
Spring Boot with
React and AWS

Learn to Deploy a Full Stack Spring
Boot React Application to AWS
—
Ravi Kant Soni
Namrata Soni

Spring Boot with
React and AWS

Learn to Deploy a
Full Stack Spring Boot React

Application to AWS

Ravi Kant Soni
Namrata Soni

Spring Boot with React and AWS: Learn to Deploy a Full Stack Spring Boot

React Application to AWS

ISBN-13 (pbk): 978-1-4842-7391-3		 ISBN-13 (electronic): 978-1-4842-7392-0
https://doi.org/10.1007/978-1-4842-7392-0

Copyright © 2021 by Ravi Kant Soni and Namrata Soni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484273913. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ravi Kant Soni
s/o – Late. Ras Bihari Prasad, Sri Niwash,
Lashkariganj, Sasaram, Bihar, India

Namrata Soni
d/o – Late. Ras Bihari Prasad, Sri Niwash,
Lashkariganj, Sasaram, Bihar, India

https://doi.org/10.1007/978-1-4842-7392-0

To my beloved father,
the late Ras Bihari Prasad

We miss you and love you, Papa. A strong and gentle
soul who taught us to trust God and to believe in ourselves

and our dreams.

To my beloved mother,
Smt. Manorma Devi

We love you, Maa. We could never have completed this
book without your true love, warmest support, and

constant encouragement.

v

About the Authors���ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Table of Contents

Chapter 1: �An Introduction to Amazon Web Services (AWS)�����������������1

Introduction to Amazon Web Services���2

AWS Key Services��4

Elastic Cloud Compute (EC2)��5

Elastic Beanstalk��7

Relational Database Service (RDS)���8

Route 53���8

Use Case: AWS Application Architecture��9

Create a Free AWS Account for Developer���9

Explore and Create an AWS Elastic Beanstalk Server��19

Create a HelloWorld JSP Application, Build WAR with Maven,
and Upload WAR to Elastic Beanstalk��26

Create a HelloWorld JSP Application��26

Package a WAR File Using Maven��32

Upload WAR to Elastic Beanstalk��34

Summary���40

vi

Chapter 2: Deploy a Spring Boot Application as a
REST API in AWS��41

Build a Spring Boot Application as a REST API���42

Introduction to REST���42

System Requirements��44

Create Spring Boot Application Using Spring Tool Suite���������������������������������45

A Walk-Through��48

Run a Spring Boot Application in STS���53

Add Swagger UI to a Spring Boot Application��56

Introduction to Swagger 2��56

Add Dependency in a Maven POM��57

Configure Swagger 2 into a Project��57

Configuration Verification���59

Swagger UI���60

Configure the Server Port for a Spring Boot Project��61

Build a JAR for a Spring Boot Application��63

Deploy a Spring Boot Application in AWS Elastic Beanstalk��������������������������������67

Test a Spring Boot Application as a REST API in the Cloud����������������������������������73

Explore Logs from Elastic Beanstalk��74

Summary���75

Chapter 3: �Deploy MySQL as a Database in AWS with RDS�����������������77

Introduction to Amazon RDS (Amazon Relational Database Service)������������������78

Create an Instance of the RDS Database in AWS���78

Configure Amazon RDS��86

Step 1. Configure Security for Inbound Connection Rules������������������������������88

Step 2. Test an Amazon RDS Database Instance Connection with
MySQL Workbench���91

Table of Contents

vii

Create a Table Inside an RDS Database Instance���96

Summary���102

Chapter 4: Deploy a Spring Boot Application Talking to
MySQL in AWS���103

Create Spring Boot UserRegistrationApp Talking to MySQL Database���������������103

Maven Dependency in pom.xml���105

Project Lombok��108

Application Properties��111

Domain Implementation: UserDTO Entity Class��112

Repository Implementation: UserJpaRepository��114

Service Implementation: UserService��116

REST Controller Implementation: UserRegistrationController�����������������������117

Run and Test UserRegistrationApp Locally���121

Retrieve All Users: /api/users���122

Retrieve an Individual User: /api/user/id/{id}��123

Create a New User: /api/user/save���124

Delete an Existing User: /api/user/delete/id/{id}���126

Swagger UI: API Documentation���126

Build a JAR for a Spring Boot Application��128

Deploy the UserRegistrationApp Spring Boot Application in
AWS Elastic Beanstalk���129

Test Deployed REST API in AWS Using Swagger UI��135

List All Users: /api/users���137

Create New Users: /api/users���139

Summary���141

Table of Contents

viii

Chapter 5: Deploy a Full Stack Spring Boot React Application
in AWS and S3���143

Develop and Run React as a Front-End Application���145

Introducing React as a Front-end Framework��145

Set up a Development Environment���149

Cross-Origin Resource Sharing (CORS) Error���150

Developing React Front-End Application with create-react-app������������������151

Build React Code as a Front-end Application for AWS���������������������������������������180

Verify the AWS Elastic Beanstalk Environment Is Up������������������������������������180

Update BaseURL in a React App with an AWS Elastic Beanstalk
Environment URL��181

Build React Code for AWS Deployment���183

Deploy a React Front-End to AWS S3: Hosting a Static Website������������������������185

Introduction to S3: Simple Storage Service in AWS��������������������������������������185

Create a Bucket��188

Verify the Successful Deployment of a React Front-end Application:
Resolve a 404 Error��198

Summary���200

�Appendix A: Install MySQL Workbench on Windows 10��������������������201

�Step 1. Download Workbench��201

�Step 2. Install Workbench��204

�Appendix B: AWS Command-Line Interface (CLI)�������������������������������213

�Step 1. Download and Install the AWS CLI on a Windows Operating System����214

�Step 2. Create an Access Key��214

�Configure AWS CLI���217

�Example Commands That Work with S3��217

Index��219

Table of Contents

ix

About the Authors

Ravi Kant Soni is a principal full stack

engineer with more than 11 years of IT

experience. He is also an AWS Certified

Solutions Architect. Ravi has experience

in software development, software

design, systems architecture, application

programming, and automation testing. He has

a bachelor’s degree in Information Science and

Engineering from Reva University, Bangalore;

and schooling from Bal Vikash Vidyalaya, Sasaram, and Bihar (India).

He is the author of Build Microservices with Spring Cloud and Spring

Boot (codered eccouncil, 2021), Full Stack AngularJS for Java Developers

(Apress, 2018), Spring: Developing Java Applications for the Enterprise

(Packt, 2017), and Learning Spring Application Development (Packt,

2015). He is also an esteemed member of the Board of Studies at the REVA

University School of Computing and Information Technology in Bangalore.

Contact Ravi at www.linkedin.com/in/november03ravikantsoni/. 

http://www.linkedin.com/in/november03ravikantsoni/

x

Namrata Soni is a self-taught web application

developer with a passion for beautiful and

interactive UIs. She has a degree in computer

science from Sagar Institute of Science &

Technology, Bhopal; and schooling from Bal

Vikash Vidyalaya, Sasaram, and Bihar (India).

She loves clean and well-tested code, is a

big fan of open source, and enjoys learning

something new. Currently, she is working

with React and Node.js to craft modern JavaScript applications. Contact

Namrata at www.linkedin.com/in/september-6-namrata-soni/.  

About the Authors

http://www.linkedin.com/in/september-6-namrata-soni/

xi

About the Technical Reviewer

Karunesh Chandra Tiwari is an IT professional

with ten years of experience and has worked

across distinct technologies and domains. He is

a technologist and speaker and loves to provide

his views on articles and blogs.

Karunesh is a BTech IT graduate from

Anna University. He worked as a full stack

developer for the first half of his career and

currently works with BPM and CRM tools

and cloud-related technologies, including

developing and working with applications for

some of the world’s leading banks. He is a very focused and determined

person and loves to learn, work in new technologies. He loves to mentor

people both from a professional and a personal perspective.

Karunesh enjoys working with new technologies and loves to

mentor people. Check out his LinkedIn profile at www.linkedin.com/in/

karunesh-chandra-tiwari-20b9a82a/.

http://www.linkedin.com/in/karunesh-chandra-tiwari-20b9a82a/
http://www.linkedin.com/in/karunesh-chandra-tiwari-20b9a82a/

xiii

Acknowledgments

Writing a technical book involves fathomless research, review, and

support. I wrote this book, but it wouldn’t have been possible without the

love and support of many people. I truly want to thank everyone listed

here, from the deep bottom of my heart!

First and foremost, I need to express gratitude toward Michael Gorriz,

Group Chief Information Officer, Standard Chartered Bank, for inspiring

me and giving me the confidence to write this book when I anticipated my

career break. All I can offer in return is a heartfelt thank you!

I want to thank my colleagues at Standard Chartered Bank. I learn

something new every day and enjoy a camaraderie I've never felt in any

company before. I am fortunate enough to work with such an experienced

team that helped me enhance my skills. My gratitude goes to Anshu

Sharma Raja, CIO, Consumer Private Business Banking at Standard

Chartered Bank, and Dr. Ashish Chandra, Location Head- aXess Labs

(Banking Innovation) at Standard Chartered Bank; for their guidance and

strong support.

I want to thank the Apress publishing team for the utmost

professionalism. The one individual who has been the roof of this shelter

is Divya Modi, coordinating editor, for supporting me in the writing of this

book. Also, I would like to express my special gratitude to James Markham,

development editor, whose vision, commitment, and persistent efforts

made publishing this book efficient.

My heartfelt thanks go to the technical reviewer, Karunesh Chandra

Tiwari, for his valuable input.

xiv

My deepest gratitude and appreciation go to my dear friend Awanish
Kumar, IAS – Deputy Commissioner, Delhi; for the intellectual stimulus

from time to time, which helped me approach the book from a unique

perspective.

Thanks to my dearest friend, Dr. Meena Soni (Incharge Medical
Officer, Surajpur - Basdei, and Chhattisgarh), for invariably motivating,

encouraging, and giving me positive thoughts that worked as fuel to carry on.

Without my families’ love, support, and understanding, this book

would have remained a virtual commodity. My profound thanks to my

beloved mother, Smt. Manorma Devi, for her love and support, which

encourages my knowledge to come out on paper to ignite the imagination

of others.

My special thanks go to a man who has been a rock of stability

throughout my life and whose loving spirit sustains me still—my uncle

Shri. Arun Kumar Soni for the great inspiration he has given me to achieve

all success in life. Thanks also to my brothers, Shashi Kant and Shree Kant,

and all my family members who have loved me.

My special thanks to my co-author and sister, Namrata Soni, for

agreeing to co-author this book and helping me write Chapter 5, which

discusses React and AWS S3. I’m still amazed that she agreed to get

involved with this book, considering how enormously busy she is.

Namrata, thank you!

I want to thank the goddess Maa Tara Chandi, Sasaram, Bihar, India;

for giving me to such an extent.

Finally, this book is based on the innovative work of many people in

our industry who have become my idols. I am thankful to everyone who

supported me in one way or another in writing this book.

Welcome to Spring Boot with React and AWS.

—Ravi Kant Soni

Acknowledgments

1© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_1

CHAPTER 1

An Introduction
to Amazon Web
Services (AWS)
When you hear the word amazon, you likely first think of Amazon.com,

which is one of the biggest and most successful online stores. While

Amazon built its brand on developing online retail services, it has also

branched out into alternative industries, among them the web services

industry, where they have the eponymous Amazon Web Service (AWS),

a form of cloud-computing that assists users develop software, database,

and other programs that need heavy-duty computing resources.

This chapter overviews Amazon Web Services (AWS), including several

AWS key services, such as Amazon Elastic Compute Cloud (Amazon EC2),

AWS Elastic Beanstalk, Amazon Relational Database Service (Amazon

RDS), and Amazon Route 53. It covers creating a free AWS account for

developers, creating an Elastic Beanstalk server, creating a HelloWorld JSP

application, building a WAR file with Maven, and uploading it to Elastic

Beanstalk.

https://doi.org/10.1007/978-1-4842-7392-0_1#DOI
http://amazon.com

2

�Introduction to Amazon Web Services
What precisely is Amazon Web Services (AWS)? At a really high level,

AWS is a web-hosting service offered by Amazon, where you can deploy

your web applications and conjointly deploy your databases. Once it’s

deployed, your apps are out there online. Anyone can simply enter your

URL (Universal Resource Locator) in their web browser to access your

application. The web connects everybody. You can deploy your application

online within the cloud, so that anyone can access it. It’s not only running

locally; it’s now running online.

AWS is a full-service cloud platform. It is more than just an application

hosting platform. There are plenty of belongings you do with AWS.

•	 On-demand delivery of IT resources via the web

•	 You can spin up servers on-demand, and you can

choose your operating system.

•	 You can even deploy databases within the cloud,

and you get more options for the database as you

wish.

•	 Pay-as-you-go pricing model

•	 This book uses free developer accounts. You can get

a free developer account for 12 months.

And, the nice thing about using the Amazon Web Services cloud is that

you can be global within minutes because Amazon has worldwide data

centers, as shown in Figure 1-1.

Chapter 1 An Introduction to Amazon Web Services (AWS)

3

You’ll be able to deploy your application to a single data center;

otherwise, you’ll deploy it to multiple data centers. Also, there are no

restrictions on which data center you’ll be able to deploy to.

If you’re based mostly within the United States, however, you can

deploy applications to the data center in South America, China, or the Asia

Pacific. It’s completely up to you. The user can select the regions based on

the application usage so that latency is low. There’s no restriction as such

on it.

Once you’re logged in to the Amazon console, then essentially, you

choose the services that you simply wish to use. You need to only deploy

your applications to have a pleasant web admin console where you only

configure your environment, configure your servers, then reasonably

push-button deploy. Figure 1-2 shows the AWS services on AWS

Management Console.

Figure 1-1.  Amazon data center

Chapter 1 An Introduction to Amazon Web Services (AWS)

4

This was all about an introduction to Amazon Web Services. Let’s dig

into some of the AWS key Services.

�AWS Key Services
AWS offers a wide range of services underneath different categories. This

section explores several AWS key services (see Figure 1-3). First, let’s look

at Amazon Elastic Compute Cloud (Amazon EC2), which may include

remote VMs (virtual machines). Next, you briefly look at AWS Elastic

Figure 1-2.  AWS

Chapter 1 An Introduction to Amazon Web Services (AWS)

5

Beanstalk, which allows developers to deploy web applications. Then, you

move on to the Amazon Relational Database Service (Amazon RDS), which

is a database within the cloud. Finally, you look at Amazon Route 53, which

routes custom domain names to your application.

�Elastic Cloud Compute (EC2)
Elastic Cloud Compute (EC2) is one of the first web service interfaces when

AWS was released, allowing users to create and configure compute machines

within the cloud. EC2 allows users to create VM (virtual machine) on the

Amazon cloud for running applications that can be accessed via the Internet.

The software can be configured on cloud servers based on your

specifications. You select the operating system (i.e., Microsoft Windows or

Linux) best suited to your requirements or applications, and you get the

operating system pre-installed. EC2 provides the actual host server and

operating system. Figure 1-4 shows how it is set up.

Figure 1-3.  AWS key services

Chapter 1 An Introduction to Amazon Web Services (AWS)

6

If you want any additional software, you must manually install it on

top of the OS as a developer. So, if you want JDK (Java Development Kit),

you can install Java. You can also install Tomcat, a database, and so on. It’s

almost like getting a brand-new laptop that only has the operating system,

and you need to install your tools on top of it.

Figure 1-4.  How EC2 is set up

Chapter 1 An Introduction to Amazon Web Services (AWS)

7

�Elastic Beanstalk
Elastic Beanstalk is a pre-packaged platform, allowing you to quickly

deploy and handle your web applications without worrying about the

infrastructure. You select a pre-configured virtual machine for your

given web stack, like Java and Tomcat. And, there is no need to install

any additional software’s on the virtual machine. You simply upload the

application’s deployable file, and then you are out there and ready to go.

Elastic Beanstalk automatically provides the application server, language

runtime, operating server, and the host server, as shown in Figure 1-5.

Figure 1-5.  Elastic Beanstalk

Chapter 1 An Introduction to Amazon Web Services (AWS)

8

It also has support for .NET, Node.js, PHP, Docker, and so on. You can

choose the web stack that gives you all the software’s pre-installed, pre-

configured, and you simply deploy your code.

It’s great for deployment on a web stack, you simply select the services

that you need, and it is set up for you. This is known as platform as a

service, or PaaS. All you have to do is deploy your code.

Now, when you develop Java applications on AWS, you can use your

regular Java EE APIs. You can also use third-party frameworks like Spring

Boot, Hibernate, and anything in standard Java. Whatever you can run

on Tomcat locally, you can run that same code on Amazon. So, there are

no code changes you need to make and no special Amazon JAR files or

anything.

�Relational Database Service (RDS)
AWS Relational Database Service (RDS) is your relational database in the

cloud. This allows you to quickly deploy a relational database in the cloud.

It has support for a wide range of databases to choose from, including

MySQL, Oracle, Microsoft SQL Server, and so on.

You can manage these tools using your normal admin tools. If you are

using MySQL, you can use MySQL Workbench. If you are using the Oracle

Database, you can use Oracle SQL Developer, and the list goes on.

AWS also has support for NoSQL databases such as MongoDB. So,

all major database feature’s that you need can be found in AWS with the

support of the relational Database Service.

�Route 53
Amazon Route 53 is a Domain Name System (DNS), which allows you to

route your custom domain names to your actual application on AWS. So,

you configure Route 53 to send requests from the browser to your AWS

application. The AWS DNS sets up your custom domain name.

Chapter 1 An Introduction to Amazon Web Services (AWS)

9

�Use Case: AWS Application Architecture
For your apps, start with AWS Elastic Beanstalk because you can quickly

get started with deploying your application by leveraging those pre-

configured web stacks out of the box.

Use EC2 if you need some low-level control. For example, you may

want to use a version of Java that Elastic Beanstalk does not support, or you

may want to use a Java application server like WebLogic or make another

OS-specific customization.

Figure 1-6 shows that the architecture uses Elastic Beanstalk to deploy

the web application. The Java application runs on Tomcat. RDS is the

database in the cloud using MySQL. Route 53 routes your custom domain

name to your application hosted on AWS.

�Create a Free AWS Account for Developer
To access Amazon Web Services, you need to create an AWS account. First,

let’s talk about the AWS free tier, where developers get a free 12 months trial

period and enough resources to deploy your application and database for

free. There is also a smaller version of AWS servers that you can use for free.

Figure 1-6.  AWS application architecture

Chapter 1 An Introduction to Amazon Web Services (AWS)

10

If you need to have some more advanced features, then you must

pay and get access. This book uses the free tier. If you would like more

information on the free tier, go to https://aws.amazon.com/free/.

In your web browser, go to https://aws.amazon.com to open the

Amazon Web Services home page (see Figure 1-7; this screenshot may be

different on your screen due to any updates by Amazon).

To create an AWS account, you need to provide your contact

information, including your address, and a valid debit or credit card. Even

though you are using a free account, Amazon needs your credit or debit

card information. So, have it handy when creating your AWS account.

On the top right of the main page, click the Create an AWS Account

button. You are redirected to the sign up for the AWS page, as shown in

Figure 1-8.

Figure 1-7.  AWS main page

Chapter 1 An Introduction to Amazon Web Services (AWS)

https://aws.amazon.com/free/
https://aws.amazon.com

11

Enter your email address, password (choose a strong password to

prevent getting hacked), and the AWS account name that you want for

this account. You must be sure that the account information you enter

is correct, especially your email address. If you enter an incorrect email

address, you can’t access your account.

Click the Continue button to enter your contact information, as shown

in Figure 1-9.

Figure 1-8.  Sign up for AWS

Chapter 1 An Introduction to Amazon Web Services (AWS)

12

First, select the Personal account type. (A business account is

associated with an organization, and a personal account is associated with

an individual.) Enter your full name, phone number, country, address, city,

state, and postal code.

Figure 1-9.  Contact information

Chapter 1 An Introduction to Amazon Web Services (AWS)

13

Finally, select the little check box at the bottom to show that you have

read and agree to the terms of the AWS Customer Agreement, and then

click the Continue button.

You receive an email from AWS to confirm that your AWS account has

been created. You can sign in to your new account using the email address

and password you registered with. However, you can’t use AWS services

until you finish your account activation.

Billing information is where you must enter your credit or debit card

number and so forth, as shown in Figure 1-10. It is used for verification

purposes.

Chapter 1 An Introduction to Amazon Web Services (AWS)

14

Amazon does not charge your card unless your usage exceeds AWS

Free Tier limits. In this book, everything that we show you is within the

Free Tier limits.

AWS requires phone number verification, as shown in Figure 1-11.

Choose your country or region code from the list, enter a phone number

where you can be immediately reached, and enter the characters displayed

in Security Check.

Figure 1-10.  Billing information

Chapter 1 An Introduction to Amazon Web Services (AWS)

15

Once you type the security check characters, click the Call Me Now

button. A verification code is displayed on the screen, and at the same

time, you get a call from Amazon to verify your registered phone number.

You must enter the PIN you received and choose to continue. Once your

identity has been successfully verified, you can see on the window that

your phone is verified, and you are redirected to the next screen to choose

your support plan, as shown in Figure 1-12.

Figure 1-11.  Phone number verification

Chapter 1 An Introduction to Amazon Web Services (AWS)

16

Choose the support plan that meets your needs. Select the Basic Plan

for free support. Click the Free button, and you are redirected to the AWS

Registration Confirmation page.

Now you can sign in to the AWS Management Console. Go to https://

console.aws.amazon.com to start using AWS.

Select Root user, enter your AWS account email address, and click the

Next button, as shown in Figure 1-13.

Figure 1-12.  Support plan

Chapter 1 An Introduction to Amazon Web Services (AWS)

https://console.aws.amazon.com
https://console.aws.amazon.com

17

Next, enter your AWS account password, and click Sign in, as shown in

Figure 1-14.

Figure 1-13.  Sign in to the console

Chapter 1 An Introduction to Amazon Web Services (AWS)

18

The AWS Management Console is shown in Figure 1-15.

Figure 1-14.  Sign-in password

Figure 1-15.  AWS Management Console

Chapter 1 An Introduction to Amazon Web Services (AWS)

19

This is where you can find all the different services that are available

and provided, but they are grouped by category, as shown in Figure 1-16.

The next section uses the Elastic Beanstalk service to begin building a

web application. Tomcat is running in the AWS cloud.

�Explore and Create an AWS Elastic
Beanstalk Server
On the AWS services page, scroll down to the Compute section and select

Elastic Beanstalk, as shown in Figure 1-17. It allows you to run and manage

your web application.

Figure 1-16.  AWS services by category

Chapter 1 An Introduction to Amazon Web Services (AWS)

20

The AWS Elastic Beanstalk page is shown in Figure 1-18.

Figure 1-18.  AWS Elastic Beanstalk

Figure 1-17.  Elastic Beanstalk under Compute section

Chapter 1 An Introduction to Amazon Web Services (AWS)

21

Elastic Beanstalk is the simplest way to deploy and run your web

application on AWS. Elastic Beanstalk automatically handles the

deployment details of capacity provisioning, load balancing, automatic

scaling, and web application health monitoring.

Here, you select a platform, upload an application, or use a sample,

and then run it. This chapter used a sample, and Tomcat is the platform for

deploying the application code.

Click the Create Application button. This takes you to the Create a web
app page shown in Figure 1-19.

Figure 1-19.  Create a web app

Chapter 1 An Introduction to Amazon Web Services (AWS)

22

Name the application My First Elastic Beanstalk Application, as

shown in Figure 1-20.

Next, select the platform from the drop-down list. Choose Tomcat, as

shown in Figure 1-21.

Figure 1-20.  Application name under Application information

Figure 1-21.  Platform under Application information

Chapter 1 An Introduction to Amazon Web Services (AWS)

23

Select the default Tomcat branch and version, as shown in Figure 1-22.

Under Application code, select Sample application, as shown in

Figure 1-23, and then click the Create application button.

At this point, AWS provisions a server for you, as shown in Figure 1-24.

It has Java installed, running on Linux, and Tomcat is already pre-installed.

Figure 1-22.  Platform details on selecting platform under
Application information

Figure 1-23.  Application code

Chapter 1 An Introduction to Amazon Web Services (AWS)

24

You see diagnostics on the screen while the work is going on in the

background.

Eventually, your application is deployed successfully, and the health

status is OK, as shown in Figure 1-25. The link to your application appears

in the top-left of the window. So, if you click the link, you see your

application up and running.

Figure 1-24.  Environment details

Figure 1-25.  Health OK

Chapter 1 An Introduction to Amazon Web Services (AWS)

25

This will start the sample application and configuring Linux, Tomcat,

and Java. The logs shown in the following Figure 1-26 inform that the

environment launched successfully.

Figure 1-27 shows the Congratulations screen.

Your app is now running on the AWS cloud, and its URL is live on the

Internet. Tomcat is running on your dedicated environment in the AWS

cloud.

Figure 1-26.  Logs

Figure 1-27.  Congratulations screen

Chapter 1 An Introduction to Amazon Web Services (AWS)

26

Right now, you are simply using the sample application, but later, you

upload your applications and run them in the AWS cloud. You can add a

custom domain name to the URL.

�Create a HelloWorld JSP Application,
Build WAR with Maven, and Upload WAR
to Elastic Beanstalk
As a proof of concept, let’s deploy the HelloWorld JSP application on

Elastic Beanstalk. It’s just a simple application on the Java side, which

allows you to focus on the Elastic Beanstalk deployment process.

Advanced Spring Boot and database CRUD operations are covered later.

To understand the mechanics of how to deploy, let’s look at the step-

by-step development process.

	 1.	 Create the HelloWorld JSP application in Spring

Tool Suite (STS).

	 2.	 Package the WAR file using Maven.

	 3.	 Create a new application in Elastic Beanstalk.

	 4.	 Upload the WAR file to Elastic Beanstalk.

�Create a HelloWorld JSP Application
Create a Maven web application project using STS or any IDE of your

choice.

First, open Spring Tool Suite, select File menu ➤ New ➤ Maven

Project, as shown in Figure 1-28.

Chapter 1 An Introduction to Amazon Web Services (AWS)

27

Figure 1-29 shows the New Maven Project wizard. Select the default

location, and click Next.

Figure 1-28.  Select Maven Project

Figure 1-29.  New Maven Project wizard

Chapter 1 An Introduction to Amazon Web Services (AWS)

28

Then, select maven-archetype-webapp and click Next, as shown in

Figure 1-30.

Next, provide the group ID, artifact ID, and package information, and

then hit the Finish button, as shown in Figure 1-31.

Figure 1-30.  Select an archetype

Chapter 1 An Introduction to Amazon Web Services (AWS)

29

A project directory is created, as shown in Figure 1-32.

Figure 1-31.  Specify archetype parameters

Figure 1-32.  HelloWorldJSP project directory

Chapter 1 An Introduction to Amazon Web Services (AWS)

30

If you look in the problem’s view in IDE, the error shown is “The

superclass javax.servlet.http.HttpServlet was not found on the Java Build

Path”. This error indicates that an HTTP servlet is not available in the

project classpath.

Once you add a target runtime to the project, an HTTP servlet is

available in the project classpath. Errors are resolved after configuring the

runtime server, such as the Tomcat server.

To configure the Tomcat server, right-click the project and select

Properties. Select Targeted Runtimes, and then select Apache Tomcat v8.5,

as shown in Figure 1-33. Then, click the Apply and Close button.

To run the application on the local Tomcat server, right-click the

project, select Run As and Run On Server. Select the Tomcat server in the

window, and click the Finish button (see Figure 1-34).

Figure 1-33.  Targeted runtimes

Chapter 1 An Introduction to Amazon Web Services (AWS)

31

Type http://localhost:8080/HelloWorldJSP/ in your favorite web

browser to see the “Hello World!” message, as shown in Figure 1-35.

Figure 1-34.  Run On Server

Figure 1-35.  Hello World! in browser

Chapter 1 An Introduction to Amazon Web Services (AWS)

32

�Package a WAR File Using Maven
Now, let’s package a WAR file using Maven in STS. Right-click the project

and select Run As ➤ Maven install, as shown in Figure 1-36.

Once the build is successful, you can validate it with a success message

in the console, as shown in Figure 1-37. This generates a WAR file.

Figure 1-36.  Run As Maven install

Chapter 1 An Introduction to Amazon Web Services (AWS)

33

Refresh the project folder structure and expand the target folder,

where you find a WAR file named HelloWorldJSP.war, as shown in

Figure 1-38.

Figure 1-37.  Build success

Figure 1-38.  Generated WAR file in the target folder

Chapter 1 An Introduction to Amazon Web Services (AWS)

34

�Upload WAR to Elastic Beanstalk
Now, let’s create a new application in Elastic Beanstalk and then upload

the WAR file to it.

On the AWS console, go to the Elastic Beanstalk page. Figure 1-39

shows the application named My First Elastic Beanstalk Application.

Now let’s create a brand-new application by clicking the Create a new
application button. Enter the application name as helloworld, as shown

in Figure 1-40. Then, click the Create button.

Figure 1-39.  Elastic Beanstalk application

Chapter 1 An Introduction to Amazon Web Services (AWS)

35

There is no environment that’s already set up, as shown in Figure 1-41.

Create an environment by clicking Create one now to select the

environment tier, as shown in Figure 1-41.

Figure 1-40.  Application information

Figure 1-41.  Application environments

Chapter 1 An Introduction to Amazon Web Services (AWS)

36

For the environment tier, let’s use a web server environment to run a

web application. Elastic Beanstalk creates the server for us. Next, click the

Select button. Now, you need to provide the environment information, as

shown in Figure 1-43.

Figure 1-43.  Environment information

Figure 1-42.  AWS grouped by category

Chapter 1 An Introduction to Amazon Web Services (AWS)

37

Here, you need to provide details like a name for the environment and

domain. Make sure that the environment URL is unique; here, name it

awshelloworldjsp, which indicates that it is available for use. Then choose

the platform details for the server, as shown in Figure 1-44.

Here, select Managed platform, which is published and managed by

AWS Elastic Beanstalk, and from the Platform drop-down list, choose

Tomcat. So, Elastic Beanstalk creates a Tomcat server for you when it’s

spinning up the environment.

Now, you need to upload the WAR file to Elastic Beanstalk. Click

Choose file, and select the HelloWorldJSP.war file from the local system, as

shown in Figure 1-45.

Figure 1-44.  Platform for server

Chapter 1 An Introduction to Amazon Web Services (AWS)

38

Once the file successfully uploads to Elastic Beanstalk, hit the Create

environment button.

Behind the scenes, Amazon provisions a server to use with the

operating system. They install Java and Tomcat and deploy your WAR file

to the Tomcat environment. You get a green checkbox indicating success

when everything is done, as shown in Figure 1-46. Here, the logs confirm

that the environment successfully launched.

Figure 1-45.  Application code

Chapter 1 An Introduction to Amazon Web Services (AWS)

39

Click the application’s link. The page opens in the browser displaying

“Hello World!” (see Figure 1-47).

This is your new application. The WAR file is deployed on the Amazon

cloud in Elastic Beanstalk, and it’s up and running.

Make sure to stop any unused AWS Elastic Beanstalk apps that you

don’t need. This helps prevent any overuse charges from Amazon.

Figure 1-47.  Accessing application from browser by hitting URL

Figure 1-46.  Health OK and Recent events

Chapter 1 An Introduction to Amazon Web Services (AWS)

40

�Summary
This chapter overviewed Amazon Web Services (AWS). You learned about

some AWS key services, such as EC2, Elastic Beanstalk, Amazon RDS, and

Amazon Route 53. You created a free AWS account, a server, A HelloWorld

JSP application, a WAR file with Maven, and uploaded the file to Elastic

Beanstalk. Finally, you accessed your application in the browser to see the

“Hello World!” message.

The next chapter deploys a Spring Boot application as a REST API

in AWS.

Chapter 1 An Introduction to Amazon Web Services (AWS)

41© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_2

CHAPTER 2

Deploy a Spring Boot
Application as a REST
API in AWS
The previous chapter provided an overview of Amazon Web Services

(AWS), including services like Amazon Elastic Compute Cloud (Amazon

EC2), AWS Elastic Beanstalk, Amazon Relational Database Service

(Amazon RDS), and Amazon Route 53. First, you created a free AWS

account for developers, explored Elastic Beanstalk, and created a server.

Then, you created the HelloWorld JSP application. Finally, you built a WAR

file with Maven and uploaded WAR to Elastic Beanstalk.

In this chapter, you create a Spring Boot application as a REST API in

your local system. Then, you build the JAR using Maven for our Spring

Boot application and deploy this JAR in Elastic Beanstalk so that anyone

can access the REST API on the Internet. Finally, you explore logs from

Elastic Beanstalk.

https://doi.org/10.1007/978-1-4842-7392-0_2#DOI

42

�Build a Spring Boot Application as a
REST API
Why use Spring Boot as a back-end framework? There are many

frameworks available for developing web applications, and Spring Boot is

just one among them. But, if you wish to build something fast, Spring Boot

may be the primary choice as a web application development framework.

Working with Spring Boot is like pair programming with the
Spring developers.

—Josh Long @starbuxman

Spring Boot provides production-ready applications and services

that anyone can run with minimum fuss. Spring Boot is opinionated,

which suggests ensuring decisions for developers and supporting ranges

of nonfunctional features that are common in enterprise applications

(embedded servers, security, health checks, metrics, and externalized

configuration).

In this section, you develop your Spring Boot application, step by

step. If you’re already acquainted with this build process, you can skip to

the end of this section to see how it all fits together. Spring offers different

options for starting a brand-new project. For more information, refer to

https://spring.io/.

�Introduction to REST
Representational state transfer (REST) is an architectural style that

describes how one system communicates or shares its state with another

system. HTTP (Hypertext Transfer Protocol) may be a commonly used

protocol to support a RESTful architecture. Standard HTTP methods like

POST, GET, PUT, and DELETE access and manipulate RESTful web resources.

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

https://spring.io/

43

•	 The POST method performs a create operation by

sending data to a server.

•	 The GET method retrieves data from a specified

resource.

•	 The PUT method performs an update operation by

sending data to a server.

•	 The DELETE method performs the delete operation.

A meaningful HTTP response status code always helps clients to utilize

RESTful API. Table 2-1 describes several HTTP status codes that may be

returned as the server response when calling a RESTful API.

Table 2-1.  HTTP Response Status Codes

Code Message Description

200 OK Successful response. The request has succeeded. (This is a

standard HTTP response status code for a successful HTTP

request.)

201 Created Successful response. This is typically the HTTP response

sent after POST or PUT requests are fulfilled, and a new

resource has been created as a result.

204 Not Content Successful response. This HTTP response code means that

the request has been processed successfully but is not

returning any content for this request.

400 Bad Request Client error response. The request could not be fulfilled due

to invalid syntax.

401 Unauthorized Client error response. The request requires user

authorization to get the requested response.

(continued)

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

44

Table 2-1.  (continued)

Code Message Description

403 Forbidden Client error response. The server refuses to fulfill the

request because the client does not have access rights to

the requested content.

404 Not Found Client error response. The requested resource could not be

found by the server.

409 Conflict Client error response. The request cannot be completed

because of a resource conflict with the current state of the

server.

�System Requirements
Spring Boot 2.0.3.RELEASE requires (at least) Java 8. So, the first thing that

is required is the Java 8 SDK. If you have already set up the JDK in your

system, you should check the current version of Java installed on your

system before you begin.

$ java -version

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

Spring offers the following three approaches to create a brand-new

Spring Boot application.

•	 Use the Spring Boot CLI tool

•	 Use the Spring STS IDE

•	 Use Spring Initializr (http://start.spring.io/)

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

http://start.spring.io/

45

�Create Spring Boot Application Using
Spring Tool Suite
In this chapter, you build a RESTful application called HelloSpringBoot

with REST endpoints, using STS IDE. The REST API layer is responsible for

handling client requests and generating a response.

You create HelloSpringBoot by generating a Spring Boot application

using Spring Tool Suite (STS). STS comes as a ready-to-use distribution of

the latest Eclipse releases with pre-installed Spring IDE components.

Use a Spring Starter Project wizard to create a Spring Boot application,

as shown in Figure 2-1. By default, the Spring Boot application runs on

port 8080.

Figure 2-1.  The wizard to create a Spring Boot application

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

46

Spring Boot provides starters. You need to provide project-related

information, as shown in Figure 2-2.

A starter in Spring Boot is a set of classpath dependencies that

autoconfigure an application and enables a developer to build an

application without any configuration.

In this chapter, you pick the web dependencies to build a simple

HelloSpringBoot RESTful service, as shown in Figure 2-3.

Figure 2-2.  Creating HelloSpringBoot using Spring Starter Project

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

47

Clicking the Finish button generates a workspace to create a new

package, class, and static files in your resources. The final structure of the

project looks like Figure 2-4.

Figure 2-3.  Selecting a web dependency in the Spring starter

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

48

Let’s go through the code in the next section.

�A Walk-Through
Let’s walk through the code by going through the pom.xml file and the Java

class files. Let’s start with pom.xml.

�pom.xml

When creating a Spring Boot application, all the dependencies that you

select in the starter dialog are available in pom.xml, as shown in Listing 2-1.

The pom.xml file is the recipe that builds your project.

Figure 2-4.  Project structure

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

49

Listing 2-1.  pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.5.1</version>

 <relativePath/>

 </parent>

 <groupId>com.apress.AWS</groupId>

 <artifactId>HelloSpringBoot</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>HelloSpringBoot</name>

 <description>Hello Spring Boot Application</description>

 <properties>

 <java.version>11</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

50

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-maven-plugin</

artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Note the following about Listing 2-1.

•	 The <parent> element specifies the parent POM of

Spring Boot, which contains definitions for common

components.

•	 The <dependency> element on spring-boot-starter-web

tells Spring Boot that this is a web application and lets

Spring Boot to form its opinions accordingly.

Before going further, let’s look at Spring Boot’s opinions and how it

uses a starter like spring-boot-starter-web to form its configuration

opinions.

The HelloSpringBoot application has used spring-boot-starter-web

as Spring Boot’s web application starter. And, based on this starter, Spring

Boot has formed the following opinions.

•	 Spring web MVC for the REST framework

•	 Apache Jackson for the JSON binding

•	 Tomcat embedded web server container

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

51

After Spring Boot forms an opinion about the kind of application you

plan to build, it delivers a collection of Maven dependencies supporting

the POM contents and starter specified for the HelloSpringBoot

application.

�Write the Code

To bootstrap a Spring Boot application, you can start from a main(...)

method. Most likely, you can delegate to the static SpringApplication.

run() method, as shown in Listing 2-2.

Listing 2-2.  \src\main\java\com\apress\AWS\

HelloSpringBootApplication.java

package com.apress.AWS;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

/**

 * @author RaviKantSoni

 *

 */

@SpringBootApplication

@RestController

public class HelloSpringBootApplication {

 public static void main(String[] args) {

 �SpringApplication.run(HelloSpringBootApplication.

class, args);

 }

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

52

 @RequestMapping("/greeting")

 public String greetingMessage() {

 return "Welcome to Hello Spring Boot Application!";

 }

}

Let’s step through the important parts.

@SpringBootApplication Annotation

The first annotation in the HelloSpringBootApplication class is

@SpringBootApplication, introduced in Spring Boot 1.2.0. It adds the

following annotations.

•	 @Configuration: A class annotated with the

@Configuration annotation can be used by the Spring

Boot container as a source of Spring Bean definitions,

which is not specific to Spring Boot. This class may

contain one or more Spring Bean declarations by

annotated methods with the @Bean annotation.

•	 @EnableAutoConfiguration: This annotation is

part of the Spring Boot project that tells Spring Boot

to start adding beans using classpath definitions.

Autoconfiguration intelligently guesses and

automatically creates and registers beans that you are

likely to run with the application, thus simplifying the

developer’s work.

•	 @ComponentScan: This annotation tells Spring Boot

to look for specific packages to scan for annotated

components, configurations, and services.

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

53

@RestController and @RequestMapping Annotations

@RestController is another annotation in the

HelloSpringBootApplication class. It is a stereotype annotation.

The @RequestMapping annotation provides “routing” information and tells

Spring Boot that any HTTP request with the path /greeting should be

mapped to the greetingMessage() method.

The @RestController and @RequestMapping annotations come from

Spring MVC (these annotations are not specific to Spring Boot).

The main Method

The most important part of the HelloSpringBootApplication class

is the main(...) method. The application developed using Spring

Boot contains the main method, which internally calls Spring Boot’s

SpringApplication.run() method to launch an application. The class

that contains a main method is the main class and is annotated with the

@SpringBootApplication annotation.

�Run a Spring Boot Application in STS
Spring Boot application created using the Spring Starter Project wizard

comes in two flavors: WAR and JAR. This wizard allows you to choose

between WAR and JAR in its packaging option.

As Josh Long said in one of his talks in the Spring IO, “Make
JAR, not WAR.”

—https://twitter.com/springcentral/
status/598910532008062976

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

https://twitter.com/springcentral/status/598910532008062976
https://twitter.com/springcentral/status/598910532008062976

54

Spring Boot favors JAR over WAR by allowing you to easily create

stand-alone JAR packaged projects that add an embedded web server

(Apache Tomcat is the default web server) inside the created artifact. It

helps developers reduce the overhead of setting up local or remote Tomcat

servers, WAR packaging, and deploying.

You don’t need any special tooling from STS to run your Spring Boot

application locally. You can run it by selecting Run As ➤ Java Application,

either from the standard Eclipse Java debugging tools or STS. The

benefits of using STS over other IDEs are that it provides a dedicated

launcher, which does the same thing as other IDE does, but STS adds a

few useful bells and whistles on the top of it. So, let’s use STS to run the

Spring Boot application, as shown in Figure 2-5. Simply right-click the

HelloSpringBoot project, and then select Run As ➤ Spring Boot App.

Figure 2-5.  Wizard in STS to run the application

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

55

The Spring Boot application starts with output in the console, as

shown in Figure 2-6.

If the Spring Boot application runs successfully, the last line on the

console states, Started HelloSpringBootApplication.

Congratulations! You have successfully set up and run the application

using Spring Boot. Now it’s time to visit http://localhost:8080/greeting

in the browser to see the web page, as shown in Figure 2-7.

Figure 2-6.  Output on the STS console

Figure 2-7.  Accessing the REST endpoint from the browser

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

56

�Add Swagger UI to a Spring Boot
Application
Nowadays, front-end components and back-end components usually

isolate a web application. Building a back-end API layer introduces new

challenges that have gone beyond implementing endpoints. Usually, you

expose REST APIs as a back-end component for the front-end component

or any third-party app integrations.

Thus, your REST API documentation becomes more fragile. REST

API documentation should be well structured so that it’s informative,

concise, and easy to read. In such a scenario, it is essential to have a

proper specification for the back-end REST API. Moreover, reference

API documentation should simultaneously describe each change in the

API. Fulfilling this manually is a time-consuming and tedious exercise, so

automation of this process was inevitable.

Swagger supports generating the API documentation automatically,

and it also ensures that any changes made to the API are available to the

customer immediately. In this section, you learn how to use Swagger 2 in a

Spring Boot application to generate REST API documentation.

�Introduction to Swagger 2
Swagger 2 is an open source project that documents RESTful APIs. It is

language-agnostic and is extensible to new technologies and protocols

beyond HTTP protocol.

This Swagger 2 version defines a set of HTML (HyperText Markup

Language), JavaScript, and CSS assets to dynamically generate

documentation from a Swagger-compliant API. The Swagger UI project

bundled these sets of files to display the API on the browser, and it returns

response data in the JSON format. Besides rendering documentation,

Swagger UI also allows other API developers or API consumers to interact

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

57

with the API’s resources without having any of the API implementation

logic in place.

The Swagger 2 specification, which is understood as the OpenAPI

specification, has several implementations. Springfox has recently

replaced Swagger-SpringMVC (Swagger 1.2 and older) and is popular for

Spring Boot applications. Springfox supports both Swagger 1.2 and 2.0.

Let’s use Swagger 2 for our Spring Boot REST web service, using the

Springfox implementation of the Swagger 2 specification.

�Add Dependency in a Maven POM
Let’s use the Springfox implementation of the Swagger specification. Its

latest version can be found on Maven Central. To add it to our Spring

Boot–based projects, you need to add a single springfox-boot-starter

dependency, as shown in Listing 2-3.

Listing 2-3.  Add Springfox Dependency in pom.xml

<dependency>

 <groupId>io.springfox</groupId>

 <artifactId>springfox-boot-starter</artifactId>

 <version>3.0.0</version>

</dependency>

�Configure Swagger 2 into a Project
The configuration of Swagger 2 mainly focused on the Docket bean. For

our Spring Boot application, let’s create a Docket bean in a Spring Boot

configuration class file to configure Swagger 2 for our application. A

Springfox Docket instance provides the primary API configuration with

default methods for configuration. Listing 2-4 shows our Spring Boot

SwaggerConfig configuration class.

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

58

Listing 2-4.  \src\main\java\com\apress\AWS\config\

SwaggerConfig.java

package com.apress.AWS.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.PathSelectors;

import springfox.documentation.builders.

RequestHandlerSelectors;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;

import springfox.documentation.swagger2.annotations.

EnableSwagger2;

/**

 * @author RaviKantSoni

 *

 */

@Configuration

@EnableSwagger2

public class SwaggerConfig {

 @Bean

 public Docket productApi() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 .apis(RequestHandlerSelectors.any())

 .paths(PathSelectors.any())

 .build();

 }

}

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

59

In this SwaggerConfig configuration class, the @EnableSwagger2

annotation enables Swagger support in the class. The select() method

called on the Docket bean instance returns an ApiSelectorBuilder, which

provides a way to control the endpoints exposed by Swagger.

In the code, the RequestHandlerSelectors and PathSelectors

use any() to make documentation for our entire API available through

Swagger.

�Configuration Verification
At this point, you should be able to test the Swagger configuration

by restarting the application and go to http://localhost:8080/v2/

api-docs.

As shown in Figure 2-8, the result is a JSON response with a large

number of key/value pairs, which is not very human-readable.

Figure 2-8.  Swagger JSON output

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

60

�Swagger UI
You want human-readable structured documentation. Swagger UI is a

built-in solution that makes user interaction with the Swagger-generated

API documentation much easier. In your browser, go to http://

localhost:8080/swagger-ui/.

You see the generated documentation rendered by Swagger UI, as

shown in Figure 2-9.

The Basic Error Controller is the API that comes with Spring

MVC. Models show all the Model objects.

Figure 2-9.  The Swagger API documentation page

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

61

Within Swagger’s response is a list of all controllers defined in our

application. Clicking any of them lists the operation endpoints with valid

HTTP methods (DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT), as

shown in Figure 2-10.

For more information on Swagger, refer to the official documentation page

at https://swagger.io/docs/specification/2-0/basic-structure/.

�Configure the Server Port for a Spring Boot
Project
The default Port with which the Spring Boot application has been

configured is 8080, which means a Spring Boot application starts with

an embedded Tomcat server at a default port 8080. You can change this

default embedded server port to any other port.

Figure 2-10.  Swagger UI lists REST endpoints

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

https://swagger.io/docs/specification/2-0/basic-structure/

62

AWS Elastic Beanstalk assumes that the Spring Boot application listens

on port 5000. You can change the default port by simply making an entry

in the application.properties file in your Spring Boot application, as

shown in Listing 2-5.

Listing 2-5.  \src\main\resources\application.properties

server.port=5000

Let’s build and run our Spring Boot application in another port and

then open the browser to access our application. This time, you are not

using default port 8080 in the browser; rather, port 5000. In your browser,

go to http://localhost:5000/swagger-ui/.

Figure 2-11 shows the generated documentation rendered by Swagger UI.

Figure 2-11.  URI with port 5000

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

63

�Build a JAR for a Spring Boot Application
Since you have successfully created a Spring Boot application as a REST

API, let’s deploy it to AWS Elastic Beanstalk. To achieve this goal, you need

a deployable unit of our project.

Before starting the actual process, make sure that you have Apache

Maven (a command-line tool for building and managing any Java-based

project) installed in your local system. If you do not already have Maven

installed, you can follow the instructions at maven.apache.org.

A Spring Boot application’s default mode packages executable JARs

(also known as fat JARs). So, a JAR is used as a deployable unit for this

project. To build a JAR, you can either use STS or the command prompt.

From STS, right-click the HelloSpringBoot project, and then select

Run As ➤ Maven build, as shown in Figure 2-12.

Figure 2-12.  Maven build using STS

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

64

This opens the Edit Configuration window. Enter package in the Goals

text box. Click Apply, and then click Run, as shown in Figure 2-13.

The HelloSpringBoot application starts building. You see that the

entire Maven build runs, as shown in Figure 2-14.

Figure 2-13.  Edit configuration window

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

65

A JAR named HelloSpringBoot-0.0.1-SNAPSHOT.jar has been

created in the project’s target folder.

Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\

HelloSpringBoot-0.0.1-SNAPSHOT.jar

To build a JAR using the command prompt, go to your project directory

(where you have created the Spring Boot project) and copy the path.

Change the working directory to the project path on the command prompt,

as shown in Figure 2-15.

Figure 2-14.  Build output on console in STS

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

66

Build the project using the following command in the command

prompt.

E:\Apress\workspace\AWS\HelloSpringBoot>mvn clean install

This starts building the application. The JAR file named

HelloSpringBoot-0.0.1-SNAPSHOT.jar has been created, as shown in

Figure 2-16.

Figure 2-15.  Directory to the project path on the command prompt

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

67

You need to pick up and deploy the generated JAR file to AWS Elastic

Beanstalk.

�Deploy a Spring Boot Application in AWS
Elastic Beanstalk
You have locally created and run the HelloSpringBoot REST API and

created a JAR file in the target folder. Now, let’s deploy to AWS Elastic

Beanstalk.

Sign in to the AWS Management Console using AWS credentials, and

select Elastic Beanstalk as the service. There are already two applications,

named My First Elastic Beanstalk Application and helloworld,

created in Chapter 1 (see Figure 2-17).

Figure 2-16.  Build success in command prompt

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

68

Now let’s create a brand-new application for our Spring Boot

REST API. First, click the Create a new application button, and enter

HelloSpringBoot the application name. Next, click the Create button to

create a new environment for the application. Then, click the Create one
now link. Select Web server environment as the environment tier, and

then click the Select button.

On the environment information page, name the domain

HelloSpringBoot, and check for availability. Then, select Java as the

managed platform, as shown in Figure 2-18.

Figure 2-17.  Elastic Beanstalk application

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

69

Finally, upload your code by selecting the JAR file from the target

folder (e.g., in the authors’ local it is E:\Apress\workspace\AWS\

HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT.jar) of the

project, and then click the Create environment button.

Elastic Beanstalk coordinates the creation and deployment of all AWS

resources required to support the environment during the launch process.

This includes, but is not limited to, launching two EC2 instances, creating a

load balancer, and creating a security group, as shown in Figure 2-19.

Figure 2-18.  Platform as Java

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

70

Once the environment has been created and the resources have been

deployed, notice that Health is reported as severe (see Figure 2-20). This is

because the Spring Boot application still needs some configuration.

Figure 2-19.  Creating Hellospringboot-env in Elastic Beanstalk

Figure 2-20.  Severe health of Spring Boot application

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

71

AWS Elastic Beanstalk assumes that the application listens on port

5000. To fix the discrepancy, change the port the Spring Boot application

listens on. So, you need to specify the SERVER_PORT environment variable

in the Elastic Beanstalk environment and set the value to 5000.

Go to the Configuration page in your environment. Under

Configuration, click the Edit icon, as shown in Figure 2-21.

In the Environment properties, you see that there are already some

environment variables set by Elastic Beanstalk when it is configured to use

the Java platform.

To change the port that the Spring Boot application listens on, add a

new environment variable, SERVER_PORT, with a value of 5000, as shown

in Figure 2-22.

Figure 2-21.  Spring Boot application severe health

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

72

As soon as you click Apply, the configuration change propagates to the

application servers. The application restarts. When it restarts, it picks up

the new configuration through the environment variables. After a minute,

you see a healthy application on the dashboard, as shown in Figure 2-23.

Figure 2-22.  Environment properties on software configuration

Figure 2-23.  Health OK

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

73

�Test a Spring Boot Application as a REST
API in the Cloud
Now, let’s test the deployed REST API endpoint in AWS. Use the URL you

configured in the environment to access the service. For this example, the

specified URL is http://hellospringboot-env-1.eba-qppppkce.us-

east-2.elasticbeanstalk.com.

For the first test, from the browser, use an HTTP GET on the greeting

URI at http://hellospringboot-env-1.eba-qppppkce.us-east-2.

elasticbeanstalk.com/greeting. The service responds with a welcome

greeting message, as shown in Figure 2-24.

Next, access the Swagger UI dashboard at http://hellospringboot-

env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/

from your browser, as shown in Figure 2-25.

Figure 2-24.  Accessing REST API deployed on the cloud from browser

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/

74

�Explore Logs from Elastic Beanstalk
You can explore the Spring Boot logs from Elastic Beanstalk. Select Logs ➤

Request Logs to retrieve the last 100 lines of a log or the entire set of logs

from each EC2 instance, as shown in Figure 2-26.

Figure 2-25.  Accessing Swagger-UI dashboard from browser

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

75

Once you click Download, you see that the entire Spring Boot log is

visible.

�Summary
In this chapter, you deployed a REST API to Elastic Beanstalk. You created

a Spring Boot project application as a REST API and then generated a JAR

file for the project. You deployed this JAR to Elastic Beanstalk, resolved

server issues in AWS. And finally, you accessed the deployed application in

the cloud.

In the next chapter, you deploy a MySQL database in AWS with RDS.

Figure 2-26.  AWS Elastic Beanstalk logs

Chapter 2 Deploy a Spring Boot Application as a REST API in AWS

77© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_3

CHAPTER 3

Deploy MySQL as
a Database in AWS
with RDS
In Chapter 2, you deployed the REST API to AWS Elastic Beanstalk. You

created a Spring Boot application as REST API, and then you generated

a JAR file of our project. You were able to deploy the JAR file to Elastic

Beanstalk and resolved the server issue on AWS to make the application.

And finally, you were able to access the application deployed on the AWS

cloud.

Amazon RDS makes it easy to set up and operate a MySQL database

and easy to scale MySQL deployment in the Amazon cloud. Self-managing

a database offers a lot of challenges and takes upkeep. This chapter

introduces Amazon Relational Database Service (RDS), and you learn how

to deploy it.

If you look at the application architecture from Chapter 2, Elastic

Beanstalk is where our Java-based Spring Boot application was deployed.

Now let’s use the Amazon RDS, which is a database in the cloud. MySQL

runs on AWS. An instance of a MySQL database is created and configured

in AWS. Tables are also created in the MySQL database.

https://doi.org/10.1007/978-1-4842-7392-0_3#DOI

78

�Introduction to Amazon RDS (Amazon
Relational Database Service)
Data can be understood as a collection of the distinct unit of information

that can be translated into a required form for efficient movement and

processing. A database can be defined as an organized collection of

structured data so that it can be easily accessed, managed, and updated. In

simple words, a database is where the data is stored.

Amazon RDS is a web service that allows you to quickly deploy and

scale a relational database on the Amazon cloud. Once you have deployed

your database, you can manage it using a normal admin tool like MySQL

Workbench, Oracle SQL Developer, or another admin tool. AWS also

supports NoSQL databases like MongoDB.

For more information on Amazon RDS, refer to https://docs.aws.

amazon.com/AmazonRDS/latest/UserGuide/Welcome.html.

�Create an Instance of the RDS Database
in AWS
Let’s begin configuring the RDS MySQL environment by signing up on

AWS Management Console. Select RDS under the Database section in All

Services, as shown in Figure 3-1.

Chapter 3 Deploy MySQL as a Database in AWS with RDS

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

79

You are redirected to the Amazon RDS dashboard page, as shown in

Figure 3-2. This page gives information about the resources you are using.

Let’s create an instance of Amazon Relational Database by clicking the

Create database button.

Figure 3-1.  RDS under Database section in All Services

Chapter 3 Deploy MySQL as a Database in AWS with RDS

80

A new page opens, where you can define the database creation method

and other options. Let’s start creating a database.

First, select the database engine from the Engine options, as shown

in Figure 3-3. There are a lot of options available, but let’s use the MySQL

database engine. MySQL is a widely-used open source relational database

management system. MySQL is mostly used for web databases.

Figure 3-2.  Amazon RDS dashboard

Chapter 3 Deploy MySQL as a Database in AWS with RDS

81

As shown in Figure 3-4, click the check box to only enable options for

the RDS Free Usage Tier, which allows you to use a database for free in the

AWS cloud. And then click the Next button.

Figure 3-3.  Engine options to select

Figure 3-4.  RDS Free Usage Tier

Chapter 3 Deploy MySQL as a Database in AWS with RDS

82

Next, specify the database details, as shown in following Figure 3-5.

Keep the defaults for the license model and DB engine version. Check

the box to only enable the option for the RDS free tier. In the DB instance

class, keep the default selected value, db.t2.micro, for the free tier.

The database instance identifier is a unique name that you create to

find or reference a database instance. Next, provide a suitable name for the

database; let’s use spring-aws-db, as shown in Figure 3-6.

Figure 3-5.  Specify DB details

Chapter 3 Deploy MySQL as a Database in AWS with RDS

83

Similarly, provide the master username and password. We used

springaws for both to keep things simple, but you can use any value you

want. You can connect to the MySQL instance using this username and

password later, so keep these credentials safe. And then click the Next

button.

Finally, you need to configure some advanced settings that are essential

to setting up an RDS MySQL environment, as shown in Figure 3-7.

Figure 3-6.  Setting database details

Chapter 3 Deploy MySQL as a Database in AWS with RDS

84

Keep all the defaults in the Network & Security section. Make sure

the public accessibility of the DB instance is Yes. This allows the database

instance to be available on the Internet and connect with other hosts.

Next, the database options include the name, port, and so on, as

shown in Figure 3-8. Keep all the defaults as they are. The port number is

3306, which is the default port. Other options are also available.

Figure 3-7.  Configure advanced settings

Chapter 3 Deploy MySQL as a Database in AWS with RDS

85

Click the Create database button to launch the Amazon RDS database

instance, as shown in Figure 3-9.

Figure 3-8.  Database options

Figure 3-9.  Launch the Amazon RDS database instance

Chapter 3 Deploy MySQL as a Database in AWS with RDS

86

You see that your database instance is being created, as shown in

Figure 3-10.

Your DB instance normally takes a few minutes to launch.

�Configure Amazon RDS
The current status shows that you have a database instance available in the

AWS cloud, which you created as an instance of the RDS database server.

Unfortunately, this database instance is empty because there’s no database

schema, tables, or data available in the RDS database instance.

You need to do some configuration work for the relational database

service, connect it to MySQL Workbench, and access it. As a development

process, the first thing is to configure security for inbound connection

rules. And, then you need to test the database connectivity with MySQL

Workbench.

Before going ahead, let’s check the Amazon RDS database instance

status. Click Databases under Amazon RDS, as shown in Figure 3-11.

Figure 3-10.  Amazon RDS DB instance creation status

Chapter 3 Deploy MySQL as a Database in AWS with RDS

87

Here, you can see that the database instance spring-aws-db is added

to the list. Its status is available, which indicates that the database has

been created and is available for use. Click the spring-aws-db link in the

Databases table. Figure 3-12 shows the summary.

Here, you can see the information on the spring-aws-db database

instance. The class is db.t2.micro, the engine is MySQL Community, and

the status is available.

Figure 3-11.  Database instance status

Figure 3-12.  Amazon RDS database instance summary

Chapter 3 Deploy MySQL as a Database in AWS with RDS

88

�Step 1. Configure Security for Inbound
Connection Rules
First, you need to configure the security group rules for the inbound

connection rules. Scroll down to the Security group rules section, as

shown in Figure 3-13.

The inbound rule defines the traffic allowed on the server and who can

connect to the database instance. Click rds-launch-wizard for CIDR/IP -

Inbound, which redirects you to the Security Groups Info page, as shown

in Figure 3-14.

At the bottom of this page, you see tabs named Details, Inbound rules,

Outbound rules, and Tags, as shown in Figure 3-15.

Figure 3-14.  Security groups

Figure 3-13.  Security group rules

Chapter 3 Deploy MySQL as a Database in AWS with RDS

89

Click the Inbound rules tab, as shown in Figure 3-16.

You see that the database is only accessible from the IP address

59.99.65.121/32. You need to make some modifications here. Click the

Edit inbound rules button, which redirects to the Edit inbound rules

page. Here you can edit the IP address that has access to the Amazon RDS

MySQL database instance, as shown in Figure 3-17.

Figure 3-16.  Inbound rules

Figure 3-15.  rds-launch-wizard

Chapter 3 Deploy MySQL as a Database in AWS with RDS

90

You can determine the traffic that can reach the database instance.

From the Source drop-down list, select the Anywhere option, as shown in

Figure 3-18.

Now, anyone can find the database instance or connect to it, but they

still have to provide a correct user ID and password. The Anywhere source

option is good for dev and testing, but it is recommended to only allow

access from the Elastic Beanstalk app IP address for production.

Figure 3-17.  Edit inbound rules

Figure 3-18.  Select Anywhere from Source drop-down list

Chapter 3 Deploy MySQL as a Database in AWS with RDS

91

Click the Save rules button. Now you can see that the inbound rule has

been set up, as shown in Figure 3-19.

These updated Inbound rules allow connection from anywhere.

�Step 2. Test an Amazon RDS Database Instance
Connection with MySQL Workbench
Once you have successfully created the Amazon RDS MySQL database

instance and all the necessary configurations are done, the second step is

to test the RDS database instance connection with MySQL Workbench.

Return to the previous page in the browser. In the Databases section,

click the Connectivity & security tab, as shown in Figure 3-20.

Figure 3-19.  Updated source in Inbound rules

Chapter 3 Deploy MySQL as a Database in AWS with RDS

92

In the Connectivity & Security tab, there is a section called Endpoint
& port. The endpoint indicates the hostname of the database instance,

which you can use in MySQL Workbench to connect to the RDS database

instance. In this case, it is

spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Note R efer to Appendix A for the MySQL Workbench installation
guide.

�Connect MySQL Workbench to an Amazon RDS MySQL
Database Instance

Open MySQL Workbench in your local system. Then, click the + icon to

create a MySQL connection, as shown in Figure 3-21.

Figure 3-20.  Updated source in Inbound rules

Chapter 3 Deploy MySQL as a Database in AWS with RDS

93

This opens the Setup New Connection wizard, as shown in Figure 3-22.

Figure 3-21.  MySQL Workbench

Figure 3-22.  Setup New Connection wizard

Chapter 3 Deploy MySQL as a Database in AWS with RDS

94

For the connection name, enter the value as spring-aws-db. In the

hostname field, the default value is 127.0.0.1, which is known as the

localhost. Replace the default IP address with the following RDS database

instance hostname from AWS Management Console.

spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Leave the port number as it is because 3306 is the port for the database

instance from the AWS console.

Use the same username and password that you created for the RDS

database instance. So, enter springaws as the username, as shown in

Figure 3-23. Click the Store in Vault button for password.

Enter springaws, and then click OK, as shown in Figure 3-24.

Figure 3-23.  Updated value in Setup New Connection wizard

Chapter 3 Deploy MySQL as a Database in AWS with RDS

95

Click the Test Connection button. You should receive a notification

saying you have successfully made the MySQL connection, as shown in

Figure 3-25.

Figure 3-24.  Store password for connection

Figure 3-25.  Successfully made the MySQL connection

Chapter 3 Deploy MySQL as a Database in AWS with RDS

96

That’s how you know that the database instance is available and

running in the AWS cloud. You can use your local MySQL Workbench to

connect to it. Click the OK button in the Connection wizard, which lets

Workbench list the database connection details, as shown in Figure 3-26.

�Create a Table Inside an RDS Database
Instance
MySQL is set up correctly. You can access the remote RDS database

instance by clicking spring-aws-db, which opens in the SQL editor, as

shown in Figure 3-27.

Figure 3-26.  MySQL Workbench with Amazon RDS db connection
details

Chapter 3 Deploy MySQL as a Database in AWS with RDS

97

Currently, there is no database, table, or data available for our RDS

database instance. You need to run some scripts to provide anything that

you can query.

First, let’s create a database using the CREATE DATABASE command.

The syntax to create a new database is CREATE DATABASE DB_NAME, where

DB_NAME is the database name that you want to create. For example, to

create a database named UserRegistration, type the following query into

the Query tab and run it.

CREATE DATABASE UserRegistration;

Once the query is executed successfully, the Schema tab should

display the UserRegistration database, as shown in Figure 3-28.

Figure 3-27.  SQL editor instance for spring-aws-db

Chapter 3 Deploy MySQL as a Database in AWS with RDS

98

Now, let’s create a user table in the UserRegistration database. A

table displays and stores the records in a structured format. The CREATE

TABLE command creates a new table into the existing database. The syntax

to create a MySQL table is shown in Listing 3-1.

Listing 3-1.  Syntax to Create MySQL Table

CREATE TABLE [IF NOT EXISTS] table_name(

 column_1 datatype(size) [NULL | NOT NULL],

 column_2 datatype(size) [NULL | NOT NULL],

 column_3 datatype(size) [NULL | NOT NULL],

 ,

 column_N datatype(size) [NULL | NOT NULL],

 table_constraints

);

table_name is the name of the table, which should always be unique in

a MySQL database. The IF NOT EXISTS clause helps prevent errors when

the same table name already exists in the database.

column_ specifies the column name. datatype specifies the type of

data for that column, and columns are separated using a comma operator.

table_constraints specifies the table’s constraints, such as primary

key, foreign key, and unique key. For example, to create a table called

users, enter the query shown in Listing 3-2 in the Query tab and run it.

Figure 3-28.  Database created

Chapter 3 Deploy MySQL as a Database in AWS with RDS

99

Listing 3-2.  Create Users Table in UserRegistration Database

use UserRegistration;

CREATE TABLE [IF NOT EXISTS] users(

 id int NOT NULL AUTO_INCREMENT,

 first_name varchar(45) NOT NULL,

 last_name varchar(45) NOT NULL,

 address varchar(35) NOT NULL,

 age int NOT NULL,

 created_date DATE,

 PRIMARY KEY (id)

);

Here, the use UserRegistration command selects the database

under which the table is created. Once the query is executed successfully,

the UserRegistration database should display the users table, as shown

in Figure 3-29.

Figure 3-29.  Table created

Chapter 3 Deploy MySQL as a Database in AWS with RDS

100

Now, let’s insert some data into the users table. The INSERT INTO

command adds or stores data in a table. The syntax to insert data into a

table is shown in Listing 3-3.

Listing 3-3.  Syntax to Insert Data into the Table

INSERT INTO DATABASE.table_name (column_1, column_2,... column_N)

VALUES

(value_1, value_2,...value_N);

First, specify the database name followed by a dot (.), followed by the

table name, and then a list of comma-separated columns. Next, provide

the list of values corresponding to the column’s name after the VALUES

clause. For example, to insert data in the users table, type the query shown

in Listing 3-4 in the Query tab, and then run it.

Listing 3-4.  Insert Data in users Table in UserRegistration Database

INSERT INTO UserRegistration.users (first_name, last_name,

address, age, created_date)

VALUES

('Ravi', 'Soni', 'Sasaram-Bihar-India', 34, '2021-07-04');

The default date format in MySQL is YYYY-MM-DD, where YYYY

represents the year in four digits, MM represents the month in two digits,

and DD represents the day in two digits.

Once the insert query is executed successfully, you can use the SELECT

command to fetch data from the MySQL database. The data returned from

the database is stored in a result table, called result-set. The SELECT

command syntax to fetch data from a MySQL table is shown in Listing 3-5.

Chapter 3 Deploy MySQL as a Database in AWS with RDS

101

Figure 3-30.  Table created

Listing 3-5.  Syntax of SELECT Command to Fetch Data from

Database

SELECT column_1, column_2, ...

FROM

DATABASE.table_name;

For example, to fetch data from the users table, type the query shown

in Listing 3-6 into the Query tab, and then run it.

Listing 3-6.  Fetch Data from UserRegistration Database

SELECT first_name, last_name, address, age, created_date

FROM

UserRegistration.users;

Once the SELECT query is executed successfully, the result appears as

shown in Figure 3-30.

Chapter 3 Deploy MySQL as a Database in AWS with RDS

102

�Summary
This chapter introduced Amazon RDS. First, you created a MySQL

database instance in AWS and configured the database. Then, you created

a table in the database and inserted data into it using MySQL Workbench.

The next chapter overviews CRUD operations in a Spring Boot

application, and you deploy Spring Boot application that talks to MySQL

in AWS.

Chapter 3 Deploy MySQL as a Database in AWS with RDS

103© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_4

CHAPTER 4

Deploy a Spring Boot
Application Talking
to MySQL in AWS
Chapter 3 introduced Amazon RDS, and you learned how to deploy it on

the Amazon cloud. You created an instance of an Amazon RDS MySQL

database in AWS and configured the database. You also created tables in

this database and inserted data into it using MySQL Workbench.

In Chapter 2, you created and deployed a Spring Boot REST API

containing some endpoints to AWS Elastic Beanstalk. However, that’s not

how real applications run. The real application uses a real-time database

to perform CRUD operations.

This chapter creates a Spring Boot application as a REST API talking to

an Amazon RDS MySQL database from your local system.

�Create Spring Boot UserRegistrationApp
Talking to MySQL Database
In this section, you create the UserRegistrationApp Spring Boot

application using Spring Initializr (http://start.spring.io/). Here,

you select Web, JPA, MySQL, and Lombok as dependencies, as shown in

Figure 4-1.

https://doi.org/10.1007/978-1-4842-7392-0_4#DOI
http://start.spring.io/

104

Table 4-1 lists all the UserRegistrationApp settings.

Figure 4-1.  Creating UserRegistrationApp using Spring Initializr

Table 4-1.  Project-Related Details

Field Value

Group com.apress.AWS

Artifact UserRegistrationApp

Name UserRegistrationApp

Description User registration application

Package Name com.apress.AWS

Packaging JAR

Java Version 11

Language Java

Project Maven

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

105

After entering the project metadata, click the Generate button to

download the UserRegistrationApp.zip file. Unzip it, and import it as a

Maven project into the Spring Source Tool (STS) IDE. The initial project

structure looks like what’s shown in Figure 4-2.

Let’s walk through the code for more information and explore Maven

dependencies defined in pom.xml.

�Maven Dependency in pom.xml
All the required dependencies you selected in Spring Initializr when

creating the Spring Boot application are available in pom.xml, as shown

in Listing 4-1. The pom.xml file is the recipe that builds the Spring Boot

application.

Figure 4-2.  Project structure

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

106

Listing 4-1.  pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.5.2</version>

 <relativePath/>

 </parent>

 <groupId>com.apress.AWS</groupId>

 <artifactId>UserRegistrationApp</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>UserRegistrationApp</name>

 <description>User Registration Application</description>

 <properties>

 <java.version>11</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-starter-web

</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-starter-data-jpa

</artifactId>

 </dependency>

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

107

 <dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <optional>true</optional>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-starter-test

</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 �<groupId>org.springframework.boot

</groupId>

 �<artifactId>spring-boot-maven-plugin

</artifactId>

 <configuration>

 <excludes>

 <exclude>

 �<groupId>org.project

lombok</groupId>

 �<artifactId>lombok

</artifactId>

 </exclude>

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

108

 </excludes>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Also, update pom.xml with a Springfox dependency for the Swagger UI,

as shown in Listing 4-2.

Listing 4-2.  Add Springfox Dependency in pom.xml

<dependency>

 <groupId>io.springfox</groupId>

 <artifactId>springfox-boot-starter</artifactId>

 <version>3.0.0</version>

</dependency>

�Project Lombok
You selected Lombok dependency while creating the project. Let’s look

at the main objective of Project Lombok. “Project Lombok is a small Java

library that plugs into your IDE like Eclipse, IntelliJ, STS, etc. Also, it can

plug into build tools like Maven, Ant, etc. [The] Lombok library reduces the

amount of boilerplate Java code by [preventing you from writing] another

getter, setter, toString, or equals method again. And this implementation is

automatically done during compile time.” (https://projectlombok.org)

Project Lombok automatically generates the getter, setter,

toString, and equals method for the object by using the @Data Lombok.

The following are the steps to plug in the Lombok Java library to the STS IDE.

	 1.	 For the STS IDE, get the Lombok executable JAR file.

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

https://projectlombok.org

109

	 2.	 Do Maven build in the Spring Boot project. Figure 4-3

shows the Lombok JAR is at \.m2\repository\org\

projectlombok\lombok\1.18.20\.

	 3.	 Double-click Lombok.jar to open the installer

UI. Specify the location of the STS.exe path, and

then click the Install/Update button, as shown in

Figure 4-4.

Figure 4-3.  Lombok JAR file under .m2 directory

Figure 4-4.  Lombok Installer UI

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

110

	 4.	 You should see a “Install successful” message, as

shown in Figure 4-5. Click the Quit Installer button

to exit the installer.

	 5.	 Restart the STS IDE to ensure that Lombok is

correctly configured. Verify this in STS by going to

the Help option and clicking the About option, as

shown in Figure 4-6.

Figure 4-5.  Lombok installation success

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

111

�Application Properties
You need to configure how you can connect to the Amazon RDS MySQL

database. In Chapter 3, you captured the MySQL database information,

such as URL, username, and password, which you used in the MySQL

Workbench connection with the Amazon RDS MySQL database instance.

Let’s add code to the /src/main/resources/application.properties

file, as shown in Listing 4-3.

Listing 4-3.  /src/main/resources/application.properties

server.port=5000

MySQL database settings

spring.datasource.url=jdbc:mysql://spring-aws-db.cpsoyj7kwlno.

us-east-2.rds.amazonaws.com:3306/UserRegistration

spring.datasource.username=springaws

spring.datasource.password=springaws

db-creation settings

Figure 4-6.  Spring Tool Suite with Lombok details

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

112

spring.jpa.hibernate.ddl-auto=update

spring.jpa.show-sql=true

spring.jpa.properties.hibernate.format_sql=true

Here, you configure the datasource URL, username, and the

corresponding password that you want to connect to the MySQL database.

spring.jpa.hibernate.ddl-auto can be none, update, create, or create-drop.

•	 none is the default for MySQL. It indicates that there are

no changes made to the database structure.

•	 update instructs Hibernate to change the database

according to the given entity structures.

•	 create instructs Hibernate to create the database every

time the application restarts but does not drop it when

SessionFactory closes.

•	 create-drop instructs Hibernate to create the database

every time the application restarts and drops it when

SessionFactory closes.

In the application.properties file, configure ddl-auto = update to

make sure that whenever the application is restarted, Hibernate compares

the tables in the database with the entities declared in the class. If there

are any changes in the entity structure, those changes are updated in the

database.

�Domain Implementation: UserDTO Entity Class
In the UserRegistrationApp project, you create a DTO (data transfer

object) class named UserDTO corresponding to the user domain’s object

inside a com.apress.AWS.dto subpackage. The UserDTO class contains

only data. It transfers data between different layers of the application when

there is a separation of concerns.

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

113

You can annotate the UserDTO class with JPA (Java Persistence API)

annotations, which allow it to be easily persisted and retrieved using the

JPA technology. A formal overview of JPA is beyond the scope of this book.

Let’s implement the UserDTO entity class, as shown in Listing 4-4.

Listing 4-4.  \src\main\java\com\apress\AWS\dto\UserDTO.java

package com.apress.AWS.dto;

import java.time.LocalDateTime;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.Table;

import lombok.Data;

@Entity

@Table(name = "users")

@Data

public class UserDTO {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id", nullable = false)

 private Long id;

 @Column(name = "first_name")

 private String firstName;

 @Column(name = "last_Name")

 private String lastName;

 @Column(name = "address")

 private String address;

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

114

 @Column(name = "age")

 private Integer age;

 @Column(name = "created_date")

 private LocalDateTime createdDate;

}

The UserDTO class has six attributes: id, firstName, lastName,

address, age, and createdDate. The UserDTO class is annotated with

the @Entity annotation to make it a JPA entity. This entity class is also

annotated with the @Table annotation to define the table name as Users.

The id property in UserDTO is annotated with the @Id annotation to

make it the primary key. The id attribute has been annotated with the

@GeneratedValue annotation to indicate that the ID value should be

generated automatically. The id attribute is annotated with the @Column

annotation to specify the details of the column to which a field or property

is mapped. The other five properties are annotated with the @Column

annotation.

The @Data Lombok annotation is used, so you don’t have to create

a getter and setter for attributes, and at the compile, it is automatically

generated. The next step is to provide the repository implementation.

�Repository Implementation: UserJpaRepository
The Data Access Object (DAO) design pattern supports separation of

concern by providing separation between business layer (services) and

data access operation, as shown in Figure 4-7.

Figure 4-7.  Separation of concern

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

115

The DAO layer sits between the business layer and the database

and performs CRUD (create, retrieve, update, delete) operations in the

database. To support JpaRepository, you need to add the Spring Data JPA

dependency shown in Listing 4-5 to the pom.xml file.

Listing 4-5.  Spring Data JPA Dependency

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

Listing 4-6 creates a repository interface named UserJpaRepository

by extending the org.springframework.data.jpa.repository.

JpaRepository interface that helps in persisting the UserDTO domain

object into a relational database.

Listing 4-6.  \src\main\java\com\apress\AWS\repository\

UserJpaRepository.java

package com.apress.AWS.repository;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

import com.apress.AWS.dto.UserDTO;

@Repository

public interface UserJpaRepository extends

JpaRepository<UserDTO, Long> {

}

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

116

In Listing 4-6, the JpaRepository interface takes a domain object.

The domain object’s identifier field is UserDTO and Long. Its generic

parameters are T and ID. The UserJpaRepository interface inherits all the

CRUD methods provided by JpaRepository.

Next, let’s create a Service class that autowires UserJpaRepository.

�Service Implementation: UserService
Let’s begin the service implementation by creating a Service class named

UserService, as shown in Listing 4-7, where you call the CRUD methods of

the UserJpaRepository interface to handle SQL operations.

Listing 4-7.  \src\main\java\com\apress\AWS\service\

UserService.java

package com.apress.AWS.service;

import java.util.List;

import javax.transaction.Transactional;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import com.apress.AWS.dto.UserDTO;

import com.apress.AWS.repository.UserJpaRepository;

@Service

@Transactional

public class UserService {

 @Autowired

 private UserJpaRepository useRepository;

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

117

 public List<UserDTO> listAll() {

 return useRepository.findAll();

 }

 public void save(UserDTO user) {

 useRepository.save(user);

 }

 public UserDTO get(Long id) {

 return useRepository.findById(id).get();

 }

 public void delete(Long id) {

 useRepository.deleteById(id);

 }

}

This UserService class uses the @Autowired annotation that autowires

UserJpaRepository.

Next, let’s create a REST controller class to define different REST

endpoints to retrieve and manipulate the UserDTO domain object.

�REST Controller Implementation:
UserRegistrationController
Let’s create a Spring REST controller named UserRegistrationController

and implement different REST API endpoints to perform CRUD

operations. Listing 4-8 is the code implementation for the

UserRegistrationController class.

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

118

Listing 4-8.  \src\main\java\com\apress\AWS\controller\

UserRegistrationController.java

package com.apress.AWS.controller;

import java.util.List;

import java.util.NoSuchElementException;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.DeleteMapping;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

import com.apress.AWS.dto.UserDTO;

import com.apress.AWS.service.UserService;

import lombok.extern.slf4j.Slf4j;

@Slf4j

@RestController

@RequestMapping("/api/")

public class UserRegistrationController {

 @Autowired

 private UserService userService;

 // URI - /api/users

 @GetMapping(value = "users")

 public ResponseEntity<List<UserDTO>> istAllUsers() {

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

119

 List<UserDTO> users = this.userService.listAll();

 �return new ResponseEntity<List<UserDTO>>(users,

HttpStatus.OK);

 }

 // URI - /api/user/id/1

 @GetMapping("user/id/{id}")

 �public ResponseEntity<UserDTO> getUserById(

@PathVariable(name = "id") final Long userId) {

 try {

 �final UserDTO user = this.userService.

get(userId);

 �return new ResponseEntity<UserDTO>

(user, HttpStatus.OK);

 } catch (NoSuchElementException e) {

 �return new ResponseEntity<UserDTO>

(HttpStatus.NOT_FOUND);

 }

 }

 // URI - /api/user/save

 @PostMapping(value = "user/save")

 �public ResponseEntity<UserDTO> save(@RequestBody UserDTO

user) {

 this.userService.save(user);

 �return new ResponseEntity<UserDTO>(user,

HttpStatus.CREATED);

 }

 // URI - /api/user/delete/id/1

 @DeleteMapping("user/delete/id/{id}")

 �public ResponseEntity<UserDTO> delete(@PathVariable

(name = "id") final Long userId) {

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

120

 this.userService.delete(userId);

 �return new ResponseEntity<UserDTO>(HttpStatus.

NO_CONTENT);

 }

}

Here, the UserRegistrationController class was annotated with

@RestController annotation. @RequestMapping("/api") was defined,

which indicates that all REST API endpoint URLs start with /api, and it

maps incoming HTTP requests to handler methods!

The @Autowired annotation autowires UserService to the RESTful

controller. Table 4-2 explores the different REST endpoints defined in the

UserRegistrationController class to retrieve and manipulate UserDTO.

Now, build the UserRegistrationApp using a Maven build and run it

locally to test defined REST endpoints.

Table 4-2.  REST Endpoints Defined in the UserRegistrationController

Class

Annotation URI Description

@GetMapping /api/users Retrieve all users available

in database

@PostMapping /api/user/save Create a new user in

database

@GetMapping (“/ {id}”) /api/user/id/{id} Retrieve an individual user

based on ID

@ DeleteMapping /api/user/delete/id/{id} Delete an individual user

based on ID

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

121

�Run and Test UserRegistrationApp Locally
To run the UserRegistrationApp using the STS IDE in a local system,

right-click the UserRegistrationAppApplication.java class under the

com.apress.AWS package, and then click Run As ➤ Spring Boot App, as

shown in Figure 4-8.

Once UserRegistrationApp started successfully, the last line in the

STS console should state, Started UserRegistrationAppApplication, as

shown in Figure 4-9.

Figure 4-8.  Run the UserRegistrationApp using STS IDE

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

122

Now, it’s time to test the REST API using Postman (www.postman.com).

You added data to the database using MySQL Workbench in Chapter 3.

You should get that data during the REST API call.

�Retrieve All Users: /api/users
Let’s test the first REST endpoint to retrieve all users. Launch the Postman

tool in your local system, select GET as the request type, and enter http://

localhost:5000/api/users to retrieve and display all user data. You

should see a 200 OK HTTP status, as shown in Figure 4-10.

Figure 4-9.  Output on the STS console

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

http://www.postman.com

123

�Retrieve an Individual User: /api/user/id/{id}
Now, let’s test another REST endpoint to retrieve an individual user based

on id. To test this REST endpoint, launch Postman, select GET as the

request type, and enter the URL (http://localhost:5000/api/user/id/1)

to retrieve and display individual user data. You should see a 200 OK HTTP

status, as shown in Figure 4-11.

Figure 4-10.  Retrieve all users

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

124

�Create a New User: /api/user/save
Next, let’s test the REST endpoint to create a new user in the database.

Launch Postman, select POST as the request type, and enter http://

localhost:5000/api/user/save. Click the Body radio button, and then

select raw. From the drop-down list, select JSON (application/json) as the

content-type header. Use the JSON data in the request body as shown in

Listing 4-9, and hit Send.

Listing 4-9.  JSON Data in the Body to Create a New User

{

 "last_name": "Soni",

 "firstName": "Namrata",

 "address": "Bangalore-India",

Figure 4-11.  Retrieving an individual user

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

125

 "age": 25,

 "createdDate": "2021-07-04T00:00:00"

}

On successful completion of the POST request, a new user is created

in the database, and the response HTTP status is 201 Created, as shown in

Figure 4-12.

Figure 4-12.  Creating a new user

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

126

�Delete an Existing User: /api/user/delete/id/{id}
The last endpoint to test deletes an existing user from the database based

on ID. To test this REST endpoint, launch Postman, select DELETE as the

request type, and enter the URL (http://localhost:5000/api/user/

id/2) to delete the existing user with id=1. On successful completion of

the DELETE request, this user is deleted from the database. The response

HTTP status after deleting the user is 204 No Content, as shown in

Figure 4-13.

�Swagger UI: API Documentation
In a browser, open the Swagger UI page at http://localhost:8080/

swagger-ui/. You see the generated API documentation, as shown in

Figure 4-14.

Figure 4-13.  Delete an existing user

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

127

user-registration-controller is defined in the application. Clicking

it lists the REST endpoints and their valid HTTP methods. Clicking

Models displays the model structure. Figure 4-15 shows the defined REST

endpoints and the UserDTO model structure.

Figure 4-14.  Swagger API documentation page

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

128

�Build a JAR for a Spring Boot Application
To build JAR for the Spring Boot application from a command prompt,

go to the project directory where you created the Spring Boot project and

copy the project path. Now, change the working directory to the project

path on the command prompt. Build the project using the following

command executed in the command prompt, as shown in Figure 4-16.

E:\Apress\workspace\AWS\UserRegistrationApp>mvn clean install

Figure 4-15.  Swagger UI lists REST endpoints

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

129

This starts building the UserRegistrationApp project. Once

the build is successful, you are informed that the JAR file named

UserRegistrationApp-0.0.1-SNAPSHOT.jar has been created, as shown

in Figure 4-17.

You need to deploy the generated JAR file into Elastic Beanstalk.

�Deploy the UserRegistrationApp Spring Boot
Application in AWS Elastic Beanstalk
Since you have successfully created a JAR file for the UserRegistrationApp

application in your local system, now, you must deploy this JAR file to

Elastic Beanstalk.

Figure 4-16.  Build JAR from the command prompt

Figure 4-17.  Build success

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

130

Let’s sign in to the AWS Management Console using your AWS

credentials and select service as Elastic Beanstalk. Figure 4-18 shows that

three applications are already available: My First Elastic Beanstalk

Application, helloworld, and HelloSpringBoot. You created them in

previous chapters.

Next, let’s create a new application for UserRegistrationApp Spring

Boot application talking to the MySQL database. Click the Create a new
application button, enter the application name as UserRegistrationApp,

and click the Create button.

Next, create a new environment for this application by clicking the

Create one now link. Select Web server environment as the environment

tier, and then click the Select button.

Figure 4-18.  List of all applications available in Elastic Beanstalk

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

131

On the Environment information page, enter userregistration as

the domain name, and check for domain availability (see Figure 4-19).

Next, select Java as the managed platform, as shown in Figure 4-20.

Figure 4-19.  Environment information

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

132

Finally, upload the code by selecting the JAR file from the project’s

target folder (e.g., in the authors’ local system, it is E:\Apress\

workspace\AWS\UserRegistrationApp\target\UserRegistrationApp-

0.0.1-SNAPSHOT.jar), and then click the Create environment button, as

shown in Figure 4-21.

Figure 4-20.  Java is the managed platform

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

133

Once the environment has been created, and the resources have been

deployed, change the server port the Spring Boot application listens on. So,

you need to specify the SERVER_PORT environment variable in the Elastic

Beanstalk environment and set the value to 5000.

On the Configuration page in your environment, under Software, click

the Edit icon, as shown in Figure 4-22.

Figure 4-21.  Upload application code

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

134

And then add a new environment variable SERVER_PORT, with a value

5000 to change the port that the Spring Boot application listens on, as

shown in Figure 4-23.

As soon as you click the Apply button, the configuration changes are

propagated to the application servers, and the application is restarted.

When it restarts the application, it picks up the new configuration

through the environment variables. And, in about a minute, you see a

healthy application on the dashboard, as shown in Figure 4-24.

Figure 4-23.  Environment properties in software configuration

Figure 4-22.  Edit software configuration

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

135

You are now ready to test the UserRegistrationApp application

deployed in the Amazon cloud.

�Test Deployed REST API in AWS Using
Swagger UI
Now, it’s time to test the deployed REST API endpoints in AWS. Use the

URL that you configured on the AWS environment to access the service.

For this example, the specified URL is http://userregistration.us-

east-2.elasticbeanstalk.com.

Let’s open the Swagger UI page in the browser at http://

userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/. You

see the generated API documentation, as shown in Figure 4-25.

Figure 4-24.  Health OK

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

http://userregistration.us-east-2.elasticbeanstalk.com
http://userregistration.us-east-2.elasticbeanstalk.com
http://userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/
http://userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/

136

Here, clicking user-registration-controller shows the list of

defined REST endpoints, and by clicking the Models display domain

model structure, as shown in Figure 4-26.

Figure 4-25.  Swagger API documentation page

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

137

Using Swagger, let’s test the REST Endpoints deployed on AWS.

�List All Users: /api/users
On the Swagger UI page, expand GET /api/users, and click the Try It Out

button. And then, click the Execute button to call this REST endpoint.

Figure 4-27 shows that the HTTP status response code should be 200 OK,

and the response body should contain the list of users.

Figure 4-26.  Swagger UI lists REST endpoints and model structure

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

138

Figure 4-27.  List all users using Swagger UI

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

139

�Create New Users: /api/users
On the Swagger UI page, expand POST /api/user/save, and click the Try

It Out button. Next, enter the user JSON data shown in Listing 4-10 in the

request body input box, and select application/json as the content-type

parameter.

Listing 4-10.  User JSON Data

{

 "last_name": "Soni",

 "firstName": "Namrata",

 "address": "Bangalore-India",

 "age": 25,

 "createdDate": "2021-07-04T00:00:00"

}

Next, click the Execute button to call this REST endpoint. As shown in

Figure 4-28, the response HTTP status code should be 201 Created.

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

140

Figure 4-28.  Create a new user using Swagger UI

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

141

�Summary
In this chapter, you created UserRegistrationApp Spring Boot REST API

talking to an Amazon RDS MySQL database. You explored different Maven

dependencies that have been used in the pom.xml file, such as Lombok,

JPA, and so on. You learned how to configure Project Lombok to STS

IDE. You updated the application.properties file with database details

such as URL, username, and password, and many more. And then, you

created an Entity class using JPA annotation, a repository interface that

extends the JpaRepository interface, a service class for CRUD methods,

and a REST controller to define different REST endpoints.

First, you tested the UserRegistrationApp application locally using

Postman. Then you built a JAR that you deployed in Elastic Beanstalk.

Finally, you tested the deployed REST endpoints to the AWS cloud using

the Swagger UI.

The next chapter explores how to deploy a full stack Spring Boot React

application in AWS and S3.

Chapter 4 Deploy a Spring Boot Application Talking to MySQL in AWS

143© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_5

CHAPTER 5

Deploy a Full Stack
Spring Boot React
Application in AWS
and S3
In Chapter 4, you created the UserRegistrationApp Spring Boot RESTful

web service that talks to the Amazon RDS MySQL database to perform

CRUD operations. You learned how to configure Project Lombok to STS

IDE. You created an Entity class using JPA annotation, a repository

interface that extends the JpaRepository interface, a Service class for

CRUD methods, and a REST controller to define different REST endpoints.

Afterward, you tested the UserRegistrationApp application locally using

Postman. Then you built an executable JAR that was deployed in AWS

Elastic Beanstalk. Finally, you tested the deployed REST endpoints using

Swagger UI.

The world sees the front end, including the design using some

languages such as HTML and CSS. The main aim of the front end is to

present data in a well-defined style and allows interaction with the client to

perform CRUD operations. There are so many amazing JavaScript libraries

available that can develop front-end applications.

https://doi.org/10.1007/978-1-4842-7392-0_5#DOI

144

React is an open source, front-end JavaScript library for building

single-page applications. React is a perfect solution for a client-side library

for a clean and structured approach.

This chapter introduces React as a front-end framework and its major

components. You can develop a single-page application using React as the

front end to consume APIs exposed by the UserRegistrationApp back-end

application developed using Spring Boot, as shown in Figure 5-1.

You set up a development environment to develop your React front-

end application. In this chapter, you learn the following.

•	 How to develop and run React as a local front-end

application

•	 How to deploy the React front end to AWS S3

This front-end application has a home page, an Add New User page,

and a List All Users page with a Delete option. You make an API call to

AWS, where you have already deployed the back-end RESTful services

named UserRegistrationApp. You are introduced to AWS S3 (Simple

Storage Service), where you deploy the React front-end application.

And, finally, you verify successful deployment of the React front-end

application.

Figure 5-1.  Full stack application overview

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

145

�Develop and Run React as a Front-End
Application
Let’s start developing and running the interactive front-end application

with React in the local system. We assume that you have good knowledge

of JavaScript, HTML5, CSS, and React. If you want an in-depth

understanding of React, refer to https://reactjs.org.

�Introducing React as a Front-end Framework
React is an open source, component-based JavaScript library for building

fast and interactive UI (user interface) components. It was created in 2011

by a Facebook software engineer named Jordan Walke. Initially, it was

developed and maintained by Facebook. React application is made up

of independent, isolated, and reusable components, which are the heart

of React application, and each component is responsible for building

complex and reusable user interfaces. Every React application has at

least one component known as the root component. This root component

represents the internal application and contains other child components.

You build a user registration front-end app using React with CRUD

features. This React application has different components, as shown in

Figure 5-2.

Figure 5-2.  React components with Router and Axios

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

https://reactjs.org

146

•	 The App component is a root component that contains

react-router. This also contains a navbar that links to

the route’s paths.

•	 The Home component displays a welcome message.

•	 The ListAllUsers component displays a list of all users

with a Delete option.

•	 The AddUser component has a form for new user

submission.

All these components call required methods in UserDataService,

which internally uses the Axios HTTP library to make HTTP requests and

receive responses.

�React Components

In React, a component is considered as the core part of the user interface.

Each component has its own structure and is independent of other

components, and when all the components merge in a parent component

results in the final UI of the application. A component is typically

implemented as a JavaScript class with some state and a render method, as

shown in Listing 5-1.

Listing 5-1.  Structure of Component with State and Render Method

class UserClass {

 state = {};

 render() {

 }

}

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

147

There are mainly two types of components in React.

•	 Stateless functional components

•	 These are JavaScript functions that don’t have their

own state and return HTML to describe UI.

•	 Stateful class components

•	 These are regular ES6 classes that extend the

Component class from the React library. They

must contain a render method, which in turn

returns React elements or HTML. They manage

the local state.

�React State

The state is an updatable structure that is managed within the component.

A Stateful component has a state responsible for making the user

interface dynamic and interactive. You need to declare some default set

of values to define the initial state of components. A state can be set or

changed using a setState method.

�Constructor

In React, the constructor initializes an object’s state of a class. This

constructor is called automatically during the object creation of the

class. It is called before the component is mounted. You need to call the

super(props) method before any other statement in a constructor. Also, in

React, the constructor binds the event handler method.

�A React Component’s Life Cycle

Let’s explore the React component’s life cycle. It primarily consists of four

phases, as shown in Figure 5-3.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

148

The different phases of the React component’s life cycle provide

different methods. React calls the life cycle method according to the

component phase.

•	 Initialization is the birth phase of React components,

where they start their journey by setting up the

initial state and default props. This is done in the

component’s constructor.

•	 Mounting is the phase where the React component

mounts (created and inserted) on the Document Object

Model (DOM). After completing the initialization

phase, the React component renders for the first time

in this mounting phase.

•	 Updation is the third phase of a React component’s life

cycle. It is the state of the created component change.

The React component data (e.g., props and state) is

updated in response to user events like typing, clicking,

and so on.

Figure 5-3.  React component’s life cycle

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

149

•	 Unmounting is the last phase in this life cycle.

The React component instance is destroyed and

unmounted from the DOM.

�Set up a Development Environment
The following tools are needed to run any React application.

•	 A code editor, such as Visual Studio, to work with the

project files. You can download it from https://code.

visualstudio.com.

•	 Go to https://nodejs.org to download and install the

latest version of Node.js, which is a JavaScript runtime

environment.

•	 A package manager called npm, which downloads

and runs JavaScript packages built on Node.js. It’s

automatically included in your installation of Node.js.

To check the Node.js and npm versions, run the node –v and npm –v

commands in your terminal, as shown in Figure 5-4.

Figure 5-4.  Node.js and npm version in PC

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

https://code.visualstudio.com
https://code.visualstudio.com
https://nodejs.org

150

�Cross-Origin Resource Sharing (CORS) Error
When you work on a front-end application in React that connects to a

RESTful web service written in Spring Boot, you may get a CORS error

whenever you make the request in your browser. Basically, this error

means that the user agent (http://localhost:3000) doesn’t have

sufficient required permissions to access Spring Boot resources (http://

localhost:5000).

The solution to this error required an update in the Spring Boot

application to enable cross-origin requests for a RESTful web service.

You must annotate the Controller class with @CrossOrigin annotation

to support global CORS configuration, as shown in Listing 5-2. And, by

default, all origins and the GET, HEAD, and POST HTTP methods are

allowed.

Listing 5-2.  \src\main\java\com\apress\AWS\controller\

UserRegistrationController.java

@CrossOrigin

@RestController

@RequestMapping("/api/")

public class UserRegistrationController {

After updating the Controller class, Maven builds and runs the

UserRegistrationApp Spring Boot application. And, also make sure that

UserRegistrationApp should always be running when developing the

front-end application using React.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

151

�Developing React Front-End Application
with create-react-app
The create-react-app package makes developing React front-end

applications a breeze. To create a React app using create-react-app,

open a command prompt in the folder where you want to save the project

folder and run the following npx command (see Figure 5-5).

npx create-react-app user-registartion-frontend-app

Once the npx command has run successfully, a folder named user-

registration-frontend-app is created, as shown in Figure 5-6; all the

required packages are automatically installed.

Figure 5-5.  npx command to create a React app using
create-react-app

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

152

�Review the Project Structure

Once the React project has been created and all the required dependencies

have been installed, open the project in Visual Studio. The project

structure should look like as shown in Figure 5-7.

Figure 5-6.  Successfully created user-registration-frontend-app

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

153

The project structure contains the following files and folders.

•	 The README.md file is a markdown file that includes a lot

of helpful information.

•	 The package.json file manages the app’s required

dependencies and the scripts needed to run it.

•	 The .gitignore file excludes desired files and folders

from being tracked by Git. Generally, you exclude large

folders like the node_modules folder.

•	 The src folder contains React-related source code and

all the components that you develop.

Figure 5-7.  Project structure in Visual Studio

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

154

•	 The App.js file in the src folder is a root

component of the React application.

•	 The index.js file is the top render file of the React

application. You import App components using the

ReactDOM.render() method in the index.js file.

•	 The public folder stores static assets, such as fonts and

images, for the React app.

•	 The index.html file is in the public folder. The

React application uses this single file to render all

the components. This supports the principle of a

single-page application.

•	 The node_modules folder contains all the packages

installed with Node.js and npm.

�Run a React App

To build the React app, the following files must exist with the exact

filenames.

•	 public/index.html is the only HTML file in the entire

project. This HTML file is a template, and it is loaded

first when the application starts.

•	 Only those files which are there in the public folder

can be used from public/index.html.

•	 This file contains a line of code <div id="root"></

div>, which signifies that all the React app

components are loaded into this div.

•	 src/index.js is the JavaScript entry point.

•	 The src/App.js is the App component, which is the

main component in React; it acts as a container for all

the other components.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

155

To start the React app, open the command prompt at user-

registration-frontend-app, which is a newly created folder, and run the

npm start command, as shown in Figure 5-8.

A success message should appear in the command prompt, as shown

in Figure 5-9.

This started the development server on localhost:3000. The great thing

about this development server is that the server automatically refreshes to

reflect the changes, and there is no need to refresh the browser manually.

You can view the application in the browser by hitting the URL

(http://localhost:3000), as shown in Figure 5-10.

Figure 5-8.  npm start command to start React app

Figure 5-9.  Compiled success message on command prompt

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

156

Congratulations! You have successfully created a base source code

for the React application to add more components as needed. This app

content comes from the src/App.js file, which contains the code shown in

Listing 5-3.

Listing 5-3.  src/App.js

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

Figure 5-10.  Home page for React app

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

157

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

export default App;

To support CRUD operation, let’s create the following additional files

in the React application.

•	 src/services/user-registration.service.js

•	 src/components/add-user.component.js

•	 src/components/home.component.js

•	 src/components/list-users.component.js

�Add Twitter Bootstrap to Style the React App with CSS

By default, create-react-app comes with CSS support by providing an

App.css file in the src folder, where you can add some style to improve

appearance. Twitter Bootstrap is a front-end CSS framework that can style

a website’s contents.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

158

Open the command prompt, and run the npm install bootstrap

command, which installs Bootstrap in the node_modules folder, as shown

in Figure 5-11.

To import Twitter Bootstrap into the React app, open the src/App.js

file and modify the code, as shown in Listing 5-4.

Figure 5-11.  Bootstrap installed in node_modules folder

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

159

Listing 5-4.  src/App.js

import './App.css';

import 'bootstrap/dist/css/bootstrap.min.css'

function App() {

 // ...

}

�Add a Navbar

Let’s add a navbar to the App component, which is the root container for

the React application. Update the src/App.js file with the code shown in

Listing 5-5.

Listing 5-5.  src/App.js

import './App.css';

import 'bootstrap/dist/css/bootstrap.min.css'

function App() {

 return (

 <div className="App">

 <header className="App-header1">

 <div class="page-header text-center">

 <h2>User Registration App</h2>

 </div>

 </header>

 <div class="container-fluid">

 �<nav class="navbar bg-primary justify-content-

center">

 <div class="col-sm"></div>

 <a href="/"

 class="col-sm btn btn-outline-light"

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

160

 role="button">

 Home

 <div class="col-sm"></div>

 <a href="/list-all-users"

 class="col-sm btn btn-outline-light"

 role="button">

 List All Users

 <div class="col-sm"></div>

 <a href="/add-user"

 class="col-sm btn btn-outline-light"

 role="button">

 Add User

 <div class="col-sm"></div>

 </nav>

 </div>

 </div>

);

}

export default App;

�Add react-router

Routing is a process that redirects users to different pages based on

their request or action. The react-router package is a standard library

system built on top of React and defines multiple routes using react-

router in single-page web applications. When a user enters a specific

URL in a browser, and the URL path matches a defined route, the user is

routed to it.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

161

By default, React doesn’t come with routing. And, you need to add a

react-router library in the project to enable routing. Open the command

prompt and run the following command to install react-router.

npm install react-router-dom

Since you have successfully installed react-router, let’s use it in the

application.

BrowserRouter Object to Enable Routing

BrowserRouter uses the HTML5 history API to keep your user interface in

sync with the URL. It is used in client-side routing with URL segments.

First, you need to import BrowserRouter from react-router-dom to

enable routing in the project. Open and update src/index.js to wrap app

components with the BrowserRouter object, as shown in Listing 5-6.

Listing 5-6.  src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

import { BrowserRouter } from "react-router-dom";

ReactDOM.render(

 <BrowserRouter>

 <App />

 </BrowserRouter>,

 document.getElementById('root')

);

reportWebVitals();

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

162

Switch and Route to Render Routes

Switch renders a route exclusively and helps with switching between

pages without reloading it. Every route that matches the component and

path renders inclusively.

The path property defines the path of the route; for example, / defines

the path of the home page. Route loads the defined component; for

example, it loads the home component. Update the src/App.js file with

the source code shown in Listing 5-7.

Listing 5-7.  Update src/App.js with react-router

import './App.css';

import React, {components} from 'react';

import { Switch, Route } from 'react-router-dom';

import 'bootstrap/dist/css/bootstrap.min.css'

import ListUsers from './components/list-users.component';

import Home from './components/home.component';

import AddUser from './components/add-user.component';

function App() {

 return (

 <div className="App">

 <header className="App-header1">

 <div class="page-header text-center">

 <h2>User Registration App</h2>

 </div>

 </header>

 <div class="container-fluid">

 �<nav class="navbar bg-primary justify-content-center">

 <div class="col-sm"></div>

 <a href="/"

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

163

 class="col-sm btn btn-outline-light"

 role="button">

 Home

 <div class="col-sm"></div>

 <a href="/list-all-users"

 class="col-sm btn btn-outline-light"

 role="button">

 List All Users

 <div class="col-sm"></div>

 <a href="/add-user"

 class="col-sm btn btn-outline-light"

 role="button">

 Add User

 <div class="col-sm"></div>

 </nav>

 <div className="container mt-3">

 <Switch>
 <Route exact path={["/"]} component={Home} />
 �<Route exact path={["/list-all-users"]}

component={ListUsers} />
 �<Route exact path={["/add-user"]}

component={AddUser} />
 </Switch>
 </div>

 </div>

 </div>

);

}

export default App;

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

164

Three routes are defined in the React application.

•	 / for the home page

•	 /list-all-users for the List All Users page

•	 /add-user for the Add User page

�Initialize Axios for a REST API Call

React is a JavaScript library that builds user interfaces. It is not concerned

with HTTP. To make HTTP or REST API calls, you need to use a third-party

HTTP library. Here, you use the Axios HTTP library.

Axios is a promise-based HTTP client that allows you to make an HTTP

request to a given endpoint and has good defaults to work with JSON. To

set up Axios with React, you need to install Axios with npm. Open the

command prompt and run the npm install axios command. Let’s create

an http-common.js file in the src folder, as shown in Listing 5-8.

Listing 5-8.  src/http-common.js

import axios from "axios";

export default axios.create({

 baseURL: "http://localhost:5000/api/",

 headers: {

 "Content-type": "application/json"

 },

});

Depending on the URL of REST API, you can update baseURL in the file.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

165

�Data Service to Send an HTTP Request

Next, create a data service that uses Axios to send HTTP requests to the

REST API. Let’s create a service folder in the src folder and a user-

registration.service.js file in that folder, as shown in Listing 5-9.

Listing 5-9.  src/user-registration.service.js

import http from '../http-common';

class UserDataService {

 getAllUsers() {

 return http.get("/users");

 }

 createUser(user) {

 return http.post("/user/save", user);

 }

 deleteUser(id) {

 return http.delete(`/user/delete/id/${id}`);

 }

}

export default new UserDataService();

UserDataService defines three methods: getAllUsers, createUser,

and deleteUser. The Axios get, post, and delete methods are called

corresponding to the HTTP GET, POST, and DELETE methods to make a

CRUD operation.

�Create React Components Corresponding to Routes

Create three components corresponding in the src/components/

subfolder to the three routes defined before.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

166

Home Component

Let’s create the Home component, which displays welcome messages

along with a navigation bar. Listing 5-10 shows the code for the home

component.

Listing 5-10.  src/components/home.component.js

import React, { Component } from "react";

export default class Home extends Component {

 render() {

 return (

 <div class="container">

 <div class="panel panel-default">

 <div class="alert alert-success">

 Welcome to User Registration App

 </div>

 <div class="panel-body ">

 <div class="alert alert-info">

 Please click on

 � List All Users

 to get all users.

 Please click on

 Add User

 to add a new user.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

167

 </div>

 </div>

 </div>

 </div>

);

 }

}

In this component, you create a Home class that extends the Component

class, which contains a render() method that returns HTML code

containing a welcome message.

When you save this home component file, the content on the browser is

automatically refreshed. The result in the browser is shown in Figure 5-12.

Figure 5-12.  User registration app home page

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

168

Add Users Component

Let’s create another component to add a new user in the components. This

component has a form to submit a new user with four fields: First Name,

Last Name, Age, and Address. Listing 5-11, 5-12, 5-13 and 5-14 shows the

pieces of code for the add-user component.

Listing 5-11.  Imports in src/components/add-user.component.js

import React, { Component } from "react";

import userRegistrationService from "../services/user-

registration.service";

Here, we have imported React and Component from "react" and

user-registration-service.

Listing 5-12.  Constructor and State in AddUser Class in src/

components/add-user.component.js

export default class AddUser extends Component {

 constructor(props) {

 super(props);

 �this.onChangeFirstName = this.onChangeFirstName.

bind(this);

 this.onChangeLastName = this.onChangeLastName.bind(this);

 this.onChangeAge = this.onChangeAge.bind(this);

 this.onChangeAddress = this.onChangeAddress.bind(this);

 this.handleSubmit = this.handleSubmit.bind(this);

 this.newUser = this.newUser.bind(this);

 this.state = {

 id: null,

 firstName: "",

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

169

 lastName: "",

 age: "",

 address: "",

 createdDate: ""

 };

 }

In the preceding code, the AddUser class extends components.

The constructor of this class sets the initial state for id, firstName,

lastName, age, address, and createdDate with a default value. Also, we

bound it to different events, such as onChangeFirstName, handleSubmit,

and so on.

Listing 5-13.  Functions in AddUser Class in src/components/

add-user.component.js

 onChangeFirstName(event) {

 this.setState({

 firstName: event.target.value

 });

 }

 onChangeLastName(event) {

 this.setState({

 lastName: event.target.value

 });

 }

 onChangeAge(event) {

 this.setState({

 age: event.target.value

 });

 }

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

170

 onChangeAddress(event) {

 this.setState({

 address: event.target.value

 });

 }

 handleSubmit(event) {

 console.log(this.state)

 var data = {

 firstName: this.state.firstName,

 lastName: this.state.lastName,

 age: this.state.age,

 address: this.state.address

 };

 event.preventDefault();

 userRegistrationService.createUser(data)

 .then(response => {

 �alert('You submitted successfully! ' + data.

firstName + ' User is created');

 this.setState({

 id: response.data.id,

 firstName: response.data.firstName,

 lastName: response.data.lastName,

 age: response.data.age,

 address: response.data.address

 });

 this.props.history.push("/list-all-users");

 })

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

171

 .catch(e => {

 console.log(e);

 });

 }

 newUser() {

 this.setState({

 id: null,

 firstName: "",

 lastName: "",

 age: "",

 address: "",

 createdDate: ""

 });

 }

Four functions (onChangeFirstName, onChangeLastName,

onChangeAge, onChangeAddress) are created to track the input value

and set the state for changes. A function named handleSubmit is defined

to get the value of the form (state) and call the createUser() method of

userRegistrationService, which internally sends HTTP POST requests to

the REST API.

Listing 5-14.  Render Method to Return HTML Code

 render() {

 return (

 <div className="submit-form">

 <div className="form-group">

 �<label htmlFor="firstName">First Name

</label>

 <input

 type="text"

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

172

 className="form-control"

 id="firstName"

 required

 value={this.state.firstName}

 �onChange={e => this.

onChangeFirstName(e)}

 name="firstName"

 />

 </div>

 <div className="form-group">

 <label htmlFor="lastName">Last Name</label>

 <input

 type="text"

 className="form-control"

 id="lastName"

 required

 value={this.state.lastName}

 �onChange={e => this.

onChangeLastName(e)}

 name="lastName"

 />

 </div>

 <div className="form-group">

 <label htmlFor="age">Age</label>

 <input

 type="text"

 className="form-control"

 id="age"

 required

 value={this.state.age}

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

173

 onChange={e => this.onChangeAge(e)}

 name="age"

 />

 </div>

 <div className="form-group">

 <label htmlFor="address">Address</label>

 <input

 type="text"

 className="form-control"

 id="address"

 required

 value={this.state.address}

 onChange={e => this.onChangeAddress(e)}

 name="address"

 />

 </div>

 �<button onClick={this.handleSubmit}

className="btn btn-success">

 Submit

 </button>

 </div>

)

 }

}

Here, the render method results in UI. AddUser contains input boxes

for the first name, last name, age, and address, and it contains the Submit

button for creating a new user, as shown in Figure 5-13.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

174

List All Users Component

Let’s create another component to list all the users in the components

subfolder. This component has a user array to display a list of users in

the table, and each row has a Delete button to delete specific users from

the list. Listing 5-15 and 5-16 shows the pieces of code for the list-user

component.

Listing 5-15.  Imports, Constructor, State, and Functions in

UsersList Class in src/components/list-users.component.js

import React, { Component } from "react";

import UserDataService from '../services/user-registration.

service';

export default class UsersList extends Component {

 constructor(props) {

 super(props);

Figure 5-13.  Page to add new user

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

175

 this.retrieveUsers = this.retrieveUsers.bind(this);

 this.deleteUser = this.deleteUser.bind(this);

 this.state = {

 users: []

 };

 }

 componentDidMount() {

 this.retrieveUsers();

 }

 retrieveUsers() {

 UserDataService.getAllUsers()

 .then(response => {

 this.setState({

 users: response.data

 });

 console.log(response.data);

 })

 .catch(e => {

 console.log(e.target);

 });

 }

 deleteUser(user, index) {

 UserDataService.deleteUser(user.id)

 .then(response => {

 �alert('Deleted successfully! ' + user.

firstName);

 this.retrieveUsers();

 })

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

176

 .catch(e => {

 console.log(e.target);

 });

 }

The UsersList class extends the Components class. React, Component,

and user-registration-service import as UserDataService. We defined

the constructor of this class that sets the initial state for the users array.

Also, we bound this to the different events such as retrieveUsers and

deleteUser.

The retrieveUsers function is defined to get the list of users by calling

the getAllUsers() method of UserDataService, which internally sends

HTTP GET requests to the REST API. A function named deleteUser

is defined to delete users by calling the deleteUser() method of

UserDataService, which internally sends HTTP DELETE requests to the

REST API. The componentDidMount() method immediately executes the

React code after a component is mounted (placed in the DOM).

Listing 5-16.  Render Method to Return HTML Code

 render() {

 const { users } = this.state;

 return (

 <table class="table table-hover">

 <caption>List of users</caption>

 <thead class="thead-dark">

 <tr>

 <th scope="col">#</th>

 <th scope="col">First Name</th>

 <th scope="col">Last Name</th>

 <th scope="col">Age</th>

 <th scope="col">Address</th>

 <th scope="col">Delete</th>

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

177

 </tr>

 </thead>

 <tbody>

 {users && users.map((user, index) => (

 <tr>

 <th scope="row">{index+1}</th>

 <td>{user.firstName}</td>

 <td>{user.lastName}</td>

 <td>{user.age}</td>

 <td>{user.address}</td>

 <td>

 <button type="button"

 �onClick={() => this.

deleteUser(user,

index)}

 �class="btn btn-danger

custom-width"

 key={index}

 >

 �<span class="glyphicon

glyphicon-remove">

 Delete

 </button>

 </td>

 </tr>

))}

 </tbody>

 </table>

);

 }

}

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

178

The render method results in a UI. The List of Users page displays a

user list in a table. It also contains a Delete button for each user’s row in a

table, as shown in Figure 5-14.

Even though you added only one user in the previous section, the list

shows two users. It’s because the database already contains one user that

was added in Chapter 4.

Here, clicking the Delete button deletes a specific user, as shown in

Figure 5-15.

Figure 5-14.  List all users along with a delete user option

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

179

After successfully deleting a specific user, the table displays an updated

user list, as shown in Figure 5-16.

Figure 5-15.  Delete an existing user

Figure 5-16.  Updated user list after the delete operation

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

180

�Build React Code as a Front-end
Application for AWS
You have successfully developed and run a user registration front-end app

using React with CRUD features in your local system that consumes data

from UserRegistrationApp RESTful web services that also run in the local

system. To deploy the React app to AWS, you need to build React code.

�Verify the AWS Elastic Beanstalk Environment
Is Up
You have updated the Spring Boot application, which should be deployed

to Elastic Beanstalk. You already learned about the deployment process of

the back-end application, so you need to follow the same here to complete

the deployment of the UserRegistrationApp Spring Boot application.

Once you have successfully deployed the updated code, you need to verify

that the Elastic Beanstalk environment is up, as shown in Figure 5-17.

Figure 5-17.  Verify that the Elastic Beanstalk environment is up

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

181

�Update BaseURL in a React App with an AWS
Elastic Beanstalk Environment URL
We provided the localhost URL of the RESTful app in the React front-end

app in the src/http-common.js file so that Axios can make a REST API call

from the front end to the back end.

Now, the React front-end app should interact with the RESTful web

services deployed in Elastic Beanstalk. To achieve this, open the src/

http-common.js file and update the base URL with the Elastic Beanstalk

environment URL, as shown in Listing 5-17.

Listing 5-17.  src/http-common.js

import axios from "axios";

export default axios.create({

 //baseURL: "http://localhost:5000/api/",

 �baseURL: "http://userregistration.us-east-2.elasticbeanstalk.

com/api/",

 headers: {

 "Content-type": "application/json"

 },

});

Before building, let’s verify the changes locally. Once you access the

List All Users page in the browser, you can see the result from AWS, as

shown in Figure 5-18.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

182

To cross verify the changes, open Developers Tools in a browser and

validate the request URL, as shown in Figure 5-19, for the POST method to

create a new user.

Figure 5-19.  Validate the Request URL in browser Developer Tools

Figure 5-18.  React app interact with RESTful web services deployed
in Elastic Beanstalk

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

183

�Build React Code for AWS Deployment
You have made the required changes in the React app and verified those

changes to confirm that the React app interacts with RESTful web services

deployed in AWS. Now, you would like to deploy this React front-end app

to the AWS server. You need to create a build for the React app.

To create a build, you need to stop the React app and execute the

following npm command in the command prompt.

E:\Apress\workspace\AWS\user-registartion-frontend-app>npm run

build

Once you run the build command, a folder named build is created in

the React app, and it is populated with an optimized production build, as

shown in Figure 5-20.

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

184

So, now the build folder is ready. It contains a static folder and

the asset-manifest.json, fevicon.ico, index.html, manifest.json,

logo.png, and robots.txt files, as shown in Figure 5-21.

Figure 5-20.  Build React app using npm command

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

185

�Deploy a React Front-End to AWS S3:
Hosting a Static Website
In the previous section, you built a React front-end app that you want to

deploy in AWS S3.

�Introduction to S3: Simple Storage Service
in AWS
S3 stands for Simple Storage Service, which is scalable storage in the cloud.

S3 is basically an object-store.

Figure 5-21.  The build folder in React app

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

186

Log in to AWS Console Management, and click the All service

hyperlink at the top, and you find S3 under the Storage category, as shown

in Figure 5-22.

Clicking S3 brings you to the page containing the bucket’s details, as

shown in Figure 5-23.

Figure 5-22.  S3 service under Storage category on AWS

Figure 5-23.  Buckets details on Amazon S3

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

187

A bucket is a collection of objects that are files belonging to that

container. Figure 5-23 shows that a bucket is available in Amazon S3.

Figure 5-24 shows that this bucket contains all the JARS that you

deployed in previous chapters, as shown in.

AWS fetches all the required JARs from S3, which you can think of as

primarily a storage service in AWS. If you want to store something like a

backup file, archival file, data staging, or logs file, you use S3 in AWS.

S3 can also serve static websites, and that is the feature which

you deploy React applications. S3 provides high durability and high

availability.

While buckets are associated with regions, when you use S3, you are in

a global space that means a global service, and you are not really selecting

a region, as shown in Figure 5-25.

Figure 5-24.  Bucket contains JARs

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

188

Next, you deploy the React app in AWS S3.

�Create a Bucket
Open the Create bucket page, as shown in Figure 5-26.

Figure 5-26.  Creating UserRegistrationApp using Spring Initializr

Figure 5-25.  Selecting S3 means global service

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

189

Here, you need to provide general configuration information. While

entering the bucket name, across AWS, the Bucket name should be

globally unique. Enter user-registration-frontend-app in Bucket name,

leave the other options on the page as is, and then click the Create bucket

button. You should get a success message, as shown in Figure 5-27.

Here, you can see that two buckets were created in AWS S3. Click the

newly created bucket named user-registration-frontend-app, which

takes you to user-registration-frontend-app, as shown in Figure 5-28.

Figure 5-27.  Creating UserRegistrationApp using Spring Initializr

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

190

Here, the objects are empty because it is a newly created bucket. Click

the Upload button to upload all the content from the local system in the

build folder, as shown in Figure 5-29.

Figure 5-28.  user-registration-frontend-app with object details

Figure 5-29.  Upload files in build folder to S3 bucket

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

191

Next, click the Upload button at the bottom of the page. Once the

files are uploaded successfully, you get a success message, as shown in

Figure 5-30.

Now, under the Objects tab, you see all the objects present in the user-

registration-frontend-app bucket. Figure 5-31 shows the static folder

and all the files you have uploaded to the bucket.

Figure 5-30.  Uploaded files and folder to AWS S3

Figure 5-31.  Creating UserRegistrationApp using Spring Initializr

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

192

To host a website, go to the Properties tab, scroll down to Static
website hosting, and then click Edit, as shown in Figure 5-32.

Next, select Enable for static website hosting, select Host a static
website as the hosting type, and enter index.html as the index document,

as shown in Figure 5-33.

Figure 5-32.  Static website hosting

Figure 5-33.  Update static website hosting details

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

193

The index.html file was uploaded to the S3 bucket. Save the changes.

Now you can find the bucket website endpoint URL in the Properties tab,

as shown in Figure 5-34.

Clicking the bucket website endpoint URL gives a 403 Forbidden error,

as shown in Figure 5-35.

The Access Denied error is due to S3 security issues. By default, all the

objects you have uploaded have Block public access in the Permissions

tab, as shown in Figure 5-36.

Figure 5-34.  Bucket website endpoint URL

Figure 5-35.  Creating UserRegistrationApp using Spring Initializr

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

194

To make all the bucket’s content public so that it is accessible on the

Internet, click Block public access, uncheck Block all public access, and

click Save changes, as shown in Figure 5-37.

Figure 5-36.  By default, all objects block public access

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

195

A confirmation screen pops up to confirm the settings. You need to

enter confirm in the input box and click the Confirm button, as shown in

Figure 5-38.

Figure 5-37.  Creating UserRegistrationApp using Spring Initializr

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

196

A success message should appear, as shown in Figure 5-39.

Now, you need to edit the bucket policy, which is written in JSON. It

provides access to the objects stored in the bucket. To edit bucket policy,

in the Permissions tab, scroll down to the Bucket policy section, and click

the Edit button, and enter the JSON under Policy, as shown in Figure 5-40.

Figure 5-38.  To confirm the settings, enter confirm in the field

Figure 5-39.  Successfully edited Block Public Access settings for bucket

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

197

Listing 5-18 shows the JSON for a bucket policy.

Listing 5-18.  JSON for Bucket Policy

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Sid":"AddPerm",

 "Effect":"Allow",

 "Principal": "*",

 "Action":"s3:GetObject",

 �"Resource":["arn:aws:s3:::user-registartion-frontend-

app/*"]

 }

]

}

Figure 5-40.  Update bucket policy

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

198

Resource contains the bucket name, which is user-registration-

frontend-app, to identify the resource for the bucket policy. This JSON

specifies a specific version. GetObject in Action allows access to all

principals. All users can execute GetObject on user-registration-

frontend-app.

Next, save the changes, which prompts a message stating, “This bucket

has public access.” Refresh the browser with the bucket website endpoint

URL. You can now access your home page, as shown in Figure 5-41.

Congratulations! You have successfully hosted your static React app in

AWS S3 and can access the home page.

�Verify the Successful Deployment of a React
Front-end Application: Resolve a 404 Error
Click the List All Users button in the navigation bar on the home page. You

get 404 Not Found errors, as shown in Figure 5-42.

Figure 5-41.  Bucket website endpoint URL in home page

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

199

To resolve this issue, you need to update the Error document box to

index.html. To make these changes, you need to go to the Properties tab

under the bucket. Scroll down to Static website hosting, click Edit, and

update the error document, as shown in Figure 5-43.

Figure 5-42.  List All Users page throws 404 error

Figure 5-43.  Update Error document in Static Website Hosting

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

200

This is the way react-router works. It handles the requests from the

front-end and routes users to other routes. Save the changes and refresh

the browser to view the List All Users page, as shown in Figure 5-44.

�Summary
This chapter introduced React as a front-end framework and its major

components to develop a single-page application using React as the front

end to consume the API exposed by the back-end application. You set

up a development environment to develop a React front-end application

and were introduced to S3 in AWS, where you deployed a React front-end

application.

Figure 5-44.  Access list-all-users page hosted on AWS S3

Chapter 5 Deploy a Full Stack Spring Boot React Application in AWS and S3

201© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

�APPENDIX A

Install MySQL
Workbench on
Windows 10
MySQL Workbench is a visual database designing and modeling access

tool used to add functionality and ease to SQL development work. MySQL

Workbench facilitates creating new physical data models or modifying

existing MySQL databases and provides data modeling, SQL development,

and various administration tools for configuration. It also offers a graphical

interface to work with MySQL databases in a structured way.

�Step 1. Download Workbench
Go to the official MySQL Workbench download site (https://dev.

mysql.com/downloads/workbench/). You see the options to download

https://doi.org/10.1007/978-1-4842-7392-0#DOI
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/

202

Workbench, as shown in Figure A-1. The MySQL Workbench version that

was available when writing this tutorial was 8.0.25.

Clicking the Download button takes you to the next page, which

asks you to either log in to download or download directly, as shown in

Figure A-2.

Figure A-1.  MySQL Workbench

Appendix A Install MySQL Workbench on Windows 10

203

Complete the MySQL installer download by following either of the

approaches.

Figure A-2.  MySQL community download

Appendix A Install MySQL Workbench on Windows 10

204

�Step 2. Install Workbench
Double-click the downloaded MySQL Workbench installer to execute it. It

shows a “Welcome to the Setup Wizard” screen, as shown in Figure A-3.

Figure A-3.  Welcome screen

Appendix A Install MySQL Workbench on Windows 10

205

Click the Next button to continue the MySQL Workbench installation.

The following screen asks you for the destination folder, as shown in

Figure A-4.

Figure A-4.  Destination folder

Appendix A Install MySQL Workbench on Windows 10

206

Change the path if required and then click the Next button. The next

screen offers the setup type options, as shown in Figure A-5.

Figure A-5.  Destination folder

Appendix A Install MySQL Workbench on Windows 10

207

Select the Custom setup type to make changes. Then, click the Next

button to view the custom options, as shown in Figure A-6.

Figure A-6.  Custom setup

Appendix A Install MySQL Workbench on Windows 10

208

You can omit Program Shortcut by clicking it and selecting This
feature will not be available (if required). Then, click the Next button to

confirm MySQL Workbench installation, as shown in Figure A-7.

Figure A-7.  Ready to install

Appendix A Install MySQL Workbench on Windows 10

209

Click the Install button to start the installation. The installer asks for

your system’s permission. Grant the permissions to allow the installation

process. It displays the progress, as shown in Figure A-8.

Figure A-8.  Copying new files

Appendix A Install MySQL Workbench on Windows 10

210

After completing the installation, a Wizard Completed success screen

is displayed, as shown in Figure A-9.

Figure A-9.  Wizard completed

Appendix A Install MySQL Workbench on Windows 10

211

Once you click the Finish button, the installer starts MySQL

Workbench. The default window looks like the one shown in Figure A-10.

Figure A-10.  Welcome to MySQL Workbench

Appendix A Install MySQL Workbench on Windows 10

212

Your MySQL server connection contains information about the target

database server, including how to connect to it. Click the + icon on the

MySQL Workbench home window to open the Setup New Connection

wizard, as shown in Figure A-11.

Figure A-11.  Setup New Connection wizard

Appendix A Install MySQL Workbench on Windows 10

213© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

�APPENDIX B

AWS Command-Line
Interface (CLI)
The AWS Command Line Interface (CLI) manages AWS services from a
terminal session that allows you to configure and control multiple AWS
services by implementing a level of automation without logging in to the
AWS Management Console.

Many popular tools, like Terraform, Jenkins, and Python scripts,

support CLI access to create infrastructure as code (IAC), which creates

the entire infrastructure. For example, if you want to create an S3 bucket

in AWS, you don’t have to log in to the AWS Management Console and

visit different-different pages on AWS to enter lots of details for this bucket

creation. Instead, create some code with the required information, like the

bucket name and so on, and run that code, which creates the S3 bucket

automatically.

Let’s explore how to install AWS CLI in Windows and how to use the

AWS CLI.

https://doi.org/10.1007/978-1-4842-7392-0#DOI

214

�Step 1. Download and Install the AWS CLI
on a Windows Operating System
First, you need to download the AWS CLI (https://aws.amazon.com/

cli/), which asks you to save the MSI standalone package in your local

system. Once downloaded, run it, and follow the steps by clicking the Next

buttons and the Finish button.

Once installation is completed, the program files are stored at

C:\Program Files\Amazon\AWSCLIV2.

�Step 2. Create an Access Key
When you create an AWS account using AWS Management Console, AWS

creates a root user who has administrative rights to perform many talks in

AWS. You need to create an IAM user in your AWS account to provide the

necessary rights.

Log in to AWS Management Console, and in All Services, you can find

IAM under the Security, Identity, & Compliance category, as shown in

Figure B-1.

Figure B-1.  IAM under Security, Identity, & Compliance

Appendix B AWS Command-Line Interface (CLI)

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

215

Clicking IAM takes you to the IAM page, where you find the My access
key link, as shown in Figure B-2.

Clicking My access key gives you the Create New Access Key option, as

shown in Figure B-3.

Figure B-2.  My access key

Appendix B AWS Command-Line Interface (CLI)

216

Clicking the Create New Access Key button opens a Create Access Key

popup, with a Download Key File option and a Show Access Key option, as

shown in Figure B-4.

Download the file for future reference.

Figure B-4.  Create access key

Figure B-3.  Create a new access key

Appendix B AWS Command-Line Interface (CLI)

217

�Configure AWS CLI
Once you have successfully installed the AWS CLI, you need to configure

the application to connect to your AWS account. To achieve this, open

the command prompt, and enter the aws configure command, which

prompts you for four pieces of information, as shown in Figure B-5.

Copy the access key ID and the secret access key from the downloaded

key file, which authenticates your AWS account. The region name defines

the region where the request from CLI is sent to. The output format

specifies the result format: JSON, YAML, text, or table.

�Example Commands That Work with S3

	 1.	 List all the S3 buckets in your AWS account.

aws s3 ls

Figure B-5.  AWS configure

Appendix B AWS Command-Line Interface (CLI)

218

	 2.	 Create a bucket.

aws s3 mb s3://user-registration-backup

	 3.	 Verify in AWS Management Console.

	 4.	 Refer to the folder at C:\Program Files\Amazon\

AWSCLIV2\awscli\examples for an example

with a command that you can use based on your

requirements.

Appendix B AWS Command-Line Interface (CLI)

219© Ravi Kant Soni and Namrata Soni 2021
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

Index

A
Amazon Web Service (AWS)

account developer
billing information, 14
categories, 19
contact information, 12
features, 9
main page, 10
management console, 18
password option, 18
phone number verification, 15
sign in, 16–17
sign up, 11
support plan, 16
verification purposes, 13

application architecture, 9
elastic beanstalk (see Elastic

beanstalk server)
elastic cloud compute (EC2),

5–6
hosting platform, 2
key services, 4
management console, 3
overview, 1
relational database service, 8
Route 53, 8
worldwide data centers, 2

Application Programming
Interface (API)

Axios, 164
Java Persistence API, 113
REST, 41–75
Swagger UI, 135
UserRegistrationApp project,

126–128

B
BaseURL, 181–182
Buckets page creation

block public access, 194–196
confirm button, 196
details, 186
home page, 198
object details, 190
policy section, 196
spring initializr, 188–189
upload files/folder, 190–191
UserRegistrationApp, 191
website endpoint, 193

C
Command line interface (CLI)

access key

https://doi.org/10.1007/978-1-4842-7392-0#DOI

220

button option, 216
security/identity/

compliance category, 214
my access key option,

215–216
configuration, 217
MSI standalone package, 214
S3 buckets, 217–218
tools, 213

Cross-origin resource
sharing (CORS), 150

CRUD operations, 26, 103, 117,
143, 157

D
Data access object (DAO), 114–116
Database connection

configuration, 84
dashboard, 80
database details, 82–83
enable options, 81
engine options, 81
environment, 83–84
instances, 85–86
options, 84–85
services, 78

E
Elastic beanstalk server

application information, 22

button code, 23
compute section, 20
congratulations screen, 25
deploy/handle server, 7–8
development process, 26
environment details, 23–24
front-end applications, 181
health status, 24
HelloWorld JSP (see HelloWorld

JSP application)
logs, 25
page information, 20
platform details, 22–23
spring boot application, 67–72
UserRegistrationApp project,

130–136
WAR (see WAR file)
web app page, 21

Elastic cloud compute (EC2), 5–6

F, G
Front-end applications

BaseURL, 181–182
CORS error, 150
create-react-app package

add-user component,
168–171

Axios HTTP library, 164
BrowserRouter object, 161
components (react),

165–179
CRUD operation, 157
data service, 165

Command line
interface (CLI) (cont.)

INDEX

221

DELETE requests, 176
files, 154–157
full stack, 144
home component, 166–167
home page, 156
navbar, 159–160
node_modules folder, 158
npm start command, 155
npx command, 151
project structure, 152–154
react-router package,

160–164
render method, 171–174
sub-components, 174–180
success message, 155
switch/route/render

routes, 162
Twitter bootstrap, 157–159
user registration app,

152, 167
deployment, 183–185
developer tools, 182
development environment,

144–149
elastic beanstalk

environment, 180
node.js/npm version, 149
overview, 144
react app

components, 147
constructor, 147
life cycle, 147–149
root components, 145
router and axios, 145

state and render method, 146
Stateful method, 147

S3 (see Simple Storage
Service (S3))

H
HelloWorld JSP application

archetype selection, 28
browser, 31
maven project, 26–27
parameter selection, 29
project directory, 29
running server, 31
targeted runtimes, 30

I
Inbound connection

drop-down list, 90
edit option, 90
info page, 88
rds-launch-wizard, 89
rules tab, 89
security group rules, 88
updated source, 91

J, K
Java Archives (JARs)

spring boot
command prompt, 67
directory, 66
edit configuration window, 64

INDEX

222

maven process, 63
output process, 65

UserRegistrationApp project,
129–130

L
Lombok dependencies

getter/setter/toString/equals
method, 108–109

installation, 109–110
m2 directory, 109
objectives, 108
spring tool suite, 111

M, N, O, P, Q
MySQL workbench, 201

community download, 203
copying files, 209
custom setup, 207
destination folder, 205–206
download site, 201–203
installation process, 208
relational database service

connection wizard, 93
connectivity/security tab, 91
db connection details, 96
endpoint/port, 92
store password, 95
test connection button, 95
updated value, 94

setup connection, 212

welcome screen, 204
wizard completion, 210–211

R
Relational database service (RDS),

8, 77
configuration work

database instance status,
86–87

inbound connection
rules, 88–91

MySQL Workbench, 91–96
database (see Database

connection)
inbound (see Inbound

connection)
table creation

insert data, 100
schema tab, 97
SELECT command, 101
SQL editor, 96–97
UserRegistration database,

98–99
users table, 101

web service, 78
Representational state

transfer (REST)
controller implementation,

117–120
delete existing user, 126–128
HTTP response status

codes, 43–44
new user creation, 124

Java Archives (JARs) (cont.)

INDEX

223

Postman, 122
RESTful web resources, 42, 150
individual user, 123–124
S3 app, 143
Spring Boot application, 41–75
Swagger UI page, 135–137

Route 53, 8

S, T
Simple Storage Service (S3)

access list-all-users page, 200
buckets page (see Buckets page

creation)
error document, 198–200
global service, 188
static website hosting

bucket website endpoint, 193
index.html, 192–193
properties tab, 192

storage category, 186
Spring Boot application

cloud application, 73
development framework, 42
elastic beanstalk

environment properties,
71–72

health application, 72
Hellospringboot-env

creation, 70
Java platform, 69
project creation, 67–68
severe health, 70–71

JAR app creation, 63–67

logs, 74–75
overview, 41
REST (see Representational

state transfer (REST))
server port, 61–62
STS (see Spring Tool

Suite (STS))
Swagger, 56–61
system requirements, 44
UI Swagger dashboard, 74
UserRegistrationApp (see

UserRegistrationApp
project)

walk-through
annotations, 52
main method, 53
pom.xml file, 48–51
@RestController/@

RequestMapping
annotations, 53

SpringApplication.run()
method, 51–53

Spring Tool Suite (STS), 26
console application, 55
HelloSpringBoot creation, 46
project structure, 48
wizard, 45
REST endpoint, 55
WAR and JAR files, 53–55
web dependency, 46, 47

Swagger UI
API documentation page, 60
configuration class, 57–59
definition, 56

INDEX

224

front-end/back-end
components, 56

JSON output, 59
REST endpoints, 61
specification, 57
Springfox dependency, 57
UserRegistrationApp project,

126–128
documentation page,

135–136
endpoints and model

structure, 137
JSON Data, 139–141
list users, 138–139
user creation, 140

verification, 59

U, V
UserRegistrationApp project

application properties, 111–112
details, 104
domain implementation

(UserDTO), 112–114
elastic beanstalk

edit software
configuration, 134

environment information,
131–134

healthy application, 134–135
managed platform, 132
management console, 130

upload application code, 133
JAR application, 128–129
Lombok (see Lombok

dependencies)
maven dependencies, 105–108
pom.xml file, 105–108
project structure, 105
repository interface

(UserJpaRepository),
115–117

REST controller
(UserRegistration
Controller), 117–120

running/testing app
existing user, 126
individual user, 124–125
local system, 121
new user, 124–125
retrieve users (/api/users),

122–123
STS console, 122
Swagger UI page, 126–128

service implementation,
116–117

spring initializr creation, 104
Swagger UI page

documentation page,
135–136

endpoints and model
structure, 137

JSON Data, 139–141
list users, 138–139
user creation, 140

Swagger UI (cont.)

INDEX

225

W, X, Y, Z
WAR file

accessing application, 39
application code, 38
build success, 32–33
Elastic Beanstalk, 34

environment process, 35–36
grouped categories, 36
health/events, 39
maven project, 32
server platform, 37
target folder, 33

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: An Introduction to Amazon Web Services (AWS)
	Introduction to Amazon Web Services
	AWS Key Services
	Elastic Cloud Compute (EC2)
	Elastic Beanstalk
	Relational Database Service (RDS)
	Route 53

	Use Case: AWS Application Architecture
	Create a Free AWS Account for Developer
	Explore and Create an AWS Elastic Beanstalk Server
	Create a HelloWorld JSP Application, Build WAR with Maven, and Upload WAR to Elastic Beanstalk
	Create a HelloWorld JSP Application
	Package a WAR File Using Maven
	Upload WAR to Elastic Beanstalk

	Summary

	Chapter 2: Deploy a Spring Boot Application as a REST API in AWS
	Build a Spring Boot Application as a REST API
	Introduction to REST
	System Requirements
	Create Spring Boot Application Using Spring Tool Suite
	A Walk-Through
	pom.xml
	Write the Code
	@SpringBootApplication Annotation
	@RestController and @RequestMapping Annotations
	The main Method

	Run a Spring Boot Application in STS

	Add Swagger UI to a Spring Boot Application
	Introduction to Swagger 2
	Add Dependency in a Maven POM
	Configure Swagger 2 into a Project
	Configuration Verification
	Swagger UI

	Configure the Server Port for a Spring Boot Project
	Build a JAR for a Spring Boot Application
	Deploy a Spring Boot Application in AWS Elastic Beanstalk
	Test a Spring Boot Application as a REST API in the Cloud
	Explore Logs from Elastic Beanstalk
	Summary

	Chapter 3: Deploy MySQL as a Database in AWS with RDS
	Introduction to Amazon RDS (Amazon Relational Database Service)
	Create an Instance of the RDS Database in AWS
	Configure Amazon RDS
	Step 1. Configure Security for Inbound Connection Rules
	Step 2. Test an Amazon RDS Database Instance Connection with MySQL Workbench
	Connect MySQL Workbench to an Amazon RDS MySQL Database Instance

	Create a Table Inside an RDS Database Instance
	Summary

	Chapter 4: Deploy a Spring Boot Application Talking to MySQL in AWS
	Create Spring Boot UserRegistrationApp Talking to MySQL Database
	Maven Dependency in pom.xml
	Project Lombok
	Application Properties
	Domain Implementation: UserDTO Entity Class
	Repository Implementation: UserJpaRepository
	Service Implementation: UserService
	REST Controller Implementation: UserRegistrationController

	Run and Test UserRegistrationApp Locally
	Retrieve All Users: /api/users
	Retrieve an Individual User: /api/user/id/{id}
	Create a New User: /api/user/save
	Delete an Existing User: /api/user/delete/id/{id}
	Swagger UI: API Documentation

	Build a JAR for a Spring Boot Application
	Deploy the UserRegistrationApp Spring Boot Application in AWS Elastic Beanstalk
	Test Deployed REST API in AWS Using Swagger UI
	List All Users: /api/users
	Create New Users: /api/users

	Summary

	Chapter 5: Deploy a Full Stack Spring Boot React Application in AWS and S3
	Develop and Run React as a Front-End Application
	Introducing React as a Front-end Framework
	React Components
	React State
	Constructor
	A React Component’s Life Cycle

	Set up a Development Environment
	Cross-Origin Resource Sharing (CORS) Error
	Developing React Front-End Application with create-react-app
	Review the Project Structure
	Run a React App
	Add Twitter Bootstrap to Style the React App with CSS
	Add a Navbar
	Add react-router
	BrowserRouter Object to Enable Routing
	Switch and Route to Render Routes

	Initialize Axios for a REST API Call
	Data Service to Send an HTTP Request
	Create React Components Corresponding to Routes
	Home Component
	Add Users Component
	List All Users Component

	Build React Code as a Front-end Application for AWS
	Verify the AWS Elastic Beanstalk Environment Is Up
	Update BaseURL in a React App with an AWS Elastic Beanstalk Environment URL
	Build React Code for AWS Deployment

	Deploy a React Front-End to AWS S3: Hosting a Static Website
	Introduction to S3: Simple Storage Service in AWS
	Create a Bucket
	Verify the Successful Deployment of a React Front-end Application: Resolve a 404 Error

	Summary

	Appendix A: Install MySQL Workbench on Windows 10
	Step 1. Download Workbench
	Step 2. Install Workbench

	Appendix B: AWS Command-Line Interface (CLI)
	Step 1. Download and Install the AWS CLI on a Windows Operating System
	Step 2. Create an Access Key
	Configure AWS CLI
	Example Commands That Work with S3

	Index

