
Spring REST
Building Java Microservices and
Cloud Applications
—
Second Edition
—
Balaji Varanasi
Maxim Bartkov

Spring REST
Building Java Microservices

and Cloud Applications

Second Edition

Balaji Varanasi
Maxim Bartkov

Spring REST: Building Java Microservices and Cloud Applications

ISBN-13 (pbk): 978-1-4842-7476-7		 ISBN-13 (electronic): 978-1-4842-7477-4
https://doi.org/10.1007/978-1-4842-7477-4

Copyright © 2022 by Balaji Varanasi and Maxim Bartkov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Joel Holland on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484274767. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Balaji Varanasi
Salt Lake City, UT, USA

Maxim Bartkov
Kharkov, Ukraine

https://doi.org/10.1007/978-1-4842-7477-4

iii

Chapter 1: ��Introduction to REST�� 1

What Is REST?�� 1

Understanding Resources�� 3

Identifying Resources��� 3

URI Templates��� 4

Representation��� 5

HTTP Methods�� 6

Safety��� 6

Idempotency��� 7

GET��� 7

HEAD��� 9

DELETE��� 9

PUT��� 10

POST��� 12

PATCH��� 13

HTTP Status Codes��� 14

Richardson’s Maturity Model��� 16

Level Zero��� 17

Level One�� 17

Level Two�� 18

Level Three��� 18

Table of Contents

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

iv

Building a RESTful API�� 18

Summary��� 19

Chapter 2: ��Spring Web MVC Primer��� 21

Spring Overview��� 21

Dependency Injection��� 23

Aspect-Oriented Programming��� 23

Spring Web MVC Overview��� 24

Model View Controller Pattern�� 24

Spring Web MVC Architecture��� 25

Spring Web MVC Components�� 27

Summary��� 44

Chapter 3: ��RESTful Spring��� 45

Generating a Spring Boot Project��� 46

Installing a Build Tool�� 46

Generating a Project Using start.spring.io�� 48

Generating a Project Using STS�� 56

Generating a Project Using the CLI��� 62

Accessing REST Applications��� 63

Postman��� 64

RESTClient�� 65

Summary��� 66

Chapter 4: ��Beginning QuickPoll Application�� 67

Introducing QuickPoll��� 67

Designing QuickPoll��� 69

Resource Identification��� 69

Resource Representation��� 71

Endpoint Identification�� 74

Action Identification�� 75

QuickPoll Architecture�� 78

Table of Contents

v

Implementing QuickPoll��� 79

Domain Implementation��� 82

Repository Implementation�� 85

Embedded Database�� 88

API Implementation�� 88

Summary��� 101

Chapter 5: ��Error Handling�� 103

QuickPoll Error Handling�� 103

Error Responses��� 107

Input Field Validation�� 112

Externalizing Error Messages�� 121

Improving RestExceptionHandler��� 124

Summary��� 127

Chapter 6: ��Documenting REST Services�� 129

Swagger��� 130

Integrating Swagger�� 133

Swagger UI��� 135

Customizing Swagger�� 136

Configuring Controllers�� 140

Summary��� 145

Chapter 7: ��Versioning, Paging, and Sorting��� 147

Versioning�� 147

Versioning Approaches��� 148

Deprecating an API��� 150

QuickPoll Versioning��� 151

SwaggerConfig��� 154

Pagination�� 157

Page Number Pagination�� 157

Limit Offset Pagination��� 158

Cursor-Based Pagination�� 158

Table of Contents

vi

Time-Based Pagination�� 159

Pagination Data�� 159

QuickPoll Pagination��� 160

Changing Default Page Size��� 163

Sorting��� 165

Sort Ascending or Sort Descending�� 165

QuickPoll Sorting�� 166

Summary��� 167

Chapter 8: ��Security�� 169

Securing REST Services��� 169

Session-Based Security��� 170

HTTP Basic Authentication��� 171

Digest Authentication��� 172

Certificate-Based Security�� 174

XAuth�� 174

OAuth 2.0�� 176

Spring Security Overview�� 179

Securing QuickPoll��� 183

cURL��� 185

User Infrastructure Setup��� 185

UserDetailsService Implementation��� 189

Customizing Spring Security�� 191

Securing URI��� 192

Summary��� 197

Chapter 9: ��Clients and Testing��� 199

QuickPoll Java Client�� 199

RestTemplate��� 201

Getting Polls��� 202

Creating a Poll�� 205

PUT Method�� 206

Table of Contents

vii

DELETE Method�� 206

Handling Pagination��� 207

Handling Basic Authentication�� 209

Testing REST Services��� 211

Spring Test�� 211

Unit Testing REST Controllers��� 214

Integration Testing REST Controllers�� 220

Summary��� 222

Chapter 10: ��HATEOAS��� 223

HATEOAS�� 224

JSON Hypermedia Types�� 227

JSON Hypermedia Types�� 227

HAL��� 228

HATEOAS in QuickPoll�� 230

Summary��� 236

Index�� 237

Table of Contents

ix

About the Authors

Balaji Varanasi is a software development manager, author,

speaker, and technology entrepreneur. He has over 14 years

of experience designing and developing high-performance,

scalable Java and .NET mobile applications. He has worked

in the areas of security, web accessibility, search, and

enterprise portals. He has a master’s degree in computer

science from Utah State University and serves as adjunct

faculty at the University of Phoenix, teaching programming

and information system courses. He has authored Apress’s

Practical Spring LDAP and has coauthored Introducing

Maven. 

Maxim Bartkov is a staff engineer with more than seven

years of commercial experience in Java. Maxim specializes

in building architecture for high-load systems. He is skilled

in the development of distributed high-load systems,

microservice architecture, Spring Framework, and system

architecture. In his spare time, he writes articles for the Java

community.  

xi

About the Technical Reviewer

Rohan Walia is a senior software consultant with extensive

experience in client-server, web-based, and enterprise

application development. He is an Oracle Certified ADF

Implementation Specialist and a Sun Certified Java

programmer. Rohan is responsible for designing and

developing end-to-end applications consisting of various

cutting-edge frameworks and utilities. His areas of expertise

are Oracle ADF, Oracle WebCenter, Fusion, Spring,

Hibernate, and Java/J2EE. When not working, Rohan loves

to play tennis, hike, and travel. Rohan would like to thank

his wife, Deepika Walia, for using all her experience and

expertise to review this book.  

xiii

Acknowledgments

This book would not have been possible without the support of several people, and we

would like to take this opportunity to sincerely thank them.

Thanks to the amazing folks at Apress; without you, this book would not have seen

the light of day. Thanks to Mark Powers for being patient and keeping us focused.

Thanks to Steve Anglin for his constant support and the rest of the Apress team involved

in this project.

Huge thanks to our technical reviewer Rohan Walia for his efforts and attention to

detail. His valuable feedback has led to many improvements in the book.

Finally, we would like to thank our friends and family for their constant support and

encouragement.

xv

Introduction

Spring REST serves as a practical guide for designing and developing RESTful APIs

using the popular Spring Framework. This book begins with a brief introduction to

REST, HTTP, and web infrastructure. It then provides detailed coverage of several

Spring portfolio projects such as Spring Boot, Spring MVC, Spring Data JPA, and

Spring Security. The book walks through the process of designing and building a

REST application while taking a deeper look into design principles and best practices

for versioning, security, documentation, error handling, paging, and sorting. It also

discusses techniques for building clients that consume REST services. Finally, it covers

Spring MVC Test frameworks for creating unit and integration tests for REST API.

After reading the book, you will have learned

•	 About REST fundamentals and web infrastructure

•	 About Spring technologies such as Spring Boot and Spring Data JPA

•	 How to build REST applications with Spring technologies

•	 How to identify REST resources and design their representations

•	 Design principles for versioning REST services

•	 How to document REST services using Swagger

•	 Strategies for handling errors and communicating meaningful

messages

•	 Techniques for handling large datasets using pagination

•	 Securing REST services using “Basic Auth”

•	 How to build REST clients using RestTemplate

•	 How to test REST services using the Spring MVC Test framework

xvi

�How Is This Book Structured?
Chapter 1 starts with an overview of REST. We cover REST fundamentals and

abstractions such as resources and representations. We then discuss web infrastructure

such as URIs, HTTP methods, and HTTP response codes. We also cover Richardson’s

Maturity Model, which provides a classification of REST services.

Chapter 2 provides detailed coverage of Spring Web MVC. We begin with a

gentle introduction to the Spring Framework and cover its two important concepts—

dependency injection and aspect-oriented programming. Then we take a deeper look at

the different components that make up Spring Web MVC.

Chapter 3 introduces Spring Boot, a Spring project that simplifies the bootstrapping

of Spring applications. We then use Spring Boot to build a Hello World REST application.

Finally, we look at some tools that can be used to access REST applications.

Chapter 4 discusses the beginnings of a RESTful application named QuickPoll. We

analyze the requirements and design resources and their representations. Using Spring

MVC components, we implement a set of RESTful services.

Chapter 5 covers error handling in REST services. Well-designed, meaningful

error responses play an important role in the adoption of REST services. We design

a custom error response for QuickPoll and implement the design. We also add

validation capabilities to the inputs provided by users. Finally, we look at techniques for

externalizing the error messages to property files.

Chapter 6 begins with an overview of the Swagger specification and its associated

tools/frameworks. We then implement Swagger in QuickPoll to generate interactive

documentation. We also customize Swagger and Swagger UI to meet our application

requirements.

Chapter 7 covers the different strategies for versioning a REST API. We then look at

implementing versioning in QuickPoll using the URI versioning approach. We also review

the different approaches for dealing with large datasets using pagination and sorting.

Chapter 8 begins with a discussion of different strategies for securing REST services.

We provide a detailed treatment of OAuth2 and review its different components. We then

use the Spring Security framework to implement Basic Authentication in the QuickPoll

application.

Chapter 9 covers building REST clients and testing REST APIs. We use Spring’s

RestTemplate features to build a REST client that works with different versions of the

QuickPoll API. We then take a deeper look into the Spring MVC Test framework and

examine its core classes. Finally, we write unit and integration tests to test the REST API.

Introduction

xvii

Chapter 10 discusses the HATEOAS constraint that allows developers to build

flexible and loosely coupled REST services. It also covers the HAL hypermedia format.

We then modify the QuickPoll application such that the Poll representations are

generated following HATEOAS principles.

�Target Audience
Spring REST is intended for enterprise and web developers using Java and Spring who

want to build REST applications. The book requires a basic knowledge of Java, Spring,

and the Web but no prior exposure to REST.

�Downloading the Source Code
The source code for the examples in this book can be downloaded via the Download
Source Code button located at www.apress.com/9781484274767.

The downloaded source code contains a number of folders named ChapterX, in

which X represents the corresponding chapter number. Each ChapterX folder contains

two subfolders: a starter folder and a final folder. The starter folder houses a

QuickPoll project that you can use as a basis to follow along the solution described in

the corresponding chapter. Even though each chapter builds on the previous one, the

starter project allows you to skip around the book. For example, if you are interested

in learning about security, you can simply load the QuickPoll application under the

Chapter8\starter folder and follow the solution described in Chapter 8. As the name

suggests, the final folder contains the expected end state for that chapter.

Chapters 1 and 2 don’t have any associated code. Therefore, the corresponding

ChapterX folders for those chapters contain empty starter and final folders. In

Chapter 3, we build a Hello World application, so Chapter 3’s starter and final folders

contain the hello-rest application. Starting from Chapter 4, the starter and final

folders contain QuickPoll project source code.

�Contacting the Authors
We always welcome feedback from our readers. If you have any questions or suggestions

regarding the contents of this book, you can contact the authors at Balaji@inflinx.com

or Maxgalayoutop@gmail.com.

Introduction

http://www.apress.com/9781484274767

1
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_1

CHAPTER 1

Introduction to REST
In this chapter, we will learn the following:

•	 REST fundamentals

•	 REST resources and their representations

•	 HTTP methods and status codes

•	 Richardson’s Maturity Model

Today, the Web has become an integral part of our lives—from checking statuses

on Facebook to ordering products online to communicating via email. The success and

ubiquity of the Web have resulted in organizations applying the Web’s architectural

principles to building distributed applications. In this chapter, we will take a deep dive

into REST, an architectural style that formalizes these principles.

�What Is REST?
REST stands for REpresentational State Transfer and is an architectural style for

designing distributed network applications. Roy Fielding coined the term REST in his

PhD dissertation1 and proposed the following six constraints or principles as its basis:

•	 Client-server—Concerns should be separated between clients

and servers. This enables client and server components to evolve

independently and in turn allows the system to scale.

•	 Stateless—The communication between client and server should

be stateless. The server need not remember the state of the client.

Instead, clients must include all of the necessary information in the

request so that the server can understand and process it.

1 https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

https://doi.org/10.1007/978-1-4842-7477-4_1#DOI
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

2

•	 Layered system—Multiple hierarchical layers such as gateways,

firewalls, and proxies can exist between client and server. Layers can

be added, modified, reordered, or removed transparently to improve

scalability.

•	 Cache—Responses from the server must be declared as cacheable

or noncacheable. This would allow the client or its intermediary

components to cache responses and reuse them for later requests.

This reduces the load on the server and helps improve the

performance.

•	 Uniform Interface—All interactions between client, server, and

intermediary components are based on the uniformity of their

interfaces. This simplifies the overall architecture as components

can evolve independently as long as they implement the agreed-

on contract. The Uniform Interface constraint is further broken

down into four subconstraints: resource identification, resource

representations, self-descriptive messages, and Hypermedia as the

Engine of Application State, or HATEOAS. We will examine some of

these guiding principles in the later sections of this chapter.

•	 Code on demand—Clients can extend their functionality by

downloading and executing code on demand. Examples include

JavaScript scripts, Java applets, Silverlight, and so on. This is an

optional constraint.

Applications that adhere to these constraints are considered to be RESTful. As you

might have noticed, these constraints don’t dictate the actual technology to be used

for developing applications. Instead, adherence to these guidelines and best practices

would make an application scalable, visible, portable, reliable, and able to perform

better. In theory, it is possible for a RESTful application to be built using any networking

infrastructure or transport protocol. In practice, RESTful applications leverage features

and capabilities of the Web and use HTTP as the transport protocol.

The Uniform Interface constraint is a key feature that distinguishes REST

applications from other network-based applications. Uniform Interface in a REST

application is achieved through abstractions such as resources, representations,

URIs, and HTTP methods. In the next sections, we will look at these important REST

abstractions.

Chapter 1 Introduction to REST

3

�Understanding Resources
The key abstraction of information in REST is a resource.

—Roy Fielding

Fundamental to REST is the concept of resource. A resource is anything that can be

accessed or manipulated. Examples of resources include “videos,” “blog entries,” “user

profiles,” “images,” and even tangible things such as persons or devices. Resources

are typically related to other resources. For example, in an ecommerce application, a

customer can place an order for any number of products. In this scenario, the product

resources are related to the corresponding order resource. It is also possible for a

resource to be grouped into collections. Using the same ecommerce example, “orders” is

a collection of individual “order” resources.

�Identifying Resources
Before we can interact and use a resource, we must be able to identify it. The Web

provides the Uniform Resource Identifier, or URI, for uniquely identifying resources. The

syntax of a URI is

scheme:scheme-specific-part

The scheme and the scheme-specific-part are separated using a semicolon.

Examples of a scheme include http or ftp or mailto and are used to define the

semantics and interpretation of the rest of the URI. Take the example of the URI—

http://www.apress.com/9781484208427. The http portion of the example is the

scheme; it indicates that an HTTP scheme should be used for interpreting the rest of

the URI. The HTTP scheme, defined as part of RFC 7230,2 indicates that the resource

identified by our example URI is located on a machine with host name apress.com.

Table 1-1 shows examples of URIs and the different resources they represent.

2 http://tools.ietf.org/html/rfc7230.

Chapter 1 Introduction to REST

http://www.apress.com/9781484208427
http://tools.ietf.org/html/rfc7230

4

Even though a URI uniquely identifies a resource, it is possible for a resource to

have more than one URI. For example, Facebook can be accessed using URIs https://

www.facebook.com and https://www.fb.com. The term URI aliases is used to refer to

such URIs that identify the same resources. URI aliases provide flexibility and added

convenience such as having to type fewer characters to get to the resource.

�URI Templates
When working with REST and a REST API, there will be times where you need to

represent the structure of a URI rather than the URI itself. For example, in a blog

application, the URI http://blog.example.com/2014/posts would retrieve all the blog

posts created in the year 2014. Similarly, the URIs http://blog.example.com/2013/

posts, http://blog.example.com/2012/posts, and so forth would return blog

posts corresponding to the years 2013, 2012, and so on. In this scenario, it would be

convenient for a consuming client to know the URI structure http://blog.example.

com/year/posts that describes the range of URIs rather than individual URIs.

URI templates, defined in RFC 6570 (http://tools.ietf.org/html/rfc6570),

provide a standardized mechanism for describing URI structure. The standardized URI

template for this scenario could be

http://blog.example.com/{year}/posts

Table 1-1.  URI and Resource Description

URI Resource description

http://blog.example.com/posts Represents a collection of blog post resources.

http://blog.example.com/

posts/1

Represents a blog post resource with identifier “1”; such

resources are called singleton resources.

http://blog.example.com/

posts/1/comments

Represents a collection of comments associated with the

blog entry identified by “1”; collections such as these that

reside under a resource are referred to as subcollections.

http://blog.example.com/

posts/1/comments/245

Represents the comment resource identified by “245.”

Chapter 1 Introduction to REST

https://www.facebook.com
https://www.facebook.com
https://www.fb.com

5

The curly braces {} indicate that the year portion of the template is a variable, often

referred to as a path variable. Consuming clients can take this URI template as input,

substitute the year variable with the right value, and retrieve the corresponding year’s

blog posts. On the server side, URL templates allow the server code to parse and retrieve

the values of the variables or selected portions of URI easily.

�Representation
RESTful resources are abstract entities. The data and metadata that make a RESTful

resource need to be serialized into a representation before it gets sent to a client. This

representation can be viewed as a snapshot of a resource’s state at a given point in time.

Consider a database table in an ecommerce application that stores information about

all the available products. When an online shopper uses their browser to buy a product

and requests its details, the application would provide the product details as a web page

in HTML. Now, when a developer writing a native mobile application requests product

details, the ecommerce application might return those details in XML or JSON format. In

both scenarios, the clients didn’t interact with the actual resource—the database record-

holding product details. Instead, they dealt with its representation.

Note RE ST components interact with a resource by transferring its
representations back and forth. They never directly interact with the resource.

As noted in this product example, the same resource can have several

representations. These representations can range from text-based HTML, XML, and

JSON formats to binary formats such as PDFs, JPEGs, and MP4s. It is possible for the

client to request a particular representation, and this process is termed as content
negotiation. Here are the two possible content negotiation strategies:

•	 Postfixing the URI with the desired representation—In this strategy,

a client requesting product details in JSON format would use the URI

http://www.example.com/products/143.json. A different client

might use the URI http://www.example.com/products/143.xml to

get product details in XML format.

Chapter 1 Introduction to REST

6

•	 Using the Accept header—Clients can populate the HTTP Accept

header with the desired representation and send it along with the

request. The application handling the resource would use the Accept

header value to serialize the requested representation. The RFC 26163

provides a detailed set of rules for specifying one or more formats

and their priorities.

Note  JSON has become the de facto standard for REST services. All of the
examples in this book use JSON as the data format for requests and responses.

�HTTP Methods
The “Uniform Interface” constraint restricts the interactions between client and server

through a handful of standardized operations or verbs. On the Web, the HTTP standard4

provides eight HTTP methods that allow clients to interact and manipulate resources.

Some of the commonly used methods are GET, POST, PUT, and DELETE. Before we

delve deep into HTTP methods, let’s review their two important characteristics—safety

and idempotency.

Note T he HTTP specification uses the term method to denote HTTP actions such
as GET, PUT, and POST. However, the term HTTP verb is also used interchangeably.

�Safety
A HTTP method is said to be safe if it doesn’t cause any changes to the server state.

Consider methods such as GET or HEAD, which are used to retrieve information/

resources from the server. These requests are typically implemented as read-only

operations without causing any changes to the server’s state and, hence, considered safe.

3 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1.
4 https://www.ietf.org/rfc/rfc2616.txt.

Chapter 1 Introduction to REST

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
https://www.ietf.org/rfc/rfc2616.txt

7

Safe methods are used to retrieve resources. However, safety doesn’t mean that the

method must return the same value every time. For example, a GET request to retrieve

Google stock might result in a different value for each call. But as long as it didn’t alter

any state, it is still considered safe.

In real-world implementations, there may still be side effects with a safe operation.

Consider the implementation in which each request for stock prices gets logged in a

database. From a purist perspective, we are changing the state of the entire system.

However, from a practical standpoint, because these side effects were the sole

responsibility of the server implementation, the operation is still considered to be safe.

�Idempotency
An operation is considered to be idempotent if it produces the same server state whether

we apply it once or any number of times. HTTP methods such as GET, HEAD (which are

also safe), PUT, and DELETE are considered to be idempotent, guaranteeing that clients

can repeat a request and expect the same effect as making the request once. The second

and subsequent requests leave the resource state in exactly the same state as the first

request did.

Consider the scenario in which you are deleting an order in an ecommerce

application. On successful completion of the request, the order no longer exists on the

server. Hence, any future requests to delete that order would still result in the same

server state. By contrast, consider the scenario in which you are creating an order using a

POST request. On successful completion of the request, a new order gets created. If you

were to re-“POST” the same request, the server simply honors the request and creates a

new order. Because a repeated POST request can result in unforeseen side effects, POST

is not considered to be idempotent.

�GET
The GET method is used to retrieve a resource’s representation. For example, a GET on

the URI http://blog.example.com/posts/1 returns the representation of the blog post

identified by 1. By contrast, a GET on the URI http://blog.example.com/posts retrieves

a collection of blog posts. Because GET requests don’t modify server state, they are

considered to be safe and idempotent.

Chapter 1 Introduction to REST

8

A hypothetical GET request to http://blog.example.com/posts/1 and the

corresponding response are shown here.

GET /posts/1 HTTP/1.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.5

Connection: keep-alive

Host: blog.example.com

Content-Type: text/html; charset=UTF-8

Date: Sat, 10 Jan 2015 20:16:58 GMT

Server: Apache

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>First Post</title>

 </head>

 <body>

 <h3>Hello World!!</h3>

 </body>

</html>

In addition to the representation, the response to GET requests includes metadata

associated with the resource. This metadata is represented as a sequence of key value

pairs called HTTP headers. Content-Type and Server are examples of the headers that

you see in this response. Because the GET method is safe, responses to GET requests can

be cached.

The simplicity of the GET method is often abused, and it is used to perform

operations such as deleting or updating a resource’s representation. Such usage violates

standard HTTP semantics and is highly discouraged.

Chapter 1 Introduction to REST

9

�HEAD
On occasions, a client would like to check if a particular resource exists and doesn’t

really care about the actual representation. In another scenario, the client would like to

know if a newer version of the resource is available before it downloads it. In both cases,

a GET request could be “heavyweight” in terms of bandwidth and resources. Instead, a

HEAD method is more appropriate.

The HEAD method allows a client to only retrieve the metadata associated with a

resource. No resource representation gets sent to the client. This metadata represented

as HTTP headers will be identical to the information sent in response to a GET

request. The client uses this metadata to determine resource accessibility and recent

modifications. Here is a hypothetical HEAD request and the response.

HEAD /posts/1 HTTP/1.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.5

Connection: keep-alive

Host: blog.example.com

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

Date: Sat, 10 Jan 2015 20:16:58 GMT

Server: Apache

Like GET, the HEAD method is also safe and idempotent and responses can be

cached on the client.

�DELETE
The DELETE method, as the name suggests, requests a resource to be deleted. On

receiving the request, a server deletes the resource. For resources that might take a long

time to delete, the server typically sends a confirmation that it has received the request

and will work on it. Depending on the service implementation, the resource may or may

not be physically deleted.

Chapter 1 Introduction to REST

10

On successful deletion, future GET requests on that resource would yield a

“Resource Not Found” error via HTTP status code 404. We will be covering status codes

in just a minute.

In this example, the client requests a post identified by 1 to be deleted. On

completion, the server could return a status code 200 (OK) or 204 (No Content),

indicating that the request was successfully processed.

Delete /posts/1 HTTP/1.1

Content-Length: 0

Content-Type: application/json

Host: blog.example.com

Similarly, in this example, all comments associated with post #2 get deleted.

Delete /posts/2/comments HTTP/1.1

Content-Length: 0

Content-Type: application/json

Host: blog.example.com

Because DELETE method modifies the state of the system, it is not considered to

be safe. However, the DELETE method is considered idempotent; subsequent DELETE

requests would still leave the resource and the system in the same state.

�PUT
The PUT method allows a client to modify a resource state. A client modifies the state of

a resource and sends the updated representation to the server using a PUT method. On

receiving the request, the server replaces the resource’s state with the new state.

In this example, we are sending a PUT request to update a post identified by 1. The

request contains an updated blog post’s body along with all of the other fields that make

up the blog post. The server, on successful processing, would return a status code 200,

indicating that the request was processed successfully.

PUT /posts/1 HTTP/1.1

Accept: */*

Content-Type: application/json

Chapter 1 Introduction to REST

11

Content-Length: 65

Host: blog.example.com

BODY

{"title": "First Post","body": "Updated Hello World!!"}

Consider the case in which we just wanted to update the blog post title. The

HTTP semantics dictate that as part of the PUT request, we send the full resource

representation, which includes the updated title as well as other attributes such as blog

post body and so on that didn’t change. However, this approach would require that

the client has the complete resource representation, which might not be possible if the

resource is very big or has a lot of relationships. Additionally, this would require higher

bandwidth for data transfers. So, for practical reasons, it is acceptable to design your API

that tends to accept partial representations as part of a PUT request.

Note T o support partial updates, a new method called PATCH has been added
as part of RFC 5789 (http://www.ietf.org/rfc/rfc5789.txt). We will be
looking at the PATCH method later in this chapter.

Clients can also use PUT method to create a new resource. However, it will only be

possible when the client knows the URI of the new resource. In a blogging application,

for example, a client can upload an image associated with a blog post. In that scenario,

the client decides the URL for the image as shown in this example:

PUT http://blog.example.com/posts/1/images/author.jpg

PUT is not a safe operation, as it changes the system state. However, it is considered

idempotent, as putting the same resource once or more than once would produce the

same result.

Chapter 1 Introduction to REST

http://www.ietf.org/rfc/rfc5789.txt

12

�POST
The POST method is used to create resources. Typically, it is used to create resources

under subcollections—resource collections that exist under a parent resource. For

example, the POST method can be used to create a new blog entry in a blogging

application. Here, “posts” is a subcollection of blog post resources that reside under a

blog parent resource.

POST /posts HTTP/1.1

Accept: */*

Content-Type: application/json

Content-Length: 63

Host: blog.example.com

BODY

{"title": "Second Post","body": "Another Blog Post."}

Content-Type: application/json

Location: posts/12345

Server: Apache

Unlike PUT, a POST request doesn’t need to know the URI of the resource. The

server is responsible for assigning an ID to the resource and deciding the URI where

the resource is going to reside. In the previous example, the blogging application will

process the POST request and create a new resource under http://blog.example.com/

posts/12345, where “12345” is the server generated id. The Location header in the

response contains the URL of the newly created resource.

The POST method is very flexible and is often used when no other HTTP method

seems appropriate. Consider the scenario in which you would like to generate a

thumbnail for a JPEG or PNG image. Here we ask the server to perform an action on the

image binary data that we are submitting. HTTP methods such as GET and PUT don’t

really fit here, as we are dealing with an RPC-style operation. Such scenarios are handled

using the POST method.

Chapter 1 Introduction to REST

13

Note T he term “controller resource” has been used to describe executable
resources that take inputs, perform some action, and return outputs. Although
these types of resources don’t fit the true REST resource definition, they are very
convenient to expose complex operations.

The POST method is not considered safe, as it changes system state. Also, multiple

POST invocations would result in multiple resources being generated, making it

nonidempotent.

�PATCH
As we discussed earlier, the HTTP specification requires the client to send the entire

resource representation as part of a PUT request. The PATCH method proposed as

part of RFC 5789 (http://tools.ietf.org/html/rfc5789) is used to perform partial

resource updates. It is neither safe nor idempotent. Here is an example that uses PATCH

method to update a blog post title.

PATCH /posts/1 HTTP/1.1

Accept: */*

Content-Type: application/json

Content-Length: 59

Host: blog.example.com

BODY

{"replace": "title","value": "New Awesome title"}

The request body contains a description of changes that need to be performed on

the resource. In the example, the request body uses the "replace" command to indicate

that the value of the "title" field needs to be replaced.

There is no standardized format for describing the changes to the server as part of a

PATCH request. A different implementation might use the following format to describe

the same change:

{"change" : "name", "from" : "Post Title", "to" : "New Awesome Title"}

Chapter 1 Introduction to REST

http://tools.ietf.org/html/rfc5789

14

Currently, there is a work in progress (http://tools.ietf.org/html/draft-ietf-

appsawg-json-patch) for defining a PATCH format for JSON. This lack of standard has

resulted in implementations that describe change sets in a simpler format, as shown

here:

{"name" : "New Awesome Title"}

CRUD AND HTTP VERBS

Data-driven applications typically use the term CRUD to indicate four basic persistence

functions—Create, Read, Update, and Delete. Some developers building REST applications

have mistakenly associated the four popular HTTP verbs GET, POST, PUT, and DELETE with

CRUD semantics. The typical association often seen is

Create -> POST

Update -> PUT

Read -> GET

Delete -> DELETE

These correlations are true for Read and Delete operations. However, it is not as

straightforward for Create/Update and POST/PUT. As you have seen earlier in this chapter, PUT

can be used to create a resource as long as idempotency constraint is met. In the same way,

it was never considered non-RESTful if POST is used for update (http://roy.gbiv.com/

untangled/2009/it-is-okay-to-use-post). It is also possible for a client to use PATCH

for updating a resource.

Therefore, it is important for API designers to use the right verbs for a given operation than

simply using a 1-1 mapping with CRUD.

�HTTP Status Codes
The HTTP status codes allow a server to communicate the results of processing a client’s

request. These status codes are grouped into the following categories:

•	 Informational codes—Status codes indicating that the server has

received the request but hasn’t completed processing it. These

intermediate response codes are in the 100 series.

Chapter 1 Introduction to REST

http://tools.ietf.org/html/draft-ietf-appsawg-json-patch
http://tools.ietf.org/html/draft-ietf-appsawg-json-patch
http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post

15

•	 Success codes—Status codes indicating that the request has been

successfully received and processed. These codes are in the

200 series.

•	 Redirection codes—Status codes indicating that the request has

been processed but the client must perform an additional action to

complete the request. These actions typically involve redirecting

to a different location to get the resource. These codes are in the

300 series.

•	 Client error codes—Status codes indicating that there was an error or

a problem with client’s request. These codes are in the 400 series.

•	 Server error codes—Status codes indicating that there was an error

on the server while processing the client’s request. These codes are in

the 500 series.

The HTTP status codes play an important role in REST API design as meaningful

codes help communicate the right status, enabling the client to react appropriately.

Table 1-2 shows some of the important status codes into which you typically run.

Table 1-2.  HTTP status codes and their descriptions

Status code Description

100 (Continue) Indicates that the server has received the first part of the request and

the rest of the request should be sent.

200 (OK) Indicates that all went well with the request.

201 (Created) Indicates that request was completed and a new resource got created.

202 (Accepted) Indicates that request has been accepted but is still being processed.

204 (No Content) Indicates that the server has completed the request and has no entity

body to send to the client.

301 (Moved Permanently) Indicates that the requested resource has been moved to a new

location and a new URI needs to be used to access the resource.

400 (Bad Request) Indicates that the request is malformed and the server is not able to

understand the request.

(continued)

Chapter 1 Introduction to REST

16

Status code Description

401 (Unauthorized) Indicates that the client needs to authenticate before accessing the

resource. If the request already contains client’s credentials, then a 401

indicates invalid credentials (e.g., bad password).

403 (Forbidden) Indicates that the server understood the request but is refusing to

fulfill it. This could be because the resource is being accessed from a

blacklisted IP address or outside the approved time window.

404 (Not Found) Indicates that the resource at the requested URI doesn’t exist.

406 (Not Acceptable) Indicates that the server is capable of processing the request; however,

the generated response may not be acceptable to the client. This

happens when the client becomes too picky with its accept headers.

500 (Internal Server Error) Indicates that there was an error on the server while processing the

request and that the request can’t be completed.

503 (Service Unavailable) Indicates that the request can’t be completed, as the server is

overloaded or going through scheduled maintenance.

Table 1-2.  (continued)

�Richardson’s Maturity Model
The Richardson’s Maturity Model (RMM), developed by Leonard Richardson, classifies

REST-based web services on how well they adhere to REST principles. Figure 1-1 shows

the four levels of this classification.

Chapter 1 Introduction to REST

17

RMM can be valuable in understanding the different styles of web service and their

designs, benefits, and trade-offs.

�Level Zero
This is the most rudimentary maturity level for a service. Services in this level use HTTP

as the transport mechanism and perform remote procedure calls on a single URI.

Typically, POST or GET HTTP methods are employed for service calls. SOAP- and

XML-RPC-based web services fall under this level.

�Level One
The next level adheres to the REST principles more closely and introduces multiple URIs,

one per resource. Complex functionality of a large service endpoint is broken down into

multiple resources. However, services in this layer use one HTTP verb, typically POST, to

perform all of the operations.

Figure 1-1.  RMM levels

Chapter 1 Introduction to REST

18

�Level Two
Services in this level leverage HTTP protocol and make the right use of HTTP verbs and

status codes available in the protocol. Web services implementing CRUD operations are

good examples of level two services.

�Level Three
This is the most mature level for a service and is built around the notion of Hypermedia

as the Engine of Application State, or HATEOAS. Services in this level allow

discoverability by providing responses that contain links to other related resources and

controls that tell the client what to do next.

�Building a RESTful API
Designing and implementing a beautiful RESTful API is no less than an art. It takes time,

effort, and several iterations. A well-designed RESTful API allows your end users to

consume the API easily and makes its adoption easier. At a high level, here are the steps

involved in building a RESTful API:

	 1.	 Identify resources—Central to REST are resources. We start

modeling different resources that are of interest to our consumers.

Often, these resources can be the application’s domain or entities.

However, a one-to-one mapping is not always required.

	 2.	 Identify endpoints—The next step is to design URIs that map

resources to endpoints. In Chapter 4, we will look at best practices

for designing and naming endpoints.

	 3.	 Identify actions—Identify the HTTP methods that can be used to

perform operations on the resources.

	 4.	 Identify responses—Identify the supported resource

representation for the request and response along with the right

status codes to be returned.

In the rest of the book, we will look at best practices for designing a RESTful API and

implementing it using Spring technologies.

Chapter 1 Introduction to REST

19

�Summary
REST has become the de facto standard for building services today. In this chapter, we

covered the fundamentals of REST and abstractions such as resources, representations,

URIs, and HTTP methods that make up REST’s Uniform Interface. We also looked at

RMM, which provides a classification of REST services.

In the next chapter, we will take a deep dive into Spring and its related technologies

that simplify REST service development.

Chapter 1 Introduction to REST

21
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_2

CHAPTER 2

Spring Web MVC Primer
In this chapter, we will discuss the following:

•	 Spring and its features

•	 The Model View Controller pattern

•	 Spring Web MVC and its components

The Java ecosystem is filled with frameworks such as Jersey and RESTEasy, which

allow you to develop REST applications. Spring Web MVC is one such popular web

framework that simplifies web and REST application development. We begin this

chapter with an overview of the Spring Framework and take a deep dive into Spring Web

MVC and its components.

Note  This book doesn’t give a comprehensive overview of Spring and Spring
Web MVC. Refer to Pro Spring and Pro Spring MVC and WebFlux (both published by
Apress) for detailed treatment of these concepts.

�Spring Overview
The Spring Framework has become the de facto standard for building Java/Java EE-

based enterprise applications. Originally written by Rod Johnson in 2002, the Spring

Framework is one of the suites of projects owned and maintained by Pivotal Software

Inc. (http://spring.io). Among many other things, the Spring Framework provides a

dependency injection model1 that reduces plumbing code for application development,

supports aspect-oriented programming (AOP) for implementing crosscutting concerns,

1 http://martinfowler.com/articles/injection.html.

https://doi.org/10.1007/978-1-4842-7477-4_2#DOI
http://spring.io
http://martinfowler.com/articles/injection.html

22

and makes it easy to integrate with other frameworks and technologies. The Spring

Framework is made up of different modules that offer services such as data access,

instrumentation, messaging, testing, and web integration. The different Spring

Framework modules and their groupings are shown in Figure 2-1.

As a developer, you are not forced to use everything that the Spring Framework has

to offer. The modularity of the Spring Framework allows you to pick and choose the

modules based on your application needs. In this book, we will be focusing on the web

module for developing REST services. Additionally, we will be using a few other Spring

portfolio projects such as Spring Data, Spring Security, and Spring Boot. These projects

are built on top of the infrastructure provided by the Spring Framework modules and are

intended to simplify data access, authentication/authorization, and Spring application

creation.

Developing Spring-based applications requires a thorough understanding of two

core concepts—dependency injection and aspect-oriented programming.

Figure 2-1.  Spring Framework modules

Chapter 2 Spring Web MVC Primer

23

�Dependency Injection
At the heart of the Spring Framework lies dependency injection (DI). As the name

suggests, dependency injection allows dependencies to be injected into components

that need them. This relieves those components from having to create or locate their

dependencies, allowing them to be loosely coupled.

To better understand DI, consider the scenario of purchasing a product in an online

retail store. Completing a purchase is typically implemented using a component such

as an OrderService. The OrderService itself would interact with an OrderRepository

that would create order details in a database and a NotificationComponent that would

send out the order confirmation to the customer. In a traditional implementation, the

OrderService creates (typically in its constructor) instances of OrderRepository and

NotificationComponent and uses them. Even though there is nothing wrong with this

approach, it can lead to hard-to-maintain, hard-to-test, and highly coupled code.

DI, by contrast, allows us to take a different approach when dealing with

dependencies. With DI, you let an external process such as Spring create dependencies,

manage dependencies, and inject those dependencies into the objects that need them.

So, with DI, Spring would create the OrderRepository and NotificationComponent and

then hand over those dependencies to the OrderService. This decouples OrderService

from having to deal with OrderRepository/NotificationComponent creation, making it

easier to test. It allows each component to evolve independently, making development

and maintenance easier. Also, it makes it easier to swap these dependencies with

different implementations or use these components in a different context.

�Aspect-Oriented Programming
Aspect-oriented programming (AOP) is a programming model that implements

crosscutting logic or concerns. Logging, transactions, metrics, and security are some

examples of concerns that span (crosscut) different parts of an application. These

concerns don't deal with business logic and are often duplicated across the application.

AOP provides a standardized mechanism called an aspect for encapsulating such

concerns in a single location. The aspects are then weaved into other objects so that the

crosscutting logic is automatically applied across the entire application.

Spring provides a pure Java-based AOP implementation through its Spring AOP

module. Spring AOP does not require any special compilation nor changes to the class

loader hierarchy. Instead, Spring AOP uses proxies for weaving aspects into Spring beans

Chapter 2 Spring Web MVC Primer

24

at runtime. Figure 2-2 provides a representation of this behavior. When a method on the

target bean gets called, the proxy intercepts the call. It then applies the aspect logic and

invokes the target bean method.

Spring provides two-proxy implementations—JDK dynamic proxy and CGLIB proxy.

If the target bean implements an interface, Spring will use JDK dynamic proxy to create

the AOP proxy. If the class doesn't implement an interface, Spring uses CGLIB to create a

proxy.

You can read more about JDK dynamic proxy in the official documentation:

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html

�Spring Web MVC Overview
Spring Web MVC, part of the Spring Framework’s web module, is a popular technology

for building web-based applications. It is based on the model-view-controller

architecture and provides a rich set of annotations and components. Over the years, the

framework has evolved; it currently provides a rich set of configuration annotations and

features such as flexible view resolution and powerful data binding.

�Model View Controller Pattern
The Model View Controller, or MVC, is an architectural pattern for building decoupled

web applications. This pattern decomposes the UI layer into the following three

components:

Model—The model represents data or state. In a web-based

banking application, information representing accounts,

transactions, and statements are examples of the model.

Figure 2-2.  Spring AOP proxy

Chapter 2 Spring Web MVC Primer

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html

25

View—Provides a visual representation of the model. This is what

the user interacts with by providing inputs and viewing the output.

In our banking application, web pages showing accounts and

transactions are examples of views.

Controller—The controller is responsible for handling user actions

such as button clicks. It then interacts with services or repositories

to prepare the model and hands the prepared model over to an

appropriate view.

Each component has specific responsibility. The interaction between them is shown

in Figure 2-3. The interaction begins with the Controller preparing the model and

selecting an appropriate view to be rendered. The View uses the data from the model for

rendering. Further interactions with the View are sent to the Controller, which starts the

process all over again.

�Spring Web MVC Architecture
Spring’s Web MVC implementation revolves around the DispatcherServlet—an

implementation of the FrontController Pattern2 that acts as an entry point for handling

requests. Spring Web MVC’s architecture is shown in Figure 2-4.

2 http://www.oracle.com/technetwork/java/frontcontroller-135648.html.

Figure 2-3.  Model View Controller interaction

Chapter 2 Spring Web MVC Primer

http://www.oracle.com/technetwork/java/frontcontroller-135648.html

26

The different components in Figure 2-4 and their interactions include the following:

	 1.	 The interaction begins with the DispatcherServlet receiving the

request from the client.

	 2.	 DispatcherServlet queries one or more HandlerMapping to figure

out a Handler that can service the request. A Handler is a generic

way of addressing a Controller and other HTTP-based endpoints

that Spring Web MVC supports.

	 3.	 The HandlerMapping component uses the request

path to determine the right Handler and passes it to the

DispatcherServlet. The HandlerMapping also determines a list

of Interceptors that need to get executed before (Pre-) and after

(Post-) Handler execution.

	 4.	 The DispatcherServlet then executes the Pre-Process Interceptors

if any are appropriate and passes the control to the Handler.

	 5.	 The Handler interacts with any Service(s) needed and prepares

the model.

Figure 2-4.  Spring Web MVC's architecture

Chapter 2 Spring Web MVC Primer

27

	 6.	 The Handler also determines the name of the view that needs to

get rendered in the output and sends it to DispatcherServlet. The

Post-Process Interceptors then get executed.

	 7.	 This is followed by the DispatcherServlet passing the logical view

name to a ViewResolver, which determines and passes the actual

View implementation.

	 8.	 The DispatcherServlet then passes the control and model to the

View, which generates response. This ViewResolver and View

abstraction allow the DispatcherServlet to be decoupled from a

particular View implementation.

	 9.	 The DispatcherServlet returns the generated response over

to the client.

�Spring Web MVC Components
In the previous section, you were introduced to Spring Web MVC components such as

HandlerMapping and ViewResolver. In this section, we will take a deeper look at those as

well as additional Spring Web MVC components.

Note I n this book, we will be using Java configuration for creating Spring beans.
Contrary to XML-based configuration, Java configuration provides compile-time
safety, flexibility, and added power/control.

�Controller

Controllers in Spring Web MVC are declared using the stereotype org.

springframework.stereotype.Controller. A stereotype in Spring designates roles or

responsibilities of a class or an interface. Listing 2-1 shows a basic controller.

Chapter 2 Spring Web MVC Primer

28

Listing 2-1.  HomeController Implementation

@Controller

public class HomeController {

 @GetMapping("/home.html")

 public String showHomePage() {

 return "home";

 }

}

The @Controller annotation designates the HomeController class as a MVC

controller. The @GetMapping is a composed annotation that acts as a shortcut for @

RequestMapping(method = RequestMethod.GET). @GetMapping annotation maps

web requests to handler classes and handler methods. In this case, the @GetMapping

indicates that when a request for home.html is made, the showHomePage method should

get executed. The showHomePage method has a tiny implementation and simply returns

the logical view name home. This controller did not prepare any model in this example.

�Model

Spring provides the org.springframework.ui.Model interface that serves as holder for

model attributes. Listing 2-2 shows the Model interface with the available methods. As

the names suggest, the addAttribute and addAttributes methods can be used to add

attributes to the model object.

Listing 2-2.  Model Interface

public interface Model {

 Model addAttribute(String attributeName, Object attributeValue);

 Model addAttribute(Object attributeValue);

 Model addAllAttributes(Collection<?> attributeValues);

 Model addAllAttributes(Map<String, ?> attributes);

 Model mergeAttributes(Map<String, ?> attributes);

Chapter 2 Spring Web MVC Primer

29

 boolean containsAttribute(String attributeName);

 Map<String, Object> asMap();

 Object getAttribute(String attributeName);

}

The easiest way for a controller to work with a model object is by declaring it as

a method parameter. Listing 2-3 shows the showHomePage method with the Model

parameter. In the method implementation, we are adding the currentDate attribute to

the model object.

Listing 2-3.  showHomePage with Model Attribute

@GetMapping("/home.html")

public String showHomePage(Model model) {

 model.addAttribute("currentDate", new Date());

 return "home";

}

The Spring Framework strives to decouple our applications from the framework’s

classes. So, a popular approach for working with model objects is to use a java.util.

Map instance as shown in Listing 2-4. Spring would use the passed-in Map parameter

instance to enrich the model that gets exposed to the view.

Listing 2-4.  showHomePage with Map Attribute

@GetMapping("/home.html")

public String showHomePage(Map model) {

 model.put("currentDate", new Date());

 return "home";

}

�View

Spring Web MVC supports a variety of view technologies such as JSP, Velocity,

FreeMarker, and XSLT. Spring Web MVC uses the org.springframework.web.servlet.

View interface to accomplish this. The View interface has two methods, as shown in

Listing 2-5.

Chapter 2 Spring Web MVC Primer

30

Listing 2-5.  View Interface API

public interface View

{

 String getContentType();

 �void render(Map<String, ?> model, HttpServletRequest request,

HttpServletResponse response) throws Exception;

}

Concrete implementations of the View interface are responsible for rendering the

response. This is accomplished by overriding the render method. The getContentType

method returns the generated view's content type. Table 2-1 shows important View

implementations that Spring Web MVC provides out of the box. You will notice that all

of these implementations reside inside the org.springframework.web.servlet.view

package.

Table 2-1.  Spring Web MVC View Implementations

Class name Description

org.springframework.web.servlet.view.

json.MappingJackson2JsonView

View implementation that encodes model

attributes and returns JSON

org.springframework.web.servlet.view.

xslt.XsltView

View implementation that performs XSLT

transformation and returns the response

org.springframework.web.servlet.view.

InternalResourceView

View implementation that delegates the request

to a JSP page inside the web application

org.springframework.web.servlet.view.

tiles2.TilesView

View implementation that uses Apache Tiles

configuration for Tile definition and rendering

org.springframework.web.servlet.view.

JstlView

Specialized implementation of

InternalResourceView that supports JSP

pages using JSTL

org.springframework.web.servlet.view.

RedirectView

View implementation that redirects to a different

(absolute or relative) URL

Chapter 2 Spring Web MVC Primer

31

Listing 2-6 shows the reimplementation of the HomeController that we looked at

earlier. Here we are creating an instance of JstlView and setting the JSP page that we

need to be rendered.

Listing 2-6.  HomeController View Implementation

@Controller

public class HomeController {

 @RequestMapping("/home.html")

 public View showHomePage() {

 JstlView view = new JstlView();

 view.setUrl("/WEB-INF/pages/home.jsp");

 return view;

 }

}

Controller implementations typically don't deal with view instances. Instead, they

return logical view names, as shown in Listing 2-1, and let view resolvers determine

and create view instances. This decouples the controllers from tying to a specific view

implementation and makes it easy to swap view implementations. Also, the controllers

no longer need to know intricacies such as the location of the views.

�@RequestParam

The @RequestParam annotation is used to bind Servlet request parameters to handler/

controller method parameters. The request parameter values are automatically

converted to the specified method parameter type using type conversion. Listing 2-7

shows two usages of @RequestParam. In the first usage, Spring looks for a request

parameter named query and maps its value to the method parameter query. In the

second usage, Spring looks for a request parameter named page, converts its value to an

integer, and maps it to the pageNumber method parameter.

Chapter 2 Spring Web MVC Primer

32

Listing 2-7.  RequestParam Usage

@GetMapping("/search.html")

public String search(@RequestParam String query, @RequestParam("page") int

pageNumber) {

 model.put("currentDate", new Date());

 return "home";

}

When a method parameter is annotated using @RequestParam, the specified request

parameter must be available in the client request. If the parameter is missing, Spring will

throw a MissingServletRequestParameterException exception. One way to address

this is to set the required attribute to false, as shown in Listing 2-8. The other option is

to use the defaultValue attribute to specify a default value.

Listing 2-8.  Making a Request Parameter Not Required

@GetMapping("/search.html")

public String search(@RequestParam String query,

@RequestParam(value="page", required=false) int pageNumber,

@RequestParam(value="size", defaultValue="10") int pageSize) {

 model.put("currentDate", new Date());

 return "home";

}

�@RequestMapping

As we learned in the “Controller” section, the @RequestMapping annotation is used to

map a web request to a handler class or handler method. @RequestMapping provides

several attributes that can be used to narrow down these mappings. Table 2-2 shows the

different elements along with their descriptions.

Chapter 2 Spring Web MVC Primer

33

The default HTTP method mapped by @RequestMapping is GET. This behavior can

be changed using the method element shown in Listing 2-9. Spring invokes the saveUser

method only when a POST operation is performed. A GET request on saveUser will

result in an exception thrown. Spring provides a handy RequestMethod enumeration

with the list of HTTP methods available.

Listing 2-9.  POST Method Example

@RequestMapping(value="/saveuser.html", method=RequestMethod.POST)

public String saveUser(@RequestParam String username, @RequestParam String

password) {

 // Save User logic

 return "success";

}

�@RequestMapping Shortcut Annotations

You can use “shortcut annotation” for @RequestMapping.

It looks more readable because you can use “shortcut annotation” instead of

@RequestMapping.

Table 2-2.  RequestMapping Elements

Element name Description

Method Restricts a mapping to a specific HTTP method such as GET, POST, HEAD,

OPTIONS, PUT, PATCH, DELETE, TRACE

Produces Narrows mapping to media type that is produced by the method

Consumes Narrows mapping to media type that the method consumes

Headers Narrows mapping to the headers that should be present

Name Allows you to assign a name to the mapping

Params Restricts a mapping to the supplied parameter name and value

Value Narrowing path for a specific handler method (if don’t have any elements,

by default value is the main element)

Path Narrowing path for a specific handler method (alias for value)

Chapter 2 Spring Web MVC Primer

34

All shortcut annotations inherit all elements from @RequestMapping, without

method, because the method is already in the title of the annotation.

For example, @GetMapping is exactly the same as @RequestMapping(method =

RequestMethod.GET).

The produces element indicates the media type, such as JSON or XML or HTML,

produced by the mapped method. The produces element can take a single media type

or multiple media types as its value. Listing 2-10 shows the search method with the

produces element added. The MediaType.TEXT_HTML value indicates that when a GET

request is performed on search.html, the method returns an HTML response.

Listing 2-10.  Produces Element Example

@GetMapping(value="/search.html", produces="MediaType.TEXT_HTML")

public String search(@RequestParam String query,

@RequestParam(value="page", required=false) int pageNumber) {

 model.put("currentDate", new Date());

 return "home";

}

It is possible for the client to perform a GET request on /search.html but send an

Accept header with value application/JSON. In that scenario, Spring will not invoke

the search method. Instead, it will return a 404 error. The produces element provides

a convenient way to restrict mappings to content types that the controller can serve.

In the same fashion, the consumes element is used to indicate the media type that the

annotated method consumes.

Table 2-3.  Shortcut Annotations for @RequestMapping

Annotation Replacement

@GetMapping @RequestMapping(method = RequestMethod.GET)

@PostMapping @RequestMapping(method = RequestMethod.POST)

@PutMapping @RequestMapping(method = RequestMethod.PUT)

@DeleteMapping @RequestMapping(method = RequestMethod.DELETE)

@PatchMapping @RequestMapping(method = RequestMethod.PATCH)

Chapter 2 Spring Web MVC Primer

35

ACCEPT AND CONTENT-TYPE HEADER

As discussed in Chapter 1, REST resources can have multiple representations. REST clients

typically use the Accept and Content-Type headers to work with these representations.

REST clients use the Accept header to indicate the representations that they accept. The

HTTP specification allows a client to send a prioritized list of different media types that it will

accept as responses. On receiving the request, the server will send the representation with the

highest priority. To understand this, consider the default Accept header for Firefox browser:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

The q parameter, also known as relative quality parameter, indicates the degree of preference

and has values ranging from 0 to 1. From the string, we can infer that the HTML and XHTML

will have a priority of 1 because they don't have an associated q value. The XML media type

has priority 0.9, and the rest of the representations have a priority of 0.8. On receiving this

request, the server would try to send an HTML/XHTML representation because it has the

highest priority.

In a similar fashion, REST clients use the Content-Type header to indicate the media type

of the request being sent to the server. This allows the server to properly interpret the request

and parse the contents correctly. If the server is unable to parse the content, it will send a 415

Unsupported Media Type error status code.

Spring Web MVC allows flexible signatures for methods annotated with

@RequestMapping. This includes variable method parameters and method return types.

Table 2-4 lists the important arguments allowed. For a detailed list of allowed arguments,

refer to Spring's Javadocs at http://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/web/bind/annotation/RequestMapping.html.

Chapter 2 Spring Web MVC Primer

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html

36

The different return types supported in methods annotated with @RequestMapping

are shown in Table 2-5.

Table 2-4.  Method Arguments and Descriptions

Method argument Description

HttpServletRequest/

HttpServletResponse

HTTP Servlet request and response objects. Allows raw access to

client’s data, such as request parameters and headers.

HttpSession Instance representing a user’s HTTP session.

Command object A POJO or model object that Spring populates/binds with the

user-submitted data. The command object can be annotated with

@ModelAttribute.

BindingResult Instance representing a command object’s validation and binding.

This parameter must immediately precede the command object.

HttpEntity<?> Instance representing an HTTP request. Each HttpEntity is

composed of request body and a set of headers.

Principal A java.security.Principal instance that represents the

authenticated user.

Table 2-5.  Return Types and Descriptions

Return type Description

String Represents the logical view name. Registered view resolvers are employed to

resolve the physical view, and a response is generated.

View Instance representing a view. In this case, no view resolution is performed and

the view object is responsible for generating the response. Examples include

JstlView, VelocityView, RedirectView, and so on.

HttpEntity<?> Instance representing an HTTP response. Each HttpEntity is composed of

response body and a set of headers.

HttpHeaders Instance capturing the headers to be returned. Response will have an empty body.

Pojo Java object that is considered to be a model attribute. A specialized

RequestToViewNameTranslator is used to determine the appropriate

logical view name.

Chapter 2 Spring Web MVC Primer

37

�Path Variables

The @RequestMapping annotation supports dynamic URIs via URI templates. As

discussed in Chapter 1, URI templates are URIs with placeholders or variables. The

@PathVariable annotation allows you to access and use these placeholders via method

parameters. Listing 2-11 gives an example of @PathVariable. In this scenario, the

getUser method is designed to serve user information associated with the path variable

{username}. The client would perform a GET on the URL /users/jdoe to retrieve user

information associated with username jdoe.

Listing 2-11.  PathVariable Example

@RequestMapping("/users/{username}")

public User getUser(@PathVariable("username") String username) {

 User user = null;

 // Code to construct user object using username

 return user;

}

�View Resolver

As discussed in the previous sections, a Spring Web MVC controller can return an

org.springframework.web.servlet.View instance or a logical view name. When

a logical view name is returned, a ViewResolver is employed to resolve the view

to a View implementation. If this process fails for some reason, a javax.servlet.

ServletException is thrown. The ViewResolver interface has a single method and is

shown in Listing 2-12.

Listing 2-12.  ViewResolver Interface

public interface ViewResolver

{

 �View resolveViewName(String viewName, Locale locale) throws

Exception;

}

Chapter 2 Spring Web MVC Primer

38

Table 2-6 lists some of the ViewResolver implementations provided by Spring

Web MVC.

As you might have noticed, the different view resolvers in Table 2-6 mimic the

different types of views we looked at earlier. Listing 2-13 shows the code required for

creating an InternalViewResolver.

Also Listing 2-13 shows @Bean annotation—in short, all methods defined by @Bean

in a class annotated by @Configuration will return objects, which is controlled by Spring

Framework, and with help we can define behavior for some objects and call the object

everywhere using @Inject or @Autowired annotation if it is needed. Every object created

by Spring Framework will be defined as a @Bean by default.

Table 2-6.  ViewResolver Implementations and Descriptions

Return type Description

BeanNameViewResolver ViewResolver implementation that looks for a bean

with an id that matches the logical view name in the

ApplicationContext. If it doesn't find the bean in

the ApplicationContext, a null is returned.

InternalResourceViewResolver ViewResolver that looks for an internal resource

that has the logical view name. The location of the

internal resource is typically computed by prefixing

and suffixing the logical name with path and extension

information.

ContentNegotiatingViewResolver ViewResolver that delegates the view resolution to

other view resolvers. The choice of the view resolver

is based on the requested media type, which itself is

determined using an Accept header or file extension or

URL parameter.

TilesViewResolver ViewResolver that looks for a template in the Tiles

configuration that matches the logical view name.

Chapter 2 Spring Web MVC Primer

39

Listing 2-13.  InternalViewResolver Example

@Bean

public ViewResolver viewResolver() {

 �InternalResourceViewResolver viewResolver = new

InternalResourceViewResolver();

 viewResolver.setPrefix("/WEB-INF/jsp/");

 viewResolver.setSuffix(".jsp");

 return viewResolver;

}

�Exception Handler

Exceptions are part of any application, and Spring provides the HandlerException

Resolver mechanism for handling those unexpected exceptions. The HandlerException

Resolver abstraction is similar to the ViewResolver and is used to resolve exceptions to

error views. Listing 2-14 shows the HandlerExceptionResolver API.

Listing 2-14.  HandlerExceptionResolver API

public interface HandlerExceptionResolver {

ModelAndView resolveException(HttpServletRequest request,

HttpServletResponse response,

Object handler, Exception ex);

}

Spring provides several out-of-the-box implementations of

HandlerExceptionResolver, as shown in Table 2-7.

Chapter 2 Spring Web MVC Primer

40

The SimpleMappingExceptionResolver has been around for a really long time.

Spring 3 introduced a new way of handling exceptions using the @ExceptionHandler

strategy. This provides a mechanism for handling errors in REST-based services

where there is really no view to show but, rather, return data. Listing 2-15 shows a

controller with an exception handler. Any methods that now throw a SQLException

in the HomeController will get handled in the handleSQLException method. The

handleSQLException simply creates a ResponseEntity instance and returns it. However,

additional operations such as logging, returning additional diagnostic data, and so on

can be performed.

Listing 2-15.  ExceptionHandler Example

@Controller

public class HomeController {

 @ExceptionHandler(SQLException.class)

 public ResponseEntity handleSQLException() {

Table 2-7.  HandlerExceptionResolver Implementations and Descriptions

Resolver implementation Description

org.springframework.web.servlet.

handler.SimpleMappingException

Resolver

Exception resolver implementation that maps

exception class names to view names.

org.springframework.web.servlet.

mvc.support.DefaultHandler

ExceptionResolver

Exception resolver implementation that translates

standard Spring exceptions to HTTP status codes.

org.springframework.web.servlet.

mvc.annotation.ResponseStatus

ExceptionResolver

Custom exceptions in Spring applications can be

annotated with @ResponseStatus, which takes

a HTTP status code as its value. This exception

resolver translates the exceptions to its mapped

HTTP status codes.

org.springframework.web.servlet.

mvc.method.annotation.Exception

HandlerExceptionResolver

Exception resolver implementation that resolves

exceptions using annotated @ExceptionHandler

methods.

Chapter 2 Spring Web MVC Primer

41

ResponseEntity responseEntity = new ResponseEntity(HttpStatus.INTERNAL_

SERVER_ERROR);

 return responseEntity;

 }

 @GetMapping("/stream")

 �public void streamMovie(HttpServletResponse response) throws

SQLException {

 }

}

The @ExceptionHandler annotated methods can only handle exceptions that occur

in the controller or its subclasses. So, if we need to handle SQL exceptions in other

controllers, then we need to copy and paste the handleSQLException method in all of

those controllers. This approach can pose severe limitations, as exception handling is

truly a crosscutting concern and should be centralized.

To address this, Spring provides the @ControllerAdvice annotation.

Methods in classes annotated with @ControllerAdvice get applied to all the @

RequestMapping methods. Listing 2-16 shows the GlobalExceptionHandler with the

handleSQLException method. As you can see, the GlobalExceptionHandler extends

Spring's ResponseEntityExceptionHandler, which converts default Spring Web MVC

exceptions to a ResponseEntity with HTTP status codes.

Listing 2-16.  GlobalExceptionHandler Example

@ControllerAdvice

public class GlobalExceptionHandler extends ResponseEntityExceptionHandler

{

 @ExceptionHandler(SQLException.class)

 �public ResponseEntity handleSQLException() {

ResponseEntity responseEntity = new ResponseEntity(HttpStatus.INTERNAL_

SERVER_ERROR);

 return responseEntity;

 }

}

Chapter 2 Spring Web MVC Primer

42

�Interceptors

Spring Web MVC provides the notion of interceptors to implement concerns that

crosscut across different handlers. Consider the scenario in which you want to prevent

unauthenticated access to a set of controllers. An interceptor allows you to centralize this

access logic without you having to copy and paste the code in every controller. As the

name suggests, interceptors intercept a request; they do so at the following three points:

•	 Before the controller gets executed. This allows the interceptor to

decide if it needs to continue the execution chain or return with an

exception or custom response.

•	 After the controller gets executed but before the response is sent out.

This allows the interceptor to provide any additional model objects to

the view.

•	 After the response is sent out allowing any resource cleanup.

Note  Spring Web MVC interceptors are similar to HTTP servlet filters. Both can
be used to intercept a request and execute common concerns. However, there are
a few differences between them that are worth noting. Filters have the capability
to wrap or even swap the HttpServletRequest and HttpServletResponse
objects. Interceptors can’t decorate or swap those objects. Interceptors are Spring-
managed beans, and we can easily inject other spring beans in them. Filters are
container-managed instances; they don't provide a straightforward mechanism for
injecting Spring-managed beans.

Spring Web MVC provides the HandlerInterceptor interface for implementing

interceptors. Listing 2-17 gives the HandlerInterceptor interface. As you can see, the

three methods correspond to the three interceptor features that we just discussed.

Chapter 2 Spring Web MVC Primer

43

Listing 2-17.  HandlerInterceptor API

public interface HandlerInterceptor{

 �void afterCompletion(HttpServletRequest request, HttpServletResponse

response, Object handler, Exception ex);

 �void postHandle(HttpServletRequest request, HttpServletResponse

response, Object handler, ModelAndView modelAndView);

 �boolean preHandle(HttpServletRequest request, HttpServletResponse

response, Object handler);

}

Listing 2-18 gives a simple interceptor implementation. As you can see,

the SimpleInterceptor class extends HandlerInterceptorAdapter. The

HandlerInterceptorAdapter is a convenient abstract class that implements the

HandlerInterceptor interface and provides default implementations of its methods.

Listing 2-18.  Spring Web MVC Interceptor Example

public class SimpleInterceptor extends HandlerInterceptorAdapter {

 �private static final Logger logger = Logger.

getLogger(SimpleInterceptor.class);

public boolean preHandle(HttpServletRequest request, HttpServletResponse

response, Object handler) throws Exception {

 logger.info("Inside the prehandle");

 return false;

 }

}

Interceptors can be registered in a Spring Web application using the

InterceptorRegistry strategy. When using Java configuration, this is typically achieved

by creating a configuration class that extends WebMvcConfigurerAdapter. Spring Web

MVC’s WebMvcConfigurerAdapter class provides the addInterceptors method that can

be used to access the InterceptorRegistry. Listing 2-19 shows the code registering

two interceptors: LocalInterceptor that comes out of the box with Spring and our

SimpleInterceptor.

Chapter 2 Spring Web MVC Primer

44

Listing 2-19.  Example Registering Interceptors

@Configuration

@EnableWebMvc

@ComponentScan(basePackages = { "com.apress.springrest.web" })

public class WebConfig extends WebMvcConfigurerAdapter {

 @Override

 public void addInterceptors(InterceptorRegistry registry) {

 registry.addInterceptor(new LocaleChangeInterceptor());

 �registry.addInterceptor(new SimpleInterceptor()).addPathPatterns

("/auth/**");

 }

}

When an interceptor is added to the interceptor registry, the interceptor gets applied

to all of the handler mappings. So, the LocaleChangeInterceptor in Listing 2-19

gets applied to all the handler mappings. However, it is also possible to restrict

the interceptor to certain URLs. This is demonstrated in Listing 2-19 using the

addPathPatterns method. Here we are indicating that the SimpleInterceptor should

be applied to only the URLs that are under the auth path.

�Summary
In this chapter, we have looked at the basics of the Spring Framework and different

components of a Spring Web MVC. In the next chapter, we will bring things together and

look at building our first RESTful application using Spring Boot.

Chapter 2 Spring Web MVC Primer

45
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_3

CHAPTER 3

RESTful Spring
In this chapter, we will discuss the following:

•	 The basics of Spring Boot

•	 Building a Hello World REST application

•	 Tools for accessing REST applications

One of the Spring Framework’s goals is to reduce plumbing code so that developers

can focus their efforts on implementing core business logic. However, as the Spring

Framework evolved and added several subprojects to its portfolio, developers ended

up spending a considerable amount of time setting up projects, finding project

dependencies, and writing boiler plate code and configuration.

Spring Boot, a Spring portfolio project, aims at simplifying Spring application

bootstrapping by providing a set of starter project templates. These would pull all the

proper dependencies that are needed based on project capabilities. For example, if you

enable JPA capability, it automatically includes all the dependent JPA, Hibernate, and

Spring JAR files.

Spring Boot also takes an opinionated approach and provides default configuration

that simplifies application development quite a bit. For example, if Spring Boot finds JPA

and MySQL JARs in the classpath, it would automatically configure a JPA Persistence

Unit. It also enables creation of standalone Spring applications with embedded Jetty/

Tomcat servers, making them easy to deploy on any machine with just Java installed.

Additionally, it provides production-ready features such as metrics and health checks.

Throughout this book, we will be exploring and learning these and additional features of

Spring Boot.

https://doi.org/10.1007/978-1-4842-7477-4_3#DOI

46

Note  Spring Roo is another Spring portfolio project that attempts to provide rapid
Spring application development. It provides a command line tool that enables easy
project bootstrapping and generates code for components such as JPA entities,
web controllers, test scripts, and necessary configuration. Although there was a
lot of initial interest in the project, Spring Roo never really became mainstream.
AspectJ code generation and a steep learning curve coupled with its attempt to
take over your project are some reasons for lack of its adoption. Spring Boot, by
contrast, takes a different approach; it focuses on jump-starting the project and
providing clever, sensible, default configuration. Spring Boot doesn’t generate any
code that makes it easy to manage your project.

�Generating a Spring Boot Project
It is possible to create a Spring Boot project from scratch. However, Spring Boot provides

the following options to generate a new project:

•	 Use Spring Boot’s starter website (http://start.spring.io).

•	 Use the Spring Tool Suite (STS) IDE.

•	 Use the Boot command line interface (CLI).

We will explore all three alternatives in this chapter. However, for the rest of the book,

we will be opting for the Boot CLI to generate new projects. Before we start with project

generation, it is important that Java is installed on your machine. Spring Boot requires

that you have Java SDK 1.8 or higher installed. In this book we will be using Java 1.8.

�Installing a Build Tool
Spring Boot supports the two most popular build systems: Maven and Gradle. In this

book we will be using Maven as our build tool. Spring Boot requires Maven version 3.5 or

higher. The steps to download and configure Maven on your Windows machine are given

here. Similar instructions for Mac and other operating systems can be found on Maven’s

install page (https://maven.apache.org/install.html):

Chapter 3 RESTful Spring

http://start.spring.io
https://maven.apache.org/install.html

47

	 1.	 Download the latest Maven binary from https://maven.apache.

org/download.cgi. At the time of writing this book, the current

version of Maven was 3.8.1. For Windows, download the apache-

maven-3.8.1-bin.zip file.

	 2.	 Unzip the contents of the zip file under C:\tools\maven.

	 3.	 Add an Environment variable M2_HOME with value C:\tools\

maven\apache-maven-3.8.1. This tells Maven and other tools

where Maven is installed. Also make sure that the JAVA_HOME

variable is pointing to the installed JDK.

	 4.	 Append the value %M2_HOME%\bin to the Path environment

variable. This allows you to run Maven commands from the

command line.

	 5.	 Open a new command line and type the following:

mvn - v

You should see an output similar to Figure 3-1, indicating that Maven was

successfully installed.

Note T o learn more about Maven, refer to Introducing Maven, published by
Apress (http://www.apress.com/9781484208427).

Figure 3-1.  Maven installation verification

Chapter 3 RESTful Spring

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
http://www.apress.com/9781484208427

48

�Generating a Project Using start.spring.io
Spring Boot hosts an Initializr application at http://start.spring.io . The Initializr

provides a web interface that allows you to enter project information and pick the

capabilities needed for your project, and voilà—it generates the project as a zip file.

Follow these steps to generate our Hello World REST application:

	 1.	 Launch the http://start.spring.io website in your browser

and enter the information shown in Figure 3-2.

	 2.	 Under Dependencies ➤ Web, select the option “Web” and

indicate that you would like Spring Boot to include web project

infrastructure and dependencies.

	 3.	 Then hit the “Generate Project” button. This will begin the hello-

rest.zip file download.

On completion of the download, extract the contents of the zip file. You will see the

hello-rest folder generated. Figure 3-3 shows the contents of the generated folder.

Figure 3-2.  start.spring.io website

Chapter 3 RESTful Spring

http://start.spring.io
http://start.spring.io

49

A quick look at the hello-rest contents shows that we have a standard Maven-

based Java project layout. We have the src\main\java folder, which houses Java source

code; src\main\resources, which contains property files; static content, such as HTML\

CSS\JS files; and the src\test\java folder, which contains the test cases. On running a

Maven build, this project generates a JAR artifact. Now, this might be a little confusing

for the first-timer who is used to WAR artifacts for deploying web applications. By

default, Spring Boot creates standalone applications in which everything gets packaged

into a JAR file. These applications will have embedded servlet containers such as Tomcat

and are executed using a good old main() method.

Note  Spring Boot also allows you to work with WAR artifacts which contain html,
css, js, and other files necessary for the development of web applications that can
be deployed to external Web and application containers.

Listing 3-1 gives the contents of the hello-rest application’s pom.xml file.

Figure 3-3.  hello-rest application contents

Chapter 3 RESTful Spring

50

Listing 3-1.  hello-rest pom.xml file Contents

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.

apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.5.3</version>

 <relativePath/>

 </parent>

 <groupId>com.appress</groupId>

 <artifactId>hello-rest</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>Hello World REST</name>

 �<description>Hello World REST Application Using Spring Boot

</description>

 <properties>

 <java.version>1.8</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

Chapter 3 RESTful Spring

51

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

 </build>

</project>

The groupId, artifactId, and version elements in the pom.xml file correspond to

Maven’s standard GAV coordinates describing our project. The parent tag indicates that

we will be inheriting from the spring-boot-starter-parent POM. This ensures that

our project inherits Spring Boot’s default dependencies and versions. The dependencies

element lists two POM file dependencies: spring-boot-starter-web and spring-boot-

starter-test. Spring Boot uses the term starter POMs to describe such POM files.

These starter POMs are used to pull other dependencies and don’t actually contain

any code of their own. For example, the spring-boot-starter-web pulls Spring MVC

dependencies, Tomcat-embedded container dependencies, and a Jackson dependency

for JSON processing. These starter modules play an important role in providing needed

dependencies and simplifying the application’s POM file to just a few lines. Table 3-1 lists

some of the commonly used starter modules.

Table 3-1.  Spring Boot Starter Modules

Starter POM dependency Use

spring-boot-starter Starter that brings in core dependencies necessary for

functions such as auto-configuration support and logging

spring-boot-starter-aop Starter that brings in support for aspect-oriented

programming and AspectJ

spring-boot-starter-test Starter that brings in dependencies such as JUnit,

Mockito, and spring-test necessary for testing

(continued)

Chapter 3 RESTful Spring

52

Starter POM dependency Use

spring-boot-starter-web Starter that brings in MVC dependencies (spring-

webmvc) and embedded servlet container support

spring-boot-starter-data-jpa Starter that adds Java Persistence API support by

bringing in spring-data-jpa, spring-orm, and

Hibernate dependencies

spring-boot-starter-data-rest Starter that brings in spring-data-rest-webmvc to

expose repositories as REST API

spring-boot-starter-hateoas Starter that brings in spring-hateoas dependencies

for HATEOAS REST services

spring-boot-starter-jdbc Starter for supporting JDBC databases

Table 3-1.  (continued)

Finally, the spring-boot-maven-plugin contains goals for packaging the application

as an executable JAR/WAR and running it.

The HelloWorldRestApplication.java class serves as the main class for our

application and contains the main() method. Listing 3-2 shows the contents of the

HelloWorldRestApplication.java class. The @SpringBootApplication annotation is a

convenient annotation and is equivalent to declaring the following three annotations:

•	 @Configuration—Marks the annotated class as containing one or

more Spring bean declarations. Spring processes these classes to

create bean definitions and instances.

•	 @ComponentScan—This class tells Spring to scan and look for

classes annotated with @Component, @Service, @Repository,

@Controller, @RestController, and @Configuration. By default,

Spring scans all the classes in the package where the @ComponentScan

annotated class resides. To override the default behavior, we can set

this annotation in the configuration class and define basePackages

argument as the name of the package.

Chapter 3 RESTful Spring

53

•	 @EnableAutoConfiguration—Enables Spring Boot’s auto-

configuration behavior. Based on the dependencies and

configuration found in the classpath, Spring Boot intelligently

guesses and creates bean configurations.

Typical Spring Boot applications always use these three annotations. In addition to

providing a nice alternative in those scenarios, the @SpringBootApplication annotation

correctly denotes the class’s intent.

Listing 3-2.  HelloWorldRestApplication Contents

package com.apress.hellorest;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class HelloWorldRestApplication {

 public static void main(String[] args) {

 SpringApplication.run(HelloWorldRestApplication.class, args);

 }

}

The main() method simply delegates the application bootstrapping to

SpringApplication’s run() method. run() takes a HelloWorldRestApplication.

class as its argument and instructs Spring to read annotation metadata from

HelloWorldRestApplication and populate ApplicationContext from it.

Now that we have looked at the generated project, let’s create a REST endpoint

that simply returns “Hello REST.” Ideally, we would create this endpoint in a separate

controller Java class. However, to keep things simple, we will create the endpoint in

HelloWorldRestApplication, as shown in Listing 3-3. We start by adding the

@RestController, indicating that HelloWorldRestApplication has possible REST

endpoints. We then create the helloGreeting() method, which simply returns the

greeting “Hello REST.” Finally, we use the RequestMapping annotation to map web

requests for “/greet” path to helloGreeting() handler method.

Chapter 3 RESTful Spring

54

Listing 3-3.  Hello REST Endpoint

package com.apress.hellorest;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.bind.annotation.RequestMapping;

@SpringBootApplication

@RestController

public class HelloWorldRestApplication {

 public static void main(String args) {

 SpringApplication.run(HelloWorldRestApplication.class, args);

 }

 @GetMapping("/greet")

 public String helloGreeting() {

 return "Hello REST";

 }

}

The next step is to launch and run our application. To do this, open a command line,

navigate to the hello-rest folder, and run the following command:

mvn spring-boot:run

You will see Maven downloading the necessary plugins and dependencies, and then

it will launch the application, as shown here:

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

[32m :: Spring Boot :: [39m [2m (v2.5.3)[0;39m

Chapter 3 RESTful Spring

55

[2m2021-08-12 21:54:43.147[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mc.a.hellorest.HelloWorldRestApplication

[0;39m [2m:[0;39m Starting HelloWorldRestApplication using Java 1.8 on

DESKTOP-82GK4GP with PID 15012 (C:\Users\makus\OneDrive\Desktop\hello-rest\

target\classes started by makus in C:\Users\makus\OneDrive\Desktop\hello-

rest)

[2m2021-08-12 21:54:43.149[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mc.a.hellorest.HelloWorldRestApplication

[0;39m [2m:[0;39m No active profile set, falling back to default profiles:

default

[2m2021-08-12 21:54:43.843[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mo.s.b.w.embedded.tomcat.TomcatWebServer

[0;39m [2m:[0;39m Tomcat initialized with port(s): 8080 (http)

[2m2021-08-12 21:54:43.851[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mo.apache.catalina.core.StandardService

[0;39m [2m:[0;39m Starting service [Tomcat]

[2m2021-08-12 21:54:43.851[0;39m [32m INFO[0;39m [35m15012[0;39m [2m--

-[0;39m [2m[main][0;39m [36morg.apache.catalina.core.

StandardEngine [0;39m [2m:[0;39m Starting Servlet engine: [Apache

Tomcat/9.0.50]

[2m2021-08-12 21:54:43.917[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mo.a.c.c.C.[Tomcat].[localhost].

[0;39m [2m:[0;39m Initializing Spring embedded WebApplicationContext

[2m2021-08-12 21:54:43.917[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mw.s.c.ServletWebServerApplicationCon

text[0;39m [2m:[0;39m Root WebApplicationContext: initialization completed

in 734 ms

[2m2021-08-12 21:54:44.286[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mo.s.b.w.embedded.tomcat.TomcatWebServer

[0;39m [2m:[0;39m Tomcat started on port(s): 8080 (http) with context

path ''

[2m2021-08-12 21:54:44.297[0;39m [32m INFO[0;39m [35m15012[0;39m [2m---

[0;39m [2m[main][0;39m [36mc.a.hellorest.HelloWorldRestApplication

[0;39m [2m:[0;39m Started HelloWorldRestApplication in 1.445 seconds (JVM

running for 2.055)

Chapter 3 RESTful Spring

56

To test our running application, launch a browser and navigate to http://

localhost:8080/greet. Notice that Spring Boot launches the application as the Root

context and not the hello-world context. You should see a screen similar to that in

Figure 3-4.

SPRING INITIALIZR

The Spring Initializr application hosted at http://start.spring.io itself is built using

Spring Boot. You can find the source code of this application on GitHub at https://github.

com/spring-io/initializr. It is also possible for you to build and host your own

instances of the Initializr application.

In addition to providing a web interface, the Initializr provides an HTTP endpoint that provides

similar project generation capability. In fact, Spring Boot’s CLI and IDEs such as STS use this

HTTP endpoint behind the scenes for generating projects.

The HTTP endpoint can also be invoked from the command line using curl. For example,

the following command would generate the hello-rest project zip file using curl. The –d

options are used to provide data that gets passed as request parameters:

curl https://start.spring.io/starter.zip -d style=web -d name=hello-rest

�Generating a Project Using STS
Spring Tool Suite or STS is a free Eclipse-based development environment that provides

great tooling support for developing Spring-based applications. You can download and

install the latest version of STS from Pivotal’s website at https://spring.io/tools. At

the time of writing this book, the current version of STS was 4.11.0.

Figure 3-4.  Hello REST greeting

Chapter 3 RESTful Spring

http://start.spring.io
https://github.com/spring-io/initializr
https://github.com/spring-io/initializr
https://spring.io/tools

57

STS provides a user interface similar to Initializr’s web interface for generating Boot

starter projects. Here are the steps for generating a Spring Boot project:

	 1.	 Launch STS if you haven’t already done so. Go to File ➤ New and

click Spring Starter Project, as shown in Figure 3-5.

	 2.	 In the following screen, enter the information as shown in

Figure 3-6. Enter Maven’s GAV information. Hit Next.

Figure 3-5.  STS Spring starter project

Chapter 3 RESTful Spring

58

Figure 3-6.  Starter project options

Chapter 3 RESTful Spring

59

	 3.	 In the following screen, enter the information as shown in

Figure 3-7. Select the web starter option. Hit Next.

Figure 3-7.  Starter project options

Chapter 3 RESTful Spring

60

	 4.	 On the following screen, change the location where you would

like to store the project. The “Full Url” area shows the HTTP REST

endpoint along with the options that you selected (see Figure 3-8).

Figure 3-8.  Starter project location

Chapter 3 RESTful Spring

61

	 5.	 Hit the Finish button and you will see the new project created in

STS. The contents of the project are similar to the project that we

created earlier (see Figure 3-9).

STS’s starter project wizard provides a convenient way to generate new Spring Boot

projects. The newly created project automatically gets imported into the IDE and is

immediately available for development.

Figure 3-9.  STS Spring starter project resources

Chapter 3 RESTful Spring

62

�Generating a Project Using the CLI
Spring Boot provides a command line interface (CLI) for generating projects,

prototyping, and running Groovy scripts. Before we can start using the CLI, we need to

install it. Here are the steps for installing the Boot CLI on a Windows machine:

	 1.	 Download the latest version of the CLI ZIP distribution from

Spring’s website at https://docs.spring.io/spring-boot/docs/

current/reference/html/getting-started.html#getting-

started.installing.cli. At the time of writing this book, the

current version of CLI was 2.5.3. This version can be downloaded

directly from https://repo.spring.io/release/org/

springframework/boot/spring-boot-cli/2.5.3/spring-boot-

cli-2.5.3-bin.zip.

	 2.	 Extract the zip file and place its contents (folders such as bin and

lib) under C:\tools\springbootcli, as shown in Figure 3-10.

	 3.	 Add a new environment variable SPRING_HOME with value

c:\tools\springbootcli.

Figure 3-10.  Spring Boot CLI contents

Chapter 3 RESTful Spring

https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.installing.cli
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.installing.cli
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.installing.cli
https://repo.spring.io/release/org/springframework/boot/spring-boot-cli/2.5.3/spring-boot-cli-2.5.3-bin.zip
https://repo.spring.io/release/org/springframework/boot/spring-boot-cli/2.5.3/spring-boot-cli-2.5.3-bin.zip
https://repo.spring.io/release/org/springframework/boot/spring-boot-cli/2.5.3/spring-boot-cli-2.5.3-bin.zip

63

	 4.	 Edit the Path environment variable, and add the %SPRING_HOME%/

bin value to its end.

	 5.	 Open a new command line and verify the installation running the

following command:

spring --version

You should see an output similar to that shown in Figure 3-10.

Now that we have the Boot CLI installed, generating a new project simply involves

running the following command at the command line:

spring init --dependencies web rest-cli

The command creates a new rest-cli project with web capability. The output of

running the command is shown in Listing 3-4.

Listing 3-4.  Boot CLI Output

C:\test>spring init --dependencies web rest-cli

Using service at https://start.spring.io

Project extracted to 'C:\test\rest-cli'

�Accessing REST Applications
There are several free and commercial tools that allow you to access and experiment

with REST API/applications. In this section we will look at some of the popular tools that

allow you to quickly test a request and inspect the response.

Figure 3-11.  Spring Boot CLI installation

Chapter 3 RESTful Spring

64

�Postman
Postman is a Chrome browser extension for making HTTP requests. It offers a plethora

of features that makes it easy to develop, test, and document a REST API. A Chrome

app version of Postman is also available that provides additional features such as bulk

uploading that are not available in the browser extension.

Postman can be downloaded and installed from the Chrome Web Store. To install

Postman, simply launch the Chrome browser and navigate to https://chrome.google.

com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop. You might

be asked to log in to your Google Chrome account and confirm using the “New app”

installation dialog. On completion of the installation, you should be able to locate and

launch Postman using the “Apps icon” in the Bookmarks bar or by typing chrome://

apps/shortcut. Figure 3-10 shows Postman launched in the Chrome browser.

Postman provides a clean intuitive user interface for composing an HTTP request,

sending it to a server, and viewing the HTTP response. It also automatically saves the

requests, which are readily available for future runs. Figure 3-12 shows an HTTP GET

request made to our Greet service and its response. You can also see the request saved in

the History section of the left sidebar.

Figure 3-12.  Postman browser extension

Chapter 3 RESTful Spring

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

65

Postman makes it easy to logically group related API calls into collections, as shown

in Figure 3-12. It is possible to have subcollections of requests under a collection.

�RESTClient
RESTClient is a Firefox extension for accessing REST APIs and applications. Unlike

Postman, RESTClient doesn’t have a lot of bells and whistles, but it provides basic

functionality to quickly test a REST API. To install RESTClient, launch the Firefox

browser and navigate to the URL https://addons.mozilla.org/en-US/firefox/addon/

restclient/. Then click the “+ Add to Firefox” button, and in the following “Software

Installation” dialog, click the “Install Now” button.

On completion of the installation, you can launch RESTClient using the RESTClient

icon on the top right corner of the browser. Figure 3-14 shows the RESTClient

application with a request to our Greet service and the corresponding response.

Figure 3-13.  Postman collections

Chapter 3 RESTful Spring

https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/

66

�Summary
Spring Boot provides an opinionated approach to building Spring-based applications.

In this chapter, we looked at Spring Boot’s features and used it to build a Hello World

REST application. We also looked at the Postman and RESTClient tools for testing and

exploring the REST API.

In the next chapter, we will begin working on a more complex REST application and

discuss the process of identifying and designing resources.

Figure 3-14.  RESTClient

Chapter 3 RESTful Spring

67
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_4

CHAPTER 4

Beginning QuickPoll
Application
In this chapter we will discuss the following:

•	 Analyzing the requirements for QuickPoll

•	 Identifying QuickPoll resources

•	 Designing representations

•	 Implementing QuickPoll

Up to this point, we have looked at the fundamentals of REST and reviewed our

technology choice of implementation—Spring MVC. Now it’s time to develop a more

complex application. In this chapter, we will introduce you to the beginnings of an

application that we will be working on throughout this book. We will call it QuickPoll.

We will go through the process of analyzing the requirements, identifying resources,

designing their representation, and, finally, providing an implementation to a subset of

features. In the upcoming chapters, we will continue our design and implementation by

adding new features, documentation, security, and versioning.

�Introducing QuickPoll
Polls have become a popular option for soliciting views and opinions from the

community on many websites these days. There are a couple of variations between

online polls, but a poll typically has a question and a list of answers, as shown in

Figure 4-1.

https://doi.org/10.1007/978-1-4842-7477-4_4#DOI

68

Participants vote and communicate their opinion by selecting one or more

responses. Many polls also allow participants to view the poll results, as shown in

Figure 4-2.

Imagine being part of QuickPoll Inc., a budding Software as a Service (or SaaS)

provider that allows users to create, manipulate, and vote on polls. We plan to launch our

services to a small audience, but we intend to become a global enterprise. In addition

to the Web, QuickPoll would also like to target native iOS and Android platforms. To

achieve these lofty goals, we have chosen to implement our application using REST

principles and web technologies.

Figure 4-1.  Web poll example

Figure 4-2.  Web poll results

Chapter 4 Beginning QuickPoll Application

69

We begin the development process by analyzing and understanding requirements.

Our QuickPoll application has the following requirements:

•	 Users interact with QuickPoll services to create new polls.

•	 Each poll contains a set of options that are provided during

poll creation.

•	 Options inside a poll can be updated at a later point.

•	 To keep things simple, QuickPoll restricts voting on a single option.

•	 Participants can cast any number of votes.

•	 Results of a poll can be viewed by anyone.

We have started with a simple set of requirements for QuickPoll. As with any other

application, these requirements will evolve and change. We will address those changes

in the upcoming chapters.

�Designing QuickPoll
As discussed in Chapter 1, designing a RESTful application typically involves the

following steps:

	 1.	 Resource identification

	 2.	 Resource representation

	 3.	 Endpoint identification

	 4.	 Verb/action identification

�Resource Identification
We begin the resource identification process by analyzing requirements and extracting

nouns. At a high level, the QuickPoll application has users that create and interact with

polls. From the previous statement, you can identify User and Poll as nouns and classify

them as resources. Similarly, users can vote on polls and view the voting results, making

Vote another resource. This resource modeling process is similar to database modeling

in that it is used to identify entities or object-oriented design that identifies domain

objects.

Chapter 4 Beginning QuickPoll Application

70

It is important to remember that all nouns identified need not be exposed as

resources. For example, a poll contains several options, making Option another

candidate for resource. Making Poll Option a resource would require a client to make

two GET requests. The first request will obtain a Poll representation; the second request

will obtain an associated Options representation. However, this approach makes the

API chatty and might overload servers. An alternative approach is to include the options

inside a Poll representation, thereby hiding Option as a resource. This would make Poll a

coarse-grained resource, but clients would get poll-related data in one call. Additionally,

the second approach can enforce business rules such as requiring at least two options

for a poll to be created.

This noun approach allows us to identify collection resources. Now, consider the

scenario in which you want to retrieve all of the votes for a given poll. To handle this, you

need a “votes” collection resource. You can perform a GET request and obtain the entire

collection. Similarly, we need a “polls” collection resource, which allows us to query

groups of polls and create new ones.

Finally, we need to address the scenario in which we count all of the votes for a

poll and return the computed results to the client. This involves looping through all the

votes for a poll, grouping those votes based on options, and then counting them. Such

processing operations are typically implemented using a “controller” resource, which

we introduced in Chapter 1. In this case, we model a ComputeResult resource, which

performs this counting operation. Table 4-1 shows the identified resources and their

collection resource counterparts.

Table 4-1.  Resources for QuickPoll Application

Resource Description

User Singleton User Resource

Users Collection User Resource

Poll Singleton Poll Resource

Polls Collection Poll Resource

Vote Singleton Vote Resource

Votes Collection Vote Resource

ComputeResult Count Processing Resource

Chapter 4 Beginning QuickPoll Application

71

�Resource Representation
The next step in the REST API design process is defining resource representations and

representation formats. REST APIs typically support multiple formats such as HTML,

JSON, and XML. The choice of the format largely depends on the API audience. For

example, a REST service that is internal to the company might only support JSON format,

whereas a public REST API might speak XML and JSON formats. In this chapter and in

the rest of the book, JSON will be the preferred format for our operations.

JSON FORMAT

The JavaScript Object Notation, or JSON, is a lightweight format for exchanging information.

Information in JSON is organized around two structures: objects and arrays.

A JSON object is a collection of name/value pairs. Each name/value pair consists of a field

name in double quotes followed by a colon (:), followed by a field value. JSON supports several

types of values such as Boolean (true or false), number (int or float), String, null, arrays, and

object. Examples of name/value pairs include

"country" : "US"

"age" : 31

 "isRequired" : true

"email" : null

JSON objects are surrounded by curly braces ({}), and each name/value pair is separated using

a comma (,). Here is an example of a person JSON object:

{ "firstName": "John", "lastName": "Doe", "age" : 26, "active" : true }

The other JSON structure, an array, is an ordered collection of values. Each array is surrounded

by square brackets ([]), with values separated by a comma. Here is an example of an array of

locations:

["Salt Lake City", "New York", "Las Vegas", "Dallas"]

JSON arrays can also contain objects as their values:

Chapter 4 Beginning QuickPoll Application

72

[

 { "firstName": "Jojn", "lastName": "Doe", "age": 26, "active": true },

 { "firstName": "Jane", "lastName": "Doe", "age": 22, "active": true },

 { "firstName": "Jonnie", "lastName": "Doe", "age": 30, "active": false }

]

Resources are made up of set of attributes that can be identified using a process

similar to object-oriented design. A Poll resource, for example, has a question attribute,

containing a Poll question, and an id attribute, which uniquely identifies the Poll. It also

contains a set of options; each option is made up of a value and an id. Listing 4-1 shows a

representation of a Poll with sample data.

Listing 4-1.  Poll Representation

{

 "id": 2,

 "question": "How will win SuperBowl this year?",

"options": [{"id": 45, "value": "New England Patriots"}, {"id": 49,

"value": "Seattle Seahawks"}, {"id": 51, "value": "Green Bay Packers"},

{"id": 54, "value": "Denver Broncos"}]

}

Note  We are intentionally excluding a user from Poll representation in this
chapter. In Chapter 8, we will discuss user representation along with its
associations to Poll and Vote resources.

The representation of a Poll collection resource contains a collection of individual

polls. Listing 4-2 gives the representation of a Polls collection resource with dummy data.

Listing 4-2.  List of Polls Representation

[

 {

 "id": 5,

 "question": "q1",

Chapter 4 Beginning QuickPoll Application

73

 "options": [

{"id": 6, "value": "X"}, {"id": 9, "value": "Y"},

{"id": 10, "value": "Z"}]

 },

 {

 "id": 2,

 "question": "q10",

 "options": [{"id": 15, "value": "Yes"}, {"id": 16, "value": "No"}]

 }

]

The Vote resource contains the option for which the vote was cast and a unique

identifier. Listing 4-3 shows the Vote resource representation with dummy data.

Listing 4-3.  Vote Representation

{

 "id": 245,

 "option": {"id": 45, "value": "New England Patriots"}

}

Listing 4-4 gives the Votes collection resource representation with dummy data.

Listing 4-4.  List of Votes Representation

[

 {

 "id": 245,

 "option": {"id": 5, "value": "X"}

 },

 {

 "id": 110,

 "option": {"id": 7, "value": "Y"}

 },

Chapter 4 Beginning QuickPoll Application

74

The ComputeResult resource representation should include the total number of

votes and Poll options along with the vote count associated with each option. Listing 4-5

shows this representation with sample data. We use the totalVotes attribute to hold the

cast votes and the results attribute to hold the option id and the associated votes.

Listing 4-5.  ComputeResult Representation

{

 totalVotes: 100,

 "results" : [

 { "id" : 1, "count" : 10 },

 { "id" : 2, "count" : 8 },

 { "id" : 3, "count" : 6 },

 { "id" : 4, "count" : 4 }

]

}

Now that we have defined our resource representation, we will move on to

identifying endpoints for those resources.

�Endpoint Identification
REST resources are identified using URI endpoints. Well-designed REST APIs should

have endpoints that are understandable, intuitive, and easy to use. Remember that we

build REST APIs for our consumers to use. Hence, the names and the hierarchy that we

choose for our endpoints should be unambiguous to consumers.

We design the endpoints for our service using best practices and conventions widely

used in the industry. The first convention is to use a base URI for our REST service. The

base URI provides an entry point for accessing the REST API. Public REST API providers

typically use a subdomain such as http://api.domain.com or http://dev.domain.com

as their base URI. Popular examples include GitHub’s https://api.github.com and

Twitter’s https://api.twitter.com. By creating a separate subdomain, you prevent any

possible name collisions with webpages. It also allows you to enforce security policies

that are different from the regular website. To keep things simple, we will be using

http://localhost:8080 as our base URI in this book.

Chapter 4 Beginning QuickPoll Application

http://api.domain.com
http://dev.domain.com
https://api.github.com
https://api.twitter.com

75

The second convention is to name resource endpoints using plural nouns. In our

QuickPoll application, this would result in an endpoint http://localhost:8080/polls

for accessing the Poll collection resource. Individual Poll resources will be accessed

using a URI such as http://localhost:8080/polls/1234 and http://localhost:8080/

polls/3456. We can generalize access to individual Poll resources using the URI

template http://localhost:8080/polls/{pollId}. Similarly, the endpoints http://

localhost:8080/users and http://localhost:8080/users/{userId} are used for

accessing collection and individual User resources.

The third convention advises using a URI hierarchy to represent resources that

are related to each other. In our QuickPoll application, each Vote resource is related

to a Poll resource. Because we typically cast votes for a Poll, a hierarchical endpoint

http://localhost:8080/polls/{pollId}/votes is recommended for obtaining or

manipulating all the votes associated with a given Poll. In the same way, the endpoint

http://localhost:8080/polls/{pollId}/votes/{voteId} would return an individual

vote that was cast for the Poll.

Finally, the endpoint http://localhost:8080/computeresult can be used to

access the ComputeResult resource. For this resource to function properly and count

the votes, a poll id is required. Because the ComputeResult works with Vote, Poll, and

Option resources, we can’t use the third approach for designing a URI that is hierarchal

in nature. For use cases like these that require data to perform computation, the fourth

convention recommends using a query parameter. For example, a client can invoke

the endpoint http://localhost:8080/computeresult?pollId=1234 to count all of the

votes for the Poll with id 1234. Query parameters are an excellent vehicle for providing

additional information to a resource.

In this section, we have identified the endpoints for the resources in our QuickPoll

application. The next step is to identify the actions that are allowed on these resources,

along with the expected responses.

�Action Identification
HTTP verbs allow clients to interact and access resources using their endpoints. In our

QuickPoll application, the clients must be able to perform one or more CRUD operations

on resources such as Poll and Vote. Analyzing the use cases from the “Introducing

QuickPoll” section, Table 4-2 shows the operations allowed on Poll/Polls collection

resources along with the success and error responses. Notice that on the Poll collection

Chapter 4 Beginning QuickPoll Application

76

resource, we allow GET and POST operations but deny PUT and Delete operations. A

POST on the collection resource allows the client to create new polls. Similarly, we allow

GET, PUT, and Delete operations on a given Poll resource but deny POST operation.

The service returns a 404 status code for any GET, PUT, and DELETE operation on a Poll

resource that doesn’t exist. Similarly, any server errors would result in a status code of

500 sent to the client.

In the same fashion, Table 4-3 shows the operations allowed on Vote/Votes

collection resources.

Table 4-2.  Allowed Operations on a Poll Resource

HTTP
method

Resource
endpoint

Input Success response Error response Description

GET /polls Body: empty Status: 200

Body: poll list

Status: 500 Retrieves all

available polls

POST /polls Body: new poll

data

Status: 201

Body: newly

created poll id

Status: 500 Creates a new

poll

PUT /polls N/A N/A Status: 400 Forbidden action

Delete /polls N/A N/A Status: 400 Forbidden action

GET /polls/

{pollId}

Body: empty Status: 200

Body: poll data

Status: 404 or

500

Retrieves an

existing poll

POST /polls/

{pollId}

N/A N/A Status: 400 Forbidden

PUT /polls/

{pollId}

Body: poll data

with updates

Status: 200

Body: empty

Status: 404 or

500

Updates an

existing poll

Delete /polls/

{pollId}

Body: empty Status: 200 Status: 404 or

500

Deletes an

existing poll

Chapter 4 Beginning QuickPoll Application

77

Table 4-3.  Allowed Operations on Vote Resource

HTTP
method

Resource
endpoint

Input Success
response

Error response Description

GET /polls/

{pollId}/

votes

Body: empty Status: 200

Body: votes list

Status: 500 Retrieves all available

votes for a given poll

POST /polls/

{pollId}/

votes

Body: new

vote

Status: 201

Body: newly

created vote id

Status: 500 Creates a new vote

PUT /polls/

{pollId}/

votes

N/A N/A Status: 400 Forbidden action

Delete /polls/

{pollId}/

votes

N/A N/A Status: 400 Forbidden action

GET /polls/

{pollId}/

votes/

{voteId}

Body: empty Status: 200

Body: vote data

Status: 404 or

500

Retrieves an existing

vote

POST /polls/

{pollId}/

votes/

{voteId}

N/A N/A Status: 400 Forbidden

PUT /polls/

{pollId}/

votes/

{voteId}

N/A N/A Status: 400 Forbidden as a casted

vote can’t be updated

according to our

requirements

Delete /polls/

{pollId}/

votes/

{voteId}

N/A N/A Status: 400 Forbidden as a casted

vote can’t be deleted

according to our

requirements

Chapter 4 Beginning QuickPoll Application

78

Finally, Table 4-4 shows the operations allowed on the ComputeResult resource.

This concludes the design for the QuickPoll REST service. Before we start our

implementation, we will review QuickPoll’s high-level architecture.

�QuickPoll Architecture
The QuickPoll application will be made of a web or REST API layer and a repository layer

with a domain layer (layer between Web API and repository) crosscutting those two,

as depicted in Figure 4-3. A layered approach provides a clear separation of concerns,

making applications easy to build and maintain. Each layer interacts with the following

layer using a well-defined contract. As long as the contract is maintained, it is possible to

swap out underlying implementations without any impact on the overall system.

Table 4-4.  Allowed Operations on ComputeResult Resource

HTTP
method

Resource
endpoint

Input Success
response

Error response Description

GET /computeresult Body: empty

Param: pollId

Status: 200

Body: vote

count

Status: 500 Returns the vote

count for the

given poll

Figure 4-3.  QuickPoll architecture

Chapter 4 Beginning QuickPoll Application

79

The Web API layer is responsible for receiving client requests, validating user input,

interacting with a service or a repository layer, and generating a response. Using HTTP

protocol, resource representations are exchanged between clients and the Web API layer.

This layer contains controllers/handlers and is typically very lightweight as it delegates

most of the work to layers beneath it.

The domain layer is considered to be the “heart” of an application. Domain objects

in this layer contain business rules and business data. These objects are modeled after

the nouns in the system. For example, a Poll object in our QuickPoll application would

be considered a domain object.

The repository or data access layer is responsible for interacting with a datastore

such as a database or LDAP or a legacy system. It typically provides CRUD operations for

storing and retrieving objects from/to a datastore.

Note O bservant readers will notice that the QuickPoll architecture is missing
a service layer. Service layer typically sits between the API/presentation layer
and repository layer. It contains coarse-grained API with methods that fulfill one
or more use cases. It is also responsible for managing transactions and other
crosscutting concerns such as security.

Because we are not dealing with any complex use cases for QuickPoll application
in this book, we will not be introducing service layers into our architecture.

�Implementing QuickPoll
We begin QuickPoll implementation by generating a Spring Boot project using

STS. Follow the steps discussed in the “Generating a Project Using STS” section

of Chapter 3, and create a project named quick-poll. Figures 4-4 and 4-5 give the

configuration information used during project generation. Notice that we have selected

the “JPA” and “Web” options.

Chapter 4 Beginning QuickPoll Application

80

Figure 4-4.  QuickPoll spring starter project

Chapter 4 Beginning QuickPoll Application

81

Figure 4-5.  QuickPoll Spring starter project dependencies

Chapter 4 Beginning QuickPoll Application

82

Alternatively, you can import the QuickPoll project into your STS IDE from the

downloaded source code for this book. The downloaded source code contains a number

of folders named ChapterX, in which X represents the corresponding chapter number.

Each ChapterX folder further contains two subfolders: a starter folder and a final

folder. The starter folder houses a QuickPoll project that you can use to follow along

with the solution described in this chapter.

Even though each chapter builds on the previous chapter’s work, the starter project

allows you to skip around in the book. For example, if you are interested in learning

about security, you can simply load the QuickPoll application under the Chapter8\

starter folder and follow the solution as described in Chapter 8.

As the name suggests, the final folder contains the completed solution/code

for each chapter. To minimize code in the chapter text, I have omitted getters/setters

methods, imports, and package declarations in some of the code listings. Please refer to

the QuickPoll code under the final folder for complete code listings.

By default, Spring Boot applications run on port 8080. So, if you intend to run two

versions of QuickPoll, simply use the command line option -Dserver.port:

mvn spring-boot:run -Dserver.port=8181

Note  Java Persistence API, or JPA, is a standard-based API for accessing, storing,
and managing data between Java objects and relational database. Like JDBC, JPA
is purely a specification, and many commercial and open-source products such as
Hibernate and TopLink provide JPA implementations. A formal overview of JPA is
beyond the scope of this book. Please refer to Pro JPA 2 (http://www.apress.
com/9781430219569/) to learn more.

�Domain Implementation
The domain objects typically act as a backbone for any application. So, the next step in

our implementation process is to create domain objects. Figure 4-5 shows a UML Class

diagram representing the three domain objects in our QuickPoll application and their

relationships.

Chapter 4 Beginning QuickPoll Application

http://www.apress.com/9781430219569/
http://www.apress.com/9781430219569/

83

Inside the quick-poll project, create a com.apress.domain subpackage under the /

src/main/java folder, and create Java classes corresponding to the domain objects that

we identified. Listing 4-6 gives the implementation of the Option class. As you can see,

the Option class has two fields: id, to hold the identity; and value, corresponding to

the option value. Additionally, you will see that we have annotated this class with JPA

annotations such as @Entity and @Id. This allows instances of the Option class to be

easily persisted and retrieved using JPA technology.

Listing 4-6.  Option Class

package com.apress.domain;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

@Entity

public class Option {

 @Id

 @GeneratedValue

 @Column(name="OPTION_ID")

 private Long id;

 @Column(name="OPTION_VALUE")

 private String value;

 // Getters and Setters omitted for brevity

}

Figure 4-6.  QuickPoll domain objects

Chapter 4 Beginning QuickPoll Application

84

Next, we create a Poll class, as shown in Listing 4-7, along with corresponding

JPA annotations. The Poll class has a question field to store the poll question. The

@OneToMany annotation, as the name suggests, indicates that a Poll instance can contain

zero or more Option instances. The CascadeType.All indicates that any database

operations such as persist, remove, or merge on a Poll instance needs to be propagated

to all related Option instances. For example, when a Poll instance gets deleted, all of the

related Option instances will be deleted from the database.

Listing 4-7.  Poll Class

package com.apress.domain;

import java.util.Set;

import javax.persistence.CascadeType;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.OneToMany;

import javax.persistence.OrderBy ;

@Entity

public class Poll {

 @Id

 @GeneratedValue

 @Column(name="POLL_ID")

 private Long id;

 @Column(name="QUESTION")

 private String question;

 @OneToMany(cascade=CascadeType.ALL)

 @JoinColumn(name="POLL_ID")

 @OrderBy

 private Set<Option> options;

 // Getters and Setters omitted for brevity

}

Chapter 4 Beginning QuickPoll Application

85

Finally, we create the Vote class, as shown in Listing 4-8. The @ManyToOne

annotation indicates that an Option instance can have zero or more Vote instances

associated with it.

Listing 4-8.  Vote Class

package com.apress.domain;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.ManyToOne;

@Entity

public class Vote {

 @Id

 @GeneratedValue

 @Column(name="VOTE_ID")

 private Long id;

 @ManyToOne

 @JoinColumn(name="OPTION_ID")

 private Option option;

 // Getters and Setters omitted for brevity

}

�Repository Implementation
Repositories, or data access objects (DAO), provide an abstraction for interacting

with datastores. Repositories traditionally include an interface that provides a set of

finder methods such as findById, findAll for retrieving data, and methods to persist

and delete data. Repositories also include a class that implements this interface using

datastore-specific technologies. For example, a repository dealing with a database uses

technology such as JDBC or JPA, and a repository dealing with LDAP would use JNDI. It

is also customary to have one repository per domain object.

Chapter 4 Beginning QuickPoll Application

86

Although this has been a popular approach, there is a lot of boilerplate code that gets

duplicated in each repository implementation. Developers attempt to abstract common

functionality into a generic interface and generic implementation (http://www.ibm.com/

developerworks/library/j-genericdao/). However, they are still required to create a

pair of repository interfaces and classes for each domain object. Often these interfaces

and classes are empty and just result in more maintenance.

The Spring Data project aims at addressing this problem by completely eliminating

the need to write any repository implementations. With Spring Data, all you need is a

repository interface to automatically generate its implementation at runtime. The only

requirement is that application repository interfaces should extend one of the many

available Spring Data marker interfaces. Because we will be persisting our QuickPoll

domain objects into a relational database using JPA, we will be using Spring Data

JPA subproject’s org.springframework.data.repository.CrudRepository marker

interface. As you can see from Listing 4-9, the CrudRepository interface takes the type of

domain object that it manipulates and the type of domain object’s identifier field as its

generic parameters T and ID.

Listing 4-9.  CrudRepository API

public interface CrudRepository<T, ID> extends Repository<T, ID> {

 <S extends T> S save(S var1);

 <S extends T> Iterable<S> saveAll(Iterable<S> var1);

 Optional<T> findById(ID var1);

 Iterable<T> findAll();

 Iterable<T> findAllById(Iterable<ID> var1);

 void deleteById(ID var1);

 void delete(T var1);

 void deleteAllById(Iterable<? extends ID> var1);

 void deleteAll(Iterable<? extends T> var1);

 void deleteAll();

Chapter 4 Beginning QuickPoll Application

http://www.ibm.com/developerworks/library/j-genericdao/
http://www.ibm.com/developerworks/library/j-genericdao/

87

 // Utility Methods

 long count();

 boolean existsById(ID var1);

}

We begin our repository implementation by creating a com.apress.repository

package under the src\main\java folder. Then, we create an OptionRepository

interface as shown in Listing 4-10. As discussed earlier, the OptionRepository extends

Spring Data’s CrudRepository and thereby inherits all of its CRUD methods. Because the

OptionRepository works with the Option domain object, it passes Option and Long as

generic parameter values.

Listing 4-10.  OptionRepository Interface

package com.apress.repository;

import org.springframework.data.repository.CrudRepository;

import com.apress.domain.Option;

public interface OptionRepository extends CrudRepository<Option, Long> {

}

Taking the same approach, we then create PollRepository and VoteRepository

interfaces, as shown in Listings 4-11 and 4-12.

Listing 4-11.  PollRepository Interface

public interface PollRepository extends CrudRepository<Poll, Long> {

}

Listing 4-12.  OptionRepository Interface

public interface VoteRepository extends CrudRepository<Vote, Long> {

}

Chapter 4 Beginning QuickPoll Application

88

�Embedded Database
In the previous section, we created repositories, but we need a relational database

for persisting data. The relational database market is full of options ranging from

commercial databases such as Oracle and SQL Server to open-source databases such as

MySQL and PostgreSQL. To speed up our QuickPoll application development, we will be

using HSQLDB, a popular in-memory database. In-memory, aka embedded, databases

don’t require any additional installations and can simply run as a JVM process. Their

quick startup and shutdown capabilities make them ideal candidates for prototyping

and integration testing. At the same time, they don’t usually provide a persistent storage

and the application needs to seed the database every time it bootstraps.

Spring Boot provides excellent support for HSQLDB-, H2-, and Derby-embedded

databases. The only requirement is to include a build dependency in the pom.xml file.

Spring Boot takes care of starting the database during deployment and stopping it during

application shutdown. There is no need to provide any database connection URLs or

username and password. Listing 4-13 shows the dependency information that needs to

be added to QuickPoll’s pom.xml file.

Listing 4-13.  HSQLDB POM.XML Dependency

<dependency>

 <groupId>org.hsqldb</groupId>

 <artifactId>hsqldb</artifactId>

 <scope>runtime</scope>

</dependency>

�API Implementation
In this section, we will create Spring MVC controllers and implement our REST API

endpoints. We begin by creating the com.apress.controller package under src\main\

java to house all of the controllers.

�PollController Implementation

The PollController provides all of the necessary endpoints to access and manipulate

the Poll and Polls resources. Listing 4-14 shows a bare-bones PollController class.

Chapter 4 Beginning QuickPoll Application

89

Listing 4-14.  PollController Class

package com.apress.controller;

import javax.inject.Inject;

import org.springframework.web.bind.annotation.RestController;

import com.apress.repository.PollRepository;

@RestController

public class PollController {

 @Inject

 private PollRepository pollRepository;

}

The PollController class is annotated with a @RestController annotation. The

@RestController is a convenient yet meaningful annotation and has the same effect

as adding both @Controller and @ResponseBody annotations. Because we need to

read and store Poll instances, we use the @Inject annotation to inject an instance of

PollRepository into our controller. The javax.inject.Inject annotation introduced

as part of Java EE 6 provides a standard mechanism for declaring dependencies. We

use this annotation in favor of Spring’s proprietary @Autowired annotation to be more

compliant. In order to use the @Inject annotation, we need to add the dependency

shown in Listing 4-15 to the pom.xml file.

Listing 4-15.  Inject Dependency in POM File

<dependency>

 <groupId>javax.inject</groupId>

 <artifactId>javax.inject</artifactId>

 <version>1</version>

</dependency>

A GET request on the /polls endpoint provides a collection of all of the polls

available in the QuickPolls application. Listing 4-16 shows the necessary code for

implementing this functionality. The shortcut annotation declares the URI and the

allowed HTTP method. The getAllPolls method used ResponseEntity as its return

type, indicating that the return value is the complete HTTP response. ResponseEntity

gives you full control over the HTTP response, including the response body and response

Chapter 4 Beginning QuickPoll Application

90

headers. The method implementation begins with reading all of the polls using the

PollRepository. We then create an instance of ResponseEntity and pass in Poll data

and the HttpStatus.OK status value. The Poll data becomes part of the response body

and OK (code 200) becomes the response status code.

Listing 4-16.  GET Verb Implementation for /polls

@GetMapping("/polls")

public ResponseEntity<Iterable<Poll>> getAllPolls() {

 Iterable<Poll> allPolls = pollRepository.findAll();

 return new ResponseEntity<>(pollRepository.findAll(), HttpStatus.OK);

}

Let’s quickly test our implementation by running the QuickPoll application. In a

command line, navigate to the quick-poll project directory and run the following

command:

mvn spring-boot:run

Launch the Postman app in your Chrome browser and enter the URL http://

localhost:8080/polls, as shown in Figure 4-7, and hit Send. Because we don’t have any

polls created yet, this command would result in an empty collection.

Note T he downloaded source code contains an exported Postman collection with
requests that can be used to run tests in this chapter. Simply import this collection
into your Postman application and start using it.

Figure 4-7.  Get All Polls request

Chapter 4 Beginning QuickPoll Application

91

The next stop for us is to implement capability to add new polls to the

PollController. We accomplish this by implementing the POST verb functionality, as

shown in Listing 4-17. The createPoll method takes a parameter of the type Poll. The

@RequestBody annotation tells Spring that the entire request body needs to be converted

to an instance of Poll. Spring uses the incoming Content-Type header to identify a

proper message converter and delegates the actual conversion to it. Spring Boot comes

with message converters that support JSON and XML resource representations. Inside

the method, we simply delegate the Poll persistence to PollRepository’s save method.

We then create a new ResponseEntity with status CREATED (201) and return it.

Listing 4-17.  Implementation to Create New Poll

@PostMapping("/polls")

public ResponseEntity<?> createPoll(@RequestBody Poll poll) {

 poll = pollRepository.save(poll);

 return new ResponseEntity<>(null, HttpStatus.CREATED);

}

Although this implementation fulfills the request, the client has no way of knowing

the URI of the newly created Poll. For example, if the client wants to share the newly

created Poll to a social networking site, the current implementation will not suffice.

A best practice is to convey the URI to the newly created resource using the Location

HTTP header. Building the URI would require us to inspect the HttpServletRequest

object to obtain information such as Root URI and context. Spring makes the URI

generation process easy via its ServletUriComponentsBuilder utility class:

URI newPollUri = ServletUriComponentsBuilder

 .fromCurrentRequest()

 .path("/{id}")

 .buildAndExpand(poll.getId())

 .toUri();

The fromCurrentRequest method prepares the builder by copying information

such as host, schema, port, and so on from the HttpServletRequest. The path method

appends the passed-in path parameter to the existing path in the builder. In the case of

the createPoll method, this would result in http://localhost:8080/polls/{id}. The

buildAndExpand method would build a UriComponents instance and replace any path

Chapter 4 Beginning QuickPoll Application

92

variables ({id} in our case) with passed-in value. Finally, we invoke the toUri method

on the UriComponents class to generate the final URI. The complete implementation of

the createPoll method is shown in Listing 4-18.

Listing 4-18.  Complete Implementation of Create Poll

@PostMapping("/polls")

public ResponseEntity<?> createPoll(@RequestBody Poll poll) {

 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource

 HttpHeaders responseHeaders = new HttpHeaders();

 URI newPollUri = ServletUriComponentsBuilder

 .fromCurrentRequest()

 .path("/{id}")

 .buildAndExpand(poll.getId())

 .toUri();

 responseHeaders.setLocation(newPollUri);

 �return new ResponseEntity<>(null, responseHeaders, HttpStatus.

CREATED);

}

To test our newly added functionality, start the QuickPoll application. If you have the

application already running, you need to terminate the process and restart it. Enter the

information in Postman as shown in Figure 4-8 and hit Send. Make sure that you have

added the Content-Type header with value application/json. The JSON used in the

body is shown here:

{

 "question": "Who will win SuperBowl this year?",

 "options": [

 {"value": "New England Patriots"},

 {"value": "Seattle Seahawks"},

 {"value": "Green Bay Packers"},

 {"value": "Denver Broncos"}]

}

Chapter 4 Beginning QuickPoll Application

93

On completion of the request, you will see a Status 201 Created message and

headers:

Content-Length ® 0

Date ® Mon, 23 Feb 2015 00:05:11 GMT

Location ® http://localhost:8080/polls/1

Server ® Apache-Coyote/1.1

Now let’s turn our attention to accessing an individual poll. Listing 4-19 gives

the necessary code. The value attribute in shortcut annotations (@GetMapping,

@PostMapping, etc.) takes a URI template /polls/{pollId}. The placeholder

{pollId} along with the @PathVarible annotation allows Spring to examine the

request URI path and extract the pollId parameter value. Inside the method, we use

the PollRepository’s findById finder method to read the poll and pass it as part of a

ResponseEntity.

Figure 4-8.  Create Poll Postman example

Chapter 4 Beginning QuickPoll Application

94

Listing 4-19.  Retrieving an Individual Poll

@GetMapping("/polls/{pollId}")

public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

 Optional<Poll> poll = pollRepository.findById(pollId);

 if(!poll.isPresent()) {

 throw new Exception("Pool not found");

 }

 return new ResponseEntity<>(poll.get(), HttpStatus.OK);

}

In the same fashion, we implement the functionality to update and delete a Poll, as

shown in Listing 4-20.

Listing 4-20.  Update and Delete a Poll

@PutMapping("/polls/{pollId}")

public ResponseEntity<?> updatePoll(@RequestBody Poll poll, @PathVariable

Long pollId) {

 // Save the entity

 Poll newPoll = pollRepository.save(poll);

 return new ResponseEntity<>(HttpStatus.OK);

}

@DeleteMapping("/polls/{pollId}")

public ResponseEntity<?> deletePoll(@PathVariable Long pollId) {

 pollRepository.deleteById(pollId);

 return new ResponseEntity<>(HttpStatus.OK);

}

Once you have this code added to the PollController, restart the QuickPoll

application and execute the Postman request as shown in Figure 4-8 to create a new

poll. Then input the information in Figure 4-9 to create a new Postman request and

update the poll. Notice that the PUT request contains the entire Poll representation

along with IDs.

Chapter 4 Beginning QuickPoll Application

95

This concludes the implementation of the PostController.

�VoteController Implementation

Following the principles used to create PollController, we implement the

VoteController class. Listing 4-21 gives the code for the VoteController class along

with the functionality to create a vote. The VoteController uses an injected instance of

VoteRepository to perform CRUD operations on Vote instances.

Listing 4-21.  VoteController Implementation

@RestController

public class VoteController {

 @Inject

 private VoteRepository voteRepository;

 @PostMapping("/polls/{pollId}/votes")

Figure 4-9.  Update poll

Chapter 4 Beginning QuickPoll Application

96

public ResponseEntity<?> createVote(@PathVariable Long pollId, @RequestBody

Vote vote) {

 vote = voteRepository.save(vote);

 // Set the headers for the newly created resource

 HttpHeaders responseHeaders = new HttpHeaders();

responseHeaders.setLocation(ServletUriComponentsBuilder.

fromCurrentRequest().path("/{id}").buildAndExpand(vote.getId()).toUri());

 �return new ResponseEntity<>(null, responseHeaders,

HttpStatus.CREATED);

 }

}

To test the voting capabilities, POST a new Vote to the /polls/1/votes endpoint

with an option in the request body, as shown in Figure 4-10. On successful request

execution, you will see a Location response header with value http://localhost:8080/

polls/1/votes/1.

Chapter 4 Beginning QuickPoll Application

97

Figure 4-10.  Cast a new vote

Next, we look at implementing the capability to retrieve all votes for a given poll. The

findAll method in the VoteRepository returns all votes in the database. Because this

would not meet our needs, we need to add this functionality to the VoteRepository as

shown in Listing 4-22.

Listing 4-22.  Modified VoteRepository Implementation

import org.springframework.data.jpa.repository.Query;

public interface VoteRepository extends CrudRepository<Vote, Long> {

@Query(value="select v.* from Option o, Vote v where o.POLL_ID = ?1 and

v.OPTION_ID = o.OPTION_ID", nativeQuery = true)

 public Iterable<Vote> findByPoll(Long pollId);

}

Chapter 4 Beginning QuickPoll Application

98

The custom finder method findVotesByPoll takes the ID of the Poll as its

parameter. The @Query annotation on this method takes a native SQL query along with

the nativeQuery flag set to true. At runtime, Spring Data JPA replaces the ?1 placeholder

with the passed-in pollId parameter value. Next, we implement the /polls/{pollId}/

votes endpoint in the VoteController, as shown in Listing 4-23.

Listing 4-23.  GET All Votes Implementation

@GetMapping("/polls/{pollId}/votes")

public Iterable<Vote> getAllVotes(@PathVariable Long pollId) {

 return voteRepository. findByPoll(pollId);

}

�ComputeResultController Implementation

The final piece remaining for us is the implementation of the ComputeResult resource.

Because we don’t have any domain objects that can directly help generate this resource

representation, we implement two data transfer objects or DTOs—OptionCount and

VoteResult. The OptionCount DTO contains the ID of the option and a count of votes

casted for that option. The VoteResult DTO contains the total votes cast and a collection

of OptionCount instances. These two DTOs are created under the com.apress.dto

package, and their implementation is given in Listing 4-24.

Listing 4-24.  DTOs for ComputeResult Resources

package com.apress.dto;

public class OptionCount {

 private Long optionId;

 private int count;

 // Getters and Setters omitted for brevity

}

package com.apress.dto;

import java.util.Collection;

Chapter 4 Beginning QuickPoll Application

99

public class VoteResult {

 private int totalVotes;

 private Collection<OptionCount> results;

 // Getters and Setters omitted for brevity

}

Following the principles used in creating the PollController and VoteController,

we create a new ComputeResultController class, as shown in Listing 4-25. We inject an

instance of VoteRepository into the controller, which is used to retrieve votes for a given

poll. The computeResult method takes pollId as its parameter. The @RequestParam

annotation instructs Spring to retrieve the pollId value from an HTTP query

parameter. The computed results are sent to the client using a newly created instance of

ResponseEntity.

Listing 4-25.  ComputeResultController implementation

package com.apress.controller;

@RestController

public class ComputeResultController {

 @Inject

 private VoteRepository voteRepository;

 @GetMapping("/computeresult")

 public ResponseEntity<?> computeResult(@RequestParam Long pollId) {

 VoteResult voteResult = new VoteResult();

 �Iterable<Vote> allVotes = voteRepository.

findByPoll(pollId);

 // Algorithm to count votes

 �return new ResponseEntity<VoteResult>(voteResult,

HttpStatus.OK);

 }

}

Chapter 4 Beginning QuickPoll Application

100

There are several ways to count votes associated with each option. This code

provides one such option:

int totalVotes = 0;

Map<Long, OptionCount> tempMap = new HashMap<Long, OptionCount>();

for(Vote v : allVotes) {

 totalVotes ++;

 // Get the OptionCount corresponding to this Option

 OptionCount optionCount = tempMap.get(v.getOption().getId());

 if(optionCount == null) {

 optionCount = new OptionCount();

 optionCount.setOptionId(v.getOption().getId());

 tempMap.put(v.getOption().getId(), optionCount);

 }

 optionCount.setCount(optionCount.getCount()+1);

}

voteResult.setTotalVotes(totalVotes);

voteResult.setResults(tempMap.values());

This concludes the ComputeResult controller implementation. Start/restart the

QuickPoll application. Using the earlier Postman requests, create a poll and cast votes on

its options. Then create a new Postman request as shown in Figure 4-11 and submit it to

test our /computeresult endpoint.

Figure 4-11.  ComputeResult endpoint test

Chapter 4 Beginning QuickPoll Application

101

On successful completion, you will see an output similar to this:

{

 "totalVotes": 7,

 "results": [

 {

 "optionId": 1,

 "count": 4

 },

 {

 "optionId": 2,

 "count": 3

 }

]

}

�Summary
In this chapter, we looked at creating RESTful services for the QuickPoll application.

Most of our examples in this chapter assumed a “happy path” in which everything goes

as planned. However, this rarely happens in the real world. In the next chapter, we will

look at handling errors, validating input data, and communicating meaningful error

messages.

Chapter 4 Beginning QuickPoll Application

103
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_5

CHAPTER 5

Error Handling
In this chapter we will discuss the following:

•	 Handling errors in a REST API

•	 Designing meaningful error responses

•	 Validating API inputs

•	 Externalizing error messages

Error handling is one of the most important yet somewhat overlooked topics for

programmers. Although we develop software with good intent, things do go wrong,

and we must be prepared to handle and communicate those errors gracefully. The

communication aspect is especially important to developers consuming a REST

API. Well-designed error responses allow consuming developers to understand the

issues and help them to use the API correctly. Additionally, good error handling allows

API developers to log information that can aid in debugging issues on their end.

�QuickPoll Error Handling
In our QuickPoll application, consider the scenario in which a user tries to retrieve

a poll that doesn’t exist. Figure 5-1 shows the Postman request for a nonexistent poll

with id 100.

Figure 5-1.  Requesting a nonexistent poll

https://doi.org/10.1007/978-1-4842-7477-4_5#DOI

104

On receiving the request, the PollController in our QuickPoll application

uses PollRepository to retrieve the poll. Because a poll with id 100 doesn’t exist,

PollRepository’s findById method returns an empty Option and the PollController

sends an empty body to the client, as shown in Figure 5-2.

Note  In this chapter, we will continue working on the QuickPoll application that
we built in the previous chapter. The code is also available under the Chapter5\
starter folder of the downloaded source code. The completed solution is
available under the Chapter5\final folder. As we have omitted getter/setter
methods and imports in some of the listings in this chapter, please refer to the
code under the final folder for complete listings. The Chapter5 folder also
contains an exported Postman collection containing REST API requests associated
with this chapter.

This current implementation is deceptive, as the client receives a status code 200.

Instead, a status code 404 should be returned, indicating that the requested resource

doesn’t exist. To achieve this correct behavior, we will validate the poll id in the com.

apress.controller.PollController’s getPoll method and, for nonexistent polls,

throw a com.apress.exception.ResourceNotFoundException exception. Listing 5-1

shows the modified getPoll implementation.

Listing 5-1.  getPoll Implementation

@GetMapping("/polls/{pollId}")

public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

 Optional<Poll> poll = pollRepository.findById(pollId);

Figure 5-2.  Response to a nonexistent poll

Chapter 5 Error Handling

105

 if(!poll.isPresent()) {

 �throw new ResourceNotFoundException("Poll with id " +

pollId + " not found");

 }

 return new ResponseEntity<>(poll.get(), HttpStatus.OK);

}

The ResourceNotFoundException is a custom exception, and its implementation is

shown in Listing 5-2. Notice that an @ResponseStatus annotation is declared at the class

level. The annotation instructs Spring MVC that an HttpStatus NOT_FOUND (404 code)

should be used in the response when a ResourceNotFoundException is thrown.

Listing 5-2.  ResourceNotFoundException Implementation

package com.apress.exception;

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(HttpStatus.NOT_FOUND)

public class ResourceNotFoundException extends RuntimeException {

 private static final long serialVersionUID = 1L;

 public ResourceNotFoundException() {}

 public ResourceNotFoundException(String message) {

 super(message);

 }

 public ResourceNotFoundException(String message, Throwable cause) {

 super(message, cause);

 }

}

With these modifications in place, start the QuickPoll application, and run the

Postman request for poll with ID 100. The PollController returns the right status code

as shown in Figure 5-3.

Chapter 5 Error Handling

106

In addition to GET, other HTTP methods such as PUT, DELETE, and PATCH act on

existing Poll resources. Hence, we need to perform the same poll ID validation in the

corresponding methods so that we return the right status code to the client. Listing 5-3

shows the poll id verification logic encapsulated into a PollController’s verifyPoll

method along with the modified getPoll, updatePoll, and deletePoll methods.

Listing 5-3.  Updated PollController

protected Poll verifyPoll(Long pollId) throws ResourceNotFoundException {

 Optional<Poll> poll = pollRepository.findById(pollId);

 if(!poll.isPresent()) {

 �throw new ResourceNotFoundException("Poll with id " +

pollId + " not found");

 }

 return poll.get();

}

@GetMapping("/polls/{pollId}")

public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

 return new ResponseEntity<>(verifyPoll(pollId), HttpStatus.OK);

}

Figure 5-3.  New response for a nonexistent poll

Chapter 5 Error Handling

107

@PutMapping("/polls/{pollId}")

public ResponseEntity<?> updatePoll(@RequestBody Poll poll, @PathVariable

Long pollId) {

 verifyPoll(pollId);

 pollRepository.save(poll);

 return new ResponseEntity<>(HttpStatus.OK);

}

@DeleteMapping("/polls/{pollId}")

public ResponseEntity<?> deletePoll(@PathVariable Long pollId) {

 pollRepository.deleteById(pollId);

 pollRepository.delete(pollId);

 return new ResponseEntity<>(HttpStatus.OK);

}

�Error Responses
HTTP status codes play an important role in REST APIs. API developers should strive

to return the right codes indicating the request status. Additionally, it is good practice

to provide helpful, fine-grained details regarding the error in the response body. These

details will enable API consumers to troubleshoot issues easily and help them to recover.

As you can see in Figure 5-3, Spring Boot follows this practice and includes the following

details in error response bodies:

•	 Timestamp—The time in milliseconds when the error happened.

•	 Status—HTTP status code associated with the error; this is partly

redundant as it is same as the response status code.

•	 Error—The description associated with the status code.

•	 Exception—The fully qualified path to the exception class resulting in

this error.

•	 Message—The message providing more details about the error.

•	 Path—The URI that resulted in the exception.

Chapter 5 Error Handling

108

These details are generated by the Spring Boot framework. This feature is not

available out of the box in non-Boot Spring MVC applications. In this section, we will

implement a similar error response for a QuickPoll application using generic Spring

MVC components so that it works in both Boot and non-Boot environments. Before

we dive into this implementation, let’s look at the error response details of two popular

applications: GitHub and Twilio. Figure 5-4 shows GitHub’s error response details for

a request containing invalid inputs. The message attribute gives a plain description of

the error, and the error attribute lists the fields with invalid inputs. In this example, the

client’s request is missing the Issue resource’s title field.

Twilio provides an API that allows developers programmatically make phone calls,

send texts, and receive texts. Figure 5-5 shows the error response for a POST call that

is missing a “To” phone number. The status and message fields are similar to fields in

Spring Boot’s response. The code field contains a numeric code that can be used to find

more information about the exception. The more_info field contains the URL for error

code documentation. On receiving this error, a Twilio API consumer can navigate to

https://www.twilio.com/docs/errors/21201 and get more information to troubleshoot

the error.

Figure 5-4.  GitHub error response

Chapter 5 Error Handling

https://www.twilio.com/docs/errors/21201

109

It is clear that there is not a standard response format for errors. It is up to the API

and framework implementers to decide on the details to be sent to the client. However,

attempts to standardize the response format have begun, and an IETF specification

known as Problem Details for HTTP APIs (http://tools.ietf.org/html/draft-

nottingham-http-problem-06) is gaining traction. Inspired by the “Problem Details for

HTTP APIs” specification, Listing 5-4 shows the error response format that we will be

implementing in our QuickPoll application.

Listing 5-4.  QuickPoll Error Response Format

{

 "title" : "",

 "status" : "",

 "detail" : ",

 "timestamp" : "",

 "developerMessage: "",

 "errors": {}

}

Here is a brief description of the fields in the QuickPoll error response:

•	 Title—The title field provides a brief title for the error condition.

For example, errors resulting as a result of input validation will have

the title “Validation Failure.” Similarly, an “Internal Server Error” will

be used for internal server errors.

•	 Status—The status field contains the HTTP status code for the

current request. Even though it is redundant to include status code in

the response body, it allows API clients to look for all the information

that it needs to troubleshoot in one place.

Figure 5-5.  Twilio error response

Chapter 5 Error Handling

http://tools.ietf.org/html/draft-nottingham-http-problem-06
http://tools.ietf.org/html/draft-nottingham-http-problem-06

110

•	 Detail—The detail field contains a short description of the error.

The information in this field is typically human readable and can be

presented to an end user.

•	 Timestamp—The time in milliseconds when the error occurred.

•	 developerMessage—The developerMessage contains information

such as exception class name or stack trace that is relevant to

developers.

•	 Errors—The error field is used to report field validation errors.

Now that we have our error response defined, we are ready to modify QuickPoll

application. We begin by creating a Java representation of the response details, as shown

in Listing 5-5. As you can see, the ErrorDetail class is missing the errors field. We will be

adding that functionality in the upcoming section.

Listing 5-5.  Error Response Details Representation

package com.apress.dto.error;

public class ErrorDetail {

 private String title;

 private int status;

 private String detail;

 private long timeStamp;

 private String developerMessage;

 // Getters and Setters omitted for brevity

}

Error handling is a crosscutting concern. We need an application-wide strategy that

handles all of the errors in the same way and writes the associated details to the response

body. As we discussed in Chapter 2, classes annotated with @ControllerAdvice

can be used to implement such crosscutting concerns. Listing 5-6 shows the

RestExceptionHandler class with an aptly named handleResourceNotFoundException

method. Thanks to the @ExceptionHandler annotation, any time a

ResourceNotFoundException is thrown by a controller, Spring MVC would invoke the

RestExceptionHandler’s handleResourceNotFoundException method. Inside this

method, we create an instance of ErrorDetail and populate it with error information.

Chapter 5 Error Handling

111

Listing 5-6.  RestExceptionHandler Implementation

package com.apress.handler;

import java.util.Date;

import javax.servlet.http.HttpServletRequest;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.ControllerAdvice;

import org.springframework.web.bind.annotation.ExceptionHandler;

import com.apress.dto.error.ErrorDetail;

import com.apress.exception.ResourceNotFoundException;

@ControllerAdvice

public class RestExceptionHandler {

 @ExceptionHandler(ResourceNotFoundException.class)

public ResponseEntity<?> handleResourceNotFoundException(ResourceNotFoundEx

ception rnfe, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();

 errorDetail.setTimeStamp(new Date().getTime());

 errorDetail.setStatus(HttpStatus.NOT_FOUND.value());

 errorDetail.setTitle("Resource Not Found");

 errorDetail.setDetail(rnfe.getMessage());

 errorDetail.setDeveloperMessage(rnfe.getClass().getName());

 �return new ResponseEntity<>(errorDetail, null, HttpStatus.

NOT_FOUND);

 }

}

To verify that our newly created handler works as expected, restart the QuickPoll

application and submit a Postman request to a nonexistent poll with id 100. You should

see an error response as shown in Figure 5-6.

Chapter 5 Error Handling

112

�Input Field Validation
As a famous proverb goes, “garbage in, garbage out”; input field validation should be

another area of emphasis in every application. Consider the scenario in which a client

requests a new poll to be created but doesn’t include the poll question in the request.

Figure 5-7 shows a Postman request with a missing question and the corresponding

response. Make sure that you set the Content-Type header to “application/json” before

firing the Postman request. From the response, you can see that the poll still gets

created. Creating a poll with a missing question can result in data inconsistencies and

other bugs.

Figure 5-6.  ResourceNotFoundException error response

Chapter 5 Error Handling

113

Spring MVC provides two options for validating user input. In the first option, we

create a validator that implements the org.springframework.validation.Validator

interface. Then we inject this validator into a controller and invoke validator’s validate

method manually to perform validation. The second option is to use the JSR 303

validation, an API intended to simplify field validation in any layer of the application.

Considering the simplicity and the declarative nature of the framework, we will be using

JSR 303 validation framework in this book.

You can read more about JSR 303 at https://beanvalidation.org/1.0/spec.

The JSR 303 and JSR 349 define specifications for the Bean Validation API (version

1.0 and 1.1, respectively). They provide a metadata model for JavaBean validation via a

set of standardized validation constraints. Using this API, you annotate domain object

properties with validation constraints such as @NotNull and @Email. Implementing

frameworks enforce these constraints at runtime. In this book, we will be using

Figure 5-7.  Creating a poll with a missing question

Chapter 5 Error Handling

https://beanvalidation.org/1.0/spec

114

Hibernate Validator, a popular JSR 303/349 implementation framework. Table 5-1 shows

some of the out-of-the-box validation constraints available with Bean Validation API.

Additionally, it is possible to define your own custom constraints.

To add validation capabilities to QuickPoll, we start by annotating the Poll class as

shown in Listing 5-7. Because we want to make sure that each Poll has a question, we

annotated the question field with an @NotEmpty annotation. The javax.validation.

constraints.NotEmpty annotation is not part of JSR 303/349 API. Instead, it is part of

Hibernate Validator; it ensures that the input string is not null and its length is greater

than zero. Also, to make the experience of taking a poll simpler, we will restrict each poll

to contain no fewer than two and no more than six options.

Table 5-1.  Bean Validation API Constraints

Constraint Description

NotNull Annotated field must not have null value.

Null Annotated field must be null.

Max Annotated field value must be an integer value lower than or equal to the

number specified in the annotation.

Min Annotated field value must be an integer value greater than or equal to the

number specified in the annotation.

Past Annotated field must be a date in the past.

Future Annotated field must be a date in the future.

Size Annotated field must match the min and max boundaries specified in the

annotation.

For a field that is a Collection, the size of the Collection is matched against

boundaries.

For a String field, the length of the string is verified against boundaries.

Pattern Annotated field must match the regular expression specified in the annotation.

Chapter 5 Error Handling

115

Listing 5-7.  Poll Class Annotated with JSR 303 Annotations

@Entity

public class Poll {

 @Id

 @GeneratedValue

 @Column(name="POLL_ID")

 private Long id;

 @Column(name="QUESTION")

 @NotEmpty

 private String question;

 @OneToMany(cascade=CascadeType.ALL)

 @JoinColumn(name="POLL_ID")

 @OrderBy

 @Size(min=2, max = 6)

 private Set<Option> options;

 // Getters and Setters removed for brevity

}

We now move our attention to the com.apress.controller.PollController and

add an @Valid annotation to the createPoll method’s Poll parameter, as shown in

Listing 5-8. The @Valid annotation instructs Spring to perform data validation after

binding the user-submitted data. Spring delegates the actual validation to a registered

Validator. With Spring Boot adding JSR 303/JSR 349 and Hibernate Validator jars to the

classpath, the JSR 303/JSR 349 is enabled automatically and will be used to perform the

validation.

Listing 5-8.  PollController Annotated with @Valid Annotations

@GetMapping(value="/polls")

public ResponseEntity<?> createPoll(@Valid @RequestBody Poll poll) {

 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource

 HttpHeaders responseHeaders = new HttpHeaders();

 URI newPollUri = ServletUriComponentsBuilder

Chapter 5 Error Handling

116

 .fromCurrentRequest()

 .path("/{id}")

 .buildAndExpand(poll.getId())

 .toUri();

 responseHeaders.setLocation(newPollUri);

 �return new ResponseEntity<>(null, responseHeaders, HttpStatus.

CREATED);

}

On repeating the Postman request with a missing question as we did in Figure 5-7,

you will see the operation fail with an error code 400, as shown in Figure 5-8. From the

error response, notice that Spring MVC completed validating the input. On not finding

the required question field, it threw a MethodArgumentNotValidException exception.

Even though Spring Boot’s error message is helpful, to be consistent with

our QuickPoll error response that we designed in Listing 5-4, we will modify the

RestExceptionHandler so that we can intercept a MethodArgumentNotValidException

exception and return an appropriate ErrorDetail instance. While we were designing

the QuickPoll error response, we came up with an error field that can hold our validation

errors. It is possible for a field to have one or more validation errors associated with it.

For example, a missing question field in our Poll example would result in a “Field may

not be null” validation error. In the same way, an empty email address could result in

“Field may not be null” and “Field is not a well-formed email” validation errors. Keeping

these validation constraints in mind, Listing 5-9 shows a complete error response with

the validation error examples. The error object contains an unordered collection of

key-value error instances. The error key represents the name of the resource feed that

has validation errors. The error value is an array representing the validation error details.

Figure 5-8.  Missing question resulting in error

Chapter 5 Error Handling

117

From Listing 5-9, we can see that field1 contains one validation error and field2 is

associated with two validation errors. Each validation error itself is made up of code that

represents the violated constraint and a message containing a human-readable error

representation.

Listing 5-9.  Validation Error Format

{

 "title" : "",

 "status" : "",

 "detail" : ",

 "timestamp" : "",

 "path" : "",

 "developerMessage: "",

 "errors": {

 "field1" : [{

 "code" : "NotNull",

 message" : "Field1 may not be null"

 }],

 "field2" : [{

 "code" : "NotNull",

 "message" : "Field2 may not be null"

 },

 {

 "code" : "Email",

 �"message" : "Field2 is not a well formed

email"

 }]

 }

}

To represent the newly added validation error feature in the Java code, we created

a new com.apress.dto.error.ValidationError class. Listing 5-10 shows the

ValidationError class and updated ErrorDetail class. In order to generate the error

response format shown in Listing 5-9, the error field in ErrorDetail class is defined as a

Map that accepts String instances as keys and List of ValidationError instances as values.

Chapter 5 Error Handling

118

Listing 5-10.  ValidationError and Updated ErrorDetail Classes

package com.apress.dto.error;

public class ValidationError {

 private String code;

 private String message;

 // Getters and Setters removed for brevity

}

public class ErrorDetail {

 private String title;

 private int status;

 private String detail;

 private long timeStamp;

 private String path;

 private String developerMessage;

private Map<String, List<ValidationError>> errors = new HashMap<String,

List<ValidationError>>();

 // Getters and setters removed for brevity

}

The next step is to modify the RestExceptionHandler by adding a method that

intercepts and processes the MethodArgumentNotValidException exception. Listing 5-11

shows the handleValidationError method implementation in RestExceptionHandler.

We begin the method implementation by creating an instance of ErrorDetail and

populating it. Then we use the passed-in exception parameter to obtain all the field

errors and loop through the list. We created an instance of ValidationError for each

field error and populated it with code and message information.

Chapter 5 Error Handling

119

Listing 5-11.  handleValidationError Implementation

@ControllerAdvice

public class RestExceptionHandler {

 @ExceptionHandler(MethodArgumentNotValidException.class)

public ResponseEntity<?> handleValidationError(MethodArgumentNotValidExcept

ion manve, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();

 // Populate errorDetail instance

 errorDetail.setTimeStamp(new Date().getTime());

 errorDetail.setStatus(HttpStatus.BAD_REQUEST.value());

String requestPath = (String) request.getAttribute("javax.servlet.error.

request_uri");

 if(requestPath == null) {

 requestPath = request.getRequestURI();

 }

 errorDetail.setTitle("Validation Failed");

 errorDetail.setDetail("Input validation failed");

 �errorDetail.setDeveloperMessage(manve.getClass().

getName());

 // Create ValidationError instances

 �List<FieldError> fieldErrors = manve.getBindingResult().

getFieldErrors();

 for(FieldError fe : fieldErrors) {

List<ValidationError> validationErrorList = errorDetail.getErrors().get

(fe.getField());

 if(validationErrorList == null) {

 �validationErrorList = new

ArrayList<ValidationError>();

Chapter 5 Error Handling

120

errorDetail.getErrors().put(fe.getField(), validationErrorList);

 }

 �ValidationError validationError = new

ValidationError();

 validationError.setCode(fe.getCode());

 validationError.setMessage(fe.getDefaultMessage());

 validationErrorList.add(validationError);

 }

 �return new ResponseEntity<>(errorDetail, null, HttpStatus.

BAD_REQUEST);

 }

 /** handleResourceNotFoundException method removed **/

}

With this implementation in place, restart the QuickPoll application and submit a

Poll with missing question. This will result in a status code of 400 with our custom error

response, as shown in Figure 5-9.

Chapter 5 Error Handling

121

�Externalizing Error Messages
We have made quite a bit of progress with our input validation and provided the client

with descriptive error messages that can help them troubleshoot and recover from those

errors. However, the actual validation error message may not be very descriptive and API

developers might want to change it. It would be even better if they were able to pull this

message from an external properties file. The property file approach not only simplifies

Java code but also makes it easy to swap the messages without making code changes.

Figure 5-9.  Validation error response

Chapter 5 Error Handling

122

It also sets the stage for future internationalization/localization needs. To achieve this,

create a messages.properties file under the src\main\resources folder, and add the

following two messages:

NotEmpty.poll.question=Question is a required field

Size.poll.options=Options must be greater than {2} and less than {1}

As you can see, we are following the convention <<Constraint_Name>>.model_name.

field_Name for each key of the message. The model_name represents name of the

Spring MVC’s model object to which user-submitted data is being bound. The name is

typically provided using the @ModelAttribute annotation. In the scenarios in which this

annotation is missing, the model name is derived using the parameter’s nonqualified

class name. The PollController’s createPoll method takes a com.apress.domain.

Poll instance as its model object. Hence, in this case, the model name will be derived

as poll. If a controller were to take an instance of com.apress.domain.SomeObject as its

parameter, the derived model name will be someObject. It is important to remember that

Spring will not use the name of the method parameter as the model name.

The next step is to read the properties from the file and use them during

the ValidationError instance creation. We do that by injecting an instance of

MessageSource into the RestExceptionHandler class. Spring’s MessageSource provides

an abstraction to easily resolve messages. Listing 5-12 shows the modified source code

for handleValidationError. Notice that we are using MessageResource's getMessage

method to retrieve messages.

Listing 5-12.  Reading Messages from Properties File

@ControllerAdvice

public class RestExceptionHandler {

 @Inject

 private MessageSource messageSource;

 @ExceptionHandler(MethodArgumentNotValidException.class)

 @ResponseStatus(HttpStatus.BAD_REQUEST)

public @ResponseBody ErrorDetail handleValidationError(MethodArgumentNot

ValidException manve, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();

 // Populate errorDetail instance

Chapter 5 Error Handling

123

 errorDetail.setTimeStamp(new Date().getTime());

 errorDetail.setStatus(HttpStatus.BAD_REQUEST.value());

String requestPath = (String) request.getAttribute("javax.servlet.error.

request_uri");

 if(requestPath == null) {

 requestPath = request.getRequestURI();

 }

 errorDetail.setTitle("Validation Failed");

 errorDetail.setDetail("Input validation failed");

 �errorDetail.setDeveloperMessage(manve.getClass().

getName());

 // Create ValidationError instances

 �List<FieldError> fieldErrors = manve.getBindingResult().

getFieldErrors();

 for(FieldError fe : fieldErrors) {

List<ValidationError> validationErrorList = errorDetail.getErrors().get

(fe.getField());

 if(validationErrorList == null) {

 ��validationErrorList = new ArrayList

<ValidationError>();

errorDetail.getErrors().put(fe.getField(), validationErrorList);

 }

 �ValidationError validationError = new

ValidationError();

 validationError.setCode(fe.getCode());

 �validationError.setMessage(messageSource.

getMessage(fe, null));

 validationErrorList.add(validationError);

 }

 return errorDetail;

 }

}

Chapter 5 Error Handling

124

Restarting the QuickPoll application and submitting a poll with a missing question

would result in the new validation error message as shown in Figure 5-10.

�Improving RestExceptionHandler
By default, Spring MVC handles error scenarios such as not being able to read a

malformed request or not finding a required request parameter by throwing a set of

standard exceptions. However, Spring MVC doesn’t write these standard exception

details to the response body. To keep things consistent for our QuickPoll clients, it is

important that Spring MVC standard exceptions are also handled in the same way and

Figure 5-10.  New validation error message

Chapter 5 Error Handling

125

that we return the same error response format. A straightforward approach is to create a

handler method for each exception in our RestExceptionHandler. A simpler approach is

to have RestExceptionHandler class extend Spring’s ResponseEntityExceptionHandler.

The ResponseEntityExceptionHandler class contains a set of protected methods that

handle standard exception and return a ResponseEntity instance containing error

details.

Extending the ResponseEntityExceptionHandler class allows us to override

the protected method associated with the exception and return an ErrorDetail

instance. Listing 5-13 shows a modified RestExceptionHandler that overrides

handleHttpMessageNotReadable method. The method implementation follows the

same pattern that we used before—create and populate an instance of ErrorDetail.

Because the ResponseEntityExceptionHandler already comes with a handler method

for MethodArgumentNotValidException, we have moved the handleValidationError

method code to an overridden handleMethodArgumentNotValid method.

Listing 5-13.  RestExceptionHandler Handling Malformed Messages

@ControllerAdvice

public class RestExceptionHandler extends ResponseEntityExceptionHandler {

 @Override

 protected ResponseEntity<Object> handleHttpMessageNotReadable(

 �HttpMessageNotReadableException ex, HttpHeaders

headers,

 HttpStatus status, WebRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();

 errorDetail.setTimeStamp(new Date().getTime());

 errorDetail.setStatus(status.value());

 errorDetail.setTitle("Message Not Readable");

 errorDetail.setDetail(ex.getMessage());

 errorDetail.setDeveloperMessage(ex.getClass().getName());

 �return handleExceptionInternal(ex, errorDetail, headers,

status, request);

 }

 @Override

Chapter 5 Error Handling

126

public ResponseEntity<Object> handleMethodArgumentNotValid(MethodArgumentNot

ValidException manve, HttpHeaders headers, HttpStatus status, WebRequest

request) {

 // implementation removed for brevity

 �return handleExceptionInternal(manve, errorDetail, headers,

status, request);

 }

}

Let’s quickly verify our implementation by submitting a nonreadable message (such

as removing a “,” from the JSON request body) using Postman. You should see a response

as shown in Figure 5-11.

Figure 5-11.  Not Readable message error

Chapter 5 Error Handling

127

�Summary
In this chapter, we designed and implemented an error response format for Spring

MVC–based REST applications. We also looked at validating user input and returning

error messages that are meaningful to API consumers. In the next chapter, we will look at

strategies for documenting REST services using the Swagger framework.

Chapter 5 Error Handling

129
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_6

CHAPTER 6

Documenting REST
Services
In this chapter we will discuss the following:

•	 The basics of Swagger

•	 Using Swagger for API documentation

•	 Customizing Swagger

Documentation is an important aspect of any project. This is especially true

for enterprise and open-source projects, where many people collaborate to build

the project. In this chapter, we will look at Swagger, a tool that simplifies REST API

documentation.

Documenting a REST API for consumers to use and interact with is a difficult task

because there are no real established standards. Organizations have historically relied on

manually edited documents to expose REST contracts to clients. With SOAP-based web

services, a WSDL serves as a contract for the client and provides a detailed description

of the operations and associated request/response payloads. The WADL, or Web

Application Description Language, specification tried to fill this gap in the REST web

services world, but it didn’t get a lot of adoption. In recent years, there has been growth

in the number of metadata standards such as Swagger, Apiary, and iODocs for describing

REST services. Most of them grew out of the need to document APIs, thereby expanding

an API’s adoption.

https://doi.org/10.1007/978-1-4842-7477-4_6#DOI

130

�Swagger
Swagger (http://swagger.io) is a specification and a framework for creating interactive

REST API documentation. It enables documentation to be in sync with any changes

made to REST services. It also provides a set of tools and SDK generators for generating

API client code. Swagger was originally developed by Wordnik in early 2010 and is

currently backed by SmartBear software.

Swagger is a language-agnostic specification with implementations available for a

variety of languages such as Java, Scala, and PHP. A full description of specifications can

be found at https://github.com/springfox/springfox. The specification is made up

of two file types—a resource listing file and a set of API declaration files that describe the

REST API and the available operations.

The resource listing file referred to by the name “api-docs” is the root document

for describing the API. It contains general information about the API such as the API

version, title, description, and license. As the name suggests, the resource listing file

also contains all of the API resources available in the application. Listing 6-1 shows a

sample resource listing file for a hypothetical REST API. Notice that Swagger uses JSON

as its description language. From the APIs array in Listing 6-1, you can see that the

resource listing file has two API resources declared, namely, products and orders. The

URIs /default/products and /default/orders allow you to access the resource’s API

declaration file. Swagger allows grouping of its resources; by default, all resources are

grouped under the default group and, hence, the “/default” in the URI. The info object

contains the contact and licensing information associated with the API.

Listing 6-1.  Sample Resource File

{

 "apiVersion": "1.0",

 "swaggerVersion": "1.2"

 "apis": [

 {

 "description": "Endpoint for Product management",

 "path": "/default/products"

 },

 {

 "description": "Endpoint for Order management",

Chapter 6 Documenting REST Services

http://swagger.io
https://github.com/springfox/springfox

131

 "path": "/default/orders"

 }

],

 "authorizations": { },

 "info" : {

 "contact": "contact@test.com",

 "description": "Api for an ecommerce application",

 "license": "Apache 2.0",

 "licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html",

 "termsOfServiceUrl": "Api terms of service",

 "title": "ECommerce App"

 }

}

An API declaration file describes a resource along with the API operations and

request/response representations. Listing 6-2 shows a sample API declaration file for

the product resource and will be served at the URI /default/products. The basePath

field provides the Root URI serving the API. The resourcePath specifies the resource

path relative to the basePath. In this case, we are specifying that the product’s REST API

is accessible at http://server:port/products. The APIs field contains API objects that

describe an API operation. Listing 6-2 describes one API operation called createProduct

and its associated HTTP method, the media type of the messages consumed/produced,

and API responses. The models field contains any model objects associated with the

resource. Listing 6-2 shows a product model object associated with a product resource.

Listing 6-2.  Sample Products API Declaration File at /default/products

{

 "apiVersion": "1.0",

 "swaggerVersion": "1.2"

 "basePath": "/",

 "resourcePath": "/products",

 "apis": [

 {

 "description": "createProduct",

 "operations": [

Chapter 6 Documenting REST Services

132

 {

 "method": "POST",

 "produces": ["application/json"],

 "consumes": ["application/json"],

 "parameters": [{ "allowMultiple": false}],

 "responseMessages": [

 {

 "code": 200,

 "message": null,

 "responseModel": "object"

 }

]

 }

],

 "path": "/products"

 }

],

 "models": {

 "Product": {

 "description": "",

 "id": "Product",

 "properties": { }

 }

 }

}

Note I n our hypothetical example, Swagger expects the API declaration file for
the product resource to reside at the “/default/products” URI. This should
not be confused with the actual REST API location for accessing the product
resource. In this example, the declaration file indicates that the product resource is
accessible at http://server:port/products URI.

Chapter 6 Documenting REST Services

133

�Integrating Swagger
Integrating Swagger involves creating the “api-docs” resource listing file and a set of API

declaration files describing API’s resources. Instead of hand-coding these files, there are

several Swagger and community-owned projects that integrate with existing source code

and automatically generate these files. springfox-boot-starter is one such framework

that simplifies Swagger integration with Spring MVC–based projects. We begin the

Swagger integration with QuickPoll application by adding the springfox-boot-starter

Maven dependency shown in Listing 6-3 in the pom.xml file.

Note  We continue our tradition of building on the work we did on the QuickPoll
application in the previous chapters. You can also use the starter project available
at Chapter6\starter folder of the downloaded source code. The completed
solution is available under the Chapter6\final folder.

Listing 6-3.  Springfox-Boot-Starter Dependency

<dependency>

 <groupId>io.springfox</groupId>

 <artifactId>springfox-boot-starter</artifactId>

 <version>3.0.0</version>

</dependency>

By the next step, we have to define bean Docket as shown in Listing 6-4.

Listing 6-4.  Define Docket Bean

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.

ResourceHandlerRegistry;

import org.springframework.web.servlet.config.annotation.

WebMvcConfigurerAdapter;

import springfox.documentation.builders.PathSelectors;

Chapter 6 Documenting REST Services

134

import springfox.documentation.builders.RequestHandlerSelectors;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;

@Configuration

public class SwaggerConfiguration {

 @Bean

 public Docket api() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 .paths(PathSelectors.any())

 .build();

 }

}

With this minimal configuration in place, run the QuickPoll application and launch

the URI http://localhost:8080/v3/api-docs. You should see the resource listing file

as shown in Figure 6-1.

Chapter 6 Documenting REST Services

135

�Swagger UI
The resource listing and API declaration files act as valuable resources for understanding

a REST API. Swagger UI is a subproject of Swagger that takes these files and

automatically generates a pleasant, intuitive interface for interacting with API. Using this

interface, both technical and nontechnical folks can test REST services by submitting

requests and see how those services respond. The Swagger UI is built using HTML, CSS,

and JavaScript and doesn’t have any other external dependencies. It can be hosted in any

server environment or can even run from your local machine.

Figure 6-1.  QuickPoll resource listing file

Chapter 6 Documenting REST Services

136

The springfox-boot-starter already included work with Swagger UI that uses JSON

from http://localhost:8080/v3/api-docs and parsing JSON in readable UI as shown

in Figure 6-2.

Without some modifications, we are ready to launch Swagger UI. Run the quick-poll

application and navigate to the URL http://localhost:8080/swagger-ui.html. You

should see QuickPoll Swagger UI, as shown in Figure 6-2.

Using the UI, you should be able to perform operations such as creating polls and

reading all polls.

�Customizing Swagger
In the previous sections, you have seen that with minimal configuration, we were able

to create interactive documentation using Swagger. Additionally, this documentation

would automatically update itself when we make changes to our services. However, you

will notice that out of the box, the title and the API descriptions are not very intuitive.

Also, the URLs such as “Terms of Service,” “Contact the Developer,” and so on don’t

work. As you explore the UI, the Response classes such as Poll and Vote are not visible

in the Swagger UI, and the user has to end up guessing what the return type for the

operations is going to be.

Figure 6-2.  QuickPoll Swagger UI

Chapter 6 Documenting REST Services

137

Swagger Springfox provides a convenient builder named Docket for customizing and

configuring Swagger. The Docket provides convenient methods and sensible defaults but

itself uses the ApiInfo class to perform the actual configuration. We begin our Swagger

customization by creating a SwaggerConfig class under the com.apress package in our

QuickPoll application. Populate the newly created class with the contents of Listing 6-5.

Listing 6-5.  Custom Swagger Implementation

package com.apress;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.

ResourceHandlerRegistry;

import org.springframework.web.servlet.config.annotation.

WebMvcConfigurerAdapter;

import springfox.documentation.builders.PathSelectors;

import springfox.documentation.builders.RequestHandlerSelectors;

import springfox.documentation.service.ApiInfo;

import springfox.documentation.service.Contact;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;

import java.util.Collections;

@Configuration

public class SwaggerConfiguration {

 @Bean

 public Docket api() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 �.apis(RequestHandlerSelectors.basePackage("com.apress.

controller"))

 .paths(PathSelectors.any())

 .build()

 .apiInfo(apiInfo());

 }

Chapter 6 Documenting REST Services

138

 private ApiInfo apiInfo() {

 return new ApiInfo(

 "QuickPoll REST API",

 "QuickPoll Api for creating and managing polls",

 "http://example.com/terms-of-service",

 "Terms of service",

 �new Contact("Maxim Bartkov", "www.example.com", "info@

example.com"),

 �"MIT License", "http://opensource.org/licenses/MIT",

Collections.emptyList());

 }

}

The SwaggerConfig class is annotated with @Configuration indicating that it

contains one or more Spring bean configurations. Because the Docket relies on the

framework’s SpringSwaggerConfig, we inject an instance of SpringSwaggerConfig for

later use. The SpringSwaggerConfig is a Spring-managed bean that gets instantiated

during Spring’s component scanning in JAR files.

The configureSwagger method contains the meat of our Swagger configuration.

The method is annotated with @Bean, indicating to Spring that the return value is a

Spring bean and needs to be registered within a BeanFactory. The Swagger Springfox

framework picks up this bean and customizes Swagger. We begin the method

implementation by creating an instance of SwaggerSpringMvcPlugin. Then, using the

ApiInfoBuilder, we create an ApiInfo object containing the title, description, contact,

and license information associated with the QuickPoll application. Finally, we pass the

created apiInfo and apiVersion information to the Docket instance and return it.

Note I t is possible to have multiple methods producing Docket beans. Each
Docket would result in a separate resource listing. This is useful in situations in
which you have the same Spring MVC application that serves more than one API or
multiple versions of the same API.

With the new SwaggerConfig class added, run the QuickPoll application and

navigate to http://localhost:8080/swagger-ui.html. You will see the changes

reflected in our UI as shown in Figure 6-3.

Chapter 6 Documenting REST Services

139

From Figure 6-3, you will notice that in addition to the three QuickPoll REST

endpoints, there is a Spring Boot’s “/error” endpoint. Because this endpoint really

doesn’t serve any purpose, let’s hide it from our API documentation. To accomplish

this, we will use the Docket class’s handy includePattern method. The includePattern

method allows us to specify which request mappings should be included in the resource

listing. Listing 6-6 shows the updated portion of the SwaggerConfig’s configureSwagger

method. The paths method by default takes regular expressions, and, in our case, we

explicitly listed all three endpoints we would like to include.

Listing 6-6.  ConfigureSwagger Method with IncludePatterns

docket

 .apiInfo(apiInfo)

 �.paths(PathSelectors.regex("/polls/*.*|/votes/*.*|/

computeresult/*.*"));

Rerun the QuickPoll application and you will see the Spring Boot’s error controller

no longer appearing in the documentation.

Figure 6-3.  Updated QuickPoll Swagger UI

Chapter 6 Documenting REST Services

140

�Configuring Controllers
Swagger Core provides a set of annotations that make it easy to customize controller

documentation. In this section, we will customize the PollController, but the same

principles apply to other REST controllers. The downloaded code in Chapter6\final has

the complete customization of all controllers.

We begin by annotating the PollContoller with the @Api annotation as shown in

Listing 6-7. The @Api annotation marks a class as a Swagger resource. Swagger scans

classes annotated with @Api to read the metadata required for generating resource listing

and API declaration files. Here we are indicating that the documentation associated with

the PollController will be hosted at /polls. Remember that out of the box, Swagger

used the Class name and generated URI poll-controller (http://localhost:8080/

swagger-ui/index.html#!/poll-controller) to host the documentation. With

our change, the PollController Swagger documentation is accessible at http://

localhost:8080/swagger-ui.html#!/polls. Using the @Api annotation, we have also

provided the description associated with our Poll API.

Listing 6-7.  @Api Annotation in Action

import io.swagger.annotations.Api;

@RestController

@Api(value = "polls", description = "Poll API")

public class PollController {

 // Implementation removed for brevity

}

Run the QuickPoll application, and, on navigating to Swagger UI at http://

localhost:8080/swagger-ui/index.html, you will notice the updated URI path and

description as shown in Figure 6-4.

Figure 6-4.  Updated poll endpoint

Chapter 6 Documenting REST Services

141

Now we will move on to the API operation customization using the @ApiOperation

annotation. This annotation allows us to customize the operation information such as

name, description, and response. Listing 6-8 shows the @ApiOperation applied to the

createPoll, getPoll, and getAllPolls methods. We use the value attribute to provide

a brief description of the operation. Swagger recommends limiting this field to 120

characters. The notes field can be used to provide more descriptive information about

the operation.

Listing 6-8.  @ApiOperation Annotated Methods

import io.swagger.annotations.ApiOperation;

@ApiOperation(value = "Creates a new Poll", notes="The newly created poll

Id will be sent in the location response header", response = Void.class)

@PostMapping("/polls")

public ResponseEntity<Void> createPoll(@Valid @RequestBody Poll poll) {

}

@ApiOperation(value = "Retrieves a Poll associated with the pollId",

response=Poll.class)

@GetMapping("/polls/{pollId}")

public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

}

@ApiOperation(value = "Retrieves all the polls", response=Poll.class,

responseContainer="List")

@GetMapping("/polls")

public ResponseEntity<Iterable<Poll>> getAllPolls() {

}

The createPoll method on successful completion sends an empty body and a status

code 201 to the client. However, because we are returning a ResponseEntity, Swagger

is not able to figure out the right response model. We fix this using ApiOperation’s

response attribute and setting it to a Void.class. We also changed the method return

type from ResponseEntity<?> to ResponseEntity<Void> to make our intent more clear.

Chapter 6 Documenting REST Services

142

The getPoll method returns a poll associated with the passed in pollId parameter.

Hence, we set the ApiOperation’s response attribute to Poll.class. Because the

getAllPolls method returns a collection of Poll instances, we have used the

responseContainer attribute and set its value to List.

With these annotations added, rerun and launch QuickPoll application’s Swagger

UI to verify that the descriptions, response model, and notes sections are changed.

For example, click the “polls” link next to “Poll API” to expand the PollController’s

operations. Then click the “/polls/{pollId}” link next to GET to see the response model

associated with getPoll method. Figure 6-5 shows this updated response model.

The @ApiOperation we used earlier allows us to specify an operation’s default return

type. As we have seen throughout the book, a well-defined API uses additional status

codes, and Swagger provides the @ApiResponse annotation to configure the codes and

associated response body. Listing 6-9 shows the createPoll method annotated with

@ApiResponse for status codes 201 and 500. Swagger requires us to place all the

@ApiResponse annotations inside a wrapper @ApiResponse annotation. With the

status code 201, we have added notes indicating how to retrieve the newly created poll

ID. With the status code 500, we have indicated that the response body will contain an

ErrorDetail instance.

Figure 6-5.  GetPoll method's updated model

Chapter 6 Documenting REST Services

143

Listing 6-9.  @ApiResponse Annotations

import com.wordnik.swagger.annotations.ApiResponse;

import com.wordnik.swagger.annotations.ApiResponses;

 �@ApiOperation(value = "Creates a new Poll", notes="The newly

created poll Id will be sent in the location response header",

response = Void.class)

 �@ApiResponses(value = {@ApiResponse(code=201, message="Poll Created

Successfully", response=Void.class),

 �@ApiResponse(code=500, message="Error creating

Poll", response=ErrorDetail.class) })

 @PostMapping("/polls")

 �public ResponseEntity<Void> createPoll(@Valid @RequestBody Poll

poll) {

 // Content removed for brevity

}

Run the QuickPoll application and navigate to Swagger UI. Click the “polls” link next

to “Poll API” to expand the PollController’s operations. Then click the “/polls” link next

to POST to see the updated notes and ErrorDetail model schema. Figure 6-6 shows the

expected output.

Figure 6-6.  Modified response messages

Chapter 6 Documenting REST Services

144

A quick glance at Figure 6-6 shows that we have more response than configured

messages. This is because Swagger out of the box adds a set of default response

messages for each HTTP method. This behavior can be disabled using the

useDefaultResponseMessages method in the Docket class as shown in Listing 6-10.

Listing 6-10.  Ignore Default Response Messages

public class SwaggerConfig {

 @Bean

 public Docket configureSwagger() {

 // Content removed

 docket.useDefaultResponseMessages(false);

 return docket;

 }

}

Run the QuickPoll application and repeat these steps to view the response messages

associated with the POST operation on “/polls” URI. As shown in Figure 6-7, the default

response messages are no longer displayed.

Figure 6-7.  Updated response messages

Chapter 6 Documenting REST Services

145

In addition to the configuration options we looked at, Swagger provides the following

annotations to configure model objects:

•	 @ApiModel—Annotation that allows changing the name of the model

or providing a description to the associated model

•	 @ApiModelProperty—Annotation that can be used to provide

property description and list of allowed values and to indicate if it is

required or not

�Summary
Documentation plays an important role in understanding and consuming a REST API.

In this chapter, we reviewed the basics of Swagger and integrated it with a QuickPoll

application to generate interactive documentation. We also looked at customizing

Swagger to meet our application-specific needs.

In the next chapter, we will look at techniques for versioning REST API and

implementing paging and sorting capabilities.

Chapter 6 Documenting REST Services

147
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_7

CHAPTER 7

Versioning, Paging,
and Sor ting
In this chapter we will discuss the following:

•	 Strategies for versioning REST services

•	 Adding pagination capabilities

•	 Adding sorting capabilities

We all are familiar with the famous proverb “The only thing constant in life is

change.” This applies to software development. In this chapter, we will look at versioning

our API as a way to handle such changes. Additionally, dealing with large datasets can be

problematic especially when mobile clients are involved. Large datasets can also result

in server overload and performance issues. To handle this, we will employ paging and

sorting techniques and send data in manageable chunks.

�Versioning
As user requirements and technology change, no matter how planned our design is,

we will end up changing our code. This will involve making changes to REST resources

by adding, updating, and sometimes removing attributes. Although the crux of the

API—read, create, update, and remove one or more resources—remains the same,

this could result in such drastic changes to the representation that it may break any

existing consumers. Similarly, changes to functionality such as securing our services and

requiring authentication or authorization can break existing consumers. Such major

changes typically call for new versions of the API.

https://doi.org/10.1007/978-1-4842-7477-4_7#DOI

148

In this chapter, we will be adding paging and sorting functionality to our QuickPoll

API. As you will see in later sections, this change will result in changes to the

representations returned for some of the GET HTTP methods. Before we version our

QuickPoll API to handle paging and sorting, let’s look at some approaches for versioning.

�Versioning Approaches
There are four popular approaches to versioning a REST API:

•	 URI versioning

•	 URI parameter versioning

•	 Accept header versioning

•	 Custom header versioning

None of these approaches are silver bullets, and each has its fair share of advantages

and disadvantages. In this section we will look at these approaches along with some real-

world public APIs that use them.

�URI Versioning

In this approach, version information becomes part of the URI. For example, http://

api.example.org/v1/users and http://api.example.org/v2/users represent two

different versions of an application API. Here we use v notation to denote versioning,

and the numbers 1 and 2 following the v indicate the first and second API versions.

URI versioning has been one of the most commonly used approaches and is used

by major public APIs such as Twitter, LinkedIn, Yahoo, and SalesForce. Here are some

examples:

•	 LinkedIn: https://api.linkedin.com/v1/people/~

•	 Yahoo: https://social.yahooapis.com/v1/user/12345/profile

•	 SalesForce: http://na1.salesforce.com/services/data/v26.0

•	 Twitter: https://api.twitter.com/1.1/statuses/

user_timeline.json

•	 Twilio: https://api.twilio.com/2010-04-01/Accounts/

{AccountSid}/Calls

Chapter 7 Versioning, Paging, and Sor ting

https://api.linkedin.com/v1/people/~
https://social.yahooapis.com/v1/user/12345/profile
http://na1.salesforce.com/services/data/v26.0
https://api.twitter.com/1.1/statuses/user_timeline.json
https://api.twitter.com/1.1/statuses/user_timeline.json
https://api.twilio.com/2010-04-01/Accounts/{AccountSid}/Calls
https://api.twilio.com/2010-04-01/Accounts/{AccountSid}/Calls

149

As you can see, LinkedIn, Yahoo, and SalesForce use the v notation. In addition to

a major version, SalesForce uses a minor version as part of its URI version. Twilio, by

contrast, takes a unique approach and uses a timestamp in the URI to differentiate its

versions.

Making a version part of the URI is very appealing as the version information is right

in the URI. It also simplifies API development and testing. Folks can easily browse and

use different versions of REST services via a web browser. On the contrary, this might

make client’s life difficult. For example, consider a client storing references to user

resources in its database. On switching to a new version, these references get outdated

and the client has to do a mass database update to upgrade references to new version.

�URI Parameter Versioning

This is similar to the URI versioning that we just looked at except that the version

information is specified as a URI request parameter. For example, the URI http://api.

example.org/users?v=2 uses the version parameter v to represent the second version of

the API. The version parameter is typically optional, and a default version of the API will

continue working for requests without version parameter. Most often, the default version

is the latest version of the API.

Although as not popular as other versioning strategies, a few major public APIs

such as Netf lix have used this strategy. The URI parameter versioning shares the same

disadvantages of URI versioning. Another disadvantage is that some proxies don’t cache

resources with a URI parameter, resulting in additional network traffic.

�Accept Header Versioning

This versioning approach uses the Accept header to communicate version information.

Because the header contains version information, there will be only one URI for multiple

versions of API.

Up to this point, we have used standard media types such as "application/json"

as part of the Accept header to indicate the type of content the client expects. To pass

additional version information, we need a custom media type. The following convention

is popular when creating a custom media type:

vnd.product_name.version+ suffix

Chapter 7 Versioning, Paging, and Sor ting

150

The vnd is the starting point of the custom media type and indicates vendor. The

product or producer name is the name of the product and distinguishes this media type

from other custom product media types. The version part is represented using strings

such as v1 or v2 or v3. Finally, the suffix is used to specify the structure of the media type.

For example, the +json suffix indicates a structure that follows the guidelines established

for media type "application/json." RFC 6389 (https://tools.ietf.org/html/

rfc6839) gives a full list of standardized prefixes such as +xml, +json, and +zip. Using

this approach, a client, for example, can send an application/vnd.quickpoll.v2+json

accept header to request the second version of the API.

The Accept header versioning approach is becoming more and more popular as

it allows fine-grained versioning of individual resources without impacting the entire

API. This approach can make browser testing harder as we have to carefully craft the

Accept header. GitHub is a popular public API that uses this Accept header strategy. For

requests that don’t contain any Accept header, GitHub uses the latest version of the API

to fulfill the request.

�Custom Header Versioning

The custom header versioning approach is similar to the Accept header versioning

approach except that instead of the Accept header, a custom header is used. Microsoft

Azure takes this approach and uses the custom header x-ms-version. For example,

to get the latest version of Azure at the time of writing this book, your request needs to

include a custom header:

x-ms-version: 2021-09-14

This approach shares the same pros and cons as that of the Accept header approach.

Because the HTTP specification provides a standard way of accomplishing this via the

Accept header, the custom header approach hasn’t been widely adopted.

�Deprecating an API
As you release new versions of an API, maintaining older versions becomes cumbersome

and can result in maintenance nightmares. The number of versions to maintain and

their longevity depend on the API user base, but it is strongly recommended to maintain

at least one older version.

Chapter 7 Versioning, Paging, and Sor ting

https://tools.ietf.org/html/rfc6839
https://tools.ietf.org/html/rfc6839

151

API versions that will no longer be maintained need to be deprecated and eventually

retired. It is important to remember that deprecation is intended to communicate that

the API is still available but will cease to exist in the future. API users should be given

plenty of notices about deprecation so that they can migrate to newer versions.

�QuickPoll Versioning
In this book, we will be using the URI versioning approach to version the QuickPoll

REST API.

Implementing and maintaining different versions of an API can be difficult, as it

generally complicates code. We want to make sure that changes in one version of code

don’t impact other versions of the code. To improve maintainability, we want to make

sure that we avoid code duplication as much as possible. Here are two approaches for

organizing code to support multiple API versions:

•	 Complete code replication—In this approach, you replicate the entire

code base and maintain parallel code paths for each version. Popular

API builder Apigility takes this approach and clones the entire code

base for each new version. This approach makes it easy to make code

changes that wouldn’t impact other versions. It also makes it easy

to switch backend datastores. This would also allow each version

to become a separate deployable artifact. Although this approach

provides a lot of flexibility, we will be duplicating the entire code

base.

•	 Version-specific code replication—In this approach, we only replicate

the code that is specific to each version. Each version can have its

own set of controllers and request/response DTO objects but will

reuse most of the common service and backend layers. For smaller

applications, this approach can work well as version-specific code

can simply be separated into different packages. Care must be taken

when making changes to the reused code, as it might have impact on

multiple versions.

Chapter 7 Versioning, Paging, and Sor ting

152

Spring MVC makes it easy to version a QuickPoll application using the URI

versioning approach. Considering that versioning plays a crucial role in managing

changes, it is important that we version as early as possible in the development cycle.

Hence, we will assign a version (v1) to all of the QuickPoll services that we have

developed so far. To support multiple versions, we will follow the second approach and

create a separate set of controllers.

Note I n this chapter we will continue building on the work that we did on the
QuickPoll application in the previous chapters. Alternatively, a starter project inside
the Chapter7\starter folder of the downloaded source code is available for
you to use. The completed solution is available under the Chapter7\final folder.
Please refer to this solution for complete listings containing getters/setters and
additional imports. The downloaded Chapter7 folder also contains an exported
Postman collection containing REST API requests associated with this chapter.

We begin the versioning process by creating two packages com.apress.

v1.controller and com.apress.v2.controller. Move all of the controllers from the

com.apress.controller package to the com.apress.v1.controller. To each controller

in the new v1 package, add a class-level @RequestMapping ("/v1") annotation. Because

we will have multiple versions of controllers, we need to give unique component names

to individual controllers. We will follow the convention of appending version number to

the unqualified class name to derive our component name. Using this convention, the v1

PollController will have a component name pollControllerV1.

Listing 7-1 shows the portion of the PollController class with these modifications.

Notice that the component name is provided as a value to the @RestController

annotation. Similarly, assign the component name voteControllerV1 to the v1

VoteController and computeResultControllerV1 to the v1 ComputeResultController.

Chapter 7 Versioning, Paging, and Sor ting

153

Listing 7-1.  Version 1 of the Poll Controller

package com.apress.v1.controller;

import org.springframework.web.bind.annotation.RequestMapping;

@RestController("pollControllerV1")

@RequestMapping("/v1")

@Api(value = "polls", description = "Poll API")

public class PollController {

}

Note E ven though the behavior and code of VoteController and
ComputeResultControler don’t change across versions, we are copying the
code to keep things simple. In real-world scenarios, refactor code into reusable
modules, or use inheritance to avoid code duplication.

With the class-level @RequestMapping annotation in place, all of the URIs in the

v1 PollController become relative to "/v1/." Restart the QuickPoll application,

and, using Postman, verify that you can create a new Poll at the new http://

localhost:8080/v1/polls endpoint.

To create the second version of the API, copy all of the controllers from the v1

package to the v2 package. Change the class-level RequestMapping value from "/

v1/" to "/v2/" and the component name suffix from "V1" to "V2." Listing 7-2

shows the modified portions of the V2 version of the PollController. Because

the v2 PollController is a copy of the v1 PollController, we have omitted the

PollController class implementation from Listing 7-2.

Listing 7-2.  Version 2 of the Poll Controller

@RestController("pollControllerV2")

@RequestMapping("/v2")

@Api(value = "polls", description = "Poll API")

public class PollController {

 // Code copied from the v1 Poll Controller

}

Chapter 7 Versioning, Paging, and Sor ting

154

Once you have completed modifications for the three controllers, restart the

QuickPoll application, and, using Postman, verify that you can create a new poll using

the http://localhost:8080/v2/polls endpoint. Similarly, verify that you can access

the VoteController and ComputeResultController endpoints by accessing the http://

localhost:8080/v2/votes and http://localhost:8080/v2/computeresult endpoints.

�SwaggerConfig
The versioning changes that we made require changes to our Swagger configuration so

that we can use the UI to test and interact with both REST API versions. Listing 7-3 shows

the refactored com.apress.SwaggerConfig class. As discussed in the previous chapter, a

springfox.documentation.spring.web.plugins.Docket instance represents a Swagger

group. Hence, the refactored SwaggerConfig class contains two methods, each returning

a Docket instance representing an API group. Also, notice that we have extracted API

information to its own method and used it to configure both instances of Docket.

Listing 7-3.  Refactored SwaggerConfig Class

package com.apress;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.PathSelectors;

import springfox.documentation.builders.RequestHandlerSelectors;

import springfox.documentation.service.ApiInfo;

import springfox.documentation.service.Contact;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;

import java.util.Collections;

@Configuration

public class SwaggerConfiguration {

 @Bean

 public Docket apiV1() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 .apis(RequestHandlerSelectors.any())

Chapter 7 Versioning, Paging, and Sor ting

155

 .paths(PathSelectors.regex("/v1/*.*"))

 .build()

 .apiInfo(apiInfo("v1"))

 .groupName("v1")

 .useDefaultResponseMessages(false);

 }

 @Bean

 public Docket apiV2() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 .apis(RequestHandlerSelectors.any())

 .paths(PathSelectors.regex("/v2/*.*"))

 .build()

 .apiInfo(apiInfo("v2"))

 .groupName("v2")

 .useDefaultResponseMessages(false);

 }

 private ApiInfo apiInfo(String version) {

 return new ApiInfo(

 "QuickPoll REST API",

 "QuickPoll Api for creating and managing polls",

 version,

 "Terms of service",

 �new Contact("Maxim Bartkov", "www.linkedin.com/in/bartkov-

maxim", "maxgalayoutop@gmail.com"),

 �"MIT License", "http://opensource.org/licenses/MIT",

Collections.emptyList());

 }

}

Chapter 7 Versioning, Paging, and Sor ting

156

With this newly refactored SwaggerConfig, restart the QuickPoll application and

launch Swagger UI in a web browser at http://localhost:8080/swagger-ui/index.html.

After the UI has launched, append the request parameter ?group=v2 to the http://

localhost:8080/v2/api-docs URI in the Swagger UI’s input box and hit Explore. You

should see and interact with the v2 version of the API as shown in Figure 7-1.

This concludes the configuration needed to version our QuickPoll application and

sets the stage for adding pagination and sorting support in the final two sections of this

chapter.

Figure 7-1.  Swagger UI for QuickPoll 2.0 version

Chapter 7 Versioning, Paging, and Sor ting

157

�Pagination
REST APIs are consumed by a variety of clients ranging from desktop applications

to Web to mobile devices. Hence, while designing a REST API capable of returning

vast datasets, it is important to limit the amount of data returned for bandwidth and

performance reasons. The bandwidth concerns become more important in the case

of mobile clients consuming the API. Limiting the data can vastly improve the server’s

ability to retrieve data faster from a datastore and the client’s ability to process the data

and render the UI. By splitting the data into discrete pages or paging data, REST services

allow clients to scroll through and access the entire dataset in manageable chunks.

Before we start implementing pagination in our QuickPoll application, let’s look at

four different pagination styles: page number pagination, limit offset pagination, cursor-

based pagination, and time-based pagination.

�Page Number Pagination
In this pagination style, the clients specify a page number containing the data they need.

For example, a client wanting all the blog posts in page 3 of our hypothetical blog service

can use the following GET method:

http://blog.example.com/posts?page=3

The REST service in this scenario would respond with a set of posts. The number of

posts returned depends on the default page size set in the service. It is possible for the

client to override the default page size by passing in a page-size parameter:

http://blog.example.com/posts?page=3&size=20

GitHub’s REST services use this pagination style. By default, the page size is set to 30

but can be overridden using the per_page parameter:

https://api.github.com/user/repos?page=2&per_page=100

Chapter 7 Versioning, Paging, and Sor ting

158

�Limit Offset Pagination
In this pagination style, the client uses two parameters: a limit and an offset to retrieve

the data that they need. The limit parameter indicates the maximum number of

elements to return, and the offset parameter indicates the starting point for the return

data. For example, to retrieve 10 blog posts starting from the item number 31, a client

can use the following request:

http://blog.example.com/posts?limit=10&offset=30

�Cursor-Based Pagination
In this pagination style, the clients make use of a pointer or a cursor to navigate through

the dataset. A cursor is a service-generated random character string that acts as a

marker for an item in the dataset. To understand this style, consider a client making the

following request to get blog posts:

http://blog.example.com/posts

On receiving the request, the service would send data similar to this:

{

 "data" : [

 ... Blog data

],

 "cursors" : {

 "prev" : null,

 "next" : "123asdf456iamcur"

 }

}

This response contains a set of blogs representing a subset of the total dataset. The

cursors that are part of the response contain a prev field that can be used to retrieve

the previous subset of the data. However, because this is the initial subset, the prev field

value is empty. The client can use the cursor value in the next field to get the next subset

of the data using the following request:

http://api.example.com/posts?cursor=123asdf456iamcur

Chapter 7 Versioning, Paging, and Sor ting

159

On receiving this request, the service would send the data along with the prev

and next cursor fields. This pagination style is used by applications such as Twitter

and Facebook that deal with real-time datasets (tweets and posts) where data changes

frequently. The generated cursors typically don’t live forever and should be used for

short-term pagination purposes only.

�Time-Based Pagination
In this style of pagination, the client specifies a timeframe to retrieve the data in which

they are interested. Facebook supports this pagination style and requires time specified

as a Unix timestamp. These are two Facebook example requests:

https://graph.facebook.com/me/feed?limit=25&until=1364587774

https://graph.facebook.com/me/feed?limit=25&since=1364849754

Both examples use the limit parameter to indicate the maximum number of items to

be returned. The until parameter specifies the end of the time range, whereas the since

parameter specifies the beginning of the time range.

�Pagination Data
All the pagination styles in the previous sections return only a subset of the data. So,

in addition to supplying the requested data, it becomes important for the service to

communicate pagination-specific information such as total number of records or total

number of pages or current page number and page size. The following example shows a

response body with pagination information:

{

 "data": [

 ... Blog Data

],

 "totalPages": 9,

 "currentPageNumber": 2,

 "pageSize": 10,

 "totalRecords": 90

}

Chapter 7 Versioning, Paging, and Sor ting

160

Clients can use the pagination information to assess the current state as well as

construct URLs to obtain the next or previous datasets. The other technique services

employ is to include the pagination information in a special Link header. The Link

header is defined as part of RFC 5988 (http://tools.ietf.org/html/rfc5988). It

typically contains a set of ready-made links to scroll forward and backward. GitHub uses

this approach; here is an example of a Link header value:

Link: <https://api.github.com/user/repos?page=3&per_page=100>; rel="next",

<https://api.github.com/user/repos?page=50&per_page=100>; rel="last"

�QuickPoll Pagination
To support large poll datasets in a QuickPoll application, we will be implementing

the page number pagination style and will include the paging information in the

response body.

We begin the implementation by configuring our QuickPoll application to load

dummy poll data into its database during the bootstrapping process. This would enable

us to test our polling and sorting code. To achieve this, copy the import.sql file from the

downloaded chapter code into src\main\resources folder. The import.sql file contains

DML statements for creating test polls. Hibernate out of the box loads the import.sql

file found under the classpath and executes all of the SQL statements in it. Restart the

QuickPoll application, and navigate to http://localhost:8080/v2/polls in Postman; it

should list all of the loaded test polls.

Spring Data JPA and Spring MVC provides out-of-the-box support for the page

number pagination style, making our QuickPoll paging implementation easy. Central to

paging (and sorting) functionality in Spring Data JPA is the org.springframework.data.

repository.PagingAndSortingRepository interface shown in Listing 7-4.

Listing 7-4.  Spring Data JPA’s Paging and Sorting Repository

public interface PagingAndSortingRepository<T, ID extends Serializable>

extends CrudRepository<T, ID> {

 Page<T> findAll(Pageable pageable);

 Iterable<T> findAll(Sort sort);

}

Chapter 7 Versioning, Paging, and Sor ting

http://tools.ietf.org/html/rfc5988

161

The PagingAndSortingRepository interface extends the CrudRepository

interface that we have been using so far in the QuickPoll application. Additionally, it

adds two finder methods that return entities matching the paging and sorting criteria

provided. The findAll method responsible for paging takes a Pageable instance

to read information such as page size and page number. Additionally, it also takes

sorting information, which we will zoom in on in a later section of this chapter. This

findAll method returns a Page instance that contains the data subset and the following

information:

•	 Total elements—Total elements in the result set

•	 Number of elements—Number of elements in the returned subset

•	 Size—The maximum number of elements in each page

•	 Total pages—Total number of pages in the result set

•	 Number—Returns the current page number

•	 Last—Flag indicating if it is the last data subset

•	 First—Flag indicating if it is the first data subset

•	 Sort—Returns parameters used for sorting, if any

The next step in implementing paging in QuickPoll is to make our PollRepository

extend PagingAndSortingRepository instead of current CrudRepository.

Listing 7-5 shows the new PollRepository implementation. Because the

PagingAndSortingRepository extends the CrudRepository, all of the functionality

needed for the first version of our API remains intact.

Listing 7-5.  PollRepository Implementation

package com.apress.repository;

import org.springframework.data.repository.PagingAndSortingRepository;

import com.apress.domain.Poll;

public interface PollRepository extends PagingAndSortingRepository<Poll,

Long> {

}

Chapter 7 Versioning, Paging, and Sor ting

162

Changing the repository to use PagingAndSortingRepository concludes our

backend implementation needed for paging. We now move on to refactoring the V2

PollController so that it uses the new paging finder method. Listing 7-6 shows the

refactored getAllPolls method of the V2 com.apress.v2.controller.PollController.

Notice that we have added the Pageable parameter to the getAllPolls method. On

receiving a GET request on "/polls," Spring MVC inspects the request parameters,

constructs a Pageable instance, and passes it to the getAllPolls method. Typically, the

passed-in instance is of the type PageRequest. The Pageable parameter is then passed to

the new finder method, and the paged data is retuned as part of the response.

Listing 7-6.  GetAllPolls Method with Paging Functionality

import org.springframework.data.domain.Page;

import org.springframework.data.domain.Pageable;

@RequestMapping(value="/polls", method=RequestMethod.GET)

@ApiOperation(value = "Retrieves all the polls", response=Poll.class,

responseContainer="List")

public ResponseEntity<Page<Poll>> getAllPolls(Pageable pageable) {

 Page<Poll> allPolls = pollRepository.findAll(pageable);

 return new ResponseEntity<>(allPolls, HttpStatus.OK);

}

This concludes the QuickPoll pagination implementation. Restart the

QuickPoll application, and submit a GET request to http://localhost:8080/v2/

polls?page=0&size=2 using Postman. The response should contain two poll instances

with paging-related metadata. Figure 7-2 shows the request as well as the metadata

portion of the response.

Chapter 7 Versioning, Paging, and Sor ting

163

Note S pring Data JPA uses a zero index–based paging approach. Hence, the first
page number starts with 0 and not 1.

�Changing Default Page Size
Spring MVC uses an org.springframework.data.web.PageableHandler

MethodArgumentResolver to extract paging information from the request parameters

and inject Pageable instances into Controller methods. Out of the box, the

PageableHandlerMethodArgumentResolver class sets the default page size to 20. Hence,

if you perform a GET request on http://localhost:8080/v2/polls, the response would

include 20 polls. Although 20 is a good default page size, there might be occasions when

you might want to change it globally in your application. To do this, you need to create

and register a new instance of PageableHandlerMethodArgumentResolver with the

settings of your choice.

Figure 7-2.  Paged results along with paging metadata

Chapter 7 Versioning, Paging, and Sor ting

164

Spring Boot applications requiring changes to default MVC behavior need to

create classes of type org.springframework.web.servlet.config.annotation.

WebMvcConfigurer and use its callback methods for customization. Listing 7-7

shows the newly created QuickPollMvcConfigAdapter class in the com.apress

package with the configuration to set the default page size to 5. Here we are using the

WebMvcConfigurer's addArgumentResolvers callback method. We begin the method

implementation by creating an instance of PageableHandlerMethodArgumentResolver.

The setFallbackPageable method, as the name suggests, is used by Spring MVC when

no paging information is found in the request parameters. We create a PageRequest

instance with 5 as the default page size and pass it to the setFallbackPageable method.

We then register our PageableHandlerMethodArgumentResolver instance with Spring

using the passed-in argumentResolvers parameter.

Listing 7-7.  Code to Change Default Page Size to 5

package com.apress;

import java.util.List;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.web.PageableHandlerMethodArgumentResolver;
import org.springframework.web.method.support.
HandlerMethodArgumentResolver;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class QuickPollMvcConfigAdapter implements WebMvcConfigurer {

 @Override

public void addArgumentResolvers(List<HandlerMethodArgumentResolver>
argumentResolvers) {

PageableHandlerMethodArgumentResolver phmar = new
PageableHandlerMethodArgumentResolver();
 // Set the default size to 5
 phmar.setFallbackPageable(PageRequest.of(0, 5));
 argumentResolvers.add(phmar);
 }
}

Chapter 7 Versioning, Paging, and Sor ting

165

Restart the QuickPoll application and perform a GET request on http://

localhost:8080/v2/polls using Postman. You will notice that the response now

includes only five polls. The associated paging metadata is shown in Listing 7-8.

Listing 7-8.  Paging Metadata for Default Page Size 5

{

 Omitted Poll Data

 "totalPages": 4,

 "totalElements": 20,

 "last": false,

 "size": 5,

 "number": 0,

 "sort": null,

 "numberOfElements": 5,

 "first": true

}

�Sor  ting
Sorting allows REST clients to determine the order in which items in a dataset are

arranged. REST services supporting sorting allow clients to submit parameters with

properties to be used for sorting. For example, a client can submit the following request

to sort blog posts based on their created date and title:

http://blog.example.com/posts?sort=createdDate,title

�Sort Ascending or Sort Descending
The REST services can also allow the clients to specify one of the two sort directions:

ascending or descending. Because there is no set standard around this, the following

examples showcase popular ways for specifying sort direction:

http://blog.example.com/posts?sortByDesc=createdDate&sortByAsc=title

http://blog.example.com/posts?sort=createdDate,desc&sort=title,asc

http://blog.example.com/posts?sort=-createdDate,title

Chapter 7 Versioning, Paging, and Sor ting

http://blog.example.com/posts?sort=createdDate,title

166

In all of these examples, we are retrieving blog posts in the descending order of their

created date. Posts with the same created date are then sorted based on their titles:

•	 In the first approach, the sort parameter clearly specifies if the

direction should be ascending or descending.

•	 In the second approach, we have used the same parameter name

for both directions. However, the parameter value spells out the sort

direction.

•	 The last approach uses the “-” notation to indicate that any property

prefixed with a “-” should be sorted on a descending direction.

Properties that are not prefixed with a “-” will be sorted in the

ascending direction.

�QuickPoll Sorting
Considering that sorting is typically used in conjunction with paging, Spring Data JPA’s

PagingAndSortingRepository and Pageable implementations are designed to handle

and service sorting requests from the ground up. Hence, we don’t require any explicit

implementation for sorting.

To test sorting functionality, submit a GET request to http://localhost:8080/v2/

polls/?sort=question using Postman. You should see the response with Polls sorted

in ascending order of their question text along with sort metadata. Figure 7-3 shows the

Postman request along with the sort metadata.

Chapter 7 Versioning, Paging, and Sor ting

167

To sort on multiple fields with different sort directions, Spring MVC requires you to

follow the second approach discussed in the previous section. The following request

sorts on ascending question value and descending id value:

http://localhost:8080/v2/polls/?sort=question,asc&sort=id,desc

�Summary
In this chapter we reviewed the different strategies for versioning REST API. We then

implemented versioning in QuickPoll using the URL versioning approach. We also

reviewed the different approaches for dealing with large datasets using pagination

and sorting techniques. Finally, we used Spring Data’s out-of-the-box functionality to

implement page number pagination style. In the next chapter, we will review strategies

for securing REST services.

Figure 7-3.  Sort metadata

Chapter 7 Versioning, Paging, and Sor ting

169
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_8

CHAPTER 8

Security
In this chapter we will discuss the following:

•	 Strategies for securing REST services

•	 OAuth 2.0

•	 Basics of the Spring Security framework

•	 Implementing QuickPoll security

Traditional web applications requiring security typically use username/passwords

for identification purposes. REST services pose interesting security problems as they can

be consumed by a variety of clients such as browsers and mobile devices. They can also

be consumed by other services, and this machine-to-machine communication might

not have any human interaction. It is also not uncommon for clients to consume REST

services on behalf of a user. In this chapter, we will explore the different authentication/

authorization approaches that can be used while working with REST services. Then we

will look at using some of these approaches to secure our QuickPoll application.

�Securing REST Services
We begin with a survey of six popular approaches that are used for securing REST services:

•	 Session-based security

•	 HTTP Basic authentication

•	 Digest authentication

•	 Certificate-based security

•	 XAuth

•	 OAuth

https://doi.org/10.1007/978-1-4842-7477-4_8#DOI

170

�Session-Based Security
The session-based security model relies on a server side session to hold on to a user’s

identity across requests. In a typical web application, when a user tries to access a

protected resource, they are presented with a login page. On successful authentication,

the server stores the logged-in user’s information in an HTTP session. On subsequent

requests, the session is queried to retrieve the user’s information and is used to perform

authorization checks. If the user doesn’t have the proper authorization, their request will

be denied. Figure 8-1 is a pictorial representation of this approach.

Frameworks such as Spring Security provide all the necessary plumbing to develop

applications using this security model. This approach is very appealing to developers

that are adding REST services to existing Spring Web applications. The REST services

will retrieve the user identity from the session to perform authorization checks and

serve resources accordingly. However, this approach violates the statelessness REST

constraint. Also, because the server holds the client’s state, this approach is not scalable.

Ideally, the client should hold the state and server should be stateless.

Figure 8-1.  Session-based security flow

Chapter 8 Security

171

�HTTP Basic Authentication
Using a login form to capture a username and password is possible when there is human

interaction involved. However, this might not be possible when we have services talking

to other services. HTTP Basic authentication provides a mechanism that allows clients to

send authentication information using both interactive and noninteractive fashions.

In this approach, when a client makes a request to a protected resource, the server

sends a 401 “Unauthorized” response code and a “WWW-Authenticate” header. The

“Basic” portion of the header indicates that we will be using Basic authentication and

the “realm” portion indicates a protected space on the server:

GET /protected_resource

401 Unauthorized

WWW-Authenticate: Basic realm="Example Realm"

On receiving the response, the client concatenates a username and password with a

semicolon and Base64 encodes the concatenated string. It then sends that information

over to the server using a standard Authorization header:

GET /protected_resource

Authorization: Basic bHxpY26U5lkjfdk

The server decodes the submitted information and validates the submitted

credentials. On successful verification, the server completes the request. The entire flow

is shown in Figure 8-2.

Figure 8-2.  HTTP Basic authentication flow

Chapter 8 Security

172

Because the client includes the authentication information in each request, the

server becomes stateless. It is important to remember that the client is simply encoding

the information and not encrypting it. Hence, on non-SSL/TLS connections, it is possible

to conduct a man-in-the-middle attack and steal the password.

�Digest Authentication
The Digest authentication approach is similar to the Basic authentication model

discussed earlier except that the user credentials are sent encrypted. The client submits

a request for a protected resource and the server responds with a 401 “Unauthorized”

response code and a WWW-Authenticate header. Here is an example of a server

response:

GET /protected_resource

401 Unauthorized

WWW-Authenticate: Digest realm="Example Realm", nonce="P35kl89sdfghERT10

Asdfnbvc", qop="auth"

Notice that the WWW-Authenticate specifies the Digest authentication scheme

along with a server-generated nonce and a qop. A nonce is an arbitrary token used for

cryptographic purposes. The qop, or “quality of protection,” directive can contain two

values—"auth" or "auth-int":

•	 A qop value "auth" indicates that the digest is used for

authentication purposes.

•	 A value "auth-int" indicates that digest will be used for

authentication and request integrity.

On receiving the request, if the qop value is set to "auth," the client generates a

digest using this formula:

hash_value_1 = MD5(username:realm:password)

has_value_2 = MD5(request_method:request_uri)

digest = MD5(hash_value_1:nonce:hash_value_2)

Chapter 8 Security

173

If the qop value is set to "auth-int," the client computes the digest by including the

request body:

hash_value_1 = MD5(username:realm:password)

has_value_2 = MD5(request_method:request_uri:MD5(request_body))

digest = MD5(hash_value_1:nonce:hash_value_2)

By default, the MD5 algorithm is used to compute the hash values. The digest is

included in the Authorization header and is sent to the server. On receiving the request,

the server computes the digest and verifies the user’s identity. On successful verification,

the server completes the request. A complete flow of this method is shown in Figure 8-3.

The Digest authentication approach is more secure than the Basic

authentication, as the password is never sent in clear text. However, on non-SSL/TLS

communications, it is still possible for snoopers to retrieve the digest and replay the

request. One way to address this problem is to limit server-generated nonces to one-

time use only. Also, because the server has to generate the digest for verification, it

needs to have access to the plain text version of the password. Hence, it can’t employ

more secure one-way encryption algorithms such as bcrypt and can become more

vulnerable to server side attacks.

Figure 8-3.  Digest authentication flow

Chapter 8 Security

174

�Certificate-Based Security
The certificate-based security model relies on certificates to verify a party’s identity. In

an SSL/TLS-based communication, a client such as a browser often verifies the server’s

identity using certificates to ensure that the server is what it claims to be. This model

can be extended to perform mutual authentication where a server can request a client

certificate as part of an SSL/TLS handshake and verify a client’s identity.

In this approach, on receiving a request for a protected resource, the server presents

its certificate to the client. The client ensures that a trusted Certificate Authority (CA)

issued the server’s certificate and sends its certificate over to the server. The server

verifies the client’s certificate and, on successful verification, will grant access to the

protected resource. This flow is shown in Figure 8-4.

The certificate-based security model eliminates the need to send over a shared

secret, making it more secure over username/password models. However, deployments

and maintenance of certificates can be expensive and typically are used for large

systems.

�XAuth
As REST APIs became popular, the number of third-party applications that use those

APIs also grew significantly. These applications need a username and password in

order to interact with REST services and perform actions on behalf of users. This poses

a huge security problem as third-party applications now have access to usernames

Figure 8-4.  Certificate-based security flow

Chapter 8 Security

175

and passwords. A security breach in the third-party application can compromise user

information. Also, if the user changes his credentials, he needs to remember to go and

update all of these third-party applications. Finally, this mechanism doesn’t allow the

user to revoke his authorization to the third-party application. The only option for

revoking in this case would be to change his password.

The XAuth and OAuth schemes provide a mechanism to access protected resources

on a user’s behalf without needing to store passwords. In this approach, a client

application would request a username and password from the user typically by using

a login form. The client would then send the username and password to the server.

The server receives the user’s credentials and validates them. On successful validation,

a token is returned to the client. The client discards the username and password

information and stores the token locally. When accessing a user’s protected resource,

the client would include the token in the request. This is typically accomplished using a

custom HTTP header such as X-Auth-Token. The longevity of the token is dependent on

the implementing service. The token can remain until the server revokes it or the token

can expire in a designated period of time. This flow is shown in Figure 8-5.

Applications such as Twitter allow third-party applications to access their REST API

using an XAuth scheme. However, even with XAuth, a third-party application needs to

capture a username and password, leaving the possibility of misuse. Considering the

simplicity involved in XAuth, it might be a good candidate when the same organization

develops the client as well as the REST API.

Figure 8-5.  XAuth security flow

Chapter 8 Security

176

�OAuth 2.0
The Open Authorization or OAuth is a framework for accessing protected resources on

behalf of a user without storing a password. The OAuth protocol was first introduced in

2007 and was superseded by OAuth 2.0, which was introduced in 2010. In this book, we

will be reviewing OAuth 2.0 and general principles.

OAuth 2.0 defines the following four roles:

•	 Resource owner—A resource owner is the user that wants to give

access to portions of their account or resources. For example, a

resource owner could be a Twitter or a Facebook user.

•	 Client—A client is an application that wants access to a user’s

resources. This could be a third-party app such as Klout (https://

klout.com/) that wants to access a user’s Twitter account.

•	 Authorization server—An authorization server verifies the user’s

identity and grants the client a token to access the user’s resources.

•	 Resource server—A resource server hosts protected user resources.

For example, this would be Twitter API to access tweets and timelines

and so on.

The interactions between these four roles discussed are depicted in Figure 8-6.

OAuth 2.0 requires these interactions to be conducted on SSL.

Figure 8-6.  OAuth 2.0 security flow

Chapter 8 Security

https://klout.com/
https://klout.com/

177

Before a client can participate in the “OAuth dance” shown in Figure 8-6, it must

register itself with the authorization server. For most public APIs such as Facebook and

Twitter, this involves filling out an application form and providing information about the

client such as application name, base domain, and website. On successful registration,

the client will receive a Client ID and a Client secret. The Client ID is used to uniquely

identify the Client and is available publicly. These client credentials play an important

part in the OAuth interactions, which we will discuss in just a minute.

The OAuth interaction begins with the user expressing interest in using the “Client,”

a third-party application. The client requests authorization to access protected resources

on the user’s behalf and redirects the user/resource owner to the authorization server.

An example URI that the client can redirect the user to is shown here:

https://oauth2.example.com/authorize?client_id=CLIENT_ID&response_

type=auth_code&call_back=CALL_BACK_URI&scope=read,tweet

The usage of HTTPS is mandatory for any production OAuth 2.0 interactions, and,

hence, the URI begins with https. The CLIENT_ID is used to provide the client’s identity

to the authorization server. The scope parameter provides a comma-separated set of

scopes/roles that the client needs.

On receiving the request, the authorization server would present the user with an

authentication challenge typically via a login form. The user provides his username

and password. On successful verification of the user credentials, the authorization

server redirects the user to the client application using the CALL_BACK_URI parameter.

The authorization server also appends an authorization code to the CALL_BACK_URI

parameter value. Here is an example URL that an authorization server might generate:

https://mycoolclient.com/code_callback?auth_code=6F99A74F2D066A267D6D838F88

The client then uses the authorization code to request an access token from the

authorization server. To achieve this, a client would typically perform an HTTP POST on

a URI like this:

https://oauth2.example.com/access_token?client_id=CLIENT_ID&client_

secret=CLIENT_SECRET&

auth_code=6F99A74F2D066A267D6D838F88

Chapter 8 Security

178

As you can see, the client provides its credentials as part of the request. The

authorization server verifies the client’s identity and authorization code. On successful

verification, it returns an access token. Here is an example response in JSON format:

{"access_token"="f292c6912e7710c8"}

On receiving the access token, the client will request a protected resource from the

resource server passing in the access token it obtained. The resource server validates the

access token and serves the protected resource.

�OAuth Client Profiles

One of the strengths of OAuth 2.0 is its support for a variety of client profiles such as

“web application,” “native application,” and “user agent/browser application.” The

authorization code flow discussed earlier (often referred to as authorization grant type)

is applicable to “web application” clients that have a web-based user interface and a

server side backend. This allows the client to store the authorization code in a secure

backend and reuse it for future interactions. Other client profiles have their own flows

that determine the interaction between the four OAuth 2.0 players.

A pure JavaScript-based application or a native application can’t store authorization

codes securely. Hence, for such clients, the callback from the authorization server

doesn’t include an authorization code. Instead, an implicit grant-type approach is

taken and an access token is directly handed over to the client, which is then used for

requesting protected resources. Applications falling under this client profile will not have

a client secret and are simply identified using the client ID.

OAuth 2.0 also supports an authorization flow, referred to as password grant

type that is similar to XAuth discussed in the previous section. In this flow, the user

supplies his credentials to the client application directly. He is never redirected to the

authorization server. The client passes these credentials to the authorization server and

receives an access token for requesting protected resources.

OAuth 1.0 introduced several implementation complexities especially around

the cryptographic requirements for signing requests with client credentials. OAuth

2.0 simplified this by eliminating signatures and requiring HTTPS for all interactions.

However, because many of OAuth 2’s features are optional, the specification has resulted

in non-interoperable implementations.

Chapter 8 Security

179

�Refresh Tokens versus Access Tokens

The lifetime of access tokens can be limited and clients should be prepared for the

possibility of a token no longer working. To prevent the need for the resource owner to

repeatedly authenticate, the OAuth 2.0 specification has provided a notion of refresh

tokens. An authorization server can optionally issue a refresh token when it generates an

access token. The client stores this refresh token, and when an access token expires, it

contacts the authorization server for a fresh set of access token as well as refresh token.

Specification allows generation of refresh tokens for authorization and password grant-

type flows. Considering the lack of security with the “implicit grant type,” refresh tokens

are prohibited for such client profiles.

�Spring Security Overview
To implement security in the QuickPoll application, we will be using another popular

Spring subproject, namely, Spring Security. Before we move forward with the

implementation, let’s understand Spring Security and the different components that

make up the framework.

Spring Security, formerly known as Acegi Security, is a framework for securing

Java-based applications. It provides an out-of-the-box integration to a variety of

authentication systems such as LDAP, Kerberos, OpenID, OAuth, and so on. With

minimal configuration, it can be easily extended to work with any custom authentication

and authorization systems. The framework also implements security best practices

and has inbuilt features to protect against attacks such as CSRF, or Cross-Site Request

Forgery, session fixation, and so on.

Spring Security provides a consistent security model that can be used to secure

web URLs and Java methods. The high-level steps involved during the Spring Security

authentication/authorization process along with components involved are listed here:

	 1.	 The process begins with a user requesting a protected resource on

a Spring-secured web application.

	 2.	 The request goes through a series of Spring Security filters referred

to as a “filter chain” that identify an org.springframework.

security.web.AuthenticationEntryPoint to service the request.

Chapter 8 Security

180

The AuthenticationEntryPoint will respond to the client with a

request to authentication. This is done, for example, by sending a

login page to the user.

	 3.	 On receiving authentication information from the user such as a

username/password, a org.springframework.security.core.

Authentication object is created. The Authentication interface

is shown in Listing 8-1, and its implementation plays a dual role

in Spring Security. They represent a token for an authentication

request or a fully authenticated principal after authentication is

successfully completed. The isAuthenticated method can be used

to determine the current role played by an Authentication instance.

In case of a username/password authentication, the getPrincipal

method returns the username and the getCredentials returns

the password. The getUserDetails method contains additional

information such as IP address and so on.

Listing 8-1.  Authentication API

public interface Authentication extends Principal, Serializable {

 Object getPrincipal();

 Object getCredentials();

 Object getDetails();

 Collection<? extends GrantedAuthority> getAuthorities();

 boolean isAuthenticated();

void setAuthenticated(boolean isAuthenticated) throws

IllegalArgumentException;

}

	 4.	 As a next step, the authentication request token is presented

to an org.springframework.security.authentication.

AuthenticationManager. The AuthenticationManager, as

shown in Listing 8-2, contains an authenticate method that

takes an authentication request token and returns a fully

Chapter 8 Security

181

populated Authentication instance. Spring provides an out-

of-the-box implementation of AuthenticationManager called

ProviderManager.

Listing 8-2.  AuthenticationManager API

public interface AuthenticationManager {

Authentication authenticate(Authentication authentication)

throws AuthenticationException;

}

	 5.	 In order to perform authentication, the ProviderManager needs

to compare the submitted user information with a backend user

store such as LDAP or database. ProviderManager delegates

this responsibility to a series of org.springframework.

security.authentication.AuthenticationProvider. These

AuthenticationProviders use an org.springframework.

security.core.userdetails.UserDetailsService to retrieve

user information from backend stores. Listing 8-3 shows the

UserDetailsService API.

Listing 8-3.  UserDetailsService API

public interface UserDetailsService {

UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException;

}

Implementations of UserDetailsService such as JdbcDaoImpl

and LdapUserDetailService will use the passed-in username

to retrieve user information. These implementations will also

create a set of GrantedAuthority instances that represent roles/

authorities the user has in the system.

Chapter 8 Security

182

	 6.	 The AuthenticationProvider compares the submitted

credentials with the information in the backend system, and on

successful verification, the org.springframework.security.

core.userdetails.UserDetails object is used to build a fully

populated Authentication instance.

	 7.	 The Authentication instance is then put into an

org.springframework.security.core.context.

SecurityContextHolder. The SecurityContextHolder, as the

name suggests, simply associates the logged-in user’s context

with the current thread of execution so that it is readily available

across user requests or operations. In a web-based application,

the logged-in user’s context is typically stored in the user’s HTTP

session.

	 8.	 Spring Security then performs an authorization check

using an org.springframework.security.access.

intercept.AbstractSecurityInterceptor and its

implementations org.springframework.security.web.

access.intercept.FilterSecurityInterceptor and

org.springframework.security.access.intercept.

aopalliance.MethodSecurityInterceptor. The

FilterSecurityInterceptor is used for URL-based authorization

and MethodSecurityInterceptor is used for method invocation

authorization.

	 9.	 The AbstractSecurityInterceptor relies on security

configuration and a set of org.springframework.security.

access.AccessDecisionManagers to decide if the user is

authorized or not. On successful authorization, the user is given

access to the protected resource.

Note T o keep things simple, I have purposefully omitted some Spring Security
classes in these steps. For a complete review of Spring Security and the
authentication/authorization steps, please refer to Pro Spring Security (Apress,
2019).

Chapter 8 Security

183

Now that you have a basic understanding of Spring Security’s authentication/

authorization flow as well as some of its components, let’s look at integrating Spring

Security into our QuickPoll application.

�Securing QuickPoll
We will implement security in the QuickPoll application to meet the following two

requirements:

•	 Registered users can create and access polls. This allows us to keep

track of accounts, usage, and so on.

•	 Polls can be deleted only by users with admin privileges

Note I n this chapter, we will continue building on the work that we did on the
QuickPoll application in the previous chapters. Alternatively, a starter project is
available for you to use inside the Chapter8\starter folder of the downloaded
source code. In this chapter, we will secure QuickPoll using Basic authentication.
Then we will add OAuth 2.0 support to QuickPoll. Hence, the Chapter8\final
folder contains two folders: quick-poll-ch8-final-basic-auth and quick-
poll-ch8-final. The quick-poll-ch8-final-basic-auth contains
the solution with Basic authentication added to QuickPoll. The quick-poll-
ch8-final contains the completed solution with both Basic authentication and
OAuth 2.0 added. We understand that not all projects need OAuth 2.0 support.
Hence, splitting the final solution into two projects allows you to examine and
use features/code that you need. Please refer to the solutions under the final
folder for complete listings containing getters/setters and additional imports.
The downloaded Chapter8 folder also contains an exported Postman collection
containing REST API requests associated with this chapter.

By requiring user authentication, we will be drastically changing the behavior of

the QuickPoll application. To allow existing users to continue using our QuickPoll

application, we will create a new version (v3) of our API to implement these changes.

To accomplish this, create a new com.apress.v3.controller package under src\main\

java and copy controllers from the com.apress.v2.controller package. For the newly

Chapter 8 Security

184

copied controllers, change the RequestMappings from “/v2/” to “/v3/” and change

the controller name prefixes from v2 to v3 to reflect version 3 of the API. We start the

implementation by adding the Spring Security starter dependency shown in Listing 8-4

to QuickPoll project’s pom.xml file. This would bring in all Spring Security–related JAR

files into the project.

Listing 8-4.  Spring Starter POM

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

On seeing Spring Security in the classpath, Spring Boot adds default security

configuration that secures all of the HTTP endpoints with an HTTP basic authentication.

Start the QuickPoll application, and submit a GET request to http://localhost:8080/

v3/polls using Postman. Postman displays an authentication window prompting you to

enter a username and password, as shown in Figure 8-7.

Spring Boot’s default security configuration comes with a single user with username

user. Spring Boot generates a random password for the user and prints it at INFO log level

during application startup. In your console/log file, you should see an entry like this one:

Using default security password: 554cc6c2-67e1-4f1e-8c5b-096609e2d0b1

Figure 8-7.  Basic authentication window in Postman

Chapter 8 Security

185

Enter the username and password found in your console into the Postmaster login

window and hit Log In. Spring Security will validate the entered credentials and allow

the request to be completed.

�cURL
Up to this point, we have been using Postman for testing our QuickPoll application.

In this chapter, we will be using a command line tool named cURL in conjunction

with Postman. cURL is a popular open-source tool used for interacting with servers

and transferring data with URL syntax. It comes installed in most operating system

distributions. If cURL is not available on your system, follow the instructions at http://

curl.haxx.se/download.html to download and install cURL on your machine. Refer to

Appendix A for instructions on installing cURL on a Windows machine.

To test our QuickPoll Basic authentication using cURL, run the following command

at command line:

curl -vu user:554cc6c2-67e1-4f1e-8c5b-096609e2d0b1 http://localhost:8080/

v3/polls

In this command, the –v option requests cURL to run in the debug mode (verbose).

The –u option allows us to specify the username and password needed for Basic

authentication. A full list of cURL options is available at http://curl.haxx.se/docs/

manual.html.

�User Infrastructure Setup
Although Spring Boot has simplified Spring Security integration significantly, we would

like to customize security behavior so that it uses application users instead of Spring

Boot’s generic user. We also would like to apply the security to the v3 PollController,

leaving other endpoints to be accessed anonymously. Before we look at customizing

Spring Security, let’s set up the infrastructure needed for creating/updating QuickPoll

application users.

We start by creating a User domain object as shown in Listing 8-5 to represent

a QuickPoll user. The User class contains attributes such as username, password,

firstname, and lastname. It also contains a Boolean flag to indicate if the user has

administrative privileges. As a security best practice, we have annotated the password

Chapter 8 Security

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manual.html
http://curl.haxx.se/docs/manual.html

186

field with @JsonIgnore. Therefore, the password field will not be included in a user’s

representation, thereby preventing clients from accessing the password value. Because

“User” is a keyword in databases such as Oracle, we have used the @Table annotation to

give the name “Users” to table corresponding to this User entity.

Listing 8-5.  User Class

package com.apress.domain;

import javax.persistence.Table;

import org.hibernate.annotations.Type;

import com.fasterxml.jackson.annotation.JsonIgnore;

import org.hibernate.annotations.Type;

import javax.validation.constraints.NotEmpty;

@Entity

@Table(name="USERS")

public class User {

 @Id

 @GeneratedValue

 @Column(name="USER_ID")

 private Long id;

 @Column(name="USERNAME")

 @NotEmpty

 private String username;

 @Column(name="PASSWORD")

 @NotEmpty

 @JsonIgnore

 private String password;

 @Column(name="FIRST_NAME")

 @NotEmpty

 private String firstName;

 @Column(name="LAST_NAME")

 @NotEmpty

 private String lastName;

Chapter 8 Security

187

 @Column(name="ADMIN", columnDefinition="char(3)")

 @Type(type="yes_no")

 @NotEmpty

 private boolean admin;

 // Getters and Setters omitted for brevity

}

We will be storing the QuickPoll users in a database and hence will require a

UserRepository to perform CRUD actions on the User entity. Listing 8-6 shows the

UserRepository interface created under com.apress.repository package. In addition

to the finder methods provided by the CrudRepository, the UserRepository contains

a custom finder method named findByUsername. Spring Data JPA would provide a

runtime implementation so that the findByUsername method retrieves a user associated

with the passed-in username parameter.

Listing 8-6.  UserRepository Interface

package com.apress.repository;

import org.springframework.data.repository.CrudRepository;

import com.apress.domain.User;

public interface UserRepository extends CrudRepository<User, Long> {

 public User findByUsername(String username);

}

Applications such as QuickPoll typically have an interface that allows new users to

register. To keep things simple for the purposes of this book, we have generated some

test users shown in Listing 8-7. Copy these SQL statements to the end of import.sql

file under the QuickPoll project’s src\main\resources folder. When the application gets

bootstrapped, Hibernate will load these test users into the “Users” table and make them

available for the application’s use.

Chapter 8 Security

188

Listing 8-7.  Test User Data

insert into users (user_id, username, password, first_name, last_name,

admin) values

(1, 'mickey', '$2a$10$kSqU.ek5pDRMMK21tHJlceS1xOc9Kna4F0DD2ZwQH/

LAzH0ML0p6.', 'Mickey', 'Mouse', 'no');

insert into users (user_id, username, password, first_name, last_name,

admin) values

(2, 'minnie', '$2a$10$MnHcLn.XdLx.iMntXsmdgeO1B4wAW1E5GOy/

VrLUmr4aAzabXnGFq', 'Minnie', 'Mouse', 'no');

insert into users (user_id, username, password, first_name, last_name,

admin) values

(3, 'donald', '$2a$10$0UCBI04PCXiK0pF/9kI7.uAXiHNQeeHdkv9NhA1/

xgmRpfd4qxRMG', 'Donald', 'Duck', 'no');

insert into users (user_id, username, password, first_name, last_name,

admin) values

(4, 'daisy', '$2a$10$aNoR88g5b5TzSKb7mQ1nQOkyEwfHVQOxHY0HX7irI8qWINvLDWR

yS', 'Daisy', 'Duck', 'no');

insert into users (user_id, username, password, first_name, last_name,

admin) values

(5, 'clarabelle', '$2a$10$cuTJd2ayEwXfsPdoF5/hde6gzsPx/

gEiv8LZsjPN9VPoN5XVR8cKW', 'Clarabelle', 'Cow', 'no');

insert into users (user_id, username, password, first_name, last_name,

admin) values

(6, 'admin', '$2a$10$JQOfG5Tqnf97SbGcKsalz.

XpDQbXi1APOf2SHPVW27bWNioi9nI8y', 'Super', 'Admin', 'yes');

Notice that the password for the generated test users is not in plain text. Following

good security practices, I have encrypted the password values using the BCrypt (http://

en.wikipedia.org/wiki/Bcrypt) adaptive hashing function. Table 8-1 shows these test

users and their plain text version of passwords.

Chapter 8 Security

http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Bcrypt

189

�UserDetailsService Implementation
In the Spring Security introduction section, we learned that a UserDetailsService is

typically used to retrieve user information, which gets compared with user-submitted

credentials during the authentication process. Listing 8-8 shows a UserDetailsService

implementation for our QuickPoll application.

Listing 8-8.  UserDetailsService Implementation for QuickPoll

package com.apress.security;

import javax.inject.Inject;

import org.springframework.security.core.GrantedAuthority;

import org.springframework.security.core.authority.AuthorityUtils;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.core.userdetails.

UsernameNotFoundException;

import org.springframework.stereotype.Component;

import com.apress.domain.User;

import com.apress.repository.UserRepository;

Table 8-1.  Test User Information

Username Password Is admin

Mickey Cheese No

Minnie Red01 No

Donald Quack No

Daisy Quack2 No

Clarabelle Moo No

Admin Admin Yes

Chapter 8 Security

190

@Component

public class QuickPollUserDetailsService implements UserDetailsService {

 @Inject

 private UserRepository userRepository;

 @Override

public UserDetails loadUserByUsername(String username) throws

UsernameNotFoundException {

 User user = userRepository.findByUsername(username);

 if(user == null) {

throw new UsernameNotFoundException(String.format("User with the username

%s doesn't exist", username));

 }

 // Create a granted authority based on user's role.

// �Can't pass null authorities to user. Hence initialize with an

empty arraylist

 List<GrantedAuthority> authorities = new ArrayList<>();

 if(user.isAdmin()) {

 �authorities = AuthorityUtils.createAuthorityList

("ROLE_ADMIN");

 }

 // Create a UserDetails object from the data

UserDetails userDetails = new org.springframework.security.core.

userdetails.User(user.getUsername(), user.getPassword(), authorities);

 return userDetails;

 }

}

The QuickPollUserDetailsService class makes use of UserRepository to

retrieve User information from the database. It then checks if the retrieved user has

administrative rights and constructs an admin GrantedAuthority, namely, ROLE_ADMIN.

Chapter 8 Security

191

The Spring Security infrastructure expects the loadUserByUsername method to return an

instance of type UserDetails. Hence, the QuickPollUserDetailsService class creates

the o.s.s.c.u.User instance and populates it with the data retrieved from the database.

The o.s.s.c.u.User is a concrete implementation of the UserDetails interface. If

the QuickPollUserDetailsService can’t find a user in the database for the passed-in

username, it will throw a UsernameNotFoundException exception.

�Customizing Spring Security
Customizing Spring Security’s default behavior involves creating a configuration class

that is annotated with @EnableWebSecurity. This configuration class typically extends

the org.springframework.security.config.annotation.web.configuration.

WebSecurityConfigurer class that provides helper methods to simplify our security

configuration. Listing 8-9 shows the SecurityConfig class that will contain security-

related configuration for QuickPoll application.

Listing 8-9.  Security Configuration for QuickPoll

package com.apress;

import javax.inject.Inject;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.

builders.AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.annotation.web.configuration.

WebSecurityConfigurerAdapter;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

@Configuration

@EnableWebSecurity

public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Inject

 private UserDetailsService userDetailsService;

Chapter 8 Security

192

 @Override

 �protected void configure(AuthenticationManagerBuilder auth) throws

Exception {

 auth.userDetailsService(userDetailsService)

 .passwordEncoder(new BCryptPasswordEncoder());

 }

}

The SecurityConfig class declares a userDetailsService property, which gets

injected with a QuickPollUserDetailsService instance at runtime. It also overrides

a super class’s configure method that takes an AuthenticationManagerBuilder as

parameter. The AuthenticationManagerBuilder is a helper class implementing the

Builder pattern that provides an easy way of assembling an AuthenticationManager.

In our method implementation, we use the AuthenticationManagerBuilder to add the

UserDetailsService instance. Because we have encrypted the passwords stored in the

database using BCrypt algorithm, we provide an instance of BCryptPasswordEncoder.

The authentication manager framework will use the password encoder to compare the

plain string provided by the user with the encrypted hash stored in the database.

With this configuration in place, restart the QuickPoll application and run the

following command at the command line:

curl -u mickey:cheese http://localhost:8080/v2/polls

If you run the command without the –u option and the username/password data,

you will receive a 403 error from the server as shown here:

{"timestamp":1429998300969,"status":401,"error":"Unauthorized","message":"F

ull authentication is required to access this resource","path":"/v2/polls"}

�Securing URI
The SecurityConfig class introduced in the previous section gets us one step closer

by configuring HTTP Basic authentication to use QuickPoll users. This configuration,

however, protects all endpoints and requires authentication to access resources.

To implement our requirement to just secure v3 Poll API, we will override another

WebSecurityConfigurer’s config method. Listing 8-10 shows the config method

implementation that needs to be added to the SecurtyConfig class.

Chapter 8 Security

193

Listing 8-10.  New Config Method in SecurityConfig

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.http.SessionCreationPolicy;

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 .sessionManagement()

 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)

 .and()

 .authorizeRequests()

 �.antMatchers("/v1/**", "/v2/**", "/swagger-ui/**", "/

api-docs/**").permitAll()

 .antMatchers("/v3/polls/ **").authenticated()

 .and()

 .httpBasic()

 .realmName("Quick Poll")

 .and()

 .csrf()

 .disable();

}

The HttpSecurity parameter passed into the config method in Listing 8-10 allows

us to specify the URI that should be secured or unsecured. We begin the method

implementation by requesting Spring Security to not create an HTTP session and

not store logged-in user’s SecurityContext in the session. This is achieved using the

SessionCreationPolicy.STATELESS creation policy. We then use antMatchers to

provide Ant-style URI expressions that we don’t want Spring Security protecting. Using

the permitAll method, we are specifying that the API versions 1 and 2 and Swagger UI

should be available anonymously. The next antMatchers along with authenticated

method specifies that Spring Security should only allow authenticated users to

access V3 Polls API. Finally, we enable HTTP Basic authentication and set the realm

name to “Quick Poll.” Restart QuickPoll application and you should be prompted for

authentication only on the /v3/polls resources.

Chapter 8 Security

194

Note  Cross-Site Request Forgery, or CSRF (http://en.wikipedia.org/
wiki/Cross-site_request_forgery), is a type of security vulnerability
whereby a malicious website forces the end user to execute unwanted commands
on a different website in which they are currently authenticated. Spring Security
by default enables CSRF protection and highly recommends using it for requests
submitted by a user via a browser. For services that are used by nonbrowser
clients, the CSRF can be disabled. By implementing custom RequestMatchers, it
is possible to disable CSRF only for certain URLs or HTTP methods.

To keep things simple and manageable for this book, we have disabled CSRF
protection.

The last security requirement that we have is to ensure that only users with

administrative privileges can delete a poll. To implement this authorization

requirement, we will apply Spring Security’s method level security on the deletePoll

method. Spring’s method level security can be enabled using the aptly named

org.springframework.security.config.annotation.method.configuration.

EnableGlobalMethodSecurity annotation. Listing 8-11 shows the annotation added to

the SecurityConfig class.

Listing 8-11.  EnableGlobalMethodSecurity Annotation Added

package com.apress;

import org.springframework.security.config.annotation.method.configuration.

EnableGlobalMethodSecurity;

@Configuration

@EnableWebSecurity

@EnableGlobalMethodSecurity(prePostEnabled = true)

public class SecurityConfig extends WebMvcConfigurer {

 // Content removed for brevity

}

Spring Security supports a rich set of class and method-level authorization

annotations along with standard-based JSR 250 annotation security. The

prePostEnabled flag in EnableGlobalMethodSecurity requests Spring Security to

Chapter 8 Security

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

195

enable annotations that perform pre- and post-method invocation authorization

checks. The next step is to annotate the v3 PollController’s deletePoll method with @

PreAuthorize annotation as shown in Listing 8-12.

Listing 8-12.  PreAuthorize Annotation Added

import org.springframework.security.access.prepost.PreAuthorize;

@PreAuthorize("hasAuthority('ROLE_ADMIN')")

public ResponseEntity<Void> deletePoll(@PathVariable Long pollId) {

 // Code removed for brevity

}

The @PreAuthorize annotation decides if the deletePoll method can be invoked or

not. Spring Security makes this decision by evaluating the Spring-EL expression passed

in as the annotation’s value. In this case, the hasAuthority checks if the logged-in user

has the “ROLE_ADMIN” authority. Restart the application and perform a DELETE on

the endpoint http://localhost:8080/v3/polls/12 using Postman. When prompted

for credentials, enter the username mickey and the password cheese, and hit Log In.

Figure 8-8 shows the request and associated inputs.

Figure 8-8.  Deleting poll with unauthorized users

Chapter 8 Security

196

Since the user mickey doesn’t have administrative rights, you will see an

unauthorized response from the service, as shown in Figure 8-9.

Now let’s retry this request using an admin user with administrative rights. In

Postman, click the Basic Auth tab and enter the credentials admin/admin and hit

“Refresh headers” as shown in Figure 8-10. On submitting the request, you should see

the Poll resource with ID 12 deleted.

Figure 8-10.  Basic Auth admin credentials in Postman

Figure 8-9.  Unauthorized delete response

Chapter 8 Security

197

To delete a Poll using cURL, run the following command:

curl -i -u admin:admin -X DELETE http://localhost:3/v3/polls/13

The previously mentioned command deletes a Poll resource with ID 13. The –i

option requests curl to output the response headers. The –X option allows us to specify

the HTTP method name. In our case, we specified the DELETE HTTP method. The

output of this result is shown in Listing 8-13.

Listing 8-13.  Output of cURL Delete

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

Content-Length: 0

Date: Sat, 25 Apr 2015 21:50:35 GMT

�Summary
Security is an important aspect of any enterprise application. In this chapter, we

reviewed strategies for securing REST services. We also took a deeper look into OAuth 2

and reviewed its different components. We then used Spring Security to implement Basic

authentication in our QuickPoll application. In the next chapter, we will use Spring’s

RestTemplate to build REST clients. We will also use the Spring MVC Test framework to

perform unit and integration testing on REST controllers.

Chapter 8 Security

199
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_9

CHAPTER 9

Clients and Testing
In this chapter we will discuss the following:

•	 Building clients using RestTemplate

•	 Spring Test framework basics

•	 Unit testing MVC controllers

•	 Integration testing MVC controllers

We have looked at building REST services using Spring. In this chapter, we will

look at building clients that consume these REST services. We will also examine the

Spring Test framework that can be used to perform unit and end-to-end testing of REST

services.

�QuickPoll Java Client
Consuming REST services involves building a JSON or XML request payload,

transmitting the payload via HTTP/HTTPS, and consuming the returned JSON response.

This flexibility opens doors to numerous options for building REST clients in Java (or, as

a matter of fact, any technology). A straightforward approach for building a Java REST

client is to use core JDK libraries. Listing 9-1 shows an example of a client reading a Poll

using the QuickPoll REST API.

Listing 9-1.  Reading a Poll Using Java URLClass

public void readPoll() {

 HttpURLConnection connection = null;

 BufferedReader reader = null;

 try {

https://doi.org/10.1007/978-1-4842-7477-4_9#DOI

200

 �URL restAPIUrl = new URL("http://localhost:8080/v1/

polls/1");

 �connection = (HttpURLConnection) restAPIUrl.

openConnection();

 connection.setRequestMethod("GET");

 // Read the response

reader = new BufferedReader(new InputStreamReader(connection.

getInputStream()));

 StringBuilder jsonData = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 jsonData.append(line);

 }

 System.out.println(jsonData.toString());

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 finally {

 // Clean up

 IOUtils.closeQuietly(reader);

 if(connection != null)

 connection.disconnect();

 }

}

Although there is nothing wrong with the approach in Listing 9-1, there is a lot of

boilerplate code that needs to be written to perform a simple REST operation. The

readPoll method would grow even bigger if we were to include the code to parse the

JSON response. Spring abstracts this boilerplate code into templates and utility classes

and makes it easy to consume REST services.

Chapter 9 Clients and Testing

201

�RestTemplate
Central to Spring’s support for building REST clients is the org.springframework.web.

client.RestTemplate. The RestTemplate takes care of the necessary plumbing needed

to communicate with REST services and automatically marshals/unmarshals HTTP

request and response bodies. The RestTemplate like Spring’s other popular helper

classes such as JdbcTemplate and JmsTemplate is based on the Template Method design

pattern.1

The RestTemplate and associated utility classes are part of the spring-web.jar file.

If you are building a standalone REST client using RestTemplate, you need to add the

spring-web dependency, shown in Listing 9-2, to your pom.xml file.

Listing 9-2.  Spring-web.jar Dependency

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>5.3.9</version>

</dependency>

RestTemplate provides convenient methods to perform API requests using six

commonly used HTTP methods. In the next sections, we will look at some of these

functions along with a generic yet powerful exchange method to build QuickPoll clients.

Note I n this chapter we will continue building on the work that we did on the
QuickPoll application in the previous chapters. Alternatively, a starter project inside
the Chapter9\starter folder of the downloaded source code is available for
you to use. The completed solution is available under the Chapter9\final folder.
Please refer to this solution for complete listings containing getters/setters and
additional imports.

1 http://en.wikipedia.org/wiki/Template_method_pattern.

Chapter 9 Clients and Testing

http://en.wikipedia.org/wiki/Template_method_pattern

202

�Getting Polls
RestTemplate provides a getForObject method to retrieve representations using the

GET HTTP method. Listing 9-3 shows the three flavors of the getForObject method.

Listing 9-3.  GetForObject Method Flavors

public <T> T getForObject(String url, Class<T> responseType, Object...

urlVariables) throws RestClientException {}

public <T> T getForObject(String url, Class<T> responseType, Map<String,?>

urlVariables) throws RestClientException

public <T> T getForObject(URI url, Class<T> responseType) throws

RestClientException

The first two methods accept a URI template string, a return value type, and URI

variables that can be used to expand the URI template. The third flavor accepts a fully

formed URI and return value type. RestTemplate encodes the passed-in URI templates,

and, hence, if the URI is already encoded, you must use the third method flavor.

Otherwise, it will result in double encoding of the URI, causing malformed URI errors.

Listing 9-4 shows the QuickPollClient class and the usage of getForObject

method to retrieve a Poll for a given poll id. The QuickPollClient is placed under the

com.apress.client package of our QuickPoll application and is interacting with the

first version of our QuickPoll API. In the upcoming sections, we will create clients that

interact with second and third versions of the API. RestTemplate is threadsafe, and,

hence, we created a class-level RestTemplate instance to be used by all client methods.

Because we have specified the Poll.class as the second parameter, RestTemplate uses

HTTP message converters and automatically converts the HTTP response content into a

Poll instance.

Listing 9-4.  QuickPollClient and GetForObject Usage

package com.apress.client;

import org.springframework.web.client.RestTemplate;

import com.apress.domain.Poll;

public class QuickPollClient {

Chapter 9 Clients and Testing

203

 �private static final String QUICK_POLL_URI_V1 = "http://

localhost:8080/v1/polls";

 private RestTemplate restTemplate = new RestTemplate();

 public Poll getPollById(Long pollId) {

return restTemplate.getForObject(QUICK_POLL_URI_V1 + "/{pollId}", Poll.

class, pollId);

 }

}

This listing demonstrates the power of RestTemplate. It took about a dozen lines in

Listing 9-1, but we were able to accomplish that and more with a couple of lines using

RestTemplate. The getPollById method can be tested with a simple main method in

QuickPollClient class:

public static void main(String[] args) {

 QuickPollClient client = new QuickPollClient();

 Poll poll = client.getPollById(1L);

 System.out.println(poll);

}

Note E nsure that you have the QuickPoll application up and running before you
run the main method.

Retrieving a Poll collection resource is a little trickier as providing List<Poll>.

class as a return value type to the getForObject would result in compilation error. One

approach is to simply specify that we are expecting a collection:

List allPolls = restTemplate.getForObject(QUICK_POLL_URI_V1, List.class);

However, because RestTemplate can’t automatically guess the Java class type

of the elements, it would deserialize each JSON object in the returned collection

into a LinkedHashMap. Hence, the call returns all of our Polls as a collection of type

List<LinkedHashMap>.

Chapter 9 Clients and Testing

204

To address this issue, Spring provides a org.springframework.core.

ParameterizedTypeReference abstract class that can capture and retain generic-

type information at runtime. So, to specify the fact that we are expecting a list of Poll

instances, we create a subclass of ParameterizedTypeReference:

ParameterizedTypeReference<List<Poll>> responseType = new ParameterizedType

Reference<List<Poll>>() {};

RestTemplate HTTP-specific methods such as getForObject don’t take a

ParameterizedTypeReference as their parameter. As shown in Listing 9-5,

we need to use RestTemplate’s exchange method in conjunction with

ParameterizedTypeReference. The exchange method infers the return-type information

from the passed-in responseType parameter and returns a ResponseEntity instance.

Invoking the getBody method on ResponseEntity gives us the Poll collection.

Listing 9-5.  Get All Polls Using RestTemplate

import org.springframework.core.ParameterizedTypeReference;

import org.springframework.http.ResponseEntity;

import org.springframework.http.HttpMethod;

public List<Poll> getAllPolls() {

ParameterizedTypeReference<List<Poll>> responseType = new

ParameterizedTypeReference

<List<Poll>>() {};

ResponseEntity<List<Poll>> responseEntity = restTemplate.exchange(QUICK_

POLL_URI_V1, HttpMethod.GET, null, responseType);

 List<Poll> allPolls = responseEntity.getBody();

 return allPolls;

}

We can also accomplish similar behavior with getForObject by requesting

RestTemplate to return an array of Poll instances:

Poll[] allPolls = restTemplate.getForObject(QUICK_POLL_URI_V1, Poll[].

class);

Chapter 9 Clients and Testing

205

�Creating a Poll
RestTemplate provides two methods—postForLocation and postForObject—to

perform HTTP POST operations on a resource. Listing 9-6 gives the API for the two

methods.

Listing 9-6.  RestTemplate’s POST Support

public URI postForLocation(String url, Object request, Object...

urlVariables) throws RestClientException

public <T> T postForObject(String url, Object request, Class<T>

responseType, Object... uriVariables) throws RestClientException

The postForLocation method performs an HTTP POST on the given URI and

returns the value of the Location header. As we have seen in our QuickPoll POST

implementations, the Location header contains the URI of the newly created resource.

The postForObject works similar to postForLocation but converts a response into a

representation. The responseType parameter indicates the type of representation to be

expected.

Listing 9-7 shows the QuickPollClient’s createPoll method that creates a new Poll

using the postForLocation method.

Listing 9-7.  Create a Poll Using PostForLocation

public URI createPoll(Poll poll) {

 return restTemplate.postForLocation(QUICK_POLL_URI_V1, poll);

}

Update the QuickPollClient’s main method with this code to test the createPoll

method:

public static void main(String[] args) {

 QuickPollClient client = new QuickPollClient();

 Poll newPoll = new Poll();

 newPoll.setQuestion("What is your favourate color?");

 Set<Option> options = new HashSet<>();

 newPoll.setOptions(options);

Chapter 9 Clients and Testing

206

 �Option option1 = new Option(); option1.setValue("Red"); options.

add(option1);

 �Option option2 = new Option(); option2.setValue("Blue");options.

add(option2);

 URI pollLocation = client.createPoll(newPoll);

 System.out.println("Newly Created Poll Location " + pollLocation);

}

�PUT Method
The RestTemplate provides the aptly named PUT method to support the PUT HTTP

method. Listing 9-8 shows QuickPollClient’s updatePoll method that updates a poll

instance. Notice that the PUT method doesn’t return any response and communicates

failures by throwing RestClientException or its subclasses.

Listing 9-8.  Update a Poll Using PUT

public void updatePoll(Poll poll) {

 �restTemplate.put(QUICK_POLL_URI_V1 + "/{pollId}", poll, poll.

getId());

}

�DELETE Method
The RestTemplate provides three overloaded DELETE methods to support DELETE HTTP

operations. The DELETE methods follow semantics similar to PUT and don’t return a

value. They communicate any exceptions via RestClientException or its subclasses.

Listing 9-9 shows the deletePoll method implementation in QuickPollClient class.

Listing 9-9.  Delete a Poll

public void deletePoll(Long pollId) {

 restTemplate.delete(QUICK_POLL_URI_V1 + "/{pollId}", pollId);

}

Chapter 9 Clients and Testing

207

�Handling Pagination
In version 2 of our QuickPoll API, we introduced paging. So, the clients upgrading to

version 2 need to re-implement the getAllPolls method. All other client methods will

remain unchanged.

To re-implement the getAllPolls, our first instinct would be to simply pass the org.

springframework.data.domain.PageImpl as the parameterized type reference:

ParameterizedTypeReference<PageImpl<Poll>> responseType = new Parameterized

TypeReference<PageImpl<Poll>>() {};

ResponseEntity<PageImpl<Poll>> responseEntity = restTemplate.

exchange(QUICK_POLL_URI_2, HttpMethod.GET, null, responseType);

PageImpl<Poll> allPolls = responseEntity.getBody();

The PageImpl is a concrete implementation of the org.springframework.data.

domain.Page interface and can hold all of the paging and sorting information returned

by the QuickPoll REST API. The only problem with this approach is that PageImpl

doesn’t have a default constructor and Spring’s HTTP message converter would fail with

the following exception:

Could not read JSON: No suitable constructor found for type [simple type,

class org.springframework.data.domain.PageImpl<com.apress.domain.Poll>]:

can not instantiate from JSON object (need to add/enable type information?)

To handle pagination and successfully map JSON to an object, we will create a

Java class that mimics PageImpl class but also has a default constructor, as shown in

Listing 9-10.

Listing 9-10.  PageWrapper Class

package com.apress.client;

import java.util.List;

import org.springframework.data.domain.Sort;

public class PageWrapper<T> {

 private List<T> content;

 private Boolean last;

 private Boolean first;

Chapter 9 Clients and Testing

208

 private Integer totalPages;

 private Integer totalElements;

 private Integer size;

 private Integer number;

 private Integer numberOfElements;

 private Sort sort;

 // Getters and Setters removed for brevity

}

Note T here are occasions when you need to generate Java types from
JSON. This is especially true for APIs that don’t provide a Java client library. The
online tool www.jsonschema2pojo.org provides a convenient way to generate
Java POJOs from JSON schema or JSON data.

The PageWrapper class can hold the returned content and has attributes to hold

the paging information. Listing 9-11 shows the QuickPollClientV2 class that makes

use of PageWrapper to interact with second version of API. Notice that the getAllPolls

method now takes two parameters: page and size. The page parameter determines the

requested page number, and the size parameter determines the number of elements

to be included in the page. This implementation can be further enhanced to accept sort

parameters and provide sorting functionality.

Listing 9-11.  QuickPoll Client for Version 2

package com.apress.client;

import org.springframework.core.ParameterizedTypeReference;

import org.springframework.http.HttpMethod;

import org.springframework.http.ResponseEntity;

import org.springframework.web.client.RestTemplate;

import org.springframework.web.util.UriComponentsBuilder;

import com.apress.domain.Poll;

Chapter 9 Clients and Testing

http://www.jsonschema2pojo.org

209

public class QuickPollClientV2 {

 �private static final String QUICK_POLL_URI_2 = "http://

localhost:8080/v2/polls";

 private RestTemplate restTemplate = new RestTemplate();

 public PageWrapper<Poll> getAllPolls(int page, int size) {

ParameterizedTypeReference<PageWrapper<Poll>> responseType = new

ParameterizedTypeReference<PageWrapper<Poll>>() {};

 UriComponentsBuilder builder = UriComponentsBuilder

 �.fromHttpUrl(QUICK_POLL_

URI_2)

 .queryParam("page", page)

 .queryParam("size", size);

ResponseEntity<PageWrapper<Poll>> responseEntity = restTemplate.exchange

(builder.build().toUri(), HttpMethod.GET, null, responseType);

 return responseEntity.getBody();

 }

}

�Handling Basic Authentication
Up to this point we have created clients for the first and second versions of QuickPoll

API. In Chapter 8, we secured the third version of the API, and any communication with

that version requires Basic authentication. For example, running a DELETE method on

URI http://localhost:8080/v3/polls/3 without any authentication would result in an

HttpClientErrorException with a 401 status code.

To successfully interact with our QuickPoll v3 API, we need to programmatically

base 64 encode a user’s credentials and construct an authorization request header.

Listing 9-12 shows such implementation: we concatenate the passed-in username and

password. We then base 64 encode it and create an Authorization header by prefixing

Basic to the encoded value.

Chapter 9 Clients and Testing

210

Listing 9-12.  Authentication Header Implementation

import org.apache.tomcat.util.codec.binary.Base64;

import org.springframework.http.HttpHeaders;

private HttpHeaders getAuthenticationHeader(String username, String

password) {

 String credentials = username + ":" + password;

 �byte[] base64CredentialData = Base64.encodeBase64(credentials.

getBytes());

 HttpHeaders headers = new HttpHeaders();

 �headers.set("Authorization", "Basic " + new

String(base64CredentialData));

 return headers;

}

The RestTemplate’s exchange method can be used to perform an HTTP

operation and takes in an Authorization header. Listing 9-13 shows the

QuickPollClientV3BasicAuth class with deletePoll method implementation using

Basic authentication.

Listing 9-13.  QuickPoll Client with Basic Auth

package com.apress.client;

import org.springframework.http.HttpHeaders;

import org.springframework.http.HttpMethod;

import org.springframework.web.client.RestTemplate;

import org.springframework.http.HttpEntity;

public class QuickPollClientV3BasicAuth {

 �private static final String QUICK_POLL_URI_V3 = "http://

localhost:8080/v3/polls";

 private RestTemplate restTemplate = new RestTemplate();

 public void deletePoll(Long pollId) {

Chapter 9 Clients and Testing

211

HttpHeaders authenticationHeaders = getAuthenticationHeader("admin", "admin");

 restTemplate.exchange(QUICK_POLL_URI_V3 + "/{pollId}",

HttpMethod.DELETE, new HttpEntity<Void>(authenticationHeaders),

Void.class, pollId);

 }

}

Note I n this approach, we have manually set the Authentication
header to each request. Another approach is to implement a custom
ClientHttpRequestInterceptor that intercepts each outgoing request and
automatically appends the header to it.

�Testing REST Services
Testing is an important aspect of every software development process. Testing comes

in different flavors, and in this chapter, we will focus on unit and integration testing.

Unit testing verifies that individual, isolated units of code are working as expected.

It is the most common type of testing that developers typically perform. Integration

testing typically follows unit testing and focuses on the interaction between

previously tested units.

The Java ecosystem is filled with frameworks that ease unit and integration testing.

JUnit and TestNG have become the de facto standard test frameworks and provide

foundation/integration to most other testing frameworks. Although Spring supports both

frameworks, we will be using JUnit in this book, as it is familiar to most readers.

�Spring Test
The Spring Framework provides the spring-test module that allows you to integrate

Spring into tests. The module provides a rich set of annotations, utility classes, and mock

objects for environment JNDI, Servlet, and Portlet API. The framework also provides

capabilities to cache application context across test executions to improve performance.

Chapter 9 Clients and Testing

212

Using this infrastructure, you can easily inject Spring beans and test fixtures into tests. To

use the spring-test module in a non–Spring Boot project, you need to include the Maven

dependency as shown in Listing 9-14.

Listing 9-14.  Spring-test Dependency

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>3.5.9</version>

 <scope>test</scope>

</dependency>

Spring Boot provides a starter POM named spring-boot-starter-test that

automatically adds the spring-test module to a Boot application. Additionally, the

starter POM brings in JUnit, Mockito, and Hamcrest libraries:

•	 Mockito is a popular mocking framework for Java. It provides a

simple and easy-to-use API to create and configure mocks. More

details about Mockito can be found at http://mockito.org/.

•	 Hamcrest is a framework that provides a powerful vocabulary for

creating matchers. To put it simply, a matcher allows you to match

an object against a set of expectations. Matchers improve the way

that we write assertions by making them more human readable. They

also generate meaningful failure messages when assertions are not

met during testing. You can learn more about Hamcrest at http://

hamcrest.org/.

To understand the spring-test module, let’s examine a typical test case. Listing 9-15

shows a sample test built using JUnit and spring-test infrastructure.

Listing 9-15.  Sample JUnit Test

@RunWith(SpringJUnit4ClassRunner.class)

@SpringBootTest(classes = QuickPollApplication.class)

@WebAppConfiguration

public class ExampleTest {

 @Before

 public void setup() { }

Chapter 9 Clients and Testing

http://mockito.org/
http://hamcrest.org/
http://hamcrest.org/

213

 @Test

 public void testSomeThing() {}

 @After

 public void teardown() { }

}

Our example test contains three methods—setup, testSomeThing, and teardown

each annotated with a JUnit annotation. The @Test annotation denotes the

testSomeThing as a JUnit test method. This method will contain code that ensures our

production code works as expected. The @Before annotation instructs JUnit to run the

setup method prior to any test method execution. Methods annotated with @Before

can be used for setting up test fixtures and test data. Similarly, the @After annotation

instructs JUnit to run the teardown method after any test method execution. Methods

annotated with @After are typically used to tear down test fixtures and perform cleanup

operations.

JUnit uses the notion of test runner to perform test execution. By default, JUnit uses

the BlockJUnit4ClassRunner test runner to execute test methods and associated life

cycle (@Before or @After, etc.) methods. The @RunWith annotation allows you to alter

this behavior. In our example, using the @RunWith annotation, we are instructing JUnit to

use the SpringJUnit4ClassRunner class to run the test cases.

The SpringJUnit4ClassRunner adds Spring integration by performing activities such

as loading application context, injecting autowired dependencies, and running specified

test execution listeners. For Spring to load and configure an application context, it needs

the locations of the XML context files or the names of the Java configuration classes. We

typically use the @ContextConfiguration annotation to provide this information to the

SpringJUnit4ClassRunner class.

In our example, however, we use the SpringBootTest, a specialized version of the

standard ContextConfiguration that provides additional Spring Boot features. Finally,

the @WebAppConfiguration annotation instructs Spring to create the web version of the

application context, namely, WebApplicationContext.

Chapter 9 Clients and Testing

214

�Unit Testing REST Controllers
Spring’s dependency injection makes unit testing easier. Dependencies can be easily

mocked or simulated with predefined behavior, thereby allowing us to zoom in and

test code in isolation. Traditionally, unit testing Spring MVC controllers followed this

paradigm. For example, Listing 9-16 shows the code unit testing PollController’s

getAllPolls method.

Listing 9-16.  Unit Testing PollController with Mocks

import static org.junit.Assert.assertEquals;

import static org.mockito.Mockito.when;

import static org.mockito.Mockito.times;

import static org.mockito.Mockito.verify;

import java.util.ArrayList;

import com.google.common.collect.Lists;

import org.junit.Before;

import org.junit.Test;

import org.mockito.Mock;

import org.mockito.MockitoAnnotations;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.test.util.ReflectionTestUtils;

public class PollControllerTestMock {

 @Mock

 private PollRepository pollRepository;

 @Before

 public void setUp() throws Exception {

 MockitoAnnotations.initMocks(this);

 }

 @Test

 public void testGetAllPolls() {

 PollController pollController = new PollController();

Chapter 9 Clients and Testing

215

ReflectionTestUtils.setField(pollController, "pollRepository",

pollRepository);

 �when(pollRepository.findAll()).thenReturn(new

ArrayList<Poll>());

ResponseEntity<Iterable<Poll>> allPollsEntity = pollController.

getAllPolls();

 verify(pollRepository, times(1)).findAll();

 �assertEquals(HttpStatus.OK, allPollsEntity.

getStatusCode());

 �assertEquals(0, Lists.newArrayList(allPollsEntity.

getBody()).size());

 }

}

The PollControllerTestMock implementation uses the Mockito’s @Mock annotation

to mock PollController’s only dependency: PollRepository. For Mockito to properly

initialize the annotated pollRepository property, we either need to run the test

using the MockitoJUnitRunner test runner or invoke the initMocks method in the

MockitoAnnotations. In our test, we choose the latter approach and call the initMocks

in the @Before method.

In the testGetAllPolls method, we create an instance of PollController and

inject the mock PollRepository using Spring’s ReflectionTestUtils utility class. Then

we use Mockito’s when and thenReturn methods to set the PollRepository mock’s

behavior. Here are we indicating that when the PollRepository’s findAll() method is

invoked, an empty collection should be returned. Finally, we invoke the getAllPolls

method and verify findAll() method’s invocation and assert controller’s return value.

In this strategy, we treat the PollController as a POJO and hence don’t test the

controller’s request mappings, validations, data bindings, and any associated exception

handlers. Starting from version 3.2, spring-test module includes a Spring MVC Test

framework that allows us to test a controller as a controller. This test framework will load

the DispatcherServlet and associated web components such as controllers and view

resolvers into test context. It then uses the DispatcherServlet to process all the requests

and generates responses as if it is running in a web container without actually starting

up a web server. This allows us to perform a more thorough testing of Spring MVC

applications.

Chapter 9 Clients and Testing

216

�Spring MVC Test Framework Basics

To gain a better understanding of the Spring MVC Test framework, we explore its four

important classes: MockMvc, MockMvcRequestBuilders, MockMvcResultMatchers, and

MockMvcBuilders. As evident from the class names, the Spring MVC Test framework

makes heavy use of Builder pattern.2

Central to the test framework is the org.springframework.test.web.servlet.

MockMvc class, which can be used to perform HTTP requests. It contains only one

method named perform and has the following API signature:

public ResultActions perform(RequestBuilder requestBuilder) throws java.

lang.Exception

The RequestBuilder parameter provides an abstraction to create the request (GET,

POST, etc.) to be executed. To simplify request construction, the framework provides an

org.springframework.test.web.servlet.request.MockHttpServletRequestBuilder

implementation and a set of helper static methods in the org.springframework.test.

web.servlet.request.MockMvcRequestBuilders class. Listing 9-17 gives an example of

a POST HTTP request constructed using the previously mentioned classes.

Listing 9-17.  POST HTTP Request

post("/test_uri")

 .param("admin", "false")

 .accept(MediaType.APPLICATION_JSON)

 .content("{JSON_DATA}");

The post method is part of the MockMvcRequestBuilders class and is used to create

a POST request. The MockMvcRequestBuilders also provides additional methods such

as get, delete, and put to create corresponding HTTP requests. The param method is

part of the MockHttpServletRequestBuilder class and is used to add a parameter to

the request. The MockHttpServletRequestBuilder provides additional methods such

as accept, content, cookie, and header to add data and metadata to the request being

constructed.

2 http://en.wikipedia.org/wiki/Builder_pattern.

Chapter 9 Clients and Testing

http://en.wikipedia.org/wiki/Builder_pattern

217

The perform method returns an org.springframework.test.web.servlet.

ResultActions instance that can be used to apply assertions/expectations on the

executed response. Listing 9-18 shows three assertions applied to the response of a

sample POST request using ResultActions’s andExpect method. The status is a static

method in org.springframework.test.web.servlet.result.MockMvcResultMatchers

that allows you to apply assertions on response status. Its isOk method asserts

that the status code is 200 (HTTPStatus.OK). Similarly, the content method in

MockMvcResultMatchers provides methods to assert response body. Here we are

asserting that the response content type is of type “application/json” and matches an

expected string “JSON_DATA.”

Listing 9-18.  ResultActions

mockMvc.perform(post("/test_uri"))

 .andExpect(status().isOk())

 �.andExpect(content().contentType(MediaType.APPLICATION_JSON))

 .andExpect(content().string("{JSON_DATA}"));

So far, we have looked at using MockMvc to perform requests and assert the response.

Before we can use MockMvc, we need to initialize it. The MockMvcBuilders class provides

the following two methods to build a MockMvc instance:

•	 WebAppContextSetup—Builds a MockMvc instance using a fully

initialized WebApplicationContext. The entire Spring configuration

associated with the context is loaded before MockMvc instance is

created. This technique is used for end-to-end testing.

•	 StandaloneSetup—Builds a MockMvc without loading any Spring

configuration. Only the basic MVC infrastructure is loaded for testing

controllers. This technique is used for unit testing.

�Unit Testing Using Spring MVC Test Framework

Now that we have reviewed the Spring MVC Test framework, let’s look at using it to

test REST controllers. The PollControllerTest class in Listing 9-19 demonstrates

testing the getPolls method. To the @ContextConfiguration annotation,

we pass in a MockServletContext class instructing Spring to set up an empty

Chapter 9 Clients and Testing

218

WebApplicationContext. An empty WebApplicationContext allows us to instantiate and

initialize the one controller that we want to test without loading up the entire application

context. It also allows us to mock the dependencies that the controller requires.

Listing 9-19.  Unit Testing with Spring MVC Test

package com.apress.unit;

import static org.mockito.Mockito.when;

import static org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.content;

import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.status;

import static org.springframework.test.web.servlet.setup.MockMvcBuilders.

standaloneSetup;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.MockitoAnnotations;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.mock.web.MockServletContext;

import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringJUnit4ClassRunner.class)

@SpringBootTest(classes = QuickPollApplication.class)

@ContextConfiguration(classes = MockServletContext.class)

@WebAppConfiguration

public class PollControllerTest {

 @InjectMocks

 PollController pollController;

 @Mock

 private PollRepository pollRepository;

 private MockMvc mockMvc;

Chapter 9 Clients and Testing

219

 @Before

 public void setUp() throws Exception {

 MockitoAnnotations.initMocks(this);

 mockMvc = standaloneSetup(pollController).build();

 }

 @Test

 public void testGetAllPolls() throws Exception {

 �when(pollRepository.findAll()).thenReturn(new

ArrayList<Poll>());

 mockMvc.perform(get("/v1/polls"))

 .andExpect(status().isOk())

 .andExpect(content().string("[]"));

 }

}

In this case, we want to test version 1 of our PollController API. So we declare a

pollController property and annotate it with @InjectMocks. During runtime, Mockito

sees the @InjectMocks annotation and will create an instance of the import com.

apress.v1.controller.PollController.PollController. It then injects it with any

mocks declared in the PollControllerTest class using constructor/field or setter

injection. The only mock we have in the class is the PollRepository.

In the @Before annotated method, we use the MockMvcBuilders’s

standaloneSetup() method to register the pollController instance. The

standaloneSetup() automatically creates the minimum infrastructure required by the

DispatcherServlet to serve requests associated with the registered controllers. The

MockMvc instance built by standaloneSetup is stored in a class-level variable and made

available to tests.

In the testGetAllPolls method, we use Mockito to program the PollRepository

mock’s behavior. Then we perform a GET request on the /v1/polls URI and use the

status and content assertions to ensure that an empty JSON array is returned. This is

the biggest difference from the version that we saw in Listing 9-16. There we were testing

the result of a Java method invocation. Here we are testing the HTTP response that the

API generates.

Chapter 9 Clients and Testing

220

�Integration Testing REST Controllers
In the previous section, we looked at unit testing a controller and its associated

configuration. However, this testing is limited to a web layer. There are times when we

want to test all of the layers of an application from controllers to the persistent store. In

the past, writing such tests required launching the application in an embedded Tomcat

or Jetty server and use a framework such as HtmlUnit or RestTemplate to trigger HTTP

requests. Depending on an external servlet container can be cumbersome and often

slows down testing.

The Spring MVC Test framework provides a lightweight, out-of-the-container

alternative for integration testing MVC applications. In this approach, the entire

Spring application context along with the DispatcherServlet and associated MVC

infrastructure gets loaded. A mocked MVC container is made available to receive and

execute HTTP requests. We interact with real controllers and these controllers work

with real collaborators. To speed up integration testing, complex services are sometimes

mocked. Additionally, the context is usually configured such that the DAO/repository

layer interacts with an in-memory database.

This approach is similar to the approach we used for unit testing controllers, except

for these three differences:

•	 The entire Spring context gets loaded as opposed to an empty context

in the unit testing case.

•	 All REST endpoints are available as opposed to the ones configured

via standaloneSetup.

•	 Tests are performed using real collaborators against in-memory

database as opposed to mocking dependency’s behavior.

An integration test for the PollController’s getAllPolls method is shown in

Listing 9-20. The PollControllerIT class is similar to the PollControllerTest that

we looked at earlier. A fully configured instance of WebApplicationContext is injected

into the test. In the @Before method, we use this WebApplicationContext instance to

build a MockMvc instance using MockMvcBuilders’s webAppContextSetup.

Chapter 9 Clients and Testing

221

Listing 9-20.  Integration Testing with Spring MVC Test

package com.apress.it;

import static org.hamcrest.Matchers.hasSize;

import static org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.jsonPath;

import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.status;

import static org.springframework.test.web.servlet.setup.MockMvcBuilders.

webAppContextSetup;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import org.springframework.test.context.web.WebAppConfiguration;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.web.context.WebApplicationContext;

import com.apress.QuickPollApplication;

@RunWith(SpringJUnit4ClassRunner.class)

@SpringBootTest(classes = QuickPollApplication.class)

@WebAppConfiguration

public class PollControllerIT {

 @Inject

 private WebApplicationContext webApplicationContext;

 private MockMvc mockMvc;

 @Before

 public void setup() {

 mockMvc = webAppContextSetup(webApplicationContext).build();

 }

Chapter 9 Clients and Testing

222

 @Test

 public void testGetAllPolls() throws Exception {

 mockMvc.perform(get("/v1/polls"))

 .andExpect(status().isOk())

 .andExpect(jsonPath("$", hasSize(20)));

 }

}

The testGetAllPolls method implementation uses the MockMvc instance to perform

a GET request on the /v1/polls endpoint. We use two assertions to ensure that the

result is what we expect:

•	 The isOK assertion ensures that we get a status code 200.

•	 The JsonPath method allows us to write assertions against response

body using JsonPath expression. The JsonPath (http://goessner.

net/articles/JsonPath/) provides a convenient way to extract parts

of a JSON document. To put it simply, JsonPath is to JSON is what

XPath is to XML.

In our test case, we use the Hamcrest’s hasSize matcher to assert that the retuned

JSON contains 20 polls. The import.sql script used to populate the in-memory database

contains 20 poll entries. Hence, our assertion uses the magic number 20 for comparison.

�Summary
Spring provides powerful template and utility classes that simplify REST client

development. In this chapter, we reviewed RestTemplate and used it to perform client

operations such as GET, POST, PUT, and DELETE on resources. We also reviewed the

Spring MVC Test framework and its core classes. Finally, we used the test framework to

simplify unit and integration test creation.

Chapter 9 Clients and Testing

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/

223
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4_10

CHAPTER 10

HATEOAS
In this chapter we will discuss the following:

•	 HATEOAS

•	 JSON hypermedia types

•	 QuickPoll HATEOAS implementation

Consider any interaction with an ecommerce website such as Amazon.com. You

typically begin your interaction by visiting the site’s home page. The home page might

contain texts, images, and videos describing different products and promotions. The

page also contains hyperlinks that allow you to navigate from one page to another, allow

you to read product details and reviews, and allow you to add products to shopping

carts. These hyperlinks along with other controls such as buttons and input fields also

guide you through workflows such as checking out an order.

Each web page in the workflow presents you with controls to go to the next step or

go back to a previous step or even completely exit the workflow. This is a very powerful

feature of the Web—you as a consumer use links to navigate through resources finding

what you need without having to remember all of their corresponding URIs. You just

needed to know the initial URI: http://www.amazon.com. If Amazon were to go through

a rebranding exercise and change its URIs for products or add new steps in its checkout

workflow, you will still be able to discover and perform all the operations.

In this chapter we will review HATEOAS, a constraint that allows us to build resilient

REST services that function like a website.

https://doi.org/10.1007/978-1-4842-7477-4_10#DOI
http://www.amazon.com

224

�HATEOAS
The Hypermedia As The Engine Of Application State, or HATEOAS, is a key constraint

of REST architecture. The term “hypermedia” refers to any content that contains links

to other forms of media such as images, movies, and texts. As you have experienced,

the Web is a classic example of hypermedia. The idea behind HATEOAS is simple—a

response would include links to other resources. Clients would use these links to interact

with the server, and these interactions could result in possible state changes.

Similar to a human’s interaction with a website, a REST client hits an initial API

URI and uses the server-provided links to dynamically discover available actions and

access the resources it needs. The client need not have prior knowledge of the service

or the different steps involved in a workflow. Additionally, the clients no longer have to

hard-code the URI structures for different resources. This allows the server to make URI

changes as the API evolves without breaking the clients.

To better understand HATEOAS, consider REST API for a hypothetical blog

application. An example request to retrieve a blog post resource with identifier 1 and the

associated response in JSON format is shown here:

GET /posts/1 HTTP/1.1

Connection: keep-alive

Host: blog.example.com

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z"

}

As we would expect, the generated response from the server contains the data

associated with the blog post resource. When a HATEOAS constraint is applied to this

REST service, the generated response has links embedded in it. Listing 10-1 shows an

example response with links.

Chapter 10 HATEOAS

225

Listing 10-1.  Blog Post with Links

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z",

 "links" : [

 {

 "rel" : "self",

 "href" : http://blog.example.com/posts/1,

 "method" : "GET"

 }

]

}

In this response, each link in the links array contains three parts:

	 1.	 Href—Contains the URI that you can use to retrieve a resource or

change the state of the application

	 2.	 Rel—Describes the relationship that the href link has with the

current resource

	 3.	 Method—Indicates the HTTP method required to interact

with the URI

From the link’s href value, you can see that this is a self-referencing link. The rel

element can contain arbitrary string values, and in this case, it has a value “self” to

indicate this self-relationship. As discussed in Chapter 1, a resource can be identified

by multiple URIs. In those situations, a self-link can be helpful to highlight the preferred

canonical URI. In scenarios in which partial resource representations are returned

(e.g., as part of a collection), including a self-link would allow a client to retrieve a full

representation of the resource.

We can expand the blog post response to include other relationships. For example,

each blog post has an author, the user that created the post. Each blog post also contains

a set of related comments and tags. Listing 10-2 shows an example of a blog post

representation with these additional link relationships.

Chapter 10 HATEOAS

226

Listing 10-2.  Blog Post with Additional Relationships

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z",

 "self" : "http://blog.example.com/posts/1",

 "author" : "http://blog.example.com/profile/12345",

 "comments" : "http://blog.example.com/posts/1/comments",

 "tags" : "http://blog.example.com/posts/1/tags"

}

The resource representation in Listing 10-2 takes a different approach and doesn’t

use a links array. Instead, links to related resources are represented as JSON object

properties. For example, the property with key author links the blog post with its

creator. Similarly, the properties with keys comments and tags link the post with related

comments and tags collection resources.

We used two different approaches for embedding HATEOAS links in a representation

to highlight a lack of standardized linking within a JSON document. In both scenarios,

the consuming clients can use the rel value to identify and navigate to the related

resources. As long as the rel value doesn’t change, the server can release new versions

of the URI without breaking the client. It also makes it easy for consuming developers to

explore the API without relying on heavy documentation.

HATEOAS DEBATE

The REST API for the QuickPoll application that we worked on so far doesn’t follow the

HATEOAS principles. The same applies to many public/open-source REST APIs being

consumed today. In 2008, Roy Fielding expressed frustration in his blog (http://roy.gbiv.

com/untangled/2008/rest-apis-must-be-hypertext-driven) at such APIs being

called RESTful but that are not hypermedia-driven:

What needs to be done to make the REST architectural style clear on the notion that hypertext
is a constraint? In other words, if the engine of application state (and hence the API) is not
being driven by hypertext, then it cannot be RESTful and cannot be a REST API. Period. Is there
some broken manual somewhere that needs to be fixed?

Chapter 10 HATEOAS

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

227

Seven years later, the debate around hypermedia’s role and what is considered RESTful still

continues. The blogosphere is filled with mixed opinions and people taking passionate stances

on both sides. The so-called hypermedia skeptics feel that hypermedia is too academic and

feel that adding extra links would bloat the payload and adds unnecessary complexity to

support clients that really don’t exist.

Kin Lane provides a good summary of the hypermedia debate in his blog post (http://

apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-

reasonable-just-does-not-sell/).

�JSON Hypermedia Types
To put it simply, a hypermedia type is a media type that contains well-defined semantics

for linking resources. The HTML media type is a popular example of a hypermedia

type. The JSON media type however doesn’t provide native hyperlinking semantics and

therefore is not considered to be a hypermedia type. This has resulted in a variety of

custom implementations for embedding links in a JSON document. We have seen two

approaches in the previous section.

Note RE ST services that produce XML responses often use an Atom/AtomPub
(http://en.wikipedia.org/wiki/Atom_(standard)) format for structuring
HATEOAS links.

�JSON Hypermedia Types
To address this issue and provide hyperlinking semantics within JSON documents,

several JSON hypermedia types have been created:

•	 HAL—http://stateless.co/hal_specification.html

•	 JSON-LD—http://json-ld.org

•	 Collection+JSON—http://amundsen.com/media-types/

collection/

Chapter 10 HATEOAS

http://apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/
http://apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/
http://apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/
http://en.wikipedia.org/wiki/Atom_(standard)
http://stateless.co/hal_specification.html
http://json-ld.org
http://amundsen.com/media-types/collection/
http://amundsen.com/media-types/collection/

228

•	 JSON API—http://jsonapi.org/

•	 Siren—https://github.com/kevinswiber/siren

HAL is one of the most popular hypermedia types and is supported by the Spring

Framework. In the next section, we will cover the basics of HAL.

�HAL
The Hypertext Application Language, or HAL, is a lean hypermedia type created by Mike

Kelly in 2011. This specification supports both XML (application/hal+xml) and JSON

(application/hal+json) formats.

The HAL media type defines a resource as a container of state, a collection of links,

and a set of embedded resources. Figure 10-1 shows the HAL resource structure.

The resource state is expressed using JSON properties or key/value pairs. Listing 10-3

shows the state of a blog post resource.

Figure 10-1.  HAL resource structure

Chapter 10 HATEOAS

http://jsonapi.org/
https://github.com/kevinswiber/siren

229

Listing 10-3.  Blog Post Resource State in HAL

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z"

}

The specification uses a reserved _links property to provide linking capabilities.

The _links property is a JSON object that contains all of the links. Each link inside

_links is keyed by their link relation with the value containing the URI and a set of

optional properties. Listing 10-4 shows the blog post resource augmented with the

_links property. Notice the usage of an additional property total count inside the

comments link value.

Listing 10-4.  Blog Post Resource with Links in HAL

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z",

 "_links" : {

 "self": { "href": "http://blog.example.com/posts/1" },

"comments": { "href": "http://blog.example.com/posts/1/comments",

"totalcount" : 20 },

 "tags": { "href": "http://blog.example.com/posts/1/tags" }

 }

}

There are situations in which it is more efficient to embed a resource than link

to it. This would prevent the client from taking an extra round trip, allowing it to

access the embedded resource directly. HAL uses a reserved _embedded property to

embed resources. Each embedded resource is keyed by their link relation to the value

containing the resource object. Listing 10-5 shows the blog post resource with an

embedded author resource.

Chapter 10 HATEOAS

230

Listing 10-5.  Blog Post Resource with Embedded Resource in HAL

{

 "id" : 1,

 "body" : "My first blog post",

 "postdate" : "2015-05-30T21:41:12.650Z",

 "_links" : {

 "self": { "href": "http://blog.example.com/posts/1" },

"comments": { "href": "http://blog.example.com/posts/1/comments",

"totalcount" : 20 },

 �"tags": { "href": "http://blog.example.com/posts/1/

tags" }

 },

 "_embedded" : {

 "author" : {

 "_links" : {

 �"self": { "href": "http://blog.example.com/

profile/12345" }

 },

 "id" : 12345,

 "name" : "John Doe",

 "displayName" : "JDoe"

 }

 }

}

�HATEOAS in QuickPoll
The Spring Framework provides a Spring HATEOAS library that simplifies the creation

of REST representations adhering to HATEOAS principles. Spring HATEOAS provides an

API for creating links and assembling representations. In this section, we will use Spring

HATEOAS to enrich the poll representation with the following three links:

•	 Self-referencing link

•	 Link to the votes collection resource

•	 Link to the ComputeResult resource

Chapter 10 HATEOAS

231

Note T he QuickPoll project that we are using in this chapter is available in
the Chapter10\starter folder of the downloaded source code. To follow the
instructions in this section, import the starter project into your IDE. The completed
solution is available in the Chapter10\final folder. Please refer to that solution
for complete code listings.

We begin the Spring HATEOAS integration by adding the Maven dependency shown

in Listing 10-6 to the QuickPoll project’s pom.xml file.

Listing 10-6.  Spring HATEOAS Dependency

<dependency>

 <groupId>org.springframework.hateoas</groupId>

 <artifactId>spring-hateoas</artifactId>

 <version>1.3.3</version>

</dependency>

The next step is to modify the Poll Java class such that the generated representation

has associated link information. To simplify embedding of hypermedia links, Spring

HATEOAS provides an org.springframework.hateoas.RepresentationModel class

that resource classes can extend. The RepresentationModel class contains several

overloaded methods for adding and removing links. It also contains a getId method that

returns the URI associated with the resource. The getId implementation adheres to the

REST principle: the ID of a resource is its URI.

Listing 10-7 shows the modified Poll class extending ResourceSupport. If you

remember, the Poll class already contains a getId method that returns the primary key

associated with the corresponding database record. To accommodate the getId method

introduced by the RepresentationModel base class, we refactored the getId and setId

Poll class methods to getPollId and setPollId.

Chapter 10 HATEOAS

232

Listing 10-7.  Modified Poll Class

package com.apress.domain;

import org.springframework.hateoas.RepresentationModel;

@Entity

public class Poll extends RepresentationModel {

 @Id

 @GeneratedValue

 @Column(name="POLL_ID")

 private Long id;

 @Column(name="QUESTION")

 private String question;

 @OneToMany(cascade=CascadeType.ALL)

 @JoinColumn(name="POLL_ID")

 @OrderBy

 private Set<Option> options;

 public Long getPollId() {

 return id;

 }

 public void setPollId(Long id) {

 this.id = id;

 }

 // Other Getters and Setter removed

}

In Chapter 4, we implemented PollController’s createPoll method so that it

constructed a URI of the newly created Poll resource using the getId method. The

getId to getPollId refactoring just described requires us to update the createPoll

method. Listing 10-8 shows the modified createPoll method using the getPollId

method.

Chapter 10 HATEOAS

233

Listing 10-8.  Modified createPoll() Method

@RequestMapping(value="/polls", method=RequestMethod.POST)

public ResponseEntity<?> createPoll(@RequestBody Poll poll) {

 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource

 HttpHeaders responseHeaders = new HttpHeaders();

URI newPollUri = ServletUriComponentsBuilder.fromCurrentRequest().path

("/{id}").buildAndExpand(poll.getPollId()).toUri();

 responseHeaders.setLocation(newPollUri);

 �return new ResponseEntity<>(null, responseHeaders, HttpStatus.

CREATED);

}

Note  We modified our domain Poll class and had it extend the
RepresentationModel class. An alternative to this approach is to create a
new PollResource class to hold the Poll’s representation and have it extend
the RepresentationModel class. With this approach, the Poll Java class
remains untouched. However, we need to modify the PollController so that
it copies the representation from each Poll to a PollResource and returns the
PollResource instances.

The final step in the Spring HATEOAS integration is to modify PollController

endpoints so that we can build links and inject them into responses. Listing 10-9 shows

the modified portions of the PollController.

Listing 10-9.  PollController Modifications

package com.apress.controller;

import static org.springframework.hateoas.server.mvc.WebMvcLinkBuilder.

linkTo;

import static org.springframework.hateoas.server.mvc.WebMvcLinkBuilder.

methodOn;

Chapter 10 HATEOAS

234

@RestController

public class PollController {

 @RequestMapping(value="/polls", method=RequestMethod.GET)

 public ResponseEntity<Iterable<Poll>> getAllPolls() {

 Iterable<Poll> allPolls = pollRepository.findAll();

 for(Poll p : allPolls) {

 updatePollResourceWithLinks(p);

 }

 return new ResponseEntity<>(allPolls, HttpStatus.OK);

 }

 @RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)

 public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

 Optional<Poll> p = pollRepository.findById(pollId);

 if(!p.isPresent()) {

 throw new Exception("Pool was not found");

 }

 updatePollResourceWithLinks(p.get());

 return new ResponseEntity<> (p.get(), HttpStatus.OK);

 }

 private void updatePollResourceWithLinks(Poll poll) {

poll.add(linkTo(methodOn(PollController.class).getAllPolls()).slash

(poll.getPollId()).withSelfRel());

poll.add(linkTo(methodOn(VoteController.class).getAllVotes(poll.

getPollId())).withRel("votes"));

poll.add(linkTo(methodOn(ComputeResultController.class).computeResult

(poll.getPollId())).withRel("compute-result"));

 }

}

Because links need to be generated and injected in multiple places, we created a

updatePollResourceWithLinks method to hold the common code. Spring HATEOAS

provides a convenient ControllerLinkBuilder class that can build links pointing to

Spring MVC controllers. The updatePollResourceWithLinks method implementation

Chapter 10 HATEOAS

235

uses the linkTo, methodOn, and slash utility methods. These methods are part of the

Spring HATEOAS ControllerLinkBuilder class and can generate links pointing to

Spring MVC controllers. The generated links are absolute URIs to resources. This relieves

developers from having to look up server information such as protocol, hostname, port

number, and so on, duplicating URI path strings (/polls) all over the place. To better

understand these methods, let’s dissect this code:

linkTo(

 methodOn(PollController.class).getAllPolls()

)

 .slash(poll.getPollId())

 .withSelfRel()

The linkTo method can take a Spring MVC controller class or one of its methods as

an argument. It then inspects the class or method for the @RequestMapping annotation

and retrieves the path value to build the link. The methodOn method creates a dynamic

proxy of the passed-in PollController class. When the getAllPolls method is invoked

on the dynamic proxy, its @RequestMapping information is inspected and the value

"/polls" is extracted. For methods such as getAllVotes that expect a parameter, we

can pass in a null. However, if the parameter is used to build the URI, then a real value

should be passed in.

The slash method, as the name suggests, appends the Poll’s ID as a subresource

to the current URI. Finally, the withSelfRel method instructs that the generated link

should have a rel with value “self.” Under the hood, the ControllerLinkBuilder

class uses the ServletUriComponentsBuilder to obtain basic URI information such as

hostname and builds the final URI. Hence, for a poll with ID 1, this code will generate the

URI: http://localhost:8080/polls/1.

With these changes in place, run the QuickPoll application, and, using Postman,

perform a GET request on the http://localhost:8080/polls URI. You will see that the

generated response includes three links for each poll. Figure 10-2 shows the Postman

request and partial response.

Chapter 10 HATEOAS

236

�Summary
In this chapter, we reviewed the HATEOAS constraint that enables developers to build

flexible and loosely coupled APIs. We scratched the surface and used Spring HATEOAS

to create QuickPoll REST representations that adhere to HATEOAS principles.

This brings us to the end of our journey. Throughout this book, you have learned the

key features of REST and Spring technologies that simplify REST development. With this

knowledge, you should be ready to start developing your own RESTful services. Happy

coding!

Figure 10-2.  Postman response with links

Chapter 10 HATEOAS

237
© Balaji Varanasi and Maxim Bartkov 2022
B. Varanasi and M. Bartkov, Spring REST, https://doi.org/10.1007/978-1-4842-7477-4

Index

A, B
Amazon.com, 223
API implementation

ComputeResult
ComputeResultController class, 99
DTOs, 98, 99
endpoint test, 100
output, 101
votes count, 100

PollController
Content-Type header, 91
createPoll method, 91, 92
delete poll, 94
fromCurrentRequest method, 91
getAllPolls method, 89
GET Verb, 89, 90
individual poll, 93, 94
inject dependency, 89
JSON, 92
message/headers, 93
Postman, 90, 93
@RequestBody, 91
@RestController, 89
ServletUriComponentsBuilder

utility class, 91
testing, 90
update poll, 94, 95
URI, 91

VoteController, 95, 98
Aspect-oriented programming (AOP),

21–24, 51
Authentication systems, 179

Authorization grant type, 178
Authorization server, 176

C
Cache, 2, 211
Certificate Authority (CA), 174
Client-server, 1
Code on demand, 2
Command line interface (CLI)

command, 63
contents, 62
downloading, 62
installation, 63
output, 63

Content negotiation, 5
Controller resource, 13, 70
Create, Read, Update, and Delete

(CRUD), 14
Cross-Site Request Forgery (CSRF),

179, 194

D
Data-driven applications, 14
Dependency injection (DI), 23

E, F, G
Error handling, 103

error messages
createPoll method, 122
handleValidationError, 122, 123

https://doi.org/10.1007/978-1-4842-7477-4#DOI

238

messages.properties file, 122
model_name, 122
new message, 124

error responses
details, 107
ErrorDetail class, 110
GitHub, 108
QuickPoll, 109, 110
ResourceNotFoundException

error, 111, 112
RestExceptionHandler

class, 110, 111
Spring MVC components, 108
Twilio, 108, 109

getPoll implementation, 104, 105
HTTP methods, 106
input field validation

Bean Validation API, 114
custom error response, 120, 121
updated ErrorDetail class, 117
error key, 116
error message, 116
handleValidationError

method, 118–120
JSR 303/349, 113
missing question, error code, 116
options, 113
poll class annotation, 114, 115
PollController, @Valid annotations,

115, 116
poll creation, missing question,

112, 113
QuickPoll error response, 116
RestExceptionHandler, 118
updated ErrorDetail class, 118
ValidationError class, 117, 118
validation error format, 116, 117

nonexistent poll, 103–106
ResourceNotFoundException, 105
RestExceptionHandler, 124–126
Updated PollController, 106, 107

H
Hypermedia As The Engine Of Application

State (HATEOAS)
blog post resource, 224, 225
blog post response, 225, 226
JSON object properties, 226
links array, 225
QuickPoll

ControllerLinkBuilder class, 235
createPoll method, 232, 233
getAllPolls method, 235
links, 230
linkTo method, 235
methodOn method, 235
Poll class, 231, 232
PollController, 233, 234
Postman response, 235
RepresentationModel class,

231, 233
slash method, 235
Spring dependency, 231
updatePollResourceWithLinks

method, 234
withSelfRel method, 235

REST API, 224, 226
REST client, 224
scenarios, 226
Web, 224

Hamcrest, 212, 222
HTTP methods

DELETE method, 9, 10
GET method, 7, 8

Error handling (cont.)

Index

239

HEAD method, 9
idempotency, 7
PATCH method, 13, 14
POST method, 12, 13
PUT method, 10, 11
safety, 7
status codes, 14–16

HTTP status codes, 107
Hypermedia As The Engine Of Application

State (HATEOAS), 236
Hypertext Application Language (HAL)

blog post resource, 228, 229
embedded resource, 229, 230
links, 229

_embedded property, 229
formats, 228
_links property, 229
structure, 228

I
Implicit grant type, 178, 179
Integration testing, 88, 211

J, K
Java ecosystem, 21, 211
Java Persistence API (JPA), 82
JavaScript Object Notation (JSON), 71
JSON hypermedia types, 227

L
Layered system, 2

M, N
Model View Controller (MVC), 24, 25

O
Open Authorization (OAuth), 176

P
Pagination

cursor-based, 158, 159
data, 159, 160
limit offset, 158
page number, 157
page size, 163–165
QuickPoll

configuration, 160
CrudRepository, 161
data subsets/informations, 161
findAll method, 161
getAllPolls method, 162
GET request, 162
import.sql file, 160
Pageable parameter, 162
paged results, metadata, 162, 163
PagingAndSortingRepository, 160
PollRepository, 161
Spring Data JPA, 160

time-based, 159
Password grant type, 178, 179
Postman, 64, 65

Q
QuickPoll

action identification
ComputeResult resource, 78
Poll resource, 76
Vote resource, 76, 77

API implementation (see API
implementation)

architecture, 78

Index

240

AuthenticationManagerBuilder, 192
command, 192
CRUD operations, 75
cURL, 185
domain implementation

com.apress.domain, 83
objects, 82, 83
Option class, 83
Poll class, 84
Vote class, 85

embedded database, 88
endpoint identification, 74, 75
error, 192
Java client, 199, 200
Postman, 184
repository implementation, 85–87
requirements, 69, 183
resource identification, 69, 70
resource representations

ComputeResult, 74
lists, 72, 73
REST APIs, 71
sample data, 72
Vote, 73

SecurityConfig class, 192
security configuration, 191, 192
service layer, 79
Spring Boot, 184
Spring Starter POM, 184
spring starter project, 79–81
URI

command, 197
cURL delete, 197
DELETE HTTP method, 197
deletePoll method, 194, 195
EnableGlobalMethodSecurity, 194
HttpSecurity parameter, 193

permitAll method, 193
Postman, 196
@PreAuthorize, 195
unauthorized response, 196
WebSecurityConfigurer’s config

method, 192, 193
user authentication, 183
UserDetailsService implementation,

189, 190
user infrastructure setup

testing, 187
User class, 185
user information, 188
UserRepository, 187

R
REpresentational State Transfer (REST)

clients, 157
constraints/principles, 1, 2
definition, 1
representation, 5, 6
resources, 3

identification, 3, 4
URI templates, 4, 5

RESTful applications, 2
Uniform Interface, 2

Resource server, 176, 178
RESTClient, 65, 66
RESTful API, 18
REST services

approaches, 169
certificate-based security model, 174
digest authentication, 172, 173
HTTP Basic authentication, 171, 172
integration testing

assertions, 222
getAllPolls method, 220, 222

QuickPoll (cont.)

Index

241

Hamcrest’s hasSize matcher, 222
mocked MVC container, 220
Spring MVC Test framework, 220
vs. unit testing, 220

OAuth 2.0
authorization server, 177
Client, 177
client profiles, 178
definition, 176
HTTP POST, 177
HTTPS, 177
interaction, 177
public APIs, 177
response, 178
roles, 176
security flow, 176
tokens vs. access tokens, 179

session-based security model, 170
spring-test module, 212

@After annotation, 213
@Before annotation, 213
JUnit Test, 212, 213
libraries, 212
Maven dependency, 212
Spring Boot, 212
SpringJUnit4ClassRunner, 213
JUnit Test, 213

unit testing (see Unit testing)
XAuth, 174, 175

RestTemplate
authentication, 209, 211
DELETE method, 206
getting polls, 204

getForObject method, 202–204
getPollById method, 203
HTTP message converters, 202
List<Poll>.class, 203
ParameterizedTypeReference, 204

QuickPollClient class, 202, 203
URI template, 202

helper classes, 201
pagination

getAllPolls, 207
PageImpl, 207
PageWrapper Class, 207, 208
QuickPollClientV2 Class, 208, 209

poll creation, 205, 206
PUT method, 206
spring-web.jar file, 201

Richardson’s Maturity Model
(RMM), 16–18

S
Singleton resources, 4
Software as a Service (SaaS), 68
Sorting

ascending/descending, 165
QuickPoll, 166, 167
request, 165
REST services, 165

Spring Boot
annotations, 52
build tool, 46, 47
CLI (see Command line

interface (CLI))
Hello World REST application, 48

contents, 48, 49, 53
greeting, 56
launching, 54, 55
main() method, 53
Maven-based Java project, 49
pom.xml file, 49–51
REST endpoint, 53, 54

opinionated approach, 45
options, 46

Index

242

POM files, 51
starter modules, 51, 52
start.spring.io, 48
STS (see Spring Tool Suite (STS))
WAR artifacts, 49

Spring Framework modules, 22
Spring Initializr, 56
Spring portfolio projects, 22
Spring Security

AbstractSecurityInterceptor, 182
Authentication API, 180
AuthenticationManager, 181
AuthenticationProvider, 182
checking, 182
definition, 179
filter chain, 179
implementations, 181
request token, 180
SecurityContextHolder, 182
UserDetailsService API, 181

Spring Tool Suite (STS)
definition, 56
Spring Starter Project, 57

location, 60
Maven’s GAV information, 57, 58
options, 59
resources, 61

website, 56
Spring Web MVC

architecture, 25–27
controllers, 27, 28
HandlerExceptionResolver

API, 39
@ControllerAdvice, 41
GlobalExceptionHandler, 41
handleSQLException method, 41
implementations, 39, 40

ResponseEntity, 40
SimpleMappingException

Resolver, 40
interceptors

addPathPatterns method, 44
HandlerInterceptor, 42
and HTTP servlet filters, 42
implementation, 43
InterceptorRegistry, 43
scenario, 42

model interface, 28, 29
path variables, 37
pattern, 24, 25
@RequestMapping

acccept header, 35
arguments, 35
Content-Type header, 35
elements, 32, 33
GET request, 34
POST method, 33
produces element, 34
return types, 36
shortcut annotations, 33, 34

@RequestParam, 31, 32
view, 29–31
ViewResolver, 37, 38

Swagger
API declaration file, 131, 132
api-docs, 130
configureSwagger method, 139
controllers

annotations, 145
@Api annotation, 140
@ApiOperation annotation,

141, 142
@ApiResponse annotation, 142, 143
createPoll method, 141
getPoll method, 142

Spring Boot (cont.)

Index

243

PollController, 140
poll endpoint, 140
response messages, 143, 144
useDefaultResponseMessages

method, 144
createProduct, 131
customization

configureSwagger method, 138
Docket beans, 138
Docket, 137
implementation, 137, 138
includePattern method, 139
SwaggerConfig class, 138
updation, 138, 139

definition, 130
integration

api-docs, 133
Docket bean, 133, 134
resource listing file, 134, 135
springfox-boot-starter

dependency, 133
JSON, 130
resource file, 130, 131
UI, 135, 136

T
Traditional web applications, 169

U
Uniform Interface, 2, 6, 19
Unit testing, 211

DispatcherServlet, 215
findAll() method, 215
@Mock annotation, 215
PollController, 214, 215
Spring MVC Test framework

@Before annotated method, 219
classes, 216
content method, 217
getPolls method, 219
MockMvcBuilders class, 217
perform method, 217
PollControllerTest class, 219
post method, 216
POST HTTP request, 216
RequestBuilder parameter, 216
ResultActions, 217
testGetAllPolls method, 219

testGetAllPolls method, 215

V
Versioning

Accept header, 149
approaches, 148
custom header, 150
deprecation, API, 151
QuickPoll

approaches, 151
ComputeResultControler, 153, 154
packages, 152
PollController class, 152, 153
@RequestMapping, 153
Spring MVC, 152
VoteController, 153, 154

SwaggerConfig class, 154–156
URI, 148, 149
URI parameter, 149

W, X, Y, Z
Web Application Description Language

(WADL), 129
Web poll, 67, 68

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to REST
	What Is REST?
	Understanding Resources
	Identifying Resources
	URI Templates

	Representation
	HTTP Methods
	Safety
	Idempotency
	GET
	HEAD
	DELETE
	PUT
	POST
	PATCH

	HTTP Status Codes
	Richardson’s Maturity Model
	Level Zero
	Level One
	Level Two
	Level Three

	Building a RESTful API
	Summary

	Chapter 2: Spring Web MVC Primer
	Spring Overview
	Dependency Injection
	Aspect-Oriented Programming

	Spring Web MVC Overview
	Model View Controller Pattern
	Spring Web MVC Architecture
	Spring Web MVC Components
	Controller
	Model
	View
	@RequestParam
	@RequestMapping
	@RequestMapping Shortcut Annotations
	Path Variables
	View Resolver
	Exception Handler
	Interceptors

	Summary

	Chapter 3: RESTful Spring
	Generating a Spring Boot Project
	Installing a Build Tool
	Generating a Project Using start.spring.io
	Generating a Project Using STS
	Generating a Project Using the CLI

	Accessing REST Applications
	Postman
	RESTClient

	Summary

	Chapter 4: Beginning QuickPoll Application
	Introducing QuickPoll
	Designing QuickPoll
	Resource Identification
	Resource Representation
	Endpoint Identification
	Action Identification

	QuickPoll Architecture
	Implementing QuickPoll
	Domain Implementation
	Repository Implementation
	Embedded Database
	API Implementation
	PollController Implementation
	VoteController Implementation
	ComputeResultController Implementation

	Summary

	Chapter 5: Error Handling
	QuickPoll Error Handling
	Error Responses
	Input Field Validation
	Externalizing Error Messages
	Improving RestExceptionHandler
	Summary

	Chapter 6: Documenting REST Services
	Swagger
	Integrating Swagger
	Swagger UI
	Customizing Swagger
	Configuring Controllers
	Summary

	Chapter 7: Versioning, Paging, and Sor ting
	Versioning
	Versioning Approaches
	URI Versioning
	URI Parameter Versioning
	Accept Header Versioning
	Custom Header Versioning

	Deprecating an API
	QuickPoll Versioning
	SwaggerConfig

	Pagination
	Page Number Pagination
	Limit Offset Pagination
	Cursor-Based Pagination
	Time-Based Pagination
	Pagination Data
	QuickPoll Pagination
	Changing Default Page Size

	Sor ting
	Sort Ascending or Sort Descending
	QuickPoll Sorting

	Summary

	Chapter 8: Security
	Securing REST Services
	Session-Based Security
	HTTP Basic Authentication
	Digest Authentication
	Certificate-Based Security
	XAuth
	OAuth 2.0
	OAuth Client Profiles
	Refresh Tokens versus Access Tokens

	Spring Security Overview
	Securing QuickPoll
	cURL
	User Infrastructure Setup
	UserDetailsService Implementation
	Customizing Spring Security
	Securing URI

	Summary

	Chapter 9: Clients and Testing
	QuickPoll Java Client
	RestTemplate
	Getting Polls
	Creating a Poll
	PUT Method
	DELETE Method
	Handling Pagination
	Handling Basic Authentication

	Testing REST Services
	Spring Test
	Unit Testing REST Controllers
	Spring MVC Test Framework Basics
	Unit Testing Using Spring MVC Test Framework

	Integration Testing REST Controllers

	Summary

	Chapter 10: HATEOAS
	HATEOAS
	JSON Hypermedia Types
	JSON Hypermedia Types
	HAL

	HATEOAS in QuickPoll
	Summary

	Index

