Spring Boot with
React and AWS

Learn to Deploy a Full Stack Spring
Boot React Application to AWS

Ravi Kant Soni
Namrata Soni

ApPress’

Spring Boot with
React and AWS

Learn to Deploy a
Full Stack Spring Boot React
Application to AWS

Ravi Kant Soni
Namrata Soni

Apress’

Spring Boot with React and AWS: Learn to Deploy a Full Stack Spring Boot
React Application to AWS

Ravi Kant Soni Namrata Soni

s/o - Late. Ras Bihari Prasad, Sri Niwash, d/o - Late. Ras Bihari Prasad, Sri Niwash,
Lashkariganj, Sasaram, Bihar, India Lashkariganj, Sasaram, Bihar, India
ISBN-13 (pbk): 978-1-4842-7391-3 ISBN-13 (electronic): 978-1-4842-7392-0

https://doi.org/10.1007/978-1-4842-7392-0

Copyright © 2021 by Ravi Kant Soni and Namrata Soni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484273913. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7392-0

To my beloved father,
the late Ras Bihari Prasad
We miss you and love you, Papa. A strong and gentle
soul who taught us to trust God and to believe in ourselves
and our dreams.

To my beloved mother,
Smt. Manorma Devi
We love you, Maa. We could never have completed this
book without your true love, warmest support, and
constant encouragement.

Table of Contents

About the AUthOrS.........ccccmmmsmmmsssnssmsssnmssssnsssssssssssnsssssnsssssnsssssnnssssnnnnns ix
About the Technical REVIEWETccccsssssmsssssnsmsssnsssssnsssssnsssssnsssssnnsnns xi
Acknowledgmentsccccuuseenmmssssnsnnmssssssnsesssssnssesssssnnssssssssnssssssnnnnssss Xiii
Chapter 1: An Introduction to Amazon Web Services (AWS)cceesseeu 1
Introduction t0 Amazon Webh SErviCeScuvurererererernererese e 2
AWS KBY SEIVICES ...cvrueerreererererseserresesessesessese s sessssessssesssssssssssessssssesssssssssssenes 4
Elastic Cloud Compute (EC2)ccovrererenerensereresesese s sessesessssesennes 5
Elastic BeanStalKccoveererermrnscrnese s 7
Relational Database Service (RDS)........ccccorrrerrrenerenernsesesenesesesesesessesesenns 8
ROULE 53 ... s 8
Use Case: AWS Application ArchiteCtureccoveeeeresernsesesssesnsesessesessesesessesenns 9
Create a Free AWS Account for DEVEIOPETccvvererevinsnienensser s 9
Explore and Create an AWS Elastic Beanstalk Server..........ccccoovvvvrverennsnienens 19
Create a HelloWorld JSP Application, Build WAR with Maven,
and Upload WAR to Elastic Beanstalkc.ccococvvrenninsnincsnsnsenesesessessennes 26
Create a HelloWorld JSP Applicationccccovevninnnsnnesninsesssesese e 26
Package a WAR File Using Mavenccccoovonvninnnnsnneniess s sessessesns 32
Upload WAR to Elastic Beanstalk...........ccccoorirvrnnnenininsnnerercesseesesenenns 34
SUMMAIY..c ettt s s s b e e e b e e e aenrs 40

TABLE OF CONTENTS

Chapter 2: Deploy a Spring Boot Application as a

REST APLin AWS......cocccmmmmmsnnnmmmsssssnmssssssnnssssssnsnssssssnnnsssssnnnnsssssnnnnnssss 41
Build a Spring Boot Application as a REST APL..........ccccocecrvnennnnnnnenennsensennens 42
INtroduction 10 REST ... 42
System ReqQUIrEMENTSccovceeerererecrr s 44
Create Spring Boot Application Using Spring Tool Suite........c.ccccceeevviniennne 45
AWaIK-TRFOUGNcovieireerree s nnnnens 48
Run a Spring Boot Application in STS........cccovirinnnnnnn e 53
Add Swagger Ul to a Spring Boot Applicationcccocevvvnirinnnnnnennsensenaens 56
Introduction 10 SWagQer 2.........ccvvererererne s 56
Add Dependency in @ Maven POM...........cccccvveennennnnennsesesesssssesessesessenens 57
Configure Swagger 2 into @ Project..........coouevnrerersnernsesessesesesesessesessesensnnes 57
Configuration VErificationccvevrenernnsnsesensse s 59
31 1o To L= L S 60
Configure the Server Port for a Spring Boot Projectcccvvvrnienenenernnsennns 61
Build a JAR for a Spring Boot Application...........ccccvevevrvnienennsensenie e sessessennens 63
Deploy a Spring Boot Application in AWS Elastic Beanstalkcccceevvvieriennene 67
Test a Spring Boot Application as a REST APl in the Cloudccveevvverrerieraene 73
Explore Logs from Elastic Beanstalk...........c.cccoovvnininninsnnnnsnsne s 74
SUMMANY....eieeereere e n e e e e 75
Chapter 3: Deploy MySQL as a Database in AWS with RDS 77
Introduction to Amazon RDS (Amazon Relational Database Service)c.cc..... 78
Create an Instance of the RDS Database in AWS ... 78
Configure AMazon RDS ...t 86
Step 1. Configure Security for Inbound Connection Rules...........cccoeeervrenne. 88

Step 2. Test an Amazon RDS Database Instance Connection with
MySQL WOFKDENCK.......ccierretr st 91

TABLE OF CONTENTS

Create a Table Inside an RDS Database InStance.............cccoverrrnsneseseressnenenes 96
311111117 o O 102
Chapter 4: Deploy a Spring Boot Application Talking to
MySQL in AWS......coiiiiinmmmmmmssnnmmmsssssnmmsssssssnmsssssnssesssssnnsssssssnnssssssnnnnss 103
Create Spring Boot UserRegistrationApp Talking to MySQL Database.............. 103
Maven Dependency in POM.XMIccccvieevnrennnesesssesse e 105
ProjeCct LOMDOK.......ccvrererrnererenersse s s s e s ssssessssssessssessnssssnsenens 108
Application Propertiesccvvrvneniennninsenesnessssessesse s sessessesssssssessessens 111
Domain Implementation: UserDTO Entity ClIassccvruverrnreserrenerensesensenens 112
Repository Implementation: UserdpaRepositoryccccvvvvnvnienenenieniennens 114
Service Implementation: USEISErviCecccvvrivnininiennsnsesesssessenennns 116
REST Controller Implementation: UserRegistrationController..............c....... 117
Run and Test UserRegistrationApp Locally........cocueeeererernsenenenesnsesnsesessesensnnes 121
Retrieve All USErS: /api/USErSccourererreserrnsessssessssssessssessssessssesesssssssssenens 122
Retrieve an Individual User: /api/user/id/{id}..........couurrniernrenenesernsesenenens 123
Create a New USer: /api/USEI/SAVEcocvrererrenerrssessssessssssessssesessessssaessnnes 124
Delete an Existing User: /api/user/delete/id/{id}..........ccocrrrerresernsenenenens 126
Swagger Ul: APl Documentation.............ccovevenenesssesnsessssssesssesessessssssessnnes 126
Build a JAR for a Spring Boot Application..........ccccceevvvrvniniennsnsenesessensensenns 128
Deploy the UserRegistrationApp Spring Boot Application in
AWS EIastic BEANSTAIKcccoerererrnemneseresisssesesessssssssesessssssssssessssssssssnens 129
Test Deployed REST APl in AWS Using Swagger Ul.........ccccovvnvninnennsennensennns 135
List All USErS: /api/USEIS......cccrereirnninesiesis s s e se s e sssssssessesnes 137
Create New USErs: /api/USErS.......cccuuvrrierisnsenesnessn s sesse s ssssessessesnes 139
SUMMANY....ceeeerercseree s se s s e e nr e e 141

vii

TABLE OF CONTENTS

Chapter 5: Deploy a Full Stack Spring Boot React Application

iN AWS and S3cccumimmmmmsmmmmmsnsmmmsssmmsssnsmsssssssssssssssnssssnsssssnssnssnnnnns 143
Develop and Run React as a Front-End Application..........c.cccevvvvnininncniennenn 145
Introducing React as a Front-end Framework.........c.coccocvveernnnnneneriesennnnes 145
Set up a Development ENVironmentc.occoveevrenenenesnsssesesesesesenenenns 149
Cross-Origin Resource Sharing (CORS) Errorccovveeerenernnerensenesenerennes 150
Developing React Front-End Application with create-react-app........c..c..... 151
Build React Code as a Front-end Application for AWS.........ccccocvnvnivniniennen 180
Verify the AWS Elastic Beanstalk Environment IS Up.........ccccoovevvrenerincenn 180
Update BaseURL in a React App with an AWS Elastic Beanstalk
ENVIronment URL ..o e ses s sessssesesssssssenens 181
Build React Code for AWS Deployment...........ccovveverenerensesessenesesesensesessenens 183
Deploy a React Front-End to AWS S3: Hosting a Static Websiteccccceneee. 185
Introduction to S3: Simple Storage Service in AWS..........ccccovvvnrenenesennnne 185
Create @ BUCKELcccvvcereerrcse e 188
Verify the Successful Deployment of a React Front-end Application:
ReSOIVE @ 404 EITOKccoeeeecerereresis e s srs e snens 198
SUMMAIY . veiteirerere st s a e e s e s s sae e e e s aesaesae e e e e aesae e e e naenaees 200
Appendix A: Install MySQL Workbench on Windows 10cuuseees 201
Step 1. Download WOrKDENCh...........cccoevevrererescrn e 201
Step 2. Install WOrKDENCHccecvireere e rerer s 204
Appendix B: AWS Command-Line Interface (CLI).........ccusceerssannssssnnss 213
Step 1. Download and Install the AWS CLI on a Windows Operating System ...214
Step 2. Create an ACCESS KeY ... 214
CoNfigure AWS CLIccevererererere e sere s ses e s s sre e s e sse s sssses e ssesaessssessessens 217
Example Commands That Work with S3ccccvvrirnrnininie e 217
11 - 219

viii

About the Authors

L Ravi Kant Soni is a principal full stack

engineer with more than 11 years of IT
experience. He is also an AWS Certified
Solutions Architect. Ravi has experience

in software development, software

design, systems architecture, application
programming, and automation testing. He has
a bachelor’s degree in Information Science and
Engineering from Reva University, Bangalore;
and schooling from Bal Vikash Vidyalaya, Sasaram, and Bihar (India).

He is the author of Build Microservices with Spring Cloud and Spring

Boot (codered eccouncil, 2021), Full Stack Angular]S for Java Developers
(Apress, 2018), Spring: Developing Java Applications for the Enterprise
(Packt, 2017), and Learning Spring Application Development (Packt,

2015). He is also an esteemed member of the Board of Studies at the REVA
University School of Computing and Information Technology in Bangalore.
Contact Ravi at www. 1inkedin.com/in/novembero3ravikantsoni/.

ix

http://www.linkedin.com/in/november03ravikantsoni/

ABOUT THE AUTHORS

Namrata Soni is a self-taught web application
developer with a passion for beautiful and
interactive Uls. She has a degree in computer
science from Sagar Institute of Science &
Technology, Bhopal; and schooling from Bal
Vikash Vidyalaya, Sasaram, and Bihar (India).
She loves clean and well-tested code, is a

big fan of open source, and enjoys learning

something new. Currently, she is working
with React and Node.js to craft modern JavaScript applications. Contact
Namrata at waw. linkedin.com/in/september-6-namrata-soni/.

http://www.linkedin.com/in/september-6-namrata-soni/

About the Technical Reviewer

Karunesh Chandra Tiwari is an IT professional
with ten years of experience and has worked
across distinct technologies and domains. He is
a technologist and speaker and loves to provide
his views on articles and blogs.

Karunesh is a BTech IT graduate from
Anna University. He worked as a full stack
developer for the first half of his career and
currently works with BPM and CRM tools
and cloud-related technologies, including

developing and working with applications for
some of the world’s leading banks. He is a very focused and determined
person and loves to learn, work in new technologies. He loves to mentor
people both from a professional and a personal perspective.
Karunesh enjoys working with new technologies and loves to
mentor people. Check out his LinkedIn profile at www. Llinkedin.com/in/
karunesh-chandra-tiwari-20b9a82a/.

http://www.linkedin.com/in/karunesh-chandra-tiwari-20b9a82a/
http://www.linkedin.com/in/karunesh-chandra-tiwari-20b9a82a/

Acknowledgments

Writing a technical book involves fathomless research, review, and
support. I wrote this book, but it wouldn’t have been possible without the
love and support of many people. I truly want to thank everyone listed
here, from the deep bottom of my heart!

First and foremost, I need to express gratitude toward Michael Gorriz,
Group Chief Information Officer, Standard Chartered Bank, for inspiring
me and giving me the confidence to write this book when I anticipated my
career break. All T can offer in return is a heartfelt thank you!

I want to thank my colleagues at Standard Chartered Bank. I learn
something new every day and enjoy a camaraderie I've never felt in any
company before. I am fortunate enough to work with such an experienced
team that helped me enhance my skills. My gratitude goes to Anshu
Sharma Raja, CIO, Consumer Private Business Banking at Standard
Chartered Bank, and Dr. Ashish Chandra, Location Head- aXess Labs
(Banking Innovation) at Standard Chartered Bank; for their guidance and
strong support.

I'want to thank the Apress publishing team for the utmost
professionalism. The one individual who has been the roof of this shelter
is Divya Modji, coordinating editor, for supporting me in the writing of this
book. Also, I would like to express my special gratitude to James Markham,
development editor, whose vision, commitment, and persistent efforts
made publishing this book efficient.

My heartfelt thanks go to the technical reviewer, Karunesh Chandra
Tiwari, for his valuable input.

xiii

ACKNOWLEDGMENTS

My deepest gratitude and appreciation go to my dear friend Awanish
Kumar, IAS - Deputy Commissioner, Delhi; for the intellectual stimulus
from time to time, which helped me approach the book from a unique
perspective.

Thanks to my dearest friend, Dr. Meena Soni (Incharge Medical
Officer, Surajpur - Basdei, and Chhattisgarh), for invariably motivating,
encouraging, and giving me positive thoughts that worked as fuel to carry on.

Without my families’ love, support, and understanding, this book
would have remained a virtual commodity. My profound thanks to my
beloved mother, Smt. Manorma Devi, for her love and support, which
encourages my knowledge to come out on paper to ignite the imagination
of others.

My special thanks go to a man who has been a rock of stability
throughout my life and whose loving spirit sustains me still—my uncle
Shri. Arun Kumar Soni for the great inspiration he has given me to achieve
all success in life. Thanks also to my brothers, Shashi Kant and Shree Kant,
and all my family members who have loved me.

My special thanks to my co-author and sister, Namrata Soni, for
agreeing to co-author this book and helping me write Chapter 5, which
discusses React and AWS S3. I'm still amazed that she agreed to get
involved with this book, considering how enormously busy she is.
Namrata, thank you!

I want to thank the goddess Maa Tara Chandi, Sasaram, Bihar, India;
for giving me to such an extent.

Finally, this book is based on the innovative work of many people in
our industry who have become my idols. I am thankful to everyone who
supported me in one way or another in writing this book.

Welcome to Spring Boot with React and AWS.

—Ravi Kant Soni

Xiv

CHAPTER 1

An Introduction
to Amazon Web
Services (AWS)

When you hear the word amazon, you likely first think of Amazon.com,
which is one of the biggest and most successful online stores. While
Amazon built its brand on developing online retail services, it has also
branched out into alternative industries, among them the web services
industry, where they have the eponymous Amazon Web Service (AWS),
a form of cloud-computing that assists users develop software, database,
and other programs that need heavy-duty computing resources.

This chapter overviews Amazon Web Services (AWS), including several
AWS key services, such as Amazon Elastic Compute Cloud (Amazon EC2),
AWS Elastic Beanstalk, Amazon Relational Database Service (Amazon
RDS), and Amazon Route 53. It covers creating a free AWS account for
developers, creating an Elastic Beanstalk server, creating a HelloWorld JSP
application, building a WAR file with Maven, and uploading it to Elastic
Beanstalk.

© Ravi Kant Soni and Namrata Soni 2021 1
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_1

https://doi.org/10.1007/978-1-4842-7392-0_1#DOI
http://amazon.com

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Introduction to Amazon Web Services

What precisely is Amazon Web Services (AWS)? At a really high level,
AWS is a web-hosting service offered by Amazon, where you can deploy
your web applications and conjointly deploy your databases. Once it’s
deployed, your apps are out there online. Anyone can simply enter your
URL (Universal Resource Locator) in their web browser to access your
application. The web connects everybody. You can deploy your application
online within the cloud, so that anyone can access it. It’s not only running
locally; it’s now running online.

AWS is a full-service cloud platform. It is more than just an application
hosting platform. There are plenty of belongings you do with AWS.

e On-demand delivery of IT resources via the web

¢ You can spin up servers on-demand, and you can
choose your operating system.

e You can even deploy databases within the cloud,
and you get more options for the database as you
wish.

e Pay-as-you-go pricing model

o This book uses free developer accounts. You can get
a free developer account for 12 months.

And, the nice thing about using the Amazon Web Services cloud is that
you can be global within minutes because Amazon has worldwide data
centers, as shown in Figure 1-1.

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

LX)
0 1]
& o o o
o © o
(=] oP
00 o]
(%
0
o
o
[+] o
o
O Regions 2
. Coning 000 Source : https://aws.amazon.com/about-aws/global-infrastructure/

Figure 1-1. Amazon data center

You'll be able to deploy your application to a single data center;
otherwise, you'll deploy it to multiple data centers. Also, there are no
restrictions on which data center you'll be able to deploy to.

If you're based mostly within the United States, however, you can
deploy applications to the data center in South America, China, or the Asia
Pacific. It’s completely up to you. The user can select the regions based on
the application usage so that latency is low. There’s no restriction as such
onit.

Once you're logged in to the Amazon console, then essentially, you
choose the services that you simply wish to use. You need to only deploy
your applications to have a pleasant web admin console where you only
configure your environment, configure your servers, then reasonably
push-button deploy. Figure 1-2 shows the AWS services on AWS
Management Console.

CHAPTER 1

AWS services

Find services

¥ou can enter names, keyword or acromyms.

Q, Example: Relational Database Service, database, RDS

¥ Recently visited services

[T} Elastic Beanstalk

¥ All services

{0} Compute
EC2
Elastic Container Service
Lambda
Elastic Beanstalk
ECR

(=) Storage
53
Glacier
Storage Gateway

&4 Database
RDS
DynamoDB
ElastiCache
Amazon Redshift

> Migration
Database Migration Service
Server Migration Service
Snowball

Figure 1-2. AWS

@ ec2

%+ Networking & Content Delivery
VPC
AP| Gateway
Direct Connect

%7 Developer Tools
CodeDeploy

&i] Management Tools
Cloudwatch
CloudFormation
CloudTrail
Config
Systems Manager
Trusted Advisor

{5 Machine Learning
Amazon SageMaker
Amazon Polly
Rekognition
Amazon Translate

AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

= Analyties
EMR
Elasticsearch Service
Kinesis

[Security, |dentity & Compliance
1AM
Guardouty
Inspector
Certificate Manager
CloudHSM
Directory Service

] Application Integration
Step Functions
Simple Notification Service
Simple Queue Service
SWF

4l Internet of Things
loT Core
loT Device Management

This was all about an introduction to Amazon Web Services. Let’s dig

into some of the AWS key Services.

AWS Key Services

AWS offers a wide range of services underneath different categories. This

section explores several AWS key services (see Figure 1-3). First, let’s look

at Amazon Elastic Compute Cloud (Amazon EC2), which may include

remote VMs (virtual machines). Next, you briefly look at AWS Elastic

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Beanstalk, which allows developers to deploy web applications. Then, you
move on to the Amazon Relational Database Service (Amazon RDS), which
is a database within the cloud. Finally, you look at Amazon Route 53, which

routes custom domain names to your application.

‘““amazon
© webservices"

Amazon
EC2

Elastic
Beanstalk Amazon Amazon

RDS Route 53

Figure 1-3. AWS key services

Elastic Cloud Compute (EC2)

Elastic Cloud Compute (EC2) is one of the first web service interfaces when
AWS was released, allowing users to create and configure compute machines
within the cloud. EC2 allows users to create VM (virtual machine) on the
Amazon cloud for running applications that can be accessed via the Internet.

The software can be configured on cloud servers based on your
specifications. You select the operating system (i.e., Microsoft Windows or
Linux) best suited to your requirements or applications, and you get the
operating system pre-installed. EC2 provides the actual host server and
operating system. Figure 1-4 shows how it is set up.

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

- ~

Your Code (WAR / JAR)

Developer

Application Server (like Tomcat) < responsible for this

Language Runtime (like Java)

Operating System

EC2

provides this

Host Server

N

Figure 1-4. How EC2 is set up

If you want any additional software, you must manually install it on
top of the OS as a developer. So, if you want JDK (Java Development Kit),
you can install Java. You can also install Tomcat, a database, and so on. It’s
almost like getting a brand-new laptop that only has the operating system,
and you need to install your tools on top of it.

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Elastic Beanstalk

Elastic Beanstalk is a pre-packaged platform, allowing you to quickly
deploy and handle your web applications without worrying about the
infrastructure. You select a pre-configured virtual machine for your
given web stack, like Java and Tomcat. And, there is no need to install
any additional software’s on the virtual machine. You simply upload the
application’s deployable file, and then you are out there and ready to go.
Elastic Beanstalk automatically provides the application server, language

runtime, operating server, and the host server, as shown in Figure 1-5.

Developer

Your Code (WAR / JAR) responsible for this

7~
Application Server
like Tomcat
Language Runtime
like Java Elastic Beanstalk
provides this
Operating System e
Host Server
\. J

Figure 1-5. Elastic Beanstalk

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

It also has support for .NET, Node.js, PHP, Docker, and so on. You can
choose the web stack that gives you all the software’s pre-installed, pre-
configured, and you simply deploy your code.

It's great for deployment on a web stack, you simply select the services
that you need, and it is set up for you. This is known as platform as a
service, or Paa$S. All you have to do is deploy your code.

Now, when you develop Java applications on AWS, you can use your
regular Java EE APIs. You can also use third-party frameworks like Spring
Boot, Hibernate, and anything in standard Java. Whatever you can run
on Tomcat locally, you can run that same code on Amazon. So, there are
no code changes you need to make and no special Amazon JAR files or
anything.

Relational Database Service (RDS)

AWS Relational Database Service (RDS) is your relational database in the
cloud. This allows you to quickly deploy a relational database in the cloud.
It has support for a wide range of databases to choose from, including
MySQL, Oracle, Microsoft SQL Server, and so on.

You can manage these tools using your normal admin tools. If you are
using MySQL, you can use MySQL Workbench. If you are using the Oracle
Database, you can use Oracle SQL Developer, and the list goes on.

AWS also has support for NoSQL databases such as MongoDB. So,
all major database feature’s that you need can be found in AWS with the
support of the relational Database Service.

Route 53

Amazon Route 53 is a Domain Name System (DNS), which allows you to
route your custom domain names to your actual application on AWS. So,
you configure Route 53 to send requests from the browser to your AWS
application. The AWS DNS sets up your custom domain name.

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Use Case: AWS Application Architecture

For your apps, start with AWS Elastic Beanstalk because you can quickly
get started with deploying your application by leveraging those pre-
configured web stacks out of the box.

Use EC2 if you need some low-level control. For example, you may
want to use a version of Java that Elastic Beanstalk does not support, or you
may want to use a Java application server like WebLogic or make another
OS-specific customization.

Figure 1-6 shows that the architecture uses Elastic Beanstalk to deploy
the web application. The Java application runs on Tomcat. RDS is the
database in the cloud using MySQL. Route 53 routes your custom domain

name to your application hosted on AWS.

" -

Route 53 Elastic Beanstalk Relational Database Service
example.com
Route custom Deploy web applications Database in
domain name the cloud
\ J

Figure 1-6. AWS application architecture

Create a Free AWS Account for Developer

To access Amazon Web Services, you need to create an AWS account. First,
let’s talk about the AWS free tier, where developers get a free 12 months trial
period and enough resources to deploy your application and database for
free. There is also a smaller version of AWS servers that you can use for free.

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

If you need to have some more advanced features, then you must
pay and get access. This book uses the free tier. If you would like more
information on the free tier, go to https://aws.amazon.com/free/.

In your web browser, go to https://aws.amazon.comto open the
Amazon Web Services home page (see Figure 1-7; this screenshot may be
different on your screen due to any updates by Amazon).

AWS in India

Security Compliance in India AWS Partner Network
2
Murmbai region i cor i, el Local and certified APN partners 1o help you
and lnal ata =

Figure 1-7. AWS main page

To create an AWS account, you need to provide your contact
information, including your address, and a valid debit or credit card. Even
though you are using a free account, Amazon needs your credit or debit
card information. So, have it handy when creating your AWS account.

On the top right of the main page, click the Create an AWS Account
button. You are redirected to the sign up for the AWS page, as shown in
Figure 1-8.

10

https://aws.amazon.com/free/
https://aws.amazon.com

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

aws

\“""\-._'-/_?

Sign up for AWS

Email address

Explore Free Tier products with a R B y
You will use this cmail addness to sign in to your new

new AWS account. BWS account

To learn more, visit aws.amazon.com/free.
Password

f@@ _\:‘\\ 5 Confirm password
et

\\\\\\\\

'or your account. You
r account settings atier yo

Sign in to an existing AWS account

Figure 1-8. Sign up for AWS

Enter your email address, password (choose a strong password to
prevent getting hacked), and the AWS account name that you want for
this account. You must be sure that the account information you enter
is correct, especially your email address. If you enter an incorrect email
address, you can’t access your account.

Click the Continue button to enter your contact information, as shown
in Figure 1-9.

11

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Sign up for AWS

Free Tier offers Contact Information

Hew b you plan 1o ute AWST
Busdness - 1o your work, school, of
crgazation

All AWS accounts can explare 3 difforent types
of res ofters, depending on the produdct uted.

Persanal - for your omn projects
% Always froe
-@ Newer cxplres Wha should we cantact about this 2count?
Full Name

12 months froe | |
Start from initial tign-up date

Trials

Start from wnidce Xtvation date

Country or Regian

’ United States v J

Address

State, Provinge, of Rogion

Postal Code
I I

| hawe read 3nd 3gr¢e to the terms of the
AWS Customer Agreamant (.

Figure 1-9. Contact information

First, select the Personal account type. (A business account is
associated with an organization, and a personal account is associated with
an individual.) Enter your full name, phone number, country, address, city,
state, and postal code.

12

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Finally, select the little check box at the bottom to show that you have
read and agree to the terms of the AWS Customer Agreement, and then
click the Continue button.

You receive an email from AWS to confirm that your AWS account has
been created. You can sign in to your new account using the email address
and password you registered with. However, you can’t use AWS services
until you finish your account activation.

Billing information is where you must enter your credit or debit card
number and so forth, as shown in Figure 1-10. It is used for verification
purposes.

13

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

aws
T |

Sign up for AWS

Secure verification Billing Information

Crodit or Debit card numbsr

© W will not chargs for usage bilow]

AW Fros Tior limits. We)
—

tempararity hold INR 2 2t 3 pending VISA . =

pacevTr
-

it arvel dotat carsh, Ta iram

writ EEbon, e cur PAQ

trareaction for 3.5 days to verdty
yaur iSentity.

Espiration date

IE v

Cardnaldors name

Eilling address

0 Ute my contadt 3ddrets
my addrets
bangalore kamataka 560013
IN

Uta 3 now adaress

Figure 1-10. Billing information

Amazon does not charge your card unless your usage exceeds AWS
Free Tier limits. In this book, everything that we show you is within the
Free Tier limits.

AWS requires phone number verification, as shown in Figure 1-11.
Choose your country or region code from the list, enter a phone number
where you can be immediately reached, and enter the characters displayed
in Security Check.

14

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

AWS will call you immediately using an automated system. YWhen prompted, enter the
4-digit number from the AWS website on your phone keypad.

Provide a telephone number

Please enter your information below and click the
"Call Me Now" button.

Country/Region code

-

India (+91)

Phone number Ext
[] |

Security Check

i ©

~
L=

Call Me Now

Figure 1-11. Phone number verification

Once you type the security check characters, click the Call Me Now
button. A verification code is displayed on the screen, and at the same
time, you get a call from Amazon to verify your registered phone number.
You must enter the PIN you received and choose to continue. Once your
identity has been successfully verified, you can see on the window that
your phone is verified, and you are redirected to the next screen to choose
your support plan, as shown in Figure 1-12.

15

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Select a Support Plan

AWS offers a selection of support plans to meet your needs. Choose the support plan that
best aligns with your AWS usage. Learn more

Ed

Basic Plan

Free

Developer Plan

From $29/month

e)
Business Plan

From $100/month

Included with all
accounts

24/7 self-service access
to forums and resources

Best practice checks to
help improve security
and performance

Access lo health stalus
and notifications

For early adoption,
lesling and development

Email access to AWS
Support during business
hours

1 primary contact can
open an unlimited
number of support cases

12-hour response time
for nonproduction
systems

Need Enterprise level support?

For production workloads
& business-critical
dependencies

24/7 chat, phone, and
email access to AWS
Support

Unlimited contacts can
open an unlimited
number of support cases

1-hour response time for
produclion systems

Contact your account manager for additional information on running business and mission
critical-workloads on AWS (slarling at $15,000/month). Learn more

Figure 1-12. Support plan

Choose the support plan that meets your needs. Select the Basic Plan
for free support. Click the Free button, and you are redirected to the AWS
Registration Confirmation page.

Now you can sign in to the AWS Management Console. Go to https://
console.aws.amazon. com to start using AWS.

Select Root user, enter your AWS account email address, and click the
Next button, as shown in Figure 1-13.

16

https://console.aws.amazon.com
https://console.aws.amazon.com

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

dWS

V

Sign in

® Root user
Account owner that performs tasks requiring
unrestricted access. Learn more

O 1AM user
User within an account that performs daily tasks.
Learn more

Root user email address

username@example.com

By continuing, you agree to the AWS Customer
Agreement or other agreement for AWS services, and the
Privacy Notice. This site uses essential cookies. See our
Cookie Notice for more information.

Figure 1-13. Sign in to the console

Next, enter your AWS account password, and click Sign in, as shown in
Figure 1-14.

17

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

dWS

v7

Root user signin e

Email: ravikantsoni.author@gmail.com

Password Forgot password?

I |
=

Sign in to a different account

Create a new AWS account

Figure 1-14. Sign-in password

The AWS Management Console is shown in Figure 1-15.

AWS Management Console

AWS services Stay connected to your AWS resources on-
the-go

) AWS Conscle Mobile App mow wpports four
additional regicns. Download the AWS Console
=] Mabile App to your 15 or Andvoid mobile device.
" Learn more [5
Build a solution &
Gt ah vemgie w

Aartes w 230 30 munoemated werkfisws

Launch 3 virtual machine Build a web app Build using virtual servers Explore AWS
With EC2 With Elastic Beanstalk ‘With Lightsal

& minutes 1-2 minutes. Amazon Redshift

I Fast, simpla, cost-affective data warshouse that can extend
t} (’i‘?‘j ‘@ cweries 1o your data lake. Learn mare [3
G o

Bun Serveriess Cantainers with AWS Earaate

Figure 1-15. AWS Management Console

18

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

This is where you can find all the different services that are available
and provided, but they are grouped by category, as shown in Figure 1-16.

AWS services Stay 1 to your AWS an=

the-go

v all J
S — ————— =] AWS Comsole Mabile App now supports four
& Quantum (@) Security, Identity, & addinional regions. Dewnload th AWS Console
ez Technologles Compliance L) abite A o yotar 105 r Acicvoid mekile cevice
Lightsail (2 Amazon Braket 1AM Learm mere [
Lamibcla Rt Acess
Batch =) Management & Manager
G everan Cogite
Elastic Beanstalk e e ¥ Explore AWS
Serverles Applicaticn AWS Organgzations Sacrets Manager
Repesitary CloudWatch GuardDuty
5 Outposts WS Auto Scaling Iespector Amazon Redshift
ECZ image Builder ClowdFormation Amazon Macie Fast, smple, cont-effectve dita warnehouse that can estend
ClowdTral AW Singla Sign-on queries to your data lake. Learn mars [3
£y Containers Config Certificate Manager
Elastic e OpsWorks Koy Managamen Run Serverless Containers with AWS Fargate
. i s Service
= e CloudHEM WS FIFgate Funs ard 5518 yEur CORTNGRS VAThOUt Naving
Elantic Comtaine: Systerns Manages 3 ta manage servers or dusters. Learn moes [
Service A AppCantig Directory Service
Elastic Kubesnetes Trusted Advisce WA & Shichd

Figure 1-16. AWS services by category

The next section uses the Elastic Beanstalk service to begin building a
web application. Tomcat is running in the AWS cloud.

Explore and Create an AWS Elastic
Beanstalk Server

On the AWS services page, scroll down to the Compute section and select
Elastic Beanstalk, as shown in Figure 1-17. It allows you to run and manage
your web application.

19

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

AWS services

| v All services

{mf Compute
EC2

Lightsail [4
Lambda
Batch

Elastic Beanstalk

Serverless Application
Repository

AWS Outposts
EC2 Image Builder

Figure 1-17. Elastic Beanstalk under Compute section

The AWS Elastic Beanstalk page is shown in Figure 1-18.

oWz Services ¥

AWS Elastic Beanstalk
End-to-end web

Get started

application management. | ———————————
[cree svtcson|

Pricing

How it works There's no additionst charge for Elastc
Boanstalk. You pay for AWS resources that we
create to store and run your web application,
like Aurazon $3 buckets and Amazon EC2
instances.

Wou smply Uplead your ceda and Elastic Beansalk Jutamaricatly handlas
the d . from capacity provisioning. load balancing, and
7 to-web application health monitoring, with ongaing
teh sl sircurity upeates. Lesrn mese (3

Figure 1-18. AWS Elastic Beanstalk

20

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Elastic Beanstalk is the simplest way to deploy and run your web
application on AWS. Elastic Beanstalk automatically handles the
deployment details of capacity provisioning, load balancing, automatic
scaling, and web application health monitoring.

Here, you select a platform, upload an application, or use a sample,
and then run it. This chapter used a sample, and Tomcat is the platform for
deploying the application code.

Click the Create Application button. This takes you to the Create a web
app page shown in Figure 1-19.

Create a web app

Create a new application and environment with a sample application or your own code. By creating an environment, you allow AWS Elastic
Beanstalk to manage AWS resources and permissions on your behalf. Learm more

Application information
Application name

Up te 100 Unicede characters, not including forward al=h)

Application tags
Apply up to 50 13gs. You can use 13gs to group and filter your resources. A tag i a key-value pair. The key must be unique within the
resource and IS case-sensitive. Learn more B

Key Value

Add tag

50 remaining

Platform

Platform

Platform branch

Figure 1-19. Create a web app

21

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Name the application My First Elastic Beanstalk Application, as
shown in Figure 1-20.

Application information

Application name
My First Elastic Beanstalk Application

Up to 100 Unicode characters, not including forward slash (/).

Figure 1-20. Application name under Application information

Next, select the platform from the drop-down list. Choose Tomcat, as
shown in Figure 1-21.

Platform

Platform
.NET on Windows Server
Docker
GlassFish
Go
Java
Node.js
PHP
Python
Ruby

Tomcat

Upload your code

Figure 1-21. Platform under Application information

22

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Select the default Tomcat branch and version, as shown in Figure 1-22.

Platform

Platform

Tomcat v

Platform branch

Tomcat 8.5 with Corretto 11 running on 64bit Amazon Linux 2 v

Platform version

4.1.6 (Recommended) v

Figure 1-22. Platform details on selecting platform under
Application information

Under Application code, select Sample application, as shown in
Figure 1-23, and then click the Create application button.

Application code

O sample application

Get started right away with sample code.

Uplead your code
Uplead a source bundle from your computer of copy ane from Amazon 53

Cancel Configure more options | Create application

Figure 1-23. Application code

At this point, AWS provisions a server for you, as shown in Figure 1-24.
It has Java installed, running on Linux, and Tomcat is already pre-installed.

23

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Elastic Beanstalk x Elastic Bearstalk Ervironments Myfirstelasticheanstalkapplicat

E Cresting Myfirstel asticheanstalkapplication-env

This will take a few minutes.

Figure 1-24. Environment details

You see diagnostics on the screen while the work is going on in the
background.

Eventually, your application is deployed successfully, and the health
status is OK, as shown in Figure 1-25. The link to your application appears
in the top-left of the window. So, if you click the link, you see your
application up and running.

Recent events

Show all

Figure 1-25. Health OK

24

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

This will start the sample application and configuring Linux, Tomcat,

and Java. The logs shown in the following Figure 1-26 inform that the

environment launched successfully.

¥ Myfirstelasticheanstalkapplica Recent events Show all
tion-omy

Goto envircnment [e

Soiguratio Time Type Details

Logs

o 2021-03-24 _

Health e T, Emvdronment health has transitioned from Waming to Ok. Initialization completed 52 seconds ago and

Mariitoring UTE+0530 fomk C Mo

Hacms 20210824
190743 INFO lLaunched i

Managed updates iy

Events
2021.03-24 ; il I

Tags 19:07:43 INFO e wvallabde ut My bearstalkapplication-env.eba.jdsdcad Ls-east

- UTC+0530 clastbeanstalk ¢om.
fg;‘?'__'ﬁ'u health has T wing to Warning. 12 second:

o
Figure 1-26. Logs
Figure 1-27 shows the Congratulations screen.
A Motuecaw | myh -+ Sndoad wt-want-2 santctearstaiiom T OM "

Congratulations

VO B AWS [l Deamilad Appcaion "
O sted e

Figure 1-27. Congratulations screen

Your app is now running on the AWS cloud, and its URL is live on the

Internet. Tomcat is running on your dedicated environment in the AWS

cloud.

25

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Right now, you are simply using the sample application, but later, you
upload your applications and run them in the AWS cloud. You can add a
custom domain name to the URL.

Create a HelloWorld JSP Application,
Build WAR with Maven, and Upload WAR
to Elastic Beanstalk

As a proof of concept, let’s deploy the HelloWorld JSP application on
Elastic Beanstalk. It’s just a simple application on the Java side, which
allows you to focus on the Elastic Beanstalk deployment process.
Advanced Spring Boot and database CRUD operations are covered later.
To understand the mechanics of how to deploy, let’s look at the step-

by-step development process.

1. Create the HelloWorld JSP application in Spring
Tool Suite (STS).

2. Package the WAR file using Maven.
3. Create a new application in Elastic Beanstalk.

4. Upload the WAR file to Elastic Beanstalk.

Create a HelloWorld JSP Application

Create a Maven web application project using STS or any IDE of your
choice.

First, open Spring Tool Suite, select File menu » New » Maven
Project, as shown in Figure 1-28.

26

CHAPTER 1

AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

= workspace - Spring Tool Suite 4

Eile Edit Source Refactor MNavigate Search Project Run Window Help

Alt=Shift+N » | (3

Spring Starter Project

Open File... (4 Import Spring Getting Started Content
(3 Open Projects from File System... (4 Spring Legacy Project

Recent Files P (22 Java Project

Cloe Cudowy | @7 Static Web Project

Close All CtrleShiftew |09 Dynamic Web Project

Save Ctrl+S ™ Project...

Figure 1-28. Select Maven Project

Figure 1-29 shows the New Maven Project wizard. Select the default
location, and click Next.

=) New Maven Project O X
New Maven project e
Select project name and location M-
[J Create a simple project (skip archetype selection)
[4] Use default Workspace location
Location: . Browsg...-
[JAadd project(s) to working set
Woarking set: v | | More...
» Advanced
@ < Back .' Finish Cancel

Figure 1-29. New Maven Project wizard

27

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Then, select maven-archetype-webapp and click Next, as shown in

Figure 1-30.
& New Maven Project D X
New Maven project ‘,ﬁ
Select an Archetype o
Catalog: All Catalogs ~ | Configure..
Filter: [webapp] X
Group Id Artifact Id Version o
org.apache.marmotta marmotta-archetype-webapp 340
|org.apache.maven.arche maven-arc weba; 14]
org.apache.openejb.maven tomee-webapp-archetype 175
org.apachesling sling-launchpad-webapp-archetype 1.00
org.apachetomee.maven tomee-webapp-archetype 806
org.apache.turbine turbine-webapp-2.3.3 1.00
| org.apache.turbine turbine-webapp-4.0 1.01 et
An archetype which contains a sample Maven Webapp project.
httpsy//repol.mavenorg/maven2
[] Show the last version of Archetype only [Jinclude snapshot archetypes Add Archetype..
» Adyanced
® [<ma [e][E Conce

Figure 1-30. Select an archetype

Next, provide the group ID, artifact ID, and package information, and

then hit the Finish button, as shown in Figure 1-31.

28

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

& New Maven Project o X
New Maven project = '—'E-I
Specify Archetype parameters e —
Group Id: iccmapressaws -l
Artifact Id:l HelloWorldJSP \,]
Version: | 0.0.1-SNAPSHOT vl

Package: | comapress.aws.HelloWorldJsP G

Properties available from archetype:

Name Value || Add-
|
| | Remave
» Adyanced

Figure 1-31. Specify archetype parameters

A project directory is created, as shown in Figure 1-32.

v { HelloWorldJSP
> # Deployment Descriptor: Archetype Created Web Application
> 2 Java Resources
> (3 Deployed Resources
> & src
> = target
[pom.xml

Figure 1-32. HelloWorld]SP project directory

29

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

If you look in the problem’s view in IDE, the error shown is “The
superclass javax.servlet.http.HttpServlet was not found on the Java Build
Path”. This error indicates that an HTTP servlet is not available in the
project classpath.

Once you add a target runtime to the project, an HTTP servlet is
available in the project classpath. Errors are resolved after configuring the
runtime server, such as the Tomcat server.

To configure the Tomcat server, right-click the project and select
Properties. Select Targeted Runtimes, and then select Apache Tomcat v8.5,
as shown in Figure 1-33. Then, click the Apply and Close button.

& Project Explorer &2
~ & HelloWorldJSP
» iz Deployment Descriptor: Archetype Created Web Application
» 2% Java Resources
G Daployed Rasousces @ Properties for HelloWorldJSP n] »
» g e I 1
& target
M pomomi
» i Servers

L type filter text Targeted Runtimes crov |
Javadoc Location ~
» Java Editor
JavaSeript
JSP Fragment
» Maven
Namespaces

£ 5 Apache Tomcat 85|

Project Facets
Project Natures
Project References
Run/Debug Settings
Server
Service Policies
Targeted Runtimes
Task Tags

» Validation
Web Content Settings
Web Project Settings
WilaText

» XDoclet

@

[show all runtimes:
Make Primary Ngw—
Ryntime composition:
8 Apache Tomcat v8S
B Java Runtime Ervironment v15

If a runtime that you want to select is not displayed or is disabled you may need
o uninstall one of more of the currently installed project facels.

Uninstall Facets,
Restore Defauilts Apply

Apply and Close Cancel

Figure 1-33. Targeted runtimes

To run the application on the local Tomcat server, right-click the
project, select Run As and Run On Server. Select the Tomcat server in the
window, and click the Finish button (see Figure 1-34).

30

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

& Project Explorer &2 BEY i =0
v &= HelloWorldJSP
> ‘ix Deployment Descriptor: Archetype Created Web Application
» I Java Resources

> Co Deployed Resources @ Run On Server =] X
v s
v & main Run On Server I:I
~ & webapp Select which server to use
> & WEB-INF
& indexjsp How do you want 1o select the server?
> B et
> &> target ® Choose an existing server
M pomuxmi O Manually define a new server
? & Servers Select the server that you want 1o use:
[type filter text
Server State
~ & localhost
o Tomcat v85 Server at localhost o> Started

Apache Tomcat v8.5 supports J2EE 1.2, 1.3, 14, and Java EE 5, 6, and 7 Web modules. Columns.

[[] Atways use this server when running this project
He

® B Concel

Figure 1-34. Run On Server
Type http://localhost:8080/HelloWor1dISP/ in your favorite web

browser to see the “Hello World!” message, as shown in Figure 1-35.

@ http://localhost:8080/HelloWorldJSP/ &
Com e Ihttp:/,’localhost:BOSOfHelIoWorldJSPf

Hello World!

Figure 1-35. Hello World! in browser

31

CHAPTER 1

AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Package a WAR File Using Maven

Now, let’s package a WAR file using Maven in STS. Right-click the project

and select Run As » Maven install, as shown in Figure 1-36.

-« Project Explorer =

v &= HelloWe
» s Depk
> 3 Javal
» Lo Déplt

> v orC

> @ targe

= pom:

» e Servers

e

X

+ 0

New
Go Into

Show In

Show in Local Terminal
Copy

Copy Qualified Name
Paste

Delete

Build Path

Refactor

Import

Export

Refresh

Close Project

Close Unrelated Project
Run As

Debug As

Profile As

Restore from Local History..
Java EE Tools

Maven

Team

Compare With
Configure

Source

Validate

Propertics

&

4]

Alt+Shift+\W >
>

CuleC

CurleV
Delete

>
Alt+Shift+T >
>

>

FS

LRARALAR S PHE

Y L I

1 Run on Server

2 Java Application

3 Java Application In Container
4 JUnit Test

5 Maven build

6 Maven build-

7 Maven clean

8 Maven generate-sources

9 Maven install

Maven test

Run Configurations...

Alt«Shift+X R
Alt+Shift+X,)

Alt+Shift+X T
Alt+ShiftsX, M

P Console

Jized)

Alt+Enter [

Figure 1-36. Run As Maven install

Once the build is successful, you can validate it with a success message

in the console, as shown in Figure 1-37. This generates a WAR file.

32

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

15 Markers [Properties ﬂm‘&imuﬂ(omk' - M
<terminated> D\Learning\software\sts-4.9.0.RELEASE\plugins) A jrefullwin32.x86_64_15.0.1.v20201027-0507\jre\bin\javaw.exe
[INFO] Downloaded from : https://repo.maven.apache. ors!uvcnzforxhwche!-avcnhurefarcfwrehre booter/2.22.1/sure
[INFO] Downloaded from : https://repo.maven.apache.org/maven2forg/apache/maven/surefire/maven-surefire-common/2.22.:
[InFO]

[INFO)] === maven-war-plugin:3.2.2:war (default-war) @ licllokorldISP =ee

[INFO] Packaging webapp

[INFO] Assembling webapp [HelloWorld)SP] in [D:\Learning\book\Apress\workspace\Hellokorld)SP\target\HelloWorld)se)
[INFO] Processing war project

[INFO] Copying webapp resources [D:\Learning\book\Apressiworkspace\HelloWorld)SP\src\main\webapp]

[INFO] Webapp assembled in [22 msecs)

[INFO] Building war: D:\Learning\book\Apress\workspace\HelloWorld)SP\target\Hellokorld)SP . war

[1nFO)

[INFO] === maven-install-plugin:2.5.2:install (default-install) @ HelloWorldISP eee

[INFO] Installing D:\Learning\book\Apressiworkspace\Hellokorld)SP\target\HelloWorld)SP.war to C:\Users\namra\.m2\re|
[INFO] :nslellang D: \turmng\book\ﬂprcss\mkspactwl1worldJ$P\po- xml to C:\Users\namra\.m2\repository\com\apre:
[INFO] - - -

[INFO] BUILD succsss

[INFO] maslaindle A s e .

[INFO) Total ':i-t 16.086 s

[INFO] Finished at: 2021- G! 24722:59:30+05:30

[INFO] ==s=ssesmsenenmesmm e s s s s s nsnnnnanas semmmmsmsasasane

Figure 1-37. Build success

Refresh the project folder structure and expand the target folder,
where you find a WAR file named HelloWor1dJSP.war, as shown in
Figure 1-38.

v [z HelloWorldJSP
> @3 Deployment Descriptor: Archetype Created Web Application
> 98 Java Resources
> (9 Deployed Resources
> (& src
v (= target
> (= generated-sources
> [generated-test-sources
> (= HelloWorldJSP
> (& m2e-wtp
> (& maven-archiver
> [= maven-status
) HelloWorldJSP.war
M pomxml
> 2 Servers

Figure 1-38. Generated WAR file in the target folder

33

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Upload WAR to Elastic Beanstalk

Now, let’s create a new application in Elastic Beanstalk and then upload
the WAR file to it.

On the AWS console, go to the Elastic Beanstalk page. Figure 1-39
shows the application named My First Elastic Beanstalk Application.

All applications

i
i
%

Figure 1-39. Elastic Beanstalk application
Now let’s create a brand-new application by clicking the Create a new

application button. Enter the application name as helloworld, as shown
in Figure 1-40. Then, click the Create button.

34

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Application information

Application name

| helloworld

Maximum Length of 100 characters, not including forward slash (/).

Description

Tags

Apply up to S0 tags. You can use tags to group and filter your resources. A tag is a key-value pair. The key must be unique within the
resource and is case-sensitive. Learn more [4

Key Value

Remove tag
Add tag

50 remaining

Cancel m
Figure 1-40. Application information

There is no environment that’s already set up, as shown in Figure 1-41.

[Actions ¥

Application ‘helloworld' environments c

Q SN ®
Environment Date Last Runmng Platform Tier

name & L created ¥ moditied v R versions v Riatiorm iy state v name ¥

No environments currently exist for this application.

Create ane now,

Figure 1-41. Application environments

Create an environment by clicking Create one now to select the

environment tier, as shown in Figure 1-41.

35

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Elastic Beanstalk > Applications > helloworld
Select environment tier

AWS Elastic Beanstalk has two types of environment tiers to support different types of web applications. Web servers are standard
applications that listen for and then process HTTP requests, typically over port 80. Workers are specialized applications that have a
background processing task that listens for messages on an Amazon 505 gqueuve, Worker applications post those messages to your
application by using HTTP.

© Web server environment
Run 3 website, web application, or web API that sorves HTTP requests,
Learn more [4

Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule
Learn more [

Figure 1-42. AWS grouped by category

For the environment tier, let’s use a web server environment to run a
web application. Elastic Beanstalk creates the server for us. Next, click the
Select button. Now, you need to provide the environment information, as
shown in Figure 1-43.

Elastic Beanstalk > Applications > helloworld

Environment information

Choase the name, subdomain, and description for your environment. These cannot be changed later.

Application name

helloworld

Environment name

Helloworld-env

Domain

awshelloworldjsp -us-east-2 elasticheanstalk

) swshellowordsp us-east-2 elasti com s avaitabl

Description

Figure 1-43. Environment information

36

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Here, you need to provide details like a name for the environment and
domain. Make sure that the environment URL is unique; here, name it
awshelloworldjsp, which indicates that it is available for use. Then choose
the platform details for the server, as shown in Figure 1-44.

Platform

© Managed platform
Platforms published and maintained by AWS
Elastic Beanstalk. Learn more [a

Platform

Tomcat v
Platform branch

Tomcat 8.5 with Corretto 11 running on 64bit Amazon Linux 2 v
Platform version

4.1.6 (Recommended) v

Figure 1-44. Platform for server

Here, select Managed platform, which is published and managed by
AWS Elastic Beanstalk, and from the Platform drop-down list, choose
Tomcat. So, Elastic Beanstalk creates a Tomcat server for you when it’s
spinning up the environment.

Now, you need to upload the WAR file to Elastic Beanstalk. Click
Choose file, and select the HelloWorldJSP.war file from the local system, as
shown in Figure 1-45.

37

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Application code

Sample application
Get started right away with sample code,

O Upload your code

Upload a source bundle from your computer or copy one from Amazon 53

Version label
Unique name for this version of your application code.

helloworld-source

Source code origin
Maximum size 512 MB

O Local file
Public 53 URL

[Choose file |

File namne : HelloWorldJSP.war
(@) File successfully uploaded

B Application code tags

Cancel Configure more options m

Figure 1-45. Application code

Once the file successfully uploads to Elastic Beanstalk, hit the Create
environment button.

Behind the scenes, Amazon provisions a server to use with the
operating system. They install Java and Tomcat and deploy your WAR file
to the Tomcat environment. You get a green checkbox indicating success
when everything is done, as shown in Figure 1-46. Here, the logs confirm
that the environment successfully launched.

38

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Helloworld-env
unhellowortdfsp. us-eavt-2 liasicbasnatati cen [e-harbButl
£ppiiczon name: hatiwertd

Health Running versicn
hellowerld-source
o Upload and deploy
ok
Recent events
Time Type Details
2021-03-25 00:28:22 UTC+0530 INFO Successhully launched emvironment: Helloworld-enw
2021-03-25 00:28 22 UTC+0530 INFO s arvailable at avrshed fjsp. -2 elastichearstalk com.

2021-03-25 D0:27:37 UTC+0530 mvirgnenent health has transitioned from Pending to Ok. In

2021-03-25 00:27:57 UTC+0530 NFO Added Instance [1-0be93fdEabss 7esfS] to your environment

2021-05-25 00:27:19 UTC+0550 L2 Instance deployment completed successfully.

Flatferm

Tameat 2.5 with Corretts 11
g on Gabit Amaron Limis

FIERES

| Showau

mpletid 12 sevonds ago and took 3 minutes.

Figure 1-46. Health OK and Recent events

Click the application’s link. The page opens in the browser displaying

“Hello World!” (see Figure 1-47).

G A Notsecure | awshelloworldjsp.us-east-2.elasticbeanstalk.com

Hello World!

Figure 1-47. Accessing application from browser by hitting URL

This is your new application. The WAR file is deployed on the Amazon

cloud in Elastic Beanstalk, and it’s up and running.

Make sure to stop any unused AWS Elastic Beanstalk apps that you

don’t need. This helps prevent any overuse charges from Amazon.

39

CHAPTER 1 AN INTRODUCTION TO AMAZON WEB SERVICES (AWS)

Summary

This chapter overviewed Amazon Web Services (AWS). You learned about
some AWS key services, such as EC2, Elastic Beanstalk, Amazon RDS, and
Amazon Route 53. You created a free AWS account, a server, A HelloWorld
JSP application, a WAR file with Maven, and uploaded the file to Elastic
Beanstalk. Finally, you accessed your application in the browser to see the
“Hello World!” message.

The next chapter deploys a Spring Boot application as a REST API
in AWS.

40

CHAPTER 2

Deploy a Spring Boot
Application as a REST
APl in AWS

The previous chapter provided an overview of Amazon Web Services
(AWS), including services like Amazon Elastic Compute Cloud (Amazon
EC2), AWS Elastic Beanstalk, Amazon Relational Database Service
(Amazon RDS), and Amazon Route 53. First, you created a free AWS
account for developers, explored Elastic Beanstalk, and created a server.
Then, you created the HelloWorld JSP application. Finally, you built a WAR
file with Maven and uploaded WAR to Elastic Beanstalk.

In this chapter, you create a Spring Boot application as a REST API in
your local system. Then, you build the JAR using Maven for our Spring
Boot application and deploy this JAR in Elastic Beanstalk so that anyone
can access the REST API on the Internet. Finally, you explore logs from
Elastic Beanstalk.

© Ravi Kant Soni and Namrata Soni 2021 41
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_2

https://doi.org/10.1007/978-1-4842-7392-0_2#DOI

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Build a Spring Boot Application as a
REST API

Why use Spring Boot as a back-end framework? There are many
frameworks available for developing web applications, and Spring Boot is
just one among them. But, if you wish to build something fast, Spring Boot
may be the primary choice as a web application development framework.

Working with Spring Boot is like pair programming with the
Spring developers.

—Josh Long @starbuxman

Spring Boot provides production-ready applications and services
that anyone can run with minimum fuss. Spring Boot is opinionated,
which suggests ensuring decisions for developers and supporting ranges
of nonfunctional features that are common in enterprise applications
(embedded servers, security, health checks, metrics, and externalized
configuration).

In this section, you develop your Spring Boot application, step by
step. If you're already acquainted with this build process, you can skip to
the end of this section to see how it all fits together. Spring offers different
options for starting a brand-new project. For more information, refer to
https://spring.io/.

Introduction to REST

Representational state transfer (REST) is an architectural style that
describes how one system communicates or shares its state with another
system. HTTP (Hypertext Transfer Protocol) may be a commonly used
protocol to support a RESTful architecture. Standard HTTP methods like
POST, GET, PUT, and DELETE access and manipulate RESTful web resources.

42

https://spring.io/

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

The POST method performs a create operation by
sending data to a server.

The GET method retrieves data from a specified
resource.

The PUT method performs an update operation by
sending data to a server.

The DELETE method performs the delete operation.

A meaningful HTTP response status code always helps clients to utilize
RESTful API. Table 2-1 describes several HTTP status codes that may be
returned as the server response when calling a RESTful API.

Table 2-1. HTTP Response Status Codes

Code Message Description

200 OK Successful response. The request has succeeded. (This is a
standard HTTP response status code for a successful HTTP
request.)

201 Created Successful response. This is typically the HTTP response
sent after POST or PUT requests are fulfilled, and a new
resource has been created as a result.

204 Not Content Successful response. This HTTP response code means that
the request has been processed successfully but is not
returning any content for this request.

400 Bad Request Client error response. The request could not be fulfilled due
to invalid syntax.

401 Unauthorized Client error response. The request requires user

authorization to get the requested response.

(continued)

43

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Table 2-1. (continued)

Code Message Description

403 Forbidden Client error response. The server refuses to fulfill the
request because the client does not have access rights to
the requested content.

404 Not Found Client error response. The requested resource could not be
found by the server.

409 Conflict Client error response. The request cannot be completed
because of a resource conflict with the current state of the
Server.

System Requirements

Spring Boot 2.0.3.RELEASE requires (at least) Java 8. So, the first thing that
is required is the Java 8 SDK. If you have already set up the JDK in your
system, you should check the current version of Java installed on your
system before you begin.

$ java -version

java version "1.8.0 101"

Java(TM) SE Runtime Environment (build 1.8.0 101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

Spring offers the following three approaches to create a brand-new
Spring Boot application.

e Use the Spring Boot CLI tool
o Use the Spring STS IDE

o Use Spring Initializr (http://start.spring.io/)

44

http://start.spring.io/

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Create Spring Boot Application Using
Spring Tool Suite

In this chapter, you build a RESTful application called HelloSpringBoot
with REST endpoints, using STS IDE. The REST API layer is responsible for
handling client requests and generating a response.

You create HelloSpringBoot by generating a Spring Boot application
using Spring Tool Suite (STS). STS comes as a ready-to-use distribution of
the latest Eclipse releases with pre-installed Spring IDE components.

Use a Spring Starter Project wizard to create a Spring Boot application,
as shown in Figure 2-1. By default, the Spring Boot application runs on
port 8080.

=) Select a wizard

Select a wizard —
Create new Spring Starter Project ’

Wizards:

| type filter text

> = Java ~
> (= Java EE
> (= JavaScript
> (= Maven
» [= Plug-in Development
» (= Server
w (= Spring Boot
(4 Import Spring Getting Started Content
(14 Spring Starter Project
» (& User Assistance

> = Web
> = Web Services
> (= XML
> (= Examples
"
@ < Back Finish Cancel

Figure 2-1. The wizard to create a Spring Boot application

45

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Spring Boot provides starters. You need to provide project-related
information, as shown in Figure 2-2.

New Spring Starter Project @

Service URL [https/start.spring.io v]

Name [HellospringBoot |

[Use default location

Location | E\Apress\workspace\AWS\HelloSpringBoot | iBmse‘
Type: [Mawﬂ— v: Packaging: I.Jar v.]
Java Version: Ill ~ Language: |Java VI
Group | com.apress.AWS |
Adtifact [HellospringBoot |
Version [0.0.1-sNAPSHOT |
Description I Hello Spring Boot Application]
Package | com.apress.AWS |

Working sets

[J/Add project to working sets | New. |

Working sets: Ul s "
@ | <Back [New> || Emsh | concel

Figure 2-2. Creating HelloSpringBoot using Spring Starter Project

A starter in Spring Boot is a set of classpath dependencies that
autoconfigure an application and enables a developer to build an
application without any configuration.

In this chapter, you pick the web dependencies to build a simple
HelloSpringBoot RESTful service, as shown in Figure 2-3.

46

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Mew Spring Starter Project Dependencies

©

Spring Boot Version: | 2.5.1 G

Available:

Selected:

[web

x

= Messaging
[JWebSocket

X Spring Web

w Template Engines

[Thymeleaf

[J Apache Freemarker

= Testing

[] Testcontainers

~

« Web
£4Spring Web,
O Spr!ng fand Build web, including RESTful, applications using Spring MVIC, Uses A
[spring Web Apache Tomcat as the default embedded container.
Jers
g EY Guides
O veadin + Building 3 RESTful Wab Service
+ Serving Web Content with Spring MVC
+ Building REST sarvices with Sprin
References v
» Spring Boot Reference Doc
.Make Default. !—Clear Sdmion- v
@ < Back ” Next > | [Finish | | Cancel

Figure 2-3. Selecting a web dependency in the Spring starter

Clicking the Finish button generates a workspace to create a new

package, class, and static files in your resources. The final structure of the

project looks like Figure 2-4.

47

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

[Package Explorer &2 B® 8§ =0
v 2 HelloSpringBoot [boot]
v (3 src/main/java
v} com.apress.AWS
> [J] HelloSpringBootApplication.java
v (B src/main/resources
(= static
(= templates
/7 application.properties
v (@ src/test/java
v com.apress.AWS
> [HelloSpringBootApplicationTests java
> B JRE System Library [JavaSE-11]
> B, Maven Dependencies
» [src
(= target
[HELP.md
5 mvnw
mvnw.cmd
[pomxml

Figure 2-4. Project structure

Let’s go through the code in the next section.

A Walk-Through

Let’s walk through the code by going through the pom.xml file and the Java
class files. Let’s start with pom.xml.

pom.xml

When creating a Spring Boot application, all the dependencies that you
select in the starter dialog are available in pom.xml, as shown in Listing 2-1.
The pom. xml file is the recipe that builds your project.

48

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS
Listing 2-1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.1</version>
<relativePath/>
</parent>
<groupId>com.apress.AWS</groupld>
<artifactId>HelloSpringBoot</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>HelloSpringBoot</name>
<description>Hello Spring Boot Application</description>
<properties>
<java.version>11</java.version>
</properties>
<dependencies>
<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>

49

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactId>spring-boot-maven-plugin</
artifactId>
</plugin>
</plugins>
</build>
</project>

Note the following about Listing 2-1.

o The <parent> element specifies the parent POM of
Spring Boot, which contains definitions for common
components.

o The <dependency> element on spring-boot-starter-web
tells Spring Boot that this is a web application and lets
Spring Boot to form its opinions accordingly.

Before going further, let’s look at Spring Boot’s opinions and how it
uses a starter like spring-boot-starter-web to form its configuration
opinions.

The HelloSpringBoot application has used spring-boot-starter-web
as Spring Boot’s web application starter. And, based on this starter, Spring
Boot has formed the following opinions.

o Spring web MVC for the REST framework
e Apache Jackson for the JSON binding

o Tomcat embedded web server container

50

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

After Spring Boot forms an opinion about the kind of application you
plan to build, it delivers a collection of Maven dependencies supporting
the POM contents and starter specified for the HelloSpringBoot
application.

Write the Code

To bootstrap a Spring Boot application, you can start from amain(...)
method. Most likely, you can delegate to the static SpringApplication.
run() method, as shown in Listing 2-2.

Listing 2-2. \src\main\java\com\apress\AWS\
HelloSpringBootApplication.java

package com.apress.AWS;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.
SpringBootApplication;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

/**

* @author RaviKantSoni
*

*/
@SpringBootApplication
@RestController
public class HelloSpringBootApplication {

public static void main(String[] args) {
SpringApplication.run(HelloSpringBootApplication.
class, args);

51

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

@RequestMapping("/greeting")
public String greetingMessage() {
return "Welcome to Hello Spring Boot Application!";

Let’s step through the important parts.

@SpringBootApplication Annotation

The first annotation in the HelloSpringBootApplication class is
@SpringBootApplication, introduced in Spring Boot 1.2.0. It adds the
following annotations.

o @Configuration: A class annotated with the
@Configuration annotation can be used by the Spring
Boot container as a source of Spring Bean definitions,
which is not specific to Spring Boot. This class may
contain one or more Spring Bean declarations by
annotated methods with the @Bean annotation.

e (@EnableAutoConfiguration: This annotation is
part of the Spring Boot project that tells Spring Boot
to start adding beans using classpath definitions.
Autoconfiguration intelligently guesses and
automatically creates and registers beans that you are
likely to run with the application, thus simplifying the
developer’s work.

e (@ComponentScan: This annotation tells Spring Boot
to look for specific packages to scan for annotated
components, configurations, and services.

52

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

@RestController and @RequestMapping Annotations

@RestController is another annotation in the
HelloSpringBootApplication class. Itis a stereotype annotation.

The @RequestMapping annotation provides “routing” information and tells

Spring Boot that any HTTP request with the path /greeting should be
mapped to the greetingMessage() method.

The @RestController and @RequestMapping annotations come from
Spring MVC (these annotations are not specific to Spring Boot).

The main Method

The most important part of the HelloSpringBootApplication class
isthemain(...) method. The application developed using Spring

Boot contains the main method, which internally calls Spring Boot’s
SpringApplication.run() method to launch an application. The class
that contains a main method is the main class and is annotated with the
@SpringBootApplication annotation.

Run a Spring Boot Application in STS

Spring Boot application created using the Spring Starter Project wizard
comes in two flavors: WAR and JAR. This wizard allows you to choose
between WAR and JAR in its packaging option.

As Josh Long said in one of his talks in the Spring 10, “Make
JAR, not WAR.”

—https://twitter.com/springcentral/
status/598910532008062976

53

https://twitter.com/springcentral/status/598910532008062976
https://twitter.com/springcentral/status/598910532008062976

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Spring Boot favors JAR over WAR by allowing you to easily create
stand-alone JAR packaged projects that add an embedded web server
(Apache Tomcat is the default web server) inside the created artifact. It
helps developers reduce the overhead of setting up local or remote Tomcat
servers, WAR packaging, and deploying.

You don’t need any special tooling from STS to run your Spring Boot
application locally. You can run it by selecting Run As » Java Application,
either from the standard Eclipse Java debugging tools or STS. The
benefits of using STS over other IDEs are that it provides a dedicated
launcher, which does the same thing as other IDE does, but STS adds a
few useful bells and whistles on the top of it. So, let’s use STS to run the
Spring Boot application, as shown in Figure 2-5. Simply right-click the
HelloSpringBoot project, and then select Run As » Spring Boot App.

=) workspace - Spring Tool Suite 4

File Edit Source Refactnr Nadinate Search Proiect Run Window Help
>

. . N : 9 ot x ey
N-E @it o B i® P B~ Fl - OF oD
Go Into
[Package Explos
« £ HelloSpring Open in New Window
> (B sre/main Open Type Hierarchy F4
» B sre/main Show In Alt+Shift+W »
> @ steftest/] Show in Lecal Terminal »
> B JRE Syste
5 @A MavenD [[] Copy Ctrl+C
= 4z Copy Qualified Name p 1Run on Server Alt+Shift-X, R
“E :;E:‘ 7 Paste Ctrl+V (7] 2Java Application Alt+Shift=X, J
‘.‘_\ m\rm;\rm: € Delete Delete (& 3 Java Application In Container
Cp— , | Ju 4JUnitTest Alte-ShiftX, T
|m pom.xm —_— AltsShiftes > ™ 5 Maven bufld Alt+Shift+X, M
Refactor AlteShiftsT> | ™ Ctensn Bl
m2 7 Maven clean
iy Import.. m2 8 Maven generate-sources
i Export.. m2 9 Maven install
«? Refresh F§ |'mz Maven test
Close Project .~ Spring Boot App Alt+Shift+X B
Assign Working Sets... & Spring Devtools Client
) PRunAs H Run Configurations...
45 DebugAs >
Profile As >

[JE S) .

Figure 2-5. Wizard in STS to run the application

54

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

The Spring Boot application starts with output in the console, as
shown in Figure 2-6.

] Prolems @ levador [Declaation B Consoie £F Xuxe| RpEHEESE20-0- 8BS -
srng Boct Azp £ - plugs il _.auulm anRIGE ST jre' b o e (24-Jun-2021, 103684 g
AN) R
I .
I
11
2 ‘usrulyﬂ ot :: (u?Sl}
2021-06-24 22:56:49.589 INFO 3712 --- [main] c.apress.AWS.HelloSpringBootapplication : Starting

HelloSpringBootApplication using Java 15.8.1 on DESKTOP-VIKZEID with PID 3712 (E:\Apress\workspace \AWS\HelloSpringBoot\target
‘classes started by RaviKantSoni in E:\Apress‘\workspace\alS\HelloSpringBRoot)

2021-06-24 22:56:49.59% INFO 3712 --- | main] c.apress AlS.HelloSpringBootApplication : Mo active profile set,
falling back to default profiles: default
2021-06-24 22:56:54.243 INFO 3712 --- [main] o.s.b.w.eshedded. tomcat. TomcathebServer @ Tomcat initialirzed with port

(s): 8080 (http)

2021-96-24 22:56:54.273 INFO 3712 --- [main] : Starting service [Tomcat]
2021-06-24 22:56:54.274 INFD 3712 --- [main] = 1 Starting Servlet engine:
[Apache Tomcat/9.0.46)

2021-06-24 22:56:54.643 INFD 3712 --- [main] o.a.c.c.C.[Temcat].[localh : Initializing Spring embedded
WebApplicationContext

2021-06-24 22:56:54.643 INFD 3712 --- [main] w.s.c.5e ext : Root WebApplicationContext:
initialization completed in 4855 ms

2021-06-24 22:56:55.569 INFD 3.*1.2 === [main] : Tomcat started on port{s):

88ge (http) with context path *
2021-06-24 22:56:55.595 INFO 3712 [main] ¢
HellospringBootApplication in €.87% seconds (IVM running for 8.99)

: Started

Figure 2-6. Output on the STS console

If the Spring Boot application runs successfully, the last line on the
console states, Started HelloSpringBootApplication.

Congratulations! You have successfully set up and run the application
using Spring Boot. Now it’s time to visit http://localhost:8080/greeting
in the browser to see the web page, as shown in Figure 2-7.

- D localhost:8080/greeting X -

@) (© localhost:8080/greeting
Welcome to Hello Spring Boot Application!

Figure 2-7. Accessing the REST endpoint from the browser

55

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Add Swagger Ul to a Spring Boot
Application

Nowadays, front-end components and back-end components usually
isolate a web application. Building a back-end API layer introduces new
challenges that have gone beyond implementing endpoints. Usually, you
expose REST APIs as a back-end component for the front-end component
or any third-party app integrations.

Thus, your REST API documentation becomes more fragile. REST
API documentation should be well structured so that it’s informative,
concise, and easy to read. In such a scenario, it is essential to have a
proper specification for the back-end REST API. Moreover, reference
API documentation should simultaneously describe each change in the
API. Fulfilling this manually is a time-consuming and tedious exercise, so
automation of this process was inevitable.

Swagger supports generating the API documentation automatically,
and it also ensures that any changes made to the API are available to the
customer immediately. In this section, you learn how to use Swagger 2 in a
Spring Boot application to generate REST API documentation.

Introduction to Swagger 2

Swagger 2 is an open source project that documents RESTful APIs. It is
language-agnostic and is extensible to new technologies and protocols
beyond HTTP protocol.

This Swagger 2 version defines a set of HTML (HyperText Markup
Language), JavaScript, and CSS assets to dynamically generate
documentation from a Swagger-compliant API. The Swagger UI project
bundled these sets of files to display the API on the browser, and it returns
response data in the JSON format. Besides rendering documentation,
Swagger Ul also allows other API developers or API consumers to interact

56

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

with the API’s resources without having any of the API implementation
logic in place.

The Swagger 2 specification, which is understood as the OpenAPI
specification, has several implementations. Springfox has recently
replaced Swagger-SpringMVC (Swagger 1.2 and older) and is popular for
Spring Boot applications. Springfox supports both Swagger 1.2 and 2.0.

Let’s use Swagger 2 for our Spring Boot REST web service, using the
Springfox implementation of the Swagger 2 specification.

Add Dependency in a Maven POM

Let’s use the Springfox implementation of the Swagger specification. Its
latest version can be found on Maven Central. To add it to our Spring
Boot-based projects, you need to add a single springfox-boot-starter
dependency, as shown in Listing 2-3.

Listing 2-3. Add Springfox Dependency in pom.xml

<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-boot-starter</artifactId>
<version>3.0.0</version>

</dependency>

Configure Swagger 2 into a Project

The configuration of Swagger 2 mainly focused on the Docket bean. For
our Spring Boot application, let’s create a Docket bean in a Spring Boot
configuration class file to configure Swagger 2 for our application. A
Springfox Docket instance provides the primary API configuration with
default methods for configuration. Listing 2-4 shows our Spring Boot
SwaggerConfig configuration class.

57

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Listing 2-4. \src\main\java\com\apress\AWS\config\
SwaggerConfig.java

package com.apress.AWS.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.
RequestHandlerSelectors;

import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.
EnableSwagger2;

/**

* @author RaviKantSoni
*

*/
@Configuration
@EnableSwagger2
public class SwaggerConfig {
@Bean
public Docket productApi() {
return new Docket(DocumentationType.SWAGGER 2)
.select()
.apis(RequestHandlerSelectors.any())
.paths(PathSelectors.any())
.build();
}
}

58

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

In this SwaggerConfig configuration class, the @EnableSwagger2
annotation enables Swagger support in the class. The select() method
called on the Docket bean instance returns an ApiSelectorBuilder, which
provides a way to control the endpoints exposed by Swagger.

In the code, the RequestHandlerSelectors and PathSelectors
use any() to make documentation for our entire API available through
Swagger.

Configuration Verification

At this point, you should be able to test the Swagger configuration
by restarting the application and go to http://localhost:8080/v2/
api-docs.

As shown in Figure 2-8, the result is a JSON response with a large
number of key/value pairs, which is not very human-readable.

= X
@ lccalhosti0B0napidocs X (D ° o

€ 3 C @ lcalhostB080/v2/api-docs a % @ :

{"swagger":"2.8","info":{"description”:"Api Documentation”,"version":"1.8","title":"Api
Documentation”, "termsOfService":"urn:tos","contact":{},"license":{"name": "Apache
2.8","url":"http://www.apache.org/licenses/LICENSE-
2.8"}},"host":"localhost:808@", "basePath":"/", "tags":[{"name": "basic-error-
controller”,"description":"Basic Error Controller"},{"name":"hello-spring-boot-
application”,"description”:"Hello Spring Boot Application”}],"paths":{"/error":{"get":
{"tags":["basic-error-
controller”],"summary”: "errorHtml”, "operationId”: "errorHtmlUsingGET", "produces”:
["text/html"],"responses”:{"20@":{"description":"0K", "schema":
{"$ref":"#/definitions/ModelAndview"}}, " 401" : {"description”: "Unauthorized"}, "483":
{"description":"Forbidden"}, 484" : {"description”:"Not Found"}}},"head”:{"tags":["basic-
error-controller”], "summary": "errorHtml", "operationId": "errorHtmlUsingHEAD", "consumes":
["application/json"], "produces":["text/html"], "responses":{"2@88":
{"description":"0K","schema":{"$ref": "#/definitions/ModelAndVien"}}," 204" :
{"description"”:"No Content"},"481":{"description”:"Unauthorized"},"403":
{"description":"Forbidden"}}}, "post”:{"tags":["basic-error-

controller®], “summary”: "errordtml”, "operationId”: "errorHtmlUsingPOST", "consumes" :
["application/json"], "produces":["text/html"], "responses”:{"2e8":
{"description”:"0K","schema":{"$ref":"#/definitions/ModelAndView"}},"201":
{"description":"Created”},"401": {"description": "Unauthorized"}, "403":

Figure 2-8. Swagger JSON output

59

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Swagger Ul

You want human-readable structured documentation. Swagger Ul is a
built-in solution that makes user interaction with the Swagger-generated
API documentation much easier. In your browser, go to http://
localhost:8080/swagger-ui/.

You see the generated documentation rendered by Swagger UI, as

shown in Figure 2-9.

[@ Swaggerul '+ (-]

Api Documentation @
e
Api Documentation

220

basic-error-controller easicEmor Controller >
hello-spring-boot-application Helo Spring Boot Application >
Models >

Figure 2-9. The Swagger API documentation page

The Basic Error Controller is the API that comes with Spring
MVC. Models show all the Model objects.

60

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Within Swagger’s response is a list of all controllers defined in our
application. Clicking any of them lists the operation endpoints with valid
HTTP methods (DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT), as
shown in Figure 2-10.

' @ Swggern x e P B
= C @ localhostB080/swagger-ui/#/ hello-spring-boot-application Lo ¢ 9
hello-spring-boot-application Heil Sping Boot Application v
m /greeting greetinghessage
[m /greeting greelingMessage

/greeting greetingMessage

uT | /greeting grestingMessage

/greeting greetingMessage ‘
‘ /greeting greetingMessage l

\TCH /greeting grestingMessage

Figure 2-10. Swagger Ul lists REST endpoints

For more information on Swagger, refer to the official documentation page
at https://swagger.io/docs/specification/2-0/basic-structure/.

Configure the Server Port for a Spring Boot
Project

The default Port with which the Spring Boot application has been
configured is 8080, which means a Spring Boot application starts with
an embedded Tomcat server at a default port 8080. You can change this
default embedded server port to any other port.

61

https://swagger.io/docs/specification/2-0/basic-structure/

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

AWS Elastic Beanstalk assumes that the Spring Boot application listens
on port 5000. You can change the default port by simply making an entry
in the application.properties file in your Spring Boot application, as
shown in Listing 2-5.

Listing 2-5. \src\main\resources\application.properties
server.port=5000

Let’s build and run our Spring Boot application in another port and
then open the browser to access our application. This time, you are not
using default port 8080 in the browser; rather, port 5000. In your browser,
go to http://localhost:5000/swagger-ui/.

Figure 2-11 shows the generated documentation rendered by Swagger UL

l@ Swagger Ul EN + (-]
<« & @ lecalhost:5000/swagger-ul/ Zav @ :

Api Documentation @

[Dase utl: localhost:5edd/]

Api Documentation

basic-error-controller 8asicEmor Controller >
hello-spring-boot-application Helo Spring Scot Application >
Models 5

Figure 2-11. URI with port 5000

62

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Build a JAR for a Spring Boot Application

Since you have successfully created a Spring Boot application as a REST
API, let’s deploy it to AWS Elastic Beanstalk. To achieve this goal, you need
a deployable unit of our project.

Before starting the actual process, make sure that you have Apache
Maven (a command-line tool for building and managing any Java-based
project) installed in your local system. If you do not already have Maven
installed, you can follow the instructions at maven.apache.org.

A Spring Boot application’s default mode packages executable JARs
(also known as fat JARs). So, a JAR is used as a deployable unit for this
project. To build a JAR, you can either use STS or the command prompt.

From STS, right-click the HelloSpringBoot project, and then select
Run As » Maven build, as shown in Figure 2-12.

=) AWS - HelloSpringBoot/pom.xml - Spring Tool Suite 4

Figure 2-12. Maven build using STS

File Edit Source New
Y~ =k Go Into i - - .t o . .|re
I8 Package Explorer Open in New Window f
Open Type Hierarchy F4 |’1 .8" encoding="UTF-8"?>
v %= HelloSpringBoc Shaw In AltsShiftsW > £ http://maven.apache.org/PON/4.8.8"
> (® sre/main/jan Show in Local Terminal > Phttp://wwv.w3.org/2001/XMLSchema-instance”
> (% sre/mainfres ocation="http://maven.apache.org/POM/4.0.0 https:,
> B srcitestfjava = Copy Clii=C e A Ak
» i\ JRE System L £ Copy Qualified Name 35 1Run on Server Alt=ShiftsX, R
» @\ Maven Depe 71 Paste CuilsV [T 2Java Application Alt+Shifts X,)
% target/gener o puete Delste [3 Java Application In Container ifactId>
G trget/gener puth L Ju 4UnitTest AlteShiftX, T)
.i g:«:‘]el Source Alt+Shift=5 > m2 5 Maven build Al Shift+X, M pository -->
M:' HELP.md Refactor AheShifesT> | ™ 6 Maven build...
|5 rovnw m2 7 Maven clean
=] mvnw.emd | g Import... m2 & Maven generate-sources
bi pomuxml u Export.. m2 9 Maven install
W Refresh F5 m2 Maven test cription>
Close Project &4 Spring Boot App Alt=Shift«X B
Assign Working Sets... & Spring Devtools Client
QO Runas > Run Configurations...
15 Debug As H Fency
=——— Profile As y foupldrorg.springframework.boot</groupld>

63

CHAPTER 2

DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

This opens the Edit Configuration window. Enter package in the Goals
text box. Click Apply, and then click Run, as shown in Figure 2-13.

e } ; 1]
io-baie Edit configuration and launch, — Q e
2 Package Explorer @ =mn
i =
ey 21| Hame: | HelloSprngBioot |
o b T - . |
(2 sre/mainfrel | |] Main | @ IRE R:\‘rnhi 15+ Source | Launch Extensions | B Envirenment [[] Cemman | ivpn. apat
B srcitestijavy B dvactonys -~
B JRE System] | | —— - |
) Maven Depq | | L SLProject foct S
5B target/geney Workspace...| | File System... | | Variables..|
B8 rarget/gensy . —
» B we Goals: [pachge |
> target : 1
) HELP.md Brofies: | ¥
| rowniw User sentings: I_C\ N J E3
[rwmwr.cmd - N —
& pomuml Workspace... | | File System... | | Variables...
Ol attine [Update Snapshets BE=n
[J0ebug Output [)Skip Tests] Non-recursive N
[Resolve Workspace antifacts
1 | Threads
| Parameter Namme Value Add...
<
{3
@ Boot Dashboard 5
LN - = | s
A5 Reyert Apphy
§
Typetags, projects, d @l =

Figure 2-13. Edit configuration window

The HelloSpringBoot application starts building. You see that the

entire Maven build runs, as shown in Figure 2-14.

64

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

& [Problems @ lavadoc [Declaration [Conscle &3 " EXRBREPEE -8B E =
<terminated> HelloSpringBoot [Maven Build] E\Leaming\software!sts-4.9.0.RELEASE\ plugins\org.eclipse justj.openjdi.hotspot re.full win3d.x 36 64 15.0.1.v20201027-0507jré\bin\javi
- £40:49:49.935 |main] LINFU org.springrramework.boct.test.context.>pringboot|estlontextbootstrapper - Using .

5 20:49:49.844 [main] DEBUG org.springframework.test.context.support.AbstractDirtiesContextTestExecutionlis

© 20:49:49.218 [main] DEBUG org.springframework.test.context.support.TestPropertySourceUtils - Adding inlin

[) N
con— 1111 - S I
WO rrCtt oy
| N Iy O Oy PN By
Il I=f_f_1_f
1+ Spring Boot :: (v2.5.1)
2021-06-29 20:49:58.898 INFO 10664 --- [main] c¢.a.AWS.HelloSpringBootApplicationTests : Star
2921-06-29 20:49:50.186 INFO 10664 === [main] c.a.AWS.HelloSpringBootApplicationTests : No a
2821-86-29 20:49:57.187 INFO 10664 --- [main] c.a.AWS.HelloSpringBootApplicationTests : Star
[INFQ] Tests run: 1, Failures: @, Errors: 8, Skipped: @, Time elapsed: 18.32 s - in com.apress.AWS.Hello$S
[INFO)
[INFO] Results:
[INFO]
[INFO] Tests run: 1, Failures: @, Errors: 8, Skipped: @
[1nFO]
[INFO]
[INFQ] --- maven-jar-plugin:3.2.@:jar (default-jar) @ HelloSpringBoot ---
[INFQ] Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\HelloSpringBoot-8.8.1-SNAPSHOT. jar
[1nFO)
[INFQ] =--- spring-boot-maven-plugin:2.5.1:repackage (repackage) @ HelloSpringBoot ==
[INFO)] Replacing main artifact with repackaged archive
2 2 [
[INFO] BUILD SUCCESS
[INFO] s=ssssscssssccsssssssssssasassssssssssssssssssssssssssssssnansssnnnnnsnnn
[INFO] Total time: 24.804 s
[INFQ] Finished at: 2821-86-29T20:50.081+85:30 b

Figure 2-14. Build output on console in STS

AJAR named HelloSpringBoot-0.0.1-SNAPSHOT. jar has been
created in the project’s target folder.

Building jar: E:\Apress\workspace\AWS\HelloSpringBoot\target\
HelloSpringBoot-0.0.1-SNAPSHOT. jar

To build a JAR using the command prompt, go to your project directory
(where you have created the Spring Boot project) and copy the path.
Change the working directory to the project path on the command prompt,
as shown in Figure 2-15.

65

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

lex.] C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.0.19042.1052]
(¢) Microsoft Corporation. All rights reserved.

E:\Apress\workspace\AWS\HelloSpringBoot>

Figure 2-15. Directory to the project path on the command prompt

Build the project using the following command in the command
prompt.

E:\Apress\workspace\AWS\HelloSpringBoot>mwn clean install

This starts building the application. The JAR file named

HelloSpringBoot-0.0.1-SNAPSHOT. jar has been created, as shown in
Figure 2-16.

66

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

:: Spring Boot :: {v2.5.1)

POI1-96-20 21:05:56.589 INFO 4768 --- [main] €.a.AWS. HelloSpringBootApplicationTests : Starting WelloSpringBootApplicationTes
s using Java 12.0.2 on DESKTOP-VIKZBID with PID 4768 (started by RaviKantSoni in E:\Apressiworkspace\MS\HelloSpringBoot)

021-06-29 21:05:56.609 INFO 4768 --- [main] c.a.AWS. HelloSpringBootApplicationTests : Mo active profile set, falling back to
default profiles: default

PO21-06-29 21:06:04.792 INFO 4768 --- [main] c.a.AWS.HelloSpringBootApplicationTests : Started HelloSpringBootApplicationTest

in 9 1-18 seconds (JVN running for 11.992)
ests run: 1, Failures: @, Errors: 8, Skipped: 8, Time elapsed: 11.83 s - in com. apress ANS_ HelloSpringBootApplicationTests

1 Rcsults:

Tests run: 1, Failures: 8, Errors: 8, Skipped: @

'I
J
]
] (default-jar) @ H

] Bu:ldlng jar: E:\Apressiworkspace\AWS\HelloSpring gRoot\tar'get\Hell._‘:p ingBoot-@.8.1-SHAPSHOT . jar
]

]

1

(repackage) @
Replacing main artifact with repackaged archive

(default-install) @

1 lnsrallmg E:\Apressiworkspace\AHS\HelloSpringBoot\target\) Hc]lcsn"mgsoor B.0.1-SNAPSHOT . jar to C:\Users\ravik\.m2\repository\coml\a
:recc‘,llns\Hellos'sr‘ngEnct‘B 9. 1-SHAPSHOT \HelloSpringBoot -0.8. 1-SHAPSHOT. jar

] Installing E:\Apress\workspace\AS\HelloSpringBoot\pom.oml to C:\Users\ravik\.s2\repository\com\apressiAds\HelloSpringBoot\0.8.1-5N
BPSHOT \He 1 loSpr- 1rgBoot 9.9, 1-5NAPSHOT . pon

] BUILD SUCTESS

Figure 2-16. Build success in command prompt

You need to pick up and deploy the generated JAR file to AWS Elastic
Beanstalk.

Deploy a Spring Boot Application in AWS
Elastic Beanstalk

You have locally created and run the HelloSpringBoot REST API and
created a JAR file in the target folder. Now, let’s deploy to AWS Elastic
Beanstalk.

Sign in to the AWS Management Console using AWS credentials, and
select Elastic Beanstalk as the service. There are already two applications,
named My First Elastic Beanstalk Applicationand helloworld,
created in Chapter 1 (see Figure 2-17).

67

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Elastic Beanstalk > Applications
All applications C | Action Create a new application
Q ¢ 9 &
PP 4 Date Last
name ' R ¥ created ¥ modified ¥ AR o
2021-06- 2021-06-
29 29 am:aws.elasticbeanstalk-us-east-
helloworld Hellowarld-
T, Samartsn 22:59:57 2259557 2:818371255048:application/hellowarld
UTC+O530 UTC+O530
My Fi 2021-06- 2021-06-
F1:s'i:“ Myfirstelasticbeanstalkapplication 29 29 amcawselasticheanstalkius-east-
ast tyfirstelastiche: application- Pt =
Beanstalk en 2255339 2255339 e
Application UTCHOS30 UTC4D530 e L

Figure 2-17. Elastic Beanstalk application

Now let’s create a brand-new application for our Spring Boot
REST APL. First, click the Create a new application button, and enter
HelloSpringBoot the application name. Next, click the Create button to
create a new environment for the application. Then, click the Create one
now link. Select Web server environment as the environment tier, and
then click the Select button.

On the environment information page, name the domain
HelloSpringBoot, and check for availability. Then, select Java as the
managed platform, as shown in Figure 2-18.

68

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Platform

0O Managed platform
Platforms published and maintained by
Amazon Elastic Beanstalk. Learn more E

Platform

Java v
Platform branch

Corretto 11 running on 64bit Amazon Linux 2 v
Platform version

2.2.1 (Recommended) v

Figure 2-18. Platform as Java

Finally, upload your code by selecting the JAR file from the target
folder (e.g., in the authors’ local it is E: \Apress\workspace\AWS\
HelloSpringBoot\target\HelloSpringBoot-0.0.1-SNAPSHOT. jar) of the
project, and then click the Create environment button.

Elastic Beanstalk coordinates the creation and deployment of all AWS
resources required to support the environment during the launch process.
This includes, but is not limited to, launching two EC2 instances, creating a
load balancer, and creating a security group, as shown in Figure 2-19.

69

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Elastic Beanstalk Environments Hellospringboot-env-1

® Creating Hellospringboot-env-1
This will take a few minutes. ..

12:17am Instance deployment completed successfully.
1217am Instance deployment successfully detected a JAR file in your source bundle,
1Z17am Instance deployment successfully generated a ‘Procfile’.

1Z17am Created Load Balanc
am:a oadbalar 5 18371255049 istener/app/awseb-AWSEB-1GRGSIDZMWIOF/ 2b0bEL 1980516108 /dfbe 2 e 3e3f874F29

118371255049 oadbalancer/app/awseb-AWSER-1GRGSID2MWIOF/2b0b60b 1980510108

Created CloudWatch alarm named:
awseb-e-plwyrr2uTu-stack-AWSEBCloudwatchAlarmHigh-LSRBGEFPQ2 0B

Created Auto S group palicy named:

aravesantoscalingus-east-2-81837 iscalingPolicy bOS6EMET-4515-4502-9384-7acB4791 8205 autoSealingGroupName/ swseb-g-pdwyzr 2uTu-stack-
AWSEBAUtoScalingGroup-1LMNFSYGOQSIH:policyName fawseb-e-pawyzr2uTu: AWSEBAUtoScalingScaleDownPolicy-1NATAY221ISWW

Created Auto Scaling group policy named:
autascaling us-east-2B1E 3504 %:scalingPolicyzaS6d39d5-816b-4913-9108-aad 3dSad9aabauto gGroupName fawseb-e-pleryzrr2uTu-stack-
p-1LMNFSYGQSIH rwseb-e-pdwyn 2uTu AWSERAULDS: olicy-6TEILYDRIOUS

Figure 2-19. Creating Hellospringboot-env in Elastic Beanstalk

Once the environment has been created and the resources have been
deployed, notice that Health is reported as severe (see Figure 2-20). This is
because the Spring Boot application still needs some configuration.

Elastic Beanstalk Environmants Hellospringboot-envy
Hellospringboot-env £ Refresh Actions ¥
helloSpringBoot.us-sast-2 elasticheanstalk.com [7 (=-t24fepreus)
Application name: HelloSpring Boot
Health Running version Platform
hellospringboot-source
o Upload and deploy %
/..
Severe
Tomcat 8.5 with Corretto 11
Causes ‘ running on 64bit Amazon Linux
2/a.23
Change I

Figure 2-20. Severe health of Spring Boot application

70

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

AWS Elastic Beanstalk assumes that the application listens on port
5000. To fix the discrepancy, change the port the Spring Boot application
listens on. So, you need to specify the SERVER_PORT environment variable
in the Elastic Beanstalk environment and set the value to 5000.

Go to the Configuration page in your environment. Under
Configuration, click the Edit icon, as shown in Figure 2-21.

i Hellzspringboot-eny - Configur: X +

C @ us-east-Zoonsole.aws.amazon.com ela

Elastic [gboot-env Configuration
ns

Saved configurations .

Conhguratlon overview Cancel | | Review changes I Apply configuration

O Table View
¥ Hellospringboot-em
Go ta enwironment [
Q
Configuration
Logs Category Options Actio
Health
i Environment properties:
Monitoring JDBC_CONNECTION_STRING
TP Initial JUM heap size (Xms): 256m
Jt options: -

Managed updates Software Leg streaming: disabled Edit

Events Max JVM heap size ({mx): 256m
Proxy server: nging
Tags Rotate logs: disabled

X-Ray daemon: disabled

Figure 2-21. Spring Boot application severe health

In the Environment properties, you see that there are already some
environment variables set by Elastic Beanstalk when it is configured to use

the Java platform.
To change the port that the Spring Boot application listens on, add a
new environment variable, SERVER_PORT, with a value of 5000, as shown

in Figure 2-22.

71

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Elastic Beanstalk A Environment properties
T following proserties ane passed in the spplistion & envirsrment presarties. Lsarn mora [

Emvironments

Name Value
GRADLE_HOME lgrad x
JAVA_HOME Auseflb/prmyfava-11-amazan-cometto. 6,64 x
M2 fusficcal/apache-maven/tin x

HOME x
ER_PORT 000 x

Managed updates

Figure 2-22. Environment properties on software configuration

As soon as you click Apply, the configuration change propagates to the
application servers. The application restarts. When it restarts, it picks up
the new configuration through the environment variables. After a minute,
you see a healthy application on the dashboard, as shown in Figure 2-23.

Elastic Beanstalk Environments Hellospringboot-env-1
Hellospringboot-env-1 | & Refresh | Actions ¥
Hospringh -1, kce.us-rast-2.elastich tk.com [A {e-pdwyzrzuTu) : —

Application name; HelloSpringBoot

Health Running version Platform
hellospringboot-source-1 #
0 Upload and deploy ! 0‘ ,
Ok Corretto 11 running on 4bit

Amazon Linux 2/3.2.1

Figure 2-23. Health OK

72

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

Test a Spring Boot Application as a REST
API in the Cloud

Now, let’s test the deployed REST API endpoint in AWS. Use the URL you
configured in the environment to access the service. For this example, the
specified URL is http://hellospringboot-env-1.eba-qppppkce.us-
east-2.elasticbeanstalk.com.

For the first test, from the browser, use an HTTP GET on the greeting
URI at http://hellospringboot-env-1.eba-qppppkce.us-east-2.
elasticbeanstalk.com/greeting. The service responds with a welcome
greeting message, as shown in Figure 2-24.

<« > C A Notsecure | hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting
Welcome to Hello Spring Boot Application!
Figure 2-24. Accessing REST API deployed on the cloud from browser

Next, access the Swagger Ul dashboard at http://hellospringboot-
env-1.eba-gppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/
from your browser, as shown in Figure 2-25.

73

http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/greeting
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/
http://hellospringboot-env-1.eba-qppppkce.us-east-2.elasticbeanstalk.com/swagger-ui/

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

[@ Swaggar Ul P+ -

c A Not zecure | hellespringboot-env-1.eba-qppppkce.us-east-2 elasticbeanstali.com/swagger-ui/ a 1 9

<«
@ Swagger Select a definition [RERENL: v
F wdny SMARTBEAR

Api Documentation ©

[Base URL: hellospringboot-env-1.eba-gppppkce.us-east-2.elasticbeanstalk.com/]

ttpifhellospringboot-env- 1. eba-gppppkce. us-east-2. elasticbeanstalk. com/v2fapi-docs

Api Dacumentation

Terms of service

Apache 2.0
basic-error-controller Bsasic Error Controller >
hello-spring-boot-application Helio Spring Boot Appiication >

Figure 2-25. Accessing Swagger-UI dashboard from browser

Explore Logs from Elastic Beanstalk

You can explore the Spring Boot logs from Elastic Beanstalk. Select Logs »
Request Logs to retrieve the last 100 lines of a log or the entire set of logs
from each EC2 instance, as shown in Figure 2-26.

74

CHAPTER 2 DEPLOY A SPRING BOOT APPLICATION AS A REST API IN AWS

« C @ us-east-Zconsoleaws.amazon.comyels: a5t mvironment/lc otéen 9

M@=

Saved configurations
lines of logs or the entire setof | Request Logs ¥ & Refresh
¥ Hellospringboot-eme-1
Go to environment [
Log file Time EC2 instance Type

Configuration
Logs Download 2021-06-30T00:5%27+05:30 F0e64b951d6540cdee Full Logs
Healtk

o Download 2021-06-30T00:5%46+05:30 -0efdb951d6540cden Last 100 Lines
Manitoring

r

Managed updates

Figure 2-26. AWS Elastic Beanstalk logs

Once you click Download, you see that the entire Spring Boot log is
visible.

Summary

In this chapter, you deployed a REST API to Elastic Beanstalk. You created
a Spring Boot project application as a REST API and then generated a JAR
file for the project. You deployed this JAR to Elastic Beanstalk, resolved
server issues in AWS. And finally, you accessed the deployed application in
the cloud.

In the next chapter, you deploy a MySQL database in AWS with RDS.

75

CHAPTER 3

Deploy MySQL as
a Database in AWS
with RDS

In Chapter 2, you deployed the REST API to AWS Elastic Beanstalk. You
created a Spring Boot application as REST API, and then you generated
aJAR file of our project. You were able to deploy the JAR file to Elastic
Beanstalk and resolved the server issue on AWS to make the application.
And finally, you were able to access the application deployed on the AWS
cloud.

Amazon RDS makes it easy to set up and operate a MySQL database
and easy to scale MySQL deployment in the Amazon cloud. Self-managing
a database offers a lot of challenges and takes upkeep. This chapter
introduces Amazon Relational Database Service (RDS), and you learn how
to deploy it.

Ifyou look at the application architecture from Chapter 2, Elastic
Beanstalk is where our Java-based Spring Boot application was deployed.
Now let’s use the Amazon RDS, which is a database in the cloud. MySQL
runs on AWS. An instance of a MySQL database is created and configured
in AWS. Tables are also created in the MySQL database.

© Ravi Kant Soni and Namrata Soni 2021 77
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_3

https://doi.org/10.1007/978-1-4842-7392-0_3#DOI

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Introduction to Amazon RDS (Amazon
Relational Database Service)

Data can be understood as a collection of the distinct unit of information
that can be translated into a required form for efficient movement and
processing. A database can be defined as an organized collection of
structured data so that it can be easily accessed, managed, and updated. In
simple words, a database is where the data is stored.

Amazon RDS is a web service that allows you to quickly deploy and
scale a relational database on the Amazon cloud. Once you have deployed
your database, you can manage it using a normal admin tool like MySQL
Workbench, Oracle SQL Developer, or another admin tool. AWS also
supports NoSQL databases like MongoDB.

For more information on Amazon RDS, refer to https://docs.aws.
amazon.com/AmazonRDS/latest/UserGuide/Welcome.html.

Create an Instance of the RDS Database
in AWS

Let’s begin configuring the RDS MySQL environment by signing up on
AWS Management Console. Select RDS under the Database section in All
Services, as shown in Figure 3-1.

78

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

ManoRas ¥ Ohio v Support

Recently visited

iy Business
Applications

» Migration &
Transfer

Figure 3-1. RDS under Database section in All Services

You are redirected to the Amazon RDS dashboard page, as shown in
Figure 3-2. This page gives information about the resources you are using.
Let’s create an instance of Amazon Relational Database by clicking the
Create database button.

79

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

dWs

Services ¥

Amazon RDS

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups
Parameter groups

Option groups

Events

Event subscriptions

Recommendations

Certificate update

Figure 3-2.

Resources Refresh

You are using the following Amazon RDS resources in the US East (Ohio) region (used/guota)

DB Instances (0/40) Parameter groups (0}
Allecated storage (0 TB/100 TB) Default (0)
Click here to increase DB instances limit Custom (0/100)
DB Clusters (0/40) Option groups (0)
Reserved instances (0/40) Default (0)
Snapshots (0} Custom (0/20)
Manual (0/100) Subnet groups {0/50)
Automated (0} Supported platforms VPC
Recent events (0) Default network vpc-b8fa7dad3

Event subscriptions (0/20)

Create database

Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale a
relational database in the cloud.

F
Restore from 53 Create database

Mote: your DB instances will launch in the US East (Ohio) region

Amazon RDS dashboard

A new page opens, where you can define the database creation method

and other options. Let’s start creating a database.

First, select the database engine from the Engine options, as shown

in Figure 3-3. There are a lot of options available, but let’s use the MySQL

database engine. MySQL is a widely-used open source relational database

management system. MySQL is mostly used for web databases.

80

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Amazon RDS e ey ADS » Create database
Select engine
Dashboard 0 Select engine
Databases Choose use case
Query Editor - Engine options
Performance insights Specity DB details
PP Amazon Aurora | © MysoL MariaD3

Automated backups

cont advanced —
Reserved instances = Aurora

Promies

Subnet groups
PostgreSQL Dracle Microsoft SOL Server
Parameter groups

Oplion groups @ ORACLE' ,“’ §6€ Server

Events

Event subscriptions

Figure 3-3. Engine options to select

As shown in Figure 3-4, click the check box to only enable options for
the RDS Free Usage Tier, which allows you to use a database for free in the
AWS cloud. And then click the Next button.

MySQL

MySQL is the most popular open source database in the world. MySQL on RDS offers the
rich features of the MySQL community edition with the flexibility to easily scale compute
resources or storage capacity for your database.

* Supports database size up to 64 TiB.

* Supports General Purpose, Memory Optimized, and Burstable Performance instance
classes.

* Supports automated backup and point-in-time recovery.

* Supports up to 5 Read Replicas per instance, within a single Region or cross-region.

@ Aurora multi-master and Aurora global database features are now available.
These features are now available in our new database creation flow.

Only enable options eligible for RDS Free Usage Tier Info Cancel m

Figure 3-4. RDS Free Usage Tier

81

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Next, specify the database details, as shown in following Figure 3-5.

Stey RDS > Create database
Select engine

Specify DB details
Specify DB details

Instance specifications

nced Estimate your manthly costs for the DB

stance wsing the Amazon Web Service Simple Monthly Calculator [2

DB cngine
MySQL Community Edition

License model Info

general-public-license v

DB engine version Infe

MySQL 8.0.23 v

Enown Issues/Limitations
Review the Known Issues/Limitations [to leam about potential compatibility issucs with
specific database versions.

@ Free tier
The Amazon RDS Free Tier provides a single db.tZ.micro instance as well as up to 20 GiB of
storage, allowing now AWS 1@ gain hand: € with Amazen RDS. Learn
maore about the RDS Free Tier and the instance restrictions here.,

Only enable options cligidle for RDS Free Usage Tier Info

DB instance class Info

db.tZmicro — 1 wCPU, 1 GiB RAM v

Figure 3-5. Specify DB details

Keep the defaults for the license model and DB engine version. Check

the box to only enable the option for the RDS free tier. In the DB instance

class, keep the default selected value, db.t2.micro, for the free tier.

The database instance identifier is a unique name that you create to

find or reference a database instance. Next, provide a suitable name for the

database; let’s use spring-aws-db, as shown in Figure 3-6.

82

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Settings

DB instance identifier Info
Specify a name that is unigue fer all DB instances owned by your AWS account in the current region.

spring-aws-db

DB instance identifier is case insensitive, but stored as all lower-case, as in “nrydbinstance”. Must contain from 1 to 63 alphanumeric
characters or hyphens (1 to 15 for SQL Server). First character must be 3 letter. Cannot end with a hyphen or contain two consccutive
hyphens.

Master username Info
Specify an alphanumeric string that defines the login ID for the master user

springaws

Master Username must start with a letter. Must contain 1 to 16 alphanumeric characters.

Master password Info Confirm password Info

sasansane sninanare

Master Password must be at least cight characters long, as in
“mypassword”. Can be any printable ASCH character except "/, ™™,

or @,

Figure 3-6. Setting database details

Similarly, provide the master username and password. We used
springaws for both to keep things simple, but you can use any value you
want. You can connect to the MySQL instance using this username and
password later, so keep these credentials safe. And then click the Next
button.

Finally, you need to configure some advanced settings that are essential
to setting up an RDS MySQL environment, as shown in Figure 3-7.

83

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

RODS Create database
Select engine

sie02 Configure advanced settings
Specify DB details

1003 Network & Security
Configure advanced

setti .
o Virtual Private Cloud (VPC) Info
VPC defines the virtual networking envirenment for this D8 instance
Default VPC (vpe-bSfa74d3) v o]]
Onily VPCs with a correspondng DE subnet group are listed.
Subnet group Info
D& swbact group that defi DR
default v

Public accessibility Info
O ves

E

Mo
D@ Instance will not have 3 public IP addross assigned. No EC2 instance of doviees outside of th VPC will be able to conmt

Availability zone Info

No preference v
VPC security groups
Socudty groupt have niés athoridng

© Create new VPC security group
Choose existing VPC security groups

Figure 3-7. Configure advanced settings

Keep all the defaults in the Network & Security section. Make sure
the public accessibility of the DB instance is Yes. This allows the database
instance to be available on the Internet and connect with other hosts.

Next, the database options include the name, port, and so on, as
shown in Figure 3-8. Keep all the defaults as they are. The port number is
3306, which is the default port. Other options are also available.

84

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Database options
Database name Info

Note: if no database name is specified then no initial MySQL database will be created on the DB Instance.

Port Info
TCR/IP part the DB instance will use for application connections.

3306

DB parameter group Info

default.mysqgl8.0 v

Option group Info

default:mysgl-8-0 v

IAM DB authentication Info

Enable 1AM DB authentication
Manage your database user credentials through AWS 1AM users and roles.

© Disable

Figure 3-8. Database options

Click the Create database button to launch the Amazon RDS database
instance, as shown in Figure 3-9.

Deletion protection

Enable deletion protection
Protects the database from being deleted accidentally. While this optien is enabled, you can't delete the database.

(@ Amazon RDS requires permissions to ge AWS resources on your behalf. By clicking Launch DB Instance, you
grant permission for Amazon RDS to create a service-linked role in AWS IAM that contains the required
permissions. Learn more,

Cancel Create database

Figure 3-9. Launch the Amazon RDS database instance

85

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

You see that your database instance is being created, as shown in
Figure 3-10.

RDS > Create database

@ Your DB instance is being created.
Note: Your instance may take a few minutes to launch.

Connecting to your DB instance

Once Amazon RDS finishes provisioning your DB instance, you can use a SQL client application or utility to connect to
the instance.
Learn about connecting to your DB instance

All DB instances View DB instance details

Figure 3-10. Amazon RDS DB instance creation status

Your DB instance normally takes a few minutes to launch.

Configure Amazon RDS

The current status shows that you have a database instance available in the
AWS cloud, which you created as an instance of the RDS database server.
Unfortunately, this database instance is empty because there’s no database
schema, tables, or data available in the RDS database instance.

You need to do some configuration work for the relational database
service, connect it to MySQL Workbench, and access it. As a development
process, the first thing is to configure security for inbound connection
rules. And, then you need to test the database connectivity with MySQL
Workbench.

Before going ahead, let’s check the Amazon RDS database instance
status. Click Databases under Amazon RDS, as shown in Figure 3-11.

86

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Deshboard S
Databases O Group resources | [+] Restoes from 53 | [STRE ST

[1 @

DB identifier " Role ¥ Engine Region & AZ ¥ Sire W Status ¥

Figure 3-11. Database instance status

Here, you can see that the database instance spring-aws-db is added
to the list. Its status is available, which indicates that the database has
been created and is available for use. Click the spring-aws-db link in the
Databases table. Figure 3-12 shows the summary.

RDS » Databases spring-aws-db
spring-aws-db Modify | [Actions v |
Summary
DB identifier cPU Status Class
spring-aws-db ' 1 3.22% & Available db.t2.micro
Role Cusrrent activity Engine Region & AZ
Instance 1= 0 Connections MySQL Community us-gast-2b

Figure 3-12. Amazon RDS database instance summary

Here, you can see the information on the spring-aws-db database
instance. The class is db.t2.micro, the engine is MySQL Community, and
the status is available.

87

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Step 1. Configure Security for Inbound
Connection Rules

First, you need to configure the security group rules for the inbound
connection rules. Scroll down to the Security group rules section, as
shown in Figure 3-13.

Security group rules (2)

Q. Filt C 1 @
Security group A Type v Rule -
rds-launch-wizard (sg-082174308066db6dE) CIDR/IP - Inbound 59.99.65.121/32 ‘
rds-launch j (59-082174308066db6d8) CIDR/IP - Outbound 0.00.0/0

Figure 3-13. Security group rules

The inbound rule defines the traffic allowed on the server and who can
connect to the database instance. Click rds-1launch-wizard for CIDR/IP -
Inbound, which redirects you to the Security Groups Info page, as shown
in Figure 3-14.

Security Groups (1/1) e i [| Actions ¥ Create security group
Q < 1]

search: rds-launch-wizard X Clear filters

/] Name v Security group 1D v Security group name 7 VPCID v Description

= 5g-082174208066db60S rds-launch-wizard vpe-b8fa7ads B Created from the RDS .

Figure 3-14. Security groups

At the bottom of this page, you see tabs named Details, Inbound rules,
Outbound rules, and Tags, as shown in Figure 3-15.

88

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

£g-082174a0! 1b6d8 - rds-launch-wizard

Details Inbound rules Outbound rules Tags

Details

Security group name Security group ID Description VPCID

@ rds-launch-wizard O 59-082174208066db6d8 9 Created from the RDS D vpe-bBfa7ads [4
Management Console:
2021/07/02 15:00:10

Owener Inbound rules count Outbound rules count

818371255049 1 Permission entry 1 Permission entry

Figure 3-15. rds-launch-wizard

Click the Inbound rules tab, as shown in Figure 3-16.

5g-082174 d8 - rds-1 h-wizard

Details Inbound rules Outbound rules Tags

Inbound rules (1) | Edit inbound rules

Description -

Type Protocol Port range Source 2
» 9 optional

MYSQLAurara TCP 3306 59.99.65.121/32 -

Figure 3-16. Inbound rules

You see that the database is only accessible from the IP address
59.99.65.121/32. You need to make some modifications here. Click the
Edit inbound rules button, which redirects to the Edit inbound rules
page. Here you can edit the IP address that has access to the Amazon RDS
MySQL database instance, as shown in Figure 3-17.

89

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

EC2 Secuity Groups 55-082174208065dbEAE - rds-Launch-wizard Ecit Inbound ndes
Edit inbound rules ..
mbound rules controd the incoming traffic that's allowsd to reach the invtance.
Inbound rules s
Type into Protecol Portrange Infs Source alo Dascription - opticnal wie

MYSOLMRuroa v Cistam ¥ | O Delete]

$9996512132 X|

Addrule |

A NOTE: Any edits madse o existing rubis will risull in the ecited rubg beirg deleted and a naw rubi created with the mis Sitails, This will cause tralfic that depends on that rule 1o ba dropped
for 2 very brief period of time until the new rube can be crested

Figure 3-17. Edit inbound rules

You can determine the traffic that can reach the database instance.

From the Source drop-down list, select the Anywhere option, as shown in
Figure 3-18.

Inbound rules e

Type Infa Pratocol Portrange Infe Source Iafo Description - optional infa
nfe
MYSQL Aurora v TP

Custom & Q
[G Frry=sreyame:
i

Amywhere

[| L

A NOTE: Any edits made on existing rubes will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends
on that rule to be dropped for a very beief period of time wuntil the new rule can be oreated.

Cancel preview changes | [EERTadl

Figure 3-18. Select Anywhere from Source drop-down list
Now, anyone can find the database instance or connect to it, but they
still have to provide a correct user ID and password. The Anywhere source

option is good for dev and testing, but it is recommended to only allow
access from the Elastic Beanstalk app IP address for production.

90

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Click the Save rules button. Now you can see that the inbound rule has
been set up, as shown in Figure 3-19.

59-082174208066db6d8 - rds-launch-wizard

Details Inbound rules Outbound rules Tags

Inbound rules (2) Edit inbound rules

Description -

Type Protocol Part ran Source
Y rotoc rt range Lres optional

MYSOL/Aurora TCP 3306 0.0.0.0/0

MYSOLfAurora TCP 3306 =0

Figure 3-19. Updated source in Inbound rules

These updated Inbound rules allow connection from anywhere.

Step 2. Test an Amazon RDS Database Instance
Connection with MySQL Workbench

Once you have successfully created the Amazon RDS MySQL database
instance and all the necessary configurations are done, the second step is
to test the RDS database instance connection with MySQL Workbench.

Return to the previous page in the browser. In the Databases section,
click the Connectivity & security tab, as shown in Figure 3-20.

91

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

RDS Databases 3 spring-sws-
Amazan RDS *
spring-aws-db Modity Actions v |
Dashboard
Summary
Query Editos
...... nange Insights D8 icentifier oy Status Class
L springeav-db . saE% © Available dhtmicro
Automated backups Role Cument activity Engine Region & AZ
Rusarved Instances Irstance © Cannectica; MySQL Community g2
.......
Subiat groups Logs & event Corfiguration Maintenance & backups Tag
Parameter groups
Opticn groups.
Connectivity & security
Events
Event subscriptions Endpoint & port Networking Security
Aecommendations () Endpoint fovailability zone WPC secur
Coruificate update springsea-chopsoyTowinom-sasts | usemsste 1
2 reb amazonmis.com
wig
i vpe-bataTads
3306
Subret group
default

Figure 3-20. Updated source in Inbound rules

In the Connectivity & Security tab, there is a section called Endpoint
& port. The endpoint indicates the hostname of the database instance,
which you can use in MySQL Workbench to connect to the RDS database
instance. In this case, itis

spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Note Refer to Appendix A for the MySQL Workbench installation
guide.

Connect MySQL Workbench to an Amazon RDS MySQL
Database Instance

Open MySQL Workbench in your local system. Then, click the + icon to
create a MySQL connection, as shown in Figure 3-21.

92

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

AySQL Workbench

File Edit View Database Tools Scripting Help

MySQL Connections ®@®

MySQL Workbench could not detect any MySQL server running.

This means that MySQL is not installed or is not running.
Rescan servers

Figure 3-21. MySQL Workbench

This opens the Setup New Connection wizard, as shown in Figure 3-22.

T\ Setup New Connection

Connection Name: |]T\vpeanmfafhwnecﬁun

tion Method: | St2ndard (TCP/IF) | Method to use to connect to the RDBMS

e

Parameters ssi Advanced

Hostname: | 127.0.0.1 | Part: |3y)5 wpor:::d&m of the server host - and
Username: Faot | Mame of the user to connect with.
Password: [Storeinveut.. || Clear lfsl.:efs password. Will be requested later ifit's

Default Schema: | The schema to use as default schema. Leave
blank to selact it later,

| Configure Server Management... TestConnecton | | Cancel |

Figure 3-22. Setup New Connection wizard

93

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

For the connection name, enter the value as spring-aws-db. In the
hostname field, the default value is 127.0.0.1, which is known as the
localhost. Replace the default IP address with the following RDS database
instance hostname from AWS Management Console.

spring-aws-db.cpsoyj7kwlno.us-east-2.rds.amazonaws.com

Leave the port number as it is because 3306 is the port for the database
instance from the AWS console.

Use the same username and password that you created for the RDS
database instance. So, enter springaus as the username, as shown in
Figure 3-23. Click the Store in Vault button for password.

TV Setup New Connection

Connection Name: ;spmgmd: l Type a name for the connection

[
Connection Mathod: | Standard (TCP/IP) b | Methad to use to connect to the RDEMS

Parameters s Advanced

Hostname: |Nu1'u‘nn+|n t-2.rds r.,,....|P|:‘rt: |3305 | Mame or IP address of the server host - and
| TCRfIF port.

| Name of the user to connect with.

Username: |W

The user’s password. Wil be requested later if it's

Password: [MGioce in Vauit... Clear
not set.
Default Schema: | The schema to use as default schema. Leave
blank to select it later.
Configure Server Management... | | TestConnection] Cancel oK

Figure 3-23. Updated value in Setup New Connection wizard

Enter springaws, and then click OK, as shown in Figure 3-24.

94

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

T\ Store Password For Connection X

Please enter password for the following service:
[—

5 Service: Mysql@spring-aws-db.cpsoyj7kwino.us-east-2.rds.amazonaws.com: 3306
L]
Il User: springaws

Wé}kbﬂﬂchl Password: l[

ok | [conced

Figure 3-24. Store password for connection

Click the Test Connection button. You should receive a notification
saying you have successfully made the MySQL connection, as shown in
Figure 3-25.

a Setup Mew Connection -]
e T
Connection Method: | Stendard | | Method to use to connact to the RDEMS
Parameters S5 Advancef o Successfully made the MySQL connection
Hostname: |5yjarino| Information related to this connection: lr:“;lI:taaiclr.-.-sa; of the server host - and
. Host: -
Username: [springams] spring-aws-db.cpsoyjThwino . _ fthe user to connect with.
Password: st E:: Eﬁgaws w's password. Will be requested later if it's
S5L: enabled with TLS_AES_256_GCM_SHA384
Default Schema: B lema to use as default schema. Leave
A successful MySQOL connection was made with select it later.
the parameters defined for this connection.
: Configure Server Management... Cancel oK

Figure 3-25. Successfully made the MySQL connection

95

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

That’s how you know that the database instance is available and
running in the AWS cloud. You can use your local MySQL Workbench to
connect to it. Click the OK button in the Connection wizard, which lets
Workbench list the database connection details, as shown in Figure 3-26.

4

File | Edit View Database Tools Scripting Help

MySQL Connections ®®

spring-aws-db

2 springaws §
i = spring-aws-db.cpsoyj7kwino.us-eas... |

Figure 3-26. MySQL Workbench with Amazon RDS db connection
details

Create a Table Inside an RDS Database
Instance

MySQL is set up correctly. You can access the remote RDS database
instance by clicking spring-aws-db, which opens in the SQL editor, as
shown in Figure 3-27.

96

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

T MySQL Workbench

Ebe Edit Mew Query [Datsbase Server Tools Zeripting Help
S8 e SOEEE @ & @ D=0
SCHEMAS * @WH FFLOB @] umor000mme - 135 ¢ Q [2

Administration Schemas <
Information Output
(F Action Outout

. Time Agion Hlessage Duration / Feech

Mo object selected

Object Info Session

Figure 3-27. SQL editor instance for spring-aws-db

Currently, there is no database, table, or data available for our RDS
database instance. You need to run some scripts to provide anything that
you can query.

First, let’s create a database using the CREATE DATABASE command.
The syntax to create a new database is CREATE DATABASE DB_NAME, where
DB_NAME is the database name that you want to create. For example, to

create a database named UserRegistration, type the following query into
the Query tab and run it.

CREATE DATABASE UserRegistration;

Once the query is executed successfully, the Schema tab should
display the UserRegistration database, as shown in Figure 3-28.

97

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

NaVIQAEOr Sl Cuery 1
SCHE_N!M B i 0= *7 :f ‘Q | @. Limit to 1000 rows
S 1+ CREATE DATABASE UserRegistration;

> sys
¥ [= UserRegistration
E Tables
E‘F Views
7 stored Procedures
B9 Functions

Figure 3-28. Database created

Now, let’s create a user table in the UserRegistration database. A
table displays and stores the records in a structured format. The CREATE
TABLE command creates a new table into the existing database. The syntax
to create a MySQL table is shown in Listing 3-1.

Listing 3-1. Syntax to Create MySQL Table

CREATE TABLE [IF NOT EXISTS] table name(
column_1 datatype(size) [NULL | NOT NULL],
column 2 datatype(size) [NULL | NOT NULL],
column_3 datatype(size) [NULL | NOT NULL],

column N datatype(size) [NULL | NOT NULL],
table constraints

)5

table_name is the name of the table, which should always be unique in
a MySQL database. The IF NOT EXISTS clause helps prevent errors when
the same table name already exists in the database.

column_ specifies the column name. datatype specifies the type of
data for that column, and columns are separated using a comma operator.

table constraints specifies the table’s constraints, such as primary
key, foreign key, and unique key. For example, to create a table called
users, enter the query shown in Listing 3-2 in the Query tab and run it.

98

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Listing 3-2. Create Users Table in UserRegistration Database
use UserRegistration;

CREATE TABLE [IF NOT EXISTS] users(
id int NOT NULL AUTO_INCREMENT,
first name varchar(45) NOT NULL,
last _name varchar(45) NOT NULL,
address varchar(35) NOT NULL,
age int NOT NULL,
created date DATE,

PRIMARY KEY (id)

)5

Here, the use UserRegistration command selects the database

under which the table is created. Once the query is executed successfully,

the UserRegistration database should display the users table, as shown

in Figure 3-29.

MNavigator: 2 2 R
SCHEMAS * meyFe0® Umkto 1000rws ~ | ¥ | & @
‘:F;E'Obﬁm 1 1+ USE UserRegistration;
= sys
v [_:,3 UserRegistration 2
w P9 Tables
v [users 3 e CREATE TABLE users(
ot 4 id int NOT NULL AUTO_INCREMENT,
Doy 5 first_name varchar(45) NOT NULL,
o oo 6 last_name varchar(45) NOT NULL,
created_date
'%Mms 7 address varchar(35) NOT NULL,
L g ForeignKeys :
bammir‘ 4 8 age int NOT NULL,
T views 9 created_date DATE,
El Stored Frocedures .
B Functions 18 PRIMARY KEY (ld)
11 -);

Administration Schemas

Figure 3-29. Table created

99

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Now, let’s insert some data into the users table. The INSERT INTO
command adds or stores data in a table. The syntax to insert data into a
table is shown in Listing 3-3.

Listing 3-3. Syntax to Insert Data into the Table

INSERT INTO DATABASE.table name (column 1, column 2,... column_N)
VALUES
(value 1, value 2,...value N);

First, specify the database name followed by a dot (.), followed by the
table name, and then a list of comma-separated columns. Next, provide
the list of values corresponding to the column’s name after the VALUES
clause. For example, to insert data in the users table, type the query shown
in Listing 3-4 in the Query tab, and then run it.

Listing 3-4. Insert Data in users Table in UserRegistration Database

INSERT INTO UserRegistration.users (first name, last name,
address, age, created date)

VALUES

('Ravi', 'Soni', 'Sasaram-Bihar-India', 34, '2021-07-04');

The default date format in MySQL is YYYY-MM-DD, where YYYY
represents the year in four digits, MM represents the month in two digits,
and DD represents the day in two digits.

Once the insert query is executed successfully, you can use the SELECT
command to fetch data from the MySQL database. The data returned from
the database is stored in a result table, called result-set. The SELECT
command syntax to fetch data from a MySQL table is shown in Listing 3-5.

100

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Listing 3-5. Syntax of SELECT Command to Fetch Data from
Database

SELECT column_1, column_2,
FROM
DATABASE.table name;

For example, to fetch data from the users table, type the query shown
in Listing 3-6 into the Query tab, and then run it.

Listing 3-6. Fetch Data from UserRegistration Database

SELECT first name, last name, address, age, created date
FROM
UserRegistration.users;

Once the SELECT query is executed successfully, the result appears as
shown in Figure 3-30.

Navigator
scrHemas * WHFFAOCB @] o 00mm - 1% | ¢ Q () @
@ (s e 1e SELECT first_name, last_name, address, age, created_date
»> 575
¥ | UserRegistration 2 FROM
¥ B Tables . .
v e 3 UserRegistration.users;
¥ [&] Columns
*d
+ first_name
@ last_neme
+ address <
+ created_date Result Grid | HH 43 Fiter Rows | || Bxports g | Wrap el Comtent: TR
b 57 indexes
.% Fareign Keys first_ name last name address age created date
») Triggers ; . . "
B views » Ravi Soni Sasaram-Bihar-India 34 2021-07-04
=7 Stored Procedures
B9 Purctions

Figure 3-30. Table created

101

CHAPTER 3 DEPLOY MYSQL AS A DATABASE IN AWS WITH RDS

Summary

This chapter introduced Amazon RDS. First, you created a MySQL
database instance in AWS and configured the database. Then, you created
a table in the database and inserted data into it using MySQL Workbench.

The next chapter overviews CRUD operations in a Spring Boot
application, and you deploy Spring Boot application that talks to MySQL
in AWS.

102

CHAPTER 4

Deploy a Spring Boot
Application Talking
to MySQL in AWS

Chapter 3 introduced Amazon RDS, and you learned how to deploy it on
the Amazon cloud. You created an instance of an Amazon RDS MySQL
database in AWS and configured the database. You also created tables in
this database and inserted data into it using MySQL Workbench.

In Chapter 2, you created and deployed a Spring Boot REST API
containing some endpoints to AWS Elastic Beanstalk. However, that’s not
how real applications run. The real application uses a real-time database
to perform CRUD operations.

This chapter creates a Spring Boot application as a REST API talking to
an Amazon RDS MySQL database from your local system.

Create Spring Boot UserRegistrationApp
Talking to MySQL Database

In this section, you create the UserRegistrationApp Spring Boot
application using Spring Initializr (http://start.spring.io/). Here,
you select Web, JPA, MySQL, and Lombok as dependencies, as shown in
Figure 4-1.

© Ravi Kant Soni and Namrata Soni 2021 103
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_4

https://doi.org/10.1007/978-1-4842-7392-0_4#DOI
http://start.spring.io/

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Preoject Language Dependencies ’ ADD DEPENDENCIES... CTRL + B I
@ Maven Projact @ tva Q) Kotin
O Gradle Project O Groovy spring Web [0
Bulld web, ncluding RESTHU, applications using Spring MVC. Uses.
Spring Boot Apache Tomeat as the defaull embedded container
O 260(SNAPSHOT) (O 253 (SNAPSHOT) @ 252
O 249 ENAPSHOT) O 248 O 2302 Spring Data JPa [0
Persst data in S0L stores with Java Persistence AP using Spring Data
Project Metadata and Hibernate.

Group COMADRSS AWS .
MySQL Driver 8

MySQL JDBC and R2DBC driver,

Artifact UserRegistrationApp

Mame UserRegistrationApp Lombok
Java annotation library which halps to reduce bollerplate code,

Description User Registration Appécation

Package name comapress AWS

Packaging @ o O War

Jwva Q% @7 Os

I GENERATE CTRL +< | l EXPLORE CTRL + SPACE I | SHARE... |

Figure 4-1. Creating UserRegistrationApp using Spring Initializr
Table 4-1 lists all the UserRegistrationApp settings.

Table 4-1. Project-Related Details

Field Value

Group com.apress.AWS

Artifact UserRegistrationApp

Name UserRegistrationApp
Description User registration application
Package Name com.apress.AWS

Packaging JAR

Java Version 1

Language Java

Project Maven

104

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

After entering the project metadata, click the Generate button to
download the UserRegistrationApp.zip file. Unzip it, and importit as a
Maven project into the Spring Source Tool (STS) IDE. The initial project
structure looks like what’s shown in Figure 4-2.

[& Package Explorer £2 Be 3 =0
v }=5 UserRegistrationApp [boot]:
v (& src/main/java
v 3} com.apress.AWS
> [J) UserRegistrationAppApplication.java
v (# src/main/resources
(= static
(= templates
/£~ application.properties
> @ src/test/java
> B\ JRE System Library [JavaSE-11]
> B)\ Maven Dependencies
> [src
(= target
W) HELP.md
=) mvnw
mvnw.cmd
M) pomxml

Figure 4-2. Project structure

Let’s walk through the code for more information and explore Maven
dependencies defined in pom.xml.

Maven Dependency in pom.xml

All the required dependencies you selected in Spring Initializr when
creating the Spring Boot application are available in pom.xml, as shown

in Listing 4-1. The pom. xml file is the recipe that builds the Spring Boot
application.

105

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS
Listing 4-1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.2</version>
<relativePath/>
</parent>
<groupId>com.apress.AWS</groupld>
<artifactId>UserRegistrationApp</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>UserRegistrationApp</name>
<description>User Registration Application</description>
<properties>
<java.version>11</java.version>
</properties>
<dependencies>
<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web
</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa
</artifactId>
</dependency>

106

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupIld>org.projectlombok</groupld>
<artifactId>lombok</artifactId>
<optional>true</optional>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test

</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot
</groupld>
<artifactId>spring-boot-maven-plugin
</artifactId>
<configuration>
<excludes>
<exclude>
<groupIld>org.project
lombok</groupId>
<artifactId>lombok
</artifactId>
</exclude>

107

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>

Also, update pom.xml with a Springfox dependency for the Swagger UI,
as shown in Listing 4-2.

Listing 4-2. Add Springfox Dependency in pom.xml

<dependency>
<groupId>io.springfox</groupId>
<artifactId>springfox-boot-starter</artifactId>
<version>3.0.0</version>

</dependency>

Project Lombok

You selected Lombok dependency while creating the project. Let’s look

at the main objective of Project Lombok. “Project Lombok is a small Java

library that plugs into your IDE like Eclipse, Intelli], STS, etc. Also, it can

plug into build tools like Maven, Ant, etc. [The] Lombok library reduces the

amount of boilerplate Java code by [preventing you from writing] another

getter, setter, toString, or equals method again. And this implementation is

automatically done during compile time.” (https://projectlombok.org)
Project Lombok automatically generates the getter, setter,

toString, and equals method for the object by using the @ata Lombok.

The following are the steps to plug in the Lombok Java library to the STS IDE.

1. For the STS IDE, get the Lombok executable JAR file.

108

https://projectlombok.org

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

2. Do Maven build in the Spring Boot project. Figure 4-3
shows the Lombok JAR is at \ .m2\repository\org\
projectlombok\lombok\1.18.20\.

larmbalt

\.m2\reposit

y\org\proj

Kk 1.18.20 -

Ly _remote.repositories
REPOSITORIES File
237 bytes

(| lombok-1.18.20
‘) Executable Jar File
— | 1.24MB

& lombok-1.18.20,jar.shal
SHA1 File
40 bytes

lembok-1.18.20-sources

[y lombok-1.18.20.pom.shal
SHAT1 File
L 40 bytes

m2e-lastUpdated
PROPERTIES File
100 bytes

I lombok-1.18.20.pom
POM File
1.44 KB

lembok-1.18.20-sources.jar.shal | """
SHA1 File

40 bytes

Figure 4-3. Lombok JAR file under .m2 directory

3. Double-click Lombok. jar to open the installer
UL Specify the location of the STS.exe path, and
then click the Install/Update button, as shown in

(() Executable Jar File
- | S42KB

Figure 4-4.

JBVAC (snd tools thatinvoke javec such ss antend maver)

Lorabek works ‘out of the box with . Lock e [EatSnRRETT O PP ES:
Just make mure the lombokar i3 in your dasspath when you compile, . :
iry, configuration (1] eclipsec
EBxampie: Javac -cp lozbok.lar HyCode.Java 5] droins 5
Recent ltems features 2] SpringToolSuited
META-INF
r & w2
'DEs Deskiop pluging
Lombek can Lpdste your Edliose or edipse-based IDE to fully supoort all Lombak features. o readme
Select IDE installaSions below and hit ‘Tnstall Lipdate’, B | E
Documents miename: SpringToaiSuteden Select
B Flsoftoe [peremionn | Cancel
™
| Seeafylocation... Irstall [usdate
Show me i i will do tomvIDE
3 4. from selected I8 nstal
hitos:jioroteciombokorg v1.18.20 View fll changelog Quit Installer

Figure 4-4. Lombok Installer UI

109

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

4. You should see a “Install successful” message, as
shown in Figure 4-5. Click the Quit Installer button
to exit the installer.

Project Lombok

Install successful

Lombok has been installed on the selected IDE installations.
Don't forget to:

« add lombolk. Jar to your projects,
» exit and start your IDE,
» rebuild all projects!

If you start Soring Tools Suite 4 with a custom -wn parameter, youll need to add:
-vmargs -javaagent:lombok.jar
as parameter as well.

« PLATFORM: JOK 16 support added. .

« FLATFORM: All lombok features updated to actin a sane fashion with JDK 16's recorg/feature. In particular,
‘you can annotate record components with EonNull to have lombaok add null chedss to your compact
constructor (which will be oreated if need be).

« BUGFIX: Trying to use a lambda expression as parameter to an @ExtensionMechod dd not work. . (by
@Rawi01).

« BUGFIX: @SuperBuilder with an existing constructor caused issues in edipse. . (by @JanRieks).

« BUGFIX: Using BSuperBuilder with a handwritten builder dass caused issues. . (by @JanRieks).

« BUGFIX: Lombok interacts properly with the new save actions in edipse 2021-03.

+ POTENTIAL BUGFIX: lombok + errorprone could cause I1legalirgumentExceptionifusing the
MissingSummary bug pattem. .

httos:fjocojectiombokora v1.18.20 View full changelog. Quitinstaller |

Figure 4-5. Lombok installation success

5. Restart the STS IDE to ensure that Lombok is
correctly configured. Verify this in STS by going to
the Help option and clicking the About option, as
shown in Figure 4-6.

110

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

=) About Spring Tool Suite 4

Spring Tool Suite 4

Version: 4.9.0.RELEASE
Build Id: 202012132054

Copyright (c) 2007 - 2020 Pivotal, Inc.
All rights reserved. Visit https://spring.io/tools

This product includes software developed by the
Eclipse Foundation https://www.eclipse.org

This product includes software developed by the
Apache Software Foundation https://www.apache.org

Lombok v1.18.20 "Envious Ferret” is installed. https://projectlombok.org/

Figure 4-6. Spring Tool Suite with Lombok details

Application Properties

You need to configure how you can connect to the Amazon RDS MySQL
database. In Chapter 3, you captured the MySQL database information,
such as URL, username, and password, which you used in the MySQL
Workbench connection with the Amazon RDS MySQL database instance.

Let’s add code to the /src/main/resources/application.properties
file, as shown in Listing 4-3.

Listing 4-3. /src/main/resources/application.properties

server.port=5000

MySOL database settings
spring.datasource.url=jdbc:mysql://spring-aws-db.cpsoyj7kwlno.
us-east-2.rds.amazonaws.com:3306/UserRegistration
spring.datasource.username=springaws
spring.datasource.password=springaws

db-creation settings

111

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

Here, you configure the datasource URL, username, and the
corresponding password that you want to connect to the MySQL database.
spring.jpa.hibernate.ddl-auto can be none, update, create, or create-drop.

e none is the default for MySQL. It indicates that there are
no changes made to the database structure.

e update instructs Hibernate to change the database
according to the given entity structures.

e createinstructs Hibernate to create the database every
time the application restarts but does not drop it when
SessionFactory closes.

o create-drop instructs Hibernate to create the database
every time the application restarts and drops it when
SessionFactory closes.

In the application.properties file, configure ddl-auto = update to
make sure that whenever the application is restarted, Hibernate compares
the tables in the database with the entities declared in the class. If there
are any changes in the entity structure, those changes are updated in the
database.

Domain Implementation: UserDTO Entity Class

In the UserRegistrationApp project, you create a DTO (data transfer
object) class named UserDTO corresponding to the user domain’s object
inside a com.apress.AWS.dto subpackage. The UserDTO class contains
only data. It transfers data between different layers of the application when
there is a separation of concerns.

112

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

You can annotate the UsexrDTO class with JPA (Java Persistence API)

annotations, which allow it to be easily persisted and retrieved using the

JPA tec

hnology. A formal overview of JPA is beyond the scope of this book.

Let’s implement the UsexDTO entity class, as shown in Listing 4-4.

Listing 4-4. \src\main\java\com\apress\AWS\dto\UserDTO.java

package com.apress.AWS.dto;

import

import
import
import
import
import
import

import

@Entit
@Table
@Data

public

java.time.LocalDateTime;

javax.persistence.Column;
javax.persistence.Entity;
javax.persistence.GeneratedValue;
javax.persistence.GenerationType;
javax.persistence.Id;
javax.persistence.Table;

lombok.Data;

y
(name = "users"

class UserDTO {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
@Column(name = "id", nullable = false)

private Long id;

@Column(name = "first name")

private String firstName;

@Column(name = "last Name")

private String lastName;

@Column(name = "address")

private String address;

113

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

@Column(name = "age")

private Integer age;

@Column(name = "created date")
private LocalDateTime createdDate;

The UserDTO class has six attributes: id, firstName, lastName,
address, age, and createdDate. The UserDTO class is annotated with
the @Entity annotation to make it a JPA entity. This entity class is also
annotated with the @Table annotation to define the table name as Users.
The id property in UserDTO is annotated with the @Id annotation to
make it the primary key. The id attribute has been annotated with the
@GeneratedValue annotation to indicate that the ID value should be
generated automatically. The id attribute is annotated with the @Column
annotation to specify the details of the column to which a field or property
is mapped. The other five properties are annotated with the @Column
annotation.

The @Data Lombok annotation is used, so you don’t have to create
a getter and setter for attributes, and at the compile, it is automatically
generated. The next step is to provide the repository implementation.

Repository Implementation: UserJpaRepository

The Data Access Object (DAQO) design pattern supports separation of
concern by providing separation between business layer (services) and
data access operation, as shown in Figure 4-7.

Figure 4-7. Separation of concern

114

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

The DAO layer sits between the business layer and the database
and performs CRUD (create, retrieve, update, delete) operations in the
database. To support JpaRepository, you need to add the Spring Data JPA
dependency shown in Listing 4-5 to the pom. xml file.

Listing 4-5. Spring Data JPA Dependency

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Listing 4-6 creates a repository interface named UserJpaRepository
by extending the org.springframework.data.jpa.repository.
JpaRepository interface that helps in persisting the UserDTO domain
object into a relational database.

Listing 4-6. \src\main\java\com\apress\AWS\repository\
UserJpaRepository.java

package com.apress.AWS.repository;

import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

import com.apress.AWS.dto.UserDTO;

@Repository
public interface UserJpaRepository extends
JpaRepository<UserDTO, Long> {

}

115

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

In Listing 4-6, the JpaRepository interface takes a domain object.
The domain object’s identifier field is UserDTO and Long. Its generic
parameters are T and ID. The UserJpaRepository interface inherits all the
CRUD methods provided by JpaRepository.

Next, let’s create a Service class that autowires UserJpaRepository.

Service Implementation: UserService

Let’s begin the service implementation by creating a Service class named
UserService, as shown in Listing 4-7, where you call the CRUD methods of
the UserJpaRepository interface to handle SQL operations.

Listing 4-7. \src\main\java\com\apress\AWS\service\
UserService.java

package com.apress.AWS.service;
import java.util.Llist;
import javax.transaction.Transactional;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.apress.AWS.dto.UserDTO;
import com.apress.AWS.repository.UserJpaRepository;

@Service
@Transactional
public class UserService {

@Autowired
private UserJpaRepository useRepository;

116

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

public List<UserDTO> 1istAll() {
return useRepository.findAll();

}

public void save(UserDTO user) {
useRepository.save(user);

}

public UserDTO get(Long id) {
return useRepository.findById(id).get();

}

public void delete(Long id) {
useRepository.deleteById(id);

}
}
This UserService class uses the @Autowired annotation that autowires
UserJpaRepository.

Next, let’s create a REST controller class to define different REST
endpoints to retrieve and manipulate the UserDTO domain object.

REST Controller Implementation:
UserRegistrationController

Let’s create a Spring REST controller named UserRegistrationController
and implement different REST API endpoints to perform CRUD

operations. Listing 4-8 is the code implementation for the
UserRegistrationController class.

117

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Listing 4-8. \src\main\java\com\apress\AWS\controller\

UserRegistrationController.java

package com.apress.AWS.controller;

import
import

import
import
import
import
import
import
import
import
import
import

import
import

import

@S1f4j

java.util.list;

java.util.NoSuchElementException;

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

com.
com.

springframework.beans.factory.annotation.Autowired;
springframework.http.HttpStatus;
springframework.http.ResponseEntity;
springframework.web.bind.annotation.DeleteMapping;
springframework.web.bind.annotation.GetMapping;
springframework.web.bind.annotation.PathVariable;
springframework.web.bind.annotation.PostMapping;
springframework.web.bind.annotation.RequestBody;
springframework.web.bind.annotation.RequestMapping;
springframework.web.bind.annotation.RestController;

apress.AWS.dto.UserDTO;
apress.AWS.service.UserService;

lombok.extern.slf4j.S1f47j;

@RestController
@RequestMapping("/api/")
public class UserRegistrationController {

118

@Autowired
private UserService userService;

// URI - /api/users
@GetMapping(value = "users"
public ResponseEntity<List<UserDT0>> istAllUsers() {

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

List<UserDTO> users = this.userService.listAll();
return new ResponseEntity<List<UserDTO0>>(users,
HttpStatus.0K);

}

// URI - /api/user/id/1
@GetMapping("user/id/{id}")
public ResponseEntity<UserDTO> getUserById(
@PathVariable(name = "id") final Long userId) {
try {
final UserDTO user = this.userService.
get(userld);
return new ResponseEntity<UserDTO>
(user, HttpStatus.OK);
} catch (NoSuchElementException e) {
return new ResponseEntity<UserDTO>
(HttpStatus.NOT_FOUND);

}

// URI - /api/user/save
@PostMapping(value = "user/save")
public ResponseEntity<UserDTO> save(@RequestBody UserDTO
user) {
this.userService.save(user);
return new ResponseEntity<UserDTO>(user,
HttpStatus.CREATED);

}

// URI - /api/user/delete/id/1
@eleteMapping("user/delete/id/{id}")

public ResponseEntity<UserDTO> delete(@PathVariable
(name = "id") final Long userId) {

119

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

this.userService.delete(userIld);
return new ResponseEntity<UserDTO>(HttpStatus.
NO_CONTENT);

Here, the UserRegistrationController class was annotated with
@RestController annotation. @RequestMapping("/api") was defined,
which indicates that all REST API endpoint URLSs start with /api, and it
maps incoming HTTP requests to handler methods!

The @Autowired annotation autowires UserService to the RESTful
controller. Table 4-2 explores the different REST endpoints defined in the
UserRegistrationController class to retrieve and manipulate UsexDTO.

Table 4-2. REST Endpoints Defined in the UserRegistrationController
Class

Annotation URI Description

@GetMapping /api/users Retrieve all users available
in database

@PostMapping /api/user/save Create a new user in
database

@GetMapping (“/{id}") /api/user/id/id} Retrieve an individual user
based on ID

@ DeleteMapping /api/user/delete/id/{id} Delete an individual user
based on ID

Now, build the UserRegistrationApp using a Maven build and run it
locally to test defined REST endpoints.

120

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Run and Test UserRegistrationApp Locally

To run the UserRegistrationApp using the STS IDE in a local system,
right-click the UserRegistrationAppApplication.java class under the
com.apress.AWS package, and then click Run As » Spring Boot App, as
shown in Figure 4-8.

|8 Package Explorer i1 k New &
v ¥ UserRegistrationdpp [boot] Open P
~ (B sre/mainfjava
>
v i com.apress. AWS Spealan X
> [J] UserRegistrationAppApplic Open Type Hierarchy F
v f} com.apress AWS.config Show In Alt+Shift=W »
» [J] SwaggerCanfigjava Show in Local Terminal >
v} com.apress.AWS.controller
» [1] UserRegistrationController [Copy Cr+C
v B com.apress. AWS.dto {2 Copy Qualified Name
+ [3)] UserDT0 java (T4 Paste Ctel+V
~ B com.aprm.Aws..upofnoly 3 Delete Delete
> [UserlpaRepository.java
~ H com.apress AWS.service Build Path *
> [UserServicejava Source Alt+Shift+S5 >
(- il
v (3 st:fma.-r\hesounes Refactor AlteShiftsT >
(= static
(& templates i Import..
A7 application.properties o Export..
> B src/test/fjava
> B JRE System Library [JavaSE-11] References »
» B Maven Dependencies Declarations >
52 target/generated-sources/annot
58 target/generated-test-sources/te ' Refresh Fs
» B e Assign Working Sets...
» [= target - =
¥ HELP.md) RunAs > 8 1Runon Server Alt-Shift-X, R
B mvew 15 Debughs » [T 2Java Application Alt=Shift=X,)
[=] mvnw.crmd Profile As » [3Java Application In Container
B pomxml Restore from Local History... _ A4Spring Boot App Alt+Shift+X, B
ek Setaces X Run Configurations...
Team >y

Figure 4-8. Run the UserRegistrationApp using STS IDE

Once UserRegistrationApp started successfully, the last line in the
STS console should state, Started UserRegistrationAppApplication, as
shown in Figure 4-9.

121

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

2021-97-97 @9:09:19.188 INFO 5256 ===

2021-07-07 89:09:19.214 TNFC

2021-07-87 0: 363
1@9:24 416 I

2021-07-07 @@
2021-07-97 @0:09:24.417 1IN
2021-07-97 99:09:24.682 1IN
00:09: 24,682
@8

021-07-07 00:@9:75.814
2021-07-07 09:99:26.561
2021-07-07 0d:85: 26,940

2021-87-07 88:09:32.375 INFO 5256 ---
2021-07-97 09:09:34.187 INFO 5256 ---
INFO 5256 ---

2021-97-07 @9:09:34,
2021-97-97 @ 342 v 5256

2021-07-07 @9:09:36.343 INFO 5256 ---
2021-07-07 99:09:36.916 INFO 5256 ---

Figure 4-9. Output on the STS console

THFO 5256 ===
2021-97-97 @:09:32.230 INFO 5256 ---

: Starting UserflegistrationdppApplication
: Ne active profile set, falling back to

Bootstrapping Spring Data IPA repositor
Finished Spring Data repository scannin
Temeat initialized with port(s): 5609 (

: Starting service [Tomcat]
: Starting Servlet engine: [Apache Tomcat

Initializing Spring esbedded Webipplica

: Root WebdpplicationContext: initializat
1 HMMODO204: Processing PersistenceUnitIn
: HHHODA412: Hibernate ORM core version §
: HCAMNGDEOOL1: Hibernate Common:z Annotati
= HikariPool-1 - Starting...

: HikariPoel-1 - Start completed.

80: Using dialect: org.hibernate
HHHOB0498: Using JtaPlatform implementa
Initialized JPA EntityManagerFactory fo
spring.jpa.open-in-view is enabled by d
Tomcat started on port(s): 5008 (http)

: Started UserRegistrationdppipplication

Now, it’s time to test the REST API using Postman (www.postman.com).
You added data to the database using MySQL Workbench in Chapter 3.

You should get that data during the REST API call.

Retrieve All Users: /api/users

Let’s test the first REST endpoint to retrieve all users. Launch the Postman

tool in your local system, select GET as the request type, and enter http://
localhost:5000/api/users to retrieve and display all user data. You
should see a 200 OK HTTP status, as shown in Figure 4-10.

122

http://www.postman.com

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

GET v http:/flocalhost:5000/apifusers

Params Authorization Headers (6) Body Pre-request Script Tests Settings

Query Params

KEY VALUE |
Body Cookies Headers (5) TestResults ® status: 200 OK
Pretty Raw Preview Visualize JSON =
1 0
2
3 " a4
4 "last_name”: "Ravi”,
5 “firstName™: “"Soni”,
6 "address™: "Sasaram-Bihar-India",
7 “age”: 34,
8 "createdDate": "2021-87-04T€0:08:00"
9
19]

Figure 4-10. Retrieve all users

Retrieve an Individual User: /api/user/id/{id}

Now, let’s test another REST endpoint to retrieve an individual user based
on id. To test this REST endpoint, launch Postman, select GET as the
request type, and enter the URL (http://localhost:5000/api/user/id/1)
to retrieve and display individual user data. You should see a 200 OK HTTP
status, as shown in Figure 4-11.

123

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

GET ~ http:/flocalhost:5000/apifuser/fid/1

Params Authorization Headers (8) Body Pre-request Script Tests Settings

Query Params

KEY VALUE
Body Cookies Headers (5) Test Results @) Status: 200 OK
Pretty Raw Preview Visualize JSON =

"id": 1,

"last_name": "Ravi”,

“firstName": "Soni",

"address”: "Sasaram-Bihar-India",

SN I T I S R R

“"age": 34,
"createdDate”: "2021-07-84T00:00:00"

(2]

b

Figure 4-11. Retrieving an individual user

Create a New User: /api/user/save

Next, let’s test the REST endpoint to create a new user in the database.
Launch Postman, select POST as the request type, and enter http://
localhost:5000/api/user/save. Click the Body radio button, and then
select raw. From the drop-down list, select JSON (application/json) as the
content-type header. Use the JSON data in the request body as shown in
Listing 4-9, and hit Send.

Listing 4-9. JSON Data in the Body to Create a New User
{

"last_name": "Soni",
"firstName": "Namrata",
"address": "Bangalore-India",

124

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

age": 25,
"createdDate": "2021-07-04T00:00:00"

On successful completion of the POST request, a new user is created

in the database, and the response HTTP status is 201 Created, as shown in

Figure 4-12.

POST ~ http://localhost:5000/api/user/save
Params Authorization Headers (8) Body ® Pre-request Script
none form-data x-www-form-urlencoded @ raw binary
1
2 "last_name": "Soni”,
3 “firstName": “Namrata”,
4 "address”: "Bangalorxe-India”,
5 “age®:-25,
& “createdDate”: "2021-87-04T00:00:08"
7§

“createdDate”: "2021-87-84T700:68:00"

Body Cookies Headers (5) TestResults
Pretty Raw Preview Visualize JSON =
1 d
2 Sl 2y
3 "last_name": "Soni”,
4 "firstName": “Namrata"™,
["address”: "Bangalore-India”,
6 “age": 25,
7
g

Figure 4-12. Creating a new user

Tests Settings

GraphQL JSON

® status: 201 Created

125

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Delete an Existing User: /api/user/delete/id/{id}

The last endpoint to test deletes an existing user from the database based
on ID. To test this REST endpoint, launch Postman, select DELETE as the
request type, and enter the URL (http://localhost:5000/api/user/
id/2) to delete the existing user with id=1. On successful completion of
the DELETE request, this user is deleted from the database. The response
HTTP status after deleting the user is 204 No Content, as shown in

Figure 4-13.

DELETE v http://localhost:5000/apifuser/id/2

Params Autherization Headers (6) Body Pre-request Script Tests Settings
® none form-data x-www-form-urlencoded raw binary GraphQL

Body Cookies Headers (3) Test Results ® stotus: 204 No Content
Pretty Raw Preview Visualize Text v =

Figure 4-13. Delete an existing user

Swagger Ul: APl Documentation

In a browser, open the Swagger Ul page at http://localhost:8080/
swagger-ui/. You see the generated API documentation, as shown in
Figure 4-14.

126

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

<« C @ localhost:5000/swagger-ui/ g g

Api Documentation ®

[Base URL: localhost:5eea/]
hitp:iocalhost: 5000/v2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller sasi Error Controller >
user-registration-controller userRegistration Controller >
Models 2

Figure 4-14. Swagger API documentation page

user-registration-controller is defined in the application. Clicking
it lists the REST endpoints and their valid HTTP methods. Clicking
Models displays the model structure. Figure 4-15 shows the defined REST
endpoints and the UserDTO model structure.

127

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

user-registration-controller userRegistration Controller v

m /apifuser/delete/id/{id} delete
m /apifuser/id/{id} getUserByld
fapi/user/save save

ﬂ /apifusers istAllUsers

Models A4

ModelAndView >

UserDTO « ¢
address string
age integer($int32)
createdDate string($date-time)
firsthame string
id integer($int64)
last_name string

H

View >

Figure 4-15. Swagger Ul lists REST endpoints

Build a JAR for a Spring Boot Application

To build JAR for the Spring Boot application from a command prompt,
go to the project directory where you created the Spring Boot project and
copy the project path. Now, change the working directory to the project
path on the command prompt. Build the project using the following
command executed in the command prompt, as shown in Figure 4-16.

E:\Apress\workspace\AWS\UserRegistrationApp>mvn clean install

128

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

e C\Windows\System32\cmd.exe

IMicrosoft Windows [Version 10.0.19042.1052]
(¢) Microsoft Corporation. All rights reserved.

E:\Apress\workspace\AWS\UserRegistrationApp>mvn clean install

Figure 4-16. Build JAR from the command prompt

This starts building the UserRegistrationApp project. Once
the build is successful, you are informed that the JAR file named
UserRegistrationApp-0.0.1-SNAPSHOT. jar has been created, as shown
in Figure 4-17.

] Replacing main artifact with repackaged archive

] --- - (default-install) @ UserRegistrationfipp ===

1 Install:.ng E: \Apr‘ess\wor‘kspace\Al.v.IS\User‘Rega.strat:.onApp\tar‘get\User‘Reglstr‘atloﬂApp -8.8.1-5N
APSHOT. jar to C:\Users\ravik\.m2\repository\com\apress\AwWS\UserRegistrationApp\@.8.1-SNAPSHOT\Use
rRegistrationApp-8.8.1-SNAPSHOT. jar

[] Installing E:\Apress\workspace\AWS\UserRegistrationApp\pom.xml to C:\Users\ravik\.m2\repos
itory\com\apress\AWS\UserRegistrationApp\@.@.1-SNAPSHOT \UserRegistrationApp-@.0.1-SNAPSHOT . pom

] Total time: @1:5@ min
] Finished at: 2021-87-05T@7:08:17+85:38

Figure 4-17. Build success

You need to deploy the generated JAR file into Elastic Beanstalk.

Deploy the UserRegistrationApp Spring Boot
Application in AWS Elastic Beanstalk

Since you have successfully created a JAR file for the UserRegistrationApp
application in your local system, now, you must deploy this JAR file to
Elastic Beanstalk.

129

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Let’s sign in to the AWS Management Console using your AWS
credentials and select service as Elastic Beanstalk. Figure 4-18 shows that
three applications are already available: My First Elastic Beanstalk
Application, helloworld, and HelloSpringBoot. You created them in
previous chapters.

Elastic Beanstalk Applications
All applications C | Actions Create a new application
Q . LD | @
Application Environments ¥ Date LaSt_ g ARN
name A created ¥ modified ¥
2021-06- 2021-06-
: 30 30 arn:aws:elasticbeanstalk:us-east-
HelloSpringBoot il
00:14:46 00:14:46 2:818371255049:application/HelloSy

UTC+0530 UTC+0530

2021-06- 2021-06-

29 29 arn:aws:elasticbeanstalk:us-east-
helloworld & i

22:59:57 22:59:57 2:81837125504%application/hellow:

UTC+0530 UTC+0530

2021-06- 2021-06-

My First Elastic 29 25 arn:aws:elasticbeanstalkius-east-
Beanstalk 2:818371255049:application/My Firs
ol 22:55:39 22:53:39 e b

Application Beanstalk Application

UTC+0530 UTC+0530

Figure 4-18. List of all applications available in Elastic Beanstalk

Next, let’s create a new application for UserRegistrationApp Spring
Boot application talking to the MySQL database. Click the Create a new
application button, enter the application name as UsexRegistrationApp,
and click the Create button.

Next, create a new environment for this application by clicking the
Create one now link. Select Web server environment as the environment
tier, and then click the Select button.

130

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

On the Environment information page, enter userregistration as

the domain name, and check for domain availability (see Figure 4-19).

Elastic Beanstalk > Applications > UserRegistrationApp

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Application name

UserRegistrationApp

Environment name

Userregistrationapp-env

Domain

userregistration .us-east-2.elasticbeanstalk.

@ userreqgistration.us-east-2.elastic! lk.com is

Description

Figure 4-19. Environment information

Next, select Java as the managed platform, as shown in Figure 4-20.

131

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Platform

© Managed platform
Platforms published and maintained by
Amazon Elastic Beanstalk. Learn more E

Platform

Java v
Platform branch

Corretto 11 running on 64bit Amazon Linux 2 v
Platform version

2.2.1 (Recommended) v

Figure 4-20. Java is the managed platform

Finally, upload the code by selecting the JAR file from the project’s
target folder (e.g., in the authors’ local system, it is E: \Apress\
workspace\AWS\UserRegistrationApp\target\UserRegistrationApp-
0.0.1-SNAPSHOT. jar), and then click the Create environment button, as
shown in Figure 4-21.

132

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Application code

Sample application

Get started right away with sample code.

© Upload your code

Upload a source bundle from your computer or copy one from Amazon 53,

Version label

Unique name for this version of your apglication code.

userregistrationapp-source

Source code onigin
Maximum size 512 M8

O Local file
Public 53 URL

f Choose file

File name : UserRegi ionApp-0.0.1-SNAPSHOT jar
@ File successfully uploaded

» Application code tags

Cancel] Configure more options | Create environment

Figure 4-21. Upload application code

Once the environment has been created, and the resources have been
deployed, change the server port the Spring Boot application listens on. So,
you need to specify the SERVER_PORT environment variable in the Elastic
Beanstalk environment and set the value to 5000.

On the Configuration page in your environment, under Software, click
the Edit icon, as shown in Figure 4-22.

133

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Q
Category Options Agtionm
[rraronment properties:
JOBC_CONNICTION_STRING
Irstiad JVM heap sze [imal 296m
M option - B
Settware Log streaming: doabled | Eda

Max VM heap uze (mak 256m
Proxy server. ngna

Rotate logy ceabled

XeRury daemon Gabled

Figure 4-22. Edit software configuration

And then add a new environment variable SERVER_PORT, with a value
5000 to change the port that the Spring Boot application listens on, as
shown in Figure 4-23.

Environment properties

Nama Valen

Cangel Comtines m

Figure 4-23. Environment properties in software configuration

As soon as you click the Apply button, the configuration changes are
propagated to the application servers, and the application is restarted.

When it restarts the application, it picks up the new configuration
through the environment variables. And, in about a minute, you see a
healthy application on the dashboard, as shown in Figure 4-24.

134

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Elastic Beanstalk Emdronments Userregistrationapp-env

Userregistrationapp-env 2 Refresh | | Actions ¥

wserreghtration. us-east- 2. elaticheanstaliceom [(e nmapemawd

Application name: UserRegistrationApp

Health Running versien Platform
userregRLrationapp-source *
o Upload and deploy OI I
ok Carretto 11 running on G4bit
Amazon Linux 2/3.2.1

Figure 4-24. Health OK

You are now ready to test the UserRegistrationApp application
deployed in the Amazon cloud.

Test Deployed REST API in AWS Using
Swagger Ul

Now, it’s time to test the deployed REST API endpoints in AWS. Use the
URL that you configured on the AWS environment to access the service.
For this example, the specified URL is http://userregistration.us-
east-2.elasticbeanstalk.com.

Let’s open the Swagger Ul page in the browser at http://
userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/. You
see the generated API documentation, as shown in Figure 4-25.

135

http://userregistration.us-east-2.elasticbeanstalk.com
http://userregistration.us-east-2.elasticbeanstalk.com
http://userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/
http://userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

[@ swaggerul x e [~}

< C A Notsecure | userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/ w @

Api Documentation ®

[Base URL: userregistration.us-east-2.elasticbeanstalk.com/]

hitp:ffuserregistration.us-east-2. elasticbeanstalk. comu v2/api-docs
Api Documentation

Terms of service

Apache 2.0

basic-error-controller sasic Ermor Controlier >
user-registration-controller userRegistration Controlier >
Models >

Figure 4-25. Swagger API documentation page
Here, clicking user-registration-controller shows the list of

defined REST endpoints, and by clicking the Models display domain
model structure, as shown in Figure 4-26.

136

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

I ® Swagger Ul x + (~] - 2
€& > C A Notsecure | userregistration.us-east-2.elasticbeanstalk.com/swagger-ui/#/user-regis... 1r 9
user-registration-controller userRegistration Controller v

[/apifuser/delete/id/{id} delete]

m fapifuser/id/{id} gelUserByld

POST /api/user/save save

/api/users istAllUsers

Models v

ModelAndView >

UserDTO v {
address string
age integer($int32)
createdDate string(Sdate-time)
firstName string
id integer($inté4)
last_name string

Figure 4-26. Swagger Ul lists REST endpoints and model structure

Using Swagger, let’s test the REST Endpoints deployed on AWS.

List All Users: /api/users

On the Swagger Ul page, expand GET /api/users, and click the Try It Out
button. And then, click the Execute button to call this REST endpoint.
Figure 4-27 shows that the HTTP status response code should be 200 OK,
and the response body should contain the list of users.

137

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

J/api/users istAllUsers

Parameters Cancel

No parameters

e |

Responses Response content type | */* ~]

Curl

curl -X GET "http://userregistration.us-east-2.elasticbeanstalk.com/apifusers™ -H “accept: */*~

Request URL

fuserregistrat lasticbeanstalk.com/api/users

Server response

Code Details

200 Response body

"id": 1,

"last_name®: "Ravi",

“firstName™: "Soni™,

"address™: "Sasaram-Bihar-India®,
“age": 34,

“createdDate™: "2021-97-84T00:00:00"

Response headers

connection: keep-alive
content-type: application/json
date: Mon@5 Jul 2021 @83:36:11 GMT

server: nginx/1.20.8
transfer-encoding: chunked

Figure 4-27. List all users using Swagger Ul

138

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Create New Users: /api/users

On the Swagger Ul page, expand POST /api/user/save, and click the Try
It Out button. Next, enter the user JSON data shown in Listing 4-10 in the
request body input box, and select application/json as the content-type
parameter.

Listing 4-10. User JSON Data

{

"last name": "Soni",

"firstName": "Namrata",

"address": "Bangalore-India",

"age": 25,

"createdDate": "2021-07-04T00:00:00"
}

Next, click the Execute button to call this REST endpoint. As shown in
Figure 4-28, the response HTTP status code should be 201 Created.

139

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

fapifuser/save SaVE

Parameters

MName Description
user * =i

object user
(body)

Edit Value | Model

{
“last_name": "So
"firsthame": "
“age": 18, ’
"grestedDate”: "2021-07-84T00:00:00"
H

Cancel

Parameter content type

application/json v

)

Responses Response contenttype | /" v

curl -X POST "http:/fuserregistration.us-east-2.elasticbeanstalk.com/apifuser/save” -H
Y

ontent-Type: application/json” -d "{\t\"last_name\":
\"Soni\”,\t\"firstName\": \"Namrata\",\t\"address\": \"Bangalore-India\",\t\"age\":
25,\t\"createdDate\": \"2021-07-84700:00:00\"}"

Reguest URL

Server response
Code Details
201

Response body

@ “Bangalore-India“,

“createdDate™: “2021-97-94T00:009:00"

Response headers

connection: keep-alive
content-type: application/json
date: MonB5 Jul 2021 83:47:52 GMT

server: nginx/1.20.0
transfer-encoding: chunked

Figure 4-28. Create a new user using Swagger Ul

140

CHAPTER 4 DEPLOY A SPRING BOOT APPLICATION TALKING TO MYSQL IN AWS

Summary

In this chapter, you created UserRegistrationApp Spring Boot REST API
talking to an Amazon RDS MySQL database. You explored different Maven
dependencies that have been used in the pom.xml file, such as Lombok,
JPA, and so on. You learned how to configure Project Lombok to STS

IDE. You updated the application.properties file with database details
such as URL, username, and password, and many more. And then, you
created an Entity class using JPA annotation, a repository interface that
extends the JpaRepository interface, a service class for CRUD methods,
and a REST controller to define different REST endpoints.

First, you tested the UserRegistrationApp application locally using
Postman. Then you built a JAR that you deployed in Elastic Beanstalk.
Finally, you tested the deployed REST endpoints to the AWS cloud using
the Swagger UL

The next chapter explores how to deploy a full stack Spring Boot React
application in AWS and S3.

141

CHAPTER 5

Deploy a Full Stack
Spring Boot React
Application in AWS
and S3

In Chapter 4, you created the UserRegistrationApp Spring Boot RESTful
web service that talks to the Amazon RDS MySQL database to perform
CRUD operations. You learned how to configure Project Lombok to STS
IDE. You created an Entity class using JPA annotation, a repository
interface that extends the JpaRepository interface, a Service class for
CRUD methods, and a REST controller to define different REST endpoints.
Afterward, you tested the UserRegistrationApp application locally using
Postman. Then you built an executable JAR that was deployed in AWS
Elastic Beanstalk. Finally, you tested the deployed REST endpoints using
Swagger UI.

The world sees the front end, including the design using some
languages such as HTML and CSS. The main aim of the front end is to
present data in a well-defined style and allows interaction with the client to
perform CRUD operations. There are so many amazing JavaScript libraries
available that can develop front-end applications.

© Ravi Kant Soni and Namrata Soni 2021 143
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0_5

https://doi.org/10.1007/978-1-4842-7392-0_5#DOI

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

React is an open source, front-end JavaScript library for building
single-page applications. React is a perfect solution for a client-side library
for a clean and structured approach.

This chapter introduces React as a front-end framework and its major
components. You can develop a single-page application using React as the
front end to consume APIs exposed by the UserRegistrationApp back-end
application developed using Spring Boot, as shown in Figure 5-1.

Send

Restful Web

Services

UserRegistrationApp

Figure 5-1. Full stack application overview

You set up a development environment to develop your React front-
end application. In this chapter, you learn the following.

e How to develop and run React as a local front-end
application

o How to deploy the React front end to AWS S3

This front-end application has a home page, an Add New User page,
and a List All Users page with a Delete option. You make an API call to
AWS, where you have already deployed the back-end RESTful services
named UserRegistrationApp. You are introduced to AWS S3 (Simple
Storage Service), where you deploy the React front-end application.
And, finally, you verify successful deployment of the React front-end
application.

144

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Develop and Run React as a Front-End
Application

Let’s start developing and running the interactive front-end application
with React in the local system. We assume that you have good knowledge
of JavaScript, HTMLS5, CSS, and React. If you want an in-depth
understanding of React, refer to https://reactjs.org.

Introducing React as a Front-end Framework

React is an open source, component-based JavaScript library for building
fast and interactive UI (user interface) components. It was created in 2011
by a Facebook software engineer named Jordan Walke. Initially, it was
developed and maintained by Facebook. React application is made up
of independent, isolated, and reusable components, which are the heart
of React application, and each component is responsible for building
complex and reusable user interfaces. Every React application has at
least one component known as the root component. This root component
represents the internal application and contains other child components.
You build a user registration front-end app using React with CRUD
features. This React application has different components, as shown in

baend | ist All Users UserDataService
[== > Request

axios [

Figure 5-2.

Jadd-user

Add User

Response

Figure 5-2. React components with Router and Axios

145

https://reactjs.org

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

e The App component is a root component that contains
react-router. This also contains a navbar that links to
the route’s paths.

e The Home component displays a welcome message.

e The ListAllUsers component displays a list of all users
with a Delete option.

e The AddUser component has a form for new user
submission.

All these components call required methods in UserDataService,
which internally uses the Axios HTTP library to make HTTP requests and
receive responses.

React Components

In React, a component is considered as the core part of the user interface.
Each component has its own structure and is independent of other
components, and when all the components merge in a parent component
results in the final Ul of the application. A component is typically
implemented as a JavaScript class with some state and a render method, as
shown in Listing 5-1.

Listing 5-1. Structure of Component with State and Render Method

class UserClass {

state = {};
render() {
}

146

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

There are mainly two types of components in React.
o Stateless functional components

e These are JavaScript functions that don’t have their
own state and return HTML to describe UI.

o Stateful class components

e These are regular ES6 classes that extend the
Component class from the React library. They
must contain a render method, which in turn
returns React elements or HTML. They manage
the local state.

React State

The state is an updatable structure that is managed within the component.
A Stateful component has a state responsible for making the user
interface dynamic and interactive. You need to declare some default set

of values to define the initial state of components. A state can be set or
changed using a setState method.

Constructor

In React, the constructor initializes an object’s state of a class. This
constructor is called automatically during the object creation of the

class. It is called before the component is mounted. You need to call the
super (props) method before any other statement in a constructor. Also, in
React, the constructor binds the event handler method.

A React Component’s Life Cycle

Let’s explore the React component’s life cycle. It primarily consists of four
phases, as shown in Figure 5-3.

147

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Initialization

React Component's Lifecycle

Figure 5-3. React component’s life cycle

The different phases of the React component’s life cycle provide
different methods. React calls the life cycle method according to the
component phase.

o Initialization is the birth phase of React components,
where they start their journey by setting up the
initial state and default props. This is done in the
component’s constructor.

e Mounting is the phase where the React component
mounts (created and inserted) on the Document Object
Model (DOM). After completing the initialization
phase, the React component renders for the first time
in this mounting phase.

e Updation is the third phase of a React component’s life
cycle. It is the state of the created component change.
The React component data (e.g., props and state) is
updated in response to user events like typing, clicking,
and so on.

148

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

e Unmounting is the last phase in this life cycle.
The React component instance is destroyed and
unmounted from the DOM.

Set up a Development Environment

The following tools are needed to run any React application.

¢ A code editor, such as Visual Studio, to work with the
project files. You can download it from https://code.
visualstudio.com.

e Gotohttps://nodejs.org to download and install the
latest version of Node.js, which is a JavaScript runtime
environment.

e A package manager called npm, which downloads
and runs JavaScript packages built on Node.js. It’s
automatically included in your installation of Node.js.

To check the Node.js and npm versions, run the node -v and npm -v
commands in your terminal, as shown in Figure 5-4.

¢+.| Command Prompt

Microsoft Windows [Version 10.0.19042.1083]
(c) Microsoft Corporation. All rights reserved.

C:\Users\ravik>node -v
v1i4.17.3

C:\Users\ravik>npm -v
6.14.13

C:\Users\ravik>

Figure 5-4. Node.js and npm version in PC

149

https://code.visualstudio.com
https://code.visualstudio.com
https://nodejs.org

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Cross-0Origin Resource Sharing (CORS) Error

When you work on a front-end application in React that connects to a
RESTful web service written in Spring Boot, you may get a CORS error
whenever you make the request in your browser. Basically, this error
means that the user agent (http://localhost:3000) doesn’t have
sufficient required permissions to access Spring Boot resources (http://
localhost:5000).

The solution to this error required an update in the Spring Boot
application to enable cross-origin requests for a RESTful web service.
You must annotate the Controller class with @rossOrigin annotation
to support global CORS configuration, as shown in Listing 5-2. And, by
default, all origins and the GET, HEAD, and POST HTTP methods are
allowed.

Listing 5-2. \src\main\java\com\apress\AWS\controller\
UserRegistrationController.java

@CrossOrigin

@RestController

@RequestMapping("/api/")

public class UserRegistrationController {

After updating the Controller class, Maven builds and runs the
UserRegistrationApp Spring Boot application. And, also make sure that
UserRegistrationApp should always be running when developing the
front-end application using React.

150

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Developing React Front-End Application
with create-react-app

The create-react-app package makes developing React front-end
applications a breeze. To create a React app using create-react-app,
open a command prompt in the folder where you want to save the project
folder and run the following npx command (see Figure 5-5).

npx create-react-app user-registartion-frontend-app

E:\Apress\workspace\AWS>npx create-react-app user-registartion-frontend-app
npx: installed €7 in 13.882s

Creating a new React app in

Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts with

core-js@2.6.12 postinstall E:\Apress\workspace\Aws\user-registartion-frontend-app\node_modules\babel-
runtime‘\node_modules\core-js
nede -e "try{require(’'./postinstall’)}catch(e){}"

core-js@3.15.2 postinstall E:\Apress\workspace\AWS\user-registartion-frontend-app\node_modules'core-j
3
node -e "try{require('./postinstall')}catch{e){}"

core-js-pure@3.15.2 pestinstall E:\Apress\workspace\AWs\user-registartion-frontend-app\node_modulesic
pre-js-pure
node -e "try{require('./postinstall’)}catch(e){}"

Figure 5-5. npx command to create a React app using
create-react-app

Once the npx command has run successfully, a folder named user-
registration-frontend-app is created, as shown in Figure 5-6; all the
required packages are automatically installed.

151

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

- . y
Buccess! Created user-registartion-frontend-app at E:\Apress\workspace\AWS\user-registartion-frentend-a|”
PP

Inside that directory, you can run several commands:

pm start
Starts the development server.

pm run bulld
Bundles the app into static files for production.

npm test
Starts the test runner.

npm run eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’t go back!
We suggest that you begin by typing:

cd user-registartion-frontend-app
npm start

Happy hacking!

E:\Apress\workspace\AWS>

Figure 5-6. Successfully created user-registration-frontend-app

Review the Project Structure

Once the React project has been created and all the required dependencies
have been installed, open the project in Visual Studio. The project
structure should look like as shown in Figure 5-7.

152

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

" File Edit Selection View Go Run Terminal Help

EXPLORER

Vv USER-REGISTARTION-FRONTEND-APP

> public
> src
.gitignore
{} package-lockjson
{} package.json
& README.md

Figure 5-7. Project structure in Visual Studio

The project structure contains the following files and folders.

o The README .md file is a markdown file that includes a lot
of helpful information.

o The package. json file manages the app’s required
dependencies and the scripts needed to run it.

o The .gitignore file excludes desired files and folders
from being tracked by Git. Generally, you exclude large
folders like the node_modules folder.

e The src folder contains React-related source code and
all the components that you develop.

153

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

o TheApp.jsfilein the src folder is a root
component of the React application.

e The index. js file is the top render file of the React
application. You import App components using the
ReactDOM.render () method in the index. js file.

o The public folder stores static assets, such as fonts and
images, for the React app.

e The index.html file is in the public folder. The
React application uses this single file to render all
the components. This supports the principle of a
single-page application.

e Thenode_modules folder contains all the packages
installed with Node.js and npm.

Run a React App

To build the React app, the following files must exist with the exact
filenames.

e public/index.html is the only HTML file in the entire
project. This HTML file is a template, and it is loaded
first when the application starts.

e Only those files which are there in the public folder
can be used from public/index.html.

e This file contains a line of code <div id="root"></
div>, which signifies that all the React app
components are loaded into this div.

e src/index.js is the JavaScript entry point.

e The src/App.jsisthe App component, which is the
main component in React; it acts as a container for all
the other components.

154

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

To start the React app, open the command prompt at user-

registration-frontend-app, which is a newly created folder, and run the
npm start command, as shown in Figure 5-8.

Microsoft Windows [Version 1€.9.19e42.1083]
(c) Microsoft Corporation. All rights reserved.

E:\Apress\workspace‘\aWS\user-registartion-frontend-app>npm start

» user-registartion-frontend-app@@.1.@ start E:\Apress\workspace\AWS\user-registartion-frontend-app
> react-scripts start

Figure 5-8. npm start command to start React app

A success message should appear in the command prompt, as shown
in Figure 5-9.

You can now view user-registartion-frontend-app in the browser.

Local: http://localhost: 3000
On Your Network: http://192.168.1.2:3000

Note that the development build is not optimized.
To create a production build, use npm run build.

Figure 5-9. Compiled success message on command prompt

This started the development server on localhost:3000. The great thing
about this development server is that the server automatically refreshes to
reflect the changes, and there is no need to refresh the browser manually.

You can view the application in the browser by hitting the URL
(http://localhost:3000), as shown in Figure 5-10.

155

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

l B React App = +
6

C @ localhost:3000

Edit src/App. js and save to reload.

Figure 5-10. Home page for React app

Congratulations! You have successfully created a base source code
for the React application to add more components as needed. This app
content comes from the src/App. js file, which contains the code shown in
Listing 5-3.

Listing 5-3. src/App.js

import logo from './logo.svg';
import './App.css’;

function App() {
return (
<div className="App">
<header className="App-header">

<p>

156

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Edit <code>src/App.js</code> and save to reload.
</p>
<a

className="App-1ink"

href="https://reactjs.org"

target="_blank"

rel="noopener noreferrer"

Learn React

</header>
</div>

)5
}

export default App;

To support CRUD operation, let’s create the following additional files
in the React application.

e src/services/user-registration.service.js
e src/components/add-user.component.js
e src/components/home.component.js

e src/components/list-users.component.js

Add Twitter Bootstrap to Style the React App with CSS

By default, create-react-app comes with CSS support by providing an
App.css file in the sxrc folder, where you can add some style to improve
appearance. Twitter Bootstrap is a front-end CSS framework that can style
a website’s contents.

157

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Open the command prompt, and run the npm install bootstrap
command, which installs Bootstrap in the node_modules folder, as shown
in Figure 5-11.

EXPLORER

v USER-REGISTARTION-FRONTEND-APP

> bor
> bor
v bootstrap

v dist

Figure 5-11. Bootstrap installed in node_modules folder

To import Twitter Bootstrap into the React app, open the src/App.js
file and modify the code, as shown in Listing 5-4.

158

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3
Listing 5-4. src/App.js

import './App.css';
import 'bootstrap/dist/css/bootstrap.min.css’

function App() {
/...

}
Add a Navbar

Let’s add a navbar to the App component, which is the root container for
the React application. Update the src/App. js file with the code shown in
Listing 5-5.

Listing 5-5. src/App.js

import './App.css’;
import 'bootstrap/dist/css/bootstrap.min.css’

function App() {
return (
<div className="App">
<header className="App-header1”>
<div class="page-header text-center">
<h2>User Registration App</h2>
</div>
</header>
<div class="container-fluid">
<nav class="navbar bg-primary justify-content-
center">
<div class="col-sm"></div>
<a href="/"
class="col-sm btn btn-outline-light"

159

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

role="button">
Home

<div class="col-sm"></div>

<a href="/list-all-users"
class="col-sm btn btn-outline-light"
role="button">
List All Users

<div class="col-sm"></div>

<a href="/add-user"
class="col-sm btn btn-outline-light
role="button">

Add User

<div class="col-sm"></div>
</nav>
</div>
</div>

)5
}

export default App;

Add react-router

Routing is a process that redirects users to different pages based on
their request or action. The react-router package is a standard library
system built on top of React and defines multiple routes using react-
router in single-page web applications. When a user enters a specific
URL in a browser, and the URL path matches a defined route, the user is

routed to it.

160

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

By default, React doesn’t come with routing. And, you need to add a
react-router library in the project to enable routing. Open the command
prompt and run the following command to install react-router.

npm install react-router-dom

Since you have successfully installed react-router, let’s use it in the
application.

BrowserRouter Object to Enable Routing

BrowserRouter uses the HTML5 history API to keep your user interface in
sync with the URL. It is used in client-side routing with URL segments.
First, you need to import BrowserRouter from react-router-domto
enable routing in the project. Open and update src/index. js to wrap app
components with the BrowserRouter object, as shown in Listing 5-6.

Listing 5-6. src/index.js

import React from 'react’;

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';
import { BrowserRouter } from "react-router-dom";

ReactDOM. render (
<BrowserRouter>
<App />
</BrowserRoutery,
document.getElementById('root")

)5
reportWebVitals();

161

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Switch and Route to Render Routes

Switch renders a route exclusively and helps with switching between
pages without reloading it. Every route that matches the component and
path renders inclusively.

The path property defines the path of the route; for example, / defines
the path of the home page. Route loads the defined component; for
example, it loads the home component. Update the src/App. js file with
the source code shown in Listing 5-7.

Listing 5-7. Update src/App.js with react-router

import './App.css';

import React, {components} from 'react';

import { Switch, Route } from 'react-router-dom';
import 'bootstrap/dist/css/bootstrap.min.css’

import ListUsers from './components/list-users.component';
import Home from './components/home.component';
import AddUser from './components/add-user.component’;

function App() {
return (
<div className="App">
<header className="App-header1”>
<div class="page-header text-center">
<h2>User Registration App</h2>
</div>
</header>

<div class="container-fluid">
<nav class="navbar bg-primary justify-content-center">
<div class="col-sm"></div>
<a href="/"

162

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

class="col-sm btn btn-outline-light"
role="button">
Home

<div class="col-sm"></div>
<a href="/list-all-users"
class="col-sm btn btn-outline-light"
role="button">
List All Users

<div class="col-sm"></div>
<a href="/add-user"
class="col-sm btn btn-outline-light"
role="button">
Add User

<div class="col-sm"></div>
</nav>

<div className="container mt-3">
<Switchy
<Route exact path={["/"]} component={Home} />
<Route exact path={["/list-all-users"]}
component={ListUsers} />
<Route exact path={["/add-user"]}
component={AddUser} />
</Switchy
</div>
</div>
</div>
)5
}

export default App;
163

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Three routes are defined in the React application.
e /for the home page
e /list-all-users for the List All Users page

e /add-user for the Add User page

Initialize Axios for a REST API Call

React is a JavaScript library that builds user interfaces. It is not concerned
with HTTP. To make HTTP or REST API calls, you need to use a third-party
HTTP library. Here, you use the Axios HTTP library.

Axios is a promise-based HTTP client that allows you to make an HTTP
request to a given endpoint and has good defaults to work with JSON. To
set up Axios with React, you need to install Axios with npm. Open the
command prompt and run the npm install axios command. Let’s create
an http-common. js file in the src folder, as shown in Listing 5-8.

Listing 5-8. src/http-common.js
import axios from "axios";

export default axios.create({

baseURL: "http://localhost:5000/api/",

headers: {

"Content-type": "application/json"
})
1);

Depending on the URL of REST API, you can update baseURL in the file.

164

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Data Service to Send an HTTP Request

Next, create a data service that uses Axios to send HTTP requests to the
REST API. Let’s create a service folder in the src folder and a user-
registration.service. js file in that folder, as shown in Listing 5-9.

Listing 5-9. src/user-registration.service.js
import http from '../http-common’;
class UserDataService {

getAllUsers() {
return http.get("/users");

}

createUser(user) {
return http.post("/user/save", user);

}

deleteUser(id) {
return http.delete(" /user/delete/id/${id}");

}
}

export default new UserDataService();

UserDataService defines three methods: getAllUsers, createUser,
and deleteUser. The Axios get, post, and delete methods are called
corresponding to the HTTP GET, POST, and DELETE methods to make a
CRUD operation.

Create React Components Corresponding to Routes

Create three components corresponding in the src/components/
subfolder to the three routes defined before.

165

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Home Component

Let’s create the Home component, which displays welcome messages
along with a navigation bar. Listing 5-10 shows the code for the home
component.

Listing 5-10. src/components/home.component.js
import React, { Component } from "react";

export default class Home extends Component {
render() {
return (
<div class="container">
<div class="panel panel-default”>
<div class="alert alert-success">

Welcome to User Registration App

</div>
<div class="panel-body ">
<div class="alert alert-info">

Please click on
 List All Users

to get all users.
</1i>
<1li>
Please click on
 Add User
to add a new user.

166

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

</1i>

</div>
</div>
</div>
</div>

)5

In this component, you create a Home class that extends the Component
class, which contains a render () method that returns HTML code
containing a welcome message.

When you save this home component file, the content on the browser is
automatically refreshed. The result in the browser is shown in Figure 5-12.

& 3 @ @ localhost:3000 @ r B 9 H

User Registration App

Home ‘ ‘ List All Users ‘ Add User ‘

Welcome to User Registration App

. Please click on List All Users to get all users.
. Please click on Add User to add a new user.

Figure 5-12. User registration app home page

167

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Add Users Component

Let’s create another component to add a new user in the components. This
component has a form to submit a new user with four fields: First Name,
Last Name, Age, and Address. Listing 5-11, 5-12, 5-13 and 5-14 shows the
pieces of code for the add-user component.

Listing 5-11. Imports in src/components/add-user.component.js

import React, { Component } from "react";

import userRegistrationService from "../services/user-

registration.service";

Here, we have imported React and Component from "react" and
user-registration-service.

Listing 5-12. Constructor and State in AddUser Class in src/
components/add-user.component.js

export default class AddUser extends Component {

constructor(props) {

super (props);

this.onChangeFirstName = this.onChangeFirstName.
bind(this);

this.onChangelLastName = this.onChangelLastName.bind(this);
this.onChangeAge = this.onChangeAge.bind(this);
this.onChangeAddress = this.onChangeAddress.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);
this.newUser = this.newUser.bind(this);

this.state = {
id: null,
firstName: "",

168

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

lastName: "",

age: llll,

address: "",
createdDate:

};
}

In the preceding code, the AddUser class extends components.

The constructor of this class sets the initial state for id, firstName,
lastName, age, address, and createdDate with a default value. Also, we
bound it to different events, such as onChangeFirstName, handleSubmit,
and so on.

Listing 5-13. Functions in AddUser Class in src/components/
add-user.component.js

onChangeFirstName(event) {

this.setState({
firstName: event.target.value
D;
}
onChangelLastName(event) {
this.setState({
lastName: event.target.value
D;
}
onChangeAge(event) {
this.setState({
age: event.target.value
D;
}

169

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

170

onChangeAddress(event) {
this.setState({
address: event.target.value

};
}

handleSubmit(event) {
console.log(this.state)

var data = {
firstName: this.state.firstName,
lastName: this.state.lastName,
age: this.state.age,
address: this.state.address

b5
event.preventDefault();

userRegistrationService.createUser(data)
.then(response => {
alert('You submitted successfully!

+ data.
firstName + ' User is created');
this.setState({

id: response.data.id,
firstName: response.data.firstName,
lastName: response.data.lastName,
age: response.data.age,
address: response.data.address
1);
this.props.history.push("/1list-all-users");
1)

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

.catch(e => {
console.log(e);
D;
}

newUser() {
this.setState({
id: null,

firstName: "",

lastName: "",

age: IIII’
nn

address: "",
createdDate:

};
}

Four functions (onChangeFirstName, onChangelLastName,
onChangeAge, onChangeAddress) are created to track the input value
and set the state for changes. A function named handleSubmit is defined
to get the value of the form (state) and call the createUser () method of
userRegistrationService, which internally sends HTTP POST requests to
the REST API.

Listing 5-14. Render Method to Return HTML Code

render() {
return (
<div className="submit-form">
<div className="form-group">

<label htmlFor="firstName">First Name
</label>

<input

type="text"

171

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

className="form-control"
id="firstName"
required
value={this.state.firstName}
onChange={e => this.
onChangeFirstName(e)}
name="firstName"
/>
</div>

<div className="form-group">
<label htmlFor="lastName">Last Name</label>
<input
type="text"
className="form-control"
id="lastName"
required
value={this.state.lastName}
onChange={e => this.
onChangelLastName(e)}
name="1lastName"
/>
</div>

<div className="form-group">

<label htmlFor="age">Age</label>

<input
type="text"
className="form-control"
id="age"
required
value={this.state.age}

172

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

onChange={e => this.onChangeAge(e)}
name="age"
/>
</div>

<div className="form-group">
<label htmlFor="address">Address</label>
<input
type="text"
className="form-control"
id="address"
required
value={this.state.address}
onChange={e => this.onChangeAddress(e)}
name="address"
/>
</div>

<button onClick={this.handleSubmit}
className="btn btn-success">
Submit
</button>
</div>

Here, the render method results in Ul. AddUser contains input boxes
for the first name, last name, age, and address, and it contains the Submit
button for creating a new user, as shown in Figure 5-13.

173

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

[‘ React App N+ -]
& C ® localhost:3000/add-user a % » 9 :

User Registration App

Home | l List All Users ‘ ‘ Add User

First Name
Namrata
Last Name
Soni
Age
25
Address

Figure 5-13. Page to add new user

Bangalore - Indiﬂ

List All Users Component

Let’s create another component to list all the users in the components
subfolder. This component has a user array to display a list of users in
the table, and each row has a Delete button to delete specific users from
the list. Listing 5-15 and 5-16 shows the pieces of code for the list-user
component.

Listing 5-15. Imports, Constructor, State, and Functions in
UsersList Class in src/components/list-users.component.js

import React, { Component } from "react";

import UserDataService from '../services/user-registration.

service';

export default class UsersList extends Component {
constructor(props) {

super(props);

174

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

this.retrieveUsers = this.retrieveUsers.bind(this);
this.deleteUser = this.deleteUser.bind(this);
this.state = {
users: []
};
}

componentDidMount() {
this.retrieveUsers();

}

retrieveUsers() {
UserDataService.getAllUsers()
.then(response => {
this.setState({
users: response.data

};

console.log(response.data);
)
.catch(e => {
console.log(e.target);
}s
}

deleteUser(user, index) {
UserDataService.deleteUser(user.id)
.then(response => {
alert('Deleted successfully! ' + user.
firstName);
this.retrieveUsers();

1)

175

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

.catch(e => {
console.log(e.target);
1);
}

The UsersList class extends the Components class. React, Component,
and user-registration-service import as UserDataService. We defined
the constructor of this class that sets the initial state for the users array.
Also, we bound this to the different events such as retrieveUsers and
deleteUser.

The retrieveUsers function is defined to get the list of users by calling
the getAllUsers () method of UserDataService, which internally sends
HTTP GET requests to the REST API. A function named deleteUser
is defined to delete users by calling the deleteUser () method of
UserDataService, which internally sends HTTP DELETE requests to the
REST API. The componentDidMount () method immediately executes the
React code after a component is mounted (placed in the DOM).

Listing 5-16. Render Method to Return HTML Code

render() {
const { users } = this.state;

return (
<table class="table table-hover">

<caption>List of users</caption>

<thead class="thead-dark">

<tr>
<th scope="col">#</th>
<th scope="col">First Name</th>
<th scope="col">Last Name</th>
<th scope="col">Age</th>
<th scope="col">Address</th>
<th scope="col">Delete</th>

176

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

</tr>
</thead>
<tbody>
{users 88 users.map((user, index) => (
<tr>
<th scope="row">{index+1}</th>
<td>{user.firstName}</td>
<td>{user.lastName}</td>
<td>{user.age}</td>
<td>{user.address}</td>
<td>
<button type="button"
onClick={() => this.
deleteUser(user,
index)}
class="btn btn-danger
custom-width"
key={index}
>
<span class="glyphicon
glyphicon-remove">
Delete

</button>
</td>
</tr>
)}
</tbody>
</table>

)5

177

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

The render method results in a UI. The List of Users page displays a
user list in a table. It also contains a Delete button for each user’s row in a
table, as shown in Figure 5-14.

[. Faact App ® + o = o x
< » C @ locahost3000/1st-all-users Q o BN 9

User Registration App

Home ‘ List All Users | | Add User .

First Name Last Name Age Address Delete

1 Ravi Soni 34 Sasaram-Bihar-India
2 Mamrata Soni 25 Bangalore - India

List of users

Figure 5-14. List all users along with a delete user option

Even though you added only one user in the previous section, the list
shows two users. It’s because the database already contains one user that
was added in Chapter 4.

Here, clicking the Delete button deletes a specific user, as shown in
Figure 5-15.

178

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

B Rescraco x R o =
€ 5 C @ localhost3000/list-all-users ax 9

localhost:3000 says

Deleted successiuly! R
- —_—
‘ Home dd User i

First Name Last Name Age Address Delete

1 Ravi Soni 34 Sasaram-Bihar-India "
2 Namrata Soni 25 Bangalore - India

List of users

Figure 5-15. Delete an existing user

After successfully deleting a specific user, the table displays an updated
user list, as shown in Figure 5-16.

[. React App x HEN o
€ 5 @ O localhost:3000/list-all-users a % » 9

User Registration App

Home ‘ List All Users ‘ Add User ‘

First Name Last Name Age Address Delete

1 Mamrata Soni 25 Bangalore - India

List of users

Figure 5-16. Updated user list after the delete operation

179

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Build React Code as a Front-end
Application for AWS

You have successfully developed and run a user registration front-end app
using React with CRUD features in your local system that consumes data
from UserRegistrationApp RESTful web services that also run in the local
system. To deploy the React app to AWS, you need to build React code.

Verify the AWS Elastic Beanstalk Environment
Is Up

You have updated the Spring Boot application, which should be deployed
to Elastic Beanstalk. You already learned about the deployment process of
the back-end application, so you need to follow the same here to complete
the deployment of the UserRegistrationApp Spring Boot application.
Once you have successfully deployed the updated code, you need to verify
that the Elastic Beanstalk environment is up, as shown in Figure 5-17.

Userregistrationapp-env 2 Refresh ‘ ‘ Actions ¥

userregistration.us-east-2.elasticbeanstalk.com E (e-jquexdvs3h)
Application name: UserRegistrationApp

Health Running version Platform
userregistrationapp-source ﬁ
Q Upload and deploy * }*
Ok Corretto 11 running on 64bit

Amazon Linux 2/3.2.2
Causes
]

Figure 5-17. Verify that the Elastic Beanstalk environment is up

180

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Update BaseURL in a React App with an AWS
Elastic Beanstalk Environment URL

We provided the localhost URL of the RESTful app in the React front-end
app in the src/http-common. js file so that Axios can make a REST API call
from the front end to the back end.

Now, the React front-end app should interact with the RESTful web
services deployed in Elastic Beanstalk. To achieve this, open the src/
http-common. js file and update the base URL with the Elastic Beanstalk
environment URL, as shown in Listing 5-17.

Listing 5-17. src/http-common.js
import axios from "axios";

export default axios.create({
//baseURL: "http://localhost:5000/api/",
baseURL: "http://userregistration.us-east-2.elasticbeanstalk.
com/api/",
headers: {
"Content-type": "application/json"

IR
1

Before building, let’s verify the changes locally. Once you access the
List All Users page in the browser, you can see the result from AWS, as
shown in Figure 5-18.

181

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

J e

& - C ® localhost:3000/list-all-users

User Registration App

‘ List All Users

First Name Last Name Age Address Delete
1 Namrata Soni 25 Bangalore - India
2 Manorma Devi 52 Sasaram - Rohtas -Bihar - India

List of users

Figure 5-18. React app interact with RESTful web services deployed
in Elastic Beanstalk

To cross verify the changes, open Developers Tools in a browser and
validate the request URL, as shown in Figure 5-19, for the POST method to
create a new user.

¥ General
Request URL: http://userregistration.us-east-2.elasticbeanstalk.com/apifuser/save
Request Method: POST
Status Code: @ 200
Remote Address: 3.139.48.80:80

Referrer Policy: strict-origin-when-cross-origin
» Response Headers (10)
» Request Headers (10)

v Request Payload view source
¥ {firstlame: “"Manorma”, lastName: "Devi", age: "52", address: "Sasaram - Rohtas -Bihar - India"}
address: "Sasaram - Rohtas -Bihar - India™
age: "52"
firstlame: "Manorma”

lastName: “"Devi”

Figure 5-19. Validate the Request URL in browser Developer Tools

182

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Build React Code for AWS Deployment

You have made the required changes in the React app and verified those
changes to confirm that the React app interacts with RESTful web services
deployed in AWS. Now, you would like to deploy this React front-end app
to the AWS server. You need to create a build for the React app.

To create a build, you need to stop the React app and execute the
following npm command in the command prompt.

E:\Apress\workspace\AWS\user-registartion-frontend-app>npm run
build

Once you run the build command, a folder named build is created in
the React app, and it is populated with an optimized production build, as
shown in Figure 5-20.

183

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

E:\Apress\workspace\AWS\user-registartion-frontend-app>npm run build

b user-registartion-frontend-app@e.1.@ build E:\Apress\workspace\AWS\user-registartion-frontend-app
b react-scripts build

Creating an optimized production build...
Fompiled with warnings.

Erc\App. js
Line 1:8: ‘logo’ is defined but never used no-unused-vars
Line 4:16: ‘components' is defined but never used no-unused-vars

pearch for the keywords to learn more about each warning.
fo ignore, add // eslint-disable-next-line to the line before.

File sizes after gzip:

54.7 KB build\static\js\z
22.53 KB build\static\css
2.e4 KB build\static\js\
1.64 KB build\static\js\
1.18 KB build\static\js\
556 B build\static\css\m

The project was built assuming it is hosted at /.
Vou can control this with the homepage field in your p:

The build folder is ready to be deployed.
Mou may serve it with a static server:

install -g serve
e -5 build

Find out more about deployment here:

https://cra.link/deployment

E:\Apress\workspace\AWS\user-registartion-frontend-app>

Figure 5-20. Build React app using npm command

So, now the build folder is ready. It contains a static folder and
the asset-manifest.json, fevicon.ico, index.html, manifest.json,
logo.png, and robots. txt files, as shown in Figure 5-21.

184

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

V' USER-REGISTARTION-FRONTEND-... [} B O &

v build
> static
{} asset-manifest.json

favicon.ico

Figure 5-21. The build folder in React app

Deploy a React Front-End to AWS S3:
Hosting a Static Website

In the previous section, you built a React front-end app that you want to
deploy in AWS S3.

Introduction to S3: Simple Storage Service
in AWS

S3 stands for Simple Storage Service, which is scalable storage in the cloud.
S3 is basically an object-store.

185

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Log in to AWS Console Management, and click the All service
hyperlink at the top, and you find S3 under the Storage category, as shown
in Figure 5-22.

All services

& Storage

S3 Glacier
Storage Gateway
AWS Backup

Figure 5-22. S3 service under Storage category on AWS

Clicking S3 brings you to the page containing the bucket’s details, as
shown in Figure 5-23.

Amazon 53

» Account snapshot View Storage Lens dashboard |
Storage bens provides visibility into stoea t 2]
Buckets (1) (o]
Buckets ane containess for data stored in 53, Leam mare [
a 1 @
Name a AWS Region Access v Creation date
elasticheanstalk-us-east-2-818371255049 US East (Ohio) us-east-2 Objucts can be public March 24, 2021, 19:03:35 (UTC+05:30)

Figure 5-23. Buckets details on Amazon S3

186

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

A bucket is a collection of objects that are files belonging to that
container. Figure 5-23 shows that a bucket is available in Amazon S3.

Figure 5-24 shows that this bucket contains all the JARS that you
deployed in previous chapters, as shown in.

Amazon 53 elasticheanstalk-us-east-2-818371255049
elasticbeanstalk-us-east-2-818371255049 ..

Objects Properties Permissions Metrics Management Access Points

Objects (9)

on 53, You €an use Amazon S5 inventory [/ 1o 0e1.3 list of all abjocts in your Diket. For oUhers b 200oss your objects, youll need 1o

c Actions w l Create folder ;
| B uplead |
a g @
o Storage
Na: 3 La odified 3 Skz
me - Type v st m w e v i =
March 24, 2021, 18:03:49
elasticbeanstalk ixbeanstalk 5
[elasticbeanstal elasticbeanstall (UTC+05:50) 0B Standard
. 4557 3

[2021084IVS-awsSpringBoot-0.0.1-SNAPSHOTjar jor :;;f;s‘_'sg;m' 17 1:_; Standard
B 2021180g0a-HelloSpringBoot-0.0.1 June 30, 2021, 00:13:08 244 S
SNAPSHOT jar »= (UTC+05:30) MB Stendond

Figure 5-24. Bucket contains JARs

AWS fetches all the required JARs from S3, which you can think of as
primarily a storage service in AWS. If you want to store something like a
backup file, archival file, data staging, or logs file, you use S3 in AWS.

S3 can also serve static websites, and that is the feature which
you deploy React applications. S3 provides high durability and high
availability.

While buckets are associated with regions, when you use S3, you are in
a global space that means a global service, and you are not really selecting
aregion, as shown in Figure 5-25.

187

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

‘9. ManoRas v Global a Support v

S3 does not require region selection.

Figure 5-25. Selecting S3 means global service

Next, you deploy the React app in AWS S3.

Create a Bucket

Open the Create bucket page, as shown in Figure 5-26.

Amazon 53 Create bucket

Create bucket

Buckets are containers for data stored in 53. Learn more [

General configuration

Bucket name

user-registration-frontend-app

Bucket name must be unique and must not contain spaces or uppercase letters. See rules for bucket naming [2
AWS Region
US East (Ohio) us-east-2 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

Figure 5-26. Creating UserRegistrationApp using Spring Initializr

188

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Here, you need to provide general configuration information. While
entering the bucket name, across AWS, the Bucket name should be
globally unique. Enter user-registration-frontend-app in Bucket name,
leave the other options on the page as is, and then click the Create bucket
button. You should get a success message, as shown in Figure 5-27.

© Successfully created bucket "user-registration-frontend-app™

To upload files and folders, or to configure additional bucket settings choose View details.

Amazon 53

View Storage Lens dashbeoard |

» Account snapshot
A

Storage lens provides visibility into storage usage and activity trends. Learn more [

Buckets (2) info C | O copyarn E ¢

Buckets are containers for data stoced in 53. Learn more [

Q 1 @
Name a AWS Region v Access v Creation date k-4
elasticbeanstalk-us-east-2- US East (Ohio) us- Objects can be public March 24, 2021, 19:05:35
818371255048 east-2 AR R IR (UTC+05:30)
set-raqirration drontend-a US East (Ohio) us- Bucket and objects not July 14, 2021, 17:08:30

T v east-2 public (UTC+05:30)

Figure 5-27. Creating UserRegistrationApp using Spring Initializr
Here, you can see that two buckets were created in AWS S3. Click the

newly created bucket named user-registration-frontend-app, which
takes you to user-registration-frontend-app, as shown in Figure 5-28.

189

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Amazon §3 > user-registration-frontend-app

user-registration-frontend-app e

Objects Properties Permissions Metrics Management Access Points

Objects (0)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon 53 inventory [A to get a list of all objects in your bucket.

For others to access your objects, you'll need to explicitly grant them permissions. Learn more [}

3 CopyS3 URI [F Copy URL M Download Open [§ Delete
| Actions ¥ H Create folder | [upload

Figure 5-28. user-registration-frontend-app with object details

Here, the objects are empty because it is a newly created bucket. Click
the Upload button to upload all the content from the local system in the
build folder, as shown in Figure 5-29.

Amazon 53 user-registration-frontend-app > Upload

Upload i

Add the files and folders you want to upload to 53. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon
S3 REST API. Learn more [

Drag and drop files and folders you want to upload here, or choose Add files, or Add folders.

d (| X I
move | Add files Add folder
Share View o >
 yser-registartion-frontend-app » build v O £ Search build
e 1
A Name Date modified Type -
static 14:07-2021 0442 pmeFilet)

= i e v Size .

|] asset-manifestjson 14-07-2021 04:42 PM 150N

B favicen 26-10-1985 01:45 PM lcon

(5] index 14-07-2021 D4:42 PM Oper

&) logalg2 26-10-1985 01:45 PM PNG

8] logas12 26-10-1985 01:45 FM PNG

|| manifestjson 26-10-198501:45PM Jsonto upload.

|| robots 26-10-1985 01:45 PM Text [

Figure 5-29. Upload files in build folder to S3 bucket

190

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Next, click the Upload button at the bottom of the page. Once the
files are uploaded successfully, you get a success message, as shown in
Figure 5-30.

@ Upload succeeded
View details below.

Files and folders Configuration

Files and folders (21 Total, 1.3 ME)

qQ
Name A Folder L4 Type v Size v Status

2.4be38407.chunk css stabicfess/ text/foss 1550K8 Succeeced
2.4be38407 chunk.css.map staticfess) - 216.9K8 @ Succoeded
2.caBdBefe chunk js static/js/ et fjavaseript 170.9 KB ©) Succieded
2.caBdBefe chunk js ICENSE txt static/fjs/ textfplain 13KB) Sueceeded
2.ca8dBefechunk js map staticfjs/ - S15.3KB & Sueceeded
3.22a243 24 chunk.js static/fjsf et fjavascript 43 KB @ Suxceeded
3.22224324.chunk js.map staticfis/ - Q4KB @ Sutceeded
asset-manifestjson - application/fjson 1.3KB & Succeeced
favicondco = Emage/-ion 35KB Sugceeded
indexhitml - tet fhtml 31KB @ Sucoeeded

Figure 5-30. Uploaded files and folder to AWS S3

Now, under the Objects tab, you see all the objects present in the user-
registration-frontend-app bucket. Figure 5-31 shows the static folder
and all the files you have uploaded to the bucket.

[=1 x < 1
Name - Type v Last modified - Size L] Storage class
B asset-manifestjson json July 14, 2021, 17:15:27 (UTC+05:30) 1.3KB Standard
[faviconico ico July 14, 2021, 17:15:28 (UTC+05:30) 38K8 Standard
[indechtml hemt July 14, 2021, 17:15:21 (UTC+05:30) 31K Standard
[legot9zpng png July 14, 2021, 17:15:22 (UTC+05:30) 5.2K8 Standard
B loge512png png July 14, 2021, 17:15:23 (UTC+05:30) 9.4K8 Standard
[manifestjson json July 14, 2021, 17:15:24 (UTC+05:30) 49208 Standard
B robots.txt e July 14, 2021, 17:15:26 (UTC+05:30) 5708 Standard
0O static/ Folder

Figure 5-31. Creating UserRegistrationApp using Spring Initializr

191

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

To host a website, go to the Properties tab, scroll down to Static
website hosting, and then click Edit, as shown in Figure 5-32.

Static website hosting

Use this bucket to host a website or redirect requests. Learn more [

Static website hosting

Disabled
Figure 5-32. Static website hosting

Next, select Enable for static website hosting, select Host a static
website as the hosting type, and enter index.html as the index document,

as shown in Figure 5-33.

Static website hosting

Use this bucket to host a website or redirect reguests. Learn more [}

Static website hosting
Disable
O Enable

Hosting type
© Host a static website
Use the bucket endpoint as the web address, Leam more [

Redirect requests for an object
Redirect requests to another bucket or domain. Leam more [4

(@ For your customers to access content at the website endpoint, you must make all your content publicly
readable. To do so, you can edit the S3 Block Public Access settings for the bucket. For more information, see
Using Amazon 53 Block Public Access [

Index document
Specify the home or default page of the website.

| :'ndex.htm'

Error document - gptional
This is returned when an error occurs.

Figure 5-33. Update static website hosting details

192

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

The index.html file was uploaded to the S3 bucket. Save the changes.
Now you can find the bucket website endpoint URL in the Properties tab,
as shown in Figure 5-34.

Static website
Use this buciort 10 has

Static website hosting

Enabled

Hosting type

Bucket hosting

Bucket website endpoint

Wihen you cenfigune your bucket a5 2 static wobsite, the website is available at the SWS Region-spocific website endpoint of the bucket. Learn mone

P hutge/ Juser-registr, frontend-app.s3-website.us-east-2 ws.com [

Figure 5-34. Bucket website endpoint URL

Clicking the bucket website endpoint URL gives a 403 Forbidden error,
as shown in Figure 5-35.

C A Notsecure | user-registration-frontend-app.s3-website.us-east-2.amazonaws.com

403 Forbidden

+ Code: AccessDented

¢ Message: Access Denied

* Requestld: PDG75JQVXDSPWMTM

» Hostld: 10fyK033/3WN{Zz7BGIpVqqEa0Cf8gAPOK qzIONMLkrr6/ahvbIUBe3F5z6 CdKxdMCSth3LxdcQ=

Figure 5-35. Creating UserRegistrationApp using Spring Initializr

The Access Denied error is due to S3 security issues. By default, all the
objects you have uploaded have Block public access in the Permissions
tab, as shown in Figure 5-36.

193

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all in order to ensure that public ac

all your 53 buckets and objects is blocked, turn on Block all public access. These settings apply only to this bucket and its access points. AWS recommends that you

turn on Block all public access, efore applying any of these settings, ensure that your applications will work correctly withou ic access. If you require some

level of public sccess to your Buckets or objects within, you can customize the individual settings below to suit your specific storage use cases. Learn more [

Edit

Block all public access

@ On
Block public access to buckets and objects granted through new access control lists (ACLs)
@on
Block public access to buckets and objects granted through any access control lists (ACLs)
@ On
Block public access to buckets and objects granted through new public bucket or access point policies

®on

Block public and cross-account access to buckets and objects through any public bucket or access point policies

©on

Bucket policy

The bucket policy, written in JSON, provides access to the objects stored in the bucket. Bucket policies don't apply to objects owned by other accounts. Learn more [

Edit

Figure 5-36. By default, all objects block public access
To make all the bucket’s content public so that it is accessible on the

Internet, click Block public access, uncheck Block all public access, and
click Save changes, as shown in Figure 5-37.

194

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order to
ensure that public access to all your 53 buckets and cbjects is blocked, turn on Block all public access. These settings apply only to this
bucket and its access points. AWS recommends that you tumn on Block all public access, but before applying any of these settings, ensure
that your applications will work correctly without public access. If you require some level of public access to your buckets or cbjects

within, you can customize the individual settings below to suit your specific storage use cases. Leamn more [

Block all public access
Tuming this setting on is the same as turning on all four settings below. Each of the following settings are independent of one another.

Block public access to buckets and objects granted through new access control lists (ACLs)

53 will block public access permissions applied to newly added buckets or objects, and prevent the creation of new public access
ACLs for existing buckets and objects. This setting doesn’t change any existing permissions that allow public access to 53 resources
using ACLs.

Block public access to buckets and objects granted through any access control lists (ACLs)
53 will ignore all ACLs that grant public access to buckets and objects.

Block public access to buckets and objects granted through new public bucket or access point policies
53 will block new bucket and access point pelicies that grant public access to buckets and objects. This setting doesn't change any
existing pelicies that allow public access to 53 resources,

Block public and cross-account access to buckets and objects through any public bucket or access point
policies

53 will ignore public and cross-account access for buckets or access points with policies that grant public access to buckets and
objects.

Figure 5-37. Creating UserRegistrationApp using Spring Initializr

A confirmation screen pops up to confirm the settings. You need to
enter confirm in the input box and click the Confirm button, as shown in
Figure 5-38.

195

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Edit Block public access (bucket settings) X

/\ Updating the Block Public Access settings for this bucket will affect this
bucket and all objects within. This may result in some objects becoming
public.

To confirm the settings, enter confirm in the field.

| confirm| |

Figure 5-38. To confirm the settings, enter confirm in the field

A success message should appear, as shown in Figure 5-39.

@ Successfully edited Block Public Access settings for this bucket.

Amazon S3 > user-registration-frontend-app

user-registration-frontend-app e

Objects Properties Permissions Metrics Management Access Points

Permissions overview

Access

Figure 5-39. Successfully edited Block Public Access settings for bucket

Now, you need to edit the bucket policy, which is written in JSON. It
provides access to the objects stored in the bucket. To edit bucket policy,
in the Permissions tab, scroll down to the Bucket policy section, and click
the Edit button, and enter the JSON under Policy, as shown in Figure 5-40.

196

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Bucket policy
The bucket palicy, written in JSON, provides access to the objects stored in the bucket. Bucket policies don't apply to objects owned by
other accounts. Learn more [/_‘,

Policy examples [4 | | Policy generator [

Bucket ARN
[am:aws:s3::user-registration-frontend-app
Policy

"Version":"2012-1-17",
“Statement™:[

: »
s3:GetObject™,
=" ["arn:aws:s3::iuser-registration- frontend-app/*")

b
B3 @D 08 Oh LA P R b
. .

e

Figure 5-40. Update bucket policy

Listing 5-18 shows the JSON for a bucket policy.

Listing 5-18. JSON for Bucket Policy
{

"Version":"2012-10-17",
"Statement":[
{

"Sid":"AddPerm",
"Effect":"Allow",
"Principal™: "*",
"Action":"s3:GetObject",
"Resource":["arn:aws:s3:::user-registartion-frontend-

app/*"]

197

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

Resource contains the bucket name, which is user-registration-
frontend-app, to identify the resource for the bucket policy. This JSON
specifies a specific version. GetObject in Action allows access to all
principals. All users can execute GetObject on user-registration-
frontend-app.

Next, save the changes, which prompts a message stating, “This bucket
has public access.” Refresh the browser with the bucket website endpoint
URL. You can now access your home page, as shown in Figure 5-41.

[B rectice N+ o
@ A Notsecurs i: frontend-app.s3-website.us-east- om E T N 9 H

User Registration App

| List All Users | Add User

Welcome to User Registration App

Please click on List All Users to get all users.
. Please click on Add User to add a new user.

Figure 5-41. Bucket website endpoint URL in home page

Congratulations! You have successfully hosted your static React app in
AWS S3 and can access the home page.

Verify the Successful Deployment of a React
Front-end Application: Resolve a 404 Error

Click the List All Users button in the navigation bar on the home page. You
get 404 Not Found errors, as shown in Figure 5-42.

198

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

' B 04 Mot Found % o
« C A Notsecure | user-regi pp.53-website.us-east-2 om/list-all-users * » 9
404 Not Found

* Code: NoSuchKey
o Message: The specified key does not exist.

o Kev: list-all-users

* Requestld: RHIBGIWNCNTYEQWC

» Hostld: oyNgI XQExTCImv+DhkdASMYxN230ws4ZQARZHI Sy Y 38ZAMINd4vIc AZ1 UTAax4nDDEXK62Q=

Figure 5-42. List All Users page throws 404 error

To resolve this issue, you need to update the Error document box to
index.html. To make these changes, you need to go to the Properties tab
under the bucket. Scroll down to Static website hosting, click Edit, and
update the error document, as shown in Figure 5-43.

Static website hosting

Use this bucket to host a website or redirect requests. Learn more E

Static website hosting
) Disable
© Enable

Hosting type
© Host a static website
Use the bucket endpoint as the web address. Learn more E

) Redirect requests for an object
Redirect requests to another bucket or domain. Leam more E

@ For your customers to access content at the website endpoint, you must make all your content publicly
readable. To do so, you can edit the 53 Block Public Access settings for the bucket. For more information, see
Using Amazon 53 Block Public Access [

Index document
Specify the home or default page of the website.

index.html
Error document - optional
This is returned when an error ocours

| index.htm| |

Figure 5-43. Update Error document in Static Website Hosting

199

CHAPTER 5 DEPLOY A FULL STACK SPRING BOOT REACT APPLICATION IN AWS AND S3

This is the way react-router works. It handles the requests from the
front-end and routes users to other routes. Save the changes and refresh
the browser to view the List All Users page, as shown in Figure 5-44.

o
I B reaciipe bl + o

« C A Notsecure | user-registration-frontend-app.s3-website.us-east- com/list-all-users T B 9 :

User Registration App

| List All Users | Add User

First Name Last Name Age Address Delete

1 MNamrata Soni 25 Bangalore - India
2 Manerma Devi 52 Sasaram - Rohtas -Bihar - India m

List of users

Figure 5-44. Access list-all-users page hosted on AWS S3

Summary

This chapter introduced React as a front-end framework and its major
components to develop a single-page application using React as the front
end to consume the API exposed by the back-end application. You set

up a development environment to develop a React front-end application
and were introduced to S3 in AWS, where you deployed a React front-end
application.

200

APPENDIX A

Install MySQL
Workbench on
Windows 10

MySQL Workbench is a visual database designing and modeling access
tool used to add functionality and ease to SQL development work. MySQL
Workbench facilitates creating new physical data models or modifying
existing MySQL databases and provides data modeling, SQL development,
and various administration tools for configuration. It also offers a graphical
interface to work with MySQL databases in a structured way.

Step 1. Download Workbench

Go to the official MySQL Workbench download site (https://dev.
mysql.com/downloads/workbench/). You see the options to download

© Ravi Kant Soni and Namrata Soni 2021 201
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

https://doi.org/10.1007/978-1-4842-7392-0#DOI
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Workbench, as shown in Figure A-1. The MySQL Workbench version that
was available when writing this tutorial was 8.0.25.

General Availability (GA) Releases Archives Y

MySQL Workbench 8.0.25

select Operating System:
[Microsoft Windows v

rRecommended Download:

MySQL Installer B
y for Windows 'j N

All MySQL Products. For All Windows Platforms.
In One Package.

Windows (x86, 32 & 64-bit), MySQL Installer MSI Go to Download Page >

Other Downloads:

Windows (x86, 64-bit), M Installer 8.0.25 42.2M
(mysql-workbench-community-8.0.25-winx64.msi) MD5: 4220a115ad93edcaa7edbcbd7b@89@6e | Signature

Figure A-1. MySQL Workbench

Clicking the Download button takes you to the next page, which
asks you to either log in to download or download directly, as shown in

Figure A-2.

202

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

® MySQL Community Downloads

Login Now or Sign Up for a free account.
An Oracle Web Account provides you with the following advantages:

- Fast access to MySQL software downloads

- Download technical White Papers and Presentations
- Post messages in the MySQL Discussion Forums

« Report and track bugs in the MySQL bug system

Login » Sign Up »

for an Oracle Web account

using my Oracle Web account

MySQL.com is using Oracle SSO for authentication. If you already have an Oracle Web
account, click the Login link. Otherwise, you can signup for a free account by clicking the
Sign Up link and following the instructions.

No thanks, just start my download.

Figure A-2. MySQL community download

Complete the MySQL installer download by following either of the
approaches.

203

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Step 2. Install Workbench

Double-click the downloaded MySQL Workbench installer to execute it. It
shows a “Welcome to the Setup Wizard” screen, as shown in Figure A-3.

i?,;zgl MySQL Workbench 8.0 CE - Setup Wizard X

Welcome to the Setup Wizard for MySQL
Workbench 8.0 CE

The Setup Wizard will install version 8.0.25 on your computer.
To continue, dick Next.

WARNING: This program is protected by copyright law and
international treaties.

< Back Next > ' Cancel

Figure A-3. Welcome screen

204

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Click the Next button to continue the MySQL Workbench installation.
The following screen asks you for the destination folder, as shown in
Figure A-4.

i"§1 MySQL Workbench 8.0 CE - Setup Wizard

Destination Folder N
Click Next to install to this folder, or dick Change to install to a different folder. 2

G Install MySQL Workbench 8.0 CE to:
C:\Program Files\MySQLYMySQL Workbench 8.0 CE\ | Change...

| <Back 'I[__gext:» || cancel

Figure A-4. Destination folder

205

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Change the path if required and then click the Next button. The next
screen offers the setup type options, as shown in Figure A-5.

iig: MySQL Workbench 8.0 CE - Setup Wizard

Setup Type
Choose the setup type that best suits your needs.

Please select a setup type.

O complete

ﬁ-@ All program features will be installed. (Requires the most disk

space.)

R R e e d

Choose which program features you want installed and where they
will be installed. Recommended for advanced users.

| Next> | Cancel

Figure A-5. Destination folder

206

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Select the Custom setup type to make changes. Then, click the Next
button to view the custom options, as shown in Figure A-6.

f? MySQL Workbench 8.0 CE - Setup Wizard

Custom Setup N

Select the program features you want installed. \ e

Click on an icon in the list below to change how a feature is installed.

=)~ MYSQL Workbench Core Feature DESCITptIOI'I
i....]&+~] Program Shortcut Place a Shortcut to MySQL
ETON e e e | \Warkhendhin vour Startmenus

&) This feature will be installed on local hard drive.
&8 This feature, and all subfeatures, will be installed on local hard drive.

@ This feature will be installed to run from network.
8 This feature, and all subfeatures, will be installed to run from the network.

= This feature will be installed when required.

Install tg

This feature will not be available.

| Hep || space || <Back | Next> || cancel

Figure A-6. Custom setup

207

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

You can omit Program Shortcut by clicking it and selecting This
feature will not be available (if required). Then, click the Next button to
confirm MySQL Workbench installation, as shown in Figure A-7.

Ready to Install the Program ~ N
The wizard is ready to begin installation.
If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

Current Settings:

Setup Type:
Custom

Destination Folder:
C:\Program Files\MySQL\MySQL Workbench 8.0 CE\

Figure A-7. Ready to install

208

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Click the Install button to start the installation. The installer asks for
your system'’s permission. Grant the permissions to allow the installation
process. It displays the progress, as shown in Figure A-8.

i MySQL Workbench 8.0 CE - Setup Wizard

Installing MySQL Workbench 8.0 CE N
The program features you selected are being installed.

_Ad] Please wait while the Setup Wizard installs MySQL Workbench 8.0 CE. This
f@" may take several minutes.
Status:
Copying new files

Figure A-8. Copying neuw files

209

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

After completing the installation, a Wizard Completed success screen
is displayed, as shown in Figure A-9.

;=§! MySQL Workbench 8.0 CE - Setup Wizard X

Wizard Completed
Setup has finished installing MySQL Workbench 8.0 CE.

[Launch MySQL Workbench now < Back Cancel

Figure A-9. Wizard completed

210

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Once you click the Finish button, the installer starts MySQL
Workbench. The default window looks like the one shown in Figure A-10.

File Edit ‘iew Dstsbase Tools Scriping Help

Welcome to MySQL Workbench

MySQL Workbench is the official graphical user interface (GUI) tool for MySQL. It allows you to design,
create and browse your database schemas, work with database objects and insert data as well as
design and run SQL queries to work with stored data. You can also migrate schemas and data from other
database vendors to your MySQL database,

Browse Documentation > Read the Blog > Discuss on the Forums

MySQL Connections ®@® @ Filter connections

MySQL Workbench could not detect any MySQL server running.
This means that MySQL is not installed or is not running.

Lescan

VErS

Figure A-10. Welcome to MySQL Workbench

211

APPENDIXA INSTALL MYSQL WORKBENCH ON WINDOWS 10

Your MySQL server connection contains information about the target
database server, including how to connect to it. Click the + icon on the
MySQL Workbench home window to open the Setup New Connection

wizard, as shown in Figure A-11.

T Setup New Connection

C MName: |]Typeanmfudmmmﬁm

e jon Method: Standard (TCP(1F) V|Memmmemomdmhm

Parameters ssi Advanced

Hosmame: Elﬂ'o-o-l |Port: }3305 | Tcumm;r EPtmessofﬂ'\esewhost-w
port.
Username: [rool I Name of the user to connect with,
Password: [gu e i vaut ... [Clear | x;slu'sp&md.wlbermnswedlaw:rirs
Default Schema: I The schema to use as default schema. Leave
blank to select it later.
Configure Server Management... | TestComnecton | | cancel | [k

Figure A-11. Setup New Connection wizard

212

APPENDIX B

AWS Command-Line
Interface (CLI)

The AWS Command Line Interface (CLI) manages AWS services from a
terminal session that allows you to configure and control multiple AWS
services by implementing a level of automation without logging in to the
AWS Management Console.

Many popular tools, like Terraform, Jenkins, and Python scripts,
support CLI access to create infrastructure as code (IAC), which creates
the entire infrastructure. For example, if you want to create an S3 bucket
in AWS, you don’t have to log in to the AWS Management Console and
visit different-different pages on AWS to enter lots of details for this bucket
creation. Instead, create some code with the required information, like the
bucket name and so on, and run that code, which creates the S3 bucket
automatically.

Let’s explore how to install AWS CLI in Windows and how to use the
AWS CLI.

© Ravi Kant Soni and Namrata Soni 2021 213
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

https://doi.org/10.1007/978-1-4842-7392-0#DOI

APPENDIXB ~ AWS COMMAND-LINE INTERFACE (CLI)

Step 1. Download and Install the AWS CLI
on a Windows Operating System

First, you need to download the AWS CLI (https://aws.amazon.com/
cli/), which asks you to save the MSI standalone package in your local
system. Once downloaded, run it, and follow the steps by clicking the Next
buttons and the Finish button.

Once installation is completed, the program files are stored at
C:\Program Files\Amazon\AWSCLIV2.

Step 2. Create an Access Key

When you create an AWS account using AWS Management Console, AWS
creates a root user who has administrative rights to perform many talks in
AWS. You need to create an IAM user in your AWS account to provide the
necessary rights.

Log in to AWS Management Console, and in All Services, you can find
IAM under the Security, Identity, & Compliance category, as shown in
Figure B-1.

(@ Security, Identity, & Compliance
IAM

Resource Access Manager

Cognito

Secrets Manager
GuardDuty
Inspector
Amazon Macie

AWS Single Sign-On

Figure B-1. IAM under Security, Identity, & Compliance

214

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

APPENDIXB ~ AWS COMMAND-LINE INTERFACE (CLI)

Clicking IAM takes you to the IAM page, where you find the My access
key link, as shown in Figure B-2.

£\ ManoRas v Global ¥ Support

Additional information ('

IAM documentation

Videos, |IAM release history and additional
resources

Tools (%

Web identity federation playground

Policy simulator

Quick links

My access key

Related services (4

AWS Organizations

AWS Single Sign-on (SSO)

Figure B-2. My access key

Clicking My access key gives you the Create New Access Key option, as
shown in Figure B-3.

215

APPENDIXB ~ AWS COMMAND-LINE INTERFACE (CLI)

Identity and Access &l
Management (LAM) Y & Password

~ Multi-taclor authentication (MFA)
= Access keys (access key ID and secrel access key)

Cashboard

= Attest management

User groups U B00rES RS 10 Mk pAOQIAMIMAbE Cally 10 AWS Prom the AWS CLI Tooks for PowsrShel, AWS SDRS. of Jinect AWS API Calls. You can have 3
users M of ben BCCESS keys (ACte of INactive) al a Sme
Roles For your prelection, You Should néver share your S0Cret Keys with aryone. As 3 Dest pracice. wi recommend Trequent key relation.
1f YU K958 57 1GrgRT YOUT SECTEL Ky, YOU CINACT MEtriEVe IL INS1E3T, CEaLE 3 HEW JCSESE Key 30D make the olc Key inactive. Leam more
Last Used Last Used
idenity provicers Createc Access ey 1D Last Used Roagh 5 St ATbons
Account settings
= ACCess repons
Access aralyrer
o Rool user BcCess keys b your entire. M you nead lang: keys, we creating a
Auchive res e LAM user wilh imiled permissions. and generaning access keys for ihat sser instead Leam mare
Analyzems

Figure B-3. Create a new access key

Clicking the Create New Access Key button opens a Create Access Key
popup, with a Download Key File option and a Show Access Key option, as
shown in Figure B-4.

Create Access Key

18 Your acoess key (access key ID and secret access key) has been created successfully.
Downiaad your key file now, which contains your new access key 10 and secret access key. If you
da not download the kiy N8 RO, you Will AGt i abIe 1o FEIFI#vE YOUR BeCTE ACTHEE key agaln.

T haip prolect your secunty, stofe your sacret sccess key sacure’y and de not share 2
» Show Access Key

Dewnicad Koy ko0 | Cioee.

Figure B-4. Create access key

Download the file for future reference.

216

APPENDIXB ~ AWS COMMAND-LINE INTERFACE (CLI)

Configure AWS CLI

Once you have successfully installed the AWS CLI, you need to configure
the application to connect to your AWS account. To achieve this, open
the command prompt, and enter the aws configure command, which
prompts you for four pieces of information, as shown in Figure B-5.

B Commend
Microsoft Windows [Version 10.0.19042.11180]
(c) Microsoft Corporation. All rights reserved.

C:\Users\ravik>aws configure

AWS Access Key ID [None]: AKIA35CV2LMESS55YVV3

AWS Secret Access Key [None]: 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
Default region name [None]: us-east-2

Default output format [None]: json

C:\Users\ravik>

Figure B-5. AWS configure

Copy the access key ID and the secret access key from the downloaded
key file, which authenticates your AWS account. The region name defines
the region where the request from CLI is sent to. The output format
specifies the result format: JSON, YAML, text, or table.

Example Commands That Work with S3

1. Listall the S3 buckets in your AWS account.
aws s3 1s

217

APPENDIXB ~ AWS COMMAND-LINE INTERFACE (CLI)

C:\Users\ravik>aws s3 1s
2021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
2021-07-14 17:57:15 user-registration-frontend-app

C:\Users\ravik>

2. Create a bucket.
aws s3 mb s3://user-registration-backup

C:\Users\ravik>aws s3 1ls
2021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
2021-07-14 17:57:15 user-registration-frontend-app

C:\Users\ravik>aws s3 mb s3://user-registration-backup
make_bucket: user-registration-backup

C:\Users\ravik>aws s3 1s

2021-03-24 19:03:57 elasticbeanstalk-us-east-2-818371255049
2021-87-19 12:32:22 user-registration-backup

2021-07-14 17:57:15 user-registration-frontend-app

C:\Users\ravik>

3. Verify in AWS Management Console.

Buckets (5) 1w c :
Buckets v containers for d34a Mored in 53, Laarn mere [}

Q 1 &
Mame a AWS Region v Arcess v Creation date v
elastichaanstali-us-gast-2-§18371255049 U5 East (Ohio) us-gast-2 Objects can be putlic March 24, 2021, 19:03:35 (UTC+05:30)
uses-registration-backup US East (Dhio) us-east-2 Objects can be public July 18, 2021, 12:32:22 (UTC+05:30)
user-rogistration-frontend-apg s East [Ofilo] us-gast-2 A Public July 14, 2021, 17:08:30 (UTC+05:30)

4. Refer to the folder at C: \Program Files\Amazon\
AWSCLIV2\awscli\examples for an example
with a command that you can use based on your
requirements.

218

Index

A Application Programming
Interface (API

Amazon Web Service (AWS) . (API)

Axios, 164
account developer .
e . Java Persistence API, 113
billing information, 14

REST, 41-75

categories, 19

contact information, 12

features, 9

main page, 10

management console, 18

password option, 18 B
phone number verification, 15 BaseURL, 181-182

Swagger UI, 135
UserRegistrationApp project,
126-128

sign in, 16-17 Buckets page creation

signup, 11 block public access, 194-196
support plan, 16 confirm button, 196
verification purposes, 13 details, 186
application architecture, 9 home page, 198
elastic beanstalk (see Elastic object details, 190
beanstalk server)

policy section, 196
spring initializr, 188-189

5-6 upload files/folder, 190-191
hosting platform, 2

elastic cloud compute (EC2),

UserRegistrationApp, 191

key services, 4 website endpoint, 193
management console, 3

overview, 1
relational database service, 8 C

Route 53, 8 Command line interface (CLI)
worldwide data centers, 2 access key

© Ravi Kant Soni and Namrata Soni 2021 219
R. K. Soni and N. Soni, Spring Boot with React and AWS,
https://doi.org/10.1007/978-1-4842-7392-0

https://doi.org/10.1007/978-1-4842-7392-0#DOI

INDEX

Command line
interface (CLI) (cont.)
button option, 216
security/identity/
compliance category, 214
my access key option,
215-216
configuration, 217
MSI standalone package, 214
S3 buckets, 217-218
tools, 213
Cross-origin resource
sharing (CORS), 150
CRUD operations, 26, 103, 117,
143, 157

D

Data access object (DAO), 114-116

Database connection
configuration, 84
dashboard, 80
database details, 82-83
enable options, 81
engine options, 81
environment, 83-84
instances, 85-86
options, 84-85
services, 78

E

Elastic beanstalk server
application information, 22

220

button code, 23

compute section, 20

congratulations screen, 25

deploy/handle server, 7-8

development process, 26

environment details, 23-24

front-end applications, 181

health status, 24

HelloWorld JSP (see HelloWorld
JSP application)

logs, 25

page information, 20

platform details, 22-23

spring boot application, 67-72

UserRegistrationApp project,
130-136

WAR (see WAR file)

web app page, 21

Elastic cloud compute (EC2), 5-6

F,G

Front-end applications

BaseURL, 181-182
CORS error, 150
create-react-app package
add-user component,
168-171
Axios HTTP library, 164
BrowserRouter object, 161
components (react),
165-179
CRUD operation, 157
data service, 165

DELETE requests, 176
files, 154-157
full stack, 144
home component, 166-167
home page, 156
navbar, 159-160
node_modules folder, 158
npm start command, 155
npx command, 151
project structure, 152-154
react-router package,
160-164
render method, 171-174
sub-components, 174-180
success message, 155
switch/route/render
routes, 162
Twitter bootstrap, 157-159
user registration app,
152, 167
deployment, 183-185
developer tools, 182
development environment,
144-149
elastic beanstalk
environment, 180
node.js/npm version, 149
overview, 144
react app
components, 147
constructor, 147
life cycle, 147-149
root components, 145
router and axios, 145

INDEX

state and render method, 146
Stateful method, 147
S3 (see Simple Storage
Service (S3))

H

HelloWorld JSP application
archetype selection, 28
browser, 31
maven project, 26-27
parameter selection, 29
project directory, 29
running server, 31
targeted runtimes, 30

Inbound connection
drop-down list, 90
edit option, 90
info page, 88
rds-launch-wizard, 89
rules tab, 89
security group rules, 88
updated source, 91

J, K
Java Archives (JARs)
spring boot
command prompt, 67
directory, 66
edit configuration window, 64

221

INDEX

Java Archives (JARs) (cont.)
maven process, 63
output process, 65
UserRegistrationApp project,
129-130

L

Lombok dependencies
getter/setter/toString/equals
method, 108-109
installation, 109-110
m?2 directory, 109
objectives, 108
spring tool suite, 111

M,N,O,P,Q
MySQL workbench, 201
community download, 203
copying files, 209
custom setup, 207
destination folder, 205-206
download site, 201-203
installation process, 208
relational database service
connection wizard, 93
connectivity/security tab, 91
db connection details, 96
endpoint/port, 92
store password, 95
test connection button, 95
updated value, 94
setup connection, 212

222

welcome screen, 204
wizard completion, 210-211

R

Relational database service (RDS),
8,77
configuration work
database instance status,
86-87
inbound connection
rules, 88-91
MySQL Workbench, 91-96
database (see Database
connection)
inbound (see Inbound
connection)
table creation
insert data, 100
schema tab, 97
SELECT command, 101
SQL editor, 96-97
UserRegistration database,
98-99
users table, 101
web service, 78
Representational state
transfer (REST)
controller implementation,
117-120
delete existing user, 126-128
HTTP response status
codes, 43-44
new user creation, 124

Postman, 122

RESTful web resources, 42, 150
individual user, 123-124

S3 app, 143

Spring Boot application, 41-75
Swagger Ul page, 135-137

Route 53, 8

S, T

Simple Storage Service (S3)

access list-all-users page, 200
buckets page (see Buckets page
creation)

error document, 198-200

global service, 188

static website hosting
bucket website endpoint, 193
index.html, 192-193
properties tab, 192

storage category, 186

Spring Boot application

cloud application, 73
development framework, 42
elastic beanstalk
environment properties,
71-72
health application, 72
Hellospringboot-env
creation, 70
Java platform, 69
project creation, 67-68
severe health, 70-71
JAR app creation, 63-67

INDEX

logs, 74-75
overview, 41
REST (see Representational
state transfer (REST))
server port, 61-62
STS (see Spring Tool
Suite (STS))
Swagger, 56-61
system requirements, 44
UI Swagger dashboard, 74
UserRegistrationApp (see
UserRegistrationApp
project)
walk-through
annotations, 52
main method, 53
pom.xml file, 48-51
@RestController/ @
RequestMapping
annotations, 53
SpringApplication.run()
method, 51-53

Spring Tool Suite (STS), 26

console application, 55
HelloSpringBoot creation, 46
project structure, 48

wizard, 45

REST endpoint, 55

WAR and JAR files, 53-55
web dependency, 46, 47

Swagger Ul

API documentation page, 60
configuration class, 57-59
definition, 56

223

INDEX

Swagger UI (cont.)

front-end/back-end
components, 56
JSON output, 59
REST endpoints, 61
specification, 57
Springfox dependency, 57
UserRegistrationApp project,
126-128
documentation page,
135-136
endpoints and model
structure, 137
JSON Data, 139-141
list users, 138-139
user creation, 140
verification, 59

u,v

UserRegistrationApp project

application properties, 111-112
details, 104
domain implementation
(UserDTO), 112-114
elastic beanstalk
edit software
configuration, 134
environment information,
131-134
healthy application, 134-135
managed platform, 132
management console, 130

224

upload application code, 133
JAR application, 128-129
Lombok (see Lombok

dependencies)
maven dependencies, 105-108
pom.xml file, 105-108
project structure, 105
repository interface
(UserJpaRepository),
115-117
REST controller
(UserRegistration
Controller), 117-120
running/testing app

existing user, 126

individual user, 124-125

local system, 121

new user, 124-125

retrieve users (/api/users),

122-123

STS console, 122

Swagger Ul page, 126-128
service implementation,

116-117
spring initializr creation, 104
Swagger Ul page
documentation page,
135-136
endpoints and model
structure, 137

JSON Data, 139-141

list users, 138-139

user creation, 140

INDEX

W, X, Y, y4 environment process, 35-36
grouped categories, 36

health/events, 39
maven project, 32

WAR file
accessing application, 39
application code, 38
build success, 32-33
Elastic Beanstalk, 34

server platform, 37
target folder, 33

225

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: An Introduction to Amazon Web Services (AWS)
	Introduction to Amazon Web Services
	AWS Key Services
	Elastic Cloud Compute (EC2)
	Elastic Beanstalk
	Relational Database Service (RDS)
	Route 53

	Use Case: AWS Application Architecture
	Create a Free AWS Account for Developer
	Explore and Create an AWS Elastic Beanstalk Server
	Create a HelloWorld JSP Application, Build WAR with Maven, and Upload WAR to Elastic Beanstalk
	Create a HelloWorld JSP Application
	Package a WAR File Using Maven
	Upload WAR to Elastic Beanstalk

	Summary

	Chapter 2: Deploy a Spring Boot Application as a REST API in AWS
	Build a Spring Boot Application as a REST API
	Introduction to REST
	System Requirements
	Create Spring Boot Application Using Spring Tool Suite
	A Walk-Through
	pom.xml
	Write the Code
	@SpringBootApplication Annotation
	@RestController and @RequestMapping Annotations
	The main Method

	Run a Spring Boot Application in STS

	Add Swagger UI to a Spring Boot Application
	Introduction to Swagger 2
	Add Dependency in a Maven POM
	Configure Swagger 2 into a Project
	Configuration Verification
	Swagger UI

	Configure the Server Port for a Spring Boot Project
	Build a JAR for a Spring Boot Application
	Deploy a Spring Boot Application in AWS Elastic Beanstalk
	Test a Spring Boot Application as a REST API in the Cloud
	Explore Logs from Elastic Beanstalk
	Summary

	Chapter 3: Deploy MySQL as a Database in AWS with RDS
	Introduction to Amazon RDS (Amazon Relational Database Service)
	Create an Instance of the RDS Database in AWS
	Configure Amazon RDS
	Step 1. Configure Security for Inbound Connection Rules
	Step 2. Test an Amazon RDS Database Instance Connection with MySQL Workbench
	Connect MySQL Workbench to an Amazon RDS MySQL Database Instance

	Create a Table Inside an RDS Database Instance
	Summary

	Chapter 4: Deploy a Spring Boot Application Talking to MySQL in AWS
	Create Spring Boot UserRegistrationApp Talking to MySQL Database
	Maven Dependency in pom.xml
	Project Lombok
	Application Properties
	Domain Implementation: UserDTO Entity Class
	Repository Implementation: UserJpaRepository
	Service Implementation: UserService
	REST Controller Implementation: UserRegistrationController

	Run and Test UserRegistrationApp Locally
	Retrieve All Users: /api/users
	Retrieve an Individual User: /api/user/id/{id}
	Create a New User: /api/user/save
	Delete an Existing User: /api/user/delete/id/{id}
	Swagger UI: API Documentation

	Build a JAR for a Spring Boot Application
	Deploy the UserRegistrationApp Spring Boot Application in AWS Elastic Beanstalk
	Test Deployed REST API in AWS Using Swagger UI
	List All Users: /api/users
	Create New Users: /api/users

	Summary

	Chapter 5: Deploy a Full Stack Spring Boot React Application in AWS and S3
	Develop and Run React as a Front-End Application
	Introducing React as a Front-end Framework
	React Components
	React State
	Constructor
	A React Component’s Life Cycle

	Set up a Development Environment
	Cross-Origin Resource Sharing (CORS) Error
	Developing React Front-End Application with create-react-app
	Review the Project Structure
	Run a React App
	Add Twitter Bootstrap to Style the React App with CSS
	Add a Navbar
	Add react-router
	BrowserRouter Object to Enable Routing
	Switch and Route to Render Routes

	Initialize Axios for a REST API Call
	Data Service to Send an HTTP Request
	Create React Components Corresponding to Routes
	Home Component
	Add Users Component
	List All Users Component

	Build React Code as a Front-end Application for AWS
	Verify the AWS Elastic Beanstalk Environment Is Up
	Update BaseURL in a React App with an AWS Elastic Beanstalk Environment URL
	Build React Code for AWS Deployment

	Deploy a React Front-End to AWS S3: Hosting a Static Website
	Introduction to S3: Simple Storage Service in AWS
	Create a Bucket
	Verify the Successful Deployment of a React Front-end Application: Resolve a 404 Error

	Summary

	Appendix A: Install MySQL Workbench on Windows 10
	Step 1. Download Workbench
	Step 2. Install Workbench

	Appendix B: AWS Command-Line Interface (CLI)
	Step 1. Download and Install the AWS CLI on a Windows Operating System
	Step 2. Create an Access Key
	Configure AWS CLI
	Example Commands That Work with S3

	Index

