
WebAssembly
for Cloud

A Basic Guide for Wasm-Based
Cloud Apps
—
Shashank Mohan Jain

WebAssembly for
Cloud

A Basic Guide for Wasm-Based
Cloud Apps

Shashank Mohan Jain

WebAssembly for Cloud: A Basic Guide for Wasm-Based Cloud Apps

ISBN-13 (pbk): 978-1-4842-7495-8		 ISBN-13 (electronic): 978-1-4842-7496-5
https://doi.org/10.1007/978-1-4842-7496-5

Copyright © 2022 by Shashank Mohan Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Jas Le on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza,
New York, NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484274958. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Shashank Mohan Jain
Bangalore, India

https://doi.org/10.1007/978-1-4842-7496-5

I dedicate this book to my parents and their blessings,
without which this book was not at all possible.

I also dedicate this book to my dear wife. I would not have
been able to write it without her constant pushing

and support.

I appreciate my angel of a daughter for allowing me the
time to write this book.

Finally, I thank a dear friend who constantly pushed me
into writing this.

v

Table of Contents

Chapter 1: ��WebAssembly Introduction��1

Wasm in the Cloud���4

WebAssembly Use Cases���8

WebAssembly Architecture��8

Stack-Based Virtual Machine���9

Summary���11

Chapter 2: WebAssembly Module Internals: Sections
and Memory Model��13

Type Section���17

Function Section��18

Code Section��18

Export Section��20

Import Section��20

Table Section��20

Memory Section���22

Data Section���23

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

vi

Custom Section��25

Start Section��25

Global Section��25

Programmatically Parsing a Wasm File���25

Summary���31

Chapter 3: ��WebAssembly Text Toolkit and Other Utilities��������������������33

The wat2wasm Utility��33

Tables���49

The wasm2wat Utility��52

Object Dump Using wasm-objdump��53

Summary���55

Chapter 4: WebAssembly with Rust and JavaScript:
An Introduction to wasm-bindgen���57

wasm-bindgen���58

Prerequisites��58

Complex Types via wasm-bindgen���70

The Bloom Filter���73

How a Bloom Filter Works��74

The Cuckoo Filter���77

Summary���85

Chapter 5: ��waPC��87

waPC Architecture��87

Handling a Complex Type���98

Rust Host for waPC-based Bindings��100

Summary���108

Table of Contents

vii

Chapter 6: ��Wasm Web Interface��109

Node Example��121

Summary���128

Chapter 7: ��Wasm and Kubernetes���129

Docker��129

Kubernetes���132

The Workings of Kubernetes��135

Packaging a Rust Web App into a Docker Container��136

Pushing an Image to a Docker Registry���139

Prerequisites��140

The Pod Yaml File���141

The Service Yaml File���141

A Golang-based Web App Deployed on Kubernetes���144

Kubernetes Deployment of the Golang Web App��147

The Pod Yaml File���147

The Service Yaml File���148

Summary���150

Chapter 8: ��Extending Istio with WebAssembly����������������������������������151

What Is Envoy?���151

Rust-based Wasm Filter���152

Deployment Steps��155

Envoy Setup���155

Launch Envoy���159

Summary���160

Index��161

Table of Contents

ix

About the Author

Shashank Mohan Jain has worked in the

IT industry for 20 years, mainly in cloud

computing and distributed systems. He has

a keen interest in virtualization techniques,

security, and complex systems. 

Shashank has more then 30 software

patents in cloud computing, IoT, and machine

learning. He has been a speaker at many

cloud conferences. In addition, he holds Sun,

Microsoft, and Linux kernel certifications.

xi

About the Technical Reviewer

Srinivasa Reddy Challa is an expert developer at SAP. He has experience

developing applications in various programming languages, including

Java, Kotlin, Node.js, Rust, Golang, and Python, and frameworks like

Spring, Django, and Express. Srinivasa also has extensive experience

working with cloud providers like AWS, Azure, and AliCloud and has cloud

certification in AWS. He has a bachelor’s degree in computer science

engineering.

xiii

Acknowledgments

I would like to acknowledge Kevin Hoffman, whose work in WebAssembly

is an inspiration. Kevin is the creator of the waPC library, which is used in a

chapter in the book.

xv

Introduction

Somewhere, something incredible is waiting to be known.

—Carl Sagan

I start this journey with a quote from the eminent scientist and science

communicator Carl Sagan. This short book introduces the amazing

world of WebAssembly. The book’s main theme is to create a simple

WebAssembly program from scratch and take it to the cloud. In doing

this, you’ll gain a solid introduction to the valuable features offered by

WebAssembly. Consider this book an introduction to WebAssembly and

how it is powering browser-based applications and cloud applications.

‘To get the most out of this book, you should have a bit of understanding

of cloud fundamentals and basic knowledge of programming languages

like Rust, golang and javascript.’

1© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_1

CHAPTER 1

WebAssembly
Introduction
Before introducing WebAssembly, it’s important to get a brief history of

virtualization to better understand the context of WebAssembly.

When VMware started the virtualization revolution, virtual machines

were positioned as the unit of computation. This meant that you could

create and deploy software compatible with a virtual machine (VM). The

VM-based approach provided great isolation because it introduced a

kernel boundary between software and the host on which the workload

ran (called a hypervisor). Although they were secure, VMs were heavy in

nature and took time to spin up.

As cloud technology progressed, we saw the advent of container-based

virtualization, which was mainly facilitated by structures within the Linux

kernel. Containers on the same host shared the Linux kernel but have

adequate mechanisms for security, like namespaces, seccomp profiles,

and SELinux, which offered multilayered security for containers. In 2018,

a new technology called WebAssembly has emerged. It was created by

Mozilla and started as a browser-based technology. Since then, developers

have employed it on the cloud and server-side apps. WebAssembly allows

an extra level of virtualization by running the Wasm computation within a

Linux process.

Things began with virtual machines (which are complete operating

systems) and then moved to Linux containers (Linux processes

protected and isolated by the Linux kernel). Now there is WebAssembly,

https://doi.org/10.1007/978-1-4842-7496-5_1#DOI

2

a computation unit within the Linux process. The goal is to provide a

computation unit that can quickly spin up and be suitable for serverless

workloads.

WebAssembly (also known as Wasm) is the new universal bytecode

for interoperable compute units. Interoperable means that the compute

unit should be able to run on any compatible Wasm runtime. A compute

unit is a Wasm module. The basic idea is to have a bytecode format that is

universal and standard.

Languages like JavaScript, Rust, Golang, and Java can be compiled to a

Wasm-based bytecode. Once this bytecode is generated, it can be executed

on any Wasm runtime.

Wasm is a small and efficient stack-based virtual machine that

abstracts the target architecture by compiling the code to a universal

bytecode representation. Wasm is based on an industry-wide collaborative

effort to get a performant and secure close to assembly language.

The Bytecode Alliance, set up to create shared implementations of

WebAssembly standards, includes major players like Arm, Intel, Google,

Microsoft, Mozilla, and Fastly.

Wasm is also well suited to run code in a multitenant way because it

has the right security primitives built into it. Since it’s launched within a

process but is not a process itself, it also provides a means to avoid cold

start problems, which are typical of serverless environments. Wasm is

gaining tractions in areas like

•	 Providing data filtering capabilities in case of gateways

like Envoy

•	 Policy engines like Open Policy Agent

•	 Kubernetes admission controller

•	 Databases like Postgres with custom extensions

supporting Wasm

Chapter 1 WebAssembly Introduction

https://bytecodealliance.org/
https://www.arm.com/
https://www.intel.com/
https://about.google/
https://www.microsoft.com/
https://www.mozilla.org/
https://www.fastly.com/

3

Wasm is now seen as a forefront technology in the cloud-native

community. According to the Cloud Native Computing Foundation’s

CTO, Chris Aniszczyk, “Any project that has an extension mechanism will

probably take advantage of Wasm to do that.”

The promise, and excitement, is around a mix of portability
and speed.

—Fintan Ryan, a senior analyst at Gartner

With low resource overhead and speed up in startup time compared

to JavaScript, Wasm can be provisioned on IoT devices with resource-

constrained memory, CPU, and storage. With no cold start issues, the

portability and low resource consumption would make WebAssembly

ideal for serverless deployments on the cloud and the edge. Initially started

as a sandboxing technique for browser-based applications (for example,

running image processing, decoding video and audio on the browser),

it has now made inroads into server-side technologies due to powerful

sandboxing capabilities and low overhead.

The security capabilities of Wasm make it a good fit for preventing

security vulnerabilities like buffer overflows and control flow integrity

issues. Wasm separates code and data. It has a static type system with type

checking and a very structured control flow designed to make it easier to

write code that compiles to be safe, with linear memory, global variables,

and stack memory accessed separately. These aspects are discussed in the

later chapters in regards to how Wasm provides neat mechanisms to avoid

such security challenges.

Under the hood, Wasm runtime is a stack-based virtual machine

operating on the Wasm bytecode by pushing and popping data off the

stack. The closest comparison would be to the working of a JVM. One

major difference is that JVM bytecode isn't universal (i.e., only

programming languages like Kotlin and Scala can be compiled as Java

Chapter 1 WebAssembly Introduction

https://www.linkedin.com/in/caniszczyk/
https://www.gartner.com/en/experts/fintan-ryan
https://www.gartner.com/en

4

bytecode). But, almost all the programming languages like C, C++, Rust,

Golang, and JavaScript can be compiled into Wasm bytecode.

Wasm currently only supports numeric data types, although there’s a

proposal to add reference types like strings, sequences, records, variants

to make it easier for Wasm modules to interact with modules running

in other runtimes or written in different languages. Though this is not a

limitation, other data types, such as strings, can still be realized with these

numeric types, just that it makes programming Wasm directly a bit tedious.

A Wasm module doesn’t have access to APIs and system calls in the

OS. If you want it to interact with anything outside the module, you must

explicitly import it, so the only code that could be executed is the code

that is packaged as part of the module. This interaction with the operating

system calls is facilitated by a new spec known as WASI (WebAssembly

System Interface). The WASI spec allows an interoperable Wasm code that

can be ported to any Wasm runtime (i.e., runtimes like Lucet, Wasmer, and

Node.js) once the Wasm compiler generates the bytecode.

�Wasm in the Cloud
There are differences in running Wasm in a browser vs. running it on a

cloud or an edge application (e.g., on an IoT device). When running Wasm

on a browser, the interface to the OS is handled by the browser on behalf of

the Wasm module. For servers or edge applications, this must be facilitated

by the Wasm runtime hosting the Wasm module. The types of system calls

would be like a file system I/O or network I/O.

One approach was to have each hosting Wasm runtime implement

how to facilitate the system call on behalf of the Wasm module. This was

the approach so far, but this led to portability issues as each runtime

exposes different methods for the Wasm module to consume for making

the system calls. The WASI spec evolved in the Wasm community to

provide standardization. It’s a modular set of system interfaces that looks

Chapter 1 WebAssembly Introduction

https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://hacks.mozilla.org/2019/08/webassembly-interface-types/

5

like an abstracted OS, with low-level interfaces like I/O and high-level

interfaces like cryptography, keeping WebAssembly code portable. This

also provided better security as with this fine-grained access control

can be achieved. For example, a certain Wasm module can only access

certain files and not the whole file system. This considerably reduces the

possible attack surface originating from a specific Wasm module, even if

it’s malicious.

Many runtimes have emerged to support running Wasm-based

workloads in the cloud and edge. Node.js is a prominent player with the V8

runtime supporting the execution of the Wasm modules by loading them

within JavaScript code. The Bytecode Alliance had three runtimes. Two

(Wasmtime and Fastly’s Lucet) recently merged, optimizing edge compute

using ahead-of-time compilation to reduce latency. It is rewritten on top

of Wasmtime. WAMR, the micro runtime, is for embedded devices with

limited resources; that remains a separate runtime.

There are other runtimes, such as Wasmer and TeaVM (for Java

bytecode to Wasm). As the community grows, and thereby the number of

runtimes grows, it becomes important to keep an eye on the performance

aspects of these runtimes. There is a set of benchmarks that measure

different aspects of Wasm’s runtime performance.

Figure 1-1 shows that the wavm runtime is fastest, followed by the

node runtime.

Chapter 1 WebAssembly Introduction

6

Figure 1-2 shows the performance aspects where again wavm is the

fastest, followed by the node runtime.

The following are the main benefits of using WebAssembly.

•	 Near-native performance

•	 Lightweight

Figure 1-1.  Wasm runtime performance

Figure 1-2.  Wasm runtime performance (interpreted mode)

Chapter 1 WebAssembly Introduction

7

•	 Security

•	 Easy debugging

•	 Hardware, language, and platform-independent

The following are the eight objects that are key to WebAssembly.

•	 WebAssembly.Module contains stateless WebAssembly

code that has been pre-compiled by the browser.

•	 WebAssemly.Global represents a global variable

instance that is accessible from both JavaScript and is

importable/exportable across one or more instances of

WebAssembly.Module.

•	 WebAssembly.Instance is a stateful, executable

instance of WebAssembly.Module.

•	 WebAssembly.Memory is a resizable ArrayBuffer or

SharedArrayBuffer that holds raw bytes of memory

accessed by a WebAssembly.Instance.

•	 WebAssembly.Table a JavaScript wrapper that stores

function references.

•	 WebAssembly.CompileError indicates an error during

decoding or validation.

•	 WebAssembly.LinkError indicates an error during a

module instantiation.

•	 WebAssembly.RuntimeError is an error that is thrown

when WebAssembly specifies a trap.

Chapter 2 goes into more detail.

Chapter 1 WebAssembly Introduction

8

�WebAssembly Use Cases
There are so many use cases for WebAssembly. The following are some of

the possibilities.

•	 Greenfield/multiplatform development

•	 Serverless development

•	 Database plugins written in Wasm for triggers

•	 Serving complete servers like Node.js within browsers

like WebContainers

•	 Migrating from desktop-only to desktop and browser-

based applications (AutoCAD and games)

•	 Progressive web apps

•	 Mobile apps

There are many other use cases.

�WebAssembly Architecture
At a high level, the diagram in Figure 1-3 shows how WebAssembly works.

The left side of Figure 1-3 lists languages like Rust, Golang, C, and C++

that compile them to WebAssembly, which is then deployed on a Wasm

virtual machine. The Wasm virtual machine executes the Wasm module by

converting it into target hardware-specific machine code.

Chapter 1 WebAssembly Introduction

9

It becomes evident from Figure 1-3, the goal of WebAssembly is to be a

universal bytecode. This means that software written in different languages

can be compiled in a Wasm format and be executed on a WebAssembly

virtual machine.

�Stack-Based Virtual Machine
The WebAssembly virtual machine is implemented as a stack-based virtual

machine. A stack-based virtual machine emulates a real CPU.

Let’s take an example of a simple stack-based virtual machine

for performing simple calculations like addition, subtraction, and

multiplication.

The following are four things that work on such a machine.

•	 The stack pointer, which points to the top of the stack

•	 The instruction pointer, which points to the next

instruction

Figure 1-3.  High-level architecture of WebAssembly framework

Chapter 1 WebAssembly Introduction

10

•	 Instructions like add, sub, and multiply

•	 The stack data structure

Let’s look at a simple flow now to implement an add operation on a

stack-based virtual machine.

Take three instructions to add. The instruction pointer moves from the

first instruction (push 10) to the last instruction, add.

push 10

push 20

add

The first instruction pushes the value of 10 on the stack, and the stack

pointer points to that value on top of the stack.

The second instruction pushes 20 as the value on top of the stack, and

the stack pointer now points to that.

The Wasm runtime implements the add instruction to get the two

values from the stack, adds them, and pushes the result back to the stack.

The subtract and multiply instructions are implemented on another

line.

The following are the textual format of the code snippets for the

WebAssembly module to perform addition, subtraction, multiplication.

Don’t worry about the syntax; it is explained in Chapter 2.

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.sub

)

Chapter 1 WebAssembly Introduction

11

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.mul

)

There are three function definitions (add, subtract and multiply)

within a WebAssembly module.

The following are the three instructions.

 get_local $a

 get_local $b

 i32.add

get_local $a pushes the value of parameter a on the stack

get_local $b pushes the value of parameter b on the stack

i32.add pops these two values, performs an addition, and pushes the

result back on the stack.

In simple terms, this is how a WebAssembly stack-based virtual

machine works.

�Summary
This chapter briefly looked at virtualization and where WebAssembly fits

into it. You learned about WebAssembly and its architecture. You saw

how different WebAssembly runtimes compare to each other in terms of

performance.

You also looked at a stack-based virtual machine and how a

WebAssembly virtual machine implements a stack-based virtual machine

to run Wasm bytecode.

Chapter 1 WebAssembly Introduction

13© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_2

CHAPTER 2

WebAssembly Module
Internals: Sections
and Memory Model
This chapter explains what constitutes a WebAssembly module and shows

you what its memory model looks like. It discusses how the different

sections of the WebAssembly module are structured and the significance

of each section.

Figure 2-1 shows the structure of a Wasm file.

Figure 2-1.  Structure of a WebAssembly file

https://doi.org/10.1007/978-1-4842-7496-5_2#DOI

14

The WebAssembly header is an 8-byte filled with the magic number

\0asm in ASCII.

It is followed by the version number, which is always 1.

The hex representation “\x00\x61\x73\x6d\x01\x00\x00\x00”

represents the 0asm magic number and the version combined. This is

needed to create a valid Wasm file.

On an Ubuntu machine, type the following command.

printf "\x00\x61\x73\x6d\x01\x00\x00\x00" > test.wasm

This creates a valid Wasm file called test.wasm, which any of the Wasm

runtimes can load.

The different Wasm module sections are listed in Table 2-1.

Table 2-1.  Wasm Module Sections

Section Description

Type Declares unique function signatures

Import Declares imports

Function Functions used within a module

Table Used for indirection by storing references to functions, for example

Memory Linear memory for the module

Global Declaration of global variables

Export All exported functions to the host

Start Index to the function to be called at the start of a module

Element Initializes imported modules

Code Code for the module functions

Data Data to be loaded in the linear memory during initialization

Custom Any other kinds of custom data

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

15

There are 12 sections in a single Wasm module, with each having a

specific purpose.

Each section has a header with a unique code that describes the type

of the section (i.e., if it’s a type, import, or function, etc.) and a payload

component that contains the payload of the section. Only one section can

have one code within a Wasm module.

Figure 2-2 shows an example of section headers.

Each section header depicts the start and end of the section and its

size.

Figure 2-3 shows some of the sections from a Wasm file.

Figure 2-2.  Section headers

Figure 2-3.  Sections of the Wasm file

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

16

Figure 2-3 shows that the type section has one type, which takes two

32-bit integers as input and returns a 32-bit integer.

In the function section, you see three functions, and since there is only

one type defined, all three functions are of the same type (signatures).

sig=0 in the function body points to type[0] where the signature is defined.

All three take two 32-bit integers as input and return a 32-bit integer as

output.

The export section shows which functions are exported out of the

Wasm module for the host to invoke. In this case, all three functions are

exported to the host.

The code section constitutes the actual code instructions for the

functions.

Each section consists of the following.

•	 A one-byte section ID

•	 The i32 (4 bytes) size of the contents, in bytes (each

section can have approximately 4 GB of size)

•	 The actual contents of the section (for most sections, it’s

a vector representation)

Each section has a specific ID. As per WebAssembly specs, Table 2-2

lists the section IDs.

Table 2-2.  Sections and Their IDs

ID Section

0 custom section

1 type section

2 import section

3 function section

4 table section

(continued)

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

17

�Type Section
The type section defines the unique signatures of the functions defined in

the Wasm module, which specify the following.

•	 The input parameters and their types

•	 The return type of the function

Table 2-3 shows examples of this section.

Table 2-3.  Type Section

Index Type

0 (i32) (i32) -> (i32)

1 (i64) -> ()

2 (i64) (i64) -> ()

ID Section

5 memory section

6 global section

7 export section

8 start section

9 element section

10 code section

11 data section

12 data count section

Table 2-2.  (continued)

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

18

The first type specifies a signature that takes two 32-bit integers as

input parameters and returns a 32-bit integer.

The second type specifies a signature that takes a 64-bit integer as

input and returns a void, and finally, the third type specifies a signature

that takes two 64-bit integers as input and returns a void.

�Function Section
The function section specifies the type of functions being used in the

specific module. For example, if there are three functions in a module as

defined in Table 2-4. The types listed in Table 2-4 are referred from the

types in Table 2-2.

Table 2-4 depicts a function section. For example, the first function of

type 0 takes two 32-bit integers as input and returns a 32-bit integer as a

return type, and similarly, for other functions, the signatures are mapped

to a specific type.

�Code Section
The code section constitutes the actual function implementation, as

shown in Table 2-5.

Table 2-4.  Function Section

Index Function

0 Type 0

1 Type 2

2 Type 1

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

19

The function section index points to the index of the code section.

Figure 2-4 is an example of a simple Wasm module and shows a code

section.

You can see several instructions use local.get 0 and similar operations.

They are primarily stack-related operations. Since Wasm is a stack-based

virtual machine, the instructions in Wasm work on pushing and popping

values to the stack. This is covered in Chapter 3, where you start to

implement the Wasm module by hand.

Table 2-5.  Code Section

Index Function Code

0 Code for 0th function

1 Code for 1st function

2 Code for 2nd function

Figure 2-4.  Code sections of the Wasm file

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

20

�Export Section
The export section defines the exports in specific Wasm modules; for

example, you want to expose a function defined within a Wasm module

to the Wasm runtime. Exports become visible to the host machine. Wasm

also allows you to export the memory and data sections of a module.

Here is how an export will look like

Figure 2-5 shows an export.

There are three functions exported out of the Wasm module. These

three functions are available to the Wasm runtime (for example, Node.js)

to invoke these functions.

�Import Section
The import section defines the import functions from other Wasm

modules or the host. Chapter 3 showcases an example of a function on a

Node.js-based Wasm runtime invoked from within a Wasm module.

�Table Section
The table section provides a level of indirection for functions. This is like

a mapping of a virtual index to the reference to actual function code. Any

invocation happens via this table mapping rather than having a direct

reference to the function code. Any code doesn’t have access to the direct

Figure 2-5.  Exports of the Wasm file

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

21

function pointers in this case and provides a security feature to avoid

manipulating an instruction pointer to some malicious code. Whenever a

function is invoked, the WebAssembly framework intercepts and looks at

the table, and invokes the actual function.

The table is initialized with a specific size. The number of entries in a

table can increase. A table can also be capped by a maximum number. If a

maximum number of entries is not configured, it is an unbounded table.

Figure 2-6 is an example of a Wasm with a table section.

The table section in Figure 2-6 has one function specified with a

funcref element.

Figure 2-6.  Table section in the Wasm module

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

22

�Memory Section
From a security standpoint, the memory section is one of the most

important sections. It is represented as linear memory and instantiated

by the host as an array. In the Wasm module, it’s just like normal memory,

which is linear. The Wasm runtime intercepts memory access to keep it

in bounds. The framework disallows anything outside the bounds. This

mechanism allows you to do memory sandboxing within a Linux process.

This lets you run each tenant workload within its own Wasm module

within one Linux process.

Memory for a module is structured in pages as it’s structured in a Linux

process. (The default page size in Linux is 4K but is configurable.) The only

difference here is that the page size for a Wasm module is 64K. The Wasm

runtime provisions this memory to the Wasm module in the number

of pages. These pages can be dynamically increased to the max size if

specified. Apart from providing sandboxing, sometimes modules are

required to share memory similar to IPC (inter-process communication)

semantics. WebAssembly allows two modules to have a shared memory

setup if needed.

The following is a memory segment in a Wasm file.

(memory (export "memory") 1 4)

This would mean provision the Wasm module with the memory

of a single page and expandable up to four pages. The memory can be

expanded on invocation of the memory.grow function by the Wasm

runtime. This is limited by the max number of pages of memory for a

Wasm module, however.

Normally in programs written in C or C++, there was the possibility

of attacks by manipulating the instruction pointer, mainly due to the

execution stack being part of the process memory. This allowed developers

to craft attacks like buffer overflow, stack smashing, and so forth. Although

many of them have been mitigated by mechanisms like address space

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

23

randomized layout (ASRL), architectures like Wasm separate the execution

stack from memory for data, thereby making these attacks almost

impossible.

An example of a memory section with the memory of a single page is

shown in Figure 2-7.

There are two ways to create a memory for a WebAssembly module.

•	 Within the module using it in a Wasm module

(memory 1)

•	 Provisioned via the embedding host, such as a

JavaScript engine (Some of the information shown in

Figure 2-7 is explained in later chapters.)

�Data Section
The data section allows initializing some data during the initialization

of the WebAssembly module; for example, certain configurations can be

loaded into the data section if needed.

Figure 2-7.  Memory section

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

24

The following is a data section in a module.

(data (i32.const 0) "Hello Wat")

Figure 2-8 shows how the data section initializes a “Hello Wat” string in

the linear memory of the Wasm module.

The host can read from the location and offset the linear memory to

get this string. This is one way that allows guest-to-host communication is

explained in Chapter 3.

You can also see the hex representation in the last line in Figure 2-8 is

equivalent to the "Hello Wat" text representation.

4865 6c6c 6f20 5761 74

H e l l o W a t

Figure 2-8.  Data section

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

25

�Custom Section
You have seen that the data section can store arbitrary strings in Wasm.

The custom section allows you to make this mechanism more extensible

by storing more things within custom sections. It can be module metadata-

related information or information.

�Start Section
The start section points to the index of the starting function to be invoked

when the execution starts. People familiar with the C main function can

draw a parallel here.

�Global Section
The global section holds the global variables of the Wasm module and

specifies if a variable is mutable or not.

�Programmatically Parsing a Wasm File
Let’s discuss using a Golang-based program to parse through the Wasm

file and print the different sections of a specific Wasm file. The following

explains the prerequisites to do this.

	 1.	 Install Golang 1.16 and set up GOROOT, GOPATH,

and other environment variables.

	 2.	 Create a wasm_parser directory.

	 3.	 In the directory, create a main.go file.

	 4.	 Copy the following code.

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

26

Listing 2-1.  Parsing Wasm Module

1. package main

2. import (

3. "flag"

4. "fmt"

5. "os"

6. "text/tabwriter"

7. wasm "github.com/akupila/go-wasm"

8.)

9. func main() {

10. file := flag.String("file", "", "file to parse (.wasm)")

11. flag.Parse()

12. if *file == "" {

 a. flag.Usage()

 b. os.Exit(2)

13. }

14. f, err := os.Open(*file)

15. if err != nil {

 a. fmt.Fprintf(os.Stderr, "open file: %v", err)

 b. os.Exit(1)

16. }

17. defer f.Close()

18. mod, err := wasm.Parse(f)

19. if err != nil {

 a. fmt.Fprintln(os.Stderr, err)

 b. os.Exit(1)

20. }

21. w := tabwriter.NewWriter(os.Stdout, 0, 0, 4, ' ', 0)

22. fmt.Fprintf(w, "Index\tName\tSize (bytes)\n")

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

27

23. for i, s := range mod.Sections {

 �a. fmt.Fprintf(w, "%d\t%s\t%d\n", i, s.Name(),

s.Size())

24. }

25. w.Flush()

26. }

In the wasm_parser directory, run the following commands.

go get github.com/akupila/go-wasm/

go mod init main.go

go mod tidy

This generates two files: go.mod and go.sum.

Once this is done, you can build the code using the following

command.

go build -o wasm_parser

This generates an executable named wasm_parser.

To execute this binary, use the calc.wasm file built in previous sections

of this chapter.

Execute the following binary.

./wasm_parser --file calc.wasm

The sections of the module print, as shown in Figure 2-9.

Figure 2-9.  Sections of the calc Wasm module

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

28

Let’s look at a different Wasm file with more sections and run the same

command.

Use the string.wasm file built in previous sections of this chapter.

Executing the following command results in the output shown in

Figure 2-10.

./wasm_parser --file string.wasm

Note that the import and data sections are now in the module.

Next, let’s modify the code to print the code sections of the two Wasm

modules. Add the following code segment after line number 25 in

Listing 2-1.

Listing 2-2.  Listing Section Code and Section Bodies

1. for j, s := range mod.Sections {

2. _=j

3. switch section := s.(type) {

4. case *wasm.SectionCode:

5. // can now read function bytecode from section.

6. // fmt.Println(section.Bodies)

7. for i := 0; i < len(section.Bodies); i++ {

8. fmt.Println("function code ",section.Bodies[i].Code)

9. }

10. }

11. }

Figure 2-10.  Sections of the Wasm module string

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

29

This code iterates over the code segment of the Wasm module. It

iterates over the code bodies of each function and prints the bytecode of

each function.

Code bytes for Wasm module calc.wasm

Code bytes for Wasm module string.wasm

To inspect the exported functions, add the following code section to

main.go. The code must be clubbed to the updated Listing 2-2 after line 3.

Listing 2-3.  Listing Section Entries

case *wasm.SectionExport:

for i := 0; i < len(section.Entries); i++ {

 �fmt.Println("export function field ",section.

Entries[i].Field)

}

Figure 2-11.  Bytecode for the function in calc.wasm

Figure 2-12.  Bytecode for function in string.wasm

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

30

Figure 2-13 shows the calc.wasm output.

Since only one function is exported for string.wasm, you see the output

shown in Figure 2-14.

Chapter 3 discusses these Wasm files in more detail.

Next, let’s look at the type section via this program.

Add the following code section to the main.go file to print the type

information of the Wasm file.

case *wasm.SectionType:

for i := 0; i < len(section.Entries); i++ {

 fmt.Println("type form field ",section.Entries[i].Form)

 �fmt.Println("type Params field ",section.Entries[i].

Params)

 �fmt.Println("type return type field ",section.

Entries[i].ReturnTypes)

}

After executing the code, the type information is printed (see Figure 2-15).

Signature type of all the functions defined in this Wasm module is the same

(see Figure 2-16).

Figure 2-13.  Exports section for calc.wasm

Figure 2-14.  Exports section for string.wasm

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

31

You see that string.wasm has two different function signatures.

The first function takes two int32 as input and returns a void, while the

second function takes no parameters and returns void.

�Summary
This chapter looked at the internals of a WebAssembly module and

how the different sections in a module are laid out. You also learned the

importance of each section, like functions, table, memory, types, and data.

Finally, you learned how to programmatically parse through the Wasm file

and extract the needed section information from the Wasm file.

Figure 2-15.  Type section for calc.wasm

Figure 2-16.  Type section for string.wasm

Chapter 2 WebAssembly Module Internals: Sections and Memory Model

33© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_3

CHAPTER 3

WebAssembly Text
Toolkit and Other
Utilities
The WebAssembly text toolkit is a toolkit to peek into a Wasm module in

a textual format. Although the Wasm module is binary, this toolkit allows

you to convert Wasm into a human-readable text format.

This chapter looks at some of the utilities that allow you to do the

following.

•	 Create a text file in WebAssembly text format (wat) and

generate a Wasm file from it

•	 Generate a wat file from a Wasm file

•	 Generate a dump of the Wasm file

�The wat2wasm Utility
This tool handcrafts Wasm files in a text format and then generates the

actual Wasm file. Since this is a human-readable format, it allows for a

deeper understanding of the Wasm layout under the hood.

https://doi.org/10.1007/978-1-4842-7496-5_3#DOI

34

It is a handy tool for beginners to WebAssembly. This chapter features

a few examples of a wat file and shows you how to generate a Wasm file

and then load it via a Node.js-based Wasm runtime.

Pre requisites

Git and Ubuntu VM

Cmake

sudo apt-get update && sudo apt-get install build-essential

Clone the WebAssembly Binary Toolkit (WABT) repository.

git clone --recursive https://github.com/WebAssembly/wabt

cd wabt

git submodule update --init

Once you have downloaded the WABT repo, it’s time to build the

source.

mkdir build

cd build

cmake ..

Figure 3-1 is the build screenshot for the WABT make process.

cmake --build .

Chapter 3 WebAssembly Text Toolkit and Other Utilities

35

Figure 3-2 shows the build process for the WABT utility.

Figure 3-1.  Make WABT

Chapter 3 WebAssembly Text Toolkit and Other Utilities

36

Once you have built and installed the toolkit, you see the different

executables like wat2wasm and wasm2wat under the bin directory. Now

let’s walk through a simple example of creating a wat file by hand. You can

open any text editor like TextPad++ and create an example.wat file.

root@INLN34327424A:/home/ubuntu/wabt# cd ..

Create a directory named wat

root@INLN34327424A:/home/ubuntu# mkdir wat

Figure 3-2.  Building WABT

Chapter 3 WebAssembly Text Toolkit and Other Utilities

37

root@INLN34327424A:/home/ubuntu# cd wat

Create an example.wat file

root@INLN34327424A:/home/ubuntu/wat# nano example.wat

Copy the following content. (I explain it a bit later.)

(module

 (func (result i32)

 (i32.const 100)

)

 (export "hellowat2wasm" (func 0))

)

A wat file starts with the declaration of a module.

(module)

The next step is to define a function with the following signature.

(func <parameters/result> <local variables> <function body>)

It starts with the func keyword followed by parameters it accepts or the

return type.

Wasm supports only numeric types, so the parameters are as follows.

•	 i32: a 32-bit integer

•	 i64: a 64-bit integer

•	 f32: a 32-bit float

•	 f64: a 64-bit float

The params for the functions are written as follows.

(param i32)

(param i64)

(param f32)

(param f64)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

38

The result is written as follows.

(result i32)

(result i64)

(result f32)

(result f64)

In this example, you see a definition of the function with a i32 (32-bit

integer) return type.

The next part of the function definition is the function body. Here

the expression is i32.const 100. This expression pushes the value 100

onto the stack. (Recall from Chapter 1 that WebAssembly is a stack-based

architecture.)

The last step is the export of the defined function. The export step is

crucial because it makes the function visible to the host. The guest module

exposes the function with index 0 (this module only defines one function)

to the host runtime (Node.js in this case).

Name the hellowat2wasm function, which the host uses when invoking

the function within the Wasm module.

Since there is a high-level understanding of the text format of the

Wasm module, it’s time to create a Wasm module from the wat file. Let’s

execute the wat2wasm executable (built as part of the cmake utilities you

ran) and pass example.wat as input.

root@INLN34327424A:/home/ubuntu/wat# ../wabt/bin/wat2wasm

example.wat

You see the generated Wasm file called example.wasm.

root@INLN34327424A:/home/ubuntu/wat# ls

example.wasm example.wat

Time for loading and execution of the Wasm file.

Let’s use a Node.js-based runtime to load the Wasm file. Please make

sure you have Node.js installed on the machine.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

39

Create an index.js file in the wat directory.

Copy the following content into the file and save it.

const { readFileSync } = require("fs");

const run = async () => {

 const buffer = readFileSync("./example.wasm");

 const module = await WebAssembly.compile(buffer);

 const instance = await WebAssembly.instantiate(module);

 console.log(instance.exports.hellowat2wasm());

};

run();

In this code, you load the example.wasm file into a memory buffer

and then instantiate the module. Once you have instantiated the module,

invoke the hellowat2wasm function, which was exported by the Wasm

module.

Execute the program using the following command.

node index.js

You should see 100 as the output.

Let’s proceed to a little more advanced wat program, where you create

a wat file to add two integers.

Again, start with the module.

(module

Next, define the function signature. Here you can see that for

parameters, $a and $b are the variable names, and a 32-bit integer is

returned as a result.

(func (param $a i32) (param $b i32) (result i32)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

40

The function body, get_local $a and get_local $b, pushes the a and b

values on the stack.

 get_local $a

 get_local $b

The i32.add pops the two values from the stack and adds them, and

pushes the result back on the stack.

 i32.add

)

Finally, it’s time to export the add function to the host runtime.

 (export "add" (func 0))

)

The following is the complete code.

(module

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

 (export "add" (func 0))

)

Next, use the wat2wasm tool to generate the add.wasm file.

Now it is time to consume this Wasm module from the Node.js

runtime.

Create an add.js file.

Copy the following code into the file.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

41

const { readFileSync } = require("fs");

const run = async () => {

 const buffer = readFileSync("./add.wasm");

 const module = await WebAssembly.compile(buffer);

 const instance = await WebAssembly.instantiate(module);

 console.log(instance.exports.add(34,76));

};

run();

The code loaded the add.wasm file into the memory buffer, created an

instance, and invoked the add method on the exported Wasm module.

If all goes well, you should see 110 being printed on the console.

Now let’s build a small calculator using the wat file, which defines three

functions and exposes all three functions to the host.

The calc.wat file is defined as follows.

(module

//Define the first function for addition as was done in

previous example

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

Define the second function for the subtraction of the two numbers.

The local variables are pushed to the stack, and i32.sub then pops the

value from the stack, subtracts the two, and pushes the result again.

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.sub

)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

42

Define the third function for multiplication. The i32.mul instruction

pops the two values from the stack, multiplies them, and pushes the result

back to the stack.

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.mul

)

 (export "add" (func 0))

 (export "subtract" (func 1))

 (export "multiply" (func 2))

)

Now use the wat2wasm tool to generate the Wasm file from the calc.

wat file.

Once this is done, you create a simple Node.js program.

const { readFileSync } = require("fs");

const run = async () => {

 const buffer = readFileSync("./calc.wasm");

 const module = await WebAssembly.compile(buffer);

 const instance = await WebAssembly.instantiate(module);

var sum= instance.exports.add(34,76);

var diff=instance.exports.subtract(76,34);

var mul=instance.exports.multiply(12,8);

console.log("sum of 34 and 76="+sum);

console.log("difference of 76 and 34="+diff);

console.log("product of 12 and 8="+mul);

};

run();

Chapter 3 WebAssembly Text Toolkit and Other Utilities

43

This program loads the calc.wasm file and invokes the exported

functions one by one.

So far, you have seen how to create a wat file that exported three

functions, which the host runtime can then consume. Next, let’s dig a bit

more deeply into the WebAssembly text format, where you see how one

function in a module can invoke another function in the same module.

Let’s start by defining a simple wat file with an addition function.

(module

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

 (export "add" (func 0))

)

You already know this function. Next, let’s create a wrapper around this

function.

Create a file called wrap.wat.

Copy the following code into the file.

(module

(func (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

44

(func (result i32)

 i32.const 56

 i32.const 44

 call 0

)

 (export "add1" (func 1))

)

The preceding code defines an add function, which gets two integers

from the stack, adds them, and pushes the result onto the stack. Next, wrap

the function with another function, where you put 56 and 44 onto the stack

and then call the wrapped add function. Finally, expose this wrapper as

add1 to the host.

Next, create a Node.js file wrap.js and copy the following code into it.

const { readFileSync } = require("fs");

const run = async () => {

 const buffer = readFileSync("./wrap.wasm");

 const module = await WebAssembly.compile(buffer);

 const instance = await WebAssembly.instantiate(module);

 console.log(instance.exports.add1());

};

run();

You can see the add1 function is invoked, which prints the result as 100.

So far, you have seen how to consume an exported function from a

Wasm module and how the Node.js runtime consumes it. Next, let’s import

a function from the Node.js host and invoke it within the Wasm module.

Let’s define an add function at the host runtime (Node.js) and then

invoke it via a function defined in the Wasm module. Create an export.wat

file and copy the following code into the file.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

45

(module

 (import "example" "add" (func $add (param i32) (param i32)))

 (func (export "add1")

 i32.const 56

 i32.const 44

 call $add))

The preceding code creates a Wasm module with an exported add1

function. This function puts two values (56 and 44) on the stack and makes

a call to an add function, which, in turn, invokes the add function defined

on the host under the namespace example. The import statement here

is telling to import add function from an example namespace. Instead of

calling $add, you can also invoke the add function by call 0 instruction as 0

is the index of the add function.

Generate the Wasm file (export.wasm) using the wat2wasm utility

before using it in the JavaScript file.

const { readFileSync } = require("fs");

const run = async () => {

var importObject = {

 example: {

 add: function(arg1,arg2) {

 sum=arg1+arg2;

 console.log("sum="+sum);

 }

 }

};

 const buffer = readFileSync("./export.wasm");

 const module = await WebAssembly.compile(buffer);

Chapter 3 WebAssembly Text Toolkit and Other Utilities

46

 �const instance = await WebAssembly.instantiate(module,

importObject);

 instance.exports.add1();

};

run();

Let’s now explore WebAssembly memory. It is important to know how

to isolate Wasm modules and deal with types other than integer and floats.

As you know, Wasm only allows four basic types (i32, i64, f32, and f64) to

be passed between the host and guest.

Knowledge of the Wasm memory model allows you to encode complex

types between host and guest. You see some examples of this in later

chapters.

In WebAssembly, memory is a linear array of bytes that can grow over

time. WebAssembly provides instructions like i32.load and i32.store to

read and write from the specific memory area. The host creates this linear

memory array and provides it to the Wasm module. The Wasm module

code only has visibility within that memory area, and it remains isolated

from other modules running on the same host. This is how Wasm achieves

memory sandboxing.

If the host is a JavaScript-based Node.js, think of this linear memory

as an ArrayBuffer. To encode complex types like the string, you need to

represent/encode this string into a byte array within the memory allocated

for the Wasm module.

Here, a Wasm module is defined using the wat file. Create a string.wat

file and copy the following content into that file.

(module

 (import "example" "log" (func $log (param i32 i32)))

 (import "js" "mem" (memory 1))

 (data (i32.const 0) "Hello Wat")

 (func (export "logme")

Chapter 3 WebAssembly Text Toolkit and Other Utilities

47

 i32.const 0 ;; pass offset 0 to log

 i32.const 9 ;; pass length 9 to log

 call $log))

Import one function and one variable from the runtime host. The

function is the example namespaced log function, and the variable is the

JavaScript namespaced mem variable. The idea here is that you create a

string in Wasm memory (a linear memory provisioned by the host) from

the guest and then pass the offset and length to the host. The host can then

read from that offset to the length and then decode the string and print it.

Define a data segment in the wat file, and its content is “Hello Wat”. The

data segment allows you to write a string into the Wasm memory at a given

offset. A logme function exports two constants (offset and length) onto the

stack and invokes the log function internally. This log function passes the

offset and length to the host, which reads from the Wasm module memory

at the offset until the length and prints the content.

Convert the string.wat file to a string.wasm file using the wat2wasm

tool.

The following is the JavaScript code for defining the imports and

invoking the logme function on the Wasm module.

const { readFileSync } = require("fs");

// this is one of the variable which will be imported by the guest

var memory = new WebAssembly.Memory({ initial : 1 });

const run = async () => {

var importObject = {

//the function and memory are defined as imports .These are

imported by the Wasm module.

 example: {

 log: function(offset,length) {

var bytes = new Uint8Array(memory.buffer, offset, length);

Chapter 3 WebAssembly Text Toolkit and Other Utilities

48

 var string = new TextDecoder('utf8').decode(bytes);

 console.log(string);

 }

 }

,js: {

 mem: memory

 }

};

 const buffer = readFileSync("./string.wasm");

 const module = await WebAssembly.compile(buffer);

 �const instance = �await WebAssembly.instantiate(module,

importObject);

 instance.exports.logme();

};

run();

The JavaScript file, when executed within Node.js, should print Hello

Wat on the console. This file defines two imports.

•	 The example.log function reads the memory array at a

specific offset and to a specific length. Offset and length

are provided by the guest, which has put the “Hello

Wat” string into that array.

•	 The memory array itself.

The host’s job is to pass this memory to the guest. This is done via

importObject, which is imported into the Wasm module. The Wasm

module puts the string into the memory and passes the offset and length

of the memory the host has allocated it. The guest invokes the example.log

function on the host. This function reads the memory at offset and length

and prints the contents.

This is how you can achieve communication between the host and the

guest.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

49

�Tables
Let’s look at the tables section in the wat file. You know that functions

within a module can only be invoked by passing the function’s index to

the call instruction. An instruction called call_indirect in Wasm provides

a layer of indirection to the function calls. With the call instruction, the

index passed is the index of the exact location of the function in memory,

where call_indirect allows to invoke the function by an indirection by

a structure called a table. The table holds the actual function location

and maps this index to a virtual index used by the host code. This allows

you to do late binding to the function call; for example, hosts that are

compiled. For example, a Rust binary can decide at runtime which

function to call by passing the index of the function to be invoked. This is a

powerful mechanism provided by WebAssembly for the dynamic runtime

invocation of a function.

Let’s look at a wat file.

Create a table.wat file and copy the following code.

(module

 (table 3 funcref)

(func $f1 (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.add

)

(func $f2 (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.sub

)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

50

(func $f3 (param $a i32) (param $b i32) (result i32)

 get_local $a

 get_local $b

 i32.mul

)

 (elem (i32.const 0) $f1 $f2 $f3)

// this refers to the index of the function in the function table

 (type $return_i32 (func (param i32 i32)(result i32)))

 (func (export "callByIndex") (param i32 i32 i32)(result i32)

local.get 1

local.get 2

local.get 0

 call_indirect (type $return_i32)

)

)

In the wat file, you added (table 3 funcref) just below the module

section. This tells the Wasm host to create a module of table size of 3. Here,

funcref specifies that elements of this table are references to the functions.

The add, subtract, and multiply functions are defined as usual.

The next section in the wat file is the elem, which defines the functions

referenced by the table. In our case, the add, subtract, and multiply

functions are part of the elem section.

The (type $return_i32 (func (param i32 i32)(result i32))) section

specifies the type of the function to be invoked. In this case, since all three

functions have similar signatures, you keep one type.

Finally, the following segment exports the callByIndex function to the

host.

 (func (export "callByIndex") (param i32 i32 i32)(result i32)

local.get 1

local.get 2

Chapter 3 WebAssembly Text Toolkit and Other Utilities

51

local.get 0

 call_indirect (type $return_i32)

This function takes three integer parameters. The first is the index of

the function in the table. The other two are the parameters to be operated

upon by the function to be invoked, like add, multiply, or subtract.

local.get 1, local.get 2, and local.get 0 push the index of the function

and two other values on the stack. By default, the call_indirect instruction

pops the top value from the stack. Because you push the function’s index

on the stack, it picks up, and the actual function is invoked. The callee

then pops the other two values from the stack and invokes the needed

operation.

Create a Wasm file from the wat file using the wat2wasm utility.

Now let’s invoke the module function by index in the following

JavaScript code.

const { readFileSync } = require("fs");

const run = async () => {

 const buffer = readFileSync("./table.wasm");

 const module = await WebAssembly.compile(buffer);

 const instance = await WebAssembly.instantiate(module);

var sum= instance.exports.callByIndex(0,56,34);

var diff=instance.exports.callByIndex(1,56,34);

var mul=instance.exports.callByIndex(2,12,8);

console.log("sum of 34 and 56="+sum);

console.log("difference of 56 and 34="+diff);

console.log("product of 12 and 8="+mul);

};

run();

Chapter 3 WebAssembly Text Toolkit and Other Utilities

52

You can see how the individual functions are invoked using a specific

index in a Wasm module table. You can take this index as input or based

on some logic and dynamically call a function.

These tables can also be dynamically created by the host and can

also be shared between different modules. However, this kind of dynamic

linking is beyond the scope of this book.

�The wasm2wat Utility
Now that you’ve seen the wat2wasm tool, let’s look at a tool that reverses

the process, which means taking a Wasm file and generating a wat file. This

can help debug a Wasm file.

Take the calc.wasm file generated in the previous section and use the

wasm2wat executable against it. The wasm2wat executable is located in

the same location as the wat2wasm binary (under the wabt/bin directory).

Run the following command.

../wabt/bin/wasm2wat calc.wasm -o calc1.wat

Next, let’s provide calc.wasm as input and calc1.wat as output. Inspect

the calc1.wat file, as follows.

(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (func (;0;) (type 0) (param i32 i32) (result i32)

 local.get 0

 local.get 1

 i32.add)

 (func (;1;) (type 0) (param i32 i32) (result i32)

 local.get 0

 local.get 1

 i32.sub)

 (func (;2;) (type 0) (param i32 i32) (result i32)

Chapter 3 WebAssembly Text Toolkit and Other Utilities

53

 local.get 0

 local.get 1

 i32.mul)

 (export "add" (func 0))

 (export "subtract" (func 1))

 (export "multiply" (func 2)))

This tool can help one to debug and look at some possible issues in the

Wasm file.

�Object Dump Using wasm-objdump
wasm-objdump is a utility that allows you to do a dump of the

WebAssembly file. It prints information about the Wasm binary file. You

can pass flags to print different details, like headers, full content, and

function bodies.

The below prints the header information for the add.wasm file.

ubuntu@INLN34327424A:~/wat$ sudo ../wabt/bin/wasm-objdump add.

wasm -h

add.wasm: file format wasm 0x1

The following are the sections.

 �Type start=0x0000000a end=0x00000011 (size=0x00000007)

count: 1

 �Function start=0x00000013 end=0x00000015 (size=0x00000002)

count: 1

 �Export start=0x00000017 end=0x0000001e (size=0x00000007)

count: 1

 �Code start=0x00000020 end=0x00000029 (size=0x00000009)

count: 1

Chapter 3 WebAssembly Text Toolkit and Other Utilities

54

Passing the disassemble flag (-d) results in the following output.

ubuntu@INLN34327424A:~/wat$ sudo ../wabt/bin/wasm-objdump add.

wasm -d

add.wasm: file format wasm 0x1

The following shows the code disassembly.

000022 func[0] <add>:

 000023: 20 00 | local.get 0

 000025: 20 01 | local.get 1

 000027: 6a | i32.add

 000028: 0b | end

Run the following command (-x as the flag) to get the section

information.

ubuntu@INLN34327424A:~/wat$ sudo ../wabt/bin/wasm-objdump add.

wasm -x

add.wasm: file format wasm 0x1

These are the section details.

Type[1]:

 - type[0] (i32, i32) -> i32

Function[1]:

 - func[0] sig=0 <add>

Export[1]:

 - func[0] <add> -> "add"

Code[1]:

 - func[0] size=7 <add>

Apart from the utilities, there are more utilities like wasm-interp,

wasm-decompile, and wasm-strip. These are left for you to experiment

with.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

55

�Summary
This chapter discussed utilities like wat2wasm, where you wrote the wat

files by hand and learned their segments and structure. You also saw

how functions could be exported and imported using the wat format.

The chapter also covered other utilities like wasm2wat and utilities for

generating the dump of the Wasm file.

Chapter 3 WebAssembly Text Toolkit and Other Utilities

57© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_4

CHAPTER 4

WebAssembly with
Rust and JavaScript:
An Introduction to
wasm-bindgen
This chapter discusses how WebAssembly-based modules can be invoked

by the runtime host and vice versa.

WebAssembly allows only numeric data types (integer and float)

to pass between the host and the Wasm module. Since most of the

functionality of programs depends on complex types like strings and other

custom data types, a programmer must encode and decode these integers/

floats into the specific data type.

Fortunately for languages like Rust, Mozilla has provided a toolchain

called wasm-bindgen, which generates this glue coding. The glue code

does the heavy lifting of generating the needed stubs and skeletons needed

both on the host and the Wasm side to encode the specific data type into

integer and then decode the same from integer array to the specific data

type. Much of this chapter is devoted to this tool called wasm-bindgen.

https://doi.org/10.1007/978-1-4842-7496-5_4#DOI

58

�wasm-bindgen
wasm-bindgen provides a channel between JavaScript and WebAssembly

to communicate something other than numbers (i.e., objects, strings,

arrays, custom types). The wasm-bindgen tool allows Rust to see JavaScript

classes, expose and invoke callbacks in either language, send strings as

function parameters, and return complex values. The same applies to

JavaScript; it allows JavaScript to use Rust functions and structures and

invoke callbacks. This makes the two languages work so smoothly together

that it does not seem that they are different.

At the basic level, wasm-bindgen injects some metadata into your

compiled WebAssembly module. Then, a separate command-line tool

reads that metadata to generate an appropriate JavaScript wrapper

containing the functions, classes, and other primitives that the developer

wants to be bound to Rust.

Let’s look at a simple example of wasm-bindgen.

�Prerequisites
Let’s assume that Rust is set up on a Linux machine. All the examples in

this chapter used Rust version 1.54.0. If not, you can set it up using the

instructions at www.rust-lang.org/tools/install.

Also, make sure that npm and node are installed (npm version 7.20.3

and node version 7.20.3 were used in this chapter).

Next, you need to install wasm-bindgen.

cargo install wasm-bindgen-cli

The dependent crates are downloaded and installed (see Figure 4-1).

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

http://www.rust-lang.org/tools/install

59

Figure 4-1.  Building the Rust project in progress

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

60

If the build fails with SSL errors, try installing pkg-config using

apt install pkg-config

apt-get install libssl-dev

Once the wasm-bindgen CLI is installed, create a simple project in

Rust using the cargo package manager.

ubuntu@INLN34327424A:~/shashank$ cargo new sample_binding_

demo –lib (there is a double hyphen before lib)

You get the following output.

Created library `sample_binding_demo` package

Change directory sample_binding_demo

There is a file called Cargo.toml.

[package]

name = "sample_binding_demo"

version = "0.1.0"

edition = "2018"

More keys and their definitions are at https://doc.rust-lang.org/

cargo/reference/manifest.html.

[dependencies]

In the Cargo.toml file, the dependencies are blank. When using wasm-

bindgen, you need to make this as a dependency in the dependencies

section. You also need to add crate-type = [“cdylib”] under the lib section

of the Cargo.toml file. This option allows you to generate a dynamic

library, such as a SO file for Linux or a DLL file for Windows, but when the

compiler target is wasm32-unknown-unknown, it generates a Wasm file.

A wasm32-unknown-unknown target compiles Rust to the WebAssembly

module.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html

61

Changed cargo.toml file

[package]

name = "sample_binding_demo"

version = "0.1.0"

edition = "2018"

More keys and their definitions are at https://doc.rust-lang.org/

cargo/reference/manifest.html.

[lib]

crate-type = ["cdylib"]

[dependencies]

wasm-bindgen = "0.2"

Save the changes.

Now go to the src directory and open the lib.rs file.

Add the following lines of code (i.e., replace all the lib.rs content with

this content).

extern crate wasm_bindgen;

use wasm_bindgen::prelude::*;

#[wasm_bindgen]

extern "C" {

 fn alert(s: &str);

}

// Export a 'greetMe' function

#[wasm_bindgen]

pub fn greetMe(name: &str) {

 alert(&format!("Greetings, {}!", name));

}

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html

62

The preceding code exports the greetMe function from the Wasm

module to the host. Internally this greetMe function calls an alert function

on the host side. The host side is assumed to be a JavaScript engine, and its

alert function is invoked. The preceding example demonstrates how a host

(JavaScript runtime like Node.js) can invoke a Rust function by passing

a string parameter to it. Then the Wasm module (Rust-based) invokes a

JavaScript function (alert function) back on the host.

The catch here is that Wasm doesn’t support the passing of strings

or complex types. There must be some glue coding that needs to do this

encoding and decoding for us. This is what wasm-bindgen provides.

Next, let’s compile the code and generate the necessary stubs.

Before building the code, you need to add the Wasm compilation

target using the following command.

rustup target add wasm32-unknown-unknown

Run the command to generate the Wasm file.

ubuntu@INLN34327424A:~/shashank/sample_binding_demo$ cargo

build --target wasm32-unknown-unknown

By listing the build artifacts, you can see the sample_binding_demo.

wasm file in the following directory.

ubuntu@INLN34327424A:~/shashank/sample_binding_demo$ ll

target/wasm32-unknown-unknown/debug/

build/ .cargo-lock deps/ examples/

.fingerprint/ incremental/ sample_binding_demo.d

sample_binding_demo.wasm

	 1.	 After generating this Wasm file, you may think that this

is enough, but you need to do a bit more before you

are ready to load and invoke this WebAssembly file.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

63

The wasm-bindgen CLI modifies Wasm files and

generates the necessary glue code on the host

(JavaScript) side.

Run the following command.

ubuntu@INLN34327424A:~/shashank/sample_binding_demo$ wasm-

bindgen target/wasm32-unknown-unknown/debug/sample_binding_

demo.wasm --out-dir .

After listing the files in the current directory, you see some new files.

ubuntu@INLN34327424A:~/shashank/sample_binding_demo$ ls

Cargo.lock Cargo.toml sample_binding_demo_bg.js sample_

binding_demo_bg.wasm sample_binding_demo_bg.wasm.d.ts sample_

binding_demo.d.ts sample_binding_demo.js src target

Out of these files, sample_binding_demo_bg.js is relevant.

The file looks like the following.

import * as wasm from './sample_binding_demo_bg.wasm';

const lTextDecoder = typeof TextDecoder === 'undefined' ?

(0, module.require)('util').TextDecoder : TextDecoder;

let cachedTextDecoder = new lTextDecoder('utf-8', { ignoreBOM:

true, fatal: true });

Line 1 imports the generated a Wasm module.

Lines 2 and 3 define the TextDecoder. TextDecoder is used to decode

the integers back to a string.

Within the code, the encoder is defined as follows.

const lTextEncoder = typeof TextEncoder === 'undefined' ?

(0, module.require)('util').TextEncoder : TextEncoder;

let cachedTextEncoder = new lTextEncoder('utf-8');

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

64

The following is an important function defined in the sample_binding_

demo_bg.js file.

function getStringFromWasm0(ptr, len) {

 �return cachedTextDecoder.decode(getUint8Memory0().

subarray(ptr, ptr + len));

}

This function takes two inputs.

•	 ptr is the pointer to the memory location within the

Wasm module.

•	 len is the length, which is read starting from the ptr

location.

The module populates these memory locations with the integer data

(e.g., the greeting string is represented by integers). The function then

decodes the array of integers back to the string.

The following is another important function defined in the sample_

binding_demo_bg.js file.

function passStringToWasm0(arg, malloc, realloc) {

 if (realloc === undefined) {

 const buf = cachedTextEncoder.encode(arg);

 const ptr = malloc(buf.length);

 �getUint8Memory0().subarray(ptr, ptr + buf.length).

set(buf);

 WASM_VECTOR_LEN = buf.length;

 return ptr;

 }

 let len = arg.length;

 let ptr = malloc(len);

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

65

 const mem = getUint8Memory0();

 let offset = 0;

 for (; offset < len; offset++) {

 const code = arg.charCodeAt(offset);

 if (code > 0x7F) break;

 mem[ptr + offset] = code;

 }

 if (offset !== len) {

 if (offset !== 0) {

 arg = arg.slice(offset);

 }

 ptr = realloc(ptr, len, len = offset + arg.length * 3);

 �const view = getUint8Memory0().subarray(ptr + offset,

ptr + len);

const ret = encodeString(arg, view);

 offset += ret.written;

 }

 WASM_VECTOR_LEN = offset;

 return ptr;

}

The passStringToWasm0 function creates the memory within the

Wasm module and then encoding the string as an array of integers into

the memory. It returns the pointer to the start of the string. The WASM_

VECTOR_LEN variable represents the offset, which the string represents in

the array.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

66

The following is the third important function in the sample_binding_

demo_bg.js file.

export function greetMe(name) {

 �var ptr0 = passStringToWasm0(name, wasm.__wbindgen_malloc,

wasm.__wbindgen_realloc);

 var len0 = WASM_VECTOR_LEN;

 wasm.greetMe(ptr0, len0);

}

Line 2 of this function calls the passStringToWasm0 function, which

returns the pointer to the start of the array. This encodes the passed name

second variable is the length of the string (offset).

Finally, call the wasm.greetMe function passing the pointer and offset.

The preceding are the generated JavaScript files and functions on the

host side. The wasm-bindgen tool also modifies the Wasm file to make it

compatible with the JavaScript host.

Now, let’s look at how this function is defined in the modified Wasm

file.

First, you need to have the WABT tools installed. On Ubuntu, it can be

installed using the following command.

sudo apt-get install wabt

Or it can be installed following the instructions from https://github.

com/WebAssembly/wabt.

ubuntu@INLN34327424A:~/shashank$ wabt/bin/wasm2wat sample_

binding_demo/sample_binding_demo_bg.wasm | grep greet

(func $sample_binding_demo::greetMe::h0099f4e1d51123d4 (type 5)

(param i32 i32)

 (func $greetMe (type 5) (param i32 i32)

 call $sample_binding_demo::greetMe::h0099f4e1d51123d4

 (export "greetMe" (func $greetMe))

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt

67

The function takes two integers as input (pointer and offset). Within

the generated Wasm file, the function describes how it is defined in the

Wasm bytecode format.

(func $sample_binding_demo::greetMe::h0099f4e1d51123d4 (type 5)

(param i32 i32)

 (local i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32

i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32

i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32

i32 i32 i64)

 global.get 0

 local.set 2

 i32.const 96

 local.set 3

 local.get 2

 local.get 3

 i32.sub

 local.set 4

 local.get 4

 global.set 0

 local.get 4

 local.get 0

 i32.store offset=16

So far, you’ve seen that via the wasm-bindgen tool, you can generate

the JavaScript stubs for the host to encode the types like string into an array

of integers that the Wasm module can consume. Similarly, you also saw

that wasm-bindgen generates a decoder glue logic for converting back the

array of an integer into the desired type (in this case, a string).

Now you create an index.js file (it should be in the same location the

wasm-bindgen tool generated the stub files), which invokes the stub, and

through it, the Wasm module.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

68

const wasm = import('./sample_binding_demo');

wasm

 .then(m => m.greetMe("Shashank"))

 .catch(console.error);

The sample_binding_demo JavaScript file imports the Wasm file and

the JavaScript file, which interface with the Wasm module.

import * as wasm from "./sample_binding_demo_bg.wasm";

export * from "./sample_binding_demo_bg.js";

webpack is used for this demo.

Install webpack using npm using the following commands.

npm i webpack

npm i webpack-dev-server

Now create a webpack.config.js file as follows.

const path = require('path');

const HtmlWebpackPlugin = require('html-webpack-plugin');

const webpack = require('webpack');

module.exports = {

 entry: './index.js',

 output: {

 path: path.resolve(__dirname, 'dist'),

 filename: 'index.js',

 },

 plugins: [

 new HtmlWebpackPlugin(),

 new webpack.ProvidePlugin({

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

69

 TextDecoder: ['text-encoding', 'TextDecoder'],

 TextEncoder: ['text-encoding', 'TextEncoder']

 })

],

 mode: 'development'

};

Next, create a package.json file.

{

 "scripts": {

 "build": "webpack",

 "http_server": "webpack-dev-server"

 },

 "devDependencies": {

 "text-encoding": "^0.7.0",

 "html-webpack-plugin": "^3.2.0",

 "webpack": "^4.11.1",

 "webpack-cli": "^3.1.1",

 "webpack-dev-server": "^3.1.0"

 }

}

Let’s now launch the HTTP server using the following command.

npm run http_server

You can now access the webpage in the browser.

Figure 4-2 shows a simple example of using wasm-bindgen to expose

Rust code back to JavaScript and vice versa.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

70

Next, let’s look at a more complex example to demonstrate how a

complex type can be serialized and deserialized across the JavaScript and

Wasm boundaries.

�Complex Types via wasm-bindgen
Let’s create a person type in Rust code within the example file and add

two functions: one to send the person object to JavaScript and the other to

receive it from JavaScript.

Please add the following dependencies in the Cargo.toml file.

serde = { version = "1.0", features = ["derive"] }

wasm-bindgen = { version = "0.2", features =

["serde-serialize"] }

Code

extern crate wasm_bindgen;

Figure 4-2.  Starting the HTTP server

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

71

use wasm_bindgen::prelude::*;

use std::collections::HashMap;

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize)]

pub struct Person {

 pub field1: HashMap<u32, String>,

 pub field2: Vec<Vec<f32>>,

 pub field3: String,

}

#[wasm_bindgen]

extern "C" {

 fn alert(s: &str);

}

// Export a 'hello' function

#[wasm_bindgen]

pub fn hello(name: &str) {

 alert(&format!("Hello, {}!", name));

}

#[wasm_bindgen]

pub fn send_person_to_js() -> JsValue {

 let mut field1 = HashMap::new();

 field1.insert(0, String::from("ex"));

 let person = Person {

 field1,

 field2: vec![vec![1., 2.], vec![3., 4.]],

 field3: "shashank".to_string()

 };

 JsValue::from_serde(&person).unwrap()

}

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

72

#[wasm_bindgen]

pub fn receive_person_from_js(val: &JsValue) {

 let _example: Person = val.into_serde().unwrap();

}

The definitions of type looks like this

#[derive(Serialize, Deserialize)]

pub struct Person {

 pub field1: HashMap<u32, String>,

 pub field2: Vec<Vec<f32>>,

 pub field3: String,

}

The serialize and deserialize annotation allows this type to be

serializable and deserializable.

You can build the needed artifacts using the following commands.

Build the wasm using command below

cargo build --target wasm32-unknown-unknown

Generate the stubs using wasm bindgen using command below

wasm-bindgen target/wasm32-unknown-unknown/debug/sample_

binding_demo.wasm --out-dir .

This function can be invoked, similar to the example explained for

string type. I leave this to you to try a specific example.

Now that you understand how to deal with types other than integers

and encode complex types in WebAssembly, so it’s time to move on to

some real-world examples.

Let’s move on to create a sample program for a Bloom filter in Rust.

The goal of this chapter would be to create an example of a Bloom

filter and use wasm-bindgen for generating the needed glue code for a

JavaScript-based host, as well as make changes in the Wasm file using the

wasm-bindgen utility.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

73

This example is important as you take the same example throughout

the book when you expand your knowledge to create a web-based

interface to the Wasm module. Let’s continue with the same example

when you deploy the web app to Kubernetes later and see a simple HTTP

interface for the same Bloom filter–based Wasm module.

Before creating the WebAssembly side, you need to understand what a

Bloom filter is.

�The Bloom Filter
When dealing with big data scenarios, sometimes you don’t need 100%

accurate results. For example, you want to count the hits to a specific

webpage when the exact number is 189045; if the system tells you the

number is 18900 or 189100, you can probably live with this approximation.

Approximation is the main use case of probabilistic data structures. They

trade some of the accuracy to save a lot of memory or storage space. A

Bloom filter is one of the implementations of a probabilistic data structure.

A Bloom filter is used when you want to do a membership test. For

example, you want to develop an authentication process for the large

number of users in a system. Normally, the authentication system is hit

each time a user logs in.

Now suppose you want to optimize this process and reject false

authentication attempts before hitting the authentication system. This

means you need something in memory that checks the presence of the

username. However, if millions of users are in the system, storing every

username in memory is not feasible for this scenario. This is where a

Bloom filter comes into the picture. Instead of storing the username, you

store its presence in the Bloom filter data structure.

A Bloom filter allows some false positives but don’t allow false

negatives. So if the Bloom filter tells a user is present, it can be a case of

false positive. You can then go to the authentication system and validate

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

74

whether the user is a valid user or not. If the Bloom filter tells the user

is not present, you can reject the call before hitting the authentication

system. This can be useful in scenarios such as thwarting denial-of-service

attacks on the system.

The important aspect to understand here is that the Bloom filter saves

a lot of space, and you don’t need to load all usernames into memory. You

can roughly have millions of users’ presence checked by just having a few

kilobytes of memory.

�How a Bloom Filter Works
A Bloom filter is a probabilistic data structure that, instead of loading

actual data into memory, uses the representation of that data or, more

precisely, the presence in memory.

A Bloom filter has two main components.

•	 An array of n bits

•	 Multiple hash functions which map to an index in the

array

When you add an element to the Bloom filter, you hash the element

using different hash functions and calculate an index in the array. A

modulo operator is used to restrict the size of the index to the size of the

array. For that element, whatever index is returned by the hash function(s),

you mark that bit as 1 in the array.

During lookup (for example, a username), you hash the username

by the different hash functions and check the bit in the different indexes

returned by the hash functions. If all the bits are 1, this would mean the

username is probably present (this is where false positives can creep in).

But if one of the bits is 0, you can guarantee that the username is absent,

thereby eliminating any false negatives.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

75

Let’s explain this using an example. Table 4-1 shows a size 10 array. All

elements in the array start with 0 as the entry at each of the indices.

You need k hash functions. Let’s assume k=3.

You also want to store a word in the Bloom filter. You need to hash the

same word using all three hash functions and do a mod by 10 to get an

index into the array for all three hashes.

The following is an example.

H1("wasm") %10 =2

H2("wasm") %10 =5

H3("wasm") %10 =3

The state of Bloom filter is shown in Table 4-2.

Let’s suppose that you want to store another word, rust, into the Bloom

filter data structure. Then, do the same operation again.

H1("rust") %10 =1

H2("rust") %10 =5

H3("rust") %10 =7

Table 4-3 shows the Bloom filter state after the second entry.

Table 4-2.  Bloom Filter After First Entries

0 1 1 0 1 0 0 0 0 0

Table 4-3.  Bloom Filter After Second Entry

1 1 1 0 1 0 1 0 0 0

Table 4-1.  Bloom Filter in Its Initial State

0 0 0 0 0 0 0 0 0 0

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

76

Similarly, you can store representations of other words as well.

When there is a need to check for the presence of a word, this is how

it works. For example, now you need to check whether the term wasm is

present in the Bloom filter or not.

Again, do the hash operations with mod on the word (wasm in this

case).

H1("wasm") %10 =2

H2("wasm") %10 =5

H3("wasm") %10 =3

If you check the indices in the array at 2, 5, and 3, all bits are set to 1,

which means the word is present in the Bloom filter.

Take another example of search. For example, you now want to search

whether the term kube is there as part of the Bloom filter.

Do the hash and mod on the term kube.

H1("kube") %10 =1

H2("kube") %10 =2

H3("kube") %10 =7

Check the array and note that all bits are set to 1 here. But wait, you

never added this word to the Bloom filter. This is a classic case of a false

positive, which is a possibility in a Bloom filter. You might now ask, what

good is this structure? The answer is that if the Bloom filter says that the

element doesn’t exist, you can be certain that it’s not there. If the Bloom

filter says an element exists, it’s possible that it does not exist.

Some of the use cases can be to maintain a list of blacklisted websites

for your browser. Each blacklisted website can be encoded into the Bloom

filter. Now when someone tries to visit a website, its presence is checked

in the Bloom filter. If it’s not found, rest assured that it is not a blacklisted

website and is allowed access. If the answer is positive, it can be a false

positive, which means it can still be an allowed website, but the Bloom

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

77

filter has falsely classified it as a blacklisted website. This is still a fine

behavior as you want a guarantee that the blacklisted websites are always

blocked, and this is the guarantee you get via the Bloom filter.

The Bloom filter provides space efficiency because it’s doesn’t store

the data but its presence. This is much more efficient than using data

structures like HashMap, Tries, and so forth.

�The Cuckoo Filter
A cuckoo filter is like the Bloom filter for achieving fast set membership

testing.

Cuckoo filters are a data structure, described in a paper in 2014 by Fan,

Andersen, Kaminsky, and Mitzenmacher. Bloom filters have a limitation

that you cannot delete an entry from them.

Cuckoo filters improve upon the design of the Bloom filter by providing

the following.

•	 Deletion

•	 Limited counting

•	 Bounded false positive probability while still

maintaining a similar space complexity

Cuckoo filters under the hood use cuckoo hashing to resolve collisions

and are essentially a compact cuckoo hash table. Cuckoo and Bloom filters

are useful for set membership testing when the size of the original data is

large. They both only use 7 bits per entry.

In our example, the idea is to create a simple cuckoo filter preloaded

with certain entries. These entries are provided as JSON and loaded within

the cuckoo filter. Rust is the implementation language.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

78

Rust provides crates for a cuckoo filter. You can think of a crate as

a compilation unit in Rust. The existing crates can be imported into an

existing project, and their functionality can be used. Let’s use a cuckoo

filter crate to do the following.

•	 Populate it with pre-defined entries

•	 Provide an API to test the membership of an entry in

the cuckoo filter

First, compile the Rust code to Wasm using wasm32-unknown-

unknown as the compiler target, and as a next step, use wasm-bindgen to

generate the stubs needed to communicate between Rust and JavaScript.

The wasm-bindgen tool generates the JavaScript glue code to interface

with the WebAssembly module. It modifies the existing Wasm file to allow

complex data types to pass between the host (JavaScript) and the guest

(Wasm module).

To test the membership of a key, pass on a key from JavaScript to the

Wasm function, which in turn checks if the key is present in the cuckoo

filter. This example is used throughout the book.

Cuckoo filter example

Create a new Rust project

Run the command

cargo new cuckoo –lib (there are two hyphens before lib)

First copy the code below into the sr/lib.rs file

// These are all the crates and libraries you need for our example

#[macro_use]

extern crate lazy_static;

extern crate wasm_bindgen;

extern crate cuckoofilter;

use wasm_bindgen::prelude::*;

use std::collections::HashMap;

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

79

// this library allows us to serialize and deserialize the

json. Our js code will pass json as input to wasm

//module which will deserialize it.

use serde::{Serialize, Deserialize};

// existing cuckoo filter crate

use cuckoofilter::CuckooFilter;

use std::collections::hash_map::DefaultHasher;

// lazy_static! Code snippet allows the Rust program to hold a

// global reference. Here you need to create a cuckoo filter

// Data structure as a global variable, which we will then use

// across our code. This structure is initialized at startup

// with pre existing keys

lazy_static! {

static ref cf:CuckooFilter<DefaultHasher> = {

let CF:CuckooFilter<DefaultHasher>=load_data();

CF

};

}

// method for loading the keys. Here we have just loaded 4 but

// these entries can easily be in millions As the goal here is

// to show a working of wasm module majorly and not Bloom

// Filter per say, we will keep the entries limited to 4.

// This method was invoked from within the lazy static method

// which then exposes a global data structure CF for the cuckoo

// filter. fn load_data() -> CuckooFilter<DefaultHasher>

{

let words = vec!["foo", "bar", "xylophone", "milagro"];

// mut keyword allows a mutable variable to be declared in Rust.

// Since you need our structure to be mutable.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

80

let mut CF2:CuckooFilter<DefaultHasher> = CuckooFilter::new();

let mut insertions = 0;

// Iterate over the json entries for the keys

for s in &words {

// add them to the CF2 cuckoo filter structure

 if CF2.test_and_add(s) {

 insertions += 1;

 }

}

// we return the CuckooFilter structure from this method and this is

// referred by the CF global variable created in lazy static method.

CF2

}

// This is the crucial method with a wasm_bindgen annotation.

// This is the method exposed to the host and to the wasm bindgen

// utility to generate the glue code on js side and make

// changes on the wasm side as well. As one can see it takes

// string as input and returns a Boolean wrapped in a structure . We

// will expose the check_word_exists method to the host

//JSValue

#[wasm_bindgen]

pub fn check_word_exists(member:&str) ->JsValue

{

// check for presence of the keyword sent from host

let exists=cf.contains(member);

println!("{}",exists);

//wrap the true or false return into the JsValue structure and

return it

JsValue::from_serde(&exists).unwrap()

}

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

81

Before compiling, you need to modify the Cargo.toml file to input the

dependencies.

The following shows a Cargo.toml file. Change the crate-type if needed

and the dependencies section.

[package]

name = "cuckoo"

version = "0.1.0"

edition = "2018"

[lib]

crate-type = ["cdylib"]

[dependencies]

serde = { version = "1.0", features = ["derive"] }

wasm-bindgen = { version = "0.2", features = ["serde-

serialize"] }

cuckoofilter = "0.3"

lazy_static = "1.3.0"

The file includes dependencies for a cuckoo filter, crate, wasm-

bindgen, serde (serialization and deserialization), and lazy static. Under

lib, you need to make the crate-type cdylib, which is done to compile to a

library like a DLL file for a normal compilation target, but in this case, you

generate a Wasm file.

cargo.toml file

Once this is done, compile the code with wasm32 as the target.

cargo build --target wasm32-unknown-unknown

You see a screen like the one shown in Figure 4-3.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

82

The cuckoo.wasm file is under target/wasm32-unknown-unknown/

debug/ in the directory tree (see Figure 4-4).

Figure 4-3.  Building Rust code in progress

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

83

Now it’s time to generate the JavaScript stubs and modified Wasm

using the wasm-bindgen utility.

Let’s use the wasm-bindgen to generate the needed stubs and target as

Node.js. Target as Node.js means the generated JavaScript file can be run

within the Node.js engine.

Run the following command from within the root directory of the

cuckoo project.

wasm-bindgen target/wasm32-unknown-unknown/debug/cuckoo.

wasm --target nodejs --out-dir .

Listing the generated files, you see the following files.

Cargo.lock Cargo.toml cuckoo.d.ts cuckoo.js cuckoo_

bg.wasm cuckoo_bg.wasm.d.ts src target

The generated files are shown in bold and italics, including the

modified Wasm file and the stubs for the glue code for Node.js to invoke

Wasm with the string type.

Figure 4-4.  Directory tree showing the compiled Wasm file

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

84

Open the cuckoo.js file; within it is the specific code for invocation of

the check_word_exists method. This is the same method you created in the

Rust code written earlier.

The code loads the Wasm file and invokes the method. It also explains

the method is passing the offset and length of a memory location to the

guest (Wasm module).

/**

* @param {string} member

* @returns {any}

*/

module.exports.check_word_exists = function(member) {

 �var ptr0 = passStringToWasm0(member, wasm.__wbindgen_

malloc, wasm.__wbindgen_realloc);

 var len0 = WASM_VECTOR_LEN;

 var ret = wasm.check_word_exists(ptr0, len0);

 return takeObject(ret);

};

The cuckoo filter checks the presence of the keyword in the cuckoo

filter. The filter is preloaded with a few keys, which is defined in the Rust

code.

let words = vec!["foo", "bar", "xylophone", "milagro"];

Create an app.js file that imports the cuckoo.js file.

const {check_word_exists}=require(‘./cuckoo.js')

console.log(check_word_exists("foo"));

Run the app.js file with the following command.

node app.js

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

85

You should get true as the value.

Next, change app.js to pass a key that does not exist in the cuckoo filter,

as follows.

console.log(check_word_exists("test"));

You get false as the answer from the Wasm module.

�Summary
This chapter began with the wasm-bindgen tool, which allows JavaScript

programs to interface with WebAssembly. Since you know WebAssembly

only allows numeric types to be exchanged between host and guest, you

need a mechanism that allows you to encode and decode the complex

types into numeric types. This heavy lifting is done by the wasm-bindgen

tool for only JavaScript-based hosts like Node.js.

The chapter also covered cuckoo filters and probabilistic data

structures and showed you how to code a simple cuckoo filter in Rust

and expose the same as a Wasm module. In addition, you learned how

to generate stubs for the same module using wasm-bindgen and then

consume the same via a Node.js program.

CHAPTER 4 WEBASSEMBLY WITH RUST AND JAVASCRIPT: AN INTRODUCTION TO
WASM-BINDGEN

87© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_5

CHAPTER 5

waPC
In Chapter 4, you saw how wasm-bindgen generates stubs to communicate

between JavaScript and Rust-based Wasm and vice versa. However,

since wasm-bindgen only allows JavaScript as a host, you must look at

approaches that allow interoperability between a Rust-based host and a

Golang-based host.

This chapter looks at alternative means of achieving communication

between different host runtimes and Wasm modules. The host runtime

used here is based on Rust, Golang, and Node.js. The approach explains

generating Wasm via the waPC toolchain and then using waPC bindings

for different host runtimes.

�waPC Architecture
waPC (WebAssembly Procedure Calls) achieves communication between

the host and the guest, as shown in Figure 5-1.

https://doi.org/10.1007/978-1-4842-7496-5_5#DOI

88

Let’s look at Figure 5-1 step by step.

	 1.	 The host invokes a function call guest_call on the

Wasm module. It passes the length of operation and

length of the parameter as input.

	 2.	 On receiving this call, the guest invokes a guest_

request method on the host runtime. It passes the

pointer to the operation in the guest memory and

the pointer to the parameter. Since the host has

access to the guest memory, it can populate the data

in that location.

Figure 5-1.  waPC architecture

Chapter 5 waPC

89

	 3.	 Once the guest_request method succeeds, which

means that the host has set the right data into the

specified memory locations, the guest can perform

the operation with the parameter passed.

	 4.	 The guest invokes guest response method on host

passing the pointer (offset) and length of response

it populated in memory for the host to discover and

decode the response.

This example is another way to pass complex types like strings as a

parameter to the functions exposed by the Wasm module.

Since you now understand that this mechanism like wasm-bindgen

would need changes to both host (in terms of the glue code) and the Wasm

file for facilitating encoding and decoding of the parameters for operations

on guest module from the host or vice versa.

Next, you learn how to use waPC to generate these stubs in Node.js,

Rust, and Golang. I explain how to create the Wasm module using waPC

and show you the source code for invoking the guest module via Node.js.

The prerequisites are to have Node and npm installed.

Install wapc cli

wget -q https://raw.githubusercontent.com/wapc/cli/master/

install/install.sh -O - | /bin/bash

Once they are installed, you see in following output. (The system here

is linux_amd64.)

waPC CLI is detected:

wapc version 0.0.4 linux/amd64

Reinstalling waPC CLI - /usr/local/bin/wapc...

Getting the latest waPC CLI...

Installing v0.0.4 waPC CLI...

Chapter 5 waPC

90

Downloading https://github.com/wapc/cli/releases/download/

v0.0.4/wapc_linux_amd64.tar.gz ...

[sudo] password for ubuntu:

wapc installed into /usr/local/bin successfully.

wapc version 0.0.4 linux/amd64

waPC CLI is installed successfully.

Now let’s discuss how to take the same Rust project you used with

wasm-bindgen and turn it into a waPC-compliant project.

Check installation version

ubuntu@INLN34327424A:~$ wapc version

wapc version 0.0.4 linux/amd64

Create a waPC-based Rust project.

ubuntu@INLN34327424A:~$ wapc new rust cuckoo_wapc

Creating project directory /home/ubuntu/cuckoo_wapc

Please enter the project description: cuckoo filter in Rust using waPC.

Please enter the version (the default is 0.0.1).

The cuckoo_wapc directory is created and under it are the following files.

Cargo.toml Makefile codegen.yaml schema.widl src

First is the schema.widl file. This file defines the interface of the

function you expose from the Wasm module. Open the default schema.

widl file. You see the following content.

namespace "greeting"

interface {

 sayHello(name: string): string

}

Chapter 5 waPC

91

This means you expose a sayHello method from the Wasm module.

This method takes a parameter name with the type as a string and returns

a string. Since the example you are supposed to work on is on the cuckoo

filter, let’s use the method in the wasm-bindgen-based cuckoo filter

example. The check_word_exists method takes input as string JSON and

output as a string (true or false wrapped in a string).

You modify the schema.widl file as follows.

namespace "cuckoo"

interface {

 check_word_exists(name: string): string

}

Next, under the src directory, create a lib.rs file and copy the following

code. The code is similar to what you saw in the wasm-bindgen example

(except for the two methods).

// This method is used to register the method check_word_exists

with the Handler

#[no_mangle]

pub fn wapc_init() {

 Handlers::register_check_word_exists(check_word_exists);

}

// This method now doesn't have the wasm bindgen annotation as

// it had in case of wasm bindgen example. Functionality wise it

// remains same.

fn check_word_exists(member: String) -> HandlerResult<String> {

 let exists = cf.contains(&member);

 println!("{}", exists);

 Ok(exists.to_string())

}

Chapter 5 waPC

92

The following is the complete code.

#[macro_use]

extern crate lazy_static;

mod generated;

extern crate cuckoofilter;

//extern crate wasm_bindgen;

use cuckoofilter::CuckooFilter;

use serde::{Deserialize, Serialize};

use std::collections::hash_map::DefaultHasher;

use std::collections::HashMap;

extern crate wapc_guest as guest;

pub use generated::*;

use guest::prelude::*;

lazy_static! {

 static ref cf: CuckooFilter<DefaultHasher> = {

 let CF: CuckooFilter<DefaultHasher> = load_data();

 CF

 };

}

fn load_data() -> CuckooFilter<DefaultHasher> {

 let words = vec!["foo", "bar", "xylophone", "milagro"];

 let mut CF2: CuckooFilter<DefaultHasher> =

CuckooFilter::new();

 let mut insertions = 0;

 for s in &words {

 if CF2.test_and_add(s) {

 insertions += 1;

 }

Chapter 5 waPC

93

 }

 CF2

}

#[no_mangle]

pub fn wapc_init() {

 Handlers::register_check_word_exists(check_word_exists);

}

fn check_word_exists(member: String) -> HandlerResult<String> {

 let exists = cf.contains(&member);

 println!("{}", exists);

 Ok(exists.to_string())

}

fn say_hello(_name: String) -> HandlerResult<String> {

 Ok("".to_string()) // TODO: Provide implementation.

}

Now we check the generated Cargo.toml file

[package]

name = "cuckoo_wapc"

version = "0.0.1"

description = "cuckoo filter in rust using wapc"

authors = [""]

edition = "2018"

license = "Apache-2.0"

[lib]

crate-type = ["cdylib", "rlib"]

[features]

default = ["guest"]

guest = []

Chapter 5 waPC

94

[dependencies]

wapc-guest = "0.4.0"

serde = { version = "1.0.115" , features = ["derive"] }

serde_json = "1.0.57"

serde_derive = "1.0.115"

serde_bytes = "0.11.5"

rmp-serde = "0.14.4"

lazy_static = "1.4.0"

[dev-dependencies]

structopt = "0.3.17"

serde_json = "1.0.57"

base64 = "0.12.3"

[profile.release]

Optimize for small code size

opt-level = "s"

lto = true

You need to add some more dependencies under the dependencies

section.

cuckoofilter = "0.3"

The dependencies section now looks like the following.

[dependencies]

cuckoofilter = "0.3"

wapc-guest = "0.4.0"

serde = { version = "1.0.115" , features = ["derive"] }

serde_json = "1.0.57"

serde_derive = "1.0.115"

serde_bytes = "0.11.5"

rmp-serde = "0.14.4"

lazy_static = "1.4.0"

Chapter 5 waPC

95

The make file is also in the project’s root directory. Its content is as

follows.

all: deps codegen build

deps:

codegen:

 wapc generate codegen.yaml

build:

 cargo build --target wasm32-unknown-unknown --release

 �mkdir -p build && cp target/wasm32-unknown-unknown/

release/*.wasm build/

Rust builds accrue disk space over time (specifically the target

directory), so running `make clean` should be done periodically.

clean:

 cargo clean

 rm -Rf build

doc:

test: build

 cargo test

Essentially, the make file generates the codegen.yaml file and builds

the code.

Next, run the make file by running the make command from the root

directory of the project. You see a screen similar to the one shown in

Figure 5-2 once the build starts.

Chapter 5 waPC

96

After a successful build, the Wasm file is generated under the directory.

target/wasm32-unknown-unknown/release

The name of the file is cuckoo_wapc.wasm

Now let’s create a node JavaScript-based JavaScript file and consume

this Wasm module from there.

Before you can invoke the Wasm module from Node.js, you need to

install the following dependencies.

Run the following command from the project’s root so that the

JavaScript file can find the node dependencies.

Install msgpack dependency and wapc dependency

npm install @wapc/host @msgpack/msgpack

Create a file named wapc.js with the following content.

//imports for wapc and messagepack. Wapc uses messagepack as

the binary protocol for encoding.

const { instantiate } = require("@wapc/host");

const { encode, decode } = require("@msgpack/msgpack");

Figure 5-2.  Build in progress for the Wasm module

Chapter 5 waPC

97

const { promises: fs } = require("fs");

const path = require("path");

// �Argument as index 0 is the node executable, index 1 is the

wasm filename

const wasmfile = process.argv[2]; //wasm file as input

const operation = process.argv[3]; // �function defined in wasm

file (check_word_exists)

const json = process.argv[4]; //�json for input parameters to

the function

// If we don't have the basic arguments we need, print usage and exit.

if (!(wasmfile && operation && json)) {

 �console.log("Usage: node index.js [wasm file] [waPC

operation] [JSON input]");

 process.exit(1);

}

async function main() {

 // Read wasm off the local disk as Uint8Array

 buffer = await fs.readFile(path.join(__dirname, wasmfile));

 // Instantiate a WapcHost with the bytes read off disk

 const host = await instantiate(buffer);

 // Parse the input JSON and encode as msgpack

 const payload = encode(JSON.parse(json));

 // Invoke the operation in the wasm guest

 const result = await host.invoke(operation, payload);

 // Decode the results using msgpack

 const decoded = decode(result);

Chapter 5 waPC

98

 // log to the console

 console.log(`Result: ${decoded}`);

}

main().catch((err) => console.error(err));

Run this program with the necessary input.

node wapc.js target/wasm32-unknown-unknown/release/cuckoo_wapc.

wasm check_word_exists '{"name":"foo"}'

Returns true

Next, run same program with a word that doesn’t exist in the Bloom

filter.

node wapc.js target/wasm32-unknown-unknown/release/cuckoo_wapc.

wasm check_word_exists '{"name":"testme"}'

Returns false

In the preceding example, you saw how to create a waPC-compliant

Rust program that exposes a function named check_word_exists, takes a

string as input, and returns a string (true or false).

You defined the function’s interface in a schema.widl file, modified the

Cargo.toml to include the dependency of your Rust program, and invoked

the make program to generate Wasm and the stubs, which can encode and

decode JSON with MessagePack.

Next, let’s move on to a more complex type of input.

�Handling a Complex Type
In the same project, replace the contents of the schema.widl file includes

one more type and an interface handle_input, which takes the complex

type as input.

Chapter 5 waPC

99

namespace "cuckoo"

interface {

 check_word_exists(name: string): string

}

type Input {

 x: string,

 y: string,

}

interface {

handle_input(inp:Input):string

}

Open the lib.rs file under the src directory and add the following code

segment (the struct segment)

struct Input {

 x: String,

 y: String,

}

Next, add the following code segment in the lib.rs file just to the struct

segment.

#[no_mangle]

pub fn wapc_init() {

 Handlers::register_check_word_exists(check_word_exists);

 Handlers::register_handle_input(handle_input);

}

The init() method already existed. You just need to add the register

code for the new method you defined.

 Handlers::register_handle_input(handle_input);

Chapter 5 waPC

100

Apart from that you also need to define the structure input which is

used within the handle_input method.

Finally, add the handle_input method to the lib.rs file at the end.

fn handle_input(inp: generated::Input) -> HandlerResult<String>

{

 let a = &inp.x;

 Ok(a.to_string())

}

This method takes the complex input type as input and returns one of

its members as output (in the preceding example, you return a value of x).

Generate the stubs by running make file again.

node wapc.js target/wasm32-unknown-unknown/release/cuckoo_wapc.

wasm handle_input '{"inp":{"x":"shashank","y":"test"}}'

The output is Shashank.

So far, you have seen how to use the waPC tool to generate Wasm from

Rust code with bindings and glue code generated by waPC tooling. From a

consumption point of view, you’ve seen the Node.js-based runtime, which

is similar to what you achieved with the wasm-bindgen tooling.

From here, you develop an understanding of generating the bindings

for Rust and Golang-based runtimes which can then consume the same

Wasm module (cuckoo_wapc.wasm) and invoke the check_word_exists

function on it.

�Rust Host for waPC-based Bindings
You have used Node.js as the runtime for running the host code and stubs.

Node.js comes with an embedded Wasm runtime which loads Wasm and

invokes the functions on Wasm. You saw many examples of this in previous

sections.

Chapter 5 waPC

101

Since you now want to use Rust as the host for invoking the guest,

you need to embed a Wasm runtime in the Rust code, which can load

the Wasm module and then invoke a function within that Wasm module.

waPC comes with support for Wasmtime as the Wasm runtime. You are

embedding the Wasmtime engine within the host Rust code. This code

does the following.

•	 Loads the Wasm file into the Wasmtime runtime

•	 Invokes the check_word_exists function on the Wasm

module

The following steps create a Rust-based host with an embedded

Wasmtime WebAssembly engine.

	 1.	 First, create a Rust project named invoker using the

cargo command.

cargo new invoker

	 2.	 Replace the content of the src/main.rs file as follows.

extern crate wapc;

extern crate wasmtime_provider;

extern crate wascc_codec;

extern crate serde_json;

extern crate serde_derive;

extern crate serdeconv;

use std::collections::HashMap;

use std::fs::read;

use std::env;

use wapc::WapcHost;

fn runs_wapc_guest() -> anyhow::Result<()> {

 let args: Vec<String> = env::args().collect();

Chapter 5 waPC

102

 �let wasmpath= &args[1];

//wasm file path. We will use the cuckoo wasm path here

 �let key = &args[2]; //name of the json key

let val= &args[3]; // value

let mut scores = HashMap::new();

// create a hashmap and insert the key value pair

 scores.insert(key.to_string(),val.to_string());

// convert the key value to message pack

let p2=serdeconv::to_msgpack_vec(&scores).unwrap();

 let buf = read(wasmpath.to_string())?;

// This code creates the wasmtime Engine

 �let engine = wasmtime_provider::WasmtimeEngine

Provider::new(&buf, None);

// We use the wapc wrapper over the wasmtime engine here.

 let guest = WapcHost::new(Box::new(engine), move

|_a, _b, _c, _d, _e| Ok(vec![]))?;

// we invoke the function check_word_exists here and

pass the msgpack encoded message

 �let callresult = guest.call("check_word_exists",

&p2).unwrap();

// response is also encoded by msgpack, so we need to

get the string back from it.

let p1:String=serdeconv::from_msgpack_

slice(&callresult[..]).unwrap();

println!("response{:?}",&p1);

 Ok(())

}

Chapter 5 waPC

103

pub fn main() -> Result<(), Box<dyn std::error::Error>>

{

runs_wapc_guest();

 Ok(())

}

	 3.	 Replace the content of the Cargo.toml file.

[package]

name = "invoker"

version = "0.1.0"

edition = "2018"

See more keys and their definitions at https://doc.

rust-lang.org/cargo/reference/manifest.html

[dependencies]

wasmtime = "0.24.0"

wapc="0.10.1"

wasmtime-wasi = "0.24.0"

wasmtime-provider="0.0.3"

anyhow = "1.0.31"

wascc-codec = "0.9.1"

serde = "1.0.126"

serde_json = "1.0.41"

serdeconv="0.4.0"

serde_derive = "1.0.126"

[dev-dependencies]

wascc-codec="0.9.1"

env_logger = "0.8.3"

Chapter 5 waPC

104

	 4.	 Build the program using the following command.

cargo build

	 5.	 Execute it using the following command. (Make sure

that the path contains the generated cuckoo_wapc.

wasm file.)

./target/debug/invoker /home/ubuntu/cuckoo_wapc/

target/wasm32-unknown-unknown/release/cuckoo_

wapc.wasm name foo

Output should be : response"true"

Figure 5-3.  Build in progress for the Rust program

Chapter 5 waPC

105

Try with a wrong input

./target/debug/invoker /home/ubuntu/cuckoo_wapc/

target/wasm32-unknown-unknown/release/cuckoo_

wapc.wasm name xyz

Output should be : response"false"

You saw examples of using Node.js as host to the Wasm module, and

then you saw Rust embedding the Wasmtime engine and executing the

Wasm module. Now, let’s move on to a Golang-based runtime.

The prerequisites for this are Go version 1.16.6.

waPC supports Wasmer as the Wasm engine runtime. You need to

install the Wasmer runtime on the Ubuntu machine so that the needed

libraries like libwasmer can be located by your program.

You can install Wasmer using the following command.

curl https://get.wasmer.io -sSfL | sh

This installs Wasmer from the following git repository.

https://github.com/wasmerio/wasmer

Once the initial setup is ready, create a folder called gostandalone on

the Ubuntu machine.

In this directory, create a file called main.go.

Copy the content of main.go as follows.

package main

import (

 "context"

 "fmt"

 "io/ioutil"

 "os"

 "github.com/wapc/wapc-go"

 json2msgpack "github.com/izinin/json2msgpack"

)

Chapter 5 waPC

https://github.com/wasmerio/wasmer

106

//var instance wasm.Instance

var ctx context.Context

func main() {

 if len(os.Args) < 2 {

 fmt.Println("usage: hello <name>")

 return

 }

 wasm:=os.Args[1]

 funcname := os.Args[2]

 name:=os.Args[3]

 ctx := context.Background()

 code, err := ioutil.ReadFile(wasm)

 if err != nil {

 panic(err)

 }

 module, err := wapc.New(code,nil)

 if err != nil {

 panic(err)

 }

 defer module.Close()

 instance, err := module.Instantiate()

 if err != nil {

 panic(err)

 }

 defer instance.Close()

 b:=json2msgpack.EncodeJSON([]byte(name))

 result, err := instance.Invoke(ctx, funcname, b)

 if err != nil {

 panic(err)

Chapter 5 waPC

107

 }

 fmt.Println(string(result))

}

Execute the following commands.

go mod init main.go

go mod tidy

These two generate two files: go.mod and go.sum.

Finally, you build the Go binary using the following command.

go build -o cuckoo

This generates a binary named cuckoo.

You can now execute the binary passing the needed arguments.

./cuckoo /home/ubuntu/cuckoo_wapc/target/wasm32-unknown-

unknown/release/cuckoo_wapc.wasm check_word_exists

'{"name":"foo"}'

Here first argument is the cuckoo_wapc.wasm you generated earlier in

the chapter.

Second argument is the function to be invoked on Wasm (check_word_

exists).

And final argument is the JSON to be passed (‘{“name”:“foo”}’).

The output results in true as foo exists within the cuckoo filter.

You then run a negative scenario by passing something which doesn’t

exist in cuckoo filter.

./cuckoo /home/ubuntu/cuckoo_wapc/target/wasm32-unknown-

unknown/release/cuckoo_wapc.wasm check_word_exists

'{"name":"xyz"}'

This results in false as the output.

Chapter 5 waPC

108

�Summary
This chapter discussed WebAssembly Procedure Calls (waPC). First, you

learned how to use waPC to create a Wasm module that can pass complex

types between a Wasm host and guest. From there, you learned how to

invoke the Wasm module from three different runtimes: Node.js, Rust, and

Golang.

After this chapter, you should be able to use waPC to create your own

Wasm modules to handle complex types and execute them in any of these

runtimes.

Chapter 5 waPC

109© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_6

CHAPTER 6

Wasm Web Interface
In previous chapters, you learned how to use the stand-alone mode of your

programs to launch the Wasm module and invoke functions on it from the

host.

This chapter takes you through the journey of taking a Wasm module

and exposing it over an HTTP-based interface, which means that the Wasm

module is launched on the arrival of an HTTP request. Wasm is a great

candidate for cloud computing because each Wasm module is a small

sandbox of code. You can run multitenant code on the same Linux process

and achieve a good amount of isolation using the Wasm mechanism.

As many workloads also adopt a serverless way of packaging and

running them, the Wasm paradigm finds a sweet spot in the serverless

world. You can easily package the workloads as Wasm modules that

can then be loaded by your Wasm runtime of choice on the cloud and

the exposed functions invoked on them. This achieves true on-demand

computing, as is the aspiration of any cloud platform.

As was the approach in previous chapters, let’s start by taking the

cuckoo filter Wasm module and serve it over an HTTP server in Rust.

The following are the goals of this program.

	 1.	 Load the Wasm engine at the start of the server so

that you don’t load it on individual requests.

	 2.	 Listen at an HTTP endpoint to serve HTTP-based

requests.

https://doi.org/10.1007/978-1-4842-7496-5_6#DOI

110

	 3.	 Load the Wasm module into the engine on receipt of

the HTTP request and invoke the function.

Execute the command shown in Listing 6-1 to create a Rust project

named cuckoo_http.

cargo new cuckoo_http

Open the main.rs file under the src directory of the cuckoo_http

project.

Listing 6-1.  main.rs

extern crate wasmtime_provider;

pub mod httprequest;

use std::io::prelude::*;

use httprequest::HttpRequest;

use std::net::TcpListener;

use std::net::TcpStream;

use std::env;

extern crate wapc;

use wasmtime_provider::WasmtimeEngineProvider;

pub mod wasm;

fn main() {

// create a TCP listener to listen on localhost at port 8080

 �let listener = TcpListener::bind("127.0.0.1:8080").

unwrap();

 let args: Vec<String> = env::args().collect();

// pass the wasm file path as an argument to the program binary

 let wasmpath= &args[1];

// launch the wasm engine with loading the wasm module at start.

Chapter 6 Wasm Web Interface

111

let guest = wasm::engine_start(wasmpath.to_string()).

unwrap();

// start listening for TCP connections here

 for stream in listener.incoming() {

 let stream = stream.unwrap();

// Handle the TCP request by invoking this method

 handle_connection(stream,&guest);

 }

}

// connection Handler for the TCP connection

fn handle_connection(mut stream: TcpStream,guest:&wapc::

WapcHost) {

 let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

//create an http request from the tcp request.

let req: HttpRequest = String::from_utf8(buffer.to_vec()).

unwrap().into();

let body= &req.msg_body;

println!("body={}",body);

// invoke the method on wasm.rs file and pass the http request

body (key value pair) to it.

let p1=wasm::runs_wapc_guest(&guest,body).unwrap();

let response = format!("HTTP/1.1 200 OK\r\n\r\n{}", p1);

// write the response back

 stream.write(response.as_bytes()).unwrap();

 stream.flush().unwrap();

}

Chapter 6 Wasm Web Interface

112

Listing 6-2 represents a helper class to extract HTTP headers, body

and formulate an HTTP request object from the TCP stream. Place the

httprequest.rs file under the src directory of the project.

Listing 6-2.  httprequest.rs

use std::collections::HashMap;

#[derive(Debug, PartialEq)]

pub enum Resource {

 Path(String),

}

// HttpRequest Object definition

#[derive(Debug)]

pub struct HttpRequest {

 pub method: Method,

 pub version: Version,

 pub resource: Resource,

 pub headers: HashMap<String, String>,

 pub msg_body: String,

}

impl From<String> for HttpRequest {

 fn from(req: String) -> Self {

 let mut parsed_method = Method::Uninitialized;

 let mut parsed_version = Version::V1_1;

 �let mut parsed_resource = Resource::Path

("".to_string());

 let mut parsed_headers = HashMap::new();

 let mut parsed_msg_body = "";

 // Read each line in incoming HTTP request

 for line in req.lines() {

Chapter 6 Wasm Web Interface

113

 // �If the line read is request line, call function

process_req_line()

 if line.contains("HTTP") {

 �let (method, resource, version) = process_req_

line(line);

 parsed_method = method;

 parsed_version = version;

 parsed_resource = resource;

 // �If the line read is header line, call function

process_header_line()

 } else if line.contains(":") {

 let (key, value) = process_header_line(line);

 parsed_headers.insert(key, value);

 // If it is blank line, do nothing

 } else if line.len() == 0 {

 // If none of these, treat it as message body

 } else {

 parsed_msg_body = line;

 }

 }

 // �Parse the incoming HTTP request into HttpRequest

struct

 HttpRequest {

 method: parsed_method,

 version: parsed_version,

 resource: parsed_resource,

 headers: parsed_headers,

 msg_body: parsed_msg_body.to_string(),

 }

 }

}

Chapter 6 Wasm Web Interface

114

//fn process_req_line(s: &str) -> (Method, Resource, Version) {}

fn process_req_line(s: &str) -> (Method, Resource, Version) {

 // �Parse the request line into individual chunks split by

whitespaces.

 let mut words = s.split_whitespace();

 // �Extract the HTTP method from first part of the request line

 let method = words.next().unwrap();

 // �Extract the resource (URI/URL) from second part of the

request line

 let resource = words.next().unwrap();

 // �Extract the HTTP version from third part of the request line

 let version = words.next().unwrap();

 (

 method.into(),

 Resource::Path(resource.to_string()),

 version.into(),

)

}

// method for processing http headers

fn process_header_line(s: &str) -> (String, String) {

 // Parse the headerline into words split by separator (':')

 let mut header_items = s.split(":");

 let mut key = String::from("");

 let mut value = String::from("");

 // Extract the key part of the header

 if let Some(k) = header_items.next() {

 key = k.to_string();

 }

Chapter 6 Wasm Web Interface

115

 // Extract the value part of the header

 if let Some(v) = header_items.next() {

 value = v.to_string()

 }

 (key, value)

}

#[derive(Debug, PartialEq)]

pub enum Method {

 Get,

 Post,

 Uninitialized,

}

impl From<&str> for Method {

 fn from(s: &str) -> Method {

 match s {

 "GET" => Method::Get,

 "POST" => Method::Post,

 _ => Method::Uninitialized,

 }

 }

}

#[derive(Debug, PartialEq)]

pub enum Version {

 V1_1,

 V2_0,

 Uninitialized,

}

impl From<&str> for Version {

 fn from(s: &str) -> Version {

 match s {

 "HTTP/1.1" => Version::V1_1,

Chapter 6 Wasm Web Interface

116

 _ => Version::Uninitialized,

 }

 }

}

Finally, create the wasm.rs file within the src directory, which is

responsible for starting the Wasm engine and then invoking the guest

module. Listing 6-3 shows this.

Listing 6-3.  wasm.rs

extern crate wapc;

extern crate wasmtime_provider;

extern crate wascc_codec;

extern crate serde_json;

extern crate serde_derive;

extern crate serdeconv;

use std::collections::HashMap;

use std::fs::read;

use std::env;

use wapc::WapcHost;

use std::error::Error;

use wasmtime_provider::WasmtimeEngineProvider;

//use std::collections::HashMap;

// this method accepts the path of the wasm file as input. This

// starts the engine and loads the wasm module.

pub fn engine_start(wasmpath:String) -> Result<WapcHost,

Box<dyn Error>>

{

 let args: Vec<String> = env::args().collect();

 let buf = read(wasmpath.to_string())?;

 �let engine = wasmtime_provider::WasmtimeEngineProvider::new

(&buf, None);

Chapter 6 Wasm Web Interface

117

 �let guest = WapcHost::new(Box::new(engine), move |_a, _b,

_c, _d, _e| Ok(vec![]))?;

Ok(guest)

}

// this method gets the request body (key value pair). It

// creates a hashmap entry for the key value encodes it via

// msgpack and then passes the encoded message to the wasm module

pub fn runs_wapc_guest(guest:&WapcHost,body:&String) ->

Result<String, Box<dyn Error>> {

//let guest = WapcHost::new(Box::new(*engine), move |_a, _b,

_c, _d, _e| Ok(vec![]))?;

let res: Vec<String> = body.split("=").map(|s| s.to_string()).

collect();

//let mut scores = one_liner(body);

let mut scores = HashMap::new();

let x=&res[0];

let y=&res[1];

scores.insert(x.trim_matches(char::from(0)).to_string(),y.trim_

matches(char::from(0)).to_string());

println!("key={}",&res[0]);

println!("value={}",&res[1]);

println!("map{:?}",&scores);

//msgpack encoding is done here

let p2=serdeconv::to_msgpack_vec(&scores).unwrap();

// invoke the check_word_exists method on wasm module and pass

the encoded message

let callresult = &guest.call("check_word_exists", &p2).

unwrap();

Chapter 6 Wasm Web Interface

118

// decode the msgpack encoded response back to string

let p1:String=serdeconv::from_msgpack_slice(&callresult[..]).unwrap();

println!("response{:?}",&p1);

 Ok(p1)

}

Copy the content from the following file for the Cargo.toml file.

[package]

name = "cuckoo_http"

version = "0.1.0"

edition = "2018"

See more keys and their definitions at https://doc.rust-lang.

org/cargo/reference/manifest.html

[dependencies]

wasmtime = "0.24.0"

wapc="0.10.1"

wasmtime-wasi = "0.24.0"

wasmtime-provider="0.0.3"

anyhow = "1.0.31"

wascc-codec = "0.9.1"

serde = "1.0.126"

serde_json = "1.0.41"

serdeconv="0.4.0"

serde_derive = "1.0.126"

lazy_static = "0.1.*"

futures = { version = "0.3.6", default-features = false,

features = ["async-await"] }

hyper = "0.13"

tokio = { version = "0.2", features = ["macros", "rt-threaded"] }

Chapter 6 Wasm Web Interface

119

route-recognizer = "0.2"

bytes = "0.5"

async-trait = "0.1"

[dev-dependencies]

wascc-codec="0.9.1"

env_logger = "0.8.3"

Once these files are created, build the code using the following

command.

cargo build

Figure 6-1.  Building the Rust program

Chapter 6 Wasm Web Interface

120

If there are no errors, you can see the executable under

target/debug directory and the executable name would be cuckoo_http

You can launch the HTTP server by passing the Wasm file path as

follows. The cuckoo.wasm file is the same as the one you created in

Chapter 5.

./target/debug/cuckoo_http ../cuckoo_wapc/target/wasm32-

unknown-unknown/release/cuckoo_wapc.wasm

Now open another shell to make an HTTP request to this HTTP server

via cURL.

curl -d "name=foo" -X GET "http://localhost:8080"

Figure 6-2 shows two parts.

•	 On the right, a cURL call is made to the HTTP endpoint.

•	 On the left, the Rust HTTP server handles the request

by invoking Wasm.

Figure 6-2.  Rust HTTP server app and cURL-based HTTP client

Chapter 6 Wasm Web Interface

121

So far, you have seen how to embed a Wasm engine in Rust and run it

within an HTTP server. You also saw how to consume the Wasm module

over an HTTP-based endpoint. You now take the same Wasm module and

expose it via a node-based HTTP endpoint.

�Node Example
The previous section exposed a cuckoo filter–based Wasm module over

an HTTP interface. You now use a Node.js-based runtime and expose the

same Wasm module over an HTTP interface based on node.

Create a directory called node_cuckoo_http.

Under that directory, create a cuckoo.js file and copy and paste the

following code into it.

// import the needed dependencies for wapc and msgpack

const { instantiate } = require("@wapc/host");

const { encode, decode } = require("@msgpack/msgpack");

const { promises: fs } = require("fs");

const http = require('http');

const path = require("path");

const url = require("url");

// Argument as index 0 is the node executable

// index 1 is the path to wasm file name

const wasmfile = process.argv[2];

// index 2 is the name of operation (in our case check_word_exists)

const operation = process.argv[3];

var host=null;

var buffer=null;

// If we don't have the basic arguments we need, print usage and exit.

Chapter 6 Wasm Web Interface

122

if (!(wasmfile && operation)) {

 �console.log("Usage: node index.js [wasm file] [waPC

operation]");

 process.exit(1);

}

// start of main function

async function main() {

console.log("entered main");

 // Read wasm off the local disk as Uint8Array

buffer = await fs.readFile(path.join(__dirname, wasmfile));

 // Instantiate a WapcHost with the bytes read off disk

 host = await instantiate(buffer);

console.log("host initiated");

const server = http.createServer(requestListener);

console.log("server created and listening for tcp connections

on port 8080");

server.listen(8080);

}

// http request listener

 const requestListener = async function (req, res) {

// extract the query parameter from the http request

let query = url.parse(req.url, true).query;

 console.log(query.key);

// get the value of the parameter key (value for this key is the json)

const payload = encode(JSON.parse(query.key));

 // Invoke the operation in the wasm guest

 const result = await host.invoke(operation, payload);

 // Decode the results using msgpack

Chapter 6 Wasm Web Interface

123

 const decoded = decode(result);

 // log to the console

 console.log(`Result: ${decoded}`);

 res.writeHead(200);

 res.end('result='+decoded);

}

main().catch((err) => console.error(err));with http

Before starting the program, make sure you have the following node

modules installed in the same directory as the cuckoo.js file. Use the

following commands to install the following dependencies.

npm install @wapc/host @msgpack/msgpack

Start the program.

node cuckoo.js ../cuckoo_wapc/target/wasm32-unknown-unknown/

release/cuckoo_wapc.wasm check_word_exists

The preceding command starts an HTTP server which loads the Wasm

module (cuckoo_wapc.wasm) into the Wasm runtime provided by Node.js.

You also pass the function to be invoked as a command-line argument to

the server.

Once the HTTP server is up and running, it’s time to make an HTTP

request via cURL from a second shell. Here, you pass the JSON as a query

parameter that the Node.js server handles. It does the following.

	 1.	 Extracts the JSON

	 2.	 Encodes it into MessagePack

	 3.	 Invokes the check_word_exists function on the

Wasm module

	 4.	 Returns true or false as a result

Chapter 6 Wasm Web Interface

124

curl -G -i "http://localhost:8080" --data-urlencode

'key={"name":"foo"}'

The output would be similar to the following.

ubuntu@INLN34327424A:~$ curl -G -i http://localhost:8080

 --data-urlencode 'key={"name":"foo"}'

HTTP/1.1 200 OK

Date: Tue, 31 Aug 2021 10:28:41 GMT

Connection: keep-alive

Keep-Alive: timeout=5

Transfer-Encoding: chunked

result=trueubuntu@INLN34327424A:~$

In the previous section, you learned how to create a simple Node.js-

based HTTP server and serve the waPC-compliant Wasm module over an

HTTP request. This section demonstrates how to create an HTTP server in

Golang and serve the same Wasm module over an HTTP interface.

Prerequisites : go 1.16

Approach

Create a go_cuckoo_http directory and under it, create a main.go file.

Copy the content from Listing 6-4.

Listing 6-4.  main.go

package main

import (

 "context"

 "io/ioutil"

 "os"

 "log"

 "net/http"

Chapter 6 Wasm Web Interface

125

 "github.com/wapc/wapc-go"

 json2msgpack "github.com/izinin/json2msgpack"

)

var ctx context.Context

func main() {

 wasmname := os.Args[1]

 functionname := os.Args[2]

 code, err := ioutil.ReadFile(wasmname)

 if err != nil {

 panic(err)

 }

 module, err := wapc.New(code,nil)

 if err != nil {

 panic(err)

 }

 defer module.Close()

 instance, err := module.Instantiate()

 if err != nil {

 panic(err)

 }

 defer instance.Close()

 http.HandleFunc("/", testHandler(instance,functionname))

 log.Fatal(http.ListenAndServe(":8080", nil))

}

func testHandler(instance *wapc.Instance, functionname string)

http.HandlerFunc {

return func (w http.ResponseWriter, r *http.Request) {

Chapter 6 Wasm Web Interface

126

 keys, ok := r.URL.Query()["key"]

 ctx := context.Background()

 if !ok || len(keys[0]) < 1 {

 log.Println("Url Param 'key' is missing")

 return

 }

 // Query()["key"] will return an array of items,

 // we only want the single item.

 key := keys[0]

b:=json2msgpack.EncodeJSON([]byte(key))

// fmt.Println(b)

 result, err := instance.Invoke(ctx, functionname, b)

 if err != nil {

 panic(err)

 }

w.Write([]byte(result))

// fmt.Println(w, string(result))

}

}

Once the content is copied run the following commands

Run the below set of command

go mod init main.go

go mod tidy

This generates two files: go.mod and go.sum.

The go.mod file has the following content.

module main.go

require (

 �github.com/izinin/json2msgpack v0.0.0-20171109104254-

58b3991b6103

Chapter 6 Wasm Web Interface

127

 github.com/tinylib/msgp v1.1.6 // indirect

 github.com/wapc/wapc-go v0.3.0

)

Once you have these files in place, it’s time to build the go project.

Run the following command.

go build -o cuckoo_http

This should generate a cuckoo_http binary file under the directory.

You can now start the go-based HTTP server with the following command.

./cuckoo_http ../cuckoo_wapc/target/wasm32-unknown-unknown/

release/cuckoo_wapc.wasm check_word_exists

The executable is passing two arguments.

•	 The Wasm file path

•	 The function exposed from the Wasm file

Once the HTTP server starts, you can test the Wasm module over the

HTTP endpoint from another shell.

curl -G -i "http://localhost:8080" --data-urlencode

'key={"name":"bar"}'

This should return true as the response back from the Golang-based

HTTP server.

The output is as follows.

ubuntu@INLN34327424A:~$ curl -G -i http://localhost:8080

 --data-urlencode 'key={"name":"bar"}'

HTTP/1.1 200 OK

Date: Tue, 31 Aug 2021 12:07:31 GMT

Content-Length: 5

Content-Type: text/plain; charset=utf-8

true ubuntu@INLN34327424A:~$

Chapter 6 Wasm Web Interface

128

�Summary
In this chapter, you learned how to create an HTTP server in Node.js, Rust,

and Golang. You also learned how to embed a Wasm runtime within these

HTTP servers. Based on this, you saw how to launch a Wasm module

within these HTTP servers. You saw a demonstration on how to invoke

these Wasm modules from an HTTP client like cURL. You continued using

the same Wasm module you created using the waPC framework and saw

how to create Wasm modules and serve them over an HTTP interface in

HTTP servers based on Rust, Golang, or Node.js. This opens a different

computing paradigm as you can see that the Wasm module itself was

written in Rust but is now available to be executed within languages like

node and Golang. And not only that, it can now be consumed over an

HTTP interface, which makes it a great candidate for microservices and

cloud-based development.

Chapter 6 Wasm Web Interface

129© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_7

CHAPTER 7

Wasm and
Kubernetes
This chapter covers the world of container orchestration via Kubernetes. It

explains how to containerize the Wasm-based workloads you developed in

Node.js, Rust, and Golang and then deploy them on Kubernetes. You also

see how to enable access to them via the Kubernetes service concept.

Before diving into the Wasm side of it, let’s discuss Docker and

Kubernetes and what they provide for cloud-based workload deployments.

�Docker
Docker is among the most promising technologies. It created a revolution

in the way workloads are deployed in the cloud. Before the emergence

of Docker, virtualization was mainly driven by using virtual machines

as the unit for software deployment. Today, Docker is one of the leading

technologies for software packaging and deployment on the cloud.

Docker is a Linux-based, open source containerization platform that

developers use to build, run, and package applications for deployment

using containers. Unlike virtual machines, Docker containers offer the

following.

•	 OS-level abstraction with optimum resource utilization

•	 Interoperability

https://doi.org/10.1007/978-1-4842-7496-5_7#DOI

130

•	 Efficient build and test

•	 Faster application execution

Fundamentally, Docker containers modularize an application’s

functionality into multiple components that allow deploying, testing, or

scaling them independently when needed.

Docker provides four fundamental features.

•	 Images provide a way to package the software

optimally. This is achieved by creating layers of

software, and common layers are shared between

different images. As an example, two Rust-based

applications share the majority of Linux user-space

libraries and the Rust libraries. This reuse is one of the

major attractions of Docker. This saves space not just

in the storage of images but also during runtime on the

filesystem.

•	 Containers are the running instances of the images.

•	 The Docker engine is responsible for running the

containers on the host (bare metal or virtual machine).

This internally uses many other components like

containers, which are beyond the scope of this book.

Think of it as an interface for clients to manage the life

cycle of the containers.

A container registry is where all images are stored.

There are many container registries in existence

today, both public and private.

This book uses Docker Hub as the public registry for our images.

You push and pull the images to the registry for storage and retrieval

Chapter 7 Wasm and Kubernetes

131

One of the main selling points of Docker is that it isolates workloads

running on the same host. Docker uses three Linux primitives to achieve

this: Linux namespaces, csgroups, and layered file systems.

A namespace in the Linux kernel sandboxes kernel resources, such

as file systems, process trees, message queues, and semaphores and

network components like devices, sockets, and routing rules. The idea of

namespaces is to isolate processes within their own execution sandbox to

run completely isolated from other processes in a different namespace.

There are six major namespaces.

•	 PID namespace

•	 Mount namespace

•	 UTS namespace

•	 Network namespace

•	 IPC namespace

•	 User namespace

Linux namespaces provide isolation from a visibility perspective, and

cgroups provide resource accounting (e.g., how much memory or CPU or

network a particular process can use).

cgroups is a mechanism in the Linux kernel that provides resource

control. This provides a quota of resources like memory, CPU, network I/O

to a specific Linux process or a group of processes. Using this mechanism,

you can properly manage and assign the resources between the different

workloads running on the same host. This helps in proper resource control

between multiple tenants running on the same machine.

The layered file system mechanism (e.g., aufs or similar) allows you

to package the software into different file system layers. This promotes

tremendous reuse and a proper packaging mechanism for the software.

Chapter 7 Wasm and Kubernetes

132

So far, you learned that Docker and containers could isolate

workloads, provide resource control, and package software. Next, let’s

look at Kubernetes, a leader in container life cycle managment in terms of

deployment and orchestration.

�Kubernetes
Docker started a revolution by providing a means to

•	 Package software

•	 Provide isolation for tenant software

•	 Provide resource control for tenants

This revolution needed a way to provide scheduling or, more

precisely, an orchestration mechanism to deploy and operate these

Docker images. Many such schedulers exist, such as Docker Swarm and

HashiCorp Nomad, but the one that had huge acceptance was Kubernetes.

Kubernetes came from Google as an open source container orchestration

software.

Kubernetes provides a means to deploy software across multiple

clouds in a uniform way. This means that the specifics of hyperscale cloud

providers like AWS, GCP, and Azure are abstracted out via the Kubernetes

API. Software developers don’t have to deal with how storage looks on

AWS or how networking (software-defined networking) works on GCP. So,

you can create Kubernetes-specific deployment files and deploy our

software running on top of different cloud environments in a very uniform

way.

Kubernetes is designed upfront as a flexible and extensible platform

for software deployment. For example, you are not limited to using Docker

as the packaging unit for the deployment for the software. There can be

alternate technologies like Kata Containers, gVisor, or any other runtime

which can be used. Similar extension points exist for networking and

Chapter 7 Wasm and Kubernetes

133

storage. Cilium being one example of using an alternate software-defined

networking stack on top of Kubernetes.

Kubernetes is mainly based on principles of control theory. Control

theory checks the actual state of a system against the desired state of

the system. The idea is that the system always moves toward the desired

state. This concept is not new. It is evident in biology a process called

homeostasis and in human inventions like autopilot in cars. To achieve this

mechanism, Kubernetes is centered around resources and controllers.

The following are different types of resources.

•	 Pod: This is the basic unit of deployment in Kubernetes.

A pod constitutes one or more Linux containers and

shares some namespaces, like network and IPC.

•	 Deployment: This resource groups a set of pods. For

example, you need a minimum of three pods always

running for your web application. Create a deployment

of size 3. The Kubernetes controllers make sure that

you always have three pods running.

Take this example

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

Chapter 7 Wasm and Kubernetes

134

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

There are three pods (called replicas) of nginx

configured. So anytime one or more pods goes

down, the Kubernetes engine brings it back to the

desired state of three pods.

•	 Service: A service resource abstracts the actual pod

IP. Since the pods can be moved to different virtual

machines, they don’t have a stable IP in the Kubernetes

environment. This throws a challenge for the client

who wants to connect to that IP (e.g., a pod running a

web server on that IP). Kubernetes provides a concept

of service to work around this, which provides a

stable IP via the magic of mechanisms like Iptables or

IPVS. More details on this topic are beyond the scope of

this book.

•	 Stateful set: This resource allows software deployment

that requires state-like databases or other storage-

backed software. Kubernetes provides a way to deploy

these resources so that if the pod moves to a different

VM, the same storage is made available on the new

machine.

Chapter 7 Wasm and Kubernetes

135

•	 There are many other resources available, and since

Kubernetes is a flexible and extensible environment, it

allows one to define custom resources. Controllers in

the Kubernetes world manage all these resources. The

controller’s job is to check the actual state and always

move this actual state to the desired state.

�The Workings of Kubernetes
A Kubernetes cluster is made of two main components.

•	 Kubernetes API server for control plane operations

•	 Nodes that act as hosts for the software deployments

like pods

The client interfaces with the Kubernetes API server to manage the life

cycle of the different pods deployed across the different virtual machines

or nodes. As an example of a deployment of nginx with three replicas, once

the request reaches the API server, it becomes the job of the Kubernetes

scheduler to see the resources (memory and CPU) availability on different

nodes and then place the three pods depending on resource availability.

Each node has an agent running called the kubelet, which receives the

request to create the containers within the pods. The kubelet is the actual

workhorse on the node, which interfaces with runtime API like Docker,

Kata Containers, gVisor, or any other container runtime configured.

Further details around Kubernetes are beyond the scope of this book.

However, you can find more relevant details at https://kubernetes.io/

or many other Kubernetes resources spread across the web.

This chapter uses two main Kubernetes resources.

•	 Pod

•	 Service

Chapter 7 Wasm and Kubernetes

https://kubernetes.io/

136

The cuckoo filter is deployed as a pod on Kubernetes for two runtimes

(Rust, Golang). The node-based runtime is an exercise for you to try on

your own.

Next, let’s discuss exposing them as a load balancer service in

Kubernetes and accessing them from the outside.

�Packaging a Rust Web App into a Docker
Container
Let’s start packaging the Rust-based web app you created in Chapter 6 and

package it as a Docker container first.

This section demonstrates how to create a Docker image for a

Rust-based web app. This Rust app deploys the Wasm module into the

embedded Wasm runtime and makes it available for consumption over an

HTTP interface.

Copy the Rust web app project you created in Chapter 6 to a different

folder. Create a file named Dockerfile in the same directory. Copy the

cuckoo_http.wasm file you generated in that project to the root of this

directory.

Copy the content from the following Docker file.

FROM rust:1.53.0

Let's switch our working directory to `app` (equivalent to `cd app`)

�The `app` folder will be created for us by Docker in case it

does not exist already.

WORKDIR /app

Copy all files from our working environment to our Docker image

Chapter 7 Wasm and Kubernetes

137

COPY . .

Let's build our binary!

We'll use the release profile to make it fast

RUN cargo build --release

When `docker run` is executed, launch the binary!

ENTRYPOINT ["./target/release/cuckoo_http", " cuckoo_http.wasm"]

The Docker file copies all the files from the directory into the app

directory, and a Rust binary is generated. The last line (ENTRYPOINT)

starts the binary and passes the Wasm file as the command-line input.

The directory structure should look like in Figure 7-1.

Build the Docker image using the following command.

docker build -t <<tagname>> .

During the build, you can see all the Rust libraries compiled as the

system prepares a binary for the Rust-based web app (see Figure 7-2).

Figure 7-1.  Directory structure for Docker build

Chapter 7 Wasm and Kubernetes

138

Figure 7-2.  Building the Docker image

Chapter 7 Wasm and Kubernetes

139

After the build, you can check the Dockerized image by the command

(see Figure 7-3).

docker images

You can validate the Dockerized application by using the Docker run

command. (Figure 7-3 shows pushing to the Docker Hub. In my case, it is

smjain/rustexample.)

docker run -p 8080:8080 <<image id>>

A running Docker container can be validated by executing the

following command.

docker ps

�Pushing an Image to a Docker Registry
Once you have created the image, you need to push this to a Docker

registry. Docker Hub is the registry, and if a user wants to use the Docker

Hub, they need to create an account there.

Log in to a Docker registry (Docker Hub) by using the following

command.

docker login

Then, provide the credentials.

Once you have logged in to the repository, you can push the image

using the following command.

docker push <<image created above>>

Figure 7-3.  Docker images built in Figure 7-2

Chapter 7 Wasm and Kubernetes

140

You can validate this by going to https://hub.docker.com and

checking the presence of the image (see Figure 7-4).

This completes the Docker side of the story. Now you need to deploy

this Docker image onto a Kubernetes cluster.

�Prerequisites
To deploy the Wasm modules created earlier, you need a Kubernetes

cluster, such as Amazon Elastic Kubernetes Service (Amazon EKS) or

Google Kubernetes Engine (GKE). You can also try this on a laptop using

the minikube/Kubernetes offering.

As with Kubernetes, you create two resources: a pod and a service.

You create two yaml files.

•	 For the pod

•	 For the Kubernetes service to expose the pod over a

load balancer

Figure 7-4.  Docker repository with the Docker images of Rust and
Golang web app

Chapter 7 Wasm and Kubernetes

https://hub.docker.com

141

�The Pod Yaml File
Create a yaml file named rustexample.yaml, and copy the following

content.

apiVersion: v1

kind: Pod

metadata:

 name: rust-example

 labels:

 role: rust-example

spec:

 containers:

 - name: web

 image: smjain/rustexample:latest

 ports:

 - name: web

 containerPort: 8080

 protocol: TCP

The image refers to the Docker image pushed to Docker Hub (smjain/

rustexample).

The Rust web app is exposed as port 8080 on the host on which the

Docker image runs.

�The Service Yaml File
Create a yaml file named rustservice.yaml and copy the following content.

apiVersion: v1

kind: Service

metadata:

 name: rust-web-service

Chapter 7 Wasm and Kubernetes

142

spec:

 type: LoadBalancer

 ports:

 - name: http

 port: 80

 targetPort: 8080

 selector:

 role: rust-example

The load balancer service type allows the web app to be consumed

using the AWS load balancer in the example. If you intend to use minikube

as the Kubernetes setup, go to https://kubernetes.io/docs/tutorials/

hello-minikube/, or follow any other minikube tutorial.

Deploy the pod using the following command.

First create a namespace test

kubectl create namespace test

Create/Deploy the pod

kubectl apply -f rustexample.yaml --namespace test

Deploy the service using the below command

kubectl apply -f rustservice.yaml --namespace test

Pods can be checked by using the command

kubectl get pods --namespace test

Service can be checked by using the following command.

kubectl get svc --namespace test

Figure 7-5.  Pods in test namespace

Chapter 7 Wasm and Kubernetes

https://kubernetes.io/docs/tutorials/hello-minikube/
https://kubernetes.io/docs/tutorials/hello-minikube/

143

This creates a load balancer type of service which creates a network

load balancer (in AWS), and the back end to the load balancer is the Rust-

based app that you are running as a Docker container within a pod.

The HTTP request is proxied by the load balancer to the back end

(Rust-based HTTP server in our case).

You can test the app by making a cURL request. The following HTTP

URL is from the Kubernetes cluster I have created. You should replace it

with your URL.

curl -d "name=foo" -X GET http://a14026b378049468c89f18868a933e44-

673171692.eu-central-1.elb.amazonaws.com

Here you provide key/value pair (name=foo), and since you can recall

from our cuckoo Wasm module, foo is one of the entries present in the

cuckoo filter, and therefore you get true as the answer.

When you try with a value like foo1, the service returns false as the

answer.

The following is a scenario.

curl -d "name=foo" -X GET http://a14026b378049468c89f18868a933e44-

673171692.eu-central-1.elb.amazonaws.com

results in answer as true

This is another scenario.

curl -d "name=foo1" -X GET http://a14026b378049468c89f18868a933e44-

673171692.eu-central-1.elb.amazonaws.com

returns false as the answer

Chapter 7 Wasm and Kubernetes

144

�A Golang-based Web App Deployed
on Kubernetes
The Golang-based web app uses the Wasmer engine for WebAssembly.

This needs one additional change than the Rust-based web app, which

is the libwasmer.so file. The specific version is made part of the GitHub

project and can be taken from there.

More adventurous readers can install the Wasmer dependency on their

machines and then extract the libwasmer.so file from there.

Install the wasmer dependency

go get github.com/wasmerio/wasmer-go/wasmer

You can find the libwasmer.so file at $GOPATH/pkg/mod/github.com/

wasmerio/go-ext-wasm@v0.3.1/wasmer/.

$GOPATH/pkg/mod/github.com/wasmerio/go-ext-wasm@v0.3.1/wasmer/

To avoid version conflicts, it’s advisable to take this library from GitHub

for this book.

Create the Docker file as follows.

FROM golang:latest

RUN mkdir -p /app

WORKDIR /app

Add . /app

RUN go mod download

RUN go mod tidy

RUN go get github.com/wapc/wapc-go

RUN go get github.com/izinin/json2msgpack

RUN LD_LIBRARY_PATH="/app/"

RUN go build -o main .

EXPOSE 8080

Chapter 7 Wasm and Kubernetes

145

CMD

["./main","cuckoo_wapc.wasm","check_word_exists"]

In the Docker file, you should set the LD_LIBRARY_PATH to the

libwasmer.so file to have the Wasmer dependency loaded by the

executable you create.

Building the Docker file using the Docker build command shows the

following output.

Step 3/12 : WORKDIR / app

---> Using cache

---> 81639c22f11f

Step 4/12 : Add . /app

---> 81f4479bbedc

Step 5/12 : RUN go mod download

---> Running in Oda 970b67fce

Removing intermediate container Oda 970b67fce

---> 7f1d28c92ec5

Step 6/12 : RUN go mod tidy

---> Running in a06abd4267a9

Removing intermediate container a06abd4267a9

---> 04a 906b 68 48a

Step 7/12 : RUN go get github.com/wapc/wapc-go

---> Running in 34 cea 66da01d

go: downloading github.com/wapc/wapc-go v0.3.0

go get: upgraded github.com/wapc/wapc-go v0.2.1 => v0.3.0

Removing intermediate container 34cea66da01d

---> b75d6701c544

Step 8/12 : RUN go get github.com/izinin/json2msgpack

---> Running in 9b2a05abed9f

Removing intermediate container 9b2a05abed9f

---> 663306c823b7

Step 9/12 : RUN LD_LIBRARY_PATH="/app/"

Chapter 7 Wasm and Kubernetes

146

---> Running in f7d49afc76fa

Removing intermediate container f7d49afc76fa

---> 8a1491b3297a

Step 10/12 : RUN go build -o main.

---> Running in ac5504bef124

Removing intermediate container ac5504bef124

---> 3a8b2964544f

Step 11/12 : EXPOSE 8080

---> Running in fda06563256d

Removing intermediate container fda06563256d

---> 189433b6ca29

Step 12/12 : CMD ("./main","cuckoo_wapc.wasm", "check_word_exists"]

---> Running in 6e63d55f3986

Removing intermediate container 6e63d55f3986

---> 07edf39f79f7

Successfully built 07edf39f79f7

Successfully tagged smjain/goexample:latest

The Docker file passes two arguments.

•	 The Wasm file used for all the web apps

•	 The Wasm function name (check_word_exists)

You are tagging it as smjain/goexample. You can choose your own tag

based on the Docker registry you use.

Once the build is done, you can check the container locally.

docker run -p 8080:8080 smjain/goexample

You can test this locally.

curl -G -i "http://localhost:8080"--data-urlencode

'key={"name":"bar"}'

This should return true as the answer.

Chapter 7 Wasm and Kubernetes

147

�Kubernetes Deployment of the Golang
Web App
Once you push the Docker image to Docker Hub, it’s time to deploy it on

Kubernetes.

Create two yaml files.

•	 For the pod

•	 For the Kubernetes service to expose the pod over a

load balancer

�The Pod Yaml File
Create a yaml file named goexample.yaml and copy the following content.

apiVersion: v1

kind: Pod

metadata:

 name: golang-example

 labels:

 role: golang-example

spec:

 containers:

 - name: web

 image: smjain/goexample:latest

 ports:

 - name: web

 containerPort: 8080

 protocol: TCP

Chapter 7 Wasm and Kubernetes

148

The image refers to the Docker image you pushed to Docker Hub

(smjain/rustexample).

The Rust web app is exposed as port 8080 on the host on which the

Docker image runs.

�The Service Yaml File
Create a yaml file named golangservice.yaml and copy the following

content.

apiVersion: v1

kind: Service

metadata:

 name: go-web-service

spec:

 type: LoadBalancer

 ports:

 - name: http

 port: 80

 targetPort: 8080

 selector:

 role: golang-example

The load balancer service type allows the web app to be consumed

using the AWS load balancer in the example.

Deploy the pod using the following command.

kubectl apply -f goexample.yaml --namespace test

Deploy the service using the below command

kubectl apply -f golangservice.yaml --namespace test

Pods can be checked by using the command.

kubectl get pods --namespace test

Chapter 7 Wasm and Kubernetes

149

You can check the services using the following command.

kubectl get svc –namespace test

On running cURL on the service URL(obtained from the above command)

curl -G -i "http://a8bd4a1ee42b0464db9643276640023a-1165927956.

eu-central-1.elb.amazonaws.com" --data-urlencode

'key={"name":"bar"}'

ubuntu@INLN34327424A:~$ curl -G -i "http://

a8bd4a1ee42b0464db9643276640023a-1165927956.eu-central-1.elb.

amazonaws.com" --data-urlencode 'key={"name":"bar"}'

HTTP/1.1 200 OK

Date: Tue, 03 Aug 2021 03:10:06 GMT

Content-Length: 5

Content-Type: text/plain; charset=utf-8

True

Try with an entry that doesn’t exist.

ubuntu@INLN34327424A:~$ curl -G -i "http://

a8bd4a1ee42b0464db9643276640023a-1165927956.eu-central-1.elb.

amazonaws.com" --data-urlencode 'key={"name":"foo_x"}'

HTTP/1.1 200 OK

Date: Tue, 03 Aug 2021 03:12:26 GMT

Content-Length: 6

Content-Type: text/plain; charset=utf-8

False

Figure 7-6.  Pods in namespace test

Chapter 7 Wasm and Kubernetes

150

The cuckoo filter Wasm module is now serving the HTTP request over

the Kubernetes service.

�Summary
In this chapter, you learned the basics of Docker and Kubernetes. You also

learned how to make a web application, create a Docker file, and build a

Docker image from it. In addition, you learned how to deploy this Docker

file in Kubernetes and expose it over a load balancer. The service deployed

on receipt of an HTTP request loads the Wasm module and invokes the

function it exposes.

Chapter 7 Wasm and Kubernetes

151© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_8

CHAPTER 8

Extending Istio with
WebAssembly
This chapter looks at using WebAssembly in an Istio/Envoy API gateway

scenario.

�What Is Envoy?
First, let’s talk about a few ways by which you can extend the functionality

of Envoy. The Envoy proxy executes a variety of filters as part of an HTTP

and TCP request process that provides features such as network routing,

observability, and security.

Using these different filters, you can message individual TCP/HTTP

requests. You can easily achieve things like updating headers, performing

security checks like authentication, collecting stats, and so forth.

Figure 8-1.  Envoy filter chains for request processing

https://doi.org/10.1007/978-1-4842-7496-5_8#DOI

152

There are various prebuilt filters available, such as the envoy.

filters.http.ratelimit filter that allows you to configure rate limiting for

your services, the CSRF filter, the CORS filter, and more. You should

always check the latest version to see what it supports before extending

Envoy. However, you can also write your own filters and extend Envoy

functionality.

Envoy also comes embedded with a V8 virtual machine (VM). V8 is

a high-performance JavaScript and WebAssembly engine written in C++

and used in Chrome and Node.js (along with other applications and

platforms). This engine allows you to deploy WebAssembly-based filters

launched as part of the Envoy request processing pipeline.

Envoy operates using a multithreaded model. That means there’s one

main thread that is responsible for handling configuration updates and

executing global tasks.

In addition to the main thread, there are also worker threads

responsible for processing individual HTTP requests and TCP

connections. The worker threads work on an event loop-based model and

are independent of each other. The Envoy worker thread loads the Wasm

module and executes it.

Envoy’s more technical details are beyond the scope of this book.

Now, let’s start creating a Rust-based Wasm filter that deploys on the

Envoy engine.

�Rust-based Wasm Filter
First, install Docker and Docker Compose on an Ubuntu machine. Then,

create a Rust project named envoy_wasm using the following command.

cargo new envoy_wasm --lib

Chapter 8 Extending Istio with WebAssembly

153

The following is the Cargo.toml file content.

[package]

name = "envoy_wasm"

version = "0.1.0"

edition = "2018"

�See more keys and their definitions at https://doc.rust-lang.

org/cargo/reference/manifest.html

[dependencies]

log = "0.4.8"

proxy-wasm = "0.1.0" # The Rust SDK for proxy-wasm

[lib]

path = "src/lib.rs"

crate-type = ["cdylib"]

The src/lib.rs file has the following contents.

use log::info;

use proxy_wasm as wasm;

#[no_mangle]

pub fn _start() {

// proxy_wasm::set_log_level(wasm::types::LogLevel::Trace);

 proxy_wasm::set_http_context(

 �|context_id, _root_context_id| -> Box<dyn

wasm::traits::HttpContext> {

 Box::new(HelloWorld { context_id })

 },

)

}

Chapter 8 Extending Istio with WebAssembly

154

struct HelloWorld {

 context_id: u32,

}

impl wasm::traits::Context for HelloWorld {}

impl wasm::traits::HttpContext for HelloWorld {

 �fn on_http_request_headers(&mut self, num_headers: usize)

-> wasm::types::Action {

 �info!("Got {} HTTP headers in #{}.", num_headers,

self.context_id);

 let headers = self.get_http_request_headers();

 let mut authority = "";

 for (name, value) in &headers {

 if name == ":authority" {

 authority = value;

 }

 }

 �self.set_http_request_header("x-hello", Some(&format!

("Hello world from {}", authority)));

 wasm::types::Action::Continue

 }

}

This code prints the headers in the HTTP request.

Building the rust based wasm filter

cargo build --target wasm32-unknown-unknown --release

Once the Wasm file is built, it’s time to deploy it to Envoy.

Chapter 8 Extending Istio with WebAssembly

155

�Deployment Steps
First, clone the Git repository at https://github.com/allthingssecurity/

rustenvoy in your directory by using the following command.

copy the envoy_wasm.wasm file to the rustenvoy/envoy directory

cp target/wasm32-unknown-unknown/release/envoy_wasm.wasm

rustenvoy/envoy

�Envoy Setup
Let’s use Istio Envoy v2 for loading and executing the Wasm module.

The following is the content of the Docker file in the envoy/Dockerfile.

proxy directory.

FROM istio/proxyv2

#FROM yskopets/envoy-wasm:64d91b2

ENTRYPOINT /usr/local/bin/envoy -c /etc/envoy.yaml -l

debug --service-cluster proxy

The following is the Docker Compose file content.

version: '2'

services:

 proxy:

 build:

 context: ./envoy

 dockerfile: Dockerfile.proxy

 volumes:

 - ./envoy/envoy.yaml:/etc/envoy.yaml

 - ./envoy/envoy_wasm.wasm:/etc/envoy_wasm.wasm

 # �Uncomment this line if you want to use your own Envoy

with WASM enabled.

Chapter 8 Extending Istio with WebAssembly

https://github.com/allthingssecurity/rustenvoy
https://github.com/allthingssecurity/rustenvoy

156

 # - ./envoy/istio/envoy:/usr/local/bin/envoy

 networks:

 - envoymesh

 expose:

 - "80"

 - "8001"

 ports:

 - "18000:80"

 - "18001:8001"

 web_service:

 image: hashicorp/http-echo

 command:

 - '-text="You just ran wasm module within Istio/Envoy"'

 networks:

 envoymesh:

 aliases:

 - web_service

 expose:

 - "5678"

 ports:

 - "18080:5678"

networks:

 envoymesh: {}

This file starts two Docker containers: one for Envoy and one for an

echo service proxied by Envoy. The echo service runs at port 5678, and

Envoy listens at port 18000.

envoy.yaml located under the rustenvoy/envoy directory

static_resources:

 listeners:

 - name: main

Chapter 8 Extending Istio with WebAssembly

157

 address:

 socket_address:

 address: 0.0.0.0

 port_value: 80

 filter_chains:

 - filters:

 - name: envoy.http_connection_manager

 config:

 stat_prefix: ingress_http

 codec_type: auto

 route_config:

 name: local_route

 virtual_hosts:

 - name: local_service

 domains:

 - "*"

 routes:

 - match:

 prefix: "/"

 route:

 cluster: web_service

 http_filters:

 - name: envoy.filters.http.wasm

 config:

 config:

 name: "prime_auth"

 root_id: "prime_auth"

 vm_config:

 runtime: "envoy.wasm.runtime.v8"

 code:

 local:

Chapter 8 Extending Istio with WebAssembly

158

 filename: "/etc/envoy_wasm.wasm"

 allow_precompiled: true

 - name: envoy.router

 config: {}

 - name: staticreply

 address:

 socket_address:

 address: 127.0.0.1

 port_value: 8099

 filter_chains:

 - filters:

 - name: envoy.http_connection_manager

 config:

 stat_prefix: ingress_http

 codec_type: auto

 route_config:

 name: local_route

 virtual_hosts:

 - name: local_service

 domains:

 - "*"

 routes:

 - match:

 prefix: "/"

 direct_response:

 status: 200

 body:

 inline_string: "example body\n"

 http_filters:

 - name: envoy.router

 config: {}

Chapter 8 Extending Istio with WebAssembly

159

 clusters:

 - name: web_service

 connect_timeout: 0.25s

 type: STRICT_DNS

 lb_policy: round_robin

 hosts:

 - socket_address:

 address: web_service

 port_value: 5678

admin:

 access_log_path: "/dev/null"

 address:

 socket_address:

 address: 0.0.0.0

 port_value: 8001

�Launch Envoy
From the rustenvoy directory (where the Docker Compose file is located),

run the following command.

docker-compose up --build

You should see Envoy and the echo service starting in their respective ports.

Once Envoy launches, create a cURL request to it using a separate

console/shell.

curl -H "name":"shashank" 0.0.0.0:18000

The preceding command injects an HTTP header with “name” as the

name and “shashank” as the value.

Chapter 8 Extending Istio with WebAssembly

160

On examining the console where Envoy is running, you see the

following output and HTTP headers printed (shown in bold).

| ':authority', '0.0.0.0:18000'
proxy_1 | ':path', '/'
proxy_1 | ':method', 'GET'
proxy_1 | ':scheme', 'http'
proxy_1 | 'user-agent', 'curl/7.64.0'
proxy_1 | 'accept', '*/*'
proxy_1 | 'name', 'shashank'
proxy_1 | 'x-forwarded-proto', 'http'
proxy_1 | �'x-request-id', 'e971db8c-7b92-4734-a08f-

25e495d11e5b'
proxy_1 | 'x-envoy-expected-rq-timeout-ms', '15000'

�Summary
In this chapter, you learned the basics of Envoy and how to install it on an

Ubuntu machine using func e. You also learned how to use proxy-wasm to

create Wasm-based filters for HTTP request processing in Envoy. Finally,

you learned how to deploy the Wasm filters in Envoy.

This book began with an introduction to WebAssembly, discussing

what it means for browsers and cloud-based applications. Later, it

introduced wat (WebAssembly text format), allowing you to write

WebAssembly modules in text format and translate it to a fully functional

Wasm module. It also discussed tools like WaPC for handling complex

types in Wasm modules.

You learned how to create a simple Wasm module based on the cuckoo

filter and exposed it over an HTTP interface locally and remotely (by

deploying it into the Kubernetes cluster). Finally, you learned how to use

Wasm within Istio/Envoy by creating a simple HTTP filter Wasm module.

Overall, Wasm holds a lot of promise for the future of cloud and

edge-based workloads.

Chapter 8 Extending Istio with WebAssembly

161© Shashank Mohan Jain 2022
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5

Index

A
Address space randomized layout

(ASRL), 23
Amazon Elastic Kubernetes Service

(Amazon EKS), 140

B
Bloom filter, 72–76, 98

C
Cargo.toml file, 81, 93, 118
cgroups, 131
Cloud Native Computing

Foundation, 3
Compute unit, 2
Container-based virtualization, 1
Cuckoo filters, 77, 84
cuckoo_http binary file, 127
cuckoo.wasm file, 82

D
Docker, 129, 130
Docker compose file, 136, 155
Docker images, 132, 139
Docker registry, 139, 146

E, F
Envoy, 151, 152, 154, 159
Envoy proxy, 151

G
Golang-based web app, 144, 145
golangservice.yaml, 148
Google Kubernetes

Engine (GKE), 140
greetMe function, 61, 62, 66

H
Hash operations, 76
Homeostasis, 133
Hypervisor, 1

I, J
init() method, 99
Interoperable, 2, 4

K
Kubelet, 135
Kubernetes, 2, 73, 129, 132
Kubernetes cluster, 135, 140, 143, 160

https://doi.org/10.1007/978-1-4842-7496-5#DOI

162

L, M
Layered file system mechanism, 131
Linux namespaces, 131

N, O
Namespaces, 1, 131, 133

P, Q
passStringToWasm0 function, 65, 66

R, S
Rust code, 70, 78, 82, 84
Rust function, 58, 62

T
TextDecoder, 63
Text toolkit

definition, 33
wat2wasm utility, 33

calc.wasm file, 52
memory, 46
module, 48
string.wat file, 47
table, 49–51
WABT, 36–40, 42–45
wasm-objdump, 53, 54

Textual format, 10, 33

U
Ubuntu machine, 105, 152, 160

V
Virtual machine (VM), 1, 152

W, X
Wasm, 2

Cloud, 4
runtime performance, 6

Wasm-bindgen, 57, 58
CLI, 60
tool, 67

Wasm module, 109
HTTP, 124
HTTP server, 109
node, 121, 123
src directory, 112, 116, 119

wasm_parser directory, 27
WebAssembly, 1

architecture, 8
stack-based virtual machine, 9

use case, 8
WebAssembly Binary Toolkit

(WABT), 34
WebAssembly module

code instructions, 16
code section, 18, 19
custom section, 25
data section, 23
export, 20
function section, 18
global section, 25
import, 20
memory, 22, 23
table section, 20, 21

INDEX

163

type section, 17, 18
wasm file, 13, 15, 25–31

WebAssembly Procedure Calls
(waPC), 87, 88

Bloom filter, 98
complete code, 92, 94
complex type, 98
compliant project, 90
Go binary, 107
host code, 100, 101
Rust program, 104
source code, 89

Wasmer, 105
Wasm module, 96

WebAssembly System Interface
(WASI), 4

WebAssembly text format (wat), 33,
43, 160

Y, Z
Yaml file

pod, 141
service, 141–143

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: WebAssembly Introduction
	Wasm in the Cloud
	WebAssembly Use Cases
	WebAssembly Architecture
	Stack-Based Virtual Machine
	Summary

	Chapter 2: WebAssembly Module Internals: Sections and Memory Model
	Type Section
	Function Section
	Code Section
	Export Section
	Import Section
	Table Section
	Memory Section
	Data Section
	Custom Section
	Start Section
	Global Section
	Programmatically Parsing a Wasm File
	Summary

	Chapter 3: WebAssembly Text Toolkit and Other Utilities
	The wat2wasm Utility
	Tables
	The wasm2wat Utility
	Object Dump Using wasm-objdump
	Summary

	Chapter 4: WebAssembly with Rust and JavaScript: An Introduction to wasm-bindgen
	wasm-bindgen
	Prerequisites
	Complex Types via wasm-bindgen
	The Bloom Filter
	How a Bloom Filter Works
	The Cuckoo Filter
	Summary

	Chapter 5: waPC
	waPC Architecture
	Handling a Complex Type
	Rust Host for waPC-based Bindings
	Summary

	Chapter 6: Wasm Web Interface
	Node Example
	Summary

	Chapter 7: Wasm and Kubernetes
	Docker
	Kubernetes
	The Workings of Kubernetes
	Packaging a Rust Web App into a Docker Container
	Pushing an Image to a Docker Registry
	Prerequisites
	The Pod Yaml File
	The Service Yaml File

	A Golang-based Web App Deployed on Kubernetes
	Kubernetes Deployment of the Golang Web App
	The Pod Yaml File
	The Service Yaml File

	Summary

	Chapter 8: Extending Istio with WebAssembly
	What Is Envoy?
	Rust-based Wasm Filter
	Deployment Steps
	Envoy Setup
	Launch Envoy
	Summary

	Index

