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Linux containers make it easy to package, deploy, 
and scale your applications, but the process of 
doing so is not without mystery. In The Book of 
Kubernetes, you’ll explore the inner workings of the 
Kubernetes system and learn how to leverage it to 
build performant, reliable, and resilient cloud-native 
applications that handle failure gracefully. 

You’ll learn how containers use namespaces to isolate 
processes and how they leverage resource limiting 
to guarantee a process uses only its allocated CPU, 
memory, and network resources. You’ll install a 
Kubernetes cluster, deploy containers to it, and explore 
how packets fl ow between containers across the host 
network. Finally, you’ll learn how to schedule and run 
containers to maximize performance, identify potential 
problems, and fi x them.

You’ll also learn how to:

• Make applications more performant with 
autoscaling, dynamic discovery, and load balancing

• Confi gure server authentication and role-based 
access control

• Detect and recover from failures, schedule the 
deployment of new containers, and confi gure 
network routing

• Extend a Kubernetes cluster to add new features 
such as automating the deployment of a highly 
available database engine

Regardless of your experience, whether you’re 
a software developer or a sysadmin type, this 
comprehensive guide will show you how to master the 
art of containerizing complex applications and make 
them more reliable.
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INTRODUCT ION

Containers and Kubernetes together are
changing the way that applications are ar
chitected, developed, and deployed. Con

tainers ensure that software runs reliably no
matter where it’s deployed, and Kubernetes lets you
manage all of your containers from a single control
plane.

This book is designed to help you take full advantage of these essential
new technologies, using handson examples not only to try out the major fea
tures but also to explore how each feature works. In this way, beyond simply
being ready to deploy an application to Kubernetes, you’ll gain the skills to
architect applications to be performant and reliable in a Kubernetes cluster,
and to quickly diagnose problems when they arise.

The Approach
The biggest advantage of a Kubernetes cluster is that it hides the work of
running containers across multiple hosts behind an abstraction layer. A Ku
bernetes cluster is a “black box” that runs what we tell it to run, with auto
matic scaling, failover, and upgrades to new versions of our application.



Even though this abstraction makes it easier to deploy and manage ap
plications, it also makes it difficult to understand what a cluster is doing.
For this reason, this book presents each feature of container runtimes and
Kubernetes clusters from a “debugging” perspective. Every good debug
ging session starts by treating the application as a black box and observing
its behavior, but it doesn’t end there. Skilled problem solvers know how to
open the black box, diving below the current abstraction layer to see how the
program runs, how data is stored, and how traffic flows across the network.
Skilled architects use this deep knowledge of a system to avoid performance
and reliability issues. This book provides the detailed understanding of con
tainers and Kubernetes that only comes from exploring not only what these
technologies do but also how they work.

In Part I, we’ll begin by running a container, but then we’ll dive into the
container runtime to understand what a container is and how we can simu
late a container using normal operating system commands. In Part II, we’ll
install a Kubernetes cluster and deploy containers to it. We’ll also see how
the cluster works, including how it interacts with the container runtime and
how packets flow from container to container across the host network. The
purpose is not to duplicate the reference documentation to show every op
tion offered by every feature but to demonstrate how each feature is imple
mented so that all that documentation will make sense and be useful.

A Kubernetes cluster is complicated, so this book includes extensive
handson examples, with enough automation to allow you to explore each
chapter independently. This automation, which is available at https://github
.com/bookofkubernetes/examples, is published under a permissive open source
license, so you can explore, experiment, and use it in your own projects.

Running Examples
In many of this book’s example exercises, you’ll be combining multiple hosts
together to make a cluster, or working with lowlevel features of the Linux
kernel. For this reason, and to help you feel more comfortable with exper
imentation, you’ll be running examples entirely on temporary virtual ma
chines. That way, if you make a mistake, you can quickly delete the virtual
machine and start over.

The example repository for this book is available at https://github.com/
bookofkubernetes/examples. All of the instructions for setting up to run exam
ples are provided in a README.md file within the setup folder of the exam
ple repository.

What You Will Need
Even though you’ll be working in virtual machines, you’ll need a control ma
chine to start from that can run Windows, macOS, or Linux. It can even
be a Chromebook that supports Linux. If you are running Windows, you’ll
need to use the Windows Subsystem for Linux (WSL) in order to get Ansible
working. See the README.md in the setup folder for instructions.
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Run in the Cloud or Local
To make these examples as accessible as possible, I’ve provided automation
to run them either using Vagrant or Amazon Web Services (AWS). If you
have access to a Windows, macOS, or Linux computer with at least eight
cores and 8GB of memory, try installing VirtualBox and Vagrant and work
with local virtual machines. If not, you can set yourself up to work with AWS.

We use Ansible to perform AWS setup and automate some of the te
dious steps. Each chapter includes a separate Ansible playbook that makes
use of common roles and collections. This means that you can work exam
ples from chapter to chapter, starting with a fresh installation each time. In
some cases, I’ve also provided an “extra” provisioning playbook that you can
optionally use to skip some of the detailed installation steps and get straight
to the learning. See the README.md in each chapter’s directory for more
information.

Terminal Windows
After you’ve used Ansible to provision your virtual machines, you’ll need
to get at least one terminal window connected to run commands. The
README.md file in each chapter will tell you how to do that. Before run
ning any examples, you’ll first need to become the root user, as follows:

sudo su -

This will give you a root shell and set up your environment and home
directory to match.

RUNNING AS ROOT

If you’ve worked with Linux before, you probably have a healthy aversion to
working as root on a regular basis, so it might surprise you that all of the ex-
amples in this book are run as the root user. This is a big advantage of using
temporary virtual machines and containers; when we act as the root user, we
are doing so in a temporary, confined space that can’t reach out and affect
anything else.

As you move from learning about containers and Kubernetes to running appli-
cations in production, you’ll be applying security controls to your cluster that will
limit administrative access and will ensure that containers cannot break out of
their isolated environment. This often includes configuring your containers so
that they run as a non-root user.

In some examples, you’ll need to open multiple terminal windows in
order to leave one process running while you inspect it from another termi
nal. How you do that is up to you; most terminal applications support multi
ple tabs or multiple windows. If you need a way to open multiple terminals
within a single tab, try exploring a terminal multiplexer application. All of
the temporary virtual machines used in the examples come with both screen

and tmux installed and ready to use.
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PART I
MAKING AND US ING CONTA INERS

Containers are essential to modern application archi
tecture. They simplify packaging, deploying, and scal
ing application components. They enable building
reliable and resilient applications that handle failure
gracefully. However, containers can also be confus
ing. They look like completely different systems, with
separate hostnames, networking, and storage, but they
do not have many of the features of a separate system,
such as a separate console or system services. To un
derstand how containers look like separate systems
without really being separate, let’s explore containers,
container engines, and Linux kernel features.





1
WHY CONTA INERS MATTER

It’s a great time to be a software developer.
Creating a brandnew application and mak
ing it available to millions of people has never

been easier. Modern programming languages,
open source libraries, and application platforms make
it possible to write a small amount of code and end up
with lots of functionality. However, although it’s easy
to get started and create a new application quickly, the
best application developers are those who move be
yond treating the application platform as a “black box”
and really understand how it works. Creating a reli
able, resilient, and scalable application requires more
than just knowing how to create a Deployment in the
browser or on the command line.

In this chapter, we’ll look at application architecture in a scalable, cloud
native world. We will show why containers are the preferred way to pack
age and deploy application components, and how container orchestration
addresses key needs for containerized applications. We’ll finish with an



example application deployed to Kubernetes to give you an introductory
glimpse into the power of these technologies.

Modern Application Architecture
The main theme of modern software applications is scale. We live in a world
of applications with millions of simultaneous users. What is remarkable is
the ability of these applications to achieve not only this scale but also a level
of stability such that an outage makes headlines and serves as fodder for
weeks or months of technical analysis.

With so many modern applications running at large scale, it can be easy
to forget that a lot of hard work goes into architecting, building, deploying,
and maintaining applications of this caliber, whether the scale they’re de
signed for is thousands, millions, or billions of users. Our job in this chapter
is to identify what we need from our application platform to run a scalable,
reliable application, and to see how containerization and Kubernetes meet
those requirements. We’ll start by looking at three key attributes of modern
application architecture. Then we’ll move on to looking at three key benefits
these attributes bring.

Attribute: Cloud Native
There are lots of ways to define cloud native technologies (and a good place
to start is the Cloud Native Computing Foundation at https://cncf.io). I like
to start with an idea of what “the cloud” is and what it enables so that we
can understand what kind of architecture can make best use of it.

At its heart, the cloud is an abstraction. We talked about abstractions
in the introduction, so you know that abstractions are essential to comput
ing, but we also need a deep understanding of our abstractions to use them
properly. In the case of the cloud, the provider is abstracting away the real
physical processors, memory, storage, and networking, allowing cloud users
to simply declare a need for these resources and have them provisioned on
demand. To have a “cloud native” application, then, we need an application
that can take advantage of that abstraction. As much as possible, the applica
tion shouldn’t be tied to a specific host or a specific network layout, because
we don’t want to constrain our flexibility in how application components are
divided among hosts.

Attribute: Modular
Modularity is nothing new to application architecture. The goal has always
been high cohesion, where everything within a module relates to a single pur
pose, and low coupling, where modules are organized to minimize intermod
ule communication. However, even though modularity remains a key design
goal, the definition of what makes a module is different. Rather than just
treat modularity as a way of organizing the code, modern application archi
tecture today prefers to carry modularity into the runtime, providing each
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module with a separate operating system process and discouraging the use
of a shared filesystem or shared memory for communication. Because mod
ules are separate processes, communication between modules is standard
network (socket) communication.

This approach seems wasteful of hardware resources. It is more compact
and faster to share memory than it is to copy data over a socket. But there
are two good reasons to prefer separate processes. First, modern hardware
is fast and getting faster, and it would be a form of premature optimization
to imagine that sockets are not fast enough for our application. Second, no
matter how large a server we have, there is going to be a limit to how many
processes we can fit on it, so a shared memory model ultimately limits our
ability to grow.

Attribute: Microservice-Based
Modern application architecture is based on modules in the form of sepa
rate processes—and these individual modules tend to be very small. In the
ory, a cloud can provide us with virtual servers that are as powerful as we
need; however, in practice, using a few powerful servers is more expensive
and less flexible than many small servers. If our modules are small enough,
they can be deployed to cheap commodity servers, which means that we can
leverage our cloud provider’s hardware to best advantage. Although there
is no single answer as to how small a module needs to be in order to be a
microservice, “small enough that we can be flexible regarding where it is de
ployed” is a good first rule.

A microservice architecture also has practical advantages for organiz
ing teams. Ever since Fred Brooks wrote The Mythical ManMonth, architects
have understood that organizing people is one of the biggest challenges
to developing large, complex systems. Building a system from many small
pieces reduces the complexity of testing but also makes it possible to orga
nize a large team of people without everyone getting in everyone else’s way.

WHAT ABOUT APPLICATION SERVERS?

The idea of modular services has a long history, and one popular way to
implement it was building modules to run in an application server, such as a
Java Enterprise environment. Why not then just continue to follow that pattern
for applications?

Although application servers were successful for many uses, they don’t have the
same degree of isolation that a microservice architecture has. As a result, there
are more issues with interdependency, leading to more complex testing and
reduced team independence. Additionally, the typical model of having a single
application server per host, with many applications deployed to it and sharing
the same process space, is much less flexible than the containerized
approaches you will see in this book.

(continued)
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This is not to say that you should immediately throw away your application
server architecture to use containers. There are lots of benefits to container-
ization for any architecture. But as you adopt a containerized architecture, over
time it will make sense for you to move your code toward a true microservice
architecture to take best advantage of what containers and Kubernetes offer.

We’ve looked at three key attributes of modern architecture. Now, let’s
look at three key benefits that result.

Benefit: Scalability
Let’s begin by envisioning the simplest application possible. We create a sin
gle executable that runs on a single machine and interacts with only a single
user at a time. Now, suppose that we want to grow this application so that it
can interact with thousands or millions of users at once. Obviously, no mat
ter how powerful a server we use, eventually some computing resource will
become a bottleneck. It doesn’t matter whether the bottleneck is processing,
or memory, or storage, or network bandwidth; the moment we hit that bot
tleneck, our application cannot handle any additional users without hurting
performance for others.

The only possible way to solve this issue is to stop sharing the resource
that caused the bottleneck. This means that we need to find a way to dis
tribute our application across multiple servers. But if we’re really scaling up,
we can’t stop there. We need to distribute across multiple networks as well,
or we’ll hit the limit of what one network switch can do. And eventually, we
will even need to distribute geographically, or we’ll saturate the broader
network.

To build applications with no limit to scalability, we need an architecture
that can run additional application instances at will. And because an appli
cation is only as slow as its slowest component, we need to find a way to scale
everything, including our data stores. It’s obvious that the only way to do this
effectively is to create our application from many independent pieces that
are not tied to specific hardware. In other words, cloud native microservices.

Benefit: Reliability
Let’s go back to our simplest possible application. In addition to scalabil
ity limits, it has another flaw. It runs on one server, and if that server fails,
the entire application fails. Our application is lacking reliability. As before,
the only possible way to solve this issue is to stop sharing the resource that
could potentially fail. Fortunately, when we start distributing our applica
tion across many servers, we have the opportunity to avoid a single point of
failure in the hardware that would bring down our application. And as an
application is only as reliable as its least reliable component, we need to find
a way to distribute everything, including storage and networks. Again, we
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need cloud native microservices that are flexible about where they are run
and about how many instances are running at once.

Benefit: Resilience
There is a third, subtler advantage to cloud native microservice architec
ture. This time, imagine an application that runs on a single server, but it
can easily be installed as a single package on as many servers as we like. Each
instance can serve a new user. In theory, this application would have good
scalability, given that we can always install it on another server. And over
all, the application could be said to be reliable because a failure of a single
server is going to affect only that one user, whereas the others can keep run
ning as normal.

What is missing from this approach is the concept of resilience, or the
ability of an application to respond meaningfully to failure. A truly resilient
application can handle a hardware or software failure somewhere in the ap
plication without an end user noticing at all. And although separate, unre
lated instances of this application keep running when one instance fails, we
can’t really say that the application exhibits resilience, at least not from the
perspective of the unlucky user with the failed system.

On the other hand, if we construct our application out of separate mi
croservices, each of which has the ability to communicate over a network
with other microservices on any server, the loss of a single server might cost
us several microservice instances, but end users can be moved to other in
stances on other servers transparently, such that they don’t even notice the
failure.

Why Containers
I’ve made modern application architecture with its fancy cloud native mi
croservices sound pretty appealing. Engineering is full of tradeoffs, how
ever, so experienced engineers will suspect that there must be some pretty
significant tradeoffs, and, of course, there are.

It’s very difficult to build an application from lots of small pieces. Or
ganizing teams around microservices so that they can work independently
from one another might be great, but when it comes time to put those to
gether into a working application, the sheer number of pieces means wor
rying about how to package them up, how to deliver them to the runtime
environment, how to configure them, how to provide them with (potentially
conflicting) dependencies, how to update them, and how to monitor them
to make sure they are working.

This problem only grows worse when we consider the need to run mul
tiple instances of each microservice. Now, we need a microservice to be
able to find a working instance of another microservice, balancing the load
across all of the working instances. We need that load balancing to reconfig
ure itself immediately if we have a hardware or software failure. We need
to fail over seamlessly and retry failed work in order to hide that failure
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from the end user. And we need to monitor not just each individual service,
but how all of them are working together to get the job done. After all, our
users don’t care if 99 percent of our microservices are working correctly if
the 1 percent failure prevents them from using our application.

We have lots of problems to solve if we want to build an application out
of many individual microservices, and we do not want each of our microser
vice teams working those problems, or they would never have time to write
code! We need a common way to manage the packaging, deployment, con
figuration, and maintenance of our microservices. Let’s look at two cate
gories of required attributes: those that apply to a single microservice, and
those that apply to multiple microservices working together.

Requirements for Containers
For a single microservice, we need the following:

Packaging Bundle the application for delivery, which needs to include
dependencies so that the package is portable and we avoid conflicts be
tween microservices.

Versioning Uniquely identify a version. We need to update microser
vices over time, and we need to know what version is running.

Isolation Keep microservices from interfering with one another. This
allows us to be flexible about what microservices are deployed together.

Fast startup Start new instances rapidly. We need this to scale and re
spond to failures.

Low overhead Minimize required resources to run a microservice in
order to avoid limits on how small a microservice can be.

Containers are designed to address exactly these needs. Containers pro
vide isolation together with low overhead and fast startup. And, as we’ll see
in Chapter 5, a container runs from a container image, which provides a way
to package an application with its dependencies and to uniquely identify the
version of that package.

Requirements for Orchestration
For multiple microservices working together, we need:

Clustering Provide processing, memory, and storage for containers
across multiple servers.

Discovery Provide a way for one microservice to find another. Our
microservices might run anywhere on the cluster, and they might move
around.

Configuration Separate configuration from runtime, allowing us to
reconfigure our application without rebuilding and redeploying our
microservices.
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Access control Manage authorization to create containers. This en
sures that the right containers run, and the wrong ones don’t.

Load balancing Spread requests among working instances in order to
avoid the need for end users or other microservices to track all microser
vice instances and balance the load themselves.

Monitoring Identify failed microservice instances. Load balancing
won’t work well if traffic is going to failed instances.

Resilience Automatically recover from failures. If we don’t have this
ability, a chain of failures could kill our application.

These requirements come into play only when we are running contain
ers on multiple servers. It’s a different problem from just packaging up and
running a single container. To address these needs, we require a container
orchestration environment. A container orchestration environment such as
Kubernetes allows us to treat multiple servers as a single set of resources to
run containers, dynamically allocating containers to available servers and
providing distributed communication and storage.

Running Containers
By now, hopefully you’re excited by the possibilities of building an applica
tion using containerized microservices and Kubernetes. Let’s walk through
the basics so that you can see what these ideas look like in practice, provid
ing a foundation for the deeper dive into container technology that you’ll
find in the rest of this book.

What Containers Look Like
In Chapter 2, we’ll look at the difference between a container platform and
a container runtime, and we’ll run containers using multiple container run
times. For now, let’s begin with a simple example running in the most pop
ular container platform, Docker. Our goal is to learn the basic Docker com
mands, which align to universal container concepts.

Running a Container
The first command is run, which creates a container and runs a command
inside it. We will tell Docker the name of the container image to use. We dis
cuss container images more in Chapter 5; for now, it’s enough to know that
it provides a unique name and version so that Docker knows exactly what to
run. Let’s get started using the example for this chapter.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.
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A key idea for this section is that containers look like a completely sep
arate system. To illustrate this, before we run a container, let’s look at the
host system:

root@host01:~# cat /etc/os-release

NAME="Ubuntu"

...

root@host01:~# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 12:59 ? 00:00:07 /sbin/init

...

root@host01:~# uname -v

#...-Ubuntu SMP ...

root@host01:~# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

...

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel ...

link/ether 08:00:27:bf:63:1f brd ff:ff:ff:ff:ff:ff

inet 192.168.61.11/24 brd 192.168.61.255 scope global enp0s8

valid_lft forever preferred_lft forever

inet6 fe80::a00:27ff:febf:631f/64 scope link

valid_lft forever preferred_lft forever

...

The first command looks at a file called /etc/osrelease, which has infor
mation about the installed Linux distribution. In this case, our example
virtual machine is running Ubuntu. That matches the output of the next
command, in which we see an Ubuntubased Linux kernel. Finally, we list
network interfaces and see an IP address of 192.168.61.11.

The example setup steps automatically installed Docker, so we have it
ready to go. First, let’s download and start a Rocky Linux container with a
single command:

root@host01:~# docker run -ti rockylinux:8

Unable to find image 'rockylinux:8' locally

8: Pulling from library/rockylinux

...

Status: Downloaded newer image for rockylinux:8

We use -ti in our docker run command to tell Docker that we need an in
teractive terminal to run commands. The only other parameter to docker run

is the container image, rockylinux:8, which specifies the name rockylinux and
the version 8. Because we don’t provide a command to run, the default bash
command for that container image is used.

10 Chapter 1



Now that we have a shell prompt inside the container, we can run a few
commands and then use exit to leave the shell and stop the container:

¶ [root@18f20e2d7e49 /]# cat /etc/os-release

· NAME="Rocky Linux"

...

¸ [root@18f20e2d7e49 /]# yum install -y procps iproute

...

[root@18f20e2d7e49 /]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root ¹ 1 0 0 13:30 pts/0 00:00:00 /bin/bash

root 19 1 0 13:46 pts/0 00:00:00 ps -ef

[root@18f20e2d7e49 /]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

º 18: eth0@if19: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0

valid_lft forever preferred_lft forever

[root@18f20e2d7e49 /]# uname -v

» #...-Ubuntu SMP ...

[root@18f20e2d7e49 /]# exit

When we run commands within our container, it looks like we are run
ning in a Rocky Linux system. Compared to the host system, there are multi
ple differences:

• A different hostname in the shell prompt ¶ (18f20e2d7e49 for mine,
though yours will be different)

• Different filesystem contents ·, including basic files like /etc/os
release

• The use of yum ¸ to install packages, and the need to install packages
even for basic commands

• A limited set of running processes, with no base system services and
our bash shell ¹ as process ID (PID) 1

• Different network devices º, including a different MAC address and
IP address

Strangely, however, when we run uname -v, we see the exact same Ubuntu
Linux kernel » as when we were on the host. Clearly, a container is not a
wholly separate system as we might otherwise believe.

Images and Volume Mounts
At first glance, a container looks like a mix between a regular process and
a virtual machine. And the way we interact with Docker only deepens that
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impression. Let’s illustrate that by running an Alpine Linux container. We’ll
start by “pulling” the container image, which feels a lot like downloading a
virtual machine image:

root@host01:~# docker pull alpine:3

3: Pulling from library/alpine

...

docker.io/library/alpine:3

Next, we’ll run a container from the image. We’ll use a volume mount
to see files from the host, a common task with a virtual machine. However,
we’ll also tell Docker to specify an environment variable, which is the kind of
thing we would do when running a regular process:

root@host01:~# docker run -ti -v /:/host -e hello=world alpine:3

/ # hostname

75b51510ab61

We can print the contents of /etc/osrelease inside the container, as before
with Rocky Linux:

/ # cat /etc/os-release

NAME="Alpine Linux"

ID=alpine

...

However, this time we can also print the host’s /etc/osrelease file because
the host filesystem is mounted at /host:

/ # cat /host/etc/os-release

NAME="Ubuntu"

...

And finally, within the container we also have access to the environment
variable we passed in:

/ # echo $hello

world

/ # exit

This mix of ideas from virtual machines and regular processes some
times leads new container users to ask questions like, “Why can’t I SSH into
my container?” A major goal of the next few chapters is to make clear what
containers really are.

What Containers Really Are
Despite what a container looks like, with its own hostname, filesystem, pro
cess space, and networking, a container is not a virtual machine. It does not
have a separate kernel, so it cannot have separate kernel modules or device
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drivers. A container can have multiple processes, but they must be started
explicitly by the first process (PID 1). So a container will not have an SSH
server in it by default, and most containers do not have any system services
running.

In the next several chapters, we’ll look at how a container manages to
look like a separate system while being a group of processes. For now, let’s
try one more Docker example to see what a container looks like from the
host system.

First, we’ll download and run NGINX with a single command:

root@host01:~# docker run -d -p 8080:80 nginx

Unable to find image 'nginx:latest' locally

latest: Pulling from library/nginx

...

Status: Downloaded newer image for nginx:latest

e9c5e87020372a23ce31ad10bd87011ed29882f65f97f3af8d32438a8340f936

This example illustrates a couple of additional useful Docker commands.
And again, we are mixing ideas from virtual machines and regular processes.
By using the -d flag, we tell Docker to run this container in daemon mode (in
the background), which is the kind of thing we would do for a regular pro
cess. Using -p 8080:80, however, brings in another concept from virtual ma
chines, as it instructs Docker to forward port 8080 on the host to port 80 in
the container, letting us connect to NGINX from the host even though the
container has its own network interfaces.

NGINX is now running in the background in a Docker container. To see
it, run the following:

root@host01:~# docker ps

CONTAINER ID IMAGE ... PORTS NAMES

e9c5e8702037 nginx ... 0.0.0.0:8080->80/tcp funny_montalcini

Because of the port forwarding, we can connect to it from our host sys
tem using curl:

root@host01:~# curl http://localhost:8080/

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

...

With this example, we’re starting to see how containerization meets
some of the needs we identified earlier in this chapter. Because NGINX is
packaged into a container image, we can download and run it with a single
command, with no concern for any conflict with anything else that might be
installed on our host.
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Let’s run one more command to explore our NGINX server:

root@host01:~# ps -ef | grep nginx | grep -v grep

root 35729 35703 0 14:17 ? 00:00:00 nginx: master ...

systemd+ 35796 35729 0 14:17 ? 00:00:00 nginx: worker ...

If NGINX were running in a virtual machine, we would not see it in a
ps listing on the host system. Clearly, NGINX in a container is running as a
regular process. At the same time, we didn’t need to install NGINX onto our
host system to get it working. In other words, we are getting the benefits of a
virtual machine approach without the overhead of a virtual machine.

Deploying Containers to Kubernetes
To have load balancing and resilience in our containerized applications, we
need a container orchestration framework like Kubernetes. Our example
system also has a Kubernetes cluster automatically installed, with a web ap
plication and database deployed to it. As a preparation for our deep dive
into Kubernetes in Part II, let’s look at that application.

There are many different options for installing and configuring a Kuber
netes cluster, with distributions available from many companies. We discuss
multiple options for Kubernetes distributions in Chapter 6. For this chap
ter, we’ll use a lightweight distribution called “K3s” from a company called
Rancher.

To use a container orchestration environment like Kubernetes, we have
to give up some control over our containers. Rather than executing com
mands directly to run containers, we’ll tell Kubernetes what containers we
want it to run, and it will decide where to run each container. Kubernetes
will then monitor our containers for us and handle automatic restart, failover,
updates to new versions, and even autoscaling based on load. This style of
configuration is called declarative.

Talking to the Kubernetes Cluster
A Kubernetes cluster has an API server that we can use to get status and
change the cluster configuration. We interact with the API server using the
kubectl client application. K3s comes with its own embedded kubectl com
mand that we’ll use. Let’s begin by getting some basic information about the
Kubernetes cluster:

root@host01:~# k3s kubectl version

Client Version: version.Info{Major:"1", ...

Server Version: version.Info{Major:"1", ...

root@host01:~# k3s kubectl get nodes

NAME STATUS ROLES AGE VERSION

host01 Ready control-plane... 2d v1...

As you can see, we’re working with a singlenode Kubernetes cluster. Of
course, this would not meet our needs for high availability. Most Kubernetes
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distributions, including K3s, support a multinode, highly available cluster,
and we will look at how that works in detail in Part II.

Application Overview
Our example application provides a “todo” list with a web interface, persis
tent storage, and tracking of item state. It will take several minutes for this to
be running in Kubernetes, even after the automated scripts are finished. Af
ter it’s running, we can access it in a browser and should see something like
Figure 11.

Figure 1-1: An example application in Kubernetes

This application is divided into two types of containers, one for each
application component. A Node.js application serves files to the browser
and provides a REST API. The Node.js application communicates with a
PostgreSQL database. The Node.js component is stateless, so it is easy to
scale up to as many instances as we need based on the number of users. In
this case, our application’s Deployment asked Kubernetes for three Node.js
containers:

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE

todo-db-7df8b44d65-744mt 1/1 Running 0 2d

todo-655ff549f8-l4dxt 1/1 Running 0 2d

todo-655ff549f8-gc7b6 1/1 Running 1 2d

todo-655ff549f8-qq8ff 1/1 Running 1 2d

The command get pods tells Kubernetes to list Pods. A Pod is a group of
one or more containers that Kubernetes treats as a single unit for scheduling
and monitoring. We look at Pods more closely throughout Part II.

Here, we have one Pod whose name starts with todo-db, which is our
PostgreSQL database. The other three Pods, with names starting with todo,
are the Node.js containers. (We’ll explain later why the names have random
characters after them; you can ignore that for now.)

According to Kubernetes, our application component containers are
running, so we should be able to access our application in a browser. How
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you do this depends on whether you are running in AWS or Vagrant; the ex
ample setup scripts will print out what URL you should use in your browser.
If you visit that URL, you should see something like Figure 11.

Kubernetes Features
If our only goal were to run four containers, we could have done that just
using the Docker commands described earlier. Kubernetes is providing a lot
more functionality, though. Let’s take a quick tour of the most important
features.

In addition to running our containers, Kubernetes is also monitoring
them. Because we asked for three instances, Kubernetes will work to keep
three instances running. Let’s destroy one and watch Kubernetes automati
cally recover:

root@host01:~# k3s kubectl delete pod todo-655ff549f8-qq8ff

pod "todo-655ff549f8-qq8ff" deleted

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE

todo-db-7df8b44d65-744mt 1/1 Running 0 2d

todo-655ff549f8-l4dxt 1/1 Running 0 2d

todo-655ff549f8-gc7b6 1/1 Running 1 2d

todo-655ff549f8-rm8sh 1/1 Running 0 11s

To run this command, you will need to copy and paste the full name of
one of your three Pods. The name will be a little different from mine. When
you delete a Pod, you should see that Kubernetes immediately creates a new
one. (You can identify which one is brand new by the AGE field.)

Next let’s explore how Kubernetes can automatically scale our applica
tion. Later, we’ll see how to make Kubernetes do this automatically, but for
now, we will do it manually. Suppose that we decide we need five Pods in
stead of three. We can do this with one command:

root@host01:~# k3s kubectl scale --replicas=5 deployment todo

deployment.apps/todo scaled

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE

todo-db-7df8b44d65-744mt 1/1 Running 0 2d

todo-655ff549f8-l4dxt 1/1 Running 0 2d

todo-655ff549f8-gc7b6 1/1 Running 1 2d

todo-655ff549f8-rm8sh 1/1 Running 0 5m13s

todo-655ff549f8-g7lxg 1/1 Running 0 6s

todo-655ff549f8-zsqp6 1/1 Running 0 6s

We tell Kubernetes to scale the Deployment that manages our Pods. For
now, you can think of the Deployment as the “owner” of the Pods; it moni
tors them and controls how many there are. Here, two extra Pods are imme
diately created. We just scaled up our application.
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Before we close, let’s look at one more critically important Kubernetes
feature. When you load the application in your web browser, Kubernetes is
sending your browser’s request to one of the available Pods. Each time you
reload, the request might be routed to a different Pod because Kubernetes is
automatically balancing the application’s load. To make this happen, when
we deploy our application to Kubernetes, the application configuration in
cludes a Service:

root@host01:~# k3s kubectl describe service todo

Name: todo

...

IPs: 10.43.231.177

Port: <unset> 80/TCP

TargetPort: 5000/TCP

Endpoints: 10.42.0.10:5000,10.42.0.11:5000,10.42.0.14:5000 + 2 more...

...

A Service has its own IP address and routes traffic to one or more end
points. In this case, because we scaled up to five Pods, the Service is balanc
ing traffic across all five endpoints.

Final Thoughts
Modern applications achieve scalability and reliability through an architec
ture based on microservices that can be deployed independently and dynam
ically to available hardware, including cloud resources. By using containers
and container orchestration to run our microservices, we achieve a common
approach for packaging, scaling, monitoring, and maintaining microservices,
enabling our development teams to focus on the hard work of actually build
ing the application.

In this chapter, we saw how containerization can create the appearance
of a separate system while really being a regular process run in an isolated
way. We also saw how we can use Kubernetes to deploy an entire application
as a set of containers, with scalability and selfhealing. Of course, Kuber
netes has a lot more important features than what we’ve mentioned here,
enough that it will take the whole book for us to cover them all! With this
brief overview, I hope you are excited to dive more deeply into containers
and Kubernetes in order to understand how to build applications that per
form well and are reliable.

We’ll come back to Kubernetes in Part II of this book. For now, let’s
look closely at how containers create the illusion of a separate system. We’ll
start by looking at process isolation using Linux namespaces.
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2
PROCESS ISOLAT ION

Containers build on a rich history of tech
nologies designed to isolate one computer
program from another while allowing many

programs to share the same CPU, memory,
storage, and network resources. Containers use fun
damental capabilities of the Linux kernel, particularly
namespaces, which create separate views of process
identifiers, users, the filesystem, and network inter
faces. Container runtimes use multiple types of
namespaces to give each container an isolated view
of the system.

In this chapter, we’ll consider some of the reasons for process isolation
and look at how Linux has historically isolated processes. We’ll then ex
amine how containers use namespaces to provide isolation. We’ll test this
using a couple of different container runtimes. Finally, we will use Linux
commands to create namespaces directly.



Understanding Isolation
Before running some containers and inspecting their isolation, let’s look at
the motivation for process isolation. We’ll also consider traditional process
isolation in Linux and how that has led to the isolation capabilities that con
tainers use.

Why Processes Need Isolation
The whole idea of a computer is that it is a generalpurpose machine that
can run many different kinds of programs. Ever since the beginning of com
puting, there has been a need to share a single computer between multi
ple programs. It started with people taking turns submitting programs on
punch cards, but as computer multitasking became more sophisticated, peo
ple could start multiple programs, and the computer would make it seem as
if they were all running on the same CPU at once.

Of course, as soon as something needs to be shared, there is a need to
make sure it is shared fairly, and computer programs are no different. So al
though we think of a process as an independent program with its own time
on the CPU and its own memory space, there are many ways that one pro
cess can cause trouble for another, including:

• Using too much CPU, memory, storage, or network

• Overwriting the memory or files of another process

• Extracting secret information from another process

• Sending another process bad data to cause it to misbehave

• Flooding another process with requests so that it stops responding

Bugs can cause processes to do these same things by accident, but a big
ger concern is a security vulnerability that allows a bad actor to use one pro
cess to cause problems for another. It takes only one vulnerability to create
major problems in a system, so we need ways to isolate processes that limit
damage from both accidental and intentional behavior.

Physical isolation is best—airgapped systems are regularly used to pro
tect governmentclassified information and safetycritical systems—but this
approach is also too expensive and inconvenient for many uses. Virtual ma
chines can give the appearance of separation while sharing physical hard
ware, but a virtual machine has the overhead of running its own operating
system, services, and virtual devices, making it slower to start and less scal
able. The solution is to run regular processes, but use process isolation to
reduce the risk of affecting other processes.

File Permissions and Change Root
Most of the effort in process isolation involves preventing one process from
seeing things it shouldn’t. After all, if a process can’t even see another pro
cess, it will be far more difficult to cause trouble, either accidentally or on
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purpose. The traditional ways that Linux has controlled what processes can
see and do serve as the foundation for the ideas behind containers.

One of the most basic visibility controls is filesystem permissions. Linux as
sociates an owner and group with each file and directory, and manages read,
write, and execute permissions. This basic permission scheme works well to
ensure that user files are kept private, that a process cannot overwrite the
files of another process, and that only a privileged user like root can install
new software or modify critical system configuration files.

Of course, this permission scheme relies on us ensuring that each pro
cess is run as the authentic user and that users are in the appropriate groups.
Typically, each new service install creates a user just for running that service.
Even better, this service user can be configured without a real login shell,
which means that the user cannot be exploited to log in to the system. To
make this clear, let’s look at an example.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux rsyslogd service provides logging services, so it needs to write
to files in /var/log, but it should not have permissions to read or write all of
the files in that directory. File permissions are used to control this, as shown
in this example:

root@host01:~# ps -ef | grep rsyslogd | grep -v grep

¶ syslog 698 1 0 Mar05 ? 00:00:04 /usr/sbin/rsyslogd -n -iNONE

root@host01:~# su syslog

· This account is currently not available.

root@host01:~# ls -l /var/log/auth.log

¸ -rw-r----- 1 syslog adm 18396 Mar 6 01:27 /var/log/auth.log

root@host01:~# ls -ld /var/log/private

¹ drwx------ 2 root root 4096 Mar 5 21:04 /var/log/private

The syslog user ¶ exists specifically to run rsyslogd, and that user is con
figured with no login shell for security reasons ·. Because rsyslogd needs to
be able to write to auth.log, it’s given write permission, as shown in the file
mode printout ¸. Members of the admin (adm) group have readonly access
to this file.

An initial d in the file mode ¹ indicates that this is a directory. The
following rwx indicates that the root user has read, write, and execute per
missions. The remaining dashes indicate that there are no rights for mem
bers of the root group or for other system users, so we can conclude that the
rsyslogd process cannot see the contents of this directory.

Permission control is important, but it doesn’t fully satisfy our goal of
process isolation. One reason is that it is not enough to protect us from priv
ilege escalation, wherein a vulnerable process and a vulnerable system allow
a bad actor to obtain root privileges. To help deal with this, some Linux
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services go a step beyond by running in an isolated part of the filesystem.
This approach is known as chroot for “change root.” Running in a chroot en
vironment requires quite a bit of setup, as you can see in this example:

root@host01:~# mkdir /tmp/newroot

root@host01:~# ¶ cp --parents /bin/bash /bin/ls /tmp/newroot

root@host01:~# cp --parents /lib64/ld-linux-x86-64.so.2 \

· $(ldd /bin/bash /bin/ls | grep '=>' | awk '{print $3}') /tmp/newroot

...

root@host01:~# ¸ chroot /tmp/newroot /bin/bash

bash-5.0# ls -l /bin

total 1296

¹ -rwxr-xr-x 1 0 0 1183448 Mar 6 02:15 bash

-rwxr-xr-x 1 0 0 142144 Mar 6 02:15 ls

bash-5.0# exit

exit

First, we need to copy in all of the executables that we intend to run ¶.
We also need to copy in all of the shared libraries these executables use,
which we specify with the ldd | grep | awk command ·. When both bina
ries and libraries are copied in, we can use the chroot command ¸ to move
into our isolated environment. Only the files we copied in are visible ¹.

Container Isolation
For experienced Linux system administrators, file permissions and change
root are basiclevel knowledge. However, those concepts also serve as the
foundation for how containers work. Even though a running container ap
pears like a completely separate system, with its own hostname, network,
processes, and filesystem (as we saw in Chapter 1), it’s really a regular Linux
process using isolation rather than a virtual machine.

A container has multiple kinds of isolation, including several essential
kinds of isolation that we haven’t seen before:

• Mounted filesystems

• Hostname and domain name

• Interprocess communication

• Process identifiers

• Network devices

These separate kinds of isolation work together so that a process or
collection of processes looks like a completely separate system. Although
these processes still share the kernel and physical hardware, this isolation
goes a long way toward ensuring that they cannot cause trouble for other
processes, especially when we configure containers correctly to control the
CPU, memory, storage, and network resources available to them.
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Container Platforms and Container Runtimes
Specifying all the binaries, libraries, and configuration files needed to run
a process in an isolated filesystem would be laborious. Fortunately, as we
saw in Chapter 1, container images come prepackaged with the needed exe
cutables and libraries. Using Docker, we were able to easily download and
run NGINX in a container. Docker is an example of a container platform,
providing not only the ability to run containers but also container storage,
networking, and security.

Under the covers, modern versions of Docker are using containerd as
the container runtime, also known as a container engine. A container runtime
provides lowlevel functionality to run processes in containers.

To explore isolation further, let’s experiment with two different con
tainer runtimes to start containers from preexisting images and then inspect
how processes in containers are isolated from the rest of the system.

Installing containerd
We’ll be using containerd in Part II in support of our Kubernetes clusters,
so let’s begin by installing and interacting with this runtime directly. Inter
acting directly with containerd will also benefit our exploration of process
isolation.

You can skip install commands by using the extra provisioning script pro
vided with this chapter’s examples. See the README file for this chapter for
instructions.

Even though containerd is available in the standard Ubuntu package
repository, we’ll install it from the official Docker package registry so that we
get the latest stable version. To do that, we need Apt to support HTTP/S, so
let’s do that first:

root@host01:~# apt update

...

root@host01:~# apt -y install apt-transport-https

...

Now let’s add the package registry and install:

root@host01:~# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \

gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

root@host01:~# echo "deb [arch=amd64" \

"signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]" \

"https://download.docker.com/linux/ubuntu focal stable" > \

/etc/apt/sources.list.d/docker.list

root@host01:~# apt update && apt install -y containerd.io

...

root@host01:~# ctr images ls

REF TYPE DIGEST SIZE PLATFORMS LABELS
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The final command just ensures that the package installed correctly,
that the service is running, and that the ctr command is working. We don’t
see any images because we haven’t installed any yet.

Container runtimes are lowlevel libraries. They are typically not used
directly but are used by a higherlevel container platform or orchestration
environment such as Docker or Kubernetes. This means that they put a lot
of focus into a quality application programming interface (API) but not as
much effort into userfacing tools we can use from the command line. For
tunately, command line tools are still needed for testing, and containerd pro
vides the ctr tool that we’ll use for experimentation.

Using containerd
Our initial containerd command showed that no images have been down
loaded yet. Let’s download a small image with which we can run a container.
We will use BusyBox, a tiny container image that includes a shell and basic
Linux utilities. To download the image, we use the pull command:

root@host01:~# ctr image pull docker.io/library/busybox:latest

...

root@host01:~# ctr images ls

REF ...

docker.io/library/busybox:latest ...

Our list of images is no longer empty. Let’s run a container from that
image:

root@host01:~# ctr run -t --rm docker.io/library/busybox:latest v1

/ #

This looks similar to using Docker. We use -t to create a TTY for this
container, allowing us to interact with it, and we use --rm to tell containerd
to delete the container when the main process stops. However, there are
some important differences to note. When we used Docker in Chapter 1,
we didn’t worry about pulling the image before running it, and we were able
to use simpler names like nginx or rockylinux:8. The ctr tool requires us to
specify docker.io/library/busybox:latest, the full path to the image, with registry
hostname and tag included. Also, we are required to pull the image first be
cause the runtime won’t do this for us automatically.

Now that we’re inside this container, we can see that it has an isolated
network stack and process space:

/ # ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
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/ # ps -ef

PID USER TIME COMMAND

1 root 0:00 sh

8 root 0:00 ps -ef

/ #

Inside the container, we see a loopback network interface. We also see
our shell process and the ps command that we ran. As far as the processes in
our container are concerned, we are running on a separate system with no
other processes running or listening on the network.

WHY NO BRIDGE INTERFACE?

If you’ve worked with Docker, you might be surprised to see that this container
has only a loopback interface. Default networking on a container platform also
provides an additional interface that is attached to a bridge. This allows con-
tainers to see one another and also allows containers to use the host interface
to access external networks via Network Address Translation (NAT).

In this case, we are talking directly to a lower-level container runtime. This con-
tainer runtime handles managing images and running containers only. If we
want a bridge interface and a connection to the internet, we’ll need to provide
it ourselves (and we do exactly that in Chapter 4).

We’ve illustrated that we can talk to the containerd runtime to run a con
tainer, and that inside the container, we’re isolated from the rest of the sys
tem. How does that isolation work? To find out, let’s keep the container
running and investigate it from the host system.

Introducing Linux Namespaces
Like other container runtimes, containerd uses a Linux kernel feature called
namespaces to isolate the processes in the container. As mentioned earlier,
most of the effort in process isolation is to ensure that a process can’t see
things it shouldn’t. A process running in a namespace sees a limited view of
a particular system resource.

Even though containerization seems like new technology, Linux name
spaces have been available for many years. Over time, more types of name
spaces were added. We can find out what namespaces are associated with
our container using the lsns command, but first we need to know the pro
cess ID (PID) on the host for our container’s shell process. While leaving the
container running, open another terminal tab or window. (See “Running
Examples” on page xx for more information.) Then, use ctr to list running
containers:

root@host01:~# ctr task ls

TASK PID STATUS

v1 18088 RUNNING
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Let’s use ps to verify that we have the correct PID. When you run these
commands yourself, be sure to use the PID that displays in your listing:

root@host01:~# ps -ef | grep 18088 | grep -v grep

root 18088 18067 0 18:46 pts/0 00:00:00 sh

root@host01:~# ps -ef | grep 18067 | grep -v grep

root 18067 1 0 18:46 ? 00:00:00

/usr/bin/containerd-shim-runc-v2 -namespace default -id v1 -address

/run/containerd/containerd.sock

root 18088 18067 0 18:46 pts/0 00:00:00 sh

As expected, the parent of this PID is containerd. Next let’s use lsns to
list the namespaces that containerd has created to isolate this process:

root@host01:~# lsns | grep 18088

4026532180 mnt 1 18088 root sh

4026532181 uts 1 18088 root sh

4026532182 ipc 1 18088 root sh

4026532183 pid 1 18088 root sh

4026532185 net 1 18088 root sh

Here, containerd is using five different types of namespaces in order to
fully isolate the processes running in the busybox container:

mnt Mount points

uts Unix time sharing (hostname and network domain)

ipc Interprocess communication (for example, shared memory)

pid Process identifiers (and list of running processes)

net Network (including interfaces, routing table, and firewall)

Finally, we’ll close out the BusyBox container by running exit from within
that container (first terminal window):

/ # exit

This command returns us to a regular shell prompt so that we can be
ready for the next set of examples.

Containers and Namespaces in CRI-O
In addition to containerd, Kubernetes supports other container runtimes.
Depending on which Kubernetes distribution you use, you might find that
the container runtime is different. For example, Red Hat OpenShift uses
CRIO, an alternative container runtime. CRIO is also used by the Podman,
Buildah, and Skopeo suite of tools, which are the standard way to manage
containers on Red Hat 8 and related systems.
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Let’s run the same container image using CRIO to get a better picture
of how container runtimes are different from one another but also to show
how they use the same underlying Linux kernel capabilities for process
isolation.

You can skip these install commands by using the extra provisioning
script provided with this chapter’s examples. See the README file for this
chapter for instructions.

The OpenSUSE Kubic project hosts repositories for CRIO for various
Linux distributions, including Ubuntu, so we will install from there. The
exact URL is dependent on the version of CRIO we want to install, and the
URLs are long and challenging to type, so the automation installs a script to
configure some useful environment variables. Before proceeding, we need
to load that script:

root@host01:~# source /opt/crio-ver

We can now use the environment variables to set up the CRIO reposito
ries and install CRIO:

root@host01:~# echo "deb $REPO/$OS/ /" > /etc/apt/sources.list.d/kubic.list

root@host01:~# echo "deb $REPO:/cri-o:/$VERSION/$OS/ /" \

> /etc/apt/sources.list.d/kubic.cri-o.list

root@host01:~# curl -L $REPO/$OS/Release.key | apt-key add -

...

OK

root@host01:~# apt update && apt install -y cri-o cri-o-runc

...

root@host01:~# systemctl enable crio && systemctl start crio

...

root@host01:~# curl -L -o /tmp/crictl.tar.gz $CRICTL_URL

...

root@host01:~# tar -C /usr/local/bin -xvzf /tmp/crictl.tar.gz

crictl

root@host01:~# rm -f /tmp/crictl.tar.gz

We first add to the list of repositories for apt by adding files to /etc/apt/
sources.list.d. We then use apt to install CRIO packages. After CRIO is in
stalled, we use systemd to enable and start its service.

Unlike containerd, CRIO does not ship with any command line tools that
we can use for testing, so the last command installs crictl, which is part of
the Kubernetes project and is designed for testing any container runtime
compatible with the Container Runtime Interface (CRI) standard. CRI is
the programming API that Kubernetes itself uses to communicate with con
tainer runtimes.
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Because crictl is compatible with any container runtime that supports
CRI, it needs configuration to connect to CRIO. CRIO has installed a con
figuration file /etc/crictl.yaml to configure crictl:

crictl.yaml runtime-endpoint: unix:///var/run/crio/crio.sock

image-endpoint: unix:///var/run/crio/crio.sock

...

This configuration tells crictl to connect to CRIO’s socket.
To create and run containers, the crictl command requires us to pro

vide definition files in the JSON or YAML file format. The automated scripts
for this chapter added two crictl definition files to /opt. The first file, shown
in Listing 21, creates a Pod:

pod.yaml ---

metadata:

name: busybox

namespace: crio

linux:

security_context:

namespace_options:

network: 2

Listing 2-1: CRI-O Pod definition

Similar to the Kubernetes Pod we saw in Chapter 1, the Pod is a group
of one or more containers that run in the same isolated space. In our case,
we need only one container in the Pod, and the second file, shown in List
ing 22, defines the container process that CRIO should start. We provide
a name (busybox) and namespace (crio) to distinguish this Pod from any oth
ers. Otherwise, we need to provide only network configuration. CRIO ex
pects to use a Container Network Interface (CNI) plugin to configure the
network namespace. We cover CNI plugins in Chapter 8, so for now, we’ll
use network: 2 to tell CRIO not to create a separate network namespace and
instead use the host network:

container.yaml ---

metadata:

name: busybox

image:

image: docker.io/library/busybox:latest

args:

- "/bin/sleep"

- "36000"

Listing 2-2: CRI-O container definition

Again we are using BusyBox because its small size makes it fast and light
weight. However, because crictl will create this container in the background
without a terminal, we need to specify /bin/sleep as the command to be run
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inside the container; otherwise, the container will immediately terminate
when the shell realizes that it doesn’t have a TTY.

Before we can run the container, we first need to pull the image:

root@host01:~# crictl pull docker.io/library/busybox:latest

Image is up to date for docker.io/library/busybox@sha256:...

Then, we provide the pod.yaml and container.yaml files to crictl to create
and start our BusyBox container:

root@host01:~# cd /opt

root@host01:~# POD_ID=$(crictl runp pod.yaml)

root@host01:~# crictl pods

POD ID CREATED STATE ...

3bf297ace44b5 Less than a second ago Ready ...

root@host01:~# CONTAINER_ID=$(crictl create $POD_ID container.yaml pod.yaml)

root@host01:~# crictl start $CONTAINER_ID

91394a7f37e3da3a557782ed6d6eb2cf8c23e5b3dd4e2febd415bba071d10734

root@host01:~# crictl ps

CONTAINER ... STATE

91394a7f37e3d ... Running

We capture the Pod’s unique identifier and the container in POD_ID and
CONTAINER_ID variables, so we can use them here and upcoming commands.

Before looking at the Linux namespaces created by CRIO, let’s look
inside the busybox container by using the crictl exec command to start a new
shell process inside it:

root@host01:~# crictl exec -ti $CONTAINER_ID /bin/sh

/ # ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000

...

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel qlen 1000

...

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel qlen 1000

...

/ # ps -ef

PID USER TIME COMMAND

1 root 0:00 /pause

7 root 0:00 /bin/sleep 36000

13 root 0:00 /bin/sh

20 root 0:00 ps -ef

/ # exit

This BusyBox container running in CRIO looks a little different from
BusyBox running in containerd. First, because we configured our Pod with
network: 2, the container can see the same network devices that a regular
process would see. Second, we see a couple of additional processes. We look
at the pause process with PID 1 when we discuss container runtimes under
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Kubernetes in Chapter 12. The other extra process is sleep, which we cre
ated as the entry point for this container.

CRIO is also using Linux namespaces for process isolation, as we can
see from examining the container processes and listing namespaces:

root@host01:~# PID=$(crictl inspect $CONTAINER_ID | jq '.info.pid')

root@host01:~# ps -ef | grep $PID | grep -v grep

root 23906 23894 0 20:15 ? 00:00:00 /bin/sleep 36000

root@host01:/opt# ps -ef | grep 23894 | grep -v grep

root 23894 1 0 20:15 ? 00:00:00 /usr/bin/conmon ...

root 23906 23894 0 20:15 ? 00:00:00 /bin/sleep 36000

The crictl inspect command provides a wealth of information about
the container, but for the moment, we need only the PID. Because crictl re
turns JSONformatted output, we can use jq to extract the pid field from the
info structure and save it to an environment variable called PID. Try running
crictl inspect $CONTAINER_ID to see the full information.

Using the PID we discovered, we can see our sleep command. We then
can use its parent PID to verify that it is managed by conmon, a CRIO util
ity. Next, let’s see the namespaces that CRIO has created. The allocation
of namespaces to processes is more complex in CRIO, so let’s just list all of
the namespaces on our Linux system and pick out the ones related to the
container:

root@host01:~# lsns

NS TYPE NPROCS PID USER COMMAND

...

4026532183 uts 2 23867 root /pause

4026532184 ipc 2 23867 root /pause

4026532185 mnt 1 23867 root /pause

4026532186 pid 2 23867 root /pause

4026532187 mnt 1 23906 root /bin/sleep 36000

...

Here, we see only four types of namespaces. Because we told CRIO to
give the container access to the host’s network namespace, it didn’t need to
create a net namespace. Also, with CRIO, most namespaces are associated
with the pause command (although some are shared by multiple processes,
as we can see via the NPROCS column). There are two mnt namespaces because
each separate container in a Pod gets a different set of mount points for rea
sons that we cover in Chapter 5.

Running Processes in Namespaces Directly
One of the trickier jobs when running a process in a container is handling
the responsibility that comes with being PID 1. To better understand this,
we won’t have our container runtime create a namespace for us. Instead,
we’ll talk directly to the Linux kernel to run a process in a namespace
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manually. We’ll use the command line, although container runtimes use the
Linux kernel API, but the result will be the same.

Because namespaces are a Linux kernel feature, nothing else needs to
be installed or configured. We just use the unshare command when launch
ing the process:

root@host01:~# unshare -f -p --mount-proc -- /bin/sh -c /bin/bash

The unshare command runs a program with different namespaces from
the parent. By adding -p, we specify that a new PID namespace is needed.
The option --mount-proc goes along with that, adding a new mount name
space and ensuring /proc is remounted correctly, so that the process sees the
correct process information. Otherwise, the process would still be able to
see information about other processes in the system. Finally, the content
after -- indicates the command to run.

Because this is an isolated process namespace, it cannot see a list of pro
cesses outside this namespace:

root@host01:~# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 22:21 pts/0 00:00:00 /bin/sh -c /bin/bash

root 2 1 0 22:21 pts/0 00:00:00 /bin/bash

root 9 2 0 22:22 pts/0 00:00:00 ps -ef

Let’s get the ID of this namespace so that we can recognize it in a list:

root@host01:~# ls -l /proc/self/ns/pid

lrwxrwxrwx 1 root root 0 Mar 6 22:22 /proc/self/ns/pid -> 'pid:[4026532190]'

Now, from another terminal window, list all of the namespaces and look
for those related to our isolated shell:

root@host01:~# lsns

NS TYPE NPROCS PID USER COMMAND

...

4026532189 mnt 3 12110 root unshare -f -p ...

4026532190 pid 2 12111 root /bin/sh -c /bin/bash

...

root@host01:~# exit

We see a pid namespace matching what we saw. In addition, we see a mnt

namespace. This namespace ensures that our shell sees the proper informa
tion in /proc.

Because the pid namespace is owned by the sh command, that command
is PID 1 when we run ps within the namespace. This means that sh has the
responsibility to manage its children properly (such as bash). For example,
sh is responsible for passing signals to its children to ensure that they termi
nate correctly. It’s important to keep this in mind as it is a common problem
when running containers that can result in zombie processes or other issues
cleaning up a stopped container.
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Fortunately, sh handles its management duties well, as we can see by the
fact that when we pass a kill signal to it, it passes that signal on to its chil
dren. Run this from the second terminal window, outside the namespace:

root@host01:~# kill -9 12111

Inside the first window you will see this output:

root@host01:~# Killed

This indicates that bash received the kill signal and terminated correctly.

Final Thoughts
Although containers create the appearance of a completely separate system,
it’s done in a way that has nothing in common with virtual machines. In
stead, the process is similar to traditional means of process isolation, such
as user permissions and separate filesystems. Container runtimes use name
spaces, which are built in to the Linux kernel and enable various types of
process isolation. In this chapter, we examined how the containerd and
CRIO container runtimes use multiple types of Linux namespaces to give
each container an independent view of other processes, network devices,
and the filesystem. The use of namespaces prevents processes running in a
container from seeing and interfering with other processes.

At the same time, processes in a container are still sharing the same
CPU, memory, and network. A process that uses too many of those resources
will prevent other processes from running properly. Namespaces can’t solve
that problem, however. To prevent this issue, we’ll need to look at resource
limiting—the topic of our next chapter.
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3
RESOURCE L IMIT ING

The process isolation work we did in Chap
ter 2 was very important, as a process can
not generally affect what it cannot “see.”

However, our process can see the host’s CPU,
memory, and networking, so it is possible for a process
to prevent other processes from running correctly by
using too much of these resources, not leaving enough
room for others. In this chapter, we will see how to
guarantee that a process uses only its allocated CPU,
memory, and network resources, ensuring that we can
divide up our resources accurately. This will help when
we move on to container orchestration because it will
provide Kubernetes with certainty about the resources
available on each host when it schedules a container.

CPU, memory, and network are important, but there’s one more really
important shared resource: storage. However, in a container orchestration
environment like Kubernetes, storage is distributed, and limits need to be
applied at the level of the whole cluster. For this reason, our discussion of
storage must wait until we introduce distributed storage in Chapter 15.



CPU Priorities
We’ll need to look at CPU, memory, and network separately, as the effect of
applying limits is different in each case. Let’s begin by looking at how to con
trol CPU usage. To understand CPU limits, we first need to look at how the
Linux kernel decides which process to run and for how long. In the Linux
kernel, the scheduler keeps a list of all of the processes. It also tracks which
processes are ready to run and how much time each process has received
lately. This allows it to create a prioritized list so that it can choose the pro
cess that will run next. The scheduler is designed to be as fair as possible
(it’s even known as the Completely Fair Scheduler); thus, it tries to give all
processes a chance to run. However, it does accept outside input on which
of these processes are more important than others. This prioritization is
made up of two parts: the scheduling policy, and the priority of each process
within that policy.

Real-Time and Non-Real-Time Policies
The scheduler supports several different policies, but for our purposes we
can group them into realtime policies and nonrealtime policies. The term
realtimemeans that some realworld event is critical to the process that cre
ates a deadline. The process needs to complete its processing before this
deadline expires, or something bad will happen. For example, the process
might be collecting data from an embedded hardware device. In that case,
the process must read the data before the hardware buffer overflows. A real
time process is typically not extremely CPU intensive, but when it needs the
CPU, it cannot wait, so all processes under a realtime policy are higher pri
ority than any process under a nonrealtime policy. Let’s explore this on an
example Linux system.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux ps command tells us the specific policy that applies to each
process. Run this command on host01 from this chapter’s examples:

root@host01:~# ps -e -o pid,class,rtprio,ni,comm

PID CLS RTPRIO NI COMMAND

1 TS - 0 systemd

...

6 TS - -20 kworker/0:0H-kblockd

...

11 FF 99 - migration/0

12 FF 50 - idle_inject/0

...

85 FF 99 - watchdogd

...
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484 RR 99 - multipathd

...

7967 TS - 0 ps

The -o flag provides ps with a custom list of output fields, including the
scheduling policy class (CLS) and two numeric priority fields: RTPRIO and NI.

Looking at the CLS field first, lots of processes are listed as TS, which
stands for “timesharing” and is the default nonrealtime policy. This in
cludes commands we run ourselves (like the ps command we ran) as well as
important Linux system processes like systemd. However, we also see pro
cesses with policy FF for first in–first out (FIFO) and policy RR for round
robin. These are realtime processes, and as such, they have priority over
all nonrealtime policies in the system. Realtime processes in the list in
clude watchdog, which detects system lockups and thus might need to pre
empt other processes, and multipathd, which watches for device changes and
must be able to configure those devices before other processes get a chance
to talk to them.

In addition to the class, the two numeric priority fields tell us how pro
cesses are prioritized within the policy. Not surprisingly, the RTPRIO field
means “realtime priority” and applies only to realtime processes. The NI

field is the “nice” level of the process and applies only to nonrealtime pro
cesses. For historical reasons, the nice level runs from –20 (least nice, or
highest priority) to 19 (nicest, lowest priority).

Setting Process Priorities
Linux allows us to set the priority for processes we start. Let’s try to use pri
orities to control CPU usage. We’ll run a program called stress that is de
signed to exercise our system. Let’s use a containerized version of stress
using CRIO.

As before, we need to define YAML files for the Pod and container to
tell crictl what to run. The Pod YAML shown in Listing 31 is almost the
same as the BusyBox example in Chapter 2; only the name is different:

po-nolim.yaml ---

metadata:

name: stress

namespace: crio

linux:

security_context:

namespace_options:

network: 2

Listing 3-1: BusyBox Pod

The container YAML has more changes compared to the BusyBox ex
ample. In addition to using a different container image, one that already has
stress installed, we also need to provide arguments to stress to tell it to exer
cise a single CPU:
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co-nolim.yaml ---

metadata:

name: stress

image:

image: docker.io/bookofkubernetes/stress:stable

args:

- "--cpu"

- "1"

- "-v"

CRIO is already installed on host01, so it just takes a few commands to
start this container. First, we’ll pull the image:

root@host01:/opt# crictl pull docker.io/bookofkubernetes/stress:stable

Image is up to date for docker.io/bookofkubernetes/stress...

Then, we can run a container from the image:

root@host01:~# cd /opt

root@host01:/opt# PUL_ID=$(crictl runp po-nolim.yaml)

root@host01:/opt# CUL_ID=$(crictl create $PUL_ID co-nolim.yaml po-nolim.yaml)

root@host01:/opt# crictl start $CUL_ID

...

root@host01:/opt# crictl ps

CONTAINER IMAGE ...

971e83927329e docker.io/bookofkubernetes/stress:stable ...

The crictl ps command is just to check that our container is running as
expected.

The stress program is now running on our system, and we can see the
current priority and CPU usage. We want the current CPU usage, so we’ll
use top:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)

top - 18:01:58 up 1:39, 1 user, load average: 1.01, 0.40, 0.16

Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 34.8 us, 0.0 sy, 0.0 ni, 65.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 1987.5 total, 1024.5 free, 195.8 used, 767.3 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1643.7 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND

13459 root 20 0 ... 100.0 0.2 0:29.78 stress-ng

13435 root 20 0 ... 0.0 0.2 0:00.01 stress-ng

The pgrep command looks up the process IDs (PIDs) for stress; there
are two because stress forked a separate process for the CPU exercise we
requested. This CPU worker is using up 100 percent of one CPU; fortu
nately, our VM has two CPUs, so it’s not overloaded.
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We started this process with default priority, so it has a nice value of 0,
as shown in the NI column. What happens if we change that priority? Let’s
find out using renice:

root@host01:/opt# renice -n 19 -p $(pgrep -d ' ' stress)

13435 (process ID) old priority 0, new priority 19

13459 (process ID) old priority 0, new priority 19

The ps command used previously expected the PIDs to be separated
with a comma, whereas the renice command expects the PIDs to be sepa
rated with a space; fortunately, pgrep can handle both.

We have successfully changed the priority of the process:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)

top - 18:11:04 up 1:48, 1 user, load average: 1.07, 0.95, 0.57

Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.0 sy, 28.6 ni, 71.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 1987.5 total, 1035.6 free, 182.2 used, 769.7 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1657.2 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND

13459 root 39 19 ... 100.0 0.2 9:35.50 stress-ng

13435 root 39 19 ... 0.0 0.2 0:00.01 stress-ng

The new nice value is 19, meaning that our process is lower priority than
before. However, the stress program is still using 100 percent of one CPU!
What’s going on here? The problem is that priority is only a relative mea
surement. If nothing else needs the CPU, as is true in this case, even a lower
priority process can use as much as it wants.

This arrangement may seem to be what we want. After all, if the CPU is
available, shouldn’t we want our application components to be able to use
it? Unfortunately, even though that sounds reasonable, it’s not suitable for
our containerized applications for two main reasons. First, a container or
chestration environment like Kubernetes works best when a container can
be allocated to any host with enough resources to run it. It’s not reasonable
for us to know the relative priority of every single container in our Kuber
netes cluster, especially when we consider that a single Kubernetes cluster
can be multitenant, meaning multiple separate applications or teams might
be using a single cluster. Second, without some idea of how much CPU a
particular container will use, Kubernetes cannot know which hosts are full
and which ones have more room available. We don’t want to get into a situ
ation in which multiple containers on the same host all become busy at the
same time, because they will fight for the available CPU cores, and the whole
host will slow down.

Linux Control Groups
As we saw in the last section, process prioritization will not help a container
orchestration environment like Kubernetes know what host to use when
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scheduling a new container, because even lowpriority processes can get a
lot of CPU time when the CPU is idle. And because our Kubernetes cluster
might be multitenant, the cluster can’t just trust each container to promise
to use only a certain amount of CPU. First, that would allow one process to
affect another negatively, either maliciously or accidentally. Second, pro
cesses don’t really control their own scheduling; they get CPU time when the
Linux kernel decides to give them CPU time. We need a different solution
for controlling CPU utilization.

To find the answer, we can take an approach used by realtime process
ing. As we mentioned in the previous section, a realtime process is typically
not compute intensive, but when it needs the CPU, it needs it immediately.
To ensure that all realtime processes get the CPU they need, it is common
to reserve a slice of the CPU time for each process. Even though our con
tainer processes are nonrealtime, we can use the same strategy. If we can
configure our containers so that they can use no more than their allocated
slice of the CPU time, Kubernetes will be able to calculate how much space
is available on each host and will be able to schedule containers onto hosts
with sufficient space.

To manage container use of CPU cores, we will use control groups. Con
trol groups (cgroups) are a feature of the Linux kernel that manage process
resource utilization. Each resource type, such as CPU, memory, or a block
device, can have an entire hierarchy of cgroups associated with it. After a
process is in a cgroup, the kernel automatically applies the controls from
that group.

The creation and configuration of cgroups is handled through a specific
kind of filesystem, similar to the way that Linux reports information on the
system through the /proc filesystem. By default, the filesystem for cgroups is
located at /sys/fs/cgroup:

root@host01:~# ls /sys/fs/cgroup

blkio cpuacct freezer net_cls perf_event systemd

cpu cpuset hugetlb net_cls,net_prio pids unified

cpu,cpuacct devices memory net_prio rdma

Each of the entries in /sys/fs/cgroup is a different resource that can be
limited. If we look in one of those directories, we can begin to see what con
trols can be applied. For example, for cpu:

root@host01:~# cd /sys/fs/cgroup/cpu

root@host01:/sys/fs/cgroup/cpu# ls -F

cgroup.clone_children cpuacct.stat cpuacct.usage_user

cgroup.procs cpuacct.usage init.scope/

cgroup.sane_behavior cpuacct.usage_all notify_on_release

cpu.cfs_period_us cpuacct.usage_percpu release_agent
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cpu.cfs_quota_us cpuacct.usage_percpu_sys system.slice/

cpu.shares cpuacct.usage_percpu_user tasks

cpu.stat cpuacct.usage_sys user.slice/

The -F flag on ls adds a slash character to directories, which enables us
to begin to see the hierarchy. Each of those subdirectories (init.scope, system
.slice, and user.slice) is a separate CPU cgroup, and each has its own set of
configuration files that apply to processes in that cgroup.

CPU Quotas with cgroups
To understand the contents of this directory, let’s see how we can use cgroups
to limit the CPU usage of our stress container. We’ll begin by checking its
CPU usage again:

root@host01:/sys/fs/cgroup/cpu# top -b -n 1 -p $(pgrep -d , stress)

top - 22:40:12 up 12 min, 1 user, load average: 0.81, 0.35, 0.21

Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 37.0 us, 0.0 sy, 0.0 ni, 63.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 1987.5 total, 1075.1 free, 179.4 used, 733.0 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1646.3 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND

5964 root 20 19 ... 100.0 0.2 1:19.72 stress-ng

5932 root 20 19 ... 0.0 0.2 0:00.02 stress-ng

If you don’t still see stress running, start it up again using the com
mands from earlier in this chapter. Next, let’s explore what CPU cgroup
our stress CPU process is in. We can do this by finding its PID inside a file
within the /sys/fs/cgroup/cpu hierarchy:

root@host01:/sys/fs/cgroup/cpu# grep -R $(pgrep stress-ng-cpu)

system.slice/runc-050c.../cgroup.procs:5964

system.slice/runc-050c.../tasks:5964

The stress process is part of the system.slice hierarchy, and is in a sub
directory created by runc, which is one of the internal components of CRIO.
This is really convenient, as it means we don’t need to create our own cgroup
and move this process into it. It is also no accident; as we’ll see in a moment,
CRIO supports CPU limits on containers, so it naturally needs to create a
cgroup for each container it runs. In fact, the cgroup is named after the con
tainer ID.

Let’s move into the directory for our container’s cgroup:

root@host01:/sys/fs/cgroup/cpu# cd system.slice/runc-${CUL_ID}.scope
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We use the container ID variable we saved earlier to change into the ap
propriate directory. As soon as we’re in this directory, we can see that it has
the same configuration files as the root of the hierarchy /sys/fs/cgroup/cpu:

root@host01:/sys/fs/...07.scope# ls

cgroup.clone_children cpu.uclamp.max cpuacct.usage_percpu_sys

cgroup.procs cpu.uclamp.min cpuacct.usage_percpu_user

cpu.cfs_period_us cpuacct.stat cpuacct.usage_sys

cpu.cfs_quota_us cpuacct.usage cpuacct.usage_user

cpu.shares cpuacct.usage_all notify_on_release

cpu.stat cpuacct.usage_percpu tasks

The cgroup.procs file lists the processes in this control group:

root@host01:/sys/fs/...07.scope# cat cgroup.procs

5932

5964

This directory has many other files, but we are mostly interested in three:

cpu.shares Slice of the CPU relative to this cgroup’s peers

cpu.cfs_period_us Length of a period, in microseconds

cpu.cfs_quota_us CPU time during a period, in microseconds

We’ll look at how Kubernetes uses cpu.shares in Chapter 14. For now, we
need a way to get our instance under control so that it doesn’t overwhelm
our system. To do that, we’ll set an absolute quota on this container. First,
let’s see the value of cpu.cfs_period_us:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_period_us

100000

The period is set to 100,000 μs, or 0.1 seconds. We can use this num
ber to figure out what quota to set in order to limit the amount of CPU the
stress container can use. At the moment, there is no quota:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_quota_us

-1

We can set a quota by just updating the cpu.cfs_quota_us file:

root@host01:/sys/fs/...07.scope# echo "50000" > cpu.cfs_quota_us

This provides the processes in this cgroup with 50,000 μs of CPU time
per 100,000 μs, which averages out to 50 percent of a CPU. The processes
are immediately affected, as we can confirm:

root@host01:/sys/fs/...07.scope# top -b -n 1 -p $(pgrep -d , stress)

top - 23:53:05 up 1:24, 1 user, load average: 0.71, 0.93, 0.98
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Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 3.6 sy, 7.1 ni, 89.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 1987.5 total, 1064.9 free, 174.6 used, 748.0 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1663.9 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND

5964 root 39 19 ... 50.0 0.2 73:45.68 stress-ng-cpu

5932 root 39 19 ... 0.0 0.2 0:00.02 stress-ng

Your listing might not show exactly 50 percent CPU usage, because the
period during which the top command measures CPU usage might not align
perfectly with the kernel’s scheduling period. But on average, our stress
container now cannot use more than 50 percent of one CPU.

Before we move on, let’s stop the stress container:

root@host01:/sys/fs/...07.scope# cd

root@host01:/opt# crictl stop $CUL_ID

...

root@host01:/opt# crictl rm $CUL_ID

...

root@host01:/opt# crictl stopp $PUL_ID

Stopped sandbox ...

root@host01:/opt# crictl rmp $PUL_ID

Removed sandbox ...

CPU Quota with CRI-O and crictl
It would be tiresome to have to go through the process of finding the cgroup
location in the filesystem and updating the CPU quota for every container
in order to control CPU usage. Fortunately, we can specify the quota in our
crictl YAML files, and CRIO will enforce it for us. Let’s look at an example
that was installed into /opt when we set up this example virtual machine.

The Pod configuration is only slightly different from Listing 31. We
add a cgroup_parent setting so that we can control where CRIO creates the
cgroup, which will make it easier to find the cgroup to see the configuration:

po-clim.yaml ---

metadata:

name: stress-clim

namespace: crio

linux:

cgroup_parent: pod.slice

security_context:

namespace_options:

network: 2
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The container configuration is where we include the CPU limits. Our
stress1 container will be allotted only 10 percent of a CPU:

co-clim.yaml ---

---

metadata:

name: stress-clim

image:

image: docker.io/bookofkubernetes/stress:stable

args:

- "--cpu"

- "1"

- "-v"

linux:

resources:

cpu_period: 100000

cpu_quota: 10000

The value for cpu_period corresponds with the file cpu.cfs_period_us and
provides the length of the period during which the quota applies. The value
for cpu_quota corresponds with the file cpu.cfs_quota_us. Dividing the quota
by the period, we can determine that this will set a CPU limit of 10 percent.
Let’s go ahead and launch this stress container with its CPU limit:

root@host01:~# cd /opt

root@host01:/opt# PCL_ID=$(crictl runp po-clim.yaml)

root@host01:/opt# CCL_ID=$(crictl create $PCL_ID co-clim.yaml po-clim.yaml)

root@host01:/opt# crictl start $CCL_ID

...

root@host01:/opt# crictl ps

CONTAINER IMAGE ...

ea8bccd711b86 docker.io/bookofkubernetes/stress:stable ...

Our container is immediately restricted to 10 percent of a CPU:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)

top - 17:26:55 up 19 min, 1 user, load average: 0.27, 0.16, 0.13

Tasks: 4 total, 2 running, 2 sleeping, 0 stopped, 0 zombie

%Cpu(s): 10.3 us, 0.0 sy, 0.0 ni, 89.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 1987.5 total, 1053.4 free, 189.3 used, 744.9 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1640.4 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND

8349 root 20 0 ... 10.0 0.2 0:22.67 stress-ng

8202 root 20 0 ... 0.0 0.2 0:00.02 stress-ng

As in our earlier example, the CPU usage shown is a snapshot during
the time that top was running, so it might not match the limit exactly, but
over the long term, this process will use no more than its allocated CPU.
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We can inspect the cgroup to confirm that CRIO put it in the place we
specified and automatically configured the CPU quota:

root@host01:/opt# cd /sys/fs/cgroup/cpu/pod.slice

root@host01:...pod.slice# cat crio-$CCL_ID.scope/cpu.cfs_quota_us

10000

CRIO created a new cgroup parent pod.slice for our container, created
a cgroup within it specific to the container, and configured its CPU quota
without us having to lift a finger.

We don’t need this container any longer, so let’s remove it:

root@host01:/sys/fs/cgroupcpu/pod.slice# cd

root@host01:~# crictl stop $CCL_ID

...

root@host01:~# crictl rm $CCL_ID

...

root@host01:~# crictl stopp $PCL_ID

Stopped sandbox ...

root@host01:~# crictl rmp $PCL_ID

Removed sandbox ...

With these commands we stop and then delete first the container, then
the Pod.

Memory Limits
Memory is another important resource for a process. If a system doesn’t
have sufficient memory to meet a request, the allocation of memory will fail.
This usually causes the process to behave badly or to fail entirely. Of course,
most Linux systems use swap space to write memory contents to disk tem
porarily, which allows the system memory to appear larger than it is but also
reduces system performance. It’s a big enough concern that the Kubernetes
team discourages having swap enabled in a cluster.

Also, even if we could use swap, we don’t want one process grabbing all
the resident memory and making other processes very slow. As a result, we
need to limit the memory usage of our processes so that they cooperate with
one another. We also need to have a clear maximum for memory usage so
that Kubernetes can reliably ensure that a host has enough available mem
ory before scheduling a new container onto a host.

Linux systems, like other variants of Unix, have traditionally had to deal
with multiple users who are sharing scarce resources. For this reason, the
kernel supports limits on system resources, including CPU, memory, num
ber of child processes, and number of open files. We can set these limits
from the command line using the ulimit command. For example, one type
of limit is a limit on “virtual memory.” This includes not only the amount of
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RAM a process has in resident memory but also any swap space it is using.
Here’s an example of a ulimit command limiting virtual memory:

root@host01:~# ulimit -v 262144

The -v switch specifies a limit on virtual memory. The parameter is in
bytes, so 262144 places a virtual memory limit of 256MiB on each additional
process we start from this shell session. Setting a virtual memory limit is a to
tal limit; it allows us to ensure that a process can’t use swap to get around the
limit. We can verify the limit was applied by pulling some data into memory:

root@host01:~# cat /dev/zero | head -c 500m | tail

tail: memory exhausted

This command reads from /dev/zero and tries to keep the first 500MiB of
zeros it finds in memory. However, at some point, when the tail command
tries to allocate more space to hold the zeros it is getting from head, it fails
because of the limit.

Thus, Unix limits give us the ability to control memory usage for our
processes, but they won’t provide everything we need for containers, for a
couple of reasons. First, Unix limits can be applied only to individual pro
cesses or to an entire user. Neither of those provide what we need, as a con
tainer is really a group of processes. A container’s initial process might create
many child processes, and all processes in a container need to live within the
same limit. At the same time, applying limits to an entire user doesn’t really
help us in a container orchestration environment like Kubernetes, because
from the perspective of the operating system, all of the containers belong
to the same user. Second, when it comes to CPU limits, the only thing that
regular Unix limits can do is limit the maximum CPU time our process gets
before it is terminated. That isn’t the kind of limit we need for sharing the
CPU between longrunning processes.

Instead of using traditional Unix limits, we’ll use cgroups again, this
time to limit the memory available to a process. We’ll use the same stress

container image, this time with a child process that tries to allocate lots of
memory.

If we were to try to apply a memory limit to this stress container after
starting it, we would find that the kernel won’t let us, because it will have
already grabbed too much memory. So instead we’ll apply it immediately in
the YAML configuration. As before, we need a Pod:

po-mlim.yaml ---

metadata:

name: stress2

namespace: crio

linux:

cgroup_parent: pod.slice

security_context:

namespace_options:

network: 2
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This is identical to the Pod we used for CPU limit, but the name is dif
ferent to avoid a collision. As we did earlier, we are asking CRIO to put the
cgroup into pod.slice so that we can find it easily.

We also need a container definition:

co-mlim.yaml ---

---

metadata:

name: stress2

image:

image: docker.io/bookofkubernetes/stress:stable

args:

- "--vm"

- "1"

- "--vm-bytes"

¶ - "512M"

- "-v"

linux:

resources:

· memory_limit_in_bytes: 268435456

cpu_period: 100000

¸ cpu_quota: 10000

The new resource limit is memory_limit_in_bytes, which we set to 256MiB
·. We keep the CPU quota in there ¸ because continuously trying to allo
cate memory is going to use a lot of CPU. Finally, in the args section, we tell
stress to try to allocate 512MB of memory ¶.

We can run this using similar crictl commands to what we’ve previously
used:

root@host01:~# cd /opt

root@host01:/opt# PML_ID=$(crictl runp po-mlim.yaml)

root@host01:/opt# CML_ID=$(crictl create $PML_ID co-mlim.yaml po-mlim.yaml)

root@host01:/opt# crictl start $CML_ID

...

If we tell crictl to list containers, everything seems okay:

root@host01:/opt# crictl ps

CONTAINER IMAGE ... STATE ...

31025f098a6c9 docker.io/bookofkubernetes/stress:stable ... Running ...

This reports that the container is in a Running state. However, behind the
scenes, stress is struggling to allocate memory. We can see this if we print
out the log messages coming from the stress container:

root@host01:/opt# crictl logs $CML_ID

...

stress-ng: info: [6] dispatching hogs: 1 vm

...
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stress-ng: debug: [11] stress-ng-vm: started [11] (instance 0)

stress-ng: debug: [11] stress-ng-vm using method 'all'

stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)

stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM killer, restarting again...

stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)

stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM killer, restarting again...

Stress is reporting that its memory allocation process is being continu
ously killed by the “out of memory.”

And we can see the kernel reporting that the oom_reaper is indeed the
reason that the processes are being killed:

root@host01:/opt# dmesg | grep -i oom_reaper | tail -n 1

[ 696.651056] oom_reaper: reaped process 8756 (stress-ng-vm)...

The OOM killer is the same feature Linux uses when the whole system
is low on memory and it needs to kill one or more processes to protect the
system. In this case, it is sending SIGKILL to the process to keep the cgroup
under its memory limit. SIGKILL is a message to the process that it should
immediately terminate without any cleanup.

WHY USE THE OOM KILLER?

When we used regular limits to control memory, an attempt to exceed our limits
caused the memory allocation to fail, but the kernel didn’t use the OOM killer
to kill our process. Why the difference? The answer is that this is the nature of
containers. As we look at architecting reliable systems using containerized
microservices, we’ll see that a container is supposed to be quick to start and
quick to scale. This means that each individual container in our application is
intentionally just not very important. This further means that the idea that one of
our containers could be killed unexpectedly is not really a concern. Add to that
the fact that not checking for memory allocation errors is one of the most
common bugs, so it’s considered safer simply to kill the process.

That said, it’s worth noting that it is possible to turn off the OOM killer for a
cgroup. However, rather than having the memory allocation fail, the effect is to
just pause the process until other processes in the group free up memory. That’s
actually worse, as now we have a process that isn’t officially killed but isn’t
doing anything useful either.

Before we move on, let’s put this continuously failing stress container
out of its misery:

root@host01:/opt# crictl stop $CML_ID

...

root@host01:/opt# crictl rm $CML_ID

...

root@host01:/opt# crictl stopp $PML_ID

Stopped sandbox ...
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root@host01:/opt# crictl rmp $PML_ID

Removed sandbox ...

root@host01:/opt# cd

Stopping and removing the container and Pod prevents the stress con
tainer from wasting CPU by continually trying to restart the memory alloca
tion process.

Network Bandwidth Limits
In this chapter, we’ve moved from resources that are easy to limit to resources
that are more difficult to limit. We started with CPU, where the kernel is
wholly in charge of which process gets CPU time and how much time it gets
before being preempted. Then we looked at memory, where the kernel
doesn’t have the ability to force a process to give up memory, but at least
the kernel can control whether a memory allocation is successful, or it can
kill a process that requests too much memory.

Now we’re moving on to network bandwidth, for which control is even
more difficult to exert for two important reasons. First, network devices
don’t really “sum up” like CPU or memory, so we’ll need to limit usage at
the level of each individual network device. Second, our system can’t really
control what is sent to it across the network; we can only completely control
egress bandwidth, the traffic that is sent on a given network device.

PROPER NETWORK MANAGEMENT

To have a completely reliable cluster, merely controlling egress traffic is clearly
insufficient. A process that downloads a large file is going to saturate the avail-
able bandwidth just as much as one that uploads lots of data. However, we
really can’t control what comes into our host via a given network interface, at
least not at the host level. If we really want to manage network bandwidth, we
need to handle that kind of thing at a switch or a router. For example, it is very
common to divide up the physical network into virtual local area networks
(VLANs). One VLAN might be an administration network used for auditing,
logging, and for administrators to ensure that they can log in. We might also
reserve another VLAN for important container traffic, or use traffic shaping to
ensure that important packets get through. As long as we perform this kind of
configuration at the switch, we can typically allow the remaining bandwidth to
be “best effort.”

Although Linux does provide some cgroup capability for network in
terfaces, these would only help us prioritize and classify network traffic. For
this reason, rather than using cgroups to control egress traffic, we’re going
to directly configure the Linux kernel’s traffic control capabilities. We’ll test
network performance using iperf3, apply a limit to outgoing traffic, and then
test again. In this chapter’s examples, host02 with IP address 192.168.61.12
was set up automatically with an iperf3 server running so that we can send
data to it from host01.
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Let’s begin by seeing the egress bandwidth we can get on an unlimited
interface:

root@host01:~# iperf3 -c 192.168.61.12

Connecting to host 192.168.61.12, port 5201

[ 5] local 192.168.61.11 port 49044 connected to 192.168.61.12 port 5201

...

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec 13184 sender

[ 5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec receiver

...

This example shows gigabit network speeds. Depending on how you’re
running the examples, you might see lower or higher figures. Now that
we have a baseline, we can use tc to set a quota going out. You’ll want to
choose a quota that makes sense given your bandwidth; most likely enforc
ing a 100Mb cap will work:

root@host01:~# IFACE=$(ip -o addr | grep 192.168.61.11 | awk '{print $2}')

root@host01:~# tc qdisc add dev $IFACE root tbf rate 100mbit \

burst 256kbit latency 400ms

The name of the network interface may be different on different sys
tems, so we use ip addr to identify which interface we want to control. Then,
we use tc to actually apply the limit. The token tbf in the command stands
for token bucket filter. With a token bucket filter, every packet consumes to
kens. The bucket refills with tokens over time, but if at any point the bucket
is empty, packets are queued until tokens are available. By controlling the
size of the bucket and the rate at which it refills, it is very easy for the kernel
to place a bandwidth limit.

Now that we’ve applied a limit to this interface, let’s see it in action by
running the exact same iperf3 command again:

root@host01:~# iperf3 -c 192.168.61.12

Connecting to host 192.168.61.12, port 5201

[ 5] local 192.168.61.11 port 49048 connected to 192.168.61.12 port 5201

...

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 114 MBytes 95.7 Mbits/sec 0 sender

[ 5] 0.00-10.01 sec 113 MBytes 94.5 Mbits/sec receiver

...

As expected, we are now limited to 100Mbps on this interface.
Of course, in this case, we limited the bandwidth available on this net

work interface for everyone on the system. To use this ability properly to
control bandwidth usage, we need to target the limits more precisely. How
ever, in order to do that, we need to isolate a process to its own set of net
work interfaces, which is the subject of the next chapter.
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Final Thoughts
Ensuring that a process doesn’t cause problems for other processes on the
system includes making sure that it fairly shares system resources such as
CPU, memory, and network bandwidth. In this chapter, we looked at how
Linux provides control groups (cgroups) that manage CPU and memory
limits and traffic control capabilities that manage network interfaces. As we
create a Kubernetes cluster and deploy containers to it, we’ll see how Kuber
netes uses these underlying Linux kernel features to ensure that containers
are scheduled on hosts with sufficient resources and that containers are well
behaved on those hosts.

We’ve now moved through some of the most important elements of pro
cess isolation provided by a container runtime, but there are two types of
isolation that we haven’t explored yet: network isolation and storage isola
tion. In the next chapter, we’ll look at how Linux network namespaces are
used to make each container appear to have its own set of network inter
faces, complete with separate IP addresses and ports. We’ll also look at how
traffic from those separate container interfaces flows through our system so
that containers can talk to one another and to the rest of the network.
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4
NETWORK NAMESPACES

Understanding container networking is
the biggest challenge in building modern
applications based on containerized micro

services. First, networking is complicated even
without introducing containers. Multiple levels of ab
straction are involved just in sending a simple ping from
one physical server to another. Second, containers in
troduce additional complexity because each has its own
set of virtual network devices to make it look like a sep
arate machine. Not only that, but a container orches
tration framework like Kubernetes then adds another
layer of complexity by adding an “overlay” network
through which containers can communicate even when
they are running on different hosts.

In this chapter, we will look in detail at how container networking op
erates. We will look at a container’s virtual network devices, including how
each network device is assigned a separate IP address that can reach the
host. We’ll see how containers on the same host are connected to one an
other through a bridge device and how container devices are configured to



route traffic. Finally, we’ll examine how address translation is used to enable
containers to connect to other hosts without exposing container networking
internals on the host’s network.

Network Isolation
In Chapter 2, we discussed how isolation is important to system reliability
because processes generally can’t affect something they cannot see. This
is one important reason for network isolation in containers. Another rea
son is ease of configuration. To run a process that acts as a server, such as
a web server, we need to choose one or more network interfaces on which
that server will listen, and we need to choose a port number on which it will
listen. We can’t have two processes listening on the same port on the same
interface.

As a result, it’s common for a process that acts as a server to provide a
way to configure which port it should use to listen for connections. How
ever, that still requires us to know what other servers are out there and what
ports they are using so that we can ensure there are no conflicts. That would
be impossible with a container orchestration framework like Kubernetes be
cause new processes can show up at any time, from different users, with a
need to listen on any port number.

The way to get around this is to provide separate virtual network inter
faces for each container. That way, a process in a container can choose any
port it wants—it will be listening on a different network interface from a pro
cess in a different container. Let’s see a quick example.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ll run two instances of an NGINX web server; each instance will lis
ten on port 80. As before, we’ll use CRIO and crictl, but we’ll use a script
to cut down on the typing:

root@host01:~# cd /opt

root@host01:/opt# source nginx.sh

...

The source before nginx.sh is important; it ensures that the script is run
in a way that makes the environment variables it sets available in our shell
for future commands. Inside nginx.sh are the usual crictl runp, crictl create,
and crictl start commands we’ve used in previous chapters. The YAML
files are also very similar to examples we’ve seen before; the only difference
is that we use a container image that has NGINX installed.

Let’s verify that we have two NGINX servers running:

root@host01:/opt# crictl ps

CONTAINER IMAGE ... NAME ...
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ae341010886ae .../nginx:latest ... nginx2 ...

6a95800b16f15 .../nginx:latest ... nginx1 ...

We can also verify that both NGINX servers are listening on port 80, the
standard port for web servers:

root@host01:/opt# crictl exec $N1C_ID cat /proc/net/tcp

sl local_address ...

0: 00000000:0050 ...

root@host01:/opt# crictl exec $N2C_ID cat /proc/net/tcp

sl local_address ...

0: 00000000:0050 ...

We look at the open port by printing /proc/net/tcp because we need to
run this command inside the NGINX container, where we don’t have stan
dard Linux commands like netstat or ss. As we saw in Chapter 2, in a con
tainer we have a separate mnt namespace providing a separate filesystem for
each container, so only the executables available in that separate filesystem
can be run in that namespace.

The port shown in both cases is 0050 in hexadecimal, which is port 80 in
decimal. If these two processes were running together on the same system
without network isolation, they wouldn’t both be able to listen on port 80,
but in this case, the two NGINX instances have separate network interfaces.
To explore this further, let’s start up a new BusyBox container:

root@host01:/opt# source busybox.sh

...

BusyBox is now running in addition to our two NGINX containers:

root@host01:/opt# crictl ps

CONTAINER IMAGE ... NAME ...

189dd26766d26 .../busybox:latest ... busybox ...

ae341010886ae .../nginx:latest ... nginx2 ...

6a95800b16f15 .../nginx:latest ... nginx1 ...

Let’s start a shell inside the container:

root@host01:/opt# crictl exec -ti $B1C_ID /bin/sh

/ #

Listing 41 shows the container’s network devices and addresses.

/ # ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
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3: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue

link/ether 9a:7c:73:2f:f7:1a brd ff:ff:ff:ff:ff:ff

inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0

valid_lft forever preferred_lft forever

inet6 fe80::987c:73ff:fe2f:f71a/64 scope link

valid_lft forever preferred_lft forever

Listing 4-1: BusyBox network

Ignoring the standard loopback device, we see a network device with
10.85.0.4 for an IP address. This does not correspond at all with the IP ad
dress of the host, which is 192.168.61.11; it is on a different network entirely.
Because our container is on a separate network, we might not expect to
be able to ping the underlying host system from inside the container, but it
works, as Listing 42 demonstrates.

/ # ping -c 1 192.168.61.11

PING 192.168.61.11 (192.168.61.11): 56 data bytes

64 bytes from 192.168.61.11: seq=0 ttl=64 time=7.471 ms

--- 192.168.61.11 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 7.471/7.471/7.471 ms

Listing 4-2: BusyBox ping test

For traffic to get from our container to the host network, there must be
an entry in the routing table to make that happen. As Listing 43 illustrates,
we can verify this by using the ip command.

/ # ip route

default via 10.85.0.1 dev eth0

10.85.0.0/16 dev eth0 scope link src 10.85.0.4

Listing 4-3: BusyBox routes

As expected, there is a default route. When we sent the ping, our Busy
Box container reached out to 10.85.0.1, which then had the ability to send
the ping onward until it reached 192.168.61.11.

We’ll leave all three containers running to explore them further, but
let’s exit our BusyBox shell to get back to the host:

/ # exit

The view of the network from inside the container shows why our two
NGINX servers are both able to listen on port 80. As mentioned earlier, only
one process can listen on a port for a particular interface, but of course, if
each NGINX server has a separate network interface, there is no conflict.
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Network Namespaces
CRIO is using Linux network namespaces to create this isolation. We ex
plored network namespaces briefly in Chapter 2; in this chapter, we’ll look
at them in more detail.

First, let’s use the lsns command to list the network namespaces that
CRIO has created for our containers:

root@host01:/opt# lsns -t net

NS TYPE NPROCS PID USER NETNSID NSFS COMMAND

4026531992 net 114 1 root unassigned /sbin/init

4026532196 net 4 5801 root 0 /run/netns/ab8be6e6... /pause

4026532272 net 4 5937 root 1 /run/netns/8ffe0394... /pause

4026532334 net 2 6122 root 2 /run/netns/686d71d9... /pause

In addition to the root network namespace that is used for all the pro
cesses that aren’t in a container, we see three network namespaces, one for
each Pod we’ve created.

When we use CRIO with crictl, the network namespace actually be
longs to the Pod. The pause process that is listed here exists so that the name
spaces can continue to exist even as containers come and go inside the Pod.

In the previous example, there are four network namespaces. The first
one is the root namespace that was created when our host booted. The other
three were created for each of the containers we have started so far: two
NGINX containers and one BusyBox container.

Inspecting Network Namespaces
To learn about how network namespaces work and manipulate them, we’ll
use the ip netns command to list network namespaces:

root@host01:/opt# ip netns list

7c185da0-04e2-4321-b2eb-da18ceb5fcf6 (id: 2)

d26ca6c6-d524-4ae2-b9b7-5489c3db92ce (id: 1)

38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This command looks in a different configuration location to find net
work namespaces, so only the three container namespaces are listed.

We want to capture the network namespace for our BusyBox container.
It’s one of the three listed, and we can guess that it is the one labeled (id: 2)

because we created it last, but we can also use crictl and jq to extract the
information we need:

root@host01:/opt# NETNS_PATH=$(crictl inspectp $B1P_ID |

jq -r '.info.runtimeSpec.linux.namespaces[]|select(.type=="network").path')

root@host01:/opt# echo $NETNS_PATH

/var/run/netns/7c185da0-04e2-4321-b2eb-da18ceb5fcf6

root@host01:/opt# NETNS=$(basename $NETNS_PATH)
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root@host01:/opt# echo $NETNS

7c185da0-04e2-4321-b2eb-da18ceb5fcf6

If you run crictl inspectp $B1P_ID by itself, you’ll see a wealth of informa
tion about the BusyBox Pod. Out of all that information, we want only the
information about the network namespace, so we use jq to extract that infor
mation in three steps. First, it reaches down into the JSON data to pull out
all of the namespaces associated with this Pod. It then selects only the name
space that has a type field of network. Finally, it extracts the path field for that
namespace and stores it in the environment variable NETNS_PATH.

The value that crictl returns is the full path to the network namespace
under /var/run. For our upcoming commands, we want only the value of the
namespace, so we use basename to strip off the path. Also, because this infor
mation will be a lot more usable if we assign it to an environment variable,
we do that, and then we use echo to print the value so that we can confirm it
all worked.

Of course, for interactive debugging, you can often just scroll through
the entire contents of crictl inspectp (for Pods) and crictl inspect (for con
tainers) and pick out the values you want. But this approach of extracting
data with jq is very useful in scripting or in reducing the amount of output
to scan through manually.

Now that we’ve extracted the network namespace for BusyBox from
crictl, let’s see what processes are assigned to that namespace:

root@host01:/opt# ps --pid $(ip netns pids $NETNS)

PID TTY STAT TIME COMMAND

5800 ? Ss 0:00 /pause

5839 ? Ss 0:00 /bin/sleep 36000

If we just ran ip netns pids $NETNS, we would get a list of the process
IDs (PIDs), but no extra information. We take that output and send it to
ps --pid, which makes it possible for us to see the name of the commands.
As expected, we see a pause process and the sleep process that we specified
when we ran the BusyBox container.

In the previous section, we used crictl exec to run a shell inside the con
tainer, which enabled us to see what network interfaces were available in
that network namespace. Now that we know the ID of the network name
space, we can use ip netns exec to run commands individually from within
a network namespace. Running ip netns exec is very powerful in that it is
not limited to just networking commands, but could be any process such
as a web server. However, note that this is not the same as fully running in
side the container, because we are not entering any of the container’s other
namespaces (for example, the pid namespace used for process isolation).

Next, let’s try the ip addr command from within the BusyBox network
namespace:

root@host01:/opt# ip netns exec $NETNS ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
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inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

3: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue ...

link/ether 9a:7c:73:2f:f7:1a brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0

valid_lft forever preferred_lft forever

inet6 fe80::987c:73ff:fe2f:f71a/64 scope link

valid_lft forever preferred_lft forever

The list of network devices and IP addresses that we see here matches
what we saw when we ran commands inside our BusyBox container in List
ing 41. CRIO is creating these network devices and placing them in the net
work namespace. (We will see how CRIO was configured to perform con
tainer networking when we look at Kubernetes networking in Chapter 8.)
For now, let’s look at how we can create our own devices and namespaces for
network isolation. This will also show us how to debug container networking
when something isn’t working correctly.

Creating Network Namespaces
We can create a network namespace with a single command:

root@host01:/opt# ip netns add myns

This new namespace immediately shows up in the list:

root@host01:/opt# ip netns list

myns

7c185da0-04e2-4321-b2eb-da18ceb5fcf6 (id: 2)

d26ca6c6-d524-4ae2-b9b7-5489c3db92ce (id: 1)

38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This namespace isn’t very useful yet; it has a loopback interface but
nothing else:

root@host01:/opt# ip netns exec myns ip addr

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

In addition, even the loopback interface is down, so it couldn’t be used.
Let’s quickly fix that:

root@host01:/opt# ip netns exec myns ip link set dev lo up

root@host01:/opt# ip netns exec myns ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
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inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

The loopback interface is now up, and it has the typical IP address of
127.0.0.1. A basic loopback ping will now work in this network namespace:

root@host01:/opt# ip netns exec myns ping -c 1 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.035 ms

--- 127.0.0.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.035/0.035/0.035/0.000 ms

The ability to ping the loopback network interface is a useful first test for
any networking stack, as it shows the ability to send and receive packets. So,
we now have a basic working network stack in our new network namespace,
but it still isn’t terribly useful because a loopback interface by itself can’t talk
to anything else on our system. We need to add another network device in
this network namespace in order to establish connectivity to the host and
the rest of the network.

To do this, we’ll create a virtual Ethernet (veth) device. You can think of
a veth as a virtual network cable. Like a network cable, it has two ends, and
whatever goes in one end comes out the other end. For this reason, the term
veth pair is often used.

We start with a command that creates the veth pair:

root@host01:/opt# ip link add myveth-host type veth \

peer myveth-myns netns myns

This command does three things:

1. Creates a veth device called myveth-host

2. Creates a veth device called myveth-myns

3. Places the device myveth-myns in the network namespace myns

The host side of the veth pair appears in the regular list of network de
vices on the host:

root@host01:/opt# ip addr

...

8: myveth-host@if2: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...

link/ether fe:7a:5d:86:00:d9 brd ff:ff:ff:ff:ff:ff link-netns myns

This output shows myveth-host and also that it is connected to a device in
the network namespace myns.

If you run this command for yourself and look at the complete list of
host network devices, you will notice additional veth devices connected to
each of the container network namespaces. These were created by CRIO
when we deployed NGINX and BusyBox.
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Similarly, we can see that our myns network namespace has a new net
work interface:

root@host01:/opt# ip netns exec myns ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: myveth-myns@if8: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...

link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0

As before, this interface is currently down. We need to bring up both
sides of the veth pair before we can start communicating. We also need to
assign an IP address to the myveth-myns side to enable it to communicate:

root@host01:/opt# ip netns exec myns ip addr add 10.85.0.254/16 \

dev myveth-myns

root@host01:/opt# ip netns exec myns ip link set dev myveth-myns up

root@host01:/opt# ip link set dev myveth-host up

A quick check confirms that we’ve successfully configured an IP address
and brought up the network:

root@host01:/opt# ip netns exec myns ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: myveth-myns@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> ... state UP ...

link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 10.85.0.254/16 scope global myveth-myns

valid_lft forever preferred_lft forever

inet6 fe80::240f:64ff:fea8:371f/64 scope link

valid_lft forever preferred_lft forever

In addition to the loopback interface, we now see an additional interface
with the IP address 10.85.0.254. What happens if we try to ping this new IP
address? It turns out we can indeed ping it, but only from within the network
namespace:

root@host01:/opt# ip netns exec myns ping -c 1 10.85.0.254

PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.

64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.030 ms

--- 10.85.0.254 ping statistics ---

¶ 1 packets transmitted, 1 received, 0% packet loss, time 0ms
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rtt min/avg/max/mdev = 0.030/0.030/0.030/0.000 ms

root@host01:/opt# ping -c 1 10.85.0.254

PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.

From 10.85.0.1 icmp_seq=1 Destination Host Unreachable

--- 10.85.0.254 ping statistics ---

· 1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

The first ping command, run using ip netns exec so that it runs within
the network namespace, shows a successful response ¶. However, the sec
ond ping command, run without ip netns exec, shows that no packets were
received ·. The problem is that we have successfully created a network inter
face inside our network namespace, and we have the other end of the veth
pair on our host network, but we haven’t connected up a corresponding net
work device on the host, so there’s no host network interface that can talk to
the interface in the network namespace.

At the same time, when we ran a ping test from our BusyBox container
in Listing 42, we were able to ping the host with no trouble. Clearly, there
must be more configuration that CRIO did for us when it created our con
tainers. Let’s explore that in the next section.

Bridge Interfaces
The host side of the veth pair currently isn’t connected to anything, so it
isn’t surprising that our network namespace can’t talk to the outside world
yet. To fix that, let’s look at one of the veth pairs that CRIO created:

root@host01:/opt# ip addr

...

7: veth062abfa6@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> ... master cni0 ...

link/ether fe:6b:21:9b:d0:d2 brd ff:ff:ff:ff:ff:ff link-netns ...

inet6 fe80::fc6b:21ff:fe9b:d0d2/64 scope link

valid_lft forever preferred_lft forever

...

Unlike the interface we created, this interface specifies master cni0, which
shows that it belongs to a network bridge. A network bridge exists to connect
multiple interfaces together. You can think of it as an Ethernet switch be
cause it routes traffic from one network interface to another based on the
media access control (MAC) address of the interfaces.

We can see the bridge cni0 in the list of network devices on the host:

root@host01:/opt# ip addr

...

4: cni0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue ...

link/ether 8e:0c:1c:7d:94:75 brd ff:ff:ff:ff:ff:ff

inet 10.85.0.1/16 brd 10.85.255.255 scope global cni0

valid_lft forever preferred_lft forever

inet6 fe80::8c0c:1cff:fe7d:9475/64 scope link
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valid_lft forever preferred_lft forever

...

The bridge is a little smarter than a typical Ethernet switch in that it
provides some firewall and routing capabilities. It also has an IP address
of 10.85.0.1. This IP address is the same as we saw with the default route
for our BusyBox container in Listing 43, so we’ve started to solve the mys
tery of how our BusyBox container is able to talk to hosts outside of its own
network.

Adding Interfaces to a Bridge
To inspect the bridge and add devices to it, we’ll use the brctl command.
Let’s inspect the bridge first:

root@host01:/opt# brctl show

bridge name bridge id STP enabled interfaces

cni0 8000.8e0c1c7d9475 no veth062abfa6

veth43ab68cd

vetha251c619

The bridge cni0 has three interfaces on it, corresponding to the host
side of the veth pair for each of the three containers we have running (two
NGINX and one BusyBox). Let’s take advantage of this existing bridge to set
up network connectivity to the namespace we created:

root@host01:/opt# brctl addif cni0 myveth-host

root@host01:/opt# brctl show

bridge name bridge id STP enabled interfaces

cni0 8000.8e0c1c7d9475 no myveth-host

veth062abfa6

veth43ab68cd

vetha251c619

The host side of our veth pair is now connected to the bridge, which
means that we can now ping into the namespace from the host:

root@host01:/opt# ping -c 1 10.85.0.254

PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.

64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.194 ms

--- 10.85.0.254 ping statistics ---

¶ 1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.194/0.194/0.194/0.000 ms

The fact that a packet was received ¶ shows that we set up a working
connection. We should be pleased that it worked, but if we want to really
understand this, we can’t be satisfied with saying that we can ping this inter
face “from the host.” We need to be more specific as to exactly how traffic is
flowing.
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Tracing Traffic
Let’s actually trace this traffic to see what’s happening when we run the ping

command. We will use tcpdump to print out the traffic. First, let’s start a ping

command in the background to create some traffic to trace:

root@host01:/opt# ping 10.85.0.254 >/dev/null 2>&1 &

...

We send the output to /dev/null so that it doesn’t clutter up our session.
Now, let’s use tcpdump to see the traffic:

root@host01:/opt# timeout 1s tcpdump -i any -n icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on any, link-type LINUX_SLL (Linux cooked v1), ...

17:37:33.204863 IP 10.85.0.1 > 10.85.0.254: ICMP echo request, ...

17:37:33.204894 IP 10.85.0.1 > 10.85.0.254: ICMP echo request, ...

17:37:33.204936 IP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...

17:37:33.204936 IP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...

4 packets captured

4 packets received by filter

0 packets dropped by kernel

root@host01:/opt# killall ping

We use timeout to prevent tcpdump from running indefinitely, and we also
use killall afterward to stop the ping command and discontinue it running
in the background.

The output shows that the ping is originating from the bridge interface,
which has IP address 10.85.0.1. This is because of the host’s routing table:

root@host01:/opt# ip route

...

10.85.0.0/16 dev cni0 proto kernel scope link src 10.85.0.1

192.168.61.0/24 dev enp0s8 proto kernel scope link src 192.168.61.11

When CRIO created the bridge and configured its IP address, it also set
up a route so that all traffic destined for the 10.85.0.0/16 network (that is, all
traffic from 10.85.0.0 through 10.85.255.255) would use cni0. This is enough
information for the ping command to know where to send its packet, and the
bridge handles the rest.

The fact that the ping is coming from the bridge interface of 10.85.0.1
rather than the host interface of 192.168.61.11 actually makes a big differ
ence, as we can see if we try to run the ping the other way around. Let’s try
to ping from within the namespace to the host network:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.11

ping: connect: Network is unreachable

The issue here is that the interface in our network namespace doesn’t
know how to reach the host network. The bridge is available and willing to
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route traffic onto the host network, but we haven’t configured the necessary
route to use it. Let’s do that now:

root@host01:/opt# ip netns exec myns ip route add default via 10.85.0.1

And now the ping works:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.11

PING 192.168.61.11 (192.168.61.11) 56(84) bytes of data.

64 bytes from 192.168.61.11: icmp_seq=1 ttl=64 time=0.097 ms

--- 192.168.61.11 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.097/0.097/0.097/0.000 ms

This illustrates an important rule to remember when debugging net
work problems: it’s very easy to jump to conclusions about what network
traffic is really being sent and received. There is often no substitute for using
tracing to see what the traffic really looks like.

IP ADDRESSES ON THE HOST

This approach is not the only one that results in connectivity from the host into
the network namespace. We also could have assigned an IP address directly to
the host side of the veth pair. However, even though that would have enabled
communication from the host into our network namespace, it wouldn’t provide a
way for multiple network namespaces to communicate with one another. Using
a bridge interface, as CRI-O does, enables the interconnection of all of the con-
tainers on a host, making them all appear to be on the same network.

This also explains why we didn’t assign an IP address to the host side of the
veth pair. When working with bridges, only the bridge interface gets an IP
address. Interfaces added to the bridge do not.

With that last change, it would seem like we’ve matched the network
configuration of our containers, but we are still missing the ability to com
municate with the broader network outside of host01. We can demonstrate
this by trying to ping from our network namespace to host02, which is on the
same internal network as host01 and has the IP address 192.168.61.12. If we
try a ping from our BusyBox container, it works:

root@host01:/opt# crictl exec $B1C_ID ping -c 1 192.168.61.12

PING 192.168.61.12 (192.168.61.12): 56 data bytes

64 bytes from 192.168.61.12: seq=0 ttl=63 time=0.816 ms

--- 192.168.61.12 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.816/0.816/0.816 ms
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The ping output reports that a packet was received. However, if we try
the same command using the network namespace we created, it doesn’t
work:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.12

PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.

--- 192.168.61.12 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

This command reports that no packets were received.
Really, we ought to be surprised that the ping from our BusyBox con

tainer worked. After all, host02 doesn’t know anything about the BusyBox
container, or the cni0 bridge interface, or the 10.85.0.0/16 network that the
containers are in. How is it possible for host02 to exchange a ping with our
BusyBox container? To understand that, we need to look at network
masquerade.

Masquerade
Masquerade, also known as Network Address Translation (NAT), is used ev
ery day in networking. For example, most home connections to the inter
net are provided with only a single IP address that is addressable from the
internet, but many devices within the home network need an internet con
nection. It is the job of a router to make it appear that all traffic from that
network is originating from a single IP address. It does this by rewriting the
source IP address of outgoing traffic while tracking all outgoing connections
so that it can rewrite the destination IP address of any replies.

NO T E The kind of NAT that we are talking about here is technically known as Source NAT
(SNAT). Don’t get hung up on the name, though; for it to work correctly, any re
ply packets must have their destination rewritten. The term Source in this case just
means that the source address is what’s rewritten when a new connection is initiated.

Masquerading sounds like just what we need to connect our containers
running in the 10.85.0.0/16 network to the host network, 192.168.61.0/24, and
in fact it is exactly how it worked. When we sent a ping from our BusyBox
container, the source IP address was rewritten such that the ping appeared
to come from the host01 IP 192.168.61.11. When host02 responded, it sent its
reply to 192.168.61.11, but the destination was rewritten so that it was actually
sent to the BusyBox container.

Let’s trace the ping traffic all the way through to demonstrate:

root@host01:/opt# crictl exec $B1C_ID ping 192.168.61.12 >/dev/null 2>&1 &

[1] 6335

root@host01:/opt# timeout 1s tcpdump -i any -n icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on any, link-type LINUX_SLL (Linux cooked v1)...
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18:53:44.310789 IP 10.85.0.4 ¶ > 192.168.61.12: ICMP echo request, id 12, seq 17...

18:53:44.310789 IP 10.85.0.4 > 192.168.61.12: ICMP echo request, id 12, seq 17...

18:53:44.310876 IP 192.168.61.11 · > 192.168.61.12: ICMP echo request, id 12, seq 17...

18:53:44.311619 IP 192.168.61.12 > 192.168.61.11: ICMP echo reply, ¸ id 12, seq 17...

18:53:44.311648 IP 192.168.61.12 > 10.85.0.4: ¹ ICMP echo reply, id 12, seq 17...

18:53:44.311656 IP 192.168.61.12 > 10.85.0.4: ICMP echo reply, id 12, seq 17...

6 packets captured

6 packets received by filter

0 packets dropped by kernel

root@host01:/opt# killall ping

When the ping originates from within our BusyBox container, it has a
source IP address of 10.85.0.4 ¶. This address is rewritten, making the ping

appear to be coming from the host IP 192.168.61.11 ·. Of course, host02
knows how to respond to a ping coming from that address, so the ping is an
swered ¸. At this point, the other half of the masquerade takes effect, and
the destination is rewritten to 10.85.0.4 ¹. The result is that the BusyBox
container is able to send a packet to a separate host and get a reply.

To complete the setup for our network namespace, we need a similar
rule to masquerade traffic coming from 10.85.0.254. We can start by us
ing iptables to look at the rules that CRIO created when it configured the
containers:

root@host01:/opt# iptables -t nat -n -L

...

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination ...

CNI-f82910b3a7e28baf6aedc0d3 all -- 10.85.0.2 anywhere ...

CNI-7f8aa3d8a4f621b186149f43 all -- 10.85.0.3 anywhere ...

CNI-48ad69d30fe932fda9ea71d2 all -- 10.85.0.4 anywhere ...

Chain CNI-48ad69d30fe932fda9ea71d2 (1 references)

target prot opt source destination

ACCEPT all -- anywhere 10.85.0.0/16 ...

MASQUERADE all -- anywhere !224.0.0.0/4 ...

...

Masquerading starts when the connection is initiated; in this case, when
traffic has a source address in the 10.85.0.0/16 network. For this reason, the
POSTROUTING chain is used, because it sees all outgoing traffic. There is a rule
in the POSTROUTING chain for each container; each rule invokes a CNI chain for
that container.

For brevity, only one of the three CNI chains is shown. The other two
are identical. The CNI chain first does an ACCEPT for all traffic that is local to
the container network, so this traffic won’t be masqueraded. It then sets up
masquerade for all traffic (except 224.0.0.0/4, which is multicast traffic that
cannot be masqueraded because there is no way to properly route replies).
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What’s missing from this configuration is a matching setup for traffic
from 10.85.0.254, the IP address we assigned to the interface in our network
namespace. Let’s add that. First, create a new chain in the nat table:

root@host01:/opt# iptables -t nat -N chain-myns

Next, add a rule to accept all traffic for the local network:

root@host01:/opt# iptables -t nat -A chain-myns -d 10.85.0.0/16 -j ACCEPT

Now all remaining traffic (except multicast) should be masqueraded:

root@host01:/opt# iptables -t nat -A chain-myns \

! -d 224.0.0.0/4 -j MASQUERADE

And finally, tell iptables to use this chain for any traffic coming from
10.85.0.254:

root@host01:/opt# iptables -t nat -A POSTROUTING -s 10.85.0.254 -j chain-myns

We can verify that we did all that correctly by listing the rules again:

root@host01:/opt# iptables -t nat -n -L

...

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

chain-myns all -- 10.85.0.254 anywhere

...

Chain chain-myns (1 references)

target prot opt source destination

ACCEPT all -- anywhere 10.85.0.0/16

MASQUERADE all -- anywhere !224.0.0.0/4

It looks like we have the configuration we need, as this configuration
matches the way the virtual network devices were configured for the Busy
Box container. To make sure, let’s try a ping to host02 again:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.12

PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.

64 bytes from 192.168.61.12: icmp_seq=1 ttl=63 time=0.843 ms

--- 192.168.61.12 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.843/0.843/0.843/0.000 ms

Success! We’ve fully replicated the network isolation and connectivity
that CRIO is providing our containers.
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Final Thoughts
Container networking looks deceptively simple when running containers.
Each container is provided with its own set of network devices, avoiding the
need to worry about port conflicts and reducing the effect that one con
tainer can have on another. However, as we’ve seen in this chapter, this
“simple” network isolation requires some complex configuration to enable
not just isolation, but also connectivity to other containers and other net
works. In Part II, after we properly introduce Kubernetes, we’ll return to
container networking and show how the complexity only increases when we
need to connect containers running on different hosts and load balance traf
fic across multiple container instances.

For now, we have one more key topic to address with containers before
we can move on to Kubernetes. We need to understand how container stor
age works, including the container image that is used as the base filesystem
when a new container is started as well as the temporary storage that a run
ning container uses. In the next chapter, we’ll investigate how container
storage makes application deployment easier and how a layered filesystem
is used to save on storage and improve efficiency.
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5
CONTA INER IMAGES AND

RUNTIME LAYERS

To run a process, we need storage. One of
the great advantages of containerized soft
ware is the ability to bundle an application

for delivery together with its dependencies. As
a result, we need to store the executable for the pro
gram and any shared libraries it uses. We also need to
store configuration files, logs, and any data managed
by the program. All of this storage must be isolated
so that a container can’t interfere with the host system
or with other containers. Altogether, this represents a
large need for storage, and it means container engines
must provide some unique features to be efficient in
the use of disk space and bandwidth. In this chapter,
we’ll explore how the use of a layered filesystem makes
container images efficient to download and containers
efficient to start.



Filesystem Isolation

In Chapter 2, we saw how we could use a chroot environment to create a sep
arate, isolated part of the filesystem that contained only the binaries and
libraries we needed to run a process. Even to run a simple ls command, we
needed the binary and several libraries. A more fully featured container,
such as one running the NGINX web server, needs quite a bit more—a com
plete set of files for a Linux distribution.

In the chroot example, we built the isolated filesystem from the host sys
tem when we were ready to use it. That approach would be impractical for
containers. Instead, the isolated filesystem is packaged in a container image,
which is a readytouse bundle that includes all files and metadata, such as
environment variables and the default executable.

Container Image Contents
Let’s take a quick look inside an NGINX container image. For this chapter,
we’ll be running commands using Docker because it’s still the most common
tool for building container images.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Run the following command on host01 from this chapter’s examples to
download the image:

root@host01:~# docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx

...

Status: Downloaded newer image for nginx:latest

docker.io/library/nginx:latest

The docker pull command downloads an image from an image registry.
An image registry is a web server that implements an API for downloading
and publishing container images. We can see the image we’ve downloaded
by listing images with docker images:

root@host01:~# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

nginx latest f0b8a9a54136 7 days ago 133MB

This image is 133MB and has a unique identifier of f0b8a9a54136. (Your
identifier will be different, as new NGINX container images are built every
day.) This image includes not only the NGINX executables and required
libraries but also a Linux distribution based on Debian. We saw this briefly
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in Chapter 1 when we demonstrated a Rocky Linux container on an Ubuntu
host and kernel, but let’s look at it in a little more detail. Start by running an
NGINX container:

root@host01:~# docker run --name nginx -d nginx

516d13e912a55cfc6f73f0dd473661d6b7d3b868d5a07a2bc7253971015b6799

The --name flag gives the container a friendly name that we can use for
future commands, whereas the -d flag sends it to the background.

Now, let’s explore the filesystem of our running container:

root@host01:~# docker exec -ti nginx /bin/bash

root@516d13e912a5:/#

From here, we can see the various libraries needed for NGINX to work:

root@516d13e912a5:/# ldd $(which nginx)

linux-vdso.so.1 (0x00007ffe2a1fa000)

...

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fe0d6531000)

/lib64/ld-linux-x86-64.so.2 (0x00007fe0d6ed4000)

All of these libraries are part of the container image we downloaded,
so our NGINX container does not need (and cannot see) any files from the
host system.

Not only do we have a healthy number of libraries present, but we have
typical configuration files in /etc that we would expect for a Debian system:

root@516d13e912a5:/# ls -1 /etc

...

debian_version

deluser.conf

dpkg

...

systemd/

...

This listing shows that the filesystem even includes directories that aren’t
really needed for a container, like the /etc/systemd directory. (Remember, a
container is just a set of related processes run under isolation, so a container
almost never runs a system service manager like systemd.) This full filesys
tem is included for a couple reasons. First, many processes were written to
expect the usual set of files to be present. Second, it’s just easier to build
container images starting from a typical Linux distribution.

The separate filesystem for our container is writable as well. While we
have this shell open, let’s send some random data to a file in the container
so that we can inspect that storage from the host. We can then exit the shell:

root@516d13e912a5:/# dd if=/dev/urandom of=/tmp/data bs=1M count=10

...
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10485760 bytes (10 MB, 10 MiB) copied, 0.0913977 s, 115 MB/s

root@516d13e912a5:/# exit

The dd command wrote a 10MB file into the /tmp directory. Even though
we exited the shell, the container is still running, so we can use docker inspect

to see the amount of disk space this container is using:

root@host01:~# docker inspect -s nginx | jq '.[0].SizeRw'

10487109

The -s flag tells docker inspect to report the size of the container. Be
cause docker inspect produces a huge JSON output, we use the JSON query
tool jq to choose the field we want.

The reported size is just about 10MB, suggesting that the container is
consuming only the amount of readwrite storage required for the file we
wrote, plus any files written by NGINX. We’ll explore this in more detail as
we continue in this chapter.

Image Versions and Layers
The ability to quickly download a prepackaged filesystem to run a process
is only one of the advantages of container images. Another is the ability to
tag different versions of an image to allow for rapid upgrading. Let’s explore
this by pulling and running two different versions of Redis, the popular in
memory key–value database:

root@host01:~# docker pull redis:6.0.13-alpine

6.0.13-alpine: Pulling from library/redis

¶ 540db60ca938: Pull complete

29712d301e8c: Pull complete

8173c12df40f: Pull complete

...

docker.io/library/redis:6.0.13-alpine

root@host01:~# docker pull redis:6.2.3-alpine

6.2.3-alpine: Pulling from library/redis

· 540db60ca938: Already exists

29712d301e8c: Already exists

8173c12df40f: Already exists

...

docker.io/library/redis:6.2.3-alpine

The data after the colon is the image tag and acts as a version identifier.
Previously, when we left this off, Docker defaulted to latest, which is a tag
like any other, but it is used by convention to refer to the latest published
image. By specifying the version, we can ensure that even as newer versions
of Redis are released, we will continue to run the same version until we are
ready to upgrade. The tag can contain any characters, and it is common to
add extra information after a hyphen. In this case, the -alpine at the end
of the tag indicates that this image is based on Alpine Linux, a lightweight
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Linux distribution that is popular for making container images because of
its small size.

One other interesting item of note is the fact that when we downloaded
the second version of Redis, some of the content · was flagged as Already
exists. Looking at the first Redis download, we see the same unique identi
fiers are present there ¶. This is because a container image is made up of
layers, and these identifiers uniquely describe a layer. If a layer we’ve already
downloaded is used by another image, we don’t need to download it again,
saving download time. Additionally, each layer needs to be stored only once
on disk, saving disk space.

We now have two different versions of Redis downloaded:

root@host01:~# docker images | grep redis

redis 6.0.13-alpine a556c77d3dce 2 weeks ago 31.3MB

redis 6.2.3-alpine efb4fa30f1cf 2 weeks ago 32.3MB

Although Docker is reporting that each image has a size of about 30MB,
that is the total size of all the layers and doesn’t account for the storage sav
ings that come from shared layers. The actual storage on disk is less, as we
can see by examining Docker’s use of disk space:

root@host01:~# docker system df -v

Images space usage:

REPOSITORY TAG ... SIZE SHARED SIZE UNIQUE SIZE ...

redis 6.0.13-alpine ... 31.33MB 6.905MB 24.42MB ...

redis 6.2.3-alpine ... 32.31MB 6.905MB 25.4MB ...

The two Redis images are sharing almost 7MB of base layers.
These two versions of Redis can be run separately:

root@host01:~# docker run -d --name redis1 redis:6.0.13-alpine

66dbf56ec0e8db24ca78afc07c68b7d0699d68b4749e0c03310857cfce926366

root@host01:~# docker run -d --name redis2 redis:6.2.3-alpine

9dd3f86a1284171e5ca60f7f8a6a13dc517237826a92b3cb256f5ac64a5f5c31

Now that both images are running, we can confirm that our contain
ers have exactly the version of Redis we want, independent of what version
might be the latest release and independent of the versions available for our
host server:

root@host01:~# docker logs redis1 | grep version

1:C 21 May 2021 14:18:24.952 # Redis version=6.0.13, ...

root@host01:~# docker logs redis2 | grep version

1:C 21 May 2021 14:18:36.387 # Redis version=6.2.3, ...

This is a big advantage for building reliable systems. We can test our
application thoroughly with one version of the software and be sure that
version will continue to be used until we choose to upgrade. We can also
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easily test our software against a new version without having to upgrade a
host system.

Building Container Images
In the preceding example, we saw how we could reduce the download and
disk requirements for container images by sharing layers. This layer sharing
can be used with any container image, not just two different versions of the
same software.

The layers in a container image come from the way it is built. A con
tainer image build starts with a base image. For example, both of our two
Redis versions started with the same exact Alpine Linux base image, which
is why those layers were shared in that image. Starting from the base image,
each step in the build process can produce a new layer. This new layer con
tains only the changes to the filesystem that came from that build step.

A base image must also come from somewhere, and, ultimately, there
must be an initial layer, which is typically a minimal Linux filesystem created
from some Linux distribution, transferred into an empty container image,
and then expanded to become an initial layer.

Using a Dockerfile
There are many different ways to build container images, but the most pop
ular is to create a file known as a Dockerfile or Containerfile that specifies the
commands and configuration for the image. Here’s a simple Dockerfile that
adds web content to an NGINX image:

Dockerfile ---

FROM nginx

# Add index.html

RUN echo "<html><body><h1>Hello World!</h1></body></html>" \

>/usr/share/nginx/html/index.html

Each line in a Dockerfile starts with a command that is followed by param
eters. Blank lines and content after a # are ignored, and a backslash at the
end of a line continues that command onto the next line. There are many
possible commands; here are the most common:

FROM Specify the base image for this build.

RUN Run a command inside the container.

COPY Copy files into the container.

ENV Specify an environment variable.

ENTRYPOINT Configure the initial process for the container.

CMD Set default parameters for the initial process.
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Docker provides the docker build command to build an image from a
Dockerfile. The docker build command creates a new image by running each
command in the Dockerfile, one at a time. Listing 51 illustrates how to run
docker build.

root@host01:~# cd /opt/hello

root@host01:/opt/hello# docker build -t hello .

¶ Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM nginx

· ---> f0b8a9a54136

Step 2/2 : RUN echo "<html><body><h1>Hello World!</h1></body></html>" ...

¸ ---> Running in 77ba9163d0a5

Removing intermediate container 77ba9163d0a5

---> e9ca31d590f9

Successfully built e9ca31d590f9

¹ Successfully tagged hello:latest

Listing 5-1: Docker build

The -t switch tells docker build to store the image from the build process
under the name hello.

Examining the steps in this build process will help clarify how container
images are made. First, Docker sends the build context to the Docker daemon
¶. The build context is a directory and all of its files and subdirectories. In
this case, we specified the build context as the current directory when we
added . to the end of the docker build command. The actual container im
age build happens inside the daemon, so the only files that would be avail
able for a COPY command are those that are in the build context.

Second, Docker identifies our base image, in this case nginx. The unique
identifier it displays · matches the one displayed earlier for our NGINX
image when we ran docker images. Third, Docker executes the command we
specified in the RUN step. This command is actually run inside a container
based on our NGINX base image ¸, which means that only the commands
installed in the container image are available to run. If we need other com
mands to be available, we might need to create a RUN step that installs them
before we can use them.

After all of the build steps are complete, Docker “tags” the new con
tainer image with the name we provided using the -t flag. As before, we
didn’t specify a version, so latest is used as a default. We now can see this
image in the list of available images:

root@host01:/opt/hello# docker images | grep hello

hello latest e9ca31d590f9 9 minutes ago 133MB

The unique identifier for this image matches the output from the end
of Listing 51. This image is shown as 133MB because it has all of the layers
from the NGINX image in addition to the new small HTML file we added.
As before, the shared layers are stored only once, so the extra storage re
quired to build this image was very small.
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NO T E When you try this example yourself, the unique identifier displayed for your “hello”
image will be different, even though the Dockerfile has the same content for the HTML
file. The identifier for each layer is based not only on the layer’s file content but also
on the identifier for the layer above it. As a result, if two images have the same identi
fier, we can be confident that the contents are exactly the same, even if they were built
separately.

We can run a container based on this new image just as we would any
other image:

root@host01:/opt/hello# docker run -d -p 8080:80 hello

83a23cf2921bb37474bfcefb0da45f9953940febfefd01ebadf35405d88c4396

root@host01:/opt/hello# curl http://localhost:8080/

<html><body><h1>Hello World!</h1></body></html>

As described in Chapter 1, the -p flag forwards a host port into the con
tainer, enabling us to access the NGINX server from the host even though
it is running in a separate network namespace. We then can use curl to see
that our container has the content we provided.

Tagging and Publishing Images
The image is ready to run locally, but we’re not ready yet to publish it to a
registry. To publish to a registry, we need to give it a name that includes the
full host and path for the registry location to ensure that when we refer to an
image, we are getting exactly what we expect.

To demonstrate, let’s pull multiple BusyBox images from different reg
istries. We’ll start with a BusyBox image from quay.io, an alternative con
tainer image registry:

root@host01:/opt/hello# docker pull quay.io/quay/busybox

...

quay.io/quay/busybox:latest

This image name specifies both the host quay.io and the location of the
image within that host, quay/busybox. As before, because we didn’t specify a
version, latest is used as a default. We are able to pull a version called latest

because someone has explicitly published a latest version of the image to
this registry.

The BusyBox image we get using this command is different from the
one we get if we just pull busybox:

root@host01:/opt/hello# docker pull busybox

...

docker.io/library/busybox:latest

root@host01:/opt/hello# docker images | grep busybox

busybox latest d3cd072556c2 3 days ago 1.24MB

quay.io/quay/busybox latest e3121c769e39 8 months ago 1.22MB
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When we use the plain name busybox, Docker defaults to pulling the im
age from docker.io/library. This registry is known as Docker Hub, which you
can browse at https://hub.docker.com.

Similarly, when we used the plain name hello to build our image, Docker
sees it as belonging to docker.io/library. That path is for official Docker im
ages, and, of course, we don’t have the right to publish images there.

The automated setup for this chapter includes running a local container
registry, which means that we can publish this image to that local registry if
we name it correctly:

root@host01:/opt/hello# docker tag hello registry.local/hello

root@host01:/opt/hello# docker images | grep hello

hello latest e9ca31d590f9 52 minutes ago 133MB

registry.local/hello latest e9ca31d590f9 52 minutes ago 133MB

The same image now exists under two different names, providing an
extra advantage of the way images are stored by layer. It’s cheap to add an
extra name for an image. Of course, we could also have used the full name
in the first place when we ran docker build, but it is convenient to use shorter
names when building and using images locally.

Now that we have named the image correctly, we can publish it using
docker push:

root@host01:/opt/hello# docker push registry.local/hello

Using default tag: latest

The push refers to repository [registry.local/hello]

...

Our local registry starts out empty, so this command uploads all of the
layers, but if we push any future images that include some of the same layers,
they won’t be uploaded again. Similarly, if we were to delete an image tag
from the registry, that would not remove the layer data.

This ability to publish images is not limited to images that we build our
selves. We can tag and push the BusyBox image we just downloaded from
Docker Hub:

root@host01:/opt/hello# docker tag busybox registry.local/busybox

root@host01:/opt/hello# docker push registry.local/busybox

Using default tag: latest

The push refers to repository [registry.local/busybox]

...

root@host01:/opt/hello# cd

Retagging an image so that we can upload it to a private registry is a
common practice that can help an application start faster and avoid being
dependent on an internet registry.

The last command (cd) takes us back to our home directory, given that
we’re finished in /opt/hello.
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Image and Container Storage
As mentioned previously, using individual layers to build up a container im
age has multiple advantages, including reduced download size, reduced disk
space, and the ability to retag an image with a new name without using any
additional space. The additional disk space needed by a running container
is limited to just the files that we write while the container is running. Fi
nally, all of the examples have shown how fast a new container starts up. All
of these features together demonstrate why layers must be shared, not only
for images but also for new containers. To make the best use of this layered
approach in building efficient images, it helps to understand how this lay
ered filesystem works.

Overlay Filesystems
When we run a container, we are presented with what looks like a single
filesystem, with all the layers merged together and with the ability to make
changes to any file. If we run multiple containers from the same image, we
see an independent filesystem in each one, so that changes in one do not af
fect the other. How does this work without having to copy the entire filesys
tem every time we start a container? The answer is an overlay filesystem.

An overlay filesystem has three main parts. The lower directory is where
the “base” layer exists. (There may be multiple lower directories.) The up
per directory has the “overlay” layer, and the mount directory is where the
unified filesystem is made available for use. A directory listing in the mount
directory reflects all of the files from all of the layers, in priority order. Any
changes made to the mount directory are really written to the upper direc
tory by copying the changed file to the upper directory from a lower one,
and then updating it—a process known as copy on write. Deletions are also
written to the upper directory as metadata, so the lower directory can re
main unmodified. This means that multiple users can share the lower direc
tory without conflict because it is only read from, never written to.

An overlay filesystem is useful for more than just container images and
containers. It is also useful for embedded systems, such as a network router,
for which a readonly filesystem is written in firmware, making it possible for
the device to be safely rebooted to a known state every time. It is also useful
for virtual machines, enabling multiple virtual machines to be started from
the same image.

Overlay filesystems are provided by a Linux kernel module, enabling
very high performance. We can easily create an overlay filesystem. The first
step is to create the necessary directories:

root@host01:~# mkdir /tmp/{lower,upper,work,mount}

The mkdir command creates four separate directories in /tmp. We’ve al
ready discussed the lower directory, upper directory, and mount directory.
The work directory is an extra empty directory that the overlay filesystem
uses as temporary space to ensure that changes in the mount directory ap
pear atomic—that is, to ensure that they appear all at once.
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Let’s put some content into the lower and upper directories:

root@host01:~# echo "hello1" > /tmp/lower/hello1

root@host01:~# echo "hello2" > /tmp/upper/hello2

Next, we just mount the overlay filesystem:

root@host01:~# mount -t overlay \

-o rw,lowerdir=/tmp/lower,upperdir=/tmp/upper,workdir=/tmp/work \

overlay /tmp/mount

The /tmp/mount directory now contains the merged content of both the
upper and lower directories:

root@host01:~# ls -l /tmp/mount

total 8

-rw-r--r-- 1 root root 7 May 24 23:05 hello1

-rw-r--r-- 1 root root 7 May 24 23:05 hello2

root@host01:/opt/hello# cat /tmp/mount/hello1

hello1

root@host01:/opt/hello# cat /tmp/mount/hello2

hello2

Any changes that we make are shown in the mount location but are actu
ally made in the upper directory:

root@host01:~# echo "hello3" > /tmp/mount/hello3

root@host01:~# ls -l /tmp/mount

total 8

-rw-r--r-- 1 root root 7 May 24 23:05 hello1

-rw-r--r-- 1 root root 7 May 24 23:10 hello2

-rw-r--r-- 1 root root 7 May 24 23:09 hello3

root@host01:~# ls -l /tmp/lower

total 4

-rw-r--r-- 1 root root 7 May 24 23:05 hello1

root@host01:~# ls -l /tmp/upper

total 8

-rw-r--r-- 1 root root 7 May 24 23:10 hello2

-rw-r--r-- 1 root root 7 May 24 23:09 hello3

Additionally, even deleting files does not affect the lower directory:

root@host01:~# rm /tmp/mount/hello1

root@host01:~# ls -l /tmp/mount

total 8

-rw-r--r-- 1 root root 7 May 24 23:10 hello2

-rw-r--r-- 1 root root 7 May 24 23:09 hello3

root@host01:~# ls -l /tmp/lower

total 4
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-rw-r--r-- 1 root root 7 May 24 23:05 hello1

root@host01:~# ls -l /tmp/upper

total 8

¶ c--------- 1 root root 0, 0 May 24 23:11 hello1

-rw-r--r-- 1 root root 7 May 24 23:10 hello2

-rw-r--r-- 1 root root 7 May 24 23:09 hello3

The c next to the listing for hello1 in the upper directory ¶ indicates
that this is a character special file. Its purpose is to indicate that this file was
deleted in the upper directory. As a result, it does not show up in the mounted
filesystem, even though it still exists in the lower directory.

Thanks to this approach, we can reuse the lower directory with an inde
pendent overlay, similar to how we can run multiple independent containers
from the same image:

root@host01:~# mkdir /tmp/{upper2,work2,mount2}

root@host01:~# mount -t overlay \

-o rw,lowerdir=/tmp/lower,upperdir=/tmp/upper2,workdir=/tmp/work2 \

overlay /tmp/mount2

root@host01:~# ls -l /tmp/mount2

total 4

-rw-r--r-- 1 root root 7 May 24 23:05 hello1

Not only does the “deleted” file from the lower directory appear, but
none of the content from the first upper directory shows up because it’s not
part of this new overlay.

Understanding Container Layers
Armed with this information about overlay filesystems, we can explore the
filesystem of our running NGINX container:

root@host01:~# ROOT=$(docker inspect nginx \

| jq -r '.[0].GraphDriver.Data.MergedDir')

root@host01:~# echo $ROOT

/var/lib/docker/overlay2/433751e2378f9b11.../merged

As before, we use jq to choose just the field we want; in this case, it’s the
path to the merged directory for the container’s filesystem. This merged di
rectory is the mount point for an overlay filesystem:

root@host01:~# mount | grep $ROOT | tr [:,] '\n'

overlay on /var/lib/docker/overlay2/433751e2378f9b11.../merged ...

lowerdir=/var/lib/docker/overlay2/l/ERVEI5TCULK4PCNO2HSWB4MFDB

/var/lib/docker/overlay2/l/RQDO2PYQ3OKMKDY3DAYPAJTZHF

/var/lib/docker/overlay2/l/LFSBVPYPODQJXDL5WQTI7ISYNC

/var/lib/docker/overlay2/l/TLZUYV2BFQNPFGU3AZFUHOH27V
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/var/lib/docker/overlay2/l/4M66FKSHDBNUWE7UAF2REQHSB2

/var/lib/docker/overlay2/l/LCTKPRHP6LG7KC7JQHETKIL6TZ

/var/lib/docker/overlay2/l/JOECSCSAQ5CPNHGEURVRT4JRQQ

upperdir=/var/lib/docker/overlay2/433751e2378f9b11.../diff

workdir=/var/lib/docker/overlay2/433751e2378f9b11.../work,xino=off)

The tr command transforms colons and commas to newlines to make
the output more readable.

The mount command shows seven separate entries for lowerdir, one for
each of the layers in the NGINX container image. All seven of these directo
ries, plus the upperdir, are merged together in the overlay filesystem.

We can see the 10MB data file we created earlier in both the mount di
rectory and the upper directory:

root@host01:~# ls -l $ROOT/tmp/data

-rw-r--r-- 1 root root 10485760 May 25 00:27 /var/lib/.../merged/tmp/data

root@host01:~# ls -l $ROOT/../diff/tmp/data

-rw-r--r-- 1 root root 10485760 May 25 00:27 /var/lib/.../diff/tmp/data

The actual file is stored in the upper directory diff, whereas the mount
directory merged is just a view generated by the overlay filesystem.

Usually, we don’t need to delve into the container filesystem from the
host, because we can just run commands from within the container to ex
plore its files. However, this technique can be useful for pulling files from a
container for cases in which the container engine is not behaving correctly.

Practical Image Building Advice
Some important practical implications result from the way that overlay file
systems are used with container images. First, because an overlay filesystem
can have multiple lower directories, and merging is performant, breaking
our container image into multiple layers causes very little performance
penalty. It allows us to be very modular when building container images,
enabling reuse of layers. For example, we might start with a base image and
then build an image on top that installs some common dependencies, and
then another image that adds specialized dependencies for some of our
application components, and finally yet another image that adds a specific
application. Assembling application container images using a layered ap
proach can result in very efficient image transfer and storage, as the base
layers are shared between components where possible.

Second, because a deletion in an upper layer does not actually remove
the file from a lower layer, we need to be careful with how we handle large
temporary files and also in how we store secrets while building images. In
both cases, if we finish a layer while the file is still present, it will be there
forever, causing us to waste bandwidth and space, or worse, leak secret infor
mation to anyone who downloads the image. In general, you should assume
that every line of a Dockerfilemakes a new layer, and you should also make
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the assumption that all of the information associated with each command is
stored in the image metadata. As a result:

• Perform multiple steps in a single RUN line, and make sure every RUN

command cleans up after itself.

• Don’t use COPY to transfer large files or secrets into the image, even if
you clean them up in a later RUN step.

• Don’t use ENV to store secrets, because the resulting values become
part of the image metadata.

Open Container Initiative
A container image is more than just the set of layers that make up the over
lay filesystem. It also includes important metadata, such as the initial com
mand for the container and any environment variables for that command.
The Open Container Initiative (OCI) provides a standard format for storing
image information. It ensures that container images built by one tool can be
used by any other tool and provides a standard way to transfer images layer
by layer or in a complete package.

To demonstrate the OCI format, let’s extract a BusyBox container image
from Docker and store it in OCI format using Skopeo, a program designed
to move container images around between repositories and formats. The
first step is to extract the image:

root@host01:~# skopeo copy docker-daemon:busybox:latest oci:busybox:latest

...

This command tells Skopeo to fetch the image from the Docker engine’s
storage and write it out in OCI format. We now have a busybox directory that
contains the image:

root@host01:~# ls -l busybox

total 12

drwxr-xr-x 3 root root 4096 May 24 23:59 blobs

-rw-r--r-- 1 root root 247 May 24 23:59 index.json

-rw-r--r-- 1 root root 31 May 24 23:59 oci-layout

The ocilayout file specifies the OCI version used for this image:

root@host01:~# jq . busybox/oci-layout

{

"imageLayoutVersion": "1.0.0"

}

The index.json file tells us about the image:

root@host01:~# jq . busybox/index.json

{

"schemaVersion": 2,
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"manifests": [

{

"mediaType": "application/vnd.oci.image.manifest.v1+json",

"digest": "sha256:9c3c5aeeaa7e1629871808339...",

"size": 347,

"annotations": {

"org.opencontainers.image.ref.name": "latest"

}

}

]

}

The manifests property is an array that allows us to store multiple images
in a single OCI directory or package. The actual filesystem content is stored
by layer in the blobs directory, with each layer as a separate .tar file, so any
shared layers are stored only once.

This BusyBox image has only a single layer. To look at its contents, we’ll
need to work through the index.json and image manifest to find the path to
its .tar file:

root@host01:~# MANIFEST=$(jq -r \

.manifests[0].digest busybox/index.json | sed -e 's/sha256://')

root@host01:~# LAYER=$(jq -r \

.layers[0].digest busybox/blobs/sha256/$MANIFEST | sed -e 's/sha256://')

root@host01:~# echo $LAYER

197dfd3345530fd558a64f2a550e8af75a9cb812df5623daf0392aa39e0ce767

The files in the blobs directory are named using the SHA256 digest cal
culated from the file contents. We start by using jq to get the digest for the
BusyBox image’s manifest, stripping off the sha256: part at the front to get
the name of the manifest file. We then read the manifest to find the first
(and only) layer. We now can see the content of this layer:

root@host01:~# tar tvf busybox/blobs/sha256/$LAYER

drwxr-xr-x 0/0 0 2021-05-17 19:07 bin/

-rwxr-xr-x 0/0 1149184 2021-05-17 19:07 bin/[

hrwxr-xr-x 0/0 0 2021-05-17 19:07 bin/[[ link to bin/[

...

drwxr-xr-x 0/0 0 2021-05-17 19:07 dev/

drwxr-xr-x 0/0 0 2021-05-17 19:07 etc/

...

Passing tvf to the tar command tells it to list a table of contents from
the file we specify, which is the BusyBox image layer in this case. This layer
contains a complete Linux filesystem, with BusyBox acting as the single exe
cutable for most of the standard Linux commands.

Using this busybox directory, we can also package up the container im
age, move it to a separate system, and then pull it into another container
engine.
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Final Thoughts
When we run a container, we get what appears to be a separate, isolated
filesystem that we can modify as desired. Underneath, the container engine
is using the overlay filesystem to merge together multiple container image
layers and a writeable directory that stores all the changes we make. Not only
does the use of an overlay filesystem make a new container fast to start, but
it also means that we can run multiple containers from the same image with
out waiting for file copy to complete, and we can reduce the required disk
space by sharing image layers.

Now that we’ve looked at process isolation, resource limits, network iso
lation, and container storage, we’ve covered the main features of containers
that make them so valuable for packaging, distributing, updating, and run
ning application components. It’s time to move on to the critical features
that we can get only from a container orchestration environment like Kuber
netes. We’ll do that in Part II.
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PART II
CONTA INERS IN KUBERNETES

Computers have finite processing, storage, and mem
ory, and are built of parts that fail, especially at the
wrong time. To build a scalable, reliable application,
we can’t be limited by the resources of a single host
or dependent on a single point of failure. At the same
time, we don’t want to give up the modularity and flex
ibility that containers provide. In Part II, we’ll see how
Kubernetes meets the essential requirements to run
containers across a cluster of machines, with crosshost
container networking, scalability, automated failover,
and distributed storage.





6
WHY KUBERNETES MATTERS

Containers enable us to transform the way
we package and deploy application com
ponents, but orchestration of containers in

a cluster enables the real advantage of a con
tainerized microservice architecture. As described in
Chapter 1, the main benefits of modern application
architecture are scalability, reliability, and resiliency,
and all three of those benefits require a container or
chestration environment like Kubernetes in order to
run many instances of containerized application com
ponents across many different servers and networks.

In this chapter, we’ll begin by looking at some crosscutting concerns
that exist when running containers across multiple servers in a cluster. We’ll
then describe the core Kubernetes concepts designed to address those con
cerns. With that introduction complete, we’ll spend the bulk of the chapter
actually installing a Kubernetes cluster, including important addon compo
nents like networking and storage.



Running Containers in a Cluster
The need to distribute our application components across multiple servers is
not new to modern application architecture. To build a scalable and reliable
application, we have always needed to take advantage of multiple servers to
handle the application’s load and preclude a single point of failure. The fact
that we are now running these components in containers does not change
the need for multiple servers; we are still ultimately using CPUs and we are
still ultimately dependent on hardware.

At the same time, a container orchestration environment brings chal
lenges that may not have existed with other kinds of application infrastruc
ture. When the container is the smallest individual module around which
we build our system, we end up with application components that are much
more selfcontained and “opaque” from the perspective of our infrastruc
ture. This means that instead of having a static application architecture
through which we choose in advance what application components are as
signed to specific servers, with Kubernetes, we try to make it possible for any
container to run anywhere.

Cross-Cutting Concerns
The ability to run any container anywhere maximizes our flexibility, but it
adds complexity to Kubernetes itself. Kubernetes does not know in advance
what containers it will be asked to run, and the container workload is contin
uously changing as new applications are deployed or applications experience
changes in load. To rise to this challenge, Kubernetes needs to account for
the following design parameters that apply to all container orchestration
software, no matter what containers are running:

Dynamic scheduling New containers must be allocated to a server, and
allocations can change due to configuration changes or failures.

Distributed state The entire cluster must keep information about what
containers are running and where, even during hardware or network
failures.

Multitenancy It should be possible to run multiple applications in a
single cluster, with isolation for security and reliability.

Hardware isolation Clusters must run in cloud environments and on
regular servers of various types, isolating containers from the differ
ences in these environments.

The best term to use to refer to these design parameters is crosscutting
concern, because they apply to any kind of containerized software that we
might need to deploy, and even to the Kubernetes infrastructure itself. These
parameters work together with the container orchestration requirements we
saw in Chapter 1 and ultimately drive the Kubernetes architecture and key
design decisions.
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Kubernetes Concepts
To address these crosscutting concerns, the Kubernetes architecture allows
anything to come and go at any time. This includes not only the container
ized applications deployed to Kubernetes, but also the fundamental software
components of Kubernetes itself, and even the underlying hardware such as
servers, network connections, and storage.

Separate Control Plane
Obviously, for Kubernetes to be a container orchestration environment,
it requires the ability to run containers. This ability is provided by a set of
worker machines called nodes. Each node runs a kubelet service that inter
faces with the underlying container runtime to start and monitor containers.

Kubernetes also has a set of core software components that manage the
worker nodes and their containers, but these software components are de
ployed separately from the worker nodes. These core Kubernetes software
components are together referred to as the control plane. Because the con
trol plane is separate from the worker nodes, the worker nodes can run the
control plane, gaining the benefits of containerization for the Kubernetes
core software components. A separate control plane also means that Kuber
netes itself has a microservice architecture, which allows customization of
each Kubernetes cluster. For example, one control plane component, the
cloud controller manager, is used only when deploying Kubernetes to a cloud
provider, and it’s customized based on the cloud provider used. This design
provides hardware isolation for application containers and the rest of the
Kubernetes control plane, while still allowing us to take advantage of the
specific features of each cloud provider.

Declarative API
One critical component of the Kubernetes control plane is the API server.
The API server provides an interface for cluster control and monitoring that
other cluster users and control plane components use. In defining the API,
Kubernetes could have chosen an imperative style, in which each API end
point is a command such as “run a container” or “allocate storage.” Instead,
the API is declarative, providing endpoints such as create, patch, get, and delete.
The effect of these commands is to create, read, update, and delete resources
from the cluster configuration—the specific configuration of each resource
tells Kubernetes what we want the cluster to do.

This declarative API is essential to meet the crosscutting concerns of
dynamic scheduling and distributed state. Because a declarative API sim
ply reports or updates cluster configuration, reacting to server or network
failures that might cause a command to be missed is very easy. Consider an
example in which the API server connection is lost just after an apply com
mand is issued to change the cluster configuration. When the connection
is restored, the client can simply query the cluster configuration and deter
mine whether the command was received successfully. Or, even easier, the
client can just issue the same apply command again, knowing that as long as
the cluster configuration ends up as desired, Kubernetes will be trying to do
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the “right thing” to the actual cluster. This core principle is known as idempo
tence, meaning it is safe to issue the same command multiple times because it
will be applied at most once.

Self-Healing
Building on the declarative API, Kubernetes is designed to be selfhealing.
This means that the control plane components continually monitor both
the cluster configuration and the actual cluster state and try to bring them
into alignment. Every resource in the cluster configuration has an associated
status and event log reflecting how the configuration has actually caused a
change in the cluster state.

The separation of configuration and state makes Kubernetes very re
silient. For example, a resource representing containers may be in a Running

state if the containers have been scheduled and are actually running. If the
Kubernetes control plane loses connection to the server on which the con
tainers are running, it can immediately set the status to Unknown and then
work to either reestablish connection or treat the node as failed and resched
ule the containers.

At the same time, using a declarative API and selfhealing approach has
important implications. Because the Kubernetes API is declarative, a “suc
cess” response to a command means only that the cluster configuration was
updated. It does not mean that the actual state of the cluster was updated,
as it might take time to achieve the requested state, or there might be issues
that prevent the cluster from achieving that state. As a result, we cannot as
sume that just because we created the appropriate resources, the cluster is
running the containers we expect. Instead, we must watch the status of the
resources and explore the event log to diagnose any issues that the Kuber
netes control plane had in making the actual cluster state match the configu
ration we specified.

Cluster Deployment
With some core Kubernetes concepts under our belts, we’ll use the kubeadm

Kubernetes administration tool to deploy a highly available Kubernetes clus
ter across multiple virtual machines.

CHOOSING A KUBERNETES DISTRIBUTION

Rather than using a particular Kubernetes distribution as we did in Chapter 1,
we’ll deploy a “vanilla” Kubernetes cluster using the generic upstream reposi-
tory. This approach gives us the best opportunity to follow along with the cluster
deployment and will make it easier to explore the cluster in-depth in the next
several chapters. However, when you’re ready to deploy a Kubernetes cluster
of your own, especially for production work, consider using a prebuilt Kuber-
netes distribution for ease of management and built-in security. The Cloud
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Native Computing Foundation (CNCF) publishes a set of conformance tests that
you can use to ensure that the Kubernetes distribution you choose is conformant
to the Kubernetes specification.

Our Kubernetes cluster will be split across four virtual machines, labeled
host01 through host04. Three of these, host01 through host03, will run control
plane components, whereas the fourth will act solely as a worker node. We’ll
have three control plane nodes because that is the smallest number required
to run a highly available cluster. Kubernetes uses a voting scheme to provide
failover, and at least three control plane nodes are required; this allows the
cluster to detect which side should keep running in the event of a network
failure. Also, to keep the cluster as small as possible for our examples, we’ll
configure Kubernetes to run regular containers on the control plane nodes
even though we would avoid doing that for a production cluster.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Start by following the instructions for this chapter to get all four virtual
machines up and running, either in Vagrant or AWS. The automated provi
sioning will set up all four machines with containerd and crictl, so we don’t
need to do it manually. The automated provisioning script will also set up
either kube-vip or an AWS network load balancer to provide required high
availability functionality, as discussed below.

NO T E You can install Kubernetes automatically using the extra provisioning script
provided with this chapter’s examples. See the README file for this chapter for
instructions.

You’ll need to run commands on each of the four virtual machines, so
you might want to open terminal tabs for each one. However, the first se
ries of commands needs to be run on all of the hosts, so the automation sets
up a command called k8s-all to do that from host01. You can explore the
content of this script in /usr/local/bin/k8sall or by looking at the k8s Ansible
role in the setup directory of the examples.

Prerequisite Packages
The first step is to make sure the br_netfilter kernel module is enabled and
set to load on boot. Kubernetes uses advanced features of the Linux firewall
to handle networking across the cluster, so we need this module. Run these
two commands:

root@host01:~# k8s-all modprobe br_netfilter

...

root@host01:~# k8s-all "echo 'br_netfilter' > /etc/modules-load.d/k8s.conf"
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The first command ensures that the module is installed for the currently
running kernel, and the second command adds it to the list of modules to
run on boot. The slightly odd quoting in the second command ensures that
the shell redirection happens on the remote hosts.

Next, in Listing 61, we’ll set some Linux kernel parameters to enable
advanced network features that are also needed for networking across the
cluster by using the sysctl command:

root@host01:~# k8s-all sysctl -w net.ipv4.ip_forward=1 \

net.bridge.bridge-nf-call-ip6tables=1 \

net.bridge.bridge-nf-call-iptables=1

Listing 6-1: Kernel settings

This command enables the following Linux kernel network features:

net.ipv4.ip_forward Transfer packets from one network interface to
another (for example, from an interface inside a container’s network
namespace to a host network).

net.bridge.bridge-nf-call-ip6tables Run IPv6 bridge traffic through the
iptables firewall.

net.bridge.bridge-nf-call-iptables Run IPv4 bridge traffic through the
iptables firewall.

The need for the last two items will become clear in Chapter 9 when we
discuss how Kubernetes provides networking for Services.

These sysctl changes in Listing 61 do not persist after a reboot. The
automated scripts do handle making the changes persistent, so if you reboot
your virtual machines, either run the extra provisioning script, or run these
commands again.

We’ve now finished configuring the Linux kernel to support our Kuber
netes deployment and are almost ready for the actual install. First we need
to install some prerequisite packages:

root@host01:~# k8s-all apt install -y apt-transport-https \

open-iscsi nfs-common

The apt-transport-https package ensures that apt can support connecting
to repositories via secure HTTP. The other two packages are needed for one
of the cluster addons that we’ll install after our cluster is up and running.

Kubernetes Packages
We can now add the Kubernetes repository to install the kubeadm tool that
will set up our cluster. First, add the GPG key used to check the package
signatures:
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root@host01:~# k8s-all "curl -fsSL \

https://packages.cloud.google.com/apt/doc/apt-key.gpg | \

gpg --dearmor -o /usr/share/keyrings/google-cloud-keyring.gpg"

This command uses curl to download the GPG key. It then uses gpg to
reformat it, and then it writes the result to /usr/share/keyrings. The command
line flags fsSL put curl in a mode that behaves better for chained commands,
including avoiding unnecessary output, following server redirects, and termi
nating with an error if there is a problem.

Next, we add the repository configuration:

root@host01:~# k8s-all "echo 'deb [arch=amd64' \

'signed-by=/usr/share/keyrings/google-cloud-keyring.gpg]' \

'https://apt.kubernetes.io/ kubernetes-xenial main' > \

/etc/apt/sources.list.d/kubernetes.list"

As before, the quoting is essential to ensure that the command is passed
correctly via SSH to all the other hosts in the cluster. The command con
figures kubernetes-xenial as the distribution; this distribution is used for any
version of Ubuntu, starting with the older Ubuntu Xenial.

After we have created this new repository, we then need to run apt update

on all hosts to download the list of packages:

root@host01:~# k8s-all apt update

...

Now we can install the packages we need using apt:

root@host01:~# source /opt/k8sver

root@host01:~# k8s-all apt install -y kubelet=$K8SV kubeadm=$K8SV kubectl=$K8SV

The source command loads a file with a variable to install a specific Ku
bernetes version. This file is created by the automated scripts and ensures
that we use a consistent Kubernetes version for all chapters. You can update
the automated scripts to choose which Kubernetes version to install.

The apt command installs the following three packages along with some
dependencies:

kubelet Service for all worker nodes that interfaces with the container
engine to run containers as scheduled by the control plane

kubeadm Administration tool that we’ll use to install Kubernetes and
maintain our cluster

kubectl Command line client that we’ll use to inspect our Kubernetes
cluster and to create and delete resources

Why Kubernetes Matters 93



The kubelet package starts its service immediately, but because we haven’t
installed the control plane yet, the service will be in a failed state at first:

root@host01:~# systemctl status kubelet

kubelet.service - kubelet: The Kubernetes Node Agent

...

Main PID: 75368 (code=exited, status=1/FAILURE)

We need to control the version of the packages we just installed because
we want to upgrade all of the components of our cluster together. To pro
tect ourselves from accidentally updating these packages, we’ll hold them at
their current version:

root@host01:~# k8s-all apt-mark hold kubelet kubeadm kubectl

This command prevents the standard apt full-upgrade command from
updating these packages. Instead, if we upgrade our cluster, we’ll need to
specify the exact version that we want by using apt install.

Cluster Initialization
The next command, kubeadm init, initializes the control plane and provides
the kubelet worker node service configuration for all the nodes. We’ll run
kubeadm init on one node in our cluster and then use kubeadm join on each of
the other nodes so that they join the existing cluster.

To run kubeadm init, we first create a YAML configuration file. This ap
proach has a few advantages. It greatly shortens the number of command
line flags that we need to remember, and it lets us keep the cluster configu
ration in a repository, giving us configuration control over the cluster. We
then can update the YAML file and rerun kubeadm to make cluster configura
tion changes.

The automation scripts for this chapter have populated a YAML config
uration file in /etc/kubernetes, so it’s ready to use. The following shows the
contents of that file:

kubeadm-init.yaml ---

apiVersion: kubeadm.k8s.io/v1beta3

kind: InitConfiguration

bootstrapTokens:

- groups:

- system:bootstrappers:kubeadm:default-node-token

token: 1d8fb1.2875d52d62a3282d

ttl: 2h0m0s

usages:

- signing

- authentication

nodeRegistration:

kubeletExtraArgs:

node-ip: 192.168.61.11
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taints: []

localAPIEndpoint:

advertiseAddress: 192.168.61.11

certificateKey: "5a7e07816958efb97635e9a66256adb1"

---

apiVersion: kubeadm.k8s.io/v1beta3

kind: ClusterConfiguration

kubernetesVersion: 1.21.4

apiServer:

extraArgs:

service-node-port-range: 80-32767

networking:

podSubnet: "172.31.0.0/16"

controlPlaneEndpoint: "192.168.61.10:6443"

---

apiVersion: kubelet.config.k8s.io/v1beta1

kind: KubeletConfiguration

serverTLSBootstrap: true

This YAML file has three documents, separated by dashes (---). The
first document is specific to initializing the cluster, the second has more
generic configuration, and the third is used to provide settings for kubelet
across all the nodes. Let’s look at the purpose of each of these configuration
items:

apiVersion / kind Tells Kubernetes about the purpose of each YAML
document, so it can validate the contents.

bootstrapTokens Configures a secret that other nodes can use to join the
cluster. The token should be kept secret in a production cluster. It is set
to expire automatically after two hours, so if we want to join more nodes
later, we’ll need to make another one.

nodeRegistration Configuration to pass to the kubelet service running
on host01. The node-ip field ensures that kubelet registers the correct IP
address with the API server so that the API server can communicate
with it. The taints field ensures that regular containers can be sched
uled onto control plane nodes.

localAPIEndpoint The local IP address that the API server should use.
Our virtual machine has multiple IP addresses, and we want the API
server listening on the correct network.

certificateKey Configures a secret that other nodes will use to gain ac
cess to the certificates for the API server. It’s needed so that all of the
API server instances in our highly available cluster can use the same cer
tificate. Keep it secret in a production cluster.

networking All containers in the cluster will get an IP address from the
podSubnet, no matter what host they run on. Later, we’ll install a network
driver that will ensure that every container on all hosts in the cluster can
communicate.

Why Kubernetes Matters 95



controlPlaneEndpoint The API server’s external address. For a highly
available cluster, this IP address needs to reach any API server instance,
not just the first one.

serverTLSBootstrap Instructs kubelet to use the controller manager’s cer
tificate authority to request server certificates.

The apiVersion and kind fields will appear in every Kubernetes YAML
file. The apiVersion field defines a group of related Kubernetes resources, in
cluding a version number. The kind field then selects the specific resource
type within that group. This not only allows the Kubernetes project and
other vendors to add new groups of resources over time, but it also allows
updates to existing resource specifications while maintaining backward
compatibility.

HIGHLY AVAILABLE CLUSTERS

The controlPlaneEndpoint field is used to configure the most important re-
quirement for a highly available cluster: an IP address that reaches all of the
API servers. We need to establish this IP address immediately when we initial-
ize the cluster because it is used to generate certificates with which clients will
verify the API server’s identity. The best way to provide a cluster-wide IP ad-
dress depends on where the cluster is running; for example, in a cloud envi-
ronment, using the provider’s built-in capability, such as an Elastic Load
Balancer (ELB) in Amazon Web Services or an Azure Load Balancer, is best.

Because of the nature of the two different environments, the examples for this
book use kube-vip when running with Vagrant, and ELB when running in
Amazon Web Services. The top-level README.md file in the example docu-
mentation has more details. The installation and configuration is done auto-
matically so there’s nothing more to configure. We can just use 192.168.61
.10:6443 and expect traffic to get to any of the API server instances running
on host01 through host03.

Because we have the cluster configuration ready to go in a YAML file,
the kubeadm init command to initialize the cluster is simple. We run this
command solely on host01:

root@host01:~# /usr/bin/kubeadm init \

--config /etc/kubernetes/kubeadm-init.yaml --upload-certs

The --config option points to the YAML configuration file (kubeadminit
.yaml) that we looked at earlier, and the --upload-certs option tells kubeadm
that it should upload the API server’s certificates to the cluster’s distributed
storage. The other control plane nodes then can download those certificates
when they join the cluster, allowing all API server instances to use the same
certificates so that clients will trust them. The certificates are encrypted us
ing the certificateKey we provided, which means that the other nodes will
need this key to decrypt them.

The kubeadm init command initializes the control plane’s components on
host01. These components are run in containers and managed by the kubelet
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service, which makes them easy to upgrade. Several container images will be
downloaded, so the command might take a while, depending on the speed
of your virtual machines and your internet connection.

Joining Nodes to the Cluster
The kubeadm init command prints out a kubeadm join command that we can
use to join other nodes to the cluster. However, the automation scripts have
already prestaged a configuration file to each of the other nodes to ensure
that they join as the correct type of node. The servers host02 and host03 will
join as additional control plane nodes, whereas host04 will join solely as a
worker node.

Here’s the YAML configuration file for host02 with its specific settings:

kubeadm
-join.yaml (host02)

---

apiVersion: kubeadm.k8s.io/v1beta3

kind: JoinConfiguration

discovery:

bootstrapToken:

apiServerEndpoint: 192.168.61.10:6443

token: 1d8fb1.2875d52d62a3282d

unsafeSkipCAVerification: true

timeout: 5m0s

nodeRegistration:

kubeletExtraArgs:

cgroup-driver: containerd

node-ip: 192.168.61.12

taints: []

ignorePreflightErrors:

- DirAvailable--etc-kubernetes-manifests

controlPlane:

localAPIEndpoint:

advertiseAddress: 192.168.61.12

certificateKey: "5a7e07816958efb97635e9a66256adb1"

This resource has a type of JoinConfiguration, but most of the fields are
the same as the InitConfiguration in the kubeadminit.yaml file. Most impor
tant, the token and certificateKey match the secret we set up earlier, so this
node will be able to validate itself with the cluster and decrypt the API server
certificates.

One difference is the addition of ignorePreflightErrors. This section ap
pears only when we are installing kube-vip, as in that case we need to prestage
the configuration file for kube-vip to the /etc/kubernetes/manifests directory,
and we need to tell kubeadm that it is okay for that directory to already exist.

Because we have this YAML configuration file, the kubeadm join com
mand is simple. Run it on host02:

root@host02:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml
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As before, this command runs the control plane components as con
tainers using the kubelet service on this node, so it will take some time to
download the container images and start the containers.

When it finishes, run the exact same command on host03:

root@host03:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

The automation script set up the YAML file with the correct IP address
for each host, so the differences in configuration between each of the hosts
is already accounted for.

When this command completes, we’ll have created a highly available
Kubernetes cluster, with the control plane components running on three
separate hosts. However, we do not yet have any regular worker nodes. Let’s
fix that issue.

We’ll begin by joining host04 as a regular worker node and running ex
actly the same kubeadm join command on host04, but the YAML configuration
file will be a little different. Here’s that file:

kubeadm
-join.yaml (host04)

---

apiVersion: kubeadm.k8s.io/v1beta3

kind: JoinConfiguration

discovery:

bootstrapToken:

apiServerEndpoint: 192.168.61.10:6443

token: 1d8fb1.2875d52d62a3282d

unsafeSkipCAVerification: true

timeout: 5m0s

nodeRegistration:

kubeletExtraArgs:

cgroup-driver: containerd

node-ip: 192.168.61.14

taints: []

This YAML file is missing the controlPlane field, so kubeadm configures it
as a regular worker node rather than a control plane node.

Now let’s join host04 to the cluster:

root@host04:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

This command completes a little faster because it doesn’t need to down
load the control plane container images and run them. We now have four
nodes in the cluster, which we can verify by running kubectl back on host01:

root@host01:~# export KUBECONFIG=/etc/kubernetes/admin.conf

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 NotReady control-plane...

host02 NotReady control-plane...
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host03 NotReady control-plane...

host04 NotReady <none> ...

The first command sets an environment variable to tell kubectl what con
figuration file to use. The /etc/kubernetes/admin.conf file was created auto
matically by kubeadm when it initialized host01 as a control plane node. That
file tells kubectl what address to use for the API server, what certificate to use
to verify the secure connection, and how to authenticate.

The four nodes currently should be reporting a status of NotReady. Let’s
run the kubectl describe command to get the node details:

root@host01:~# kubectl describe node host04

Name: host04

...

Conditions:

Type Status ... Message

---- ------ ... -------

Ready False ... container runtime network not ready...

...

We haven’t yet installed a network driver for our Kubernetes cluster,
and as a result, all of the nodes are reporting a status of NotReady, which
means that they won’t accept regular application workloads. Kubernetes
communicates this by placing a taint in the node’s configuration. A taint re
stricts what can be scheduled on a node. We can list the taints on the nodes
using kubectl:

root@host01:~# kubectl get node -o json | \

jq '.items[]|.metadata.name,.spec.taints[]'

"host01"

{

"effect": "NoSchedule",

"key": "node.kubernetes.io/not-ready"

}

"host02"

{

"effect": "NoSchedule",

"key": "node.kubernetes.io/not-ready"

}

"host03"

{

"effect": "NoSchedule",

"key": "node.kubernetes.io/not-ready"

}

"host04"
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{

"effect": "NoSchedule",

"key": "node.kubernetes.io/not-ready"

}

We select an output format of json so that we can use jq to print just the
information we need. Because all the nodes have a status of NotReady, they
have a not-ready taint set to NoSchedule, which prevents the Kubernetes sched
uler from scheduling containers onto them.

By specifying taints as an empty array in the kubeadm configuration, we
prevented the three control plane nodes from having an additional control
plane taint. In a production cluster, this taint keeps application containers
separate from the control plane containers for security reasons, so we would
leave it in place. For our example cluster, though, it would mean that we
need multiple extra virtual machines to act as worker nodes, which we don’t
want.

The command kubectl taint would allow us to remove the not-ready taint
manually, but the correct approach is to install a network driver as a cluster
addon so that the nodes will properly report Ready, enabling us to run con
tainers on them.

Installing Cluster Add-ons
We’ve installed kubelet on four separate nodes and installed the control
plane on three of those nodes and joined them to our cluster. For the rest,
we’ll use the control plane to install cluster addons. These addons are simi
lar to regular applications that we would deploy. They consist of Kubernetes
resources and run in containers, but they provide essential services to the
cluster that our applications will use.

To get a basic cluster up and running, we need to install three types of
addons: a network driver, a storage driver, and an ingress controller. We will also
install a fourth optional addon, a metrics server.

Network Driver
Kubernetes networking is based on the Container Network Interface (CNI)
standard. Anyone can build a new network driver for Kubernetes by im
plementing this standard, and as a result, several choices are available for
Kubernetes network drivers. We’ll demonstrate different network plugins
in Chapter 8, but most of the clusters in this book use the Calico network
driver because it is the default choice for many Kubernetes platforms.

First, download the primary YAML configuration file for Calico:

root@host01:~# cd /etc/kubernetes/components

root@host01:/etc/kubernetes/components# curl -L -O $calico_url

...
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The -L option tells curl to follow any HTTP redirects, whereas the -O op
tion tells curl to save the content in a file using the same filename as in the
URL. The value of the calico_url environment variable is set in the k8s-ver

script that also specified the Kubernetes version. This is essential, as Calico
is sensitive to the specific version of Kubernetes we’re running, so it’s impor
tant to choose values that are compatible.

The primary YAML configuration is written to the local file tigeraoperator
.yaml. This refers to the fact that the initial installation is a Kubernetes Oper
ator, which then creates all of the other cluster resources to install Calico.
We’ll explore operators in Chapter 17.

In addition to this primary YAML configuration, the automated scripts
for this chapter have added a file called customresources.yaml that provides
necessary configuration for our example cluster. We now can tell the Kuber
netes API server to apply all the resources in these files to the cluster:

root@host01:/etc/kubernetes/components# kubectl apply -f tigera-operator.yaml

...

root@host01:/etc/kubernetes/components# kubectl apply -f custom-resources.yaml

Kubernetes takes a few minutes to download container images and start
containers, and then Calico will be running in our cluster and our nodes
should report a status of Ready:

root@host01:/etc/kubernetes/components# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane,master ...

host02 Ready control-plane,master ...

host03 Ready control-plane,master ...

host04 Ready <none> ...

Calico works by installing a DaemonSet, a Kubernetes resource that tells
the cluster to run a specific container or set of containers on every node.
The Calico containers then provide network services for any containers run
ning on that node. However, that raises an important question. When we
installed Calico in our cluster, all of our nodes had a taint that told Kuber
netes not to schedule containers on them. How was Calico able to run its
containers on all the nodes? The answer is tolerations.

A toleration is a configuration setting applied to a resource that instructs
Kubernetes it can be scheduled on a node despite a taint possibly being pre
sent. Calico specifies a toleration when it adds its DaemonSet to the cluster,
as we can see with kubectl:

root@host01:/etc/kubernetes/components# kubectl -n calico-system \

get daemonsets -o json | \

jq '.items[].spec.template.spec.tolerations[]'

{

"key": "CriticalAddonsOnly",

"operator": "Exists"

}
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{

"effect": "NoSchedule",

"operator": "Exists"

}

{

"effect": "NoExecute",

"operator": "Exists"

}

The -n option selects the calico-system Namespace. Namespaces are a way
to keep Kubernetes resources separate from one another on a cluster, for
security reasons as well as to avoid naming collisions. Also, as before, we re
quest JSON output and use jq to select only the field we’re interested in. If
you want to see the entire configuration for the resource, use -o=json with
out jq or use -o=yaml.

This DaemonSet has three tolerations, and the second one provides the
behavior we need. It tells the Kubernetes scheduler to go ahead and sched
ule it even on nodes that have a NoSchedule taint. Calico then can get itself
started before the node is ready, and once it’s running, the node changes its
status to Ready so that normal application containers can be scheduled. The
control plane components needed a similar toleration in order to run on
nodes before they show Ready.

Installing Storage
The cluster nodes are ready, so if we deployed a regular application, its con
tainers would run. However, applications that require persistent storage
would fail to start because the cluster doesn’t yet have a storage driver. Like
network drivers, several storage drivers are available for Kubernetes. The
Container Storage Interface (CSI) provides the standard that storage drivers
need to meet to work with Kubernetes. We’ll use Longhorn, a storage driver
from Rancher; it’s easy to install and doesn’t require any underlying hard
ware like extra block devices or access to cloudbased storage.

Longhorn makes use of the iSCSI and NFS software we installed earlier.
It expects all of our nodes to have the iscsid service enabled and running, so
let’s make sure that’s true on all our nodes:

root@host01:/etc/kubernetes/components# k8s-all systemctl enable --now iscsid

We now can install Longhorn on the cluster. The process for installing
Longhorn looks a lot like Calico. Start by downloading the Longhorn YAML
configuration:

root@host01:/etc/kubernetes/components# curl -LO $longhorn_url

The longhorn_url environment variable is also set by the k8s-ver script,
which allows us to ensure compatibility.
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Install Longhorn using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f longhorn.yaml

As before, kubectl apply ensures that the resources in the YAML file are
applied to the cluster, creating or updating them as necessary. The kubectl

apply command supports URLs as the source of the resource it applies to the
cluster, but for these three installs, we run a separate curl command because
it’s convenient to have a local copy of what was applied to the cluster.

Longhorn is now installed on the cluster, which we’ll verify as we ex
plore the cluster in the rest of this chapter.

Ingress Controller
We now have networking and storage, but the networking allows access to
containers only from within our cluster. We need another service that ex
poses our containerized applications outside the cluster. The easiest way
to do that is to use an ingress controller. As we’ll describe in Chapter 9, an
ingress controller watches the Kubernetes cluster for Ingress resources and
routes network traffic.

We begin by downloading the ingress controller YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo ingress-controller.yaml

$ingress_url

As in our earlier example, the ingress_url environment variable is set by
the k8s-ver script so that we can ensure compatibility. In this case, the URL
ends in the generic path of deploy.yaml, so we use -o to provide a filename to
curl to make clear the purpose of the downloaded YAML file.

Install the ingress controller using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f ingress-controller.yaml

This creates a lot of resources, but there are two main parts: an NGINX
web server that actually performs routing of HTTP traffic, and a component
that watches for changes in Ingress resources in the cluster and configures
NGINX accordingly.

There’s one more step we need. As installed, the ingress controller tries
to request an external IP address to allow traffic to reach it from outside the
cluster. Because we’re running a sample cluster with no access to external IP
addresses, this won’t work. Instead, we’ll be accessing our ingress controller
using port forwarding from our cluster hosts. At the moment, our ingress
controller is set up for this port forwarding, but it’s using a random port.
We would like to select the port to be sure that we know where to find the
ingress controller. At the same time, we’ll also add an annotation so that
this ingress controller will be the default for this cluster.
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To apply the port changes, we’re going to provide our Kubernetes clus
ter an with extra YAML configuration with just the changes we need. Here’s
that YAML:

ingress
-patch.yaml

---

apiVersion: v1

kind: Service

metadata:

name: ingress-nginx-controller

namespace: ingress-nginx

spec:

ports:

- port: 80

nodePort: 80

- port: 443

nodePort: 443

This file specifies the name and Namespace of the Service to ensure that
Kubernetes knows where to apply these changes. It also specifies the port

configuration we’re updating, along with the nodePort, which is the port on
our cluster nodes that will be used for port forwarding. We’ll look at Node
Port service types and port forwarding in more detail in Chapter 9.

To patch the service, we use the kubectl patch command:

root@host01:/etc/kubernetes/components# kubectl patch -n ingress-nginx \

service/ingress-nginx-controller --patch-file ingress-patch.yaml

service/ingress-nginx-controller patched

To apply the annotation, use the kubectl annotate command:

root@host01:/etc/kubernetes/components# kubectl annotate -n ingress-nginx \

ingressclass/nginx ingressclass.kubernetes.io/is-default-class="true"

ingressclass.networking.k8s.io/nginx annotated

Kubernetes reports the change to each resource as we make it, so we
know that our changes have been applied.

Metrics Server
Our final addon is a metrics server that collects utilization metrics from our
nodes, enabling the use of autoscaling. To do this, it needs to connect to the
kubelet instances in our cluster. For security, it needs to verify the HTTP/S
certificate when it connects to a kubelet. This is why we configured kubelet to
request a certificate signed by the controller manager rather than allowing
the kubelet to generate selfsigned certificates.

During setup, kubelet created a certificate request on each node, but the
requests were not automatically approved. Let’s find these requests:

root@host01:/etc/kubernetes/components# kubectl get csr

NAME ... SIGNERNAME ... CONDITION
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csr-sgrwz ... kubernetes.io/kubelet-serving ... Pending

csr-agwb6 ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued

csr-2kwwk ... kubernetes.io/kubelet-serving ... Pending

csr-5496d ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued

csr-hm6lj ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued

csr-jbfmx ... kubernetes.io/kubelet-serving ... Pending

csr-njjr7 ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued

csr-v7tcs ... kubernetes.io/kubelet-serving ... Pending

csr-vr27n ... kubernetes.io/kubelet-serving ... Pending

Each kubelet has a client certificate that it uses to authenticate to the API
server; these were automatically approved during bootstrap. The requests
we need to approve are for kubelet-serving certificates, which are used when
clients such as our metrics server connect to kubelet. As soon as the request
is approved, the controller manager signs the certificate. The kubelet then
collects the certificate and starts using it.

We can approve all of these requests at once by querying for the name
of all of the kubelet-serving requests and then passing those names to
kubectl certificate approve:

root@host01:/etc/kubernetes/components# kubectl certificate approve \$(kubectl

get csr --field-selector spec.signerName=kubernetes.io/kubelet-serving -o name)

certificatesigningrequest.certificates.k8s.io/csr-sgrwz approved

...

We now can install our metrics server by downloading and applying its
YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo metrics-server.yaml \$metrics_url

root@host01:/etc/kubernetes/components# kubectl apply -f metrics-server.yaml

...

root@host01:/etc/kubernetes/components# cd

root@host01:~#

This component is the last one we need to install, so we can leave this
directory. With these cluster addons, we now have a complete, highly avail
able Kubernetes cluster.

Exploring a Cluster
Before deploying our first application onto this brandnew Kubernetes clus
ter, let’s explore what’s running on it. The commands we use here will come
in handy later as we debug our own applications and a cluster that isn’t work
ing correctly.

We’ll use crictl, the same command we used to explore running con
tainers in Part I, to see what containers are running on host01:

root@host01:~# crictl ps

CONTAINER ... STATE NAME ...
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25c63f29c1442 ... Running longhorn-csi-plugin ...

2ffdd044a81d8 ... Running node-driver-registrar ...

94468050de89c ... Running csi-provisioner ...

119fbf417f1db ... Running csi-attacher ...

e74c1a2a0c422 ... Running kube-scheduler ...

d1ad93cdbc686 ... Running kube-controller-manager ...

76266a522cc3d ... Running engine-image-ei-611d1496 ...

fc3cd1679e33e ... Running replica-manager ...

48e792a973105 ... Running engine-manager ...

e658baebbc295 ... Running longhorn-manager ...

eb51d9ec0f2fc ... Running calico-kube-controllers ...

53e7e3e4a3148 ... Running calico-node ...

772ac45ceb94e ... Running calico-typha ...

4005370021f5f ... Running kube-proxy ...

26929cde3a264 ... Running kube-apiserver ...

9ea4c2f5af794 ... Running etcd ...

The control plane node is very busy, as this list includes Kubernetes con
trol plane components, Calico components, and Longhorn components.
Running this command on all the nodes and sorting out what containers
are running where and for what purpose would be confusing. Fortunately,
kubectl provides a clearer picture, although knowing that we can get down
to these lowerlevel details and see exactly what containers are running on a
given node is nice.

To explore the cluster with kubectl, we need to know how the cluster
resources are organized into Namespaces. As mentioned previously, Kuber
netes Namespaces provide security and avoid name collisions. To ensure
idempotence, Kubernetes needs each resource to have a unique name. By
dividing resources into Namespaces, we allow multiple resources to have
the same name while still enabling the API server to know exactly which re
source we mean, which also supports multitenancy, one of our crosscutting
concerns.

Even though we just set up the cluster, it’s already populated with sev
eral Namespaces:

root@host01:~# kubectl get namespaces

NAME STATUS AGE

calico-system Active 50m

default Active 150m

kube-node-lease Active 150m

kube-public Active 150m

kube-system Active 150m

longhorn-system Active 16m

tigera-operator Active 50m

As we run kubectl commands, they will apply to the default Namespace
unless we use the -n option to specify a different Namespace.
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To see what containers are running, we ask kubectl to get the list of Pods.
We look at Kubernetes Pods in much more detail in Chapter 7. For now, just
know that a Pod is a group of one or more containers, much like the Pods
that we created with crictl in Part I.

If we try to list Pods in the default Namespace, we can see that there
aren’t any yet:

root@host01:~# kubectl get pods

No resources found in default namespace.

So far, as we installed cluster infrastructure components, they’ve been
created in other Namespaces. That way, when we configure normal user
accounts, we can prevent those users from viewing or editing the cluster in
frastructure. The Kubernetes infrastructure components were all installed
into the kube-system Namespace:

root@host01:~# kubectl -n kube-system get pods

NAME READY STATUS ...

coredns-558bd4d5db-7krwr 1/1 Running ...

...

kube-apiserver-host01 1/1 Running ...

...

We cover the control plane components in Chapter 11. For now, let’s
explore just one of the control plane Pods, the API server running on host01.
We can get all of the details for this Pod using kubectl describe:

root@host01:~# kubectl -n kube-system describe pod kube-apiserver-host01

Name: kube-apiserver-host01

Namespace: kube-system

...

Node: host01/192.168.61.11

...

Status: Running

Containers:

kube-apiserver:

Container ID: containerd://26929cde3a264e...

...

The Namespace and name together uniquely identify this Pod. We also
see the node on which the Pod is scheduled, its status, and details about the
actual containers, including a container ID that we can use with crictl to
find the container in the underlying containerd runtime.

Let’s also verify that Calico deployed into our cluster as expected:

root@host01:~# kubectl -n calico-system get pods

NAME READY STATUS ...

calico-kube-controllers-7f58dbcbbd-ch7zt 1/1 Running ...

calico-node-cp88k 1/1 Running ...

calico-node-dn4rj 1/1 Running ...
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calico-node-xnkmg 1/1 Running ...

calico-node-zfscp 1/1 Running ...

calico-typha-68b99cd4bf-7lwss 1/1 Running ...

calico-typha-68b99cd4bf-jjdts 1/1 Running ...

calico-typha-68b99cd4bf-pjr6q 1/1 Running ...

Earlier we saw that Calico installed a DaemonSet resource. Kubernetes
has used the configuration in this DaemonSet to automatically create a
calico-node Pod for each node. Like Kubernetes itself, Calico also uses a sep
arate control plane to handle overall configuration of the network, and the
other Pods provide that control plane.

Finally, we’ll see the containers that are running for Longhorn:

root@host01:~# kubectl -n longhorn-system get pods

NAME READY STATUS RESTARTS AGE

engine-image-ei-611d1496-8q58f 1/1 Running 0 31m

...

longhorn-csi-plugin-8vkr6 2/2 Running 0 31m

...

longhorn-manager-dl9sb 1/1 Running 1 32m

...

Like Calico, Longhorn uses DaemonSets so that it can run containers
on every node. These containers provide storage services to the other con
tainers on the node. Longhorn also includes a number of other containers
that serve as a control plane, including providing the CSI implementation
that Kubernetes uses to tell Longhorn to create storage when needed.

We put a lot of effort into setting up this cluster, so it would be a shame
to end this chapter without running at least one application on it. In the
next chapter, we will look at many different ways to run containers, but let’s
quickly run a simple NGINX web server in our Kubernetes cluster:

root@host01:~# kubectl run nginx --image=nginx

pod/nginx created

That may look like an imperative command, but under the hood, kubectl
is creating a Pod resource using the name and container image we specified,
and then it’s applying that resource on the cluster. Let’s inspect the default
Namespace again:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... IP NODE ...

nginx 1/1 Running ... 172.31.89.203 host02 ...

We used -o wide to see extra information about the Pod, including its IP
address and where it was scheduled, which can be different each time the
Pod is created. In this case, the Pod was scheduled to host02, showing that
we were successful in allowing regular application containers to be deployed
to our control plane nodes. The IP address comes from the Pod CIDR we
configured, and Calico automatically assigns it.
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Calico also handles routing traffic so that we can reach the Pod from any
container in the cluster as well as from the host network. Let’s verify that,
starting with a regular ping:

root@host01:~# ping -c 1 172.31.89.203

PING 172.31.89.203 (172.31.89.203) 56(84) bytes of data.

64 bytes from 172.31.89.203: icmp_seq=1 ttl=63 time=0.848 ms

--- 172.31.89.203 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.848/0.848/0.848/0.000 ms

Use your Pod’s IP address in the place of the one shown here.
We can also use curl to verify that the NGINX web server is working:

root@host01:~# curl http://172.31.89.203

...

<title>Welcome to nginx!</title>

...

The Kubernetes cluster is working and ready for us to deploy applica
tions. Kubernetes will take advantage of all of the nodes in the cluster to
load balance our applications and provide resiliency in the event of any
failures.

Final Thoughts
In this chapter, we’ve explored how Kubernetes is architected with the flex
ibility to allow cluster components to come and go at any time. This applies
not only to containerized applications but also to the cluster components,
including control plane microservices and the underlying servers and net
works the cluster uses. We were able to bootstrap a cluster and then dynam
ically add nodes to it, configure those nodes to accept certain types of con
tainers, and then dynamically add networking and storage drivers using the
Kubernetes cluster itself to run and monitor them. Finally, we deployed our
first container to a Kubernetes cluster, allowing it to automatically schedule
the container onto an available node, using our network driver to access the
container from the host network.

Now that we have a highly available cluster, we can look at how to deploy
an application to Kubernetes. We’ll explore some key Kubernetes resources
that we need to create a scalable, reliable application. This process will pro
vide a foundation for exploring Kubernetes in detail, including understand
ing what happens when our applications don’t run as expected and how to
debug issues with our application or the Kubernetes cluster.

Why Kubernetes Matters 109





7
DEPLOYING CONTA INERS TO

KUBERNETES

We’re now ready to begin running con
tainers on our working Kubernetes cluster.
Because Kubernetes has a declarative API,

we’ll create various kinds of resources to run
them, and we’ll monitor the cluster to see what Kuber
netes does for each type of resource.

Different containers have different use cases. Some might require mul
tiple identical instances with autoscaling to perform well under load. Other
containers might exist solely to run a onetime command. Still others may
require a fixed ordering to enable selecting a single primary instance and
providing controlled failover to a secondary instance. Kubernetes provides
different controller resource types for each of those use cases. We’ll look at
each in turn, but we’ll begin with the most fundamental of them, the Pod,
which is utilized by all of those use cases.

Pods
A Pod is the most basic resource in Kubernetes and is how we run contain
ers. Each Pod can have one or more containers within it. The Pod is used to



provide the process isolation we saw in Chapter 2. Linux kernel namespaces
are used at the Pod and the container level:

mnt Mount points: each container has its own root filesystem; other
mounts are available to all containers in the Pod.

uts Unix time sharing: isolated at the Pod level.

ipc Interprocess communication: isolated at the Pod level.

pid Process identifiers: isolated at the container level.

net Network: isolated at the Pod level.

The biggest advantage of this approach is that multiple containers can
act like processes on the same virtual host, using the localhost address to
communicate, while still being based on separate container images.

Deploying a Pod
To get started, let’s create a Pod directly. Unlike the previous chapter, in
which we used kubectl run to have the Pod specification created for us, we’ll
specify it directly using YAML so that we have complete control over the Pod
and to prepare us for using controllers to create Pods, providing scalability
and failover.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automation script for this chapter does a full cluster install with
three nodes that run the control plane and regular applications, providing
the smallest possible highly available cluster for testing. The automation also
creates some YAML files for Kubernetes resources. Here’s a basic YAML
resource to create a Pod running NGINX:

nginx-pod.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx

image: nginx

Pods are part of the core Kubernetes API, so we just specify a version
number of v1 for the apiVersion. Specifying Pod as the kind tells Kubernetes
exactly what resource we’re creating in the API group. We will see these
fields in all of our Kubernetes resources.
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The metadata field has many uses. For the Pod, we just need to provide
the one required field of name. We don’t specify the namespace in the meta
data, so by default this Pod will end up in the default Namespace.

The remaining field, spec, tells Kubernetes everything it needs to know
to run this Pod. For now we are providing the minimal information, which
is a list of containers to run, but many other options are available. In this
case, we have only one container, so we provide just the name and container
image Kubernetes should use.

Let’s add this Pod to the cluster. The automation added files to /opt, so
we can do it from host01 as follows:

root@host01:~# kubectl apply -f /opt/nginx-pod.yaml

pod/nginx created

In Listing 71, we can check the Pod’s status.

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

nginx 1/1 Running 0 2m26s 172.31.25.202 host03 ...

Listing 7-1: Status of NGINX

It can take some time before the Pod shows Running, especially if you just
set up your Kubernetes cluster and it’s still busy deploying core components.
Keep trying this kubectl command to check the status.

Instead of typing the kubectl command multiple times, you can also use
watch. The watch command is a great way to observe changes in your cluster
over time. Just add watch in front of your command, and it will be run for
you every two seconds.

We added -o wide to the command to see the IP address and node as
signment for this Pod. Kubernetes manages that for us. In this case, the
Pod was scheduled on host03, so we need to go there to see the running
container:

root@host03:~# crictl pods --name nginx

POD ID CREATED STATE NAME NAMESPACE ...

9f1d6e0207d7e 19 minutes ago Ready nginx default ...

Run this command on whatever host your NGINX Pod is on.
If we collect the Pod ID, we can see the container as well:

root@host03:~# POD_ID=$(crictl pods -q --name nginx)

root@host03:~# crictl ps --pod $POD_ID

CONTAINER IMAGE CREATED STATE NAME ...

9da09b3671418 4cdc5dd7eaadf 20 minutes ago Running nginx ...

This output looks very similar to the output from kubectl get in List
ing 71, which is not surprising given that our cluster gets that information
from the kubelet service running on this node, which in turn uses the same
Container Runtime Interface (CRI) API that crictl is also using to talk to the
container engine.
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Pod Details and Logging
The ability to use crictl with the underlying container engine to explore a
container running in the cluster is valuable, but it does require us to connect
to the specific host running the container. Much of the time, we can avoid
that by using kubectl commands to inspect Pods from anywhere by connect
ing to our cluster’s API server. Let’s move back to host01 and explore the
NGINX Pod further.

In Chapter 6, we saw how we could use kubectl describe to see the status
and event log for a cluster node. We can use the same command to see the
status and configuration details of other Kubernetes resources. Here’s the
event log for our NGINX Pod:

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: ¶ default

...

Containers:

nginx:

Container ID: containerd://9da09b3671418...

...

· Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 22m default-scheduler Successfully assigned ...

Normal Pulling 22m kubelet Pulling image "nginx"

Normal Pulled 21m kubelet Successfully pulled image ...

Normal Created 21m kubelet Created container nginx

Normal Started 21m kubelet Started container nginx

We can use kubectl describe with many different Kubernetes resources,
so we first tell kubectl that we are interested in a Pod and provide the name.
Because we didn’t specify a Namespace, Kubernetes will look for this Pod in
the default Namespace ¶.

NO T E We use the default Namespace for most of the examples in this book to save typing,
but it’s a good practice to use multiple Namespaces to keep applications separate,
both to avoid naming conflicts and to manage access control. We look at Name
spaces in more detail in Chapter 11.

The kubectl describe command output provides an event log ·, which is
the first place to look for issues when we have problems starting a container.

Kubernetes takes a few steps when deploying a container. First, it needs
to schedule it onto a node, which requires that node to be available with suf
ficient resources. Then, control passes to kubelet on that node, which has to
interact with the container engine to pull the image, create a container, and
start it.
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After the container is started, kubelet collects the standard out and stan
dard error. We can view this output by using the kubectl logs command:

root@host01:~# kubectl logs nginx

...

2021/07/13 22:37:03 [notice] 1#1: start worker processes

2021/07/13 22:37:03 [notice] 1#1: start worker process 33

2021/07/13 22:37:03 [notice] 1#1: start worker process 34

The kubectl logs command always refers to a Pod because Pods are the
basic resource used to run containers, and our Pod has only one container,
so we can just specify the name of the Pod as a single parameter to kubectl

logs. As before, Kubernetes will look in the default Namespace because we
didn’t specify the Namespace.

The container output is available even if the container has exited, so the
kubectl logs command is the place to look if a container is pulled and started
successfully but then crashes. Of course, we have to hope that the container
printed a log message explaining why it crashed. In Chapter 10, we look at
what to do if we can’t get a container going and don’t have any log messages.

We’re done with the NGINX Pod, so let’s clean it up:

root@host01:~# kubectl delete -f /opt/nginx-pod.yaml

pod "nginx" deleted

We can use the same YAML configuration file to delete the Pod, which
is convenient when we have multiple Kubernetes resources defined in a sin
gle file, as a single command will delete all of them. The kubectl command
uses the name of each resource defined in the file to perform the delete.

Deployments
To run a container, we need a Pod, but that doesn’t mean we generally want
to create the Pod directly. When we create a Pod directly, we don’t get all of
the scalability and failover that Kubernetes offers, because Kubernetes will
run only one instance of the Pod. This Pod will be allocated to a node only
on creation, with no reallocation even if the node fails.

To get scalability and failover, we instead need to create a controller to
manage the Pod for us. We’ll look at multiple controllers that can run Pods,
but let’s start with the most common: the Deployment.

Creating a Deployment
A Deployment manages one or more identical Kubernetes Pods. When we
create a Deployment, we provide a Pod template. The Deployment then cre
ates Pods matching that template with the help of a ReplicaSet.
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DEPLOYMENTS AND REPLICASETS

Kubernetes has evolved its controller resources over time. The first type of con-
troller, the ReplicationController, provided only basic functionality. It was re-
placed by the ReplicaSet, which has improvements in how it identifies which
Pods to manage.

Part of the reason to replace ReplicationControllers with ReplicaSets is that
ReplicationControllers were becoming more and more complicated, making the
code difficult to maintain. The new approach splits up controller responsibility
between ReplicaSets and Deployments. ReplicaSets are responsible for basic
Pod management, including monitoring Pod status and performing failover.
Deployments are responsible for tracking changes to the Pod template caused
by configuration changes or container image updates. Deployments and
ReplicaSets work together, but the Deployment creates its own ReplicaSet, so
we usually need to interact only with Deployments. For this reason, I use the
term Deployment generically to refer to features provided by the ReplicaSet,
such as monitoring Pods to provide the requested number of replicas.

Here’s the YAML file we’ll use to create an NGINX Deployment:

nginx-deploy.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

¶ name: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

· labels:

app: nginx

¸ spec:

containers:

- name: nginx

image: nginx

¹ resources:

requests:

cpu: "100m"

Deployments are in the apps API group, so we specify apps/v1 for
apiVersion. Like every Kubernetes resource, we need to provide a unique
name ¶ to keep this Deployment separate from any others we might create.

The Deployment specification has a few important fields, so let’s look
at them in detail. The replicas field tells Kubernetes how many identical in
stances of the Pod we want. Kubernetes will work to keep this many Pods
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running. The next field, selector, is used to enable the Deployment to find
its Pods. The content of matchLabels must exactly match the content in the
template.metadata.labels field ·, or Kubernetes will reject the Deployment.

Finally, the content of template.spec ¸ will be used as the spec for any
Pods created by this Deployment. The fields here can include any configu
ration we can provide for a Pod. This configuration matches nginxpod.yaml
that we looked at earlier except that we add a CPU resource request ¹ so
that we can configure autoscaling later on.

Let’s create our Deployment from this YAML resource file:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml

deployment.apps/nginx created

We can track the status of the Deployment with kubectl get:

root@host01:~# kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 4s

When the Deployment is fully up, it will report that it has three replicas
ready and available, which means that we now have three separate NGINX
Pods managed by this Deployment:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-6vn44 1/1 Running 0 18s

nginx-6799fc88d8-dcwx5 1/1 Running 0 18s

nginx-6799fc88d8-sh8qs 1/1 Running 0 18s

The name of each Pod begins with the name of the Deployment. Ku
bernetes adds some random characters to build the name of the ReplicaSet,
followed by more random characters so that each Pod has a unique name.
We don’t need to create or manage the ReplicaSet directly, but we can use
kubectl get to see it:

root@host01:~# kubectl get replicasets

NAME DESIRED CURRENT READY AGE

nginx-6799fc88d8 3 3 3 30s

Although we generally interact only with Deployments, it is important
to know about the ReplicaSet, as some specific errors encountered when
creating Pods are only reported in the ReplicaSet event log.

The nginx prefix on the ReplicaSet and Pod names are purely for con
venience. The Deployment does not use names to match itself to Pods. In
stead, it uses its selector to match the labels on the Pod. We can see these
labels if we run kubectl describe on one of the three Pods:

root@host01:~# kubectl describe pod nginx-6799fc88d8-6vn44

Name: nginx-6799fc88d8-6vn44

Namespace: default
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...

Labels: app=nginx

...

This matches the Deployment’s selector:

root@host01:~# kubectl describe deployment nginx

Name: nginx

Namespace: default

...

Selector: app=nginx

...

The Deployment queries the API server to identify Pods matching its se
lector. Whereas the Deployment uses the programmatic API, the kubectl get

command in the following example generates a similar API server query,
giving us an opportunity to see how that works:

root@host01:~# kubectl get all -l app=nginx

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-6vn44 1/1 Running 0 69s

nginx-6799fc88d8-dcwx5 1/1 Running 0 69s

nginx-6799fc88d8-sh8qs 1/1 Running 0 69s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-6799fc88d8 3 3 3 69s

Using kubectl get all in this case allows us to list multiple different kinds
of resources as long as they match the selector. As a result, we see not only
the three Pods but also the ReplicaSet that was created by the Deployment
to manage those Pods.

It may seem strange that the Deployment uses a selector rather than just
tracking the Pods it created. However, this design makes it easier for Kuber
netes to be selfhealing. At any time, a Kubernetes node might go offline, or
we might have a network split, during which some control nodes lose their
connection to the cluster. If a node comes back online, or the cluster needs
to recombine after a network split, Kubernetes must be able to look at the
current state of all of the running Pods and figure out what changes are re
quired to achieve the desired state. This might mean that a Deployment that
started an additional Pod as the result of a node disconnection would need
to shut down a Pod when that node reconnects so that the cluster can main
tain the appropriate number of replicas. Using a selector avoids the need for
the Deployment to remember all the Pods it has ever created, even Pods on
failed nodes.
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Monitoring and Scaling
Because the Deployment is monitoring its Pods to make sure we have the
correct number of replicas, we can delete a Pod, and it will be automatically
recreated:

root@host01:~# kubectl delete pod nginx-6799fc88d8-6vn44

pod "nginx-6799fc88d8-6vn44" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 3m52s

nginx-6799fc88d8-dtddk 1/1 Running 0 ¶ 14s

nginx-6799fc88d8-sh8qs 1/1 Running 0 3m52s

As soon as the old Pod is deleted, the Deployment created a new Pod ¶.
Similarly, if we change the number of replicas for the Deployment, Pods are
automatically updated. Let’s add another replica:

root@host01:~# kubectl scale --replicas=4 deployment nginx

deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 8m22s

nginx-6799fc88d8-dtddk 1/1 Running 0 4m44s

nginx-6799fc88d8-kk7r6 1/1 Running 0 ¶ 5s

nginx-6799fc88d8-sh8qs 1/1 Running 0 8m22s

The first command sets the number of replicas to four. As a result, Ku
bernetes needs to start a new identical Pod to meet the number we requested
¶. We can scale the Deployment by updating the YAML file and rerunning
kubectl apply, or we can use the kubectl scale command to edit the Deploy
ment directly. Either way, this is a declarative approach; we are updating
the Deployment’s resource declaration; Kubernetes then updates the actual
state of the cluster to match.

Similarly, scaling the Deployment down causes Pods to be automatically
deleted:

root@host01:~# kubectl scale --replicas=2 deployment nginx

deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 10m

nginx-6799fc88d8-sh8qs 1/1 Running 0 10m

When we scale down, Kubernetes selects two Pods to terminate. These
Pods take a moment to finish shutting down, at which point we have only
two NGINX Pods running.

Deploying Containers to Kubernetes 119



Autoscaling
For an application that is receiving real requests from users, we would choose
the number of replicas necessary to provide a quality application, while scal
ing down when possible to reduce the amount of resources used by our ap
plication. Of course, the load on our application is constantly changing, and
it would be tedious to monitor each component of our application continu
ally to scale it independently. Instead, we can have the cluster perform the
monitoring and scaling for us using a HorizontalPodAutoscaler. The term hor
izontal in this case just refers to the fact that the autoscaler can update the
number of replicas of the same Pod managed by a controller.

To configure autoscaling, we create a new resource with a reference to
our Deployment. The cluster then monitors resources used by the Pods and
reconfigures the Deployment as needed. We could add a HorizontalPod
Autoscaler to our Deployment using the kubectl autoscale command, but
using a YAML resource file so that we can keep the autoscale configuration
under version control is better. Here’s the YAML file:

nginx-scaler.yaml ---

¶ apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

name: nginx

labels:

app: nginx

spec:

· scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: nginx

¸ minReplicas: 1

maxReplicas: 10

metrics:

- type: Resource

resource:

name: cpu

target:

type: Utilization

averageUtilization: ¹ 50

In the metadata field, we add the label app: nginx. This does not change
the behavior of the resource; its only purpose is to ensure that this resource
shows up if we use an app=nginx label selector in a kubectl get command. This
style of tagging the components of an application with consistent metadata
is a good practice to help others understand what resources go together and
to make debugging easier.
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This YAML configuration uses version 2 of the autoscaler configuration
¶. Providing new versions of API resource groups is how Kubernetes accom
modates future capability without losing any of its backward compatibility.
Generally, alpha and beta versions are released for new resource groups be
fore the final configuration is released, and there is at least one version of
overlap between the beta version and the final release to enable seamless
upgrades.

Version 2 of the autoscaler supports multiple resources. Each resource
is used to calculate a vote on the desired number of Pods, and the largest
number wins. Adding support for multiple resources requires a change in
the YAML layout, which is a common reason for the Kubernetes maintainers
to create a new resource version.

We specify our NGINX Deployment · as the target for the autoscaler
using its API resource group, kind, and name, which is enough to uniquely
identify any resource in a Kubernetes cluster. We then tell the autoscaler to
monitor the CPU utilization of the Pods that belong to the Deployment ¹.
The autoscaler will work to keep average CPU utilization by the Pods close to
50 percent over the long run, scaling up or down as necessary. However, the
number of replicas will never go beyond the range we specify ¸.

Let’s create our autoscaler using this configuration:

root@host01:~# kubectl apply -f /opt/nginx-scaler.yaml

horizontalpodautoscaler.autoscaling/nginx created

We can query the cluster to see that it was created:

root@host01:~# kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

nginx Deployment/nginx 0%/50% 1 10 3 96s

The output shows the autoscaler’s target reference, the current and de
sired resource utilization, and the maximum, minimum, and current num
ber of replicas.

We use hpa as an abbreviation for horizontalpodautoscaler. Kubernetes
allows us to use either singular or plural names and provides abbreviations
for most of its resources to save typing. For example, we can type deploy for
deployment and even po for pods. Every extra keystroke counts!

The autoscaler uses CPU utilization data that the kubelet is already col
lecting from the container engine. This data is centralized by the metrics
server we installed as a cluster addon. Without that cluster addon, there
would be no utilization data, and the autoscaler would not make any changes
to the Deployment. In this case, because we’re not really using our NGINX
server instances, they aren’t consuming any CPU, and the Deployment is
scaled down to a single Pod, the minimum we specified:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 15m
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The autoscaler has calculated that only one Pod is needed and has scaled
the Deployment to match. The Deployment then selected a Pod to terminate
to reach the desired scale.

For accuracy, the autoscaler will not use CPU data from the Pod if it re
cently started running, and it has logic to prevent it from scaling up or down
too often, so if you ran through these examples very quickly you might need
to wait a few minutes before you see it scale.

We explore Kubernetes resource utilization metrics in more detail when
we look at limiting resource usage in Chapter 14.

Other Controllers
Deployments are the most generic and commonly used controller, but Ku
bernetes has some other useful options. In this section, we explore Jobs and
CronJobs, StatefulSets, and DaemonSets.

Jobs and CronJobs
Deployments are great for application components because we usually want
one or more instances to stay running indefinitely. However, for cases for
which we need to run a command, either once or on a schedule, we can use
a Job. The primary difference is a Deployment ensures that any container
that stops running is restarted, whereas a Job can check the exit code of the
main process and restart only if the exit code is nonzero, indicating failure.

A Job definition looks very similar to a Deployment:

sleep-job.yaml ---

apiVersion: batch/v1

kind: Job

metadata:

name: sleep

spec:

template:

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "30"

restartPolicy: OnFailure

The restartPolicy can be set to OnFailure, in which case the container will
be restarted for a nonzero exit code, or to Never, in which case the Job will
be completed when the container exits regardless of the exit code.

We can create and view the Job and the Pod it has created:
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root@host01:~# kubectl apply -f /opt/sleep-job.yaml

job.batch/sleep created

root@host01:~# kubectl get job

NAME COMPLETIONS DURATION AGE

sleep 0/1 3s 3s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-fgcnz 1/1 Running 0 10s

The Job has created a Pod per the specification provided in the YAML
file. The Job reflects 0/1 completions because it is waiting for its Pod to exit
successfully.

When the Pod has been running for 30 seconds, it exits with a code of
zero, indicating success, and the Job and Pod status are updated accordingly:

root@host01:~# kubectl get jobs

NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 40s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-65db7cf9c9-2wcng 1/1 Running 0 31m

sleep-fgcnz 0/1 Completed 0 43s

The Pod is still available, which means that we could review its logs if de
sired, but it shows a status of Completed, so Kubernetes will not try to restart
the exited container.

A CronJob is a controller that creates Jobs on a schedule. For example,
we could set up our sleep Job to run once per day:

sleep-cronjob.yaml ---

apiVersion: batch/v1

kind: CronJob

metadata:

name: sleep

spec:

¶ schedule: "0 3 * * *"

· jobTemplate:

spec:

template:

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "30"

restartPolicy: OnFailure
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The entire contents of the Job specification are embedded inside the
jobTemplate field ·. To this, we add a schedule ¶ that follows the standard
format for the Unix cron command. In this case, 0 3 * * * indicates that a
Job should be created at 3:00 AM every day.

One of Kubernetes’ design principles is that anything could go down at
any time. For a CronJob, if the cluster has an issue during the time the Job
would be scheduled, the Job might not be scheduled, or it might be sched
uled twice, this means that you should take care to write Jobs in an idempo
tent way so that they can handle missing or duplicated scheduling.

If we create this CronJob

root@host01:~# kubectl apply -f /opt/sleep-cronjob.yaml

cronjob.batch/sleep created

it now exists in the cluster, but it does not immediately create a Job or a Pod:

root@host01:~# kubectl get jobs

NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 2m32s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-65db7cf9c9-2wcng 1/1 Running 0 33m

sleep-fgcnz 0/1 Completed 0 2m23s

Instead, the CronJob will create a new Job each time its schedule is
triggered.

StatefulSets
So far, we’ve been looking at controllers that create identical Pods. With
both Deployments and Jobs, we don’t really care which Pod is which, or
where it is deployed, as long as we run enough instances at the right time.
However, that doesn’t always match the behavior we want. For example,
even though a Deployment can create Pods with persistent storage, the stor
age must either be brand new for each new Pod, or the same storage must
be shared across all Pods. That doesn’t align well with a “primary and sec
ondary” architecture such as a database. For those cases, we want specific
storage to be attached to specific Pods.

At the same time, because Pods can come and go due to hardware fail
ures or upgrades, we need a way to manage the replacement of a Pod so that
each Pod is attached to the right storage. This is the purpose of a StatefulSet.
A StatefulSet identifies each Pod with a number, starting at zero, and each
Pod receives matching persistent storage. When a Pod must be replaced, the
new Pod is assigned the same numeric identifier and is attached to the same
storage. Pods can look at their hostname to determine their identifier, so a
StatefulSet is useful both for cases with a fixed primary instance as well as
cases for which a primary instance is dynamically chosen.

We’ll explore a lot more details related to Kubernetes StatefulSets in
the next several chapters, including persistent storage and Services. For this
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chapter, we’ll look at a basic example of a StatefulSet and then build on it as
we introduce other important concepts.

For this simple example, let’s create two Pods and show how they each
get unique storage that stays in place even if the Pod is replaced. We’ll use
this YAML resource:

sleep-set.yaml ---

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: sleep

spec:

¶ serviceName: sleep

replicas: 2

selector:

matchLabels:

app: sleep

template:

metadata:

labels:

app: sleep

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "3600"

· volumeMounts:

- name: sleep-volume

mountPath: /storagedir

¸ volumeClaimTemplates:

- metadata:

name: sleep-volume

spec:

storageClassName: longhorn

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 10Mi

There are a few important differences here compared to a Deployment
or a Job. First, we must declare a serviceName to tie this StatefulSet to a Ku
bernetes Service ¶. This connection is used to create a Domain Name Ser
vice (DNS) entry for each Pod. We must also provide a template for the
StatefulSet to use to request persistent storage ¸ and then tell Kubernetes
where to mount that storage in our container ·.
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The actual sleepset.yaml file that the automation scripts install includes
the sleep Service definition. We cover Services in detail in Chapter 9.

Let’s create the sleep StatefulSet:

root@host01:~# kubectl apply -f /opt/sleep-set.yaml

The StatefulSet creates two Pods:

root@host01:~# kubectl get statefulsets

NAME READY AGE

sleep 2/2 1m14s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-0 1/1 Running 0 57s

sleep-1 1/1 Running 0 32s

The persistent storage for each Pod is brand new, so it starts empty.
Let’s create some content. The easiest way to do that is from within the con
tainer itself, using kubectl exec, which allows us to run commands inside a
container, similar to crictl. The kubectl exec command works no matter
what host the container is on, even if we’re connecting to our Kubernetes
API server from outside the cluster.

Let’s write each container’s hostname to a file and print it out so that we
can verify it worked:

root@host01:~# kubectl exec sleep-0 -- /bin/sh -c \

'hostname > /storagedir/myhost'

root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost

sleep-0

root@host01:~# kubectl exec sleep-1 -- /bin/sh -c \

'hostname > /storagedir/myhost'

root@host01:~# kubectl exec sleep-1 -- /bin/cat /storagedir/myhost

sleep-1

Each of our Pods now has unique content in its persistent storage. Let’s
delete one of the Pods and verify that its replacement inherits its predeces
sor’s storage:

root@host01:~# kubectl delete pod sleep-0

pod "sleep-0" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-0 1/1 Running 0 28s

sleep-1 1/1 Running 0 8m18s

root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost

sleep-0
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After deleting sleep-0, we see a new Pod created with the same name,
which is different from the Deployment for which a random name was gen
erated for every new Pod. Additionally, for this new Pod, the file we created
previously is still present because the StatefulSet attached the same persis
tent storage to the new Pod it created when the old one was deleted.

Daemon Sets
The DaemonSet controller is like a StatefulSet in that the DaemonSet also
runs a specific number of Pods, each with a unique identity. However, the
DaemonSet runs exactly one Pod per node, which is useful primarily for
control plane and addon components for a cluster, such as a network or
storage plugin.

Our cluster already has multiple DaemonSets installed, so let’s look at
the calico-node DaemonSet that’s already running, which runs on each node
to provide network configuration for all containers on that node.

The calico-node DaemonSet is in the calico-system Namespace, so we’ll
specify that Namespace to request information about the DaemonSet:

root@host01:~# kubectl -n calico-system get daemonsets

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ...

calico-node 3 3 3 3 3 ...

Our cluster has three nodes, so the calico-node DaemonSet has created
three instances. Here’s the configuration of this DaemonSet in YAML
format:

root@host01:~# kubectl -n calico-system get daemonset calico-node -o yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

...

name: calico-node

namespace: calico-system

...

spec:

...

selector:

matchLabels:

k8s-app: calico-node

...

The -o yaml parameter to kubectl get prints out the configuration and
status of one or more resources in YAML format, allowing us to inspect Ku
bernetes resources in detail.
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The selector for this DaemonSet expects a label called k8s-app to be set
to calico-node. We can use this to show just the Pods that this DaemonSet
creates:

root@host01:~# kubectl -n calico-system get pods \

-l k8s-app=calico-node -o wide

NAME READY STATUS ... NODE ...

calico-node-h9kjh 1/1 Running ... host01 ...

calico-node-rcfk7 1/1 Running ... host03 ...

calico-node-wj876 1/1 Running ... host02 ...

The DaemonSet has created three Pods, each of which is assigned to one
of the nodes in our cluster. If we add additional nodes to our cluster, the
DaemonSet will schedule a Pod on the new nodes as well.

Final Thoughts
This chapter explored Kubernetes from the perspective of a regular cluster
user, creating controllers that in turn create Pods with containers. Having
this core knowledge of controller resource types is essential for building our
applications. At the same time, it’s important to remember that Kubernetes
is using the container technology we explored in Part I.

One key aspect of container technology is the ability to isolate contain
ers in separate network namespaces. Running containers in a Kubernetes
cluster adds additional requirements for networking because we now need
to connect containers running on different cluster nodes. In the next chap
ter, we consider multiple approaches to make this work as we look at overlay
networks.
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8
OVERLAY NETWORKS

Container networking is complex enough
when all of the containers are on a single
host, as we saw in Chapter 4. When we scale

up to a cluster of nodes, all of which run con
tainers, the complexity increases substantially. Not only
must we provide each container with its own virtual
network devices and manage IP addresses, dynamically
creating new network namespaces and devices when
containers are created, but we also need to ensure that
containers on one node can communicate with con
tainers on all the other nodes.

In this chapter, we’ll describe how overlay networks are used to provide
the appearance of a single container network across all nodes in a Kuber
netes cluster. We’ll consider two different approaches for routing container
traffic across a host network, examining the network configuration and traf
fic flows for each. Finally, we’ll explore how Kubernetes uses the Container
Network Interface (CNI) standard to configure networking as a separate
plugin, making it easy to shift to new technology as it becomes available and
allowing for custom solutions where needed.



Cluster Networking
The fundamental goal of a Kubernetes cluster is to treat a set of hosts (physi
cal or virtual machines) as a single computing resource that can be allocated
as needed to run containers. From a networking standpoint, this means Ku
bernetes should be able to schedule a Pod onto any node without worrying
about connectivity to Pods on other nodes. It also means that Kubernetes
should have a way to dynamically allocate IP addresses to Pods in a way that
supports that clusterwide network connectivity.

As we’ll see in this chapter, Kubernetes uses a plugin design to allow any
compatible network software to allocate IP addresses and provide crossnode
network connectivity. All plugins must follow a couple of important rules.
First, Pod IP addresses should come from a single pool of IP addresses, al
though this pool can be subdivided by node. This means that we can treat all
Pods as part of a single flat network, no matter where the Pods run. Second,
traffic should be routable such that all Pods can see all other Pods and the
control plane.

CNI Plug-ins
Plugins communicate with the Kubernetes cluster, specifically with kubelet,
using the CNI standard. CNI specifies how kubelet finds and invokes CNI
plugins. When a new Pod is created, kubelet first allocates the network name
space. It then invokes the CNI plugin, providing it a reference to the net
work namespace. The CNI plugin adds network devices to the namespace,
assigns an IP address, and passes that IP address back to kubelet.

Let’s see that process in action. To do so, our examples for this chapter
include two different environments with two different CNI plugins: Calico
and WeaveNet. Both of these plugins provide networking for Pods but with
different crossnode networking. We’ll begin with the Calico environment.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

By default, CNI plugin information is kept in /etc/cni/net.d. We can see
the Calico configuration in that directory:

root@host01:~# ls /etc/cni/net.d

10-calico.conflist calico-kubeconfig

The file 10calico.conflist contains the actual Calico configuration. The
file calicokubeconfig is used by Calico components to authenticate with the
control plane; it was created based on a service account created during Cal
ico installation. The configuration filename has the 10 prefix because kubelet

sorts any configuration files it finds and uses the first one.
Listing 81 shows the configuration file, which is in JSON format and

identifies the network plugins to use.
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root@host01:~# cat /etc/cni/net.d/10-calico.conflist

{

"name": "k8s-pod-network",

"cniVersion": "0.3.1",

"plugins": [

{

"type": "calico",

...

},

{

"type": "bandwidth",

"capabilities": {"bandwidth": true}

},

{"type": "portmap", "snat": true, "capabilities": {"portMappings": true}}

]

}

Listing 8-1: Calico configuration

The most important field is type; it specifies which plugin to run. In this
case, we’re running three plugins: calico, which handles Pod networking;
bandwidth, which we can use to configure network limits; and portmap, which
is used to expose container ports to the host network. These two plugins in
form kubelet of their purposes using the capabilities field; as a result, when
kubelet invokes them, it passes in the relevant bandwidth and port mapping
configuration so that the plugin can make the necessary network configura
tion changes.

To run these plugins, kubelet needs to know where they are located.
The default location for the actual plugin executables is /opt/cni/bin, and
the name of the plugin matches the type field:

root@host01:~# ls /opt/cni/bin

bandwidth calico-ipam flannel install macvlan sbr vlan

bridge dhcp host-device ipvlan portmap static

calico firewall host-local loopback ptp tuning

Here, we see a common set of network plugins that were installed by
kubeadm along with our Kubernetes cluster. We also see calico, which was
added to this directory by the Calico DaemonSet we installed after cluster
initialization.

Pod Networking
Let’s look at an example Pod to get a glimpse of how the CNI plugins con
figure the Pod’s network namespace. The behavior is very similar to the
work we did in Chapter 4, adding virtual network devices into network
namespaces to enable communication between containers and with the
host network.
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Let’s create a basic Pod:

pod.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: pod

spec:

containers:

- name: pod

image: busybox

command:

- "sleep"

- "infinity"

nodeName: host01

We’ve added the extra field nodeName to force this Pod to run on host01,
which will make it easier to find and examine how its networking is
configured.

We start the Pod via the usual command:

root@host01:~# kubectl apply -f /opt/pod.yaml

pod/pod created

Next, check to see that it’s running:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

pod 1/1 Running 0 2m32s

After it’s running, we can use crictl to capture its unique ID:

root@host01:~# POD_ID=$(crictl pods --name pod -q)

root@host01:~# echo $POD_ID

b7d2391320e07f97add7ccad2ad1a664393348f1dcb6f803f701318999ed0295

At this point, using the Pod ID, we can find its network namespace. In
Listing 82, we use jq to extract only the data we want, just as we did in Chap
ter 4. We’ll then assign it to a variable.

root@host01:~# NETNS_PATH=$(crictl inspectp $POD_ID |

jq -r '.info.runtimeSpec.linux.namespaces[]|select(.type=="network").path')

root@host01:~# echo $NETNS_PATH

/var/run/netns/cni-7cffed61-fb56-9be1-0548-4813d4a8f996

root@host01:~# NETNS=$(basename $NETNS_PATH)

root@host01:~# echo $NETNS

cni-7cffed61-fb56-9be1-0548-4813d4a8f996

Listing 8-2: Network namespace
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We now can explore the network namespace to see how Calico set up
the IP address and network routing for this Pod. First, as expected, this net
work namespace is being used for our Pod:

root@host01:~# ps $(ip netns pids $NETNS)

PID TTY STAT TIME COMMAND

35574 ? Ss 0:00 /pause

35638 ? Ss 0:00 sleep infinity

We see the two processes that we should expect. The first is a pause con
tainer that is always created whenever we create a Pod. This is a permanent
container to hold the network namespace. The second is our BusyBox con
tainer running sleep, as we configured in the Pod YAML file.

Now, let’s see the configured network interfaces:

root@host03:~# ip netns exec $NETNS ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ...

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

3: ¶ eth0@if16: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 ... state UP ...

link/ether 7a:9e:6c:e2:30:47 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet · 172.31.239.205/32 brd 172.31.25.202 scope global eth0

valid_lft forever preferred_lft forever

inet6 fe80::789e:6cff:fee2:3047/64 scope link

valid_lft forever preferred_lft forever

Calico has created the network device eth0@if16 in the network name
space ¶ and given it an IP address of 172.31.239.205 ·. Note that the net
work length for that IP address is /32, which indicates that any traffic must
go through a configured router. This is different from how our bridged con
tainer networking worked in Chapter 4. It is necessary so that Calico can
provide firewall capabilities via network policies.

The choice of IP address for this Pod was ultimately up to Calico. Cal
ico is configured with 172.31.0.0/16 for use as the IP address space for Pods.
Calico decides how to divide this address space up between nodes and then
allocates IP addresses to each Pod from the range allocated to the node. Cal
ico then passes this IP address back to kubelet so that it can update the Pod’s
status:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

pod 1/1 Running 0 16m 172.31.239.205 host01 ...

When Calico created the network interface in the Pod, it created it as
part of a virtual Ethernet (veth) pair. The veth pair acts as a virtual network
wire that creates a connection to a network interface in the root namespace,
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allowing connections outside the Pod. Listing 83 lets us have a look at both
halves of the veth pair.

root@host01:~# ip netns exec $NETNS ip link

...

3: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue ...

link/ether 6e:4c:3a:41:d0:54 brd ff:ff:ff:ff:ff:ff link-netnsid 0

root@host01:~# ip link | grep -B 1 $NETNS

13: cali9381c30abed@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 ...

link/ether ee:ee:ee:ee:ee:ee ... link-netns cni-7cffed61-fb56-9be1-0548-4813d4a8f996

Listing 8-3: Calico veth pair

The first command prints the network interfaces inside the namespace,
whereas the second prints the interfaces on the host. Each contains the field
link-netns pointing to the corresponding network namespace of the other
interface, showing that these two interfaces create a link between our Pod’s
namespace and the root namespace.

Cross-Node Networking
So far, the configuration of the virtual network devices in the container
looks very similar to the container networking in Chapter 4, where there was
no Kubernetes cluster installed. The difference in this case is that the net
work plugin is configured not just to connect containers on a single node,
but to connect containers running anywhere in the cluster.

WHY NOT NAT?

Regular container networking does, of course, provide connectivity to the host
network. However, as we’ve discussed, it accomplishes this using Network
Address Translation (NAT). This is fine for containers running individual client
applications, as connection tracking enables Linux to route server responses all
the way into the originating container. It does not work for containers that need
to act as servers, which is a key use case for a Kubernetes cluster.

For most private networks that use NAT to connect to a broader network, port
forwarding is used to expose specific services from within the private network.
That isn’t a good solution for every container in every Pod, as we would quickly
run out of ports to allocate. The network plug-ins do end up using NAT, but only
to connect containers acting as clients to make connections to networks outside
the cluster. In addition, we will see port forwarding behavior in Chapter 9,
where it will be one possible way to expose Services outside the cluster.

The challenge in crossnode networking is that the Pod network has a
different range of IP addresses from the host network, so the host network
does not know how to route this traffic. There are a couple of different ways
that network plugins work around this. We’ll begin by continuing with our
cluster running Calico. Then, we’ll show a different crossnode networking
technology using WeaveNet.
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Calico Networking
Calico performs crossnode networking using Layer 3 routing. This means
that it routes based on IP addresses, configuring IP routing tables on each
host and in the Pod to ensure that traffic is sent to the correct host and then
to the correct Pod. Thus, at the host level, we see the Pod IP addresses as the
source and destination. Because Calico relies on the builtin routing capabil
ities of Linux, we don’t need to configure our host network switch to route
the traffic, but we do need to configure any security controls on the host
network switch to allow Pod IP addresses to travel across the network.

To explore Calico crossnode networking, it helps to have two Pods: one
on host01 and the other on host02. We’ll use this resource file:

two-pods.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: pod1

spec:

containers:

- name: pod1

image: busybox

command:

- "sleep"

- "infinity"

nodeName: host01

---

apiVersion: v1

kind: Pod

metadata:

name: pod2

spec:

containers:

- name: pod2

image: busybox

command:

- "sleep"

- "infinity"

nodeName: host02

As always, these files have been loaded into the /opt directory by the au
tomated scripts for this chapter.

The --- separator allows us to put two different Kubernetes resources in
the same file so that we can manage them together. The only difference in
configuration with these two Pods is that they each have a nodeName field to
ensure that they are assigned to the correct node.
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Let’s delete our existing Pod and replace it with the two that we need:

root@host01:~# kubectl delete -f /opt/pod.yaml

pod "pod" deleted

root@host01:~# kubectl apply -f /opt/two-pods.yaml

pod/pod1 created

pod/pod2 created

After these Pods are running, we’ll need to collect their IP addresses:

root@host01:~# IP1=$(kubectl get po pod1 -o json | jq -r '.status.podIP')

root@host01:~# IP2=$(kubectl get po pod2 -o json | jq -r '.status.podIP')

root@host01:~# echo $IP1

172.31.239.216

root@host01:~# echo $IP2

172.31.89.197

We’re able to extract the Pod IP using a simple jq filter because our
kubectl get command is guaranteed to return only one item. If we were run
ning kubectl get without a filter, or with a filter that might match multiple
Pods, the JSON output would be a list and we would need to change the jq

filter accordingly.
Let’s quickly verify that we have connectivity between these two Pods:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

PING 172.31.89.197 (172.31.89.197): 56 data bytes

64 bytes from 172.31.89.197: seq=0 ttl=62 time=2.867 ms

64 bytes from 172.31.89.197: seq=1 ttl=62 time=0.916 ms

64 bytes from 172.31.89.197: seq=2 ttl=62 time=1.463 ms

--- 172.31.89.197 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.916/1.748/2.867 ms

The ping command shows that all three packets arrived successfully, so
we know the Pods can communicate across nodes.

As in our earlier example, each of these Pods has a network interface
with a network length of /32, meaning that all traffic must go through a
router. For example, here is the IP configuration and route table for pod1:

root@host01:~# kubectl exec -ti pod1 -- ip addr

...

3: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue

link/ether f2:ed:e8:04:00:cc brd ff:ff:ff:ff:ff:ff

inet 172.31.239.216/32 brd 172.31.239.216 scope global eth0

...

root@host01:~# kubectl exec -ti pod1 -- ip route

default via 169.254.1.1 dev eth0

169.254.1.1 dev eth0 scope link
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Based on this configuration, when we run our ping command, the net
working stack recognizes that the destination IP is not local to any interface.
It therefore looks up 169.254.1.1 in its Address Resolution Protocol (ARP) ta
ble to determine where to send the “next hop.” If we try to find an interface
either in the container or on the host that has the address 169.254.1.1, we
won’t be successful. Rather than actually assign that address to an interface,
Calico just configures “proxy ARP” so that the packet will be sent through
the eth0 end of the veth pair. As a result, there is an entry for 169.254.1.1 in
the ARP table inside the container:

root@host01:~# kubectl exec -ti pod1 -- arp -n

? (169.254.1.1) at ee:ee:ee:ee:ee:ee [ether] on eth0

...

As shown in Listing 83, the hardware address ee:ee:ee:ee:ee:ee belongs
to the host side of the veth pair, so this is sufficient to get the packet out of
the container and into the root network namespace. From there, IP routing
takes over.

Calico has already configured the routing table to send packets to other
cluster nodes based on the destination IP address range for that node and to
send packets to local containers based on their individual IP addresses. We
can see the result of this in the IP routing table on the host:

root@host01:~# ip route

...

172.31.25.192/26 via 192.168.61.13 dev enp0s8 proto 80 onlink

172.31.89.192/26 via 192.168.61.12 dev enp0s8 proto 80 onlink

172.31.239.216 dev calice0906292e2 scope link

...

Because the destination address for the ping is within the 172.31.89.192/26

network, the packet now is routed to 192.168.61.12, which is host02.
Let’s look at the routing table on host02 so that we can follow along with

the next step:

root@host02:~# ip route

...

172.31.239.192/26 via 192.168.61.11 dev enp0s8 proto 80 onlink

172.31.25.192/26 via 192.168.61.13 dev enp0s8 proto 80 onlink

172.31.89.197 dev calibd2348b4f67 scope link

...

If you want to run this command for yourself, make sure you run it from
host02. When our packet arrives at host02, it has a route for the specific IP
address that is the destination of the ping. This route sends the packet into
the veth pair that is attached to the pod2 network namespace.

Now that the ping has arrived, the network stack inside pod2 sends back
a reply. The reply goes through the same process to reach the root network
namespace of host02. Based on the host02 routing table, it is sent to host01,
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where a routing table entry for 172.31.239.216 is used to send it to the appro
priate container.

Because Calico is using Layer 3 routing, the host network sees the actual
container IP addresses. We can confirm that using tcpdump. We’ll switch back
to host01 for this.

First, let’s kick off tcpdump in the background:

root@host01:~# tcpdump -n -w pings.pcap -i any icmp &

[1] 70949

tcpdump: listening on any ...

The -n flag tells tcpdump to avoid trying to lookup hostnames in DNS for
any IP addresses; this saves time. The -w pings.pcap flag tells tcpdump to write
its data to the file pings.pcap; the -i any flag tells it to listen on all network
interfaces; the icmp filter tells it to listen only to ICMP traffic; and finally, & at
the end puts it in the background.

The pcap filename extension is important because our Ubuntu host sys
tem will only allow tcpdump to read files with that extension.

Now, let’s run ping again:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

...

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.928/0.991/1.115 ms

The ICMP requests and replies have been collected, but they are being
buffered in memory.

To get them dumped to the file, we’ll shut down tcpdump:

root@host01:~# killall tcpdump

12 packets captured

12 packets received by filter

0 packets dropped by kernel

There were three pings, and each ping consists of a request and a reply.
Thus, we might have expected six packets, but in fact we captured 12. To see
why, let’s print the details of the packets that tcpdump collected:

root@host01:~# tcpdump -enr pings.pcap

reading from file pings.pcap, link-type LINUX_SLL (Linux cooked v1)

00:16:23... In f2:ed:e8:04:00:cc ¶ ... 172.31.239.216 > 172.31.89.197: ICMP echo request ...

00:16:23... Out 08:00:27:b7:ef:ef · ... 172.31.239.216 > 172.31.89.197: ICMP echo request ...

00:16:23... In 08:00:27:fc:d2:36 ¸ ... 172.31.89.197 > 172.31.239.216: ICMP echo reply ...

00:16:23... Out ee:ee:ee:ee:ee:ee ¹ ... 172.31.89.197 > 172.31.239.216: ICMP echo reply ...

...

The -e flag to tcpdump prints the hardware addresses; otherwise, we
wouldn’t be able to tell some of the packets apart. The first hardware
address ¶ is the hardware address of eth0 inside the Pod. Next is the same
packet again, but this time the hardware address is the host interface ·. We
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then see the reply, first arriving at the host interface and labeled with the
hardware address for host02 ¸. Finally, the packet is routed into the Calico
network interface corresponding to our Pod ¹, and our ping has made its
round trip.

We’re now done with these two Pods, so let’s delete them:

root@host01:~# kubectl delete -f /opt/two-pods.yaml

pod "pod1" deleted

pod "pod2" deleted

Using Layer 3 routing is an elegant solution to crossnode networking
for a Kubernetes cluster, as it takes advantage of the routing and traffic for
warding capabilities that are native to Linux. However, it does mean that the
host network sees the Pods’ IP addresses, which may require security rule
changes. For example, the automated scripts that set up virtual machines
in Amazon Web Services (AWS) for use with this book not only configure a
security group to allow all traffic in the Pod IP address space, but they also
turn off the “source/destination check” for the virtual machine instances.
Otherwise, the underlying AWS network infrastructure would refuse to pass
traffic with unexpected IP addresses to our cluster’s nodes.

WeaveNet
Layer 3 routing is not the only solution for crossnode networking. Another
option is to “encapsulate” the container packets into a packet that is sent
explicitly host to host. This is the approach taken by popular network plug
ins such as Flannel and WeaveNet. We’ll look at a WeaveNet example, but
the traffic using Flannel looks very similar.

NO T E Larger clusters based on Calico also use encapsulation for some traffic between net
works. For example, a cluster that spans multiple regions, or Availability Zones, in
AWS would likely need to configure Calico to use encapsulation, given that it may
not be possible or practical to configure all of the routers between the regions or Avail
ability Zones with the necessary Pod IP routes for the cluster.

Because everything you might want to do in networking has some de
fined standard, it’s not surprising that there is a standard for encapsulation:
Virtual Extensible LAN (VXLAN). In VXLAN, each packet is wrapped in a
UDP datagram and sent to the destination.

We’ll use the same twopods.yaml configuration file to create two Pods
in our Kubernetes cluster, this time using a cluster built from the weavenet
directory from this chapter’s examples. As before, we end up with one Pod
on host01 and the other on host02:

root@host01:~# kubectl apply -f /opt/two-pods.yaml

pod/pod1 created

pod/pod2 created
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Let’s check that these Pods are running and allocated correctly to their
different hosts:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... IP NODE ...

pod1 1/1 Running ... 10.46.0.8 host01 ...

pod2 1/1 Running ... 10.40.0.21 host02 ...

After these Pods are running, we can collect their IP addresses using the
same commands shown earlier:

root@host01:~# IP1=$(kubectl get po pod1 -o json | jq -r '.status.podIP')

root@host01:~# IP2=$(kubectl get po pod2 -o json | jq -r '.status.podIP')

root@host01:~# echo $IP1

10.46.0.8

root@host01:~# echo $IP2

10.40.0.21

Note that the IP addresses assigned look nothing like the Calico exam
ple. Further exploration shows that the address and routing configuration is
also different, as demonstrated in Listing 84.

root@host01:~# kubectl exec -ti pod1 -- ip addr

...

25: eth0@if26: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue

link/ether e6:78:69:44:3d:a4 brd ff:ff:ff:ff:ff:ff

inet 10.46.0.8/12 brd 10.47.255.255 scope global eth0

valid_lft forever preferred_lft forever

...

root@host01:~# kubectl exec -ti pod1 -- ip route

default via 10.46.0.0 dev eth0

10.32.0.0/12 dev eth0 scope link src 10.46.0.8

Listing 8-4: WeaveNet networking

This time, our Pods are getting IP addresses in a massive /12 network,
corresponding to more than one million possible addresses on a single net
work. In this case, our Pod’s networking stack is going to expect to be able
to use ARP to directly identify the hardware address of any other Pod on the
network rather than routing traffic to a gateway as we saw with Calico.

As before, we do have connectivity between these two Pods:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

PING 10.40.0.21 (10.40.0.21): 56 data bytes

64 bytes from 10.40.0.21: seq=0 ttl=64 time=0.981 ms

64 bytes from 10.40.0.21: seq=1 ttl=64 time=0.963 ms

64 bytes from 10.40.0.21: seq=2 ttl=64 time=0.871 ms
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--- 10.40.0.21 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.871/0.938/0.981 ms

And now that we’ve run this ping command, we should expect that the
ARP table in the pod1 networking stack is populated with the hardware ad
dress of the pod2 network interface:

root@host01:~# kubectl exec -ti pod1 -- arp -n

? (10.40.0.21) at ba:75:e6:db:7c:c6 [ether] on eth0

? (10.46.0.0) at 1a:72:78:64:36:c6 [ether] on eth0

As expected, pod1 has an ARP table entry for pod2’s IP address, corre
sponding to the virtual network interface inside pod2:

root@host01:~# kubectl exec -ti pod2 -- ip addr

...

53: eth0@if54: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue

link/ether ¶ ba:75:e6:db:7c:c6 brd ff:ff:ff:ff:ff:ff

inet 10.40.0.21/12 brd 10.47.255.255 scope global eth0

valid_lft forever preferred_lft forever

...

The hardware address in the pod1 ARP table matches the hardware ad
dress of the virtual network device in pod2 ¶. To make this happen, Weave
Net is routing the ARP request over the network so that the network stack in
pod2 can respond.

Let’s look at how the crossnode routing of ARP and ICMP traffic is hap
pening. First, although the IP address management may be different, one
important similarity between Calico and WeaveNet is that both are using
veth pairs to connect containers to the host. If you want to explore that,
use the commands shown in Listing 82 and Listing 83 to determine the
network namespace for pod1, and then use ip addr on host01 to verify that
there is a veth device with a link-netns field that corresponds to that network
namespace.

For our purposes, because we’ve seen that before, we’ll take it as a given
that the traffic goes through the virtual network wire created by the veth
pair and gets to the host. Let’s start there and trace the ICMP traffic be
tween the two Pods.

If we use the same tcpdump capture as we did with Calico, we’ll be able to
capture the ICMP traffic, but that will get us only so far. Let’s go ahead and
look at that:

root@host01:~# tcpdump -w pings.pcap -i any icmp &

[1] 55999

tcpdump: listening on any, link-type LINUX_SLL (Linux cooked v1) ...

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

...
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3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.824/1.691/3.053 ms

root@host01:~# killall tcpdump

24 packets captured

24 packets received by filter

0 packets dropped by kernel

As before, we ran tcpdump in the background to capture ICMP on all net
work interfaces, ran our ping, and then stopped tcpdump so that it would write
out the packets it captured. This time we have 24 packets to look at, but they
still don’t tell the whole story:

root@host01:~# tcpdump -enr pings.pcap

reading from file pings.pcap, link-type LINUX_SLL (Linux cooked v1)

16:22:08.211499 P e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...

16:22:08.211551 Out e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...

16:22:08.211553 P e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...

16:22:08.211745 Out e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...

16:22:08.212917 P ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...

16:22:08.213704 Out ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...

16:22:08.213708 P ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...

16:22:08.213724 Out ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...

...

These lines show four packets for a single ping request and reply, but the
hardware addresses aren’t changing. What’s happening is that these ICMP
packets are being handed between network interfaces unmodified. How
ever, we’re still not seeing the actual traffic that’s going between host01 and
host02, because we never see any hardware addresses that correspond to host
interfaces.

To see the hostlevel traffic, we need to tell tcpdump to capture UDP and
then treat it as VXLAN, which enables tcpdump to identify the fact that an
ICMP packet is inside.

Let’s start the capture again, this time looking for UDP traffic:

root@host01:~# tcpdump -w vxlan.pcap -i any udp &

...

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

...

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1.139/1.364/1.545 ms

root@host01:~# killall tcpdump

22 packets captured

24 packets received by filter

0 packets dropped by kernel

This time we saved the packet data in vxlan.pcap. In this example, tcpdump
captured 22 packets. Because there is lots of crossPod traffic in our cluster,
not just ICMP traffic, you might see a different number.
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The packets we captured cover all of the UDP traffic on host01, not just
our ICMP, so in printing out the packets shown in Listing 85, we’ll need to
be selective.

root@host01:~# tcpdump -enr vxlan.pcap -T vxlan | grep -B 1 ICMP

reading from file vxlan.pcap, link-type LINUX_SLL (Linux cooked v1)

16:45:47.307949 Out 08:00:27:32:a0:28 ...

length 150: 192.168.61.11.50200 > 192.168.61.12.6784: VXLAN ...

e6:78:69:44:3d:a4 > ba:75:e6:db:7c:c6 ...

length 98: 10.46.0.8 > 10.40.0.21: ICMP echo request ...

16:45:47.308699 In 08:00:27:67:b9:da ...

length 150: 192.168.61.12.43489 > 192.168.61.11.6784: VXLAN ...

ba:75:e6:db:7c:c6 > e6:78:69:44:3d:a4 ...

length 98: 10.40.0.21 > 10.46.0.8: ICMP echo reply ...

16:45:48.308240 Out 08:00:27:32:a0:28 ...

length 150: 192.168.61.11.50200 > 192.168.61.12.6784: VXLAN ...

...

Listing 8-5: VXLAN capture

The -T vxlan flag tells tcpdump to treat the packet data it sees as VXLAN
data. This causes tcpdump to look inside and pull out data from the encapsu
lated packets, enabling it to identify ICMP packets when those are hidden
inside. We then use grep with a -B 1 flag to find those ICMP packets and also
print the line immediately previous so that we can see the VXLAN wrapper.

This capture shows the host’s hardware address, which informs us that
we’ve managed to capture the traffic moving between hosts. Each ICMP
packet is wrapped in a UDP datagram and sent across the host network. The
IP source and destination for these datagrams are the host network IP ad
dresses 192.168.61.11 and 192.168.61.12, so the host network never sees the
Pod IP addresses. However, that information is still there, in the encapsu
lated ICMP packet, thus when the datagram arrives at its destination, Weave
Net can send the ICMP packet to the correct destination.

The advantage of encapsulation is that all of our crossnode traffic looks
like ordinary UDP datagrams between hosts. Typically, we don’t need to do
any additional network configuration to allow this traffic. However, we do
pay a price. As you can see in Listing 85, each ICMP packet is 98 bytes, but
the encapsulated packet is 150 bytes. The wrapper needed for encapsulation
creates network overhead that we have to pay with each packet we send.

Look back at Listing 84 for another consequence. The virtual network
interface inside the Pod has a maximum transmission unit (MTU) of 1,376.
This represents the largest packet that can be sent; anything bigger must to
be fragmented into multiple packets and reassembled at the destination.
This MTU of 1,376 is considerably smaller than the standard MTU of 1,500
on our host network. The smaller MTU on the Pod interface ensures that
the Pod’s network stack will do any required fragmenting. This way, we can
guarantee that we don’t exceed 1,500 at the host layer, even after the wrap
per is added. For this reason, if you are using a network plugin that uses
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encapsulation, it might be worth exploring how to configure jumbo frames
to enable an MTU larger than 1,500 on the host network.

Choosing a Network Plug-in
Network plugins can use different approaches to crossnode networking. As
is universal in engineering, though, there are tradeoffs with each approach.
Layer 3 routing uses native capabilities of Linux and is efficient in its use
of the network bandwidth, but it may require customization of the underly
ing host network. Encapsulation with VXLAN works in any network where
we can send UDP datagrams between hosts, but it adds overhead with each
packet.

Either way, however, our Pods are getting what they need, which is the
ability to communicate with other Pods, wherever in the cluster they may
be. And in practice, the configuration effort and performance difference
tends to be small. For this reason, the best way to choose a network plugin
is to start with the plugin that is recommended for or installed by default
with your particular Kubernetes distribution. If you find specific use cases
for which the performance doesn’t meet your requirements, you’ll then be
able to test an alternative plugin based on real network traffic rather than
guesswork.

Network Customization
Some scenarios may require cluster networking that is more complex than
a single Pod network connected across all cluster nodes. For example, some
regulated industries require certain data, such as security audit logs, to travel
across a separated network. Other systems may have specialized hardware
so that application components that interface with that hardware must be
placed on a specific network or virtual LAN (VLAN).

One of the advantages of a plugin architecture for networking is that a
Kubernetes cluster can accommodate these specialized networking scenar
ios. As long as Pods have an interface that can reach (and is reachable from)
the rest of the cluster, Pods can have additional network interfaces that pro
vide specialized connectivity.

Let’s look at an example. We’ll configure two Pods on the same node
so they have a local hostonly network they can use for intercommunication.
Being a hostonly network, it doesn’t provide connectivity to the rest of the
cluster, so we’ll also use Calico to provide cluster networking for Pods.

Because of the need to configure both Calico and our hostonly net
work, we’ll be invoking two separate CNI plugins that will create virtual net
work interfaces in our Pods’ network namespaces. As we saw in Listing 81,
it’s possible to configure multiple CNI plugins in a single configuration file.
However, kubelet expects only one of these CNI plugins to actually assign a
network interface and IP address. To work around this, we’ll use Multus, a
CNI plugin that is designed to invoke multiple plugins but will treat one as
primary for purposes of reporting IP address information back to kubelet.
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Multus also allows us to be selective as to what CNI plugins are applied to
each Pod.

We’ll begin by installing Multus into the calico example cluster for this
chapter:

root@host01:~# kubectl apply -f /opt/multus-daemonset.yaml

customresourcedefinition.../network-attachment-definitions... created

clusterrole.rbac.authorization.k8s.io/multus created

clusterrolebinding.rbac.authorization.k8s.io/multus created

serviceaccount/multus created

configmap/multus-cni-config created

daemonset.apps/kube-multus-ds created

As the filename implies, the primary resource in this YAML file is a
DaemonSet that runs a Multus container on every host. However, this file
installs several other resources, including a CustomResourceDefinition. This
CustomResourceDefinition will allow us to configure network attachment
resources to tell Multus what CNI plugins to use for a given Pod.

We’ll look at CustomResourceDefinitions in detail in Chapter 17. For
now, in Listing 86 we’ll just see the NetworkAttachmentDefinition that we’ll
use to configure Multus.

netattach.yaml ---

apiVersion: k8s.cni.cncf.io/v1

kind: NetworkAttachmentDefinition

metadata:

name: macvlan-conf

spec:

config: '{

"cniVersion": "0.3.0",

"type": "macvlan",

"mode": "bridge",

"ipam": {

"type": "host-local",

"subnet": "10.244.0.0/24",

"rangeStart": "10.244.0.1",

"rangeEnd": "10.244.0.254"

}

}'

Listing 8-6: Network attachment

The config field in the spec looks a lot like a CNI configuration file, which
isn’t surprising, as Multus needs to use this information to invoke the macvlan

CNI plugin when we ask for it to be added to a Pod.
We need to add this NetworkAttachmentDefinition to the cluster:

root@host01:~# kubectl apply -f /opt/netattach.yaml

networkattachmentdefinition.k8s.cni.cncf.io/macvlan-conf created
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This definition doesn’t immediately affect any of our Pods; it just pro
vides a Multus configuration for future use.

Of course, to use this configuration, Multus must be invoked. How does
that happen when we’ve already installed Calico into this cluster? The an
swer is in the /etc/cni/net.d directory, which the Multus DaemonSet modified
on all of our cluster nodes as part of its initialization:

root@host01:~# ls /etc/cni/net.d

00-multus.conf 10-calico.conflist calico-kubeconfig multus.d

Multus left the existing Calico configuration files in place, but added its
own 00multus.conf configuration file and a multus.d directory. Because the
00multus.conf file is ahead of 10calico.conflist in an alphabetic sort, kubelet
will start to use it the next time it creates a new Pod.

Here’s 00multus.conf :

00-multus.conf {

"cniVersion": "0.3.1",

"name": "multus-cni-network",

"type": "multus",

"capabilities": {

"portMappings": true,

"bandwidth": true

},

"kubeconfig": "/etc/cni/net.d/multus.d/multus.kubeconfig",

"delegates": [

{

"name": "k8s-pod-network",

"cniVersion": "0.3.1",

"plugins": [

{

"type": "calico",

...

}

},

{

"type": "bandwidth",

...

},

{

"type": "portmap",

...

}

]

}

]

}
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The delegates field is pulled from the Calico configuration that Multus
found. This field is used to determine the default CNI plugins that Multus
always uses when it is invoked. The toplevel capabilities field is needed to
ensure that Multus will get all the correct configuration data from kubelet to
be able to invoke the portmap and bandwidth plugins.

Now that Multus is fully set up, let’s use it to add a hostonly network to
two Pods. The Pods are defined as follows:

local-pods.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: pod1

annotations:

k8s.v1.cni.cncf.io/networks: macvlan-conf

spec:

containers:

- name: pod1

image: busybox

command:

- "sleep"

- "infinity"

nodeName: host01

---

apiVersion: v1

kind: Pod

metadata:

name: pod2

annotations:

k8s.v1.cni.cncf.io/networks: macvlan-conf

spec:

containers:

- name: pod2

image: busybox

command:

- "sleep"

- "infinity"

nodeName: host01

This time we need both Pods to wind up on host01 so that the hostonly
networking functions. In addition, we add the k8s.v1.cni.cncf.io/networks

annotation to each Pod. Multus uses this annotation to identify what addi
tional CNI plugins it should run. The name macvlan-conf matches the name
we provided in the NetworkAttachmentDefinition in Listing 86.
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Let’s create these two Pods:

root@host01:~# kubectl apply -f /opt/local-pods.yaml

pod/pod1 created

pod/pod2 created

After these Pods are running, we can check that they each have an extra
network interface:

root@host01:~# kubectl exec -ti pod1 -- ip addr

...

3: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue

link/ether 9a:a1:db:ec:c7:91 brd ff:ff:ff:ff:ff:ff

inet 172.31.239.198/32 brd 172.31.239.198 scope global eth0

valid_lft forever preferred_lft forever

...

4: net1@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue

link/ether 9e:4f:c4:47:40:07 brd ff:ff:ff:ff:ff:ff

inet 10.244.0.2/24 brd 10.244.0.255 scope global net1

valid_lft forever preferred_lft forever

...

root@host01:~# kubectl exec -ti pod2 -- ip addr

...

3: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue

link/ether 52:08:99:a7:d2:bc brd ff:ff:ff:ff:ff:ff

inet 172.31.239.199/32 brd 172.31.239.199 scope global eth0

valid_lft forever preferred_lft forever

...

4: net1@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue

link/ether a6:e5:01:82:81:82 brd ff:ff:ff:ff:ff:ff

inet 10.244.0.3/24 brd 10.244.0.255 scope global net1

valid_lft forever preferred_lft forever

...

The macvlan CNI plugin has added the additional net1 network inter
face, using the IP address management configuration we provided in the
NetworkAttachmentDefinition.

These two Pods are now able to communicate with each other using
these interfaces:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 10.244.0.3

PING 10.244.0.3 (10.244.0.3): 56 data bytes

64 bytes from 10.244.0.3: seq=0 ttl=64 time=3.125 ms

64 bytes from 10.244.0.3: seq=1 ttl=64 time=0.192 ms

64 bytes from 10.244.0.3: seq=2 ttl=64 time=0.085 ms

--- 10.244.0.3 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.085/1.134/3.125 ms
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This communication goes over the bridge created by the macvlan CNI
plugin, as opposed to travelling via Calico.

Keep in mind that our purpose here is solely to demonstrate custom net
working without requiring any particular VLAN or complex setup outside
our cluster hosts. For a real cluster, this kind of hostonly network is of lim
ited value because it constrains where Pods can be deployed. In this kind of
situation, it might be preferable to place the two containers into the same
Pod so that they will always be scheduled together and can use localhost to
communicate.

Final Thoughts
We’ve looked at a lot of network interfaces and traffic flows in this chapter.
Most of the time, it’s enough to know that every Pod in the cluster is allo
cated an IP address from a Pod network, and also that any Pod in the cluster
can reach and is reachable from any other Pod. Any of the Kubernetes net
work plugins provide this capability, whether they use Layer 3 routing or
VXLAN encapsulation, or possibly both.

At the same time, networking issues do occur in a cluster, and it’s essen
tial for cluster administrators and cluster users to understand how the traffic
is flowing between hosts and what that traffic looks like to the host network
in order to debug issues with switch and host configuration, or simply to
build applications that make best use of the cluster.

We’re not yet done with the networking layers that are needed to have a
fully functioning Kubernetes cluster. In the next chapter, we’ll look at how
Kubernetes provides a Service layer on top of Pod networking to provide
load balancing and automated failover, and then uses the Service network
ing layer together with Ingress networking to make container services acces
sible outside the cluster.
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9
SERV ICE AND INGRESS

NETWORKS

A decent amount of complexity was in
volved in creating a clusterwide network
so that all of our Pods could communicate

with one another. At the same time, we still
don’t have all of the networking functionality we need
to build scalable, resilient applications. We need net
working that supports load balancing our application
components across multiple instances and provides
the ability to send traffic to new Pod instances as ex
isting instances fail or need to be upgraded. Addition
ally, the Pod network is designed to be private, mean
ing that it is directly reachable only from within the
cluster. We need additional traffic routing so that ex
ternal users can reach our application components
running in containers.

In this chapter, we’ll look at Service and Ingress networking. Kubernetes
Service networking provides an entire additional networking layer on top



of Pod networking, including dynamic discovery and load balancing. We’ll
see how this networking layer works and how we can use it to expose our
application components to the rest of the cluster as scalable, resilient ser
vices. We’ll then look at how Ingress configuration provides traffic routing
for these Services to expose them to external users.

Services
Putting together Deployments and overlay networking, we have the ability
to create multiple identical container instances with a unique IP address for
each. Let’s create an NGINX Deployment to illustrate:

nginx-deploy.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx

spec:

replicas: 5

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

This is similar to Deployments we’ve seen previously. In this case we’re
asking Kubernetes to maintain five Pods for us, each running an NGINX
web server.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automated scripts have already placed this file in /opt, so we can
apply it to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml

deployment.apps/nginx created

After these Pods are running, we can check that they’ve been distributed
across the cluster and each one has an IP address:
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root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... IP NODE ...

nginx-6799fc88d8-2wqc7 1/1 Running ... 172.31.239.231 host01 ...

nginx-6799fc88d8-78bwx 1/1 Running ... 172.31.239.229 host01 ...

nginx-6799fc88d8-dtx7s 1/1 Running ... 172.31.89.240 host02 ...

nginx-6799fc88d8-wh479 1/1 Running ... 172.31.239.230 host01 ...

nginx-6799fc88d8-zwx27 1/1 Running ... 172.31.239.228 host01 ...

If these containers were merely clients of some server, that might be all
we need to do. For example, if our application architecture was driven by
sending and receiving messages, as long as these containers could connect
to the messaging server, they’d be able to function as required. However,
because these containers act as servers, clients need to be able to find them
and connect.

As it is, our separate NGINX instances aren’t very practical for clients to
use. Sure, it’s possible to connect to any one of these NGINX server Pods di
rectly. For example, we can communicate with the first one in the list using
its IP address:

root@host01:~# curl -v http://172.31.239.231

* Trying 172.31.239.231:80...

* Connected to 172.31.239.231 (172.31.239.231) port 80 (#0)

> GET / HTTP/1.1

...

< HTTP/1.1 200 OK

< Server: nginx/1.21.3

...

Unfortunately, just choosing one instance is not going to provide load
balancing or failover. Additionally, we don’t have any way of knowing ahead
of time what the Pod IP address is going to be, and every time we make any
changes to the Deployment, the Pods will be recreated and get new IP
addresses.

The solution to this situation needs to have two main features. First, we
need to have a wellknown name that clients can use to find a server. Sec
ond, we need a consistent IP address so that when a client has identified
a server, it can continue to use the same address for connections even as
Pod instances come and go. This is exactly what Kubernetes provides with a
Service.

Creating a Service
Let’s create a Service for our NGINX Deployment and see what that gets us.
Listing 91 presents the resource YAML file.

nginx-service.yaml ---

kind: Service

apiVersion: v1
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metadata:

name: nginx

spec:

selector:

app: nginx

ports:

- protocol: TCP

port: 80

targetPort: 80

Listing 9-1: NGINX Service

First, a Service has a selector much like a Deployment. This selector is
used in the same way: to identify the Pods that will be associated with the
Service. However, unlike a Deployment, a Service does not manage its Pods
in any way; it simply routes traffic to them.

The traffic routing is based on the ports we identify in the ports field.
Because the NGINX server is listening on port 80, we need to specify that as
the targetPort. We can use any port we want, but it’s simplest to keep it the
same, especially as 80 is the default port for HTTP.

Let’s apply this Service to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-service.yaml

service/nginx created

We can now see that the Service was created:

root@host01:~# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 14d

nginx ClusterIP 10.100.221.220 <none> 80/TCP 25s

This nginx Service has the default type of ClusterIP. Kubernetes has au
tomatically assigned a cluster IP address for this Service. The IP address is in
an entirely different address space from that of our Pods.

Using the selector, this Service will identify our NGINX server Pods and
automatically start load balancing traffic to them. As Pods matching the se
lector come and go, the Service will automatically update its load balancing
accordingly. As long as the Service exists, it will keep the same IP address, so
clients have a consistent way of finding our NGINX server instances.

Let’s verify that we can reach an NGINX server through the Service:

root@host01:~# curl -v http://10.100.221.220

* Trying 10.100.221.220:80...

* Connected to 10.100.221.220 (10.100.221.220) port 80 (#0)

> GET / HTTP/1.1
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...

< HTTP/1.1 200 OK

< Server: nginx/1.21.3

...

We can see that the Service has correctly identified all five NGINX Pods:

root@host01:~# kubectl describe service nginx

Name: nginx

Namespace: default

...

Selector: app=nginx

...

Endpoints: 172.31.239.228:80,172.31.239.229:80,172.31.239.230:80

+ 2 more...

...

The Endpoints field shows that the Service is currently routing traffic to
all five NGINX Pods. As a client, we don’t need to know which Pod was used
to handle our request. We interact solely with the Service IP address and
allow the Service to choose an instance for us.

Of course, for this example, we had to look up the IP address of the Ser
vice. To make it easier on clients, we still should provide a wellknown name.

Service DNS
Kubernetes provides a wellknown name for each Service through a DNS
(Domain Name System) server that is dynamically updated with the name
and IP address of every Service in the cluster. Each Pod is configured with
this DNS server such that a Pod can use the name of the Service to connect
to an instance.

Let’s create a Pod that we can use to try this out:

pod.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: pod

spec:

containers:

- name: pod

image: alpine

command:

- "sleep"

- "infinity"

We’re using alpine rather than busybox as the image for this Pod because
we’ll want to use some DNS commands that require us to install a more full
featured DNS client.
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NO T E BusyBox makes a great debug image for Kubernetes clusters because it’s tiny and
has many useful commands. However, in the interest of keeping BusyBox tiny, it’s
typical for the commands to include only the most popular options. Alpine makes a
great alternative for debugging. The default Alpine image uses BusyBox to provide
many of its initial commands, but it’s possible to replace them with a fullfeatured
alternative by just installing the appropriate package.

Next, create the Pod:

root@host01:~# kubectl apply -f /opt/pod.yaml

pod/pod created

After it’s running, let’s use it to connect to our NGINX Service, as demon
strated in Listing 92.

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx

Connecting to nginx (10.100.221.220:80)

...

<title>Welcome to nginx!</title>

...

Listing 9-2: Connect to NGINX Service

We were able to use the name of the Service, nginx, and that name re
solved to the Service IP address. This worked because our Pod is configured
to talk to the DNS server that’s built in to the cluster:

root@host01:~# kubectl exec -ti pod -- cat /etc/resolv.conf

search default.svc.cluster.local svc.cluster.local cluster.local

nameserver 10.96.0.10

options ndots:5

We print out the file /etc/resolv.conf inside the container because this is
the file that is used to configure DNS.

The name server 10.96.0.10 referenced is itself a Kubernetes Service, but
it’s in the kube-system Namespace, so we need to look there for it:

root@host01:~# kubectl -n kube-system get services

NAME TYPE CLUSTER-IP ... PORT(S) AGE

kube-dns ClusterIP 10.96.0.10 ... 53/UDP,53/TCP,9153/TCP 14d

metrics-server ClusterIP 10.105.140.176 ... 443/TCP 14d

The kube-dns Service connects to a DNS server Deployment called Core
DNS that listens for changes to Services in the Kubernetes cluster. CoreDNS
updates the DNS server configuration as required to stay up to date with the
current cluster configuration.

Name Resolution and Namespaces
DNS names in a Kubernetes cluster are based on the Namespace as well as
the cluster domain. Because our Pod is in the default Namespace, it has
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been configured with a search path of default.svc.cluster.local as the first
entry in the list, so it will search the default Namespace first when looking
for Services. This is why we were able to use the bare Service name nginx to
find the nginx Service—that Service is also in the default Namespace.

We could have also found the same Service using the fully qualified
name:

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx.default.svc

Connecting to nginx.default.svc (10.100.221.220:80)

...

<title>Welcome to nginx!</title>

...

Understanding this interaction between Namespaces and Service lookup
is important. One common deployment pattern for a Kubernetes cluster is
to deploy the same application multiple times to different Namespaces and
use simple hostnames for application components to communicate with one
another. This pattern is often used to deploy a “development” and “produc
tion” version of an application to the same cluster. If we’re planning to use
this pattern, we need to be sure that we stick to bare hostnames when our
application components try to find one another; otherwise, we could end up
communicating with the wrong version of our application.

Another important configuration item in /etc/resolv.conf is the ndots en
try. The ndots entry tells the hostname resolver that when it sees a hostname
with four or fewer dots, it should try appending the various search domains
prior to performing an absolute search without any domain appended. This
is critical to make sure that we try to find services inside the cluster before
reaching outside the cluster.

As a result, when we used the name nginx in Listing 92, the DNS re
solver within our container immediately tried nginx.default.svc.cluster.local

and found the correct Service.
To make sure this is clear, let’s try one more example: looking up a Ser

vice in another Namespace. The kube-system Namespace has a metrics-server

Service. To find it, let’s use the standard host lookup dig command in our
Pod.

Our Pod is using Alpine Linux, so we need to install the bind-tools pack
age to get access to dig:

root@host01:~# kubectl exec -ti pod -- apk add bind-tools

...

OK: 13 MiB in 27 packages

Now, let’s try looking up metrics-server using the bare name first:

root@host01:~# kubectl exec -ti pod -- dig +search metrics-server

...

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 38423

...
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We add the +search flag onto the command to tell dig to use the search
path information from /etc/resolv.conf. However, even with that flag, we
don’t find the Service, because our Pod is in the default Namespace, so
the search path doesn’t lead dig to look in the kube-system Namespace.

Let’s try again, this time specifying the correct Namespace:

root@host01:~# kubectl exec -ti pod -- dig +search metrics-server.kube-system

...

;; ANSWER SECTION:

metrics-server.kube-system.svc.cluster.local. 30 IN A 10.105.140.176

...

This lookup works, and we are able to get the IP address for the metrics

-server Service. It works because the search path includes svc.cluster.local
as its second entry. After initially trying metrics-server.kube-system.default.svc

.cluster.local, which doesn’t work, dig then tries metrics-server.kube-system

.svc.cluster.local, which does.

Traffic Routing
We’ve seen how to create and use Services, but we haven’t yet looked at how
the actual traffic routing works. It turns out that Service network traffic
works in a way that’s completely different from the overlay networks we saw
in Chapter 8, which can lead to some confusion.

For example, because we can use wget to reach an NGINX server in
stance using the nginx Service name, we might expect to be able to use ping,
as well, but that doesn’t work:

root@host01:~# kubectl exec -ti pod -- ping -c 3 nginx

PING nginx (10.100.221.220): 56 data bytes

--- nginx ping statistics ---

3 packets transmitted, 0 packets received, 100% packet loss

command terminated with exit code 1

Name resolution worked as expected, so ping knew what destination IP
address to use for its ICMP packets. But there was no reply from that IP ad
dress. We could look at every host and container network interface in our
cluster and never find an interface that carries the Service IP address of
10.100.221.220. So how is our HTTP traffic getting through to an NGINX
Service instance?

On every node in our cluster, there is a component called kube-proxy that
configures traffic routing for Services. kube-proxy is run as a DaemonSet in
the kube-system Namespace. Each kube-proxy instance watches for changes to
Services in the cluster and configures the Linux firewall to route traffic.

We can use iptables commands to look at the firewall configuration to
see how kube-proxy has configured traffic routing for our nginx Service:
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root@host01:~# iptables-save | grep 'default/nginx cluster IP'

¶ -A KUBE-SERVICES ! -s 172.31.0.0/16 -d 10.100.221.220/32 -p tcp -m comment

--comment "default/nginx cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ

· -A KUBE-SERVICES -d 10.100.221.220/32 -p tcp -m comment --comment

"default/nginx cluster IP" -m tcp --dport 80 -j KUBE-SVC-2CMXP7HKUVJN7L6M

The iptables-save command backs up all of the current Linux firewall
rules, so it’s useful for printing out all rules. The grep command searches for
the comment string that kube-proxy applies to the Service rules it creates. In
this example, kube-proxy has created two rules for the Service as a whole. The
first rule ¶ looks for traffic destined for our Service that is not coming from
the Pod network. This traffic must be marked for Network Address Transla
tion (NAT) masquerade so that the source of any reply traffic will be rewrit
ten to be the Service IP address rather than the actual Pod that handles the
request. The second rule · sends all traffic destined for the Service to a sep
arate rule chain that will send it to a Pod instance. Note that in both cases,
the rules only match for TCP traffic that is destined for port 80.

We can examine this separate rule chain to see how the actual routing to
individual Pods works. Be sure to replace the name of the rule chain in this
command with the one shown in the previous output:

root@host01:~# iptables-save | grep KUBE-SVC-2CMXP7HKUVJN7L6M

...

-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random

--probability 0.20000000019 -j KUBE-SEP-PIVU7ZHMCSOWIZ2Z

-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random

--probability 0.25000000000 -j KUBE-SEP-CFQXKE74QEHFB7VJ

-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random

--probability 0.33333333349 -j KUBE-SEP-DHDWEJZ7MGGIR5XF

-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random

--probability 0.50000000000 -j KUBE-SEP-3S3S2VJCXSAISE2Z

-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -j KUBE-SEP-AQWD2Y25T24EHSNI

The output shows five rules, corresponding to each of the five NGINX
Pod instances the Service’s selector matched. The five rules together provide
random load balancing across all the instances so that each one has an equal
chance of being selected for new connections.

It may seem strange that the probability figure increases for each rule.
This is necessary because the rules are evaluated sequentially. For the first
rule, we want a 20 percent chance of choosing the first instance. However, if
we don’t select the first instance, only four instances are left, so we want a 25
percent chance of choosing the second one. The same logic applies until we
get to the last instance, which we always want to choose if we’ve skipped all
the others.
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Let’s quickly verify that these rules go to the expected destination (again,
be sure to replace the name of the rule chain in this command):

root@host01:~# iptables-save | grep KUBE-SEP-PIVU7ZHMCSOWIZ2Z

...

-A KUBE-SEP-PIVU7ZHMC ... -s 172.31.239.235/32 ... --comment "default/nginx" -j KUBE-MARK-MASQ

-A KUBE-SEP-PIVU7ZHMCSOWIZ2Z -p tcp ... -m tcp -j DNAT --to-destination 172.31.239.235:80

This output shows two rules. The first is the other half of the NAT mas
querade configuration, as we mark all packets that leave our Pod instance
so that they can have their source address rewritten to appear to come from
the Service. The second rule is the one that actually routes Service traffic
to a specific Pod as it performs a rewrite of the destination address so that a
packet originally destined for the Service IP is now destined for a Pod. From
there, the overlay networking takes over to actually send the packet to the
correct container.

With this understanding of how Service traffic is actually routed, it makes
sense that our ICMP packets didn’t make it through. The firewall rule that
kube-proxy created applies only to TCP traffic destined for port 80. As a re
sult, there was no firewall rule to rewrite our ICMP packets and therefore
no way for them to make it to a networking stack that could reply to them.
Similarly, if we have a container that’s listening on multiple ports, we will be
able to connect to any of those ports by directly using the Pod IP address,
but the Service IP address will route traffic only if we explicitly declare that
port in the Service specification. It can be a significant source of confusion
when deploying an application where the Pod starts up as expected and lis
tens for traffic, but a misconfiguration of the Service means that the traffic
is not being routed to all of the correct destination ports.

External Networking
We now have enough layers of networking to meet all of our internal cluster
communication needs. Each Pod has its own IP address and has connectivity
to other Pods as well as the control plane, and with Service networking we
have automatic load balancing and failover based on running multiple Pod
instances with a Service. However, we’re still missing the ability for external
users to access services running in our cluster.

To provide access for external users, we can no longer rely solely on the
clusterspecific IP address ranges that we use for Pods and Services, given
that external networks don’t recognize those address ranges. Instead, we’ll
need a way to allocate externally routable IP addresses to our Services, either
by explicitly associating an IP address with a Service or by using an ingress
controller that listens to external traffic and routes it to Services.
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External Services
The nginx Service we created earlier was a ClusterIP Service, the default Ser
vice type. Kubernetes supports multiple Service types, including Service
types that are made for Services that need to be exposed externally:

None Also known as a headless Service, it’s used to enable tracking
of selected Pods but without an IP address or any network routing
behavior.

ClusterIP The default Service type that provides tracking of selected
Pods, a cluster IP address that is routed internally, and a wellknown
name in the cluster DNS.

NodePort Extends ClusterIP and also provides a port on all nodes in the
cluster that is routed to the Service.

LoadBalancer Extends NodePort and also uses an underlying cloud provider
to obtain an IP address that is externally reachable.

ExternalName Aliases a wellknown Service name in the cluster DNS to
some external DNS name. Used to make external resources appear to be
incluster Services.

Of these Service types, the NodePort and LoadBalancer types are most use
ful for exposing Services outside the cluster. The LoadBalancer type seems the
most straightforward, as it simply adds an external IP to the Service. How
ever, it requires integration with an underlying cloud environment to cre
ate the external IP address when the Service is created, to route traffic from
that IP address to the cluster’s nodes, and to create a DNS entry outside the
cluster that enables external users to find the Service as a host on some pre
registered domain that we already own, rather than a cluster.local domain
that works only within the cluster.

For this reason, a LoadBalancer Service is most useful for cases in which
we know what cloud environment we’re using and we’re creating Services
that will live for a long time. For HTTP traffic, we can get most of the ben
efit of a LoadBalancer Service by using a NodePort Service together with an
ingress controller, with the added feature of better support for dynamically
deploying new applications with new Services.

Before moving on to an ingress controller, let’s turn our existing nginx

Service into a NodePort Service so that we can look at the effect. We can do
this using a patch file:

nginx-nodeport.yaml ---

spec:

type: NodePort

A patch file allows us to update only the specific fields we care about.
In this case, we are updating only the type of the Service. For this to work,
we just need to specify that one changed field in its correct position in the
hierarchy, which allows Kubernetes to know what field to modify. We don’t
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need to change the selector or ports for our Service, only the type, so the
patch is very simple.

Let’s use the patch:

root@host01:~# kubectl patch svc nginx --patch-file /opt/nginx-nodeport.yaml

service/nginx patched

For this command, we must specify the resource to be patched and a
patch file to be used. The result is identical to if we had edited the YAML
resource file for the Service and then used kubectl apply again.

The Service now looks a little different:

root@host01:~# kubectl get service nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nginx NodePort 10.100.221.220 <none> 80:31326/TCP 2h

A NodePort Service provides all the behavior of a ClusterIP Service, so we
still have a cluster IP associated with our nginx Service. The Service even kept
the same cluster IP. The only change is the PORT field now shows that the Ser
vice port 80 is attached to node port 31326.

The kube-proxy Service on every cluster node is listening on this port (be
sure to use the correct node port for your Service):

root@host01:~# ss -nlp | grep 31326

tcp LISTEN 0 4096 .0.0.0:31326 ... users:(("kube-proxy",pid=3339,fd=15))

As a result, we can still use the nginx Service name inside our Pod, but we
can also use the NodePort from the host:

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx

Connecting to nginx (10.100.221.220:80)

...

<title>Welcome to nginx!</title>

...

root@host01:~# wget -O - http://host01:31326

...

Connecting to host01 (host01)|127.0.2.1|:31326... connected.

...

<h1>Welcome to nginx!</h1>

...

Because kube-proxy is listening on all network interfaces, we’ve success
fully exposed this Service to external users.

Ingress Services
Although we’ve successfully exposed our NGINX Service outside the cluster,
we still don’t provide a great user experience for external users. To use the
NodePort Service, external users will need to know the IP address of at least
one of our cluster nodes, and they’ll need to know the exact port on which
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each Service is listening. That port could change if the Service is deleted and
recreated. We could partially address this by telling Kubernetes which port
to use for the NodePort, but we don’t want to do this with any arbitrary Ser
vice because multiple Services may choose the same port.

What we really need is a single external entry point to our cluster that
keeps track of multiple services that are available and uses rules to route
traffic to them. This way, we can do all of our routing configuration inside
the cluster so that Services can come and go dynamically. At the same time,
we can have a single wellknown entry point for our cluster that all external
users can use.

For HTTP traffic, Kubernetes provides exactly this capability, calling it
an Ingress. To configure our cluster to route external HTTP traffic to Ser
vices, we need to define the set of Ingress resources that specify the routing
and to deploy the ingress controller that receives and routes the traffic. We
already installed our ingress controller when we set up our cluster:

root@host01:~# kubectl -n ingress-nginx get deploy

NAME READY UP-TO-DATE AVAILABLE AGE

ingress-nginx-controller 1/1 1 1 15d

root@host01:~# kubectl -n ingress-nginx get svc

NAME TYPE ... PORT(S) ...

ingress-nginx-controller NodePort ... 80:80/TCP,443:443/TCP ...

...

Our ingress controller includes a Deployment and a Service. As the Ser
vice is of type NodePort, we know that kube-proxy is listening to ports 80 and
443 on all of our cluster’s nodes, ready to route traffic to the associated Pod.

As the name implies, our ingress controller is actually an instance of an
NGINX web server; however, in this case NGINX is solely acting as an HTTP
reverse proxy rather than serving any web content of its own. The ingress
controller listens for changes to Ingress resources in the cluster and recon
figures NGINX to connect to backend servers based on the rules that are
defined. These rules use host or path information from the HTTP request
to select a Service for the request.

Let’s create an Ingress resource to route traffic to the nginx Service we
defined in Listing 91. Here’s the resource we’ll create:

nginx-ingress.yaml ---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

name: web01

spec:

rules:

- host: web01

http:

paths:

- path: /
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pathType: Prefix

backend:

service:

name: nginx

port:

number: 80

This resource instructs the ingress controller to look at the HTTP Host

header. If it sees web01 as the Host header, it then tries to match against a path
in the paths we specified. In this case, all paths will match the path / prefix,
so all traffic will be routed to the nginx Service.

Before we apply this to the cluster, let’s confirm what happens if we try
to use a hostname that the ingress controller doesn’t recognize. We’ll use
the highavailability IP address that’s associated with our cluster, as the clus
ter’s load balancer will forward that to one of the instances:

root@host01:~# curl -vH "Host:web01" http://192.168.61.10

...

> Host:web01

...

<head><title>404 Not Found</title></head>

...

The -H "Host:web01" flag in the curl command tells curl to use the value
host01 as the Host header in the HTTP request. This is necessary given that
we don’t have a DNS server in our example cluster that can turn web01 into
our cluster’s IP address.

As we can see, the NGINX server that’s acting as the ingress controller
is configured to reply with a 404 Not Found error message whenever it gets
a request that doesn’t match any configured Ingress resource. In this case,
because we haven’t created any Ingress resources yet, any request will get
this response.

Let’s apply the web01 Ingress resource to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-ingress.yaml

ingress.networking.k8s.io/web01 created

Now that the Ingress resource exists, as Listing 93 illustrates, HTTP
port 80 requests on both the cluster highavailability IP and individual hosts
are routed to the nginx Service:

root@host01:~# curl -vH "Host:web01" http://host01

...

> Host:web01

...

<title>Welcome to nginx!</title>

...

root@host01:~# curl -vH "Host:web01" http://192.168.61.10

...
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> Host:web01

...

<title>Welcome to nginx!</title>

...

Listing 9-3: NGINX via Ingress

The output in both cases is the same, showing that traffic is being routed
to the nginx Service.

In the web01-ingress resource, we were able to use the bare name of the
nginx Service. The Service name lookup is based on where the Ingress re
source is located. Because we created the Ingress resource in the default
Namespace, that is where it looks first for Services.

Putting this all together, we now have a highavailability solution to route
traffic from external users to HTTP servers in our cluster. This combines
our cluster’s highavailability IP address 192.168.61.10 with an ingress con
troller exposed as a NodePort Service on port 80 of all our cluster’s nodes.
The ingress controller can be dynamically configured to expose additional
Services by creating new Ingress resources.

Ingress in Production
The curl command in Listing 93 still looks a little strange, as we’re required
to override the HTTP Host header manually. We need to perform a few ad
ditional steps to use Ingress resources to expose services in a production
cluster.

First, we need our cluster to have an externally routable IP address to
gether with a wellknown name that is registered in DNS. The best way to do
that is with a wildcard DNS scheme so that all hosts in a given domain are
all routed to the cluster’s external IP. For example, if we own the domain
cluster.example.com, we could create a DNS entry so that *.cluster.example.com
routes to the cluster’s external IP address.

This approach still works with larger clusters that span multiple net
works. We just need to have multiple IP addresses associated with the DNS
entry, possibly using locationaware DNS servers that route clients to the
closest service.

Next, we need to create an SSL certificate for our ingress controller that
includes our wildcard DNS as a Subject Alternative Name (SAN). This will al
low our ingress controller to provide a secure HTTP connection for external
users no matter what specific service hostname they are using.

Finally, when we define our Services, we need to specify the fully quali
fied domain name for the host field. For the preceding example, we would
specify web01.cluster.example.com rather than just web01.

After we’ve performed these additional steps, any external user would
be able to connect via HTTPS to the fully qualified hostname of our Service,
such as https://web01.cluster.example.com. This hostname would resolve to
our cluster’s external IP address, and the load balancer would route it to one
of the cluster’s nodes. At that point, our ingress controller, listening on the
standard port of 443, would offer its wildcard certificate, which would match
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what the client expects. As soon as the secure connection is established, the
ingress controller would inspect the HTTP Host header and proxy a connec
tion to the correct Service, sending back the HTTP response to the client.

The advantage of this approach is that after we have it set up, we can de
ploy a new Ingress resource at any time to expose a Service externally, and
as long as we choose a unique hostname, it won’t collide with any other ex
posed Service. After the initial setup, all of the configuration is maintained
within the cluster itself, and we still have a highly available configuration for
all of our Services.

Final Thoughts
Routing network traffic in a Kubernetes cluster might involve a great deal of
complexity, but the end result is straightforward: we can deploy our applica
tion components to a cluster, with automatic scaling and failover, and exter
nal users can access our application using a wellknown name without having
to know how the application is deployed or how many container instances
we’re using to meet demand. If we build our application to be resilient, our
application containers can upgrade to new versions or restart in response to
failure without users even being aware of the change.

Of course, if we’re going to build application components that are re
silient, it’s important to know what can go wrong in deploying containers. In
the next chapter, we’ll look at some common issues with deploying contain
ers to a Kubernetes cluster and how to debug them.
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10
WHEN THINGS GO WRONG

So far our installation and configuration
of Kubernetes has gone as planned, and
our controllers have had no problem creat

ing Pods and starting containers. Of course, in
the real world, it’s rarely that easy. Although showing
everything that might go wrong with a complex appli
cation deployment isn’t possible, we can look at some
of the most common problems. Most important, we
can explore debugging tools that will help us diagnose
any issue.

In this chapter, we’ll look at how to diagnose problems with applica
tion containers that we deploy on top of Kubernetes. We’ll work our way
through the life cycle for scheduling and running containers, examining po
tential problems at each step as well as how to diagnose and fix them.

Scheduling
Scheduling is the first activity Kubernetes performs on a Pod and its con
tainers. When a Pod is first created, the Kubernetes scheduler assigns it to a



node. Normally, this happens quickly and automatically, but some issues can
prevent scheduling from happening successfully.

No Available Nodes
One possibility is that the scheduler simply doesn’t have any nodes available.
This situation might occur because our cluster doesn’t have any nodes con
figured for regular application containers or because all nodes have failed.

To illustrate the case in which no nodes are available for assignment,
let’s create a Pod with a node selector. A node selector specifies one or more
node labels that are required for a Pod to be scheduled on that node. Node
selectors are useful when some nodes in our cluster are different from oth
ers (for example, when some nodes have newer CPUs with support for more
advanced instruction sets needed by some of our containers).

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ll begin with a Pod definition that has a node selector that doesn’t
match any of our nodes:

nginx-selector.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx

image: nginx

nodeSelector:

¶ purpose: special

The node selector ¶ tells Kubernetes to assign this Pod only to a node
with a label called purpose whose value is equal to special. Even though none
of our nodes currently match, we can still create this Pod:

root@host01:~# kubectl apply -f /opt/nginx-selector.yaml

pod/nginx created

However, Kubernetes is stuck trying to schedule the Pod, because it
can’t find a matching node:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

nginx 0/1 Pending 0 113s <none> <none> ...

We see a status of Pending and a node assignment of <none>. This is be
cause Kubernetes has not yet scheduled this Pod onto a node.
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The kubectl get command is typically the first command we should run
to see whether there are issues with a resource we’ve deployed to our cluster.
If we have an issue, as we do in this case, the next step is to view the detailed
status and event log using kubectl describe:

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: default

...

Status: Pending

...

Node-Selectors: purpose=special

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 4m36s default-scheduler 0/3 nodes are

available: 3 node(s) didn't match Pod's node affinity/selector.

Warning FailedScheduling 3m16s default-scheduler 0/3 nodes are

available: 3 node(s) didn't match Pod's node affinity/selector.

The event log informs us as to exactly what the issue is: the Pod can’t be
scheduled because none of the nodes matched the selector.

Let’s add the necessary label to one of our nodes:

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane...

host02 Ready control-plane...

host03 Ready control-plane...

root@host01:~# kubectl label nodes host02 purpose=special

node/host02 labeled

We first list the three nodes we have available and then apply the nec
essary label to one of them. As soon as we apply this label, Kubernetes can
now schedule the Pod:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

nginx 1/1 Running 0 10m 172.31.89.196 host02 ...

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: default

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 10m default-scheduler 0/3 nodes are

available: 3 node(s) didn't match Pod's node affinity/selector.

When Things Go Wrong 169



Warning FailedScheduling 9m17s default-scheduler 0/3 nodes are

available: 3 node(s) didn't match Pod's node affinity/selector.

Normal Scheduled 2m22s default-scheduler Successfully assigned

default/nginx to host02

...

As expected, the Pod was scheduled onto the node where we applied the
label.

This example, like the others we’ll see in this chapter, illustrates de
bugging in Kubernetes. After we’ve created the resources that we need,
we query the cluster state to make sure the actual deployment of those re
sources was successful. When we find issues, we can correct those issues and
our resources will be started as desired without having to reinstall our appli
cation components.

Let’s clean up this NGINX Pod:

root@host01:~# kubectl delete -f /opt/nginx-selector.yaml

pod "nginx" deleted

Let’s also remove the label from the node. We remove the label by ap
pending a minus sign to it to identify it:

root@host01:~# kubectl label nodes host02 purpose-

node/host02 unlabeled

We’ve covered one issue with the scheduler, but there’s still another we
need to look at.

Insufficient Resources
When choosing a node to host a Pod, the scheduler also considers the re
sources that are available on each node and the resources the Pod requires.
We explore resource limits in detail in Chapter 14; for now it’s enough to
know that each container in a Pod can request the resources it needs, and
the scheduler will ensure that it is scheduled onto a node that has those re
sources available. Of course, if there aren’t any nodes with enough room,
the scheduler won’t be able to schedule the Pod. Instead the Pod will wait in
a Pending state.

Let’s look at an example Pod definition to illustrate this:

sleep
-multiple.yaml

---

apiVersion: v1

kind: Pod

metadata:

name: sleep

spec:

containers:

- name: sleep

image: busybox
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command:

- "/bin/sleep"

- "3600"

resources:

requests:

cpu: "2"

- name: sleep2

image: busybox

command:

- "/bin/sleep"

- "3600"

resources:

requests:

cpu: "2"

In this YAML definition, we create two containers in the same Pod.
Each container requests two CPUs. Because all of the containers in a Pod
must be on the same host in order to share some Linux namespace types
(especially the network namespace so that they can use localhost for com
munication), the scheduler needs to find a single node with four CPUs avail
able. In our small cluster, that can’t happen, as we can see if we try to deploy
the Pod:

root@host01:~# kubectl apply -f /opt/sleep-multiple.yaml

pod/sleep created

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

sleep 0/2 Pending 0 7s <none> <none> ...

As before, kubectl describe gives us the event log that reveals the issue:

root@host01:~# kubectl describe pod sleep

Name: sleep

Namespace: default

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 71s default-scheduler 0/3 nodes are

available: 3 Insufficient cpu.

Notice that it doesn’t matter how heavily loaded our nodes actually are:

root@host01:~# kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

host01 429m 21% 1307Mi 69%

host02 396m 19% 1252Mi 66%

host03 458m 22% 1277Mi 67%
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Nor does it matter how much CPU our containers will actually use. The
scheduler allocates Pods purely based on what it requested; this way, we
don’t suddenly overwhelm a CPU when load increases.

We can’t magically provide our nodes with more CPUs, so to get this
Pod scheduled, we’re going to need to specify a lower CPU usage for our
two containers. Let’s use a more sensible figure of 0.1 CPU:

sleep
-sensible.yaml

---

apiVersion: v1

kind: Pod

metadata:

name: sleep

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "3600"

resources:

requests:

¶ cpu: "100m"

- name: sleep2

image: busybox

command:

- "/bin/sleep"

- "3600"

resources:

requests:

cpu: "100m"

The value 100m ¶ equates to “one hundred millicpu” or onetenth (0.1)
of a CPU.

Even though this is a separate file, it declares the same resource, so
Kubernetes will treat it as an update. However, if we try to apply this as a
change to the existing Pod, it will fail:

root@host01:~# kubectl apply -f /opt/sleep-sensible.yaml

The Pod "sleep" is invalid: spec: Forbidden: pod updates may not change

fields other than ...

We are not allowed to change the resource request of an existing Pod,
which makes sense given that a Pod is allocated to a node only once on cre
ation, and a resource usage change might cause the node to be overly full.

If we were using a controller such as a Deployment, the controller could
handle replacing the Pods for us. Because we created a Pod directly, we need
to manually delete and then recreate it:
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root@host01:~# kubectl delete pod sleep

pod "sleep" deleted

root@host01:~# kubectl apply -f /opt/sleep-sensible.yaml

pod/sleep created

Our new Pod has no trouble with node allocation:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

sleep 2/2 Running 0 51s 172.31.89.199 host02 ...

And if we run kubectl describe on the node, we can see how our new Pod
has been allocated some of the node’s CPU:

root@host01:~# kubectl describe node host02

Name: host02

...

Capacity:

cpu: 2

...

Non-terminated Pods: (10 in total)

Namespace Name CPU Requests CPU Limits ...

--------- ---- ------------ ---------- ...

...

default sleep ¶ 200m (10%) 0 (0%) ...

...

Be sure to use the correct node name for the node where your Pod was
deployed. Because our Pod has two containers, each requesting 100m, its total
request is 200m ¶.

Let’s finish by cleaning up this Pod:

root@host01:~# kubectl delete pod sleep

pod "sleep" deleted

Other errors can prevent a Pod from being scheduled, but these are the
most common. Most important, the commands we used here apply in all
cases. First, use kubectl get to determine the Pod’s current status, followed
by kubectl describe to view the event log. These two commands are always a
good first step when something doesn’t seem to be working properly.

Pulling Images
After a Pod is scheduled onto a node, the local kubelet service interacts with
the underlying container runtime to create an isolated environment and
start containers. However, there’s still one application misconfiguration that
can cause our Pod to become stuck in the Pending phase: inability to pull the
container image.
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Three main issues can prevent the container runtime from pulling an
image:

• Failure to connect to the container image registry

• Authorization issue with the requested image

• Image is missing from the registry

As we described in Chapter 5, an image registry is a web server. Often,
the image registry is outside the cluster, and the nodes need to be able to
connect to an external network or the internet to reach the registry. Addi
tionally, most registries support publishing private images that require au
thentication and authorization to access. And, of course, if there is no image
published under the name we specify, the container runtime is not going to
be able to pull it from the registry.

All of these errors behave the same way in our Kubernetes cluster, with
differences only in the message in the event log, so we’ll need to explore
only one of them. We’ll look at what is probably the most common issue:
a missing image caused by a typo in the image name.

Let’s try to create a Pod using this YAML file:

nginx-typo.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx

image: nginz

Because there is no image in Docker Hub called nginz, it won’t be possi
ble to pull this image. Let’s explore what happens when we add this resource
to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-typo.yaml

pod/nginx created

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 0/1 ImagePullBackOff 0 20s

Our Pod has status ImagePullBackOff, which immediately signals two
things. First, this Pod is not yet getting to the point at which the containers
are running, because it has not yet pulled the container images. Second,
as with all errors, Kubernetes will continue attempting the action, but it
will use a backoff algorithm to avoid overwhelming our cluster’s resources.
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Pulling an image involves reaching out over the network to communicate
with the image registry, and it would be rude and a waste of network band
width to flood the registry with many requests in a short amount of time.
Moreover, the cause of the failure may be transient, so the cluster will keep
trying in hopes that the problem will be resolved.

The fact that Kubernetes uses a backoff algorithm for retrying errors
is important for debugging. In this case, we obviously are not going to pub
lish an nginz image to Docker Hub to fix the problem. But for cases in which
we do fix the issue by publishing an image, or by changing the permissions
for the image, it’s important to know that Kubernetes will not pick up that
change immediately, because the amount of delay between tries increases
with each failure.

Let’s explore the event log so that we can see this backoff in action:

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: default

...

Status: ¶ Pending

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 114s default-scheduler Successfully

assigned default/nginx to host03

...

Warning Failed 25s (x4 over 112s) kubelet Failed to pull

image "nginz": ... · pull access denied, repository does not exist or may

require authorization ...

...

Normal BackOff 1s ¸ (x7 over 111s) kubelet ...

As before, our Pod is stuck in a Pending status ¶. In this case, however,
the Pod has gotten past the scheduling activity and has moved on to pulling
the image. For security reasons, the registry does not distinguish between
a private image for which we don’t have permission to access and a missing
image, so Kubernetes can tell us only that the issue is one or the other ·.
Finally, we can see that Kubernetes has tried to pull the image seven times
during the two minutes since we created this Pod ¸, and it last tried to pull
the image one second ago.

If we wait a few minutes and then run the same kubectl describe com
mand again, focusing on the backoff behavior, we can see that a long
amount of time elapses between tries:

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: default

...
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Events:

Type Reason Age From Message

---- ------ ---- ---- -------

...

Normal BackOff 4m38s (x65 over 19m) kubelet ...

Kubernetes has now tried to pull the image 65 times over the course
of 19 minutes. However, the amount of delay has grown over time and has
reached the maximum of five minutes between each attempt. This means
that as we debug this issue, we will need to wait up to five minutes each time
to see whether the problem has been resolved.

Let’s go ahead and fix the issue so that we can see this in action. We
could fix the YAML file and run kubectl apply again, but we can also fix it
using kubectl set:

root@host01:~# kubectl set image pod nginx nginx=nginx

pod/nginx image updated

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 0/1 ImagePullBackOff 0 28m

The kubectl set command requires us to specify the resource type and
name; in this case pod nginx. We then specify nginx=nginx to provide the name
of the container to modify (because a Pod can have multiple containers)
along with the new image.

We fixed the image name, but the Pod is still showing ImagePullBackOff

because we must wait for the fiveminute timer to elapse before Kubernetes
tries again. Upon the next try, the pull is successful and the Pod starts
running:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 32m

Let’s clean up the Pod before moving on:

root@host01:~# kubectl delete pod nginx

pod "nginx" deleted

Again, we were able to solve this using kubectl get and kubectl describe.
However, when we get to the point that the container is running, that won’t
be sufficient.

Running Containers
After instructing the container runtime to pull any images needed, kubelet
then tells the runtime to start the containers. For the rest of the examples in
this chapter, we’ll assume that the container runtime is working as expected.
At this point, then, the main problem we’ll run into is the case in which the
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container does not start as expected. Let’s begin with a simpler example of
debugging a container that fails to run, and then we’ll look at a more com
plex example.

Debugging Using Logs
For our simple example, we first need a Pod definition with a container that
fails on startup. Here’s a Pod definition for PostgreSQL that will do what
we want:

postgres
-misconfig.yaml

---

apiVersion: v1

kind: Pod

metadata:

name: postgres

spec:

containers:

- name: postgres

image: postgres

It might not seem like there are any issues with this definition, but Post
greSQL has some required configuration when running in a container.

We can create the Pod using kubectl apply:

root@host01:~# kubectl apply -f /opt/postgres-misconfig.yaml

pod/postgres created

After a minute or so to allow time to pull the image, we can check the
status with kubectl get, and we’ll notice a status we haven’t seen before:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres 0/1 CrashLoopBackOff 1 (8s ago) 25s

The CrashLoopBackOff status indicates that a container in the Pod has ex
ited. As this is not a Kubernetes Job, it doesn’t expect the container to exit,
so it’s considered a crash.

If you catch the Pod at the right time, you might see an Error status rather
than CrashLoopBackOff. This is temporary: the Pod transitions through that
status immediately after crashing.

Like the ImagePullBackOff status, a CrashLoopBackOff uses an algorithm to
retry the failure, increasing the time between retries with every failure, to
avoid overwhelming the cluster. We can see this backoff if we wait a few
minutes and then print the status again:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres 0/1 CrashLoopBackOff 5 (117s ago) 5m3s
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After five restarts, we’re already up to more than a minute of wait time
between retries. The wait time will continue to increase until we reach five
minutes, and then Kubernetes will continue to retry every five minutes there
after indefinitely.

Let’s use kubectl describe, as usual, to try to get more information about
this failure:

root@host01:~# kubectl describe pod postgres

Name: postgres

Namespace: default

...

Containers:

postgres:

...

State: Waiting

Reason: CrashLoopBackOff

Last State: Terminated

Reason: Error

Exit Code: 1

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

...

Warning BackOff 3m13s (x24 over 8m1s) kubelet Back-off

restarting failed container

The kubectl describe command does give us one piece of useful informa
tion: the exit code for the container. However, that really just tells us there
was an error of some kind; it isn’t enough to fully debug the failure. To es
tablish why the container is failing, we’ll look at the container logs using the
kubectl logs command:

root@host01:~# kubectl logs postgres

Error: Database is uninitialized and superuser password is not specified.

You must specify POSTGRES_PASSWORD to a non-empty value for the

superuser. For example, "-e POSTGRES_PASSWORD=password" on "docker run".

...

We can see the logs even though the container has already stopped, be
cause the container runtime has captured them.

This message comes directly from PostgreSQL itself. Fortunately, it tells
us exactly what the issue is: we are missing a required environment variable.
We can quickly fix this with an update to the YAML resource file:

postgres
-fixed.yaml

---

apiVersion: v1

kind: Pod

metadata:
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name: postgres

spec:

containers:

- name: postgres

image: postgres

¶ env:

- name: POSTGRES_PASSWORD

value: "supersecret"

The env field ¶ adds a configuration to pass in the required environ
ment variable. Of course, in a real system we would not put this directly in a
YAML file in plaintext. We look at how to secure this kind of information in
Chapter 16.

To apply this change, we first need to delete the Pod definition and then
apply the new resource configuration to the cluster:

root@host01:~# kubectl delete pod postgres

pod "postgres" deleted

root@host01:~# kubectl apply -f /opt/postgres-fixed.yaml

pod/postgres created

As before, if we were using a controller such as a Deployment, we could
just update the Deployment, and it would handle deleting the old Pod and
creating a new one for us.

Now that we’ve fixed the configuration, our PostgreSQL container starts
as expected:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres 1/1 Running 0 77s

Let’s clean up this Pod before we continue to our next example:

root@host01:~# kubectl delete pod postgres

pod "postgres" deleted

Most wellwritten applications will print log messages before terminat
ing, but we need to be prepared for more difficult cases. Let’s look at one
more example that includes two new debugging approaches.

Debugging Using Exec
For this example, we’ll need an application that behaves badly. We’ll use a
C program that does some very naughty memory access. This program is
packaged into an Alpine Linux container so that we can run it as a container
in Kubernetes. Here’s the C source code:

crasher.c int main() {

char *s = "12";

s[2] = '3';
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return 0;

}

The first line of code creates a pointer to a string that is two characters
long; the second line then tries to write to the nonexistent third character,
causing the program to terminate immediately.

This C program can be compiled on any system by using gcc to create
a crasher executable. If you build it on a host Linux system, use this gcc
command:

$ gcc -g -static -o crasher crasher.c

The -g argument ensures that debugging symbols are available. We’ll
use those in a moment. The -static argument is the most important; we
want to package this as a standalone application inside an Alpine container
image. If we are building on a different Linux distribution, such as Ubuntu,
the standard libraries are based on a different toolchain, and dynamic link
ing will fail. For this reason, we want our executable to have all of its depen
dencies statically linked. Finally, we use -o to specify the output executable
name and then provide the name of our C source file.

Alternatively, you can just use the container image that’s already been
built and published to Docker Hub under the name bookofkubernetes/crasher:

stable. This image is built and published automatically using GitHub Actions
based on the code in the repository https://github.com/bookofkubernetes/
crasher. Here’s the Dockerfile from that repository:

Dockerfile FROM alpine AS builder

COPY ./crasher.c /

RUN apk --update add gcc musl-dev && \

gcc -g -o crasher crasher.c

FROM alpine

COPY --from=builder /crasher /crasher

CMD [ "/crasher" ]

This Dockerfile takes advantage of Docker’s multistage builds capabil
ity to reduce the final image size. To compile inside an Alpine container,
we need gcc and the core C include files and libraries. However, these have
the effect of making the container image significantly larger. We only need
them at compile time, so we want to avoid having that extra content in the
final image.

When we run this build using the docker build command that we saw in
Chapter 5, Docker will create one container based on Alpine Linux, copy
our source code into it, install the developer tools, and compile the applica
tion. Docker will then start over with a fresh Alpine Linux container and will
copy the resulting executable from the first container. The final container
image is captured from this second container, so we avoid adding the devel
oper tools to the final image.
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Let’s run this image in our Kubernetes cluster. We’ll use a Deployment
resource this time so that we can illustrate editing it to work around the
crashing container:

crasher
-deploy.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: crasher

spec:

replicas: 1

selector:

matchLabels:

app: crasher

template:

metadata:

labels:

app: crasher

spec:

containers:

- name: crasher

image: bookofkubernetes/crasher:stable

This basic Deployment is very similar to what we saw when we intro
duced Deployments in Chapter 7. We specify the image field to match the
location where the image is published.

We can add this Deployment to the cluster in the usual way:

root@host01:~# kubectl apply -f /opt/crasher-deploy.yaml

deployment.apps/crasher created

As soon as Kubernetes has had a chance to schedule the Pod and pull
the image, it starts crashing, as expected:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

crasher-76cdd9f769-5blbn 0/1 CrashLoopBackOff 3 (24s ago) 73s

As before, using kubectl describe tells us only the exit code of the con
tainer. There’s another way to get this exit code; we can use the JSON out
put format of kubectl get and the jq tool to capture just the exit code:

root@host01:~# kubectl get pod crasher-7978d9bcfb-wvx6q -o json | \

jq '.status.containerStatuses[].lastState.terminated.exitCode'

139

Be sure to use the correct name for your Pod based on the output of
kubectl get pods. The path to the specific field we need is based on how Ku
bernetes tracks this resource internally; with some practice it becomes easier
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to craft a path to jq to capture a specific field, which is a very handy trick in
scripting.

The exit code of 139 tells us that the container terminated with a seg
mentation fault. However, the logs are unhelpful in diagnosing the problem,
because our program didn’t print anything before it crashed:

root@host01:~# kubectl logs crasher-76cdd9f769-5blbn

[ no output ]

We have quite a problem. The logs aren’t helpful, so the next step would
be to use kubectl exec to get inside the container. However, the container
stops immediately when our application crashes and is not around long
enough for us to do any debugging work.

To fix this, we need a way to start this container without running the
crashing program. We can do that by overriding the default command to
have our container remain running. Because we built on an Alpine Linux
image, the sleep command is available to us for this purpose.

We could edit our YAML file and update the Deployment that way,
but we can also edit the Deployment directly using kubectl edit, which will
bring up the current definition in an editor, and any changes we make will
be saved to the cluster:

root@host01:~# kubectl edit deployment crasher

This will bring up vi in an editor window with the Deployment resource
in YAML format. The resource will include a lot more fields than we pro
vided when we created it because Kubernetes will show us the status of the
resource as well as some fields with default values.

If you don’t like vi, you can preface the kubectl edit command with
KUBE_EDITOR=nano to use the Nano editor, instead.

Within the file, find these lines:

spec:

containers:

- image: bookofkubernetes/crasher:stable

imagePullPolicy: IfNotPresent

You will see the imagePullPolicy line even though it wasn’t in the YAML
resource, as Kubernetes has added the default policy to the resource auto
matically. Add a new line between image and imagePullPolicy so that the result
looks like this:

spec:

containers:

- image: bookofkubernetes/crasher:stable

args: ["/bin/sleep", "infinity"]

imagePullPolicy: IfNotPresent
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This added line overrides the default command for the container so that
it runs sleep instead of running our crashing program. Save and exit the edi
tor, and kubectl will pick up the new definition:

deployment.apps/crasher edited

After kubectl applies this change to the cluster, the Deployment must
delete the old Pod and create a new one. This is done automatically, so the
only difference we’ll notice is the automatically generated part of the Pod
name. Of course, we’ll also see the Pod running:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

crasher-58d56fc5df-vghbt 1/1 Running 0 3m29s

Our Pod is now running, but it’s only running sleep. We still need to de
bug our actual application. To do that, we can now get a shell prompt inside
our container:

root@host01:~# kubectl exec -ti crasher-58d56fc5df-vghbt -- /bin/sh

/ #

The Deployment replaced the Pod when we changed the definition, so
the name has changed. As before, use the correct name for your Pod. At this
point we can try out our crashing program manually:

/ # /crasher

Segmentation fault (core dumped)

In many cases, the ability to run a program this way, playing with differ
ent environment variables and command line options, may be enough to
find and fix the problem. Alternatively, we could try running the program
with strace, which would tell us what system calls the program is trying to
make and what files it is trying to open prior to crashing. In this case, we
know that the program is crashing with a segmentation fault, meaning that
the problem is likely a programming error, so our best approach is to con
nect a debugging tool to the application using port forwarding.

Debugging Using Port Forwarding
We’ll illustrate port forwarding using the textbased debugger gdb, but any
debugger that can connect via a network port will work. First, we need to get
our application created inside the container using a debugger that will listen
on a network port and wait before it runs the code. To do that, we’ll need
to install gdb inside our container. Because this is an Alpine container, we’ll
use apk:

/ # apk add gdb

...

(13/13) Installing gdb (10.1-r0)
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Executing busybox-1.32.1-r3.trigger

OK: 63 MiB in 27 packages

The version of gdb we installed includes gdbserver, which enables us to
start a networked debug session.

Because gdb is a textbased debugger, we could obviously just start it di
rectly to debug our application, but it is often nicer to use a debugger with
a GUI, making it easier for us to step through source, set breakpoints, and
watch variables. For this reason, I’m showing the process for connecting a
debugger over the network.

Let’s start gdbserver and set it up to listen on port 2345:

/ # gdbserver localhost:2345 /crasher

Process /crasher created; pid = 25

Listening on port 2345

Note that we told gdbserver to listen to the localhost interface. We’ll still
be able to connect to the debugger because we’ll have Kubernetes provide
us with port forwarding with the kubectl port-forward command. This com
mand causes kubectl to connect to the API server and request it to forward
traffic to a specific port on a specific Pod. The advantage is that we can use
this port forwarding capability from anywhere we can connect to the API
server, even outside the cluster.

Using port forwarding specifically to run a remote debugger may not
be an everyday occurrence for either a Kubernetes cluster administrator or
the developer of a containerized application, but it’s a valuable skill to have
when there’s no other way to find the bug. It’s also a great way to illustrate
the power of port forwarding to reach a Pod.

Because we have our debugger running in our first terminal, we’ll need
another terminal tab or window for the port forwarding, which can be done
from any of the hosts in our cluster. Let’s use host01:

root@host01:~# kubectl port-forward pods/crasher-58d56fc5df-vghbt 2345:2345

Forwarding from 127.0.0.1:2345 -> 2345

Forwarding from [::1]:2345 -> 2345

This kubectl command starts listening on port 2345 and forwards all traf
fic through the API server to the Pod we specified. Because this command
keeps running, we need yet another terminal window or tab for our final
step, which is to run the debugger we’ll use to connect to our debug server
running in the container. This must be done from the same host as our
kubectl port-forward command because that program is listening only on lo
cal interfaces.

At this point, we could run any debugger that knows how to talk to the
debug server. For simplicity, we’ll use gdb again. We’ll begin by changing to
the /opt directory because our C source file is there:

root@host01:~# cd /opt
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Now we can kick off gdb and use it to connect to the debug server:

root@host01:/opt# gdb -q

(gdb) target remote localhost:2345

Remote debugging using localhost:2345

...

Reading /crasher from remote target...

Reading symbols from target:/crasher...

0x0000000000401bc0 in _start ()

Our debug session connects successfully and is waiting for us to start the
program, which we’ll do by using the continue command:

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

main () at crasher.c:3

3 s[2] = '3';

With the debugger, we’re able to see exactly which line of our source
code is causing the segmentation fault, and now we can figure out how to
fix it.

Final Thoughts
When we move our application components into container images and run
them in a Kubernetes cluster, we gain substantial benefits in scalability and
automated failover, but we introduce a number of new possibilities that can
go wrong when getting our application running, and we introduce new chal
lenges in debugging those problems. In this chapter, we’ve looked at how
to use Kubernetes commands to systematically track our application startup
and operation to determine what is preventing it from working correctly.
With these commands, we can debug any kind of issue happening at the ap
plication level, even if an application component won’t start correctly in its
containerized environment.

Now that we have a clear picture of running containers using Kuber
netes, we can begin to look in depth into the capabilities of the cluster itself.
As we do this, we’ll be sure to explore how each component works so as to
have the tools needed to diagnose problems. We’ll start in the next chapter
by looking in detail at the Kubernetes control plane.
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11
CONTROL PLANE AND

ACCESS CONTROL

The control plane manages the Kubernetes
cluster, storing the desired state of appli
cations, monitoring the current state to de

tect and recover from any issues, scheduling
new containers, and configuring network routing. In
this chapter, we’ll look closely at the API server, the
primary interface for the control plane and the entry
point for any status retrieval and changes made to the
entire cluster.

Although we will focus on the API server, the control plane includes
multiple other services, each with a role to play. The other control plane
services act as clients to the API server, watching cluster changes and taking
appropriate action to update the state of the cluster. The following list de
scribes the other control plane components:

Scheduler Assigns each new Pod to a node.

Controller manager Has multiple responsibilities, including creating
Pods for Deployments, monitoring nodes, and reacting to outages.



Cloud controller manager This optional component interfaces with
an underlying cloud provider to check on nodes and configure network
traffic routing.

As we demonstrate the workings of the API server, we’ll also see how
Kubernetes manages security to ensure that only authorized users and ser
vices can query the cluster and make changes. The purpose of a container
orchestration environment like Kubernetes is to provide a platform for any
kind of containerized application we might need to run, so this security is
critically important to ensure that the cluster is used only as intended.

API Server
Despite its centrality to the Kubernetes architecture, the API server’s pur
pose is simple. It exposes an interface using HTTP and representational
state transfer (REST) to perform basic creation, retrieval, update, and dele
tion of resources in the cluster. It performs authentication to identify clients,
authorization to ensure that clients have permission for the specific request,
and validation to ensure that any created or updated resources match the
corresponding specification. It also reads from and writes to a data store
based on the commands it receives from clients.

However, the API server is not responsible for actually updating the cur
rent state of the cluster to match the desired state. That is the responsibility
of other control plane and node components. For example, if a client cre
ates a new Kubernetes Deployment, the API server’s job is solely to update
the data store with the resource information. It is then the job of the sched
uler to decide where the Pods will run, and the job of the kubelet service on
the assigned nodes to create and monitor the containers and to configure
networking to route traffic to the containers.

For this chapter, we have a threenode Kubernetes cluster configured
by our automation scripts. Each of the three nodes acts as a control plane
node, so three copies of the API server are running. We can communicate
with any of these three because they all share the same backend database.
The API server is listening for secure HTTP connections on port 6443, the
default port.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ve been using kubectl to communicate with the API server to cre
ate and delete resources and retrieve status, and kubectl has been using se
cure HTTP on port 6443 to talk to the cluster. It knows to do this because
of a Kubernetes configuration file that was installed into /etc/kubernetes by
kubeadm when the cluster was initialized. This configuration file also contains
authentication information that gives us permission to read cluster status
and make changes.
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Because the API server is expecting secure HTTP, we can use curl to
communicate directly with the Kubernetes API. This will give us a better feel
for how the communication actually works. Let’s begin with a simple curl

command:

root@host01:~# curl https://192.168.61.11:6443/

curl: (60) SSL certificate problem: unable to get local issuer certificate

More details here: https://curl.se/docs/sslcerts.html

...

This error message shows that curl does not trust the certificate that the
API server is offering. We can use curl to see this certificate:

root@host01:~# curl -kv https://192.168.61.11:6443/

...

* Server certificate:

* subject: CN=kube-apiserver

...

* issuer: CN=kubernetes

...

The -k option tells curl to ignore any certificate issues, whereas -v tells
curl to provide us with extra logging information about the connection.

For curl to trust this certificate, it will need to trust the issuer, as the is
suer is the signer of the certificate. Let’s fetch the certificate from our Ku
bernetes installation so that we can point curl to it:

root@host01:~# cp /etc/kubernetes/pki/ca.crt .

Be sure to add the . at the end to copy this file to the current directory.
We’re doing this solely to make the following commands easier to type.

Let’s examine this certificate before we use it:

root@host01:~# openssl x509 -in ca.crt -text

Certificate:

...

Issuer: CN = kubernetes

...

Subject: CN = kubernetes

The Issuer and the Subject are the same, so this is a selfsigned certificate.
It was created by kubeadm when we initialized this cluster. Using a generated
certificate allows kubeadm to adapt to our particular cluster networking con
figuration and allows our cluster to have a unique certificate and key without
requiring an external certificate authority (CA). However, it does mean that
we need to configure kubectl to trust this certificate on any system for which
we need to communicate with this API server.

We can now tell curl to use this certificate to verify the API server:
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root@host01:~# curl --cacert ca.crt https://192.168.61.11:6443/

{

...

"status": "Failure",

"message": "forbidden: User \"system:anonymous\" cannot get path \"/\"",

...

"code": 403

}

Now that we’re providing curl with the correct root certificate, curl can
validate the API server certificate and we can successfully connect to the API
server. However, the API server responds with a 403 error, indicating that
we are not authorized. This is because at the moment we are not providing
any authentication information for curl to pass to the API server, so the API
server sees us as an anonymous user.

One final note: for this curl command to work, we need to be selective
in the hostname or IP address we use. The API server is listening on all net
work interfaces, so we could connect to it using localhost or 127.0.0.1. How
ever, those are not listed in the kube-apiserver certificate and cannot be used
for secure HTTP because curl will not trust the connection.

API Server Authentication
We need to provide authentication information before the API server will
accept our requests, so let’s understand the API server’s process for authen
tication. Authentication is handled through a set of plugins, each of which
looks at the request to determine whether it can identify the client. The first
plugin that successfully identifies the client provides identity information
to the API server. This identity is then used with authorization to determine
what the client is allowed to do.

Because authentication is based on plugins, it’s possible to have as many
different ways of authenticating clients as needed. It’s even possible to add
a proxy in front of the API server that performs custom authentication logic
and passes the user’s identity to the API server in an HTTP header.

For our purposes, we’ll focus on three authentication primary plugins
that are used within the cluster itself or as part of the cluster setup process:
client certificates, bootstrap tokens, and service accounts.

Client Certificates
As mentioned previously, an HTTP client like curl validates the server’s
identity by comparing the server’s hostname to its certificate and also by
checking the certificate’s signature against a list of trusted CAs. In addition
to checking the server identity, secure HTTP also allows a client to submit
a certificate to the server. The server checks the signature against its list of
trusted authorities and then uses the subject of the certificate as the client’s
identity.
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Kubernetes uses HTTP client certificate authentication extensively to
enable cluster services to authenticate with the API server. This includes
control plane components as well as the kubelet service running on each
node. We can use kubeadm to list the certificates used by the control plane:

root@host01:~# kubeadm certs check-expiration

...

CERTIFICATE ... RESIDUAL TIME CERTIFICATE AUTHORITY ...

admin.conf ... 363d ...

apiserver ... 363d ca ...

apiserver-etcd-client ... 363d etcd-ca ...

apiserver-kubelet-client ... 363d ca ...

controller-manager.conf ... 363d ...

etcd-healthcheck-client ... 363d etcd-ca ...

etcd-peer ... 363d etcd-ca ...

etcd-server ... 363d etcd-ca ...

front-proxy-client ... 363d front-proxy-ca ...

scheduler.conf ... 363d ...

...

The RESIDUAL TIME column shows how much time is left before these cer
tificates expire; by default, they expire after one year. Use kubeadm certs renew

to renew them, passing the name of the certificate as a parameter.
The first item in the list, admin.conf, is how we’ve been authenticating

ourselves to the cluster in the past few chapters. During initialization, kubeadm
created this certificate and stored its information in the /etc/kubernetes/
admin.conf file. Every kubectl command we’ve run has been using this file
because our automation scripts are setting the KUBECONFIG environment
variable:

root@host01:~# echo $KUBECONFIG

/etc/kubernetes/admin.conf

If we had not set KUBECONFIG, kubectl would be using the default, which is
a file called .kube/config in the user’s home directory.

The admin.conf credentials are designed to provide emergency access to
the cluster, bypassing authorization. In a production cluster, we would avoid
using these credentials directly for everyday operations. Instead, the best
practice for a production cluster is to integrate a separate identity manager
for administrators and normal users. For our example, because we don’t
have a separate identity manager, we’ll instead create an additional certifi
cate for a regular user. This kind of certificate may be useful for an auto
mated process that runs outside the cluster, but it can’t integrate with the
identity manager.

We can create a new client certificate using kubeadm:

root@host01:~# kubeadm kubeconfig user --client-name=me \

--config /etc/kubernetes/kubeadm-init.yaml > kubeconfig

Control Plane and Access Control 191



The kubeadm kubeconfig user command asks the API server to generate a
new client certificate. Because this certificate is signed by the cluster’s CA,
it is valid for authentication. The certificate is saved into the kubeconfig file
along with the necessary configuration to connect to the API server:

root@host01:~# cat kubeconfig

apiVersion: v1

clusters:

- cluster:

certificate-authority-data: ...

server: https://192.168.61.10:6443

name: kubernetes

contexts:

- context:

cluster: kubernetes

user: me

name: me@kubernetes

current-context: me@kubernetes

kind: Config

preferences: {}

users:

- name: me

user:

client-certificate-data: ...

client-key-data: ...

The clusters section defines the information needed to connect to the
API server, including the loadbalanced address shared by all three API ser
vers in our highly available configuration. The users section defines the new
user we created along with its client certificate.

Thus far, we’ve successfully created a new user, but we haven’t given
that user any permissions yet, so we won’t be very successful using these
credentials:

root@host01:~# KUBECONFIG=kubeconfig kubectl get pods

Error from server (Forbidden): pods is forbidden: User "me" cannot list

resource "pods" in API group "" in the namespace "default"

Later in the chapter, we’ll see how to give permissions to this user.

Bootstrap Tokens
Initializing a distributed system like a Kubernetes cluster is challenging. The
kubelet service running on each node must be added to the cluster. To do
this, kubelet must connect to the API server and obtain a client certificate
signed by the cluster’s CA. The kubelet service then uses this client certifi
cate to authenticate to the cluster.

This certificate generation must be done securely so that we elimi
nate the possibility of adding rogue nodes to the cluster and eliminate
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the possibility of a rogue process being able to impersonate a real node. For
this reason, the API server cannot provide a certificate for just any node that
asks to be added to the cluster. Instead, the node must generate its own pri
vate key, submit a certificate signing request (CSR) to the API server, and
receive a signed certificate.

To keep this process secure, we need to ensure that a node is authorized
to submit a certificate signing request. But this submission must happen
before the node has the client certificate that it uses for more permanent
authentication—we have a chickenoregg problem! Kubernetes solves this
via timelimited tokens, known as Bootstrap Tokens. The bootstrap token be
comes a preshared secret that is known to the API server and the new nodes.
Making this token time limited reduces the risk to the cluster if it is exposed.
The Kubernetes controller manager has the task of automatically cleaning
up bootstrap tokens when they expire.

When we initialized our cluster, kubeadm created a bootstrap token, but it
was configured to expire after two hours. If we need to join additional nodes
to the cluster after that, we can use kubeadm to generate a new bootstrap
token:

root@host01:~# TOKEN=$(kubeadm token create)

root@host01:~# echo $TOKEN

pqcnd6.4wawyqgkfaet06zm

This token is added as a Kubernetes Secret in the kube-system Namespace.
We look at secrets in more detail in Chapter 16. For now, let’s just verify that
it exists:

root@host01:~# kubectl -n kube-system get secret

NAME TYPE DATA AGE

...

bootstrap-token-pqcnd6 bootstrap.kubernetes.io/token 6 64s

...

We can use this token to make requests of the API server by using HTTP
Bearer authentication. This means that we provide the token in an HTTP
header called Authorization, prefaced with the word Bearer. When the boot
strap token authentication plugin sees that header and matches the pro
vided token against the corresponding secret, it authenticates us to the API
server and allows us access to the API.

For security reasons, bootstrap tokens have access only to the certificate
signing request functionality of the API server, so that’s all our token will be
allowed to do.

Let’s use our bootstrap token to list all of the certificate signing requests:

root@host01:~# curl --cacert ca.crt \

-H "Authorization: Bearer $TOKEN" \

https://192.168.61.11:6443/apis/certificates.k8s.io/v1/certificatesigningrequests

{

"kind": "CertificateSigningRequestList",
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"apiVersion": "certificates.k8s.io/v1",

"metadata": {

"resourceVersion": "21241"

},

"items": [

...

]

}

It’s important to know how bootstrap tokens work, given that they’re es
sential to adding nodes to the cluster. However, as the name implies, that’s
really the only purpose for a bootstrap token; it’s not typical to use them for
normal API server access. For normal API server access, especially from in
side the cluster, we need a ServiceAccount.

Service Accounts
Containers running in the Kubernetes cluster often need to communicate
with the API server. For example, all of the various components we deployed
on top of our cluster in Chapter 6, including the Calico network plugin, the
Longhorn storage driver, and the metrics server, communicate with the API
server to watch and modify the cluster state. To support this, Kubernetes
automatically injects credentials into every running container.

Of course, for security reasons, giving each container only the API
server permissions it requires is important, so we should create a separate
ServiceAccount for each application or cluster component to do that. The
information for these ServiceAccounts is then added to the Deployment or
other controller so that Kubernetes will inject the correct credentials. In
some cases, we may use multiple ServiceAccount with a single application,
restricting each application component to only the access it needs.

In addition to using a separate ServiceAccount per application or com
ponent, it’s also good practice to use a separate Namespace per application.
As we’ll see in a moment, permissions can be limited to a single Namespace.
Let’s start by creating the Namespace:

root@host01:~# kubectl create namespace sample

namespace/sample created

A ServiceAccount uses a bearer token, which is stored in a secret auto
matically generated by Kubernetes when the ServiceAccount is created. Let’s
make a ServiceAccount for a Deployment that we’ll create in this chapter:

read-pods
-sa.yaml

---

apiVersion: v1

kind: ServiceAccount

metadata:

name: read-pods

namespace: sample
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Note that we use the metadata to place this ServiceAccount in the sample

Namespace we just created. We could also use the -n flag with kubectl to
specify the Namespace. We’ll use the usual kubectl apply to create this
ServiceAccount:

root@host01:~# kubectl apply -f /opt/read-pods-sa.yaml

serviceaccount/read-pods created

When the ServiceAccount is created, the controller manager detects this
and automatically creates a Secret with the credentials:

root@host01:~# kubectl -n sample get serviceaccounts

NAME SECRETS AGE

default 1 27s

read-pods 1 8s

root@host01:~# kubectl -n sample get secrets

NAME TYPE DATA AGE

default-token-mzwpt kubernetes.io/service-account-token 3 43s

read-pods-token-m4scq kubernetes.io/service-account-token 3 25s

Note that in addition to the read-pods ServiceAccount we just created,
there is already a default ServiceAccount. This account was created automat
ically when the Namespace was created; it will be used if we don’t specify to
Kubernetes which ServiceAccount to use for a Pod.

The newly created ServiceAccount does not have any permissions yet.
To start adding permissions, we need to take a look at rolebased access control
(RBAC).

Role-Based Access Controls
After the API server has found an authentication plugin that can identify
the client, it uses the identity to determine whether the client has permis
sions to perform the desired action, which is done by assembling a list of
roles that belong to the user. Roles can be associated directly with a user or
with a group in which the user is a member. Group membership is part of
the identity. For example, client certificates can specify a user’s groups by
including organization fields as part of the certificate’s subject.

Roles and Cluster Roles
Each role has a set of permissions. A permission allows a client to perform
one or more actions on one or more types of resources.

As an example, let’s define a role that will give a client permission to
read Pod status. We have two choices: we can create a Role or a ClusterRole.
A Role is visible and usable within a single Namespace, whereas a Cluster
Role is visible and usable across all Namespaces. This difference allows ad
ministrators to define common roles across the cluster that are immediately
available when new Namespaces are created, while also allowing the delega
tion of access control for a specific Namespace.
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Here’s an example definition of a ClusterRole. This role only has the
ability to read data about Pods; it cannot change Pods or access any other
cluster information:

pod-reader.yaml ---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: pod-reader

rules:

- apiGroups: [""]

resources: ["pods"]

verbs: ["get", "watch", "list"]

Because this is a clusterwide role, it doesn’t make sense to assign it to a
Namespace, so we don’t specify one.

The critical part of this definition is the list of rules. Each ClusterRole
or Role can have as many rules as necessary. Each rule has a list of verbs that
define what actions are allowed. In this case, we identified get, watch, and
list as the verbs, with the effect that the role allows reading Pods but not
any actions that would modify them.

Each rule applies to one or more resource types, based on the combi
nation of apiGroups and resources identified. Each rule gives permissions for
the actions listed as verbs. In this case, the empty string "" is used to refer to
the default API group, which is where Pods are located. If we wanted to also
include Deployments and StatefulSets, we would need to define our rule as
follows:

- apiGroups: ["", "apps"]

resources: ["pods", "deployments", "statefulsets"]

verbs: ["get", "watch", "list"]

We need to add "apps" to the apiGroups field because Deployment and
StatefulSet are part of that group (as identified in the apiVersion when we de
clare the resource). When we declare a Role or ClusterRole, the API server
will accept any strings in the apiGroups and resources fields, regardless of
whether the combination actually identifies any resource types, so it’s im
portant to pay attention to which group a resource is in.

Let’s define our pod-reader ClusterRole:

root@host01:~# kubectl apply -f /opt/pod-reader.yaml

clusterrole.rbac.authorization.k8s.io/pod-reader created

Now that the ClusterRole exists, we can apply it. To do that, we need to
create a role binding.
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Role Bindings and Cluster Role Bindings
Let’s apply this pod-reader ClusterRole to the read-pods ServiceAccount we
created earlier. We have two options: we can create a RoleBinding, which
will assign the permissions in a specific Namespace, or a ClusterRoleBinding,
which will assign the permissions across all Namespaces. This feature is ben
eficial because it means we can create a ClusterRole such as pod-reader once
and have it visible across the cluster, but create the binding in an individ
ual Namespace so that users and ServiceAccount are restricted to only the
Namespaces they should be allowed to access. This helps us apply the pat
tern we saw earlier of having a Namespace per application, while at the same
time it keeps nonadministrators away from key infrastructure components
such as the components running in the kube-system Namespace.

In keeping with this practice, we’ll create a RoleBinding so that our
ServiceAccount has permissions to read Pods only in the sample Namespace:

read-pods
-bind.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: read-pods

namespace: sample

subjects:

- kind: ServiceAccount

name: read-pods

namespace: sample

roleRef:

kind: ClusterRole

name: pod-reader

apiGroup: rbac.authorization.k8s.io

Not surprisingly, a RoleBinding ties together a Role or a ClusterRole
and a subject. The RoleBinding can contain multiple subjects, so we can
bind the same role to multiple users or groups with a single binding.

We define a Namespace in both the metadata and where we identify the
subject. In this case, these are both sample, as we want to grant the Service
Account the ability to read Pod status in its own Namespace. However, these
could be different to allow a ServiceAccount in one Namespace to have spe
cific permissions in another Namespace. And of course we could also use a
ClusterRoleBinding to give out permissions across all Namespaces.

We can now create the RoleBinding:

root@host01:~# kubectl apply -f /opt/read-pods-bind.yaml

rolebinding.rbac.authorization.k8s.io/read-pods created

We’ve now given permission for the read-pods ServiceAccount to read
Pods in the sample Namespace. To demonstrate how it works, we need to cre
ate a Pod that is assigned to the read-pods ServiceAccount.
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Assigning a Service Account to Pods
To assign a ServiceAccount to a Pod, just add the serviceAccountName field to
the Pod spec:

read-pods
-deploy.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: read-pods

namespace: sample

spec:

replicas: 1

selector:

matchLabels:

app: read-pods

template:

metadata:

labels:

app: read-pods

spec:

containers:

- name: read-pods

image: alpine

command: ["/bin/sleep", "infinity"]

serviceAccountName: read-pods

The ServiceAccount identified must exist in the Namespace that the Pod
is created in. Kubernetes will inject the Pod’s containers with the Service
Account token so that the containers can authenticate to the API server.

Let’s walk through an example to show how this works and how the au
thorization is applied. Start by creating this Deployment:

root@host01:~# kubectl apply -f /opt/read-pods-deploy.yaml

deployment.apps/read-pods created

This creates an Alpine container running sleep that we can use as a base
for shell commands.

To get to a shell prompt, we’ll first get the generated name of the Pod
and then use kubectl exec to create the shell:

root@host01:~# kubectl -n sample get pods

NAME READY STATUS RESTARTS AGE

read-pods-9d5565548-fbwjb 1/1 Running 0 6s

root@host01:~# kubectl -n sample exec -ti read-pods-9d5565548-fbwjb -- /bin/sh

/ #

The ServiceAccount token is mounted in the directory /run/secrets/
kubernetes.io/serviceaccount, so change to that directory and list its contents:
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/ # cd /run/secrets/kubernetes.io/serviceaccount

/run/secrets/kubernetes.io/serviceaccount # ls -l

total 0

lrwxrwxrwx 1 root root ... ca.crt -> ..data/ca.crt

lrwxrwxrwx 1 root root ... namespace -> ..data/namespace

lrwxrwxrwx 1 root root ... token -> ..data/token

These files show up as odd looking symbolic links, but the contents are
there as expected. The ca.crt file is the root certificate for the cluster, which
is needed to trust the connection to the API server.

Let’s save the token in a variable so that we can use it:

/run/secrets/kubernetes.io/serviceaccount # TOKEN=$(cat token)

We can now use this token with curl to connect to the API server. First,
though, we need to install curl into our Alpine container:

default/run/secrets/kubernetes.io/serviceaccount # apk add curl

...

OK: 8 MiB in 19 packages

Our ServiceAccount is allowed to perform get, list, and watch operations
on Pods. Let’s list all Pods in the sample Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \

-H "Authorization: Bearer $TOKEN" \

https://kubernetes.default.svc/api/v1/namespaces/sample/pods

"kind": "PodList",

"apiVersion": "v1",

"metadata": {

"resourceVersion": "566610"

},

"items": [

{

"metadata": {

"name": "read-pods-9d5565548-fbwjb",

...

]

}

As with the bootstrap token, we use HTTP Bearer authentication to pass
the ServiceAccount token to the API server. Because we’re operating from
inside a container, we can use the standard address kubernetes.default.svc to
find the API server. This works because a Kubernetes cluster always has a
service in the default Namespace that routes traffic to API server instances
using the Service networking we saw in Chapter 9.

The curl command is successful because our ServiceAccount is bound
to the pod-reader Role we created. However, the RoleBinding is limited to the
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sample Namespace, and as a result, we aren’t allowed to list Pods in a different
Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \

-H "Authorization: Bearer $TOKEN" \

https://kubernetes.default.svc/api/v1/namespaces/kube-system/pods

{

"kind": "Status",

"apiVersion": "v1",

"metadata": {

},

"status": "Failure",

"message": "pods is forbidden: User

\"system:serviceaccount:default:read-pods\" cannot list resource

\"pods\" in API group \"\" in the namespace \"kube-system\"",

"reason": "Forbidden",

"details": {

"kind": "pods"

},

"code": 403

}

We can use the error message to be certain that our ServiceAccount as
signment and authentication worked as expected because the API server
recognizes us as the read-pods ServiceAccount. However, we don’t have a
RoleBinding with the right permissions to read Pods in the kube-system Name
space, so the request is rejected.

Similarly, because we have permission only for Pods, we can’t list our
Deployment, even though it is also in the sample Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \

-H "Authorization: Bearer $TOKEN" \

https://kubernetes.default.svc/apis/apps/v1/namespaces/sample/deploy

ments

{

"kind": "Status",

"apiVersion": "v1",

"metadata": {

},

"status": "Failure",

"message": "deploy.apps is forbidden: User

\"system:serviceaccount:default:read-pods\" cannot list resource

\"deploy\" in API group \"apps\" in the namespace \"sample\"",

"reason": "Forbidden",

"details": {

"group": "apps",

"kind": "deploy"

},
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"code": 403

}

The slightly different path scheme for the URL, starting with /apis/
apps/v1 instead of /api/v1, is needed because Deployments are in the apps

API group rather than the default group. This command fails in a similar
way because we don’t have the necessary permissions to list Deployments.

We’re finished with this shell session, so let’s exit it:

/run/secrets/kubernetes.io/serviceaccount # exit

Before we leave the RBAC topic, though, let’s illustrate an easy way to
grant normal user permissions for a Namespace without allowing any admin
istrator functions.

Binding Roles to Users
To grant normal user permissions, we’ll leverage an existing ClusterRole
called edit that’s already set up to grant view and edit permissions for most
of the resource types users need.

Let’s take a quick look at the edit ClusterRole to see what permissions
it has:

root@host01:~# kubectl get clusterrole edit -o yaml

...

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

...

rules:

...

- apiGroups:

- ""

resources:

- pods

- pods/attach

- pods/exec

- pods/portforward

- pods/proxy

verbs:

- create

- delete

- deletecollection

- patch

- update

...

The full list has a large number of different rules, each with its own set
of permissions. The subset in this example shows just one rule, used to pro
vide edit permission for Pods.
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Some commands related to Pods, such as exec, are listed separately to
allow for more granular control. For example, for a production system, it
can be useful to allow some individuals the ability to create and delete Pods
and see logs, but not provide the ability to use exec, because that might be
used to access sensitive production data.

Previously, we created a user called me and saved the client certificate
to a file called kubeconfig. However, we didn’t bind any roles to that user yet,
so the user has only the very limited permissions that come with automatic
membership in the system:authenticated group.

As a result, as we saw earlier, our normal user can’t even list Pods in the
default Namespace. Let’s bind this user to the edit role. As before, we’ll use
a regular RoleBinding, scoped to the sample Namespace, so this user won’t
be able to access our cluster infrastructure components in the kube-system

Namespace.
Listing 111 presents the RoleBinding we need.

edit-bind.yaml ---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: editor

namespace: sample

subjects:

- kind: User

name: me

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: ClusterRole

name: edit

apiGroup: rbac.authorization.k8s.io

Listing 11-1: Bind the edit role to a user

Now we apply this RoleBinding to add permissions to our user:

root@host01:~# kubectl apply -f /opt/edit-bind.yaml

rolebinding.rbac.authorization.k8s.io/editor created

We’re now able to use this user to view and modify Pods, Deployments,
and many other resources:

root@host01:~# KUBECONFIG=kubeconfig kubectl -n sample get pods

NAME READY STATUS RESTARTS AGE

read-pods-9d5565548-fbwjb 1/1 Running 0 54m

root@host01:~# KUBECONFIG=kubeconfig kubectl delete -f /opt/read-pods-deploy.yaml

deployment.apps "read-pods" deleted

However, because we used a RoleBinding and not a ClusterRoleBinding,
this user has no visibility into other Namespaces:
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root@host01:~# KUBECONFIG=kubeconfig kubectl get -n kube-system pods

Error from server (Forbidden): pods is forbidden: User "me" cannot list

resource "pods" in API group "" in the namespace "kube-system"

The error message displayed by kubectl is identical in form to the message

field that is part of the API server’s JSON response. This is not a coinci
dence; kubectl is a friendly command line interface in front of the API ser
ver’s REST API.

Final Thoughts
The API server is an essential component in the Kubernetes control plane.
Every other service in the cluster is continuously connected to the API server,
watching the cluster for changes, so it can take appropriate action. Users
also use the API server to deploy and configure applications and to monitor
state. In this chapter, we saw the underlying REST API that the API server
provides to create, retrieve, update, and delete resources. We also saw the
extensive authentication and authorization capabilities built in to the API
server to ensure that only authorized users and services can access and mod
ify the cluster state.

In the next chapter, we’ll examine the other side of our cluster’s infras
tructure: the node components. We’ll see how the kubelet Service hides any
differences between container engines and how it uses the container capabil
ities we saw in Part I to create, start, and configure containers in the cluster.
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12
CONTA INER RUNT IME

In the previous chapter, we saw how the
control plane manages and monitors the
state of the cluster. However, it is the con

tainer runtime, especially the kubelet service,
that creates, starts, stops, and deletes containers to
actually bring the cluster to the desired state. In this
chapter, we’ll explore how kubelet is configured in our
cluster and how it operates.

As part of this exploration, we’ll address how kubelet manages to host
the control plane while also being dependent on it. Finally, we’ll look at
node maintenance in a Kubernetes cluster, including how to shut down a
node for maintenance, issues that can prevent a node from working cor
rectly, how the cluster behaves if a node suddenly becomes unavailable, and
how the node behaves when it loses its cluster connection.

Node Service
The primary service that turns a regular host into a Kubernetes node is
kubelet. Because of its criticality to a Kubernetes cluster, we’ll look in detail
at how it is configured and how it behaves.



CONTAINERD AND CRI-O

The examples for this chapter provide automated scripts to launch a cluster
using either of two container runtimes: containerd and CRI-O. We’ll primarily
use the containerd installation, though we’ll briefly look at the configuration
difference. The CRI-O cluster is there to allow you to experiment with a sep-
arate container runtime. It also illustrates the fact that kubelet hides this dif-
ference from the rest of the cluster, as the rest of the cluster configuration is
unaffected by a container runtime change.

We installed kubelet as a package on all of our nodes when we set up our
cluster in Chapter 6, and the automation has been setting it up similarly for
each chapter thereafter.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The kubelet package also includes a system service. Our operating sys
tem is using systemd to run services, so we can get service information using
systemctl:

root@host01:~# systemctl status kubelet

kubelet.service - kubelet: The Kubernetes Node Agent

Loaded: loaded (/lib/systemd/system/kubelet.service; enabled; ...

Drop-In: /etc/systemd/system/kubelet.service.d

��10-kubeadm.conf

Active: active (running) since ...

The first time kubelet started, it didn’t have the configuration needed
to join the cluster. When we ran kubeadm, it created the file 10kubeadm.conf
shown in the preceding output. This file configures the kubelet service for
the cluster by setting command line parameters.

Listing 121 gives us a look at the command line parameters that are
passed to the kubelet service.

root@host01:~# strings /proc/$(pgrep kubelet)/cmdline

/usr/bin/kubelet

--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf

--kubeconfig=/etc/kubernetes/kubelet.conf

--config=/var/lib/kubelet/config.yaml

--container-runtime=remote

--container-runtime-endpoint=/run/containerd/containerd.sock

--node-ip=192.168.61.11

--pod-infra-container-image=k8s.gcr.io/pause:3.4.1

Listing 12-1: Kubelet command line
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The pgrep kubelet embedded command outputs the process ID of the
kubelet service. We then use this to print the command line of the process
using the /proc Linux virtual filesystem. We use strings to print this file rather
than cat because each separate command line parameter is nullterminated
and strings turns this into a nice multiline display.

The kubelet service needs three main groups of configuration options:
cluster configuration, container runtime configuration, and network configuration.

Kubelet Cluster Configuration
The cluster configuration options tell kubelet how to communicate with the
cluster and how to authenticate. When kubelet starts for the first time, it uses
the bootstrap-kubeconfig shown in Listing 121 to find the cluster, verify the
server certificate, and authenticate using the bootstrap token we discussed in
Chapter 11. This bootstrap token is used to submit a Certificate Signing Re
quest (CSR) for this new node. The kubelet then downloads the signed client
certificate from the API server and stores it in /etc/kubernetes/kubelet.conf, the
location specified by the kubeconfig option. This kubelet.conf file follows the
same format that is used to configure kubectl to talk to the API server, as we
saw in Chapter 11. After kubelet.conf has been written, the bootstrap file is
deleted.

The /var/lib/kubelet/config.yaml file specified in Listing 121 also con
tains important configuration information. To pull metrics from kubelet, we
need to set it up with its own server certificate, not just a client certificate,
and we need to configure how it authenticates its own clients. Here is the
relevant content from the configuration file, created by kubeadm:

root@host01:~# cat /var/lib/kubelet/config.yaml

...

authentication:

anonymous:

enabled: false

webhook:

cacheTTL: 0s

enabled: true

x509:

clientCAFile: /etc/kubernetes/pki/ca.crt

...

The authentication section tells kubelet not to allow anonymous requests,
but to allow both webhook bearer tokens as well as any client certificates
signed by the cluster certificate authority. The YAML resource file we in
stalled for the metrics server includes a ServiceAccount that is used in its
Deployment, so it is automatically injected with credentials that it can use to
authenticate to kubelet instances, as we saw in Chapter 11.
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Kubelet Container Runtime Configuration
The container runtime configuration options tell kubelet how to connect
to the container runtime so that kubelet can manage containers on the
local machine. Because kubelet expects the runtime to support the Con
tainer Runtime Interface (CRI) standard, only a couple of settings are needed,
as shown in Listing 121.

The first key setting is container-runtime, which can be set to either remote
or docker. Kubernetes predates the separation of the Docker engine from
the containerd runtime, so it had legacy support for Docker that used a shim
to emulate the standard CRI interface. Because we are using containerd di
rectly and not via the Docker shim or Docker engine, we set this to remote.

Next, we specify the path to the container runtime using the container

-runtime-endpoint setting. The value in this case is /run/containerd/containerd
.sock. The kubelet connects to this Unix socket to send CRI requests and re
ceive status.

The container-runtime-endpoint command line setting is the only differ
ence needed to switch the cluster between containerd and CRIO. Addition
ally, it is automatically detected by kubeadm when the node is initialized, so
the only difference in the automated scripts is to install CRIO rather than
containerd prior to installing Kubernetes. If we look at the command line for
kubelet in our CRIO cluster, we see only one change in the command line
options:

root@host01:~# strings /proc/$(pgrep kubelet)/cmdline

...

--container-runtime-endpoint=/var/run/crio/crio.sock

...

The rest of the command line options are identical to our containerd
cluster.

Finally, we have one more setting that is relevant to the container run
time: pod-infra-container-image. This specifies the Pod infrastructure image.
We saw this image in Chapter 2 in the form of a pause process that was the
owner of Linux namespaces created for our containers. In this case, this
pause process will come from the container image k8s.gcr.io/pause:3.4.1.

It’s highly convenient to have a separate container to own the name
spaces that are shared between the containers in a Pod. Because the pause

process doesn’t really do anything, it is very reliable and isn’t likely to crash,
so it can continue to own these shared namespaces even if the other contain
ers in the Pod terminate unexpectedly.

The pause image clocks in at around 300kb, as we can see by running
crictl on one of our nodes:

root@host01:~# crictl images

IMAGE TAG IMAGE ID SIZE

,,,

k8s.gcr.io/pause 3.4.1 0f8457a4c2eca 301kB

...
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Additionally, the pause process uses practically no CPU, so the effect on
our nodes of having an extra process for every Pod is minimal.

Kubelet Network Configuration
Network configuration helps kubelet integrate itself into the cluster and to
integrate Pods into the overall cluster network. As we saw in Chapter 8, the
actual Pod network setup is performed by a network plugin, but the kubelet

has a couple of important roles as well.
Our kubelet command line includes one option relevant to the network

configuration: node-ip. It’s an optional flag, and if it is not present, kubelet
will try to determine the IP address it should use to communicate with the
API server. However, specifying the flag directly is useful because it guaran
tees that our cluster works in cases for which nodes have multiple network
interfaces (such as the Vagrant configuration in this book’s examples, where
a separate internal network is used for cluster communication).

In addition to this one command line option, kubeadm places two impor
tant network settings in /var/lib/kubelet/config.yaml:

root@host01:~# cat /var/lib/kubelet/config.yaml

...

clusterDNS:

- 10.96.0.10

clusterDomain: cluster.local

...

These settings are used to provide the /etc/resolv.conf file to all contain
ers. The clusterDNS entry provides the IP address of this DNS server, whereas
the clusterDomain entry provides a default domain for searches so that we can
distinguish between hostnames inside the cluster and hostnames on external
networks.

Let’s take a quick look at how these values are provided to the Pod. We’ll
begin by creating a Pod:

root@host01:~# kubectl apply -f /opt/pod.yaml

pod/debug created

After a few seconds, when the Pod is running, we can get a shell:

root@host01:~# kubectl exec -ti debug -- /bin/sh

/ #

Notice that /etc/resolv.conf is a separately mounted file in our container:

/ # mount | grep resolv

/dev/sda1 on /etc/resolv.conf type ext4 ...
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Its contents reflect the kubelet configuration:

/ # cat /etc/resolv.conf

search default.svc.cluster.local svc.cluster.local cluster.local

nameserver 10.96.0.10

options ndots:5

This DNS configuration points to the DNS server that is part of the
Kubernetes cluster core components, enabling the Service lookup we saw
in Chapter 9. Depending on the DNS configuration in your network, you
might see other items in the search list beyond what is shown here.

While we’re here, note also that /run/secrets/kubernetes.io/serviceaccount
is also a separately mounted directory in our container. This directory con
tains the ServiceAccount information we saw in Chapter 11 to enable au
thentication with the API server from within a container:

/ # mount | grep run

tmpfs on /run/secrets/kubernetes.io/serviceaccount type tmpfs (ro,relatime)

In this case, the mounted directory is of type tmpfs because kubelet has
created an inmemory filesystem to hold the authentication information.

Let’s finish by exiting the shell session and deleting the Pod (we no
longer need it):

/ # exit

root@host01:~# kubectl delete pod debug

This cleanup will make upcoming Pod listings clearer as we look at how
the cluster reacts when a node stops working. Before we do that, we have
one more key mystery to solve: how kubelet can host the control plane and
also depend on it.

Static Pods
We have something of a chickenoregg problem with creating our cluster.
We want kubelet to manage the control plane components as Pods because
that makes it easier to monitor, maintain, and update the control plane com
ponents. However, kubelet is dependent on the control plane to determine
what containers to run. The solution is for kubelet to support static Pod def
initions that it pulls from the filesystem and runs automatically prior to hav
ing its control plane connection.

This static Pod configuration is handled in /var/lib/kubelet/config.yaml:

root@host01:~# cat /var/lib/kubelet/config.yaml

...

staticPodPath: /etc/kubernetes/manifests

...

210 Chapter 12



If we look in /etc/kubernetes/manifests, we see a number of YAML files.
These files were placed by kubeadm and define the Pods necessary to run the
control plane components for this node:

root@host01:~# ls -1 /etc/kubernetes/manifests

etcd.yaml

kube-apiserver.yaml

kube-controller-manager.yaml

kube-scheduler.yaml

As expected, we see a YAML file for each of the three essential control
plane services we discussed in Chapter 11. We also see a Pod definition for
etcd, the component that stores the cluster’s state and helps elect a leader for
our highly available cluster. We’ll look at etcd in more detail in Chapter 16.

Each of these files contains a Pod definition just like the ones we’ve al
ready seen:

root@host01:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml

apiVersion: v1

kind: Pod

metadata:

...

name: kube-apiserver

namespace: kube-system

spec:

containers:

- command:

- kube-apiserver

...

The kubelet service continually monitors this directory for any changes,
and updates the corresponding static Pod accordingly, which makes it possi
ble for kubeadm to upgrade the cluster’s control plane on a rolling basis with
out any downtime.

Cluster addons like Calico and Longhorn could also be run using this
directory, but they instead use a DaemonSet to have the cluster run a Pod on
each node. This makes sense, as a DaemonSet can be managed once for the
whole cluster, guaranteeing a consistent configuration across all nodes.

This static Pod directory is different on our three control plane nodes,
host01 through host03, compared to our “normal” node, host04. To make
host04 a normal node, kubeadm omits the control plane static Pod files from
/etc/kubernetes/manifests:

root@host04:~# ls -1 /etc/kubernetes/manifests

root@host04:~#

Note that this command is run from host04, our sole normal node in this
cluster.
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Node Maintenance
The controller manager component of the control plane continuously mon
itors nodes to ensure that they are still connected and healthy. The kubelet

service has the responsibility of reporting node information, including node
memory consumption, disk consumption, and connection to the underlying
container runtime. If a node becomes unhealthy, the control plane will shift
Pods to other nodes to maintain the requested scale for Deployments, and
will not schedule any new Pods to the node until it is healthy again.

Node Draining and Cordoning
If we know that we need to perform maintenance on a node, such as a re
boot, we can tell the cluster to transfer Pods off of the node and mark the
node as unscheduleable. We do this using the kubectl drain command.

To see an example, let’s create a Deployment with eight Pods, making it
likely that each of our nodes will get a Pod:

root@host01:~# kubectl apply -f /opt/deploy.yaml

deployment.apps/debug created

If we allow enough time for startup, we can see that the Pods are dis
tributed across the nodes:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... NODE ...

debug-8677494fdd-7znxn 1/1 Running ... host02 ...

debug-8677494fdd-9dgvd 1/1 Running ... host03 ...

debug-8677494fdd-hv6mt 1/1 Running ... host04 ...

debug-8677494fdd-ntqjp 1/1 Running ... host02 ...

debug-8677494fdd-pfw5n 1/1 Running ... host03 ...

debug-8677494fdd-qbhmn 1/1 Running ... host02 ...

debug-8677494fdd-qp9zv 1/1 Running ... host03 ...

debug-8677494fdd-xt8dm 1/1 Running ... host03 ...

To minimize the size of our test cluster, our normal node host04 is small
in terms of resources, so in this example it gets only one of the Pods. But
that’s sufficient to see what happens when we shut down the node. This pro
cess is somewhat random, so if you don’t see any Pods allocated to host04,
you can delete the Deployment and try again or scale it down and then back
up, as we do in the next example.

To shut down the node, we use the kubectl drain command:

root@host01:~# kubectl drain --ignore-daemonsets host04

node/host04 cordoned

WARNING: ignoring DaemonSet-managed Pods: ...

...

pod/debug-8677494fdd-hv6mt evicted

node/host04 evicted
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We need to provide the --ignore-daemonsets option because all of our
nodes have Calico and Longhorn DaemonSets, and of course, those Pods
cannot be transferred to another node.

The eviction will take a little time. When it’s complete, we can see that
the Deployment has created a Pod on another node, which keeps our Pod
count at eight:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... NODE ...

debug-8677494fdd-7znxn 1/1 Running ... host02 ...

debug-8677494fdd-9dgvd 1/1 Running ... host03 ...

debug-8677494fdd-ntqjp 1/1 Running ... host02 ...

debug-8677494fdd-pfw5n 1/1 Running ... host03 ...

debug-8677494fdd-qbhmn 1/1 Running ... host02 ...

debug-8677494fdd-qfnml 1/1 Running ... host01 ...

debug-8677494fdd-qp9zv 1/1 Running ... host03 ...

debug-8677494fdd-xt8dm 1/1 Running ... host03 ...

Additionally, the node has been cordoned, thus no more Pods will be
scheduled on it:

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane...

host02 Ready control-plane...

host03 Ready control-plane...

host04 Ready,SchedulingDisabled <none> ...

At this point, it is safe to stop kubelet or the container runtime, to reboot
the node, or even to delete it from Kubernetes entirely:

root@host01:~# kubectl delete node host04

node "host04" deleted

This deletion removes the node information from the cluster’s storage,
but because the node still has a valid client certificate and all its configura
tion, a simple restart of the kubelet service on host04 will add it back to the
cluster. First let’s restart kubelet:

root@host04:~# systemctl restart kubelet

Be sure to do this on host04. Next, back on host01, if we wait for kubelet
on host04 to finish cleaning up from its previous run and to reinitialize, we
can see it return in the list of nodes:

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane...

host02 Ready control-plane...
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host03 Ready control-plane...

host04 Ready <none> ...

Note that the cordon has been removed and host04 no longer shows a
status that includes SchedulingDisabled. This is one way to remove the cordon.
The other is to do it directly using kubectl uncordon.

Unhealthy Nodes
Kubernetes will also shift Pods on a node automatically if the node becomes
unhealthy as a result of resource constraints such as insufficient memory or
disk space. Let’s simulate a lowmemory condition on host04 so that we can
see this in action.

First, we’ll need to reset the scale of our debug Deployment to ensure that
new Pods are allocated onto host04:

root@host01:~# kubectl scale deployment debug --replicas=1

deployment.apps/debug scaled

root@host01:~# kubectl scale deployment debug --replicas=12

deployment.apps/debug scaled

We first scale the Deployment all the way down, and then we scale it
back up. This way, we get more chances to schedule at least one Pod on
host04. As soon as the Pods have had a chance to settle, we see Pods on host04

again:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... NODE ...

...

debug-8677494fdd-j7cth 1/1 Running ... host04 ...

debug-8677494fdd-jlj4v 1/1 Running ... host04 ...

...

We can check the current statistics for our nodes using kubectl top:

root@host01:~# kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

host01 503m 25% 1239Mi 65%

host02 518m 25% 1346Mi 71%

host03 534m 26% 1382Mi 73%

host04 288m 14% 542Mi 29%

We have 2GB total on host04, and currently we’re using more than
500MiB. By default, kubelet will evict Pods when there is less than 100MiB
of memory remaining. We could try to use up memory on the node to get
below that default threshold, but it’s chancy because using up so much mem
ory could make our node behave badly. Instead, let’s update the eviction
limit. To do this, we’ll add lines to /var/lib/kubelet/config.yaml and then re
start kubelet.

214 Chapter 12



Here’s the additional configuration we’ll add to our kubelet config file:

node-evict.yaml evictionHard:

memory.available: "1900Mi"

This tells kubelet to start evicting Pods if it has less than 1,900MiB avail
able. For nodes in our example cluster, that will happen right away. Let’s
apply this change:

root@host04:~# cat /opt/node-evict.yaml >> /var/lib/kubelet/config.yaml

root@host04:~# systemctl restart kubelet

Be sure to run these commands on host04. The first command adds addi
tional lines to the kubelet config file. The second command restarts kubelet
so that it picks up the change.

If we check on the node status for host04, it will appear to still be ready:

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane...

host02 Ready control-plane...

host03 Ready control-plane...

host04 Ready <none> ...

However, the node’s event log makes clear what is happening:

root@host01:~# kubectl describe node host04

Name: host04

...

Normal NodeHasInsufficientMemory 6m31s ...

Warning EvictionThresholdMet 7s (x14 over 6m39s) ...

The node starts evicting Pods, and the cluster automatically creates new
Pods on other nodes as needed to stay at the desired scale:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... NODE ...

debug-8677494fdd-4274k 1/1 Running ... host01 ...

debug-8677494fdd-4pnzb 1/1 Running ... host01 ...

debug-8677494fdd-5nw6n 1/1 Running ... host01 ...

debug-8677494fdd-7kbp8 1/1 Running ... host03 ...

debug-8677494fdd-dsnp5 1/1 Running ... host03 ...

debug-8677494fdd-hgdbc 1/1 Running ... host01 ...

debug-8677494fdd-j7cth 1/1 Running ... host04 ...

debug-8677494fdd-jlj4v 0/1 OutOfmemory ... host04 ...

debug-8677494fdd-lft7h 1/1 Running ... host01 ...

debug-8677494fdd-mnk6r 1/1 Running ... host01 ...

debug-8677494fdd-pc8q8 1/1 Running ... host01 ...
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debug-8677494fdd-sr2kw 0/1 OutOfmemory ... host04 ...

debug-8677494fdd-tgpb2 1/1 Running ... host03 ...

debug-8677494fdd-vnjks 0/1 OutOfmemory ... host04 ...

debug-8677494fdd-xn8t8 1/1 Running ... host02 ...

Pods allocated to host04 show OutOfMemory, and they have been replaced
with Pods on other nodes. The Pods are stopped on the node, but unlike
the previous case for which we drained the node, the Pods are not automat
ically terminated. Even if the node recovers from its lowmemory situation,
the Pods will continue to show up in the list of Pods, stuck in the OutOfMemory

state, until kubelet is restarted.

Node Unreachable
We have one more case to look at. In our previous two examples, kubelet
could communicate with the control plane to update its status, allowing the
control plane to act accordingly. But what happens if there is a network is
sue or sudden power failure and the node loses its connection to the cluster
without being able to report that it is shutting down? In that case, the clus
ter will record the node status as unknown, and after a timeout, it will start
shifting Pods onto other nodes.

Let’s simulate this. We’ll begin by restoring host04 to its proper working
order:

root@host04:~# sed -i '/^evictionHard/,+2d' /var/lib/kubelet/config.yaml

root@host04:~# systemctl restart kubelet

Be sure to run these commands on host04. The first command removes
the two lines we added to the kubelet config, whereas the second restarts
kubelet to pick up the change. We now can rescale our Deployment again so
that it is redistributed:

root@host01:~# kubectl scale deployment debug --replicas=1

root@host01:~# kubectl scale deployment debug --replicas=12

As before, after you’ve run these commands, allow a few minutes for the
Pods to settle. Then, use kubectl get pods -o wide to verify that at least one
Pod was allocated to host04.

We’re now ready to forcibly disconnect host04 from the cluster. We’ll do
this by adding a firewall rule:

root@host04:~# iptables -I INPUT -s 192.168.61.10 -j DROP

root@host04:~# iptables -I OUTPUT -d 192.168.61.10 -j DROP

Be sure to run this on host04. The first command tells the firewall to
drop all traffic coming from the IP address 192.168.61.10, which is the highly
available IP that is shared by all three control plane nodes. The second com
mand tells the firewall to drop all traffic going to that same IP address.
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After a minute or so, host04 will show a state of NotReady:

root@host01:~# kubectl get nodes

NAME STATUS ROLES ...

host01 Ready control-plane...

host02 Ready control-plane...

host03 Ready control-plane...

host04 NotReady <none> ...

And if we wait a few minutes, the Pods on host04 will be shown as
Terminating because the cluster gives up on those Pods and shifts them to
other nodes:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS ... NODE ...

debug-8677494fdd-2wrn2 1/1 Running ... host01 ...

debug-8677494fdd-4lz48 1/1 Running ... host02 ...

debug-8677494fdd-78874 1/1 Running ... host01 ...

debug-8677494fdd-7f8fw 1/1 Running ... host01 ...

debug-8677494fdd-9vb5m 1/1 Running ... host03 ...

debug-8677494fdd-b7vj6 1/1 Running ... host03 ...

debug-8677494fdd-c2c4v 1/1 Terminating ... host04 ...

debug-8677494fdd-c8tzv 1/1 Running ... host03 ...

debug-8677494fdd-d2r6b 1/1 Terminating ... host04 ...

debug-8677494fdd-d5t6b 1/1 Running ... host01 ...

debug-8677494fdd-j7cth 1/1 Terminating ... host04 ...

debug-8677494fdd-jjfsl 1/1 Terminating ... host04 ...

debug-8677494fdd-nqb8z 1/1 Running ... host03 ...

debug-8677494fdd-sskd5 1/1 Running ... host02 ...

debug-8677494fdd-wz6c6 1/1 Terminating ... host04 ...

debug-8677494fdd-x5b4w 1/1 Running ... host02 ...

debug-8677494fdd-zfbml 1/1 Running ... host01 ...

However, because kubelet on host04 can’t connect to the control plane, it
is unaware that it should be shutting down its Pods. If we check to see what
containers are running on host04, we still see multiple containers:

root@host04:~# crictl ps

CONTAINER IMAGE ... STATE NAME ...

2129a1cb00607 16ea53ea7c652 ... Running debug ...

cfd7fd6142321 16ea53ea7c652 ... Running debug ...

0289ffa5c816d 16ea53ea7c652 ... Running debug ...

fb2d297d11efb 16ea53ea7c652 ... Running debug ...

...

Not only are the Pods still running, but because of the way we cut off the
connection, they are still able to communicate with the rest of the cluster.
This is very important. Kubernetes will do its best to run the number of in
stances requested and to respond to errors, but it can only do that based on
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the information it has available. In this case, because kubelet on host04 can’t
talk to the control plane, Kubernetes has no way of knowing that the Pods
are still running. When building applications for a distributed system like a
Kubernetes cluster, you should recognize that some types of errors can have
surprising results, like partial network connectivity or a different number of
instances compared to what is specified. In more advanced application ar
chitectures that include rolling updates, this can even lead to cases in which
old versions of application components are still running unexpectedly. Be
sure to build applications that are resilient in the face of these kinds of sur
prising behaviors.

Final Thoughts
Ultimately, to have a Kubernetes cluster, we need nodes that can run con
tainers, and that means instances of kubelet connected to the control plane
and a container runtime. In this chapter, we’ve inspected how to configure
kubelet and how the cluster behaves when nodes leave or enter the cluster,
either intentionally or through an outage.

One of the key themes of this chapter is the way that Kubernetes acts to
keep the specified number of Pods running, even in the face of node issues.
In the next chapter, we’ll see how that monitoring extends inside the con
tainer to its processes, ensuring that the processes run as expected. We’ll see
how to specify probes that allow Kubernetes to monitor containers, and how
the cluster responds when a container is unhealthy.
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13
HEALTH PROBES

Having a reliable application is about more
than just keeping application components
running. Application components also need

to be able to respond to requests in a timely
way and get data from and make requests of depen
dencies. This means that the definition of a “healthy”
application component is different for each individual
component.

At the same time, Kubernetes needs to know when a Pod and its con
tainers are healthy so that it can route traffic to only healthy containers and
replace failed ones. For this reason, Kubernetes allows configuration of cus
tom health checks for containers and integrates those health checks into
management of workload resources such as Deployment.

In this chapter, we’ll look at how to define health probes for our appli
cations. We’ll look at both networkbased health probes and probes that are
internal to a container. We’ll see how Kubernetes runs these health probes
and how it responds when a container becomes unhealthy.



About Probes
Kubernetes supports three different types of probes:

Exec Run a command or script to check on a container.

TCP Determine whether a socket is open.

HTTP Verify that an HTTP GET succeeds.

In addition, we can use any of these three types of probes for any of
three different purposes:

Liveness Detect and restart failed containers.

Startup Give extra time before starting liveness probes.

Readiness Avoid sending traffic to containers when they are not pre
pared for it.

Of these three purposes, the most important is the liveness probe be
cause it runs during the primary life cycle of the container and can result in
container restarts. We’ll look closely at liveness probes and use that knowl
edge to understand how to use startup and readiness probes.

Liveness Probes
A liveness probe runs continuously as soon as the container has started run
ning. Liveness probes are created as part of the container definition, and a
container that fails its liveness probe will be restarted automatically.

Exec Probes
Let’s begin with a simple liveness probe that runs a command inside the
container. Kubernetes expects the command to finish before a timeout and
return zero to indicate success, or a nonzero code to indicate a problem.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Let’s illustrate this with an NGINX web server container. We’ll use this
Deployment definition:

nginx-exec.yaml ------

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx

spec:

replicas: 1

selector:

matchLabels:
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app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

livenessProbe:

exec:

command: ["/usr/bin/curl", "-fq", "http://localhost"]

initialDelaySeconds: 10

periodSeconds: 5

The exec section of the livenessProbe tells Kubernetes to run a command
inside the container. In this case, curl is used with a -q flag so that it doesn’t
print the page contents but just returns a zero exit code on success. Addi
tionally, the -f flag causes curl to return a nonzero exit code for any HTTP
error response (that is, any response code of 300 or above).

The curl command runs every 5 seconds based on the periodSeconds; it
starts 10 seconds after the container is started, based on initialDelaySeconds.

The automated scripts for this chapter add the nginxexec.yaml file to
/opt. Create this Deployment as usual:

root@host01:~# kubectl apply -f /opt/nginx-exec.yaml

deployment.apps/nginx created

The resulting Pod status doesn’t look any different from a Pod without a
liveness probe:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-68dc5f984f-jq5xl 1/1 Running 0 25s

However, in addition to the regular NGINX server process, curl is be
ing run inside the container every 5 seconds, verifying that it is possible to
connect to the server. The detailed output from kubectl describe shows this
configuration:

root@host01:~# kubectl describe deployment nginx

Name: nginx

Namespace: default

...

Pod Template:

Labels: app=nginx

Containers:

nginx:

...
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Liveness: exec [/usr/bin/curl -q http://localhost] delay=10s

timeout=1s period=5s #success=1 #failure=3

...

Because a liveness probe is defined, the fact that the Pod continues to
show a Running status and no restarts indicates that the check is successful.
The #success field shows that one successful run is sufficient for the con
tainer to be considered live, whereas the #failure value shows that three con
secutive failures will cause the Pod to be restarted.

We used -q to discard the logs from curl, but even without that flag, any
logs from a successful liveness probe are discarded. If we want to save the
ongoing log information from a probe, we need to send it to a file or use a
logging library to ship it across the network.

Before moving on to another type of probe, let’s see what happens if a
liveness probe fails. We’ll patch the curl command to try to retrieve a nonex
istent path on the server, which will cause curl to return a nonzero exit
code, so our probe will fail.

We used a patch file in Chapter 9 when we edited a Service type. Let’s
do that again here to make the change:

nginx-404.yaml ---

spec:

template:

spec:

containers:

¶ - name: nginx

livenessProbe:

exec:

command: ["/usr/bin/curl", "-fq", "http://localhost/missing"]

Although a patch file allows us to update only the specific fields we care
about, in this case the patch file has several lines because we need to specify
the full hierarchy, and we also must specify the name of the container we
want to modify ¶, so Kubernetes will merge this content into the existing
definition for that container.

To patch the Deployment, use the kubectl patch command:

root@host01:~# kubectl patch deploy nginx --patch-file /opt/nginx-404.yaml

deployment.apps/nginx patched

Because we changed the Pod specification within the Deployment, Ku
bernetes needs to terminate the old Pod and create a new one:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-679f866f5b-7lzsb 1/1 Terminating 0 2m28s

nginx-6cb4b995cd-6jpd7 1/1 Running 0 3s

Initially, the new Pod shows a Running status. However, if we check back
again in about 30 seconds, we get an indication that the Pod has an issue:

222 Chapter 13



root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6cb4b995cd-6jpd7 1/1 Running 1 28s

We didn’t change the initial delay or the period for our liveness probe,
so the first probe started after 10 seconds and the probe runs every 5 sec
onds. It takes three failures to trigger a restart, so it’s not surprising that we
see one restart after 25 seconds have elapsed.

The Pod’s event log indicates the reason for the restart:

root@host01:~# kubectl describe pod

Name: nginx-6cb4b995cd-6jpd7

...

Containers:

nginx:

...

Last State: Terminated

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

...

Warning Unhealthy 20s (x9 over 80s) kubelet Liveness probe failed: ...

curl: (22) The requested URL returned error: 404 Not Found

...

The event log helpfully provides the output from curl telling us the rea
son for the failed liveness probe. Kubernetes will continue to restart the con
tainer every 25 seconds as each new container starts running and then fails
three consecutive liveness probes.

HTTP Probes
The ability to run a command within a container to check health allows us
to perform custom probes. However, for a web server like this one, we can
take advantage of the HTTP probe capability within Kubernetes, avoiding
the need for curl inside our container image and also verifying connectivity
from outside the Pod.

Let’s replace our NGINX Deployment with a new configuration that
uses an HTTP probe:

nginx-http.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx

spec:

replicas: 1

Health Probes 223



selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

livenessProbe:

httpGet:

path: /

port: 80

With this configuration, we tell Kubernetes to connect to port 80 of our
Pod and do an HTTP GET at the root path of /. Because our NGINX server
is listening on port 80 and will serve a welcome file for the root path, we can
expect this to work.

We’ve specified the entire Deployment rather than using a patch, so
we’ll use kubectl apply to update the Deployment:

root@host01:~# kubectl apply -f /opt/nginx-http.yaml

deployment.apps/nginx configured

We could use a patch to make this change as well, but it would be more
complex this time, because a patch file is merged into the existing config
uration. As a result, we would require two commands: one to remove the
existing liveness probe and one to add the new HTTP liveness probe. Better
to just replace the resource entirely.

NO T E The kubectl patch command is a valuable command for debugging, but produc
tion applications should have YAML resource files under version control to allow for
change tracking and peer review, and the entire file should always be applied every
time to ensure that the cluster reflects the current content of the repository.

Now that we’ve applied the new Deployment configuration, Kubernetes
will make a new Pod:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-d75d4d675-wvhxl 1/1 Running 0 2m38s

For an HTTP probe, kubelet has the responsibility of running an HTTP
GET request on the appropriate schedule and confirming the result. By de
fault, any HTTP return code in the 200 or 300 series is considered a success
ful response.

The NGINX server is logging all of its requests, so we can use the con
tainer logs to see the probes taking place:
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root@host01:~# kubectl logs nginx-d75d4d675-wvhxl

...

... 22:23:31 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

... 22:23:41 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

... 22:23:51 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

We didn’t specify periodSeconds this time, so kubelet is probing the server
at the default rate of once every 10 seconds.

Let’s clean up the NGINX Deployment before moving on:

root@host01:~# kubectl delete deployment nginx

deployment.apps "nginx" deleted

We’ve looked at two of the three types of probes; let’s finish by looking
at TCP.

TCP Probes
A database server such as PostgreSQL listens for network connections, but it
does not use HTTP for communication. We can still create a probe for these
kinds of containers using a TCP probe. It won’t provide the configuration
flexibility of an HTTP or exec probe, but it will verify that a container in the
Pod is listening for connections on the specified port.

Here’s a PostgreSQL Deployment with a TCP probe:

postgres
-tcp.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: postgres

spec:

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres

env:

- name: POSTGRES_PASSWORD

value: "supersecret"

livenessProbe:
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tcpSocket:

port: 5432

We saw the requirement for the POSTGRES_PASSWORD environment variable
in Chapter 10. The only configuration that’s changed for this example is the
livenessProbe. We specify a TCP socket of 5432, as this is the standard port
for PostgreSQL.

As usual, we can create this Deployment and, after a while, observe that
it’s running:

root@host01:~# kubectl apply -f /opt/postgres-tcp.yaml

deployment.apps/postgres created

...

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-5566ff748-jqp5d 1/1 Running 0 29s

Again, it is the job of kubelet to perform the probe. It does this solely by
making a TCP connection to the port and then disconnecting. PostgreSQL
doesn’t emit any logging when this happens, so the only way we know that
the probe is working is to check that the container continues to run and
doesn’t show any restarts:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-5566ff748-jqp5d 1/1 Running 0 2m7s

Before we move on, let’s clean up the Deployment:

root@host01:~# kubectl delete deploy postgres

deployment.apps "postgres" deleted

We’ve now looked at all three types of probes. And although we used
these three types to create liveness probes, the same three types will work
with both startup and readiness probes as well. The only difference is the
change in the behavior of our cluster when a probe fails.

Startup Probes
Unhealthy containers can create all kinds of difficulties for an application,
including lack of responsiveness, errors responding to requests, or bad data,
so we want Kubernetes to respond quickly when a container becomes un
healthy. However, when a container is first started, it can take time before it
is fully initialized. During that time, it might not be able to respond to live
ness probes.

Because of that delay, we’re left with a need to have a long timeout be
fore a container fails a probe, so we can give our container enough time for
initialization. However, at the same time, we need to have a short timeout
in order to detect a failed container quickly and restart it. The solution is
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to configure a separate startup probe. Kubernetes will use the startup probe
configuration until the probe is successful; then it will switch over to the live
ness probe.

For example, we might configure our NGINX server Deployment as
follows:

...

spec:

...

template:

...

spec:

containers:

- name: nginx

image: nginx

livenessProbe:

httpGet:

path: /

port: 80

startupProbe:

httpGet:

path: /

port: 80

periodSeconds:

initialDelaySeconds: 30

periodSeconds: 10

failureThreshold: 60

Given this configuration, Kubernetes would start checking the container
30 seconds after startup. It would continue checking every 10 seconds until
the probe is successful or until there are 60 failed attempts. The effect is that
the container has 10 minutes to finish initialization and respond to a probe
successfully. If the container does not have a successful probe in that time, it
will be restarted.

As soon as the container has one successful probe, Kubernetes will switch
to the configuration for livenessProbe. Because we didn’t override any timing
parameters, this will transition to a probe every 10 seconds, with three con
secutive failed probes leading to a restart. We give the container 10 minutes
to be live initially, but after that we will allow no more than 30 seconds be
fore restarting it.

The fact that the startupProbe is defined completely separately means
that it is possible to create a different check for startup from the one used
for liveness. Of course, it’s important to choose wisely so that the container
doesn’t pass its startup probe before the liveness probe would also pass, be
cause that would result in inappropriate restarts.
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Readiness Probes
The third probe purpose is to check the readiness of the Pod. The term readi
nessmight seem redundant with the startup probe. However, even though
completing initialization is an important part of readiness for a piece of soft
ware, an application component might not be ready to do work for many
reasons, especially in a highly available microservice architecture where com
ponents can come and go at any time.

Rather than being used for initialization, readiness probes should be
used for any case in which the container cannot perform any work because
of a failure outside its control. It may be a temporary situation, as retry logic
somewhere else could fix the failure. For example, an API that relies on an
external database might fail its readiness probe if the database is unreach
able, but that database might return to service at any time.

This also creates a valuable contrast with startup and liveness probes. As
we examined earlier, Kubernetes will restart a container if it fails the config
ured number of startup or liveness probes. But it makes no sense to do that
if the issue is a failed or missing external dependency, given that restarting
the container won’t fix whatever is wrong externally.

At the same time, if a container is missing a required external depen
dency, it can’t do work, so we don’t want to send any work to it. In that sit
uation, the best thing to do is to leave the container running and give it an
opportunity to reestablish the connections it needs, but avoid sending any
requests to it. In the meantime, we can hope that somewhere in the cluster
another Pod for the same Deployment is working as expected, making our
application as a whole resilient to a localized failure.

This is exactly how readiness probes work in Kubernetes. As we saw in
Chapter 9, a Kubernetes Service continually watches for Pods that match its
selector and configures load balancing for its cluster IP that routes traffic to
those Pods. If a Pod reports itself as not ready, the Service will stop routing
traffic to it, but kubelet will not trigger any other action such as a container
restart.

Let’s illustrate this situation. We want to have individual control over
Pod readiness, so we’ll use a somewhat contrived example rather than a real
external dependency to determine readiness. We’ll deploy a set of NGINX
Pods, this time with a corresponding Service:

nginx-ready.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:
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metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

livenessProbe:

httpGet:

path: /

port: 80

readinessProbe:

httpGet:

path: /ready

port: 80

---

kind: Service

apiVersion: v1

metadata:

name: nginx

spec:

selector:

app: nginx

ports:

- protocol: TCP

port: 80

targetPort: 80

This Deployment keeps its livenessProbe as an indicator that NGINX is
working correctly and adds a readinessProbe. The Service definition is identi
cal to what we saw in Chapter 9 and will route traffic to our NGINX Pods.

This file has already been written to /opt, so we can apply it to the
cluster:

root@host01:~# kubectl apply -f /opt/nginx-ready.yaml

deployment.apps/nginx created

service/nginx created

After these Pods are up and running, they stay running because the live
ness probe is successful:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-67fb6485f5-2k2nz 0/1 Running 0 38s

nginx-67fb6485f5-vph44 0/1 Running 0 38s

nginx-67fb6485f5-xzmj5 0/1 Running 0 38s
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In addition, the Service we created has been allocated a cluster IP:

root@host01:~# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

...

nginx ClusterIP 10.101.98.80 <none> 80/TCP 3m1s

However, we aren’t able to use that IP address to reach any Pods:

root@host01:~# curl http://10.101.98.80

curl: (7) Failed to connect to 10.101.98.80 port 80: Connection refused

This is because, at the moment, there is nothing for NGINX to serve on
the /ready path, so it’s returning 404, and the readiness probe is failing. A
detailed inspection of the Pod shows that it is not ready:

root@host01:~# kubectl describe pod

Name: nginx-67fb6485f5-2k2nz

...

Containers:

nginx:

...

Ready: False

...

As a result, the Service does not have any Endpoints to which to route
traffic:

root@host01:~# kubectl describe service nginx

Name: nginx

...

Endpoints:

...

Because the Service has no Endpoints, it has configured iptables to re
ject all traffic:

root@host01:~# iptables-save | grep default/nginx

-A KUBE-SERVICES -d 10.101.98.80/32 -p tcp -m comment --comment "default/nginx has no endpoints"

-m tcp --dport 80 -j REJECT --reject-with icmp-port-unreachable

To fix this, we’ll need at least one Pod to become ready to ensure that
NGINX has something to serve on the /ready path. We’ll use the container’s
hostname to keep track of which Pod is serving our request.

To make one of our Pods ready, let’s first get the list of Pods again, just
to have the Pod names handy:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-67fb6485f5-2k2nz 0/1 Running 0 10m
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nginx-67fb6485f5-vph44 0/1 Running 0 10m

nginx-67fb6485f5-xzmj5 0/1 Running 0 10m

Now, we’ll choose one and make it report that it is ready:

root@host01:~# kubectl exec -ti nginx-67fb6485f5-2k2nz -- \

cp -v /etc/hostname /usr/share/nginx/html/ready

'/etc/hostname' -> '/usr/share/nginx/html/ready'

Our Service will start to show a valid Endpoint:

root@host01:~# kubectl describe svc nginx

Name: nginx

...

Endpoints: 172.31.239.199:80

...

Even better, we can now reach an NGINX instance via the cluster IP, and
the content corresponds to the hostname:

root@host01:~# curl http://10.101.98.80/ready

nginx-67fb6485f5-2k2nz

Note the /ready at the end of the URL so the response is the hostname.
If we run this command many times, we’ll see that the hostname is the same
every time. This is because the one Pod that is passing its readiness probe is
handling all of the Service traffic.

Let’s make the other two Pods ready as well:

root@host01:~# kubectl exec -ti nginx-67fb6485f5-vph44 -- \

cp -v /etc/hostname /usr/share/nginx/html/ready

'/etc/hostname' -> '/usr/share/nginx/html/ready'

root@host01:~# kubectl exec -ti nginx-67fb6485f5-xzmj5 -- \

cp -v /etc/hostname /usr/share/nginx/html/ready

'/etc/hostname' -> '/usr/share/nginx/html/ready'

Our Service now shows all three Endpoints:

root@host01:~# kubectl describe service nginx

Name: nginx

...

Endpoints: 172.31.239.199:80,172.31.239.200:80,172.31.89.210:80

...

Running the curl command multiple times shows that the traffic is now
being distributed across multiple Pods:

root@host01:~# for i in $(seq 1 5); do curl http://10.101.98.80/ready; done

nginx-67fb6485f5-xzmj5

nginx-67fb6485f5-2k2nz

nginx-67fb6485f5-xzmj5
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nginx-67fb6485f5-vph44

nginx-67fb6485f5-vph44

The embedded command $(seq 1 5) returns the numbers one through
five, causing the for loop to run curl five times. If you run this same for

loop several times, you will see a different distribution of hostnames. As
described in Chapter 9, load balancing is based on a random uniform dis
tribution wherein each endpoint has an equal chance of being selected for
each new connection.

A good practice is to offer an HTTP readiness endpoint for each appli
cation that checks the current state of the application and its dependencies
and returns an HTTP success code (such as 200) if the component is healthy,
and an HTTP error code (such as 500) if not. Some application frameworks
such as Spring Boot provide application state management that automati
cally exposes liveness and readiness endpoints.

Final Thoughts
Kubernetes offers the ability to check on our containers and make sure they
are working as expected, not just that the process is running. These probes
can include any arbitrary command run inside the container, verifying that
a port is open for TCP connections, or that the container responds correctly
to an HTTP request. To build resilient applications, we should define both
a liveness probe and a readiness probe for each application component.
The liveness probe is used to restart an unhealthy container; the readiness
probe determines whether the Pod can handle Service traffic. Additionally,
if a component needs extra time for initialization, we should also define a
startup probe to make sure that give it the required initialization time while
responding quickly to failure as soon as initialization is complete.

Of course, for our containers to run as expected, other containers in
the cluster must also be well behaved, not using too many of the cluster’s
resources. In the next chapter, we’ll look at how we can limit our containers
in their use of CPU, memory, disk space, and network bandwidth, as well as
how we can control the maximum amount of total resources available to a
user. This ability to specify limits and quotas is important to ensure that our
cluster can support multiple applications with reliable performance.
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14
L IM ITS AND QUOTAS

For our cluster to provide a predictable en
vironment for applications, we need some
control over what resources each individual

application component uses. If an application
component can use all of the CPU or memory on a
given node, the Kubernetes scheduler will not be able
to allocate a new Pod to a node confidently, as it won’t
know how much available space each node has.

In this chapter, we’ll explore how to specify requested resources and lim
its to ensure that containers get the resources they need without impacting
other containers. We’ll inspect individual containers at the runtime level so
that we can see how Kubernetes configures the container technology we saw
in Part I to adequately meet the resource requirements of a container with
out allowing the container to exceed its limits.

Finally, we’ll look at how rolebased access control is used to manage
quotas, limiting the amount of resources a given user or application can
demand, which will help us understand how to administer a cluster in a man
ner that allows it to reliably support multiple separate applications or devel
opment teams.



Requests and Limits
Kubernetes supports many different types of resources, including process
ing, memory, storage, network bandwidth, and use of special devices such as
graphics processing units (GPUs). We’ll look at network limits later in this
chapter, but let’s start with the most commonly specified resource types:
processing and memory.

Processing and Memory Limits
The specifications for processing and memory resources serve two purposes:
scheduling and preventing conflicts. Kubernetes provides a different kind
of resource specification for each purpose. The Pod’s containers consume
processing and memory resources in Kubernetes, so that’s where resource
specifications are applied.

When scheduling Pods, Kubernetes uses the requests field in the con
tainer specification, summing this field across all containers in the Pod and
finding a node with sufficient margin in both processing and memory. Gen
erally, the requests field is set to the expected average resource requirements
for each container in the Pod.

The second purpose of resource specification is preventing denialof
service issues in which one container takes all of a node’s resources, nega
tively affecting other containers. This requires runtime enforcement of con
tainer resources. Kubernetes uses the limits field of the container specifi
cation for this purpose, thus we need to be sure to set the limits field high
enough that a container is able to run correctly without reaching the limit.

TUNING FOR PERFORMANCE

The idea that requests should match the expected average resource require-
ments is based on an assumption that any load spikes in the various containers
in the cluster are unpredictable and uncorrelated, and load spikes can therefore
be assumed to happen at different times. Even with that assumption, there is a
risk that simultaneous load spikes in multiple containers on a node will result in
that node being overloaded. And if the load spikes between different Pods are
correlated, this risk of overload increases. At the same time, if we configure
requests for the worst case scenario, we can end up with a very large cluster
that is idle most of the time. In Chapter 19, we explore the different Quality of
Service (QoS) classes that Kubernetes offers for Pods and discuss how to find a
balance between performance guarantees and cluster efficiency.

Listing 141 kicks off our examination with an example of using requests
and limits with a Deployment.

nginx-limit.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx
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spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

resources:

requests:

memory: "64Mi"

cpu: "250m"

limits:

memory: "128Mi"

cpu: "500m"

nodeName: host01

Listing 14-1: Deployment with limits

We’ll use this Deployment to explore how limits are configured at the
level of the container runtime, so we use the nodeName field to make sure the
container ends up on host01. This constrains where the scheduler can place
the Pod, but the scheduler still uses the requests field to ensure that there
are sufficient resources. If host01 becomes too busy, the scheduler will just
refuse to schedule the Pod, similar to what we saw in Chapter 10.

The resources field is defined at the level of the individual container, al
lowing us to specify separate resource requirements for each container in
a Pod. For this container, we specify a memory request of 64Mi and a mem
ory limit of 128Mi. The suffix Mi means that we are using the powerof2 unit
mebibytes, which is 2 to the 20th power, rather than the powerof10 unit
megabytes, which would be the slightly smaller value of 10 to the 6th power.

Meanwhile, the processing request and limit specified using the cpu

fields is not based on any absolute unit of processing. Rather, it is based on
a synthetic cpu unit for our cluster. Each cpu unit roughly corresponds to
one virtual CPU or core. The m suffix specifies a millicpu so that our requests
value of 250m equates to one quarter of a core, whereas the limit of 500m equates
to half of a core.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.
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Let’s create this Deployment:

root@host01:~# kubectl apply -f /opt/nginx-limit.yaml

deployment.apps/nginx created

The Pod will be allocated to host01 and started:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-56dbd744d9-vg5rj 1/1 Running 0 22m

And host01 will show that resources have been allocated for the Pod:

root@host01:~# kubectl describe node host01

Name: host01

...

Non-terminated Pods: (15 in total)

Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Age

--------- ---- ------------ ---------- --------------- ------------- ---

...

default nginx-56dbd744d9-vg5rj 250m (12%) 500m (25%) 64M (3%) 128M (6%) 61s

...

This is true even though our NGINX web server is idle and is not using a
lot of processing or memory resources:

root@host01:~# kubectl top pods

...

NAME CPU(cores) MEMORY(bytes)

nginx-56dbd744d9-vg5rj 0m 5Mi

Similar to what we saw in Chapter 12, this command queries the metrics
addon that is collecting data from kubelet running on each cluster node.

Cgroup Enforcement
The processing and memory limits we specified are enforced using the Linux
control group (cgroup) functionality we described in Chapter 3. Kubernetes
manages its own space within each hierarchy inside the /sys/fs/cgroup filesys
tem. For example, memory limits are configured in the memory cgroup:

root@host01:~# ls -1F /sys/fs/cgroup/memory

...

kubepods.slice/

...

Each Pod on a given host has a directory within the kubepods.slice tree.
However, finding the specific directory for a given Pod takes some work be
cause Kubernetes divides Pods into different classes of service, and because
the name of the cgroup directory does not match the ID of the Pod or its
containers.
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To save us from searching around inside /sys/fs/cgroup, we’ll use a script
installed by this chapter’s automated scripts: /opt/cgroupinfo. This script uses
crictl to query the container runtime for the cgroup path and then collects
CPU and memory limit data from that path. The most important part of the
script is this section that collects the path:

cgroup-info #!/bin/bash

...

POD_ID=$(crictl pods --name ${POD} -q)

...

cgp_field='.info.config.linux.cgroup_parent'

CGP=$(crictl inspectp $POD_ID | jq -r "$cgp_field")

CPU=/sys/fs/cgroup/cpu/$CGP

MEM=/sys/fs/cgroup/memory/$CGP

...

The crictl pods command collects the Pod’s ID, which is then used with
crictl inspectp and jq to collect one specific field, called cgroup_parent. This
field is the cgroup subdirectory created for that pod within each resource
type.

Let’s run this script with our NGINX web server to see how the CPU
and memory limits have been configured:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-56dbd744d9-vg5rj 1/1 Running 0 59m

root@host01:~# /opt/cgroup-info nginx-56dbd744d9-vg5rj

Container Runtime

-----------------

Pod ID: 54602befbd141a74316323b010fb38dae0c2b433cdbe12b5c4d626e6465c7315

Cgroup path: /kubepods.slice/...9f8f3dcf_6cca_49b8_a3df_d696ece01f59.slice

CPU Settings

------------

CPU Shares: 256

CPU Quota (us): 50000 per 100000

Memory Settings

---------------

Limit (bytes): 134217728

We first collect the name of the Pod and then use it to collect cgroup
information. Note that this works only because the Pod is running on host01;
the script will work for any Pod, but it must be run from the host on which
that Pod is running.

There are two key pieces of data for the CPU configuration. The quota
is the hard limit; it means that in any given 100,000 microsecond period,
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this Pod can use only 50,000 microseconds of processor time. This value
corresponds to the 500m CPU limit specified in Listing 141 (recall that the
500m limit equates to half a core).

In addition to this hard limit, the CPU request field we specified in List
ing 141 has been used to configure the CPU shares. As we saw in Chapter 3,
this field configures the CPU usage on a relative basis. Because it is relative
to the values in neighboring directories, it is unitless, so Kubernetes com
putes the CPU share on the basis of one core equaling 1,024. We specified a
CPU request of 250m, so this equates to 256.

The CPU share does not set any kind of limit on CPU usage, so if the
system is idle, a Pod can use processing up to its hard limit. However, as the
system becomes busy, the CPU share determines how much processing each
Pod is allotted relative to others in the same class of service. This helps to en
sure that if the system becomes overloaded, all Pods will be degraded fairly
based on their CPU request.

Finally, for memory, there is a single relevant value. We specified a mem
ory limit of 128Mi, which equates to 128MiB. As we saw in Chapter 3, if our
container tries to exceed this limit, it will be terminated. For this reason, it is
critical to either configure the application such that it does not exceed this
value, or to understand how the application acts under load to choose the
optimum limit.

The amount of memory actually used by a process is ultimately up to
that process, meaning that the memory request value has no purpose be
yond its initial use in ensuring sufficient memory to schedule the Pod. For
this reason, we don’t see the memory request value of 64Mi being used any
where in the cgroup configuration.

The way that resource allocations are reflected in cgroups shows us
something important about cluster performance. Because requests is used
for scheduling and limits is used for runtime enforcement, it is possible for
a node to overcommit processing and memory. For the case in which con
tainers have higher limit than requests, and containers consistently operate
above their requests, this can cause performance issues with the containers
on a node. We’ll discuss this in more detail in Chapter 19.

We’re finished with our NGINX Deployment, so let’s delete it:

root@host01:~# kubectl delete -f /opt/nginx-limit.yaml

deployment.apps "nginx" deleted

So far, the container runtime can enforce the limits we’ve seen. How
ever, the cluster must enforce other types of limits, such as networking.

Network Limits
Ideally, our application will be architected so that required bandwidth for
intercommunication is moderate, and our cluster will have sufficient band
width to meet the demand of all the containers. However, if we do have a
container that tries to take more than its share of the network bandwidth,
we need a way to limit it.
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Because the network devices are configured by plugins, we need a plug
in to manage bandwidth. Fortunately, the bandwidth plugin is part of the
standard set of CNI plugins installed with our Kubernetes cluster. Addi
tionally, as we saw in Chapter 8, the default CNI configuration enables the
bandwidth plugin:

root@host01:~# cat /etc/cni/net.d/10-calico.conflist

{

"name": "k8s-pod-network",

"cniVersion": "0.3.1",

"plugins": [

...

{

"type": "bandwidth",

"capabilities": {"bandwidth": true}

},

...

]

As a result, kubelet is already calling the bandwidth plugin every time a
new Pod is created. If a Pod is configured with bandwidth limits, the plugin
uses the Linux kernel’s traffic control capabilities that we saw in Chapter 3
to ensure the Pod’s virtual network devices don’t exceed the specified limit.

Let’s look at an example. First, let’s deploy an iperf3 server that will lis
ten for client connections:

iperf-server.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: iperf-server

spec:

replicas: 1

selector:

matchLabels:

app: iperf-server

template:

metadata:

labels:

app: iperf-server

spec:

containers:

- name: iperf

image: bookofkubernetes/iperf3:stable

env:

- name: IPERF_SERVER

value: "1"

resources: ...
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---

kind: Service

apiVersion: v1

metadata:

name: iperf-server

spec:

selector:

app: iperf-server

ports:

- protocol: TCP

port: 5201

targetPort: 5201

In addition to a Deployment, we also create a Service. This way, our
iperf3 clients can find the server under its wellknown name of iperf-server.
We specify port 5201, which is the default port for iperf3.

Let’s deploy this server:

root@host01:~# kubectl apply -f /opt/iperf-server.yaml

deployment.apps/iperf-server created

service/iperf-server created

Let’s run an iperf3 client without applying any bandwidth limits. This
will give us a picture of how fast our cluster’s network is without any traffic
control. Here’s the client definition:

iperf.yaml ---

kind: Pod

apiVersion: v1

metadata:

name: iperf

spec:

containers:

- name: iperf

image: bookofkubernetes/iperf3:stable

resources: ...

Normally, iperf3 in client mode would run once and then terminate.
This image has a script that runs iperf3 repeatedly, sleeping for one minute
between each run. Let’s start a client Pod:

root@host01:~# kubectl apply -f /opt/iperf.yaml

pod/iperf created
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It will take a few seconds for the Pod to start running, after which it will
take 10 seconds for the initial run. After 30 seconds or so, the Pod log will
show the results:

root@host01:~# kubectl logs iperf

Connecting to host iperf-server, port 5201

[ 5] local 172.31.89.200 port 54346 connected to 10.96.0.192 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.00 sec 152 MBytes 1.28 Gbits/sec 225 281 KBytes

[ 5] 1.00-2.00 sec 154 MBytes 1.29 Gbits/sec 153 268 KBytes

[ 5] 2.00-3.00 sec 163 MBytes 1.37 Gbits/sec 230 325 KBytes

[ 5] 3.00-4.00 sec 171 MBytes 1.44 Gbits/sec 254 243 KBytes

[ 5] 4.00-5.00 sec 171 MBytes 1.44 Gbits/sec 191 319 KBytes

[ 5] 5.00-6.00 sec 174 MBytes 1.46 Gbits/sec 230 302 KBytes

[ 5] 6.00-7.00 sec 180 MBytes 1.51 Gbits/sec 199 221 KBytes

[ 5] 7.00-8.01 sec 151 MBytes 1.26 Gbits/sec 159 270 KBytes

[ 5] 8.01-9.00 sec 160 MBytes 1.36 Gbits/sec 145 298 KBytes

[ 5] 9.00-10.00 sec 147 MBytes 1.23 Gbits/sec 230 276 KBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 1.59 GBytes 1.36 Gbits/sec 2016 sender

[ 5] 0.00-10.00 sec 1.59 GBytes 1.36 Gbits/sec receiver

iperf Done.

In this case, we see a transfer rate of 1.36 GBits/sec between our client
and server. Your results will be different depending on how your cluster is
deployed and whether the client and server end up on the same host.

Before moving on, we’ll shut down the existing client to prevent it from
interfering with our next test:

root@host01:~# kubectl delete pod iperf

pod "iperf" deleted

Obviously, while it’s running, iperf3 is trying to use as much network
bandwidth as possible. That’s fine for a test application, but it isn’t polite
behavior for an application component in a Kubernetes cluster. To limit its
bandwidth, we’ll add an annotation to the Pod definition:

iperf-limit.yaml ---

kind: Pod

apiVersion: v1

metadata:

name: iperf-limit

¶ annotations:

kubernetes.io/ingress-bandwidth: 1M

kubernetes.io/egress-bandwidth: 1M

spec:

containers:
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- name: iperf

image: bookofkubernetes/iperf3:stable

resources: ...

nodeName: host01

We’ll want to inspect how the limits are being applied to the network de
vices, which will be easier if this Pod ends up on host01, so we set nodeName ac
cordingly. Otherwise, the only change in this Pod definition is the annotations

section in the Pod metadata ¶. We set a value of 1M for ingress and egress,
corresponding to a 1Mb bandwidth limit on the Pod. When this Pod is
scheduled, kubelet will pick up these annotations and send the specified
bandwidth limits to the bandwidth plugin so that it can configure Linux
traffic shaping accordingly.

Let’s create this Pod and get a look at this in action:

root@host01:~# kubectl apply -f /opt/iperf-limit.yaml

pod/iperf-limit created

As before, we wait long enough for the client to complete one test with
the server and then print the logs:

root@host01:~# kubectl logs iperf-limit

Connecting to host iperf-server, port 5201

[ 5] local 172.31.239.224 port 45680 connected to 10.96.0.192 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.01 sec 22.7 MBytes 190 Mbits/sec 0 1.37 KBytes

[ 5] 1.01-2.01 sec 0.00 Bytes 0.00 bits/sec 0 633 KBytes

[ 5] 2.01-3.00 sec 0.00 Bytes 0.00 bits/sec 0 639 KBytes

[ 5] 3.00-4.00 sec 0.00 Bytes 0.00 bits/sec 0 646 KBytes

[ 5] 4.00-5.00 sec 0.00 Bytes 0.00 bits/sec 0 653 KBytes

[ 5] 5.00-6.00 sec 1.25 MBytes 10.5 Mbits/sec 0 658 KBytes

[ 5] 6.00-7.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes

[ 5] 7.00-8.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes

[ 5] 8.00-9.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes

[ 5] 9.00-10.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 24.0 MBytes 20.1 Mbits/sec 0 sender

[ 5] 0.00-10.10 sec 20.7 MBytes 17.2 Mbits/sec receiver

iperf Done.

The change is significant, as the Pod is limited to a fraction of the speed
we saw with an unlimited client. However, because the traffic shaping is
based on a token bucket filter, the traffic control is inexact over shorter in
tervals, so we see a bitrate of around 20Mb rather than 1Mb. To see why,
let’s look at the actual traffic shaping configuration.
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The bandwidth plugin is applying this token bucket filter to the host side
of the virtual Ethernet (veth) pair that was created for the Pod, so we can see
it by showing traffic control configuration for the host interfaces:

root@host01:~# tc qdisc show

...

qdisc tbf 1: dev calid43b03f2e06 ... rate 1Mbit burst 21474835b lat 4123.2s

...

The combination of rate and burst shows why our Pod was able to achieve
20Mb over the 10second test run. Because of the burst value, the Pod was
able to send a large quantity of data immediately, at the cost of spending sev
eral seconds without any ability to send or receive. Over a much longer in
terval, we would see an average of 1Mbps, but we would still see this bursting
behavior.

Before moving on, let’s clean up our client and server:

root@host01:~# kubectl delete -f /opt/iperf-server.yaml

deployment.apps "iperf-server" deleted

service "iperf-server" deleted

root@host01:~# kubectl delete -f /opt/iperf-limit.yaml

pod "iperf-limit" deleted

Managing the bandwidth of a Pod can be useful, but as we’ve seen, the
bandwidth limit can behave like an intermittent connection from the Pod’s
perspective. For that reason, this kind of traffic shaping should be consid
ered a last resort for containers that cannot be configured to moderate their
own bandwidth usage.

Quotas
Limits allow our Kubernetes cluster to ensure that each node has sufficient
resources for its assigned Pods. However, if we want our cluster to host mul
tiple applications reliably, we need a way to control the amount of resources
that any one application can request.

To do this, we’ll use quotas. Quotas are allocated based on Namespaces;
they specify the maximum amount of resources that can be allocated within
that Namespace. This includes not only the primary resources of CPU and
memory but also specialized cluster resources such as GPUs. We can even
use quotas to specify the maximum number of a specific object type, such
as a Deployment, Service, or CronJob, that can be created within a given
Namespace.

Because quotas are allocated based on Namespaces, they need to be
used in conjunction with the access controls we described in Chapter 11 to
ensure that a given user is bound by the quotas we create. This means that
creating Namespaces and applying quotas is typically handled by the cluster
administrator.
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Let’s create a sample Namespace for our Deployment:

root@host01:~# kubectl create namespace sample

namespace/sample created

Now, let’s create a ResourceQuota resource type to apply a quota to the
Namespace:

quota.yaml ---

apiVersion: v1

kind: ResourceQuota

metadata:

name: sample-quota

namespace: sample

spec:

hard:

requests.cpu: "1"

requests.memory: 256Mi

limits.cpu: "2"

limits.memory: 512Mi

This resource defines a quota for CPU and memory for both requests
and limits. The units are the same as those used for limits in the Deploy
ment specification in Listing 141.

Let’s apply this quota to the sample Namespace:

root@host01:~# kubectl apply -f /opt/quota.yaml

resourcequota/sample-quota created

We can see that this quota has been applied successfully:

root@host01:~# kubectl describe namespace sample

Name: sample

Labels: kubernetes.io/metadata.name=sample

Annotations: <none>

Status: Active

Resource Quotas

Name: sample-quota

Resource Used Hard

-------- --- ---

limits.cpu 0 2

limits.memory 0 512Mi

requests.cpu 0 1

requests.memory 0 256Mi

...

Even though this quota will apply to all users that try to create Pods
in the Namespace, even cluster administrators, it’s more realistic to use a
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normal user, given that an administrator can always create new Namespaces
to get around a quota. Thus, we’ll also create a user:

root@host01:~# kubeadm kubeconfig user --client-name=me \

--config /etc/kubernetes/kubeadm-init.yaml > kubeconfig

As we did in Chapter 11, we’ll bind the edit role to this user to provide
the right to create and edit resources in the sample Namespace. We’ll use the
same RoleBinding that we saw in Listing 111:

root@host01:~# kubectl apply -f /opt/edit-bind.yaml

rolebinding.rbac.authorization.k8s.io/editor created

Now that our user is set up, let’s set the KUBECONFIG environment variable
so that future kubectl commands will operate as our normal user:

root@host01:~# export KUBECONFIG=kubeconfig

First, we can verify that the edit role possessed by our normal user does
not enable making changes to quotas in a Namespace, which makes sense—
quotas are an administrator function:

root@host01:~# kubectl delete -n sample resourcequota sample-quota

Error from server (Forbidden): resourcequotas "sample-quota" is forbidden:

User "me" cannot delete resource "resourcequotas" in API group "" in the

namespace "sample"

We can now create some Pods in the sample Namespace to test the quota.
First, let’s try to create a Pod with no limits:

root@host01:~# kubectl run -n sample nginx --image=nginx

Error from server (Forbidden): pods "nginx" is forbidden: failed quota:

sample-quota: must specify limits.cpu,limits.memory...

Because our Namespace has a quota, we are no longer allowed to create
Pods without specifying limits.

In Listing 142, we try it again, this time using a Deployment that speci
fies resource limits for the Pods it creates.

sleep.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: sleep

namespace: sample

spec:

replicas: 1

selector:

matchLabels:

app: sleep

template:
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metadata:

labels:

app: sleep

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "3600"

resources:

requests:

memory: "64Mi"

cpu: "250m"

limits:

memory: "128Mi"

cpu: "512m"

Listing 14-2: Deployment with Limit

Now we can apply this to the cluster:

root@host01:~# kubectl apply -n sample -f /opt/sleep.yaml

deployment.apps/sleep created

This is successful because we specified the necessary request and limit
fields and we didn’t exceed our quota. Additionally, a Pod is started with the
limits we specified:

root@host01:~# kubectl get -n sample pods

NAME READY STATUS RESTARTS AGE

sleep-688dc46d95-wtppg 1/1 Running 0 72s

However, we can see that we’re now using resources out of our quota:

root@host01:~# kubectl describe namespace sample

Name: sample

Labels: kubernetes.io/metadata.name=sample

Annotations: <none>

Status: Active

Resource Quotas

Name: sample-quota

Resource Used Hard

-------- --- ---

limits.cpu 512m 2

limits.memory 128Mi 512Mi

requests.cpu 250m 1

requests.memory 64Mi 256Mi

...
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This will limit our ability to scale this Deployment. Let’s illustrate:

root@host01:~# kubectl scale -n sample deployment sleep --replicas=12

deployment.apps/sleep scaled

root@host01:~# kubectl get -n sample pods

NAME READY STATUS RESTARTS AGE

sleep-688dc46d95-trnbl 1/1 Running 0 6s

sleep-688dc46d95-vzfsx 1/1 Running 0 6s

sleep-688dc46d95-wtppg 1/1 Running 0 3m13s

We’ve asked for 12 replicas, but we see only three running. If we de
scribe the Deployment we can see an issue:

root@host01:~# kubectl describe -n sample deployment sleep

Name: sleep

Namespace: sample

...

Replicas: 12 desired | 3 updated | 3 total | 3 available | 9 unavailable

...

Conditions:

Type Status Reason

---- ------ ------

Progressing True NewReplicaSetAvailable

Available False MinimumReplicasUnavailable

ReplicaFailure True FailedCreate

OldReplicaSets: <none>

NewReplicaSet: sleep-688dc46d95 (3/12 replicas created)

...

And the Namespace now reports that we have used up enough of our
quota that there is no room to allocate the resources needed for another
Pod:

root@host01:~# kubectl describe namespace sample

Name: sample

...

Resource Quotas

Name: sample-quota

Resource Used Hard

-------- --- ---

limits.cpu 1536m 2

limits.memory 384Mi 512Mi

requests.cpu 750m 1

requests.memory 192Mi 256Mi

...

Our Pods are running sleep, so we know they’re barely using any CPU or
memory. However, Kubernetes bases the quota utilization on what we spec
ified, not what the Pod is actually using. This is critical because processes
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may use more CPU or allocate more memory as they get busy, and Kuber
netes needs to make sure it leaves enough resources for the rest of the clus
ter to operate correctly.

Final Thoughts
For our containerized applications to be reliable, we need to know that one
application component can’t take too many resources and effectively starve
the other containers running in a cluster. Kubernetes is able to use the re
source limit functionality of the underlying container runtime and the Linux
kernel to limit each container to only the resources it has been allocated.
This practice ensures more reliable scheduling of containers onto nodes in
the cluster and ensures that the available cluster resources are shared in a
fair way even as the cluster becomes heavily loaded.

In this chapter, we’ve seen how to specify resource requirements for our
Deployments and how to apply quotas to Namespaces, effectively enabling
us to treat all of the nodes in our cluster as one large pool of available re
sources. In the next chapter, we’ll examine how that same principle extends
to storage as we look at dynamically allocating storage to Pods, no matter
where they are scheduled.
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15
PERS ISTENT STORAGE

Scalability and rapid failover are big ad
vantages of containerized applications, and
it’s a lot easier to scale, update, and replace

stateless containers that don’t have any persis
tent storage. As a result, we’ve mostly used Deploy
ments to create one or more instances of Pods with
only temporary storage.

However, even if we have an application architecture in which most of
the components are stateless, we still need some amount of persistent stor
age for our application. At the same time, we don’t want to lose the ability
to deploy a Pod to any node in the cluster, and we don’t want to lose the con
tents of our persistent storage if a container or a node fails.

In this chapter, we’ll see how Kubernetes offers persistent storage on
demand to Pods by using a plugin architecture that allows any supported
distributed storage engine to act as the backing store.

Storage Classes
The Kubernetes storage plugin architecture is highly flexible; it recognizes
that some clusters may not need storage at all, whereas others need multi
ple storage plugins to handle large amounts of data or lowlatency storage.



For this reason, kubeadm doesn’t set up storage immediately during cluster in
stallation; it’s configured afterward by adding StorageClass resources to the
cluster.

Each StorageClass identifies a particular storage plugin that will provide
the actual storage along with any additional required parameters. We can
use multiple storage classes to define different plugins or parameters, or
even multiple storage classes with the same plugin but different parameters,
allowing for separate classes of service for different purposes. For example,
a cluster may provide inmemory, solidstate, and traditional spinningdisk
media to give applications the opportunity to select the storage type that is
most applicable for a given purpose. The cluster may offer smaller quotas
for more expensive and lowerlatency storage, while offering large quotas for
slower storage that is more suitable for infrequently accessed data.

Kubernetes has a set of internal storage provisioners built in. This in
cludes storage drivers for popular cloud providers such as Amazon Web Ser
vices, Microsoft Azure, and Google Container Engine. However, using any
storage plugin is easy as long as it has support for the Container Storage In
terface (CSI), a published standard for interfacing with a storage provider.

Of course, to be compatible with CSI, the storage provider must include
a minimum set of features that are essential for storage in a Kubernetes clus
ter. The most important of these are dynamic storage management (pro
visioning and deprovisioning) and dynamic storage attachment (mounting
storage on any node in the cluster). Together, these two key features allow
the cluster to allocate storage for any Pod that requests it, schedule that Pod
on any node, and start a new Pod with the same storage on any node if the
existing node fails or the Pod is replaced.

Storage Class Definition
Our Kubernetes cluster deployment in Chapter 6 included the Longhorn
storage plugin (see “Installing Storage” on page 102). The automation scripts
have installed it in the cluster for each following chapter. Part of this instal
lation created a DaemonSet so that Longhorn components exist on every
node. That DaemonSet kicked off a number of Longhorn components and
then created a StorageClass resource to tell Kubernetes how to use Longhorn
to provision storage for a Pod.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Listing 151 shows the StorageClass that Longhorn created.

root@host01:~# kubectl get storageclass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION ...

longhorn driver.longhorn.io Delete Immediate true ...

Listing 15-1: Longhorn StorageClass
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The two most important fields show the name of the StorageClass and
the provisioner. The name is used in resource specifications to identify that
the Longhorn StorageClass should be used to provision the requested vol
ume, whereas the provisioner is used internally by kubelet to communicate
with the Longhorn CSI plugin.

CSI Plug-in Internals
Let’s look quickly at how kubelet finds and communicates with the Longhorn
CSI plugin before moving on to provisioning volumes and attaching them
to Pods. Note that kubelet runs as a service directly on the cluster nodes; on
the other hand, all of the Longhorn components are containerized. This
means that the two need a little help to communicate in the form of a Unix
socket that is created on the host filesystem and then mounted into the
filesystem of the Longhorn containers. A Unix socket allows two processes
to communicate by streaming data, similar to a network connection but
without the network overhead.

To explore how this communication works, first we’ll list the Longhorn
containers that are running on host01:

root@host01:~# crictl ps --name 'longhorn.*|csi.*'

CONTAINER ... STATE NAME ...

c8347a513f71e ... Running csi-provisioner ...

47f950a3e8dbf ... Running csi-provisioner ...

3aad0fef7454e ... Running longhorn-csi-plugin ...

9bfb61f786afa ... Running csi-snapshotter ...

24a2994a264a1 ... Running csi-snapshotter ...

7ee4c748b4c02 ... Running csi-snapshotter ...

8d92886fdacda ... Running csi-resizer ...

9868014407fe0 ... Running csi-resizer ...

408d16181af51 ... Running csi-attacher ...

0c6c341debb0c ... Running longhorn-driver-deployer ...

ba328a9d0aaf2 ... Running longhorn-manager ...

c39e5c4fee3bb ... Running longhorn-ui ...

Longhorn creates containers with names that start with either longhorn
or csi, so we use a regular expression with crictl to show only those
containers.

Let’s capture the container ID of the csi-attacher container and then
inspect it to see what volume mounts it has:

root@host01:~# CID=$(crictl ps -q --name csi-attacher)

root@host01:~# crictl inspect $CID

{

...

"mounts": [

{

"containerPath": "/csi/",
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¶ "hostPath": "/var/lib/kubelet/plugins/driver.longhorn.io",

"propagation": "PROPAGATION_PRIVATE",

"readonly": false,

"selinuxRelabel": false

}

...

"envs": [

{

"key": "ADDRESS",

· "value": "/csi/csi.sock"

},

...

}

The crictl inspect command returns a lot of data from the container,
but we show only the relevant data in this example. We can see that this
Longhorn component is instructed to connect to /csi/csi.sock ·, which is
the mount point inside the container for the Unix socket that kubelet uses
to communicate with the storage driver. We can also see that /csi inside
the container is /var/lib/kubelet/plugins/driver.longhorn.io ¶. The location
/var/lib/kubelet/plugins is a standard location for kubelet to look for storage
plugins, and of course, driver.longhorn.io is the value of the provisioner field,
as defined in the Longhorn StorageClass in Listing 151.

If we look on the host, we can confirm that this Unix socket exists:

root@host01:~# ls -l /var/lib/kubelet/plugins/driver.longhorn.io

total 0

srwxr-xr-x 1 root root 0 Feb 18 20:17 csi.sock

The s as the first character indicates that this is a Unix socket.

Persistent Volumes
Now that we’ve seen how kubelet communicates with an external storage
driver, let’s look at how to request allocation of storage and then attach that
storage to a Pod.

Stateful Sets
The easiest way to get storage in a Pod is to use a StatefulSet (a resource de
scribed in Chapter 7). Like a Deployment, a StatefulSet creates multiple
Pods, which can be allocated to any node. However, a StatefulSet also cre
ates persistent storage as well as a mapping between each Pod and its stor
age. If a Pod needs to be replaced, it is replaced with a new Pod with the
same identifier and the same persistent storage.

Listing 152 presents an example StatefulSet that creates two PostgreSQL
Pods with persistent storage.
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pgsql-set.yaml ---

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: postgres

spec:

serviceName: postgres

replicas: 2

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres

env:

- name: POSTGRES_PASSWORD

¶ value: "supersecret"

- name: PGDATA

· value: /data/pgdata

volumeMounts:

- name: postgres-volume

¸ mountPath: /data

volumeClaimTemplates:

- metadata:

name: postgres-volume

spec:

storageClassName: longhorn

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 1Gi

Listing 15-2: PostgreSQL StatefulSet

In addition to setting the password using an environment variable ¶,
we also set PGDATA to /data/pgdata ·, which tells PostgreSQL where to store
the files for the database. It aligns with the volume mount we also declare as
part of the StatefulSet, as that persistent volume will be mounted at /data ¸.
The PostgreSQL container image documentation recommends configuring
the database files to reside in a subdirectory beneath the mount point to
avoid a potential issue with ownership of the data directory.
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Separate from the configuration for the PostgreSQL Pods, we supply
the StatefulSet with the volumeClaimTemplates field. This field tells the State
fulSet how we want the persistent storage to be configured. It includes the
name of the StorageClass and the requested size, and it also includes an
accessMode of ReadWriteOnce, which we’ll explore later. The StatefulSet will use
this specification to allocate independent storage for each Pod.

As mentioned in Chapter 7, this StatefulSet references a Service using
the serviceName field, and this Service is used to create the domain name for
the Pods. The Service is defined in the same file as follows:

pgsql-set.yaml ---

apiVersion: v1

kind: Service

metadata:

name: postgres

spec:

clusterIP: None

selector:

app: postgres

Setting the clusterIP field to None makes this a Headless Service, which
means that no IP address is allocated from the service IP range and none
of the load balancing described in Chapter 9 is configured for this Service.
This approach is typical for a StatefulSet. With a StatefulSet, each Pod has its
own unique identity and unique storage. Because service load balancing just
randomly chooses a destination, it is typically not useful with a StatefulSet.
Instead, clients explicitly select a Pod instance as a destination.

Let’s create the Service and StatefulSet:

root@host01:~# kubectl apply -f /opt/pgsql-set.yaml

service/postgres created

statefulset.apps/postgres created

It will take some time to get the Pods up and running because they are
created sequentially, one at a time. After they are running, we can see how
they’ve been named:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-0 1/1 Running 0 97s

postgres-1 1/1 Running 0 51s

Let’s examine the persistent storage from within the container:

root@host01:~# kubectl exec -ti postgres-0 -- /bin/sh

# findmnt /data

TARGET SOURCE FSTYPE OPTIONS

/data /dev/longhorn/pvc-83becdac-... ext4 rw,relatime

# exit
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As requested, we see a Longhorn device that has been mounted at /data.
Kubernetes will keep this persistent storage even if the node fails or the Pod
is upgraded.

This StatefulSet has two more important resources to explore. First is
the headless Service that we created:

root@host01:~# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 54m

postgres ClusterIP None <none> <none> 19m

The postgres Service exists, but no cluster IP address is shown because
we created it as a headless Service. However, it has created DNS entries for
the associated Pods, so we can use it to connect to specific PostgreSQL Pods
without knowing the Pod IP address.

We need to use the cluster DNS to do the lookup. The easiest way to do
that is from within a container:

root@host01:~# kubectl run -ti --image=alpine --restart=Never alpine

If you don't see a command prompt, try pressing enter.

/ #

This form of the run command stays in the foreground and gives us an
interactive terminal. It also tells Kubernetes not to try to restart the con
tainer when we exit the shell.

From inside this container, we can refer to either of our PostgreSQL
Pods by a wellknown name:

/ # ping -c 1 postgres-0.postgres.default.svc

PING postgres-0.postgres.default.svc (172.31.239.198): 56 data bytes

64 bytes from 172.31.239.198: seq=0 ttl=63 time=0.093 ms

...

/# ping -c 1 postgres-1.postgres.default.svc

PING postgres-1.postgres.default.svc (172.31.239.199): 56 data bytes

64 bytes from 172.31.239.199: seq=0 ttl=63 time=0.300 ms

...

# exit

The naming convention is identical to what we saw for Services in Chap
ter 9, but with an extra hostname prefix for the name of the Pod; in this
case, either postgres-0 or postgres-1.

The other important resource is the PersistentVolumeClaim that the State
fulSet created automatically. The PersistentVolumeClaim is what actually
allocates storage using the Longhorn StorageClass:

root@host01:~# kubectl get pvc

NAME STATUS VOLUME ... CAPACITY ...

postgres-volume-postgres-0 Bound pvc-83becdac... 1Gi ...

postgres-volume-postgres-1 Bound pvc-0d850889... 1Gi ...
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We use the abbreviation pvc in lieu of its full name, persistentvolumeclaim.
The StatefulSet used the data in the volumeClaimTemplates field in List

ing 152 to create these two PersistentVolumeClaims. However, if we delete
the StatefulSet, the PersistentVolumeClaims continue to exist:

root@host01:~# kubectl delete -f /opt/pgsql-set.yaml

service "postgres" deleted

statefulset.apps "postgres" deleted

root@host01:~# kubectl get pvc

NAME STATUS VOLUME ... CAPACITY ...

postgres-volume-postgres-0 Bound pvc-83becdac... 1Gi ...

postgres-volume-postgres-1 Bound pvc-0d850889... 1Gi ...

This protects us from accidentally deleting our persistent storage. If we
create the StatefulSet again and keep the same name in the volume claim
template, our new Pods will get the same storage back.

HIGHLY AVAILABLE POSTGRESQL

We’ve deployed two separate instances of PostgreSQL, each with its own inde-
pendent persistent storage. However, that’s only the first step in deploying a
highly available database. We would also need to configure one instance as
primary and the other as backup, configure replication from the primary to the
backup, and configure failover. We would also need to configure clients to talk
to the primary and switch to a new primary when there’s a failure. Fortunately,
we don’t need to do this configuration ourselves. In Chapter 17, we’ll see how
to take advantage of the power of custom resources to deploy a Kubernetes
Operator for PostgreSQL that automatically will handle all of this.

The StatefulSet is the best way to handle the case in which we need mul
tiple instances of a container, each with its own independent storage. How
ever, we can also use persistent volumes more directly, which gives us more
control over how they’re mounted into our Pods.

Volumes and Claims
Kubernetes has both a PersistentVolume and a PersistentVolumeClaim re
source type. The PersistentVolumeClaim represents a request for allocated
storage, whereas the PersistentVolume holds information on the allocated
storage. For the most part, this distinction doesn’t matter, and we can just
focus on the PersistentVolumeClaim. However, the difference is important
in two cases:

• Administrators can create a PersistentVolume manually, and this
PersistentVolume can be directly mounted into a Pod.

• If there is an issue allocating storage as specified in the Persistent
VolumeClaim, the PersistentVolume will not be created.
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To illustrate, first we’ll start with a PersistentVolumeClaim that automat
ically allocates storage:

pvc.yaml ---

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: nginx-storage

spec:

storageClassName: longhorn

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 100Mi

We named this PersistentVolumeClaim nginx-storage because that’s
how we’ll use it in a moment. The PersistentVolumeClaim requests 100MiB
of storage from the longhorn StorageClass. When we apply this Persistent
VolumeClaim to the cluster, Kubernetes invokes the Longhorn storage driver
and allocates the storage, creating a PersistentVolume in the process:

root@host01:~# kubectl apply -f /opt/pvc.yaml

persistentvolumeclaim/nginx-storage created

root@host01:~# kubectl get pv

NAME ... CAPACITY ... STATUS CLAIM STORAGECLASS ...

pvc-0b50e5b4-... 1Gi ... Bound default/postgres-volume-postgres-1 longhorn ...

pvc-ad092ba9-... 1Gi ... Bound default/postgres-volume-postgres-0 longhorn ...

pvc-cb671684-... 100Mi ... Bound default/nginx-storage longhorn ...

The abbreviation pv is short for persistentvolumes.
Even though no Pod is using the storage, it still shows a status of Bound

because there is an active PersistentVolumeClaim for the storage.
If we try to create a PersistentVolumeClaim without a matching stor

age class, the cluster won’t be able to create the corresponding Persistent
Volume:

pvc-man.yaml ---

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: manual

spec:

storageClassName: manual

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 100Mi
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Because there is no StorageClass called manual, Kubernetes can’t create
this storage automatically:

root@host01:~# kubectl apply -f /opt/pvc-man.yaml

persistentvolumeclaim/manual created

root@host01:~# kubectl get pvc

NAME STATUS ... STORAGECLASS AGE

manual Pending ... manual 6s

...

root@host01:~# kubectl get pv

NAME ...

pvc-0b50e5b4-9889-4c8d-a651-df78fa2bc764 ...

pvc-ad092ba9-cf30-4b7d-af01-ff02a5924db7 ...

pvc-cb671684-1719-4c33-9dd8-bcbbf24523b4 ...

Our PersistentVolumeClaim has a status of Pending and there is no cor
responding PersistentVolume. However, as a cluster administrator, we can
create this PersistentVolume manually:

pv.yaml ---

apiVersion: v1

kind: PersistentVolume

metadata:

name: manual

spec:

claimRef:

name: manual

namespace: default

accessModes:

- ReadWriteOnce

capacity:

storage: 100Mi

csi:

driver: driver.longhorn.io

volumeHandle: manual

When creating a PersistentVolume in this way, we need to specify the
type of volume we want. In this case, by including the csi field, we identify
this as a volume created by a CSI plugin. We then specify the driver to use
and provide a unique value for volumeHandle. After the PersistentVolume is
created, Kubernetes directly invokes the Longhorn storage driver to allocate
storage.

We create the PersistentVolume with the following:

root@host01:~# kubectl apply -f /opt/pv.yaml

persistentvolume/manual created

Because we specified a claimRef for this PersistentVolume, it will auto
matically move into the Bound state:
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root@host01:~# kubectl get pv manual

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS ...

manual 100Mi RWO Retain Bound ...

It will take a few seconds, so the PersistentVolume may show up as
Available briefly.

The PersistentVolumeClaim also moves into the Bound state:

root@host01:~# kubectl get pvc manual

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

manual Bound manual 100Mi RWO manual 2m20s

It is useful for an administrator to create a PersistentVolume manually
for those rare cases when specialized storage is needed for an application.
However, for most persistent storage, it is much better to automate storage
allocation through a StorageClass and either a PersistentVolumeClaim or a
StatefulSet.

Deployments
Now that we’ve directly created a PersistentVolumeClaim and we have the
associated volume, we can use it in a Deployment. To demonstrate this, we’ll
show how we can use persistent storage to hold HTML files served by an
NGINX web server:

nginx.yaml ---

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx

spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

volumeMounts:

¶ - name: html

mountPath: /usr/share/nginx/html

volumes:

· - name: html
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persistentVolumeClaim:

claimName: nginx-storage

It takes two steps to get the persistent storage mounted into our con
tainer. First, we declare a volume named html · that references the Persis
tentVolumeClaim we created. This makes the storage available in the Pod.
Next, we declare a volumeMount ¶ to specify where in the container’s filesys
tem this particular volume should appear. The advantage of having these
two separate steps is that we can mount the same volume in multiple con
tainers within the same Pod, which enables us to share data between pro
cesses using files even for cases in which the processes come from separate
container images.

This capability allows for some interesting use cases. For example, sup
pose that we’re building a web application that includes some static content.
We might deploy an NGINX web server to serve that content, as we’re doing
here. At the same time, we also need a way to update the content. We might
do that by having an additional container in the Pod that periodically checks
for new content and updates a persistent volume that is shared with the
NGINX container.

Let’s create the NGINX Deployment so that we can demonstrate that
HTML files can be served from the persistent storage. The persistent stor
age will start empty, so at first there won’t be any web content to serve. Let’s
see how NGINX behaves in that case:

root@host01:~# kubectl apply -f /opt/nginx.yaml

deployment.apps/nginx created

As soon as the NGINX server is up and running, we need to grab its IP
address so that we can make an HTTP request using curl:

root@host01:~# IP=$(kubectl get po -l app=nginx -o jsonpath='{..podIP}')

root@host01:~# curl -v http://$IP

...

* Connected to 172.31.25.200 (172.31.25.200) port 80 (#0)

> GET / HTTP/1.1

...

< HTTP/1.1 403 Forbidden

To grab the IP address in this case, we use the jsonpath output format
for kubectl rather than use jq to filter JSON output; jsonpath has a very useful
syntax for searching into a JSON object and pulling out a single uniquely
named field (in this example, podIP). We could use a jq filter similar to what
we did in Chapter 8, but the jq syntax for recursion is more complex.

After we have the IP, we use curl to contact NGINX. As expected, we
don’t see an HTML response, because our persistent storage is empty. How
ever, we know that our volume mounted correctly because in this case we
don’t even see the default NGINX welcome page.
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Let’s copy in an index.html file to give our NGINX server something
to serve:

root@host01:~# POD=$(kubectl get po -l app=nginx -o jsonpath='{..metadata.name}')

root@host01:~# kubectl cp /opt/index.html $POD:/usr/share/nginx/html

First, we capture the name of the Pod as randomly generated by the De
ployment and then we use kubectl cp to copy in an HTML file. If we try run
ning curl again, we’ll see a much better response:

root@host01:~# curl -v http://$IP

...

* Connected to 172.31.239.210 (172.31.239.210) port 80 (#0)

> GET / HTTP/1.1

...

< HTTP/1.1 200 OK

...

<html>

<head>

<title>Hello, World</title>

</head>

<body>

<h1>Hello, World!</h1>

</body>

</html>

...

Because this is persistent storage, this HTML content will remain avail
able even if we delete the Deployment and create it again.

However, we still have one significant problem to overcome. One of the
primary reasons to have a Deployment is to be able to scale to multiple Pod
instances. Scaling this Deployment makes a lot of sense, as we could have
multiple Pod instances serving the same HTML content. Unfortunately, scal
ing won’t currently work:

root@host01:~# kubectl scale --replicas=3 deployment/nginx

deployment.apps/nginx scaled

The Deployment appears to scale, but if we look at the Pods, we will see
that we don’t really have multiple running instances:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

nginx-db4f4d5d9-7q7rd 0/1 ContainerCreating 0 46s

nginx-db4f4d5d9-gbqxm 0/1 ContainerCreating 0 46s

nginx-db4f4d5d9-vrzr4 1/1 Running 0 10m
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The two new instances are stuck in ContainerCreating. Let’s examine one
of those two Pods to see why:

root@host01:~# kubectl describe pod/nginx-db4f4d5d9-7q7rd

Name: nginx-db4f4d5d9-7q7rd

...

Status: Pending

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

...

Warning FailedAttachVolume 110s attachdetach-controller Multi-Attach

error for volume "pvc-cb671684-1719-4c33-9dd8-bcbbf24523b4" Volume is

already used by pod(s) nginx-db4f4d5d9-vrzr4

The first Pod we created has claimed the volume, and no other Pods
can attach to it, so they are stuck in a Pending state. Even worse, this doesn’t
just prevent scaling, it also prevents upgrading or making other configura
tion changes to the Deployment. If we update the Deployment configura
tion, Kubernetes will try to start a Pod using the new configuration before
shutting down any old Pods. The new Pods can’t attach to the volume and
therefore can’t start, so the old Pod will never be cleaned up and the config
uration change will never take place.

We could force a Pod update in a couple ways. First, we could manually
delete and recreate the Deployment anytime we made changes. Second, we
could configure Kubernetes to delete the old Pod first by using a Recreate

update strategy. We explore update strategy options in greater detail in
Chapter 20. For now, it’s worth noting that this still would not allow us to
scale the Deployment.

If we want to fix this so that we can scale the Deployment, we’ll need to
allow multiple Pods to attach to the volume at the same time. We can do this
by changing the access mode for the persistent volume.

Access Modes
Kubernetes is refusing to attach multiple Pods to the same persistent volume
because we configured the PersistentVolumeClaim with an access mode of
ReadWriteOnce. An alternate access mode, ReadWriteMany, will allow all of the
NGINX server Pods to mount the storage simultaneously. Only some storage
drivers support the ReadWriteMany access mode, because it requires the ability
to manage simultaneous changes to files, including communicating changes
dynamically to all of the nodes in the cluster.

Longhorn does support ReadWriteMany, so creating a PersistentVolume
Claim with ReadWriteMany access mode is an easy change:

pvc-rwx.yaml ---

apiVersion: v1

kind: PersistentVolumeClaim
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metadata:

name: storage

spec:

storageClassName: longhorn

accessModes:

- ReadWriteMany

resources:

requests:

storage: 100Mi

Unfortunately, we can’t modify our existing PersistentVolumeClaim to
change the access mode. And we can’t delete the PersistentVolumeClaim
while the storage is in use by our Deployment. So we need to clean up every
thing and then deploy again:

root@host01:~# kubectl delete deploy/nginx pvc/storage

deployment.apps "nginx" deleted

persistentvolumeclaim "storage" deleted

root@host01:~# kubectl apply -f /opt/pvc-rwx.yaml

persistentvolumeclaim/storage created

root@host01:~# kubectl apply -f /opt/nginx.yaml

deployment.apps/nginx created

We specify deploy/nginx and pvc/storage as the resources to delete. This
style of identifying the resources allows us to operate on two resources in the
same command.

After a minute or so, the new NGINX Pod will be running:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

nginx-db4f4d5d9-6thzs 1/1 Running 0 44s

At this point, we need to copy our HTML content over again because
deleting the PersistentVolumeClaim deleted the previous storage:

root@host01:~# POD=$(kubectl get po -l app=nginx -o jsonpath='{..metadata.name}')

root@host01:~# kubectl cp /opt/index.html $POD:/usr/share/nginx/html

... no output ...

This time, when we scale our NGINX Deployment, the additional two
Pods are able to mount the storage and start running:

root@host01:~# kubectl scale --replicas=3 deploy nginx

deployment.apps/nginx scaled

root@host01:~# kubectl get po

NAME READY STATUS RESTARTS AGE

...

nginx-db4f4d5d9-2j629 1/1 Running 0 23s
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nginx-db4f4d5d9-6thzs 1/1 Running 0 5m19s

nginx-db4f4d5d9-7r5qj 1/1 Running 0 23s

All three NGINX Pods are serving the same content, as we can see if we
fetch the IP address for one of the new Pods and connect to it:

root@host01:~# IP=$(kubectl get po nginx-db4f4d5d9-2j629 -o jsonpath='{..podIP}')

root@host01:~# curl http://$IP

<html>

<head>

<title>Hello, World</title>

</head>

<body>

<h1>Hello, World!</h1>

</body>

</html>

At this point, we could use any NGINX Pod to update the HTML con
tent and all Pods would serve the new content. We could even use a separate
CronJob with an application component that updates the content dynami
cally, and NGINX would happily serve whatever files are in place.

Final Thoughts
Persistent storage is an essential requirement for building a fully functioning
application. After a cluster administrator has configured one or more stor
age classes, it’s easy for application developers to dynamically request persis
tent storage as part of their application deployment. In most cases, the best
way to do this is with a StatefulSet, as Kubernetes will automatically handle
allocating independent storage for each Pod and will maintain a onetoone
relationship between Pod and storage during failover and upgrades.

At the same time, there are other storage use cases, such as having mul
tiple Pods access the same storage. We can easily handle those use cases by
directly creating a PersistentVolumeClaim resource and then declaring it as
a volume in a controller such as a Deployment or Job.

Although persistent storage is an effective way to make file content avail
able to containers, Kubernetes has other powerful resource types that can
store configuration data and pass it to containers as either environment vari
ables or file content. In the next chapter, we’ll explore how to manage appli
cation configuration and secrets.
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16
CONF IGURAT ION AND SECRETS

Any highquality application is designed
so that key configuration items can be in
jected at runtime rather than being embed

ded in the source code. When we move our
application components to containers, we need a way
to tell the container runtime what configuration infor
mation to inject to ensure that our application compo
nents behave the way they should.

Kubernetes provides two primary resource types for injecting this con
figuration information: ConfigMap and Secret. These two resources are
very similar in capability but have slightly different use cases.

Injecting Configuration
When we looked at container runtimes in Part I, we saw that we could pass
environment variables to our containers. Of course, as Kubernetes manages
the container runtime for us, we’ll first need to pass that information to Ku
bernetes, which will then pass it to the container runtime for us.



NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

For simple configuration injection, we can provide environment vari
ables directly from the Pod specification. We saw an example of this in Pod
form when we created a PostgreSQL server in Chapter 10. Here’s a Postgre
SQL Deployment with a similar configuration in its embedded Pod
specification:

pgsql.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: postgres

spec:

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres

env:

- name: POSTGRES_PASSWORD

value: "supersecret"

When we provide environment variables directly in the Deployment,
those environment variables are stored directly in the YAML file and in the
cluster’s configuration for that Deployment. There are two important prob
lems with embedding environment variables in this manner. First, we’re re
ducing flexibility because we can’t specify a new value for the environment
variable without changing the Deployment YAML file. Second, the password
is visible in plaintext directly in the Deployment YAML file. YAML files are
often checked in to source control, so we’re going to have a hard time ade
quately protecting the password.
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GITOPS

The reason that the YAML files that define Kubernetes resources are often
checked in to source control is that this is by far the best way to manage an
application deployment. GitOps is a best practice by which all configuration
is kept in a Git repository. This includes the cluster configuration, additional
infrastructure components including load balancers, ingress controller, and
storage plug-ins, as well as all of the information to build, assemble, and de-
ploy applications. GitOps provides a log of changes to the cluster configura-
tion, avoids configuration drift that can occur over time, and ensures consis-
tency between development, test, and production environments. Not only that,
but GitOps tools like FluxCD and ArgoCD can be used to watch changes to a
Git repository and automatically pull the latest configuration to update a cluster.

Let’s first look at moving the configuration out of the Deployment; then
we’ll consider how best to protect the password.

Externalizing Configuration
Embedding configuration in the Deployment makes the resource definition
less reusable. If, for example, we wanted to deploy a PostgreSQL server for
both test and production versions of our application, it would be useful to
reuse the same Deployment to avoid duplication and to avoid configuration
drift between the two versions. However, for security, we would not want to
use the same password in both environments.

It’s better if we externalize the configuration by storing it in a separate
resource and referring to it from the Deployment. To enable this, Kuber
netes offers the ConfigMap resource. A ConfigMap specifies a set of key–
value pairs that can be referenced when specifying a Pod. For example, we
can define our PostgreSQL configuration this way:

pgsql-cm.yaml ---

kind: ConfigMap

apiVersion: v1

metadata:

name: pgsql

data:

POSTGRES_PASSWORD: "supersecret"

By storing this configuration information in a ConfigMap, it is no longer
directly part of the Deployment YAML file or the cluster configuration for
the Deployment.
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After we’ve defined our ConfigMap, we can reference it in our Deploy
ment, as demonstrated in Listing 161.

pgsql-ext
-cfg.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: postgres

spec:

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres

envFrom:

- configMapRef:

name: pgsql

Listing 16-1: PostgreSQL with ConfigMap

In place of the env field, we have an envFrom field that specifies one or
more ConfigMaps to serve as environment variables for the container. All of
the key–value pairs in the ConfigMap will become environment variables.

This has the same effect as specifying one or more environment vari
ables directly in the Deployment, but our Deployment specification is now
reusable. The Deployment will look for the identified ConfigMap in its own
Namespace, so we can have multiple Deployments from the same specifica
tion in separate Namespaces, and each can be configured differently.

This use of Namespace isolation to prevent naming conflicts, together
with the Namespacescoped security controls we saw in Chapter 11 and the
Namespacescoped quotas we saw in Chapter 14, allows a single cluster to
be used for many different purposes, by many different groups, a concept
known as multitenancy.

Let’s create this Deployment and see how Kubernetes injects the config
uration. First, let’s create the actual Deployment:

root@host01:~# kubectl apply -f /opt/pgsql-ext-cfg.yaml

deployment.apps/postgres created

This command completes successfully because the Deployment has
been created in the cluster, but Kubernetes will not be able to start any Pods
because the ConfigMap is missing:
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root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-6bf595fcbc-s8dqz 0/1 CreateContainerConfigError 0 53s

If we now create the ConfigMap, we see that the Pod is then created:

root@host01:~# kubectl apply -f /opt/pgsql-cm.yaml

configmap/pgsql created

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-6bf595fcbc-s8dqz 1/1 Running 0 2m41s

It can take a minute or so for Kubernetes to determine that the Config
Map is available and start the Pod. As soon as the Pod is running, we can
verify that the environment variables were injected based on the data in the
ConfigMap:

root@host01:~# kubectl exec -ti postgres-6bf595fcbc-s8dqz -- /bin/sh -c env

...

POSTGRES_PASSWORD=supersecret

...

The command env prints out all of the environment variables associated
with a process. Because Kubernetes provides the same environment vari
ables to our /bin/sh process as it provided to our main PostgreSQL process,
we know that the environment variable was set as expected. It’s important to
note, however, that even though we can change the ConfigMap at any time,
doing so will not cause the Deployment to update its Pods; the application
will not automatically pick up any environment variable changes. Instead, we
need to apply some configuration change to the Deployment to cause it to
create new Pods.

Although the configuration has been externalized, we still are not pro
tecting it. Let’s do that next.

Protecting Secrets
When protecting secrets, thinking through the nature of the protection that
makes sense is important. For example, we might need to protect authenti
cation information that our application uses to connect to a database. How
ever, given that the application itself needs that information to make the
connection, anyone who can inspect the inner details of the application is
going to be able to extract those credentials.

As we saw in Chapter 11, Kubernetes provides finegrained access con
trol over each individual resource type in a given Namespace. To enable pro
tection of secrets, Kubernetes provides a separate resource type, Secret. This
way, access to secrets can be limited to only those users who require access, a
principle known as least privilege.
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One more advantage to the Secret resource type is that it uses base64
encoding for all of its data, with automatic decoding when the data is pro
vided to the Pod, which simplifies the storage of binary data.

ENCRYPTING SECRET DATA

By default, data stored in a Secret is base64 encoded but is not encrypted. It
is possible to encrypt secret data, and doing so is good practice for a produc-
tion cluster, but remember that the data must be decrypted so that it can be
provided to the Pod. For this reason, anyone who can control what Pods ex-
ist in a namespace can access secret data, as can any cluster administrators
who can access the underlying container runtime. This is true even if the secret
data is encrypted when stored. Proper access controls are essential to keep a
cluster secure.

A Secret definition looks almost identical to a ConfigMap definition:

pgsql-secret.yaml ---

kind: Secret

apiVersion: v1

metadata:

name: pgsql

stringData:

POSTGRES_PASSWORD: "supersecret"

The one obvious difference is the resource type of Secret rather than
ConfigMap. However, there is a subtle difference as well. When we define
this Secret, we place the key–value pairs in a field called stringData rather
than just data. This tells Kubernetes that we are providing unencoded strings.
When it creates the Secret, Kubernetes will encode the strings for us:

root@host01:~# kubectl apply -f /opt/pgsql-secret.yaml

secret/pgsql created

root@host01:~# kubectl get secret pgsql -o json | jq .data

{

"POSTGRES_PASSWORD": "c3VwZXJzZWNyZXQ="

}

Even though we specified the data using the field stringData and an un
encoded string, the actual Secret uses the field data and stores the value us
ing base64 encoding. We can also do the base64 encoding ourselves. In that
case, we place the value directly into the data field:

pgsql
-secret-2.yaml

---

kind: Secret

apiVersion: v1

metadata:

name: pgsql
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data:

POSTGRES_PASSWORD: c3VwZXJzZWNyZXQ=

This approach is necessary to define binary content for the Secret in
order for us to be able to supply that binary content as part of a YAML re
source definition.

We use a Secret in a Deployment definition in exactly the same way we
use a ConfigMap:

pgsql-ext
-sec.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: postgres

spec:

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres

envFrom:

- secretRef:

name: pgsql

The only change is the use of secretRef in place of configMapRef.
To test this, let’s apply this new Deployment configuration:

root@host01:~# kubectl apply -f /opt/pgsql-ext-sec.yaml

deployment.apps/postgres configured

From the perspective of our Pod, the behavior is exactly the same. Ku
bernetes handles the base64 decoding, making the decoded value visible to
our Pod:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-6bf595fcbc-s8dqz 1/1 Terminating 0 12m

postgres-794ff85bbf-xzz49 1/1 Running 0 26s

root@host01:~# kubectl exec -ti postgres-794ff85bbf-xzz49 -- /bin/sh -c env

...

POSTGRES_PASSWORD=supersecret

...
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As before, we use the env command to show that the POSTGRES_PASSWORD

environment variable was set as expected. The Pod sees the same behavior
whether we specify the environment variable directly or use a ConfigMap or
Secret.

Before we move on, let’s delete this Deployment:

root@host01:~# kubectl delete deploy postgres

deployment.apps "postgres" deleted

Using ConfigMaps and Secrets, we have the ability to externalize envi
ronment variable configuration for our application so that our Deployment
specification can be reusable and to facilitate finegrained access control
over secret data.

Injecting Files
Of course, environment variables are not the only way we commonly config
ure applications. We also need a way to provide configuration files. We can
do that using the same ConfigMap and Secret resources we’ve seen already.

Any files we inject in this way override files that exist in the container
image, which means that we can supply the container image with a sensible
default configuration and then override that configuration with each con
tainer we run. This makes it much easier to reuse container images.

The ability to specify file content in a ConfigMap and then mount it in
a container is immediately useful for configuration files, but we can also use
it to update the NGINX web server example we showed in Chapter 15. As
we’ll see, with this version we can declare our HTML content solely using
Kubernetes resource YAML files, with no need for console commands to
copy content into a PersistentVolume.

The first step is to define a ConfigMap with the HTML content we want
to serve:

nginx-cm.yaml ---

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx

data:

index.html: |

<html>

<head>

<title>Hello, World</title>

</head>

<body>

<h1>Hello, World from a ConfigMap!</h1>

</body>

</html>
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The key part of the key–value pair is used to specify the desired file
name, in this case index.html. For ease of reading, we use a pipe character
(|) to start a YAML multiline string. This string continues as long as the
following lines are indented, or until the end of the YAML file. We can de
fine multiple files in this way by just adding more keys to the ConfigMap.

In the Deployment we saw in Listing 161, we specified the ConfigMap
as the source of environment variables. Here, we specify it as the source of a
volume mount:

nginx
-deploy.yaml

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: nginx

spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

volumeMounts:

- name: nginx-files

mountPath: /usr/share/nginx/html

volumes:

- name: nginx-files

configMap:

name: nginx

This volume definition looks similar to the one we saw in Chapter 15.
As before, the volume specification comes in two parts. The volume field
specifies where the volume comes from, in this case the ConfigMap. The
volumeMounts allows us to specify the path in the container where the files
should be made available. In addition to making it possible to use the same
volume in multiple containers in a Pod, this also means that we can share
the same syntax when mounting persistent volumes and when mounting the
configuration as files in the container filesystem.

Let’s create the ConfigMap and then get this Deployment started:

root@host01:~# kubectl apply -f /opt/nginx-cm.yaml

configmap/nginx created
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root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml

deployment.apps/nginx created

After the Pod is running, we can see that the file content is as expected,
and NGINX is serving our HTML file:

root@host01:~# IP=$(kubectl get po -l app=nginx -o jsonpath='{..podIP}')

root@host01:~# curl http://$IP

<html>

<head>

<title>Hello, World</title>

</head>

<body>

<h1>Hello, World from a ConfigMap!</h1>

</body>

</html>

The output looks similar to what we saw in Chapter 15 when we pro
vided the HTML content as a PersistentVolume, but we were able to avoid
the effort of attaching the PersistentVolume and then copying content into
it. In practice, both approaches have value, as maintaining a ConfigMap
with a large amount of data would be unwieldy.

To make the contents of the ConfigMap appear as files in a directory,
Kubernetes is writing out the contents of the ConfigMap to the host filesys
tem and then mounting the directory from the host into the container. This
means that the specific directory shows up as part of the output for the mount

command inside the container:

root@host01:~# kubectl exec -ti nginx-58bc54b5cd-4lbkq -- /bin/mount

...

/dev/sda1 on /usr/share/nginx/html type ext4 (ro,relatime)

...

The mount command reports that the directory /usr/share/nginx/html is a
separately mounted path coming from the host’s primary disk /dev/sda1.

We’re finished with the NGINX Deployment, so go ahead and delete it:

root@host01:~# kubectl delete deploy nginx

deployment.apps "nginx" deleted

Next, let’s look at how ConfigMap and Secret information is stored in
a typical Kubernetes cluster so that we can see where kubelet is getting this
content.

Cluster Configuration Repository
Although it’s possible to run a Kubernetes cluster with different choices of
configuration repository, most Kubernetes clusters use etcd as the backing
store for all cluster configuration data. This includes not only the Config
Map and Secret storage but also all of the other cluster resources and the
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current cluster state. Kubernetes also uses etcd to elect a leader when run
ning in a highly available configuration with multiple API servers.

Although etcd is generally stable and reliable, node failures can lead to
cases in which the etcd cluster can’t reestablish itself and elect a leader. Our
purpose in demonstrating etcd is not just to see how configuration data is
stored, but also to provide some valuable background into an essential clus
ter component that an administrator might need to debug.

For all of our example clusters, etcd is installed on the same nodes as the
API server, which is common in smaller clusters. In large clusters, running
etcd on separate nodes to allow it to scale separately from the Kubernetes
control plane is common.

To explore the contents of the etcd backing store, we’ll use etcdctl, a
command line client designed for controlling and troubleshooting etcd.

Using etcdctl
We need to tell etcdctl where our etcd server instance is located and how to
authenticate to it. For authentication, we’ll use the same client certificate
that the API server uses.

For convenience, we can set environment variables that etcdctl will read,
so we don’t need to pass in those values via the command line with every
command.

Here are the environment variables we need:

etcd-env export ETCDCTL_API=3

export ETCDCTL_CACERT=/etc/kubernetes/pki/etcd/ca.crt

export ETCDCTL_CERT=/etc/kubernetes/pki/apiserver-etcd-client.crt

export ETCDCTL_KEY=/etc/kubernetes/pki/apiserver-etcd-client.key

export ETCDCTL_ENDPOINTS=https://192.168.61.11:2379

These variables configure etcdctl as follows:

ETCDCTL_API Use version 3 of the etcd API. With recent versions of etcd,
only version 3 is supported.

ETCDCTL_CACERT Verify the etcd host using the provided certificate au
thority.

ETCDCTL_CERT Authenticate to etcd using this certificate.

ETCDCTL_KEY Authenticate to etcd using this private key.

ETCDCTL_ENDPOINTS Connect to etcd at this URL. While etcd is running on
all three nodes, we only need one node to talk to it.

In our example, these environment variables are conveniently stored in
a script in /opt so that we can load them for use with upcoming commands:

root@host01:~# source /opt/etcd-env
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We can now use etcdctl commands to inspect the cluster and the config
uration data it’s storing. Let’s begin by listing only the cluster members:

root@host01:~# etcdctl member list

45a2b6125030fdde, started, host02, https://192.168.61.12:2380, https://192.168.61.12:2379

91007aab9448ce27, started, host03, https://192.168.61.13:2380, https://192.168.61.13:2379

bf7b9991d532ba78, started, host01, https://192.168.61.11:2380, https://192.168.61.11:2379

As expected, each of the control plane nodes has an instance of etcd.
For a highly available configuration, we need to run at least three instances,
and we need a majority of those instances to be running for the cluster to be
healthy. This etcdctl command is a good first step to determine whether the
cluster has any failed nodes.

As long as the cluster is healthy, we can store and retrieve data. Within
etcd, information is stored in key–value pairs. Keys are specified as paths in a
hierarchy. We can list the paths that have content:

root@host01:~# etcdctl get / --prefix --keys-only

...

/registry/configmaps/default/nginx

/registry/configmaps/default/pgsql

...

/registry/secrets/default/pgsql

...

The --prefix flag tells etcdctl to get all keys that start with /, whereas
--keys-only ensures that we print only the keys to prevent being overwhelmed
with data. Still, a lot of information is returned, including all of the various
Kubernetes resource types that we’ve described in this book. Also included
are the ConfigMaps and Secrets we just created.

Deciphering Data in etcd
We can generally rely on Kubernetes to store the correct configuration data
in etcd, and we can rely on kubectl to see the current cluster configuration.
However, it is useful to know how the underlying data store works in case we
need to inspect the configuration when the cluster is down or in an anoma
lous state.

To save storage space and bandwidth, both etcd and Kubernetes use the
protobuf library, a languageneutral binary data format. Because we’re us
ing etcdctl to retrieve data from etcd, we can ask it to return data in JSON
format, instead; however, that JSON data will include an embedded protobuf

structure with the data from Kubernetes, so we’ll need to decode that
as well.

Let’s begin by examining the JSON format for a Kubernetes Secret in
etcd. We’ll send the output through jq for formatting:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql | jq

{

276 Chapter 16



"header": {

...

},

"kvs": [

{

"key": "L3JlZ2lzdHJ5L3NlY3JldHMvZGVmYXVsdC9wZ3NxbA==",

"create_revision": 14585,

"mod_revision": 14585,

"version": 1,

"value": "azhzAAoMCgJ2MRIGU2..."

}

],

"count": 1

}

The kvs field has the key–value pair that Kubernetes stored for this Se
cret. The value for the key is a simple base64encoded string:

root@host01:~# echo $(etcdctl -w json get /registry/secrets/default/pgsql \

| jq -r '.kvs[0].key' | base64 -d)

/registry/secrets/default/pgsql

We use jq to extract just the key’s value and return it in raw format (with
out quotes), and then we use base64 to decode the string.

Of course, the interesting part of this key–value pair is the value because
it contains the actual Kubernetes Secret. Although the value is also base64
encoded, we need to do a bit more detangling to access its information.

After we decode the base 64 value, we’ll have a protobuf message. How
ever, it has a magic prefix that Kubernetes uses to allow for future changes
in the storage format. We can see that prefix if we look at the first few bytes
of the decoded value:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql \

| jq -r '.kvs[0].value' | base64 -d | head --bytes=10 | xxd

00000000: 6b38 7300 0a0c 0a02 7631 k8s.....v1

We use head to retrieve the first 10 bytes of the decoded value and then
use xxd to see a hex dump. The first few bytes are k8s followed by an ASCII
null character. The rest of the data, starting with byte 5, is the actual protobuf
message.

Let’s run one more command to actually decode the protobuf message
using the protoc tool:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql \

| jq -r '.kvs[0].value' | base64 -d | tail --bytes=+5 | protoc --decode_raw

1 {

1: "v1"

2: "Secret"

}
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2 {

1 {

1: "pgsql"

2: ""

3: "default"

4: ""

...

}

2 {

1: "POSTGRES_PASSWORD"

2: "supersecret"

}

3: "Opaque"

}

...

The protoc tool is mostly used for generating source code to read and
write protobuf messages, but it’s also handy for message decoding. As we
can see, within the protobuf message is all of the data Kubernetes stores for
this Secret, including the resource version and type, the resource name and
namespace, and the data. This illustrates, as mentioned earlier, that access
to the hosts on which Kubernetes runs provides access to all of the secret
data in the cluster. Even if we configured Kubernetes to encrypt data before
storing it in etcd, the encryption keys themselves need to be stored unen
crypted in etcd so that the API server can use them.

Final Thoughts
With the ability to provide either environment variables or files to Pods,
ConfigMaps and Secrets allow us to externalize the configuration of our
containers, which makes it possible to reuse both Kubernetes resource
definitions such as Deployments and container images in a variety of
applications.

At the same time, we need to be aware of how Kubernetes stores this
configuration data and how it provides it to containers. Anyone with the
right role can access configuration data using kubectl; anyone with access
to the host running the container can access it from the container runtime;
and anyone with the right authentication information can access it directly
from etcd. For a production cluster, it’s critical that all of these mechanisms
are correctly secured.

So far, we’ve seen how Kubernetes stores builtin cluster resource data
in etcd, but Kubernetes can also store any kind of custom resource data we
might choose to declare. In the next chapter, we’ll explore how custom re
source definitions enable us to add new behavior to a Kubernetes cluster in
the form of operators.
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17
CUSTOM RESOURCES AND

OPERATORS

We’ve seen many different resource types
used in a Kubernetes cluster to run con
tainer workloads, scale them, configure them,

route network traffic to them, and provide stor
age for them. One of the most powerful features of
a Kubernetes cluster, however, is the ability to define
custom resource types and integrate these into the clus
ter alongside all of the builtin resource types we’ve al
ready seen.

Custom resource definitions enable us to define any new resource type
and have the cluster track corresponding resources. We can use this capa
bility to add complex new behavior to our cluster, such as automating the
deployment of a highly available database engine, while taking advantage of
all of the existing capabilities of the builtin resource types and the resource
and status management of the cluster’s control plane.

In this chapter, we’ll see how custom resource definitions work and how
we can use them to deploy Kubernetes operators, extending our cluster to
take on any additional behavior we desire.



Custom Resources
In Chapter 6, we discussed how the Kubernetes API server provides a declar
ative API, where the primary actions are to create, read, update, and delete
resources in the cluster. A declarative API has advantages for resiliency, as
the cluster can track the desired state of resources and work to ensure that
the cluster stays in that desired state. However, a declarative API also has a
significant advantage in extensibility. The actions provided by the API server
are generic enough that extending them to any kind of resource is easy.

We’ve already seen how Kubernetes takes advantage of this extensibility
to update its API over time. Not only can Kubernetes support new versions
of a resource over time, but brandnew resources with new capabilities can
be added to the cluster while backward compatibility is maintained through
the old resources. We saw this in Chapter 7 in our discussion on the new
capabilities of version 2 of the HorizontalPodAutoscaler as well as the way
that the Deployment replaced the ReplicationController.

We really see the power of this extensibility in the use of CustomResource
Definitions. A CustomResourceDefinition, or CRD, allows us to add any new
resource type to a cluster dynamically. We simply provide the API server
with the name of the new resource type and a specification that’s used for
validation, and immediately the API server will allow us to create, read, up
date, and delete resources of that new type.

CRDs are extremely useful and in widespread use. For example, the in
frastructure components that are already deployed to our cluster include
CRDs.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on/line
break getting set up.

Let’s see the CRDs that are already registered with our cluster:

root@host01:~# kubectl get crds

NAME CREATED AT

...

clusterinformations.crd.projectcalico.org ...

...

installations.operator.tigera.io ...

...

volumes.longhorn.io ...

To avoid naming conflicts, the CRD name must include a group, which
is commonly based on a domain name to ensure uniqueness. This group is
also used to establish the path to that resource for the REST API provided
by the API server. In this example, we see CRDs in the crd.projectcalico.org

group and the operator.tigera.io group, both of which are used by Calico.
We also see a CRD in the longhorn.io group, used by Longhorn.

These CRDs allow Calico and Longhorn to use the Kubernetes API
to record configuration and status information in etcd. CRDs also simplify
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custom configuration. For example, as part of deploying Calico to the
cluster, the automation created an Installation resource that corresponds
to the installations.operator.tigera.io CRD:

custom
-resources.yaml

---

apiVersion: operator.tigera.io/v1

kind: Installation

metadata:

name: default

spec:

calicoNetwork:

ipPools:

- blockSize: 26

cidr: 172.31.0.0/16

...

This configuration is the reason why we see Pods getting IP addresses
in the 172.31.0.0/16 network block. This YAML file was automatically placed
in /etc/kubernetes/components and automatically applied to the cluster as part
of Calico installation. On deployment, Calico queries the API server for in
stances of this Installation resource and configures networking accordingly.

Creating CRDs
Let’s explore CRDs further by creating our own. We’ll use the definition
provided in Listing 171.

crd.yaml ---

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

¶ name: samples.bookofkubernetes.com

spec:

· group: bookofkubernetes.com

versions:

¸ - name: v1

served: true

storage: true

schema:

openAPIV3Schema:

type: object

properties:

spec:

type: object

properties:

value:

type: integer

¹ scope: Namespaced
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names:

º plural: samples

» singular: sample

¼ kind: Sample

shortNames:

½ - sam

Listing 17-1: Sample CRD

There are multiple important parts to this definition. First, several types
of names are defined. The metadata name field ¶ must combine the plural
name of the resource º and the group ·. These naming components will
also be critical for access via the API.

Naming also includes the kind ¼, which is used in YAML files. This means
that when we create specific resources based on this CRD, we will identify
them with kind: Sample. Finally, we need to define how to refer to instances
of this CRD on the command line. This includes the full name of the re
source, specified in the singular » field, as well as any shortNames ½ that we
want the command line to recognize.

Now that we’ve provided Kubernetes with all of the necessary names
for instances based on this CRD, we can move on to how the CRD is tracked
and what data it contains. The scope ¹ field tells Kubernetes whether this
resource should be tracked at the Namespace level or whether resources
are cluster wide. Namespaced resources receive an API path that includes
the Namespace they’re in, and authorization to access and modify Names
paced resources can be controlled on a NamespacebyNamespace basis us
ing Roles and RoleBindings, as we saw in Chapter 11.

Third, the versions section allows us to define the actual content that is
valid when we create resources based on this CRD. To enable updates over
time, there can be multiple versions. Each version has a schema that declares
what fields are valid. In this case, we define a spec field that contains one
field called value, and we declare this one field to be an integer.

There was a lot of required configuration here, so let’s review the result.
This CRD enables us to tell the Kubernetes cluster to track a brand new kind
of resource for us, a Sample. Each instance of this resource (each Sample)
will belong to a Namespace and will contain an integer in a value field.

Let’s create this CRD in our cluster:

root@host01:~# kubectl apply -f /opt/crd.yaml

customresourcedefinition...k8s.io/samples.bookofkubernetes.com created

We can now create objects of this type and retrieve them from our clus
ter. Here’s an example YAML definition to create a new Sample using the
CRD we defined:

sample.yaml ---

apiVersion: bookofkubernetes.com/v1

kind: Sample

metadata:
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namespace: default

name: somedata

spec:

value: 123

We match the apiVersion and kind to our CRD and ensure that the spec

is in alignment with the schema. This means that we’re required to supply a
field called value with an integer value.

We can now create this resource in the cluster just like any other
resource:

root@host01:~# kubectl apply -f /opt/somedata.yaml

sample.bookofkubernetes.com/somedata created

There is now a Sample called somedata that is part of the default

Namespace.
When we defined the CRD in Listing 171, we specified a plural, singu

lar, and short name for Sample resources. We can use any of these names to
retrieve the new resource:

root@host01:~# kubectl get samples

NAME AGE

somedata 56s

root@host01:~# kubectl get sample

NAME AGE

somedata 59s

root@host01:~# kubectl get sam

NAME AGE

somedata 62s

Just by declaring our CRD, we’ve extended the behavior of our Kuber
netes cluster so that it understands what samples are, and we can use that not
only in the API but also in the command line tools.

This means that kubectl describe also works for Samples. We can see that
Kubernetes tracks other data related to our new resource, beyond just the
data we specified:

root@host01:~# kubectl describe sample somedata

Name: somedata

Namespace: default

...

API Version: bookofkubernetes.com/v1

Kind: Sample

Metadata:

Creation Timestamp: ...

...

Resource Version: 9386

UID: 37cc58db-179f-40e6-a9bf-fbf6540aa689
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Spec:

Value: 123

Events: <none>

This additional data, including timestamps and resource versioning, is
essential if we want to use the data from our CRD. To use our new resource
effectively, we’re going to need a software component that continually mon
itors for new or updated instances of our resource and takes action accord
ingly. We’ll run this component using a regular Kubernetes Deployment
that interacts with the Kubernetes API server.

Watching CRDs
With core Kubernetes resources, the control plane components communi
cate with the API server to take the correct action when a resource is cre
ated, updated, or deleted. For example, the controller manager includes a
component that watches for changes to Services and Pods, enabling it to up
date the list of endpoints for each Service. The kube-proxy instance on each
node then makes the necessary network routing changes to send traffic to
Pods based on those endpoints.

With CRDs, the API server merely tracks the resources as they are cre
ated, updated, and deleted. It is the responsibility of some other software
to monitor instances of the resource and take the correct action. To make
it easy to monitor resources, the API server offers a watch action, using long
polling to keep a connection open and continually feed events as they occur.
Because a longpolling connection could be cut off at any time, the time
stamp and resource version data that Kubernetes tracks for us will enable us
to detect what cluster changes we’ve already processed when we reconnect.

We could use the API server’s watch capability directly from a curl com
mand or directly in an HTTP client, but it’s much easier to use a Kubernetes
client library. For this example, we’ll use the Python client library to illus
trate how to watch our custom resource. Here’s the Python script we’ll use:

watch.py #!/usr/bin/env python3

from kubernetes import client, config, watch

import json, os, sys

try:

¶ config.load_incluster_config()

except:

print("In cluster config failed, falling back to file", file=sys.stderr)

· config.load_kube_config()

¸ group = os.environ.get('WATCH_GROUP', 'bookofkubernetes.com')

version = os.environ.get('WATCH_VERSION', 'v1')

namespace = os.environ.get('WATCH_NAMESPACE', 'default')

resource = os.environ.get('WATCH_RESOURCE', 'samples')
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api = client.CustomObjectsApi()

w = watch.Watch()

¹ for event in w.stream(api.list_namespaced_custom_object,

group=group, version=version, namespace=namespace, plural=resource):

º json.dump(event, sys.stdout, indent=2)

sys.stdout.flush()

To connect to the API server, we need to load cluster configuration.
This includes the location of the API server as well as the authentication
information we saw in Chapter 11. If we’re running in a container within
a Kubernetes Pod, we’ll automatically have that information available to us,
so we first try to load an incluster config ¶. However, if we’re outside a Ku
bernetes cluster, the convention is to use a Kubernetes config file, so we try
that as a secondary option ·.

After we’ve established how to talk to the API server, we use the custom
objects API and a watch object to stream events related to our custom re
source ¹. The stream() method takes the name of a function and the associ
ated parameters, which we’ve loaded from the environment or from default
values ¸. We use the list_namespaced_custom_object function because we’re
interested in our custom resource. All of the various list_* methods in the
Python library are designed to work with watch to return a stream of add, up
date, and remove events rather than simply retrieving the current list of ob
jects. As events occur, we then print them to the console in an easytoread
format º.

We’ll use this Python script within a Kubernetes Deployment. I’ve built
and published a container image to run it, so this is an easy task. Here’s the
Deployment definition:

watch.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: watch

spec:

replicas: 1

selector:

matchLabels:

app: watch

template:

metadata:

labels:

app: watch

spec:

containers:

- name: watch

image: bookofkubernetes/crdwatcher:stable

serviceAccountName: watcher
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This Deployment will run the Python script that watches for events on
instances of the Sample CRD. However, before we can create this Deploy
ment, we need to ensure that our watcher script will have permissions to
read our custom resource. The default ServiceAccount has minimal permis
sions, so we need to create a ServiceAccount for this Deployment and ensure
that it has the rights to see our Sample custom resources.

We could bind a custom Role to our ServiceAccount to do this, but it’s
more convenient to take advantage of role aggregation to add our Sample
custom resource to the view ClusterRole that already exists. This way, any
user in the cluster with the view ClusterRole will acquire rights to our Sample
custom resource.

We start by defining a new ClusterRole for our custom resource:

sample-
reader.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: sample-reader

labels:

¶ rbac.authorization.k8s.io/aggregate-to-view: "true"

rules:

· - apiGroups: ["bookofkubernetes.com"]

resources: ["samples"]

verbs: ["get", "watch", "list"]

This ClusterRole gives permission to get, watch, and list our Sample cus
tom resources ·. We also add a label to the metadata ¶ to signal the cluster
that we want these permissions to be aggregated into the view ClusterRole.
Thus, rather than bind our ServiceAccount into the sample-reader Cluster
Role we’re defining here, we can bind our ServiceAccount into the generic
view ClusterRole, giving it readonly access to all kinds of resources.

We also need to declare the ServiceAccount and bind it to the view

ClusterRole:

sa.yaml ---

apiVersion: v1

kind: ServiceAccount

metadata:

name: watcher

namespace: default

---

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: viewer

namespace: default

subjects:

- kind: ServiceAccount
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name: watcher

namespace: default

roleRef:

kind: ClusterRole

name: view

apiGroup: rbac.authorization.k8s.io

We use a RoleBinding to limit this ServiceAccount to readonly access
solely within the default Namespace. The RoleBinding binds the watcher

ServiceAccount to the generic view ClusterRole. This ClusterRole will have
access to our Sample custom resources thanks to the role aggregation we
specified.

We’re now ready to apply all of these resources, including our
Deployment:

root@host01:~# kubectl apply -f /opt/sample-reader.yaml

clusterrole.rbac.authorization.k8s.io/sample-reader created

root@host01:~# kubectl apply -f /opt/sa.yaml

serviceaccount/watcher created

rolebinding.rbac.authorization.k8s.io/viewer created

root@host01:~# kubectl apply -f /opt/watch.yaml

deployment.apps/watch created

After a little while, our watcher Pod will be running:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

watch-69876b586b-jp25m 1/1 Running 0 47s

We can print the watcher’s logs to see the events it has received from the
API server:

root@host01:~# kubectl logs watch-69876b586b-jp25m

{

"type": "ADDED",

"object": {

"apiVersion": "bookofkubernetes.com/v1",

"kind": "Sample",

"metadata": {

...

"creationTimestamp": "...",

...

"name": "somedata",

"namespace": "default",

"resourceVersion": "9386",

"uid": "37cc58db-179f-40e6-a9bf-fbf6540aa689"
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},

"spec": {

"value": 123

}

},

...

Note that the watcher Pod receives an ADDED event for the somedata Sam
ple we created, even though we created that Sample before we deployed our
watcher. The API server is able to determine that our watcher has not yet
retrieved this object, so it sends us an event immediately on connection as if
the object were newly created, which avoids a race condition that we would
otherwise be forced to handle. However, note that if the client is restarted, it
will appear as a new client to the API server and will see the same ADDED event
again for the same Sample. For this reason, when we implement the logic to
handle our custom resources, it’s essential to make the logic idempotent so
that we can handle processing the same event multiple times.

Operators
What kinds of actions would we take in response to the creation, update, or
deletion of custom resources, other than just logging the events to the con
sole? As we saw when we examined the way that custom resources are used
to configure Calico networking in our cluster, one use for custom resources
is to configure for cluster infrastructure components such as networking
and storage. But another pattern that really makes the best use of custom
resources is the Kubernetes Operator.

The Kubernetes Operator pattern extends the behavior of the cluster
to make it easier to deploy and manage specific application components.
Rather than using the standard set of Kubernetes resources such as Deploy
ments and Services directly, we simply create custom resources that are spe
cific to the application component, and the operator manages the underly
ing Kubernetes resources for us.

Let’s look at an example to illustrate the power of the Kubernetes Op
erator pattern. We’ll add a Postgres Operator to our cluster that will enable
us to deploy a highly available PostgreSQL database to our cluster by just
adding a single custom resource.

Our automation has staged the files that we need into /etc/kubernetes/
components and has performed some initial setup, so the only step remaining
is to add the operator. The operator is a normal Deployment that will run
in whatever Namespace we choose. It then will watch for custom postgresql

resources and will create PostgreSQL instances accordingly.
Let’s deploy the operator:

root@host01:~# kubectl apply -f /etc/kubernetes/components/postgres-operator.yaml

deployment.apps/postgres-operator created
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This creates a Deployment for the operator itself, which creates a single
Pod:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-operator-5cdbff85d6-cclxf 1/1 Running 0 27s

...

The Pod communicates with the API server to create the CRD needed to
define a PostgreSQL database:

root@host01:~# kubectl get crd postgresqls.acid.zalan.do

NAME CREATED AT

postgresqls.acid.zalan.do ...

No instances of PostgreSQL are running in the cluster yet, but we can
easily deploy PostgreSQL by creating a custom resource based on that CRD:

pgsql.yaml ---

apiVersion: "acid.zalan.do/v1"

kind: postgresql

metadata:

name: pgsql-cluster

namespace: default

spec:

teamId: "pgsql"

volume:

size: 1Gi

storageClass: longhorn

numberOfInstances: 3

users:

dbuser:

- superuser

- createdb

databases:

defaultdb: dbuser

postgresql:

version: "14"

This custom resource tells the Postgres Operator to spawn a PostgreSQL
database using server version 14, with three instances (a primary and two
backups). Each instance will have persistent storage. The primary instance
will be configured with the specified user and database.

The real value of the Kubernetes Operator pattern is that the YAML re
source file we declare is short, simple, and clearly relates to the PostgreSQL
configuration we want to see. The operator’s job is to convert this informa
tion into a StatefulSet, Services, and other cluster resources as needed to
operate this database.
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We apply this custom resource to the cluster like any other resource:

root@host01:~# kubectl apply -f /opt/pgsql.yaml

postgresql.acid.zalan.do/pgsql-cluster created

After we apply it, the Postgres Operator will receive the add event and
will create the necessary cluster resources for PostgreSQL:

root@host01:~# kubectl logs postgres-operator-5cdbff85d6-cclxf

... level=info msg="Spilo operator..."

...

... level=info msg="ADD event has been queued"

cluster-name=default/pgsql-cluster pkg=controller worker=0

... level=info msg="creating a new Postgres cluster"

cluster-name=default/pgsql-cluster pkg=controller worker=0

...

... level=info msg="statefulset

\"default/pgsql-cluster\" has been successfully created"

cluster-name=default/pgsql-cluster pkg=cluster worker=0

...

Ultimately, there will be a StatefulSet and three Pods running (in addi
tion to the Pod for the operator itself, which is still running):

root@host01:~# kubectl get sts

NAME READY AGE

pgsql-cluster 3/3 2m39s

root@host01:~# kubectl get po

NAME READY STATUS RESTARTS AGE

pgsql-cluster-0 1/1 Running 0 2m40s

pgsql-cluster-1 1/1 Running 0 2m18s

pgsql-cluster-2 1/1 Running 0 111s

postgres-operator-5cdbff85d6-cclxf 1/1 Running 0 4m6s

...

It can take several minutes for all of these resources to be fully running
on the cluster.

Unlike the PostgreSQL StatefulSet we created in Chapter 15, all instances
in this StatefulSet are configured for high availability, as we can demonstrate
by inspecting the logs for each Pod:

root@host01:~# kubectl logs pgsql-cluster-0

...

... INFO: Lock owner: None; I am pgsql-cluster-0

... INFO: trying to bootstrap a new cluster

...

... INFO: initialized a new cluster

...

... INFO: no action. I am (pgsql-cluster-0) the leader with the lock

root@host01:~# kubectl logs pgsql-cluster-1
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...

... INFO: Lock owner: None; I am pgsql-cluster-1

... INFO: waiting for leader to bootstrap

... INFO: Lock owner: pgsql-cluster-0; I am pgsql-cluster-1

...

... INFO: no action. I am a secondary (pgsql-cluster-1) and following

a leader (pgsql-cluster-0)

As we can see, the first instance, pgsql-cluster-0, has identified itself as
the leader, whereas pgsql-cluster-1 has configured itself as a follower that
will replicate any updates to the leader’s databases.

To manage the PostgreSQL leaders and followers and enable database
clients to reach the leader, the operator has created multiple Services:

root@host01:~# kubectl get svc

NAME TYPE CLUSTER-IP ... PORT(S) AGE

...

pgsql-cluster ClusterIP 10.101.80.163 ... 5432/TCP 6m52s

pgsql-cluster-config ClusterIP None ... <none> 6m21s

pgsql-cluster-repl ClusterIP 10.96.13.186 ... 5432/TCP 6m52s

The pgsql-cluster Service routes traffic to the primary only; the other
Services are used to manage replication to the backup instances. The opera
tor handles the task of updating the Service if the primary instance changes
due to failover.

To remove the PostgreSQL database, we need to remove only the cus
tom resource, and the Postgres Operator handles the rest:

root@host01:~# kubectl delete -f /opt/pgsql.yaml

postgresql.acid.zalan.do "pgsql-cluster" deleted

The operator detects the removal and cleans up the associated Kuber
netes cluster resources:

root@host01:~# kubectl logs postgres-operator-5cdbff85d6-cclxf

...

... level=info msg="deletion of the cluster started"

cluster-name=default/pgsql-cluster pkg=controller worker=0

... level=info msg="DELETE event has been queued"

cluster-name=default/pgsql-cluster pkg=controller worker=0

...

... level=info msg="cluster has been deleted"

cluster-name=default/pgsql-cluster pkg=controller worker=0

The Postgres Operator has now removed the StatefulSet, persistent stor
age, and other resources associated with this database cluster.

The ease with which we were able to deploy and remove a PostgreSQL
database server, including multiple instances automatically configured in a
highly available configuration, demonstrates the power of the Kubernetes
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Operator pattern. By defining a CRD, a regular Deployment can act to ex
tend the behavior of our Kubernetes cluster. The result is a seamless addi
tion of new cluster capability that is fully integrated with the builtin features
of the Kubernetes cluster.

Final Thoughts
CustomResourceDefinitions and Kubernetes Operators bring advanced fea
tures to a cluster, but they do so by building on the basic Kubernetes cluster
functionality we’ve seen throughout this book. The Kubernetes API server
has the extensibility to handle storage and retrieval of any type of cluster re
source. As a result, we’re able to define new resource types dynamically and
have the cluster manage them for us.

We’ve seen this pattern across many of the features we’ve examined in
Part II of this book. Kubernetes itself is built on the fundamental features
of containers that we saw in Part I, and it is built so that its more advanced
features are implemented by bringing together its more basic features. By
understanding how those basic features work, we’re better able to under
stand the more advanced features, even if the behavior looks a bit magical
at first.

We’ve now worked our way through the key capabilities of Kubernetes
that we need to understand to build highquality, performant applications.
Next, we’ll turn our attention to ways to improve the performance and re
siliency of our applications when running them in a Kubernetes cluster.
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PART III
PERFORMANT KUBERNETES

Even though containers are designed to hide some of
the complexity of the individual hosts in a cluster and
their underlying hardware, realworld applications need
tuning to get the most out of the available computing
power. This tuning must be done in a way that works
with the scalability and resiliency of our Kubernetes
cluster so that we don’t lose the advantages of dynamic
scheduling and horizontal scaling. In other words, we
need to provide hints to a cluster to help it schedule
containers in the most efficient way.
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AFF IN I TY AND DEV ICES

The ideal application exhibits complete
simplicity. It is simple to design. It is sim
ple to develop. It is simple to deploy. Its in

dividual components are stateless, so it’s easy
to scale to serve as many users as needed. The individ
ual service endpoints act as pure functions where the
output is determined solely by the input. The appli
cation operates on a reasonable amount of data, with
modest CPU and memory requirements, and requests
and responses easily fit into a JSON structure that is at
most a couple of kilobytes.

Of course, outside of tutorials, ideal applications don’t exist. Realworld
applications store state, both in longterm persistent storage and in caches
that can be accessed quickly. Realworld applications have data security and
authorization concerns, so they need to authenticate users, remember who
those users are, and limit access accordingly. And many realworld applica
tions need to access specialized hardware rather than just using idealized
CPU, memory, storage, and network resources.



We want to deploy realworld applications on our Kubernetes cluster,
not just idealized applications. This means that we need to make smart deci
sions about how to deploy the application components that move us away
from an ideal world in which the cluster decides how many container in
stances to run and where to schedule them. However, we don’t want to cre
ate an application architecture that is so rigid that we lose our cluster’s scal
ability and resiliency. Instead, we want to work within the cluster to give it
hints about how to deploy our application components while still maintain
ing as much flexibility as possible. In this chapter, we’ll explore how our ap
plication components can enforce a little bit of coupling to other compo
nents or to specialized hardware without losing the benefits of Kubernetes.

Affinity and Anti-affinity
We’ll begin by looking at the case in which we want to manage the schedul
ing of Pods so that we can prefer or avoid colocating multiple containers on
the same node. For example, if we have two containers that consume signif
icant network bandwidth communicating with each other, we might want
those two containers to run together on a node to reduce latency and avoid
slowing down the rest of the cluster. Or, if we want to ensure that a highly
available component can survive the loss of a node in the cluster, we may
want to split Pod instances so they run on as many different cluster nodes as
possible.

One way to colocate containers is to combine multiple separate contain
ers into a single Pod specification. That is a great solution for cases in which
two processes are completely dependent on each other. However, it removes
the ability to scale the instances separately. For example, in a web applica
tion backed by distributed storage, we might need many more instances of
the web server process than we would need of the storage process. We need
to place those application components in different Pods to be able to scale
them separately.

In Chapter 8, when we wanted to guarantee that a Pod ran on a speci
fied node, we added the nodeName field to the Pod specification to override
the scheduler. That was fine for an example, but for a real application it
would eliminate the scaling and failover that are essential for performance
and reliability. Instead, we’ll use the Kubernetes concept of affinity to give
the scheduler hints about how to allocate Pods without forcing any Pod to
run on a specific node.

Affinity allows us to restrict where a Pod should be scheduled based on
the presence of other Pods. Let’s look at an example using the iperf3 net
work testing application.
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CLUSTER ZONES

Pod affinity is most valuable for large clusters that span multiple networks. For
example, we might deploy a Kubernetes cluster to multiple different data cen-
ters to eliminate single points of failure. In those cases, we would configure
affinity based on a zone, which might contain many nodes. Here, we have
only a small example cluster, so we’ll treat each node in our cluster as a sep-
arate zone.

Anti-affinity
Let’s start with the opposite of affinity: antiaffinity. Antiaffinity causes the
Kubernetes scheduler to avoid colocating Pods. In this case, we’ll create a
Deployment with three separate iperf3 server Pods, but we’ll use antiaffinity
to distribute those three Pods across our nodes so that each node gets a Pod.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Here’s the YAML definition we need:

ipf-server.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: iperf-server

spec:

replicas: 3

selector:

matchLabels:

app: iperf-server

template:

metadata:

labels:

app: iperf-server

spec:

¶ affinity:

podAntiAffinity:

· requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: app

operator: In

values:

- iperf-server

¸ topologyKey: "kubernetes.io/hostname"
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containers:

- name: iperf

image: bookofkubernetes/iperf3:stable

env:

- name: IPERF_SERVER

value: "1"

This Deployment resource is typical except for the new affinity sec
tion ¶. We specify an antiaffinity rule that is based on the same label that
the Deployment uses to manage its Pods. With this rule, we specify that we
don’t want a Pod to be scheduled into a zone that already has a Pod with the
app=iperf-server label.

The topologyKey ¸ specifies the size of the zone. In this case, each node
in the cluster has a different hostname label, so each node is considered to
be a different zone. The antiaffinity rule therefore prevents kube-scheduler
from placing a second Pod onto a node after the first Pod has already been
scheduled there.

Finally, because we specified the rule using requiredDuringScheduling ·,
it’s a hard antiaffinity rule, which means that the scheduler won’t schedule
the Pod unless it can satisfy the rule. It is also possible to use preferredDuring

Scheduling and assign a weight to give the scheduler a hint without prevent
ing Pod scheduling if the rule can’t be satisfied.

NO T E The topologyKey can be based on any label that’s applied on the node. Cloudbased
Kubernetes distributions typically automatically apply labels to each node based on
the availability zone for that node, making it easy to use antiaffinity to spread Pods
across availability zones for redundancy.

Let’s apply this Deployment and see the result:

root@host01:~# kubectl apply -f /opt/ipf-server.yaml

deployment.apps/iperf-server created

As soon as our Pods are running, we see that a Pod has been allocated to
each node in the cluster:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... NODE ...

iperf-server-7666fb76d8-7rz8j 1/1 Running ... host01 ...

iperf-server-7666fb76d8-cljkh 1/1 Running ... host02 ...

iperf-server-7666fb76d8-ktk92 1/1 Running ... host03 ...

Because we have three nodes and three instances, it’s essentially iden
tical to using a DaemonSet, but this approach is more flexible because it
doesn’t require an instance on every node. In a large cluster, we still might
need only a few Pod instances to meet demand for this service. Using anti
affinity with zones based on hostnames allows us to specify the correct scale
for our Deployment while still distributing each Pod to a distinct node for
higher availability. And antiaffinity can be used to distribute Pods across
other types of zones as well.

298 Chapter 18



Before we continue, let’s create a Service with which our iperf3 clients
will be able to find a server instance. Here’s the YAML:

ipf-svc.yaml ---

kind: Service

apiVersion: v1

metadata:

name: iperf-server

spec:

selector:

app: iperf-server

ports:

- protocol: TCP

port: 5201

targetPort: 5201

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/ipf-svc.yaml

service/iperf-server created

The Service picks up all three Pods:

root@host01:~# kubectl get ep iperf-server

NAME ENDPOINTS ...

iperf-server 172.31.239.207:5201,172.31.25.214:5201,172.31.89.206:5201 ...

The ep is short for endpoints. Each Service has an associated Endpoint
object that records the current Pods that are receiving traffic for the Service.

Affinity
We’re now ready to deploy our iperf3 client to use these server instances.
We would like to distribute the clients to each node in the same way, but we
want to make sure that each client is deployed to a node that has a server
instance. To do this, we’ll use both an affinity and an antiaffinity rule:

ipf-client.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

name: iperf

spec:

replicas: 3

selector:

matchLabels:

app: iperf

template:

metadata:

labels:
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app: iperf

spec:

affinity:

podAntiAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: app

operator: In

values:

- iperf

topologyKey: "kubernetes.io/hostname"

¶ podAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: app

operator: In

values:

- iperf-server

topologyKey: "kubernetes.io/hostname"

containers:

- name: iperf

image: bookofkubernetes/iperf3:stable

The additional podAffinity rule ¶ ensures that each client instance is
deployed to a node only if a server instance is already present. The fields in
an affinity rule work the same way as an antiaffinity rule.

Let’s deploy the client instances:

root@host01:~# kubectl apply -f /opt/ipf-client.yaml

deployment.apps/iperf created

After these Pods are running, we can see that they have also been dis
tributed across all three nodes in the cluster:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... NODE ...

iperf-c8d4566f-btppf 1/1 Running ... host02 ...

iperf-c8d4566f-s6rpn 1/1 Running ... host03 ...

iperf-c8d4566f-v9v8m 1/1 Running ... host01 ...

...

It may seem like we’ve deployed our iperf3 client and server in a way that
enables each client to talk to its local server instance, maximizing the band
width between client and server. However, that’s not actually the case. Be
cause the iperf-server Service is configured with all three Pods, each client
Pod is connecting to a random server. As a result, our clients may not be
have correctly. You might see logs indicating that a client is able to connect
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to a server, but you might also see client Pods in the Error or CrashLoopBackOff
state, with log output like this:

root@host01:~# kubectl logs iperf-c8d4566f-v9v8m

iperf3: error - the server is busy running a test. try again later

iperf3 error - exiting

This indicates that a client is connecting to a server that already has a
client connected, which means that we must have at least two clients using
the same server.

Service Traffic Routing
We would like to configure our client Pods with the ability to access the local
server Pod we deployed rather than a server Pod on a different node. Let’s
start by confirming that traffic is being routed randomly across all three
server Pods. We can examine the iptables rules created by kube-proxy for this
Service:

root@host01:~# iptables-save | grep iperf-server

...

-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"

-m statistic --mode random --probability 0.33333333349 -j KUBE-SEP-IGBNNG5F5VCPRRWI

-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"

-m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-FDPADR4LUNHDJSPL

-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"

-j KUBE-SEP-TZDPKVKUEZYBFM3V

We’re running this command on host01, and we see that there are three
separate iptables rules, with a random selection of the destination. This
means that the iperf3 client on host01 could potentially be routed to any
server Pod.

To fix that, we need to change the internal traffic policy configuration
of our Service. By default, the policy is Cluster, indicating that all Pods in
the cluster are valid destinations. We can change the policy to Local, which
restricts the Service to route only to Pods on the same node.

Let’s patch the Service to change this policy:

root@host01:~# kubectl patch svc iperf-server -p '{"spec":{"internalTrafficPolicy":"Local"}}'

service/iperf-server patched

The change takes effect immediately, as we can see by looking at the
iptables rules again:

root@host01:~# iptables-save | grep iperf-server

...

-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server" \

-j KUBE-SEP-IGBNNG5F5VCPRRWI
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This time, only one possible destination is configured on host01, as there
is only one local Pod instance for this Service.

After a few minutes, the iperf3 clients now show the kind of output we
expect to see:

root@host01:~# kubectl logs iperf-c8d4566f-btppf

Connecting to host iperf-server, port 5201

...

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 8.67 GBytes 7.45 Gbits/sec 1250 sender

[ 5] 0.00-10.00 sec 8.67 GBytes 7.45 Gbits/sec receiver

...

Not only are all of the clients able to connect to a unique server, but the
performance is consistently high as the network connection is local to each
node.

Before we go further, let’s clean up these resources:

root@host01:~# kubectl delete svc/iperf-server deploy/iperf deploy/iperf-server

service "iperf-server" deleted

deployment.apps "iperf" deleted

deployment.apps "iperf-server" deleted

Although the Local internal traffic policy is useful for maximizing band
width between client and server, it has a major limitation. If a node does not
contain a healthy Pod instance, clients on that node will not be able to ac
cess the Service at all, even if there are healthy instances on other nodes. It
is critical when using this design pattern to also configure a readiness probe,
as described in Chapter 13, that checks not only the Pod itself but also its
Service dependencies. This way, if a Service is inaccessible on a particular
node, the client on that node will also report itself to be unhealthy so that
no traffic will be routed to it.

The affinity and antiaffinity capabilities we’ve seen allows us to give
hints to the scheduler without losing the scalability and resilience we want
for our application components. However, even though it might be tempt
ing to use these features whenever we have closely connected components in
our application architecture, it’s probably best to allow the scheduler to work
unhindered and add affinity only for cases in which real performance testing
shows that it makes a significant difference.

Service routing for improved performance is an active area of devel
opment in Kubernetes. For clusters running across multiple zones, a new
feature called Topology Aware Hints can enable Kubernetes to route con
nections to Services to the closest instances wherever possible, improving
network performance while still allowing crosszone traffic where necessary.
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Hardware Resources
Affinity and antiaffinity allow us to control where Pods are scheduled but
should be used only if necessary. But what about cases for which a Pod needs
access to some specialized hardware that is available only on some nodes?
For example, we might have processing that would benefit from a graphics
processing unit (GPU), but we might limit the number of GPU nodes in the
cluster to reduce cost. In that case, it is absolutely necessary to ensure that
the Pod is scheduled in the right place.

As before, we could tie our Pod directly to a node using nodeName. But we
might have many nodes in our cluster with the right hardware, so what we
really want is to be able to tell Kubernetes about the requirement and then
let the scheduler decide how to satisfy it.

Kubernetes provides two related methods to address this need: device
plugins and extended resources. A device plugin provides the most com
plete functionality, but the plugin itself must exist for the hardware device.
Meanwhile, extended resources can be used for any hardware device, but the
Kubernetes cluster only tracks allocation of the resource; it doesn’t actually
manage its availability in the container.

Implementing a device plugin requires close collaboration with kubelet.
Similar to the storage plugin architecture we saw in Chapter 15, a device
plugin registers itself with the kubelet instance running on a node, identify
ing any devices it manages. Pods identify any devices they require, and the
device manager tells kubelet how to make the device available inside the con
tainer (typically by mounting the device from the host into the container’s
filesystem).

Because we’re operating in a virtualized example cluster, we don’t have
any specialized hardware to demonstrate a device plugin, but an extended
resource works identically from an allocation standpoint, so we can still get a
feel for the overall approach.

Let’s begin by updating the cluster to indicate that one of the nodes has
an example extended resource. We do this by patching the status for the
node. Ideally, we could do this with kubectl patch, but unfortunately it’s not
possible to update the status of a resource with that command, so we’re re
duced to using curl to call the Kubernetes API directly. The /opt directory
has a script to make this easy. Listing 181 presents the relevant part.

add-hw.sh #!/bin/bash

...

patch='

[

{

"op": "add",

"path": "/status/capacity/bookofkubernetes.com~1special-hw",

"value": "3"

}

]

'
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curl --cacert $ca --cert $cert --key $key \

-H "Content-Type: application/json-patch+json" \

-X PATCH -d "$patch" \

https://192.168.61.10:6443/api/v1/nodes/host02/status

...

Listing 18-1: Special hardware script

This curl command sends a JSON patch object to update the status field
for the node, adding an entry called bookofkubernetes.com/special-hw under
capacity. The ~1 acts as a slash character.

Run the script to update the node:

root@host01:~# /opt/add-hw.sh

...

The response from the API server includes the entire Node resource.
Let’s doublecheck just the field we care about to make sure it applied:

root@host01:~# kubectl get node host02 -o json | jq .status.capacity

{

"bookofkubernetes.com/special-hw": "3",

"cpu": "2",

"ephemeral-storage": "40593612Ki",

"hugepages-2Mi": "0",

"memory": "2035228Ki",

"pods": "110"

}

The extended resource shows up alongside the standard resources for
the node. We can now request this resource similar to how we request stan
dard resources, as we saw in Chapter 14.

Here’s a Pod that requests the special hardware:

hw.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: sleep

spec:

containers:

- name: sleep

image: busybox

command: ["/bin/sleep", "infinity"]

resources:

limits:

bookofkubernetes.com/special-hw: 1
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We specify the requirement for the special hardware using the resources

field. The resource is either allocated or not allocated; thus, there’s no dis
tinction between requests and limits, so Kubernetes expects us to specify it
using limits. When we apply this to the cluster, the Kubernetes scheduler
will ensure that this Pod runs on a node that can meet this requirement:

root@host01:~# kubectl apply -f /opt/hw.yaml

pod/sleep created

As a result, the Pod ends up on host02:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... NODE ...

sleep 1/1 Running ... host02 ...

Additionally, the node status now reflects an allocation for this extended
resource:

root@host01:~# kubectl describe node host02

Name: host02

...

Allocated resources:

...

Resource Requests Limits

-------- -------- ------

...

bookofkubernetes.com/special-hw 1 1

...

Both the available quantity of three special-hw that we specified when
we added the extended resource in Listing 181 and the allocation of that re
source to our Pod are arbitrary. The extended resource acts like a semaphore
in preventing too many users from using the same resource, but we would
need to add additional processing to deconflict multiple users if we really
had three separate special hardware devices on the same node.

If we do try to overallocate based on what we specified is available, the
Pod won’t be scheduled. We can confirm this if we try to add another Pod
that needs all three of our special hardware devices:

hw3.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: sleep3

spec:

containers:

- name: sleep

image: busybox

command: ["/bin/sleep", "infinity"]

resources:
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limits:

bookofkubernetes.com/special-hw: 3

Let’s try to add this Pod to the cluster:

root@host01:~# kubectl apply -f /opt/hw3.yaml

pod/sleep created

Because there aren’t enough special hardware devices available, this Pod
stays in the Pending state:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... NODE ...

sleep 1/1 Running ... host02 ...

sleep3 0/1 Pending ... <none> ...

The Pod will wait for the hardware to be available. Let’s delete our origi
nal Pod to free up room:

root@host01:~# kubectl delete pod sleep

pod/sleep deleted

Our new Pod will now start running:

root@host01:~# kubectl get po -o wide

NAME READY STATUS ... NODE ...

sleep3 1/1 Running ... host02 ...

As before, the Pod was scheduled onto host02 because of the special
hardware requirement.

Device drivers work identically from an allocation standpoint. In both
cases, we use the limits field to identify our hardware requirements. The
only difference is that we don’t need to patch the node manually to record
the resource, because kubelet updates the node’s status automatically when
the device driver registers. Additionally, kubelet invokes the device driver to
perform any necessary allocation and configuration of the hardware when a
container is created.

Final Thoughts
Unlike ideal applications, in the real world we often must deal with closely
coupled application components and the need for specialized hardware. It’s
critical that we account for those application requirements without losing
the flexibility and resiliency that we gain from deploying our application
to a Kubernetes cluster. In this chapter, we’ve seen how affinity and device
drivers allow us to provide hints and resource requirements to the sched
uler while still allowing it the flexibility to manage the application at scale
dynamically.
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Scheduling is not the only concern we might have as we consider how to
obtain the desired behavior and performance from realworld applications.
In the next chapter, we’ll see how we can shape the processing and memory
allocation for our Pods through the use of qualityofservice classes.
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TUN ING QUAL I TY OF SERV ICE

Ideally, our applications would use mini
mal or highly predictable processing, mem
ory, storage, and network resources. In the

real world, though, applications are “bursty,”
with changes in load driven by user demand, large
amounts of data, or complex processing. In a Kuber
netes cluster, where application components are de
ployed dynamically to various nodes in the cluster,
uneven distribution of load across those nodes can
cause performance bottlenecks.

From an application architecture standpoint, the more we can make
the application components small and scalable, the more we can evenly dis
tribute load across the cluster. Unfortunately, it’s not always possible to solve
performance issues with horizontal scaling. In this chapter, we’ll look at
how we can use resource specifications to provide hints to the cluster about
how to schedule our Pods, with the goal of making application performance
more predictable.



Achieving Predictability
In normal, everyday language, the term real time has the sense of something
that happens quickly and continuously. But in computer science, we make
a distinction between real time and real fast to such a degree that they are
thought of as opposites. This is due to the importance of predictability.

Realtime processing is simply processing that needs to keep up with
some activity that is happening in the real world. It could be anything from
airplane cockpit software that needs to keep up with sensor data input and
maintain uptodate electronic flight displays, to a video streaming applica
tion that needs to receive and decode each frame of video in time to display
it. In realtime systems, it is critical that we can guarantee that processing
will be “fast enough” to keep up with the realworld requirement.

Fast enough is all we need. It’s not necessary for the processing to go
any faster than the real world, as there isn’t anything else for the application
to do. But even a single time interval when the processing is slower than the
real world means we fall behind our inputs or outputs, leading to annoyed
movie watchers—or even to crashed airplanes.

For this reason, the main goal in realtime systems is predictability. Re
sources are allocated based on the worstcase scenario the system will en
counter, and we’re willing to provide significantly more processing than
necessary to have plenty of margin on that worst case. Indeed, it’s common
to require these types of systems to stay under 50 percent utilization of the
available processing and memory, even at maximum expected load.

But whereas responsiveness is always important, most applications don’t
operate in a realtime environment, and this additional resource margin is
expensive. For that reason, most systems try to find a balance between pre
dictability and efficiency, which means that we are often willing to tolerate a
bit of slower performance from our application components as long as it is
temporary.

Quality of Service Classes
To help us balance predictability and efficiency for the containers in a clus
ter, Kubernetes allocates Pods to one of three different Quality of Service
classes: BestEffort, Burstable, and Guaranteed. In a way, we can think of these
as descriptive. BestEffort is used when we don’t provide Kubernetes with
any resource requirements, and it can only do its best to provide enough re
sources for the Pod. Burstable is used when a Pod might exceed its resource
request. Guaranteed is used when we provide consistent resource require
ments and our Pod is expected to stay within them. Because these classes
are descriptive and are based solely on how the containers in the Pod spec
ify their resource requirements, there is no way to specify the QoS for a Pod
manually.

The QoS class is used in two ways. First, Pods in a QoS class are grouped
together for Linux control groups (cgroups) configuration. As we saw in
Chapter 3, cgroups are used to control resource utilization, especially pro
cessing and memory, for a group of processes, so a Pod’s cgroup affects its
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priority in use of processing time when the system load is high. Second, if
the node needs to start evicting Pods due to lack of memory resources, the
QoS class affects which Pods are evicted first.

BestEffort
The simplest case is one in which we declare a Pod with no limits. In that
case, the Pod is assigned to the BestEffort class. Let’s create an example Pod
to explore what that means.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Here’s the Pod definition:

best-effort.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: best-effort

spec:

containers:

- name: best-effort

image: busybox

command: ["/bin/sleep", "infinity"]

nodeName: host01

This definition includes no resources field at all, but the QoS class would
be the same if we included a resources field with requests but no limits.

We use nodeName to force this Pod onto host01 so that we can observe how
its resource use is configured. Let’s apply it to to the cluster:

root@host01:~# kubectl apply -f /opt/best-effort.yaml

pod/best-effort created

After the Pod is running, we can look at its details to see that it has been
allocated to the BestEffort QoS class:

root@host01:~# kubectl get po best-effort -o json | jq .status.qosClass

"BestEffort"

We can use the cgroup-info script we saw in Chapter 14 to see how the
QoS class affects the cgroup configuration for containers in the Pod:

root@host01:~# /opt/cgroup-info best-effort

Container Runtime

-----------------

Pod ID: 205...
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Cgroup path: /kubepods.slice/kubepods-besteffort.slice/kubepods-...

CPU Settings

------------

CPU Shares: 2

CPU Quota (us): -1 per 100000

Memory Settings

---------------

Limit (bytes): 9223372036854771712

The Pod is effectively unlimited in CPU and memory usage. However,
the Pod’s cgroup is under the kubepodsbesteffort.slice path, reflecting its allo
cation to the BestEffort QoS class. This allocation has an immediate effect
on its CPU priority, as we can see when we compare the cpu.shares allocated
to the BestEffort class compared to the Burstable class:

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-besteffort.slice/cpu.shares

2

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-burstable.slice/cpu.shares

1157

As we saw in Chapter 14, these values are relative, so this configura
tion means that when our system’s processing load is high, containers in
Burstable Pods are going to be allocated more than 500 times the processor
share that containers in BestEffort Pods receive. This value is based on the
number of Pods that are already in the BestEffort and Burstable QoS classes,
including the various cluster infrastructure components already running on
host01, thus you might see a slightly different value.

The kubepods.slice cgroup sits at the same level as cgroups for user and
system processes, so when the system is loaded it gets an approximately
equal share of processing time as those other cgroups. Based on the cpu
.shares identified within the kubepods.slice cgroup, BestEffort Pods are receiv
ing less than 1 percent of the total share of processing compared to Burstable

Pods, even without considering any processor time allocated to Guaranteed

Pods. This means that BestEffort Pods receive almost no processor time
when the system is loaded, so they should be used only for background pro
cessing that can run when the cluster is idle. In addition, because Pods are
placed in the BestEffort class only if they have no limits specified, they can
not be created in a Namespace with limit quotas. So most of our application
Pods will be in one of the other two QoS classes.

Burstable
Pods are placed in the Burstable class if they specify both requests and limits

and if those two specifications are different. As we saw in Chapter 14, the
requests specification is used for scheduling purposes, whereas the limits

specification is used for runtime enforcement. In other words, Pods in this
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situation can have “bursts” of resource utilization above their requests level,
but they cannot exceed their limits.

Let’s look at an example:

burstable.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: burstable

spec:

containers:

- name: burstable

image: busybox

command: ["/bin/sleep", "infinity"]

resources:

requests:

memory: "64Mi"

cpu: "50m"

limits:

memory: "128Mi"

cpu: "100m"

nodeName: host01

This Pod definition supplies both requests and limits resource require
ments, and they are different, so we should expect this Pod to be placed in
the Burstable class.

Let’s apply this Pod to the cluster:

root@host01:~# kubectl apply -f /opt/burstable.yaml

pod/burstable created

Next, let’s verify that it was assigned to the Burstable QoS class:

root@host01:~# kubectl get po burstable -o json | jq .status.qosClass

"Burstable"

Indeed, the cgroup configuration follows the QoS class and the limits

we specified:

root@host01:~# /opt/cgroup-info burstable

Container Runtime

-----------------

Pod ID: 8d0...

Cgroup path: /kubepods.slice/kubepods-burstable.slice/kubepods-...

CPU Settings

------------

CPU Shares: 51

CPU Quota (us): 10000 per 100000

Tuning Quality of Service 313



Memory Settings

---------------

Limit (bytes): 134217728

The limits specified for this Pod were used to set both a CPU limit and a
memory limit. Also, as we expect, this Pod’s cgroup is placed within kubepods
burstable.slice.

Adding another Pod to the Burstable QoS class has caused Kubernetes to
rebalance the allocation of processor time:

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-besteffort.slice/cpu.shares

2

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-burstable.slice/cpu.shares

1413

The result is that Pods in the Burstable QoS class now show a value of
1413 for cpu.shares, whereas Pods in the BestEffort class still show 2. This
means that the relative processor share under load is now 700 to 1 in favor
of Pods in the Burstable class. Again, you may see slightly different values
based on how many infrastructure Pods Kubernetes has allocated to host01.

Because Burstable Pods are scheduled based on requests but cgroup run
time enforcement is based on limits, a node’s processor and memory re
sources can be overcommitted. It works fine as long as the Pods on a node
balance out one another so that the average utilization matches the requests.
It becomes a problem if the average utilization exceeds the requests. In that
case, Pods will see their CPU throttled and may even be evicted if memory
becomes scarce, as we saw in Chapter 10.

Guaranteed
If we want to increase predictability for the processing and memory available
to a Pod, we can place it in the Guaranteed QoS class by giving the requests

and limits equal settings. Here’s an example:

guaranteed.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: guaranteed

spec:

containers:

- name: guaranteed

image: busybox

command: ["/bin/sleep", "infinity"]

resources:

limits:

memory: "64Mi"
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cpu: "50m"

nodeName: host01

In this example, only limits is specified given that Kubernetes automati
cally sets the requests to match the limits if requests is missing.

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/guaranteed.yaml

pod/guaranteed created

After the Pod is running, verify the QoS class:

root@host01:~# kubectl get po guaranteed -o json | jq .status.qosClass

"Guaranteed"

The cgroups configuration looks a little different:

root@host01:~# /opt/cgroup-info guaranteed

Container Runtime

-----------------

Pod ID: 146...

Cgroup path: /kubepods.slice/kubepods-...

CPU Settings

------------

CPU Shares: 51

CPU Quota (us): 5000 per 100000

Memory Settings

---------------

Limit (bytes): 67108864

Rather than place these containers into a separate directory, contain
ers in the Guaranteed QoS class are placed directly in kubepods.slice. Putting
them in this location has the effect of privileging containers in Guaranteed

Pods when the system is loaded because those containers receive their CPU
shares individually rather than as a class.

QoS Class Eviction
The privileged treatment of Pods in the Guaranteed QoS class extends to Pod
eviction as well. As described in Chapter 3, cgroup enforcement of mem
ory limits is handled by the OOM killer. The OOM killer also runs when a
node is completely out of memory. To help the OOM killer choose which
containers to terminate, Kubernetes sets the oom_score_adj parameter based
on the QoS class of the Pod. This parameter can have a value from –1000 to
1000. The higher the number, the more likely the OOM killer will choose a
process to be killed.
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The oom_score_adj value is recorded in /proc for each process. The au
tomation has added a script called oominfo to retrieve it for a given Pod.
Let’s check the values for the Pods in each QoS class:

root@host01:~# /opt/oom-info best-effort

OOM Score Adjustment: 1000

root@host01:~# /opt/oom-info burstable

OOM Score Adjustment: 968

root@host01:~# /opt/oom-info guaranteed

OOM Score Adjustment: -997

Pods in the BestEffort QoS class have the maximum adjustment of 1000,
so they would be targeted first by the OOM killer. Pods in the Burstable QoS
class have a score calculated based on the amount of memory specified in
the requests field, as a percentage of the node’s total memory capacity. This
value will therefore be different for every Pod but will always be between
2 and 999. Thus, Pods in the Burstable QoS class will always be second in
priority for the OOM killer. Meanwhile, Pods in the Guaranteed QoS class are
set close to the minimum value, in this case –997, so they are protected from
the OOM killer as much as possible.

Of course, as mentioned in Chapter 3, the OOM killer terminates a pro
cess immediately, so it is an extreme measure. When memory on a node
is low but not yet exhausted, Kubernetes attempts to evict Pods to reclaim
memory. This eviction is also prioritized based on the QoS class. Pods in
the BestEffort class and Pods in the Burstable class that are using more than
their requests value (highuse Burstable) are the first to be evicted, followed
by Pods in the Burstable class that are using less than their requests value
(lowuse Burstable) and Pods in the Guaranteed class.

Before moving on, let’s do some cleanup:

root@host01:~# kubectl delete po/best-effort po/burstable po/guaranteed

pod "best-effort" deleted

pod "burstable" deleted

pod "guaranteed" deleted

Now we can have a fresh start when we look at Pod priorities later in this
chapter.

Choosing a QoS Class
Given this prioritization in processing time and eviction priority, it might
be tempting to place all Pods in the Guaranteed QoS class. And there are ap
plication components for which this is a viable strategy. As described in
Chapter 7, we can configure a HorizontalPodAutoscaler to make new Pod
instances automatically if the existing instances are consuming a significant
percentage of their allocated resources. This means that we can request a
reasonable limits value for Pods in a Deployment and allow the cluster to au
tomatically scale the Deployment if we’re getting too close to the limit across
those Pods. If the cluster is running in a cloud environment, we can even
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extend autoscaling to the node level, dynamically creating new cluster
nodes when load is high and reducing the number of nodes when the
cluster is idle.

Using only Guaranteed Pods together with autoscaling sounds great, but
it assumes that our application components are easily scalable. It also only
works well when our application load consists of many small requests, so
that an increase in load primarily means we are handing similarsized re
quests from more users. If we have application components that period
ically handle large or complex requests, we must set the limits for those
components to accommodate the worstcase scenario. Given that Pods in
the Guaranteed QoS class have requests equal to limits, our cluster will need
enough resources to handle this worstcase scenario, or we won’t even be
able to schedule our Pods. This results in a cluster that is largely idle unless
the system is under its maximum load. Similarly, if we have scalability limita
tions such as dependency on specialized hardware, we might have a natural
limit on the number of Pods we can create for a component, forcing each
Pod to have more resources to handle its share of the overall load.

For this reason, it makes sense to balance the use of the Guaranteed and
Burstable QoS classes for our Pods. Any Pods that have consistent load, or
that can feasibly be scaled horizontally to meet additional demand, should
be in the Guaranteed class. Pods that are harder to scale, or need to handle
a mix of large and small workloads, should be in the Burstable class. These
Pods should specify their requests based on their average utilization, and
specify limits based on their worstcase scenario. Specifying resource re
quirements in this way will ensure that the cluster’s expected performance
margin can be monitored by simply comparing the allocated resources to
the cluster capacity. Finally, if a large request causes multiple application
components to run at their worstcase utilization simultaneously, it may be
worth running performance tests and exploring antiaffinity, as described in
Chapter 18, to avoid overloading a single node.

Pod Priority
In addition to using hints to help the Kubernetes cluster understand how
to manage Pods when the system is highly loaded, it is possible to tell the
cluster directly to give some Pods a higher priority than others. This higher
priority applies during Pod eviction, as Pods will be evicted in priority order
within their QoS class. It also applies during scheduling because the Kuber
netes scheduler will evict Pods if necessary to be able to schedule a higher
priority Pod.

Pod priority is a simple numeric field; higher numbers are higher prior
ity. Numbers greater than one billion are reserved for critical system Pods.
To assign a priority to a Pod, we must create a PriorityClass resource first.
Here’s an example:

essential.yaml ---

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass
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metadata:

name: essential

value: 999999

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/essential.yaml

priorityclass.scheduling.k8s.io/essential created

Now that this PriorityClass has been defined, we can apply it to Pods.
However, let’s first create a large number of lowpriority Pods through which
we can see Pods being preempted. We’ll use this Deployment:

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: lots

spec:

replicas: 1000

selector:

matchLabels:

app: lots

template:

metadata:

labels:

app: lots

spec:

containers:

- name: sleep

image: busybox

command: ["/bin/sleep", "infinity"]

resources:

limits:

memory: "64Mi"

cpu: "250m"

This is a basic Deployment that runs sleep and doesn’t request very
much memory or CPU, but it does set replicas to 1000, so we’re asking our
Kubernetes cluster to create 1,000 Pods. The example cluster isn’t large
enough to deploy 1,000 Pods, both because we don’t have sufficient resources
to meet the specification and because a node is limited to 110 Pods by de
fault. Still, let’s apply it to the cluster, as shown in Listing 191, and the sched
uler will create as many Pods as it can:

root@host01:~# kubectl apply -f /opt/lots.yaml

deployment.apps/lots created

Listing 19-1: Deploy lots of Pods
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Let’s describe the Deployment to see how things are going:

root@host01:~# kubectl describe deploy lots

Name: lots

Namespace: default

...

Replicas: 1000 desired ... | 7 available | 993 unavailable

...

We managed to get only seven Pods in our example cluster, given the
number of Pods already running for cluster infrastructure components. Un
fortunately, that’s all the Pods we’ll get:

root@host01:~# kubectl describe node host01

Name: host01

(Total limits may be over 100 percent, i.e., overcommitted.)

Allocated resources:

...

Resource Requests Limits

-------- -------- ------

cpu ¶ 1898m (94%) 768m (38%)

memory 292Mi (15%) 192Mi (10%)

ephemeral-storage 0 (0%) 0 (0%)

hugepages-2Mi 0 (0%) 0 (0%)

...

The data for host01 shows that we’ve allocated 94 percent of the avail
able CPU ¶. But each of our Pods is requesting 250 millicores, so there isn’t
enough capacity remaining to schedule another Pod on this node. The other
two nodes are in a similar situation, with insufficient CPU room to schedule
any more Pods. Still, the cluster is performing just fine. We’ve theoretically
allocated all of the processing power, but those containers are just running
sleep, and as such, they aren’t actually using much CPU.

Also, it’s important to remember that the requests field is used for sched
uling, so even though we have a number of infrastructure BestEffort Pods
that specify requests but no limits and we have plenty of Limits capacity on
this node, we still don’t have any room for scheduling new Pods. Only Limits

can be overcommitted, not Requests.
Because we have no more CPU to allocate to Pods, the rest of the Pods

in our Deployment are stuck in a Pending state:

root@host01:~# kubectl get po | grep -c Pending

993

All 993 of these Pods have the default pod priority of 0. As a result,
when we create a new Pod using the essential PriorityClass, it will jump to
the front of the scheduling queue. Not only that, but the cluster will evict
Pods as necessary to enable it to be scheduled.
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Here’s the Pod definition:

needed.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: needed

spec:

containers:

- name: needed

image: busybox

command: ["/bin/sleep", "infinity"]

resources:

limits:

memory: "64Mi"

cpu: "250m"

priorityClassName: essential

The key difference here is the specification of the priorityClassName,
matching the PriorityClass we created. Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/needed.yaml

pod/needed created

It will take the cluster a little time to evict another Pod so that this one
can be scheduled, but after a minute or so it will start running:

root@host01:~# kubectl get po needed

NAME READY STATUS RESTARTS AGE

needed 1/1 Running 0 36s

To allow this to happen, one of the Pods from the lots Deployment we
created in Listing 191 had to be evicted:

root@host01:~# kubectl describe deploy lots

Name: lots

Namespace: default

CreationTimestamp: Fri, 01 Apr 2022 19:20:52 +0000

Labels: <none>

Annotations: deployment.kubernetes.io/revision: 1

Selector: app=lots

Replicas: 1000 desired ... | ¶ 6 available | 994 unavailable

We’re now down to only six Pods available in the Deployment ¶, as one
Pod was evicted. It’s worth noting that being in the Guaranteed QoS class did
not prevent this Pod from being evicted. The Guaranteed QoS class gets prior
ity for evictions caused by node resource usage, but not for eviction caused
by the scheduler finding room for a higherpriority Pod.
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Of course, the ability to specify a higher priority for a Pod, resulting in
the eviction of other Pods, is powerful and should be used sparingly. Nor
mal users do not have the ability to create a new PriorityClass, and adminis
trators can apply a quota to limit the use of a PriorityClass in a given Name
space, effectively limiting normal users from creating highpriority Pods.

Final Thoughts
Deploying an application to Kubernetes so that it is performant and reliable
requires an understanding of the application architecture and of the nor
mal and worstcase load for each component. Kubernetes QoS classes allow
us to shape the way that Pods are deployed to nodes to achieve a balance of
predictability and efficiency in the use of resources. Additionally, both QoS
classes and Pod priorities allow us to provide hints to the Kubernetes cluster
so the deployed applications degrade gracefully as the load on the cluster
becomes too high.

In the next chapter, we’ll bring together the ideas we’ve seen on how to
best use the features of a Kubernetes cluster to deploy performant, resilient
applications. We’ll also explore how we can monitor those applications and
respond automatically to changes in behavior.
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20
APPL ICAT ION RES IL IENCY

Over the course of this book, we’ve seen
how containers and Kubernetes enable scal
able, resilient applications. Using contain

ers, we can encapsulate application components
so that processes are isolated from one another, have
separate virtualized network stacks, and a separate file
system. Each container can then be rapidly deployed
without interfering with other containers. When we
add Kubernetes as a container orchestration layer on
top of the container runtime, we are able to include
many separate hosts into a single cluster, dynamically
scheduling containers across available cluster nodes
with automatic scaling and failover, distributed net
working, traffic routing, storage, and configuration.

All of the container and Kubernetes features we’ve seen in this book
work together to provide the necessary infrastructure to deploy scalable, re
silient applications, but it’s up to us to configure our applications correctly
to take advantage of what the infrastructure provides. In this chapter, we’ll
take another look at the todo application we deployed in Chapter 1. This



time, however, we’ll deploy it across multiple nodes in a Kubernetes cluster,
eliminating single points of failure and taking advantage of the key features
that Kubernetes has to offer. We’ll also explore how to monitor the perfor
mance of our Kubernetes cluster and our deployed application so that we
can identify performance issues before they lead to downtime for our users.

Example Application Stack
In Chapter 1, we deployed todo onto a Kubernetes cluster running k3s from
Rancher. We already had some amount of scalability and failover available.
The web layer was based on a Deployment, so we were able to scale the num
ber of server instances with a single command. Our Kubernetes cluster was
monitoring those instances so failed instances could be replaced. However,
we still had some single points of failure. We had not yet introduced the idea
of a highly available Kubernetes control plane, so we chose to run k3s only
in a singlenode configuration. Additionally, even though we used a Deploy
ment for our PostgreSQL database, it was lacking in any of the necessary
configuration for high availability. In this chapter, we’ll see the details nec
essary to correct those limitations, and we’ll also take advantage of the many
other Kubernetes features we’ve learned.

Database
Let’s begin by deploying a highly available PostgreSQL database. Chapter 17
demonstrated how the Kubernetes Operator design pattern uses Custom
ResourceDefinitions to extend the behavior of a cluster, making it easy to
package and deploy advanced functionality. We’ll use the Postgres Operator
we introduced in that chapter to deploy our database.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on getting
set up. This chapter uses a larger sixnode cluster to provide room for the application
and all the monitoring components that we’ll be deploying. See the README.md
file for this chapter for more information.

The automation for this chapter has already deployed the Postgres Op
erator together with its configuration. You can inspect the Postgres Opera
tor and its configuration by looking at the files in /etc/kubernetes/components.
The operator is running in the todo Namespace, where the todo application
is also deployed. Many operators prefer to run in their own Namespace and
operate across the cluster, but the Postgres Operator is designed to be de
ployed directly into the Namespace where the database will reside.

Because we’re using the Postgres Operator, we can create a highly avail
able PostgreSQL database by applying a custom resource to the cluster:

database.yaml ---

apiVersion: "acid.zalan.do/v1"

kind: postgresql
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metadata:

¶ name: todo-db

spec:

teamId: todo

volume:

size: 1Gi

storageClass: longhorn

· numberOfInstances: 3

users:

¸ todo:

- superuser

- createdb

databases:

¹ todo: todo

postgresql:

version: "14"

All of the files shown in this walkthrough have been staged to the /etc/
kubernetes/todo directory so that you can explore them and experiment with
changes. The todo application is automatically deployed, but it can take sev
eral minutes for all the components to reach a healthy state.

The Postgres Operator has the job of creating the Secrets, StatefulSets,
Services, and other core Kubernetes resources needed to deploy PostgreSQL.
We’re only required to supply the configuration it should use. We start by
identifying the name for this database, todo-db ¶, which will be used as the
name of the primary Service that we’ll use to connect to the primary database
instance, so we’ll see this name again in the application configuration.

We want a highly available database, so let’s specify three instances ·.
We also ask the Postgres Operator to create a todo user ¸ and to create a todo

database with the todo user as the owner ¹. This way, our database is already
set up and we only need to populate the tables to store the application data.

We can verify that the database is running in the cluster:

root@host01:~# kubectl -n todo get sts

NAME READY AGE

todo-db 3/3 6m1s

The todo-db StatefulSet has three Pods, all of which are ready.
Because the Postgres Operator is using a StatefulSet, as we saw in Chap

ter 15, a PersistentVolumeClaim is allocated for the database instances as
they are created:

root@host01:~# kubectl -n todo get pvc

NAME STATUS ... CAPACITY ACCESS MODES STORAGECLASS AGE

pgdata-todo-db-0 Bound ... 1Gi RWO longhorn 10m

pgdata-todo-db-1 Bound ... 1Gi RWO longhorn 8m44s

pgdata-todo-db-2 Bound ... 1Gi RWO longhorn 7m23s
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These PersistentVolumeClaims will be reused if one of the database in
stance Pods fails and must be recreated, and the Longhorn storage engine
is distributing its storage across our entire cluster, so the database will retain
the application data even if we have a node failure.

Note that when we requested the Postgres Operator to create a todo

user, we didn’t specify a password. For security, the Postgres Operator auto
matically generates a password. This password is placed into a Secret based
on the name of the user and the name of the database. We can see the Se
cret created for the todo user:

root@host01:~# kubectl -n todo get secret

NAME TYPE DATA AGE

...

todo.todo-db.credentials.postgresql.acid.zalan.do Opaque 2 8m30s

We’ll need to use this information to configure the application so that it
can authenticate to the database.

Before we look at the application configuration, let’s inspect the Service
that the Postgres Operator created:

root@host01:~# kubectl -n todo get svc todo-db

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

todo-db ClusterIP 10.110.227.34 <none> 5432/TCP 59m

This is a ClusterIP Service, meaning that it is reachable from anywhere
inside the cluster but is not externally exposed. That matches perfectly with
what we want for our application, as our web service component is the only
userfacing component and thus the only one that will be exposed outside
the cluster.

Application Deployment
All of our application’s data is in the PostgreSQL database, so the web server
layer is stateless. For this stateless component, we’ll use a Deployment and
set up automatic scaling.

The Deployment has a lot of information, so let’s look at it step by step.
To see the entire Deployment configuration and get a sense of how it all fits
together, you can look at the file /etc/kubernetes/todo/application.yaml on any
of the cluster nodes.

The first section tells Kubernetes that we’re creating a Deployment:

---

kind: Deployment

apiVersion: apps/v1

metadata:

name: todo

labels:

app: todo
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This part is simple because we’re only specifying the metadata for the
Deployment. Note that we don’t include the namespace in the metadata. In
stead, we provide it to Kubernetes directly when we apply this Deployment
to the cluster. This way, we can reuse the same Deployment YAML for devel
opment, test, and production versions of this application, keeping each in a
separate Namespace to avoid conflict.

The label field is purely informational, though it also provides a way for
us to query the cluster for all of the resources associated with this applica
tion by matching on the label.

The next part of the Deployment YAML specifies how the cluster should
handle updates:

spec:

replicas: 3

strategy:

type: RollingUpdate

rollingUpdate:

maxUnavailable: 30%

maxSurge: 50%

The replicas field tells Kubernetes how many instances to create initially.
The autoscaling configuration will automatically adjust this.

The strategy field allows us to configure this Deployment for updates
without any application downtime. We can choose either RollingUpdate or
Recreate as a strategy. With Recreate, when the Deployment changes, all of
the existing Pods are terminated, and then the new Pods are created. With
RollingUpdate, new Pods are immediately created, and old Pods are kept run
ning to ensure that this application component can continue functioning
while it is updated.

We can control how the rolling update operates using the maxUnavailable

and maxSurge fields, which we can specify either as integer numbers or as a
percentage of the current number of replicas. In this case, we specified 30
percent for maxUnavailable, so the Deployment will throttle the rolling update
process to prevent us from falling below 70 percent of the current number
of replicas. Additionally, because we set maxSurge at 50 percent, the Deploy
ment will immediately start new Pods until the number of Pods that are run
ning or in the creation process reaches 150 percent of the current number
of replicas.

The RollingUpdate strategy is the default, and by default, both maxSurge

and maxUnavailable are 25 percent. Most Deployments should use the
RollingUpdate strategy unless it is absolutely necessary to use Recreate.

The next part of the Deployment YAML links the Deployment to its
Pods:

selector:

matchLabels:

app: todo

template:
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metadata:

labels:

app: todo

The selector and the labels in the Pod metadata must match. As we saw in
Chapter 7, the Deployment uses the selector to track its Pods.

With this part, we’ve now begun defining the template for the Pods this
Deployment creates. The rest of the Deployment YAML completes the Pod
template, which consists entirely of configuration for the single container
this Pod runs:

spec:

containers:

- name: todo

image: bookofkubernetes/todo:stable

The container name is mostly informational, though it is essential for
Pods with multiple containers so that we can choose a container when we
need to retrieve logs and use exec to run commands. The image tells Kuber
netes what container image to retrieve in order to run this container.

The next section of the Pod template specifies the environment vari
ables for this container:

env:

- name: NODE_ENV

value: production

- name: PREFIX

value: /

- name: PGHOST

value: todo-db

- name: PGDATABASE

value: todo

- name: PGUSER

valueFrom:

secretKeyRef:

name: todo.todo-db.credentials.postgresql.acid.zalan.do

key: username

optional: false

- name: PGPASSWORD

valueFrom:

secretKeyRef:

name: todo.todo-db.credentials.postgresql.acid.zalan.do

key: password

optional: false

Some of the environment variables have static values; they’re expected
to remain the same for all uses of this Deployment. The PGHOST environment
variable matches the name of the PostgreSQL database. The Postgres Op
erator has created a Service with the name todo-db in the todo Namespace
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where these Pods will run, so the Pods are able to resolve this hostname to
the Service IP address. Traffic destined for the Service IP address is then
routed to the primary PostgreSQL instance using the iptables configuration
we saw in Chapter 9.

The final two variables provide the credentials for the application to
authenticate to the database. We’re using the ability to fetch configuration
from a Secret and provide it as an environment variable to a container, sim
ilar to what we saw in Chapter 16. However, in this case, we need the envi
ronment variable to have a different name from the key name in the Secret,
so we use a slightly different syntax that allows us to specify each variable
name separately.

Finally, we declare the resource requirements of this container and the
port it exposes:

resources:

requests:

memory: "128Mi"

cpu: "50m"

limits:

memory: "128Mi"

cpu: "50m"

ports:

- name: web

containerPort: 5000

The ports field in a Pod is purely informational; the actual traffic routing
will be configured in the Service.

Within the resources field, we set the requests and limits to be the same
for this container. As we saw in Chapter 19, this means that Pod will be
placed in the Guaranteed Quality of Service class. The web service compo
nent is stateless and easy to scale, so it makes sense to use a relatively low
CPU limit, in this case, 50 millicores, or 5 percent of a core, and rely on the
autoscaling to create new instances if the load becomes high.

Pod Autoscaling
To automatically scale the Deployment to match the current load, we use a
HorizontalPodAutoscaler, as we saw in Chapter 7. Here’s the configuration
for the autoscaler:

scaler.yaml ---

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

name: todo

labels:

app: todo

spec:
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scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: todo

minReplicas: 3

maxReplicas: 10

metrics:

- type: Resource

resource:

name: cpu

target:

type: Utilization

averageUtilization: 50

As we did in our earlier example, we apply a label to this resource purely
for informational purposes. Three key configuration items are necessary for
this autoscaler. First, the scaleTargetRef specifies that we want to scale the
todo Deployment. Because this autoscaler is deployed to the todo Namespace,
it finds the correct Deployment to scale.

Second, we specify a range for minReplicas and maxReplicas. We choose 3

as the minimum number of replicas, as we want to make sure the application
is resilient even if we have a Pod failure. For simplicity, we didn’t apply the
antiaffinity configuration we saw in Chapter 18, but this may also be a good
practice to avoid having all of the instances on a single node. We choose a
maximum number of replicas based on the size of our cluster; for a produc
tion application, we would measure our application load and choose based
on the highest load we expect to handle.

Third, we need to specify the metric that the autoscaler will use to de
cide how many replicas are needed. We base this autoscaler on CPU utiliza
tion. If the average utilization across the Pods is greater than 50 percent of
the Pod’s requests, the Deployment will be scaled up. We set the requests at
50 millicores, so this means that an average utilization greater than 25 mil
licores will cause the autoscaler to increase the number of replicas.

To retrieve the average CPU utilization, the autoscaler relies on a clus
ter infrastructure component that retrieves metrics data from the kubelet

service running on each node and exposes that metrics data via an API. For
this chapter, we have some extra cluster monitoring functionality to demon
strate, so the automation has skipped the regular metrics server component
we described in Chapter 6. We’ll deploy an alternative later in this chapter.

Application Service
The final cluster resource for our application is the Service. Listing 201
presents the definition we’re using for this chapter.

service.yaml ---

kind: Service

apiVersion: v1
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metadata:

name: todo

labels:

app: todo

spec:

type: NodePort

selector:

app: todo

ports:

- name: web

protocol: TCP

port: 5000

nodePort: 5000

Listing 20-1: Todo Service

We use the same selector that we saw in the Deployment to find the
Pods that will receive traffic sent to this Service. As we saw in Chapter 9, the
ports field of a Service is essential because iptables traffic routing rules are
configured only for the ports we identify. In this case, we declare the port to
be 5000 and don’t declare a targetPort, so this Service will send to port 5000
on the Pods, which matches the port on which our web server is listening.
We also configure a name on this port, which will be important later when we
configure monitoring.

For this chapter, we’re exposing our application Service using NodePort,
which means that all of our cluster’s nodes will be configured to route traffic
to the Service that is sent to the nodePort for any host interface. Thus, we can
access port 5000 on any of our cluster’s nodes and we’ll be routed to our
application:

root@host01:~# curl -v http://host01:5000/

...

< HTTP/1.1 200 OK

< X-Powered-By: Express

...

<html lang="en" data-framework="backbonejs">

<head>

<meta charset="utf-8">

<title>Todo-Backend client</title>

<link rel="stylesheet" href="css/vendor/todomvc-common.css">

<link rel="stylesheet" href="css/chooser.css">

</head>

...

</html>

This Service traffic routing works on any host interface, so the todo ap
plication can be accessed from outside the cluster as well. The URL is dif
ferent depending on whether you’re using the Vagrant or Amazon Web
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Services configuration, so the automation for this chapter includes a mes
sage with the URL to use.

NODEPORT, NOT INGRESS

When we deployed todo in Chapter 1, we exposed the Service using an
Ingress. The Ingress, as we saw in Chapter 9, consolidates multiple Services
such that they can all be exposed outside the cluster without requiring each
Service to have a separate externally routable IP address. We’ll expose a
monitoring service later in this chapter, so we have multiple Services to expose
outside the cluster. However, because we’re working with an example cluster
on a private network, we don’t have the underlying network infrastructure
available to use an Ingress to its full potential. By using a NodePort instead,
we’re able to expose multiple Services outside the cluster in a way that works
well with both the Vagrant and Amazon Web Services configurations.

We’ve now looked all of the components in the todo application, using
what we’ve learned in this book to eliminate single points of failure and max
imize scalability.

You can also explore the source code for the todo application at https://
github.com/bookofkubernetes/todo, including the Dockerfile that’s used to build
the application’s container image and the GitHub Actions that automatically
build it and publish it to Docker Hub whenever the code changes.

However, although our Kubernetes cluster will now do its best to keep
this application running and performing well, we can do more to monitor
both the todo application and the Kubernetes cluster.

Application and Cluster Monitoring
Proper application and cluster monitoring is essential for applications, for
multiple reasons. First, our Kubernetes cluster will try to keep the applica
tions running, but any hardware or cluster failures could leave an applica
tion in a nonworking or degraded state. Without monitoring, we would be
dependent on our users to tell us when the application is down or behav
ing badly, which is poor user experience. Second, if we do see failures or
performance issues with our application, we’re going to need data to diag
nose them or to try to identify a pattern in order to find a root cause. It’s a
lot easier to build in monitoring ahead of time than to try to apply it after
we’re already seeing problems. Finally, we may have problems with our clus
ter or application that occurs below the level at which users notice, but that
indicates potential performance or stability issues. Integrating proper mon
itoring allows us to detect those kinds of issues before they become a bigger
headache. It also allows us to measure an application over time to make sure
that added features aren’t degrading its performance.

Fortunately, although we do need to think about monitoring at the level
of each of our application components, we don’t need to build a monitoring
framework ourselves. Many mature monitoring tools are already designed
to work in a Kubernetes cluster, so we can get up and running quickly. In
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this chapter, we’ll look at kube-prometheus, a complete stack of tools that we
can deploy to our cluster and use to monitor both the cluster and the todo

application.

Prometheus Monitoring
The core component of kube-prometheus is, as the name implies, the open
source Prometheus monitoring software. Prometheus deploys as a server
that periodically queries various metrics sources and accumulates the data
it receives. It supports a query language that is optimized for “time series”
data, which makes it easy to collect individual data points showing a system’s
performance at a moment in time. It then aggregates those data points to
get a picture of the system’s load, resource utilization, and responsiveness.

For each component that exposes metrics, Prometheus expects to reach
out to a URL and receive data in return in a standard format. It’s common
to use the path /metrics to expose metrics to Prometheus. Following this con
vention, the Kubernetes control plane components already expose metrics
in the format that Prometheus is expecting.

To illustrate, we can use curl to visit the /metrics path on the API server
to see the metrics that it provides. To do this, we’ll need to authenticate
to the API server, so let’s use a script that collects a client certificate for
authentication:

api-metrics.sh #!/bin/bash

conf=/etc/kubernetes/admin.conf

...

curl --cacert $ca --cert $cert --key $key https://192.168.61.10:6443/metrics

...

Running this script returns a wealth of API server metrics:

root@host01:~# /opt/api-server-metrics.sh

...

# TYPE rest_client_requests_total counter

rest_client_requests_total{code="200",host="[::1]:6443",method="GET"} 9051

rest_client_requests_total{code="200",host="[::1]:6443",method="PATCH"} 25

rest_client_requests_total{code="200",host="[::1]:6443",method="PUT"} 21

rest_client_requests_total{code="201",host="[::1]:6443",method="POST"} 179

rest_client_requests_total{code="404",host="[::1]:6443",method="GET"} 155

rest_client_requests_total{code="404",host="[::1]:6443",method="PUT"} 1

rest_client_requests_total{code="409",host="[::1]:6443",method="POST"} 5

rest_client_requests_total{code="409",host="[::1]:6443",method="PUT"} 62

rest_client_requests_total{code="500",host="[::1]:6443",method="GET"} 18

rest_client_requests_total{code="500",host="[::1]:6443",method="PUT"} 1

...

This example illustrates only a few of the hundreds of metrics that are
collected and exposed. Each line of this response provides one data point to
Prometheus. We can include additional parameters for the metric in curly
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braces, allowing for more complex queries. For example, the API server data
in the preceding example can be used to determine not only the total num
ber of client requests served by the API server but also the raw number and
percentage of requests that resulted in an error. Most systems are resilient
to a few HTTP error responses, but a sudden increase in error responses is
often a good indication of a more serious issue, so this is valuable in config
uring a reporting threshold.

In addition to all of the data that the Kubernetes cluster is already pro
viding to Prometheus, we can also configure our application to expose met
rics. Our application is based on Node.js, so we do this using the prom-client

library. As demonstrated in Listing 202, our todo application is exposing
metrics at /metrics, like the API server.

root@host01:~# curl http://host01:5000/metrics/

# HELP api_success Successful responses

# TYPE api_success counter

api_success{app="todo"} 0

# HELP api_failure Failed responses

# TYPE api_failure counter

api_failure{app="todo"} 0

...

# HELP process_cpu_seconds_total Total user and system CPU time ...

# TYPE process_cpu_seconds_total counter

process_cpu_seconds_total{app="todo"} 0.106392

...

Listing 20-2: Todo metrics

The response includes some default metrics that are relevant to all appli
cations. It also includes some counters that are specific to the todo applica
tion and track API usage and responses over time.

Deploying kube-prometheus
At this point, our Kubernetes cluster and our application are ready to pro
vide these metrics on demand, but we don’t yet have a Prometheus server
running in the cluster to collect them. To fix this, we’ll deploy the complete
kube-prometheus stack. This includes not only a Prometheus Operator that
makes it easy to deploy and configure Prometheus but also other useful
tools, such as Alertmanager, which can trigger notifications in response to
cluster and application alerts, and Grafana, a dashboard tool that we’ll use to
see the metrics we’re collecting.

To deploy kube-prometheus, we’ll use a script that’s been installed in /opt.
This script downloads a current kube-prometheus release from GitHub and
applies the manifests.
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Run the script as follows:

root@host01:~# /opt/install-kube-prometheus.sh

...

These manifests also include a Prometheus Adapter. The Prometheus
Adapter implements the same Kubernetes metrics API as the metrics-server

we deployed to the clusters throughout Part II, so it exposes CPU and mem
ory data obtained from kubelet, enabling our HorizontalPodAutoscaler to
track CPU utilization of our todo application. However, it also exposes that
utilization data to Prometheus so that we can observe it in Grafana dash
boards. For this reason, we use the Prometheus Adapter in this chapter in
place of the regular metrics-server.

We can see the Prometheus Adapter and the other components by list
ing Pods in the monitoring Namespace:

root@host01:~# kubectl -n monitoring get pods

NAME READY STATUS RESTARTS AGE

alertmanager-main-0 2/2 Running 0 14m

alertmanager-main-1 2/2 Running 0 14m

alertmanager-main-2 2/2 Running 0 14m

blackbox-exporter-6b79c4588b-pgp5r 3/3 Running 0 15m

grafana-7fd69887fb-swjpl 1/1 Running 0 15m

kube-state-metrics-55f67795cd-mkxqv 3/3 Running 0 15m

node-exporter-4bhhp 2/2 Running 0 15m

node-exporter-8mc5l 2/2 Running 0 15m

node-exporter-ncfd2 2/2 Running 0 15m

node-exporter-qp7mg 2/2 Running 0 15m

node-exporter-rtn2t 2/2 Running 0 15m

node-exporter-tpg97 2/2 Running 0 15m

prometheus-adapter-85664b6b74-mglp4 1/1 Running 0 15m

prometheus-adapter-85664b6b74-nj7hp 1/1 Running 0 15m

prometheus-k8s-0 2/2 Running 0 14m

prometheus-k8s-1 2/2 Running 0 14m

prometheus-operator-6dc9f66cb7-jtrqd 2/2 Running 0 15m

In addition to the Prometheus Adapter, we see Pods for Alertmanager,
Grafana, and various exporter Pods, which collect metrics from the cluster in
frastructure and expose it to Prometheus. We also see Pods for Prometheus
itself and for the Prometheus Operator. The Prometheus Operator automat
ically updates Prometheus whenever we change the custom resources that
the Prometheus Operator is monitoring. The most important of those cus
tom resources is the Prometheus resource shown in Listing 203.

root@host01:~# kubectl -n monitoring describe prometheus

Name: k8s

Namespace: monitoring

...

API Version: monitoring.coreos.com/v1
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Kind: Prometheus

...

Spec:

...

Image: quay.io/prometheus/prometheus:v2.32.1

...

Service Account Name: prometheus-k8s

Service Monitor Namespace Selector:

Service Monitor Selector:

...

Listing 20-3: Prometheus configuration

The Prometheus custom resource allows us to configure which Name
spaces will be watched for Services to monitor. The default configuration
presented in Listing 203 does not specify a value for the Service Monitor
Namespace Selector or the Service Monitor Selector. For this reason, by de
fault the Prometheus Operator will be looking for monitoring configuration
in all Namespaces, with any metadata label.

To identify specific Services to monitor, the Prometheus Operator keeps
an eye out for another custom resource, ServiceMonitor, as demonstrated in
Listing 204.

root@host01:~# kubectl -n monitoring get servicemonitor

NAME AGE

alertmanager-main 20m

blackbox-exporter 20m

coredns 20m

grafana 20m

kube-apiserver 20m

kube-controller-manager 20m

kube-scheduler 20m

kube-state-metrics 20m

kubelet 20m

node-exporter 20m

prometheus-adapter 20m

prometheus-k8s 20m

prometheus-operator 20m

Listing 20-4: Default ServiceMonitors

When we installed kube-prometheus, it configured multiple ServiceMoni
tor resources. As a result, our Prometheus instance is already watching the
Kubernetes control plane components and the kubelet services running on
our cluster nodes. Let’s see the targets from which Prometheus is scrap
ing metrics and see how those metrics are used to populate dashboards in
Grafana.
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Cluster Metrics
The installation script patched the Grafana and Prometheus Services in the
monitoring Namespace to expose them as NodePort Services. The automation
scripts print the URL you can use to access Prometheus. The initial page
looks like Figure 201.

Figure 20-1: Prometheus initial page

Click the Targets item underneath the Statusmenu on the top menu
bar to see which components in the cluster Prometheus is currently scrap
ing. Click Collapse All to get a consolidated list, as shown in Figure 202.

Figure 20-2: Prometheus targets

This list matches the list of ServiceMonitors we saw in Listing 204, show
ing us that Prometheus is scraping Services as configured by the Prometheus
Operator.

We can use the Prometheus web interface to query data directly, but
Grafana has already been configured with some useful dashboards, so we
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can more easily see the data there. The automation scripts print the URL
you can use to access Grafana. Log in using the default admin as the user
name and admin as the password. You will be prompted to change the pass
word; you can just click Skip. At this point you should see the Grafana initial
page, as shown in Figure 203.

Figure 20-3: Grafana initial page

From this page, choose the Browse item under Dashboards in the menu.
There are many dashboards in the Default folder. For example, by selecting
Default and then selecting Kubernetes ▶ Compute Resources ▶ Pod, you
can see a dashboard, depicted in Figure 204, that shows CPU and memory
usage over time for any Pod in the cluster.

Figure 20-4: Pod compute resources

All of the todo database and application Pods are selectable in this dash
board by first selecting the todo Namespace, so we can already get valuable
information about our application by using nothing more than the default
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monitoring configuration. This is possible because the Prometheus Adapter
is pulling data from the kubelet services, which includes resource utilization
for each of the running Pods. The Prometheus Adapter is then exposing a
/metrics endpoint for Prometheus to scrape and store, and Grafana is query
ing Prometheus to build the chart showing usage over time.

There are numerous other Grafana dashboards to explore in the default
installation of kube-prometheus. Choose the Browsemenu item again to select
other dashboards and see what data is available.

Adding Monitoring for Services
Although we are already getting useful metrics for our todo application,
Prometheus is not yet scraping our application Pods to pull in the Node.js
metrics we saw in Listing 202. To configure Prometheus to scrape our todo
metrics, we’ll need to provide a new ServiceMonitor resource to the Pro
metheus Operator, informing it about our todo Service.

In a production cluster, the team deploying an application like our todo
application wouldn’t have the permissions to create or update resources in
the monitoring Namespace. However, the Prometheus Operator looks for
ServiceMonitor resources in all Namespaces by default, so we can create a
ServiceMonitor in the todo Namespace instead.

First, though, we need to give Prometheus permission to see the Pods
and Services we’ve created in the todo Namespace. As this access control
configuration needs to apply only in a single Namespace, we’ll do this by
creating a Role and a RoleBinding. Here’s the Role configuration we’ll use:

rbac.yaml ---

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

...

name: prometheus-k8s

rules:

- apiGroups:

- ""

resources:

- services

- endpoints

- pods

verbs:

- get

- list

- watch

...

We need to make sure we allow access to Services, Pods, and Endpoints,
so we confirm that these are listed in the resources field. The Endpoint re
source records the current Pods that are receiving traffic for a Service, which
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will be critical for Prometheus to identify all of the Pods it scrapes. Because
Prometheus needs only readonly access, we specify only the get, list, and
watch verbs.

After we have this Role, we need to bind it to the ServiceAccount that
Prometheus is using. We do that with this RoleBinding:

rbac.yaml ---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

...

name: prometheus-k8s

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: Role

name: prometheus-k8s

subjects:

- kind: ServiceAccount

name: prometheus-k8s

namespace: monitoring

The roleRef matches the Role we just declared in the preceding exam
ple, whereas the subjects field lists the ServiceAccount Prometheus is using,
based on the information we saw in Listing 203.

Both of these YAML resources are in the same file, so we can apply
them both to the cluster at once. We need to make sure we apply them to
the todo Namespace, as that’s the Namespace where we want to enable access
by Prometheus:

root@host01:~# kubectl -n todo apply -f /opt/rbac.yaml

role.rbac.authorization.k8s.io/prometheus-k8s created

rolebinding.rbac.authorization.k8s.io/prometheus-k8s created

Now that we’ve granted permission to Prometheus to see our Pods and
Services, we can create the ServiceMonitor. Here’s that definition:

svc-mon.yaml ---

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

name: todo

spec:

selector:

matchLabels:

app: todo

endpoints:

- port: web
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A ServiceMonitor uses a selector, similar to a Service or a Deployment.
We previously applied the app: todo label to the Service, so the matchLabels

field will cause Prometheus to pick up the Service. The endpoints field
matches the name of the port we declared in the Service in Listing 201.
Prometheus requires us to name the port in order to match it.

Let’s apply this ServiceMonitor to the cluster:

root@host01:~# kubectl -n todo apply -f /opt/svc-mon.yaml

servicemonitor.monitoring.coreos.com/todo created

As before, we need to make sure we deploy this to the todo Namespace
because Prometheus will be configured to look for Services with the appro
priate label in the same Namespace as the ServiceMonitor.

Because the Prometheus Operator is watching for new ServiceMonitor
resources, using the API we saw in Chapter 17, it picks up this new resource
and immediately reconfigures Prometheus to start scraping the Service.
Prometheus then takes a few minutes to register the new targets and start
scraping them. If we go back to the Prometheus Targets page after this is
complete, the new Service shows up, as illustrated in Figure 205.

Figure 20-5: Prometheus monitoring todo

If we click the show more button next to the todo Service, we see its
three Endpoints, shown in Figure 206.
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Figure 20-6: Todo Endpoints

It may be surprising that we created a ServiceMonitor, specifying the
todo Service as the target, and yet Prometheus is scraping Pods. However,
it’s essential that Prometheus works this way. Because Prometheus is using a
regular HTTP request to scrape metrics, and because Service traffic routing
chooses a random Pod for every new connection, Prometheus would get
metrics from a random Pod each time it did scraping. By reaching behind
the Service to identify the Endpoints, Prometheus is able to scrape metrics
from all the Service’s Pods, enabling aggregation of metrics for the entire
application.

We’ve successfully incorporated the Node.js and custom metrics for the
todo application into Prometheus, in addition to the default resource utiliza
tion metrics already collected. Before we finish our look at application mon
itoring, let’s run a Prometheus query to demonstrate that the data is being
pulled in. First, you should interact with the todo application using the URL
printed out by the automation scripts. This will ensure that there are metrics
to display and that enough time has passed for Prometheus to scrape that
data. Next, open the Prometheus web interface again, or click Prometheus
at the top of any Prometheus web page to go back to the main page. Then,
type api_success into the query box and press ENTER. Custom todo metrics
should appear, as illustrated in Figure 207.

342 Chapter 20



Figure 20-7: Todo metric query

We’re now able to monitor both the Kubernetes cluster and the todo

application.

Final Thoughts
In this chapter, we’ve explored how the various features of containers and
Kubernetes come together to enable us to deploy a scalable, resilient applica
tion. We’ve used everything we learned about containers—Deployments, Ser
vices, networking, persistent storage, Kubernetes Operators, and rolebased
access control—to not only deploy the todo application but also configure
Prometheus monitoring of our cluster and our application.

Kubernetes is a complex platform with many different capabilities, and
new capabilities are being added all the time. The purpose of this book is
not only to show you the most important features you need to run an appli
cation on Kubernetes, but also to give you the tools to explore a Kubernetes
cluster for troubleshooting and performance monitoring. As a result, you
should be equipped to explore new features as they are added to Kubernetes
and to conquer the challenges of deploying complex applications and get
ting them to perform well.
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Linux containers make it easy to package, deploy, 
and scale your applications, but the process of 
doing so is not without mystery. In The Book of 
Kubernetes, you’ll explore the inner workings of the 
Kubernetes system and learn how to leverage it to 
build performant, reliable, and resilient cloud-native 
applications that handle failure gracefully. 

You’ll learn how containers use namespaces to isolate 
processes and how they leverage resource limiting 
to guarantee a process uses only its allocated CPU, 
memory, and network resources. You’ll install a 
Kubernetes cluster, deploy containers to it, and explore 
how packets fl ow between containers across the host 
network. Finally, you’ll learn how to schedule and run 
containers to maximize performance, identify potential 
problems, and fi x them.

You’ll also learn how to:

• Make applications more performant with 
autoscaling, dynamic discovery, and load balancing

• Confi gure server authentication and role-based 
access control

• Detect and recover from failures, schedule the 
deployment of new containers, and confi gure 
network routing

• Extend a Kubernetes cluster to add new features 
such as automating the deployment of a highly 
available database engine

Regardless of your experience, whether you’re 
a software developer or a sysadmin type, this 
comprehensive guide will show you how to master the 
art of containerizing complex applications and make 
them more reliable.

A B O U T  T H E  A U T H O R

Alan Hohn is the director for software strategy 
at Lockheed Martin with 25 years of experience as 
a software developer and systems architect. Hohn 
is also a Kubernetes and DevOps trainer and has 
a degree in CS from Embry-Riddle Aeronautical 
University and an MS in industrial engineering from 
the Georgia Institute of Technology.
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