy s N 5 Stadium Soccer §7950000 (None)
! o
{ions) Soccer $7950000 (None)
= - 6 Thinking Cap Chess $1600 (None)
i e Chess 51600 (None)
preyn . 7 Unsteady Chair Chess 52995 (None)
) e Chess 2995 (None)
peprs N 8 Human Chess Board Chess §7500 (None)
g n
-) Chess §75.00 (None)
9 Biing Bling King Chess $120000 (None)
Chess $120000 (None)

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig23_HTML.jpg
Name Category Message

Kayak Watersports Helps you stay dry
Lifejacket Watersports Helps you stay dry
Soccer Ball Soccer Helps you score goals
Corner Flags Soccer Helps you score goals
Thinking Cap Chess Helps you have fun

Counter: 140

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig5_HTML.jpg
@ localhost:4200/form/edit/2

a ExampleApp
w & -
Details /| |Name
Acme, boat,small Lifejacket
Smoot Co, safety Delete Category
Watersports
o EERER
;) Price
None,
EEEE ||| .o
S - | ([
Delete Supplier
LR - [
(None) safety

. [N

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig1_HTML.jpg
e ExampleApp X

& > C ® localhost:4200

5 Thinking Cap Chess

Create New Product

ID Name Category Price

1 Kayak Watersports $275.00 -
2 Lifejacket Watersports ~ $48.95 .
3 Soccer Ball Soccer $19.50 -
4 Corner Flags Soccer $34.95

O T

Name

Category

w

»

Creating New Product

Price

(oo [0
Create Cancel

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig1_HTML.jpg
i Node.js Setup

Custom Setup d
Select the way you want features to be installed. n ‘S' e

Click the icons in the tree below to change the way features will be installed.

Install the core Node.js runtime
(node.exe).

) Add to PATH This feature requires 0KB on your
- &3 v | Node.js and npm hard drive. Ithas 0 of 1

b (=) v | npm modules subfeatures selected. The
subfeatures require OKB on your
hard drive.

Rt || ot || mek | hew]| conce

OEBPS/images/421542_5_En_3_Chapter/421542_5_En_3_Fig3_HTML.jpg
Start Tag Content End Tag
<td>||Buy Flowers |</td>

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig8_HTML.jpg
m

& 2> C @ localhost:4200 r o~
Kiiriia Dark Cell Color
Name Eegory Price
Category | e!yak/ Watersports 275
2 Lifejacket Watersports 48.95
Price
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig8_HTML.jpg
e ExampleApp X

& - C @ localhost:4200

Creating New Product

ID Name Category Price Name

1 Kayak Watersports $275.00 . d
A name must be at least 3 characters
2 Lifejacket Watersports $48.95 -
Category
3 Soccer Ball Soccer $19.50 -
4 Corner Flags Soccer $34.95 .

5 Thinking Cap Chess $16.00 -
Create New Product

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig8_HTML.jpg
Create New Product

&

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig3_HTML.jpg
Example X
_

& > C @ localhost:4200 w &
Name Name Category Price

1 Kayak Watersports $275.00
Category

2 Lifejacket Watersports $48.95
Phce: 3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95
5 Thinking Cap Chess $16.00
Discount

| Discount
10 ;

= 10

The discount is 10
The discount is 10

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig3_HTML.jpg
Host Element Expression

l Target l
!

<div [ngClass]="getClasses()">

L__j___!

Square Brackets

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig3_HTML.jpg
' Y Examplespp

€ > C O localhost4200

1 Kayak

2 Lifejacket

3 Soccer Ball
4 Corner Flags

5 Stadium

9 Bling Blifg King

Create New Product

Watersy]

Soccer

Soccer

Soccer

Chess

Chess

Chess

Chess

Category

Price

Supplier

Add Keyword

Keyword 1

Create

Y ExampleApp

€ =

ID Name

® localhost4200

X

Category

Creating New Product

Price

Details

1 Kayak

2 Lifejacket

3 Soccer Ball

4 Corner Flags

5 Stadium

6 Thinking Cap

7 Unsteady Chair

8 Human Chess Board

9 Bling Bling King

Watersports $275.00

Watersports

Soccer

Soccer

Soccer

Chess

Chess

Chess

Chess

$48.95

$19.50

$34.95

$79,500.00

$16.00

$29.95

$75.00

$1,200.00

Create New Product Generate HTTP Error

Acme, boat,small
Smoot Co, safety
(None)
(None)
(None)
(None)
(None)
(None)

(None)

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig2_HTML.jpg
npleApp X

&< C @ localhost:4200 Pre

ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat Edit

2 Lifejacket Watersports $48.95 Smoot Co, safety Edit

3 Soccer Ball Soccer $19.50 (None) Edit
— A a B o A ad gy o . o ~ P adoen ~ y e

4 4 _— ~

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig16_HTML.jpg
& > C ® localhost:4200
Name

Category

Price

m

w 5

KAYAK

LIFEJACKET

SOCCER BALL

CORNER FLAGS

THINKING CAP

Category Price
watersports 275.00
watersports 8.95
soccer 19.50
soccer 34.95
chess 16.00

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig12_HTML.jpg
< C ® localhost:4200 o -

Name

Run2

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig2_HTML.jpg
[

Form Component

Angular LogService DiscountService
Module Provider Provider
Root Component
1
Table Component LogSe.rwce
Provider

A

Pipe

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig7_HTML.jpg
a Example X

< C @ localhost:4200

This is the model

w

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig2_HTML.jpg
&€ > C ® localhost:4200 *r @ :

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig7_HTML.jpg
Price

500

The price must be less than 300

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig3_HTML.jpg
ﬁ Todo X

& > C @ localhost:4200

A Welcome

todo app is running!
2

Resources

Here are some links to help you get started:

¥ Learn Angular > <> CLl Documentation > ° Angular Material >

6 Angular Blog > @ Angular DevTools >

— ~

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig3_HTML.jpg
Category Buttons Product Table
o All e Product 1

o Watersports e Product 2
e Soccer e Product 3
e Chess e Product 4
([] ([]

OEBPS/images/421542_5_En_8_Chapter/421542_5_En_8_Fig3_HTML.jpg
w SportsStore

X

& - C @ localhost/cart

SPORTS STORE

T » &

Your Cart
Quantity Product Price Subtotal
» Stadium $79,500.00 $79,500.00
Total: $79,500.00

Continue Shopping

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig3_HTML.jpg
€ > C @ localhost:4200/admin/auth

Name
bob
Password

SportsStore Admin

Name
admin

Password

€ > C @ localhost4200/admin/main

Placeholder for Admin Features

OEBPS/css/sidebar.gif

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig3_HTML.jpg
) SportsStore

¥} SportsStore

SPORTS STORE \ & > C @ localhost:4200/cart
|

Home Product 1 Cart Detail Component

Category 1 Product 1 (Category 1)

Category 2 Product 2 $100.00

Category 3 Product 2 (Category 1) -
Product 3 $100.00

Product 3 (Category 1)
k,\-’\r#“‘"«,"’”'ﬁ =

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		Part I. Getting Ready

 		1. Getting Ready

 		2. Jumping Right In

 		3. Primer, Part 1

 		4. Primer, Part 2

 		5. SportsStore: A Real Application

 		6. SportsStore: Orders and Checkout

 		7. SportsStore: Administration

 		8. SportsStore: Progressive Features and Deployment

 		Part II. Working with Angular

 		9. Understanding Angular Projects and Tools

 		10. Using Data Bindings

 		11. Using the Built-in Directives

 		12. Using Events and Forms

 		13. Creating Attribute Directives

 		14. Creating Structural Directives

 		15. Understanding Components

 		16. Using and Creating Pipes

 		17. Using Services

 		18. Using Service Providers

 		19. Using and Creating Modules

 		Part III. Advanced Angular Features

 		20. Creating the Example Project

 		21. Using the Forms API, Part 1

 		22. Using the Forms API, Part 2

 		23. Making HTTP Requests

 		24. Routing and Navigation: Part 1

 		25. Routing and Navigation: Part 2

 		26. Routing and Navigation: Part 3

 		27. Using Animations

 		28. Working with Component Libraries

 		29. Angular Unit Testing

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig1_HTML.jpg
m

&< - C ® localhost:4200 Y o
Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig5_HTML.jpg
g SportsStore X

< C ® localhost:4200 & @™
SPORTS STORE
Product 1 $100.00

Product 1 (Category 1)

Product 2 $100.00

Product 2 (Category 1)

Product 3 $100.00

‘ Product 3 (Category 1) o
PRI 525D e

OEBPS/images/421542_5_En_6_Chapter/421542_5_En_6_Fig5_HTML.jpg
a SportsStore

X

& > C ® localhost:4200/cart

w »

SPORTS STORE

Your Cart
Quantity Product Price Subtotal
r Product 1 $100.00 $100.00
3 Product 3 $100.00 $300.00
1 Product 14 $100.00 $100.00
Total: $500.00

Continue Shopping

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig5_HTML.jpg
a Example X

< C @ localhost:4200

This is the form component

w

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig1_HTML.jpg
w ExampleApp X
& > C @ localhost:4200

Creating New Product

ID Name Category Price Details Name
1 Kayak Watersports $275.00 Acme, boat,small .
2 Lifejacket Watersports $48.95 Smoot Co, safety . SatEgory

3 Soccer Ball Soccer $19.50 (None) -
Price
4 Corner Flags Soccer $34.95 (None) .
5 Stadium Soccer $79,500.00 (None) - Supplier

6 Thinking Cap Chess $16.00 (None) -
7 Unsteady Chair Chess $29.95 (None) .

8 Human Chess Board Chess $75.00 (None) . Keyword 1

9 Bling Bling King Chess $1,200.00 (None) -
Create New Product Generate HTTP Error

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig1_HTML.jpg
Example X
_

& - C @ localhost:4200 w ®
Name Name Category Price

1 Kayak Watersports $275.00
Category

2 Lifejacket Watersports $48.95
Piice 3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95
5 Thinking Cap Chess $16.00

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig5_HTML.jpg
a o m
Acme

0

Editing Kayak
Keyword 1 b
boat r Price Details 4

rts $275.00 [Acme, boat,single person 1 -

Keyword 2 >
rts $4895 Smoot Co, shtety [oeiee 03]
single person Delete 3

4
f

OEBPS/images/421542_5_En_3_Chapter/421542_5_En_3_Fig5_HTML.jpg
9 DevTools - localhost:4200/ = O
3 ﬂ | Elements Console Sources Network Performance Memory Application Security Lighthouse » ° UbiéT || &
Page » i [stylescss mainjs X vendor,js polyfills.js stylesjs bootstrap 1] TR ot o (e O
v top 11 1 function myFunction(param) { “ > Watch
v localhost4200 12| if (typeof (param) === "number") { v Breakp
13| let result = param + 190;
._ (index) 14/ console.log("My result: " + result); No breakpoints
B mainjs 1K =
| &
. polyﬁlls.js | ig' elsetgrow ("Expected a number: " + param); B -
B runtimejs I 13% ’ ‘ Not paused
B styless 19} . v Call Stack
. ndori Za}myFunctxon(l); [
B vendorgs 21| myFunction("London"); ‘ Not paused
styles.css ’A‘ 5
» XHR/fetch Breal ts
» O fonts.gstatic.com 23\ —— i 5 _kpom
> DOM
> O webpacky// 25/ eakpoints
263, » Global Listeners
27*: /**sx¥x/ webpack_require__ => { // webpackRuntimelModules » Event Listener Breakpoints
| fren = et .
. ra&WbWu eld W "’w

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig5_HTML.jpg
|) Example X .

& > C @ localhost:4200 QA v @
Hello, World.
Name:

Kayak

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig5_HTML.jpg
e Example X

C @ localhost:4200

Hello, World

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig5_HTML.jpg
a SportsStore X

& > C ® localhost:4200/admin/main/products w @

SportsStore Administration

Id Name Category Price

1 Kayak Watersports §275.00 m
2 Lifejacket Watersports $48.95 m
3 Soccer Ball Soccer $19.50 m
4 Corner Flags Soccer $34.95 m
5 Stadium Soccer $79,500.00 m
6 Thinking Cap Chess $16.00 m
7 Unsteady Chair Chess $29.95 m
8 Human Chess Board Chess $75.00 m
9 Bling King Chess $1,200.00 m

Create New Product

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig10_HTML.jpg
m

& > C @ localhost:4200 4 @

Model Data: {"name*:"2"}

Name

2

Product names can only contain letters and spaces
Product names must be at least 5 characters

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig4_HTML.jpg
m

& > C ©® localhost:4200 % &
i Tax Rate:
20% v
Category
Name Category Price
Price 1 Kayak Watersports 330
2 Lifejacket Watersports 58.74
3 SoccerBall Soccer 234
4 Corner Flags Soccer 41.940000000000005
5 Thinking Cap Chess 192

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig11_HTML.jpg
a Example X

< C ® localhost:4200 % o

The product is Kayak.

second

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig10_HTML.jpg
0y Example X

< C @ localhost:4200

This is the model

Q A &
Name Category Price
Kayak Watersports 275
Lifejacket Watersports 48.95
Soccer Ball Soccer 19.5 |
Corner Flags Soccer 34.95 |
Thinking Cap Chess 16

OEBPS/images/421542_5_En_23_Chapter/421542_5_En_23_Fig4_HTML.jpg
B ExampleApp X

< C @ localhost:4200

Network Error: Not Found (404)

ID Name Category Price Details Name
1 Kayak Watersports $275.00 Acme, boat,small -
2 Lifejacket Watersports $48.95 Smoot Co, safety - Category

3 Soccer Ball Soccer $19.50 (None) -
Price
4 Corner Flags Soccer $34.95 (None) .
5 Stadium Soccer $79,500.00 (None) . Supplier

6 Thinking Cap Chess $16.00 (None) .
7 Unsteady Chair Chess $29.95 (None) .

8 Human Chess Board Chess $75.00 (None) - Keyword 1

9 Bling Bling King Chess $1,200.00 (None) .
Create New Product Generate HTTP Error

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig1_HTML.jpg
e SportsStore

¢ =

SPORTS STORE

SportsStore Ad

Name

[

Home Kayak

Chess A boat for ong

—
—

Soccer Lifejacket| F2=word

Watersports Protective and

Soccer Ba
Admin w size and weight

Corner Flags

Give your playing field a professional touch

4 per Page .Z 3

1

OEBPS/images/421542_5_En_18_Chapter/421542_5_En_18_Fig4_HTML.jpg
4 Corner Flags Soccer $24.95 w
5 Thinking Cap Chess $6.00

View Child Value: Oranges Discount

10

Content Child Value: Oranges
The discount is 10

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig9_HTML.jpg
a Example X

< C @ localhost:4200

This is the model There are 5 items in the model

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig4_HTML.jpg
7Y Example %

& > C @ localhost:4200 €y Example "
€ > C O localhost:4200

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig3_HTML.jpg
7Y Example X

& > C ® localhost:4200

This is the form component This is the table component

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig4_HTML.jpg
0y Exampletpp

& > C ® localhost:4200/table

ID Name Category Price Details

1 Kayak Watersports ~ $275.00 Acme, boat

2 Lifejacket Watersports ~ $48.95 Smoot Co, safety

3 Soccer Ball Soccer $19.50 (None)

4 Corner Flags Soccer $34.95 (None)

5 Stadium Soccer $79,500.00 (None)

6 Thinking Cap Chess $16.00 (None)

7 Unsteady Chair Chess $29.95 (None) Deld
8 Human Chess Board Chess $75.00 (None)

9 Bling Bling King Chess $1,200.00 (None

Create New Product Generate HTTP Error Generate Routing Error

G ExampleApp

Add Keyword

Keyword 1

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig3_HTML.jpg
Editing Lifejacket

setails

Name

\cme, boat,small
‘moot Co, safety
one)
Jne)

‘one)

Lifejacket

Category

B2 e
EBE -
- Supplier

Smoot Co

Add Keyword

Name

Lifejacket

Name

Lifejacket
Catego
90y Category
Watersports
Watersports
Price "
Price
48.95
48.95
Supplier
PP Supplier
Smoot Co
Smoot Co
Add Ke d
Keyword 1
Keyword 1
safef
il safety
Keyword 2

- S - |

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig7_HTML.jpg
X

@ localhost:4200

Hello, World

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig7_HTML.jpg
Category

Watersports

Soccer Ball

Corner Flags

3

2 Lifejacket

Category Category

Watersports Watersports

D Name Name Category

1 Kayak e

Soccer Ball Soccer

Soccer Ball 4 et e e

¢ P Bl g > : '

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig1_HTML.jpg
ERBBEO S

> node_modules

> src
.browserslistrc

£ .editorconfig

© .gitignore

{} angularjson

KX karma.confjs

{} package-lockjson

{} package.json

® README.md

{} tsconfig.app.json

tsconfig.json

{} tsconfig.spec.json

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig5_HTML.jpg
0 Todo X

& > C ® localhost:4200

Bob's To Do List&‘_2

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig7_HTML.jpg
Create New Product

Create Product

Name

Rocket Shoes

Name

6 Thinking Cap

4 Unsteady Chair

Category
Running

8 Human Chess Board

Description
Secure a podium finish

Price

275

9 Bling King

SportsStore Administration

Category

Chess

Chess

Chess

Chess

Price

bl 10 Rocket Shoes

Running

]

Create New Product

Items per page: 5 - 6-100f10 <

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig7_HTML.jpg
g SportsStore X

€ > C ® localhost:4200 x @™
Home | Product 7 $100.00
Category 1 | Product 7 (Category 2)
Category 2 Product 8 $100.00

Product 8 (Category 2)

Category 3

Product 9 $100.00

Product 9 (Category 2)

n
EN
wm

3 per Page ‘ T | 2

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig6_HTML.jpg
Name
Category

Price

m

& > C @ localhost:4200

w 5
Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig20_HTML.jpg
a Example

X

< C @ localhost:4200

Show Content

Create

Name

Soccer Ball

Corner Flags

Thinking Cap

Category Price

Watersports

Watersports

Delete

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig21_HTML.jpg
Name Category Message

Kayak Watersports Helps you stay dry
Lifejacket Watersports Helps you stay dry
Soccer Ball Soccer Helps you score goals
Corner Flags Soccer Helps you score goals
Thinking Cap Chess Helps you have fun

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig7_HTML.jpg
g ExampleApp

& > C @ localhost:4200/form/edi

Name

Stadium }

Category

Football '

Price

} 79500 |

B R . Sy s S S

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig6_HTML.jpg
g ExampleApp X

& C @ localhost:4200 D g :
ID Name Category Price Name
1 Kayak Watersports ~ $275.00 Egit K2
2 Lifejacket Watersports ~ $48.95 Edit

RN SN U NPT ' Y ¥ _NUROTG

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig1_HTML.jpg
g ExampleApp X
& S

C @ localhost:4200/table * @

Watersports There are 9 products

Soccer ID Name Category Price Details

E— 1 Kayak Watersports ~ $275.00 Acme, boat,small -

2 Lifejacket Watersports $48.95 Smoot Co, safety -
3 Soccer Ball Soccer $19.50 (None) -
4 Corner Flags Soccer $34.95 (None) -
5 Stadium Soccer $79,500.00 (None) .
6 Thinking Cap Chess $16.00 (None) -
7 Unsteady Chair Chess $29.95 (None) -
8 Human Chess Board Chess $75.00 (None) -
9

Bling Bling King Chess $1,200.00 (None) -
Create New Product Generate HTTP Error Generate Routing Error

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig5_HTML.jpg
Name

Running Shoes

Category

Running

Price

100

Example
Pl

& 2> C ® localhost:4200

=)

Name Category Price
Kayak Watersports P75
Lifejacket Watersports 48.95
Soccer Ball Soccer 19.5
Corner Flags Soccer 34.95
Thinking Cap Chess 16
Running Shoes Running 100

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig18_HTML.jpg
Y Example X

€ > C ® localhost:4200 A @ :

|
Name e : , . .,

Category

Price

e

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig7_HTML.jpg
| Y Example x

& > C ® localhost:4200 QA s ®
Name:
Kayak
1 2 3 4 5

Kayak

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig14_HTML.jpg
B Example X

& > C ® localhost:4200

There are problems with the form
e You must enter a name

“ Example X

& > C @ localhost:4200

Name
* You must enter a category [5]
X Running Shoes
* You must enter a price -
Category

Name [Running]
[Price
Category l 100 I
Price

[

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig6_HTML.jpg
a Example

Name

Soccer Boots

& > C @ localhost:4200

X

C;tegpq B
Soccer
Price

100

& 2> C @ localhost:4200 * &
Tax Rat
‘ | Nonel Name Tax Rate:
| Catego| — J | e M ‘
‘ Category
| Soced | Category Filter:
- Soccer v
‘ Na Pprice

a Example X

Create

2 Corner Flags

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig14_HTML.jpg
m

& 2> C @ localhost:4200 + @
NEREI| © show Content
Name Category Price

_ 1 Kayak Watersports 275
_ 2 Lifejacket Watersports 48.95

3 Soccer Ball Soccer 19.5
- 4 Corner Flags Soccer 34.95

Create
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_19_Chapter/421542_5_En_19_Fig1_HTML.jpg
m

& S5 C @ localhost:4200 w &
Name Name Category Price

1 Kayak Watersports $265.00
Category

2 Lifejacket Watersports $38.95
Biice 3 Soccer Ball Soccer $9.50

4 Corner Flags Soccer $24.95
5 Thinking Cap Chess $6.00

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig17_HTML.jpg
g Example X

6 Example X
C @ localhost:4200

& - C ® localhost:4200

Show Content

Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig13_HTML.jpg
& > C @® localhost:4200 W o

n . + NI - \ /S = 3 Ve,
Proauct Names: Kavyak, LITeJ:

The rounded price is 48

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig10_HTML.jpg
Example X ‘
) Examp

< C @ localhost:4200 VR

Repeated Content

Repeated Content

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig12_HTML.jpg
m

& - C @ localhost:4200 % @ :
Nine ~ Tax Rate:

‘ 1 None hd
Sy e ______________

\ J 10%

Price
| |

Create 3 Soccer Ball Soccer $19.50 Delete

4 Corner Flags Soccer $34.95 ‘

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig1_HTML.jpg
& S5 C @ localhost:4200 QA % @& :

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig2_HTML.jpg
Example X
m

& > C ® localhost:4200 % &
Name Name Category Price
1 Kayak Watersports 275
Category
2 Lifejacket Watersports 48.95
Price 3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_5_Chapter/421542_5_En_5_Fig1_HTML.jpg
g SportsStore X

& > C @ localhost:4200 w s

SportsStore Will Go Here

OEBPS/images/421542_5_En_3_Chapter/421542_5_En_3_Fig1_HTML.jpg
Primer X
A]

< C @ localhost:4200

Resources

Here are some links to help you get started:

¥ Learn Angular > <> CLI Documentation > o Angular Material >

W L oay Sy Y NPy Ry SO P SN N

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig8_HTML.jpg
& > C @ localhost:4200 %t s

Model Data: {"name"” “Running Shoes" “category :*Running”, price’:"120.23"}

Name j
| Running Shoes ‘

Category

\ 4
| Running
Fiiae

| 120,23 - - \

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig9_HTML.jpg
Add Keyword

The keywords must be unique

Keyword 1

boat Delete

Keyword 2

o (D

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig2_HTML.jpg
a Example

& > C ©® localhost:420

| Show Table

g Example X

& > C @ localhost:4200 e
Show Table

Name Category Price
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig5_HTML.jpg
Example X
m

& > C @ localhost:4200 w &
1_Kayak I Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Sodcer 19.5

4 Corner Flags Sg(:cer 34.95
5 Thinking Cap hess 16
ProductName /-

Lifejacket

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig11_HTML.jpg
m

& > C @ localhost:4200 w s
Name Name Category Price

1 Kayak Watersports $275.00
Category

2 Lifejacket Watersports $48.95
Price 3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95

5 Thinking Cap Chess $16.00

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig9_HTML.jpg
a ExampleApp X

& C (@ localhost:4200/form/create w

Network Error: Not Found (404)

Name

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig16_HTML.jpg
€ >

Example X
pl

C @ localhost:4200

) Example *
& > C @ localhost:4200 % &
Show Content
Name Category Price
1 Kayak Watersports 275
2 VLifej;cket ' Wat;rspons 748.95 {
3 VSoccer—B”aII V-Soccer 19.5
4 Corner Flags Soccer 734.95] 7
‘5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig10_HTML.jpg
e ExampleApp

e

ID Name

C @ localhost:4200

X

Category Price

Network Error: Not Found (404)

Details /

1 Blue Kayak

2 Lifejacket

3 Soccer Ball
Corner Flags
5 Stadium

6 Thinking Cap

7 Unsteady Chair

9 Bling Bling/King

Create New Product

Watersports $275.00

Watersports

Soccer

Soccer $34.95
$79,500.00
Chess $16.00
Chess $29.95
Chess $75.00
Chess $1,200.00

Generate HTTP Error

A

Smoot Co, safety
(None)
(None)
(None)
(None)
(None)
(None)

(None)

Category
Price

Supplier

Add Keyword

Keyword 1

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig13_HTML.jpg
G ExampleApp X
& - C @ localhost:4200

Editing Kayak

ID Name Category Price Details Name

1 Kayak Watersports $275.00 Acme, boat, small m Kayak

2 Lifejacket Watersports $48.95 (None) - Category
Watersports
3 SoccerBall Soccer $19.50 (None) .
Price
4 Corner Flags Soccer $34.95 (None) . 275
5 Thinking Cap Chess $16.00 (None) - Supplier

Acme
Create New Product Keywords
boat, small

-

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig2_HTML.jpg
g ExampleApp X

& > C @ localhost:4200/table *

ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat,small m
2 Lifejacket Watersports $48.95 Smoot Co, safety m
3 Soccer Ball Soccer $19.50 (None) m
4 Corner Flags Soccer $34.95 (None) m
5 Stadium Soccer $79,500.00 (None) m
6 Thinking Cap Chess $16.00 (None)
7 Unsteady Chair Chess $29.95 (None) m
8 Human Chess Board Chess $75.00 (None) m
9 Bling Bling King Chess $1,200.00 (None) m

Create New Product

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig12_HTML.jpg
Y Exampletpp

& - C @ localhost:4200/ondemand

This is the ondemand component

First Component

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig6_HTML.jpg
0} Example X +

& - C @ localhost:4200 Dk ¢
1 Kayak Watersports 275
2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

Product Name
Corner Flags
Product Name

Corner Flags

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig11_HTML.jpg
Example X ‘
) Examp

< C @ localhost:4200 VR

Header

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig10_HTML.jpg
m

& > C ® localhost:4200 % @&
Name Name Category Price

1 Kayak Watersports 275,00 $US
Category

2 Lifejacket Watersports 48,95 SUS
Price 3 Soccer Ball Soccer 19,50 $US

4 Corner Flags Soccer 34,95 SUS
5 ThinkingCap Chess 16,00 SUS

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig4_HTML.jpg
Example X
m

& - C @ localhost:4200 *r &
Name Name Category Price
Running Sh
unning Shoes 1 Kayak Watersports 275
Category
: 2 Lifejacket Watersports 48.95
Running
Price 3 Soccer Ball Soccer 19.5
100 4 Corner Flags Soccer 34.95

5 Thinking Cap Chess 16
\ 6 Running Shoes Running 100

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig8_HTML.jpg
m

& > C ® localhost:4200 w o

Name Category Price

2of 5 Lifejacket Watersports 48.95
SIOT: soccer Bal SOCCe 0.5 '
4 of 5 Corner Flags Soccer 34.95

hinkinc

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig12_HTML.jpg
e ExampleApp X

& > C @ localhost:4200

Creating New Product

ID Name Category Price Name

A name must be at least 3 characters
2 Lifejacket Watersports $48.95 - The name contains illegal characters

3 Soccer Ball Soccer $19.50 - Category
4 Corner Flags Soccer $34.95 -

Price
5 Thinking Cap Chess $16.00 - =

The price contains illegal characters
Create New Product

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig3_HTML.jpg
g ExampleApp

X

< C ® localhost:4200

Soccer

w

3 gSaccergall _

)§,Q§§§l‘ql_ﬁ. ,E'lg'soMf” let-] I ,of ot

ID Name Category Price blame
1 Kayak Watersports ~ $275.00 - Soccer
2 Lifejacket Watersports $48.95 Edit

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig11_HTML.jpg
g ExampleApp X

& > C ® localhost:4200/ondemand % @& :

This is the ondemand component
First Component

1

d Component] Second Component ‘

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig3_HTML.jpg
Q ExampleApp X

& > C @ localhost:4200/table * &

Id Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat,small
2 Lifejacket Watersports $48.95 Smoot Co, safety m
3 Soccer Ball Soccer $19.50 (None)
4 Corner Flags Soccer $34.95 (None)
5 Stadium Soccer $79,500.00 (None)
6 Thinking Cap Chess $16.00 (None)
7 Unsteady Chair Chess $29.95 (None)
8 Human Chess Board Chess $75.00 (None)
9 Bling Bling King Chess $1,200.00 (None)

Create New Product

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig9_HTML.jpg
QY Todo x
& > C @ localhost:4200

Bob's To Do List

¥ Task Done

1 Go for run

2 Get flowers

O false

3 Collect tickets O false

uTedo X
€ > C @ localhost:4200

Bob's To Do I ist

Task Done

Go for run true

2 Get flowers

3 Collect tickets O false

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig1_HTML.jpg
e ExampleApp X

& > C @ localhost:4200

Creating New Product

ID Name Category Price Details Name
\
1 Kayak Watersports ~ $275.00 Acme, boat, small - ‘
—_ Category
2 Lifejacket Watersports $48.95 (None) -

3 Soccer Ball Soccer $19.50 (None) -
Price
4 Corner Flags Soccer $34.95 (None) - |

5 Thinking Cap Chess $16.00 (None) Delete - Supplier

Create New Product
Keywords

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig15_HTML.jpg
m

& > C ® localhost:4200 W o
[| Show Content
Name Category Price

1 Kayak Watersports 275

2 Lifejacket Watersports 48.95
3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_29_Chapter/421542_5_En_29_Fig1_HTML.jpg
a ExampleApp X

< > C @ localhost:4200/ondemand w @& :
First Component
Second Component *‘ d Componen

OEBPS/images/421542_5_En_22_Chapter/421542_5_En_22_Fig2_HTML.jpg
Creating New Product

Natails

‘me, boat, small
ne)

“lone)
ne)

Jone)

Name

Category

Supplier

Keywords

Name

Kayak

Category
Watersports

Supplier

Name

Lifejacket

Category
Watersports

4895

Supplier

Smoot Co

Acme
Keyword 1
Keyword 1 safety
boat
Keyword 2
small

-

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig5_HTML.jpg
w ExampleApp X

& > C @ localhost:4200/table * @

Category

None

ID Name Category Price Details

1 |Kayak Watersports $275.00 Acme, boat,small -
2 |Lifejacket Watersports $48.95 Smoot Co, safety -

3 Soccer Ball Soccer $19.50 (None)

OEBPS/images/421542_5_En_12_Chapter/421542_5_En_12_Fig7_HTML.jpg
Host Element Expression

Directive

'

<input [(ngModel)]="selectedProduct">

¢ }
|

Banana in a Box

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig6_HTML.jpg
'0 ExampleApp X
€ > C @ localhost:4200/table

All ID Name 'G Emplebpp x

Kayak
Watersports

Lifeja D

Name tegory Price Details

3 Soccer Ball occer $19.50 (None)
Watersports

Soccer $34.95 (None)
SS
6 Thinking Cap
Create New Product Generate Routing Error

7 Unsteady Chair

Soccer Ball

4 Corner Flags

. Soccer $79,500.00 (None)
5 Stadium

8 Human Chess Board Chess $75.00 (None)

9 Bling Bling King Chess $1,200.00 (None)

Create New Product Generate HTTP Error Generate Routing Error

OEBPS/images/421542_5_En_28_Chapter/421542_5_En_28_Fig4_HTML.png
@ Eempletpp

€ > C @ localhost4200/table

Id Name

1 Kayak

~

Lifejacket

w

IS

o

Stadium

Soccer Ball

Comer Flags

Category Price Details
Watersports $275.00

Watersports $48.95

Soccer $19.50 (None)
Soccer $3495 (None)
Soccer $79.500.00 (None)

items per page: 5

~ 1-50f9

€ > C @ localhost4200/table

Id Name

6 [rhinking Cap Chess
7 Pnsteady Chair Chess
Chess
Chess

$16.00

$29.95

$75.00

$1,200.00

ftems per page:

Create New Product

]

Create New Prodi

€ > C @ localhost:4200/table

9 Bling Bling King

5 Stadium

$75.00 (1

$275.00 Afme, boat,small

Price + Details

ne)

$1,20000 (Yone)

$79,500.00 (one)

Create New Product

tems per page: 5

E3K

6-90f9 < >

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig1_HTML.jpg
m

& > C @ localhost:4200 w s
Name Name Category Price

1 Kayak Watersports 275
Category

2 Lifejacket Watersports 48.95
Price 3 Soccer Ball Soccer 19.5

4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig12_HTML.jpg
e Example X

& > C @ localhost:4200 +* @ :

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig8_HTML.jpg
a ExampleApp X

& > C @ localhost:4200/form/edit/1 w &

Discard Changes?

Name

Green Kayak

Category

Watersports

OEBPS/images/421542_5_En_13_Chapter/421542_5_En_13_Fig3_HTML.jpg
m

& > C ® localhost:4200 % &
Name Name Category Price
1 Kayak Watersports 275
Category
2 Lifejacket Watersports 48.95
Price 3 Soccer Ball Soccer 19.5
4 Corner Flags Soccer 34.95
5 Thinking Cap Chess 16

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig8_HTML.jpg
X

@ localhost:5000

Hello, World

OEBPS/images/421542_5_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/421542_5_En_8_Chapter/421542_5_En_8_Fig1_HTML.jpg
) SportsStore X
& > C @ localhost/store
SPORTS STORE
it Kayak
Chess A boat for one person
Soccer Lifejacket
Watersports Protective and fashionable

Soccer Ball

FIFA-approved size and weight

Corner Flags

Give your playing field a professional touch

4 per Page

=

Your cart: (empty) ™=

X
L4

$275.00

Add To Cart

$48.95

Add To Cart

Add To Cart

$34.95

Add To Cart

o

)

OEBPS/images/421542_5_En_20_Chapter/421542_5_En_20_Fig1_HTML.jpg
e ExampleApp X

& > C ® localhost:4200

5 Thinking Cap Chess

Create New Product

ID Name Category Price

1 Kayak Watersports $275.00 -
2 Lifejacket Watersports ~ $48.95 -
3 Soccer Ball Soccer $19.50 -
4 Corner Flags Soccer $34.95

O T

Name

Category

w

»

Creating New Product

Price

(oo [
Create Cancel

OEBPS/images/421542_5_En_10_Chapter/421542_5_En_10_Fig6_HTML.jpg
|) Example X .

& > C @ localhost:4200 QA F &
Name: Kayak
Name:

Kayak

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig12_HTML.jpg
uTodn
¢« > c

X

@ localhost:4200

Bob's To Do List

QY Todo X

& > C @ localhost:4200

Bob's To Do List

New To Do New To Do Add
Task Done # Task Done
1 Get flowers O Pl 1 Go for run
2 Collect tickets O 2 Get flowers O
3 Collect tickets O

_J® Show Completed Items /

@@ Show Completed Items

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig9_HTML.jpg
3 Soccer Ball Soccer $19.50 (None) w -

4 Corner Flags

G ExampleApp

5 Stadium
& > C @ localhost:4200/ondemand W

6 Thinking Cap
This is the ondemand component
7 Unsteady Chair
8 Human Chess Board
9 Bling Bling King Chess $1,200.00 (None)

Create New Product Generate HTTP Error

(oo IO
Load Module

Generate Routing Error

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig8_HTML.jpg
m

& > C @ localhost:4200 w s
Name Name Category Price

1 Kayak Watersports 275.00
Category

2 Lifejacket Watersports 048.95
Price 3 Soccer Ball Soccer 019.50

4 Corner Flags Soccer 034.95
5 ThinkingCap Chess 01600

OEBPS/images/421542_5_En_7_Chapter/421542_5_En_7_Fig6_HTML.jpg
) SportsStore X

& C @ localhost:4200/admin/main/products v

SportsStore Administration

Id Name Category Price

1 Kayak Watersports $275.00

2 Lifejacket Watersports $48.95

3 Soccer Ball Soccer $19.50

4 Corner Flags Soccer $34.95

5 Stadium Soccer $79,500.00

Create New Product Items per page: 5 - 1-50f9 >

OEBPS/images/421542_5_En_26_Chapter/421542_5_En_26_Fig3_HTML.jpg
Y Examplefpp X

) ExampleApp
€ > C @ localhost:4200/table

> C @ localhost:4200/table * &

- - Count Categories
Watersports here are 9 products

ID Name Category Price Details
1 Kayak Watersports $275.00 Acme, boat,small
2 Lifejacket Watersports $48.95 Smoot Co, safety
3 Soccer Ball Soccer $19.50 (None)
> 4 Corner Flags Soccer $34.95 (None)
5 Stadium Soccer $79,500.00 (None)
6 Thinking Cap Chess $16.00 (None)
7 Unsteady Chair Chess $29.95 (None)
8 Human Chess Board Chess $75.00 (None)
9 Bling Bling King Chess $1,200.00 (None)

Create New Product Generate HTTP Error Generate Routing Error

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig11_HTML.jpg
Y Todo X QY Todo x

& 5 C @ localhost4200 & > C © localhost4200

Bob's To Do List

g \’ | New To Do
| Wal log I/’f - 'Wiplion

Bob's To Do List

Task Done

Task Done
1 Get flowers 0 false 1 Get flowers 0O false
2 Collect tickets 0O false 3 Collect tickets 0 false

3 Walk the dog [0 false

OEBPS/images/421542_5_En_BookFrontmatter_Figa_HTML.png
APIess®

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig2_HTML.jpg
Pipe Name
Data Value Pipe Arguments

| —

{{item.price | currency:"USD":"symbol"}}

T

Vertical Bar

OEBPS/images/421542_5_En_25_Chapter/421542_5_En_25_Fig5_HTML.jpg
ra ExampleApp
& > C @ localhost:420

Name
Kayak

Category
‘Watersports

& > C @ localhost:4200/form/edit/2
Previous
Name Name
I Lifejacket " Soccer Ball
Cate Category
gory
Watersports

Ry (=) - S _
il & > C @ localhost:4200/form/edit/3

Soccer
ﬁﬂ',”"““}m’"w

OEBPS/images/421542_5_En_15_Chapter/421542_5_En_15_Fig4_HTML.jpg
index.html

'

<app>

»{ ProductComponent
template.html
i
<paProductForm> ——> ProductFormComponent |<—
.
<paProductTable> - ProductTableComponent f«—

OEBPS/images/421542_5_En_2_Chapter/421542_5_En_2_Fig4_HTML.jpg
& > C ® localhost:4200 B a @ % &

Bob's To Do List

2 Items

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig3_HTML.jpg
m Example X

< C ® localhost:4200

example app is running!

Resources

Here are some links to help you get started:

® Learn Angular > <> CLI Documentation >

S S ey ¥

OEBPS/images/421542_5_En_16_Chapter/421542_5_En_16_Fig20_HTML.jpg
Key Value

0 {"id™ 1, "name": "Kayak", "category": "Watersports", "price": 275 }
1 {"id": 2, "name": "Lifejacket", "category": "Watersports", “price": 48.95 }
{ “id": 3, “name": "Soccer Ball", “category": “Soccer", “price™: 19.5 }

{"id": 4, "name": "Corner Flags", “category": “"Soccer”, “price": 34.95 }

HowWwN

{"id": 5, "name": "Thinking Cap", "category": "Chess", "price": 16 }

OEBPS/images/421542_5_En_9_Chapter/421542_5_En_9_Fig9_HTML.jpg
& > C ® localhost:4200 Qa % ® :

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig9_HTML.jpg
a Example %

i C ® localhost:4200 %
Name Category Price
10f5 Kayak Watersports 275

50f5 Thinking Cap Chess

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig7_HTML.jpg
Price

Name

Price

275

48.95

19.5

34.95

16

Kayak
Soccer Ball
Corner Flags

Thinking Cap

275

19.5

34.95

16

s

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig8_HTML.jpg
ﬂ ExampleApp X

G ExampleApp

X

& > C ® localhost:4200/
& > C @ localhost:4200 bxg »
Name
Blue Kayak ID Name Category Price Details
1 Blue Kayak Watersports ~ $275.00 Acme, boat -
Category
Watersports Watersports ~ $48.95 Smoot Co, safety -
Price Soccer $19.50 (None) -
275
mer Flags Soccer $34.95 (None) -
Supplier -
Stadium Soccer $79,500.00 (None) -
Acme
6 Thinking Cap Chess $16.00 (None) .
7 Unsteady Chair Chess $29.95 (None) -
8 Human Chess Board Chess $75.00 (None) .
9 Bling Bling King Chess $1,200.00 (None)

Create New Product Generate HTTP Error

OEBPS/images/421542_5_En_27_Chapter/421542_5_En_27_Fig6_HTML.jpg
@ ExampleApp. x
QY ExampleApp
Q) Examplepp

« > c

@ localhost:4200/table

None
Name
= o ID Name Category Price Details
yal
1 Kayak Watersports $275.00 Acme, boat,small
2 Lifejacket
2 Lifejacket Watersports $48.95 Smoot Co, safety
3 Soccer Ball
3 Soccer Ball Soccer $19.50 (None)
4 Corner Flags
4 Corner Flags Soccer $34.95 (None)
5 Stadium
5 Stadium Soccer $79,500.00 (None)
6 Thinking Cap
6 Thinking Cap Chess $16.00 (None)
7 Unsteady Chair
- » Arnmnian || ™ s e o] B Ligteagh Glwiman \’.*,shesﬁ,www.'.r..-—l.-—

OEBPS/images/421542_5_En_17_Chapter/421542_5_En_17_Fig5_HTML.jpg
Example X
_

& - C @ localhost:4200 w ®
Name Name Category Price

1 Kayak Watersports $260.00 Delete
Category

2 Lifejacket Watersports $33.95 Delete
Pice . 3 Soccer Ball Soccer $5.00 Delete

$19.95 Delete

5 Thinking Cap Chess $5.00 Delete

Discount

4 Corner Flags

Discount

15
‘15/ ‘]

The discount is 15 |
The discount is 15

OEBPS/images/421542_5_En_4_Chapter/421542_5_En_4_Fig1_HTML.jpg
Y Todo X

& 5 C @ localhost:4200

w

>

Adam'’s To Do List

Add

Description Done
Buy Flowers No
Get Shoes No
Collect Tickets Yes
Call Joe No

OEBPS/images/421542_5_En_11_Chapter/421542_5_En_11_Fig3_HTML.jpg
& > C @ localhost:4200 % @

OEBPS/images/421542_5_En_21_Chapter/421542_5_En_21_Fig4_HTML.jpg
Soccer

e Name
Name 5.00 Soccer
4 : \ Socced - il

Edit
" Edit N

Edit
50 Edit

Edit
95 Edit

" SRR e g e g e ,.gff NP Y v N Ny

y

OEBPS/images/421542_5_En_24_Chapter/421542_5_En_24_Fig2_HTML.jpg
G ExampleApp X

& > C ® localhost:4200 w &

ID Name Category Price Details

1 Kayak Watersports $275.00 Acme, boat,small -
2 Lifejacket Watersports $48.95 Smoot Co, safety -
3 Soccer Ball Soccer $19.50 (None) .
4 Corner Flags Soccer $34.95 (None) -
5 Stadium Soccer $79,500.00 (None) -
6 Thinking Cap Chess $16.00 (None) Cedt
7 Unsteady Chair Chess $29.95 (None) -
8 Human Chess Board Chess $75.00 (None) .
9 Bling Bling King Chess $1,200.00 (None) -

Create New Product Generate HTTP Error

OEBPS/images/421542_5_En_14_Chapter/421542_5_En_14_Fig1_HTML.jpg
m

&< > C ® localhost:4200 * o
Name Category Price

; 1 | Kayak Watersports 275

|2 Lifejacket ‘ Watersports 48.95

V 3“ 7 7Soo£:er1Ball 7 ’;occer 19.5

4 Corner Flags ‘ Soccer 34.95

s Thinking Cap Chess 16

