

 [image: Cover image]
 Book cover of Spring Boot with React and AWS

 Ravi Kant Soni and Namrata Soni

Spring Boot with React and AWS
Learn to Deploy a Full Stack Spring Boot React Application to AWS
1st ed.
[image: ../images/513001_1_En_BookFrontmatter_Figa_HTML.png]Logo of the publisher

Ravi Kant Sonis/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

Namrata Sonid/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

				ISBN 978-1-4842-7391-3e-ISBN 978-1-4842-7392-0
https://doi.org/10.1007/978-1-4842-7392-0
© Ravi Kant Soni and Namrata Soni 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

To my beloved father, the late Ras Bihari Prasad We miss you and love you, Papa. A strong and gentle soul who taught us to trust God and to believe in ourselves and our dreams.
To my beloved mother, Smt. Manorma Devi We love you, Maa. We could never have completed this book without your true love, warmest support, and constant encouragement.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.apress.com/9781484273913. For more detailed information, please visit http://www.apress.com/source-code.
Acknowledgments
Writing a technical book involves fathomless research, review, and support. I wrote this book, but it wouldn’t have been possible without the love and support of many people. I truly want to thank everyone listed here, from the deep bottom of my heart!
First and foremost, I need to express gratitude toward Michael Gorriz, Group Chief Information Officer, Standard Chartered Bank, for inspiring me and giving me the confidence to write this book when I anticipated my career break. All I can offer in return is a heartfelt thank you!
I want to thank my colleagues at Standard Chartered Bank. I learn something new every day and enjoy a camaraderie I’ve never felt in any company before. I am fortunate enough to work with such an experienced team that helped me enhance my skills. My gratitude goes to Anshu Sharma Raja, CIO, Consumer Private Business Banking at Standard Chartered Bank, and Dr. Ashish Chandra, Location Head- aXess Labs (Banking Innovation) at Standard Chartered Bank; for their guidance and strong support.
I want to thank the Apress publishing team for the utmost professionalism. The one individual who has been the roof of this shelter is Divya Modi, coordinating editor, for supporting me in the writing of this book. Also, I would like to express my special gratitude to James Markham, development editor, whose vision, commitment, and persistent efforts made publishing this book efficient.
My heartfelt thanks go to the technical reviewer, Karunesh Chandra Tiwari, for his valuable input.
My deepest gratitude and appreciation go to my dear friend Awanish Kumar, IAS – Deputy Commissioner, Delhi; for the intellectual stimulus from time to time, which helped me approach the book from a unique perspective.
Thanks to my dearest friend, Dr. Meena Soni (Incharge Medical Officer, Surajpur - Basdei, and Chhattisgarh), for invariably motivating, encouraging, and giving me positive thoughts that worked as fuel to carry on.
Without my families’ love, support, and understanding, this book would have remained a virtual commodity. My profound thanks to my beloved mother, Smt. Manorma Devi, for her love and support, which encourages my knowledge to come out on paper to ignite the imagination of others.
My special thanks go to a man who has been a rock of stability throughout my life and whose loving spirit sustains me still—my uncle Shri. Arun Kumar Soni for the great inspiration he has given me to achieve all success in life. Thanks also to my brothers, Shashi Kant and Shree Kant, and all my family members who have loved me.
My special thanks to my co-author and sister, Namrata Soni, for agreeing to co-author this book and helping me write Chapter 5, which discusses React and AWS S3. I’m still amazed that she agreed to get involved with this book, considering how enormously busy she is. Namrata, thank you!
I want to thank the goddess Maa Tara Chandi, Sasaram, Bihar, India; for giving me to such an extent.
Finally, this book is based on the innovative work of many people in our industry who have become my idols. I am thankful to everyone who supported me in one way or another in writing this book.
Welcome to Spring Boot with React and AWS.
—Ravi Kant Soni

Table of Contents

Chapter 1:​ An Introduction to Amazon Web Services (AWS)1
Introduction to Amazon Web Services2

AWS Key Services4
Elastic Cloud Compute (EC2)5

Elastic Beanstalk7

Relational Database Service (RDS)8

Route 538

Use Case:​ AWS Application Architecture9

Create a Free AWS Account for Developer9

Explore and Create an AWS Elastic Beanstalk Server19

Create a HelloWorld JSP Application, Build WAR with Maven, and Upload WAR to Elastic Beanstalk26
Create a HelloWorld JSP Application26

Package a WAR File Using Maven32

Upload WAR to Elastic Beanstalk34

Summary40

Chapter 2:​ Deploy a Spring Boot Application as a REST API in AWS41
Build a Spring Boot Application as a REST API42
Introduction to REST42

System Requirements44

Create Spring Boot Application Using Spring Tool Suite45

A Walk-Through48

Run a Spring Boot Application in STS53

Add Swagger UI to a Spring Boot Application56
Introduction to Swagger 256

Add Dependency in a Maven POM57

Configure Swagger 2 into a Project57

Configuration Verification59

Swagger UI60

Configure the Server Port for a Spring Boot Project61

Build a JAR for a Spring Boot Application63

Deploy a Spring Boot Application in AWS Elastic Beanstalk67

Test a Spring Boot Application as a REST API in the Cloud73

Explore Logs from Elastic Beanstalk74

Summary75

Chapter 3:​ Deploy MySQL as a Database in AWS with RDS77
Introduction to Amazon RDS (Amazon Relational Database Service)78

Create an Instance of the RDS Database in AWS78

Configure Amazon RDS86
Step 1.​ Configure Security for Inbound Connection Rules88

Step 2.​ Test an Amazon RDS Database Instance Connection with MySQL Workbench91

Create a Table Inside an RDS Database Instance96

Summary102

Chapter 4:​ Deploy a Spring Boot Application Talking to MySQL in AWS103
Create Spring Boot UserRegistration​App Talking to MySQL Database103
Maven Dependency in pom.​xml105

Project Lombok108

Application Properties111

Domain Implementation:​ UserDTO Entity Class112

Repository Implementation:​ UserJpaRepositor​y114

Service Implementation:​ UserService116

REST Controller Implementation:​ UserRegistration​Controller117

Run and Test UserRegistration​App Locally121
Retrieve All Users:​ /​api/​users122

Retrieve an Individual User:​ /​api/​user/​id/​{id}123

Create a New User:​ /​api/​user/​save124

Delete an Existing User:​ /​api/​user/​delete/​id/​{id}126

Swagger UI:​ API Documentation126

Build a JAR for a Spring Boot Application128

Deploy the UserRegistration​App Spring Boot Application in AWS Elastic Beanstalk129

Test Deployed REST API in AWS Using Swagger UI135
List All Users:​ /​api/​users137

Create New Users:​ /​api/​users139

Summary141

Chapter 5:​ Deploy a Full Stack Spring Boot React Application in AWS and S3143
Develop and Run React as a Front-End Application145
Introducing React as a Front-end Framework145

Set up a Development Environment149

Cross-Origin Resource Sharing (CORS) Error150

Developing React Front-End Application with create-react-app151

Build React Code as a Front-end Application for AWS180
Verify the AWS Elastic Beanstalk Environment Is Up180

Update BaseURL in a React App with an AWS Elastic Beanstalk Environment URL181

Build React Code for AWS Deployment183

Deploy a React Front-End to AWS S3:​ Hosting a Static Website185
Introduction to S3:​ Simple Storage Service in AWS185

Create a Bucket188

Verify the Successful Deployment of a React Front-end Application:​ Resolve a 404 Error198

Summary200

Appendix A:​ Install MySQL Workbench on Windows 10201
Step 1.​ Download Workbench201
Step 2.​ Install Workbench204
Appendix B:​ AWS Command-Line Interface (CLI)213
Step 1.​ Download and Install the AWS CLI on a Windows Operating System214
Step 2.​ Create an Access Key214
Configure AWS CLI217
Example Commands That Work with S3217
Index219

About the Authors

Ravi Kant Soni[image: ../images/513001_1_En_BookFrontmatter_Figb_HTML.jpg]

is a principal full stack engineer with more than 11 years of IT experience. He is also an AWS Certified Solutions Architect. Ravi has experience in software development, software design, systems architecture, application programming, and automation testing. He has a bachelor’s degree in Information Science and Engineering from Reva University, Bangalore; and schooling from Bal Vikash Vidyalaya, Sasaram, and Bihar (India). He is the author of Build Microservices with Spring Cloud and Spring Boot (codered eccouncil, 2021), Full Stack AngularJS for Java Developers (Apress, 2018), Spring: Developing Java Applications for the Enterprise (Packt, 2017), and Learning Spring Application Development (Packt, 2015). He is also an esteemed member of the Board of Studies at the REVA University School of Computing and Information Technology in Bangalore. Contact Ravi at www.linkedin.com/in/november03ravikantsoni/.

Namrata Soni[image: ../images/513001_1_En_BookFrontmatter_Figc_HTML.jpg]

is a self-taught web application developer with a passion for beautiful and interactive UIs. She has a degree in computer science from Sagar Institute of Science & Technology, Bhopal; and schooling from Bal Vikash Vidyalaya, Sasaram, and Bihar (India). She loves clean and well-tested code, is a big fan of open source, and enjoys learning something new. Currently, she is working with React and Node.js to craft modern JavaScript applications. Contact Namrata at www.linkedin.com/in/september-6-namrata-soni/.

About the Technical Reviewer

Karunesh Chandra Tiwari[image: ../images/513001_1_En_BookFrontmatter_Figd_HTML.jpg]

is an IT professional with ten years of experience and has worked across distinct technologies and domains. He is a technologist and speaker and loves to provide his views on articles and blogs.
Karunesh is a BTech IT graduate from Anna University. He worked as a full stack developer for the first half of his career and currently works with BPM and CRM tools and cloud-related technologies, including developing and working with applications for some of the world’s leading banks. He is a very focused and determined person and loves to learn, work in new technologies. He loves to mentor people both from a professional and a personal perspective.
Karunesh enjoys working with new technologies and loves to mentor people. Check out his LinkedIn profile at www.linkedin.com/in/karunesh-chandra-tiwari-20b9a82a/.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
R. K. Soni, N. SoniSpring Boot with React and AWShttps://doi.org/10.1007/978-1-4842-7392-0_1

1. An Introduction to Amazon Web Services (AWS)

Ravi Kant Soni1 and Namrata Soni2
(1)s/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

(2)d/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

When you hear the word amazon, you likely first think of Amazon.​com, which is one of the biggest and most successful online stores. While Amazon built its brand on developing online retail services, it has also branched out into alternative industries, among them the web services industry, where they have the eponymous Amazon Web Service (AWS), a form of cloud-computing that assists users develop software, database, and other programs that need heavy-duty computing resources.
This chapter overviews Amazon Web Services (AWS), including several AWS key services, such as Amazon Elastic Compute Cloud (Amazon EC2), AWS Elastic Beanstalk, Amazon Relational Database Service (Amazon RDS), and Amazon Route 53. It covers creating a free AWS account for developers, creating an Elastic Beanstalk server, creating a HelloWorld JSP application, building a WAR file with Maven, and uploading it to Elastic Beanstalk.
Introduction to Amazon Web Services
What precisely is Amazon Web Services (AWS)? At a really high level, AWS is a web-hosting service offered by Amazon, where you can deploy your web applications and conjointly deploy your databases. Once it’s deployed, your apps are out there online. Anyone can simply enter your URL (Universal Resource Locator) in their web browser to access your application. The web connects everybody. You can deploy your application online within the cloud, so that anyone can access it. It’s not only running locally; it’s now running online.
AWS is a full-service cloud platform. It is more than just an application hosting platform. There are plenty of belongings you do with AWS.	On-demand delivery of IT resources via the web	You can spin up servers on-demand, and you can choose your operating system.

	You can even deploy databases within the cloud, and you get more options for the database as you wish.

	Pay-as-you-go pricing model	This book uses free developer accounts. You can get a free developer account for 12 months.

And, the nice thing about using the Amazon Web Services cloud is that you can be global within minutes because Amazon has worldwide data centers, as shown in Figure 1-1.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig1_HTML.jpg]
Figure 1-1Amazon data center

You’ll be able to deploy your application to a single data center; otherwise, you’ll deploy it to multiple data centers. Also, there are no restrictions on which data center you’ll be able to deploy to.
If you’re based mostly within the United States, however, you can deploy applications to the data center in South America, China, or the Asia Pacific. It’s completely up to you. The user can select the regions based on the application usage so that latency is low. There’s no restriction as such on it.
Once you’re logged in to the Amazon console, then essentially, you choose the services that you simply wish to use. You need to only deploy your applications to have a pleasant web admin console where you only configure your environment, configure your servers, then reasonably push-button deploy. Figure 1-2 shows the AWS services on AWS Management Console.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig2_HTML.jpg]
Figure 1-2AWS

This was all about an introduction to Amazon Web Services. Let’s dig into some of the AWS key Services.
AWS Key Services
AWS offers a wide range of services underneath different categories. This section explores several AWS key services (see Figure 1-3). First, let’s look at Amazon Elastic Compute Cloud (Amazon EC2), which may include remote VMs (virtual machines). Next, you briefly look at AWS Elastic Beanstalk, which allows developers to deploy web applications. Then, you move on to the Amazon Relational Database Service (Amazon RDS), which is a database within the cloud. Finally, you look at Amazon Route 53, which routes custom domain names to your application.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig3_HTML.jpg]
Figure 1-3AWS key services

Elastic Cloud Compute (EC2)
Elastic Cloud Compute (EC2)

 is one of the first web service interfaces when AWS was released, allowing users to create and configure compute machines within the cloud. EC2 allows users to create VM (virtual machine) on the Amazon cloud for running applications that can be accessed via the Internet.
The software can be configured on cloud servers based on your specifications. You select the operating system (i.e., Microsoft Windows or Linux) best suited to your requirements or applications, and you get the operating system pre-installed. EC2 provides the actual host server and operating system. Figure 1-4 shows how it is set up.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig4_HTML.jpg]
Figure 1-4How EC2 is set up

If you want any additional software, you must manually install it on top of the OS as a developer. So, if you want JDK (Java Development Kit), you can install Java. You can also install Tomcat, a database, and so on. It’s almost like getting a brand-new laptop that only has the operating system, and you need to install your tools on top of it.
Elastic Beanstalk
Elastic Beanstalk is a pre-packaged platform, allowing you to quickly deploy and handle your web applications without worrying about the infrastructure. You select a pre-configured virtual machine for your given web stack, like Java and Tomcat. And, there is no need to install any additional software’s on the virtual machine. You simply upload the application’s deployable file, and then you are out there and ready to go. Elastic Beanstalk automatically provides the application server, language runtime, operating server, and the host server, as shown in Figure 1-5.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig5_HTML.jpg]
Figure 1-5Elastic Beanstalk

It also has support for .NET, Node.js, PHP, Docker, and so on. You can choose the web stack that gives you all the software’s pre-installed, pre-configured, and you simply deploy your code.
It’s great for deployment on a web stack, you simply select the services that you need, and it is set up for you. This is known as platform as a service, or PaaS. All you have to do is deploy your code.
Now, when you develop Java applications on AWS, you can use your regular Java EE APIs. You can also use third-party frameworks like Spring Boot, Hibernate, and anything in standard Java. Whatever you can run on Tomcat locally, you can run that same code on Amazon. So, there are no code changes you need to make and no special Amazon JAR files or anything.
Relational Database Service (RDS)
AWS Relational Database Service (RDS)

 is your relational database in the cloud. This allows you to quickly deploy a relational database in the cloud. It has support for a wide range of databases to choose from, including MySQL, Oracle, Microsoft SQL Server, and so on.
You can manage these tools using your normal admin tools. If you are using MySQL, you can use MySQL Workbench. If you are using the Oracle Database, you can use Oracle SQL Developer, and the list goes on.
AWS also has support for NoSQL databases such as MongoDB. So, all major database feature’s that you need can be found in AWS with the support of the relational Database Service.
Route 53
Amazon Route 53

 is a Domain Name System (DNS), which allows you to route your custom domain names to your actual application on AWS. So, you configure Route 53 to send requests from the browser to your AWS application. The AWS DNS sets up your custom domain name.
Use Case: AWS Application Architecture
For your apps, start with AWS Elastic Beanstalk because you can quickly get started with deploying your application by leveraging those pre-configured web stacks out of the box.
Use EC2 if you need some low-level control. For example, you may want to use a version of Java that Elastic Beanstalk does not support, or you may want to use a Java application server like WebLogic or make another OS-specific customization.
Figure 1-6 shows that the architecture uses Elastic Beanstalk to deploy the web application. The Java application runs on Tomcat. RDS is the database in the cloud using MySQL. Route 53 routes your custom domain name to your application hosted on AWS.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig6_HTML.jpg]
Figure 1-6AWS application architecture

Create a Free AWS Account for Developer
To access Amazon Web Services, you need to create an AWS account. First, let’s talk about the AWS free tier, where developers get a free 12 months trial period and enough resources to deploy your application and database for free. There is also a smaller version of AWS servers that you can use for free.
If you need to have some more advanced features, then you must pay and get access. This book uses the free tier. If you would like more information on the free tier, go to https://aws.amazon.com/free/.
In your web browser, go to https://aws.amazon.com to open the Amazon Web Services home page (see Figure 1-7; this screenshot may be different on your screen due to any updates by Amazon).[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig7_HTML.jpg]
Figure 1-7AWS main page

To create an AWS account, you need to provide your contact information, including your address, and a valid debit or credit card. Even though you are using a free account, Amazon needs your credit or debit card information. So, have it handy when creating your AWS account.
On the top right of the main page, click the Create an AWS Account button. You are redirected to the sign up for the AWS page, as shown in Figure 1-8.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig8_HTML.jpg]
Figure 1-8Sign up for AWS

Enter your email address, password (choose a strong password to prevent getting hacked), and the AWS account name that you want for this account. You must be sure that the account information you enter is correct, especially your email address. If you enter an incorrect email address, you can’t access your account.
Click the Continue button to enter your contact information, as shown in Figure 1-9.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig9_HTML.jpg]
Figure 1-9Contact information

First, select the Personal account type. (A business account is associated with an organization, and a personal account is associated with an individual.) Enter your full name, phone number, country, address, city, state, and postal code.
Finally, select the little check box at the bottom to show that you have read and agree to the terms of the AWS Customer Agreement, and then click the Continue button.
You receive an email from AWS to confirm that your AWS account has been created. You can sign in to your new account using the email address and password you registered with. However, you can’t use AWS services until you finish your account activation.
Billing information is where you must enter your credit or debit card number and so forth, as shown in Figure 1-10. It is used for verification purposes.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig10_HTML.jpg]
Figure 1-10Billing information

Amazon does not charge your card unless your usage exceeds AWS Free Tier limits. In this book, everything that we show you is within the Free Tier limits.
AWS requires phone number verification, as shown in Figure 1-11. Choose your country or region code from the list, enter a phone number where you can be immediately reached, and enter the characters displayed in Security Check.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig11_HTML.jpg]
Figure 1-11Phone number verification

Once you type the security check characters, click the Call Me Now button. A verification code is displayed on the screen, and at the same time, you get a call from Amazon to verify your registered phone number. You must enter the PIN you received and choose to continue. Once your identity has been successfully verified, you can see on the window that your phone is verified, and you are redirected to the next screen to choose your support plan, as shown in Figure 1-12.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig12_HTML.jpg]
Figure 1-12Support plan

Choose the support plan that meets your needs. Select the Basic Plan for free support. Click the Free button, and you are redirected to the AWS Registration Confirmation page.
Now you can sign in to the AWS Management Console. Go to https://console.aws.amazon.com to start using AWS.
Select Root user

, enter your AWS account email address, and click the Next button, as shown in Figure 1-13.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig13_HTML.jpg]
Figure 1-13Sign in to the console

Next, enter your AWS account password, and click Sign in, as shown in Figure 1-14.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig14_HTML.jpg]
Figure 1-14Sign-in password

The AWS Management Console is shown in Figure 1-15.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig15_HTML.jpg]
Figure 1-15AWS Management Console

This is where you can find all the different services that are available and provided, but they are grouped by category, as shown in Figure 1-16.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig16_HTML.jpg]
Figure 1-16AWS services by category

The next section uses the Elastic Beanstalk service to begin building a web application. Tomcat is running in the AWS cloud.
Explore and Create an AWS Elastic Beanstalk Server
On the AWS services page, scroll down to the Compute section and select Elastic Beanstalk, as shown in Figure 1-17. It allows you to run and manage your web application.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig17_HTML.jpg]
Figure 1-17Elastic Beanstalk under Compute section

The AWS Elastic Beanstalk page is shown in Figure 1-18.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig18_HTML.jpg]
Figure 1-18AWS Elastic Beanstalk

Elastic Beanstalk is the simplest way to deploy and run your web application on AWS. Elastic Beanstalk automatically handles the deployment details of capacity provisioning, load balancing, automatic scaling, and web application health monitoring.
Here, you select a platform, upload an application, or use a sample, and then run it. This chapter used a sample, and Tomcat is the platform for deploying the application code.
Click the Create Application button. This takes you to the Create a web app page shown in Figure 1-19.

[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig19_HTML.jpg]
Figure 1-19Create a web app

Name the application My First Elastic Beanstalk Application, as shown in Figure 1-20.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig20_HTML.jpg]
Figure 1-20Application name under Application information

Next, select the platform from the drop-down list. Choose Tomcat, as shown in Figure 1-21.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig21_HTML.jpg]
Figure 1-21Platform

 under Application information

Select the default Tomcat branch and version, as shown in Figure 1-22.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig22_HTML.jpg]
Figure 1-22Platform details on selecting platform under Application information

Under Application code, select Sample application, as shown in Figure 1-23, and then click the Create application button.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig23_HTML.jpg]
Figure 1-23Application code

At this point, AWS provisions a server for you, as shown in Figure 1-24. It has Java installed, running on Linux, and Tomcat is already pre-installed.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig24_HTML.jpg]
Figure 1-24Environment details

You see diagnostics on the screen while the work is going on in the background.
Eventually, your application is deployed successfully, and the health status is OK, as shown in Figure 1-25. The link to your application appears in the top-left of the window. So, if you click the link, you see your application up and running.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig25_HTML.jpg]
Figure 1-25Health OK

This will start the sample application and configuring Linux, Tomcat, and Java. The logs shown in the following Figure 1-26 inform that the environment launched successfully.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig26_HTML.jpg]
Figure 1-26Logs

Figure 1-27 shows the Congratulations screen.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig27_HTML.jpg]
Figure 1-27Congratulations screen

Your app is now running on the AWS cloud, and its URL is live on the Internet. Tomcat is running on your dedicated environment in the AWS cloud.
Right now, you are simply using the sample application, but later, you upload your applications and run them in the AWS cloud. You can add a custom domain name to the URL.
Create a HelloWorld JSP Application, Build WAR with Maven, and Upload WAR to Elastic Beanstalk
As a proof of concept, let’s deploy the HelloWorld JSP application

 on Elastic Beanstalk. It’s just a simple application on the Java side, which allows you to focus on the Elastic Beanstalk deployment process. Advanced Spring Boot and database CRUD operations are covered later.
To understand the mechanics of how to deploy, let’s look at the step-by-step development process.	1.
Create the HelloWorld JSP application in Spring Tool Suite (STS).

	2.
Package the WAR file using Maven.

	3.
Create a new application in Elastic Beanstalk.

	4.
Upload the WAR file to Elastic Beanstalk.

Create a HelloWorld JSP Application
Create a Maven web application project using STS or any IDE of your choice.
First, open Spring Tool Suite, select File menu ➤ New ➤ Maven Project, as shown in Figure 1-28.

[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig28_HTML.jpg]
Figure 1-28Select Maven Project

Figure 1-29 shows the New Maven Project wizard. Select the default location, and click Next.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig29_HTML.jpg]
Figure 1-29New Maven Project wizard

Then, select maven-archetype-webapp and click Next, as shown in Figure 1-30.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig30_HTML.jpg]
Figure 1-30Select an archetype

Next, provide the group ID, artifact ID, and package information, and then hit the Finish button, as shown in Figure 1-31.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig31_HTML.jpg]
Figure 1-31Specify archetype parameters

A project directory is created, as shown in Figure 1-32.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig32_HTML.jpg]
Figure 1-32HelloWorldJSP project directory

If you look in the problem’s view in IDE, the error shown is “The superclass javax.servlet.http.HttpServlet was not found on the Java Build Path”. This error indicates that an HTTP servlet is not available in the project classpath.
Once you add a target runtime to the project, an HTTP servlet is available in the project classpath. Errors are resolved after configuring the runtime server, such as the Tomcat server.
To configure the Tomcat server, right-click the project and select Properties. Select Targeted Runtimes, and then select Apache Tomcat v8.5, as shown in Figure 1-33. Then, click the Apply and Close button.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig33_HTML.jpg]
Figure 1-33Targeted runtimes

To run the application on the local Tomcat server, right-click the project, select Run As and Run On Server. Select the Tomcat server in the window, and click the Finish button (see Figure 1-34).[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig34_HTML.jpg]
Figure 1-34Run On Server

Type http://localhost:8080/HelloWorldJSP/ in your favorite web browser to see the “Hello World!” message, as shown in Figure 1-35.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig35_HTML.jpg]
Figure 1-35Hello World! in browser

Package a WAR File Using Maven
Now, let’s package a WAR file using Maven in STS. Right-click the project and select Run As ➤ Maven install, as shown in Figure 1-36.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig36_HTML.jpg]
Figure 1-36Run As Maven install

Once the build is successful, you can validate it with a success message in the console, as shown in Figure 1-37. This generates a WAR file.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig37_HTML.jpg]
Figure 1-37Build success

Refresh the project folder structure and expand the target folder, where you find a WAR file named HelloWorldJSP.war, as shown in Figure 1-38.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig38_HTML.jpg]
Figure 1-38Generated WAR file in the target folder

Upload WAR to Elastic Beanstalk
Now, let’s create a new application in Elastic Beanstalk and then upload the WAR file to it.
On the AWS console, go to the Elastic Beanstalk page. Figure 1-39 shows the application named My First Elastic

Beanstalk Application.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig39_HTML.jpg]
Figure 1-39Elastic Beanstalk application

Now let’s create a brand-new application by clicking the Create a new application button. Enter the application name as helloworld, as shown in Figure 1-40. Then, click the Create button.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig40_HTML.jpg]
Figure 1-40Application information

There is no environment that’s already set up, as shown in Figure 1-41.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig41_HTML.jpg]
Figure 1-41Application environments

Create an environment by clicking Create one now to select the environment tier, as shown in Figure 1-41.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig42_HTML.jpg]
Figure 1-42AWS grouped by category

For the environment tier, let’s use a web server environment to run a web application. Elastic Beanstalk creates the server for us. Next, click the Select button. Now, you need to provide the environment information, as shown in Figure 1-43.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig43_HTML.jpg]
Figure 1-43Environment information

Here, you need to provide details like a name for the environment and domain. Make sure that the environment URL is unique; here, name it awshelloworldjsp, which indicates that it is available for use. Then choose the platform details for the server, as shown in Figure 1-44.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig44_HTML.jpg]
Figure 1-44Platform for server

Here, select Managed platform, which is published and managed by AWS Elastic Beanstalk, and from the Platform drop-down list, choose Tomcat. So, Elastic Beanstalk creates a Tomcat server for you when it’s spinning up the environment.
Now, you need to upload the WAR file to Elastic Beanstalk. Click Choose file, and select the HelloWorldJSP.war file from the local system, as shown in Figure 1-45.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig45_HTML.jpg]
Figure 1-45Application

 code

Once the file successfully uploads to Elastic Beanstalk, hit the Create environment button.
Behind the scenes, Amazon provisions a server to use with the operating system. They install Java and Tomcat and deploy your WAR file to the Tomcat environment. You get a green checkbox indicating success when everything is done, as shown in Figure 1-46. Here, the logs confirm that the environment successfully launched.[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig46_HTML.jpg]
Figure 1-46Health OK and Recent events

Click the application’s link. The page opens in the browser displaying “Hello World!” (see Figure 1-47).[image: ../images/513001_1_En_1_Chapter/513001_1_En_1_Fig47_HTML.jpg]
Figure 1-47Accessing application from browser by hitting URL

This is your new application. The WAR file is deployed on the Amazon cloud in Elastic Beanstalk, and it’s up and running.
Make sure to stop any unused AWS Elastic Beanstalk apps that you don’t need. This helps prevent any overuse charges from Amazon.
Summary
This chapter overviewed Amazon Web Services (AWS). You learned about some AWS key services, such as EC2, Elastic Beanstalk, Amazon RDS, and Amazon Route 53. You created a free AWS account, a server, A HelloWorld JSP application, a WAR file with Maven, and uploaded the file to Elastic Beanstalk. Finally, you accessed your application in the browser to see the “Hello World!” message.
The next chapter deploys a Spring Boot application as a REST API in AWS.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
R. K. Soni, N. SoniSpring Boot with React and AWShttps://doi.org/10.1007/978-1-4842-7392-0_2

2. Deploy a Spring Boot Application as a REST API in AWS

Ravi Kant Soni1 and Namrata Soni2
(1)s/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

(2)d/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

The previous chapter provided an overview of Amazon Web Services (AWS), including services like Amazon Elastic Compute Cloud (Amazon EC2), AWS Elastic Beanstalk, Amazon Relational Database Service (Amazon RDS), and Amazon Route 53. First, you created a free AWS account for developers, explored Elastic Beanstalk, and created a server. Then, you created the HelloWorld JSP application. Finally, you built a WAR file with Maven and uploaded WAR to Elastic Beanstalk.
In this chapter, you create a Spring Boot application as a REST API in your local system. Then, you build the JAR using Maven for our Spring Boot application and deploy this JAR in Elastic Beanstalk so that anyone can access the REST API on the Internet. Finally, you explore logs from Elastic Beanstalk.
Build a Spring Boot Application as a REST API
Why use Spring Boot as a back-end framework? There are many frameworks available for developing web applications, and Spring Boot is just one among them. But, if you wish to build something fast, Spring Boot may be the primary choice as a web application development framework.Working with Spring Boot is like pair programming with the Spring developers.
—Josh Long @starbuxman

Spring Boot provides production-ready applications and services that anyone can run with minimum fuss. Spring Boot is opinionated, which suggests ensuring decisions for developers and supporting ranges of nonfunctional features that are common in enterprise applications (embedded servers, security, health checks, metrics, and externalized configuration).
In this section, you develop your Spring Boot application, step by step. If you’re already acquainted with this build process, you can skip to the end of this section to see how it all fits together. Spring offers different options for starting a brand-new project. For more information, refer to https://spring.io/.
Introduction to REST
Representational state transfer (REST) is an architectural style that describes how one system communicates or shares its state with another system. HTTP (Hypertext Transfer Protocol) may be a commonly used protocol to support a RESTful architecture. Standard HTTP methods like POST, GET, PUT, and DELETE access and manipulate RESTful web resources.	The POST method performs a create operation by sending data to a server.

	The GET method retrieves data from a specified resource.

	The PUT method performs an update operation by sending data to a server.

	The DELETE method performs the delete operation.

A meaningful HTTP response status code always helps clients to utilize RESTful API. Table 2-1 describes several HTTP status codes that may be returned as the server response when calling a RESTful API.Table 2-1HTTP Response Status Codes

	Code
	Message
	Description

	200
	OK
	Successful response. The request has succeeded. (This is a standard HTTP response status code for a successful HTTP request.)

	201
	Created
	Successful response. This is typically the HTTP response sent after POST or PUT requests are fulfilled, and a new resource has been created as a result.

	204
	Not Content
	Successful response. This HTTP response code means that the request has been processed successfully but is not returning any content for this request.

	400
	Bad Request
	Client error response. The request could not be fulfilled due to invalid syntax.

	401
	Unauthorized
	Client error response. The request requires user authorization to get the requested response.

	403
	Forbidden
	Client error response. The server refuses to fulfill the request because the client does not have access rights to the requested content.

	404
	Not Found
	Client error response. The requested resource could not be found by the server.

	409
	Conflict
	Client error response. The request cannot be completed because of a resource conflict with the current state of the server.

System Requirements
Spring Boot 2.0.3.RELEASE requires (at least) Java 8. So, the first thing that is required is the Java 8 SDK. If you have already set up the JDK in your system, you should check the current version of Java installed on your system before you begin.$ java -version
java version "1.8.0_101"
Java(TM) SE Runtime Environment (build 1.8.0_101-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

Spring offers the following three approaches to create a brand-new Spring Boot application.	Use the Spring Boot CLI tool

	Use the Spring STS IDE

	Use Spring Initializr (http://start.spring.io/)

Create Spring Boot Application Using Spring Tool Suite
In this chapter, you build a RESTful application called HelloSpringBoot with REST endpoints, using STS IDE. The REST API layer is responsible for handling client requests and generating a response.
You create HelloSpringBoot by generating a Spring Boot application using Spring Tool Suite (STS). STS comes as a ready-to-use distribution of the latest Eclipse releases with pre-installed Spring IDE components.
Use a Spring Starter Project wizard to create a Spring Boot application, as shown in Figure 2-1. By default, the Spring Boot application runs on port 8080.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig1_HTML.jpg]
Figure 2-1The wizard to create a Spring Boot application

Spring Boot provides

starters. You need to provide project-related information, as shown in Figure 2-2.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig2_HTML.jpg]
Figure 2-2Creating HelloSpringBoot using Spring Starter Project

A starter in Spring Boot is a set of classpath dependencies that autoconfigure an application and enables a developer to build an application without any configuration.
In this chapter, you pick the web dependencies to build a simple HelloSpringBoot RESTful service, as shown in Figure 2-3.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig3_HTML.jpg]
Figure 2-3Selecting a web dependency in the Spring starter

Clicking the Finish button generates a workspace to create a new package, class, and static files in your resources. The final structure of the project looks like Figure 2-4.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig4_HTML.jpg]
Figure 2-4Project structure

Let’s go through the code in the next section.
A Walk-Through
Let’s walk through the code by going through the pom.xml file

 and the Java class files. Let’s start with pom.xml.
pom.xml
When creating a Spring Boot application, all the dependencies that you select in the starter dialog are available in pom.xml, as shown in Listing 2-1. The pom.xml file is the recipe that builds your project.<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.5.1</version>
 <relativePath/>
 </parent>
 <groupId>com.apress.AWS</groupId>
 <artifactId>HelloSpringBoot</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>HelloSpringBoot</name>
 <description>Hello Spring Boot Application</description>
 <properties>
 <java.version>11</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

Listing 2-1pom.xml

Note the following about Listing 2-1.	The <parent> element specifies the parent POM of Spring Boot, which contains definitions for common components.

	The <dependency> element on spring-boot-starter-web tells Spring Boot that this is a web application and lets Spring Boot to form its opinions accordingly.

Before going further, let’s look at Spring Boot’s opinions and how it uses a starter like spring-boot-starter-web to form its configuration opinions.
The HelloSpringBoot application has used spring-boot-starter-web as Spring Boot’s web application starter. And, based on this starter, Spring Boot has formed the following opinions.	Spring web MVC for the REST framework

	Apache Jackson for the JSON binding

	Tomcat embedded web server container

After Spring Boot forms an opinion about the kind of application you plan to build, it delivers a collection of Maven dependencies supporting the POM contents and starter specified for the HelloSpringBoot application.
Write the Code
To bootstrap a Spring Boot application, you can start from a main(...) method. Most likely, you can delegate to the static SpringApplication.run() method

, as shown in Listing 2-2.package com.apress.AWS;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

/**
 * @author RaviKantSoni
 *
 */
@SpringBootApplication
@RestController
public class HelloSpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(HelloSpringBootApplication.class, args);
 }

 @RequestMapping("/greeting")
 public String greetingMessage() {
 return "Welcome to Hello Spring Boot Application!";
 }

}

Listing 2-2\src\main\java\com\apress\AWS\HelloSpringBootApplication.java

Let’s step through the important parts.
@SpringBootApplication Annotation
The first annotation in the HelloSpringBootApplication class is @SpringBootApplication, introduced in Spring Boot 1.2.0. It adds the following annotations.	@Configuration: A class annotated with the @Configuration annotation can be used by the Spring Boot container as a source of Spring Bean definitions, which is not specific to Spring Boot. This class may contain one or more Spring Bean declarations by annotated methods with the @Bean annotation.

	@EnableAutoConfiguration: This annotation is part of the Spring Boot project that tells Spring Boot to start adding beans using classpath definitions. Autoconfiguration intelligently guesses and automatically creates and registers beans that you are likely to run with the application, thus simplifying the developer’s work.

	@ComponentScan: This annotation tells Spring Boot to look for specific packages to scan for annotated components, configurations, and services.

@RestController and @RequestMapping Annotations
@RestController is another annotation in the HelloSpringBootApplication class. It is a stereotype annotation. The @RequestMapping annotation provides “routing” information and tells Spring Boot that any HTTP request with the path /greeting should be mapped to the greetingMessage() method.
The @RestController and @RequestMapping annotations

 come from Spring MVC (these annotations are not specific to Spring Boot).
The main Method
The most important part of the HelloSpringBootApplication class is the main(...) method. The application developed using Spring Boot contains the main method, which internally calls Spring Boot’s SpringApplication.run() method to launch an application. The class that contains a main method is the main class and is annotated with the @SpringBootApplication annotation.
Run a Spring Boot Application in STS
Spring Boot application created using the Spring Starter Project wizard comes in two flavors: WAR and JAR. This wizard allows you to choose between WAR and JAR in its packaging option.As Josh Long said in one of his talks in the Spring IO, “Make JAR, not WAR.”
—https://twitter.com/springcentral/status/598910532008062976

Spring Boot favors JAR over WAR by allowing you to easily create stand-alone JAR packaged projects that add an embedded web server (Apache Tomcat is the default web server) inside the created artifact. It helps developers reduce the overhead of setting up local or remote Tomcat servers, WAR packaging, and deploying.
You don’t need any special tooling from STS to run your Spring Boot application locally. You can run it by selecting Run As ➤ Java Application, either from the standard Eclipse Java debugging tools or STS. The benefits of using STS over other IDEs are that it provides a dedicated launcher, which does the same thing as other IDE does, but STS adds a few useful bells and whistles on the top of it. So, let’s use STS to run the Spring Boot application, as shown in Figure 2-5. Simply right-click the HelloSpringBoot project, and then select Run As ➤ Spring Boot App.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig5_HTML.jpg]
Figure 2-5Wizard in STS to run the application

The Spring Boot application starts with output in the console, as shown in Figure 2-6.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig6_HTML.jpg]
Figure 2-6Output on the STS console

If the Spring Boot application runs successfully, the last line on the console states, Started HelloSpringBootApplication.
Congratulations! You have successfully set up and run the application using Spring Boot. Now it’s time to visit http://localhost:8080/greeting in the browser to see the web page, as shown in Figure 2-7.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig7_HTML.jpg]
Figure 2-7Accessing the REST endpoint from the browser

Add Swagger UI to a Spring Boot Application
Nowadays, front-end components and back-end components usually isolate a web application. Building a back-end API layer introduces new challenges that have gone beyond implementing endpoints. Usually, you expose REST APIs as a back-end component for the front-end component or any third-party app integrations.
Thus, your REST API documentation becomes more fragile. REST API documentation should be well structured so that it’s informative, concise, and easy to read. In such a scenario, it is essential to have a proper specification for the back-end REST API. Moreover, reference API documentation should simultaneously describe each change in the API. Fulfilling this manually is a time-consuming and tedious exercise, so automation of this process was inevitable.
Swagger supports generating the API documentation automatically, and it also ensures that any changes made to the API are available to the customer immediately. In this section, you learn how to use Swagger 2 in a Spring Boot application to generate REST API documentation.
Introduction to Swagger 2
Swagger 2 is an open source project that documents RESTful APIs. It is language-agnostic and is extensible to new technologies and protocols beyond HTTP protocol.
This Swagger 2 version defines a set of HTML (HyperText Markup Language), JavaScript, and CSS assets to dynamically generate documentation from a Swagger-compliant API. The Swagger UI project bundled these sets of files to display the API on the browser, and it returns response data in the JSON format. Besides rendering documentation, Swagger UI also allows other API developers or API consumers to interact with the API’s resources without having any of the API implementation logic in place.
The Swagger 2 specification, which is understood as the OpenAPI specification, has several implementations. Springfox has recently replaced Swagger-SpringMVC (Swagger 1.2 and older) and is popular for Spring Boot applications. Springfox supports both Swagger 1.2 and 2.0.
Let’s use Swagger 2 for our Spring Boot REST web service, using the Springfox implementation of the Swagger 2 specification.
Add Dependency in a Maven POM
Let’s use the Springfox implementation of the Swagger specification. Its latest version can be found on Maven Central. To add it to our Spring Boot–based projects, you need to add a single springfox-boot-starter dependency, as shown in Listing 2-3.<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-boot-starter</artifactId>
 <version>3.0.0</version>
</dependency>

Listing 2-3Add Springfox Dependency in pom.xml

Configure Swagger 2 into a Project
The configuration of Swagger 2 mainly focused on the Docket bean. For our Spring Boot application, let’s create a Docket bean in a Spring Boot configuration class file to configure Swagger 2 for our application. A Springfox Docket instance provides the primary API configuration with default methods for configuration. Listing 2-4 shows our Spring Boot SwaggerConfig configuration class.package com.apress.AWS.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

/**
 * @author RaviKantSoni
 *
 */
@Configuration
@EnableSwagger2
public class SwaggerConfig {
 @Bean
 public Docket productApi() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any())
 .build();
 }

}

Listing 2-4\src\main\java\com\apress\AWS\config\SwaggerConfig.java

In this SwaggerConfig configuration class, the @EnableSwagger2 annotation enables Swagger support in the class. The select() method called on the Docket bean instance returns an ApiSelectorBuilder, which provides a way to control the endpoints exposed by Swagger.
In the code, the RequestHandlerSelectors and PathSelectors use any() to make documentation for our entire API available through Swagger.
Configuration Verification

At this point, you should be able to test the Swagger configuration by restarting the application and go to http://localhost:8080/v2/api-docs.
As shown in Figure 2-8, the result is a JSON response with a large number of key/value pairs, which is not very human-readable.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig8_HTML.jpg]
Figure 2-8Swagger JSON output

Swagger UI
You want human-readable structured documentation. Swagger UI is a built-in solution that makes user interaction with the Swagger-generated API documentation much easier. In your browser, go to http://localhost:8080/swagger-ui/.

You see the generated documentation rendered by Swagger UI, as shown in Figure 2-9.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig9_HTML.jpg]
Figure 2-9The Swagger API documentation page

The Basic Error Controller is the API that comes with Spring MVC. Models show all the Model objects.
Within Swagger’s response is a list of all controllers defined in our application. Clicking any of them lists the operation endpoints with valid HTTP methods (DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT), as shown in Figure 2-10.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig10_HTML.jpg]
Figure 2-10Swagger UI lists REST endpoints

For more information on Swagger, refer to the official documentation page at https://swagger.io/docs/specification/2-0/basic-structure/.
Configure the Server Port for a Spring Boot Project
The default Port with which the Spring Boot application has been configured is 8080, which means a Spring Boot application starts with an embedded Tomcat server at a default port 8080. You can change this default embedded server port to any other port.
AWS Elastic Beanstalk assumes that the Spring Boot application listens on port 5000. You can change the default port by simply making an entry in the application.properties file in your Spring Boot application, as shown in Listing 2-5.server.port=5000

Listing 2-5\src\main\resources\application.properties

Let’s build and run our Spring Boot application in another port and then open the browser to access our application. This time, you are not using default port 8080 in the browser; rather, port 5000. In your browser, go to http://localhost:5000/swagger-ui/.
Figure 2-11 shows the generated documentation rendered by Swagger UI.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig11_HTML.jpg]
Figure 2-11URI with port 5000

Build a JAR for a Spring Boot Application
Since you have successfully created a Spring Boot application as a REST API, let’s deploy it to AWS Elastic Beanstalk. To achieve this goal, you need a deployable unit of our project.
Before starting the actual process, make sure that you have Apache Maven (a command-line tool for building and managing any Java-based project) installed in your local system. If you do not already have Maven installed, you can follow the instructions at maven.apache.org.
A Spring Boot application’s default mode packages executable JARs (also known as fat JARs). So, a JAR is used as a deployable unit for this project. To build a JAR, you can either use STS or the command prompt.
From STS, right-click the HelloSpringBoot project, and then select Run As ➤ Maven build, as shown in Figure 2-12.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig12_HTML.jpg]
Figure 2-12Maven build using STS

This opens the Edit Configuration window. Enter package in the Goals text box. Click Apply, and then click Run, as shown in Figure 2-13.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig13_HTML.jpg]
Figure 2-13Edit configuration window

The HelloSpringBoot application starts building. You see that the entire Maven build runs, as shown in Figure 2-14.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig14_HTML.jpg]
Figure 2-14Build output on console in STS

A JAR named HelloSpringBoot-0.0.1-SNAPSHOT.jar has been created in the project’s target folder.Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT.jar

To build a JAR using the command prompt, go to your project directory (where you have created the Spring Boot project) and copy the path. Change the working directory to the project path on the command prompt, as shown in Figure 2-15.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig15_HTML.jpg]
Figure 2-15Directory to the project path on the command prompt

Build the project using the following command in the command prompt.E:\Apress\workspace\AWS\HelloSpringBoot>mvn clean install

This starts building the application. The JAR file named HelloSpringBoot-0.0.1-SNAPSHOT.jar has been created, as shown in Figure 2-16.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig16_HTML.jpg]
Figure 2-16Build success in command prompt

You need to pick up and deploy the generated JAR file to AWS Elastic Beanstalk.
Deploy a Spring Boot Application in AWS Elastic Beanstalk
You have locally created and run the HelloSpringBoot REST API and created a JAR file in the target folder. Now, let’s deploy to AWS Elastic Beanstalk.
Sign in to the AWS Management Console using AWS credentials, and select Elastic Beanstalk as the service. There are already two applications, named My First Elastic Beanstalk Application and helloworld, created in Chapter 1 (see Figure 2-17).[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig17_HTML.jpg]
Figure 2-17Elastic Beanstalk application

Now let’s create a brand-new application for our Spring Boot REST API. First, click the Create a new application button, and enter HelloSpringBoot the application name. Next, click the Create button to create a new environment for the application. Then, click the Create one now link. Select Web server environment as the environment tier, and then click the Select button.
On the environment information page, name the domain HelloSpringBoot, and check for availability. Then, select Java as the managed platform, as shown in Figure 2-18.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig18_HTML.jpg]
Figure 2-18Platform

 as Java

Finally, upload your code by selecting the JAR file from the target folder (e.g., in the authors’ local it is E:\Apress\workspace\AWS\HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT.jar) of the project, and then click the Create environment button.
Elastic Beanstalk coordinates the creation and deployment of all AWS resources required to support the environment during the launch process. This includes, but is not limited to, launching two EC2 instances, creating a load balancer, and creating a security group, as shown in Figure 2-19.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig19_HTML.jpg]
Figure 2-19Creating Hellospringboot-env in Elastic Beanstalk

Once the environment has been created and the resources have been deployed, notice that Health is reported as severe (see Figure 2-20). This is because the Spring Boot application still needs some configuration.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig20_HTML.jpg]
Figure 2-20Severe health of Spring Boot application

AWS Elastic Beanstalk assumes that the application listens on port 5000. To fix the discrepancy, change the port the Spring Boot application listens on. So, you need to specify the SERVER_PORT environment variable in the Elastic Beanstalk environment and set the value to 5000.
Go to the Configuration page in your environment. Under Configuration, click the Edit icon, as shown in Figure 2-21.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig21_HTML.jpg]
Figure 2-21Spring Boot application severe health

In the Environment properties, you see that there are already

some environment variables set by Elastic Beanstalk when it is configured to use the Java platform.
To change the port that the Spring Boot application listens on, add a new environment variable, SERVER_PORT, with a value of 5000, as shown in Figure 2-22.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig22_HTML.jpg]
Figure 2-22Environment properties on software configuration

As soon as you click Apply, the configuration change propagates to the application servers. The application restarts. When it restarts, it picks up the new configuration through the environment variables. After a minute, you see a healthy application on the dashboard, as shown in Figure 2-23.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig23_HTML.jpg]
Figure 2-23Health

 OK

Test a Spring Boot Application as a REST API in the Cloud
Now, let’s test the deployed REST API endpoint in AWS. Use the URL you configured in the environment to access the service. For this example, the specified URL is http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com.
For the first test, from the browser, use an HTTP GET on the greeting URI at http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting. The service responds with a welcome greeting message, as shown in Figure 2-24.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig24_HTML.jpg]
Figure 2-24Accessing REST API deployed on the cloud from browser

Next, access the Swagger UI dashboard at http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/ from your browser, as shown in Figure 2-25.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig25_HTML.jpg]
Figure 2-25Accessing Swagger-UI dashboard from browser

Explore Logs from Elastic Beanstalk
You can explore the Spring Boot logs from Elastic Beanstalk. Select Logs ➤ Request Logs to retrieve the last 100 lines of a log or the entire set of logs from each EC2 instance, as shown in Figure 2-26.[image: ../images/513001_1_En_2_Chapter/513001_1_En_2_Fig26_HTML.jpg]
Figure 2-26AWS Elastic Beanstalk logs

Once you click Download, you see that the entire Spring Boot log is visible.
Summary
In this chapter, you deployed a REST API to Elastic Beanstalk. You created a Spring Boot project application as a REST API and then generated a JAR file for the project. You deployed this JAR to Elastic Beanstalk, resolved server issues in AWS. And finally, you accessed the deployed application in the cloud.
In the next chapter, you deploy a MySQL database in AWS with RDS.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
R. K. Soni, N. SoniSpring Boot with React and AWShttps://doi.org/10.1007/978-1-4842-7392-0_3

3. Deploy MySQL as a Database in AWS with RDS

Ravi Kant Soni1 and Namrata Soni2
(1)s/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

(2)d/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

In Chapter 2, you deployed the REST API to AWS Elastic Beanstalk. You created a Spring Boot application as REST API, and then you generated a JAR file of our project. You were able to deploy the JAR file to Elastic Beanstalk and resolved the server issue on AWS to make the application. And finally, you were able to access the application deployed on the AWS cloud.
Amazon RDS makes it easy to set up and operate a MySQL database and easy to scale MySQL deployment in the Amazon cloud. Self-managing a database offers a lot of challenges and takes upkeep. This chapter introduces Amazon Relational Database Service (RDS), and you learn how to deploy it.
If you look at the application architecture from Chapter 2, Elastic Beanstalk is where our Java-based Spring Boot application was deployed. Now let’s use the Amazon RDS, which is a database in the cloud. MySQL runs on AWS. An instance of a MySQL database is created and configured in AWS. Tables are also created in the MySQL database.
Introduction to Amazon RDS (Amazon Relational Database Service)
Data can be understood as a collection of the distinct unit of information that can be translated into a required form for efficient movement and processing. A database can be defined as an organized collection of structured data so that it can be easily accessed, managed, and updated. In simple words, a database is where the data is stored.
Amazon RDS is a web service that allows you to quickly deploy and scale a relational database on the Amazon cloud. Once you have deployed your database, you can manage it using a normal admin tool like MySQL Workbench, Oracle SQL Developer, or another admin tool. AWS also supports NoSQL databases like MongoDB.
For more information on Amazon RDS, refer to https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html.
Create an Instance of the RDS Database in AWS
Let’s begin configuring the RDS MySQL environment by signing up on AWS Management Console. Select RDS under the Database section in All Services, as shown in Figure 3-1.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig1_HTML.jpg]
Figure 3-1RDS under Database section in All Services

You are redirected to the Amazon RDS dashboard page, as shown in Figure 3-2. This page gives information about the resources you are using. Let’s create an instance of Amazon Relational Database by clicking the Create database button.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig2_HTML.jpg]
Figure 3-2Amazon RDS dashboard

A new page opens, where you can define the database creation method and other options. Let’s start creating a database.
First, select the database engine from the Engine options, as shown in Figure 3-3. There are a lot of options available, but let’s use the MySQL database engine. MySQL is a widely-used open source relational database management system. MySQL is mostly used for web databases.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig3_HTML.jpg]
Figure 3-3Engine options to select

As shown in Figure 3-4, click the check box to only enable options for the RDS Free Usage Tier, which allows you to use a database for free in the AWS cloud. And then click the Next button.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig4_HTML.jpg]
Figure 3-4RDS Free Usage Tier

Next, specify the database details, as shown in following Figure 3-5.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig5_HTML.jpg]
Figure 3-5Specify DB details

Keep

 the defaults for the license model and DB engine version. Check the box to only enable the option for the RDS free tier. In the DB instance class, keep the default selected value, db.t2.micro, for the free tier.
The database instance identifier is a unique name that you create to find or reference a database instance. Next, provide a suitable name for the database; let’s use spring-aws-db, as shown in Figure 3-6.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig6_HTML.jpg]
Figure 3-6Setting database details

Similarly, provide the master username and password. We used springaws for both to keep things simple, but you can use any value you want. You can connect to the MySQL instance using this username and password later, so keep these credentials safe. And then click the Next button.
Finally, you need to configure some advanced settings that are essential to setting up an RDS MySQL environment, as shown in Figure 3-7.

[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig7_HTML.jpg]
Figure 3-7Configure advanced settings

Keep

 all the defaults in the Network & Security section. Make sure the public accessibility of the DB instance is Yes. This allows the database instance to be available on the Internet and connect with other hosts.
Next, the database options include the name, port, and so on, as shown in Figure 3-8. Keep all the defaults as they are. The port number is 3306, which is the default port. Other options are also available.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig8_HTML.jpg]
Figure 3-8Database options

Click

 the Create database button to launch the Amazon RDS database instance, as shown in Figure 3-9.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig9_HTML.jpg]
Figure 3-9Launch the Amazon RDS database instance

You see that your database instance is being created, as shown in Figure 3-10.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig10_HTML.jpg]
Figure 3-10Amazon RDS DB instance creation status

Your DB instance normally takes a few minutes to launch.
Configure Amazon RDS
The current status shows that you have a database instance available in the AWS cloud, which you created as an instance of the RDS database server. Unfortunately, this database instance is empty because there’s no database schema, tables, or data available in the RDS database instance.
You need to do some configuration work for the relational database service, connect it to MySQL Workbench, and access it. As a development process, the first thing is to configure security for inbound connection rules. And, then you need to test the database connectivity with MySQL Workbench.
Before going ahead, let’s check the Amazon RDS database instance status. Click Databases under Amazon RDS, as shown in Figure 3-11.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig11_HTML.jpg]
Figure 3-11Database instance status

Here, you can see that the database instance spring-aws-db is added to the list. Its status is available, which indicates that the database has been created and is available for use. Click the spring-aws-db link in the Databases table. Figure 3-12 shows the summary.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig12_HTML.jpg]
Figure 3-12Amazon RDS database instance summary

Here, you can see the information on the spring-aws-db database instance. The class is db.t2.micro, the engine is MySQL Community, and the status is available.
Step 1. Configure Security for Inbound Connection Rules
First, you need to configure the security group rules for the inbound connection rules. Scroll down to the Security group rules section, as shown in Figure 3-13.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig13_HTML.jpg]
Figure 3-13Security group rules

The inbound rule defines the traffic allowed on the server and who can connect to the database instance. Click rds-launch-wizard for CIDR/IP - Inbound, which redirects you to the Security Groups Info page, as shown in Figure 3-14.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig14_HTML.jpg]
Figure 3-14Security groups

At the bottom of this page, you see tabs named Details, Inbound rules, Outbound rules, and Tags, as shown in Figure 3-15.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig15_HTML.jpg]
Figure 3-15rds-launch-wizard

Click the Inbound rules tab, as shown in Figure 3-16.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig16_HTML.jpg]
Figure 3-16Inbound rules

You see that the database is only accessible from the IP address 59.99.65.121/32. You need to make some modifications here. Click the Edit inbound rules button, which redirects to the Edit inbound rules page. Here you can edit the IP address that has access to the Amazon RDS MySQL database instance, as shown in Figure 3-17.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig17_HTML.jpg]
Figure 3-17Edit inbound rules

You can determine the traffic that can reach the database instance. From the Source drop-down list, select the Anywhere option, as shown in Figure 3-18.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig18_HTML.jpg]
Figure 3-18Select Anywhere from Source drop-down list

Now, anyone can find the database instance or connect to it, but they still have to provide a correct user ID and password. The Anywhere source option is good for dev and testing, but it is recommended to only allow access from the Elastic Beanstalk app IP address for production.
Click the Save rules button. Now you can see that the inbound rule has been set up, as shown in Figure 3-19.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig19_HTML.jpg]
Figure 3-19Updated source in Inbound rules

These updated Inbound rules allow connection from anywhere.
Step 2. Test an Amazon RDS Database Instance Connection with MySQL Workbench
Once you have successfully created the Amazon RDS MySQL database instance and all the necessary configurations are done, the second step is to test the RDS database instance connection with MySQL Workbench

.
Return to the previous page in the browser. In the Databases section, click the Connectivity & security tab, as shown in Figure 3-20.

[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig20_HTML.jpg]
Figure 3-20Updated source in Inbound rules

In the Connectivity & Security tab, there is a section called Endpoint & port.

 The endpoint indicates the hostname of the database instance, which you can use in MySQL Workbench to connect to the RDS database instance. In this case, it isspring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Note
Refer to Appendix A for the MySQL Workbench installation guide.

Connect MySQL Workbench to an Amazon RDS MySQL Database Instance
Open MySQL Workbench in your local system. Then, click the + icon to create a MySQL connection, as shown in Figure 3-21.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig21_HTML.jpg]
Figure 3-21MySQL Workbench

This opens the Setup New Connection wizard, as shown in Figure 3-22.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig22_HTML.jpg]
Figure 3-22Setup New Connection wizard

For the connection name, enter the value as spring-aws-db. In the hostname field, the default value is 127.0.0.1, which is known as the localhost. Replace the default IP address with the following RDS database instance hostname from AWS Management Console.spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Leave the port number as it is because 3306 is the port for the database instance from the AWS console.
Use the same username and password that you created for the RDS database instance. So, enter springaws as the username, as shown in Figure 3-23. Click the Store in Vault button for password.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig23_HTML.jpg]
Figure 3-23Updated value in Setup New Connection wizard

Enter springaws, and then click OK, as shown in Figure 3-24.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig24_HTML.jpg]
Figure 3-24Store password for connection

Click the Test Connection button. You should receive a notification saying you have successfully made the MySQL connection, as shown in Figure 3-25.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig25_HTML.jpg]
Figure 3-25Successfully made the MySQL connection

That’s how you know that the database instance is available and running in the AWS cloud. You can use your local MySQL Workbench to connect to it. Click the OK button in the Connection wizard, which lets Workbench list the database connection details, as shown in Figure 3-26.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig26_HTML.jpg]
Figure 3-26MySQL Workbench with Amazon RDS db connection details

Create a Table Inside an RDS Database Instance
MySQL is set up correctly. You can access the remote RDS database instance by clicking spring-aws-db, which opens in the SQL editor, as shown in Figure 3-27.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig27_HTML.jpg]
Figure 3-27SQL editor instance for spring-aws-db

Currently, there is no database, table, or data available for our RDS database instance. You need to run some scripts to provide anything that you can query.
First, let’s create a database using the CREATE DATABASE command. The syntax to create a new database is CREATE DATABASE DB_NAME, where DB_NAME is the database name that you want to create. For example, to create a database named UserRegistration, type the following query into the Query tab and run it.CREATE DATABASE UserRegistration;

Once the query is executed successfully, the Schema tab should display the UserRegistration database, as shown in Figure 3-28.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig28_HTML.jpg]
Figure 3-28Database created

Now, let’s create a user table in the UserRegistration database

. A table displays and stores the records in a structured format. The CREATE TABLE command creates a new table into the existing database. The syntax to create a MySQL table is shown in Listing 3-1.CREATE TABLE [IF NOT EXISTS] table_name(
 column_1 datatype(size) [NULL | NOT NULL],
 column_2 datatype(size) [NULL | NOT NULL],
 column_3 datatype(size) [NULL | NOT NULL],
 ,
 column_N datatype(size) [NULL | NOT NULL],
 table_constraints
);

Listing 3-1Syntax to Create MySQL Table

table_name is the name of the table, which should always be unique in a MySQL database. The IF NOT EXISTS clause helps prevent errors when the same table name already exists in the database.
column_ specifies the column name. datatype specifies the type of data for that column, and columns are separated using a comma operator.
table_constraints specifies the table’s constraints, such as primary key, foreign key, and unique key. For example, to create a table called users, enter the query shown in Listing 3-2 in the Query tab and run it.use UserRegistration;

CREATE TABLE [IF NOT EXISTS] users(
 id int NOT NULL AUTO_INCREMENT,
 first_name varchar(45) NOT NULL,
 last_name varchar(45) NOT NULL,
 address varchar(35) NOT NULL,
 age int NOT NULL,
 created_date DATE,
 PRIMARY KEY (id)
);

Listing 3-2Create Users Table in UserRegistration Database

Here, the use UserRegistration command selects the database under which the table is created. Once the query is executed successfully, the UserRegistration database should display the users table, as shown in Figure 3-29.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig29_HTML.jpg]
Figure 3-29Table created

Now, let’s insert some data into the users table. The INSERT INTO command adds or stores data in a table. The syntax to insert data into a table is shown in Listing 3-3.INSERT INTO DATABASE.table_name (column_1, column_2,... column_N)
VALUES
(value_1, value_2,...value_N);

Listing 3-3Syntax to Insert Data into the Table

First, specify the database name followed by a dot (.), followed by the table name, and then a list of comma-separated columns. Next, provide the list of values corresponding to the column’s name after the VALUES clause. For example, to insert data in the users table, type the query shown in Listing 3-4 in the Query tab, and then run it.INSERT INTO UserRegistration.users (first_name, last_name, address, age, created_date)
VALUES
('Ravi', 'Soni', 'Sasaram-Bihar-India', 34, '2021-07-04');

Listing 3-4Insert Data in users Table in UserRegistration Database

The default date format in MySQL is YYYY-MM-DD, where YYYY represents the year in four digits, MM represents the month in two digits, and DD represents the day in two digits.
Once the insert query is executed successfully, you can use the SELECT command to fetch data from the MySQL database. The data returned from the database is stored in a result table, called result-set. The SELECT command syntax to fetch data from a MySQL table is shown in Listing 3-5.SELECT column_1, column_2, ...
FROM
DATABASE.table_name;

Listing 3-5Syntax of SELECT Command to Fetch Data from Database

For example, to fetch data from the users table

, type the query shown in Listing 3-6 into the Query tab, and then run it.SELECT first_name, last_name, address, age, created_date
FROM
UserRegistration.users;

Listing 3-6Fetch Data from UserRegistration Database

Once the SELECT query

 is executed successfully, the result appears as shown in Figure 3-30.[image: ../images/513001_1_En_3_Chapter/513001_1_En_3_Fig30_HTML.jpg]
Figure 3-30Table created

Summary
This chapter introduced Amazon RDS. First, you created a MySQL database instance in AWS and configured the database. Then, you created a table in the database and inserted data into it using MySQL Workbench.
The next chapter overviews CRUD operations in a Spring Boot application, and you deploy Spring Boot application that talks to MySQL in AWS.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
R. K. Soni, N. SoniSpring Boot with React and AWShttps://doi.org/10.1007/978-1-4842-7392-0_4

4. Deploy a Spring Boot Application Talking to MySQL in AWS

Ravi Kant Soni1 and Namrata Soni2
(1)s/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

(2)d/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

Chapter 3 introduced Amazon RDS, and you learned how to deploy it on the Amazon cloud. You created an instance of an Amazon RDS MySQL database in AWS and configured the database. You also created tables in this database and inserted data into it using MySQL Workbench.
In Chapter 2, you created and deployed a Spring Boot REST API containing some endpoints to AWS Elastic Beanstalk. However, that’s not how real applications run. The real application uses a real-time database to perform CRUD operations.
This chapter creates a Spring Boot application as a REST API talking to an Amazon RDS MySQL database from your local system.
Create Spring Boot UserRegistrationApp Talking to MySQL Database
In this section, you create the UserRegistrationApp Spring Boot application using Spring Initializr (http://start.spring.io/). Here, you select Web, JPA, MySQL, and Lombok as dependencies, as shown in Figure 4-1.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig1_HTML.jpg]
Figure 4-1Creating UserRegistrationApp using Spring Initializr

Table 4-1 lists all the UserRegistrationApp settings.Table 4-1Project-Related Details

	Field
	Value

	Group
	com.apress.AWS

	Artifact
	UserRegistrationApp

	Name
	UserRegistrationApp

	Description
	User registration application

	Package Name
	com.apress.AWS

	Packaging
	JAR

	Java Version
	11

	Language
	Java

	Project
	Maven

After entering the project metadata, click the Generate button to download the UserRegistrationApp.zip file. Unzip it, and import it as a Maven project into the Spring Source Tool (STS) IDE. The initial project structure looks like what’s shown in Figure 4-2.

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig2_HTML.jpg]
Figure 4-2Project structure

Let’s walk through the code for more information and explore Maven dependencies defined in pom.xml.
Maven Dependency in pom.xml
All the required dependencies you selected in Spring Initializr when creating the Spring Boot application are available in pom.xml, as shown in Listing 4-1. The pom.xml file

 is the recipe that builds the Spring Boot application.<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.5.2</version>
 <relativePath/>
 </parent>
 <groupId>com.apress.AWS</groupId>
 <artifactId>UserRegistrationApp</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>UserRegistrationApp</name>
 <description>User Registration Application</description>
 <properties>
 <java.version>11</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Listing 4-1pom.xml

Also, update pom.xml with a Springfox dependency for the Swagger UI, as shown in Listing 4-2.<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-boot-starter</artifactId>
 <version>3.0.0</version>
</dependency>

Listing 4-2Add Springfox Dependency in pom.xml

Project Lombok
You selected Lombok dependency while creating the project. Let’s look at the main objective of Project Lombok. “Project Lombok is a small Java library that plugs into your IDE like Eclipse, IntelliJ, STS, etc. Also, it can plug into build tools like Maven, Ant, etc. [The] Lombok library reduces the amount of boilerplate Java code by [preventing you from writing] another getter, setter, toString, or equals method again. And this implementation is automatically done during compile time.” (https://projectlombok.org)
Project Lombok automatically generates the getter, setter, toString, and equals method

 for the object by using the @Data Lombok. The following are the steps to plug in the Lombok Java library to the STS IDE.	1.
For the STS IDE, get the Lombok executable JAR file.

	2.
Do Maven build in the Spring Boot project. Figure 4-3 shows the Lombok JAR is at \.m2\repository\org\projectlombok\lombok\1.18.20\.

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig3_HTML.jpg]
Figure 4-3Lombok JAR file under .m2 directory

	3.
Double-click Lombok.jar to open the installer UI. Specify the location of the STS.exe path, and then click the Install/Update button, as shown in Figure 4-4.

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig4_HTML.jpg]
Figure 4-4Lombok Installer UI

	4.
You should see a “Install successful” message, as shown in Figure 4-5. Click the Quit Installer button to exit the installer.

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig5_HTML.jpg]
Figure 4-5Lombok installation success

	5.
Restart the STS IDE to ensure that Lombok is correctly configured. Verify this in STS by going to the Help option and clicking the About option, as shown in Figure 4-6.

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig6_HTML.jpg]
Figure 4-6Spring Tool Suite with Lombok details

Application Properties
You need to configure how you can connect to the Amazon RDS MySQL database. In Chapter 3, you captured the MySQL database information, such as URL, username, and password, which you used in the MySQL Workbench connection with the Amazon RDS MySQL database instance.
Let’s add code to the /src/main/resources/application.properties

 file, as shown in Listing 4-3.server.port=5000
MySQL database settings
spring.datasource.url=jdbc:mysql://spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com:3306/UserRegistration
spring.datasource.username=springaws
spring.datasource.password=springaws
db-creation settings
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

Listing 4-3/src/main/resources/application.properties

Here, you configure the datasource URL, username, and the corresponding password that you want to connect to the MySQL database. spring.jpa.hibernate.ddl-auto can be none, update, create, or create-drop.	none is the default for MySQL. It indicates that there are no changes made to the database structure.

	update instructs Hibernate to change the database according to the given entity structures.

	create instructs Hibernate to create the database every time the application restarts but does not drop it when SessionFactory closes.

	create-drop instructs Hibernate to create the database every time the application restarts and drops it when SessionFactory closes.

In the application.properties file, configure ddl-auto = update to make sure that whenever the application is restarted, Hibernate compares the tables in the database with the entities declared in the class. If there are any changes in the entity structure, those changes are updated in the database.
Domain Implementation: UserDTO Entity Class
In the UserRegistrationApp project, you create a DTO (data transfer object) class named UserDTO corresponding to the user domain’s object inside a com.apress.AWS.dto subpackage. The UserDTO class

 contains only data. It transfers data between different layers of the application when there is a separation of concerns.
You can annotate the UserDTO class with JPA (Java Persistence API) annotations, which allow it to be easily persisted and retrieved using the JPA technology. A formal overview of JPA is beyond the scope of this book.
Let’s implement the UserDTO entity class, as shown in Listing 4-4.package com.apress.AWS.dto;

import java.time.LocalDateTime;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

import lombok.Data;

@Entity
@Table(name = "users")
@Data
public class UserDTO {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id", nullable = false)
 private Long id;
 @Column(name = "first_name")
 private String firstName;
 @Column(name = "last_Name")
 private String lastName;
 @Column(name = "address")
 private String address;
 @Column(name = "age")
 private Integer age;
 @Column(name = "created_date")
 private LocalDateTime createdDate;

}

Listing 4-4\src\main\java\com\apress\AWS\dto\UserDTO.java

The UserDTO class has six attributes: id, firstName, lastName, address, age, and createdDate. The UserDTO class is annotated with the @Entity annotation to make it a JPA entity. This entity class is also annotated with the @Table annotation to define the table name as Users. The id property in UserDTO is annotated with the @Id annotation to make it the primary key. The id attribute has been annotated with the @GeneratedValue annotation to indicate that the ID value should be generated automatically. The id attribute is annotated with the @Column annotation to specify the details of the column to which a field or property is mapped. The other five properties are annotated with the @Column annotation.
The @Data Lombok annotation is used, so you don’t have to create a getter and setter for attributes, and at the compile, it is automatically generated. The next step is to provide the repository implementation.
Repository Implementation: UserJpaRepository
The Data Access Object (DAO) design pattern supports separation of concern by providing separation between business layer (services) and data access operation, as shown in Figure 4-7.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig7_HTML.jpg]
Figure 4-7Separation of concern

The DAO layer sits between the business layer and the database and performs CRUD (create, retrieve, update, delete) operations in the database. To support JpaRepository, you need to add the Spring Data JPA dependency shown in Listing 4-5 to the pom.xml file.<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Listing 4-5Spring Data JPA Dependency

Listing 4-6 creates a repository interface named UserJpaRepository

 by extending the org.springframework.data.jpa.repository.JpaRepository interface that helps in persisting the UserDTO domain object into a relational database.package com.apress.AWS.repository;

import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

import com.apress.AWS.dto.UserDTO;

@Repository
public interface UserJpaRepository extends JpaRepository<UserDTO, Long> {

}

Listing 4-6\src\main\java\com\apress\AWS\repository\UserJpaRepository.java

In Listing 4-6, the JpaRepository interface takes a domain object. The domain object’s identifier field is UserDTO and Long. Its generic parameters are T and ID. The UserJpaRepository interface inherits all the CRUD methods provided by JpaRepository.
Next, let’s create a Service class that autowires UserJpaRepository.
Service Implementation: UserService
Let’s begin the service implementation by creating a Service class named UserService, as shown in Listing 4-7, where you call the CRUD methods of the UserJpaRepository interface to handle SQL operations.package com.apress.AWS.service;

import java.util.List;

import javax.transaction.Transactional;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.apress.AWS.dto.UserDTO;
import com.apress.AWS.repository.UserJpaRepository;

@Service
@Transactional
public class UserService {

 @Autowired
 private UserJpaRepository useRepository;

 public List<UserDTO> listAll() {
 return useRepository.findAll();
 }

 public void save(UserDTO user) {
 useRepository.save(user);
 }

 public UserDTO get(Long id) {
 return useRepository.findById(id).get();
 }

 public void delete(Long id) {
 useRepository.deleteById(id);
 }

}

Listing 4-7\src\main\java\com\apress\AWS\service\UserService.java

This UserService class uses the @Autowired annotation that autowires UserJpaRepository.
Next, let’s create a REST controller class to define different REST endpoints to retrieve and manipulate the UserDTO domain object.
REST Controller Implementation: UserRegistrationController
Let’s create a Spring REST controller named UserRegistrationController

 and implement different REST API endpoints to perform CRUD operations. Listing 4-8 is the code implementation for the UserRegistrationController class.package com.apress.AWS.controller;

import java.util.List;
import java.util.NoSuchElementException;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.apress.AWS.dto.UserDTO;
import com.apress.AWS.service.UserService;

import lombok.extern.slf4j.Slf4j;

@Slf4j
@RestController
@RequestMapping("/api/")
public class UserRegistrationController {

 @Autowired
 private UserService userService;

 // URI - /api/users
 @GetMapping(value = "users")
 public ResponseEntity<List<UserDTO>> istAllUsers() {
 List<UserDTO> users = this.userService.listAll();
 return new ResponseEntity<List<UserDTO>>(users, HttpStatus.OK);
 }

 // URI - /api/user/id/1
 @GetMapping("user/id/{id}")
 public ResponseEntity<UserDTO> getUserById(@PathVariable(name = "id") final Long userId) {
 try {
 final UserDTO user = this.userService.get(userId);
 return new ResponseEntity<UserDTO>(user, HttpStatus.OK);
 } catch (NoSuchElementException e) {
 return new ResponseEntity<UserDTO>(HttpStatus.NOT_FOUND);
 }
 }

 // URI - /api/user/save
 @PostMapping(value = "user/save")
 public ResponseEntity<UserDTO> save(@RequestBody UserDTO user) {
 this.userService.save(user);
 return new ResponseEntity<UserDTO>(user, HttpStatus.CREATED);
 }

 // URI - /api/user/delete/id/1
 @DeleteMapping("user/delete/id/{id}")
 public ResponseEntity<UserDTO> delete(@PathVariable(name = "id") final Long userId) {
 this.userService.delete(userId);
 return new ResponseEntity<UserDTO>(HttpStatus.NO_CONTENT);
 }

}

Listing 4-8\src\main\java\com\apress\AWS\controller\UserRegistrationController.java

Here, the UserRegistrationController class was annotated with @RestController annotation. @RequestMapping("/api") was defined, which indicates that all REST API endpoint URLs start with /api, and it maps incoming HTTP requests to handler methods!
The @Autowired annotation autowires UserService to the RESTful controller. Table 4-2 explores the different REST endpoints defined in the UserRegistrationController class to retrieve and manipulate UserDTO.Table 4-2REST Endpoints Defined in the UserRegistrationController Class

	Annotation
	URI
	Description

	@GetMapping
	/api/users
	Retrieve all users available in database

	@PostMapping
	/api/user/save
	Create a new user in database

	@GetMapping (“/ {id}”)
	/api/user/id/{id}
	Retrieve an individual user based on ID

	@ DeleteMapping
	/api/user/delete/id/{id}
	Delete an individual user based on ID

Now, build the UserRegistrationApp using a Maven build and run it locally to test defined REST endpoints.
Run and Test UserRegistrationApp Locally
To run the UserRegistrationApp using the STS IDE in a local system, right-click the UserRegistrationAppApplication.java class under the com.apress.AWS package, and then click Run As ➤ Spring Boot App, as shown in Figure 4-8.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig8_HTML.jpg]
Figure 4-8Run the UserRegistrationApp using STS IDE

Once UserRegistrationApp started successfully, the last line in the STS console should state, Started UserRegistrationAppApplication, as shown in Figure 4-9.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig9_HTML.jpg]
Figure 4-9Output on the STS console

Now, it’s time to test the REST API using Postman (www.postman.com). You added data to the database using MySQL Workbench in Chapter 3. You should get that data during the REST API call.
Retrieve All Users: /api/users
Let’s test the first REST endpoint to retrieve all users. Launch the Postman tool in your local system, select GET as the request type, and enter http://localhost:5000/api/users to retrieve and display all user data. You should see a 200 OK HTTP status, as shown in Figure 4-10.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig10_HTML.jpg]
Figure 4-10Retrieve all users

Retrieve an Individual User: /api/user/id/{id}
Now, let’s test another REST endpoint to retrieve an individual user based on id. To test this REST endpoint, launch Postman, select GET as the request type, and enter the URL (http://localhost:5000/api/user/id/1) to retrieve and display individual user data. You should see a 200 OK HTTP status, as shown in Figure 4-11.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig11_HTML.jpg]
Figure 4-11Retrieving an individual user

Create a New User: /api/user/save
Next, let’s test the REST endpoint to create a new user in the database. Launch Postman, select POST as the request type, and enter http://localhost:5000/api/user/save. Click the Body radio button, and then select raw. From the drop-down list, select JSON (application/json) as the content-type header. Use the JSON data in the request body as shown in Listing 4-9, and hit Send.{
 "last_name": "Soni",
 "firstName": "Namrata",
 "address": "Bangalore-India",
 "age": 25,
 "createdDate": "2021-07-04T00:00:00"
}

Listing 4-9JSON Data in the Body to Create a New User

On successful completion of the POST request, a new user is created in the database, and the response HTTP status is 201 Created, as shown in Figure 4-12.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig12_HTML.jpg]
Figure 4-12Creating a new user

Delete an Existing User: /api/user/delete/id/{id}
The last endpoint to test deletes an existing user from the database based on ID. To test this REST endpoint, launch Postman, select DELETE as the request type, and enter the URL (http://localhost:5000/api/user/id/2) to delete the existing user with id=1. On successful completion of the DELETE request, this user is deleted from the database. The response HTTP status after deleting the user is 204 No Content, as shown in Figure 4-13.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig13_HTML.jpg]
Figure 4-13Delete an existing user

Swagger UI: API Documentation
In a browser, open the Swagger UI page

 at http://localhost:8080/swagger-ui/. You see the generated API documentation

, as shown in Figure 4-14.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig14_HTML.jpg]
Figure 4-14Swagger API documentation page

user-registration-controller is defined in the application. Clicking it lists the REST endpoints and their valid HTTP methods. Clicking Models displays the model structure. Figure 4-15 shows the defined REST endpoints and the UserDTO model structure.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig15_HTML.jpg]
Figure 4-15Swagger UI lists REST endpoints

Build a JAR for a Spring Boot Application
To build JAR for the Spring Boot application from a command prompt, go to the project directory where you created the Spring Boot project and copy the project path. Now, change the working directory to the project path on the command prompt. Build the project using the following command executed in the command prompt, as shown in Figure 4-16.E:\Apress\workspace\AWS\UserRegistrationApp>mvn clean install

[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig16_HTML.jpg]
Figure 4-16Build JAR from the command prompt

This starts building the UserRegistrationApp project. Once the build is successful, you are informed that the JAR file named UserRegistrationApp-0.0.1-SNAPSHOT.jar has been created, as shown in Figure 4-17.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig17_HTML.jpg]
Figure 4-17Build success

You need to deploy the generated JAR file into Elastic Beanstalk.
Deploy the UserRegistrationApp Spring Boot Application in AWS Elastic Beanstalk
Since you have successfully created a JAR file for the UserRegistrationApp application in your local system, now, you must deploy this JAR file to Elastic Beanstalk.
Let’s sign in to the AWS Management Console using your AWS credentials and select service as Elastic Beanstalk

. Figure 4-18 shows that three applications are already available: My First Elastic Beanstalk Application, helloworld, and HelloSpringBoot. You created them in previous chapters.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig18_HTML.jpg]
Figure 4-18List of all applications available in Elastic Beanstalk

Next, let’s create a new application for UserRegistrationApp Spring Boot application talking to the MySQL database. Click the Create a new application button, enter the application name as UserRegistrationApp, and click the Create button.
Next, create a new environment for this application by clicking the Create one now link. Select Web server environment as the environment tier, and then click the Select button.
On the Environment information page, enter userregistration as the domain name, and check for domain availability (see Figure 4-19).[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig19_HTML.jpg]
Figure 4-19Environment information

Next, select Java as the managed platform, as shown in Figure 4-20.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig20_HTML.jpg]
Figure 4-20Java is the managed platform

Finally, upload the code by selecting the JAR file from the project’s target folder (e.g., in the authors’ local system, it is E:\Apress\workspace\AWS\UserRegistrationApp\target\UserRegistrationApp-0.0.1-SNAPSHOT.jar), and then click the Create environment button, as shown in Figure 4-21.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig21_HTML.jpg]
Figure 4-21Upload application code

Once the environment has been created, and the resources have been deployed, change the server port the Spring Boot application listens on. So, you need to specify the SERVER_PORT environment variable in the Elastic Beanstalk environment and set the value to 5000.
On the Configuration page in your environment, under Software, click the Edit icon, as shown in Figure 4-22.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig22_HTML.jpg]
Figure 4-22Edit software configuration

And then add a new environment variable SERVER_PORT, with a value 5000 to change the port that the Spring Boot application listens on, as shown in Figure 4-23.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig23_HTML.jpg]
Figure 4-23Environment properties in software configuration

As soon as you click the Apply button, the configuration changes are propagated to the application servers, and the application is restarted.
When it restarts the application, it picks up the new configuration through the environment variables. And, in about a minute, you see a healthy application on the dashboard, as shown in Figure 4-24.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig24_HTML.jpg]
Figure 4-24Health OK

You are now ready to test the UserRegistrationApp application deployed in the Amazon cloud.
Test Deployed REST API in AWS Using Swagger UI
Now, it’s time to test the deployed REST API endpoints in AWS. Use the URL that you configured on the AWS environment to access the service. For this example, the specified URL is http://userregistration.us-east-2.elasticbeanstalk.com.
Let’s open the Swagger UI page

 in the browser at http://userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/. You see the generated API documentation, as shown in Figure 4-25.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig25_HTML.jpg]
Figure 4-25Swagger API documentation page

Here, clicking user-registration-controller shows the list of defined REST endpoints, and by clicking the Models display domain model structure, as shown in Figure 4-26.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig26_HTML.jpg]
Figure 4-26Swagger UI lists REST endpoints and model structure

Using Swagger, let’s test the REST Endpoints deployed on AWS.
List All Users: /api/users
On the Swagger UI page, expand GET /api/users, and click the Try It Out button. And then, click the Execute button to call this REST endpoint. Figure 4-27 shows that the HTTP status response code should be 200 OK, and the response body should contain the list of users.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig27_HTML.jpg]
Figure 4-27List all users using Swagger UI

Create New Users: /api/users
On the Swagger UI page, expand POST /api/user/save, and click the Try It Out button. Next, enter the user JSON data shown in Listing 4-10 in the request body input box, and select application/json as the content-type parameter.{
 "last_name": "Soni",
 "firstName": "Namrata",
 "address": "Bangalore-India",
 "age": 25,
 "createdDate": "2021-07-04T00:00:00"
}

Listing 4-10User JSON Data

Next, click the Execute button to call this REST endpoint. As shown in Figure 4-28, the response HTTP status code should be 201 Created.[image: ../images/513001_1_En_4_Chapter/513001_1_En_4_Fig28_HTML.jpg]
Figure 4-28Create

 a new user using Swagger UI

Summary
In this chapter, you created UserRegistrationApp Spring Boot REST API talking to an Amazon RDS MySQL database. You explored different Maven dependencies that have been used in the pom.xml file, such as Lombok, JPA, and so on. You learned how to configure Project Lombok to STS IDE. You updated the application.properties file with database details such as URL, username, and password, and many more. And then, you created an Entity class using JPA annotation, a repository interface that extends the JpaRepository interface, a service class for CRUD methods, and a REST controller to define different REST endpoints.
First, you tested the UserRegistrationApp application locally using Postman. Then you built a JAR that you deployed in Elastic Beanstalk. Finally, you tested the deployed REST endpoints to the AWS cloud using the Swagger UI.
The next chapter explores how to deploy a full stack Spring Boot React application in AWS and S3.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2021
R. K. Soni, N. SoniSpring Boot with React and AWShttps://doi.org/10.1007/978-1-4842-7392-0_5

5. Deploy a Full Stack Spring Boot React Application in AWS and S3

Ravi Kant Soni1 and Namrata Soni2
(1)s/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

(2)d/o - Late. Ras Bihari Prasad, Sri Niwash, Lashkariganj, Sasaram, Bihar, India

In Chapter 4, you created the UserRegistrationApp Spring Boot RESTful web service that talks to the Amazon RDS MySQL database to perform CRUD operations. You learned how to configure Project Lombok to STS IDE. You created an Entity class using JPA annotation, a repository interface that extends the JpaRepository interface, a Service class for CRUD methods, and a REST controller to define different REST endpoints. Afterward, you tested the UserRegistrationApp application locally using Postman. Then you built an executable JAR that was deployed in AWS Elastic Beanstalk. Finally, you tested the deployed REST endpoints using Swagger UI.
The world sees the front end, including the design using some languages such as HTML and CSS. The main aim of the front end is to present data in a well-defined style and allows interaction with the client to perform CRUD operations. There are so many amazing JavaScript libraries available that can develop front-end applications.
React is an open source, front-end JavaScript library for building single-page applications. React is a perfect solution for a client-side library for a clean and structured approach.
This chapter introduces React as a front-end framework and its major components. You can develop a single-page application using React as the front end to consume APIs exposed by the UserRegistrationApp back-end application developed using Spring Boot, as shown in Figure 5-1.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig1_HTML.jpg]
Figure 5-1Full stack application overview

You set up a development environment to develop your React front-end application. In this chapter, you learn the following.	How to develop and run React as a local front-end application

	How to deploy the React front end to AWS S3

This front-end application has a home page, an Add New User page, and a List All Users page with a Delete option. You make an API call to AWS, where you have already deployed the back-end RESTful services named UserRegistrationApp. You are introduced to AWS S3 (Simple Storage Service), where you deploy the React front-end application. And, finally, you verify successful deployment of the React front-end application.
Develop and Run React as a Front-End Application
Let’s start developing and running the interactive front-end application with React in the local system. We assume that you have good knowledge of JavaScript, HTML5, CSS, and React. If you want an in-depth understanding of React, refer to https://reactjs.org.
Introducing React as a Front-end Framework
React is an open source, component-based JavaScript library for building fast and interactive UI (user interface)

components. It was created in 2011 by a Facebook software engineer named Jordan Walke. Initially, it was developed and maintained by Facebook. React application is made up of independent, isolated, and reusable components, which are the heart of React application, and each component is responsible for building complex and reusable user interfaces. Every React application has at least one component known as the root component. This root component represents the internal application and contains other child components.
You build a user registration front-end app using React with CRUD features. This React application has different components, as shown in Figure 5-2.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig2_HTML.jpg]
Figure 5-2React components with Router and Axios

	The App component is a root component that contains react-router. This also contains a navbar that links to the route’s paths.

	The Home component displays a welcome message.

	The ListAllUsers component displays a list of all users with a Delete option.

	The AddUser component has a form for new user submission.

All these components call required methods in UserDataService, which internally uses the Axios HTTP library to make HTTP requests and receive responses.
React Components
In React, a component is considered as the core part of the user interface. Each component has its own structure and is independent of other components, and when all the components merge in a parent component results in the final UI of the application. A component is typically implemented as a JavaScript class with some state and a render method, as shown in Listing 5-1.class UserClass {
 state = {};
 render() {

 }
}

Listing 5-1Structure of Component with State and Render Method

There are mainly two types of components in React.	Stateless functional components	These are JavaScript functions that don’t have their own state and return HTML to describe UI.

	Stateful class components	These are regular ES6 classes that extend the Component class from the React library. They must contain a render method, which in turn returns React elements or HTML. They manage the local state.

React State
The state is an updatable structure that is managed within the component. A Stateful

 component has a state responsible for making the user interface dynamic and interactive. You need to declare some default set of values to define the initial state of components. A state can be set or changed using a setState method.
Constructor
In React, the constructor initializes an object’s state of a class. This constructor is called automatically during the object creation of the class. It is called before the component is mounted. You need to call the super(props) method before any other statement in a constructor. Also, in React, the constructor binds the event handler method.
A React Component’s Life Cycle
Let’s explore the React component’s life cycle. It primarily consists of four phases, as shown in Figure 5-3.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig3_HTML.jpg]
Figure 5-3React component’s life cycle

The different phases of the React component’s life cycle provide different methods. React calls the life cycle method according to the component phase.	Initialization is the birth phase of React components, where they start their journey by setting up the initial state and default props. This is done in the component’s constructor.

	Mounting is the phase where the React component mounts (created and inserted) on the Document Object Model (DOM). After completing the initialization phase, the React component renders for the first time in this mounting phase.

	Updation is the third phase of a React component’s life cycle. It is the state of the created component change. The React component data (e.g., props and state) is updated in response to user events like typing, clicking, and so on.

	Unmounting is the last phase in this life cycle. The React component instance is destroyed and unmounted from the DOM.

Set up a Development Environment

The following tools are needed to run any React application.

	A code editor, such as Visual Studio, to work with the project files. You can download it from https://code.visualstudio.com.

	Go to https://nodejs.org to download and install the latest version of Node.js, which is a JavaScript runtime environment.

	A package manager called npm, which downloads and runs JavaScript packages built on Node.js. It’s automatically included in your installation of Node.js.

To check the Node.js and npm versions, run the node –v and npm –v commands in your terminal, as shown in Figure 5-4.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig4_HTML.jpg]
Figure 5-4Node.js and npm version in PC

Cross-Origin Resource Sharing (CORS) Error
When you work on a front-end application in React

that connects to a RESTful web service written in Spring Boot, you may get a CORS error whenever you make the request in your browser. Basically, this error means that the user agent (http://localhost:3000) doesn’t have sufficient required permissions to access Spring Boot resources (http://localhost:5000).
The solution to this error required an update in the Spring Boot application to enable cross-origin requests for a RESTful web service. You must annotate the Controller class with @CrossOrigin annotation to support global CORS configuration, as shown in Listing 5-2. And, by default, all origins and the GET, HEAD, and POST HTTP methods are allowed.@CrossOrigin
@RestController
@RequestMapping("/api/")
public class UserRegistrationController {

Listing 5-2\src\main\java\com\apress\AWS\controller\UserRegistrationController.java

After updating the Controller class, Maven builds and runs the UserRegistrationApp Spring Boot application. And, also make sure that UserRegistrationApp should always be running when developing the front-end application using React.
Developing React Front-End Application with create-react-app
The create-react-app package

 makes developing React front-end applications a breeze. To create a React app using create-react-app, open a command prompt in the folder where you want to save the project folder and run the following npx command (see Figure 5-5).npx create-react-app user-registartion-frontend-app

[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig5_HTML.jpg]
Figure 5-5npx command to create a React app using create-react-app

Once the npx command has run successfully, a folder named user-registration-frontend-app is created, as shown in Figure 5-6; all the required packages are automatically installed.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig6_HTML.jpg]
Figure 5-6Successfully created user-registration-frontend-app

Review the Project Structure
Once the React project has been created and all the required dependencies have been installed, open the project in Visual Studio. The project structure should look like as shown in Figure 5-7.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig7_HTML.jpg]
Figure 5-7Project structure in Visual Studio

The project structure contains the following files and folders.	The README.md file is a markdown file that includes a lot of helpful information.

	The package.json file manages the app’s required dependencies and the scripts needed to run it.

	The .gitignore file excludes desired files and folders from being tracked by Git. Generally, you exclude large folders like the node_modules folder.

	The src folder contains React-related source code and all the components that you develop.	The App.js file in the src folder is a root component of the React application.

	The index.js file is the top render file of the React application. You import App components using the ReactDOM.render() method in the index.js file.

	The public folder stores static assets, such as fonts and images, for the React app.	The index.html file is in the public folder. The React application uses this single file to render all the components. This supports the principle of a single-page application.

	The node_modules folder contains all the packages installed with Node.js and npm.

Run a React App
To build the React app, the following files must exist with the exact filenames.	public/index.html is the only HTML file in the entire project. This HTML file is a template, and it is loaded first when the application starts.	Only those files which are there in the public folder can be used from public/index.html.

	This file contains a line of code <div id="root"></div>, which signifies that all the React app components are loaded into this div.

	src/index.js is the JavaScript entry point.

	The src/App.js is the App component, which is the main component in React; it acts as a container for all the other components.

To start the React app, open the command prompt at user-registration-frontend-app, which is a newly created folder, and run the npm start command, as shown in Figure 5-8.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig8_HTML.jpg]
Figure 5-8npm start command to start React app

A success message should appear in the command prompt, as shown in Figure 5-9.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig9_HTML.jpg]
Figure 5-9Compiled success message on command prompt

This started the development server on localhost:3000. The great thing about this development server is that the server automatically refreshes to reflect the changes, and there is no need to refresh the browser manually.
You can view the application in the browser by hitting the URL (http://localhost:3000), as shown in Figure 5-10.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig10_HTML.jpg]
Figure 5-10Home page for React app

Congratulations! You have successfully created a base source code for the React application to add more components as needed. This app content comes from the src/App.js file, which contains the code shown in Listing 5-3.import logo from './logo.svg';
import './App.css';

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}

export default App;

Listing 5-3src/App.js

To support CRUD operation, let’s create the following additional files in the React application.	src/services/user-registration.service.js

	src/components/add-user.component.js

	src/components/home.component.js

	src/components/list-users.component.js

Add Twitter Bootstrap to Style the React App with CSS
By default, create-react-app comes with CSS support by providing an App.css file in the src folder, where you can add some style to improve appearance. Twitter Bootstrap is a front-end CSS framework that can style a website’s contents.
Open the command prompt, and run the npm install bootstrap command, which installs Bootstrap in the node_modules folder, as shown in Figure 5-11.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig11_HTML.jpg]
Figure 5-11Bootstrap installed in node_modules folder

To import Twitter Bootstrap into the React app, open the src/App.js file and modify the code, as shown in Listing 5-4.import './App.css';
import 'bootstrap/dist/css/bootstrap.min.css'

function App() {
 // ...
}

Listing 5-4src/App.js

Add a Navbar
Let’s add a navbar to the App component, which is the root container for the React application. Update the src/App.js file with the code shown in Listing 5-5.import './App.css';
import 'bootstrap/dist/css/bootstrap.min.css'

function App() {
 return (
 <div className="App">
 <header className="App-header1">
 <div class="page-header text-center">
 <h2>User Registration App</h2>
 </div>
 </header>
 <div class="container-fluid">
 <nav class="navbar bg-primary justify-content-center">
 <div class="col-sm"></div>
 <a href="/"
 class="col-sm btn btn-outline-light"
 role="button">
 Home

 <div class="col-sm"></div>
 <a href="/list-all-users"
 class="col-sm btn btn-outline-light"
 role="button">
 List All Users

 <div class="col-sm"></div>
 <a href="/add-user"
 class="col-sm btn btn-outline-light"
 role="button">
 Add User

 <div class="col-sm"></div>
 </nav>
 </div>
 </div>
);
}

export default App;

Listing 5-5src/App.js

Add react-router
Routing is a process that redirects users to different pages based on their request or action. The react-router package

 is a standard library system built on top of React and defines multiple routes using react-router in single-page web applications. When a user enters a specific URL in a browser, and the URL path matches a defined route, the user is routed to it.
By default, React doesn’t come with routing. And, you need to add a react-router library in the project to enable routing. Open the command prompt and run the following command to install react-router.npm install react-router-dom

Since you have successfully installed react-router, let’s use it in the application.
BrowserRouter Object to Enable Routing
BrowserRouter

 uses the HTML5 history API to keep your user interface in sync with the URL. It is used in client-side routing with URL segments.
First, you need to import BrowserRouter from react-router-dom to enable routing in the project. Open and update src/index.js to wrap app components with the BrowserRouter object, as shown in Listing 5-6.import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import reportWebVitals from './reportWebVitals';
import { BrowserRouter } from "react-router-dom";

ReactDOM.render(
 <BrowserRouter>
 <App />
 </BrowserRouter>,
 document.getElementById('root')
);

reportWebVitals();

Listing 5-6src/index.js

Switch and Route to Render Routes
Switch

 renders a route exclusively and helps with switching between pages without reloading it. Every route that matches the component and path renders inclusively.
The path property defines the path of the route; for example, / defines the path of the home page. Route loads the defined component; for example, it loads the home component. Update the src/App.js file with the source code shown in Listing 5-7.import './App.css';
import React, {components} from 'react';
import { Switch, Route } from 'react-router-dom';
import 'bootstrap/dist/css/bootstrap.min.css'

import ListUsers from './components/list-users.component';
import Home from './components/home.component';
import AddUser from './components/add-user.component';

function App() {
 return (
 <div className="App">
 <header className="App-header1">
 <div class="page-header text-center">
 <h2>User Registration App</h2>
 </div>
 </header>

 <div class="container-fluid">
 <nav class="navbar bg-primary justify-content-center">
 <div class="col-sm"></div>
 <a href="/"
 class="col-sm btn btn-outline-light"
 role="button">
 Home

 <div class="col-sm"></div>
 <a href="/list-all-users"
 class="col-sm btn btn-outline-light"
 role="button">
 List All Users

 <div class="col-sm"></div>
 <a href="/add-user"
 class="col-sm btn btn-outline-light"
 role="button">
 Add User

 <div class="col-sm"></div>
 </nav>

 <div className="container mt-3">
 <Switch>
 <Route exact path={["/"]} component={Home} />
 <Route exact path={["/list-all-users"]} component={ListUsers} />
 <Route exact path={["/add-user"]} component={AddUser} />
 </Switch>
 </div>
 </div>
 </div>
);
}

export default App;

Listing 5-7Update src/App.js with react-router

Three routes are defined in the React application.	/ for the home page

	/list-all-users for the List All Users page

	/add-user for the Add User page

Initialize Axios for a REST API Call
React is a JavaScript library that builds user interfaces. It is not concerned with HTTP. To make HTTP or REST API calls, you need to use a third-party HTTP library. Here, you use the Axios HTTP library.
Axios is a promise-based HTTP client that allows you to make an HTTP request to a given endpoint and has good defaults to work with JSON. To set up Axios with React, you need to install Axios with npm. Open the command prompt and run the npm install axios command. Let’s create an http-common.js file in the src folder, as shown in Listing 5-8.import axios from "axios";

export default axios.create({
 baseURL: "http://localhost:5000/api/",
 headers: {
 "Content-type": "application/json"
 },
});

Listing 5-8src/http-common.js

Depending on the URL of REST API, you can update baseURL in the file.
Data Service to Send an HTTP Request
Next, create a data service that uses Axios to send HTTP requests to the REST API. Let’s create a service folder in the src folder and a user-registration.service.js file in that folder, as shown in Listing 5-9.import http from '../http-common';

class UserDataService {

 getAllUsers() {
 return http.get("/users");
 }

 createUser(user) {
 return http.post("/user/save", user);
 }

 deleteUser(id) {
 return http.delete(`/user/delete/id/${id}`);
 }
}

export default new UserDataService();

Listing 5-9src/user-registration.service.js

UserDataService defines three methods: getAllUsers, createUser, and deleteUser. The Axios get, post, and delete methods are called corresponding to the HTTP GET, POST, and DELETE methods to make a CRUD operation.
Create React Components Corresponding to Routes
Create three components corresponding in the src/components/ subfolder to the three routes defined before.
Home Component
Let’s create the Home component

, which displays welcome messages along with a navigation bar. Listing 5-10 shows the code for the home component.import React, { Component } from "react";

export default class Home extends Component {
 render() {
 return (
 <div class="container">
 <div class="panel panel-default">
 <div class="alert alert-success">

 Welcome to User Registration App

 </div>
 <div class="panel-body ">
 <div class="alert alert-info">

 Please click on
 List All Users
 to get all users.

 Please click on
 Add User
 to add a new user.

 </div>
 </div>
 </div>
 </div>
);
 }
}

Listing 5-10src/components/home.component.js

In this component, you create a Home class that extends the Component class, which contains a render() method that returns HTML code containing a welcome message.
When you save this home component file, the content on the browser is automatically refreshed. The result in the browser is shown in Figure 5-12.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig12_HTML.jpg]
Figure 5-12User registration app home page

Add Users Component
Let’s create another component to add a new user in the components. This component has a form to submit a new user with four fields: First Name, Last Name, Age, and Address. Listing 5-11, 5-12, 5-13 and 5-14 shows the pieces of code for the add-user component

.import React, { Component } from "react";
import userRegistrationService from "../services/user-registration.service";

Listing 5-11Imports in src/components/add-user.component.js

Here, we have imported React and Component from "react" and user-registration-service.export default class AddUser extends Component {

 constructor(props) {
 super(props);

 this.onChangeFirstName = this.onChangeFirstName.bind(this);
 this.onChangeLastName = this.onChangeLastName.bind(this);
 this.onChangeAge = this.onChangeAge.bind(this);
 this.onChangeAddress = this.onChangeAddress.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 this.newUser = this.newUser.bind(this);

 this.state = {
 id: null,
 firstName: "",
 lastName: "",
 age: "",
 address: "",
 createdDate: ""
 };

 }

Listing 5-12Constructor and State in AddUser Class in src/components/add-user.component.js

In the preceding code, the AddUser class extends components. The constructor of this class sets the initial state for id, firstName, lastName, age, address, and createdDate with a default value. Also, we bound it to different events, such as onChangeFirstName, handleSubmit, and so on. onChangeFirstName(event) {
 this.setState({
 firstName: event.target.value
 });
 }

 onChangeLastName(event) {
 this.setState({
 lastName: event.target.value
 });
 }

 onChangeAge(event) {
 this.setState({
 age: event.target.value
 });
 }

 onChangeAddress(event) {
 this.setState({
 address: event.target.value
 });
 }

 handleSubmit(event) {
 console.log(this.state)

 var data = {
 firstName: this.state.firstName,
 lastName: this.state.lastName,
 age: this.state.age,
 address: this.state.address
 };

 event.preventDefault();

 userRegistrationService.createUser(data)
 .then(response => {
 alert('You submitted successfully! ' + data.firstName + ' User is created');
 this.setState({
 id: response.data.id,
 firstName: response.data.firstName,
 lastName: response.data.lastName,
 age: response.data.age,
 address: response.data.address
 });
 this.props.history.push("/list-all-users");
 })
 .catch(e => {
 console.log(e);
 });
 }

 newUser() {
 this.setState({
 id: null,
 firstName: "",
 lastName: "",
 age: "",
 address: "",
 createdDate: ""
 });
 }

Listing 5-13Functions in AddUser Class in src/components/add-user.component.js

Four functions (onChangeFirstName, onChangeLastName, onChangeAge, onChangeAddress) are created to track the input value and set the state for changes. A function named handleSubmit is defined to get the value of the form (state) and call the createUser() method of userRegistrationService, which internally sends HTTP POST requests to the REST API. render() {
 return (
 <div className="submit-form">
 <div className="form-group">
 <label htmlFor="firstName">First Name</label>
 <input
 type="text"
 className="form-control"
 id="firstName"
 required
 value={this.state.firstName}
 onChange={e => this.onChangeFirstName(e)}
 name="firstName"
 />
 </div>

 <div className="form-group">
 <label htmlFor="lastName">Last Name</label>
 <input
 type="text"
 className="form-control"
 id="lastName"
 required
 value={this.state.lastName}
 onChange={e => this.onChangeLastName(e)}
 name="lastName"
 />
 </div>

 <div className="form-group">
 <label htmlFor="age">Age</label>
 <input
 type="text"
 className="form-control"
 id="age"
 required
 value={this.state.age}
 onChange={e => this.onChangeAge(e)}
 name="age"
 />
 </div>

 <div className="form-group">
 <label htmlFor="address">Address</label>
 <input
 type="text"
 className="form-control"
 id="address"
 required
 value={this.state.address}
 onChange={e => this.onChangeAddress(e)}
 name="address"
 />
 </div>

 <button onClick={this.handleSubmit} className="btn btn-success">
 Submit
 </button>
 </div>
)
 }
}

Listing 5-14Render Method to Return HTML Code

Here, the render method results in UI. AddUser contains input boxes for the first name, last name, age, and address, and it contains the Submit button for creating a new user, as shown in Figure 5-13.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig13_HTML.jpg]
Figure 5-13Page to add new user

List All Users Component
Let’s create another component to list all the users in the components subfolder

. This component has a user array to display a list of users in the table, and each row has a Delete button to delete specific users from the list. Listing 5-15 and 5-16 shows the pieces of code for the list-user component.import React, { Component } from "react";
import UserDataService from '../services/user-registration.service';

export default class UsersList extends Component {
 constructor(props) {
 super(props);
 this.retrieveUsers = this.retrieveUsers.bind(this);
 this.deleteUser = this.deleteUser.bind(this);
 this.state = {
 users: []
 };
 }

 componentDidMount() {
 this.retrieveUsers();
 }

 retrieveUsers() {
 UserDataService.getAllUsers()
 .then(response => {
 this.setState({
 users: response.data
 });
 console.log(response.data);
 })
 .catch(e => {
 console.log(e.target);
 });
 }

 deleteUser(user, index) {
 UserDataService.deleteUser(user.id)
 .then(response => {
 alert('Deleted successfully! ' + user.firstName);
 this.retrieveUsers();
 })
 .catch(e => {
 console.log(e.target);
 });
 }

Listing 5-15Imports, Constructor, State, and Functions in UsersList Class in src/components/list-users.component.js

The UsersList class extends the Components class. React, Component, and user-registration-service import as UserDataService. We defined the constructor of this class that sets the initial state for the users array. Also, we bound this to the different events such as retrieveUsers and deleteUser.
The retrieveUsers function is defined to get the list of users by calling the getAllUsers() method of UserDataService, which internally sends HTTP GET requests to the REST API. A function named deleteUser is defined to delete users by calling the deleteUser() method of UserDataService, which internally sends HTTP DELETE requests to the REST API. The componentDidMount() method immediately executes the React code after a component is mounted (placed in the DOM). render() {
 const { users } = this.state;

 return (
 <table class="table table-hover">
 <caption>List of users</caption>
 <thead class="thead-dark">
 <tr>
 <th scope="col">#</th>
 <th scope="col">First Name</th>
 <th scope="col">Last Name</th>
 <th scope="col">Age</th>
 <th scope="col">Address</th>
 <th scope="col">Delete</th>
 </tr>
 </thead>
 <tbody>
 {users && users.map((user, index) => (
 <tr>
 <th scope="row">{index+1}</th>
 <td>{user.firstName}</td>
 <td>{user.lastName}</td>
 <td>{user.age}</td>
 <td>{user.address}</td>
 <td>
 <button type="button"
 onClick={() => this.deleteUser(user, index)}
 class="btn btn-danger custom-width"
 key={index}
 >

 Delete

 </button>
 </td>
 </tr>
))}
 </tbody>
 </table>
);
 }
}

Listing 5-16Render Method to Return HTML Code

The render method results in a UI. The List of Users page displays a user list in a table. It also contains a Delete button for each user’s row in a table, as shown in Figure 5-14.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig14_HTML.jpg]
Figure 5-14List all users along with a delete user option

Even though you added only one user in the previous section, the list shows two users. It’s because the database already contains one user that was added in Chapter 4.
Here, clicking the Delete button deletes a specific user, as shown in Figure 5-15.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig15_HTML.jpg]
Figure 5-15Delete an existing user

After successfully deleting a specific user, the table displays an updated user list, as shown in Figure 5-16.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig16_HTML.jpg]
Figure 5-16Updated user list after the delete operation

Build React Code as a Front-end Application for AWS
You have successfully developed and run a user registration front-end app using React with CRUD features in your local system that consumes data from UserRegistrationApp RESTful web services that also run in the local system. To deploy the React app to AWS, you need to build React code.
Verify the AWS Elastic Beanstalk Environment Is Up
You have updated the Spring Boot application, which should be deployed to Elastic Beanstalk. You already learned about the deployment process of the back-end application, so you need to follow the same here to complete the deployment of the UserRegistrationApp Spring Boot application. Once you have successfully deployed the updated code, you need to verify that the Elastic Beanstalk environment is up, as shown in Figure 5-17.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig17_HTML.jpg]
Figure 5-17Verify that the Elastic Beanstalk environment is up

Update BaseURL in a React App with an AWS Elastic Beanstalk Environment URL
We provided the localhost URL of the RESTful app in the React front-end app in the src/http-common.js file so that Axios can make a REST API call from the front end to the back end.
Now, the React front-end app should interact with the RESTful web services deployed in Elastic Beanstalk. To achieve this, open the src/http-common.js file and update the base URL with the Elastic Beanstalk environment URL, as shown in Listing 5-17.import axios from "axios";

export default axios.create({
 //baseURL: "http://localhost:5000/api/",
 baseURL: "http://userregistration.us-east-2.elasticbeanstalk.com/api/",
 headers: {
 "Content-type": "application/json"
 },

});

Listing 5-17src/http-common.js

Before building, let’s verify the changes locally. Once you access the List All Users page in the browser, you can see the result from AWS, as shown in Figure 5-18.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig18_HTML.jpg]
Figure 5-18React app interact with RESTful web services deployed in Elastic Beanstalk

To cross verify the changes, open Developers Tools in a browser and validate the request URL, as shown in Figure 5-19, for the POST method to create a new user.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig19_HTML.jpg]
Figure 5-19Validate the Request URL in browser Developer Tools

Build React Code for AWS Deployment
You have made the required changes in the React app and verified those changes to confirm that the React app interacts with RESTful web services deployed in AWS. Now, you would like to deploy this React front-end app to the AWS server. You need to create a build for the React app.
To create a build, you need to stop the React app and execute the following npm command in the command prompt.E:\Apress\workspace\AWS\user-registartion-frontend-app>npm run build

Once you run the build command, a folder named build is created in the React app, and it is populated with an optimized production build, as shown in Figure 5-20.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig20_HTML.jpg]
Figure 5-20Build React app using npm command

So, now the build folder is ready. It contains a static folder and the asset-manifest.json, fevicon.ico, index.html, manifest.json, logo.png, and robots.txt files, as shown in Figure 5-21.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig21_HTML.jpg]
Figure 5-21The build folder in React app

Deploy a React Front-End to AWS S3: Hosting a Static Website
In the previous section, you built a React front-end app that you want to deploy in AWS S3.
Introduction to S3: Simple Storage Service in AWS
S3 stands for Simple Storage Service, which is scalable storage in the cloud. S3 is basically an object-store.
Log in to AWS Console Management, and click the All service hyperlink at the top, and you find S3 under the Storage category, as shown in Figure 5-22.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig22_HTML.jpg]
Figure 5-22S3 service under Storage category on AWS

Clicking S3

brings you to the page containing the bucket’s details, as shown in Figure 5-23.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig23_HTML.jpg]
Figure 5-23Buckets details on Amazon S3

A bucket is a collection of objects that are files belonging to that container. Figure 5-23 shows that a bucket is available in Amazon S3.
Figure 5-24 shows that this bucket contains all the JARS that you deployed in previous chapters, as shown in.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig24_HTML.jpg]
Figure 5-24Bucket contains JARs

AWS fetches all the required JARs from S3, which you can think of as primarily a storage service in AWS. If you want to store something like a backup file, archival file, data staging, or logs file, you use S3 in AWS.
S3 can also serve static websites, and that is the feature which you deploy React applications. S3 provides high durability and high availability.
While buckets are associated with regions, when you use S3, you are in a global space that means a global service, and you are not really selecting a region, as shown in Figure 5-25.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig25_HTML.jpg]
Figure 5-25Selecting S3 means global service

Next, you deploy the React app in AWS S3.
Create a Bucket
Open the Create bucket page, as shown in Figure 5-26.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig26_HTML.jpg]
Figure 5-26Creating UserRegistrationApp using Spring Initializr

Here, you need to provide general configuration information. While entering the bucket name, across AWS, the Bucket name should be globally unique. Enter user-registration-frontend-app in Bucket name, leave the other options on the page as is, and then click the Create bucket button. You should get a success message, as shown in Figure 5-27.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig27_HTML.jpg]
Figure 5-27Creating UserRegistrationApp using Spring Initializr

Here, you can see that two buckets were created in AWS S3. Click the newly created bucket named user-registration-frontend-app, which takes you to user-registration-frontend-app, as shown in Figure 5-28.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig28_HTML.jpg]
Figure 5-28user-registration-frontend-app with object details

Here, the objects are empty because it is a newly created bucket. Click the Upload button to upload all the content from the local system in the build folder, as shown in Figure 5-29.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig29_HTML.jpg]
Figure 5-29Upload files in build folder to S3 bucket

Next, click the Upload button at the bottom of the page. Once the files are uploaded successfully, you get a success message, as shown in Figure 5-30.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig30_HTML.jpg]
Figure 5-30Uploaded files and folder to AWS S3

Now, under the Objects tab, you see all the objects present in the user-registration-frontend-app bucket. Figure 5-31 shows the static folder and all the files you have uploaded to the bucket.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig31_HTML.jpg]
Figure 5-31Creating UserRegistrationApp using Spring Initializr

To host a website, go to the Properties tab, scroll down to Static website hosting, and then click Edit, as shown in Figure 5-32.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig32_HTML.jpg]
Figure 5-32Static website hosting

Next, select Enable for static website hosting, select Host a static website as the hosting type, and enter index.html as the index document, as shown in Figure 5-33.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig33_HTML.jpg]
Figure 5-33Update static website hosting details

The index.html file was uploaded to the S3 bucket. Save the changes. Now you can find the bucket website endpoint URL in the Properties tab, as shown in Figure 5-34.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig34_HTML.jpg]
Figure 5-34Bucket website endpoint URL

Clicking the bucket website endpoint URL gives a 403 Forbidden error, as shown in Figure 5-35.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig35_HTML.jpg]
Figure 5-35Creating UserRegistrationApp using Spring Initializr

The Access Denied error is due to S3 security issues. By default, all the objects you have uploaded have Block public access in the Permissions tab, as shown in Figure 5-36.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig36_HTML.jpg]
Figure 5-36By default, all objects block public access

To make all the bucket’s content public so that it is accessible on the Internet, click Block public access, uncheck Block all public access, and click Save changes, as shown in Figure 5-37.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig37_HTML.jpg]
Figure 5-37Creating UserRegistrationApp using Spring Initializr

A confirmation screen pops up to confirm the settings. You need to enter confirm in the input box and click the Confirm button, as shown in Figure 5-38.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig38_HTML.jpg]
Figure 5-38

To confirm the settings, enter confirm in the field

A success message should appear, as shown in Figure 5-39.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig39_HTML.jpg]
Figure 5-39Successfully edited Block Public Access settings for bucket

Now, you need to edit the bucket policy, which is written in JSON. It provides access to the objects stored in the bucket. To edit bucket policy, in the Permissions tab, scroll down to the Bucket policy section, and click the Edit button, and enter the JSON under Policy, as shown in Figure 5-40.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig40_HTML.jpg]
Figure 5-40Update bucket policy

Listing 5-18 shows the JSON for a bucket policy.{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AddPerm",
 "Effect":"Allow",
 "Principal": "*",
 "Action":"s3:GetObject",
 "Resource":["arn:aws:s3:::user-registartion-frontend-app/*"]
 }
]
}

Listing 5-18JSON for Bucket Policy

Resource contains the bucket name, which is user-registration-frontend-app, to identify the resource for the bucket policy. This JSON specifies a specific version. GetObject in Action allows access to all principals. All users can execute GetObject on user-registration-frontend-app.
Next, save the changes, which prompts a message stating, “This bucket has public access.” Refresh the browser with the bucket website endpoint URL. You can now access your home page, as shown in Figure 5-41.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig41_HTML.jpg]
Figure 5-41Bucket website endpoint URL in home page

Congratulations! You have successfully hosted your static React app in AWS S3 and can access the home page.
Verify the Successful Deployment of a React Front-end Application: Resolve a 404 Error
Click the List All Users button in the navigation bar on the home page. You get 404 Not Found errors, as shown in Figure 5-42.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig42_HTML.jpg]
Figure 5-42List All Users page throws 404 error

To resolve this issue, you need to update the Error document box to index.html. To make these changes, you need to go to the Properties tab under the bucket. Scroll down to Static website hosting, click Edit, and update the error document, as shown in Figure 5-43.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig43_HTML.jpg]
Figure 5-43Update Error document in Static Website Hosting

This is the way react-router works. It handles the requests from the front-end and routes users to other routes. Save the changes and refresh the browser to view the List All Users page, as shown in Figure 5-44.[image: ../images/513001_1_En_5_Chapter/513001_1_En_5_Fig44_HTML.jpg]
Figure 5-44Access list-all-users page hosted on AWS S3

Summary
This chapter introduced React as a front-end framework and its major components to develop a single-page application using React as the front end to consume the API exposed by the back-end application. You set up a development environment to develop a React front-end application and were introduced to S3 in AWS, where you deployed a React front-end application.

Appendix A: Install MySQL Workbench on Windows 10
MySQL Workbench is a visual database designing and modeling access tool used to add functionality and ease to SQL development work. MySQL Workbench facilitates creating new physical data models or modifying existing MySQL databases and provides data modeling, SQL development, and various administration tools for configuration. It also offers a graphical interface to work with MySQL databases in a structured way.
Step 1. Download Workbench
Go to the official MySQL Workbench download site (https://dev.mysql.com/downloads/workbench/). You see the options to download Workbench, as shown in Figure A-1. The MySQL Workbench version that was available when writing this tutorial was 8.0.25.[image: ../images/513001_1_En_BookBackmatter_Fig1_HTML.jpg]
Figure A-1MySQL Workbench

Clicking the Download button takes you to the next page, which asks you to either log in to download or download directly, as shown in Figure A-2.[image: ../images/513001_1_En_BookBackmatter_Fig2_HTML.jpg]
Figure A-2MySQL community download

Complete the MySQL installer download by following either of the approaches.
Step 2. Install Workbench
Double-click the downloaded MySQL Workbench installer to execute it. It shows a “Welcome to the Setup Wizard” screen, as shown in Figure

 A-3.[image: ../images/513001_1_En_BookBackmatter_Fig3_HTML.jpg]
Figure A-3Welcome screen

Click the Next button to continue the MySQL Workbench installation. The following screen asks you for the destination folder, as shown in Figure A-4.

[image: ../images/513001_1_En_BookBackmatter_Fig4_HTML.jpg]
Figure A-4Destination folder

Change the path if required and then click the Next button. The next screen offers the setup type options, as shown in Figure A-5.[image: ../images/513001_1_En_BookBackmatter_Fig5_HTML.jpg]
Figure A-5Destination folder

Select the Custom setup type to make changes. Then, click the Next button to view the custom options, as shown in Figure A-6.[image: ../images/513001_1_En_BookBackmatter_Fig6_HTML.jpg]
Figure A-6Custom setup

You can omit Program Shortcut by clicking it and selecting This feature will not be

available (if required). Then, click the Next button to confirm MySQL Workbench installation, as shown in Figure A-7.[image: ../images/513001_1_En_BookBackmatter_Fig7_HTML.jpg]
Figure A-7Ready to install

Click the Install button to start the installation. The installer asks for your system’s

permission. Grant the permissions to allow the installation process. It displays the progress, as shown in Figure A-8.[image: ../images/513001_1_En_BookBackmatter_Fig8_HTML.jpg]
Figure A-8Copying new files

After completing the installation, a Wizard Completed success screen is displayed, as shown in Figure A-9.

[image: ../images/513001_1_En_BookBackmatter_Fig9_HTML.jpg]
Figure A-9Wizard completed

Once you click the Finish button, the installer starts MySQL Workbench. The default window looks like the one shown in Figure A-10.[image: ../images/513001_1_En_BookBackmatter_Fig10_HTML.jpg]
Figure A-10Welcome to MySQL Workbench

Your MySQL server connection contains information about the target database server, including how to connect to it. Click the + icon on the MySQL Workbench home window to

open the Setup New Connection wizard, as shown in Figure A-11.[image: ../images/513001_1_En_BookBackmatter_Fig11_HTML.jpg]
Figure A-11Setup New Connection wizard

Appendix B: AWS Command-Line Interface (CLI)
The AWS Command Line Interface (CLI) manages AWS services from a terminal session that allows you to configure and control multiple AWS services by implementing a level of automation without logging in to the AWS Management Console.
Many popular tools, like Terraform, Jenkins, and Python scripts, support CLI access to create infrastructure as code (IAC), which creates the entire infrastructure. For example, if you want to create an S3 bucket in AWS, you don’t have to log in to the AWS Management Console and visit different-different pages on AWS to enter lots of details for this bucket creation. Instead, create some code with the required information, like the bucket name and so on, and run that code, which creates the S3 bucket automatically.
Let’s explore how to install AWS CLI in Windows and how to use the AWS CLI.
Step 1. Download and Install the AWS CLI on a Windows Operating System
First, you need to download the AWS CLI (https://aws.amazon.com/cli/), which asks you to save the MSI standalone package in your local system. Once downloaded, run it, and follow the steps by clicking the Next buttons and the Finish button.
Once installation is completed, the program files are stored at C:\Program Files\Amazon\AWSCLIV2.
Step 2. Create an Access Key
When you create an AWS account using AWS Management Console, AWS creates a root user who has administrative rights to perform many talks in AWS. You need to create an IAM user in your AWS account to provide the necessary rights.
Log in to AWS Management Console, and in All Services, you can find IAM under the Security, Identity, & Compliance category, as shown in Figure B-1.[image: ../images/513001_1_En_BookBackmatter_Fig12_HTML.jpg]
Figure B-1IAM under Security, Identity, & Compliance

Clicking IAM takes you to the IAM page, where you find the My access key link, as shown in Figure B-2.[image: ../images/513001_1_En_BookBackmatter_Fig13_HTML.jpg]
Figure B-2My access key

Clicking My access key gives you the Create New Access Key option, as shown in Figure B-3.[image: ../images/513001_1_En_BookBackmatter_Fig14_HTML.jpg]
Figure B-3Create a new access key

Clicking the Create New Access Key button opens a Create Access Key popup, with a Download Key File option and a Show Access Key option, as shown in Figure B-4.[image: ../images/513001_1_En_BookBackmatter_Fig15_HTML.jpg]
Figure B-4Create access key

Download the file for future reference.
Configure AWS CLI
Once you have successfully installed the AWS CLI, you need to configure the application to connect to your AWS account. To achieve this, open the command prompt, and enter the aws configure command, which prompts you for four pieces of information, as shown in Figure B-5.[image: ../images/513001_1_En_BookBackmatter_Fig16_HTML.jpg]
Figure B-5AWS configure

Copy the access key ID and the secret access key from the downloaded key file, which authenticates your AWS account. The region name defines the region where the request from CLI is sent to. The output format specifies the result format: JSON, YAML, text, or table.
Example Commands That Work with S3

	1.
List all the S3 buckets in your AWS account.
aws s3 ls

[image: ../images/513001_1_En_BookBackmatter_Figa_HTML.jpg]

	2.
Create a bucket.
aws s3 mb s3://user-registration-backup

[image: ../images/513001_1_En_BookBackmatter_Figb_HTML.jpg]

	3.
Verify in AWS Management Console.

[image: ../images/513001_1_En_BookBackmatter_Figc_HTML.jpg]

	4.
Refer to the folder at C:\Program Files\Amazon\AWSCLIV2\awscli\examples for an example with a command that you can use based on your requirements.

Index

A

Amazon Web Service (AWS)
account developer
billing information
categories
contact information
features
main page
management console
password option
phone number verification
sign in
sign up
support plan
verification purposes
application architecture
elastic beanstalk
SeeElastic beanstalk server
elastic cloud compute (EC2)
hosting platform
key services
management console
overview
relational database service
Route 53
worldwide data centers

Application Programming Interface (API)
Axios
Java Persistence API
REST
Swagger UI
UserRegistrationApp project

B

BaseURL

Buckets page creation
block public access
confirm button
details
home page
object details
policy section
spring initializr
upload files/folder
UserRegistrationApp
website endpoint

C

Command line interface (CLI)
access key
button option
security/identity/compliance category
my access key option
configuration
MSI standalone package
S3 buckets
tools

Cross-origin resource sharing (CORS)

CRUD operations

D

Data access object (DAO)

Database connection
configuration
dashboard
database details
enable options
engine options
environment
instances
options
services

E

Elastic beanstalk server
application information
button code
compute section
congratulations screen
deploy/handle server
development process
environment details
front-end applications
health status
HelloWorld JSP
SeeHelloWorld JSP application
logs
page information
platform details
spring boot application
UserRegistrationApp project
WAR
SeeWAR file
web app page

Elastic cloud compute (EC2)

F, G

Front-end applications
BaseURL
CORS error
create-react-app package
add-user component
Axios HTTP library
BrowserRouter object
components (react)
CRUD operation
data service
DELETE requests
files
full stack
home component
home page
navbar
node_modules folder
npm start command
npx command
project structure
react-router package
render method
sub-components
success message
switch/route/render routes
Twitter bootstrap
user registration app
deployment
developer tools
development environment
elastic beanstalk environment
node.js/npm version
overview
react app
components
constructor
life cycle
root components
router and axios
state and render method
Stateful method
S3
SeeSimple Storage Service (S3)

H

HelloWorld JSP application
archetype selection
browser
maven project
parameter selection
project directory
running server
targeted runtimes

I

Inbound connection
drop-down list
edit option
info page
rds-launch-wizard
rules tab
security group rules
updated source

J, K

Java Archives (JARs)
spring boot
command prompt
directory
edit configuration window
maven process
output process
UserRegistrationApp project

L

Lombok dependencies
getter/setter/toString/equals method
installation
m2 directory
objectives
spring tool suite

M, N, O, P, Q

MySQL workbench
community download
copying files
custom setup
destination folder
download site
installation process
relational database service
connection wizard
connectivity/security tab
db connection details
endpoint/port
store password
test connection button
updated value
setup connection
welcome screen
wizard completion

R

Relational database service (RDS)
configuration work
database instance status
inbound connection rules
MySQL Workbench
database
SeeDatabase connection
inbound
SeeInbound connection
table creation
insert data
schema tab
SELECT command
SQL editor
UserRegistration database
users table
web service

Representational state transfer (REST)
controller implementation
delete existing user
HTTP response status codes
new user creation
Postman
RESTful web resources
individual user
S3 app
Spring Boot application
Swagger UI page

Route 53

S, T

Simple Storage Service (S3)
access list-all-users page
buckets page
SeeBuckets page creation
error document
global service
static website hosting
bucket website endpoint
index.html
properties tab
storage category

Spring Boot application
cloud application
development framework
elastic beanstalk
environment properties
health application
Hellospringboot-env creation
Java platform
project creation
severe health
JAR app creation
logs
overview
REST
SeeRepresentational state transfer (REST)
server port
STS
SeeSpring Tool Suite (STS)
Swagger
system requirements
UI Swagger dashboard
UserRegistrationApp
SeeUserRegistrationApp project
walk-through
annotations
main method
pom.xml file
@RestController/@RequestMapping annotations
SpringApplication.run() method

Spring Tool Suite (STS)
console application
HelloSpringBoot creation
project structure
wizard
REST endpoint
WAR and JAR files
web dependency

Swagger UI
API documentation page
configuration class
definition
front-end/back-end components
JSON output
REST endpoints
specification
Springfox dependency
UserRegistrationApp project
documentation page
endpoints and model structure
JSON Data
list users
user creation
verification

U, V

UserRegistrationApp project
application properties
details
domain implementation (UserDTO)
elastic beanstalk
edit software configuration
environment information
healthy application
managed platform
management console
upload application code
JAR application
Lombok
SeeLombok dependencies
maven dependencies
pom.xml file
project structure
repository interface (UserJpaRepository)
REST controller (UserRegistrationController)
running/testing app
existing user
individual user
local system
new user
retrieve users (/api/users)
STS console
Swagger UI page
service implementation
spring initializr creation
Swagger UI page
documentation page
endpoints and model structure
JSON Data
list users
user creation

W, X, Y, Z

WAR file
accessing application
application code
build success
Elastic Beanstalk
environment process
grouped categories
health/events
maven project
server platform
target folder

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig7_HTML.jpg
>O File Edit Selection View Go Run Terminal Help

@ EXPLORER

\/ USER-REGISTARTION-FRONTEND-APP

/() > node_modules

> public

> sIc
gp .gitignore
{} package-lock.json
{} package.json
® README.md

<

5

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig31_HTML.jpg
A upload

Q Find objects by prefix

(
PCoODDDDDODOD

asset-manifestjson
favicon.ico
index.html
logo192.png
logo512.png
manifest.json
robots.txt

static/

Type
json
ico
html
png
png
json
txt

Folder

Last modified

July 14, 2021, 17:15:27 (UTC+05:30)
July 14, 2021, 17:15:28 (UTC+05:30)
July 14, 2021, 17:15:21 (UTC+05:30)
July 14, 2021, 17:15:22 (UTC+05:30)
July 14, 2021, 17:15:23 (UTC+05:30)
July 14, 2021, 17:15:24 (UTC+05:30)
July 14, 2021, 17:15:26 (UTC+05:30)

v

Size

v

1.3K8B
3.8K8B
3.1KB
5.2KB
9.4 KB
49208
67.08

Storage class

Standard
Standard
Standard
Standard
Standard
Standard
Standard

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig14_HTML.jpg
P meblems @ Javadoc [® Declaration B Console 3 BXR XEREE 2~ Fj‘l@:’ S
[Maven Build) E:\Learni 49,0 RELEASE\plugi openjdk.hotspot.jre.full.win32.x36_64 15.0.1.v20: O7\jre\bin\jav

. 20:49: 49 055 Lmain] LNFO org. sprlngrramework .boot . test.context. SpringBootlestContextBootstrapper - stng P

& 20:49:49.044 [main] DEBUG org.springframework.test.context.support.AbstractDirtiesContextTestExecutionlLis

@© 20:49:49.218 [main] DEBUG org.springframework.test.context.support.TestPropertySourceUtils - Adding inlin

AL AL i I .
(6960 SRR I O [0 T v/l 0 ¥

oY S |5 [O (2

gl | R 1 [0 1 [S <4

s |__/=1_1_1I_1

:: Spring Boot :: (v2.5.1)
2021-06-29 20:49:50.098 INFO 10664 --- [main] c.a.AWS.HelloSpringBootApplicationTests : Star
2021-06-29 20:49:50.106 INFO 10664 --- [main] c.a.AWS.HelloSpringBootApplicationTests : No a
2021-06-29 20:49:57.107 INFO 10664 --- [main] c.a.AWS.HelloSpringBootApplicationTests : Star
[INFO] Tests run: 1, Failures: @, Errors: ©, Skipped: ©, Time elapsed: 10.32 s - in com.apress.AWS.HelloS
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 1, Failures: ©, Errors: ©, Skipped: ©
[INFO]
[INFO]
[INFO] --- maven-jar-plugin:3.2.0:jar (default-jar) @ HelloSpringBoot =---
[INFO] Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:2.5.1:repackage (repackage) @ HelloSpringBoot ---
[INFO] Replacing main artifact with repackaged archive
[INED] »rasmabes e s s s e s s s s s S
[INFO] BUILD SUCCESS
[INFO]

[INFO] Total tim 24.004 s
[INFO] Finished at: 2021-06-29720:50:01+05:30 v

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig7_HTML.jpg

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig34_HTML.jpg
& Project Explorer &
v & HelloWorldJSP

B®7Y ¢ =0

> x Deployment Descriptor: Archetype Created Web Application

> 28 Java Resources
> (3 Deployed Resources
v & src
v & main
v & webapp
> @ WEB-INF
[indexjsp
> & test
> & target
= pomxml
> & Servers

@ Run On Server

Run On Server
Select which server to use

How do you want to select the server?
@ Choose an existing server
(O Manually define a new server
Select the server that you want to use:

[type filter text

Server State
v & localhost
& Tomcat v85 Server at localhost £ Started

Apache Tomcat v8.5 supports J2EE 1.2, 1.3, 1.4, and Java EE 5, 6, and 7 Web modules.

[J Always use this server when running this project

|Cotumns..|

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig7_HTML.jpg
Step 1
Select engine

Step 2
Specify DB details

Step 3
Configure advanced
settings

RDS > Create database

Configure advanced settings

Network & Security

Virtual Private Cloud (VPC) Info
VPC defines the virtual networking environment for this DB instance.

| pefaute vpC (vpe-bsfa74ds) v |
Only VPCs with a corresponding DB subnet group are listed.

Subnet group Info
DB subnet group that defines which subnets and IP ranges the DB instance can use in the VPC you selected.

l default v

Public accessibility Info

O Yes
EC2 instances and devices outside of the VPC hosting the DB instance will connect to the DB instances. You must also select one or
more VPC security groups that specify which EC2 instances and devices can connect to the DB instance.

© No
DB instance will not have a public IP address assigned. No EC2 instance or devices outside of the VPC will be able to connect.

Availability zone Info

No preference v

VPC security groups
Security groups have rules authorizing connections from all the EC2 instances and devices that need to access the DB instance.

© Create new VPC security group
) Choose existing VPC security groups

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig20_HTML.jpg
Platform

O Managed platform
Platforms published and maintained by
Amazon Elastic Beanstalk. Learn more [

Custom platform
Platforms created and owned by you.

Platform
I Java v ‘
Platform branch
I Corretto 11 running on 64bit Amazon Linux 2 v ‘
Platform version

=]

| 3.2.1 (Recommended)

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig5_HTML.jpg
Your Code (WAR / JAR)

Application Server
like Tomcat

Developer
responsible for this

Language Runtime
like Java

Operating System

Host Server

Elastic Beanstalk
provides this

"

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig28_HTML.jpg
Amazon S3) user-registration-frontend-app

user-registration-frontend-app

Management Access Points

Objects ‘ Properties ‘ Permissions | Metrics

Obijects (0)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [7] to get a list of all objects in your bucket.

For others to access your objects, you'll need to explicitly grant them permissions. Learn more [

3 Copy S3 URI Copy URL M Download Open [4 Delete
I Actions V¥ H Create folder] [Upload

| -] 7 S N

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig14_HTML.jpg
CE=CE. o ° "

€ > C O lcahost3000/list-all-users Qax »9 :

User Registration App

List All Users Add User

First Name Last Name Age Address Delete

1 Ravi Soni 34 Sasaram-Bihar-India m
2 Namrata Soni 25 Bangalore - India m

List of users

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig17_HTML.jpg
AWS services

v All services

{sf Compute
EC2
Lightsail [4
Lambda
Batch
Elastic Beanstalk

Serverless Application
Repository

AWS Outposts
EC2 Image Builder

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig5_HTML.jpg
Step 1
Select engine

Step2
Specify DB details

Step3
Configure advanced
settings

RDS > Create database

Specify DB details

Instance specifications

y y for the DB ing the Amazon Web Service Simple Monthly Calculator [
DB engine
MySQL Community Edition

License model Info

l general-public-license v I

DB engine version Info

MySQL 8.0.23 v
I l

Known Issues/Limitations
Review the Known Issues/Limitations [4 to learn about potential compatibility issues with
specific database versions.

Free tier

@ The Amazon RDS Free Tier provides a single db.t2.micro instance as well as up to 20 GiB of
storage, allowing new AWS ¢ to gain hand: i with Amazon RDS. Learn
more about the RDS Free Tier and the instance restrictions here.

Only enable options eligible for RDS Free Usage Tier Info

DB instance class Info

db.t2.micro — 1 vCPU, 1 GiB RAM v

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig22_HTML.jpg
Q- Seorch for on apticn name or wilue

Category

Options

[rrviccoenent properties:
JOBC_CONNECTION_STRING
Ievzial VM beap size Doma): 266m
M optioas: -

Log streaming: disabled

Max SVM heop size (Xim): 256m
Proxy secver: ngnx
Rotate logs: dsabled

X-Ray daeonon: csabled

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig36_HTML.jpg
< Project Explorer &2 Y i 0o
i d:el;\ﬂ:‘. New >
> pk
Go Into
> M Javaf
> (3 Deplc Showln Alt+ShiftsW >

> B ste Show in Local Terminal >
> @ targe B Copy Ctrl+C
& pom: i3 Copy Qualified Name
> 3 Servers [y Paste Ctri+V
R Delete Delete
Build Path >
Refactor Alt+Shift+T >

Import >

Export >
&) Refresh S

Close Project

Close Unrelated Project

[ORimasT Y
12 Debug As

Profile As

Restore from Local History...
Java EE Tools

Maven

Team

Compare With

Configure

Source

Validate

Properties Alt+Enter l

1 Run on Server Alt+Shift+X R
2 Java Application Alt+Shift+X,)
3 Java Application In Container

4 JUnit Test Alt+Shift+X, T
S Maven build Alt+Shift+X, M
6 Maven build...

7 Maven clean

8 Maven generate-sources

IS Maveninall oot
=2 Maven test ized]

Run Configurations...

v v

AR2A2 S QHE

v v.v v v v

<

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig16_HTML.jpg
[. React App X e °
& C @ localhost:3000/list-all-users QA % Q :

User Registration App

First Name Last Name Age Address Delete

1 Namrata Soni 25 Bangalore - India

List of users

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig5_HTML.jpg
workspace - Spring Tool Suite 4
File Edit Source Refactor Navinate Search Praiect Run Window Help
' . > . oy = e
H-E@if b~ ® P if-Fl oD oD
Go Into
[Package Explot

v # HelloSpring Open in New Window

> @ src/main Open Type Hierarchy F4
> (& src/main Show In Alt+Shift+W >
> @ src/test)] Show in Local Terminal >
> =\ JRE Syste
> @\ Maven D Copy Ctrl+C
> B src {3 Copy Qualified Name s 1Run on Server Alt+Shift+X, R
& target Paste Ctd+V | [T 2Java Application Alt+Shift+X, J
:i:m(Delete Delete | (¥ 3Java Application In Container
g Build Path y | Ju 4)Unit Test Alt+Shift+X, T
[M pomxm e AlteShifteS > | ™ 5 Maven build Alt+Shift+X, M
Refactor Alt+ShifteT > m2 6 Maven build...
m2 7 Maven clean
Ry Impott.. m2 8 Maven generate-sources
i Export.. m2 9 Maven install
" Refresh FS m2 Maven test
Close Project &
Assign Working Sets... & Spring Devtools Client
» Run Configurations...
%5 Debug As >

Profile As >

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig23_HTML.jpg
= O X

i\ Setup New Connection

Connection Name: Ispmg-aws-d’ ITypeananeforﬁlemmecﬁm

Connection Method: | Standard (TCP/IP) | Method to use to comect to the RDBMS

Parameters ssL Advanced

Hostname: 1:yjkw|m.us-east—2.rds.amamws.mm| Port: l3305 Name or IP address of the server host - and

TCP/IP port.
Username:]mws] Name of the user to connect with.
Password: lStnre'nValt... J L Clear J :::g‘smd. Will be requested later if it's

Default Schema:] The schema to use as default schema. Leave
blank to selectit later.

| configure Server TestComnecton | | cancel | | ok |

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig7_HTML.jpg
aws Contact Sales Support~ English~ My Account~ || |Create an AWS Account

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

@Q -
L@}J & Mac

@

AWS Certification AQUA for Amazon Redshift Apple macOS on the AWS Cloud Amazon EC2 Instances Powered by

Propel your career forward with AWS Run queries up to 10x faster than other Get the flexibility, scalability, and cost AWS Graviton2

Certification cloud data warehouses benefits of AWS for your Apple Get up to 40% better price performance
development needs for a wide variety of workloads

AWS in India

& foi

Security Compliance in India AWS Partner Network

Mumbai region is compliant with national Local and certified APN partners to help you

net ctarted

and Ineal data nmtaction lawe

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig17_HTML.jpg
[11F0] Replacing main artifact with repackaged archive

[INFO]

[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ UserRegistrationApp ---

[1nF0] Installing E:\Apress\workspace\AWS\UserRegistrationApp\target\UserRegistrationApp-0.0.1-SN
IAPSHOT . jar to C:\Users\ravik\.m2\repository\com\apress\AWS\UserRegistrationApp\@.0.1-SNAPSHOT\Use
rRegistrationApp-0.0.1-SNAPSHOT.jar

[11F0] Installing E:\Apress\workspace\AWS\UserRegistrationApp\pom.xml to C:\Users\ravik\.m2\repos
itory\com\apress\AWS\UserRegistrationApp\@.8.1-SNAPSHOT\UserRegistrationApp-0.0.1-SNAPSHOT.pom
[INFO] ==== == e e e e e emeceeeseeeeseseeeeseseseeeeee—e—ae

[INFO] BUILD SUCCESS

[INFO] == m o e s e e

[1nF0] Total time: ©1:50 min

[11F0] Finished at: 2021-07-05T0©7:08:17+05:30

[TNFO] mmmmmmm e e e m e e e e e e e e e e e e e e e e e

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig7_HTML.jpg
- [localhost:8080/greeting X -

— (G (D localhost:8080/greeting

Welcome to Hello Spring Boot Application!

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig43_HTML.jpg
Static website hosting

Use this bucket to host a website or redirect requests. Learn more [7}

Static website hosting
() Disable
© Enable

Hosting type
O Host a static website
Use the bucket endpoint as the web address. Learn more Z

() Redirect requests for an object
Redirect requests to another bucket or domain. Learn more E

® For your customers to access content at the website endpoint, you must make all your content publicly
readable. To do so, you can edit the S3 Block Public Access settings for the bucket. For more information, see
Using Amazon S3 Block Public Access [4

Index document
Specify the home or default page of the website.

‘ index.html ‘

Error document - optional
This is returned when an error occurs.

I index.html{ I

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig20_HTML.jpg
Application information

Application name

My First Elastic Beanstalk Application

Up to 100 Unicode characters, not including forward slash (/).

OEBPS/images/513001_1_En_BookBackmatter_Fig15_HTML.jpg
Create Access Key

Your access key (access key ID and secret access key) has been created successfully.
Download your key file now, which contains your new access key ID and secret access key. If you

do not download the key file now, you will not be able to retrieve your secret access key again.

To help protect your securiy, store your secret access key securely and do not share it
» Show Access k

Downioad Key File || Close |

OEBPS/images/513001_1_En_BookFrontmatter_Figd_HTML.jpg

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig15_HTML.jpg
Ohio ¥ Support ¥

AWS Management Console

AWS services Stay connected to your AWS resources on-
the-go

» Allservices
=) AWSs Console Mobile App now supports four
E additional regions. Download the AWS Console
Mobile App to your iOS or Android mobile device

o = Learn more [
Build a solution Ex

Get started with simple wizar

s and automated workflows.

& . . 5 oo s Explore AWS
Launch a virtual machine Build a web app Build using virtual servers P
With EC2 With Elastic Beanstalk With Lightsail
2-3 minutes 6 minutes 1-2 minutes ‘Amazon Redshift

Fast, simple, cost-effective data warehouse that can extend
queries to your data lake. Learn more [4

& @

Run Serverless Containers with AWS Faraate

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig3_HTML.jpg
Amazon
EC2

Elastic
Beanstalk Amazon Amazon

RDS Route 53

OEBPS/images/513001_1_En_BookBackmatter_Figa_HTML.jpg
C:\Users\ravik>aws s3 1s
2021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
2021-07-14 17:57:15 user-registration-frontend-app

C:\Users\ravik>

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig9_HTML.jpg
Free Tier offers

AlLAWS accounts can explare 3 dittarent types
of froe offers, depending on the product used.

(D) e

12 months free
Seart trom initial sign-up date

Trials
Start trom sendce dtivation date

Sign up for AWS

Contact Information

How 60 you plan to Lse AWS?

() Busdness - for your work, schocd, or
crganization

O Personal - tor your awn projects

Who should we contact about this dcount?

l l

PHoos Number
Inter your country code and your phone namier,

[+1222-3354444]

Country or Region
[unitea seates v]

Address

I I

[Agartment, salts, wnit, 2alding, Moo, ot J

ary
I |

State, Provinee, of Regicn

Postal Code

[) 1 have road 3nd 3gree to the terms of the
AWS Customer Agroomant (4.

Continue (step 2 of 5)

<

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig15_HTML.jpg
user-registration-controller userRegistration Controller

l /api/user/delete/id/{id} delete

[/api/user/id/{id} getUserByld

[POST /api/user/save save

[GET /api/users istAllUsers

ModelAndView >

UserDTO v ¢
address string
‘ age integer($int32)
; createdDate string($date-time)
| firstName string
| id integer($int64)
last_name string
b
|

View >

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig26_HTML.jpg
Amazon S3 > Create bucket

Create bucket

Buckets are containers for data stored in S3. Learn more [

General configuration

Bucket name

’ user-registration-frontend-app |

Bucket name must be unique and must not contain spaces or uppercase letters. See rules for bucket naming [

AWS Region

[US East (Ohio) us-east-2 v [

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig9_HTML.jpg
Deletion protection

Enable deletion protection
Protects the database from being deleted accidentally. While this option is enabled, you can't delete the database.

@ Amazon RDS requires permissions to AWS resources on your behalf. By clicking Launch DB Instance, you
grant permission for Amazon RDS to create a service-linked role in AWS IAM that contains the required
permissions. Learn more.

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig13_HTML.jpg
Security group rules (2)

| Q Filter security group rules <1 > ®
Security group A Type v Rule v
| ds-1 h-wizard (sg-082174a08066db6d: CIDR/IP - Inbound 59.99.65.121/32

rds-launch-wizard (sg-082174a08066db6d8) CIDR/IP - Outbound 0.0.0.0/0

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig10_HTML.jpg
r. Swagger Ul P + (+]

& > C @ localhost:8080/swagger-ui/#/hello-spring-boot-application

hello-spring-boot-application Helo Spring Boot Application v

‘ /greeting greetingMessage ‘
[/greeting greetingMessage

[POST /greeting greetingMessage

[/greeting greetingMessage

[DELETE /greeting greetingMessage

)))) -

[(el 31e] /Ll /creeting greetingMessage

‘ /greeting greetingMessage ‘

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig16_HTML.jpg
_
: Spring Boot :: (v2.5.1)

021-06-29 21:05:56.589 INFO 4768 --- [main] c.a.AWS.HelloSpringBootApplicationTests : Starting HelloSpringBootApplicationTes
s using Java 12.0.2 on DESKTOP-VIK28ID with PID 4768 (started by RaviKantSoni in E:\Apress\workspace\AWS\HelloSpringBoot)

P021-06-29 21:05:56.609 INFO 4768 --- [main] c.a.AWS.HelloSpringBootApplicationTests : No active profile set, falling back to
default profiles: default

021-06-29 21:06:04.792 INFO 4768 --- [
k in 9.148 seconds (JVM running for 11.992)

11F0] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 11.83 s - in com.apress.AWS.HelloSpringBootApplicationTests
11FO] Results:

main] c.a.AWS.HelloSpringBootApplicationTests : Started HelloSpringBootApplicationTest

INFO]

INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @

INFO]

INFO]

TNFO] --- maven-jar-plugin:3.2.0:jar (default-jar) @ HelloSpringBoot ---

11F0] Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT.jar
INFO]

INFO] --- spring-boot-maven-plugin:2.5.1:repackage (repackage) @ HelloSpringBoot ---
11170] Replacing main artifact with repackaged archive

INFO]

INFO]

--- maven-install-plugin:2.5.2:install (default-install) @ HelloSpringBoot ---

Installing E:\Apress\workspace\AWS\HelloSpringBoot\target\Hel 1aSprmgBuot -0.0.1-SNAPSHOT. jar to C:\Users\ravik\.m2\repository\com\a
press\AWS\HelloSpringBoot\@.0.1-SNAPSHOT\HelloSpringBoot-0.0.1-SNAPSHOT . jar

1170] Installing E:\Apress\workspace\AWS\HelloSpringBoot\pom.xml to C:\Users\ravik\.m2\repository\com\apress\AWS\HelloSpringBoot\0.0.1-SN
PSHOT\HelloSpringBoot-@.0.1-SNAPSHOT . pom
INFO;

]
11FO] BUILD SUCCESS
INFO]

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig5_HTML.jpg
- Installer =

Install successful

Lombok has been installed on the selected IDE installations.
Don't forget to:

« add lombok. jar to your projects,
« exit and start your IDE,
« rebuild all projects!

If you start Spring Tools Suite 4 with a custom -vm parameter, you'll need to add:
-vmargs -javaagent:lombok.jar
as parameter as well.

« PLATFORM: JDK 16 support added. .

« PLATFORM: All lombok features updated to actin a sane fashion with JDK16's record feature. In particular,
you can annotate record components with @VonNull to have lombok add null checks to your compact
constructor (which will be created if need be).

« BUGFIX: Trying to use a lambda expression as parameter to an @ExtensionMethod did not work. . (by
@Rawi01).

« BUGFIX: @SuperBuilder with an exsting constructor caused issues in edipse. . (by @JanRieke).

ilderwitha itten builder dass caused issues. . (by @JanRieke).

« BUGFIX: Lombok interacts properly with the new save actions in edipse 2021-03.

« POTENTIAL BUGFIX: lombok + errorprone could cause I1legalArgumentExceptionifusing the
MissingSummary bug pattern. .

https:/forojecombok.org v1.18.20 View full changelog Quit Installer

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig33_HTML.jpg
Static website hosting
Use this bucket to host a website or redirect requests. Learn more [F

Static website hosting
() Disable
© Enable

Hosting type
© Host a static website
Use the bucket endpoint as the web address. Learn more [Z',

() Redirect requests for an object
Redirect requests to another bucket or domain. Learn more [

@ For your customers to access content at the website endpoint, you must make all your content publicly
readable. To do so, you can edit the S3 Block Public Access settings for the bucket. For more information, see
Using Amazon S3 Block Public Access [

Index document
Specify the home or default page of the website.

| index.htm| l

Error document - optional
This is returned when an error occurs.

(error.html ’

OEBPS/images/513001_1_En_BookBackmatter_Fig11_HTML.jpg
T\ Setup New Connection

Connection Name: Type a name for the connection
L]

Connecton Method: | Stendard (TCP/1P)] Method to use to connect to the RDBMS

Parameters ssL Advanced

Hostname: |1z7.o.o.1 lPon: |3m N&wp:’:d&&of&mmsbw

Usemame: [root | Name of the user to connect with.

Passnord: [storeinvVault... || Cear | The use’s pasaword. Wil be requested ater ifits
DefedtSchems. [The schema touse 2 defaut schema. Leave

| configure Server Management... TestConnecton | | Cancel | [ok |

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig30_HTML.jpg
& New Maven Project

New Maven project
Select an Archetype

Catalog: |All Catalogs

Filter. | webapp

|

Group Id Artifact Id Version A

org.apache.marmotta marmotta-archetype-webapp 340
lorg.apad\e.mavemrdielxpes maven-archetype-webapp 14
org.apache.openejb.maven tomee-webapp-archetype 175

org.apachesling sling-! hpad pp-archetyp 1.00
org.apache.tomee.maven tomee-webapp-archetype 806

org.apache.turbine turbine-webapp-2.3.3 1.00

org.apache.turbine bii bapp-4.0 1.0.1 W
An archetype which contains a sample Maven Webapp project. A
https://repol.maven.org/maven2 v
[show the last version of Archetype only O include snapshot archetypes Add Archetype...
» Adyanced

® | <Back | Next> Einish | Cancel

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig9_HTML.jpg
Windows PowerShell

ICompiled successfully!
You can now view user-registartion-frontend-app in the browser.

Local: http://localhost:3000
On Your Network: http://192.168.1.2:3000

Note that the development build is not optimized.
To create a production build, use npm run build.

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig24_HTML.jpg
]

WS Services ¥

Elastic Beanstalk X

Environments
Applications

Change history

My First Elastic Beanstalk
Application

Application versions

Saved configurations

Myfirstelasticbeanstalkapplication

env

7:03pm

7:03pm

. ronm Myfirstelasticb

Creating Myfirstelasticbeanstalkapplication-env
This will take a few minutes.

Environment health has transitioned to Pending. Initialization in progress (running for 1 second). There are no instances.

Created security group named:
5g-0622df7bidab2ceed

Created target group named:

am:awselasticloadbalancingus-east-2:818371255049:targetgroup/awseb-AWSEB-1VWESOVQTOFUN/2909ccac65d3a432

Using elasticbeanstalk-us-cast-2-818371255049 as Amazon S3 storage bucket for environment data.

createEnvironment is starting,

noRas ¥

Ohio ¥

Supy

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig26_HTML.jpg
0 Hieaspringhootenvit Aoy

& > C @ us-east-2.console.awsamazon.c i regior t ironment/logs?applic =HelloSpr i % @

aws Services ¥ earch for servic . tplace products, and do 4" ManoRas ¥ Ohio ¥ Support ¥

v HelloSpringBoot

-) Elastic > i > H i 1> Logs
Application versions
Saved configurations
Logs
Click Request Logs to retrieve the last 100 lines of logs or the entire set of | Request Logs ¥ |‘ 2 Refresh

logs from each EC2 instance. Learn more
¥ Hellospringboot-env-1

Go to environment [

Log file Time EC2 instance Type
Configuration
Logs Download 2021-06-30T00:59:27+05:30 i-0e64b951d6540c4ee Full Logs
Health " %
Download 2021-06-30T00:59:46+05:30 i-0e64b951d6540c4ee Last 100 Lines
Monitoring
Alarms

Managed updates

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig27_HTML.jpg
/api/users istAllUsers

Parameters

No parameters

u Clear]

Responses Response content type | */* v]

Curl

curl -X GET "http://userregistration.us-east-2.elasticbeanstalk.com/api/users™ -H "accept: */*"

Request URL

//userregistra om/api/users

Server response

Code Details

200 Response body

“address": "Sasaram-Bihar-India",
“age": 34,
"createdDate™: “2021-07-04T700:00:00"

Response headers

connection: keep-alive
content-type: application/json

date: Mon@5 Jul 2021 03:30:11 GMT
server: nginx/1.20.0
transfer-encoding: chunked

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig27_HTML.jpg
C on g ratu Iatl ons D?mload th;a AWS Retémnce Applicauon

R N SO0 R OTe 000 AOCOCAUN Stiee) vt ANS SO tor A

YOur first AWS Eliste Boanstak AQpacation bs now (g on your own

b) L AWS Toolkit for Ecupse

OEBPS/images/513001_1_En_BookBackmatter_Fig6_HTML.jpg
iig MySQL Workbench 8.0 CE - Setup Wizard

Custom Setup by
Select the program features you want installed.

Click on an icon in the list below to change how a feature is installed.

- | MySQL Workbench Core RG g‘“o“m" "tb;"
-1E) > | Program Shioctat wl

This feature will be installed on local hard drive.
This feature, and all subfeatures, will be installed on local hard drive.

@ This feature will be installed to run from network.
@ This feature, and all subfeatures, will be installed to run from the network.

g= This feature will be installed when required.

lrstal i This feature will not be available.

R =

| teb || space | <Bak [Newt>]| cancel |]

OEBPS/images/513001_1_En_BookBackmatter_Fig3_HTML.jpg
Setup Wizard
Welcome to the Setup Wizard for MySQL
Workbench 8.0 CE

The Setup Wizard will install version 8.0.25 on your computer.
To continue, dlick Next.

WARNING: This program is protected by copyright law and
international treaties.

< Back Next >] ‘[Cancel

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig46_HTML.jpg
Helloworld-env

sp.us-east.-2. @
Application name: helloworld
Health Running version Platform
helloworld-source
Upload and deploy
ok
Tomcat 8.5 with Corretto 11
Causes running on 64bit Amazon Linux
2/416
Change
Recent events
< ® D
Time Type Details
2021-03-25 00:28:22 UTC+0530 INFO launched envi Helloworld
2021-03-25 00:28:22 UTC+0530 INFO available at jsp.us-east-2.elasti m
2021-03-25 00:27:37 UTC+0530 INFO health has transitioned from Pending to Ok. Initialization completed 12 seconds ago and took 3 minutes.
2021-03-25 00:27:37 UTC+0530 INFO Added instance [i 8f5] to your
2021-03-25 00:27:19 UTC+0530 INFO Instance deployment completed successfully.

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig24_HTML.jpg
Elastic))

Userregistrationapp-env

us-cast-2.

m [(¢

Application name: UserRegistrationApp

Health

Running version

userregistrationapp-source

Upload and deploy

CRefresh | [Actions v

Platform

Corretto 11 running on 64bit
Amazon Linux 2/3.2.1

Change

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig3_HTML.jpg
Initialization

Mounting
React Component's Lifecycle
Updation

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig3_HTML.jpg
aws Services v

Amazon RDS x Step 1 RDS > Create database
Select engine
paibus ; Select engine
— Choose use case
Query Editor Engine options
Performance Insights y DB details
Snapshots .
Step 4 Amazon Aurora O MysQL MariaD8
Automated backups Configure adva
di tings Amazon
Reserved instances Aurora
Proxies
Subnet groups
PostgreSQL Oracle Microsoft SQL Server
Parameter groups
i " . gt
(53} — 55 server

Events

Event subscriptions

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig25_HTML.jpg
Setup New Connection

= (m] X

Connection Name: [spring-awssdl
Connection Method: | Standard
Parameters ssL Adv:

ance|

Hostname: [,y 7kwino|
Password: [o]
Defat Schemat I:

MySQL Workbench

0 Successfully made the MySQL connection

Information related to this connection:

Host:

spring-aws-db.cpsoy;j7kwl; -east-2.rds.
Port: 3306

User: springaws

SSL: enabled with TLS_AES_256_GCM_SHA384

A successful MySQL connection was made with
the parameters defined for this connection.

Type a name for the connection

| Method to use to connect to the RDBMS

r IP address of the server host - and
port.

f the user to connect with.

ir's password. Will be requested later if it's

lema to use as default schema. Leave
) select it later.

| Configure Server Management...

[Testcomnecton | | cancel | | ok |

OEBPS/images/513001_1_En_BookBackmatter_Fig5_HTML.jpg
Yo MySQL Workbench 8.0 CE - Setup Wizard

Setup Type
Choose the setup type that best suits your needs.

Please select a setup type.

All program features will be installed. (Requires the most disk
space.)

Choose which program features you want installed and where they
will be installed. Recommended for advanced users.

| <Back [Next> || cancel

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig12_HTML.jpg
Select a Support Plan

AWS offers a selection of support plans to meet your needs. Choose the support plan that

best aligns with your AWS usage. Learn more

ﬁ |

(o

=

Basic Plan

Included with all
accounts

2417 self-service access
to forums and resources

Best practice checks to
help improve security
and performance

Access to health status
and notifications

</>
e ?
Developer Plan Business Plan
From $29/month From $100/month
For early adoption, For production workloads
testing and development & business-critical
dependencies

Email access to AWS
Support during business 24/7 chat, phone, and
hours email access to AWS

1 primary contact can
open an unlimited
number of support cases

12-hour response time
for nonproduction
systems

Need Enterprise level support?

Support

Unlimited contacts can
open an unlimited
number of support cases

1-hour response time for
production systems

Contact your account manager for additional information on running business and mission
critical-workloads on AWS (starting at $15,000/month). Learn more

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig16_HTML.jpg
$g-082174a08066db6d8 - rds-launch-wizard

Details Inbound rules Outbound rules

Inbound rules (1)

Type Protocol

MYSQL/Aurora TCP

Tags

Port range

3306

Source

59.99.65.121/32

bound rules

Description -
optional

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig22_HTML.jpg
£

Services ¥

Elastic Beanstalk x Environment properties
The following properties are passed in the application as environment properties. Learn more [
Environments
Applications
Change history Name Value
GRADLE_HOME Jusr/local/gradle x
7 HelloSpringBoot
Applicatiarversions JAVA_HOME Just/lib/jvm/java-11-amazon-corretto.x86_64 x
Saved configurations
M2 Jusr/local/apache-maven/bin x
7 Hellospringboot-env-1 M2_HOME Jusr/local/apache-maven x
Go to environment [
SERVER_PORT 5000 ®
Configuration
Logs
Health
Monitoring
Alarms

Managed updates Cancel

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig1_HTML.jpg
\awg Services A

* Favorites

Add favorites by clicking
on the star next to the
service name.

Recently visited

RDS
Console Home
Elastic Beanstalk

Q Search for services, features, marketplace prod. [Alt+S]

All services

B Database
RDS
DynamoDB
ElastiCache
Neptune
Amazon QLDB

Amazon Docu...
Amazon Keys...

Amazon Time...

&> Migration &
Transfer

AWS Migratio...

CloudFormation
CloudTrail
Config
OpsWorks
Service Catalog
Systems Man...
AWS AppConfig
Trusted Advisor
Control Tower
AWS License ...
AWS Well-Arc...
Personal H... ©
AWS Chatbot
Launch Wizard

Amazon LOOoK...

Amazon Look...

2 Analytics
Athena

Amazon Reds...

EMR
CloudSearch

Elasticsearch ...

Kinesis
QuickSight [4
Data Pipeline

AWS Data Exc...

AWS Glue

£\ ManoRas ¥ Ohio ¥ Support

Simple Queue...
SWF
Managed Apa...

Business
Applications
Amazon Conn...
Amazon Pinp...
Amazon Hone...
Amazon C... 3
Amazon Simp...
Amazon Work...

Amazon Work...

Alexa for Bu

OEBPS/images/513001_1_En_BookBackmatter_Fig4_HTML.jpg
i MySQL Workbench 8.0 CE - Setup Wizard

Destination Folder
Click Next to install to this folder, or dick Change to install to a different folder.

Install MySQL Workbench 8.0 CE to:

C:\Program Files\MySQL\MySQL Workbench 8.0 CE\

| <Back || Next> 1| Cancel

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig1_HTML.jpg
Select a wizard

Select a wizard
Create new Spring Starter Project

Wizards:

| type filter text

> (= Java

> (= Java EE

> (= JavaScript

> (= Maven

> (= Plug-in Development

> (= Server

v (= Spring Boot
ﬁ Import Spring Getting Started Content
@ Spring Starter Project

> [User Assistance

> & Web

> (= Web Services

> & XML

> (= Examples

<

@ | <Bak [New>

Einish.

Cancel

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig19_HTML.jpg
Elastic Beanstalk Environments e ngboot-env-1

12:17am

12:17am

12:17am

12:17am

12:17am

12:16am

12:16am

Creating Hellospringboot-env-1
This will take a few minutes. ..

Instance deployment completed successfully.
Instance deployment successfully detected a JAR file in your source bundle.
Instance deployment successfully generated a ‘Procfile’.

Created Load Balancer listener named:
i il 5t-2:818371. i AWSEB- MWIOF/2b0b6b198b91b108/dfbe2e3e3f874f29

Created load balancer named:

5t-2:818371 AWSEB: /2b0b6b198b91b108

Created CloudWatch alarm named:
b-e-pdwyzr2u7u-stack-AWSEBC! AlarmLow-M92LICASWPWE

Created CloudWatch alarm named:
b-e-pdwyzr2u7u-stack-AWSEBCI larmHigh-LSR8G8FPQ208

Created Auto Scaling group policy named:

arn:aws:autoscaling:us-east-2:818371255049:scalingPolicy:b9568de7-4515-4502-9384-7ac847918: P
i 1LMNFS) :polie b-e-p 17u-stack: i olicy-INA7AY221JSWW

Created Auto Scaling group policy named:

arn:aws:autoscaling:us-east-2:81837125504 i i 816b-49f3-9108- i /: b-
i 1LMNFSYG9QSIH:poli pawy 17u-stack: i JpPolicy-67E3LYORJOJS

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig26_HTML.jpg
= O

r @ swaggerul x S (]

& > C A Notsecure | userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/#/user-regis... Yt ’

user-registration-controller userRegistration Controlier v

[/api/user/delete/id/{id} delete
{ /api/user/id/{id} getUserByld
[/api/user/save save

[GET /api/users istAllUsers

Models v ‘

ModelAndView >

UserDTO v ¢
address string
age integer($int32)
createdDate string($date-time)
firstName string
id integer($int64)
last_name string

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig21_HTML.jpg
9 Hellospiingbootiem- Confiourat X

& - C @ us-east-2.console.aws.amazon.c lasticbeanstalk/home? t elloSpringB... ¥
g g

aws e 4 features, n tplace products, and docs A £\ ManoRas ¥ Ohio ¥ Support ¥

¥ HelloSpringBoot |
Elastic b i L > Confi i

Application versions

Saved configurations Z
Conﬁguration overview Cancel Review changes Apply configuration

@ Table View
¥ Hellospringboot-env
Go to environment [4
Q
Configuration
Logs Category Options Actions
Health
o Environment properties:
Monitoring JDBC_CONNECTION_STRING
Alarric Initial JVM heap size (Xms): 256m

JVM options: --
e et gt ses Software Log streaming: disabled
Events Max JVM heap size (Xmx): 256m

Proxy server: nginx
Tags Rotate logs: disabled

X-Ray daemon: disabled

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig25_HTML.jpg
[@ Sswaggerul X + (v

€ C A Notsecure | userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/

Swagger selecta dnitn

tes by SMARTBEAR

Api Documentation ®

[Base URL: userregistration.us-east-2.elasticbeanstalk.com/]
http:/fuserregistration.us-east-2.elasticbeanstalk.com/v2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller BasicErmor Controller >
user-registration-controller User Registration Controller >

Models >

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig2_HTML.jpg
Amazon RDS

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups
Parameter groups

Option groups

Events

Event subscriptions

Recommendations

Certificate update

You are using the following Amazon RDS resources in the US East (Ohio) region (used/quota)

DB Instances (0/40) Parameter groups (0)
Allocated storage (0 TB/100 TB) Default (0)
Click here to increase DB instances limit Custom (0/100)
DB Clusters (0/40) Option groups (0)
Reserved instances (0/40) Default (0)
Snapshots (0) Custom (0/20)
Manual (0/100) Subnet groups (0/50)
Automated (0) Supported platforms VPC
Recent events (0) Default network vpc-b8fa74d3

Event subscriptions (0/20)

Create database

Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale a
relational database in the cloud.

Note: your DB instances will launch in the US East (Ohio) region

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig10_HTML.jpg
| B ReactApp
< C ® localhost:3000

Edit src/App.Jjs and save to reload.

Learn React

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig20_HTML.jpg
Amazon RDS

Dashboard

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups.
Parameter groups

Option groups

Events

Event subscriptions

Recommendations @)

Certificate update

RDS Databases spring-aws-db

spring-aws-db

Summary

DB identifier cPU

spring-aws-db 1 383%

Role Current activity
Instance 110 Connections

Connectivity & security

Connectivity & security Monitoring Logs & events

Endpoint & port

Endpoint
spring-aws-db.cpsoyj7kwlno.us-east-
2.rds.amazonaws.com

Port
3306

Networking

Availability zone
us-east-2b

VPC
vpc-b8fa74d3

Subnet group

default

Status Class
© Available db.t2.micro
Engine Region & AZ
MySQL Community us-east-2b
Configuration Maintenance & backups Tags
Security

VPC security groups
rds-launch-wizard (sg-
082174208066b68)
(active)

Public accessibility
Yes

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig24_HTML.jpg
AmazonS3 > elasticbeanstalk-us-east-2-818371255049

elasticbeanstalk-us-east-2-818371255049

Objects ‘ Properties ‘ Permissions ‘ Metrics Management | Access Points

Obijects (9)
Obijects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your objects, you'll need to
explicitly grant them permissions. Learn more [}

@ Copy S3 URI [3 Copy URL ¥ Download Open [4 Delete Actions v | l Create folder I

y pref G
Name A Type v Last modified v Size v flt::ge
2 5 March 24, 2021, 19:03:49
U O .elasticbeanstalk elasticbeanstalk (UTC+05:30) 0B Standard
March 25, 2021, 17:45:57 163
< i -0.0.1-SNAPSHOT,j i
B 20210841VS-awsSpringBoot-0.0.1-SNAPSHOT jar jar (UTC+05:30) M8 Standard
[2021180gga-HelloSpringBoot-0.0.1- . June 30, 2021, 00:13:03 244
SNAPSHOT.jar B (UTC+05:30) vg Standard

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig39_HTML.jpg
Elastic Beanstalk X

Environments
Applications.
Change history

¥ Recent environments

Myfirstelasticbeanstalkapplicat
ion-env

Elastic Beanstalk > Applications

All applications
Q Fiter result g ihe
Application; Environments v
name
M AREIC Myfirstelasticbeanstalkapplication-
e

Application

Date
created

2021 03 24

mcmsw

Last
modified

2021-03-24
19:03:35
UTC+0530

c

v

Actions v

ARN

amawselasticbeanstalk:us-east-
2:818571255049:application/My First Elastic
Beanstalk Application

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig11_HTML.jpg
GET v http://localhost:5000/api/user/id/1

Params Authorization Headers (6) Body Pre-request Script Tests Settings

Query Params

KEY VALUE
Key Value
Body Cookies Headers (5) TestResults ® status: 200 OK
Pretty Raw Preview Visualize JSON v =)
]
‘ *id": 4,

"last_name": "Ravi",

“firstName": “Soni",

"address": "Sasaram-Bihar-India",
“age": 34,

"createdDate”: "2021-07-04T00:00:00"

W N o0k W

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig2_HTML.jpg
{8 Package Explorer 3 S 8
v y UserRegistrationApp [boot]:
v (B src/main/java
v #} com.apress.AWS
> [J] UserRegistrationAppApplication.java
v (B src/main/resources
(= static
(= templates
/9 application.properties
> @ src/test/java
> B\ JRE System Library [JavaSE-11]
> B\ Maven Dependencies
> = src
(= target
[¥) HELP.md
mvnw
mvnw.cmd
[M] pom.xml

=

8

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig18_HTML.jpg
Inbound rules info

Type Info Protocol Portrange Info Source Info Description - optional Info
Info

MYSQU/Awora v | TCP 3306 custom & Q | [| [et
Custom 59.99.65.121/32 X

My IP

/A NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends
on that rule to be dropped for a very brief period of time until the new rule can be created.

Cancel Prey

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig42_HTML.jpg
Elastic Beanstalk > Applications > helloworld

Select environment tier

AWS Elastic Beanstalk has two types of environment tiers to support different types of web applications. Web servers are standard
applications that listen for and then process HTTP requests, typically over port 80. Workers are specialized applications that have a
background processing task that listens for messages on an Amazon SQS queue. Worker applications post those messages to your

application by using HTTP.

O Web server environment
Run a website, web application, or web API that serves HTTP requests.
Learn more [

) Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule.
Learn more [

OEBPS/images/513001_1_En_BookBackmatter_Fig12_HTML.jpg
@ Security, Identity, & Compliance
1AM
Resource Access Manager
Cognito
Secrets Manager
GuardDuty
Inspector
Amazon Macie
AWS Single Sign-On

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig31_HTML.jpg
& New Maven Project

New Maven project
Specify Archetype parameters

Group Id: I COmM.apress.aws

3)SP)

Artifact 1d: | (gl

Version: | 00.1-SNAPSHOT |

Package: I com.apress.aws.HelloWorld)SP

Properties available from archetype:

Name Value Add.]
Remove

» Advanced

® <gock || Neas [gnsn][concel

OEBPS/css/envelope.png

OEBPS/images/513001_1_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig35_HTML.jpg
&« > C A Notsecurel user-registration-frontend-app.s3-website.us-east-2.amazonaws.com

403 Forbidden

Code: AccessDenied

Message: Access Denied

Requestld: PDG75IQVXDSPWM7M

Hostld: 10£fyK033/3WNfZz7BGIpVqqEa0Cf8gAPOK qzI0NMLkrr6/ahvbIUBe3F526 CdKxdMCSth3Lx4cQ=

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig23_HTML.jpg
Application code

© Sample application
Get started right away with sample code.

() Upload your code
Upload a source bundle from your computer or copy one from Amazon S3.

Cancel Configure more options I

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig32_HTML.jpg
v {5 HelloWorld)SP
> & Deployment Descriptor: Archetype Created Web Application
> & Java Resources
> (3 Deployed Resources
> @@ src
> & target
M pomxml

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig34_HTML.jpg
Static website hosting
Use this bucket to host a website or redirect requests. Learn more [

Static website hosting
Enabled

Hosting type
Bucket hosting

Bucket website endpoint
‘When you configure your bucket as a static website, the website is available at the AWS Region-specific website endpoint of the bucket. Learn more [

3 http:// istration-frontend-app.s3-website.us-east-2. com [3

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig29_HTML.jpg
New Maven Project

O X

New Maven project

Select project name and location ’Wl

[Create a simple project (skip archetype selection)

Use default Workspace location

Location:

[[J Add project(s) to working set
Working set: |

» Advanced

@ < Back Il_ﬂext>

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig4_HTML.jpg
©3.] Command Prompt

Microsoft Windows [Version 10.0.19042.1083]
(c) Microsoft Corporation. All rights reserved.

C:\Users\ravik>node -v
v1l4.17.3

C:\Users\ravik>npm -v
6.14.13

C:\Users\ravik>

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig21_HTML.jpg
“\ MySQL Workbench

File Edit View Database Tools Scripting Help

MySQL Connections ®®

MySQL Workbench could not detect any MySQL server running.

This means that MySQL is not installed or is not running.
Rescan servers

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig4_HTML.jpg
Your Code (WAR / JAR)

Developer
responsible for this

Application Server (like Tomcat) <

Language Runtime (like Java)

Operating System

EC2

provides this

Host Server

OEBPS/images/513001_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig27_HTML.jpg
T\ MySQL Workbench

f spring-aws-db X

[a]

Eile Edit View Query Database Server Tools Scripting Help

S e SEEEGE & @ D=0

SCHEMAS C ERIFFAQC B O OE oo - ¢ Q [@E

N e R—

P‘@sys

Administration Schemas < I >
Output
(F Action Output -

No object selected % Tme Acon Message Duration / Feteh

Object Info ~ Session

OEBPS/images/513001_1_En_BookBackmatter_Fig13_HTML.jpg
£\ ManoRas v Global ¥ Support

Additional information (%'

IAM documentation

Videos, |IAM release history and additional
resources

Tools (%

Web identity federation playground

Policy simulator

Quick links
My access key

Related services ('

AWS Organizations
AWS Single Sign-on (SSO)

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig28_HTML.jpg
workspace - Spring Tool Suite 4

Search Project Run Window Help

File Edit Source Refactor Navigate
Open File...
(. Open Projects from File System...

Recent Files

Close
Close All

Save

Alt+Shift+«N »

v

Ctd+W
Ctrl+Shift+ W

Ctrl+S

(3 Spring Starter Project

(3 Import Spring Getting Started Content
@ Spring Legacy Project

22 JavaProject

%9 Static Web Project

5 Dynamic Web Project
25 Maven Project I

™3 Proiect...

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig5_HTML.jpg
E:\Apress\workspace\AWS>npx create-react-app user-registartion-frontend-app
npx: installed 67 in 13.082s

Creating a new React app in E:\Apress\workspace\AwWS\user-registartion-frontend-app.

Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts with cra-template...

core-js@2.6.12 postinstall E:\Apress\workspace\AWS\user-registartion-frontend-app\node_modules\babel-
runtime\node_modules\core-js

node -e "try{require('./postinstall’)}catch(e){}"

core-js@3.15.2 postinstall E:\Apress\workspace\AWS\user-registartion-frontend-app\node_modules\core-j
3

node -e "try{require('./postinstall’)}catch(e){}"

core-js-pure@3.15.2 postinstall E:\Apress\workspace\AwS\user-registartion-frontend-app\node_modules\c
pre-js-pure
node -e "try{require('./postinstall’)}catch(e){}"

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig25_HTML.jpg
4\ ManoRas v

S3 does not require region selection.

US East (N. Virginia) us-east-1
US East (Ohio) us

US West (N. California)

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig41_HTML.jpg
Actions v
Application 'helloworld' environments c

Q F atchi display values < O > @
Environment — Date Last — Running T— Platform Tier
name a creasted v modified v versions v state v name v

No environments currently exist for this application.

Create one now.

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig22_HTML.jpg
Platform

Platform

L Tomcat

Platform branch

] Tomcat 8.5 with Corretto 11 running on 64bit Amazon Linux 2

Platform version

l 4.1.6 (Recommended)

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig19_HTML.jpg
Create a web app

Create a new application and environment with a sample application or your own code. By creating an environment, you allow AWS Elastic
Beanstalk to manage AWS resources and permissions on your behalf. Learn more

Application information

Application name

|

Upto i noti g forward slash (/).

Application tags
Apply up to 50 tags. You can use tags to group and filter your resources. A tag is a key-value pair. The key must be unique within the

resource and is case-sensitive. Learn more [3

Key Value

| | | | [remess

50 remaining

Platform

Platform

-- Choose a platform -- v

Platform branch

-- Choose a platform branch -- v

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig13_HTML.jpg
v7

Sign in

@® Root user
Account owner that performs tasks requiring
unrestricted access. Learn more

O 1AM user
User within an account that performs daily tasks.
Learn more

Root user email address

‘ username@example.com

Next

By continuing, you agree to the AWS Customer

Agreement or other agreement for AWS services, and the
Privacy Notice. This site uses essential cookies. See our

Cookie Notice for more information.

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig11_HTML.jpg
Amazon RDS

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies.

Subnet groups

Parameter groups

RDS > Databases

Databases @ Group resources

Q
DB identifier 4 Role v
spring-aws-db Instance

Engine v

MySQL Community

Restore from 3 Create database

1 @

Region & AZ ¥ size v Status

us-east-2b db.t2.micro

v

© Available

»

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig3_HTML.jpg
\m2\ itory\org\projectiombok\lombok\1.18.20] vlo

_remote.repositories (lombok-1.18.20 lombok-1.18.20.jar.shal
REPOSITORIES File t.(') Executable Jar File SHAT1 File

237 bytes < J1.84MB 40 bytes
lombok-1.18.20.pom lombok-1.18.20.pom.shal (lombok-1.18.20-sources
POM File SHAT File ‘:{) Executable Jar File
1.44KB 40 bytes <=) 942KB
lombok-1.18.20-sources.jar.shal m2e-lastUpdated

SHAT1 File PROPERTIES File

40 bytes 100 bytes

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig12_HTML.jpg
AWS - HelloSpringBoot/pom.xml - Spring Tool Suite 4

File Edit Source e
iN-@@ie) S S iB-F oI
|2 Package Explorer Open in New Window
Open Type Hierarchy FA vy gn encoding="UTF-8"?>
v 4 HelloSpringBoc ShowIn Alt+Shift+W> L "http://maven.apache.org/POM/4.0.0"
> (src/main/jay Show in Local Terminal > Ihttp://www.w3.0rg/2001/XMLSchema-instance"
> (src/main/res ocation="http: //maven apache org/POM/4.0.0 https:,
3 8 srcftestyjava B COPY (1] S - S e T
> @ JRE System L B3 Copy Qualified Name 55 1Run on Server Alt+Shift+X, R
> ®\ Maven Depe [T} Paste Ctrl+V [3 2Java Application Alt+Shift+X,)
65 target/gener 90 pejete Delete (2 3Java Application In Container ifactId>
8 target/gener . Ju 4JUnit Test Alt+Shift+X, T
> & src Build Path > 2
’ 1 ipos:ttor'y ==
> & target Source Alt+Shift+S >
W) HELP.md Refactor AlteshiftaT> | ™ 6 Maven build...
mvnw m2 7 Maven clean
mvnw.cr:\d g Import... m2 8 Maven generate-sources
pomxm! |ealExport; m2 9 Maven install
& Refresh F5 ' m2 Maven test cription>
Close Project &7 Spring Boot App Alt+Shift+X, B
Assign Working Sets... @ Spring Devtools Client
[Run Configurations...
< 45 Debug As > fency>
] Profile As > foupId>org.springframework.boot</groupId>

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig9_HTML.jpg
AW
IS

\\/
"

2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07

Spring B

109:19.188
109:19.214
109:22.358
109:22.501
109:24.369
109:24.416
109:24.417
109:24.682
109:24.682
109:25.492
109:25.814
109:26.561
109:26.940
109:32.230
109:32.375
109:34.187
109:34.212
109:35.342
109:36.343
:109:36.916

5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256
5256 ---

[
L
U
[
b
[
[
[
s
[
[
[
£
s
[
3
[
[
5
[

)

main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]
main]

c.a.AWS.UserRegistrationAppApplication
c.a.AWS.UserRegistrationAppApplication
.s.d.r.c.RepositoryConfigurationDelegate
.s.d.r.c.RepositoryConfigurationDelegate
0.s.b.w.embedded. tomcat . TomcatWebServer
o.apache.catalina.core.StandardService
org.apache.catalina.core.StandardEngine
0.a.c.c.C.[Tomcat]. [localhost].[/]
w.s.c.ServlethebServerApplicationContext
o.hibernate.jpa.internal.util.LogHelper
org.hibernate.Version
o.hibernate.annotations. common.Version
com.zaxxer.hikari.HikariDataSource

com. zaxxer. hikari.HikariDataSource
org.hibernate.dialect.Dialect
o.h.e.t.j.p.i.JtaPlatformInitiator
j.LocalContainerEntityManagerFactoryBean
JpaBaseConfiguration$JpalebConfiguration
o.s.b.u. -tomcat . Tomcat!
c.a.AWS.UserRegistrationAppApplication

Root WebApplicationContext:

Starting UserRegistrationAppApplication
No active profile set, falling back to
Bootstrapping Spring Data JPA repositor
Finished Spring Data repository scannin
Tomcat initialized with port(s): 5000 (
Starting service [Tomcat]
Starting Servlet engine: [Apache Tomcat
Initializing Spring embedded WebApplica
initializat
Persi itIn
HHHO@0412: Hibernate ORM core version S
HCANNGO@@O1: Hibernate Commons Annotati
HikariPool-1 - Starting...
HikariPool-1 - Start completed.
HHHO@0400: Using dialect: org.hibernate
HHHO@B490: Using JtaPlatform implementa
Initialized JPA EntityManagerFactory fo
spring.jpa.open-in-view is enabled by d
Tomcat started on port(s): 5600 (http)
Started gistrati ication

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig16_HTML.jpg
[cx] C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.0.19042.1052]
(¢) Microsoft Corporation. All rights reserved.

E:\Apress\workspace\AWS\UserRegistrationApp>mvn clean install

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig10_HTML.jpg
GET v http://localhost:5000/api/users

Params Authorization Headers (6) Body Pre-request Script Tests Settings

Query Params
KEY VALUE
Key Value
Body Cookies Headers (5) TestResults ® status: 200 OK
Pretty Raw Preview Visualize JSON v =

1 [

2 i

3 [" %

4 "last_name": "Ravi”,

5 “firstName": "Soni”,

6 "address": "Sasaram-Bihar-India",

7 “age": 34,

8 “createdDate": "2021-07-04T00:00:00"

9 3

o
@
=7

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig15_HTML.jpg
@ recipp x B o
€ O C O localhost3000/ist-all-users Qa x 9
localhost:3000 says
Oeleted successfullyt Ravi
First Name Last Name Age Address Delete
1 Ravi Soni 34 Sasaram-Bihar-India
2 Namrata Soni 25 Bangalore - India

List of users

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig18_HTML.jpg
Platform

O Managed platform
Platforms published and maintained by
Amazon Elastic Beanstalk. Learn more [

Custom platform
Platforms created and owned by you.

Platform
I Java v ‘
Platform branch
I Corretto 11 running on 64bit Amazon Linux 2 v ‘
Platform version

=]

| 3.2.1 (Recommended)

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig6_HTML.jpg
82 Problems @ Javadoc [@) Declaration) Console 52 SR% e KEEFEE »2-3-86 =
S d o - . e i ; 64.15.0.1320201027-0507 @4-Jun-2021, 10:56:44 pm)

: Spring Boot ::

2021-06-24 22:56:49.589 INFO 3712 --- [main] c.apress.AWS.HelloSpringBootApplication : Starting
HelloSpringBootApplication using Java 15.0.1 on DESKTOP-VIK28ID with PID 3712 (E:\Apress\workspace\AWS\HelloSpringBoot\target
\classes started by RavikKantSoni in E:\Apress\workspace\AWS\HelloSpringBoot)

2021-06-24 22:56:49.596 INFO 3712 --- [main] c.apress.AWS.HelloSpringBootApplication : No active profile set,
falling back to default profiles: default

2021-06-24 22:56:54.243 INFO 3712 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port
(s): 8080 (http)

2021-06-24 22:56:54.273 INFO 3712 --- [main] o.apache.catalina.core.StandardService : Starting service [Tomcat]
2021-06-24 22:56:54.274 INFO 3712 --- [main] org.apache.catalina.core.StandardEngine : Starting Servlet engine:
[Apache Tomcat/9.0.46]

2021-06-24 22:56:54.643 INFO 3712 --- [main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded
WebApplicationContext

2021-06-24 22:56:54.643 INFO 3712 --- [main] w.s.c.ServletlebServerApplicationContext : Root WebApplicationContext
initialization completed in 4855 ms

2021-06-24 22:56:55.569 INFO 3712 --- [main] o.s.b.w.embedded.tomcat.TomcatlWebServer : Tomcat started on port(s):
8080 (http) with context path "'

2021-06-24 22:56:55.595 INFO 3712 --- [main] c.apress.AWS.HelloSpringBootApplication : Started

HelloSpringBootApplication in 6.879 seconds (JVM running for 8.99)

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig30_HTML.jpg
SCHEMAS * MEBIFFAOCIBIC @) umto100mws -~ | %5 | € Q @ &
(: 1e SELECT first_name, last_name, address, age, created_date
sys
v {5 UserRegistration 2 FROM
v 7 Tables 8 "
v [users 3 UserRegistration.users;
¥ [#] Columns
® id
@ first_name
@ last_name
@ address %
¢ age
@ crested_date | Resultrid | B 4% Fiter Rowss: | || exports ERY | wrep Cell Content: I&
» 7 Indexes
>% ForeignKeys \ first_ name last name address age created_date
» B Triggers — _ = = - _ N
B Views > \Ravu Soni Sasaram-Bihar-India 34 2021-07-04

5 Stored Procedures
B Functions

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig38_HTML.jpg
v {2 HelloWorld)SP
> & Deployment Descriptor: Archetype Created Web Application
> & Java Resources
> (9 Deployed Resources
> & src
v (= target
> (& generated-sources
> (& generated-test-sources
> (& HelloWorldJSP
> & m2e-wtp
> = maven-archiver
> [maven-status
HelloWorldJSP.war
M pom.xml
> & Servers

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig17_HTML.jpg
EC2 > ty ps > sg-0821 ds-launch-wizard > Editinbound rules

Edit inbound rules .

Inbound rules control the incoming traffic that's allowed to reach the instance.

Inbound rules info
Type Info Protocol Portrange info Source info Description - optional nfo
Info
MYSQL/Aurora v TP 3306 Custom ¥ ‘ Q | ‘ | | Dpelete

/A NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends on that rule to be dropped
for a very brief period of time until the new rule can be created.

Cancel Prey

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig6_HTML.jpg
O

example.com

O \

Route 53 Elastic Beanstalk Relational Database Service

- >

Route custom Deploy web applications Database in
jomain name the cloud

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig18_HTML.jpg
WS services v vices, features, marketplace products, an: IA 4\ ManoRas v Ohio v Support ¥

Elastic Beanstalk X

AWS Elastic Beanstalk
End-to-end web

Change history Get started

application management. | ———————

AWS Elastic Beanstalk is an easy-to-use service for deploying and scaling web
applications and services developed with Java, .NET, PHP, Nodejs, Python, Ruby,
Go, and Docker on familiar servers such as Apache, Ngin, Passenger, and IIS.

Pricing

How it works There's no additional charge for Elastic
Beanstalk. You pay for AWS resources that we
create to store and run your web application,
like Amazon S3 buckets and Amazon EC2
instances.

You simply upload your code and Elastic Beanstalk automatically handles
the deployment, from capacity provisioning, load balancing, and
automatic scaling to web application health monitoring, with ongoing
fully managed patch and security updates. Learn more [4

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig10_HTML.jpg
RDS > Create database

Your DB instance is being created.
Note: Your instance may take a few minutes to launch.

Connecting to your DB instance

Once Amazon RDS finishes provisioning your DB instance, you can use a SQL client application or utility to connect to
the instance.
Learn about connecting to your DB instance

All DB instances View DB instance detai

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig24_HTML.jpg
™\ Store Password For Connection X

Please enter password for the following service:
Service: Mysql@spring-aws-db.cpsoyj7kwino.us-east-2.rds.amazonaws.com: 3306
User: springaws
Workbench| password: || |

2

[ox][concel |

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig29_HTML.jpg
Amazon S3 > user-registration-frontend-app > Upload

Upload

Add the files and folders you want to upload to S3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon
S3 REST API. Learn more [4

Drag and drop files and folders you want to upload here, or choose Add files, or Add folders.

d . u] X -
move [Add files l l Add folder J
Share View v @
« user-registartion-frontend-app > build v O P Search build
- [IRcaRa >
A Name Date modified Type —
| static 14-07-2021 04:42 PM File f .
V. Size v
B asset-manifest.json 14-07-2021 04:42 PM JSON
B favicon 26-10-1985 01:45 PM Icon
[index 14-07-2021 04:42 PM Oper|
5] logo192 26-10-1985 01:45 PM PNG
|s] logo512 26-10-1985 01:45 PM PNG
[] manifestjson 26-10-198501:45PM JSON to upload.
robots 26-10-1985 01:45 PM Text

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig21_HTML.jpg
Platform

Platform

-- Choose a platform --

.NET on Windows Server
Docker
GlassFish
Go
Java
T Node.js
PHP
Python
Ruby

Tomcat

4

(O Upload your code

OEBPS/images/513001_1_En_BookBackmatter_Fig16_HTML.jpg
B Cc ompt

Microsoft Windows [Version 10.0.19042.1110]
(c) Microsoft Corporation. All rights reserved.

C:\Users\ravik>aws configure

AWS Access Key ID [None]: AKIA35CV2LMESS55YVV3

AWS Secret Access Key [None]: QC3REtrlQzEKIDyxWN4B+KHc+TAckvkAAbgT{BBB
Default region name [None]: us-east-2

Default output format [None]: json

IC:\Users\ravik>

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig13_HTML.jpg
@ AWS - HelloSpringBoot/pom.xml - Spring Tool Suite 4

= o X
File Edit Source
T : H &)
io-Eaie Edit configuration and launch. AO\ ﬁ\g
18 Package Explorer 6 = [a
| "~
Vi -
S @ src/main/ja) | Nome: [HelloSpringBoot] ‘
> (@ src/main/ref | (=] Main | @ JRE| " Refresh| &, Source| Launch ions | 9 Envi | 1 Common| Jven.apac
> : J‘::;?:::" Base directory: A
> & Hisioih = y
» T2 Mitin Do [Stproject_toc:t
69 target/gene| | Workspace...| | File System...| | Veriables...|
88 target/gene(
5 G s Goals: [package |
> & target
[) HELP.md Brofies: | .
mvnw User settings: | C:\Users\ravik\.m2\settings xml] 5
[Z] mvaw.cmd =
B pomaxmi | [F‘lle System...l I‘_Iambhs..] J
[offline [J Update Snapshots
[Debug Output [Iskip Tests (] Non-recursive
[Resolve Workspace artifacts
Threads
- Parameter Name Value Add... |
e — e
®© Boot Dashboard i
o
L8800
A [
§
Brenmens @
> @ local
T

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig44_HTML.jpg
r. React App x W o
& > C A Notsecure | istrati pp.s3-websit 5t-2. .com/list-all % N '

User Registration App

List All Users Add User

First Name Last Name Age Address Delete
1 Namrata Soni 25 Bangalore - India
2 Manorma Devi 52 Sasaram - Rohtas -Bihar - India

List of users

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig18_HTML.jpg
Elastic Beanstalk > Applications

Create a new application

[l =t 150] @

arn:aws:elasticbeanstalk:us-east-
2:818371255049:application/HelloSy

arn:aws:elasticbeanstalk:us-east-
2:818371255049:application/hellow¢

arn:aws:elasticbeanstalk:us-east-
2:818371255049:application/My Firs
Beanstalk Application

All applications C | Actions v
i Q Filter results matching the display values
Application - Date Last
Environments v _— ARN
name created v modified v
2021-06- 2021-06-
. 30 30
Hallo3pringRnot 00:14:46 00:14:46
UTC+0530 UTC+0530
2021-06- 2021-06-
- 29 29
hells ld
etower 22:59:57 22:59:57
UTC+0530 UTC+0530
. . 2021-06- 2021-06-
My First Elastic
Beanstalk 23 »
Ropiiction 22:53:39, 22:53:39
Be UTC+0530 UTC+0530

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig8_HTML.jpg
[% Package Explorer £2 E New %
v :§ UserRegistrationApp [boot] Open [
v (src/main/java
h >
v {3 com.apress.AWS Open Wil .
> [J) UserRegistrationAppApplic Open Type Hierarchy F4
v f} com.apress.AWS.config Show In Alt+Shift+W >
> [3) SwaggerConfigjava Show in Local Terminal >
v f} com.apress.AWS.controller
> [3) UserRegistrationController Copy Ctrl+C
v f} com.apress.AWS.dto 3 Copy Qualified Name
> [9) UserDTO java ([Paste Ctrl+V
v f# com.apress.AWS.repository % Delete Delete
> [UserlpaRepositoryjava
v f} com.apress.AWS.service Build Path >
> @ U_serService,java Source Alt+Shift+S >
A B Eces Refactor AlteShifteT >
= static
(= templates oy Import...
/2 application.properties 4 Export...
> @ src/test/java
> B JRE System Library [JavaSE-11] References >
>) Maven Dependencies Declarations >
& target/generated-sources/annot
8 target/generated-test-sources/te & Refresh F5
> & src Assign Working Sets...
> (& target <
B HEpmd ¥ 1RunonSever Al StifteX, R
= mvnw ebu > lava Application t+ +.
B Debug As 2 Java Applicati Alt+Shift+X, J
mvnw.cm: rofile > lava Application In Container
d Profile As 3 Java Application In Contai
M pomxml

Restore from Local History...
Web Services >

Team > p

Run Configurations...

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig30_HTML.jpg
© Upload succeeded

View details below.

Files and folders Configuration

Files and folders (21 Total, 1.3 MB)

[Q Findy name
Name a Folder v Type v Size v Status

2.4be38407.chunk.css static/css/ text/css 155.0KB © Succeeded
2.4be38407.chunk.css.map static/css/ - 416.9KB © Succeeded
2.ca8d8efc.chunk js static/js/ text/javascript 170.9K8 © Succeeded
2.ca8d8efc.chunk.js.LICENSE.txt static/js/ text/plain 13KB © Succeeded
2.ca8d8efc.chunk.js.map static/js/ - 5153K8 © Succeeded
3.22324324.chunk js static/js/ text/javascript 43K8 © Succeeded
3.22a24324 .chunk js.map static/js/ - 9.4Ke © Succeeded
asset-manifestjson - application/json 13KB @© Succeeded
favicon.ico - image/x-icon 3.8KB © Succeeded

index.html - text/html 3.1K8 © Succeeded

OEBPS/css/sidebar.gif

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig8_HTML.jpg
icrosoft Windows [Version 10.0.19042.1083]
(c) Microsoft Corporation. All rights reserved.

E:\Apress\workspace\AWS\user-registartion-frontend-app>npm start

> user-registartion-frontend-app@e.1.0 start E:\Apress\workspace\AWS\user-registartion-frontend-app
> react-scripts start

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig27_HTML.jpg
© Successfully created bucket "user-registration-frontend-app”

0 upload files and folders, or to configure additional bucket settings choose View details.

Amazon S3

» Account snapshot View Storage Lens dashboard l
Storage lens provides visibility into storage usage and activity trends. Learn more [A

Copy ARN Empty Delete

Buckets (2) info

Buckets are containers for data stored in S3. Learn more [

[Q Find buckets by name \ <1 > @
Name A AWS Region v Access v Creation date v
7 elasticbeanstalk-us-east-2- US East (Ohio) us- Obists b sl March 24, 2021, 19:03:35
818371255049 east-2 = B (UTC+05:30)
A Rl US East (Ohio) us- Bucket and objects not July 14, 2021, 17:08:30
g PR cast-2 public (UTC+05:30)

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig8_HTML.jpg
Database options

Database name Info

| dbname ‘

Note: if no database name is specified then no initial MySQL database will be created on the DB Instance.

Port Info
TCP/IP port the DB instance will use for application connections.

| 3306 ‘

DB parameter group Info

| default.mysql8.0 v ‘

Option group Info

| default:mysql-8-0 v ‘

IAM DB authentication Info

() Enable IAM DB authentication
Manage your database user credentials through AWS IAM users and roles.

© Disable

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. An Introduction to Amazon Web Services (AWS)

 		2. Deploy a Spring Boot Application as a REST API in AWS

 		3. Deploy MySQL as a Database in AWS with RDS

 		4. Deploy a Spring Boot Application Talking to MySQL in AWS

 		5. Deploy a Full Stack Spring Boot React Application in AWS and S3

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig26_HTML.jpg
7"
File | Edit View Database Tools Scripting Help

MySQL Connections ®®

spring-aws-db

2 springaws
== spring-aws-db.cpsoyj7kwIno.us-eas...

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig47_HTML.jpg
G A Not secure | awshelloworldjsp.us-east-2.elasticbeanstalk.com

Hello World!

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig32_HTML.jpg
Static website hosting

Use this bucket to host a website or redirect requests. Learn more [

Static website hosting
Disabled

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig13_HTML.jpg
l. React App e+ o
& > C @ localhost:3000/add-user Qa x » 9D

User Registration App

First Name
' Namrata
a Last Name
‘ Soni
- Age
|25

Address

‘ Bangalore - Indial

Submit

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig17_HTML.jpg
Elastic Beanstalk > Applications

Al applications O [sctos +
\ Q. Filter results matching the \ <1 > @
Application " Date Last
name A Ervdronments ¥ created v modified v ARNY ¥
2021-06- 2021-06-
" 29 29 arn:aws:elasticbeanstalk:us-east-
- # 22:59:57 22:59:57 2:818371255049:application/helloworld
UTC+0530 UTC+0530
Byhiet 202106 2021:06- arn:aws:elasticbeanstalk:us-east:
Elastic Myfirstelasticbeanstalkapplication- 29 29 Eatien A .
Beanstalk ol 22:53:39 22:53:39 2:818371255049:application/My First
Applicatien UTC+0530 UTC+0530 Elastic Beanstalk Application

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig40_HTML.jpg
Application information

Application name

[helloworld

Maximum length of 100 characters, not including forward slash (/).

Description

Yz

Tags

Apply up to 50 tags. You can use tags to group and filter your resources. A tag is a key-value pair. The key must be unique within the
resource and is case-sensitive. Learn more [

Key Value

‘ ‘ l Remove tag

50 remaining

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig11_HTML.jpg
r. Swagger Ul e+
e

C ©® localhost:5000/swagger-ui/

Swagger. Select a definition

SMARTBEAR

Api Documentation ®

[Base URL: localhostiseee/]
http:/flocalhost:5000/v2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller 8asicError Controller >
hello-spring-boot-application Helo Spring Boot Application >

Models >

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig19_HTML.jpg
59-082174a308066db6d8 - rds-launch-wizard

Details Inbound rules Outbound rules

Tags

Inbound rules (2)

Type Protocol

MYSQL/Aurora TCP
MYSQL/Aurora TCP

Port range

3306
3306

Source

0.0.0.0/0
=/0

Edit inbound rules

Description -
optional

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig20_HTML.jpg
Elastic Beanstalk > Environments > Hellospringboot-env

Hellospringboot-env C Refresh] | Actions ¥

us-east-2. i com [} (e-t24fcpneus)
Application name: HelloSpringBoot

Health Running version Platform

hellospringboot-source

Upload and deploy

Severe
Tomcat 8.5 with Corretto 11

running on 64bit Amazon Linux
2/4.21

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig4_HTML.jpg
https://orojectiombok.org

Installer

Javac (end tools thatinvoke javac such as antand maver)

Lombok works ‘out of the box with javac.
Just make sure the lombok jar is in your dasspath when you compile.

Example: javac -cp lombok.jar MyCode.java

IDEs

Lombok can update your Edipse or edipse-based IDE to fully support all Lombok features.
Select IDE installations below and hit ‘Install Update'.

Look in:
@ configuration (5] eclipsec
B | dropins
Recent Items £3] SpringToolSuited
Desktop

readme

‘ﬁ

Documents Flename: |SpringToolSuited.ex Select

By Flesoftwe: [Emstalaton V|

Cancel

' |

Spedifylocation...
Show me what thi will do to my IDE
It installati

v1.18.20 View full changelog

Install /Update

QuitInstaller

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig42_HTML.jpg
[B 204 Not Found x WY o

& > C A Notsecure | istrati pp.s3-websit: st-2. .com/list-all-users P g

404 Not Found

o Code: NoSuchKey
o Message: The specified key does not exist.
o Key: list-all-users
.
.

Requestld: RHIBGTWNCN7YEQWC
Hostld: oyNglXQKxTCJImv+DhkdASMYxN230ws4ZQA9S8ZHISyvtY38ZA9tINd4ylcAZ1UTAax4nDDKXK62Q=

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig37_HTML.jpg
\.ZMam [Pr # Servers 5 Sni © Console & L)
DALearning\sof 4.9.0.RELEASE\plugins\org.eclipse justj.openjdihotspotjrefull win32.x86_64_15.0.1.v20201027-0507\jre\bin\javaw.exe

[INFO] Downloaded from : https://repo.maven.apache.org/maven2/org/apache/maven/surefire/surefire-booter/2.22.1/sure

[INFO] Downloaded from : https://repo.maven.apache.org/maven2/org/apache/maven/surefire/maven-surefire-common/2.22.:

[1NFO)

(INFO] --- maven-war-plugin:3.2.2:war (default-war) @ licllokorldlSP -e-

(INFO) Packaging webapp

[INFO] Assembling webapp [HelloWorldlSP] in [D:\Learning\book\Apress\workspace\HelloWorld)SP\target\HelloWorld)sP]

[INFO] Processing war project

[INFO] Copying webapp resources [D:\Learning\book\Apress\workspace\HelloWorld)SP\src\main\webapp]

[INFO] Webapp assembled in [22 msecs)

[INFO] Building war: D:\lLearning\book\Apress\workspace\HellolWorld)SP\target\HellokiorldISP . war

(INFO)

[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ HellokorldlSP ---

{INFO) Installing D:\Learning\book\Apress\workspace\HelloWorld)SP\target\HelloWorld)SP.war to C:\Users\namra\.m2\re|

[INFO] Installing D:\Learning\book\Apress\workspace\HelloWorldISP\pom.xml to C:\Users\namra\.m2\repository\com\apre:

[INFO] ====evssssssssesessesecmnsasessssassesssssesssssssssssssasmaseesesennnns

[INFO] BUILD SUCCESS

[INFO] ~eeseccacaccccccccecacancccncccecnsscssncscascansnscancsaaancacasssnnns

[INFO] Total time: 16.086 s

[INFO] Finished at: 2021-03-24722:59:30+05:30

(INFO) ---

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig39_HTML.jpg
© Succes: ly edited Block Public Access settings for this bucket.

Amazon S3 > user-registration-frontend-app

user-registration-frontend-app

Objects ‘ Properties | Permissions ‘ Metrics ‘ Management Access Points

Permissions overview

Access
Objects can be public

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig4_HTML.jpg
[Package Explorer 2 ® §|=|0
v 122 HelloSpringBoot [boot]
v (8 src/main/java
v #} com.apress.AWS
> [J) HelloSpringBootApplication.java
v (B src/main/resources
(= static
(= templates
/2 application.properties
v @ src/test/java
v #} com.apress.AWS
> [4 HelloSpringBootApplicationTests.java
> B\ JRE System Library [JavaSE-11]
> B\ Maven Dependencies
> & src
(= target
[#) HELP.md
mvnw
mvnw.cmd
[pomxml

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig14_HTML.jpg
dWS

\/‘7

Root user signin e
Email: ravikantsoni.author@gmail.com

Password Forgot password?

I |
S Y R

Sign in to a different account

Create a new AWS account

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig11_HTML.jpg
EXPLORER

Vv USER-REGISTARTION-FRONTEND-APP

< LUUUYy-paiscl
> bonjour
> boolbase
7 / ':j;:_x otstrap
v dist
Vv CSS
bootstrap-grid.css
bootstrap-grid.css.map
bootstrap-grid.min.css
bootstrap-grid.min.css.map

bootstrap-grid.rtl.css

bootstrap-grid.rtl.css.map

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig12_HTML.jpg
RDS > Databases » spring-aws-db

spring-aws-db
Summary
DB identifier CPU
spring-aws-db I 123.22%
Role Current activity
Instance 1 0 Connections

Status
@ Available

Engine
MySQL Community

Class
db.t2.micro

Region & AZ
us-east-2b

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig8_HTML.jpg
= [m] X
@ localnost:8080/v2/api-docs % + o

& > C @ localhost:8080/v2/api-docs Qa x* 9

{"swagger":"2.0","info":{"description": "Api Documentation","ver51on" *1.0","title" :"Api
Documentation", "termsOfService":"urn:tos","contact":{},"license":{"name": "Apache
2.0","url":"http://www.apache.org/licenses/LICENSE-

2.0"}},"host":"localhost:8080", "basePath":"/","tags": [{"name": "basic-error-
controller","description":"Basic Error Controller"},{"name":"hello-spring-boot-
application","description":"Hello Spring Boot Application"}],"paths":{"/error":{"get":
{"tags":["basic-error-

controller"],"summary": "errorHtml", "operationId": "errorHtmlUsingGET", "produces":
["text/html"],"responses":{"200":{"description":"0OK","schema":
{"$ref":"#/definitions/ModelAndView"}},"401": {"description": "Unauthorized"}, "403":
{"description":"Forbidden"},"404":{"description":"Not Found"}}},"head":{"tags":["basic-
error-controller"],"summary": "errorHtml", "operationId": "errorHtmlUsingHEAD", "consumes":
["application/json"],"produces":["text/html"], "responses":{"200":
{"description":"0K","schema":{"$ref":"#/definitions/ModelAndView"}},"204":
{"description":"No Content"},"401":{"description":"Unauthorized"},"403":
{"description":"Forbidden"}}}, "post":{"tags":["basic-error-
controller"],"summary": "errorHtml", "operationId": "errorHtmlUsingPOST","consumes":
["application/json"],"produces™:["text/html"], "responses":{"200":
{"description":"0K","schema":{"$ref":"#/definitions/ModelAndView"}},"201":
{"descrlptlon" “Created“},“491" {"descrlptlon“ “Unauthor1zed“},“403"

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig17_HTML.jpg
Userregistrationapp-env 2 Refresh | l Actions ¥

userregistration.us-east-2.elasticheanstalk.com [} (e-jquex4vs3h)
Application name: UserRegistrationApp

Health Running version Platform
userregistrationapp-source *
Upload and deploy Ql |
Ok Corretto 11 running on 64bit

Amazon Linux 2/3.2.2

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig33_HTML.jpg
& Project Explorer &
v & HelloWorldJSP

ERY § <0

> 45 Deploy D
> 2% Java Resources

Archetype Created Web Application

@ Properties for asse

> Dy
> B> src
> @ target
¥ pomxml
> & Servers

Y

type filter text

Javadoc Location A

> Java Editor

> JavaScript
JSP Fragment

> Maven
Namespaces
Project Facets
Project Natures
Project References
Run/Debug Settings
Server

Service Policies
Targeted Runtimes
Task Tags
> Validation
Web Content Settings
Web Project Settings
WikaText
> XDoclet v |

(©)

& &/Apache Tomcat vas|

Rantkme o o

_ LS

8 Apache Tomcat v&S
) Java Runtime Environment v15

Apply and Close] |

If a runtime that you want to select is not displayed or is disabled you may need
o uninstall one or more of the currently installed project facets.

Apply
Cancel

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig11_HTML.jpg
AWS wiill call you immediately using an automated system. When prompted, enter the
4-digit number from the AWS website on your phone keypad.

Provide a telephone number

Please enter your information below and click the
"Call Me Now” button.

Country/Region code

' India (+91) v [

Phone number Ext
1 | |

Security Check

OEBPS/images/513001_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/513001_1_En_BookBackmatter_Fig14_HTML.jpg
Identity and Access
Management (IAM)

Dashboard
+ Access management
User groups
Users
Roles
Policies
Identity providers
Account settings
~ Access reports
Access analyzer
Archive rules

Analyzers

~ Password

- Multi-factor authentication (MFA)

~ Access keys (access key ID and secret access key)
Use access keys to make programmatic calls to AWS from the AWS CLI, Tools for PowerShell, AWS SDKs, or direct AWS AP calls. You can have a
maximum of two access keys (active or inactive) at a time

For your protection, you should never share your secret keys with anyone. As a best practice, we recommend frequent key rotation.
If you lose or forget your secret key, you cannot retrieve it. Instead, create a new access key and make the old key inactive. Leam more

Created Access Key ID Last Used Lastlsed LasCUsed status Actions
Region Service

Create New Access Key

Root user access keys provide unrestricted access to your entire AWS account. If you need long-term access keys, we recommend creating a
new/ 1AM user with limited permissions and generating access keys for that user instead. Learn more

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig28_HTML.jpg
SCHEMAS * MBEIFFAAC B O O umto00ows
= g‘w"“*s 1 e CREATE DATABASE UserRegistration;
» sys
v & UserRegistration

B Tables

\ﬁews

@ Stored Procedures

B3 Functions

OEBPS/images/978-1-4842-7392-0_CoverFigure.jpg
~—~ LFN |

Spring Boot with
daact and AWS

’7\\\\\\, Q‘ ‘\\\: U \\;‘: ” ” \g \\\ \"’ \\U’/ tD

Learn to Deploy a Full Stack Spring
Boot React Application to AWS

Ravi Kant Soni
Namrata Soni

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig6_HTML.jpg
PP
Inside that directory, you can run several commands:

npm start
Starts the development server.

npm run build
Bundles the app into static files for production.

npm test
Starts the test runner.

npm run eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’t go back!

e suggest that you begin by typing:

cd user-registartion-frontend-app
npm start

Happy hacking!

E:\Apress\workspace\AWS>

Buccess! Created user-registartion-frontend-app at E:\Apress\workspace\AwS\user-registartion-frontend-a

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig23_HTML.jpg
Elastic Beanstalk > Environments » Hellospringboot-env-1

Hellospringboot-env-1 C Refresh] I Actions ¥

Tieb t-2.elasti com [(e-pawyzr2u7u)
Application name: HelloSpringBoot

Health Running version Platform

hellospringboot-source-1

Upload and deploy ol '

Corretto 11 running on 64bit
Amazon Linux 2/3.2.1

Change

OEBPS/images/513001_1_En_BookBackmatter_Fig9_HTML.jpg
Wizard Completed

Setup has finished installing MySQL Workbench 8.0 CE.

[Launch MySQL Workbench now < Back

Cancel

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig20_HTML.jpg
E: \Apress\workspace\AWS\user-registartion-frontend-app>npm run build

user-registartion-frontend-app@e.1.0 build E:\Apress\workspace\AlWS\user-registartion-frontend-app
react-scripts build

Creating an optimized production build...
Compiled with warnings.

src\App.Jjs
Line 1:8: ‘logo' is defined but never used no-unused-vars

Line 4:16: 'components' is defined but never used no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

File sizes after gzip:
54.7 KB build\static\js\2.ca8d8efc.chunk.js
22.53 KB build\static\css\2.4be384@7.chunk.css
2.04 KB build\static\js\main.97751@18.chunk.js
1.64 KB build\static\js\3.22a24324.chunk.js
1.18 KB build\static\js\runtime-main.6fb86437.js
556 B build\static\css\main.a617e@44.chunk.css

The project was built assuming it is hosted at /.
Vou can control this with the homepage field in your package.json.

The build folder is ready to be deployed.
Vou may serve it with a static server:

npm install -g serve
serve -s build

Find out more about deployment here:

https://cra.link/deployment

E:\Apress\workspace\AWS\user-registartion-frontend-app>

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig6_HTML.jpg
Settings

DB instance identifier Info
Specify a name that is unique for all DB instances owned by your AWS account in the current region.

spring-aws-db

DB instance identifier is case insensitive, but stored as all lower-case, as in “mydbinstance”. Must contain from 1 to 63 alphanumeric
characters or hyphens (1 to 15 for SQL Server). First character must be a letter. Cannot end with a hyphen or contain two consecutive

hyphens.

Master username Info
Specify an alphanumeric string that defines the login ID for the master user.

| springaws

Master Username must start with a letter. Must contain 1 to 16 alphanumeric characters.

Master password Info Confirm password Info

: l

e

Master Password must be at least eight characters long, as in
“mypassword®. Can be any printable ASCII character except */*, ==,
or'@".

Cancel

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig22_HTML.jpg
T\ Setup New Connection

Connection Name: Type a name for the connection
l 1

Connection Method: |Standard(TCPIIP) Vlmﬁndmmebmndb&m

Parameters sSL Advanced

Hostname: |127.0.0.1]Port: |go5 Name or IP address of the server host - and
TCP/IP port.
Username: - [root || Name of the user to connect with.
Password: I Store in Vault ... ” Clear I mg:este.r'spamrd.wiberemmdhmrififs
Default Schema: I The schema to use as default schema. Leave
blank to select it later.

| configure Server Management... TestConnecton | | cancel | [ok |

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig21_HTML.jpg
Application code

() Sample application
Get started right away with sample code.
Existing version
Application versions that you have upload

d for UserRegistrationApp.

-- Choose a version — v

© Upload your code

Upload a source bundle from your computer or copy one from Amazon S3.

Version label
Unique name for this version of your application code.

userregistrationapp-source

Source code origin
Maximum size 512 MB

O Local file
Public S3 URL

File name : UserRegistrationApp-0.0.1-SNAPSHOT.jar
© File successfully uploaded

» Application code tags

Cancel Configure more options l

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig1_HTML.jpg
Restful Web

Services

UserRegistrationFrontendApp UserRegqistrationApp

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig43_HTML.jpg
Elastic Beanstalk > Applications > helloworld

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Application name

helloworld

Environment name

‘ Helloworld-env

Domain

‘ awshelloworldjsp .us-east-2.elasticbeanstalk.

Check availability

© j 1.2 elastic comis

Description

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig26_HTML.jpg
v Myfirstelasticbeanstalkapplica
tion-env

Go to environment [5
Configuration

Logs

Health

Monitoring

Alarms

Managed updates
Events

Tags

Recent events

Time

2021-03-24
19:08:14
UTC+0530
2021-03-24
19:07:43
UTC+0530
2021-03-24
19:07:43
UTC+0530

2021-03-24
1 4

Type

INFO

INFO

INFO

Details.

Environment health has transitioned from Warning to Ok. Initialization completed 52 seconds ago and
took 3 minutes.

launched

available at i licati .eba-ijdxdcxd.us-east-
2.elasticbeanstalk.com.

Environment health has transitioned from Pending to Warning. Initialization completed 12 seconds ago

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig1_HTML.jpg
Project

@ Maven Project
Q Gradle Project

Spring Boot

Language
@ Java Q Kotlin
Q Groovy

O 260(SNAPSHOT) O 253 (SNAPSHOT) @ 252
O 249 (SNAPSHOT) O 248 O 2312

Project Metadata

Group

Artifact

Name

Description

Package name

Packaging

Java

com.apress.AWS

UserRegistrationApp

UserRegistrationApp

User Registration Application

com.apress. AWS

® Jar O War

O® @1 Os

Dependencies [ADD DEPENDENCIES... CTRL +B J

Spring Web m
Build web, including RESTful, applications using Spring MVC. Uses
Apache Tomcat as the default embedded container.

Spring Data JPA
Persist data in SQL stores with Java Persistence API using Spring Data
and Hibernate.

MySGL Driver
MySQL JDBC and R2DBC driver.

(R -1-1 @l DEVELOPER TOOLS
Java annotation library which helps to reduce boilerplate code.

GENERATE CTRL +d I | EXPLORE CTRL + SPACE | | SHARE... ‘

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig23_HTML.jpg
Amazon S3

» Account snapshot
Storage | ides visibility i ge usage and activity trends. Learn more [

View Storage Lens dashboard I

Copy ARN

Buckets (1) info

Buckets are containers for data stored in $3. Learn more [

] Q Find buckets by name

Name a AWS Region v Access

o elasticbeanstalk-us-east-2-818371255049 US East (Ohio) us-east-2 Objects can be public

Empty Delete

Creation date

Create bucket

March 24, 2021, 19:03:35 (UTC+05:30)

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig12_HTML.jpg
POST v http://localhost:5000/api/user/save

Params Authorization Headers (8) Body @ Pre-request Script Tests Settings

©® none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON v

1§
2 "last_name":-"Soni®,
3 "firstName": - “Namrata",
4 | “address"”: "Bangalore-India“,
5 "age":-25,
6 | "createdDate": "2021-07-04T00:00:00"
7
Body Cookies Headers (5) TestResults ® status: 201 Created
Pretty Raw Preview Visualize JSON v =
1 f
2 "id": 2,
3 "last_name": “"Soni",
4 “firstName": “Namrata",
5 "address”: "Bangalore-India",
6 “age": 25,
¥ "createdDate”: "2021-07-04T00:00:00"
e 8

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig37_HTML.jpg
Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order to
ensure that public access to all your S3 buckets and objects is blocked, turn on Block all public access. These settings apply only to this
bucket and its access points. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure
that your applications will work correctly without public access. If you require some level of public access to your buckets or objects
within, you can customize the individual settings below to suit your specific storage use cases. Learn more [/

|| Block all public access
Turning this setting on is the same as turning on all four settings below. Each of the

of one another.

settings are ind

— [Block public access to buckets and objects granted through new access control lists (ACLs)
S3 will block public access permissions applied to newly added buckets or objects, and prevent the creation of new public access
ACLs for existing buckets and objects. This setting doesn’t change any existing permissions that allow public access to S3 resources
using ACLs.

O

Block public access to buckets and objects granted through any access control lists (ACLs)
S3 will ignore all ACLs that grant public access to buckets and objects.

t~] Block public access to buckets and objects granted through new public bucket or access point policies
S3 will block new bucket and access point policies that grant public access to buckets and objects. This setting doesn't change any
existing policies that allow public access to S3 resources.

] Block public and cross-account access to buckets and objects through any public bucket or access point
policies
S3 will ignore public and cross-account access for buckets or access points with policies that grant public access to buckets and
objects.

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig22_HTML.jpg
All services

Storage
S3
EFS
FSx
S3 Glacier
Storage Gateway
AWS Backup

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig1_HTML.jpg
O Regions .
© Coming Soon Source : https://aws.amazon.com/about-aws/global-infrastructure/

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig36_HTML.jpg
Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order to ensure that public access to
all your S3 buckets and objects is blocked, turn on Block all public access. These settings apply only to this bucket and its access points. AWS recommends that you
turn on Block all public access, but before applying any of these settings, ensure that your applications will work correctly without public access. If you require some
level of public access to your buckets or objects within, you can customize the individual settings below to suit your specific storage use cases. Learn more [

Block all public access
@on
i~ Block public access to buckets and objects granted through new access control lists (ACLs)
@on

i~ Block public access to buckets and objects granted through any access control lists (ACLs)

@on

Block public access to buckets and objects granted through new public bucket or access point policies
@on

Block public and cross-account access to buckets and objects through any public bucket or access point policies
@on

Bucket policy

The bucket policy, written in JSON, provides access to the objects stored in the bucket. Bucket policies don't apply to objects owned by other accounts. Learn more [

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig2_HTML.jpg
.
>

App

/list-all-users

s BN UserDataService

Router

Request

/add-user AdA axiOS HTTP

B
>

Response

OEBPS/images/513001_1_En_BookBackmatter_Fig10_HTML.jpg
MysQL - o X

File Edit View Database Tools Scripting Help

Welcome to MySQL Workbench

MySQL Workbench is the official graphical user interface (GUI) tool for MySQL. It allows you to design,
create and browse your database schemas, work with database objects and insert data as well as
design and run SQL queries to work with stored data. You can also migrate schemas and data from other

database vendors to your MySQL database.
Browse Documentation > Read the Blog > Discuss on the Forums >

MySQL Connections ®® 2 Filter connections

MySQL Workbench could not detect any MySQL server running.

This means that MySQL is not installed or is not running.
Rescan servers

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig44_HTML.jpg
Platform

© Managed platform Custom platform
Platforms published and maintained by AWS Platforms created and owned by you.
Elastic Beanstalk. Learn more [4

Platform

‘ Tomcat v ‘
Platform branch

‘ Tomcat 8.5 with Corretto 11 running on 64bit Amazon Linux 2 v ‘
Platform version

‘ 4.1.6 (Recommended) v ‘

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig25_HTML.jpg
¥ My First Elastic Beanstalk N

Application Elastic Beanstalk > i >

Application versions

A Myfirstelasti icat

us-east-2.elasti @
Application name: My First Elastic Beanstalk Application

v Myfirstelasticbeanstalkapplica

tion-env
Health Running version Platform

Go to environment [4
Sample Application
Configuration

Logs Upload and deploy

Health

o ok
Monitoring Tomeat 8.5 with Corretto 11
— Causes running on 624;:(1 Asmazon Linux
Managed updates

Change

Events.
Tags

Recent events

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig28_HTML.jpg
Jopssusar/smva save

Parameters

Name Description

user * redired
object user

(Body) Edit Value | Model

“last_name": "Soni",
"firstName": "Namrata",
“"address": "Bangalore-India",

"age": 25,
“"createdDate”: "2021-07-04T00:00:00"

7

3
Parameter content type

application/json v

|

Responses Response content type | */*

Curl

curl -X POST "http://userregistration.us-east-2.elasticbeanstalk.com/api/user/save” -H
“accept: */*" -H "Content-Type: application/json” -d "{\t\"last_name\":

\"Soni\",\t\"firstName\": \"Namrata\",\t\"address\": \"Bangalore-India\",\t\"age\":
25,\t\"createdDate\": \"2021-07-04T00:00:00\"}"

Request URL

/user/save

Server response

Code Details

201 Response body

"address": "Bangalore-India",
"age": 25,
"createdDate": "2021-87-84T00:00:00"

Response headers

connection: keep-alive
content-type: application/json
date: Mon®5 Jul 2021 @3:47:52 GMT

server: nginx/1.20.0
transfer-encoding: chunked

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig24_HTML.jpg
& > C A Notsecure | hellospringboot-env-1.eba-gppppkce.us-east-2.elasticbeanstalk.com/greeting

Welcome to Hello Spring Boot Application!

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig19_HTML.jpg
v General

Request URL: http://userregistration.us-east-2.elasticbeanstalk.com/api/user/save

Request Method: POST

Status Code: @ 200

Remote Address: 3.139.48.80:80

Referrer Policy: strict-origin-when-cross-origin
» Response Headers (10)
» Request Headers (10)

v Request Payload view source

v {firstName: "Manorma“, lastName: "Devi", age: "52", address:

address: “Sasaram - Rohtas -Bihar - India"
age: "52"
firstName: “"Manorma"

lastName: "Devi"

"Sasaram - Rohtas -Bihar - India"}

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig15_HTML.jpg
5g-082174a08066db6d8 - rds-launch-wizard

Details Inbound rules

Details

Security group name

rds-launch-wizard

Owner
818371255049

Outbound rules Tags

Security group ID
59-082174a08066db6d8

Inbound rules count

1 Permission entry

Description

Created from the RDS
Management Console:
2021/07/02 15:00:10

Outbound rules count

1 Permission entry

VPCID
vpc-b8fa74d3 [4

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig2_HTML.jpg
AWS services

Find services

You can enter names, keyword or acronyms.

[a

Relational Database Service, datab RDS
Vv Recently visited services
{©} Elastic Beanstalk ©) Ec2

v Allservices

©

Compute

EC2

Elastic Container Service
Lambda

Elastic Beanstalk

ECR

Storage

S3

Glacier

Storage Gateway

Database

RDS

DynamoDB
ElastiCache
Amazon Redshift

Migration

Database Migration Service
Server Migration Service
Snowball

<= Networking & Content Delivery

VPC
API Gateway
Direct Connect

3£ Developer Tools
CodeDeploy

] Management Tools
CloudWatch
CloudFormation
CloudTrail
Config
Systems Manager
Trusted Advisor

& Machine Learning
Amazon SageMaker
Amazon Polly
Rekognition
Amazon Translate

i

Analytics

EMR

Elasticsearch Service
Kinesis

Security, Identity & Compliance

1AM

GuardDuty
Inspector
Certificate Manager
CloudHSM
Directory Service

Application Integration
Step Functions

Simple Notification Service
Simple Queue Service
SWF

Internet of Things
loT Core
loT Device Management

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig14_HTML.jpg
l . S x _

& - C ® localhost:5000/swagger-ui/ e 9

testy SMARTBEAR

Api Documentation ®

[Base URL: localhost:5€08/]
http:/Mocalhost:5000/v2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller 8sasic Error Controller >
user-registration-controller user Registration Controller >

Models >

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig2_HTML.jpg
New Spring Starter Project @

Service URL l https://start.spring.io v| a
Name] HelloSpringBoot I
[Use default location
Location IE“.,‘,. \workspace\AWS\HelloSpringB: HBlowsel
Type: IMaven VI Packaging: |Jar VI
Java Version: |11 v | Language: |Java v]
Group l com.apress.AWS |
Artifact 1 HelloSpringBoot I
Version [0.0.1-sNAPSHOT |
Description l Hello Spring Boot Application I
Package] com.apress. AWS I
Working sets
Working sets: (I Ul ENseee il | v

©) <Back [Nea> || Ensh | Cancel

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig21_HTML.jpg
V' USER-REGISTARTION-FRONTEND-... [} B O &
v build
> static

{} asset-manifest.json

W favicon.ico

<> index.html

& logo192.png
& logo512.png
{} manifest.json

= robots.txt

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig29_HTML.jpg
SCHEMAS ®

Q [Filter objects

> 5 sys
v @ UserRegistration
v B Tables
v & users
v [&] Columns
¢ id
@ first_name
@ last_name
@ address
€ age
@ created_date
» B Indexes
| % ForeignKeys
> %l Triggers
B Views
B stored Procedures
@ Functions

Administration Schemas

Gilﬂiﬁﬁﬁ()\@['\:;@:mmooom %€ Q
1e¢ USE UserRegistration;

2

3 o CREATE TABLE users(

4 id int NOT NULL AUTO_INCREMENT,
5 first_name varchar(45) NOT NULL,
6 last_name varchar(45) NOT NULL,
7 address varchar(35) NOT NULL,

8 age int NOT NULL,

9 created_date DATE,
10 PRIMARY KEY (id)
1. ~)3

OEBPS/images/513001_1_En_BookBackmatter_Fig7_HTML.jpg
2 MySQL Workbench 8.0 CE - Setup Wizard

Ready to Install the Program
The wizard is ready to begin installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

Current Settings:
Setup Type:
Custom

Destination Folder:
C:\Program Files\MySQL\WMySQL Workbench 8.0 CE\

<Back |[sl || cancel

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig40_HTML.jpg
Bucket policy
The bucket policy, written in JSON, provides access to the objects stored in the bucket. Bucket policies don't apply to objects owned by
other accounts. Learn more [/

Policy examples [4 I | Policy generator [4

Bucket ARN

arn:aws:s3:user-registration-frontend-app

Policy
1- i
2 "Version":"2012-10-17",
3~v "Statement":[
4 {
5 "Sid":"AddPerm",
6 "Effect”:"Allow",
7 "Principal”: "*",
3 "Action":"s3:GetObject",
9 "Resource”:["arn:aws:s3:::user-registration-frontend-app/*"]
10 ¥
11 1

12 3

OEBPS/images/513001_1_En_BookBackmatter_Figc_HTML.jpg
Buckets (3) nfo

Buckets are containers for data stored in $3. Learn more [

(3 Copy ARN

‘ Q. Find buckets by name

Name

elasticbeanstalk-us-east-2-818371255049

user-registration-backup

user-registration-frontend-app

AWS Region
US East (Ohio) us-east-2
US East (Ohio) us-east-2
US East (Ohio) us-east-2

Access

Objects can be public
Objects can be public

Creation date v
March 24, 2021, 19:03:35 (UTC+05:30)

July 19, 2021, 12:32:22 (UTC+05:30)

July 14, 2021, 17:08:30 (UTC+05:30)

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig38_HTML.jpg
Edit Block public access (bucket settings) X

/A Updating the Block Public Access settings for this bucket will affect this
bucket and all objects within. This may result in some objects becoming
public.

To confirm the settings, enter confirm in the field.

| confirm| I

Cancel

OEBPS/images/513001_1_En_BookBackmatter_Fig2_HTML.jpg
® MySQL Community Downloads

Login Now or Sign Up for a free account.
An Oracle Web Account provides you with the following advantages:

. Fast access to MySQL software downloads

. Download technical White Papers and Presentations
. Post messages in the MySQL Discussion Forums

- Report and track bugs in the MySQL bug system

Login » Sign Up »

for an Oracle Web account

using my Oracle Web account

MySQL.com is using Oracle SSO for authentication. If you already have an Oracle Web
account, click the Login link. Otherwise, you can signup for a free account by clicking the
Sign Up link and following the instructions.

No thanks, just start my download.

OEBPS/images/513001_1_En_BookBackmatter_Fig8_HTML.jpg
o MySQL Workbench 8.0 CE - Setup Wizard

Installing MySQL Workbench 8.0 CE
The program features you selected are being installed.

Please wait while the Setup Wizard installs MySQL Workbench 8.0 CE. This
may take several minutes.

Status:
Copying new files
PR —

<Back | Next> | [Cancel]

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig9_HTML.jpg
= a
I. Swagger Ul x e (-]
C ® localhost:8080/swagger-ui/#/ QW 9

Swagger

 SMARTBEAR

Api Documentation ®

[Base URL: localhost:8080/]
http://localhost:8080/v2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller Basic Emor Controller >
hello-spring-boot-application Helio Spring Boot Appiication >

Models >

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig4_HTML.jpg
MySQL

MySQL is the most popular open source database in the world. MySQL on RDS offers the
rich features of the MySQL community edition with the flexibility to easily scale compute
resources or storage capacity for your database.

¢ Supports database size up to 64 TiB.

o

Supports General Purpose, Memory Optimized, and Burstable Performance instance
classes.

e Supports automated backup and point-in-time recovery.

Supports up to 5 Read Replicas per instance, within a single Region or cross-region.

@ Aurora multi-master and Aurora global database features are now available.
These features are now available in our new database creation flow.

Only enable options eligible for RDS Free Usage Tier Info Cancel m

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig25_HTML.jpg
l. Swagger Ul x s o

& C A Notsecure | hellospringboot-env-1.eba-gppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/ QU W

Swagger selecta defintor

poried by SMARTBEAR

Api Documentation ©

[Base URL: hellospringboot-env-1.eba-gppppkce.us-east-2.elasticbeanstalk.com/]
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/v2/api-docs

Api Documentation

Terms of service
Apache 2.0

basic-error-controller Basic Eror Controller >

hello-spring-boot-application Helio Spring Boot Application >

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig45_HTML.jpg
Application code

) Sample application
Get started right away with sample code.

Existing version

Application versions that you have uploaded for helloworld.

-- Choose a version — v

© Upload your code
Upload a source bundle from your computer or copy one from Amazon S3.

Version label
Unique name for this version of your application code.

helloworld-source

Source code origin
Maximum size 512 MB

O Local file
() Public S3 URL

File name : HelloWorldJSP.war
@ File successfully uploaded

» Application code tags

Cancel Configure more options I

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig8_HTML.jpg
aws
~—

Sign up for AWS

Email address
You wiill use this email address to sign in to your new
AWS account.

Password

DL |
o~ @ N ‘c‘mﬁrmpm.d

AWS account name
Choose a name for your account. You can change this
name in your account settings after you sign up.

Continue (step 1 of 5)

Signin to an existing AWS account

Explore Free Tier products with a
new AWS account.

To learn more, visit aws.amazon.com/free.

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig23_HTML.jpg
P i P appic:

GRADLE_HOML
JVA_HOME
M2

M2_HOML

SERVER_PORT

5_64

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig10_HTML.jpg
aws

b SR

i Sign up for AWS

Secure verification ‘ Billing Information
Craxit or Dobit card numbsr
© Wewill nok charge for usage bitow | l
AWS Froe Tier limits. We [- -
tompararity hold INR 2 as 3 panding W. ..-

tranzaction tor 3-5 days to verity |
e | A mccepts all mager credin asd detat cardh To lram
your identity. oMY 4bout peyTTEOt TRBTAN, Aeeew cut AQ

Expiration date

L ow
|

Billing 3ddress
O Usemy contact address
vy address
bangalare karataka 60013
IN

) Usea now address

Do you hawe 3 PANT

Permanent Account Number PAN] v & ten-dge
slphansmerc rumber ivaed by the hden Income Tex
Copartmant. This 10-dige nerrier & printed on the
fram of your PAN card.

) Yes

O No

You £an 50 00 the Tax Setungs Page on Biling and
Cont Marwgerment Comole to updets yoor AN
nformaton

Verify and Continue (step 3 of 5)

Vo might be redrected 1o yoor bank's weiute to
arhonoe the venfceton charge.

OEBPS/images/513001_1_En_BookBackmatter_Figb_HTML.jpg
:\Users\ravik>aws s3 1s
021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
021-07-14 17:57:15 user-registration-frontend-app

:\Users\ravik>aws s3 mb s3://user-registration-backup
ake_bucket: user-registration-backup

C:\Users\ravik>aws s3 1s

2021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
2021-07-19 12:32:22 user-registration-backup

2021-07-14 17:57:15 user-registration-frontend-app

C:\Users\ravik>

OEBPS/images/513001_1_En_BookBackmatter_Fig1_HTML.jpg
General Availability (GA) Releases Archives

MySQL Workbench 8.0.25

Select Operating System:

[Microsoft Windows

Recommended Download:

MySQL Installer
y5Q for Windows

All MySQL Products. For All Windows Platforms.
In One Package.

Windows (x86, 32 & 64-bit), MySQL Installer MSI
Other Downloads:

Windows (x86, 64-bit), MSI Installer

(mysql-workbench-community-8.0.25-winx64.msi)

Go to Download Page >

8.0.25 422M

MDS: 4220a115ad93e4caa7e9bcbd7be89@6e | Signature

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig41_HTML.jpg
[B RreactApp x e

& > C A Notsecure | istrati pp.s3-website o P

User Registration App

Home List All Users

Welcome to User Registration App

Please click on List All Users to get all users.
Please click on Add User to add a new user.

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig16_HTML.jpg
aWs services v

AWS services

[A services

{8} Compute
EC2
Lightsail [4
Lambda
Batch
Elastic Beanstalk
Serverless Application
Repository
AWS Outposts
EC2 Image Builder

£ Containers
Elastic Container
Registry

Elastic Container
Service

Elastic Kubernetes

&

Quantum

(@ Security, Identity, &
Copit

Amazon Braket

Management &
Governance

AWS Organizations
CloudWatch
AWS Auto Scali

9
CloudFormation
CloudTrail

Config
OpsWorks
Service Catalog
Systems Manager
AWS AppConfig
Trusted Advisor

1AM

Resource Access
Manager

Cognito

Secrets Manager
GuardDuty
Inspector

Amazon Macie

AWS Single Sign-On
Certificate Manager

Key Management
Service

CloudHSM
Directory Service
WAF & Shield

Stay connected to your AWS resources on-
the-go

=) AWS Console Mobile App now supports four

additional regions. Download the AWS Console
Mobile App to your iOS or Android mobile device.
Learn more [4

Explore AWS

Amazon Redshift

Fast, simple, cost-effective data warehouse that can extend
queries to your data lake. Learn more

Run Serverless Containers with AWS Fargate

AWS Fargate runs and scales your containers without having
to manage servers or clusters. Learn more

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig6_HTML.jpg
About Spring Tool Suite 4

Spring Tool Suite 4

Version: 4.9.0.RELEASE
Build Id: 202012132054

Copyright (c) 2007 - 2020 Pivotal, Inc.
All rights reserved. Visit https://spring.io/tools

This product includes software developed by the
Eclipse Foundation https://www.eclipse.org

This product includes software developed by the
Apache Software Foundation https://www.apache.org

Lombok v1.18.20 "Envious Ferret" is installed. https://projectlombok.org/

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig18_HTML.jpg
J @ cser a

& > C @ localhost:3000/list-all-users

User Registration App

First Name Last Name Age Address Delete
i Namrata Soni 25 Bangalore - India
2 Manorma Devi 52 Sasaram - Rohtas -Bihar - India

List of users

OEBPS/images/513001_1_En_5_Chapter/513001_1_En_5_Fig12_HTML.jpg
&€ > C @ localhost:3000 Qa w »9:

User Registration App

List All Users Add User

’ Welcome to User Registration App

D Please click on List All Users to get all users.
. Please click on Add User to add a new user.

OEBPS/images/513001_1_En_3_Chapter/513001_1_En_3_Fig14_HTML.jpg
Security Groups (1/1) info

‘ Q Filter security groups \ < 1 > | @

l search: rds-launch-wizard)(I I Clear filters

Name v Security group ID v Security group name v VPCID v Description

= 5g-082174a08066db6d8 rds-launch-wizard vpc-b8fa74d3 [4 Created from the RDS ..

e___] >

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig15_HTML.jpg
ex.] C:\Windows\System32\cmd.exe

icrosoft Windows [Version 10.0.19042.1052]
(c) Microsoft Corporation. All rights reserved.

E:\Apress\workspace\AWS\HelloSpringBoot>

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig19_HTML.jpg
Elastic Beanstalk > Applications > UserRegistrationApp

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Application name

UserRegistrationApp

Environment name

[Userregistrationapp-env J

Domain

l userregistration .us-east-2.elasticbeanstalk.

Check availability

@ userregistration.us-east-2.elasticbeanstalk.com is available.

Description

OEBPS/images/513001_1_En_1_Chapter/513001_1_En_1_Fig35_HTML.jpg
@ http://localhost:8080/HelloWorldJSP/ &

PoB S |http://localhost:8080/HeIIoWorIdJSP/

Hello World!

OEBPS/images/513001_1_En_2_Chapter/513001_1_En_2_Fig3_HTML.jpg
New Spring Starter Project Dependencies

Available: Selected:
lweb - X Spring Web
v Messaging

[JWebSocket

v Template Engines

[Thymeleaf

[Apache Freemarker
v Testing

[Testcontainers

[Spring Reaq
[JSpring Web
[DJersey
[JVvaadin

Build web, including RESTful, applications using Spring MVC, Uses
Apache Tomcat as the default embedded container.

Guides

 Building a RESTful Web Service

« Serving Web Content with Spring MVC

+ Building REST services with Spring
References

« Spring Boot Reference Doc

Make Defautt | | Clear Selection

v

© T

| [Enish]| cancel

OEBPS/images/513001_1_En_4_Chapter/513001_1_En_4_Fig13_HTML.jpg
DELETE v http://localhost:5000/api/user/id/2

Params Authorization Headers (6) Body Pre-request Script Tests Settings

® none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

This request does not have a body

Body Cookies Headers (3) TestResults ® status: 204 No Content

Pretty Raw Preview Visualize Text v =

