
“ I L I E F LAT.”
This book uses a durable binding that won’t snap shut

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

If you’re a software engineer, developer, or sys admin
who needs to get up to speed with DevOps quickly,
this book covers the basics you need to thrive in a
modern application stack.

This book’s fast-paced, hands-on examples will provide
the foundation you need to start performing common
DevOps tasks. You’ll explore how to implement
Infrastructure as Code (IaC) and confi guration
management (CM)—essential practices for designing
secure and stable systems. You’ll take a tour of
containerization and set up an automated continuous
delivery (CI/CD) pipeline that builds, tests, and
deploys code. You’ll dig into how to detect a system’s
state and alert on it when things go sideways.

You’ll learn how to:

• Create and provision an Ubuntu VM with Vagrant
and Ansible

• Manage users, groups, and password security

• Set up public key and two-factor authentication
over SSH

• Automate and test a host-based fi rewall

• Use Docker to containerize applications and
Kubernetes for orchestration

• Build a monitoring stack and troubleshoot problems
and performance issues

DevOps for the Desperate is a practical, no-nonsense
guide to get you up and running quickly in today’s
full-stack infrastructure.

A B O U T T H E A U T H O R

Bradley Smith has been a DevOps and software
engineer for more than 20 years at many startups,
local governments, and businesses of varying sizes.
He’s solved countless technical challenges during
his career, and he’s built and trained many DevOps,
SRE, and software engineering teams. He graduated
from the University of Massachusetts Lowell and now
resides in Denver, Colorado.

$29.99 ($39.99 CDN)

D
E

V
O

P
S

F
O

R
 T

H
E

 D
E

S
P

E
R

A
T

E

B R A D L E Y S M I T H

DE VOPS FOR
T HE DE S PE R AT E

A H A N D S - O N S U R V I V A L G U I D E

S
M

I
T

H

D E V O P S B A S I C S F O R

E N G I N E E R S A N D A D M I N S

I N C R I S I S M O D E

Coverage includes Ansible,
Docker, Kubernetes, and more...

San Francisco

D E V O P S F O R
T H E D E S P E R AT E

A H a n d s - o n
S u r v i v a l G u i d e

Bradley Smith

DEVOPS FOR THE DESPERATE. Copyright © 2022 by Bradley Smith.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

26 25 24 23 22 1 2 3 4 5

ISBN-13: 978-1-7185-0248-2 (print)
ISBN-13: 978-1-7185-0249-9 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Editor: Paula Williamson
Developmental Editor: Jill Franklin
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Quentin Hartman
Copyeditor: Doug McNair
Compositor: Happenstance Type-O-Rama
Proofreader: Jamie Lauer

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Smith, Bradley (Software engineer), author.
Title: DevOps for the desperate : a hands-on survival guide / Bradley
 Smith.
Description: San Francisco, CA : No Starch Press, Inc., [2022] | Includes
 index.
Identifiers: LCCN 2021060922 (print) | LCCN 2021060923 (ebook) | ISBN
 9781718502482 (paperback) | ISBN 9781718502499 (ebook)
Subjects: LCSH: Computer software--Development--Management. | Software
 engineering--Management.
Classification: LCC QA76.76.D47 S567 2022 (print) | LCC QA76.76.D47
 (ebook) | DDC 005.1068--dc23/eng/20220111
LC record available at https://lccn.loc.gov/2021060922
LC ebook record available at https://lccn.loc.gov/2021060923

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

This book is for all the engineers
slogging through on call.

About the Author
Bradley Smith is a director of infrastructure and resides in Denver, Colorado.
He has been an engineer for more than 20 years at many startups and
businesses, large and small. He has built, trained, and been a member of
numerous DevOps, SRE, and software engineering teams. A Boston native,
Bradley graduated from the University of Massachusetts Lowell.

About the Technical Reviewer
Quentin Hartman has been living and breathing DevOps since before it had
a name. He loves the tech, but more than that, he loves seeing how DevOps
practices make software and the lives of people who build it better. Over the
course of his nearly 25-year career in technology, Quentin has worked in
public education, higher education, nonprofits, and private businesses with
anywhere from 3 to 300,000 employees. He has managed telecom systems,
datacenters, and public and private clouds. He has acted as a sysadmin, a
DBA, a network engineer, an incident responder, and a leader. This broad
experience has given him an especially strong foundation in DevOps, which
has been his primary focus since 2012. Wherever Quentin is, he puts people
before tech and is only really happy when he’s working on a social-impact
mission using open source tools. Quentin lives near Denver, Colorado, with
his family. He can often be found building things, cooking, and wandering
in the woods. He can be reached as qhartman on many platforms, includ-
ing Mastodon.social, Twitter, and LinkedIn.

B R I E F C O N T E N T S

Acknowledgments . xiv

Introduction . xv

PART I: INFRASTRUCTURE AS CODE, CONFIGURATION
MANAGEMENT, SECURITY, AND ADMINISTRATION 1

Chapter 1: Setting Up a Virtual Machine . 3

Chapter 2: Using Ansible to Manage Passwords, Users, and Groups 13

Chapter 3: Using Ansible to Configure SSH . 25

Chapter 4: Controlling User Commands with sudo . 37

Chapter 5: Automating and Testing a Host-Based Firewall . 49

PART II: CONTAINERIZATION AND DEPLOYING
MODERN APPLICATIONS .59

Chapter 6: Containerizing an Application with Docker . 61

Chapter 7: Orchestrating with Kubernetes . 77

Chapter 8: Deploying Code . 95

PART III: OBSERVABILITY AND TROUBLESHOOTING 107

Chapter 9: Observability . 109

Chapter 10: Troubleshooting Hosts . 125

Index . 153

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xiv

INTRODUCTION xv
What Is the Current State of DevOps? . xvi
Who Should Read This Book? . xvii
How This Book Is Organized . xvii

Part I: Infrastructure as Code, Configuration Management,
Security, and Administration . xvii

Part II: Containerization and Deploying Modern Applicationsxviii
Part III: Observability and Troubleshooting .xviii

What You’ll Need .xviii
Downloading and Installing VirtualBox . xx
Companion Repository . xxi
Editor . xxi

PART I: INFRASTRUCTURE AS CODE,
CONFIGURATION MANAGEMENT,
SECURITY, AND ADMINISTRATION 1

1
SETTING UP A VIRTUAL MACHINE 3
Why Use Code to Build Infrastructure? . 3
Getting Started with Vagrant . 4

Installation . 4
Anatomy of a Vagrantfile . 5
Basic Vagrant Commands . 6

Getting Started with Ansible . 6
Installation . 7
Key Ansible Concepts . 7
Ansible Playbook . 8
Basic Ansible Commands . 9

Creating an Ubuntu VM . 9
Summary . 11

2
USING ANSIBLE TO MANAGE PASSWORDS, USERS, AND GROUPS 13
Enforcing Complex Passwords . 14

Installing libpam-pwquality . 14
Configuring pam_pwquality to Enforce a Stricter Password Policy 15

Linux User Types . 16
Getting Started with the Ansible User Module . 16
Generating a Complex Password . 17

x Contents in Detail

Linux Groups . 18
Getting Started with the Ansible Group Module . 18
Assigning a User to the Group . 19
Creating Protected Resources . 19

Updating the VM . 20
Testing User and Group Permissions . 21
Summary . 23

3
USING ANSIBLE TO CONFIGURE SSH 25
Understanding and Activating Public Key Authentication . 26

Generating a Public Key Pair . 26
Using Ansible to Get Your Public Key on the VM . 27

Adding Two-Factor Authentication . 28
Installing Google Authenticator . 29
Configuring Google Authenticator . 29
Configuring PAM for Google Authenticator . 30
Configuring the SSH Server . 31
Restarting the SSH Server with a Handler . 32

Provisioning the VM . 33
Testing SSH Access . 34
Summary . 35

4
CONTROLLING USER COMMANDS WITH SUDO 37
What Is sudo? . 38

Planning a sudoers Security Policy . 38
Installing the Greeting Web Application . 39
Anatomy of a sudoers File . 41

Creating the sudoers File . 42
The sudoers Template . 43

Provisioning the VM . 44
Testing Permissions . 45

Accessing the Web Application . 45
Editing greeting .py to Test the sudoers Policy . 46
Stopping and Starting with systemctl . 46

Audit Logs . 47
Summary . 48

5
AUTOMATING AND TESTING A HOST-BASED FIREWALL 49
Planning the Firewall Rules . 50
Automating UFW Rules . 50
Provisioning the VM . 53
Testing the Firewall . 54

Scanning Ports with Nmap . 55
Firewall Logging . 56
Rate Limiting . 57

Summary . 58

Contents in Detail xi

PART II: CONTAINERIZATION AND DEPLOYING
MODERN APPLICATIONS 59

6
CONTAINERIZING AN APPLICATION WITH DOCKER 61
Docker from 30,000 Feet . 62

Getting Started with Docker . 62
Dockerfile Instructions . 63
Container Images and Layers . 64
Containers . 64
Namespaces and Cgroups . 64

Installing and Testing Docker . 65
Installing the Docker Engine with Minikube . 65
Installing the Docker Client and Setting Up Docker Environment Variables 66
Testing the Docker Client Connectivity . 66

Containerizing a Sample Application . 66
Dissecting the Example telnet-server Dockerfile . 67
Building the Container Image . 68
Verifying the Docker Image . 69
Running the Container . 70

Other Docker Client Commands . 71
exec . 71
rm . 72
inspect . 72
history . 73
stats . 74

Testing the Container . 74
Connecting to the Telnet-Server . 74
Getting Logs from the Container . 75

Summary . 76

7
ORCHESTRATING WITH KUBERNETES 77
Kubernetes from 30,000 Feet . 78
Kubernetes Workload Resources . 79

Pods . 79
ReplicaSet . 79
Deployments . 79
StatefulSets . 80
Services . 80
Volumes . 80
Secrets . 81
ConfigMaps . 81
Namespaces . 81

Deploying the Sample telnet-server Application . 82
Interacting with Kubernetes . 82
Reviewing the Manifests . 82
Creating a Deployment and Services . 87
Viewing the Deployment and Services . 88

xii Contents in Detail

Testing the Deployment and Services . 89
Accessing the Telnet Server . 89
Troubleshooting Tips . 91
Killing a Pod . 92
Scaling . 92
Logs . 93

Summary . 94

8
DEPLOYING CODE 95
CI/CD in Modern Application Stacks . 96
Setting Up Your Pipeline . 97

Reviewing the skaffold .yaml File . 98
Reviewing the Container Tests . 99
Simulating a Development Pipeline . 100
Making a Code Change . 102
Testing the Code Change . 103
Testing a Rollback . 104

Other CI/CD Tooling . 105
Summary . 106

PART III: OBSERVABILITY AND
TROUBLESHOOTING 107

9
OBSERVABILITY 109
Monitoring Overview . 110
Monitoring the Sample Application . 111

Installing the Monitoring Stack . 112
Verifying the Installation . 113

Metrics . 115
Golden Signals . 115
Adjusting the Monitoring Pattern . 115
The telnet-server Dashboard . 116
PromQL: A Primer . 118

Alerts . 119
Reviewing Golden Signal Alerts in Prometheus . 119
Routing and Notifications . 121

Summary . 123

10
TROUBLESHOOTING HOSTS 125
Troubleshooting and Debugging: A Primer . 126
Scenario: High Load Average . 127

uptime . 127
top . 128
Next Steps . 129

Contents in Detail xiii

Scenario: High Memory Usage . 129
free . 129
vmstat . 130
ps . 131
Next Steps . 131

Scenario: High iowait . 131
iostat . 132
iotop . 133
Next Steps . 133

Scenario: Hostname Resolution Failure . 133
resolv .conf . 134
resolvectl . 135
dig . 136
Next Steps . 137

Scenario: Out of Disk Space . 138
df .138
find . 138
lsof . 139
Next Steps . 139

Scenario: Connection Refused . 140
curl . 140
ss . 140
tcpdump . 141
Next Steps . 142

Searching Logs . 142
Common Logs . 143
Common journalctl Commands . 144
Parsing Logs . 146

Probing Processes . 148
strace . 148

Summary . 151

INDEX 153

A C K N O W L E D G M E N T S

When writing acknowledgments, you quickly realize how many people
make publishing a book possible. This would be a very long section if I
thanked everyone who contributed in some way, and since this is not a
Nobel Prize acceptance speech, I will try to keep it short and sweet. If I do
not mention you below, please know I appreciate your help tremendously.

First, I want to thank everyone at No Starch Press. Without you, this
book would not have been possible. The guidance from my editor, Jill
Franklin, and technical editors, Kyle Terrien and Quentin Hartman, has
been invaluable. Thank you so much for wrangling this idea into a book. I
appreciate you all.

We all need help from our friends, and this book has my friends’ finger-
prints all over it. Many of you provided feedback, and I thank you all so
much. In particular, I want to thank Rishi Malik, Jaden Grossman, and
Jeffrey Matthias. You provided support and (more importantly) lent me
your precious time. I owe you!

Finally, I want to thank my family. Countless times, I asked you to read
a sentence or a paragraph and tell me what you thought of it—even though
you had no idea what I was talking about. To my wife, Leilani, you have
always encouraged me and made me believe I could do this. Thank you for
making time in our lives so I could work on this book. To my daughters,
Aiden and Akira, you are my inspiration, and you make me want to be the
best person I can be. I love the three of you, always.

I N T R O D U C T I O N

Every day of their working lives, DevOps
engineers immerse themselves in cloud-

based trends and technologies. Meanwhile,
everyone else in engineering is expected to be

familiar with DevOps and keep pace with how it is
evolving. The reason is simple: DevOps is an integral
part of software development. However, you probably
don’t have time to both do your day job and keep tabs
on the ever-changing landscape of DevOps—and
luckily, you don’t have to. Just gain an understanding
of the foundational concepts, terms, and tactics of
DevOps, and you’ll go far.

xvi Introduction

On the other hand, when it comes time to deliver code, you can’t just
put your head in the sand and hope someone else will deal with it. Writing
configuration files, enforcing observability, and setting up continuous inte-
gration/continuous delivery (CI/CD) pipelines have become the norm in
software development. You therefore need to be well versed in code and
infrastructure.

If you’re a software engineer, developer, or systems administrator, this
book will teach you the concepts, commands, and techniques that will
give you a solid foundation in DevOps, reliability, and modern application
stacks. But be aware that this is an introduction to DevOps, not a definitive
guide. I’ve chosen to keep the knowledge fire hose turned down low, and
I’ll focus on the following foundational concepts:

Infrastructure as code

Configuration management

Security

Containerization and orchestration

Delivery

Monitoring and alerting

Troubleshooting

Plenty of other great books will take you on a deep dive into the concepts
and culture of DevOps. I encourage you to read them and learn more. But
if you just want to get started with the basics, DevOps for the Desperate has you
covered.

What Is the Current State of DevOps?
Over the past few years, different trends have emerged in DevOps. There is
a heavy focus on microservices, container orchestration (Kubernetes), auto-
mated code delivery (CI/CD), and observability (detailed logging, tracing,
monitoring, and alerting). These topics aren’t new to the DevOps commu-
nity, but they’re gaining more attention because everyone has swallowed the
red pill and gone down the cloud-and-containerization rabbit hole.

Automating and testing the “code to customer” experience is still one
of the most important parts of DevOps, and it will continue to be as late
adopters play catch-up. As engineering ecosystems mature, more and more
DevOps work is occurring higher up the tech stack. In other words, DevOps
engineers are heavily relying on tools and processes so software engineers
can self-serve shipping code. Because of this, sharing DevOps practices and
techniques with feature teams is paramount to delivering standardized and
predictable software.

A few more emerging trends are worth a brief mention here. The first is
security. DevSecOps is becoming an essential part of the build process rather
than a post-release afterthought. Another trend is the use of machine learn-
ing for data-driven decisions like alerting. Machine learning insights can be
extremely useful in heuristics and will play a larger role going forward.

Introduction xvii

Who Should Read This Book?
This book is aimed at helping software engineers feel at home and thrive
in a modern application stack. As such, it provides just the right amount
of introductory information about DevOps tasks. This is not to say it has
nothing to offer established DevOps engineers. On the contrary, it pro-
vides plenty of useful information about containerization, monitoring, and
trouble shooting. If you are a DevOps engineer or software engineer in a
small shop, you can even use this book to help you create your whole appli-
cation stack, from local development to production.

So, if you’re a software developer looking for knowledge about DevOps,
this book is for you. If you’re interested in becoming more of a generalist,
this book is for you. And if I’ve paid you money to read this book—well, this
book is definitely for you.

How This Book Is Organized
This book is divided into three parts, as follows:

Part I: Infrastructure as Code, Configuration Management, Security,
and Administration
Part I introduces the concepts of infrastructure as code (IaC) and configu-
ration management (CM), which are essential for building systems with a
repeatable, versioned, and predictable state. We’ll also explore host-based
and user-based security.

Chapter 1: Setting Up a Virtual Machine This chapter discusses the
concepts of IaC and CM. It then introduces two technologies, Vagrant
and Ansible, that you’ll use to create and provision an Ubuntu VM.

Chapter 2: Using Ansible to Manage Passwords, Users, and Groups
This chapter looks at how to use CM for user and group creation
to restrict file and directory access. It also explains how to use CM to
enforce complex passwords.

Chapter 3: Using Ansible to Configure SSH This chapter shows you how
to set up public key and two-factor authentication over SSH, thus making it
harder for unauthorized users to gain access to your host and sensitive data.

Chapter 4: Controlling User Commands with sudo This chapter shows
you how to create a security policy that delegates command access for a
specific user and group. Controlling the command access that users and
groups have on a host can help you avoid unnecessary exposure to attack-
ers. At a minimum, it prevents you from having a poorly configured OS.

Chapter 5: Automating and Testing a Host-Based Firewall This
chapter describes how to create and test a minimal firewall that will
block all unwanted access while permitting approved traffic. By limiting
port exposure, you can reduce the vulnerabilities your host and applica-
tion may encounter from the outside.

xviii Introduction

Part II: Containerization and Deploying Modern Applications
Part II introduces the concepts of containerization, orchestration, and deliv-
ery. It also explores some of the components that make up a modern stack.

Chapter 6: Containerizing an Application with Docker This chapter
introduces containers and containerization, and it shows how to create
a sample containerized application. Having a basic understanding of
containers and how to use them for local development and production
is key to your ability to work with any modern application stack.

Chapter 7: Orchestrating with Kubernetes This chapter introduces con-
tainer orchestration and explores how to use technologies like Kubernetes
and minikube to deploy an application on a local cluster. It also serves
as an example of how to set up a local development environment.

Chapter 8: Deploying Code This chapter discusses the concept of
continuous integration and continuous deployment (CI/CD). It also
explores some core technologies, like Skaffold, that allow you to create
a pipeline on a local Kubernetes cluster. After building an effective
CI/CD pipeline, you’ll have a good understanding of how to build, test,
and deploy software.

Part III: Observability and Troubleshooting
Finally, Part III introduces the concepts of monitoring, alerting, and trouble-
shooting. It looks at metric collection and visualization for applications and
hosts. It also discusses some common host and application issues, as well as
tools you can use to diagnose them.

Chapter 9: Observability This chapter introduces the concept of
a monitoring and alerting stack, and it explores the technologies
(Prometheus, Alertmanager, and Grafana) that make up this stack.
You’ll learn how to detect a system’s state and alert on it when things
are out of scope.

Chapter 10: Troubleshooting Hosts The last chapter discusses com-
mon issues and errors on a host and some tools you can use to trouble-
shoot them. Being able to analyze issues on a host will help you in times
of crisis and help you understand performance issues in your own code
and applications.

What You’ll Need
In order to explore the DevOps concepts in this book, you’ll install some
tooling and the free VirtualBox virtualization technology for x86 hard-
ware that allows you to run other operating systems on your local host.
Unfortunately, some of the tools needed for these tasks won’t work natively
on some OSes and CPUs, such as Windows and Apple Silicon. Using Linux

Introduction xix

or an Intel-based Mac as the host machine is the most straightforward
option. The following list summarizes what you can expect for each OS:

Linux

If you’re on a Linux host, all the examples and sample applications will
work out of the box. Since you’ll be installing VirtualBox, you’ll want to
be running a desktop version of Linux rather than a headless server.

Intel-based Mac

If you’re running an Intel-based Mac, as with Linux, all the examples
and sample applications will work without any modifications. Use the
Brew package manager (https://brew.sh) to install software.

Windows

If you’re on a Windows host, installing all the tools and applications in
this book can be a challenge. For example, you’ll use Ansible to explore
configuration management, but there’s no easy way to install Ansible
on Windows. As a workaround, you can use an Ubuntu VM as your
starting point. I recommend creating the VM with Hyper-V, since it’s
native to Windows. You’ll need Windows 10 or 11 Pro to use Hyper-V.
See the Ubuntu Wiki (https://wiki.ubuntu.com/Hyper-V) for instructions
on creating an Ubuntu VM on Hyper-V.

You’ll also need to enable nested virtualization since you’ll be install-
ing VirtualBox inside the Hyper-V Ubuntu VM. To enable this feature,
enter the following command in an administrative PowerShell terminal:

Set-VMProcessor -VMName VMName -ExposeVirtualizationExtensions $true

You’ll need to run this command when the Ubuntu VM is stopped, or it
will fail. Replace VMName with the name of the Ubuntu VM you just created.

After your VM is up and running, you’ll install VirtualBox using the
Ubuntu version listed at https://www.virtualbox.org/wiki/Linux_Downloads.
After completing that installation, you’ll be able to perform the book’s
examples from within the newly created VM.

For older versions of Windows, you can use VirtualBox (yes, VirtualBox
within VirtualBox) or VMware (https://www.vmware.com/products/
workstation-player.html) to create the Ubuntu VM. Instructions for
these options are beyond the scope of this book.

Apple Silicon

If you’re using an Apple Silicon computer as your host machine,
VirtualBox is not an option. Apple Silicon’s CPU is based off the ARM
architecture, and VirtualBox works only on x86. Instead, you’ll need

https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/manual/
https://github.com/bradleyd/devops_for_the_desperate.git
https://git-scm.com/downloads
https://git-scm.com/downloads

xx Introduction

to use a virtualization technology like Parallels (https://parallels.com),
VMware Fusion (https://vmware.com), or Qemu (https://www.qemu.org) to
create an ARM-based virtual machine. The first two options are paid
software and may provide a better user experience. Qemu is free and
open source, and it requires some extra configuration steps. Visit the
companion GitHub repository (https://github.com/bradleyd/devops_for_the
_desperate/tree/main/apple-silicon/) for detailed instructions on how to
set up a suitable lab to follow along on your Apple Silicon Mac.

To get the best experience, your host should have a minimum of 8GB of
memory and at least 20GB of free disk space available; your mileage might
vary if you have less. This book also makes some basic assumptions about
your comfort level with Linux and the command line. You should be familiar
with Bash and feel at home editing files.

Downloading and Installing VirtualBox
Download the installer from https://www.virtualbox.org/wiki/Downloads/.
Choose the latest version and the correct download for your specific oper-
ating system. As mentioned previously, Windows users using Hyper-V will
install VirtualBox for Ubuntu Linux. For Intel-based Macs, click the OS
hosts link and download the installer. For Linux, you guessed it—click
the Linux distributions link to find the download for your distribution.
The VirtualBox website has excellent instructions for the different OSes at
https://www.virtualbox.org/manual/.

Launch VirtualBox from where you installed it to verify that it works. If
everything is okay, you should be greeted with a start screen (see Figure 1).

Figure 1: VirtualBox start screen on macOS (it will look different depending
on your host OS)

If you decide to use your OS’s package manager to install VirtualBox,
make sure you’ve got the latest version, as older versions might show differ-
ences from the examples in this book.

https://parallels.com
https://vmware.com
https://www.qemu.org
https://github.com/bradleyd/devops_for_the_desperate/tree/main/apple-silicon/
https://github.com/bradleyd/devops_for_the_desperate/tree/main/apple-silicon/
https://www.virtualbox.org/wiki/Downloads/
https://www.virtualbox.org/manual/

Introduction xxi

W A R N I N G If you are running macOS, you’ll need to allow VirtualBox extra permissions when
trying to launch the virtual machine. You will be prompted to allow VirtualBox to
control your computer, and you should go ahead and do so.

Companion Repository
As this is a book for the desperate, I have taken the liberty of creating IaC
files, Kubernetes manifests, an example application, and other things that
will help you follow along throughout. I have put all the examples and
source code in a Git repository located at https://github.com/bradleyd/devops
_for_the_desperate.git. To follow along with the chapters and examples, you’ll
need to clone the book’s repository. Your OS should have Git installed by
default, but if it does not, visit https://git-scm.com/downloads for information
on how to download and install Git for your specific OS.

From your terminal, enter the following command to clone the com-
panion repository:

$ git clone https://github.com/bradleyd/devops_for_the_desperate.git

Feel free to clone this repository to anywhere you like. I have added
some information in the README file as well if you need any additional
guidance. We’ll revisit this repository throughout this book.

Editor
Throughout this book, you’ll need to edit and view files to complete tasks.
For example, in some of the Ansible files, I’ve either left portions com-
mented out that you’ll need to uncomment, or you’ll need to fill in some
missing information.

I recommend using any editor you are comfortable with. You won’t
need any special plug-in or dependency to follow along in this book. However,
if you look hard enough, I am sure you can find syntax plug-ins to help with
editing the different types of files, like Ansible and Vagrant manifests. I use
Vim as my editor, but feel free to substitute your favorite.

And now, with all the background out of the way, you are ready to get
started! In Chapter 1, we’ll dive into setting up a local virtual machine.

https://github.com/bradleyd/devops_for_the_desperate.git
https://github.com/bradleyd/devops_for_the_desperate.git
https://git-scm.com/downloads

PART I
I N F R A S T R U C T U R E A S

C O D E , C O N F I G U R A T I O N
M A N A G E M E N T, S E C U R I T Y,

A N D A D M I N I S T R A T I O N

1
S E T T I N G U P A

V I R T U A L M A C H I N E

Provisioning (that is, setting up) a virtual
machine (VM) is the act of configuring a

VM for a specific purpose. Such a purpose
could be running an application, testing soft-

ware across a different platform, or applying updates.
Setting up a VM requires two steps: creating and then configuring it.

For this example, you’ll use Vagrant and Ansible to build and configure
a VM. Vagrant automates the process of creating the VM, while Ansible
configures the VM once it’s running. You’ll set up and test your VM locally,
on VirtualBox. This process is similar to creating and provisioning servers in
the cloud. The VM you set up now will be the foundation of all the examples
in the first section of this book.

Why Use Code to Build Infrastructure?
Using code to build and provision infrastructure lets you consistently,
quickly, and efficiently manage and deploy applications. This allows your

4 Chapter 1

infrastructure and services to scale. It also can reduce operating costs,
decrease time for recovery during a disaster, and minimize the chance of
configuration errors.

N O T E In the DevOps field, you’ll often hear two terms that relate to creating and con-
figuring infrastructure: infrastructure as code (IaC) and configuration
management (CM). Treating infrastructure as code is the process of using code
to describe and manage infrastructure like VMs, network switches, and cloud
resources such as Amazon Relational Database Service (RDS). CM is the process of
configuring those resources for a specific purpose in a predictable, repeatable man-
ner. The two tools we are using, Vagrant and Ansible, are considered IaC and CM,
respectively.

Another benefit of treating your infrastructure as code is ease of
deployment. Applications are built and tested the same way in a deliv-
ery pipeline. For example, artifacts like Docker images are created and
deployed consistently, using the same versions of libraries and programs.
Treating your infrastructure as code allows you to build reusable compo-
nents, use test frameworks, and apply standard software engineering best
practices.

There are times when treating your infrastructure as code may be
overkill, however. For example, if you have only one VM to stand up or a
simple Bash script to run, it may not be worth the time and effort to cre-
ate all the infrastructure and CM code to accomplish something you can
do in five minutes. Use your best judgment when deciding on the route
to take.

Getting Started with Vagrant
Vagrant is a framework that makes it easy to create and manage VMs.
It supports multiple operating systems (OSs) that can run on multiple
platforms. Vagrant uses a single configuration file, called a Vagrantfile, to
describe the virtual environment in code. You’ll use this to create your
local infrastructure.

Installation
To install Vagrant, visit Vagrant’s website at https://www.vagrantup.com/
downloads.html. Choose the correct OS and architecture for your host. To
complete the installation, download the binary and follow the instructions
specific to your OS. For example, since I am on a Mac, I would choose the
macOS 64-bit link to download the latest version.

When your VM comes up, you’ll also need to make sure that it has
VirtualBox’s guest additions installed on it. (You should have installed
VirtualBox when following along with this book’s Introduction.) Guest
additions provide better driver support, port forwarding, and host-only
networking. They help your VM run faster and have more options available.

https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Setting Up a Virtual Machine 5

After you have finished installing Vagrant, enter the following command in
your terminal to install the Vagrant plug-in for guest additions:

$ vagrant plugin install vagrant-vbguest
Installing the 'vagrant-vbguest' plugin. This can take a few minutes...
Fetching vagrant-vbguest-0.30.0.gem
Installed the plugin 'vagrant-vbguest (0.30.0)'!

The output above shows a successful installation of the vbguest plug-in
for Vagrant. Your version of the plug-in will most likely be different since
new versions come out periodically. It is good practice to update this
plug-in anytime you upgrade Vagrant and VirtualBox.

Anatomy of a Vagrantfile
A Vagrantfile describes how to build and provision a VM. It’s best practice
to use one Vagrantfile per project so you can add the configuration file to
your project’s version control and share it with your team. The configura-
tion file’s syntax is in the Ruby programming language, but you just need
to understand a few basic principles to get started.

The Vagrantfile provided with this book contains documentation and
sensible options to save you time. This file is too large to include here, so I’ll
discuss only the sections I changed from the Vagrant defaults. You’ll start
at the top of the file and work your way down to the bottom, so feel free to
open it and follow along. It is located under the vagrant/ directory in the
repository you cloned from the Introduction. Later in this chapter, you’ll
use this file to create your VM.

Operating System

Vagrant supports many OS base images, called boxes, by default. You can
search the list of boxes that Vagrant supports at https://app.vagrantup.com/
boxes/search/. Once you find the one you want, set it near the top of the
Vagrantfile using the vm.box option, as shown below:

config.vm.box = "ubuntu/focal64"

In this case, I’ve set the vm.box identifier to ubuntu/focal64.

Networking

You can configure the VM’s network options for different network scenarios,
like static IP or Dynamic Host Configuration Protocol (DHCP). To do this, modify
the vm.network option near the middle of the file:

config.vm.network "private_network", type: "dhcp"

For this example, you’ll want the VM to obtain its IP address from a
private network using DHCP. That way, it’ll be easy to access resources like
a web server on the VM from your local host.

https://app.vagrantup.com/boxes/search/
https://app.vagrantup.com/boxes/search/

6 Chapter 1

Providers

A provider is a plug-in that knows how to create and manage a VM. Vagrant
supports multiple providers to manage different types of machines. Each
provider has common options like CPU, disk, and memory. Vagrant will
use the provider’s application programming interface (API) or command
line options to create the VM. You can find a list of supported providers at
https://www.vagrantup.com/docs/providers/. The provider is set near the bottom
of the file and looks like this:

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.name = "dftd"
 --snip--
 end

Basic Vagrant Commands
Now that you know how a Vagrantfile is laid out, let’s look at some basic
Vagrant commands. The four you’ll use most often are vagrant up, vagrant
destroy, vagrant status, and vagrant ssh:

vagrant up Creates a VM using the Vagrantfile as a guide

vagrant destroy Destroys the running VM

vagrant status Checks the running status of a VM

vagrant ssh Accesses the VM over Secure Shell

Each of these commands has additional options. To see what they are,
enter a command and then add the --help flag for more information. To
learn more about Vagrant’s features, visit the documentation at https://www
.vagrantup.com/docs/.

Once you create the VM by running vagrant up, you’ll have a core Linux
system with all the OS defaults. Next, let’s look at how you can apply your
own configuration to the system by provisioning it.

Getting Started with Ansible
Ansible is a CM tool that can orchestrate the provisioning of infrastructure
like VMs. Ansible uses a declarative configuration style, which means it allows
you to describe what the desired state of infrastructure should look like.
This is different from an imperative configuration style, which requires you
to supply all the minute details on your desired state of infrastructure.
Because of its declarative style, Ansible is a great tool for software engineers
who are not well versed in system administration. Ansible is also open-source
software and free to use.

Ansible is written in Python, but you don’t need to understand Python
to use it. The one dependency you will need to understand is Yet Another
Markup Language (YAML), which is a data serialization language that

https://www.vagrantup.com/docs/providers/
https://www.vagrantup.com/docs/
https://www.vagrantup.com/docs/

Setting Up a Virtual Machine 7

Ansible uses to describe complex data structures and tasks. It’s easy to
pick up simply by looking at some basic examples, and I’ll provide a few
when I review the Ansible playbook and tasks later. Two important things
worth noting here are that YAML uses indentation to organize elements
like Python, and it is also case sensitive. You can read more about YAML at
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html.

Ansible applies its configuration changes over Secure Shell (SSH), which is
a secure protocol to communicate with remote hosts. The most common use
of SSH is to gain access to the command line on a remote host, but users can
also deploy it to forward network traffic and copy files securely. By using SSH,
Ansible can provision a single host or a group of hosts over the network.

Installation
Now, you should install Ansible so Vagrant can use it for provisioning. Head
over to Ansible’s documentation at https://docs.ansible.com/ansible/latest/
installation_guide/intro_installation.html. Locate the documentation for your
specific OS and follow the steps to install Ansible. For example, I am using
macOS, and the preferred way to install Ansible on macOS is to use pip,
which is a Python package manager used to install applications and depen-
dencies. I found this information under the Installing Ansible on macOS
link, which eventually directed me to install Ansible using pip under the
Installing Ansible with pip link. Since Ansible is written in Python, using
pip is an effective way to install the latest version.

Key Ansible Concepts
Now that you’ve installed Ansible, you’ll need to know these terms and con-
cepts to have it up and running quickly:

Playbook A playbook is a collection of ordered tasks or roles that you
can use to configure hosts.

Control node A control node is any Unix machine that has Ansible
installed on it. You will run your playbooks or commands from a control
node, and you can have as many control nodes as you like.

Inventory An inventory is a file that contains a list of hosts or groups of
hosts that Ansible can communicate with.

Module A module encapsulates the details of how to perform certain
actions across operating systems, such as how to install a software pack-
age. Ansible comes preloaded with many modules.

Task A task is a command or action (such as installing software or
adding a user) that is executed on the managed host.

Role A role is a group of tasks and variables that is organized in a
standardized directory structure, defines a particular purpose for the
server, and can be shared with other users for a common goal. A typi-
cal role could configure a host to be a database server. This role would
include all the files and instructions necessary to install the database
application, configure user permissions, and apply seed data.

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

8 Chapter 1

Ansible Playbook
To configure the VM, you’ll use the Ansible playbook I have provided. This
file, named site.yml, is located in the ansible/ directory you cloned from the
Introduction. Think of the playbook as an instruction manual on how to
assemble a host. Now, take a look at the playbook file itself. Navigate to the
ansible/ directory and open the site.yml file in your editor.

You can break up playbook files into different sections. The first section
functions as the header, which is a good place to set global variables to use
throughout the playbook. In the header, you’ll set things like the name of the
play, the hosts, the remote_user, and the privileged escalation method:

- name: Provision VM
 hosts: all
 become: yes
 become_method: sudo
 remote_user: ubuntu
--snip--

These settings are mostly boilerplate, but let’s focus on a few points.
Be sure to give each play a name so it’s easier to find and debug if things go
wrong. The name of the play in the example above is set to Provision VM. You
could have multiple plays in a single playbook, but for this example, you’ll
need only one. Next, the hosts option is set to all to match any Vagrant-
built VMs because Vagrant will autogenerate the Ansible inventory file
dynamically. Some operations on a host will require elevated privileges, so
Ansible allows you to become, or activate privilege escalation for, a specific
user. Since you’re using Ubuntu, the default user with escalated privileges is
ubuntu. You also can set the different methods to use for authorization, and
you’ll use sudo for this example.

The next section is where you’ll list all the tasks for the host. This is
where the actual work is being done. If you think of the playbook as an
instruction manual, the tasks are just the separate steps in that manual. The
tasks section looks like this:

--snip--
 tasks:
 #- import_tasks: chapter2/pam_pwquality.yml
 #- import_tasks: chapter2/user_and_group.yml
--snip--

The built-in Ansible import_tasks function is loading tasks from two
separate files: pam_pwquality.yml and user_and_group.yml. The import_tasks
function allows you to organize the tasks better and avoid a large, cluttered
playbook. Each of these files can have one or many individual tasks. I’ll dis-
cuss tasks and other parts of the playbook in future chapters. For now, note
that these tasks are commented out with the hash mark (#) symbol and will
not change anything until you uncomment them.

Setting Up a Virtual Machine 9

Basic Ansible Commands
The Ansible application comes with multiple commands, but you’ll mostly
use these two: ansible and ansible-playbook.

You’ll primarily use the ansible command for running ad hoc or one-
time commands that you execute from the command line. For example, to
instruct a group of web servers to restart Nginx, you would enter the follow-
ing command:

$ ansible webservers -m service -a "name=nginx state=restarted" --become

This instructs Ansible to restart Nginx on a group of hosts called
webservers. Note that the mapping for the webservers group would be
located in the inventory file. The Ansible service module interacts with
the OS to perform the restart. The service module requires some extra
arguments, and they are passed with the -a flag. In this case, both the name
of the service (nginx) and the fact that it should restart are indicated. You
need root privileges to restart a service, so you’ll use the --become flag to ask
for privilege escalation.

The ansible-playbook command runs playbooks. In fact, this is the
command Vagrant will use during the provisioning phase. To instruct
ansible-playbook to execute the aws-cloudwatch.yml playbook against a
group of hosts called dockerhosts, you would enter the following com-
mand in your terminal:

$ ansible-playbook -l dockerhosts aws-cloudwatch.yml

The dockerhosts need to be listed in the inventory file for the command
to succeed. Note that if you do not provide a subset of hosts with the -l flag,
Ansible will assume you want to run the playbook on all the hosts found in
your inventory file.

Creating an Ubuntu VM
Up to this point, we’ve been discussing concepts and configuration files.
Now, let’s put that knowledge to use and stand up and provision some
infrastructure. To create the Ubuntu VM, make sure you are in the same
directory as the Vagrantfile. This is because Vagrant needs to reference the
configuration file while creating the VM. You’ll use the vagrant up command
to create the VM, but before running the command, you should know
that it produces a lot of output and may take a few minutes. Therefore, I’m
focusing on only the relevant parts here. Enter the following command in
your terminal:

$ vagrant up

10 Chapter 1

The first section of the output to look at is Vagrant downloading the
base image:

--snip--
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/focal64'...
--snip--

Here, Vagrant is downloading the ubuntu image, as expected. The image
download may take a few minutes, depending on your internet connection.

Next, Vagrant will configure a public/private key pair to provide SSH
access to the VM. (We’ll discuss key pairs in more detail in Chapter 3.)

--snip--
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...
--snip--

Vagrant stores the private key locally on your host (.vagrant/) and then
adds the public key to the ~/.ssh/authorized_keys file on the VM. Without
these keys, you would not be able to connect to the VM over SSH.

By default, Vagrant and VirtualBox will mount a shared directory inside
the VM. This shared directory will give you access to a host directory from
within the VM:

--snip--
==> default: Mounting shared folders...
 default: /vagrant => /Users/bradleyd/devops_for_the_desperate/vagrant
--snip--

You can see that my local host directory Users/bradleyd/devops_for_the
_desperate/ is mounted at the vagrant/ directory inside the VM. Your direc-
tory will be different. You can use this shared directory for transferring files
like source code between host and VM. If you don’t need the shared direc-
tory, Vagrant provides a configuration option to turn it off. See Vagrant’s
documentation for further details.

Finally, the following shows the Ansible provisioner output:

--snip--
==> default: Running provisioner: ansible...
 default: Running 1ansible-playbook...

PLAY [Provision VM] *******************************
2 TASK [Gathering Facts] ****************************
3 ok: [default]

PLAY RECAP *******************************

Setting Up a Virtual Machine 11

--snip--
default : ok=1 4changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

This shows that the Ansible provisioner is run using the ansible-playbook 1
command. Ansible logs each TASK 2 and whether anything was changed on
the host 3. In this case, all the tasks are commented out, so nothing was
changed 4 on the VM. This output is the first place to look when gauging
success or failure.

Let’s perform a sanity check and see whether the VM is actually run-
ning. Enter the following command in your terminal to show the VM’s cur-
rent status:

$ vagrant status
Current machine states:
default running (virtualbox)
--snip--

Here, you can see that the status of the VM is running. This means you
created the VM, and it should be accessible over SSH.

If your output looks different, make sure there are no errors from the
vagrant up command before continuing. If you need more information, add
the debug flag to the up command to make Vagrant increase the output ver-
bosity: vagrant up --debug. You’ll need to have a successful provision at this
point, or it will be difficult to follow along with the remaining chapters.

Summary
In this chapter, you installed Vagrant and Ansible to create and configure
a VM. You learned how to configure Vagrant using its Vagrantfile, and you
gained basic knowledge of how to provision a VM using Ansible playbooks
and tasks. Now that you understand these basic concepts, you should be
able to create and provision any type of infrastructure, not just VMs.

In the next chapter, you’ll use two provided Ansible tasks to create a user
and group. You’ll need to have a foundation in user and group management
when configuring a host.

2
U S I N G A N S I B L E T O

M A N A G E P A S S W O R D S ,
U S E R S , A N D G R O U P S

Now that you’ve built your VM, let’s move
on to performing administrative tasks like

user management. The DevOps practice
of automation is key to building and manag-

ing resources. To manage any Linux host, you need
a basic understanding of the workings of passwords,
users, and groups. Users and passwords are the build-
ing blocks of identity management, while groups
allow you to manage a collection of users and control
access to files, directories, and commands. Dividing
up responsibilities between users and groups can be
the difference between allowing unauthorized access
and thwarting it.

14 Chapter 2

In this chapter, you’ll continue learning how to use Ansible, and you’ll
also provision the VM you just created to improve your basic security policy.
You’ll use some provided Ansible tasks to enforce complex passwords,
manage users and groups, and control access to a shared directory and file.
Once you have learned those security basics, you’ll be able to use them as
the foundation of every playbook.

Enforcing Complex Passwords
Letting users decide what a strong password is can be a recipe for disaster,
so you’ll need to enforce complex passwords on every host that users can
access. Since automation is one of our guiding principles, you’ll use code
to enforce strong passwords for all users. To do this, you can use an Ansible
task to install a plug-in for Pluggable Authentication Modules (PAM), which is a
user authentication framework that most Linux distributions employ. The
plug-in to provide complex passwords is called pam_pwquality. This module
validates passwords based on criteria you set.

Installing libpam-pwquality
The pwquality PAM module is available in the Ubuntu software repository
under the name libpam-pwquality. You’ll use the Ansible tasks provided with
this book to install and configure this package. Remember, the goal is to
automate everything you can, and tasks provide the mechanism to carry out
administrative work. These tasks are located in the repository you cloned
from the Introduction. Navigate to the ansible/chapter2/ directory and open
the pam_pwquality.yml file in your favorite editor. This file contains two
tasks: Install libpam-pwquality and Configure pam_pwquality.

Let’s focus on the first task that uses the Ansible package module to
install libpam-pwquality on the VM. At the top of the file, the install task
should look like this:

- name: Install libpam-pwquality
 package:
 name: "libpam-pwquality"
 state: present
--snip--

Each Ansible task should start with a name declaration that defines its
goal. In this case, the name is Install libpam-pwquality. Next, the Ansible
package module performs the software installation. The package module
requires you to set two parameters: name and state. In this example, the
package name (found in the Ubuntu repository) should be libpam-pwquality,
and the state should be present. To remove a package, set the state to absent.
This is a good example of declarative instruction, since you are telling
Ansible to make sure this package is installed. You don’t need to worry how
it gets installed, as long as it does. If you install the package (present) and
then delete the task from Ansible, the package will still be installed on the

Using Ansible to Manage Passwords, Users, and Groups 15

next provision. You would have to explicitly set the package to absent if you
wanted the host to represent your desired state.

As mentioned in Chapter 1, Ansible modules (like the one above) perform
common actions on an OS, such as enabling a firewall, managing users, or
(in this case) installing software. Ansible allows your actions to be idempotent,
which means you can do a specific action over and over again and the result
will be the same as it was the last time you executed the action. Because of
this, you should automate all you can! You’ll save time and avoid mistakes
caused by manual fatigue. Imagine if you had to configure 1,000 machines a
day. It would be almost impossible without automation!

Configuring pam_pwquality to Enforce a Stricter Password Policy
On a default Ubuntu system, password complexity is not as strong as it
could be. It requires a minimum password length of six characters and
executes only some basic complexity checks. To enforce more complexity,
you’ll want to configure pam_pwquality to set a stricter password policy.

A file named /etc/pam.d/common-password handles configuration of the
pam_pwquality module. This file is where the Ansible task makes the necessary
changes to validate passwords. All you need to do is change one line in
that file. A common way to edit a line using Ansible is with the lineinfile
module, which allows you to change a line in a file or check whether a
line exists.

With the pam_pwquality task file still open, let’s review the second task
from the top. It should look like this:

--snip--
- name: Configure pam_pwquality
 lineinfile:
 path: "/etc/pam.d/common-password"
 regexp: "pam_pwquality.so"

 line: "password required pam_pwquality.so minlen=12 lcredit=-1 ucredit=-1
 dcredit=-1 ocredit=-1 retry=3 enforce_for_root”
 state: present
--snip--

Once again, the task starts with a name, Configure pam_pwquality, that
describes its intent. Then it tells Ansible to use the lineinfile module to edit
the PAM password file. The lineinfile module requires the path of the file
to which you want to make changes. In this case, it is the PAM password
file /etc/pam.d/common-password. Use a regular expression, or regexp, to find
the line in the file you want to change. The regular expression locates the
line that has pam_pwquality.so in it and replaces it with a new line. The replace-
ment line parameter contains the pwquality configuration changes, which
enforce more complexity. The options provided above enforce the following:

•	 A minimum password length of 12 characters

•	 One lowercase letter

•	 One uppercase letter

16 Chapter 2

•	 One numeric character

•	 One nonalphanumeric character

•	 Three retries

•	 Disable root override

Adding these requirements will strengthen Ubuntu’s default password
policy. Any new passwords will need to meet or exceed these requirements,
which will make brute-forcing user passwords a bit harder for attackers.

N O T E The negative values in the configuration line above inform pam_pwquality that it
must have at least “one of” for that category. See the pam_pwquality man page
(enter man pam_pwquality) for further details.

Close the pam_pwquality.yml file so you can move on to creating users
with an Ansible module.

Linux User Types
When it comes to Linux, users come in three types: normal, system, and
root. You can think of a normal user as a human account, and you’ll cre-
ate one of those next. Every normal user is typically associated with a
password, a group, and a username. Think of a system user as a nonhuman
account, such as the user Nginx runs as. In fact, a system user is almost
identical to a normal user, but it is located in a different user ID (UID)
range for compartmental reasons. A root user (or superuser) account has
unrestricted access to the operating system. You can tell the root user by
its UID, which is always zero. As with all your configurations, you’ll use
an Ansible module to do the heavy lifting when it comes to creating and
configuring users.

Getting Started with the Ansible User Module
Ansible comes with the user module, which makes managing users very
easy. It handles all the messy details for accounts, like shells, keys, groups,
and home directories. You’ll use the user module to create a new user
called bender. Feel free to name it something else if you want, but since the
examples in this book use the bender username going forward, don’t forget
to change the name in future chapters as well.

Open the user_and_group.yml file located in the ansible/chapter2/ direc-
tory. This file contains the following five tasks:

1. Ensure group developers exists.

2. Create the user bender.

3. Assign bender to the developers group.

4. Create a directory named engineering.

5. Create a file in the engineering directory.

Using Ansible to Manage Passwords, Users, and Groups 17

These tasks will create a group and a user, assign a user to a group, and
create a shared directory and file.

Though it’s counterintuitive, let’s start by focusing on the second task
on the list, which creates the user bender. (We’ll get to the first task in the
“Linux Groups” section on the next page.) It should look like this:

--snip--
- name: Create the user 'bender'
 user:
 name: bender
 shell: /bin/bash
 password: 6...(truncated)
--snip--

This task, like all others, starts with a name that describes what it will do.
In this case, it is Create the user 'bender'. You’ll use the Ansible user module to
create a user. The user module has many options, but only the name parameter
is required. In this example, the name is set to bender. Setting a user’s password
at provision time can be useful, so set the optional password parameter field
to a known password hash (more on this later). The password value, beginning
with $6, is a cryptic hash that Linux supports. I have included a sample pass-
word hash for bender to show how you can automate this step. In the next
section, I will walk through the process I used to generate it.

Generating a Complex Password
You can use many different methods to generate a password to match the
complexity you set in pam_pwquality. As mentioned earlier, I’ve supplied a
password hash for you that matches this threshold to save time. I used a
combination of two command line applications, pwgen and mkpasswd, to create
the complex password. The pwgen command can generate secure passwords,
and the mkpasswd command can generate passwords using different hashing
algorithms. The pwgen application is provided by the pwgen package, and the
mkpasswd application is provided by a package named whois. Together, these
tools can generate the hash that Ansible and Linux expect.

Linux stores password hashes in a file called shadow. On an Ubuntu sys-
tem, the password hashing algorithm is SHA-512 by default. To create your
own SHA-512 hash for Ansible’s user module, use the commands below on
an Ubuntu host:

$ sudo apt update
$ sudo apt install pwgen whois
$ pass=`pwgen --secure --capitalize --numerals --symbols 12 1`
$ echo $pass | mkpasswd --stdin --method=sha-512; echo $pass

Since these packages are not installed by default, you’ll need to install
them first with the APT package manager. The pwgen command generates a
complex password that matches what you need to satisfy pwquality and saves
it into a variable called pass. Next, the contents of the variable pass are piped
into mkpasswd to be hashed using the sha-512 algorithm. The final output

18 Chapter 2

should contain two lines. The first line contains the SHA-512 hash, and
the second line contains the new password. You can take the hash string
and set the password value in the user creation task to change it. Feel free
to try it!

W A R N I N G In a real production environment, you won’t want to include a password hash in a
version control system or inside an Ansible task, for obvious reasons. I included this
example so you can have an easy way to create complex passwords that satisfy the
pam_pwquality module. Use a tool like Ansible Vault to protect any sensitive informa-
tion, like passwords or private keys. Ansible Vault stores these secrets in encrypted
files instead of playbooks or tasks. Using this technique is beyond this book, but to
learn more about Ansible Vault, visit https://docs.ansible.com/ansible/latest/
user_guide/vault.html.

Linux Groups
Linux groups allow you to manage multiple users on a host. Creating groups
is also an efficient way to limit access to resources on a host. It is much easier
to administer changes to a group than to hundreds of users individually.
For the next example, I’ve provided an Ansible task to create a group called
developers that you will use to limit access to a directory and a file.

Getting Started with the Ansible Group Module
Like the user module, Ansible has a group module that can manage creat-
ing and removing groups. Compared to other Ansible modules, the group
module is very minimal; it can only create or delete a group.

Open the user_and_group.yml file in your editor to review the group
creation task. The first task in the file should look like this:

- name: Ensure group 'developers' exists
 group:
 name: developers
 state: present
--snip--

The name of the task states that you want to make sure a group exists.
Use the group module to create the group. This module requires you to set
the name parameter, which is set to developers here. The state parameter is
set to present, so it will create the group if it does not already exist.

The group creation task is the first one in the file, and that is not by
accident. You need to create the developers group before executing any other
tasks. Tasks are run in order, so you need to make sure the group exists first.
If you tried to reference the group before creating it, you would get an error
message stating that the developers group doesn’t exist, and the provisioning
would fail. Understanding Ansible’s task order of operations is key to per-
forming more complex operations.

Keep the user_and_group.yml file open as you continue reviewing the
other tasks.

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html

Using Ansible to Manage Passwords, Users, and Groups 19

Assigning a User to the Group
To add a user to a group with Ansible, you’ll leverage the user module once
again. In the user_and_group.yml file, locate the task that assigns bender to
the developers group (the third task from the top in the file). It should look
like this:

--snip--
- name: Assign 'bender' to the 'developers' group
 user:
 name: bender
 groups: developers
 append: yes
--snip--

First is the name of the task, which describes its intention. The user mod-
ule appends bender to the developers group. The groups option can accept
multiple groups in a comma-separated string. By using the append option,
you leave bender’s previous groups intact and add only the developers. If you
omit the append option, bender will be removed from all groups except its
primary group and the one(s) listed in the groups parameter.

Creating Protected Resources
With bender’s group affiliation sorted out, let’s visit the last two tasks in the
user_and_group.yml file, which deal with creating a directory (/opt/engineering/)
and a file (/opt/engineering/private.txt) on the VM. You’ll use this directory
and file to test user access for bender later.

With the user_and_group.yml file still open, locate the two tasks. Start
with the directory creation task (the fourth from the top in the file), which
should look like this:

- name: Create a directory named 'engineering'
 file:
 path: /opt/engineering
 state: directory
 mode: 0750
 group: developers

First, as before, set the name to match the task’s intent. Use the file mod-
ule to manage the directory and its attributes. The path parameter is where
you want to create the directory. In this case, it’s set to /opt/engineering/.
Since you want to create a directory, set the state parameter to the type
of resource you want to create, which is directory in this example. You can
use other types here, and you’ll see another one when you create the file
later. The mode, or privilege, is set to 0750. This number allows the owner
(root) to read, write, and execute against this directory, while the group
members are allowed only to read and execute. The execute permission is
needed to enter the directory and list its contents. Linux uses octal num-
bers (0750, in this case) to define permissions on files and groups. See the
chmod man page for more information on permission modes. Finally, set

20 Chapter 2

the group ownership of the directory to the developers group. This means
only the users in the developers group can read or list the contents of this
directory.

The last task in the user_and_group.yml file creates an empty file inside
the /opt/engineering/ directory you just created. The task, located at the
bottom of the file, should look like this:

- name: Create a file in the engineering directory
 file:
 path: "/opt/engineering/private.txt"
 state: touch
 mode: 0770
 group: developers

Set the task name to what you want to do on the host. Use the file mod-
ule again to create a file and set some attributes on it. The path, which is
required, gives the file’s location on the VM. This example shows creating a
file named private.txt inside the /opt/engineering/ directory. The state param-
eter is set to touch, which means to create an empty file if it does not exist. If
you need to create a nonempty file, you can use the copy or template Ansible
modules. See the documentation for more details. The mode, or privileges,
is set to read, write, and execute for any user in the group (0770). Finally, set
the group ownership of the file to the developers group.

It is important to understand that there are many methods you can use
to protect resources on a Linux host. Group restrictions are just a small piece
of a larger authorization stack you would see in a production environment.
I’ll discuss different access controls in a later chapter. But for now, just know
that with Ansible’s tasks and modules, you can perform many common sys-
tem configurations, such as securing files and directories across your whole
environment.

Updating the VM
So far, we’ve been describing Ansible modules and reviewing the tasks that
will provision the VM. The next step actually uses them. To provision the
VM, you’ll need to uncomment the tasks in the playbook under the ansible/
directory. The site.yml file is the playbook you referenced in the provisioners
section of your Vagrantfile.

Open the site.yml playbook file in your editor and locate the Chapter 2
tasks that look like this:

--snip--
tasks:
 #- import_tasks: chapter2/pam_pwquality.yml
 #- import_tasks: chapter2/user_and_group.yml
--snip--

They are commented out. Remove the hash marks (#) at the start of the
two lines to uncomment them so Ansible can execute the tasks.

Using Ansible to Manage Passwords, Users, and Groups 21

W A R N I N G Do not uncomment any other tasks, since that will cause unexpected consequences.
You’ll use the other tasks later in this book.

The playbook should now look like this:

- name: Provision VM
 hosts: all
 become: yes
 become_method: sudo
 remote_user: ubuntu
 tasks:
 - import_tasks: chapter2/pam_pwquality.yml
 - import_tasks: chapter2/user_and_group.yml
--snip--

Both Chapter 2 tasks, pam_pwquality and user_and_group, are now uncom-
mented, so they will execute the next time you provision the VM. Save and
close the playbook file for now.

You created the VM in Chapter 1. If the VM is not running, however,
enter the vagrant up command to start it again. With the VM running, all
you need to do is issue the vagrant provision command from within the
vagrant/ directory to run the provisioner:

$ vagrant provision
--snip--
PLAY RECAP ***
Default : ok=8 changed=7 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

The last line shows that the Ansible playbook ran and completed 8
actions. Think of actions as the tasks and other operations being run. Seven
of those eight actions changed some state on the VM. The line shows that
the provision is complete and had no errors or failed actions.

If your provision has failures, stop and try to troubleshoot them. Run
the provision command again with the --debug flag, as shown in Chapter 1,
to receive more information. You’ll need a successful provision to follow
along with the examples in this book.

Testing User and Group Permissions
To test the user and group permissions you just configured, you’ll issue
the ssh command for vagrant to access the VM. Make sure you are in the
vagrant/ directory so you have access to the Vagrantfile. Once there, enter
the command below in your terminal to log in to the VM:

$ vagrant ssh
vagrant@dftd:~$

You should be logged in as the vagrant user, which is the default user
Vagrant creates.

22 Chapter 2

Next, to verify the user bender was created, you’ll use the getent com-
mand to query the passwd database for the user. This command allows you
to query entries in files like /etc/passwd, /etc/shadow, and /etc/group. To
check bender’s existence, enter the following command:

$ getent passwd bender
bender:x:1002:1003::/home/bender:/bin/bash

Your result should look similar to the output above. If the user was not
created, the command will complete without any result.

Now, you should check whether the developers group exists and whether
bender is a member of it. Query the group database for this information:

$ getent group developers
developers:x:1002:bender

The result should look like the output above, with a developers group
and the user bender assigned to it. If the group did not exist, the command
would have exited without any result.

For the final check, test that only members of the developers group can
access the /opt/engineering/ directory and the private.txt file. To do this, try to
access the directory and file once as the vagrant user and then again as the
bender user.

While logged in as vagrant, enter the command below to list the /opt/
engineering/ directory and its contents:

$ ls -al /opt/engineering/
ls: cannot open directory '/opt/engineering/': Permission denied

The output indicates that access is denied when trying to list files in
/opt/engineering as the vagrant user. This is because the vagrant user is not a
member of the developers group and thus does not have read access to the
directory.

Now, to test the file permissions for vagrant, use the cat command to
view the /opt/engineering/private.txt file:

$ cat /opt/engineering/private.txt
cat: /opt/engineering/private.txt: Permission denied

The same error occurs because the vagrant user does not have read
permissions on the file.

The next test is to verify that bender has access to this same directory
and file. To do this, you must be logged in as the bender user. Switch users
from vagrant to bender using the sudo su command. (I’ll cover the sudo com-
mand in Chapter 4.)

In your terminal, enter the following command to switch users:

vagrant@dftd:~$ sudo su - bender
bender@dftd:~$

Using Ansible to Manage Passwords, Users, and Groups 23

Once you have successfully switched users, try the command to list the
directory again:

$ ls -al /opt/engineering/
total 8
drwxr-x--- 2 root developers 4096 Jul 3 03:59 .
drwxr-xr-x 3 root root 4096 Jul 3 03:59 ..
-rwxrwx--- 1 root developers 0 Jul 3 04:02 private.txt

Now, as you can see, you have successfully accessed the directory and its
contents as bender, and the private.txt file is viewable.

Next, enter the following command to check whether bender can read
the contents of the /opt/engineering/private.txt file:

$ cat /opt/engineering/private.txt

You use the cat command again to view the contents of the file. Since
the file is empty, there is no output. More importantly, there are no errors
from bender’s attempt to access the file.

Summary
In this chapter, you provisioned the VM using the following Ansible modules:
package, lineinfile, user, group, and file. These modules configured the
host to enforce complex passwords, manage a user and group, and secure
access to a file and directory. These are common tasks a DevOps engineer
would do in a typical environment. Not only did you expand your Ansible
knowledge, but you learned how to automate basic security hygiene on
the VM. In the next chapter, you’ll continue with the provided tasks and
increase SSH security to limit access to the VM.

3
U S I N G A N S I B L E T O

C O N F I G U R E S S H

SSH is a protocol and tool that provides
command line access to a remote host from

your own machine. If you are managing a
remote host or a fleet of remote hosts, the most

common way to access them is over SSH. Most servers
are likely to be headless, so the easiest way to access
them is from a terminal. Since SSH opens access to
a host, misconfiguration or default installations can
lead to unauthorized access. As with a lot of Linux
services out of the box, the default security settings
are adequate for most cases, but you will want to know
how to increase security and then automate it. As an
engineer, you should understand the steps required
to lock down SSH on a host or hosts.

26 Chapter 3

In this chapter, you’ll learn how to use Ansible to secure SSH access to
your VM. You’ll do this by disabling password access over SSH, requiring
public key authentication over SSH, and enabling two-factor authentication
(2FA) over SSH for your user bender. You’ll use a combination of some famil-
iar Ansible modules, and you’ll be introduced to some new ones. By the end
of this chapter, you’ll have a better understanding of how to enforce strict
access to SSH and the automation steps required to do so.

Understanding and Activating Public Key Authentication
Most Linux distributions use passwords to authenticate over SSH by
default. Although this is okay for many setups, you should beef up security
by adding another option: public key authentication. This method uses a key
pair, consisting of a public key file and a private key file, to confirm your
identity. Public key authentication is considered best practice for authen-
ticating users over SSH because potential attackers who want to hijack a
user’s identity need both a copy of a user’s private key and the passphrase
to unlock it.

When you create an SSH session with a key, the remote host encrypts a
challenge with your public key and sends the challenge back to you. Because
you are in possession of the private key, you can decode the message and
send back a response to the remote server. If the server can validate the
response, it will know you are in possession of the private key and will thus
confirm your identity. To learn more about the key exchange and SSH, visit
https://www.ssh.com/academy/ssh/.

Generating a Public Key Pair
To generate a key pair, you’ll use the ssh-keygen command line tool. This
tool, usually installed on Unix hosts by default as part of the ssh pack-
age, generates and manages authentication key pairs for SSH. There’s a
good chance you already have a public key pair on your local host, but for
this book, let’s create a new key pair so you don’t interfere with it. You’ll
also add a passphrase to the private key. A passphrase is like a password, but
it’s usually longer (more like a group of unrelated words than a complex
stream of characters). You add it so that if your private key ever fell into the
wrong hands, the bad actors would need to have your passphrase to unlock
it and spoof your identity.

N O T E The following instructions are for Linux and macOS only.

In a terminal on your local host, enter the following command to gen-
erate a new key pair:

$ ssh-keygen -t rsa -f ~/.ssh/dftd -C dftd
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): <passphrase>

https://www.ssh.com/academy/ssh/

Using Ansible to Configure SSH 27

Enter same passphrase again: <passphrase>
Your identification has been saved in /Users/bradleyd/.ssh/dftd.
Your public key has been saved in /Users/bradleyd/.ssh/dftd.pub.

You first instruct ssh-keygen to create an rsa key pair that has a name of
dftd (DevOps for the Desperate). If you do not specify a name, it defaults
to id_rsa, which might override your existing local key. The -C flag adds
a human-readable comment to the end of the key that can help identify
what the key is for. Here, it’s also set to dftd. During execution, the com-
mand should prompt you to secure your key by adding a passphrase. Enter
a strong passphrase to protect the key. Also remember to always keep your
passphrase safe, because if you lose it, your key will become forever locked
and you will never be able to use it for authentication again.

After you confirm the passphrase, the private key and public key files
are created under your local ~./ssh/ directory.

Using Ansible to Get Your Public Key on the VM
Each user’s home folder on the VM has a file called authorized_keys. This file
contains a list of public keys the SSH server can use to authenticate that user.
You’ll use this file to authenticate bender when accessing the VM over SSH.
To do this, you need to copy the local public key you just created in the pre-
vious section (/Users/bradleyd/.ssh/dftd.pub, in my case) and append the contents
of that file to the /home/bender/.ssh/authorized_keys file on the VM.

To copy the file’s content, you’ll use a provided Ansible task. This task
and all the other tasks related to this chapter are located in the cloned
repository under the ansible/chapter3/ directory.

Open the authorized_keys.yml file in your favorite editor to review the
Ansible task. The first thing you should notice is that this file has only one
task. It should look like this:

- name: Set authorized key file from local user
 authorized_key:
 user: bender
 state: present
 key: "{{ lookup('file', lookup('env','HOME') + '/.ssh/dftd.pub') }}"

First, set the name of the task to identify its intent. Use the Ansible
authorized_key module to copy your public key from the local host over to
bender on the VM. The authorized_key module is quite simple and requires
that you set only the user and key parameters. In this example, it copies the
local public key you made earlier into bender’s /home/bender/.ssh/authorized_keys
file. Set the state to present, as you want to add the key and not remove it.

To get the contents of the local public key, you’ll use Ansible’s evalu-
ation expansion operators ({{ }}) and a built-in Ansible function called
lookup. The lookup function retrieves information from outside resources,
based on the plug-in specified as its first argument. In this example,
lookup uses the file plug-in to read the contents of the ~/.ssh/dftd.pub
public key file. The full path to this public key file is constructed with the

28 Chapter 3

lookup env plug-in and string concatenation denoted by the + sign. The
final result should look similar to this if you’re on a Mac: /Users/bradleyd/
.ssh/dftd.pub. If you are on Linux, it should like similar to this: /home/
bradleyd/.ssh/dftd.pub. The file path will be different, depending on your
OS and username.

Adding Two-Factor Authentication
Security is built in layers. The more layers you have, the harder it is for
an intruder to gain access. The next layer of security to add is two-factor
authentication (2FA), which validates a user’s identity by using credentials
and something that the user has, like a phone or device. The main goal of
2FA is to make it harder for someone to spoof your identity if your password
or key is compromised.

Two-factor authentication relies on your providing two out of these
three things: something you know, something you have, and something you are.
Here are some examples of each:

Something you know: password or pin

Something you have: phone or hardware authentication device, such as
a YubiKey

Something you are: fingerprint or voice

For this example, you’ll use a time-based one-time password (TOTP) to
satisfy the “something you have” portion, along with your public key for
access. You’ll use the Google Authenticator package to configure your VM to
use TOTP tokens for logging in. These TOTP tokens are usually generated
from an application like oathtool (https://www.nongnu.org/oath-toolkit/) and
are valid for only a short period of time. I have taken the liberty of creating
10 TOTP tokens that Ansible will use for you, but I will also show you how
to use oathtool (more on this later).

To enforce 2FA on your VM, you’ll use some provided Ansible tasks to
install another PAM module, configure the SSH server, and enable 2FA. To
review the provided tasks, first open the two_factor.yml file in your editor. (All
the Ansible files for this chapter are located in the ansible/chapter3/ directory.)
This file has seven tasks, and each task has a specific job to enable 2FA. The
tasks are named as follows:

1. Install the libpam-google-authenticator package.

2. Copy over preconfigured GoogleAuthenticator config.

3. Disable password authentication for SSH.

4. Configure PAM to use GoogleAuthenticator for SSH logins.

5. Set ChallengeResponseAuthentication to Yes.

6. Set Authentication Methods for bender, vagrant, and ubuntu.

7. Insert an additional line here that reads: Restart SSH Server.

We’ll look at each of these tasks in the following sections.

https://www.nongnu.org/oath-toolkit/

Using Ansible to Configure SSH 29

Installing Google Authenticator
Google Authenticator is a PAM module that allows you to enforce 2FA over
SSH. This module is located in the Ubuntu software repository under the
name libpam-google-authenticator. The package contains all the necessary
files to enable Google Authenticator. With the two_factor.yml file still open,
find the first task at the top. It should look like this:

- name: Install the libpam-google-authenticator package
 apt:
 name: "libpam-google-authenticator"
 update_cache: yes
 state: present

The name on the first line identifies the task’s intent (installing a pack-
age). You’ll use Ansible’s apt module to install the OS package. The apt
module also requires the following name parameter to be set, and in this
example, it is set to the package name libpam-google-authenticator.

N O T E I chose to use the apt module because it’s the default on Ubuntu, and it updates the
OS’s package manager cache before installing the libpam-google-authenticator pack-
age. The package cache is like a list of software titles that the OS knows about. If
the package manager cache is stale, apt may not know how to find the package and
the task may fail.

Finally, as before, set the state to present since you want to install the
package and not remove it. Most Ansible modules have the state set to present
as a default, but you are most likely not the only person using these tasks.
Letting the other engineers know your intent leaves little room for doubt or
error, so even though you could omit this step, it’s always better to be explicit.

Configuring Google Authenticator
To configure Google Authenticator for a user, you typically would run the
google-authenticator command that was installed from the libpam-google
-authenticator package. This application creates a configuration file named
.google_authenticator in the user’s home/ directory by default. The configura-
tion file consists of a Base32 key (secret); configuration options, such as
token reuse and time to live; and 10 emergency recovery tokens. To keep
the focus on provisioning, I’ve created the google_authenticator configuration
file for you in the chapter3/ directory.

W A R N I N G Do not use this file in the real world, as the secret key and tokens are not so secret.
Instead, keep these values safe by storing them in Ansible Vault or another product like
HashiCorp’s vault (https://www.vaultproject.io/). You can also add the no_log:
True option to any task that might write sensitive information to the provision log.

Since the goal is to automate, you’ll use an Ansible task to copy this
configuration file over to the VM. If you’re tempted to think, “It would be
easier just to run the command by hand,” remember that in most cases you’ll

https://www.vaultproject.io/

30 Chapter 3

be managing many hosts. Doing that by hand would be tedious and make
you error prone.

 With the two_factor.yml file still open, locate the task on line 7 of the file
that looks like this:

- name: Copy over preconfigured GoogleAuthenticator config
 copy:
 src: ../ansible/chapter3/google_authenticator
 dest: /home/bender/.google_authenticator
 owner: bender
 group: bender
 mode: 0600

As always, the name of the task describes its intent (copy a file). The Ansible
copy module copies the configuration file from your local host to the VM. Use
the copy module when you need to copy a file from a source to a destination.
(The source can be either local or remote.) The copy module requires you to set
the src and dest parameters. In this case, the src field is set to the local google
_authenticator file in the cloned repository (https://github.com/bradleyd/devops_for
_the_desperate/). Notice the two dots (..) in the beginning of the source (src)
file. These dots indicate that the file is located one directory up from the cur-
rent vagrant/ directory, where the ansible command is run. Without these dots,
the ansible-playbook command would not be able to find the ansible/ directory
where the file is located. The dest parameter is set to the file named /home/
bender/.google_authenticator on the VM. The file permission, or mode, is set to read
and write (0600), so only the owner of the file, bender, can read and write to it.

To learn more about Google Authenticator, visit https://github.com/google/
google-authenticator/wiki/.

Configuring PAM for Google Authenticator
As mentioned in Chapter 2, PAM controls a lot of authorization and authen-
tication methods in Linux. To be able to use Google Authenticator over SSH,
you need to modify the SSH PAM configuration file, which is very similar to
what you did in Chapter 2. To add Google Authenticator to PAM, you’ll need
to make changes to the module file located at /etc/pam.d/sshd. This file con-
trols how PAM interacts with the SSH server (more on that later).

You’ll use two provided Ansible tasks that disable password prompts over
SSH and tell PAM where it can find the Google Authenticator file (pam_google
_authenticator.so). Remember, you want to force users to use public key
authentication in lieu of passwords. This change will also make it harder for
attackers to brute-force SSH with a password since you will not allow it.

With the two_factor.yml file still open, locate the first of the two tasks
that configure PAM (on line 15). It should look like this:

- name: Disable password authentication for SSH
 lineinfile:
 dest: "/etc/pam.d/sshd"
 regex: "@include common-auth"
 line: "#@include common-auth"

https://github.com/bradleyd/devops_for_the_desperate/
https://github.com/bradleyd/devops_for_the_desperate/
https://github.com/google/google-authenticator/wiki/
https://github.com/google/google-authenticator/wiki/

Using Ansible to Configure SSH 31

This task disables password prompts for SSH via the PAM module. To
edit the PAM sshd file, this task uses the familiar Ansible lineinfile module,
which locates the common-auth line with a regular expression (regex) and com-
ments it out with a # sign. In this case, the regular expression searches for
the full common-auth line. By commenting out that line, SSH password prompts
for users are disabled when logging in over SSH.

The second task that will configure PAM, located on line 21, should
look like this:

- name: Configure PAM to use GoogleAuthenticator for SSH logins
 lineinfile:
 dest: "/etc/pam.d/sshd"
 line: "auth required pam_google_authenticator.so nullok"

This task tells PAM about the Google Authenticator module. It uses the
Ansible lineinfile module again to edit the PAM sshd file. This time, you
just want to add the auth line to the bottom of the PAM file, which lets PAM
know it should use Google Authenticator as an authentication mechanism.
The nullok option at the end of the line tells PAM that this authentication
method is optional, which allows you to avoid locking out users until they
have successfully configured 2FA. In a production environment, you should
remove the nullok option once all users have enabled 2FA.

Configuring the SSH Server
The SSH server manages all the SSH connections from the clients and
enforces specific rules governing those connections. The SSH server will
require some changes to expect a 2FA response, since that’s not a default
configuration.

First, you’ll want to use Ansible to enable a keyboard response
prompt when authenticating over SSH. The option to set is called
ChallengeResponseAuthentication, and it’s needed so users can enter the
two-factor verification code when logging in.

The second change Ansible will make is to set the SSH users’
AuthenticationMethods, which enable the SSH server to enforce specific
ways for users to authenticate themselves. For this example, you’ll set the
AuthenticationMethods for bender to be publickey and keyboard-interactive. This
will force bender to need a public key and a TOTP token to log in. You’ll
also set the vagrant and ubuntu users’ AuthenticationMethods only to publickey
to log in, so you’ll still have users that can access the VM if anything goes
wrong with 2FA.

With the two_factor.yml file still open, let’s review the two tasks that modify
the VM’s SSH server. The first of these tasks, on line 26, should look like this:

- name: Set ChallengeResponseAuthentication to Yes
 lineinfile:
 dest: "/etc/ssh/sshd_config"
 regexp: "^ChallengeResponseAuthentication (yes|no)"
 line: "ChallengeResponseAuthentication yes"
 state: present

32 Chapter 3

The task sets the ChallengeResponseAuthentication to yes. It uses
the lineinfile module again to change a line in the VM’s SSH
server config file. It locates the line using a regular expression that
searches for the ChallengeResponseAuthentication option at the beginning of
a line that is set to yes or no. Once it finds the line, it sets the line to
ChallengeResponseAuthentication yes to enable keyboard interactivity
for 2FA.

The last task in the file that configures the SSH server should look
like this:

- name: Set Authentication Methods for bender, vagrant, and ubuntu
 blockinfile:
 path: "/etc/ssh/sshd_config"
 block: |
 Match User "ubuntu,vagrant"
 AuthenticationMethods publickey
 Match User "bender,!vagrant,!ubuntu"
 AuthenticationMethods publickey,keyboard-interactive
 state: present
 notify: "Restart SSH Server"

This task sets the authentication methods for users using the
blockinfile module. Similar to lineinfile, blockinfile can manipulate
a block of text. This is useful when you need to change multiple lines
at once and preserve indentation inside a file. The blockinfile module
requires that the path parameter be set. In this case, the path of the file
to edit is /etc/ssh/sshd_config. The pipe character (|) is YAML notation
for introducing a multiline string: the block of text, where the task uses
an SSH server configuration option called Match that allows you to apply
certain criteria to specific users. In this example, you want to allow the
ubuntu and vagrant users to use publickey authentication only when log-
ging in over SSH. Then you want to set the authentication methods for
bender to be publickey and keyboard-interactive, to enforce 2FA. Finally, this
example sets a notify action to "Restart SSH Server" on this task. (I’ll dis-
cuss the notify option next.)

N O T E The sshd_config file includes options to disable password prompts and PAM. You
want to leave these options commented out, or not used, as you want to funnel all
your authentication through PAM to keep with system defaults for accounting and
sessions.

Restarting the SSH Server with a Handler
Editing the configuration file is not enough; the SSH server requires a
restart for all the changes to take effect. To make that happen, you’ll use
the notify Ansible option that triggers a handler to perform a single task.
A handler is just like any other task, but it’s executed only once and has a
globally unique name across the whole playbook.

Using Ansible to Configure SSH 33

The last Ansible task in two_factor.yml activates a handler that restarts the
SSH server for you. Open the handlers/restart_ssh.yml file found in the ansible/
directory. It should look like this:

- name: Restart SSH Server
 service:
 name: sshd
 state: restarted

This handler’s name is set to Restart SSH Server. This name matches the
notify value from the previous task (Set Authentication Methods for bender,
vagrant, and ubuntu). This is not an accident. The values must match exactly
to be triggered. The service module restarts the SSH server. This module
requires the name parameter, which is sshd in this case, to be set. Finally, this
task sets the state to restarted. If, for some reason, the SSH server does not
restart, the task will fail.

You’re now finished with the Ansible tasks, so it’s safe to close all the
open files.

Provisioning the VM
To provision the VM with all the tasks described thus far, you’ll need to
uncomment them in the playbook. You’ll follow essentially the same process
that you followed in Chapter 2, but this time around, you’ll need to uncom-
ment two tasks and a handler. Open the site.yml file in your editor and locate
the task for authorized keys, which should look like this:

#- import_tasks: chapter3/authorized_keys.yml

Remove the # symbol to uncomment it.
Next, find the task for 2FA:

#- import_tasks: chapter3/two_factor.yml

Remove the # symbol to uncomment that line as well.
Next, find the handler section that’s located below all the tasks. The

handler to restart the SSH server should look like this:

#- import_tasks: handlers/restart_ssh.yml

Remove the # symbol at the beginning of the line to uncomment it.
The playbook should now look like this:

- name: Provision VM
 hosts: all
 become: yes
 become_method: sudo
 remote_user: ubuntu
 tasks:
 - import_tasks: chapter2/pam_pwquality.yml

34 Chapter 3

 - import_tasks: chapter2/user_and_group.yml
 - import_tasks: chapter3/authorized_keys.yml
 - import_tasks: chapter3/two_factor.yml
 --snip--
 handlers:
 - import_tasks: handlers/restart_ssh.yml

Here, the changes to the playbook for Chapter 3 are added on to the
changes from Chapter 2. As mentioned previously, the playbook is a collec-
tion of tasks that will perform specific actions on a host or group of hosts to
enforce a specified state.

Now, you’ll automate the configuration of the VM using Vagrant. Navigate
to the vagrant/ directory, and once there, enter the following command:

$ vagrant provision
--snip--
PLAY RECAP ***
default : ok=16 changed=9 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Notice that the total task count has increased to 16 since the last provi-
sion. You have also changed a total of 9 things on the VM. Here’s a sum-
mary of the things that changed:

•	 Seven new tasks from Chapter 3

•	 One task that updates the empty file from the previous chapter

•	 One handler

Once again, make sure no actions failed before you continue. The
values from the provision output will vary, depending on how many times
you run the provision command in this chapter. This is because Ansible is
working hard to make sure your environment is consistent, and it doesn’t do
extra work that is not needed. As mentioned earlier, Ansible is idempotent,
meaning it can be executed several times and each execution completes
with the same end state you would expect from the initial execution.

Testing SSH Access
With the VM successfully provisioned, you should test bender’s access over
SSH. To test public key and 2FA over SSH, you’ll need the private key you
created earlier and one of the emergency tokens from the google_authenti-
cator file in the repository. The private key should be located in your local
SSH directory. On my Mac, it’s in /Users/bradleyd/.ssh/dftd. The emergency
tokens are the 10 eight-digit numbers located at the bottom of the ansible/
chapter3/google_authenticator file. Choose the first one.

To ssh in to the VM as bender, open a terminal on your local host and
enter the following command:

$ ssh 1-i ~/.ssh/dftd -p 2222 2bender@localhost
Enter passphrase for key /Users/bradleyd/.ssh/dftd: <passphrase>

Using Ansible to Configure SSH 35

Verification code: <76338876>
--snip--
bender@dftd:~$

In the ssh command, you set the identity file to your private key 1
for authentication and set the remote SSH port to 2222. The default SSH
port is 22, but Vagrant listens on a different SSH port to avoid conflicts on
your local host. You also set the login user to bender and the SSH host to
localhost 2.

The output indicates you should have been prompted twice during this
login session: once to enter the passphrase to unlock your private key, and a
second time to enter a 2FA verification code. After satisfying both prompts,
you should be successfully logged in to the VM as bender.

If, for some reason, you weren’t prompted for a TOTP token or for the
private key passphrase, stop and check for errors. You can log in to the VM
as the vagrant user and inspect the logs. A good place to start looking for
errors is in either /var/log/auth.log or /var/log/syslog on the VM. Common
errors include the SSH server not restarting cleanly and one of the configu-
ration files having a syntax issue.

Each of the 10 tokens provided is for one-time use. Every time you suc-
cessfully use one, it’s removed from the /home/bender/.google_authenticator
file. If, for some reason, you burn through all the tokens, run the vagrant
provision command again to replace the file and replenish the tokens.
Another option is to use a TOTP application like oathtool and generate a
time-based one-time token by using the Base32 secret at the top of the
/home/bender/.google_authenticator file. You can install oathtool with Ubuntu’s
package manager by using the apt install oathtool command. Every time
you need a token, you can use the following command:

$ oathtool --totp --base32 "QLIUWM4UVD7E5SI6PPVZ2EGRFU"
097903

Here, you pass oathtool your Base32 secret in the double quotes and set
the flags --totp and --base32 to generate the token. In this result, the token
097903 is generated and can be used when prompted for a verification code.
Feel free to use this method or the provided tokens when logging in.

Summary
In this chapter, you secured the VM by disabling password logins, requiring
public key authentication, and enforcing 2FA for bender. Automating these
simple steps improves your host’s security, whether it’s local or on someone
else’s computer in the cloud. As with the previous chapters, these automa-
tion tasks are a part of a foundational base that you can employ with all
your hosts. In the next chapter, you’ll use more Ansible tasks to control user
access by enabling security policies.

4
C O N T R O L L I N G U S E R

C O M M A N D S W I T H S U D O

So far, you have secured access to your VM
with a public key and two-factor authenti-

cation. You have also controlled access to a
specific file and directory, using group permis-

sions. The next foundational piece is allowing users
to run elevated commands on the VM. Users typically
need access to commands that may require admin-
istrative permissions, such as restarting a service or
installing a missing package. As an administrator, you
want to keep a tight control on who can run which
commands. On Linux operating systems, the sudo
(superuser do) command allows users to run specific
commands as root or another user while keeping an
audit trail of events.

38 Chapter 4

In this chapter, you’ll use Ansible to install a simple Python Flask web
application. You’ll also use Ansible to create a sudoers security policy, which
is configured by a file and determines what permissions users have when
they invoke the sudo command. This policy will allow members of the
developers group to use the sudo command to start, stop, restart, and edit
the sample web application. Although this is a made-up example, it follows
a typical release workflow that software engineers should be accustomed
to. By the end of the chapter, you’ll have a good grasp of how to automate
application deployment and control it with a sudoers policy.

What Is sudo?
If you are new to sudo, it is a command line tool on most Unix OSs that
allows a user or group of users to run commands as another user. For
example, a software engineer may need to restart an Nginx web server
that’s owned by the root user, or a system administrator may need elevated
permissions to install some software packages. If you have been around
Linux long enough, you have likely used sudo to run a command that
requires elevated privileges. Normally, you would not allow just anyone to
have such privileges, due to various security implications. Regardless of
your use case, users will need a safe and accountable way to access privi-
leged commands to do their jobs.

One of the best features of sudo is its ability to leave an audit trail. If
someone runs a command with sudo, you can check the log to see who ran
what command. Without sudo, there is zero accountability if you blindly
allow people to switch to other users to run commands.

You also can enhance sudo with plug-ins. In fact, sudo comes with a default
security policy plug-in called sudoers, which determines what permissions
users have when they invoke the sudo command. You’ll implement this pol-
icy for your user bender.

Planning a sudoers Security Policy
When you are planning a sudoers policy, less is more. You want a user or
group of users to have just the right amount of permissions on a host. If you
have a user that can run many privileged commands while administering
the company website at the same time, you’ll have serious issues if that user
is compromised. This is because any attackers will inherit the same access
that the compromised user has.

That said, it is naive to think you can lock down a host completely and
still get things done. Imagine a software delivery workflow where an appli-
cation needs to be restarted after each deployment. Without proper user
permissions, you will not be able to automate continuous delivery for that
application.

For the example security policy you’ll set up in this chapter, everyone
in the developers group will be able to access the sample web application.
They’ll also be able to stop, start, and edit the main application file.

Controlling User Commands with sudo 39

Installing the Greeting Web Application
The sample Python web application I have provided is cleverly (and lazily)
named Greeting. This simple web application responds with an enthusiastic
“Greetings!” when you visit http://localhost:5000 on the VM. I am providing
this application so you can focus on learning automation and provisioning;
I won’t go over its code here.

You’ll use Ansible tasks to install the necessary libraries and files to run
the web application. You’ll also install a systemd unit file, the standard ser-
vice manager that manages processes and services on a Linux host, to make
it easier to start and stop the web application.

The Ansible tasks to install the web application (and all the other tasks
for this chapter) are located in the ansible/chapter4/ directory. You should
navigate to that directory and open the task file named web_application.yml
in your favorite editor.

This file contains four individual tasks, named as follows:

1. Install python3-flask, gunicorn3, and nginx

2. Copy Flask Sample Application

3. Copy Systemd Unit file for Greeting

4. Start and enable Greeting Application

I’ll go over each of these tasks, starting with the one that installs the
web application dependencies: python3-flask, gunicorn3, and nginx. It’s the
first task at the top of the file, and it should look like this:

- name: Install python3-flask, gunicorn3, and nginx
 apt:
 name:
 - python3-flask
 - gunicorn3
 - nginx
 update_cache: yes

The task name describes its intent, which is to Install some software
packages. The apt module is used again to install the python3-flask, the
gunicorn3, and the nginx packages from the Ubuntu repository on the VM.
This time, however, the apt module uses some syntactical sugar: a YAML
list. This feature allows you to install multiple packages (or remove them)
in a single task, instead of having to create a task for each package you want
to install.

N O T E Flask (https://palletsprojects.com/p/flask/) is a web framework that is writ-
ten in Python and known for its small code base and easy-to-use syntax. Gunicorn
(https://gunicorn.org/), or Green Unicorn, is an HTTP server that is built
on top of the web server gateway interface (WSGI, https://wsgi.readthedocs.io/
en/latest/) standard. Gunicorn sits in front of the Flask application and proxies
requests.

https://palletsprojects.com/p/flask/
https://gunicorn.org/
https://wsgi.readthedocs.io/en/latest/
https://wsgi.readthedocs.io/en/latest/

40 Chapter 4

The second task from the top copies the sample Greeting application
over to the VM. You need two files to bring the Greeting web application to
life, and the task should look like this:

- name: Copy Flask Sample Application
 copy:
 src: "../ansible/chapter4/{{ item }}"
 dest: "/opt/engineering/{{ item }}"
 group: developers
 mode: '0750'
 loop:
 - greeting.py
 - wsgi.py

The copy module copies the two files from the provided repository to
the VM. The src and dest lines are templated (with double curly brackets)
and replaced by the values from the loop module. Here, the loop module
references two files by name: greeting.py and wsgi.py. The greeting.py file is
the actual Python Flask code, while the wsgi.py file contains the application
object for the HTTP server. During this task’s runtime, the placeholder
{{ item }} will be replaced with each of these two filenames from the loop.
For example, the src line will look like "../ansible/chapter4/greeting.py" after
the first pass of the loop. The mode line sets the permissions on both files to
be read and to execute for anyone in the developers group.

Next, let’s look at the task that copies the systemd unit file over to the
VM. This task, located third from the top, should look like this:

- name: Copy Systemd Unit file for Greeting
 copy:
 src: "../ansible/chapter4/greeting.service"
 dest: "/etc/systemd/system/greeting.service"

This task starts with a descriptive name, as usual. Then, the familiar
Ansible copy module copies a file from the local host to the VM. In this case,
it copies the greeting.service file to a place on the VM where systemd can find
it: /etc/systemd/system.

Let’s review the system service file. Such files can have many options and
settings, but for this example, I’ve provided a simple one to control the
Greeting web application’s life cycle.

Open the ansible/chapter4/greeting.service file in your editor. It should
look like this:

[Unit]
Description=The Highly Complicated Greeting Application
After=network.target

[Service]
Group=developers
WorkingDirectory=/opt/engineering
ExecStart=/usr/bin/gunicorn3 --bind 0.0.0.0:5000 --access-logfile - --error-logfile - wsgi:app
ExecReload=/bin/kill -s HUP $MAINPID

Controlling User Commands with sudo 41

KillMode=mixed

[Install]
WantedBy=multi-user.target

The WorkingDirectory and ExecStart lines are the most important in this
file. The first sets the working directory to /opt/engineering, since that’s where
your application code lives. In the ExecStart line, the gunicorn3 application
calls the wsgi.py file to start the web application. You’ll also tell gunicorn3
to log STDOUT (--access-logfile -) and STDERR (--error-logfile -) to
the systemd journal, which is forwarded by default to the /var/log/syslog file.
Close the greeting.service file for now.

The last task in the web_application.yml file ensures that the Greeting
web application is started and that the systemd daemon is reloaded each
time a provision is run. It should look like this:

- name: Start and enable Greeting Application
 systemd:
 name: greeting.service
 daemon_reload: yes
 state: started
 enabled: yes

Here, the systemd Ansible module starts the Greeting web application.
The module requires you to set the name and state, which in this case are
greeting.service and started, respectively. The enabled parameter tells systemd
to start the service automatically during startup. Using the daemon_reload
parameter also forces systemd to reload all service files and discover the
greeting.service file before doing anything else. It’s equivalent to running
systemctl daemon-reload. The daemon_reload parameter is useful on the first
provision of a host to make sure systemd knows about the service. Be sure
to use the daemon_reload parameter so that systemd always knows about any
changes to the service file.

N O T E In Chapter 8, you’ll see more advanced examples to help you learn how to deploy an
application using a CI/CD pipeline inside Kubernetes.

Anatomy of a sudoers File
A sudoers file is the place where you configure security policies (for users
and groups) that invoke the sudo command. This type of security file is com-
posed of sections called Defaults, User Specifications, and Aliases. A sudoers
file is read from the top down, and since rules are applied in that order, the
last matching rule always wins.

The Defaults syntax allows you to override some sudoers options at run-
time, such as setting environment variables that users have access to when
they run sudo. The User Specifications section determines which commands
users can run and on which host they can run them. For example, you could
give the bender user permission to run the apt install command on all web

42 Chapter 4

server hosts. The Aliases syntax references other objects inside the file, and
that is useful for keeping the configuration clear and concise when there is
a lot of duplication.

The four aliases you can mix and match are as follows:

Host_Alias A host or a group of hosts

Runas_Alias A list of users or groups a command can be run as

Cmnd_Alias Specifies a command or multiple commands

User_Alias A user or group of users

For this example, you’ll only use Cmnd_Alias and Host_Alias in your
sudoers file.

Creating the sudoers File
To create the sudoers file, you’ll use the Ansible template module and a tem-
plate file. The Ansible template module is useful for creating files that will
require some modification with variables. The template module creates files
using the Jinja2 template engine for Python templates. You’ll keep template
files in a separate directory called ansible/templates/ (more on this later).

N O T E Jinja2 is a modern templating engine for the Python language. It is modeled after the
Django web application templates.

In the ansible/chapter4/ directory, open the task file named sudoers.yml in
your favorite editor. The first thing you should notice, at the top of the file,
is a new Ansible module called set_fact. This module allows you to set host
variables that can be used in a task or across a playbook. Here, you’ll set a
variable with it for use in your template file:

- set_fact:
 greeting_application_file: "/opt/engineering/greeting.py"

This creates a variable named greeting_application_file and sets its value
to /opt/engineering/greeting.py (where the previous tasks will install the web
application). As noted previously, anyone in the developers group can read
and execute in the /opt/engineering/ directory.

Next, locate the task right below the set_fact module. This task creates
the sudoers file for the developers group and should look like this:

- name: Create sudoers file for the developers group
 template:
 src: "../ansible/templates/developers.j2"
 dest: "/etc/sudoers.d/developers"
 validate: 'visudo -cf %s'
 owner: root
 group: root
 mode: 0440

Controlling User Commands with sudo 43

The Ansible template module builds out your sudoers file. It requires a
source file (src) and a destination file (dest). The source file is your local
Jinja2 template (developers.j2), and the destination file will be the developers
sudoers file on the VM. The template module also contains a validate step
to verify whether the template is correct. In this case, the visudo command
edits and validates your sudoers file in a safe manner. Adding the -cf flag
to visudo makes sure the sudoers file is compliant and free of syntax errors.
The %s is a placeholder for the file in the dest parameter. If the validate
command fails for any reason, the Ansible task will fail, too. Finally, set the
owner, group, and permissions of the file to root, root, and 0440 (respec-
tively). This is what sudoers is expecting for proper permissions.

The sudoers Template
The Ansible template module task referenced a source Jinja2 template file
located in the ansible/templates/ directory. It has the building blocks of your
sudoers policy for the developers group.

Navigate to the ansible/templates/ directory and open the developers.j2 file
in your editor. The .j2 suffix on the file tells Ansible that it’s a Jinja2 template.
The contents of the file should look like this:

Command alias
Cmnd_Alias START_GREETING = /bin/systemctl start greeting , \
 /bin/systemctl start greeting.service
Cmnd_Alias STOP_GREETING = /bin/systemctl stop greeting , \
 /bin/systemctl stop greeting.service
Cmnd_Alias RESTART_GREETING = /bin/systemctl restart greeting , \
 /bin/systemctl restart greeting.service

Host Alias
Host_Alias LOCAL_VM = {{ hostvars[inventory_hostname]['ansible_default_ipv4']
['address'] }}
User specification
%developers LOCAL_VM = (root) NOPASSWD: START_GREETING, STOP_GREETING, \
 RESTART_GREETING, \
 sudoedit {{ greeting_application_file }}

The file begins with three Cmnd_Alias declarations that stop, start, and
restart the Greeting web application. (In systemd, a service can be referred
to as either greeting or greeting.service, so this handles both cases.) Next,
a Host_Alias called LOCAL_VM is set to the private IP address of the VM. The
built-in Ansible variable hostvars dynamically fetches the IP address of the
VM during provision runtime. This is useful if you are provisioning many
hosts at the same time. Finally, this creates a user specification for the
developers group. (The % denotes it is a group and not a user.) The user speci-
fication rule states that anyone in the developers group, on the LOCAL_VM, can
start, stop, restart, and edit the Greeting web application without a password,
as the root user. Notice that issuing the sudoedit command is allowed only for

44 Chapter 4

editing the web application. (I’ll discuss sudoedit in more detail later.) The
{{ greeting_application_file }} variable will be set during runtime to point
to your Greeting web application file via set_fact.

At this point, it is safe to close all open files. Next, you’ll configure the
VM and test bender’s sudo privileges.

Provisioning the VM
To run all the tasks for this chapter, you need to uncomment them in the
playbook like you did in previous chapters. Open the ansible/site.yml file in
your editor and locate the task for installing the web application. It should
look like this:

#- import_tasks: chapter4/web_application.yml

Remove the # symbol to uncomment it.
Next, find the task that creates the developers sudoer policy:

#- import_tasks: chapter4/sudoers.yml

Uncomment that line by removing the # symbol as well.
The playbook should now look like this:

- name: Provision VM
 hosts: all
 become: yes
 become_method: sudo
 remote_user: ubuntu
 tasks:
 - import_tasks: chapter2/pam_pwquality.yml
 - import_tasks: chapter2/user_and_group.yml
 - import_tasks: chapter3/authorized_keys.yml
 - import_tasks: chapter3/two_factor.yml
 - import_tasks: chapter4/web_application.yml
 - import_tasks: chapter4/sudoers.yml
 --snip--
 handlers:
 - import_tasks: handlers/restart_ssh.yml

The changes to the playbook for Chapter 4 are added to the changes from
Chapter 3.

Now, you’ll run the Ansible tasks using Vagrant. Navigate back to the
vagrant/ directory where your Vagrant file is located and enter the following
command to provision the VM:

$ vagrant provision
--snip--
PLAY RECAP ***
default : ok=21 changed=6 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Controlling User Commands with sudo 45

The values from the provision output will vary, depending on how
many times you run the provision command, as Ansible makes sure your
environment is consistent and doesn’t do extra work if it’s not needed. The
total task count here has increased to 21. You’ve also changed these six
things on the VM:

•	 Five new tasks from Chapter 4

•	 One task that updates the timestamp on the empty file from Chapter 2

Once again, make sure no actions have failed before you continue.

Testing Permissions
With the VM successfully provisioned, you can now check your security
policy by testing bender’s command access. First, you’ll need to log in to
the VM as bender again. The sudoers policy should allow anyone in the
developers group (bender, in this case) to start, stop, restart, or edit the
web application.

To log in as bender, grab another 2FA token. This time, locate the sec-
ond 2FA token from the top in the ansible/chapter3/google_authenticator file; it
should be 68385555. Once you have it, enter the following command in your
terminal to log in as bender:

$ ssh -i ~/.ssh/dftd -p 2222 bender@localhost
Enter passphrase for key '/Users/bradleyd/.ssh/dftd: <passphrase>
Verification code: <68385555>
--snip--
bender@dftd:~$

Here, you’re using the SSH parameters from Chapter 3 to log in to
the VM. When prompted for the 2FA token, use the second one you just
grabbed. This login process should be familiar by now, but if not, revisit
Chapter 3 for a refresher.

Accessing the Web Application
You’ll need to make sure the web application is running and responding to
requests. You’ll test it with the curl command, which transfers data to servers
(in this case, an HTTP server). The Greeting application server listens for
requests on all interfaces on port 5000. So, in the terminal, enter the fol-
lowing command to send an HTTP GET request to the greeting server on
port 5000:

bender@dftd:~$ curl http://localhost:5000
<h1 style='color:green'>Greetings!</h1>

The output shows the Greeting web application is responding to requests
successfully on localhost in the VM.

46 Chapter 4

Editing greeting.py to Test the sudoers Policy
Next, you’ll make a small change to the Greeting application using sudoedit
to test bender’s permissions. The sudoers policy you set earlier in this chapter
allows the developers group members to edit the /opt/engineering/greeting.py
file with the sudoedit command, which lets users edit a file with any editor. It
also makes a copy of the file before editing, in case things go awry. Without
sudoedit, you might need to create multiple command aliases for each editor
a user wants to use.

In a real production system, you probably would not edit a file directly
on a host. Instead, you would edit the source-controlled version and allow
your automation to update it with the newest version. However, I’m describ-
ing this approach to show how to test your sudoers policy.

While still logged in as bender, enter the following command to edit the
greeting.py file:

bender@dftd:~$ sudoedit /opt/engineering/greeting.py

The command should drop you into the Nano text editor (default for
Ubuntu). Once there, locate the line that looks like this inside the hello()
function:

return "<h1 style='color:green'>Greetings!</h1>"

Change the Greetings! text inside the heading tag to Greetings and
Salutations! so the line looks like this:

return "<h1 style='color:green'>Greetings and Salutations!</h1>"

Save the file and exit the Nano text editor.

N O T E Feel free to use a different editor, such as Vim, if you prefer. Just be sure to set
the EDITOR environment variable (export EDITOR=vim) before using the sudoedit
command.

Stopping and Starting with systemctl
For the Greeting string changes to take effect, you’ll need to stop and start
the web application server using sudo and the systemctl command (the latter
of which is a command line application that allows you to control a service
governed by systemd). The Cmnd_Alias declarations in your sudoers policy allow
anyone in the developers group to run /bin/systemctl stop greeting or /bin/
systemctl start greeting.

To stop the already running Greeting application using systemctl, enter
the following command:

bender@dftd:-$ sudo systemctl stop greeting

There should be no output from the command, and you should not be
prompted for a password.

Controlling User Commands with sudo 47

Next, run curl again to be sure the web application is stopped:

bender@dftd:~$ curl http://localhost:5000
curl: (7) Failed to connect to localhost port 5000: Connection refused

Here, curl responded with a Connection refused error since the server is not
running any longer.

Restart the stopped Greeting server by entering this command:

bender@dftd:-$ sudo systemctl start greeting

There won’t be any output from this command if it is successful.
Run the curl command again to check whether the web application is

running with the new code changes:

bender@dftd:~$ curl http://localhost:5000
<h1 style='color:green'>Greetings and Salutations!</h1>

The Greeting server provides a successful response with the new and
improved greeting. If, for some reason, your Greeting application isn’t
responding like this, go back and retrace your steps. Start by looking for
errors in the /var/log/syslog file or the /var/log/auth.log file on the VM.

Audit Logs
As mentioned previously, one great feature of sudo is that it leaves behind
an audit trail. The events in this trail are typically used in a monitoring
framework or when doing forensics during an incident response. No mat-
ter what, you should make sure the audit data is in an accessible area so you
can review it.

If you followed along with the testing in this chapter, you ran the sudo
command three different times. Those events were captured in the /var/
log/auth.log file, so let’s explore some of the log lines from those sudo com-
mands. I have cherry-picked a few that are pertinent to this example so
you won’t get bogged down in the art of log parsing. However, feel free to
explore the logfile in more depth on your own.

The first line in auth.log you’ll look at pertains to bender’s use of sudoedit:

Jul 23 23:17:43 ubuntu-focal sudo: bender : TTY=pts/0 ; PWD=/home/bender ; USER=root ;
COMMAND=sudoedit /opt/engineering/greeting.py

This line provides quite a bit of information, but let’s focus on the date/time,
USER, and COMMAND columns. You can see that bender invoked sudo on July 23 at
23:17:43, using the sudoedit /opt/engineering/greeting.py command. This hap-
pened when you changed the greeting.py file to alter the greeting text.

This log line shows when you used bender to stop the Greeting server:

Jul 23 23:18:19 ubuntu-focal sudo: bender : TTY=pts/0 ; PWD=/home/bender ; USER=root ;
COMMAND=/usr/bin/systemctl stop greeting

48 Chapter 4

On July 23 at 23:18:19, bender used sudo to execute the /bin/systemctl stop
greeting command as the root user.

Finally, here is the log line showing bender starting the Greeting
application:

Jul 23 23:18:39 ubuntu-focal sudo: bender : TTY=pts/0 ; PWD=/home/bender ; USER=root ;
COMMAND=/usr/bin/systemctl start greeting

On July 23 at 23:18:39, bender used sudo to execute the command /bin/systemctl
start greeting as the root user.

So far, I have shown log entries that were successful and expected. The
following line shows bender executing an unsuccessful command:

Jul 23 23:25:14 ubuntu-focal sudo: bender : command not allowed ; TTY=pts/0 ; PWD=/home/
bender ; USER=root ; COMMAND=/usr/bin/tail /var/log/auth.log

On July 23 at 23:25:14, bender tried to run the /usr/bin/tail /var/log/auth.log
command, and it was denied. These are the types of log lines you probably
want to track in an alerting system, as this could be a bad actor trying to
navigate a host.

N O T E The auth log requires elevated permissions to read, and since your sudoers policy
does not grant that to bender, you’ll need to issue sudo as the vagrant user to
view it.

Summary
This chapter explored the importance of allowing users to run commands
with elevated privileges. Using Ansible, the sudo command, and a sudoers
file, you can restrict command access and log an audit trail for security. You
also worked with some different Ansible modules like template, systemd, and
set_fact, which allowed you to automate the installation of your web applica-
tion and control its life cycle.

In the next chapter, you’ll wrap up this section on provisioning and
security. You’ll also use some provided Ansible tasks to secure the network
and implement a firewall for the VM.

5
A U T O M A T I N G A N D T E S T I N G

A H O S T - B A S E D F I R E W A L L

It would be dangerous for a production
server, especially one exposed to the inter-

net, to not filter its network traffic. As soft-
ware or DevOps engineers, we open up ports

for services like SSH or web servers as a necessary,
accepted risk. However, that does not mean we should
ignore all other traffic destined for our host. To mini-
mize risks, we need to filter all other traffic and make
pragmatic decisions on what gets in and what gets out. Therefore, we use
firewalls to monitor the incoming and outgoing packets on a network or
host. Firewalls come in two varieties. A network firewall is usually an appli-
ance through which all traffic flows from one network to another, while a
host-based firewall controls the packets coming in and out of a single host.

50 Chapter 5

In this chapter, you’ll focus on host-based firewalls. You’ll learn how to
automate a host-based firewall using Ansible, some provided tasks, and a
software application called Uncomplicated Firewall (UFW). This firewall
will block all inbound traffic except SSH connections and the Greeting
web application you installed in Chapter 4. By the end of this chapter, you’ll
understand how to automate a basic host-based firewall and be able to audit
log events from the firewall.

Planning the Firewall Rules
Firewall rules need to be very explicit about what traffic to permit and
what traffic to deny. If you accidentally block a port (or worse, leave one
exposed), the outcome will be less than desirable.

You can divide the firewall traffic flow into three default parts, called
chains. Think of a chain as a door through which a packet must pass. Each
door leads to a specific place when properly routed packets arrive. Here
are brief descriptions of the functions of the three default chains that you
have access to in UFW:

Input chain Filters packets destined for the host

Output chain Filters packets originating from the host

Forward chain Filters packets that are being routed through the host

The firewall rules you’ll create will only be for the input chain, because
you’re focusing on the inbound traffic to your VM. The forward and output
chains are beyond the scope of this book, as you are building a simple host-
based firewall. If you need to block outgoing ports and forward network
traffic, visit https://ubuntu.com/server/docs/security-firewall/ for more details.

The firewall rules you’ll implement will allow incoming traffic for two
known ports while rejecting all others. You’ll need to open port 22 for
shell access (SSH) and Ansible provisioning; plus, you’ll open port 5000 for
the web application. You’ll also add rate limiting to port 5000, to protect the
web server and host from excessive abuse. Finally, you’ll enable the firewall
log so you can audit the network traffic that comes through the firewall on
the VM.

Automating UFW Rules
Uncomplicated Firewall (UFW) is a software application that provides a thin
wrapper around the iptables framework, which is the root of kernel-based
packet filtering for Unix OSs. To be specific, iptables, Netfilter, con-
nection tracking, and network address translation (NAT) make up the
packet-filtering framework. UFW hides the complexity associated with
using iptables. Along with Ansible, it makes setting up a host-based firewall
simple, easy, and repeatable. Therefore, you’ll use Ansible tasks to create
rules with UFW.

https://ubuntu.com/server/docs/security-firewall/

Automating and Testing a Host-Based Firewall 51

The Ansible tasks to configure the firewall are located under the ansible/
chapter5/ directory. These rules will go into effect once you provision the VM,
so let’s review them before provisioning. Navigate to the ansible/chapter5/
directory and open the task file named firewall.yml in your favorite editor.
This file has the following five tasks in it:

1. Turn Logging level to low.

2. Allow SSH over port 22.

3. Allow all access to port 5000.

4. Rate limit excessive abuse on port 5000.

5. Drop all other traffic.

The first task at the top of the file should look like this:

- name: Turn Logging level to low
 ufw:
 logging: 'low'

This task turns on logging for UFW and sets the log level to low. The
Ansible ufw module creates rules and policies for the firewall on the VM.
You can set the logging parameter to off, low, medium, high, or full. The low log
level will log any blocked packets that do not match your default policy and
any other firewall rules you have added. The medium level does everything
the low level does, plus it logs all allowed packets that do not match the
default policy and all new connections. The high log level does everything
the medium does, but it also logs all packets with some rate limiting of the
messages. If you have a lot of disk space and want to know everything
possible about every packet on your host, set the log level to high. Any set-
ting above medium will generate a lot of log data and could fill up disks fast
on a busy host, so be careful with those log settings.

Next, let’s look at the second task from the top, which opens port 22 for
SSH connections. It should look like this:

- name: Allow SSH over port 22
 ufw:
 rule: allow
 port: '22'
 proto: tcp

Here, the Ansible ufw module creates a rule that allows an incoming
connection from any source IP address, using the TCP transport protocol
to port 22 on the VM. You can set the rule parameter to deny, limit, or reject,
depending on your use case. For example, if you want to stop a connection
on a specific port but don’t mind sending a rejection reply to the remote
host, you should choose reject. The rejection reply will tell the remote sys-
tem that you are up and running but not accepting traffic on that port.
On the other hand, if you want to drop the incoming packet on the floor
without any reply to the remote host, choose a deny rule. This can make it

52 Chapter 5

harder for someone scanning your host to know if the host is up and run-
ning. (I’ll discuss the limit rule in detail later.)

The next task is the rule to allow remote connections on port 5000 to
the Greeting web application. It should look like this:

- name: Allow all access to port 5000
 ufw:
 rule: allow
 port: '5000'
 proto: tcp

This rule behaves the same as the previous task, except that it permits
port 5000 over TCP instead of port 22.

The fourth task in the file limits the number of connections to port
5000 (Greeting server) over a given time frame. This is useful when you
want to automatically stop someone from abusing your service, whether
they are legitimate or suspicious. It should look like this:

- name: Rate limit excessive abuse on port 5000
 ufw:
 rule: limit
 port: '5000'
 proto: tcp

The default rate-limiting feature for UFW states it will deny any connec-
tion from a source if that source tries to make more than six connections
in a 30-second time span. This is helpful if you host a public service like
an API or web server. You could use the limit to temporarily impede users
from obsessively hitting your service. Another example where this would be
beneficial is to limit brute-force attempts over SSH on a bastion host, which is
a hardened host that system administrators use to remotely access a private
network. However, be careful with this default limit setting, as it may be too
restrictive for a production setting. Allowing a remote system to connect
more than six times in 30 seconds might be normal traffic for you. You’ll
test the rate-limiting rule later in this chapter.

If you want to adjust the default rate limit setting, create a new task
using the lineinfile module (see Chapter 3) to locate and update the line in
/etc/ufw/user.rules that looks like this:

-A ufw-user-input -p tcp --dport 5000 -m conntrack --ctstate NEW -m recent --update --seconds
30 --hitcount 6 -j ufw-user-limit

Change the hitcount and seconds options to whatever makes sense for your
environment.

The last task in this file drops all traffic that has not matched any other
rules up to this point. Remember, Ansible executes the tasks in order. The
drop rule should look like this:

- name: Drop all other traffic
 ufw:
 state: enabled

Automating and Testing a Host-Based Firewall 53

 policy: deny
 direction: incoming

Notice that there is no rule parameter here. This task sets the state of
the ufw service to be enabled on the VM. It also sets the default incoming
policy to deny, which forces you to whitelist all the services that need to be
exposed. This also protects you if someone accidentally misconfigures a ser-
vice and opens up a port on the host.

As mentioned previously, Ansible reads tasks from the top down, and
UFW rules are read in the same order. If the drop rule were the first task
in the file, it would set the policy to drop all traffic and then turn on the
firewall. That drop rule would match all inbound packets and drop them,
stopping the search of any other rules that possibly could match. Not only
would you lose access to the VM, but you would also drop the connection
made by Ansible over SSH. This means the provisioning would fail and
potentially leave the machine in a bad state, so be sure to keep the order
in mind when adding or removing rules.

Provisioning the VM
To run all the tasks for this chapter, you’ll need to uncomment them in the
playbook. This is the same process as in the previous chapters and should
be familiar by now. Open the ansible/site.yml file in your editor and locate
the task for installing the firewall. It should look like this:

#- import_tasks: chapter5/firewall.yml

Remove the # symbol to uncomment it. The playbook should now look
like this:

- name: Provision VM
 hosts: all
 become: yes
 become_method: sudo
 remote_user: ubuntu
 tasks:
 - import_tasks: chapter2/pam_pwquality.yml
 - import_tasks: chapter2/user_and_group.yml
 - import_tasks: chapter3/authorized_keys.yml
 - import_tasks: chapter3/two_factor.yml
 - import_tasks: chapter4/web_application.yml
 - import_tasks: chapter4/sudoers.yml
 - import_tasks: chapter5/firewall.yml
 --snip--
 handlers:
 - import_tasks: handlers/restart_ssh.yml

The changes to the playbook for Chapter 5 are added on to the changes
from Chapter 4.

54 Chapter 5

Now, it’s time to run the Ansible tasks using Vagrant. Navigate back to
the vagrant/ directory where your Vagrantfile is located and enter the follow-
ing command to provision the VM:

$ vagrant provision
--snip--
PLAY RECAP ***
default : ok=26 changed=6 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

The total task count has increased to 26, and 6 things on the VM have
changed: the five new tasks from this chapter and one task that updates the
timestamp on the empty file from Chapter 2. Once again, make sure no
actions failed before you continue.

Testing the Firewall
Next, you’ll want to test that your host-based firewall is enabled, permitting
the two whitelisted ports, blocking all other ports, and rate-limiting the
Greeting application.

First, you’ll need to be able to access the VM from your local host, so
grab an IP address from your VM. In the Vagrantfile, you told Vagrant to
create another interface and let VirtualBox give it an address from a range
using DHCP.

If you are no longer logged in to the VM, log in as bender again and
grab another 2FA token, if needed. This time, grab the third 2FA token
from the top of the ansible/chapter3/google_authenticator file, which should be
52973407. Once you have it, enter the following command in your terminal
to log in as bender:

$ ssh -i ~/.ssh/dftd -p 2222 bender@localhost
Enter passphrase for key '/Users/bradleyd/.ssh/dftd: <passphrase>
Verification code: <52973407>
--snip--
bender@dftd:~$

Next, use the ip command to grab the IP address from the interface you
instructed Vagrant and VirtualBox to create. This command is primarily
used to list and manipulate network routes and devices on a Linux host.
From the VM terminal, enter the following:

bender@dftd:~$ ip -4 -br addr
lo UNKNOWN 127.0.0.1/8
enp0s3 UP 10.0.2.15/24
enp0s8 UP 172.28.128.3/24

The output above shows that the ip command has completed successfully.
The -4 flag limits the output to only IPv4 addresses. The -br flag prints
just the basic interface information, like IP address and name, and the

Automating and Testing a Host-Based Firewall 55

addr command tells ip to show the address information for the network
interfaces.

The output lists three devices in tabular format. The first device,
named lo, is a loopback network interface that is created on Linux hosts
(commonly referred to as localhost). The loopback device is not routable
(accessible) from outside the VM. The second device, enp0s3, has an IP
address of 10.0.2.15. This is the default interface and the IP you get from
Vagrant and VirtualBox when you first create the VM. This device is also
not routable from outside the VM. The last interface, enp0s8, has an IP
address of 172.28.128.3, which was dynamically assigned by this line in the
Vagrantfile:

config.vm.network "private_network", type: "dhcp"

This IP address is how you’ll access the VM from your local machine.
Because these IP addresses are assigned using DHCP, yours may not match
exactly. The interface name may be different as well; just use whatever IP
address is listed for the interface that is not a loopback device or the device
in the 10.0.2.0/24 subnet.

Keep this terminal and connection open to the VM, as you’ll use it
again in the next section.

Scanning Ports with Nmap
To test that the firewall is filtering traffic, you’ll use the nmap (network map-
per) command line tool for scanning hosts and networks. Be sure to install
the appropriate Nmap version for your specific OS. Visit https://nmap.org/
book/install.html for instructions on installing Nmap for different OSs.

Once it’s installed, you’ll want to do a couple of scans. The first scan,
which is a fast check, tests that the firewall is enabled and allowing traffic
on your two ports. The other scan is a check for the services and versions
running behind those open ports.

To run the first scan, enter the following command in your termi-
nal, using the IP address of the VM you copied earlier (if you are on a
Mac or Linux host, you’ll need to use sudo since Nmap requires elevated
permissions):

$ sudo nmap -F <172.28.128.3>
Password:
Starting Nmap 7.80 (https://nmap.org) at 2022-08-11 10:14 MDT
Nmap scan report for 172.28.128.3
Host is up (0.00066s latency).
Not shown: 98 filtered ports
PORT STATE SERVICE
22/tcp open ssh
5000/tcp open upnp
MAC Address: 08:00:27:FB:C3:AF (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 1.88 seconds

https://nmap.org/book/install.html
https://nmap.org/book/install.html

56 Chapter 5

The -F flag tells nmap to do a fast scan, which looks for only the 100 most
common ports, such as 80 (web), 22 (SSH), and 53 (DNS). As expected, the
output shows nmap detects that ports 22 and 5000 are open. It shows the other
98 ports are filtered, which means nmap could not detect what state the ports
were in because of the firewall. This tells you that the host-based firewall
is enabled and filtering traffic.

The next scan you’ll do is one that bad actors do on the internet every
day. They scan for hosts that are connected to the internet, looking for
services and versions while hoping they can match a vulnerability to it.
Once they have an exploit in hand, they can use it to try to gain access to
that host.

Enter the following command from your local host’s terminal to detect
your service versions:

$ sudo nmap -sV <172.28.128.3>
Starting Nmap 7.80 (https://nmap.org) at 2022-08-11 21:06 MDT
Nmap scan report for 172.28.128.3
Host is up (0.00029s latency).
Not shown: 998 filtered ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.1 (Ubuntu Linux; protocol 2.0)
5000/tcp open http Gunicorn 20.0.4
MAC Address: 08:00:27:F7:33:1F (Oracle VirtualBox virtual NIC)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 13.13 seconds

The -sV flag tells nmap to attempt to extract service and version informa-
tion from running services. Once again, nmap finds the two open ports, 22
and 5000. Also, a service name and version are listed next to each port. For
port 22, the service name is OpenSSH, and the version is 8.2p1 for Ubuntu Linux.
For port 5000, the service name is Gunicorn, and the version is 20.0.4. If you
were a bad actor armed with this information, you could search the many
vulnerability databases, looking for exploits for these services and versions.

N O T E Nmap is something all software and DevOps engineers should have in their tool belts.
Learn more about Nmap from the man page or https://nmap.org/.

Next, you’ll want to check the logs for evidence that the firewall blocked
connection attempts on non-whitelisted ports.

Firewall Logging
All events that the firewall processes can be logged. You enabled logging
and set the level to low for UFW in the Ansible task earlier in this chapter.
The log for those events is located in the /var/log/ufw.log file. This logfile
requires root permissions to read it, so you’ll need a user with elevated
permissions.

https://nmap.org/

Automating and Testing a Host-Based Firewall 57

As an example, I have pulled out a log entry to demonstrate a block
event from the ufw.log file. Here is what UFW logged when Nmap tried to
scan port 80:

Aug 11 16:56:17 ubuntu-focal kernel: [51534.320364] 1[UFW BLOCK] 2IN=enp0s8
OUT= MAC=08:00:27:fb:c3:af:0a:00:27:00:00:00:08:00 3SRC=172.28.128.1
4DST=172.28.128.3 LEN=44 TOS=0x00 PREC=0x00 TTL=48 ID=7129 PROTO=TCP
SPT=33405 5DPT=80 WINDOW=1024 RES=0x00 SYN URGP=0

This log line contains a lot of information, but you’ll focus on only a
few components here. The event type name 1 is a block type, so it’s named
[UFW BLOCK]. The IN key-value pair 2 shows the network interface for which
this packet was destined. In this case, it’s the VM interface from the earlier
section. The source IP address (SRC) 3 is where the packet originated. In
this example, it’s the source IP address from the local host where you ran
the nmap command. This IP address was created from VirtualBox when you
added the other interface in Vagrant. The destination IP address, DST 4, is
the IP address for which the packet was destined. It should be the IP address of
the second non-loopback interface on the VM. The destination port, DPT 5,
is the port where the packet was being sent. In this log line, it’s port 80.
Since you don’t have a rule permitting any traffic on port 80, it was blocked.
This means your firewall is blocking unwanted connection attempts.
Remember, Nmap’s fast scan will try 100 different ports, so there will be
multiple log lines that look like this one. However, they will have different
destination ports (DPT).

Rate Limiting
To test that the firewall will rate-limit excessive connection attempts (six in
30 seconds) to your Greeting web server, you’ll leverage the curl command
again. From your local host, enter the following to access the Greeting web
server six times:

$ for i in `seq 1 6` ; do curl -w "\n" http://172.28.128.3:5000 ; done
<h1 style='color:green'>Greetings!</h1>
<h1 style='color:green'>Greetings!</h1>
<h1 style='color:green'>Greetings!</h1>
<h1 style='color:green'>Greetings!</h1>
<h1 style='color:green'>Greetings!</h1>

curl: (7) Failed to connect to 172.28.128.22 port 5000: Connection refused

Here, a simple for loop in Bash iterates and executes the curl command
six times in succession. The curl command uses the -w "\n" flag to write out
a new line after each loop, which makes the web server’s response output
more readable. As you can see, the last line shows a Connection refused notifi-
cation after the fifth successful connection to the Greeting web server. This
is because the rate limit on the firewall for port 5000 was triggered by being
hit six times in less than 30 seconds.

58 Chapter 5

Let’s explore the log line for this event. (Once again, I’ve grabbed the
relevant log line for you.)

Aug 11 17:38:48 ubuntu-focal kernel: [54085.391114] 1 [UFW LIMIT BLOCK]
IN=enp0s8 OUT= MAC=08:00:27:fb:c3:af:0a:00:27:00:00:00:08:00
2SRC=172.28.128.1 3DST=172.28.128.3 LEN=64 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF
PROTO=TCP SPT=58634 4DPT=5000 WINDOW=65535 RES=0x00 CWR ECE SYN URGP=0

The UFW event type is named [UFW LIMIT BLOCK] 1. This packet is
coming (SRC) from the local host IP address 2 where you ran the curl
command. The destination (DST) 3 IP address is the one for the VM. The
destination port (DPT) 4 is 5000, which is the Greeting web server. This
temporary limit will block your local host IP address (172.28.128.1)2 from
accessing port 5000 for about 30 seconds after the limit is reached. After
that, you should be able to access it again.

Summary
In this chapter, you’ve learned how to implement a simple but effective
host-based firewall for the VM. You can easily apply this firewall to any host
you have, whether it is local or from a cloud provider. Creating firewall
rules with Ansible that permit specific traffic to a VM while blocking other
traffic is a typical setup a DevOps or software engineer would use. You also
learned how to limit the number of connections a host can make in a given
time frame. All of these techniques provide a smaller attack surface to help
deter network attacks. You can do a lot more to enhance your host-based
firewall, and I encourage you to explore the possibilities on your own by
visiting https://help.ubuntu.com/community/UFW/.

This brings Part I to an end. You now should have a good understand-
ing of how to provision your infrastructure and apply some basic security
foundations to your environment. In Part II, we’ll move on to containers,
container orchestration, and deploying modern application stacks. We’ll
start with installing and understanding Docker.

https://help.ubuntu.com/community/UFW/

PART II
C O N T A I N E R I Z A T I O N A N D

D E P L O Y I N G M O D E R N
A P P L I C A T I O N S

6
C O N T A I N E R I Z I N G A N

A P P L I C A T I O N W I T H D O C K E R

A container is the running instance of an
application based off a container image.

Using containers provides you with a pre-
dictable and isolated way to create and run

code. It allows you to package an application and its
dependencies into a portable artifact you can easily
distribute and run. Microservice architectures and
continuous integration/continuous development pipe-
lines heavily use containers, and if you’re a software
or DevOps engineer, using containers has most likely
changed the way you deliver and write software.

In this chapter, you’ll learn how to install the Docker engine and
the docker client command line tool. You’ll also get a crash course in
Dockerfiles, container images, and containers. You’ll combine this knowl-
edge, along with some basic Docker commands, to containerize a sample

62 Chapter 6

application called telnet-server that I’ve provided in the repository for this
book (https://github.com/bradleyd/devops_for_the_desperate/). By the end of this
chapter, you’ll have a solid understanding of how to use Docker to contain-
erize any application, as well as the benefits of doing so.

Docker from 30,000 Feet
The word Docker has become synonymous with the container movement.
This is due to Docker’s ease of use, the rise of microservice architectures,
and the need to solve the “works on my machine” paradox. The idea of
containers has been around for quite some time, however, and numerous
container frameworks exist. But since Docker released its first open-source
version in March 2013, the industry has adopted the Docker framework as
the de facto standard. The first stable version of Docker (1.0) was released
in 2014, and since then, new versions have included many improvements.

The Docker framework consists of a Docker daemon (server), a docker
command line client, and other tools that are beyond the scope of this book.
Docker uses Linux kernel features to build and run containers. These pieces
fit together to allow Docker to do its magic: OS-level virtualization, which par-
titions the operating system into what looks like separate isolated servers, as
shown in Figure 6-1. Because of this, containers are effective when you need
to run a lot of applications on limited hardware.

Containerized
applications

Application Application Application

Docker framework

Host OS

Infrastructure

Application

Figure 6-1: OS-level virtualization

Getting Started with Docker
First, you’ll create a Dockerfile that describes how to build the container
image from your application. A container image is made of different layers
that house your application, dependencies, and anything else the applica-
tion needs so it can run. Container images can be distributed and served
from a service called a registry. Docker hosts the most popular registry at

https://github.com/bradleyd/devops_for_the_desperate/

Containerizing an Application with Docker 63

https://hub.docker.com/. There, you’ll find just about any image you might
need, such as Ubuntu or the PostgreSQL database. With a simple docker pull
<image-name> command, you can download and use an image in a matter of
seconds. A container is the running instance of an application based off the
container image. Figure 6-2 shows how all of Docker’s pieces fit together.
In this chapter, you’ll mostly be working with the docker client.

Client
Docker host

Docker daemon

Registry

Containers Images

Docker build

Docker pull

Docker run

Figure 6-2: Docker framework

Dockerfile Instructions
The Dockerfile contains the instructions that teach the Docker server how
to turn an application into a container image. Each instruction represents a
specific job and creates a new layer inside the container image. The follow-
ing list includes the most common instructions:

FROM Specifies the parent or base image from which to build the new
image (must be the first command in the file)

COPY Adds files from your current directory (where the Dockerfile
resides) to a destination in the image filesystem

RUN Executes a command inside the image

ADD Copies new files or directories from either a source or a URL to a
destination in the image filesystem

ENTRYPOINT Makes your container run like an executable (which you
can think of as any Linux command line application that takes argu-
ments on your host)

CMD Provides a default command or default parameters for the con-
tainer (can be used in conjunction with ENTRYPOINT)

See the Dockerfile reference at https://docs.docker.com/engine/reference/
builder/ for instructions and configuration details.

https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

64 Chapter 6

Container Images and Layers
The Dockerfile you build creates a container image. This image is made of
different layers that house your application, dependencies, and anything
else the application needs so it can run. These layers are like snapshots
in time of your application’s state, so keeping your Dockerfiles in version
control along with your source code makes it easier to build new container
images every time your application code changes.

The layers fit together like LEGO bricks. Each layer, or intermediate
image, is created each time an instruction in the Dockerfile is executed. For
example, every time you use the RUN instruction, a new intermediate layer is
created with the results of that instruction. Each layer (image) is assigned a
unique hash, and all layers are cached by default. This means you can share
layers with other images, so if a given layer hasn’t changed, you don’t need
to build it again from scratch. Also, caching is your best friend, as it cuts
down the time and space needed to build images.

Docker can stack these layers on top of each other because it uses the
union filesystem (UFS), which allows multiple filesystems to come together
and create what looks like a single filesystem. The topmost layer is the
container layer, which is added when you run the container image. It’s the
only layer that can be written to. All the subsequent layers are read only, by
design. If you make any file or system changes to the container layer and
then remove the running container, those changes will be gone. The under-
lying read-only images are kept intact. This is why containers are so popular
with software engineers: the image is an immutable artifact that can be run
on any Docker host and behave in the same way.

Containers
The Docker container is a running instance of a container image. In com-
puter programming terms, you can think of the container image as a class
and the container as an instance of that class. When the container starts, the
container layer is created. This writeable layer is where all the changes (like
writing, deleting, and modifying existing files) will take place.

Namespaces and Cgroups
The container is also roped off from the rest of the Linux host by some bound-
aries and limited views called namespaces and cgroups. These are kernel features
that limit what a container can see and use on a host. They also make OS-level
virtualization a reality. Namespaces restrict global system resources for a con-
tainer. Without namespaces, a container could have free run of the system.
Imagine if a container could see a process in another container. That mis-
chievous container could kill a process, delete a user, or unmount a directory
in another container. Try tracking that down when you’re on call at 2 AM!

Common kernel namespaces include the following:

Process ID (PID) Isolates the process IDs

Network (net) Isolates the network interface stack

Containerizing an Application with Docker 65

UTS Isolates the hostname and domain name

Mount (mnt) Isolates the mount points

IPC Isolates the SysV-style interprocess communication

User Isolates the user and group IDs

Using these namespaces is not enough, however. You also need to con-
trol how much memory, CPU, and other physical resources a container uses.
That’s where cgroups come in. Cgroups manage and measure the resources
a container can use. They allow you to set resource limitations and prioriti-
zation for processes. The most common resources Docker sets with cgroups
are memory, CPU, disk I/O, and network. Cgroups make it possible to stop
a container from using up all the resources on a host.

The main point to remember is that namespaces limit what you can see,
while cgroups limit what you can use. Without these features, containers
would not be secure or useful.

Installing and Testing Docker
To containerize a sample application, you’ll start by installing Docker with
the aid of minikube, an app that contains the Docker engine and also pro-
vides a Kubernetes cluster (which you’ll use in the next chapter). Next,
you’ll install the docker client so that you’ll be able to communicate with the
Docker server. Then, you’ll configure your environment so that it can find
the new Docker server. Finally, you’ll test client connectivity.

Installing the Docker Engine with Minikube
To install minikube, follow the instructions for your operating system
at https://minikube.sigs.k8s.io/. If you’re not on a Linux host, minikube
requires a virtual machine manager to install Docker. Use VirtualBox
for that.

By default, minikube makes a best guess about memory allocation
for the VM it will create. It also sets the number of CPUs to two and the
disk space to 20GB. For the purposes of this book, the defaults should
be fine.

OV ER R IDING MINIKUBE’S DEFAULT S

Pass the --cpus=< number>, --memory='< number>', and --disk-size='< number>'
arguments to the minikube start command to change the defaults . Be sure
to include the appropriate unit . For example, you could enter minikube start
- -cpus=4 --memory='10g' --disk-size='40g' to give minikube more resources .

https://minikube.sigs.k8s.io/

66 Chapter 6

To start minikube using the resource defaults and VirtualBox as the
VM manager, enter the following in a terminal:

$ minikube start --driver=virtualbox
 --snip--
 Done! kubectl is now configured to use "minikube"

The Done! message shows that minikube started successfully. If minikube
fails to start, you should investigate any error messages listed in the output.

Installing the Docker Client and Setting Up Docker Environment Variables
To install the docker client, follow the instructions at https://docs.docker.com/
engine/install/binaries/ for your operating system. Make sure you only down-
load and install the client binary. You’ll use minikube to set some local
environment variables in your shell, including the Docker host IP and the
path to the Docker host TLS certificates, which are needed to connect. The
Bash eval command will source the environment variables in your shell.

In a terminal, enter the following to set your Docker environment
variables:

$ eval $(minikube -p minikube docker-env)

This command should return zero output if it’s successful. The Docker host
environment variables should be exported in your current terminal session.

When you close this terminal window, the environment variables will
be lost, and you’ll need to run the command each time you want to interact
with the Docker server. To avoid this inconvenience, add the command to
the bottom of your shell configuration file such as ~/.bashrc or ~/.zshrc so it’s
executed each time you open a terminal window or tab. Then you won’t see
the Is the docker daemon running? error.

Testing the Docker Client Connectivity
You should test whether the docker client can talk to the Docker server run-
ning inside the minikube VM. In the same terminal where you set the envi-
ronment variables, enter the following to check the Docker version:

$ docker version

The output should show your client and server versions if the connection is
successful.

Containerizing a Sample Application
I created a sample application named telnet-server that you can use to build
a container with Docker. It’s a simple telnet server that mimics the bulletin
board systems (BBSs) people used in the 1980s. The app is written in
the Go programming language for OS portability and a small footprint.

https://docs.docker.com/engine/install/binaries/
https://docs.docker.com/engine/install/binaries/

Containerizing an Application with Docker 67

You’ll use an Alpine Linux container image that contains Go and all the
needed dependencies.

To containerize an application, you’ll need the source code or binary
you want to run in the container plus the Dockerfile to build the container
image. The sample application source code and Dockerfile are in the com-
panion repository for this book at https://github.com/bradleyd/devops_for_the
_desperate/ in the telnet-server/ folder.

Dissecting the Example telnet-server Dockerfile
The example Dockerfile is a multistage build with two separate stages: build
and final. Multistage builds allow you to manage complex builds in one
Dockerfile, and they provide a good pattern for keeping container images
small and secure. In the build stage, the Dockerfile instruction compiles the
sample application with all its dependencies. In the final stage, the Dockerfile
instruction copies the build artifact (in this case, the compiled sample appli-
cation) from the build stage. The final container image is much smaller
because it doesn’t contain all the dependencies or source code for the
sample application from the build stage. Visit https://docs.docker.com/develop/
develop-images/multistage-build/ for more information on multistage builds.

Navigate to the telnet-server/ directory and open the Dockerfile, which
should look like this:

Build stage
FROM golang:alpine AS build-env
ADD . /
RUN cd / && go build -o telnet-server

Final stage
FROM alpine:latest AS final
WORKDIR /app
ENV TELNET_PORT 2323
ENV METRIC_PORT 9000
COPY –from=build-env /telnet-server /app/
ENTRYPOINT [″./telnet-server″]

The file starts the build stage with a FROM instruction to pull in the golang:alpine
parent image. This is an Alpine Linux image from the Docker Hub registry
that’s prebuilt for developing in the Go programming language. This image
stage is named build-env, using the AS keyword. This name reference is used
again later, in the final stage.

The ADD instruction copies all the Go source code in the current local
telnet-server/ directory to the image’s filesystem at the root (/) destination.

The next RUN instruction executes the shell command that navigates to
the root directory in the image filesystem, and it uses the go build command
to build the Go binary named telnet-server.

The final stage begins with a FROM instruction that again pulls in an
Alpine Linux image (alpine:latest) for the final stage’s parent image. This
time, though, the Alpine Linux image is the minimal image in which the
application will run. It doesn’t contain any dependencies.

https://github.com/bradleyd/devops_for_the_desperate/
https://github.com/bradleyd/devops_for_the_desperate/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/

68 Chapter 6

The WORKDIR instruction sets the working directory for the application,
which is /app in this example. Any CMD, RUN, COPY, or ENTRYPOINT instruction
after that declaration will be executed in the context of that working directory.

The two ENV instructions set environment variables in the container
image that the application can use: they set the telnet server to port 2323
and the metric server port to 9000. (More on those ports later.)

The COPY instruction copies the telnet-server Golang binary from the
build-env stage and places it in the working app/ directory in the final-stage
Alpine image.

The final ENTRYPOINT instruction invokes the telnet-server binary when
the container starts to execute the sample application. You’ll use ENTRYPOINT
instead of CMD because the application will require additional flags passed
to it during a container test in a later chapter. If you need to override the
default command in your container, swap ENTRYPOINT with the CMD instruction
instead. See the Dockerfile reference at https://docs.docker.com/engine/reference/
builder/ to learn more about CMD versus ENTRYPOINT.

N O T E Notice that the on-disk sizes for the golang:alpine and alpine:latest images are very
different. The Go base image comes in at around 315MB, and the alpine:latest
image is 5.59MB. Multistage builds are effective at keeping down container size,
which means faster downloads, quicker startup times, and more disk space. When it
comes to containers, size matters.

Building the Container Image
Next, you’ll build the container image for the sample telnet-server applica-
tion, using the Dockerfile you just reviewed. Navigate to the telnet-server/
directory and enter the following to pass Docker the image name and
Dockerfile location:

$ docker build -t dftd/telnet-server:v1 .

The -t flag sets the name and (optionally) a tag for the image, and the dot (.)
argument sets the Dockerfile’s current location. The dftd/telnet-server:v1 URI
has three parts: the registry hostname (dftd), the image name, and the tag.
The registry is local to minikube rather than online, so you can use any-
thing for the base. (If it were a remote registry, you’d use something like
registry.example.com.) The image name sandwiched between the forward
slash (/) and the colon (:) is set to the name of the example application,
telnet-server. The v1 image tag comes after the colon.

Tags allow you to identify each build of an image and indicate what
changes are inside. Using Git commit hashes as tags is a common practice,
as each hash is unique and can mark the image’s source code version. If you
omit the tag, Docker uses the latest word as the default tag.

After running the command, you should see output like this:

Sending build context to Docker daemon 13MB
Step 1/9 : FROM golang:alpine AS build-env
 ---> 6f9d081b1170

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Containerizing an Application with Docker 69

Step 2/9 : ADD . /
 ---> 3146d8206747
Step 3/9 : RUN cd / && go build -o telnet-server
 ---> Running in 3e05a0704b36
go: downloading github.com/prometheus/client_golang v1.6.0
go: downloading github.com/prometheus/common v0.9.1
go: downloading github.com/prometheus/client_model v0.2.0
go: downloading github.com/beorn7/perks v1.0.1
go: downloading github.com/cespare/xxhash/v2 v2.1.1
go: downloading github.com/golang/protobuf v1.4.0
go: downloading github.com/prometheus/procfs v0.0.11
go: downloading github.com/matttproud/golang_protobuf_extensions
 v1.0.1 1 # Build stage
go: downloading google.golang.org/protobuf v1.21.0
go: downloading golang.org/x/sys v0.0.0-20200420163511-1957bb5e6d1f
Removing intermediate container 3e05a0704b36
 ---> 96631440ea5d
Step 4/9 : FROM alpine:latest AS final
 ---> c059bfaa849c
Step 5/9 : WORKDIR /app
 ---> Running in ddc5b73b1712
Removing intermediate container ddc5b73b1712
 ---> 022bcbba3b94
Step 6/9 : ENV TELNET_PORT 2323
 ---> Running in 21bd3d15f50c
Removing intermediate container 21bd3d15f50c
 ---> 30d0284cade4
Step 7/9 : ENV METRIC_PORT 9000
 ---> Running in 8f1fc01b04d5
Removing intermediate container 8f1fc01b04d5
 ---> adfd026e1c27
Step 8/9 : COPY --from=build-env /telnet-server /app/
 ---> fd933cd32a94
Step 9/9 : ENTRYPOINT ["./telnet-server"]
 ---> Running in 5d8542e950dc
Removing intermediate container 5d8542e950dc
 ---> f796da88ab94
Successfully built f796da88ab94
Successfully tagged dftd/telnet-server:v1

Each instruction is logged, allowing you to follow along with the
build process in a linear fashion. At the end of the build, the image ID
(f796da88ab94) should be listed, followed by a note that the image is tagged
successfully as dftf/telnet-server:v1. The image ID you see will be different.

If your docker build wasn’t successful, you’ll want to resolve any errors in the
output because you’ll build upon this image going forward. Common errors
are typos in the RUN execution and missing files when using the COPY instruction.

Verifying the Docker Image
Next, verify that the Docker registry inside minikube is storing the telnet-
server image. (As mentioned previously, a registry is a server that stores and
serves container images.)

70 Chapter 6

In a terminal, enter the following to list the Docker telnet-server image:

$ docker image ls dftd/telnet-server:v1
REPOSITORY TAG IMAGE ID CREATED SIZE
dftf/telnet-server v1 f796da88ab94 1 minute ago 16.8MB

Notice that the final image for the telnet-server is only 16.8MB. The
Alpine Linux base image in the final stage was roughly 5MB before adding
the telnet-server application.

Running the Container
The next step is to create and run the telnet-server container from the
image you just built. Do this by entering the following:

$ docker run -p 2323:2323 -d --name telnet-server dftd/telnet-server:v1
9b4b719216a1664feb096ba5a67c54907268db781a28d08596e44d388c9e9632

The -p (port) flag exposes port 2323 outside the container. (The telnet-server
application needs to have port 2323 open.) The left side of the colon (:) is
the host port, and the right side is the container port. This is useful if you
have another application listening on the same port and need to change
it for the host while keeping the container port the same. The -d (detach)
flag launches the container in the background. If you don’t supply the -d flag,
the container will run in the foreground of the terminal from which it
launched. The --name flag sets the container name to telnet-server. Docker,
by default, assigns randomly generated names for containers if you don’t set
them. The last argument is the image name, complete with path and tag,
from the build step.

The container is now running in the background and ready to accept
traffic. This docker run command was successful because it returned the
container ID (the long string of numbers and letters, which will be different
for you) and no errors.

N O T E The volume flag, -v, can mount a local directory or local file inside the running con-
tainer. This is a great way to share data between host and container.

Enter the following to verify that the container is actually running:

$ docker container ls -f name=telnet-server

The optional filter flag (-f) narrows the output to the containers you spec-
ify. If you omit the filter flag, running the command should list every con-
tainer running on the host.

If the container is running, the output should look like this:

CONTAINER ID IMAGE COMMAND ... PORTS NAMES
9b4b719216a1 dftd/... "./telnet-.." ... 0.0.0.0:2323->2323/tcp telnet-server

Containerizing an Application with Docker 71

The CONTAINER ID column matches the first 12 digits of the ID received
from the docker run command issued previously. The IMAGE column contains
the image ID given when you built the container image. The PORTS column
shows that port 2323 is exposed on every interface (0.0.0.0) and is mapping
that traffic to port 2323 inside the container. The directional arrow (->)
denotes the traffic flow direction. Finally, the NAMES column shows the telnet-
server name set earlier from the run command.

 Now, enter the following in your terminal to stop the container:

$ docker container stop telnet-server
telnet-server

The container name should be returned, letting you know the Docker dae-
mon thinks the container is stopped. To start the container again, swap
the word stop with start, and you should see the container name returned
again.

Docker won’t check to see whether your application stays running after
you start it. As long as the container can start and not error out immediately,
entering docker start or docker run will return the container name as if
nothing were wrong. This can be misleading. You’ll want to perform health
checks and monitor the application to verify that it’s actually running.
(We’ll explore those topics in future chapters.)

Other Docker Client Commands
Let’s look at a few more common Docker commands you’ll need to use
when working with containers.

exec
The exec command allows you to run a command inside a container or interact
with a container, as if you were logged in to a terminal session. For example,
if you are troubleshooting an application in a container and want to verify
that the correct environment variables are being set, you could run the
following command in a terminal to output all the environment variables:

$ docker exec telnet-server env
TELNET_PORT=2323
HOSTNAME=c8f66b93424a
SHLVL=1
HOME=/root
TERM=xterm
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PWD=/app
METRIC_PORT=9000

The env command executes inside the container, using the OS’s default
shell. When it finishes, the output is sent back to the terminal.

72 Chapter 6

The exec command also allows you to access a running container to
troubleshoot it or run a command. You’ll need to pass the interactive flag
(-i) and the pseudo-TTY flag (-t), along with the shell command (/bin/sh),
to do this. The interactive flag keeps STDIN open so you can type commands
inside the container layer. The pseudo-TTY flag simulates a terminal, and
when combined with the interactive flag, it mimics being in a live terminal
session inside the container. Operating systems other than Linux will use
different shells: most commonly, /bin/sh and /bin/bash. Alpine Linux uses
the /bin/sh shell as its default.

Enter the following in a terminal to get a shell inside the container:

$ docker exec -it telnet-server /bin/sh
/app # ls
telnet-server
/app #

The ls command is issued to show you’re inside the container you built.
(You earlier set the working directory to app/ and put the telnet-server
binary in there.) Input the exit command and press ENTER to leave the
container and return to the local terminal.

rm
The rm command removes a stopped container. For example, to remove the
telnet-server container once it is stopped, enter the following in a terminal:

$ docker container rm telnet-server
telnet-server

The removed container’s name should be returned. You can use the -f
(force) flag to remove a running container, but it’s best to stop it first.

inspect
The inspect docker command returns low-level information about some
Docker objects. The output is in JSON format by default. Depending on
the Docker object, the results can be verbose.

To inspect the telnet-server container, enter the following in a terminal:

$ docker inspect telnet-server
[
 {
 "Id": "c8f66b93424a3dac33415941e357ae9eb30567a3d64d4b5e87776701ad8274c5",
 "Created": "2022-02-16T03:35:44.777190911Z",
 "Path": "./telnet-server",
 "Args": [],
 "State": { 1
 "Status": "running",
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,

Containerizing an Application with Docker 73

 "Dead": false,
 "Pid": 19794,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2022-02-16T03:35:45.230788473Z",
 "FinishedAt": "0001-01-01T00:00:00Z"
 },
--snip--
 "NetworkSettings": { 2
 "Bridge": "",
 "HairpinMode": false,
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "Ports": {
 "2323/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "2323"
 }
]
 },
 "Gateway": "172.17.0.1",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "IPAddress": "172.17.0.5",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "MacAddress": "02:42:ac:11:00:05",
--snip--

The State section 1 contains data about the running container, like Status
and StartedAt date. The NetworkSettings section 2 provides information like
Ports and IPAddress, which are helpful when troubleshooting problematic
containers.

history
The history command displays a container image’s history, which is useful
for viewing the number and sizes of an image’s layers.

To see the telnet-server image’s layers, enter the following in a terminal:

$ docker history dftd/telnet-server:v1
IMAGE CREATED CREATED BY SIZE COMMENT
cb5a2baff085 20 hours ago /bin/sh -c #(nop) ENTRYPOINT ["./telnet-ser... 0B
a826cfe49c09 20 hours ago /bin/sh -c #(nop) COPY file:47e9acb5fa56759e... 13MB
a9a45301f95b 5 days ago /bin/sh -c #(nop) ENV METRIC_PORT=9000 0B
001a12a073c2 5 days ago /bin/sh -c #(nop) ENV TELNET_PORT=2323 0B
379892a150e3 6 days ago /bin/sh -c #(nop) WORKDIR /app 0B
f70734b6a266 3 weeks ago /bin/sh -c #(nop) CMD ["/bin/sh"] 0B
<missing> 3 weeks ago /bin/sh -c #(nop) ADD file:b91adb67b670d3a6f... 5.61MB

The output (edited) shows the instructions that start each layer, like COPY
and ADD. It also shows the layers’ ages and sizes.

74 Chapter 6

stats
The stats command displays a real-time update on the resources a container
is using. It gathers this information from the cgroups and behaves similarly to
the Linux top command. If you have a host that manages multiple contain-
ers and want to see which one is the resource hog, use the stats command.
Once you run the stats command, it drops you into a page that updates
every few seconds. As that’s impossible to show in a book, we’ll pass the
--no-stream flag to take a snapshot of the resources and exit immediately.

Enter the following to show the telnet-server container’s resource usage:

$ docker stats --no-stream telnet-server
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
c8f66b93424a telnet-server 0.00% 2.145MiB/5.678GiB 0.04% 0B / 0B 0B / 0B 7

This telnet-server container is using virtually no CPU, no disk or
network I/O, and only 2MiB of memory. You could easily run hundreds of
these in a cloud environment on a single server.

Visit https://docs.docker.com/engine/reference/commandline/cli/ to explore all
of the docker command line client’s commands and flags.

Testing the Container
To find out whether the sample application you’ve containerized actually
works, you’ll connect to the telnet-server on port 2323 and run some basic
commands. Then you’ll view the container logs to verify that the applica-
tion is working correctly.

Before performing either of these steps, however, you’ll need to install
a telnet client for your OS to communicate with the telnet-server. If you’re
using macOS, simply enter brew install telnet in your terminal. If you’re
using Ubuntu, enter apt install telnet in a terminal as a privileged user.

Connecting to the Telnet-Server
To connect to the server, pass telnet the hostname or IP address of the
server plus the port to which you want to connect. Since the Docker server
is running inside a VM (minikube), you’ll need the IP address minikube
exposes to your local host.

Enter the following in a terminal to get the IP address:

$ minikube ip
192.168.99.103

My minikube IP address is 192.168.99.103; yours may be different.
To connect to the telnet-server running inside the container, pass the

IP address (192.168.99.103) and port (2323) to the telnet command:

https://docs.docker.com/engine/reference/commandline/cli/

Containerizing an Application with Docker 75

$ telnet 192.168.99.103 2323
Trying 192.168.99.103...
Connected to 192.168.99.103.
Escape character is '^]'.

____________ ___________
| _ \ ___|_ _| _ \
| | | | |_ | | | | | |
| | | | _| | | | | | |
| |/ /| | | | | |/ /
|___/ _| _/ |___/

>

Success! The ASCII text banner of DFTD should greet you in all its
glory. You’re now connected to the telnet-server application. The prompt
(>) is where you can enter commands. To start, you can enter only the
date, help, yell, and quit commands. You can use the first character of
any of those commands as a shortcut, and any commands you enter will
be logged.

While still connected to the telnet-server, enter the following to print
the current date and time:

>d
Tue May 10 22:55:13 +0000 UTC 2022.

Great! The current date and time should be displayed. Depending on
your age, this could bring back memories of baud rates and high-pitched
squeals.

Enter the following to quit the telnet-server session:

>q
Good Bye!
Connection closed by foreign host.

You should see that the telnet-server session is nice enough to say good-
bye. Take that, modern-day internet!

You can add new commands to the server or change the responses in
the telnet-server/telnet/server.go file. If you do, don’t forget to build, stop, and
replace the image and container using the commands you learned earlier
in this chapter.

Getting Logs from the Container
Docker provides a simple way to retrieve logs from a running container.
This is important for troubleshooting and forensics purposes.

76 Chapter 6

To see all the logs for the telnet-server, which is logging to STDOUT,
enter the following in your terminal:

 $ docker logs telnet-server
telnet-server: 2022/01/04 19:38:22 telnet-server listening on [::]:2323
telnet-server: 2022/01/04 19:38:22 Metrics endpoint listening on :9000
telnet-server: 2022/01/04 19:38:32 [IP=192.168.99.1] New session
telnet-server: 2022/01/04 19:38:43 [IP=192.168.99.1] Requested command: d
telnet-server: 2022/01/04 19:38:44 [IP=192.168.99.1] User quit session

The first two lines of output are startup messages showing that the server
is running and listening on specific ports. (We’ll explore the metrics
server when we look at monitoring applications in Chapter 9.) The fourth
log line is from when you entered the d command into the telnet session to
print the current date and time. The fifth log line shows when you entered q
to exit the test telnet session.

N O T E The logs command can also mimic the Linux tail command. Use the -f flag to
follow the log stream or the --tail flag to limit the number of lines shown.

Summary
If you’re a software or DevOps engineer, you need a solid understanding
of containers in today’s infrastructure. In this chapter, you explored how
Docker makes containers possible with OS-level virtualization. You examined
how a Dockerfile works to create the layers of a container image, and you
applied that knowledge to build a sample container image using a multi-
stage build. Finally, you started a container from the provided telnet-server
image, tested that it was working correctly, and checked its logs. In the next
chapter, you’ll take the telnet-server image you built here and run it inside a
Kubernetes cluster.

7
O R C H E S T R A T I N G

W I T H K U B E R N E T E S

A container makes applications portable
and consistent, but it’s only one piece of a

modern application stack. Imagine needing
to manage thousands of containers on differ-

ent hosts, network ports, and shared volumes. What if
one container stopped? How could you scale for load?
How could you force containers to run on different
hosts for availability? Container orchestration solves
all these issues and more. Kubernetes, or K8s, is the
open-source orchestration system many companies use to manage their
containers. Kubernetes comes preloaded with some useful patterns (such
as networking, role-based access control, and versioned APIs), but it’s
meant to be the foundational framework on which to build your unique
infrastructure and tools. Kubernetes is the standard in container orches-
tration. You can think of it as a low-level piece of your infrastructure, just
like Linux.

78 Chapter 7

In this chapter, you’ll learn some basic Kubernetes resources and con-
cepts concerning container orchestration. To put orchestration into practice,
you’ll deploy the telnet-server container image from Chapter 6 inside your
Kubernetes cluster using the kubectl command line client.

Kubernetes from 30,000 Feet
Kubernetes (which means helmsman in Greek) evolved from its prede-
cessors, Borg and Omega, at Google. It was open-sourced in 2014 and has
received great community support and many enhancements since then.

A Kubernetes cluster consists of one or more control plane nodes and
one or more worker nodes. A node can be anything from a cloud VM to a
bare-metal racked server to a Raspberry Pi. The control plane nodes handle
things like the Kubernetes API calls, the cluster state, and the scheduling
of containers. The core services (such as the API, etcd, and the scheduler)
run on the control plane. The worker nodes run the containers and resources
that are scheduled by the control plane. See Figure 7-1 for more details.

Control plane node 1

API server

Scheduler

Controller

Worker node 1

Containers Containers

Kubelet Kube-proxy

Pod 1 Pod 2

Docker

etcd

Core services

CLI

Figure 7-1: The basic building blocks of a Kubernetes cluster

Networking and scheduling are the most complex issues you’ll encoun-
ter when orchestrating containers. When networking containers, you must
consider all the ports and access they need. Containers can communicate
with each other, both inside and outside the cluster. This happens with
microservices internal communication or when running a public-facing
web server. When scheduling containers, you must take into account the
current system resources and any special placement strategies. You can tune
a worker node for a specific use case, like high connections, and then create
rules to ensure that the applications that need that feature end up on that
specific worker node. This is called node affinity. As a container orchestrator,
you also need to restrict user authentication and authorizations. You can
use an approach like role-based access control, which allows containers

Orchestrating with Kubernetes 79

to run in a safe and controlled manner. These approaches represent just
a small part of the complex glue and wiring you’ll need. It takes a whole
framework to successfully deploy and manage containers.

Kubernetes Workload Resources
A resource is a type of object that encapsulates state and intent. To make this
concept a little clearer, let’s consider an automobile analogy. If a workload
running on Kubernetes were a car, the resources would describe the parts
of the car. For example, you could set your car to have two seats and four
doors. You would not have to understand how to make a seat or a door. You
would just need to know that Kubernetes will maintain the given count for
both (no more, no less). Kubernetes resources are defined in a file called a
manifest. Throughout this chapter, we will use the terms resource and object
interchangeably.

N O T E To learn more about resources and other concepts, visit https://kubernetes.io/
docs/concepts/.

Let’s look at the most commonly used Kubernetes resources in a modern
application stack.

Pods
Pods are the smallest building blocks in Kubernetes, and they form the foun-
dation for everything interesting you’ll do with containers. A Pod is made up
of one or more containers that share network and storage resources. Each
container can connect to the other containers, and all containers can share
a directory between them by a mounted volume. You won’t deploy Pods
directly; instead, they’ll be incorporated into a higher-level abstraction
layer like a ReplicaSet.

ReplicaSet
A ReplicaSet resource is used to maintain a fixed number of identical Pods.
If a Pod is killed or deleted, the ReplicaSet will create another Pod to take
its place. You’ll only want to use a ReplicaSet if you need to create a custom
orchestration behavior. Typically, you should reach for a Deployment to
manage your application instead.

Deployments
A Deployment is a resource that manages Pods and ReplicaSets. It is the most
widely used resource for governing applications. A Deployment’s main job
is to maintain the state that is configured in its manifest. For example,
you can define the number of Pods (which are called replicas in this con-
text) along with the strategy for deploying new Pods. The Deployment
resource controls a Pod’s lifecycle—from creation, to updates, to scaling,

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/

80 Chapter 7

to deletion. You can also roll back to earlier versions of a Deployment if
needed. Anytime your application needs to be long lived and fault tolerant,
a Deployment should be your first choice.

StatefulSets
A StatefulSet is a resource for managing stateful applications, such as
PostgreSQL, ElasticSearch, and etcd. Similar to a Deployment, it can man-
age the state of Pods defined in a manifest. However, it also adds features
like managing unique Pod names, managing Pod creation, and ordering
termination. Each Pod in a StatefulSet has its own state and data bound
to it. If you are adding a stateful application to your cluster, choose a
StatefulSet over a Deployment.

Services
Services allow you to expose applications running in a Pod or group of Pods
within the Kubernetes cluster or over the internet. You can choose from
the following basic Service types:

ClusterIP This is the default type when you create a Service. It is
assigned an internal routable IP address that proxies connections to
one or more Pods. You can access a ClusterIP only from within the
Kubernetes cluster.

Headless This does not create a single-service IP address. It is not load
balanced.

NodePort This exposes the Service on the node’s IP addresses and port.

LoadBalancer This exposes the Service externally. It does this either by
using a cloud provider’s component, like AWS’s Elastic Load Balancing
(ELB), or a bare-metal solution, like MetalLB.

ExternalName This maps a Service to the contents of the externalName
field to a CNAME record with its value.

You’ll use ClusterIP and LoadBalancer the most. Note that only the
LoadBalancer and NodePort Services can expose a Service outside the
Kubernetes cluster.

Volumes
A Volume is basically a directory, or a file, that all containers in a Pod can
access, with some caveats. Volumes provide a way for containers to share
and store data between them. If a container in a Pod is killed, the Volume
and its data will survive; if the entire Pod is killed, the Volume and its con-
tents will be removed. Thus, if you need storage that is not linked to a Pod’s
lifecycle, use a Persistent Volume (PV) for your application. A PV is a resource
in a cluster just like a node. Pods can use the PV resource, but the PV does
not terminate when the Pod does. If your Kubernetes cluster is running in
AWS, you can use Amazon Elastic Block Storage (Amazon EBS) as your PV. This
makes Pod catastrophes easier to survive.

Orchestrating with Kubernetes 81

Secrets
Secrets are convenient resources for safely and reliably sharing sensitive
information (such as passwords, tokens, SSH keys, and API keys) with Pods.
You can access Secrets either via environment variables or as a Volume
mount inside a Pod. Secrets are stored in a RAM-backed filesystem on the
Kubernetes nodes until a Pod requests them. When not used by a Pod,
they are stored in memory, instead of in a file on disk. However, be careful
because the Secrets manifest expects the data to be in Base64 encoding,
which is not a form of encryption.

With Secrets, sensitive information is kept separate from the applica-
tion. This is because such information is more likely to be exposed in the
continuous integration/continuous deployment process than if it’s living in
a resource. You still need to keep your Secret manifests safe by using RBAC
to restrict broad access to the Secrets API. You can also store the sensitive
data encrypted in the Secret and have another process to decrypt it on
the Pod once it is mounted or needed. Another option is to encrypt the
manifests locally before adding them to version control. No matter which
method you choose, make sure you have a secure plan for storing sensitive
information in Secrets.

ConfigMaps
ConfigMaps allow you to mount nonsensitive configuration files inside a con-
tainer. A Pod’s containers can access the ConfigMap from an environment
variable, from command line arguments, or as a file in a Volume mount. If
your application has a configuration file, putting it into a ConfigMap mani-
fest provides two main benefits. First, you can update or deploy a new
manifest file without having to redeploy your whole application. Second,
if you have an application that watches for changes in a configuration file,
then when it gets updated, your application will be able to reload the con-
figuration without having to restart.

Namespaces
The Namespace resource allows you to divide a Kubernetes cluster into sev-
eral smaller virtual clusters. When a Namespace is set, it provides a logical
separation of resources, even though those resources can reside on the
same nodes. If you don’t specify a Namespace when creating a resource, it
will inherit the Namespace cleverly named default. If your team has many
users and a lot of projects spread among them, you might split those teams
or applications into separate Namespaces. This makes it easy to apply secure
permissions or other constraints to only those resources.

N O T E This is not the same namespace you learned about in Chapter 6. That is a Linux
kernel feature.

82 Chapter 7

Deploying the Sample telnet-server Application
To start exploring Kubernetes, you’ll create a Deployment and two Services
for the telnet-server application. I have chosen a Deployment to provide
fault tolerance for your application. The two Services will expose the telnet-
server application port and the application metrics port. By the end of this
section, you’ll have a Kubernetes Deployment with two Pods (replicas) run-
ning the telnet-server application that can be accessed from your local host.

Interacting with Kubernetes
Before you can deploy your telnet-server application, you’ll need to make
sure you can connect to your Kubernetes cluster. The most direct way to
interact with the cluster is to use the kubectl command line application,
which you can get in two ways. The first way is to download the standalone
binary from https://kubernetes.io/docs/tasks/tools/install-kubectl/ for your specific
OS. The second way, which you’ll use here, is to leverage minikube’s built-in
support for kubectl. Minikube will fetch the kubectl binary for you the first
time you invoke the minikube kubectl command (if it’s not already installed).

When using minikube kubectl, most commands will require double
dashes (--) between minikube kubectl and subcommands. The standalone
version of kubectl, however, does not need dashes between the commands.
If you already have kubectl installed or want to use the standalone version,
drop the minikube prefix and the double dashes from all the examples
that follow.

Let’s start out with a simple command so minikube can download the
kubectl binary and test access to the cluster. Use the cluster-info subcommand
for this example to verify that the cluster is up and running:

$ minikube kubectl cluster-info
Kubernetes master is running at https://192.168.99.109:8443
--snip--

You’ll want to see similar output that indicates you can connect to the
Kubernetes cluster. If there were an issue with talking to the cluster, you
might see an error like "The control plane node must be running for this
command". If that happens, enter the minikube status command to make sure
minikube is still up and running.

Reviewing the Manifests
Now that you have access to the cluster, review the provided manifests for
the Deployment and Services. Kubernetes manifests are files designed
to describe the desired state for applications and services. They manage
resources like Deployments, Pods, and Secrets. These files can either be in
JSON or YAML; we use the YAML format for this book, purely out of prefer-
ence. The manifest files should be kept under source control. You’ll usually
find the files co-residing with the application they describe.

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Orchestrating with Kubernetes 83

I have provided the manifest files to create the telnet-server
Deployment and two Services. The files are located in the repository at
https://github.com/bradleyd/devops_for_the_desperate/. Navigate to the telnet-
server/ directory and list the files in the kubernetes/ subdirectory. There, you
should find two files. The first file, deployment.yaml, creates a Kubernetes
Deployment with two Pods of the telnet-server container image. The sec-
ond file, service.yaml, creates two separate Services. The first Service creates
a LoadBalancer so you can connect to the telnet-server from outside the
Kubernetes cluster. The other Service creates a ClusterIP, which exposes
the metrics endpoint from within the cluster. Don’t worry about the metrics
port for this chapter—we’ll use it in Chapter 9 when discussing monitoring
and metrics.

These manifest files can be quite verbose, so we’ll focus on the basic
structure each file contains. To describe a complex object, you’ll need mul-
tiple fields, subfields, and values to define how a resource behaves. Because
of this, it can be difficult to write a manifest from scratch. Among all these
fields and values, there is a subset of required fields called top-level fields.
These are common across all manifest files. Understanding top-level fields
makes it easier to remember and parse a manifest file. The four top-level
fields are as follows:

apiVersion This is a Kubernetes API version and group, like apps/v1.
Kubernetes uses versioned APIs and groups to deliver different versions
of features and support for resources.

kind This is the type of resource you want to create, such as a
Deployment.

metadata This is where you set things like names, annotations, and
labels.

spec This is where you set the desired behavior for the resource (kind).

Each of these top-level fields contains multiple subfields. The subfields
contain information such as name, replica count, template, and container
image. For example, metadata has name and labels subfields. The formats for
the fields can be different for each Kubernetes resource. I won’t describe
every field, but I’ll often use the labels subfield. Labels provide a way for the
user to tag a resource with identifiable key values. For example, you could
add a label to all resources that are in the production environment.

--snip--
metadata:
 labels:
 environment: production
--snip--

You can use these labels to narrow down search results and group similar
applications together, as with a frontend website and its backend database
counterpart. You’ll use labels later, when you invoke the minikube kubectl
command.

https://github.com/bradleyd/devops_for_the_desperate/

84 Chapter 7

Listing all the different field structures in a manifest file would take up
a lot of real estate. Instead, you can explore the documentation in two dif-
ferent places. The Kubernetes documentation at https://kubernetes.io/docs/
concepts/overview/working-with-objects/ describes all the resources and pro-
vides examples. The second place to explore, which is my favorite, is the
explain subcommand for kubectl. The explain subcommand describes the
fields associated with each resource type. You can use the dot (.) notation
as a type field separator when searching for nested fields. For example, to
learn more about a Deployment’s metadata labels subfield, enter the follow-
ing in a terminal:

$ minikube kubectl -- explain deployment.metadata.labels
KIND: Deployment
VERSION: apps/v1

FIELD: labels <map[string]string>

DESCRIPTION:
 Map of string keys and values that can be used to organize and categorize
 (scope and select) objects. May match selectors of replication
 controllers and services. More info:
 http://kubernetes.io/docs/user-guide/labels

Notice how this example first searches for the resource type, then its
top-level field, and then the subfield.

Examining the telnet-server Deployment

Now that you have an understanding of the building blocks of a manifest
file, let’s apply what you’ve learned to the telnet-server Deployment mani-
fest. I’ve broken the deployment.yaml file into sections to make it easier to
dissect. The first section at the top of the file has the apiVersion, kind, and
metadata fields:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: telnet-server
 labels:
 app: telnet-server
--snip--

The type (kind) is Deployment, which uses the Kubernetes API group
apps and API version v1. Under the metadata field, the Deployment name is set
to telnet-server, and the labels are set to app: telnet-server. You’ll use this
label when searching for the telnet-server Deployment later on.

The next section of the file contains the parent spec field that describes
the behavior and specification of the Deployment. The spec field contains a
lot of subfields and values:

https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/

Orchestrating with Kubernetes 85

--snip--
spec:
 replicas: 2
 selector:
 matchLabels:
 app: telnet-server
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
--snip--

First, spec describes the replicas count for the Deployment; it’s set to
2 to reflect the number of Pods you want to run. Inside the selector field,
matchLabels locates the Pods that this Deployment will affect. The key value
used in matchLabels must match the Pod’s template labels (more on this
later).

The strategy field describes how to replace the current running Pods
with new ones during a rollout. This example uses a RollingUpdate, which
will replace one Pod at a time as it goes. This is the default strategy for a
Deployment. The other option for strategy, Recreate, kills the current
running Pods before creating the new ones.

The maxSurge and maxUnavailable keys control the number of Pods cre-
ated and terminated. Here, it’s set to bring up an extra Pod during a roll-
out, which temporarily brings the Pod count to replicas + 1 (or three, in
this case). Once the new Pod is up and running, one of the old Pods will be
terminated. Then, the process repeats until all the new Pods are running
and the old Pods are terminated. These settings will ensure that there is
always a Pod to serve traffic during a Deployment. See https://kubernetes.io/
docs/concepts/workloads/controllers/deployment/#strategy/ for more information
about strategy.

The next part of the spec section is the template field. This field (along
with its subfields) describes the Pods that this Deployment will create. The
major subfields in this section are metadata and spec:

--snip--
template:
 metadata:
 labels:
 app: telnet-server
 spec:
 containers:
 - image: dftd/telnet-server:v1
 imagePullPolicy: IfNotPresent
 name: telnet-server
 resources:
 requests:
 cpu: 1m
 memory: 1Mi
 limits:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy

86 Chapter 7

 cpu: 500m
 memory: 100Mi
 ports:
 - containerPort: 2323
 name: telnet
 - containerPort: 9000
 name: metrics

Here, the app: telnet-server key value is added for each Pod in the
Deployment, using the labels subfield under template and metadata. The app:
telnet-server label matches the key and value you used earlier in the spec
selector: field. (You’ll use this label again when searching for the Pods later.)

The containers field sets the container image for the first container in
the Pod. In this case, it’s set to the dftd/telnet-server:v1 image you built in
Chapter 6. This container name is telnet-server, just like the Deployment.
Using the same name isn’t a requirement; the name could be any string you
choose so long as it is unique among the containers in the Pod.

The next subfield under containers is resources, which controls CPU
and memory for a container. You can define requests and limits for each
container individually. The requests are used for Kubernetes scheduling
(orchestration) and overall application health. If a container needs a mini-
mum of 2GB of memory and one CPU to start, you don’t want Kubernetes
to schedule that Pod (container) on a node that has only 1GB of memory
or no CPUs available. Requests are the minimum resources your applica-
tion needs. Limits, on the other hand, control the maximum CPU and
memory a container can use on a node. You don’t want a container to
use all the memory or CPU on a node while starving any other contain-
ers running on it. In this example, the CPU limit is set to 500m (millicpu), or
half of a CPU. This unit can also be expressed as a decimal, like 0.5. In
Kubernetes, one CPU is equivalent to one CPU core. The memory limit is set
to 100Mi, or 104,857,600 bytes. In Kubernetes, memory is expressed in bytes,
but you can use more familiar units like M, Mi, G, and Gi. When these
limits are set and the telnet-server container consumes more than 100Mi of
memory, Kubernetes will terminate it. However, if the CPU limit (500m) is sur-
passed, Kubernetes won’t just kill the container. It will throttle, or limit, the
CPU request time for that container. For more details on how Kubernetes
quantifies resources, see https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/.

N O T E Setting requests and limits for each resource you deploy in a k8s cluster will save
you a lot of investigation time when things can’t be scheduled or get killed. It will
also save you money, since you’ll use your nodes more efficiently.

The container ports field sets the exposed ports you want to announce.
This example exposes ports 2323 (telnet) and 9000 (metrics). These port
definitions are for informational purposes only and have no bearing
on whether a container can receive traffic. They simply let the user and
Kubernetes know on what ports you expect the container to be listening.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Orchestrating with Kubernetes 87

Examining the telnet-server Service

The next manifest to examine is the Service resource. The service.yaml file
creates two separate Services: one to expose the telnet-server and the other
to expose the application metrics. We’ll look at only the telnet Service and
specific fields here since the metric Service is almost identical:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: telnet-server
 name: telnet-server
spec:
 ports:
 - port: 2323
 name: telnet
 protocol: TCP
 targetPort: 2323
 selector:
 app: telnet-server
 type: LoadBalancer
--snip--

A Service resource is set in the kind field, which is different from the
Deployment manifest shown earlier. The Service name can be anything, but
it must be unique within a Kubernetes Namespace. I’ve kept the names con-
sistent with the rest of the resources here, for ease of use. I’ve also used the
same app: telnet-server label to make finding things uniform and simple.

The ports field tells the Service which port to expose and how to con-
nect it to the Pods. This exposes port 2323 (telnet) and forwards any traffic
to port 2323 on the Pod.

Just as with the selector field for a Deployment, a Service uses a selector
field to find the Pods to forward traffic to. This instance uses the familiar
Pod label app: telnet-server as the match for the selector, which means any
Pods with the label app: telnet-server will receive traffic from this Service. If
there is more than one Pod, like in the Deployment, the traffic will be sent
to all the Pods in a round-robin manner. Since the goal of the telnet-server
application is to be exposed outside the cluster, it’s set as a LoadBalancer.

Creating a Deployment and Services
It is time to create the Deployment and Services. To turn the sample appli-
cation into a Kubernetes Deployment, you’ll use the minikube kubectl com-
mand line tool and the manifest files you just reviewed (https://github.com/
bradleyd/devops_for_the_desperate/).

To create and update resources, you can pass minikube kubectl two sub-
commands: create and apply. The create subcommand is imperative, which
means it makes the resource reassemble the manifest file. It also throws an
error if the resource already exists. The apply subcommand is declarative,
which means it creates the resource if it does not exist and updates it if it

https://github.com/bradleyd/devops_for_the_desperate/
https://github.com/bradleyd/devops_for_the_desperate/

88 Chapter 7

does. For this scenario, you’ll use the apply command with an -f flag to
instruct kubectl to run the operation against all the files in the kubernetes/
directory. The -f flag can take filenames in lieu of directories as well.

From within the telnet-server/ directory, enter the following command to
create the Deployment and two Services:

$ minikube kubectl -- apply -f kubernetes/
deployment.apps/telnet-server created
service/telnet-server-metrics created
service/telnet-server created

The output should show that all three resources have been created. Be sure
to investigate any errors if they arise from this command. Common errors
you might see are usually due to syntax errors or typos in the YAML file.

Viewing the Deployment and Services
Once the telnet-server Deployment and Services are created, you need to
know how to find them. Kubernetes provides multiple ways to view any
object’s status. The easiest method is to use the minikube kubectl -- get
<resource> <name> command.

You can start by fetching the Deployment status by its name and then
explore the Services. Enter the following to get the Deployment status for the
telnet-server:

$ minikube kubectl -- get deployments.apps telnet-server
NAME READY UP-TO-DATE AVAILABLE AGE
telnet-server 2/2 2 2 7s

The output should show that the telnet-server Deployment has two
replicas (Pods) running (2/2 READY) and that they have been running for
seven seconds (7s AGE). This should match the number of replicas set in
the Deployment manifest. The UP-TO-DATE and AVAILABLE columns show how
many Pods were updated to get to the desired number (2) and how many
are available (2) to users, respectively. In this case, Kubernetes believes the
Deployment is up and running and fully available.

You can also run the minikube kubectl get pods command to find out
whether a Deployment is ready for traffic. Because you could have hundreds
of Pods, you want to narrow down your results with the -l label filter flag.
Enter the following to show only the telnet-server Pods:

$ minikube kubectl -- get pods -l app=telnet-server
NAME READY STATUS RESTARTS AGE
telnet-server-775769766-2bmd5 1/1 Running 0 4m34s
telnet-server-775769766-k9kx9 1/1 Running 0 4m34s

This command lists any Pods that have the label app: telnet-server set; it’s
the same label set in the deployment.yaml file under the spec.template.metadata
.labels field. The output shows two telnet-server Pods ready for traffic. You
know this because the READY column shows 1/1 containers running and your

Orchestrating with Kubernetes 89

Deployment has only one container (telnet-server). If you had a Pod with
multiple containers, you would want the number of running containers
over the number of total containers to be the same.

N O T E The kubectl get <resource> command is one you will use most often when interact-
ing with Kubernetes.

Now, use the same command as above but substitute services for the
pods resource to display the two Services:

$ minikube kubectl -- get services -l app=telnet-server
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
telnet-server LoadBalancer 10.105.187.105 <pending> 2323:30557/TCP 10m
telnet-server-metrics ClusterIP 10.96.53.191 <none> 9000/TCP 10m

Since you used the same label (app: telnet-server) to organize your
application, you can use the -l flag to find your match. The output shows
that two Services were created about 10 minutes ago. One Service type is
a LoadBalancer, and the other is a ClusterIP. The LoadBalancer is for exposing
the telnet-server application. Don’t be alarmed if your EXTERNAL-IP status is
<pending>. Because you are running on minikube, no real LoadBalancer piece
is included.

The ClusterIP Service allows the application metrics to be scraped from
within the cluster. In this example, internal applications can reach the met-
rics endpoint by using either the telnet-server-metrics canonical name or
the IP 10.96.53.191. Using the canonical name is recommended.

Testing the Deployment and Services
Now that the telnet-server Deployment and Services are running, you’ll
want to test connectivity and availability. You want to be able to access the
telnet-server application, like you did in Chapter 6, with the telnet client.
After that, you’ll test the Deployment’s resiliency by killing a telnet-server
Pod and watching it recover. Finally, you’ll learn how to scale, meaning
change the number of replicas that the Deployment has up and down
from the command line, in the case of a change in load.

Accessing the Telnet Server
You’ll use the minikube tunnel command to expose your LoadBalancer
Service outside the Kubernetes cluster. This command will provide you
with an IP address that you can use to connect, using the telnet client
command again. The tunnel subcommand runs in the foreground, so it
should be run in a terminal that won’t get closed. The command also
requires root privileges. If you do not have root privileges on your local
machine, use the minikube service command instead. Visit https://minikube
.sigs.k8s.io/docs/commands/service/ for more details.

https://minikube.sigs.k8s.io/docs/commands/service/
https://minikube.sigs.k8s.io/docs/commands/service/

90 Chapter 7

In a terminal, enter the following to create the network tunnel to the
telnet-server Service:

$ minikube tunnel
Password:
Status:
 machine: minikube
 pid: 42612
 route: 10.96.0.0/12 -> 192.168.99.103
 minikube: Running
 services: [telnet-server]
 errors:
 minikube: no errors
 router: no errors
 loadbalancer emulator: no errors

After entering your password, the command outputs a route, the services
exposed, and any present errors. Make sure you leave this running while
you try to connect to the telnet-server. Once the tunnel is closed, all the
connections will drop. Since there are no errors to report, the tunnel should
be operational at this point. Don’t do it now, but when you want to close the
tunnel, press CTRL-C to shut it down.

Now, with the tunnel up, you need to get the new external IP address
for the LoadBalancer Service. As a shortcut, pass the Service name to get
services telnet-server (in this case) to view only the Service you are inter-
ested in:

$ minikube kubectl -- get services telnet-server
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
telnet-server LoadBalancer 10.105.187.105 10.105.187.105 2323:30557/TCP 15m

The EXTERNAL-IP column should now be populated with an IP address
instead of <pending>. Here, the telnet-server application IP address is set to
10.105.187.105, and the external PORT is set to 2323. Your EXTERNAL-IP may be
different from mine, so just use the IP from this column.

In another terminal that is not running the tunnel, use the telnet client
command again (telnet 10.105.187.105) with the new IP address to access
the telnet-server, as shown in Figure 7-2.

As you can see, the telnet-server responded with the ASCII art logo.
Press Q to quit, since you are just testing connectivity. The tunnel com-
mand made it possible to hit the Service using an assigned IP like it was
a public-facing application. If this were on a cloud provider like AWS,
the IP would be accessible to anyone on the internet. Feel free to kill the
tunnel command in the other terminal, but you’ll use it again in future
chapters.

Orchestrating with Kubernetes 91

Figure 7-2: Testing telnet access to telnet-server

Troubleshooting Tips
If you cannot connect to the telnet-server like in Figure 7-2, check that the
Pods are still running and that they are reporting that 1/1 containers are
READY. If the READY column shows 0/1 instead and the STATUS column has an
error like ImagePullBackOff or ErrImagePull, then the Pod could not find the
telnet-server image you built in Chapter 6. Make sure the image is built and
available when you list the Docker images.

If the READY and STATUS columns are correct, the next step is to make
sure your Service is wired up to your Pods. One way to check this connec-
tion is with the kubectl get endpoints command, which will tell you if the
Service can find the Pods you specified in the Service spec.selector field
located in the service.yaml file:

$ minikube kubectl -- get endpoints -l app=telnet-server
NAME ENDPOINTS AGE
telnet-server 172.17.0.3:2323,172.17.0.5:2323 20m
telnet-server-metrics 172.17.0.3:9000,172.17.0.5:9000 20m

The ENDPOINTS column shows the internal Pod IP addresses with ports.
Since you have two Pods, there are two IP addresses separated by a comma
for each Service. If the Service can’t locate the Pods, the ENDPOINTS column
will be set to <none>. If your ENDPOINTS column has <none>, check that the
spec.selector field in your Service matches what is in the spec.template
.metadata.labels field in the deployment.yaml file. I have preset it to the label
app: telnet-server in the example. Having mismatched labels between a Service
and a resource is a common mistake; it will happen to you at least once.

N O T E Visit https://kubernetes.io/docs/tasks/debug-application-cluster/
debug-service/ for more debugging tips and possible solutions.

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/

92 Chapter 7

Killing a Pod
Another great feature of Deployments is recovery. Failure is going to hap-
pen, so embrace it! A Deployment will get you back up and to full strength
in no time. Remember, a Deployment’s main purpose is to keep the desired
number of Pods running. To test this, you’ll delete one of the telnet-server
Pods and then watch the Deployment respawn another in its place. First,
you’ll need to fetch one of the telnet-server Pods’ names and delete it.

Enter the following to get the telnet-server Pods again:

$ minikube kubectl -- get pods -l app=telnet-server
NAME READY STATUS RESTARTS AGE
telnet-server-775769766-2bmd5 1/1 Running 0 25m
telnet-server-775769766-k9kx9 1/1 Running 0 25m

It really doesn’t matter which Pod you delete, so just choose the first
one on the list, which is telnet-server-775769766-2bmd5 on my cluster. (Your
Pod names will be different, as they are autogenerated.)

Now, enter the following command to delete the selected Pod:

$ minikube kubectl -- delete pod <telnet-server-775769766-2bmd5>
pod "telnet-server-775769766-2bmd5" deleted

The command might appear to hang for a few seconds, but it will even-
tually finish when the Pod has terminated.

If you list the Pods again, you’ll see two Pods are still running, but
now the telnet-server-775769766-2bmd5 is gone and has been replaced with
a new Pod:

$ minikube kubectl -- get pods -l app=telnet-server
NAME READY STATUS RESTARTS AGE
telnet-server-775769766-k9kx9 1/1 Running 0 25m
telnet-server-775769766-rdg5w 1/1 Running 0 1m16s

This new Pod, named telnet-server-775769766-rdg5w, is more than a minute
old, is Running, and is ready to accept connections.

Scaling
Let’s pretend the telnet-server application really resonates with the nostal-
gic over-35 crowd and becomes a runaway success. The two telnet-servers
will no longer be adequate for handling the increased traffic, so you’ll need
to scale up your replicas to a count greater than two. You can do this in two
ways. The first way is to edit the deployment.yaml manifest file and apply the
changes to the cluster using the minikube apply command. The second way
is to use the minikube kubectl scale command. I’ll demonstrate this example
using the minikube kubectl scale command, since you already learned how to
apply manifest files earlier in this chapter.

You are going to increase the Deployment replica count by one, bring-
ing the total number of Pods to three. (In a real production environment,

Orchestrating with Kubernetes 93

you would base the replica count number off some key metrics instead
of a finger in the wind.) Enter the following command to scale up the
telnet-server Deployment:

$ minikube kubectl -- scale deployment telnet-server --replicas=3
deployment.apps/telnet-server scaled

The scale deployment command takes a --replicas flag to set the number of
Pod replicas. The output shows the telnet-server Deployment has scaled, but
let’s verify this.

Enter the following command to verify that the replica count has
changed for your Deployment:

$ minikube kubectl -- get deployments.apps telnet-server
NAME READY UP-TO-DATE AVAILABLE AGE
telnet-server 3/3 3 3 17m

Here, you get the Deployment resource information for telnet-server. The
Deployment has three out of three (3/3) replicas READY, up from the two it
had earlier.

The scale command changes the replica count in real time on the
cluster. This can be dangerous. If a colleague pushes out a new version
of the telnet-server application right after you scaled from the command
line, the replica state will not match. This is because when he or she runs
the minikube kubectl -- apply -f kubernetes/deployment.yaml command, the
Deployment replica count would go back to two, since that’s what’s stated
in the deployment.yaml manifest file.

N O T E Changing the replica count or editing any resources live via the command line is
more trouble than it’s worth, as doing so often causes a split brain between the run-
ning state and the saved state in your manifests. To save yourself time debugging and
avoid causing your customers pain, always opt for infrastructure changes that are
tracked and versioned in source control instead of quick-and-dirty live changes.

Logs
The last piece of orchestration to test is accessing the telnet-server appli-
cation logs. Fortunately, Kubernetes makes this simple with the kubectl
logs subcommand. You want to grab the logs for all three of your telnet-
server Pods. One way to do this is to execute the logs command for each
of the three Pods and view the results. Enter the following command to
view one of the Pods logs (remember, your Pod names will be different
from mine):

$ minikube kubectl -- logs <telnet-server-775769766-rdg5w>
--snip--

This works fine if you do not have many Pods or if you know which Pod
an event happened on. If not, a better option is to grab all the Pods logs

94 Chapter 7

at the same time and mark each log line with the Pod name from which it
came. Enter the following command to fetch all the logs for each Pod:

$ minikube kubectl -- logs -l app=telnet-server --all-containers=true --prefix=true
[pod/telnet-server-775769766-k9kx9/telnet-server] telnet-server: 2022/02/03 21:07:30 telnet-
server listening on [::]:2323
[pod/telnet-server-775769766-k9kx9/telnet-server] telnet-server: 2022/02/03 21:07:30 Metrics
endpoint listening on :9000
--snip--

Quite a few flags are used in this command; let’s break each one down:

•	 To fetch only Pods with this label: -l app=telnet-server

•	 When you have multiple Pods and want to see all the logs:
--all-containers=true

•	 Each log line with the Pod name from which the log came: --prefix=true

The output should show at least six log lines—two start-up log lines for
each Pod (3) and whatever other logs may have shown up from connecting
earlier with the telnet command. The log output is not important now, as
you just need to make sure you can access the logs for your application.

Summary
In this chapter, you learned how to run the telnet-server container image
inside a Kubernetes cluster. You successfully orchestrated your application
by using a Kubernetes Deployment resource that you exposed to your local
host via a Kubernetes Service. Finally, you explored how to create, query,
and view your resources and logs with the minikube kubectl command. In the
next chapter, you’ll learn to automate the deployment of telnet-server by
implementing a simple delivery pipeline inside Kubernetes.

8
D E P L O Y I N G C O D E

You have been methodically building up
your infrastructure to get to this point, and

you have put in place all the foundational
pieces you need to run your application. You

have built and deployed in the Kubernetes cluster the
container image for the telnet-server application. If
you want to release a new version of your application,
all you need to do is rebuild the container image and
then redeploy the Kubernetes manifests.

However, there are some glaring flaws within your setup. For one, you
are not running any tests to verify that the code or container image is
defect-free. Also, the way you have set it up, every time any code or config-
uration changes, you’ll need to build the container image and release the
Deployment manually. This manual process is fine for kicking the tires on

96 Chapter 8

new technologies, but hopefully you have learned (and agree) that
these steps can and should be automated. Successful software engineer-
ing teams often release small code changes using automation, allowing
them to find errors quickly and reduce complexities in their infrastruc-
ture. As mentioned in an earlier chapter, this process of getting code
from your editor to your stakeholders in a consistent and automated
manner is usually referred to as continuous integration and continuous
deployment (CI/CD).

In this chapter, you’re going to build a simple CI/CD pipeline for the
telnet-server application using freely available tools. This pipeline will
watch the telnet-server source code changes, and if there are any, it will
kick off a series of steps to get the changes deployed to the Kubernetes
cluster. By the end of this chapter, you’ll have a local development pipeline
that builds, tests, and deploys your code to the Kubernetes cluster using
automation.

CI/CD in Modern Application Stacks
Continuous integration and continuous deployment are software devel-
opment methodologies that describe the way code is built, tested, and
delivered. The CI steps cover the testing and building of code and con-
figuration changes, while the CD steps automate the deployment (or
delivery) of new code.

During the CI stage, a software engineer introduces new features or
bug fixes through a version control system like Git. This code gets run
through a series of builds and tests before finally producing an artifact like
a container image. This process solves the “works on my machine” problem
because everything is tested and built in the same way to produce a consis-
tent product. The testing steps usually consist of unit tests, integration tests,
and security scans. The unit and integration tests make sure the application
behaves in an expected manner, whether in isolation or interacting with
other components in your stack. The security scans usually check for known
vulnerabilities in your applications software dependencies or for vulnerable
base container images you are importing. After the testing steps, the new
artifact is built and pushed to a shared repository, where the CD stage has
access to it.

During the CD stage, an artifact is taken from a repository and then
deployed, usually to production infrastructure. CDs can use different
strategies to release code. These strategies are usually either canary, rolling
(in our case), or blue-green. See Table 8-1 for more information on each
strategy.

The idea behind deployment strategies is to minimize problematic
code before it can have an impact on many users. The infrastructure
you’ll be deploying to most likely will be a container orchestrator like
our Kubernetes cluster, but it could just as easily be VMs in a cloud
provider.

Deploying Code 97

Table 8-1: Deployment Strategies

Name Description

Canary This strategy rolls out new code so only a small subset of users
can access it . If the canary’s code presents zero errors, the
new code can be rolled out further to more customers .

Blue-Green In this strategy, a production service (blue) takes traffic while
the new service (green) is tested . If the green code is operating
as expected, the green service will replace the blue service,
and all customer requests will funnel through it .

Rolling This strategy deploys new codes one by one, alongside the
current code in production, until it is fully released .

After the deployment is successful, a monitoring step should observe
the new code and make sure nothing has slipped past the CI phase. If a
problem is detected, like high latency or increased error counts, it will
be no problem to roll back the application to a previous version that was
deemed safe. This is one of the great features of a container orchestrator
like Kubernetes. It makes rolling code forward and backward very simple.
(We’ll test the rollback feature later.)

Setting Up Your Pipeline
Before creating your pipeline, you’ll need to install a few tools to help
automate code building, testing, and delivery. There are many tools on the
market that do this, but for our scope, I am using two pieces of software
that are open source and integrate nicely with Kubernetes. The first tool is
called Skaffold, and it helps with continuous development for Kubernetes-
native applications. It will make setting up the CI/CD pipeline to the local
k8s cluster easy. If Skaffold is not installed, follow the instructions at https://
skaffold.dev/docs/install/ for your OS to complete the installation.

The other tool, container-structure-test, is a command line applica-
tion that validates the container image’s structure after it’s built. It can test
whether the image was constructed properly by verifying whether a specific
file exists, or it can execute a command and validate its output. You can also
use it to verify that a container image was built with the correct metadata,
like the ports or environment variables you would set in a Dockerfile. The
installation instructions for container-structure-test are available at https://
github.com/GoogleContainerTools/container-structure-test/.

N O T E Both tools are ever changing and may not be considered production worthy by the time
you read this. The main goal of this section is to show you how the pipeline process
works and how you can create it with little effort on your local machine.

https://skaffold.dev/docs/install/
https://skaffold.dev/docs/install/
https://github.com/GoogleContainerTools/container-structure-test/
https://github.com/GoogleContainerTools/container-structure-test/

98 Chapter 8

Reviewing the skaffold.yaml File
The skaffold.yaml file describes how to build, test, and deploy your applica-
tion. This file should live in the root of your project and be kept under ver-
sion control. The YAML file has many different options to choose from, but
your pipeline will focus on three main sections: build, test, and deploy. The
build section describes how to build your container image, the test section
describes what tests to perform, and the deploy section describes how to
release your application to the Kubernetes cluster.

The skaffold.yaml file is in the telnet-server/ directory inside the cloned
repository (https://github.com/bradleyd/devops_for_the_desperate/). You don’t
need to edit or open this file, but you should have some familiarity with its
basics and structure.

--snip--
kind: Config
build:
 local: {}
 artifacts:
 - image: dftd/telnet-server
test:
- image: dftd/telnet-server
 custom:
 - command: go test ./... -v
 structureTests:
 - ./container-tests/command-and-metadata-test.yaml
deploy:
 kubectl:
 manifests:
 - kubernetes/*

The build section uses the default build action, which is the docker build
command, to create our container image locally. The container image name is
set to dftd/telnet-server. This matches the same image name you are using in
the deployment.yaml file. You’ll see why that is important when you look at the
deploy section. The Skaffold tool precalculates the container image tag using
the current Git commit hash, which is the default behavior. The generated tag
is appended to the container image name automatically, and it’s conveniently
set to an environment variable ($IMAGE) that can be referenced if needed.

N O T E A Git commit hash is a unique ID that Git uses to mark the repository state at a par-
ticular point in time.

The test section allows you to run any tests against the application and
container image. In this case, you’ll use unit tests that exist for the telnet-
server application that I’ve provided for you. The unit tests, which are under
the custom field, run the go test command for all the test files. This step
requires that the Go programming language be installed. If you do not
have Go installed, follow the instructions at https://go.dev/doc/install/ for
your OS.

https://github.com/bradleyd/devops_for_the_desperate/
https://go.dev/doc/install/

Deploying Code 99

The next test that gets run is structureTests. This test checks the final
container image for defects. We’ll go over these container tests briefly in a
later section.

Finally, the deploy section uses the Kubernetes manifest files inside the
kubernetes/ directory to release the telnet-server Deployment. The Skaffold
tool performs a patch against the running Deployment and replaces the
current container image and tag (which is dftd/telnet-server:v1) with the new
one Skaffold generated during the build step. Because these names match
the tag, they can be easily updated to a new one in the pipeline.

Reviewing the Container Tests
Once the telnet-server container image is built and the application tests pass,
the container tests are run on the newly built image. The container tests are
located in a subdirectory called container-tests/, which is under the telnet-server/
directory. This directory contains one test file named command-and-metadata
-test.yaml. In this file, I have provided one application test to make sure the
binary was built correctly, and I have also provided a few container image
tests to verify that the container was built with the expected instructions.

You should review the structure tests now. Open the YAML file in your
editor or follow along below:

--snip--
commandTests:
 - name: "telnet-server"
 command: "./telnet-server"
 args: ["-i"]
 expectedOutput: ["telnet port :2323\nMetrics Port: :9000"]
metadataTest:
 env:
 - key: TELNET_PORT
 value: 2323
 - key: METRIC_PORT
 value: 9000
 cmd: ["./telnet-server"]
 workdir: "/app

The commandTests command executes the telnet-server binary, passing
the -i (info) flag to it to output the ports on which the application is listen-
ing to STDOUT. The command output is then matched against what is in
the expectedOutput field. For a successful test, the output should match telnet
port :2323\nMetrics Port: :9000 so you can make sure your binary was com-
piled correctly during the container build phase. This test makes sure the
telnet-server application can at least run and function on a basic level.

The metadataTest looks to see whether the container image was built
with the proper instructions in the Dockerfile. The metadata tests verify
environment variables (env), command (cmd), and workdir. These tests are
useful for catching any delta between Dockerfile changes across different
commits.

100 Chapter 8

Simulating a Development Pipeline
Now that you understand the pipeline configuration, let’s get a running
pipeline. You can execute the skaffold command with either the run or the
dev subcommand. The run subcommand is a one-off that builds, tests, and
deploys the application and then exits. It does not watch for any new code
changes. The dev command does everything run does, but it watches the
source files for any changes. Once it detects a change, it kicks off the build,
test, and deploy steps described in the skaffold.yaml file. For this example,
you’ll use the dev subcommand to simulate a development pipeline.

After the dev subcommand is run successfully, it will wait and block
looking for any changes. By default, you’ll need to press CTRL-C to
exit the skaffold dev mode. However, when you use CTRL-C to exit, the
default behavior is to clean up after itself by removing the telnet-server
Deployment and Services from the Kubernetes cluster. Since you’ll be using
the telnet-server Deployment throughout this chapter and book, add the
--cleanup=false flag to the end of the dev command to bypass this behavior.
This way, the Pods will stay running after you quit the command.

To kick off the pipeline, make sure you are in the telnet-server/ directory
and your Kubernetes cluster is still running. The skaffold command can be
quite chatty when executed. To make it easier to follow, you’ll break down
the output as it aligns with the three skaffold sections above (build, test,
and deploy).

Enter the following command in a terminal to run skaffold:

$ skaffold dev --cleanup=false
Listing files to watch...
 - dftd/telnet-server
Generating tags...
 - dftd/telnet-server -> dftd/telnet-server:4622725
Checking cache...
 - dftd/telnet-server: Not found. Building
Found [minikube] context, using local docker daemon.
Building [dftd/telnet-server]...
--snip--
Successfully tagged dftd/telnet-server:4622725

The first action this command executes is to set the container tag to
4622725, after which the Docker image is built. Your tag will likely be differ-
ent, as it’s based off the current Git commit hash of my repository.

After a successful build, skaffold triggers the test section where the unit
and container infrastructure tests are kept:

Starting test...
Testing images...
===
====== Test file: command-and-metadata-test.yaml ======
===
=== RUN: Command Test: telnet-server

Deploying Code 101

--- PASS
duration: 571.602755ms
stdout: telnet port :2323
Metrics Port: :9000

=== RUN: Metadata Test
--- PASS
duration: 0s

===
======================= RESULTS =======================
===
Passes: 2
Failures: 0
Duration: 571.602755ms
Total tests: 2

PASS
Running custom test command: "go test ./... -v"
? telnet-server [no test files]
? telnet-server/metrics [no test files]
=== RUN TestServerRun
Mocked charge notification function
 TestServerRun: server_test.go:23: PASS: Run()
--- PASS: TestServerRun (0.00s)
PASS
ok telnet-server/telnet (cached)
Command finished successfully.

The container tests and telnet-server unit tests pass with zero errors.
Finally, after the container is built and all the tests pass, skaffold

attempts to deploy the container to Kubernetes:

--snip--
Starting deploy...
 - deployment.apps/telnet-server created
 - service/telnet-server created
 - service/telnet-server-metrics created
Waiting for deployments to stabilize...
 - deployment/telnet-server: waiting for rollout to finish: 0 of 2 updated
replicas are available...
 - pod/telnet-server-6497d64d7f-j8jq5: creating container telnet-server
 - pod/telnet-server-6497d64d7f-sx5ll: creating container telnet-server
 - deployment/telnet-server: waiting for rollout to finish: 1 of 2 updated
replicas are available...
 - deployment/telnet-server is ready.
Deployments stabilized in 2.140948622s
Press Ctrl+C to exit
Watching for changes...

The Deployment is using our Kubernetes manifest files for the telnet-
server application. For this Deployment, skaffold is using the new container
image and tag (dftd/telnet-server:4622725) that was just built and tested to

102 Chapter 8

replace the one that is currently running (dftd/telnet-server:v1). If the build,
test, and deploy steps are successful, there will not be any visible errors,
and the final line should say, “Watching for changes.” If there are errors in
any of the steps, the pipeline will halt immediately and throw an error with
some clues to where the fault occurred. If any errors do occur, tack the
--verbosity debug flag onto the skaffold dev command to increase the out-
put’s verbosity.

If the container image and tag already exist, skaffold will skip the build
and test sections and go right to the deploy step. This is a great time-saver,
as you won’t need to repeat all the steps if all you are doing is redeploying
the same container image. If your repository has uncommitted changes,
skaffold adds -dirty to the end of your tag (4622725-dirty) to signal that
changes are yet to be committed. In most cases, you’ll see this often when
developing locally. That is because you’ll likely be constantly tinkering and
making changes before committing your code.

Making a Code Change
The pipeline is now set up, so you’ll want to make a code change to test the
workflow. Let’s try something simple, like changing the color of the DFTD
banner that greets you when you connect to the telnet-server. The source
code for telnet-server is located in the telnet-server/ directory. Currently, the
banner is set to green (my favorite color). Once you make the code change
and save the file, skaffold should recognize the change and trigger build,
test, and deploy again.

In a different terminal from the one in which you are already running
skaffold, open the banner.go file, located in the telnet/ subdirectory, using
your favorite editor. Don’t worry about the code or the file’s contents; you’re
just going to change the color. On line 26, you’ll see some code that looks
like this:

return fmt.Sprintf("%s%s%s", colorGreen, b, colorReset)

This is the line that sets the banner color.
Replace the string colorGreen with the string colorYellow, so the line now

looks like this:

return fmt.Sprintf("%s%s%s", colorYellow, b, colorReset)

After the change, save and close the file. Head back to the terminal
where you are running the skaffold dev command. You should now see new
activity that looks very similar to the output from the first skaffold run. All
the steps will have been triggered again because you made a change in the
source code that skaffold watches. The end result should be the same: you
will have completed the Deployment rollout, and two new Pods will be run-
ning. If that isn’t the case, make sure that you actually saved the banner.go
file and that skaffold dev is still running.

Deploying Code 103

Testing the Code Change
Next, you should make sure the new code was delivered to the Kubernetes
cluster. Do this by validating that the DFTD banner color changed from
green to yellow.

In the previous chapter, you used the minikube tunnel command to
access the telnet-server application. If you still have it running in a termi-
nal, jump to the telnet client instructions below. If not, open another
terminal and run the minikube tunnel command once again.

You’ll need the IP address of the telnet-server Service again to access it.
Run this command to get the telnet-server Service IP:

$ minikube kubectl -- get services telnet-server
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
telnet-server LoadBalancer 10.105.161.160 10.105.161.160 2323:30488/TCP 6m40s

Your EXTERNAL-IP may be different from mine, so use the IP from that
column and port 2323.

Access the application again with the telnet client command, as follows:

$ telnet 10.105.161.160 2323

The DFTD banner, shown in Figure 8-1, should now be yellow.

Figure 8-1: The telnet session should have a yellow banner

If it’s not yellow, go back and make sure that the color was changed in
the code correctly and that the file was saved. Also, you can use the minikube
kubectl get pods command to verify that you have new Pods running. Make
sure the age of the Pods goes back to within a short time after you saved
the banner.go file. You should also look at the output in the terminal where
skaffold dev is running, to detect any noticeable errors.

104 Chapter 8

Testing a Rollback
There will be times when you need to roll back the application you have
deployed. This can be due to many reasons, from problematic code to mis-
alignment between product and engineering. Let’s say you wanted to go
back to the release where the welcome banner was green. You would have two
choices. On the one hand, you could make the necessary code change to set
the banner back to green and put the application back through the CI/CD
pipeline again. On the other hand, you could roll back the Deployment to the
older version, where the DFTD banner is green. We’ll explore the latter option.

If the troubled application does not pose any immediate service disrup-
tion or cause ongoing customer impacts, you should make a hotfix for the
code and follow your release cycle through your CI/CD pipeline. But what
if this bug (error) caused a service disruption to your customers as soon
as you deployed the code? You might not have time to wait for a thorough
investigation to happen and a hotfix to run through the pipeline. But
Kubernetes provides a way to roll back a Deployment, and other resources,
to a previous revision. So in this case, you’ll roll back only one revision, to
when the banner was green.

First, check the rollout history. Every time you deploy new code,
Kubernetes tracks the Deployments and saves the resource state at that
given time. Enter the following in a terminal to fetch the Deployment
history for telnet-server:

$ minikube kubectl -- rollout history deployment telnet-server
deployment.apps/telnet-server
REVISION CHANGE-CAUSE
1 <none>
2 <none>

If you have been following along without any hiccups, the output
should show two tracked Deployments. Currently, REVISION 2 is active.
Notice the CHANGE-CAUSE column has <none>. That is because you did not
tell Kubernetes to record the change. Using the --record flag when run-
ning kubectl apply makes Kubernetes record which command triggered
the deploy. Don’t worry about using --record for this book. Depending on
how many times you deployed the manifests from Chapter 7 or how many
times you ran skaffold dev, your REVISION numbers may be different. The
actual number doesn’t matter here; you’re just going back to the previous
revision.

Let’s force a rollback from the command line to REVISION 1, which should
reapply the manifests used in the first deploy, when the banner was green.
The kubectl rollout command has an undo subcommand for this case:

$ minikube kubectl -- rollout undo deployment telnet-server --to-revision=1
deployment.apps/telnet-server rolled back

You can leave off the --to-revision=1 flag, as the default is to roll back to the
previous revision. I added it here in case you ever need to roll back to a revi-
sion that was not the previous one.

Deploying Code 105

In a few seconds, the previous release should be running and accept-
ing new connections. Verify this by running the minikube kubectl get pods
command to show the Pods are new and have been running for only a few
seconds:

$ minikube kubectl -- get pods
NAME READY STATUS RESTARTS AGE
telnet-server-7fb57bd65f-qc8rg 1/1 Running 0 28s
telnet-server-7fb57bd65f-wv4t9 1/1 Running 0 29s

These Pods’ names have changed, and the Pods have been running for only
29 seconds, which is what you’d expect after just rolling them back.

Now, check the banner’s color. Make sure the minikube tunnel command
is still running, and then enter the telnet command into the application
one more time:

$ telnet 10.105.161.160 2323

If everything went well, your DFTD banner should be green again.
If you run the rollout history command again, the current revision

deployed will be 3, and the previous revision, when the banner was yellow,
will be 2.

You now know how to do an emergency rollback in Kubernetes, to
recover from any immediate service disruption. This technique can be use-
ful when your organization focuses on mean time to recovery (MTTR), which
basically means how long it takes for a service to go from “down” to “up”
from a customer’s point of view.

Other CI/CD Tooling
Development pipelines are complex pieces of your infrastructure. In my
quest to break them down in a simple manner, I’ve oversimplified some
aspects. However, my main goal has been to show you how to create a
simple pipeline to test and deploy code on a local Kubernetes cluster. You
can also use this same pattern in nonlocal setups, like the ones in AWS or
Google. The common strands that bind these processes together are porta-
bility and the use of a single file to describe the pipeline for an application.
This means that if your pipeline YAML file works locally, it should also work
on remote infrastructure.

That said, it might be helpful to describe some tools that are popular in
the CI/CD space. There are more tools available that I can count, but popu-
lar ones include Jenkins, ArgoCD, and GitLab CI/CD. Of these, Jenkins
is probably the most widely used, and it can operate both CI and CD for
VMs, containers, and any other artifact you’re using. There are also a lot of
widely available community plug-ins that make Jenkins extensible, but a lot
of security issues come with them. Be diligent about updating plug-ins and
looking out for issues.

Jenkins can deploy to any infrastructure and use any version control for
code repositories. Argo CD, on the other hand, is a Kubernetes deployment

106 Chapter 8

tool that focuses only on the deploy phase. It can do canary or blue-green
deployments out of the box, and it comes with a nice command line tool
to manage the infrastructure. You can hook Argo CD into your pipeline
after CI is done. Finally, GitLab CI/CD offers a full-featured pipeline (like
Jenkins) that leverages Gitlab’s version control product to manage code
repositories. It was designed for DevOps and includes almost everything
you need to get up and running in a modern infrastructure stack.

Although these tools do a good job of empowering you to have a pipe-
line, it is important to separate the philosophy behind CI/CD from the
tools used in this space. The truth is, each organization you work at may or
may not use the tools or processes described here. The methodologies, rather
than the individual tools themselves, are what’s important. No matter what
tools you use, the main goal behind CI/CD is to validate and deliver code in
small, predictable iterations, thus reducing the chance of errors or defects.

Summary
This chapter introduced you to continuous integration and continuous
deployment methodologies. The CI/CD pipeline you created used two tools
to build, test, and deploy code. This allowed you to automate an application’s
lifecycle in a Kubernetes cluster. You also learned about a rollback feature
built into Kubernetes that makes it easy to recover quickly from errant code
or misconfigured releases.

This concludes Part II, which has focused on containerization and
orchestration. You now can build and deploy a simple application inside
a Kubernetes cluster. Going forward, we’ll shift gears and discuss observ-
ability, with a focus on metrics, monitoring, and alerting. We’ll also explore
common troubleshooting scenarios you will find on a host or network, plus
the tools you can use to diagnose them.

PART III
O B S E R V A B I L I T Y A N D

T R O U B L E S H O O T I N G

9
O B S E R V A B I L I T Y

Observability is an attribute of a system, rather
than something you do. It is a system’s abil-

ity to be monitored, tracked, and analyzed.
Any application worthy of production should be

observable. Your main goal in observing a system is to
discern what it is doing, internally. You do this by analyz-
ing system outputs like metrics, traces, and logs. Metrics
usually consist of data over time that provide key insights into an applica-
tion’s health and/or performance. Traces track a request as it traverses differ-
ent services, to provide a holistic view. Logs provide a historical audit trail of
errors or events that can be used for troubleshooting. Once you collect this
data, you need to monitor it and alert someone when there is unexpected
behavior.

It is not necessary to analyze metrics, traces, and logs from every appli-
cation or piece of architecture. For example, tracing is key when you are
running distributed microservices because it can shed light on the indi-
vidual state of a given service and its interactions with other services. Your
decisions about what, how, and how much to observe really will hinge on

110 Chapter 9

the level of architectural complexity you are dealing with. Since your applica-
tion and infrastructure are relatively uncomplicated, you’ll observe your
telnet-server application with metrics, monitoring, and alerting.

In this chapter, you’ll first install a monitoring stack inside the Kubernetes
cluster you created in Chapter 7. Then, you’ll investigate common metric
patterns you can use as a starting point for any service or application you
may encounter. Finally, you’ll configure the monitoring stack to send an
email notification when an alert is triggered. By the end of this chapter,
you’ll have a solid understanding of how to install, monitor, and send
notifications for any application inside Kubernetes.

Monitoring Overview
Monitoring is any action that entails recording, analyzing, and alerting on pre-
defined metrics to understand the current state of a system. To measure a sys-
tem’s state, you need applications to publish metrics that can tell a story about
what the system is doing at any given time. By setting thresholds around met-
rics, you can create a baseline of what you expect the application’s behavior to
be. For example, a web application is expected to respond with an HTTP 200
in most cases. When the application’s baseline is not in a range you expect,
you’ll need to alert someone so they can bring the application back into line.
Systems will fail, but robust monitoring and alerting can be the bridge to user
satisfaction and on-call shifts that end with you getting a good night’s sleep.

An observable system should do its best to answer two main questions:
“What?” and “Why?” “What?” asks about a symptom of an application or
service during a specific time frame, while “Why?” asks for the reasons
behind the symptom. You can usually get the answer to “What?” by moni-
toring symptoms, while you can get the answer to “Why?” by other means,
like logs and traces. Correlating the symptom with the cause can be the
hardest part of monitoring and observability. This means your application’s
resiliency is only as good as the data the application outputs. A common
phrase to describe this concept is “Garbage in, garbage out.” If the metrics
exported from an application are not targeted or relevant to how the user
interacts with the service, detecting and diagnosing issues will be more dif-
ficult. Because of this, it’s more important to measure the application’s
critical path, or its most-used parts, than every possible use case.

For instance, say you go to your doctor because you woke up with nau-
sea and stomach cramps. The doctor asks you some basic questions and
takes your temperature, heart rate, and blood pressure. While your tem-
perature is a bit elevated, everything else falls within the normal range.
After reviewing all the data, the doctor makes a judgment call about why
you feel bad. Odds are, the doctor will be able to correctly diagnose your
ailment (or at least find more clues about it to follow up on).

This process of medical diagnosis is the same process you’ll follow when
diagnosing application issues. You’ll measure the symptoms and try to
explain them with a diagnosis or a hypothesis. If you have enough relevant
data points, it will be easier for you to correlate the symptoms with a cause.

Observability 111

In the example above, if the doctor asked what you had eaten recently
(another solid data point), they might have correlated your nausea and
cramps with your unwise choice to eat gas station sushi at 3 AM.

Finally, always consider the “What?” and “Why?” when designing met-
rics and monitoring solutions for your applications. Avoid metrics or alerts
that do not provide value to your stakeholders. Engineers who get bombarded
by nonactionable alerts tend to get tired and ignore them.

Monitoring the Sample Application
You’ll begin by monitoring the metrics that this book’s example telnet-server
publishes. The telnet-server application has an HTTP endpoint that serves
up metrics about the application. The metrics you’re interested in gather-
ing for the application focus on user experiences, like connection errors
and traffic. The stack for your telnet-server application will consist of three
main monitoring applications and a traffic simulation application. You’ll
use these applications to monitor, alert, and visualize the metrics instru-
mented by telnet-server.

The monitoring applications are Prometheus, Alertmanager, and
Grafana. They are commonly used in the Kubernetes ecosystem. Prometheus
is a metric collection application that queries metric data with its power-
ful built-in query language. It can set alerts for those metrics as well. If
a collected metric crosses a set threshold, Prometheus sends an alert to
Alertmanager, which takes the alerts from Prometheus and decides where to
route them based on some criteria that are user configurable. The routes are
usually notifications. Grafana provides an easy-to-use interface to create and
view dashboards and graphs from the data Prometheus provides. The traffic
simulator, bbs-warrior, simulates the traffic an end user of the telnet-server
application might generate. This lets you test your monitoring system, appli-
cation metrics, and alerts. Figure 9-1 shows an overview of the example stack.

telnet-server
Metrics

Prometheus
Rules

Alertmanager
Notifiers/routes

Grafana
Dashboards/graphs

bbs-warrior

Figure 9-1: Overview of our monitoring stack

112 Chapter 9

Installing the Monitoring Stack
To install these applications, you’ll use the provided Kubernetes manifest
files. The manifest files for the monitoring stack and traffic simulator are
in the repository (https://github.com/bradleyd/devops_for_the_desperate/), under
the monitoring directory. Within that directory are four subdirectories:
alertmanager, bbs-warrior, grafana, and prometheus. These make up the example
monitoring stack. You’ll install Prometheus, Alertmanager, and Grafana in
a new Kubernetes Namespace called monitoring by applying all the manifests
in each of these directories.

In a terminal, enter the following command to install the monitoring
stack and bbs-warrior:

$ minikube kubectl -- apply -R -f monitoring/
namespace/monitoring created
serviceaccount/alertmanager created
configmap/alertmanager-config created
deployment.apps/alertmanager created
service/alertmanager-service created
cronjob.batch/bbs-warrior created
configmap/grafana-dashboard-pods created
configmap/grafana-dashboard-telnet-server created
configmap/grafana-dashboards created
configmap/grafana-datasources created
deployment.apps/grafana created
service/grafana-service created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
deployment.apps/kube-state-metrics created
serviceaccount/kube-state-metrics created
service/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
configmap/prometheus-server-conf created
deployment.apps/prometheus created
service/prometheus-service created

The output shows that all the manifests for your monitoring stack and
bbs-warrior were run without errors. The -R flag makes the kubectl command
recursively go through all the application directories and their subdirectories
under the monitoring directory. Without this flag, kubectl will skip any nested
subdirectories, like grafana/dashboards/. Prometheus, Grafana, Alertmanager,
and bbs-warrior should be up and running in a few moments.

N O T E You may have noticed that the namespace file in the monitoring directory has a
00_ prefix. This prefix ensures that when kubectl applies the manifests, the namespace
file will be evaluated first. All the monitoring applications are installed in a separate
Namespace called monitoring. Those applications reference the monitoring Namespace,
and if it isn’t created first, they will not install. Using a 00_ prefix is a simple way
to force ordering in a directory of files. If you needed a file to be the second one evalu-
ated, you would use a 01_ prefix.

https://github.com/bradleyd/devops_for_the_desperate/

Observability 113

Verifying the Installation
If the monitoring stack installation was successful on your Kubernetes cluster,
you should be able to access Grafana’s, Alertmanager’s, and Prometheus’s
web interfaces on your browser. In the provided Kubernetes manifest files,
I have set the Kubernetes Service types for Prometheus, Grafana, and
Alertmanager to NodePort. A Kubernetes NodePort Service allows you to
connect to an application outside the Kubernetes cluster, so you should be
able to access each application on the minikube IP address and a dynamic
port. You should also be able to confirm that the bbs-warrior traffic simula-
tor was installed and is running periodically.

Grafana

In a terminal, enter the following command to open Grafana:

$ minikube -n monitoring service grafana-service
|------------|-----------------|-------------|-----------------------------|
NAMESPACE	NAME	TARGET PORT	URL
monitoring	grafana-service	3000	http://192.168.99.105:31517
------------	-----------------	-------------	-----------------------------
Opening service monitoring/grafana-service in default browser...

Grafana lives in the monitoring Namespace, so this command uses
the -n (Namespace) flag to show the minikube service command where
to locate the Service. If you omit the -n f lag, minikube will error, as
there’s no Service named grafana-service in the default Namespace. You
should now see Grafana open in your web browser, with the telnet-server
dashboard loaded as the first page. If you don’t see the telnet-server dash-
board, check the terminal where you ran the minikube service command
for any errors. (You’ll need access to Grafana to follow along with the rest
of this chapter.) We’ll discuss the graphs on the Grafana dashboard
later; for now, you should ensure that Grafana is installed correctly and
that you can open it in your browser.

Alertmanager

In a terminal, enter the same command you used to open Grafana in your
browser, but replace the Service name with alertmanager-service, like this:

$ minikube -n monitoring service alertmanager-service
--snip--

The Alertmanager application should now be open in your browser.
This page has a few navigation links, like Alerts, Silences, Status, and Help.
The Alerts page displays current alerts and any metadata, like timestamps
and severity associated with an alert. The Silences page shows any alerts
that have been silenced. You can mute or silence an alert for a specific amount
of time, which is helpful if an alert is being triggered and you don’t want

114 Chapter 9

to keep getting paged for it. The Status page shows information about
Alertmanager, like its version, ready status, and current configuration.
Alertmanager is configured via the configmap.yaml file in the alertmanager/
directory. (You’ll edit this file later to enable notifications.) Finally, the
Help page is a link to Alertmanager’s documentation.

Prometheus

In your terminal, enter the same command you just entered, but replace
grafana-service with prometheus-service to open Prometheus:

$ minikube -n monitoring service prometheus-service
--snip--

Prometheus should open in your browser with a few links at the
top of the page: Alerts, Graph, Status, and Help. The Alerts page dis-
plays all known alerts and their current state. The Graph page is the
default page that allows you to run queries against the metric database.
The Status page contains information about Prometheus’s health and
configuration file. Prometheus, like Alertmanager, is controlled by
the configmap.yaml file in the prometheus directory. This file controls what
endpoints Prometheus scrapes for metrics, and it contains the alert rules
for specific metrics. (We’ll explore the alert rules later.) The Help page is
a link to Prometheus’s official documentation. For now, you are just con-
firming that Prometheus is running. Leave Prometheus open, as you’ll need
it in the next section.

bbs-warrior

The bbs-warrior application is a Kubernetes CronJob that runs every min-
ute and creates a random number of connections and errors to the telnet-
server application. It also sends a random number of BBS commands (like
date and help) to the telnet-server, to mimic typical user activity. About a
minute after you install bbs-warrior, it should start generating random
traffic. This simulation should last only a few seconds.

To make sure bbs-warrior is active and installed correctly in your
Kubernetes cluster, enter the following command in a terminal:

$ minikube kubectl -- get cronjobs.batch -l app=bbs-warrior
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
bbs-warrior */1 * * * * False 0 25s 60s

The -l (label) flag narrows down the results when searching for
CronJobs. The output shows that the CronJob was installed over a minute
ago (60s, under the AGE column) and that it last ran 25 seconds ago (under
the LAST SCHEDULE column). If it were actively running, the ACTIVE column
would be set to 1 rather than 0.

You now know that the CronJob ran, but you should make sure it com-
pleted successfully. To do that, you’ll list the Pod with the label bbs-warrior

Observability 115

in the default Namespace and look for Completed in the STATUS column. In
the same terminal you used above, enter the following command:

$ minikube kubectl -- get pods -l app=bbs-warrior
NAME READY STATUS RESTARTS AGE
bbs-warrior-1600646880-chkbw 0/1 Completed 0 60s

The output shows that the bbs-warrior CronJob completed successfully
about 60 seconds ago. If the CronJob has a status different from Completed,
check the Pod’s logs for errors like you did in Chapter 7.

Metrics
You’ve installed and verified your monitoring stack, so now, you should focus
on what you are monitoring for your telnet-server. Since you want to tailor
your metrics to user happiness, you should use a common pattern to align
all your applications. This is always a good approach when instrumenting
your services, because allowing applications to do their own unique version
of metrics makes triaging (and thus, on-call shifts) very difficult.

For this example, you’ll explore a common metric pattern called Golden
Signals. This provides a subset of metrics to track, like errors and traffic,
plus a common language for you and your peers to use to discuss what
healthy looks like.

Golden Signals
The Golden Signals (a term first coined by Google) are four metrics that
help us understand the health of a microservice. The Golden Signals are
latency, traffic, errors, and saturation. Latency is the time it takes for a service
to process a request. Traffic is how many requests an application is receiving.
Errors refers to the number of errors an application is reporting (such as a
web server reporting 500s). Saturation is how full a service is. For a saturation
signal, you could measure CPU usage to determine how much headroom is
left on the system before the application or host becomes slow or unrespon-
sive. You will use this pattern often when measuring applications. If you are
ever in a situation where you don’t know what to monitor, start with the
Golden Signals. They’ll provide ample information about your application’s
health.

A microservice typically is an application loosely coupled to other services
in your platform. It is designed to focus only on one or two aspects of your
overall domain. In this chapter, the telnet-server application will serve as
the microservice whose health you will measure.

Adjusting the Monitoring Pattern
Chances are your application will not fit neatly into a predefined monitor-
ing pattern like the Golden Signals. Use your best judgment about what
matters. For example, I decided not to track latency when instrumenting

116 Chapter 9

the telnet-server application even though the pattern lists it. Users of such
an application typically wouldn’t connect, run a command, and then quit.
You could track latency of the commands, or you could add tracing for each
command workflow. However, that would be overkill for this sample applica-
tion and beyond the scope of this book. Your commands are for demonstra-
tion purposes only, so focusing on traffic, errors, and saturation signals will
provide an overall idea of the application’s health from a user’s point of view.

OT HER ME T R IC PAT T ER NS

Two other common metric patterns are RED and USE . The RED (rate, error,
and duration) method (https://www.weave.works/blog/the-red-method-key-
metrics-for-microservices-architecture/) was created by Tom Wilkie of Grafana
Labs . Like Golden Signals, RED was designed to help monitor microservices .
However, RED focuses more on the application’s health than on underlying
system resources like CPU or memory . The rate is the number of requests per
second a service is receiving . Error is the number of failed requests per second
(such as connection failures that a client experiences) that the service encoun-
ters . Duration is the amount of time it takes to serve a request, or how long it
takes to return the data requested from your service to the client .

The USE (utilization, saturation, and errors) method was developed by
Brendan Gregg (https://www.brendangregg.com/usemethod.html) for quickly
discovering performance issues based on underlying resources rather than the
microservices that run on them . Utilization is the average time the resource (for
example, a disk drive at 85 percent usage) is busy doing work . Saturation can
be thought of as extra work the system could not get to, such as happens with a
busy host that is queueing up connections to serve traffic . Errors are the number
of errors (such as network collisions or disk IO errors) a system is having .

The telnet-server Dashboard
Let’s review the traffic, saturation, and error signals on your Grafana dash-
board. In the browser where you first opened Grafana, the telnet-server
dashboard has three graphs for the Golden Signals and two collapsed
graph rows titled System and Application (see Figure 9-2). You’ll focus on
the Golden Signals graphs, which are as follows: Connections per second,
Saturation, and Errors per second.

The first graph, Connections per second (in the top left), provides the
traffic Golden Signal. In this case, you measure how many connections per
second you are receiving in a two-minute time frame. The telnet-server
application increases a metric counter each time a connection is made,
providing a good idea of how many people connect to the application.
Many connections could pose an issue with performance or reliability. In
this example, the x-axis shoots up over 4.0 connections per second for both

https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://www.brendangregg.com/usemethod.html

Observability 117

telnet-server Pods. Your graphs will show different results from mine since
bbs-warrior generates the traffic randomly; the goal is to make sure the
graphs are being populated.

Figure 9-2: The telnet-server Grafana dashboard

The Saturation graph (top right) represents the saturation Golden
Signal. For saturation, you measure the amount of time Kubernetes throt-
tles your telnet-server container’s CPU. You set a CPU resource limit of
500 millicpu for the telnet-server container in Chapter 7. Therefore, if the
telnet-server container uses more than the maximum limit, Kubernetes will
throttle it, possibly making the telnet-server slow to respond to commands
or connections. This throttle could potentially cause poor performance or
a service interruption. In the Saturation graph shown in Figure 9-2, the
x-axis is flat at 0 microseconds for both Pods. The line of the graph will
rise if CPU throttling occurs.

The Errors per second (bottom left) graph maps to the error Golden
Signal. For this metric, you track the connection errors per second that you
receive in a two-minute time frame. These errors are incremented when a
client fails to connect properly or if the connection is killed unexpectedly.
A high error rate could indicate a code or infrastructure issue that you
need to address. In the graph shown in Figure 9-2, the errors-per-second
rate is spiking to 0.4 for both pods.

The collapsed two rows at the bottom of this dashboard contain some
miscellaneous graphs not covered in this chapter, but you should explore
them on your own. The telnet-server dashboard System row contains two
graphs: one for memory, and one for CPU usage by the telnet-server Pods.
The Application row contains four graphs: Total Connections, Active
Connections, Connection Error Total, and Unknown Command Total.

The telnet-server dashboard is in the grafana/dashboards/telnet-server.yaml
file. This file is a Kubernetes ConfigMap resource that contains the JSON
configuration that Grafana requires to create the dashboard and graphs.

N O T E Keep your dashboards under version control to make it easier to reproduce and make
changes.

118 Chapter 9

PromQL: A Primer
PromQL is a query language built into the Prometheus application. You
use it to query and manipulate metric data. Think of PromQL as a distant
cousin of SQL. It has some built-in functions (like average and sum) to make
querying data easier plus conditional logic (like > or =). We won’t explore this
query language in depth here except to show how I queried telnet-server’s
Golden Signal metrics to populate your graphs and alerts.

For example, here is the query you enter to generate the Errors-per-
second graph:

rate(telnet_server_connection_errors_total{job="kubernetes-pods"}[2m])

The name of the metric is telnet_server_connection_errors_total. This
metric measures the total amount of connection errors a user may encounter.
The query uses Prometheus’ rate() function, which calculates the per-sec-
ond connection error average over a specified time interval. You limit the
time frame for which this query fetches data to two minutes using square
brackets [2m]. The result will show the two running telnet-server Pods you
installed in Chapter 7. The curly brackets ({}) allow you to refine the query,
using labels as matchers. Here, you specify that you want data only for the
telnet_server_connection_errors metric with the job="kubernetes-pods" label.

When creating an alert rule in Prometheus, you can enter the same
query as above to drive the alert. However, this time, you should wrap the
results from the rate() function in a sum() function. You’ll do this because
you want to know the overall error rate for both Pods. The alert rule should
look like the following:

sum(rate(telnet_server_connection_errors_total{job="kubernetes-pods"}[2m])) > 2

At the end of the query, you add greater-than (>) conditional logic with
a number: 2. This basically means that if the error rate is greater than two
per second, this alert query evaluates to true. (Later in this chapter, we’ll
discuss what happens when alert rules are true.)

If you want to review or tinker with any of these metrics, see the Graph
page in the Prometheus web interface. Figure 9-3 shows the telnet_server
_connection_errors_total query being run.

Figure 9-3: Running a query in Prometheus’s web interface

The query returns connection error data for both Pods. To learn more
about PromQL, visit https://prometheus.io/docs/prometheus/latest/querying/basics/
for more examples and information.

https://prometheus.io/docs/prometheus/latest/querying/basics/

Observability 119

N O T E A good rule of thumb when calculating per-second averages (rates) is to set the sample
time window to at least two times the Prometheus scrape interval. In your case,
Prometheus fetches the telnet-server metrics endpoint every 30 seconds, so your time
interval should not be less than one minute.

Alerts
Metrics and graphs only constitute half of a monitoring solution. When
your application decides to take a stroll off a cliff (and it will), someone
or something needs to know about it. If a Pod dies in a Deployment,
Kubernetes just replaces it with a new one. But if the Pod keeps restarting,
someone needs to address it, and that’s where the alerts and notifications
come into play.

What constitutes a good alert? Besides an alert for each of your applica-
tion’s Golden Signals, you may need an alert around a key metric to monitor.
When this does happen, keep in mind a couple of guidelines to follow when
creating alerts:

Do not set thresholds too low. Setting alert thresholds too low can
cause the alerts to repeatedly fire and then clear if you have spiky met-
rics. This behavior is known as flapping, and it can be quite normal. The
system should not issue alerts for flapping metrics every few minutes,
because on-call engineers get stressed out when they repeatedly get a
notification and then find the alarm has already cleared.

Avoid creating alerts that are not actionable. Don’t create alerts for
a service when nothing can be done to remedy it. I call these alerts
status alerts. Nothing is more frustrating to an on-call engineer than
being woken up in the middle of the night only to babysit an alert that
requires no action.

For this book, I have provided three alerts called HighErrorRatePerSecond,
HighConnectionRatePerSecond, and HighCPUThrottleRate (more on these later).
These alerts are located in the prometheus.rules section inside Prometheus’s
configuration file (configmap.yaml). Prometheus uses alert rules to decide
whether a metric is in an undesired state. An alert rule has information like
the alert name, PromQL query, threshold, and labels. For your example, I
have gone against my own alert-creation advice and set the provided thresh-
olds extremely low, allowing bbs-warrior to trigger the alerts easily. Nothing
beats a live example when learning about real-time metrics and alerts!

Reviewing Golden Signal Alerts in Prometheus
You can view alerts in either Prometheus’s or Alertmanager’s web interfaces.
The difference is that Alertmanger displays only alerts that are being trig-
gered, whereas Prometheus will show all alerts, whether they are firing or
not. You want to view all the alerts, so you’ll use Prometheus for this example.
However, you should visit Alertmanager’s interface as well when an alert is
being triggered.

120 Chapter 9

In the browser where Prometheus was originally opened, click the
Alerts link in the top-left navigation bar. You should see the three
provided telnet-server Golden Signals alerts: HighErrorRatePerSecond,
HighConnectionRatePerSecond, and HighCPUThrottleRate. These alerts were cre-
ated when you installed Prometheus earlier. The Alerts page should look like
Figure 9-4.

Figure 9-4: Prometheus alerts for telnet-server

Each alert will be in one of three states: Pending (yellow), Inactive
(green), or Firing (red). In Figure 9-4, the HighConnectionRatePerSecond alert is
Firing. The other two alerts, HighCPUThrottleRate and HighErrorRatePerSecond,
are Inactive since they are not being triggered. Your Alerts page will be dif-
ferent from mine because of bbs-warrior’s randomness. If your page doesn’t
show any alerts in a Firing state, wait a few minutes until more traffic is
generated. Then refresh the browser page. In all my testing for this chapter,
I always had at least one alert transition to a Firing state.

The HighErrorRatePerSecond alert is concerned with the number of con-
nection errors received per second. If the rate of connection errors in a
two-minute window is greater than 2, the alert is in a Firing state. On my
local Kubernetes setup, the alert is currently in the Inactive state.

The next alert, HighConnectionRatePerSecond, detects whether the con-
nection rate is greater than 2 per second in a two-minute time frame.
Currently, this alert is in the Firing state. Figure 9-4 shows that the current
value for my connection rate is more than 9.1 connections per second,
which is well beyond the set threshold of 2. I have expanded the alert in
the browser to show the provided metadata in a key-value layout that an
alert provides. In the labels section for all three alerts, I have set a label
called severity with a value of Critical so it’s easier to distinguish between
noncritical alerts and ones that need immediate attention. You’ll use this
label to route important alerts in Alertmanager later. The annotations sec-
tion includes a description, a summary, and a link to a runbook, which is a
blueprint that provides unfamiliar engineers with the what, why, and how
for a service. Having this information is crucial when sending out an alert
notification, because it gives the person on call an idea of what to look for
when troubleshooting.

Observability 121

The last alert, HighCPUThrottleRate, detects high CPU saturation. If the
CPU is being throttled by Kubernetes for more than 300 microseconds in a
two-minute window, you’ll transition to a Firing state. This alert is currently
inactive, but normally, I’d suggest a minimum five-minute window when
tracking CPU throttling. This is because smaller time windows can make
you more susceptible to alerting on a temporarily spiky workload.

Routing and Notifications
You’ve verified that the metrics and alerts are visible and active, so now, you
should set up Alertmanager to send out email notifications. Once an alert
is in the Firing state, Prometheus sends it to Alertmanager for routing and
notification. Notifications can be sent via text messages, push notifications,
or email. Alertmanager calls these notification methods receivers. Routing
is used to match on alerts and send them to a specific receiver. A common
pattern is to route alerts based on specific labels. Alert labels are set in
the Prometheus configmap.yaml file. You’ll use this pattern later, when you
enable notifications.

The provided Alertmanager configuration is located in the alertmanager/
configmap.yaml file. It is set up to match on all alerts with a severity label
set to Critical and route them to a none receiver, which is basically a black
hole that won’t notify anyone when there’s an alert. This means that to see
whether an alert is being triggered, you would need to visit the web page on
either Alertmanager or Prometheus. This setup isn’t ideal, as refreshing the
web browser every few minutes would become tedious, so you’ll route any
alert to the email receiver if the alert has a severity label set to Critical. If
you’re following along, this step is completely optional, but it shows you how
to configure receivers in Alertmanager.

Enabling Email Notifications

To route an alert to the email receiver, you need to edit Alertmanager’s con-
figuration. I have stubbed out a template for the email receiver and route block
in the configmap.yaml file. The email example is based on a Gmail account,
but you can alter it to accommodate any email provider. See https://www
.prometheus.io/docs/alerting/latest/configuration/#email_config/ for more details.

Open Alertmanager’s configmap.yaml file in your favorite editor; it
should look like this:

--snip--
 global: null
 receivers:
 1 #- name: email
 # email_configs:
 # - send_resolved: true
 # to: <GMAIL_USERNAME@gmail.com>
 # from: <GMAIL_USERNAME@gmail.com>
 # smarthost: smtp.gmail.com:587
 # auth_username: <GMAIL_USERNAME@gmail.com>

https://www.prometheus.io/docs/alerting/latest/configuration/#email_config/
https://www.prometheus.io/docs/alerting/latest/configuration/#email_config/

122 Chapter 9

 # auth_identity: <GMAIL_USERNAME@gmail.com>
 # auth_password: <GMAIL_PASSWORD>
 2 - name: none
 route:
 group_by:
 - job
 group_interval: 5m
 group_wait: 10s
 3 receiver: none
 repeat_interval: 3h
 routes:
 4 - receiver: none
 match:
 severity: "Critical"

Here, you have two receivers named email 1 and none 2. The none
receiver won’t send alerts anywhere, but when uncommented, the email
receiver will send alerts to a Gmail account. Uncomment the email receiver
lines and then replace with an email account you can use for testing.

N O T E If you are using Gmail and have 2FA enabled, you’ll need to set up an app-specific
password credential as the generic username. Password authentication will not work.
See https://support.google.com/accounts/answer/185833/ for more details.

After configuring your email settings, change the receiver 3 under the
routes section to email. This configures Alertmanager to route any alert to
the email receiver if the alert has a severity label set to Critical. The receiver
line 4 should now look like this:

- receiver: email

You’ll still have your default or catch-all receiver 3 set to none, so any
alert that does not match your severity label rule will be sent there. Save
this file, as you are done modifying it.

Applying Alertmanager’s Configuration Changes

Next, you’ll update Alertmanager’s ConfigMap inside the Kubernetes
cluster. Since the local file contains changes that don’t exist on the cluster,
enter the following in a terminal:

$ minikube kubectl -- apply -f monitoring/alertmanager/configmap.yaml
configmap/alertmanager-config configured

The next step is to tell Kubernetes to restart the Alertmanager
Deployment so it can pick up the new configuration changes. In the same
terminal, enter the following command to restart Alertmanager:

$ minikube kubectl -- -n monitoring rollout restart deployment alertmanager
deployment.apps/alertmanager restarted

https://support.google.com/accounts/answer/185833/

Observability 123

The Alertmanager Pod should restart after a few moments. If you have
any alerts in the Firing state, you should start receiving email in your inbox.
Depending on Alertmanager and your email provider, the notifications may
take some time to appear.

If you do not receive any notification emails, check for a couple of com-
mon issues. First, make sure the configmap.yaml file does not have any typos
or indentation errors. It is very easy to misalign a YAML file. Second, make
sure the email settings you entered match what is required by your email
provider. Look in Alertmanager’s logs to find these and other common issues.
Enter the following kubectl command to view the logs for any errors:

$ minikube kubectl -- -n monitoring logs -l app=alertmanager

If you need to disable the notifications for any reason, set the routes
receiver back to none in the configmap.yaml file, apply the manifest changes,
and restart.

You now have alerts and notifications configured for telnet-server’s
Golden Signals.

Summary
Metrics and alerts are foundational pieces when monitoring an application.
They provide insight into the health and performance of your service. In
this chapter, you learned about the Golden Signals monitoring pattern and
how to install a modern monitoring stack inside a Kubernetes cluster using
Prometheus, Alertmanager, and Grafana. Finally, you learned how to con-
figure Alertmanager to send email notifications for critical alerts.

In the next chapter, we’ll shift gears and discuss common trouble-
shooting scenarios you will find on a host or network, plus the tools you can
use to diagnose them.

10
T R O U B L E S H O O T I N G H O S T S

Engineers spend a lot of time trying to
figure out why something isn’t working as

intended. Instrumentation, tracing, and
monitoring play big roles in determining the

health of a host or application, but sometimes, observ-
ability is not enough. There will be times when you’ll
need to roll up your sleeves and figure out why some-
thing is broken and how to fix it. In other words, you’ll be
troubleshooting and debugging. Troubleshooting is the process of analyzing
the system and rooting out potential causes of trouble. Debugging, on the
other hand, is the process of discovering the cause of trouble and possibly
implementing steps to remedy it. The differences are subtle, and in fact,
you can think of debugging as a subset of troubleshooting. Most of what
you’ll do in this chapter is considered troubleshooting.

126 Chapter 10

In this chapter, you’ll explore common performance problems and
issues you may encounter on a Linux host. You’ll look at symptoms, com-
mands you can use to diagnose various potential problems, and the next
steps to take after troubleshooting. By the end of this chapter, you’ll have
expanded your command line arsenal and sleuthing skills to troubleshoot
common issues.

N O T E All scenarios in this chapter are geared toward Linux. If you are using another OS,
like macOS, these concepts might cross over, but the tools can behave differently.
Check the tools’ documentation for your OS for any potential differences. I mostly
used tools that were installed by default, but you’ll need to install some of them
using your local package manager. The tools I chose have some overlap in some
cases, but I wanted to give you a variety to make you comfortable with different
ways to poke a host.

Troubleshooting and Debugging: A Primer
Troubleshooting and debugging is an art, not an exact science. Rarely will
you see a big neon sign with an arrow pointing to the exact issue. Most
of the time, you’ll find a trail of breadcrumbs that leads you from clue to
clue. You may have to crawl through the weeds to find those crumbs, and
you may want to pull out your hair before you find what you’re looking for.
But diagnosing a broken system can be very rewarding, and figuring out
an issue that’s plaguing your customers or haunting a coworker can feel
amazing.

But even an artist needs a method, and having a standard set of steps
and techniques to follow whenever you are investigating an issue is a great
way to start. So here are some tips to keep in mind when venturing forth to
confront those fickle beasts we call hosts:

Start simple. When troubleshooting a problem, it can be tempting to
jump to conclusions and assume it’s the worst-case scenario. Instead, be
methodical and build upon the knowledge you have gained. The prob-
lem is usually human error.

Build a mental model. Understanding what the system’s role is and
how it interacts with other systems will help you troubleshoot faster. You
will find yourself spending less time worrying about architecture and
more time working on the issue.

Take your time developing a theory. You may want to latch on to the
first clue you find, but it’s always worth checking to see if the bread-
crumb trail leads any farther. Come up with a test to validate your
theory.

Have consistent tools across hosts. Make sure your hosts were built
with the same tooling. There is nothing worse than logging in to a host
and finding out it is not like the others. Tool consistency is one of the
benefits of building your hosts with automation.

Troubleshooting Hosts 127

Keep a journal. Keep a high-level account of problems, symptoms,
and fixes so you don’t forget important details about an issue. Your
future self will thank you.

Know when to ask for help. If your business depends on solving an
issue but you are struggling to find the cause, it is best to send up a
flare. Someone with more experience can usually help, and someday,
you will pay that knowledge forward or maybe even return the favor.

N O T E All the commands used in this chapter have many more use cases and a plethora of
parameters and flags they can accept. If you are unsure about a flag or want to learn
more, visit the command’s man pages for more information.

Scenario: High Load Average
Linux has a metric called load average that provides an idea of how busy a
host is. The load average takes into account data like CPU and I/O when
calculating this number. The load of a system is displayed in 1-minute,
5-minute, and 15-minute averages. At first glance, any high number in
an average might seem like a problem. But troubleshooting a high load
average can be tricky because a high load doesn’t always indicate that
your host is in a degraded state. A busy host can have a high load but still
respond to requests and commands without issue. It’s like when two people
have the same temperature, but one person is awake and functioning in a
normal capacity and the other is bedridden and lethargic. Each host and
workload is different, so you first need to identify what a normal range for
your host looks like. A good rule of thumb is if the load average is larger
than the CPU core count, you may have processes waiting and causing
latency or performance degradation. When investigating this scenario, a
good first step is to identify the high load and try to locate any process
that could be causing it.

uptime
Enter the uptime command to display how long a host has been running,
the number of logged-in users, and the system load. It reports the load in
1-minute, 5-minute, and 15-minute averages:

$ uptime
09:30:38 up 47 days, 31 min, 2 users, load average: 8.05, 1.01, 0.00

This four-core CPU host has been up for 47 days and 31 minutes, and
2 users are currently logged in. The 1-minute load average is 8.05. The
5-minute load average is 1.01, which means the pressure on the system has
been increasing during somewhere between 1 and 5 minutes of runtime.
You know this because the 15-minute load average is 0.00 (no load at that
time). If the numbers were reversed, with the 15-minute load showing

128 Chapter 10

the higher number and the 1-minute load at zero, you could infer that the
spike in load is not ongoing and happened around 15 minutes ago. Since
this load seems to be increasing and has been climbing for more than
5 minutes, and since it is greater than the CPU core count, it may be worth
investigating why.

top
The top command displays information about a system and the processes
running on that host. It provides details like CPU percentage, load average,
memory, and process information. Execute the top command to launch an
interactive real-time dashboard showing system information, as shown in
Figure 10-1.

Figure 10-1: The top command output on a mostly idle host

By default, top sorts all the processes by CPU percentage. The first row
contains the process using the most CPU percentage at that given poll cycle.
The display refreshes (polls) every 3.0 seconds, so you’ll want to view top
for a few cycles before settling on a process or any data that might be or
indicate the cause of the high load.

The following snippet is from a top report where a process is using 120
percent CPU:

PID USER ... RES SHR S %CPU %MEM TIME+ COMMAND
3048 root ... 177740 5164 S 120.3 1.8 173:02.78 fail2ban-server

The key columns are PID, RES, %CPU, %MEM, and COMMAND. (Others are omit-
ted here for readability.) The fail2ban-server command (in the COMMAND
column) is using 120.3 percent CPU and is consuming around 177,740KB
of memory, as shown in the RES column. This process is using around
1.8 percent of the total memory (%MEM) available on the host. Taking every-
thing into account, it would be a good idea for you to investigate process
3048 to determine why it is using so much CPU.

Troubleshooting Hosts 129

Next Steps
In a scenario with a high load average, you’ll want to dig down further into
the offending process. Perhaps this application is misconfigured, hung, or
busy waiting on external resources (like a disk or an HTTP call). Maybe
the host is undersized for its use case. If it’s a cloud-based instance, perhaps
there aren’t enough CPU cores or disk IOPS. Also, check whether the host
is experiencing increased traffic during this time, as that could indicate an
intermittent spike. You can also use tools like vmstat, strace, and lsof to dis-
cover more about a process’s interaction with the system. (You’ll learn more
details about those tools in later sections.)

Scenario: High Memory Usage
Temporary spikes in traffic, performance-related issues, or an application
with a memory leak can cause memory to be consumed at a high rate. The
first step in investigating high memory usage is to make sure the host is
really running low on memory. Linux likes to use all the memory for caches
and buffers, so it can appear that free memory is low. But the Linux kernel
can reallocate that cached memory elsewhere if needed. The free, vmstat,
and ps commands can help identify how much memory is being used and
what process may be the culprit.

free
The free command provides a quick sanity check on system memory by
displaying used and available memory at the time it is run. Pass the -h and
-m flags to instruct the free command to show all output fields in human-
readable (-h) format using the mebibyte unit (-m) of measure. In human-readable
format, data appears in familiar units like mebibyte or gibibyte instead of bytes.
The following example shows a host that’s low on available memory. Enter
the following command to display memory:

$ free -hm
 total used free shared buff/cache available
Mem: 981Mi 838Mi 95Mi 3.0Mi 47Mi 43Mi
Swap: 1.0Gi 141Mi 882Mi

The system contains 981Mi of total memory, and 838Mi of memory is
being used, with 95Mi free. The buff/cache column contains information from
data that has been read off disk and the metadata associated with it. This is
used for fast retrieval if you need to access it again, which is why Linux tries
to use all the system memory it can instead of letting it sit idle. A Linux
host will swap data out of memory and write it to disk if a system is running
low on memory. As you can imagine, using disk as memory is much slower
than using actual RAM. If the free column for Swap is ever low, your system
may be performing slower than it normally can. In this example, the system
is swapping to disk only a little (141Mi), which can be normal.

130 Chapter 10

The used and free columns can be misleading on a Linux host. Linux
likes to use every bit of RAM on a system, so it may appear at a quick glance
that a host is low on memory. Or, as in this case, it can appear that there is
more memory than actually is available. Here, the free column shows 95Mi,
but according to the available column, only 43Mi is left. When using the free
command to display system memory, pay attention to the available column
as a barometer of actual memory available to the system and new processes.

Looking at how little memory is available in this example, it’s safe to say
this host has a memory shortage. Having roughly 43Mi out of 1Gi left on a
system can cause stability issues and stop new processes from being created. It
can also force the Linux kernel to invoke the out of memory manager (OOM)
and select a process to kill, which can and will cause unexpected behavior.

vmstat
The vmstat command provides useful information about processes, memory,
IO, disks, and CPU activity. It can report this data over a period of time,
which is an upgrade over the free command and makes trends much easier
to spot. You’ll pass two parameters to the vmstat command: delay, which
specifies the time delay between each of the polling counts, and count,
which specifies the number of times vmstat will fetch data until it quits.
For this example, you will poll the data five times with a one-second delay
between each poll. Enter the following command to poll the data:

$ vmstat 1 5
procs ---------memory-------- --swap-- -----io---- -system- ---cpu--------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 2 0 54392 74068 7260 117804 0 10 84 432 81 158 3 1 96 0 0
 1 0 54392 73864 7260 117852 0 0 8 0 379 104 44 0 56 0 0
 1 2 54392 71768 484 38724 104 0 496 196 469 327 41 1 57 1 0
 1 0 54392 71508 484 39768 20 0 1024 0 357 82 44 0 56 0 0
 1 0 54392 71508 484 39768 4 0 0 0 370 43 46 0 54 0 0

The vmstat report is divided into multiple categories: procs, memory, swap,
io, system, and cpu. Each category contains like columns. The first row of
data is an average of each statistic since the last boot time. Since you are
hunting for high memory usage, you’ll focus only on the memory and swap sec-
tions from the vmstat output.

The swpd column of the memory section shows the total swap space used; in
this case, it’s around 54Mi (54,392Ki). Next comes the free column. According
to vmstat, the free memory has fluctuated between 71,000Ki and 74,000Ki in
the polling snapshot. This does not mean you have only 71,000Ki of mem-
ory available; it’s an estimate because of the free-able cache and buffers.

Under the swap section are two columns: si (swapped in) and so
(swapped out). The si and so columns indicate you are paging memory to
and from the disk. At one point, you were swapping memory from the disk
at about 104KiB per second. As mentioned previously, a little swapping can
be okay, but being low on free memory plus swapping usually indicates a
memory bottleneck.

Troubleshooting Hosts 131

The r and b columns under procs can provide good indications of pos-
sible bottlenecks. The r column is the number of running (or waiting-to-run)
processes. A high number here can indicate a CPU bottleneck. The b column
is the number of processes in an uninterruptable sleep. If the number in
the b column is high, it can be a good signal that there are processes wait-
ing on resources like disk or network IO.

ps
If memory usage is high on the host, you’ll want to check all the running
processes to find where the memory is being used. The ps command pro-
vides a snapshot of the current processes on a host. You’ll use some flags
to narrow down the results and show only the top-10 hosts sorted by most
memory. Enter the following command:

$ ps -efly --sort=-rss | head
S UID PID PPID C PRI NI RSS SZ WCHAN STIME TTY TIME CMD
R root 931 930 93 80 0 890652 209077 - 05:56 ? ... memory-hog
S root 469 1 0 -40 - 18212 86454 - Jan16 ? ... /sbin/multipathd
S root 672 1 0 80 0 10420 233460 - Jan16 ? ... /usr/lib/snapd
S root 350 1 0 79 -1 7416 12919 - Jan16 ? ... /lib/systemd

The -efly and --sort=-rss flags are used to show all the processes in a
long format. The RSS (resident set size) column shows the amount of non-
swappable physical memory a process uses (in kilobytes), in descending
numerical order. You pipe those results to the head command, which dis-
plays only 10 by default. The CMD column shows the command that belongs
to each process. In this example, the memory-hog command is using around
890MB (890,652KB) of physical memory, according to the RSS column.
Considering that this host has only 1Gi of total memory, that application is
hogging all the memory.

Next Steps
The steps you’ll take to resolve a high-memory-usage issue like this will
depend on risk factors for your system and/or users. If you’re dealing with
a production system, you’ll want to tread lightly and check the logs, traces,
and metrics to determine when and where the problem started. If this were
a new behavior on a production system, rolling back memory-hog to a previ-
ous version would be a great first step. (Any time you can recover quickly in
production is a win.) Once you have remediated the issue in production, do
a performance profile in a different environment and dig through the clues
to figure out why and where the memory is being used.

Scenario: High iowait
A host that is spending too much time waiting for disk I/O is said to have a
condition called high iowait. The way to measure iowait is to check the per-
centage of time that CPUs are idle because the system has unfinished disk

132 Chapter 10

I/O requests that are blocking processes from doing other work. Significant
iowait usually results in a host having an increased load and possibly higher
reported CPU usage than it normally would. To put it another way, if your
CPU is waiting for the disk to respond, it has less time to service other requests
from other parts of the system. One cause of high iowait might be an aging,
slow, or failing disk. Another culprit could be an application that is perform-
ing heavy disk reads and writes. If you are in a virtualized environment,
slow network-attached storage is most likely where your congestion lies.

All systems will have some iowait, and modern CPUs are faster than
storage. High iowait by itself, however, is not enough to signal a problem.
Some systems with high iowait can perform without issues, while others will
show significant signs of a bottleneck. The goal is to identify issues that are
accompanied by high iowait. There’s no bright line with normal iowait on
one side and high iowait on the other, so I have set the threshold for high
iowait at anything over 30 percent that is sustained over a significant period.

Two command line tools, iostat and iotop, will help you troubleshoot a
host with high iowait.

iostat
The iostat command line tool reports CPU and I/O stats for devices, so
it’s a great tool to help you determine whether your system is experiencing
any iowait. If iostat is not installed by default, use your package manager to
install the sysstat package.

As I mentioned previously, having some iowait is normal. You are look-
ing for abnormal behavior, so you’ll want to poll the system over a period
of time to get a better view of the problem, like you did with the vmstat
command. For this example, enter the command below to poll for statistics
every second for a total of 20 times. The command and output should look
like the following:

$ iostat -xz 1 20
--snip--
avg-cpu: %user %nice %system %iowait %steal %idle
 6.25 0.00 27.08 66.67 0.00 0.00

Device r/s rkB/s w/s wkB/s %util ...
vda 0.00 0.00 1179.00 712388.00 100.00 ...

The first report iostat prints is from the last time the host was booted.
Since that data is not relevant to your current troubleshooting scenario, I’ve
omitted it here, along with multiple columns from the Device output. The
-xz flag shows only active devices using an extended stat format. The w/s col-
umn shows that the vda device is executing a lot of write requests per second
(1179.00). The CPU is waiting on outstanding disk requests around 66.67% of
the time (%iowait). Finally, as further proof that this disk is quite busy, the
%util (percent utilization) column shows 100%.

You can conclude that the host is suffering from high iowait that is
sustained and not just intermittent. More importantly, you know that the

Troubleshooting Hosts 133

iowait is occurring on the device named vda. From here, it is worth trying to
find a process that could be the cause of the increased iowait. You can do
that with the iotop command, which you’ll explore next.

iotop
The iotop command displays I/O usage in a top-like format. Not only does
it provide an overview of I/O on the host, but it lets you drill down to the
process level to locate any processes that might be causing a lot of disk I/O.
Most distributions don’t include iotop by default, so use your package man-
ager to install it.

When running iotop, you’ll want to limit the output to show only active
processes that are performing I/O, using a batch mode that polls constantly
to keep the output concise and reveal any possible I/O patterns. This com-
mand requires elevated permissions, so you’ll need to run it with sudo or as
a privileged user. Enter the command below:

$ sudo iotop -oPab
Total DISK READ: 15.04 M/s | Total DISK WRITE: 446.28 M/s
Current DISK READ: 15.04 M/s | Current DISK WRITE: 321.58 M/s
 PID PRIO USER DISK READ DISK WRITE SWAPIN IO COMMAND
 88576 be/4 bob 512.00 M 616.81 M 0.00 % 83.26% heavy-io
 469 rt/4 root 0.00 B 0.00 B 0.00 % 0.00% multipathd -d -s
 --snip--

The -oPab flags make iotop show only processes performing I/O with
accumulative stats in a batch mode. In this example, the heavy-io command
is at 83.26%, according to the IO column. The PID column reports the process
ID, which in this case is 88576. No other processes in your report are using a
lot of I/O, so it’s safe to assume that the heavy-io process is part of the rea-
son for the high iowait.

Next Steps
After checking the stats and finding the process ID that is causing high
iowait, you might want to explore what this application is used for. If you
have the source code or configuration files, look for more clues by check-
ing any disk operations or files the process has access to. Another cause for
high iowait could be that your VM is in a cloud provider and you do not
have enough provisioned I/O operations for your disk. Check the disk met-
rics to confirm and adjust the number to compensate the load. If all else
fails, use tools like lsof to examine what files are open, strace to trace any
system calls the process is making, or dmesg for any hardware kernel errors.
(We’ll discuss lsof, strace, and dmesg later in this chapter.)

Scenario: Hostname Resolution Failure
Traditionally, when a service needs to connect to another service, it uses
Domain Name System (DNS) to look up the IP address to send it a request.

134 Chapter 10

DNS is a directory for host IP address mappings. It allows us to use names
like google.com or nostarch.com without needing to know those hosts’
exact IP addresses. Humans are far better at remembering names than IP
addresses like 142.250.72.78 or 104.20.208.3. Imagine if you had to find a
store by trying to remember its latitude and longitude coordinates without
using GPS instead of just remembering it’s at 123 Main Street. You would
get lost . . . a lot.

For this scenario, say you have an application that is trying to connect
to a Postgres database in your local environment. The application starts
emitting errors in the logs that look like this:

psql: error: could not translate host name "db.smith.lab" to address: Temporary failure in name
resolution

It appears that the application can’t resolve the DNS record for db.smith
.lab. There can be multiple reasons for the failure in name resolution. We’ll
explore a few tools to help troubleshoot this error. Before that, though, you
really need to understand how your host uses DNS.

resolv.conf
The first place to start investigating DNS issues on any Linux host is the
/etc/resolv.conf file that provides information on what DNS servers to query
and any special options needed (like timeout or security). The following is a
resolv.conf file from a typical Ubuntu host:

This file is managed by man:systemd-resolved(8). Do not edit.
#
This is a dynamic resolv.conf file for connecting local clients to the
internal DNS stub resolver of systemd-resolved. This file lists all
configured search domains.
#
Run "resolvectl status" to see details about the uplink DNS servers
currently in use.
#
Third party programs must not access this file directly, but only through
the symlink at /etc/resolv.conf. To manage man:resolv.conf(5) in a
different way, replace this symlink by a static file or a different
symlink.
#
See man:systemd-resolved.service(8) for details about the supported
modes of operation for /etc/resolv.conf.

nameserver 127.0.0.53
options edns0 trust-ad

The file contains several comments describing systemd-resolved, and
most importantly, it notes that you shouldn’t edit it. This file is controlled
by the systemd-resolved service provided by systemd, and it will overwrite the
file next time the host or service restarts. After the comments, the second
line from the bottom contains the nameserver keyword and the IP address

Troubleshooting Hosts 135

of the DNS server to query. On this Ubuntu host, the nameserver is set to
127.0.0.53, which means any DNS requests will be sent to this address. If the
local resolver does not know the answer to the query, the resolver will for-
ward the request to an upstream DNS server.

The DNS upstream servers are usually set when you receive an IP
address lease from a DHCP server. These upstream DNS servers can be
internal servers that handle all your requests, or they can be any of the
many public servers that the internet uses. For example, Cloudflare hosts
public DNS servers at 1.1.1.1. There are quite a few public DNS servers
around the globe.

The last line in the file modifies some specific resolver attributes
using the options keyword. In this example, the edns0 and trust-ad
options are set. The edns0 option enables expanded features to the
DNS protocol. See RFC 2671 (https://tools.ietf.org/html/rfc2671/) for more
details. The trust-ad, or authenticated data (AD) bit, option will include
the authenticated data on all outbound DNS queries and preserve the
authenticated data in the response. This will allow the client and server
to validate the exchange between each other. This option is a part of a
larger set of extensions that add security to DNS. See https://www.dnssec.net/
for more information.

resolvectl
In this example host’s resolv.conf, the DNS server is set to 127.0.0.53, which is
a local resolver that proxies any DNS request it does not know about. Each
DNS server typically will have an upstream server that it forwards unknown
requests to. Since you are using systemd-resolver, you can use a tool called
resolvectl to interact with your local resolver. If this command line applica-
tion is missing, you can install it via your package manager.

You’ll want to know where your local DNS resolver (127.0.0.53) sends
unknown requests. This might help you figure out why db.smith.lab resolution
is failing. To see what DNS servers the resolver points to upstream, enter the
following command:

$ resolvectl dns
Global:
--snip--
Link 2 (enp0s3): 10.0.2.3

The results show the downstream DNS server is set to 10.0.2.3 for inter-
face enp0s3, which is the default interface and route on this host. Your setup
and interface might be different. When any application on this host tries
to connect to db.smith.lab, it first sends a DNS request to 127.0.0.53, asking
what IP address the hostname resolves to. The local resolver first looks
for the answer locally. If the mapping is there, the results are returned
immediately. However, if the answer is unknown, the resolver forwards the
request to the upstream DNS server at IP 10.0.2.3. Now, if the DNS server
at 10.0.2.3 knows the answer for db.smith.lab, it will return a response to the
local resolver, which in turn will respond to the user. If it doesn’t know the

https://tools.ietf.org/html/rfc2671/
https://www.dnssec.net/

136 Chapter 10

answer, the upstream server will forward that request to its upstream server
until it reaches the authoritative server for the domain it’s looking for.

Now that you know the IP address of your local resolver and upstream
DNS server, you can query both to look for clues.

dig
The dig command line tool queries DNS servers and displays the results.
This is extremely handy when you are troubleshooting DNS issues or need
to fetch an IP address for a host. All you need to do is pass dig the hostname,
and the response will provide information about the query and server that
is responding.

Try querying the local resolver for the IP address of db.smith.lab. Enter
the following command:

$ dig db.smith.lab
; DiG 9.16.1-Ubuntu db.smith.lab
;; global options: +cmd
;; Got answer:
;; -HEADER- opcode: QUERY, status: 1SERVFAIL, id: 35816
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;db.smith.lab. IN 2A

;; Query time: 32 msec
;; SERVER: 3127.0.0.53#53(127.0.0.53)
--snip--

The status field 1 lets us know whether the query was successful. A
successful query would have a status of NOERROR. In this example, the status is
set to SERVFAIL, showing that no answer could be given. This makes sense, as
the local DNS does not know where to find db.smith.lab. The QUESTION SECTION
displays the query that was sent to the DNS server. In this case, the query
is for the A record for db.smith.lab 2. (An A record is a type of DNS record
that maps a domain to an IP address.) The SERVER section tells us which
DNS server was contacted to make the query. In this example, it’s the local
resolver (127.0.0.53) 3, as expected.

To test your upstream server, you can instruct dig to talk to a specific
DNS server instead of the local one. This will let you verify whether DNS
resolution is failing locally or upstream. To do this, enter the following
command:

$ dig @10.0.2.3 db.smith.lab
...
;; -HEADER- opcode: QUERY, status: SERVFAIL, id: 57409
...
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096

Troubleshooting Hosts 137

;; QUESTION SECTION:
;db.smith.lab. IN A
...
;; Query time: 32 msec
;; SERVER: 10.0.2.3#53(10.0.2.3)
;; WHEN: Sat Jun 19 18:20:23 UTC 2022
;; MSG SIZE rcvd: 116

The @10.0.2.3 parameter makes dig skip the local DNS and query the
upstream host directly. The results, however, are the same, and you received
a SERVFAIL for the status. This means the upstream server couldn’t provide
an answer for the hostname. You know you queried the correct server, because
the SERVER section now states 10.0.2.3 instead of 127.0.0.53.

N O T E Pass dig the +short flag to show only the IP address, if it exists.

To be safe, you should try one more query to make sure the local and
upstream DNS servers are working correctly. First, you’ll query for a DNS
record that you are positive will return a response. This will let you verify
whether DNS is broken for any domains, not just db.smith.lab. Enter the fol-
lowing command to query the A record for google.com:

$ dig google.com
...
;; -HEADER- opcode: QUERY, status: NOERROR, id: 15154
...
;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 300 IN A 142.250.72.78

;; Query time: 36 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
...

The status is NOERROR, and you received the A record of 142.250.72.78 in
the ANSWER SECTION. This means the DNS server can resolve another hostname
without error, but for some reason, it doesn’t know about the db.smith.lab A
record. Note that when there is an error or no answer to be given, the ANSWER
SECTION is omitted from the results.

Next Steps
If there are resolution issues with a given hostname and DNS is functioning
correctly and can resolve other hostnames, then the issues might stem from
a DNS resolver that is missing the information that maps the hostname
to an IP address. If your DNS is hosted on a service like Amazon Route53,
make sure the record has not been removed by configuration management
software or due to human error. If you manage the DNS server locally, you

138 Chapter 10

can look to see if the A record is present. If it is not, perhaps the configura-
tion contains some syntax error preventing the record from being served,
or perhaps the DNS server needs to be restarted to read in its new records.

Scenario: Out of Disk Space
You will run out of disk space eventually. When this happens, you need to
find out what is using all the space. The culprit could be anything from
a misbehaving application to uncapped logfiles to a buildup of Docker
images. To find the source of the problem, you’ll first need to figure out
which drive and filesystem are low on space. Once you locate those
pieces, you will be able to search for files on the disk that may be using
a lot of space.

df
The df command displays the free disk space on all the mounted filesystems
on a host. It has multiple options, but the -h flag (for human-readable) is
probably all you’ll need. To see the free space on the mounted filesystems,
enter the following command in a terminal:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda1 25G 25G 0 100% /
--snip--

In this example, device /dev/vda1 is using 100% of its 25G of disk space.
The filesystem is mounted at /, which is the root directory. If your host has
multiple mounted disks, they’ll be visible in the output as well.

find
The find command searches the filesystem for directories and files, and you
can filter it to narrow down the search by looking for files that match only
certain criteria or a specific directory. You can also locate files by their sizes
on disk.

In your example, since you know the root filesystem is out of space after
running the df command, you should direct find to search there. You’ll
execute the find command and search the root filesystem, looking for any
files over 100M. You’ll sort them by size and display the top 10 with the head
command. This could take a while, depending on the number of files on
your drive. Enter the following command:

$ sudo find / -type f -size +100M -exec du -ah {} + | sort -hr | head
--snip--
10G /var/log/php7.2-fpm.log
5G /var/lib/docker/containers/.../...a3b76-json.log
--snip--

Troubleshooting Hosts 139

For each file located that is more than 100M, you’ll execute (-exec flag)
the du -ah command to fetch the file size on disk in human-readable format.
The results, with file size, are sorted with largest files first. Then, the first
10 results are displayed.

This output shows a file named php7.2-fpm.log that is located under
/var/log and is 10G in size. Also, a Docker container log located in /var/lib/
docker/containers is using 5G of space. Together, these files are taking up
15GB of space on your disk. Usually, application logs like these should
rotate and not become so large. The fact that both files are so big should
trip your Spidey sense that something is not right here.

With more breadcrumbs to follow, check to see what process, if any, is
using the php7.2-fpm.log file before you form a hypothesis.

lsof
Use the lsof command to list open files on a host. Files on a Linux host can
be regular files, directories, or sockets, to name just a few. You can search
for files owned by a particular process or by a specific user.

You’ll use lsof, which requires elevated privileges, to find the process
writing to the /var/log/php7.2-fpm.log file. Enter the following command:

$ sudo lsof /var/log/php7.2-fpm.log
 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
php-fpm7. 23496 root 2w REG 252,1 1048580000 1529 /var/log/php7.2-fpm.log
--snip--

You must pass the full path to the file you are interested in. In this case,
it’s the logfile. The php-fpm7 command with the PID 23496 owns the logfile in
question. The file descriptor is 2w, which means the file’s descriptor is 2 and
the file is opened for write access (w). The TYPE of file is REG (regular), repre-
senting a typical ASCII text file.

Next Steps
When your free disk space is low and you have tracked down a file that is
contributing to the lack of space, you have a couple of options to remedy
the situation. Since this logfile is currently being used, truncating or delet-
ing it out from under the php-fpm7 process isn’t wise. Doing so could cause
the process to die or stop writing logs completely. Instead, you can start by
looking at the log output to see whether there are any telling errors or the
application log level is perhaps stuck on debug. Also, there might be some
correlation between this logfile and the fact that a Docker container log
is large. Perhaps this process is running inside that container. Check the
contents of the container log as well for any visible errors. On a houseclean-
ing note, you should always make sure the host is set up to use the logrotate
command to compress and rotate logfiles on a schedule. This can keep
your logfiles from growing unbound and eating up your disk space. The
logrotate configuration files are located in the /etc/logrotate.d/ directory on
Ubuntu systems.

140 Chapter 10

Scenario: Connection Refused
Sometimes, services refuse connections and do not leave an obvious reason
why. For example, say you have an internal API that is reporting a high error
rate, and say other services that use this API are throwing a lot of errors as
well. The errors in the application logs would look something like this:

Failed to connect to api.smith.lab port 8080: Connection refused

It appears users are receiving a Connection refused error when trying to
connect to the API server. You know the Docker container is up and run-
ning, or you would have gotten an alert that it was down. To troubleshoot
this, you’ll use a few commands that will help you identify any network- or
configuration-related issues.

curl
Anytime you need to check whether a web server is responding to requests
or just want to fetch some data or a file, turn to the curl command. For this
example, you’ll want to verify that an endpoint is down for everyone and
that there is not just a routing issue on other hosts. The API server should
respond with an HTTP 200 status if it is functioning properly. To double-check
that the API server is refusing connections, you could use curl by entering
the following command:

$ curl http://api.smith.lab:8080
curl: (7) Failed to connect to api.smith.lab port 8080: Connection refused

The output shows you are getting a Connection refused error as well. This
usually means the host is not listening on your port or a firewall is rejecting
packets. Regardless of the reason, something is breaking your API requests.

N O T E Another common connection error you will encounter is connection timeout. This
error occurs when there is nothing responding to the request or a firewall is silently
dropping the packets.

ss
The ss (socket statistics) command is used to dump socket information on
a host. For your troubleshooting scenario, you’ll use it to see whether any
application on the host is bound (or listening) to requests on port 8080.
Enter the following command:

$ sudo ss -l -n -p | grep 8080
... 0.0.0.0:8080 0.0.0.0:* users:(("docker-proxy",pid=1448197,fd=4))
--snip--

The -l flag shows all the listening sockets on the host. The -n flag
instructs ss not to resolve any service names like HTTP or SSH, and the -p
flag shows the process that’s using the socket. For ss to determine which

Troubleshooting Hosts 141

process owns the socket, sudo or elevated permissions are required. I truncated
the beginning of the output line for readability, but the important part
shows that the docker-proxy process is listening on all interfaces for port 8080
(0.0.0.0:8080). Next, you can verify that the requests destined for api.smith.lab
are making it all the way to the host, where it lives.

N O T E Before ss, there was a tool called netstat. The two tools basically do the same thing,
but netstat is considered obsolete by today’s standards. Most likely, you will still see
tutorials and blog posts that still use netstat. Nevertheless, you should use ss going
forward.

tcpdump
One way to verify network traffic on a host is with the tcpdump command, which
has many options and can capture traffic on one or all interfaces. It can even
write out the network capture into a file for later analysis. Not only is tcpdump
great for troubleshooting network issues, but you can use it for security audit-
ing as well. For your example, you’ll use it to capture network traffic intended
for the api.smith.lab host on port 8080. This will let you know whether traffic
being sent to that host is reaching its target, and it will hopefully shed some
light on why you are getting the Connection refused error message.

On the host where the API application is running, enter the follow-
ing command in a terminal. This will start the network packet capture on
all interfaces for any TCP packet headed for port 8080 (note that elevated
privileges are needed to listen on a network interface):

$ sudo tcpdump -ni any tcp port 8080
IP 192.168.50.26.50563 > 192.168.50.4.8080: Flags [S], seq 3446688967, win 65535, options [mss
1460,nop,wscale 6,nop,nop,TS val 157893401 ecr 0,sackOK,eol], length 0
IP 192.168.50.4.8080 > 192.168.50.26.50563: Flags [R.], seq 0, ack 3446688968, win 0, length 0
IP 192.168.50.26.50563 > 192.168.50.4.8080: Flags [S], seq 3446688967, win 65535, options [mss
1460,nop,wscale 6,nop,nop,TS val 157893501 ecr 0,sackOK,eol], length 0
IP 192.168.50.4.8080 > 192.168.50.26.50563: Flags [R.], seq 0, ack 1, win 0, length 0

The -n flag makes sure you do not try to resolve any host or port names.
The -i flag tells tcpdump the network interface on which to listen. In this
case, the term any is specified and means “Listen on all interfaces.” You
want to capture all packets destined for port 8080 since there might be
numerous network interfaces on this host. The final tcp port 8080 param-
eter states that you want only TCP packets that have port 8080 in them.
These will include packets from both the client and the server.

Let’s focus on the parts of the output that help with the Connection
refused error problem. On the first line, the IP section shows that something
from source IP 192.168.50.26 is trying to connect to 192.168.50.4 on port 8080.
The > (greater-than) sign tells us the direction of the communication from
one IP to another. The Flags being set show the types of network packets
being sent. The first packet has an S (synchronize) flag. Anytime a client
wants to establish a connection to another host, it sends the synchronize
packet. In the next packet, host 192.168.50.4 responds to 192.168.50.26 with

142 Chapter 10

a reset (R) packet. A reset packet is usually sent when there is an unrecov-
erable error and the server wants the client to terminate the connection
immediately. Undeterred by the “Get off my lawn!” reset packet, the client
tries again with another synchronize packet, which in turn causes server
192.168.50.4 to send another reset packet back to 192.168.50.26. The client
at 192.168.50.26 finally takes a hint, and the connection is closed.

The flags show this connection isn’t normal. A normal TCP connection
starts off with a SYN packet from the client, followed by a SYN-ACK packet from
the server. Once that packet is received, the client sends back an ACK packet
to the server, acknowledging the last packet. This is referred to as a three-way
handshake. See Figure 10-2 for details.

SYN

SYN-ACK

ACK

192.168.50.26 192.168.50.4

Figure 10-2: TCP three-way handshake

You clearly do not see any other packets (except resets) being sent from
the server. The reset packets will cause the connecting clients to report
that the connection is being refused. The good news is you verified that
connections are making it all the way to server. The bad news is you still do
not know why you are being refused.

N O T E Visit https://en.wikipedia.org/wiki/Transmission_Control_Protocol for more
information.

Next Steps
At this point, you know the service is listening on port 8080. You verified
this with the ss command. You also know traffic is making it all the way to
the server, according to your network capture with tcpdump.

The next places to look are the Docker container and the application
configuration. It is possible docker-proxy is having issues and not forward-
ing the traffic to the container running the API. Another possibility is that
the container was started with incorrect internal port mappings. You know
the external port, 8080, is mapped correctly, since it is listening for connec-
tions. But it’s possible the mapped internal port is misconfigured. You can
check both of these scenarios by looking at Docker’s system logs for proxy
errors, or by running docker ps <container id> or docker inspect <container_
id> to check the port mappings.

Searching Logs
In almost every troubleshooting scenario, you’ll most likely need to check
logs. System and application logs hold a wealth of information you can view
from the command line. Modern Linux distributions use systemd, which

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Troubleshooting Hosts 143

has a log-collection mechanism called the journal that pulls in log events
from multiple sources like syslog, auth.log, and kern.log. This lets you view
and search logs in a single stream. As a troubleshooting archaeologist, you
should know where logs are located and how to view and parse them.

Common Logs
Most system and application logs on a Linux host are stored in the /var/log
directory. The most common logs on a host that will aid in troubleshooting
are syslog, auth.log, kern.log, and dmesg. Depending on your Linux distribu-
tion, the names of the logfiles may be different.

/var/log/syslog

The syslog file contains general global system messages for the Linux OS.
Here is an example of a log line for systemd, stating that the logs are fin-
ished rotating:

Jun 11 00:00:03 box systemd[1]: Finished Rotate log files.

The line begins with a timestamp, followed by the host it is on (box) and
the process (systemd[1]) that is reporting the log event. The last part of the
line is the text message. This structured line format, also called syslog, is the
default protocol for logging on a Linux host.

N O T E The two most widely used versions of the syslog protocol are 3164 (https://tools.ietf
.org/html/rfc3164/) and 5424 (https://tools.ietf.org/html/rfc5424/). Although
some systems still use 3164’s format, the 5424 format is the official standard of the
syslog protocol.

/var/log/auth.log

The auth.log file contains information regarding authorization and authen-
tication events. This makes it a great place to investigate user logins and
brute-force attacks, or to track a user’s sudo commands. Here is an example
of an auth.log message:

Jan 15 20:57:35 box sshd[27162]: Invalid user aiden from 192.168.1.133 port 59876

This message shows a failed login attempt over SSH for the user aiden,
from the IP address 192.168.1.133.

/var/log/kern.log

The kern.log is a good place to look for Linux kernel messages, such as hard-
ware issues or general information related to the Linux kernel. The follow-
ing log line shows the Linux out of memory manager (OOM) in action:

Jan 16 19:18:47 box kernel: [2397.472979] Out of memory: Killed process 20371 (nginx) total-
vm:571408kB, anon-rss:524540kB, file-rss:456kB, shmem-rss:8kB, UID:0 pgtables:1100kB oom_score
_adj:1000

https://tools.ietf.org/html/rfc3164/
https://tools.ietf.org/html/rfc3164/
https://tools.ietf.org/html/rfc5424/

144 Chapter 10

Process 20371 was killed by the Out of memory manager because the sys-
tem was running low on memory.

/var/log/dmesg

The dmesg log contains bootup messages from the host since last boot time.
These messages can be anything from a USB device being recognized to a
possible SYN packet flood attack. This sample log line from dmesg shows a
Network driver being loaded into the kernel:

[1.036655] kernel: e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI

The dmesg log has its own command line application, dmesg, to view the
kernel ring buffer in real time. The dmesg command prints information,
just like the dmesg log, but it can show information after bootup as well. You
can also use it to troubleshoot multiple scenarios, such as port exhaustion,
hardware failures, and OOM.

Common journalctl Commands
On a host that is using systemd, all of these common logs are stored in a
single binary stream called a journal, which is orchestrated by the journald
daemon. You can access the journal with the journalctl command line
application. The journal is a handy troubleshooting tool because you can
use it to view and search multiple logs at the same time. The journalctl
command mimics many other logging commands you’ve discussed in this
book, such as tail, minikube minikube kubectl -- logs and docker logs.

Say you want to review the logs, with the newest lines first. Enter the
sudo command and pass the -r flag (reverse) to journalctl to view all logs in
that order:

$ sudo journalctl -r
-- Logs begin at Sat 2022-02-27 23:10:19 UTC, end at Sun 2022-02-28 18:18:29 UTC. --
Feb 28 18:18:29 box sudo[73978]: pam_unix(sudo:session): session opened for user root by
vagrant(uid=0)
Feb 28 18:18:10 box systemd[7265]: Startup finished in 66ms.
--snip--

This output shows log lines for all services, with newest lines first.
Next, view logs during a certain time frame with the --since flag. Enter

the following command:

$ sudo journalctl -r --since "2 hours ago"
-- Logs begin at Sat 2022-02-27 23:10:19 UTC, end at Sun 2022-02-28 18:27:20 UTC. --
Feb 28 18:27:20 box sudo[74471]: pam_unix(sudo:session): session opened for user root by
vagrant(uid=0)
Feb 28 18:27:20 box sudo[74471]: vagrant : TTY=pts/2 ; PWD=/home/vagrant ; USER=root ;
COMMAND=/usr/bin/journalctl -r --since 2 hours ago
--snip--

Troubleshooting Hosts 145

This output shows the logs that have a timestamp starting 2 hours ago up
till the current time, when the command is run. With the -r flag, the newest
logs are displayed first.

You can filter logs based on a systemd service name. For example, to view
all the logs that were written by the SSH service, enter the following command
to pass the -u (unit) flag to journalctl:

$ sudo journalctl -r -u ssh
--snip--
Feb 27 23:17:31 ... sshd[16481]: pam_unix(sshd:session): session opened for user akira by
(uid=0)
Feb 27 23:17:31 ... sshd[16481]: Accepted publickey for akira from 10.0.2.2 port 55468 ...
--snip--

The output shows log lines for SSH pertaining to a login session, in reverse
order.

You can also display log lines that match a specific log level, like info or
error. Choose the priority level (-p) by using keywords like info, err, debug,
or crit. The following is the same command as above but with the -p err
flag to show only error logs from the SSH daemon:

$ sudo journalctl -r -u ssh -p err
--snip--
Feb 28 08:39:13 box sshd[4182]: error: maximum authentication attempts exceeded for root from
192.168.25.4 port 34622 ssh2 [preauth]
--snip--

The output shows an error log line where the root user reached the max-
imum failed login attempts.

Narrowing down logs to a specific time frame or showing log lines that
match a given log level is great, but what if you want to find a specific message
in the journal stream? The pattern-matching flag (-g) in journalctl can match
any message using a regular expression. The following example searches the
SSH logs for the session opened message. Enter the following command:

$ sudo journalctl -r -u ssh -g "session opened"
--snip--
Jun 10 21:31:40 box sshd[2047134]: pam_unix(sshd:session): session opened for user vagrant by
(uid=0)
Jun 09 16:49:10 box sshd[2008012]: pam_unix(sshd:session): session opened for user x7b7 by
(uid=0)
--snip--

Here, SSH sessions for two different users (vagrant and x7b7) are fil-
tered out.

W A R N I N G If you are using an older version of journald, the grep pattern matching might not be
included. If this is the case, you can pipe the search results to the grep command by
entering this command: sudo journalctl -r -u ssh | grep "session opened".

146 Chapter 10

The journalctl tool is helpful when you want to view many logs at once,
but you’ll also encounter logs that are not captured in the journal system.

Parsing Logs
Parsing logs is a key troubleshooting skill. In addition to journalctl, you can
parse and traverse logs with the grep and awk commands. The grep command
is used to search for patterns in text or a file. The awk command is a scripting
language tool that can filter text, but it also has more advanced features
like built-in functions for math and time.

grep

The grep command allows you to search for a pattern quickly. For example, to
use grep to find any occurrences of the IP address 10.0.2.33 in /var/log/syslog,
pass grep the search pattern and the file to search by entering this command:

$ grep "10.0.2.33" /var/log/syslog
... box postfix/smtpd[6520]: connect from unknown[10.0.2.33]
... box postfix/smtpd[6520]: disconnect from unknown[10.0.2.33] ehlo=1 auth=0/1 quit=1
commands=2/3

This command returned two log lines for the postfix daemon containing
the 10.0.2.33 IP address.

To find users trying to execute the sudo command who don’t have
permission, search /var/log/auth.log using grep by entering the following
command:

$ grep "user NOT in sudoers" /var/log/auth.log
Jan 31 17:37:40 box sudo: akira : user NOT in sudoers ; TTY=pts/0 ; PWD=/home/akira ; USER=root
; COMMAND=/usr/bin/cat /etc/passwd

The search pattern "user NOT in sudoers" indicates an unauthorized sudo
attempt violation. This search returns one match showing that the user
akira tried to read the contents of the /etc/passwd file but was denied.

Taking it one step further, it would be helpful to check the auth.log to
see what else this user was doing around the same time. To get extra log
lines with grep, use the -A flag to grab a given number of lines after the
matched lines or use the -B flag to fetch a given number of lines before
the matched results. You can also use the -C flag to fetch before and
after the match, simultaneously.

Now, you should grab the five log lines before the log line alerting to
the sudo violation for the user akira. This will help you get an idea of what
else might have been going on around that time in the log. Enter the fol-
lowing command:

$ grep -B 5 "user NOT in sudoers" /var/log/auth.log
Jan 31 17:37:35 box sshd[64646]: pam_unix(sshd:session): session opened for user akira by
(uid=0) 1
Jan 31 17:37:35 box systemd-logind[632]: New session 169 of user akira.

Troubleshooting Hosts 147

Jan 31 17:37:35 box systemd: pam_unix(systemd-user:session): session opened for user akira by
(uid=0)
Jan 31 17:37:38 box sudo: pam_unix(sudo:auth): Couldn't open /etc/securetty: No such file or
directory
Jan 31 17:37:40 box sudo: pam_unix(sudo:auth): Couldn't open /etc/securetty: No such file or
directory
Jan 31 17:37:40 box sudo: akira : user NOT in sudoers ; TTY=pts/0 ; PWD=/home/akira ; USER=root
; COMMAND=/usr/bin/cat /etc/passwd 2

The first five lines show the user akira logging in over SSH 1. Within
five seconds of logging in (17:37:35 to 17:37:40), the user akira tried to read
the contents of the /etc/passwd file 2. Without the extra context, it might be
tempting to overlook this action, but after seeing the user’s behavior upon
logging in, grabbing additional lines around a match can provide more insight.

awk

The awk command can search for specific patterns like grep does, but it can
also filter out information from any column. For this example, you should
grab all the source IP addresses from the requests in /var/log/nginx/access.log.
This log contains all the requests to a website proxied by Nginx. The source
IP address is usually the first column in the log line, unless you have modi-
fied Nginx’s default logging format. You’ll use awk’s print function and pass
the $1 argument so it prints only the first column. By default, awk splits col-
umns on whitespace. Enter the following command:

$ sudo awk '{print $1}' /var/log/nginx/access.log
127.0.0.1
192.168.1.44

The output shows only two IP addresses. Clearly, it’s not a busy web
server, but the output doesn’t show the whole log line as do the previous grep
examples. You can parse the text and display the column of your choosing
with the awk command. Each column in the log line is given a unique column
number. For example, to see only the date timestamps (fourth column) in
the access.log, pass $4 to the print function. If you want to return more than
the one column, pass multiple column numbers to the print function, sepa-
rating each from the next with a comma, like this: '{print $1,$4}'.

You’ll use awk to search for all the HTTP 500 response code, which is
usually in the ninth column ($9) in the Nginx access.log file. Enter the fol-
lowing command:

$ sudo awk '($9 ~ /500/)' /var/log/nginx/access.log
10.0.2.15 - - [15/Feb/2022:19:41:46 +0000] "GET / HTTP/1.1" 500 396 "-" "Mozilla/5.0 (X11;
Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36"

Inside the parentheses, the tilde (~) is a field number that tells awk to
apply the search pattern only to a specific column. In this case, you want
to search in the ninth column for anything matching 500. The command
returned a single result for a GET request that responded with an HTTP 500.

148 Chapter 10

You can change the search pattern to suit your needs. For instance, if
you want to search the logs for any unauthorized HTTP requests, change
the pattern of /500/ to /401/. To expand on this even further, you can
change the search pattern from /500/ to /404/ and add a requirement that
any 404 responses must be from an HTTP POST method. You do this by
adding an if conditional block to awk. To search for any lines that match
those criteria, enter the following in a terminal:

$ sudo awk '($9 ~ /404/) {if (/POST/) print}' /var/log/nginx/access.log
127.0.0.1 - - [31/Jan/2022:18:16:45 +0000] "POST /login HTTP/1.1" 404 162 "-" "curl/7.68.0"

The search pattern is like the previous one. Match the value at column
$9 to the number 404. Then pass an if block that states, “If the line from the
column $9 match contains the word POST anywhere in it, print that whole log
line.” The result shows an HTTP POST to the /login path that returned an
HTTP 404.

N O T E You can also use OR (|) logic in your search pattern. For example, to search for
a HTTP 401 or 403 error code, you could do something like this: sudo awk '($9
~ /401|403/) /var/log/nginx/access.log. Notice how the pipe operator splits the
values.

Probing Processes
Sometimes, you won’t encounter many symptoms when investigating issues
on a host. The health stats may look okay, the logs may show nothing
interesting . . . but something will still not be right. Maybe a scheduled job
didn’t execute cleanly, or an application appears to be hung. One way to
dig deeper is to investigate the running process on the host.

strace
The strace command traces system calls and signals, allowing you to attach
to a process and gain valuable knowledge in real time. Your application
uses system calls to ask the Linux kernel to perform tasks like opening
a network socket, reading and writing a file, or creating a child process.
You should use the strace command to troubleshoot a process that looks
for issues in these calls, or when you need an overview of what a process is
doing. Note that the strace command needs root privileges since it is attach-
ing to another process.

Many system calls are available, but here are a few for reference:

open() Create or open files.

read() Read from a file descriptor.

write() Write to a file.

connect() Open a connection.

futex() Wait or wake up threads when a condition becomes true
(blocking lock).

Troubleshooting Hosts 149

W A R N I N G The strace command can be very verbose and may cause performance issues for the
process you are probing. Use it with caution in a production environment.

Now, you should trace a process. The following command attaches to
the running process 19419, which is the Greeting web server from Chapter 4
and prints out any system calls that are happening when the trace begins:

$ sudo strace -s 128 -p 19419
strace: Process 19419 attached
--snip--
accept4(5, {sa_family=AF_INET, sin_port=htons(64221), sin_addr=inet_addr("172.28.128.1")},
[16], SOCK_CLOEXEC) = 9
--snip--
recvfrom(9, "GET / HTTP/1.1\r\nHost: 172.28.128"..., 8192, 0, NULL, NULL) = 82
getpeername(9, {sa_family=AF_INET, sin_port=htons(64221), sin_addr=inet_addr("172.28.128.1")},
[16]) = 0
--snip--
sendto(9, "HTTP/1.1 200 OK\r\nServer: gunicorn/20.0.4\r\nDate: Mon, 01 Feb 2022 22:03:12 GMT\r\
nConnection: close\r\nContent-Type: text/html; chars"..., 160, 0, NULL, 0) = 160
sendto(9, "<h1 style='color:green'>Greetings!</h1>", 39, 0, NULL, 0) = 39
--snip--
write(1, "172.28.128.1 - - [01/Feb/2022:21"..., 88) = 88
close(9) = 0
--snip--

The -s flag sets the message output size of 128 bytes. The -p flag tells
strace which PID to attach to (in this case, it’s 19419). I cherry-picked some
system calls from the output to make it easier to follow. The accept4 system
call creates a new connection from IP address 172.28.128.1 and returns file
descriptor 9. The recvfrom system call receives an HTTP GET request from
a socket with file descriptor 9. The first sendto system call sends an HTTP
header response from the web server back over the socket. The following
sendto system call transmits the body of the HTTP GET response back to the
socket as well. The write system call writes what appears to be a syslog line to
file descriptor 1. Finally, the close system call is executed, closing the previ-
ous socket file descriptor 9, which closes the network connection. You have
captured the transaction between an HTTP client and an HTTP server for
a GET request.

Now, imagine you’re trying to investigate an issue but are lacking con-
text on a process. You have exhausted other means, like log spelunking and
metric watching. Everything seems in order, but your application is still not
behaving correctly. You can use the summary flag (-c) for strace to get an
overview of what system calls the process is using. It will output a running
count of what system calls are being executed, how long each one is tak-
ing, and any errors that those calls return. Once you run the command, it
will pause in the foreground while it collects data, and it won’t display the
results until you press CTRL-C. The longer you let it run, the more data
you will accumulate.

The strace command has numerous flags and options to use for tracing.
You can use the follow (-f) flag to follow any new processes created (forked)

150 Chapter 10

from the parent. You can use the syscall (-e) flag when you want to track
only specific system calls. You can use the summarize (-c) flag when you
want an overall view of the system calls, timings, and errors. Finally, the
output (-o) flag can be extremely useful for storing the trace output to a
file so you can review and parse it later.

For example, enter the following command to fetch a summary for
process ID 28485:

$ sudo strace -p 28485 -c
strace: Process 28485 attached
 % time seconds usecs/call calls errors syscall
------- ----------- ----------- --------- --------- ----------------
1 49.47 0.000141 14 10 sendto
 13.68 0.000039 2 17 fchmod
 10.53 0.000030 6 5 close
 7.37 0.000021 3 6 select
 7.02 0.000020 4 5 write
2 7.02 0.000020 1 11 6 openat
 2.11 0.000006 1 6 getppid
 1.75 0.000005 0 10 getpid
 0.35 0.000001 0 5 ioctl
 0.35 0.000001 0 5 recvfrom
3 0.35 0.000001 0 50 getpeername
 0.00 0.000000 0 10 getsockname
 0.00 0.000000 0 10 fcntl
------- ----------- ----------- --------- --------- ----------------
 100.00 0.000285 150 6 total

The % time column shows the percentage of time each call made up dur-
ing the trace capture. In this example, the process spent most of its trace
time 1 (before the trace was stopped) in the sendto system call. The calls
column shows how many times the system call was executed. In this case,
getpeername 3 was executed the most (50 times). The getpeername call returns
the IP address of the peer connected over the socket. During the trace, pro-
cess 28485 counted six errors 2 when calling the openat system call. You can
use this call to open a file by its specified path name.

You should run strace again to focus on the errors for the openat system
call. Enter the following command:

 $ sudo strace -p 28485 -e openat
--snip--
openat(AT_FDCWD, "/var/log/telnet-server.log", O_RDONLY) = -1 ENOENT (No such file or
directory)
--snip--

The output shows that process 28485 is trying to open the /var/log/
telnet-server.log file. The call is returning -1, which means the file does not
exist. This matches the error output from the earlier summary. As you can
see, being able to peer down into a running process and understand what it
is doing at the system call level can be invaluable.

Troubleshooting Hosts 151

N O T E Other tools can explore a process. The ltrace command is like strace, but it reports
on the dynamic library calls made. The dtrace framework is also like strace, but it
can trace kernel-level issues as well.

Summary
Most of the scenarios described here reflect issues you will encounter
throughout your career. Experience and repetition will help you build
muscle memory for making quick work of these issues. My goal in describ-
ing these scenarios has been to show you how to use deductive reasoning
to follow clues to find causes.

In this chapter, you learned about helpful forensic tools like top, lsof,
tcpdump, iostat, and vmstat, which will help you diagnose symptoms. You also
learned how to parse common logfiles using tools like journalctl, grep, and
awk. All the tools and tactics discussed here should aid you the next time
you find yourself trying to investigate problems.

This concludes Part III, which has been on monitoring and trouble-
shooting. You now can monitor and alert on any application you deploy to
Kubernetes. You have also gotten a troubleshooting primer to help you inves-
tigate common problems that arise when managing hosts and software.

I N D E X

Symbols and Numbers
2FA (two-factor authentication),

28–33
3164 syslog protocol, 143
5424 syslog protocol, 143
/etc/group, 22
/etc/pam.d/common-password, 15
/etc/pam.d/sshd, 30
/etc/passwd, 146
/etc/resolv.conf, 134
/etc/shadow, 22
/etc/ssh/sshd_config, 32
/etc/ufw/user.rules, 52
/home/bender/.google_authenticator, 35
/home/bender/.ssh/authorized_keys, 27
/opt/engineering, 19, 22, 42
/opt/engineering/greeting.py, 42, 46
/opt/engineering/private.txt, 19, 23
/var/log, 139
/var/log/ufw.log, 56

A
Alertmanager, 111, 113, 120–123

applying configuration changes,
122–123

configmap.yaml, 121, 123
email notifications, 121–122
receivers, 121, 122, 123
routing and notifications,

121–123
alerts, 119–123

Golden Signal, 120
reviewing, 119–120
routing, 121–123
states, 120

Ansible
apt module, 29, 39

authorized_key module, 27
blockinfile module, 32
commands, 9

ansible, 9, 30
ansible-playbook, 9, 11, 30

copy module, 30, 40
file module, 19
group module, 18
handler, 33
hostvars, 43
installation, 7
lineinfile module, 15, 31, 32, 52
lookup function, 27
notify, 32
package module, 14
playbook, 8

import_tasks, 8
service module, 33
set_fact module, 42
systemd module, 41
template module, 42
ufw module, 51

allow rule, 51
deny rule, 51
drop rule, 53
limit rule, 51
logging parameter, 51
reject rule, 51

user module, 16–17
group assignment, 19
options, 17, 19

authorized_keys.yml, 27
awk command, 147–148

B
banner.go, 102
bbs-warrior, 114–115

154 Index

C
cgroups, 64–65
CI/CD, 96–97, 105–106

ArgoCD, 106
code changes, 102, 103
delivery strategies

blue-green, 96–97
canary, 96–97
rolling, 96–97

GitLab CI/CD, 106
Jenkins, 106
pipelines, 97–105

CM (configuration management), 4
command-and-metadata-test.yaml, 99
commands, Docker

exec, 71
history, 73
inspect, 72, 142
ps, 142
rm, 72
stats, 74
du, 139

complex passwords, 14–18
containers, 61
container-structure-test, 97

commandTests, 99
metadataTest, 99

continuous integration and
continuous deployment.
See CI/CD

D
debugging, 125. See also

troubleshooting
declarative configuration style,

6, 88
deployment.yaml, 83, 89, 91–92, 98
developers group, 18, 22, 38, 42
developers.j2, 43
development pipeline, 100–102
df, 138
dftd.pub, 27
DHCP (Dynamic Host Configuration

Protocol), 5, 55
dig, 136–137
dmesg, 133, 144
DNS (Domain Name System), 133–134

A record, 136

Docker, 62, 72
client connectivity, 66
client installation, 66
commands

exec, 71
history, 73
inspect, 72, 142
ps, 142
rm, 72
stats, 74
du, 139

container images and layers,
62, 64

Dockerfiles, 62
instructions, 63
multistage build, 67

framework, 63
getting started, 62
installation, 65–66
namespaces and cgroups, 64–65
registry, 62
union filesystem (UFS), 64

Dynamic Host Configuration Protocol
(DHCP), 5, 55

E
errors

connection refused, 140–142
connection timeout, 140
high load average, 127–129
high memory usage, 129–131
high iowait, 131–133
hostname resolution failure,

133–138
out of disk space, 138–139

F
find, 138–139
firewalls, 49–58

host-based, 49–58
network firewall, 49

firewall.yml, 51
Firing alert state, 120
free, 129–130

G
getent, 22
Go programming language, 98

Index 155

go test, 98
Golden Signals, 115

errors, 115
latency, 115
reviewing alerts in

Prometheus, 119
saturation, 115
traffic, 115

Google Authenticator, 28–30, 34
Grafana, 111, 113

grafana-service, 113
telnet-server Dashboard, 116

greeting_application_file, 42
greeting.service, 40
Greeting web application, 45

greeting.py, 40, 46
installing, 39
wsgi.py, 40

grep, 146
gunicorn3, 39

H
head, 138
HighConnectionRatePerSecond

alert, 120
HighCPUThrottleRate alert, 120
HighErrorRatePerSecond alert, 120
high iowait, 131

I
IaC (Infrastructure as Code), 3, 4
idempotent, 15
imperative, 87
Inactive alert state, 120
iostat, 132
iotop, 133
ip command, 54
iptables, 50

J
journal, 143
journalctl, 144

common commands,
144–145

priority level, 145
reverse order, 144

journald, 144

K
K8s. See Kubernetes
kubectl client, 78, 112, 144

apply, 88, 93, 104, 112, 122
cluster-info, 82
create, 87
delete pod, telnet-server, 92
explain, 84
get, 88
get cronjobs.batch, 114
get deployment, 93
get endpoints, 91
get pods, 88, 103, 92, 105
get services, with label flag, 89
logs, 93
logs, Alertmanager, 123
rollout, 104, 105, 122
scale, 92

Kubernetes, 77
cluster connectivity, 82
cluster overview, 78
Configmaps, 81
Control Plane nodes, 78
Deployments, 79
general overview, 78
kubectl, 82
manifest, 79

containers, 86
labels, 83
metadata name field, 84
replicas, 85
selector field, 85
Service fields, 87
spec, 85
template, 85
top-level fields, 83

Namespaces, 81, 112
node, 78
node affinity, 78
Pods, 79
replicas, 79
ReplicaSet, 79
reviewing manifests, 82
rollout history, 104
routing alerts, 121
scale, 89
Secrets, 81
Service resource, 87

156 Index

Kubernetes (continued)
Services, 80

ClusterIP, 83, 89
EXTERNAL-IP, 90, 103
LoadBalancer, 83, 89
NodePort, 113

StatefulSets, 80
strategy field, 85
troubleshooting, 91

ImagePullBackOff, 91
Volumes, 80
worker nodes, 78
workload resources, 79

L
libpam-google-authenticator, 29
libpam-pwquality, 14
Linux groups, 18
Linux user types

normal, 16
root, 16
system, 16

load average, 127
logrotate, 139
logs, 109, 143–144

/var/log/auth.log, 35, 47, 143, 146
/var/log/dmesg, 144
/var/log/kern.log, 143
/var/log/syslog, 35, 47, 143, 146
searching, 142–148

lo (loopback), 55
lsof, 133, 139
ltrace, 151

M
mean time to recovery (MTTR), 105
memory manager (OOM), 143
metrics, 109, 115–119

flapping, 119
patterns, 116

RED, 116
USE, 116

microservice, 115
minikube

commands
ip, 74
kubectl, 82, 84, 87

service, 90, 113
tunnel, 89, 103

installing, 65
mkpasswd, 17
modules, Ansible

apt, 29, 39
authorized_key, 27
blockinfile, 32
copy, 30, 40
file, 19
group, 18
lineinfile, 15, 31, 32, 52
package, 14
service, 33
set_fact, 42
systemd, 41
template, 42
ufw, 51
user, 16–17

monitoring sample application,
111–115

monitoring directory, 112
monitoring stack, 110

installing, 112
telnet-server, 111
verifying installation, 113

MTTR (mean time to recovery), 105

N
nameserver, 134
Namespaces, 64–65, 81, 112
netstat, 141
nginx, 39
nmap (network mapper), 55, 57

fast scan, 56
filtered, 56
scanning ports, 55
service names and versions, 56

O
oathtool, 28, 35

installing, 35
observability, 109
OOM (out of memory

manager), 143
orchestration, 77
OS-level virtualization, 62

Index 157

P
pam_google_authenticator.so, 30
PAM (Pluggable Authentication

Module), 14
pam_pwquality, 14–15, 17 21
parsing logs, 146
passphrase, 26
Pending alert state, 120
Persistent Volume (PV), 80
probing processes, 148
Prometheus, 111, 114

alert rule, configuration, 119
Alerts page, 120
configmap.yaml, 114, 119
prometheus.rules, configuration,

119
prometheus-service, 114
running a query web

interface, 118
severity Critical, rule label, 120

PromQL, 118
provisioning, 3

firewall, 53
SSH, 33
sudoers, 44
user and group, 20

ps, 129, 131
CMD column, 131
Public Key pair, 26
RSS column, 131

public keys
authentication, 26–28
copying, 27
rsa, 27

PV (Persistent Volume), 80
pwgen, 17
python3-flask, 39

R
resident set size (RSS), 131
resolv.conf, 134

edns0, 135
trust-ad, 135

resolvectl, 135
resolver, 135
restart_ssh.yml, 33

RollingUpdate, 85
RSS (resident set size), 131
runbook, 120

S
Secure Shell (SSH). See SSH (secure

shell protocol)
service.yaml, 83, 87, 91
shadow file, 17. See also /etc/shadow
site.yml, 8, 20, 33, 44, 53
skaffold, 97, 100

build section, 98
deploy, 100–101
deploy section, 99
dev, 100, 102
reviewing, 98–99
skaffold.yaml, 98, 100
structureTests, 99
test section, 98

socket statistics (ss), 140–141
listening, 140
socket owner, process, 140

ssh-keygen, 26
SSH (secure shell protocol), 7, 25

session, 145
SSH server

AuthenticationMethods, 31
ChallengeResponseAuthentication,

32
configuring, 31
keyboard-interactive, 31
Match, 32
publickey, 31
restarting with Ansible handler, 32

strace, 133, 148
follow child processes, 149
output to file, 150
PID, 149
string size, 149
summary, 149
track specific system calls, 150

sudo, 37, 38, 47
sudoers, 38, 42, 45, 146

Aliases, 41
Cmnd_Alias, 43
creating file, 42
Defaults, 41

158 Index

sudoers (continued)
file anatomy, 41
Host_Alias, 43
Jinja2 template, 43
LOCAL_VM, 43
policy planning, 38
testing sudoers policy, 45

accessing Greeting, 45
editing greeting.py, 46
sudoedit, 46
systemctl start and stop, 46

User Specifications, 41
validate, 43

sudoers.yml, 42
sudo su, as bender user, 22
syslog, 149

3164 protocol, 143
5424 protocol, 143
format, 143

system calls
accept4, 149
close, 149
recvfrom, 149
sendto, 149

systemd, 39, 43, 46
reload, 41
resolved, 134
resolver, 135
systemctl, 46

T
tail, 76, 144
tcpdump, 141
TCP three-way handshake, 142
telnet, 89, 94, 103, 105
telnet-server, 86, 88, 89, 92, 98, 101, 104

accessing via Kubernetes, 89
creating Deployment and Services,

87
Deployment manifest, 84
get deployments, 88
Grafana dashboard, 117
metric Service, 87
Pod

killing, 92
logs, 93–94

scaling Deployment, 92
Service manifest, 87

rollback, Kubernetes, 104
telnet-server-metrics, service

name, 89
telnet via Kubernetes, 91
testing Kubernetes deployment, 89

telnet-server (application), 66
building container image, 68
connecting, 74
containerizing, 66
Dockerfile, 67
getting logs, 75
Grafana dashboard, 117
running container, 70
testing with telnet, 74, 103, 105
verifying container image, 69

three-way handshake, 142
ACK, 142
SYN, 142
SYN-ACK, 142

time-based one-time password (TOTP),
28

top, 128
COMMAND column, 128
CPU percent column, 128
MEM percent column, 128
PID column, 128
RES column, 128
output, 128

traces, 109
troubleshooting, 125–142

connection refused error,
140–142

high iowait, 131–133
high load average error, 127–129
high memory usage error, 129–131
hostname resolution failure,

133–137
out of disk space error, 138–139

two-factor authentication (2FA), 28–33
two_factor.yml, 28, 29, 30, 33

U
Ubuntu VM setup, 9–11
UFW (Uncomplicated Firewall), 50

BLOCK, 57
chains, 50
LIMIT BLOCK, 58
logging, 56–57

Index 159

rate limiting, 57–58
rules, 50
testing, 54

uptime, 127
user_and_group.yml, 16, 18–20

V
Vagrant, 4

commands, 6
vagrant plugin install, 5
vagrant provision, 21,

34, 45, 54
vagrant ssh, 21
vagrant status, 11
vagrant up, 9, 11

guest additions, 4

installation, 4
vagrant user, 21, 22, 31
Vagrantfile, 4, 54

box, 5
networking, 5–6
providers, 6

Vagrantfile, 4, 54
visudo, 43
vmstat, 129, 130, 132

W
web_application.yml, 39

Y
YAML (Yet Another Markup

Language), 6, 83, 98

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

WEB SECURITY FOR DEVELOPERS
Real Threats, Practical Defense
by Malcolm McDonald
216 pp., $29.95
isbn 978-1-59327-994-3

DESIGNING SECURE SOFTWARE
A Guide for Developers
by Loren Kohnfelder
312 pp., $49.99
isbn 978-1-7185-0192-8

HOW TO HACK LIKE A GHOST
Breaching the Cloud
by Sparc Flow
264 pp., $34.99
isbn 978-1-7185-0126-3

THE MISSING README
A Guide for the New Software Engineer
by Chris Riccomini and
Dmitriy Ryaboy
288 pp., $24.99
isbn 978-1-7185-0183-6

HOW LINUX WORKS, 3RD EDITION
What Every Superuser Should Know
by Brian Ward
464 pp., $49.99
isbn 978-1-7185-0040-2

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
by William Shotts
504 pp., $39.95
isbn 978-1-59327-952-3

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/devops-desperate/ for errata and more information.

http://www.nostarch.com
https://nostarch.com/devops-desperate/

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

If you’re a software engineer, developer, or sys admin
who needs to get up to speed with DevOps quickly,
this book covers the basics you need to thrive in a
modern application stack.

This book’s fast-paced, hands-on examples will provide
the foundation you need to start performing common
DevOps tasks. You’ll explore how to implement
Infrastructure as Code (IaC) and confi guration
management (CM)—essential practices for designing
secure and stable systems. You’ll take a tour of
containerization and set up an automated continuous
delivery (CI/CD) pipeline that builds, tests, and
deploys code. You’ll dig into how to detect a system’s
state and alert on it when things go sideways.

You’ll learn how to:

• Create and provision an Ubuntu VM with Vagrant
and Ansible

• Manage users, groups, and password security

• Set up public key and two-factor authentication
over SSH

• Automate and test a host-based fi rewall

• Use Docker to containerize applications and
Kubernetes for orchestration

• Build a monitoring stack and troubleshoot problems
and performance issues

DevOps for the Desperate is a practical, no-nonsense
guide to get you up and running quickly in today’s
full-stack infrastructure.

A B O U T T H E A U T H O R

Bradley Smith has been a DevOps and software
engineer for more than 20 years at many startups,
local governments, and businesses of varying sizes.
He’s solved countless technical challenges during
his career, and he’s built and trained many DevOps,
SRE, and software engineering teams. He graduated
from the University of Massachusetts Lowell and now
resides in Denver, Colorado.

$29.99 ($39.99 CDN)

D
E

V
O

P
S

F
O

R
 T

H
E

 D
E

S
P

E
R

A
T

E

B R A D L E Y S M I T H

DE VOPS FOR
T HE DE S PE R AT E

A H A N D S - O N S U R V I V A L G U I D E

S
M

I
T

H

D E V O P S B A S I C S F O R

E N G I N E E R S A N D A D M I N S

I N C R I S I S M O D E

Coverage includes Ansible,
Docker, Kubernetes, and more...

	DevOps for the Desperate
	Brief Contents
	Contents in Detail
	About the Author
	Acknowledgments
	Introduction
	What Is the Current State of DevOps?
	Who Should Read This Book?
	How This Book Is Organized
	Part I: Infrastructure as Code, Configuration Management, Security, and Administration
	Part II: Containerization and Deploying Modern Applications
	Part III: Observability and Troubleshooting

	What You’ll Need
	Downloading and Installing VirtualBox
	Companion Repository
	Editor

	Part I: Infrastructure as Code, Configuration Management, Security, and Administration
	Chapter 1: Setting Up a Virtual Machine
	Why Use Code to Build Infrastructure?
	Getting Started with Vagrant
	Installation
	Anatomy of a Vagrantfile
	Basic Vagrant Commands

	Getting Started with Ansible
	Installation
	Key Ansible Concepts
	Ansible Playbook
	Basic Ansible Commands

	Creating an Ubuntu VM
	Summary

	Chapter 2: Using Ansible to Manage Passwords, Users, and Groups
	Enforcing Complex Passwords
	Installing libpam-pwquality
	Configuring pam_pwquality to Enforce a Stricter Password Policy

	Linux User Types
	Getting Started with the Ansible User Module
	Generating a Complex Password

	Linux Groups
	Getting Started with the Ansible Group Module
	Assigning a User to the Group
	Creating Protected Resources

	Updating the VM
	Testing User and Group Permissions
	Summary

	Chapter 3: Using Ansible to Configure SSH
	Understanding and Activating Public Key Authentication
	Generating a Public Key Pair
	Using Ansible to Get Your Public Key on the VM

	Adding Two-Factor Authentication
	Installing Google Authenticator
	Configuring Google Authenticator
	Configuring PAM for Google Authenticator
	Configuring the SSH Server
	Restarting the SSH Server with a Handler

	Provisioning the VM
	Testing SSH Access
	Summary

	Chapter 4: Controlling User Commands with sudo
	What Is sudo?
	Planning a sudoers Security Policy

	Installing the Greeting Web Application
	Anatomy of a sudoers File
	Creating the sudoers File
	The sudoers Template

	Provisioning the VM
	Testing Permissions
	Accessing the Web Application
	Editing greeting.py to Test the sudoers Policy
	Stopping and Starting with systemctl

	Audit Logs
	Summary

	Chapter 5: Automating and Testing a Host-Based Firewall
	Planning the Firewall Rules
	Automating UFW Rules
	Provisioning the VM
	Testing the Firewall
	Scanning Ports with Nmap
	Firewall Logging
	Rate Limiting

	Summary

	Part II: Containerization and Deploying Modern Applications
	Chapter 6: Containerizing an Application with Docker
	Docker from 30,000 Feet
	Getting Started with Docker
	Dockerfile Instructions
	Container Images and Layers
	Containers
	Namespaces and Cgroups

	Installing and Testing Docker
	Installing the Docker Engine with Minikube
	Installing the Docker Client and Setting Up Docker Environment Variables
	Testing the Docker Client Connectivity

	Containerizing a Sample Application
	Dissecting the Example telnet-server Dockerfile
	Building the Container Image
	Verifying the Docker Image
	Running the Container

	Other Docker Client Commands
	exec
	rm
	inspect
	history
	stats

	Testing the Container
	Connecting to the Telnet-Server
	Getting Logs from the Container

	Summary

	Chapter 7: Orchestrating with Kubernetes
	Kubernetes from 30,000 Feet
	Kubernetes Workload Resources
	Pods
	ReplicaSet
	Deployments
	StatefulSets
	Services
	Volumes
	Secrets
	ConfigMaps
	Namespaces

	Deploying the Sample telnet-server Application
	Interacting with Kubernetes
	Reviewing the Manifests
	Creating a Deployment and Services
	Viewing the Deployment and Services

	Testing the Deployment and Services
	Accessing the Telnet Server
	Troubleshooting Tips
	Killing a Pod
	Scaling
	Logs

	Summary

	Chapter 8: Deploying Code
	CI/CD in Modern Application Stacks
	Setting Up Your Pipeline
	Reviewing the skaffold.yaml File
	Reviewing the Container Tests
	Simulating a Development Pipeline
	Making a Code Change
	Testing the Code Change
	Testing a Rollback

	Other CI/CD Tooling
	Summary

	Part III: Observability and Troubleshooting
	Chapter 9: Observability
	Monitoring Overview
	Monitoring the Sample Application
	Installing the Monitoring Stack
	Verifying the Installation

	Metrics
	Golden Signals
	Adjusting the Monitoring Pattern
	The telnet-server Dashboard
	PromQL: A Primer

	Alerts
	Reviewing Golden Signal Alerts in Prometheus
	Routing and Notifications

	Summary

	Chapter 10: Troubleshooting Hosts
	Troubleshooting and Debugging: A Primer
	Scenario: High Load Average
	uptime
	top
	Next Steps

	Scenario: High Memory Usage
	free
	vmstat
	ps
	Next Steps

	Scenario: High iowait
	iostat
	iotop
	Next Steps

	Scenario: Hostname Resolution Failure
	resolv.conf
	resolvectl
	dig
	Next Steps

	Scenario: Out of Disk Space
	df
	find
	lsof
	Next Steps

	Scenario: Connection Refused
	curl
	ss
	tcpdump
	Next Steps

	Searching Logs
	Common Logs
	Common journalctl Commands
	Parsing Logs

	Probing Processes
	strace

	Summary

	Index

