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Programming with OpenSCAD: A Beginner’s 
Guide to Coding 3D-Printable Objects intro-

duces the versatile, text-based OpenSCAD 
3D CAD software. This book guides readers 

through using arithmetic, variables, loops, modules, 
and decisions to design a series of increasingly complex 
3D designs, all of which are suitable for 3D printing.

What Is OpenSCAD?
OpenSCAD (pronounced Open-S-CAD) is text-based software for creat-
ing solid 3D models. It allows you to design these models by writing code, 
which gives you (the designer) full control over the modeling process and 
allows for easy changes to any part of your design throughout that process. 
OpenSCAD also makes it easy to create designs that are defined by configu-
rable parameters, which means you can build designs with change in mind.
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xvi   Introduction

OpenSCAD is a descriptive programming language: its coding statements 
describe the shape, size, and combination of each component of your overall 
design. OpenSCAD provides two main 3D modeling techniques: you can 
create complex objects from combinations of simpler shapes (known as 
constructive solid geometry) or extrude 2D .dxf or .svg outlines into 3D shapes. 
Unlike most other free software for creating 3D models (such as Blender), 
OpenSCAD focuses on the mechanical, rather than the artistic, aspects of 
3D design. Thus, OpenSCAD is the application to use when you’re plan-
ning to create 3D-printable models, but probably not what you’re looking 
for when you’re more interested in making computer-animated movies.

OpenSCAD is free, open source software that’s available to download 
for Windows, macOS, and Linux, as well as other systems. Specific system 
requirements are available at https://openscad.org/downloads. This book covers 
OpenSCAD 2021.01, which is the latest version at the time of writing.

Who This Book Is For
This book is for beginners who are either new to code, new to 3D design, 
or new to OpenSCAD. While no prior background with either coding or 
3D design is necessary to access the material presented in this book, some 
experience with introductory algebra would be helpful. No particular math 
beyond basic arithmetic (adding, subtracting, multiplying, and dividing) 
is required. However, some previous experience using variables in simple 
equations would be a useful starting point, as would some experience 
graphing points on the xy-plane.

 In line with our intentions to make this book beginner-friendly, we 
have deliberately chosen to focus on a subset of OpenSCAD. Our goal is to 
introduce its most useful elements in an accessible manner. In some cases, 
that means we briefly introduce a topic earlier in the book that we return to 
in more depth in later chapters. This spiraling is intended to help you form 
a strong foundation in the basics before adding layers of nuance. Our exam-
ples and projects have been curated to allow for maximum creative utility 
while still making the topic accessible to readers who are new to coding. 

Why Learn to Code with OpenSCAD?
While learning to code can be fun and exciting, it can also be challenging 
for beginners to figure out the where and why behind the inevitable errors in 
their coding projects. In contrast to the opaqueness of other text-based pro-
gramming languages (in which it’s hard to see what’s going on behind the 
scenes), OpenSCAD’s visual nature gives users immediate feedback regard-
ing the correctness of a particular approach. 

Writing text-based code to create a 3D object is a powerful and effec-
tive way to learn how to structure long sequences of coding statements. 
Like more familiar imperative programming languages (JavaScript, 
Python, and so on), OpenSCAD includes variables and common control 
structures (such as if statements and loops) and supports the creation of 

https://openscad.org/downloads
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programmer-defined modules and libraries. Additionally, OpenSCAD 
employs common syntax elements, such as using curly brackets ({ }) and 
semicolons (;), to organize statements as well as the familiar set of arithme-
tic operators and conventions. OpenSCAD not only opens up the world of 
text-based 3D design, but also teaches skills that are transferable to many 
other popular programming languages.

Learning to code with OpenSCAD also offers unique advantages for 
developing computational thinking. This computer-specific approach uses 
decomposition, abstraction, patterns, and algorithms to solve a problem in 
a way that makes it easy for a computer to carry out the solution. Developing 
an intuition for computational thinking can be difficult for beginners in 
other programming languages, but OpenSCAD makes it easy with algo-
rithms and coding statements that literally take shape. Applying abstraction 
and patterns means visually identifying the repetitive and predictable ele-
ments in a design; decomposition becomes splitting a complex design into 
well-defined smaller pieces, and algorithms naturally extend from creating 
a list of steps that need to happen in order to create a design. The tactile 
feedback that comes from turning an OpenSCAD design into a physical 
3D-printed object adds an entirely new dimension to learning to code.

STEM (science, technology, engineering, math) and STEAM (add art 
into the mix) are two recently popular acronyms that describe learning 
activities existing at the intersection of two or more of these traditionally 
separated disciplines. Learning to code with OpenSCAD is like taking a 
holistic, STEAM-based approach to learning how to code. OpenSCAD cod-
ing projects require translating visual shapes into concisely worded textual 
descriptions, and vice versa. Designs that start as hand-drawn sketches 
are converted to mathematical coordinate representation, with features 
that are estimated with proportionality. Designing with OpenSCAD code 
requires navigating both orthogonal and perspective views of 3D objects, 
and thinking about 3D shapes in terms of their 2D shadows. 3D-printing an 
OpenSCAD design develops engineering skills by requiring the consider-
ation of physical tolerances and the adjustment of machine settings. In true 
STEAM fashion, this book asks you to simultaneously develop, combine, 
and practice skills typically relegated to the separate disciplines of technol-
ogy, engineering, art, and math as you learn to code with OpenSCAD. 

Learning to code with OpenSCAD has quite a few advantages:

•	 OpenSCAD is popular, free, and open source.

•	 OpenSCAD is easy to learn and uses a common and transferable, 
text-based syntax that is shared with other popular programming 
languages.

•	 Designing 3D objects with OpenSCAD preserves a discoverable design 
history. Unlike other 3D-design software, where clicking Undo removes 
a step, with OpenSCAD, you can easily modify earlier steps in the 
design process without erasing later ones.

•	 The compact size of text-based OpenSCAD files (.scad) makes sharing, 
storing, and modifying OpenSCAD models faster and more efficient 
than working with typical 3D-modeling file formats.
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•	 OpenSCAD has an easy-to-find console window for immediate and easy 
debugging feedback. 

•	 OpenSCAD coding projects are 3D-printable.

•	 OpenSCAD is an effective first programming language choice for 
visual learners.

•	 Learning to code with OpenSCAD builds a foundation in computa-
tional thinking while also reinforcing spatial and mathematical reason-
ing in an interdisciplinary, STEAM-based context.

3D Printing and OpenSCAD
Most people use OpenSCAD to create designs for 3D printing. At its core, 3D 
printing is a tool for transforming virtual models into actual physical objects. 
OpenSCAD is a great choice of software to use when you’re creating parts to 
manufacture with a 3D printer. However, access to a 3D printer is in no way a 
prerequisite for this book or for learning to use OpenSCAD. We certainly rec-
ognize the appeal of seeing and touching your 3D designs, so we’ve sprinkled 
3D-printing tips throughout this book, anticipating that many readers will 
want to interact with their virtual designs in the real world.

3D printing is used in an ever-increasing number of areas: mechanical 
engineering, product design, animation, architecture, sculpture, medicine, 
geology, rocketry, and the list goes on. 3D printing first gained popularity 
for its uses in rapid prototyping, which allows designers to create physi-
cal models and receive real-world feedback much faster than previously 
possible. However, in addition to prototyping early versions of a design, 
3D-printing technologies have advanced to the point where it’s now possible 
to directly manufacture products in a variety of materials. Designers can 
now use 3D printing to build the final version of their design, using many 
types of plastic, glass, metal, magnets, cement, porcelain, bio-matter, and 
even edible foods! In fact, it’s no longer unusual for mechanical engineers 
to 3D-print metal rocket-engine parts, for dentists to 3D-print porcelain 
dental implants, for architects to 3D-print residential houses in cement, or 
for sculptors and jewelers to 3D-print a wax base for a lost-wax casting. 

Although many types of 3D-printing technologies exist, fused-filament 
fabrication remains the cheapest and most readily accessible technology 
available. Most of the 3D-printing tips in this book are best suited for fused-
filament fabrication, which builds a 3D form by melting successive layers of 
plastic on top of each other.

What’s in This Book
This book is split into three sections:

•	 Chapters 1 through 3 introduce how to draw and combine basic 3D and 
2D shapes. 
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•	 Chapters 4 through 6 introduce loops, modules, and decisions so that 
you can add new layers of efficiency to your design process.

•	 Chapter 7 serves as a case study to reinforce prior topics and introduce 
higher-level design skills that work hand in hand with computational 
thinking.

A series of Design Time challenges accompany the first six chapters of 
the book. These exercises provide quick designs to replicate, suitable to the 
scope of each chapter’s content. A small collection of Big Projects conclude 
each chapter. These projects, which require substantively more time and 
effort than the Design Time activities, are deliberately chosen to present a 
cumulative challenge. 

The designs in both the Design Time and Big Project sections are pre-
sented without absolute coordinates, as they are intended to inspire you to 
build toward a general resemblance without focusing too much on details. 
For these exercises, the big details like proportionality and shape combi-
nations matter more than anything else. All Design Time and Big Project 
exercises are well suited for 3D printing. 

The following list gives a breakdown of the topics presented in each 
chapter:

Chapter 1: 3D Drawing with OpenSCAD
Introduces the OpenSCAD interfaces and teaches you to draw and 
place a few of the OpenSCAD primitive 3D shapes: cuboids, spheres, 
cylinders, and cones. OpenSCAD can also import 3D shapes gener-
ated by other applications, and we introduce that here as well. Another 
important concept covered is how to combine multiple shapes in a few 
ways. Finally, you’ll learn how to export an OpenSCAD 3D design for 
3D printing. The Big Projects in this chapter are designed to help you 
get to know the settings on your 3D printer’s preparation software. 

Chapter 2: More Ways to Transform Shapes 
Presents a variety of additional transformation operations that can be 
applied to the 3D shapes introduced in Chapter 1. You’ll learn how to 
rotate, mirror, and adjust the proportionality of 3D shapes. You’ll also 
learn more sophisticated methods of combining shapes, including how 
to wrap a hull around two shapes and how to spread the properties of 
one shape along the edges of another shape with the minkowski opera-
tion. 3D-printing tips in this chapter introduce the concepts of infill 
and shell. The Big Projects ask you to combine multiple topics from 
Chapters 1 and 2 to produce objects you may actually use: a game die 
and a desktop organizer. 

Chapter 3: 2D Shapes 
Discusses an alternate way of approaching 3D design—building up a 
3D form from its 2D shadow. You’ll learn how to draw with primitive 
OpenSCAD 2D shapes, including circles, rectangles, polygons, and text 
(including emoji). You’ll also learn how to combine those 2D shapes by 
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using most of the same operations you studied in Chapter 2, as well as a 
new 2D operation called offset. Finally, you’ll see how to bring 2D shapes 
into the 3D world by extending them along the z-axis with a variety of 
new operations. 3D-printing tips in this chapter discuss resizing your 
3D models for printing, including how to break a large model into mul-
tiple pieces so you can grow your 3D prints beyond the limited size of 
your 3D printer’s build platform. The Big Projects include storytelling 
dice, a dice holder, and a 3D trophy built from a 2D profile. 

Chapter 4: Using Loops and Variables 
Introduces a new tool for computational thinking: the for loop. You’ll 
learn how to use variables and for loops to repeat shapes. The best part 
is that you’ll learn how to vary the characteristics of a shape (such as 
its size, position, or rotation) as it’s repeatedly drawn by the loop. This 
chapter also introduces comments and console printing as useful tools 
for planning and debugging your designs. 3D-printing tips in this chap-
ter relate to exploring a few gotchas that may surprise you when you try 
to create 3D-printed objects from OpenSCAD designs: the limitations 
of small-scale features, reconfiguring a design to avoid fusing together 
parts that are supposed to be separate, and breaking a design into sepa-
rate .stl files to print different pieces with different-colored filament. 
The Big Projects include a detail test, a Towers of Hanoi game, and a 
tic-tac-toe game. 

Chapter 5: Modules 
Introduces yet another computational thinking tool: decomposing a 
design into multiple modules. You’ll learn to use OpenSCAD modules 
to create your own shapes, as well as use separate files to group your 
new shapes into a reusable (and shareable) library. You’ll also create 
and use parameters to control characteristics of your shapes, as well 
as define variables within modules so that updating the design of new 
shapes is quick and easy. The Big Projects in this chapter include a sky-
scraper module and a library of new LEGO brick designs.

Chapter 6: Dynamic Designs with if Statements 
Introduces the if statement, which allows you to create dynamic designs 
that change according to a certain condition. You’ll learn to create a 
variety of complex conditions using Boolean and logical operators, as 
well as extended if statements, and if...else statements. You’ll auto-
mate some of the design configurations suggested in the Big Projects 
from Chapter 4, as well as incorporate random numbers to add fun and 
unpredictable elements to your design and make repeated elements 
more organic and natural. The Big Projects include creating a random 
forest, a clock face, and a city of random skyscrapers. 

Chapter 7: Designing Big Projects
Presents a capstone project that walks through the process behind 
creating a big, multifile design. You’ll apply formal characteristics of 
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computational thinking by using the iterative design cycle to reinforce 
and expand the ideas presented in the first six chapters. You’ll leverage 
the walking skeleton approach to evolve a simple version of the Leaning 
Tower of Pisa into a 3D model that bears a high resemblance to the 
actual tower. You can 3D-print this building as a trophy to congratulate 
yourself for all that you will have learned by following along with the 
material presented in the book. 

If you get stuck on any exercise in this book, suggested solutions to the 
Design Time and Big Project exercises (along with all chapter examples) 
are available at https://programmingwithopenscad.github.io/.

Terminology and Conventions Used in This Book
Many introductory books on programming and computational thinking are 
available, and each author makes tough decisions as to how much granular 
detail is necessary for the audience they are trying to reach. As this book 
is meant for beginners, we have chosen to keep a high level of abstraction 
with regard to our vocabulary and conventions. Although some of the fol-
lowing terms have more precise definitions in other circumstances, our phi-
losophy for this book is consistent with “don’t sweat the small stuff.” 

We use the following vocabulary in the book:

Shape    Any graphical 2D or 3D object created by OpenSCAD.

Design    An OpenSCAD creation (that is, an OpenSCAD program), 
which usually consists of a combination of multiple shapes.

Operation    An OpenSCAD command that changes the appearance/
properties of one or more shapes.

Parameter    Any value that specifies characteristics of shapes, opera-
tions, modules, or functions.

Preview    The process of quickly displaying a design on-screen.

Render    The process of fully evaluating the geometry of a design (and 
showing it on-screen). Once it’s rendered, you can export a design.

Units    All dimensions in OpenSCAD are specified in units. A unit 
is usually a millimeter (by 3D-printing industry convention), but 
OpenSCAD is technically unitless. All models should be explicitly sized 
in 3D-printing preparation software just prior to printing.

Width    The dimension associated with the x-axis, which is the “left-
right” axis when 3D printing.

Length    The dimension associated with the y-axis, which is the 
“forward-backward” axis when 3D printing.

Height    The dimension associated with the z-axis, which is the “up-
down” axis when 3D printing.

2D shapes    Shapes with a width and length, but no height.

3D shapes    Shapes with a width, length, and height.

https://programmingwithopenscad.github.io/
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A Brief Introduction to 3D Design with OpenSCAD
If you’ve never worked with virtual 3D models before, manipulating the 
3D designs you create in this book via the use of a 2D computer screen can 
be confusing at first. Understanding some of the basics involved in creating 
the illusion of 3D space on a 2D surface can also help you navigate the tran-
sition to a 3D-modeling environment.

Understanding 3D Points
3D objects have a width, length, and height, so drawing a representation 
of 3D shapes requires the use of three separate axes: the x-axis, y-axis, and 
z-axis (Figure 1). The intersection of all three axes is called the origin and 
is indicated as the point (0, 0, 0) on the graph. Each axis proceeds in both 
positive and negative directions from the origin. Although a width, length, 
or height must be positive, the position of an object on a particular axis may 
be in the negative direction (which is relative to the location of the origin).

Figure 1: 3D coordinate system (Cartesian coordinate system. Created by Gustavb using 
PSTricks, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported 
license: https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_3D.svg)

Sometimes a 2D screen makes it hard to determine the exact 3D point 
being viewed. For instance, in Figure 1, the point (3, 0, 5) could also be 
interpreted as the point (0, 4, 3.5). When in doubt about the size or posi-
tion of a particular shape, rotate your design to gain a fuller perspective of 
the feature. As you rotate your design, a miniature graph legend (circled in 
red in Figure 2) rotates accordingly to help you keep track of which axis is 
which.

https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_3D.svg
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Figure 2: The graph legend keeps track of axis labels.

This legend is helpful because the axes in OpenSCAD aren’t labeled. 
This graph legend is a good feedback tool for interpreting the changing 
orientation of the width, length, and height as you rotate your view to under-
stand each part of your design.

Using the OpenSCAD 3D-View Toolbar
OpenSCAD uses a variety of perspectives and color shading (as does other 
3D CAD software) to facilitate the representation of 3D shapes on a 2D 
computer screen. In addition to using a mouse, touchscreen, or trackpad to 
rotate your design, the OpenSCAD 3D-View toolbar (Figure 3) provides sev-
eral buttons for quickly rotating the 3D view of your design to an orthogo-
nal 2D view, which can help reveal a shape’s true location and dimensions.

Figure 3: Quick 2D orthogonal views of a 3D shape

In order, the buttons reveal the following 2D views: right, top, bottom, 
left, front, and back.

Final Tips for Getting the Most Out of This Book
OpenSCAD has many more advanced features and capabilities than are 
included in this book. Consider these chapters a starting point in your explo-
ration of the design possibilities offered by OpenSCAD. We’ve included 
an Afterword to provide a context for the development of OpenSCAD as 
an open source project, and to provide suggestions for further learning 
once you’ve finished reading the book. We encourage you to consult the 
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documentation resources at https://openscad.org/, as well as the language ref-
erence (Appendix A) included in the back of this book to explore the full 
range of possibilities offered by the language. For a quick view of the basic 
features of OpenSCAD covered in the first four chapters of the book, we’ve 
also included a visual reference (Appendix B). 

To truly learn how to design and code 3D-printable objects with 
OpenSCAD, you’ll need to put the book down periodically. Give yourself 
an opportunity to type and modify our examples, as well as to create your 
own versions of our Design Time and Big Project exercises. Then, use the 
book as a starting point for designing and coding your own projects. In fact, 
once you’ve learned something new, take a break from the book. Remix or 
extend our projects and examples, or design something entirely new. Try to 
design something useful, something that will help you apply that new lesson 
to a project you’re genuinely interested in. Show off and share your designs. 
Maybe even give your 3D-printed objects as a gift. Learning something new 
is much easier when you’re genuinely engaged with the topic, so most of all, 
have fun!

https://openscad.org/
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This chapter introduces the OpenSCAD 
3D design software with its own built-in 

programming language. You’ll learn how 
to use text-based commands to draw the basic 

3D shapes that will act as the building blocks for all 
the designs in this book. OpenSCAD’s easy-to-learn 
programming language, specifically designed for 3D 
printing, is a descriptive language that offers a more 
natural way of describing geometry than traditional 
programs.
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Why Use OpenSCAD?
OpenSCAD is an open source program that is freely available for download. 
It is one of the most widely used 3D design software applications in the 
maker community, and as a result, many online resources are available. 
OpenSCAD was built to enable nondesigners to easily create 3D models. 
It does not have a graphical user interface like Photoshop. Instead, you 
define your design with text-based code, which makes it easier to move 
around different parts, change earlier steps in the design process, share 
sections of your designs with other people, discuss your design problems 
in forums, and email designs to others. You can do similar things in Open
SCAD as are possible with other high-end tools; however, OpenSCAD is 
quick to learn, simple to use, and more accessible.

Getting Started with OpenSCAD
Creating a 3D design with OpenSCAD is a two-step process. First, in the 
Editor window, type a code statement to give OpenSCAD instructions 
about what to display. Figure 1-1 shows a code statement to draw a simple 
OpenSCAD shape circled in red.

Figure 1-1: Code for a cube in the Editor window

This OpenSCAD code statement has two parts. The first part indi-
cates the type of shape you want to draw (in this case, a cuboid). The 
second part, which contains what are called parameters, indicates the 
properties of that shape. Parameters allow you to specify values that 
modify the appearance of the shape. Parameters are always placed 
between parentheses ( ). 

Next, draw your shape in the Preview window by clicking the Preview 
button (circled in red in Figure 1-2) to see a quick visual preview of your 
design.
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Figure 1-2: Drawing a cube after clicking the Preview button

Drawing Basic 3D Shapes
In this section, you’ll learn how to write OpenSCAD code to draw cuboids 
(cubes or 3D rectangles), spheres, and cylinders, and you’ll learn how to 
import shapes from other design programs.

Drawing Cuboids with cube
Use the cube command to create a cuboid (as shown in Figure 1-2):

cube([5, 10, 20]);

The first part of the statement, cube, indicates that you want to draw a 
cuboid. The parameters inside the parentheses modify the cube command 
by specifying how big you want your cuboid to be. The square brackets 
([ ]) indicate a vector that organizes the three dimensions of your cuboid. 
The order of the numbers in the vector is important: 5 is the width of the 
cuboid along the x-axis, 10 is the length of the cuboid along the y-axis, and 
20 is the height of the cuboid along the z-axis. Finally, mark the end of the 
statement with a semicolon (;).

Notice that one corner of the cuboid touches the origin: the point at 
which the three axes meet, represented by the coordinates (0, 0, 0).

Drawing Spheres with sphere
To draw a sphere, use the sphere command followed by the sphere’s radius 
in parentheses to indicate its size. For example, the following statement 
draws a sphere with a radius of 10 units (Figure 1-3):

sphere(10);
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Figure 1-3: A sphere with a radius of 10 units

You can change the size of a sphere by changing its radius. Unlike 
cuboids, which might have three distinct measurements for width, length, 
and height, a sphere has the same measurements along all three axes. 
That’s why the basic sphere command has only one number inside the 
parentheses. As with the cube command, mark the end of the code state-
ment with a semicolon. But unlike with the cube command, OpenSCAD 
centers a sphere around the origin.

Drawing Cylinders and Cones with cylinder
To draw a cylinder, use the cylinder command followed by parentheses con-
taining the cylinder’s height and the length of the two radii of the circles 
that form its top and bottom. The following statement draws a cylinder with 
two radii of the same size (Figure 1-4):

cylinder(h=20, r1=5, r2=5);

Figure 1-4: A cylinder with a height of 20 units, a  
bottom radius of 5 units, and a top radius of 5 units
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Because keeping track of the cylinder’s three parameters can be con-
fusing, OpenSCAD allows you to label each parameter and include them 
in the command in any order. In parentheses, set the following values: h, 
which is the height of the cylinder along the z-axis; r1, which is the radius at 
the bottom of the cylinder; and r2, which is the radius at the top of the cyl-
inder. As with the sphere and cube commands, use a semicolon to mark the 
end of the statement.

PA R A ME T ER OR DER

It’s perfectly fine to pass parameters to cylinder without labels for height and 
radii, so entering cylinder(15, 8, 8) is equivalent to cylinder(h=15, r1=8, r2=8). 
However, if you don’t use labels, the parameters must be in the exact order for it 
to be read properly. If using labels, you can enter the parameters in any order, for 
example: cylinder(r1=8, r2=8, h=15).

The two radii of a cylinder don’t need to have the same measurements. 
When they’re different, the cylinder looks more like a cone with its top cut off 
(or, a truncated cone, according to mathematicians), as shown in Figure 1-5:

cylinder(h=20, r1=5, r2=3);

Figure 1-5: A cone with a height of 20 units, a  
bottom radius of 5 units, and a top radius of 3 units

You can draw a pointed cone, like the one in Figure 1-6, by assigning 
one of the radii a radius of 0:

cylinder(h=20, r1=0, r2=5);



6   Chapter 1

Figure 1-6: A pointed cone with a height of 20 units,  
a bottom radius of 0 units, and a top radius of 5 units

Notice also that, unlike the shapes drawn with the sphere and cube com-
mands, cylinders are centered around the z-axis, with one face touching the 
xy-plane.

Importing 3D Models with import
OpenSCAD allows you to import shapes from other 3D design programs 
if they’re saved in the .stl format, which is a common format for 3D mod-
els. You can import these preexisting 3D shapes with the import command. 
For example, use the following statement to import a popular file called 
3DBenchy.stl (Figure 1-7):

import("3DBenchy.stl");

Figure 1-7: An imported 3D model of a boat often  
used to calibrate 3D printers
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To import a 3D shape, place the .stl file’s name within parentheses after 
the import command. Enclose the name of the file in quotation marks (" ") 
to indicate that the filename is literal text and should not be interpreted by 
OpenSCAD. Note that you should save the .stl file in the same folder/direc-
tory as your OpenSCAD program, and be sure to save your OpenSCAD pro-
gram before you generate a preview of your design; otherwise, OpenSCAD 
might have trouble finding the file. Mark the end of the statement with a 
semicolon.

Modifying Basic Shapes
Some of the basic ways to alter the shapes you draw with OpenSCAD 
include moving or smoothing them.

Moving Shapes
If the design you’re creating has more than one shape, you’ll need to 
know how to move those shapes around the Preview window. Otherwise, 
by default, they will sit on top of each other, and you may not be able 
to see the shapes of different sizes. For example, consider the following 
design (Figure 1-8):

cube([20, 10, 10]);
sphere(5);
cylinder(h=30, r1=2, r2=2);

Figure 1-8: Multiple shapes drawn with default  
positioning
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Centering Shapes with center=true

By default, the sphere command draws a sphere so that it’s centered around 
the origin; the cube, cylinder, and import commands don’t do this. If you 
want to draw other shapes so that they’re also centered around the origin, 
add the center=true parameter inside the parentheses, as in this snippet 
(Figure 1-9):

cube([5, 10, 20], center=true);

Figure 1-9: A cuboid centered around the origin

Now the cuboid’s center will be at (0, 0, 0). You can also add the 
center=true parameter to cylinder shapes in order to center cylinders and 
cones around the origin. It’s not possible to center imported shapes with 
center=true.

Moving Shapes to a Specific Location with translate

To move a shape to a specific location in the Preview window, use the 
translate operation. This operation modifies a shape as a whole so it’s 
included right before the shape it’s meant to modify.

For example, the following statement draws a cuboid that is shifted 
from its default position by 10 units in the negative direction along the 
x-axis, 20 units in the positive direction along the y-axis, and 0 units 
along the z-axis (Figure 1-10):

translate([-10, 20, 0]) cube([20, 10, 10]);
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Figure 1-10: A translated cuboid with a starting  
corner at (–10, 20, 0)

The translate operation uses square brackets to group the x, y, and z 
dimensions into a vector. Similar to specifying the dimensions of a cube 
shape, the order of the numbers in the vector is important. The first number 
in the translation vector describes movement along the x-axis; the second 
describes movement along the y-axis; and the third describes movement along 
the z-axis. Finally, mark the end of the entire statement with a semicolon.

You may have noticed that the vector you use to modify the translate 
operation moves the shape’s starting corner—the corner that touches the 
origin by default. Figure 1-11 shows how the translate operation moves the 
cuboid relative to the origin (the original cube is shown in gray). You can 
use the axes legend to predict the location of your shapes after the translate 
operation has been applied.

Figure 1-11: A cuboid moved 10 units along the  
x-axis and 20 units along the y-axis, compared  
with the same-sized cuboid at the origin
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To create a more complex design, you may need to move shapes around 
in different configurations. Use the translate operation in front of a command 
to move it into a different position. For instance, the following statements draw 
a cuboid, a sphere, and a cylinder in one Preview window (Figure 1-12):

translate([-10, 10, 0]) cube([20, 10, 10]);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2);

Figure 1-12: Three distinct shapes, translated  
from default positions

Both the sphere and cylinder move according to their respective center 
points, while the cube moves relative to the corner that touches the origin. 
Notice that the movement is different if you apply the same translation 
operations to a cube and cylinder that have been centered (Figure 1-13):

translate([-10, 10, 0]) cube([20, 10, 10], center=true);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2, center=true);

Figure 1-13: Three distinct shapes, translated  
from centered positions
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Smoothing Curves with $fn
You might be wondering why the spheres and cylinders you’ve drawn so far 
don’t appear to be round, but instead are formed by a series of flat panels. 
That’s because OpenSCAD, like most 3D design software, uses a collection 
of straight lines to approximate a curve. To save on memory and reduce 
the processing time required to draw complex shapes, OpenSCAD uses 
a relatively small number of these lines by default. The cylinder shown in 
Figure 1-13, for example, uses only six line segments to approximate the 
curve of the circular faces of the cylinder.

To make your cylinders and spheres smoother, specify the number of 
line segments used to approximate a curve by including the $fn param-
eter. Setting $fn to 10, for instance, makes a cylinder look a bit rounder, 
because it draws the circumference of the cylinder with 10 line segments 
(Figure 1-14):

cylinder(h=20, r1=2, r2=2, $fn=10);

Figure 1-14: Approximating the curve of a cylinder  
with 10 line segments

As with other parameters, include $fn in the parentheses within the 
command.

Although the cylinder in Figure 1-14 is rounder than a default cylinder, 
it’s still not visibly round. Increase $fn to an even larger value in order to 
make the cylinder rounder (Figure 1-15):

cylinder(h=20, r1=2, r2=2, $fn=50);

With 50 line segments, the curve in this cylinder looks a lot smoother. 
After a certain point, though, increasing $fn will stop showing any vis-
ible effect. Also, note that OpenSCAD takes longer to generate shapes 
with large $fn values (as there are more details to generate), so be sure to 
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consider the trade-off between smoothness and computational overhead 
when you set $fn. Generally, $fn=50 will produce a “roundness” that is more 
than sufficient.

Figure 1-15: A cylinder with a curve approximated  
with 50 line segments

Combining 3D Shapes with Boolean Operations
Sometimes you’ll want to create shapes with features that are more com-
plex than the basic shapes you’ve made so far. The Boolean operations in 
OpenSCAD allow you to combine multiple shapes, like cuboids, spheres, 
cylinders, and cones, into one shape (Figure 1-16). You can do this by using 
one of three operations: union, difference, or intersection.

union intersectiondifference

Figure 1-16: An illustration of basic Boolean operations

The union operation groups two shapes together, the difference opera-
tion subtracts one shape from another, and the intersection operation keeps 
only the parts where two shapes intersect with each other.
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BOOL E A N OPER AT IONS

You can think of Boolean as yes/no. It’s commonly used in math and software 
engineering when you need to define whether something exists or doesn’t exist. 
The Boolean operations discussed here define whether a volume of space 
should have material or should be empty.

Subtracting Shapes with difference
Let’s start by subtracting shapes with the difference operation (Figure 1-17):

difference() {
    cube([10, 10, 10]);
    sphere(5);
}

Figure 1-17: A sphere subtracted from a cuboid  
with the difference operation

Indicate a difference operation, followed by a set of parentheses, and then 
enter at least two commands between a set of curly brackets. Order matters 
when you use the difference operation; it keeps only the first shape, remov-
ing the parts of that shape where the remaining shapes intersect it. Notice in 
Figure 1-18 what happens when you exchange the order of the two shapes:

difference() {
    sphere(5);   
    cube([10, 10, 10]);
}
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Figure 1-18: A cuboid subtracted from a sphere  
with the difference operation

Reversing the operations creates a sphere with a slice missing, precisely 
where cube would have drawn a cuboid shape on top of the original sphere.

Debugging difference Operations with #

It can be easy to lose track of the shape you’re subtracting because it is no 
longer visible in the design. To make things easier, place a hash mark (#) in 
front of a subtracted shape to create a ghost version of the shape. The fol-
lowing code is identical to the code that drew Figure 1-17, except it uses a 
hash mark to render the sphere as a ghost-like image (Figure 1-19):

difference() {
    cube([10, 10, 10]);
    #sphere(5);
}

Figure 1-19: A ghost version of a subtracted  
sphere to help with problem-solving
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Use the hash mark to help you debug your designs, and then when your 
design is correct, be sure to remove the hash mark from your code.

Avoiding “Shimmering Walls” with the difference Operation

When subtracting shapes with the difference operation, you may sometimes 
end up with “shimmering walls” like those in Figure 1-20.

Figure 1-20: Two cuboids subtracted from a larger  
cuboid create shimmering walls

The shimmering walls appear because the subtracted shapes share a 
face with the shape they’re being subtracted from. This creates an ambigu-
ous scenario; should the face remain or be subtracted? Because of this con-
cern, a model with shimmering walls isn’t 3D-printable.

To solve this issue, only subtract shapes that extend slightly beyond the 
size of the outer shape (Figure 1-21).

Figure 1-21: Two slightly larger cuboids subtracted  
from an outer cuboid
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Once you’ve removed the ghost shapes, the remaining shape should 
contain no shimmering walls (Figure 1-22):

difference() {
    cube([10, 10, 10]);
    
    translate([-1, 2.5, 2.5]) cube([12, 5, 5]);
    translate([2.5, 2.5, -1]) cube([5, 5, 12]);
}

Figure 1-22: A subtracted shape that is fit for 3D printing

You should now be able to 3D-print this design.

Carving Out Overlapping Shapes with intersection
You can also carve away everything except the overlapping portion of two 
shapes by using the intersection operation (Figure 1-23):

intersection() {
    sphere(5);   
    cube([10, 10, 10]);
}
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Figure 1-23: The cutout of an overlapping sphere  
and cuboid, drawn with the intersection operation

First, indicate the intersection operation followed by parentheses, and 
then enter at least two commands between curly brackets. Unlike with the 
difference operation, the order in which you include the shapes doesn’t mat-
ter with intersection.

Grouping Shapes with union
To group shapes into a single entity, use the union operation (Figure 1-24):

union() {
    cube([10, 10, 10]);
    sphere(5);
}

Figure 1-24: A sphere and a cuboid grouped  
together with a union operation
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The union operation combines all the shapes inside the curly brackets 
into one shape. Indenting all the lines that come between the curly brack-
ets makes your code readable and easy to understand. Similar to intersec-
tion and difference, there’s no way to modify the union operation, so you’ll 
never need to put any information inside its parentheses.

Although it appears as if you can combine shapes by simply drawing 
them on top of each other, each shape will still remain a separate entity. 
This can be a problem when using the difference operation, as that opera-
tion subtracts only from the first shape inside the curly brackets. To avoid 
this problem, you can group multiple shapes into one shape by using the 
union operation. Include this grouped shape within difference as the first 
shape. For example, the following program uses the union operation to 
subtract a sphere from two shapes at once (Figure 1-25):

difference() {
    union() {
      cube([10, 10, 10]);
      cylinder(h=10, r1=2, r2=2);
    }
    sphere(5);
}

Figure 1-25: A sphere subtracted from a cylinder and  
a cuboid grouped together with union

OpenSCAD first combines the cube and cylinder into one shape, and 
then subtracts the sphere from that new shape. Without the union operation, 
OpenSCAD would, instead, subtract both the cylinder and sphere from the 
cuboid (Figure 1-26).
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Figure 1-26: A sphere and a cylinder subtracted  
from a cuboid

Once you’ve created a complex shape with difference, intersection, or 
union, a computer can easily break it into geometric primitives to generate 
an accurate 3D model of your design. You can then print this complex 3D 
model on a 3D printer or import it into a 3D virtual reality program.

Getting Ready for 3D Printing
When you’re ready to send your OpenSCAD design to another application 
for 3D printing, you’ll need to export an .stl version of your design from 
OpenSCAD. You can then import this file into your 3D printing prepara-
tion software to adjust the settings, then turn it into a physical object with a 
3D printer.

To export an .stl version of your design, first render your design by 
clicking the Render button (circled in red in Figure 1-27). Whereas Preview 
generates a quick picture of your model, Render fully calculates all of the 
surfaces needed to define the model. Especially complex designs require 
more surfaces and might have slow Render times as a result.

Figure 1-27: Rendering a design with the Render button
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Finally, export your design as an .stl by selecting FileExportExport 
as STL (Figure 1-28).

Figure 1-28: Exporting a design as an .stl file

Summary
Congratulations! You should now be able to create designs that include 
cuboids, spheres, and cylinders in any size and draw them in OpenSCAD’s 
Preview window. You can also import 3D shapes, smooth curves, and move 
shapes to anywhere along the x-, y-, and z-axis. Finally, you also should know 
how to create complex designs out of basic shapes by grouping, subtracting, 
and cutting out overlapping shapes.

Here are some important points to remember:

•	 The name of an OpenSCAD command describes the type of shape 
you’d like to draw.

•	 Commands are followed by parentheses. Information inside paren-
theses ( ) modifies a command. The values inside the parentheses 
are called parameters. You can think of parameters as adjectives that 
describe characteristics of the shape.

•	 A semicolon (;) marks the end of most statements. Statements can 
include both commands and operations.

•	 Use the translate operation to move your shapes around the Preview 
window. Indicate the amount and direction of movement by changing 
the vector parameter of the translate operation.

•	 Square brackets ([ ]) collect numbers together to form a vector. The 
order of the numbers inside a vector is important.

•	 Boolean operations use curly brackets ({ }) to collect multiple shapes 
together. These curly brackets also form a complete OpenSCAD state-
ment and do not require a semicolon to end the statement.

•	 Parentheses, square brackets, and curly brackets always come in pairs.
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•	 $fn can be used as a parameter to change the smoothness of a single 
shape. You can also set $fn to a high value at the beginning of your code 
to generate smooth curves for every shape in a design. High values for 
$fn can result in slow rendering times.

•	 Use indentation to help make your code readable and easy to 
understand.

•	 A design must be rendered before it can be exported as an .stl file.
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DESIGN TIME: 3D SHAPES

Practice your composition and design skills by building each of the complex shapes in Figure 1-29. 
We strongly recommend that you finish building each shape before moving on.

1. Mouse 2. Yo-yo

3. Spinner 4. Epcot

5. Half-pipe 6. Ice cream cone

Figure 1-29: Practice drawing these shapes.
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BIG PROJECTS: 3D SHAPES

The following big projects will help you practice the commands covered in this chapter, and will 
introduce you to some basic considerations for using your 3D printer, such as printer resolution and 
temperature.

CA L IBR AT ION PY R A MID

Building a calibration pyramid, shown in Figure 1-30, will help you determine whether you need 
to tweak the settings on your 3D printing preparation software. It will also help you practice using 
cube and translate.

Figure 1-30: Calibration pyramid

•	 Try printing this at different resolutions. Try Low, Medium, and High quality. Compare  
print times and results.

•	 Try printing this pyramid at different sizes. Measure the pyramid after you print it.  
Check to make sure your physical measurements match the virtual measurements of  
your 3D model.

•	 Tweak your software settings so the pyramid has straight lines at all corners after it’s  
printed.

(continued)
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SMIL E Y-FACE PENDA N T

To create the smiley-face pendant shown in Figure 1-31, you’ll need to use your 3D printer to print 
large, flat shapes. Flat shapes can be difficult to print because they tend to curl.

Figure 1-31: Smiley-face pendant

If you have a heated bed on your 3D printer, use it. Vary the temperature of your heated bed 
to see which temperature works best for the type of filament you are using.

If you don’t have a heated bed, inserting thin helper disks can keep prints from curling. Helper 
disks are 1 mm thick, so you can easily remove them after your print is complete. You can place 
helper disks around the perimeter of your design, and then easily cut them off after you’ve finished 
the print. Some 3D printing preparation software allow you to insert these discs automatically. 
Otherwise, you can insert ultra-thin cylinders in your OpenSCAD design.

HOL E-A ND -PINS T ES T

To design a hole-and-pins test, you’ll use your 3D printer to print pieces that fit together, as shown 
in Figure 1-32. If you design this properly, the pins should fit snugly inside the holes.

Figure 1-32: Hole-and-pins test

If you design the pins to be exactly the same size as the holes, the two pieces won’t fit together. 
The pins should be slightly smaller than the holes. How much smaller depends on the type of filament 
you’re using and your printer settings. Both the brand and type of plastic will make a difference.
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M O R E  W AY S  T O 

T R A N S F O R M   S H A P E S

This chapter introduces a collection of 
transformation operations that allow you 

to have more control when creating complex 
shapes. You’ll learn how to rotate, reflect, and 

scale shapes; combine them with a shared hull; and 
round out their edges. These transformation opera-
tions will expand your modeling toolbox and allow 
you to create even more complex designs. 

OpenSCAD Shape Transformations
First, you’ll learn how to use three transformation operations: rotate,  
mirror, and resize. A transformation operation is a bit of code that comes 
immediately before a shape to alter the shape’s position, size, or 

Z
Y

X
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orientation. For illustrative purposes, we include a transparent gray outline 
in this chapter’s examples to indicate where the original, untransformed 
shape would have appeared.

Rotating Shapes with rotate
By default, OpenSCAD draws shapes so they’re oriented in a certain way. It 
draws sphere shapes centered at (0, 0, 0), for example, and cube shapes with 
a single corner at (0, 0, 0). Sometimes, though, you’ll want your shape to 
have a different orientation. 

One way to alter a shape’s default position is to rotate it. To rotate a 
shape, specify the angle of rotation around each of the three axes, and 
express the angles of rotation in degrees, which can be positive or negative.

The following code snippet rotates a cuboid 90 degrees around the 
x-axis (Figure 2-1):

rotate([90, 0, 0]) cube([30, 20, 10]);

Figure 2-1: A cuboid rotated 90 degrees around  
the x-axis

First, write the name of the transformation, and then inside the paren-
theses, provide rotate with a vector in square brackets ([ ]) to group together 
the three axes of rotation. The first element in the vector is the degree of 
rotation around the x-axis, the second is the degree of rotation around the 
y-axis, and the third is the degree of rotation around the z-axis. Next, write 
the code for the shape you want to rotate. As always, use a semicolon (;) to 
end the entire statement.

Because you’re rotating the shape 90 degrees around the x-axis, its posi-
tion the x-axis stays fixed, and it gets a new position on the yz-plane.
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The following code snippet rotates the same cuboid around the y-axis 
(Figure 2-2):

rotate([0, 180, 0]) cube([30, 20, 10]);

Figure 2-2: A cuboid rotated 180 degrees around  
the y-axis

In this case, the shape’s position relative to the y-axis stays fixed, and its 
position on the xz-plane moves by 180 degrees. 

You can also rotate a shape around two axes with a single operation, as 
in the following snippet (Figure 2-3):

rotate([-90, 0, -90]) cube([30, 20, 10]);

Figure 2-3: A cuboid rotated 90 degrees around  
the x-axis and 90 degrees around the z-axis
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This cuboid is rotated around both the x- and z-axes. You might find 
it easier to imagine this operation as two separate transformations: one 
that rotates the shape around the x-axis and one that rotates it around the 
z-axis. To rotate the shape counterclockwise by 90 degrees in both direc-
tions, set the angle of rotation for those axes to –90. 

Even though rotation around multiple axes is possible with the applica-
tion of only one rotation operation, it’s best to separate the various rotations 
into individual, repeated transformations. This is because it is sometimes 
hard to predict which rotation will be applied first. Consider the difference 
in the location of the cuboid when the rotation around the z-axis is applied 
before the rotation around the x-axis (Figure 2-4):

rotate([-90, 0, 0]) rotate([0, 0, -90]) cube([30, 20, 10]);

Figure 2-4: A cuboid rotated –90 degrees around the  
z-axis, then rotated –90 degrees around the x-axis

Explicitly applying multiple rotations in their intended order will result 
in shapes ending up exactly where you’d like them to be after the rotations 
are applied.

Reflecting Shapes with mirror
Another way to change a shape’s default position is to reflect it across an imagi-
nary 2D plane with the mirror transformation. As you might expect from 
the name of the operation, mirror creates a mirror-like reflection of your 
shape. The following statement reflects a truncated cone across the yz-plane 
(Figure 2-5):

mirror([10, 0, 0])
  translate([0, 10, 0]) rotate([0, 90, 0]) cylinder(h=10, r1=5, r2=2); 



More Ways to Transform Shapes   29

Figure 2-5: A truncated cone reflected across the yz-plane  
via the vector [10, 0, 0]

The vector you pass to mirror contains the x, y, and z coordinates that 
define an imaginary point. OpenSCAD then draws an imaginary line from 
the origin to that point and uses the 2D plane that is perpendicular to that 
line at the origin as the mirror, or plane of reflection. 

To clarify this, Figure 2-6 shows the “mirror” as a semitransparent plane.

Figure 2-6: A truncated cone reflected across the yz-plane  
via the vector [10, 0, 0] 

The “mirror” is perpendicular to the vector, shown in green, drawn 
from (0, 0, 0) to (10, 0, 0). Notice that you don’t have to use 10 as the x-axis 
value to create this mirror; any nonzero x-axis value would cause the mirror 
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operation to behave the same way, as your goal is only to specify a vec-
tor that is perpendicular to the mirror. The mirror plane always contains 
the origin (0, 0, 0). In effect, the vector parameter of the mirror operation 
describes how the mirror is rotated.

The next statement reflects a cylinder across the xy-plane (Figure 2-7):

mirror([0, 0, 10]) cylinder(h=10, r1=2, r2=5);

Figure 2-7: A cone reflected across the xy-plane via  
the vector [0, 0, 10]

This example defines a point at (0, 0, 10), and the line from the defined 
point to the origin is perpendicular to the xy-plane. The mirror operation is 
particularly useful for quickly creating complex shapes that involve symme-
try. Using the mirror operation in such cases may save you time, as you can 
focus on designing only one half of the object, and then use mirror to create 
the second half. 

Note that the mirror operation does not copy the shape; it moves the 
shape into the mirrored position. If you want a fully symmetrical shape, first 
create the shape, and then repeat it with the mirror operation in front of it.

Scaling Shapes with resize 
The resize operation allows you to stretch or shrink specific dimensions of 
individual shapes. When you resize a shape, you can specify its exact dimen-
sion along each axis. By stretching a sphere across a single axis, for exam-
ple, you can turn it into an ellipsoid (an elongated sphere). 

The following code snippet uses resize to scale a sphere with a radius of 
1 into an ellipsoid (Figure 2-8):

resize([10, 10, 20]) sphere(1, $fn=100);



More Ways to Transform Shapes   31

Figure 2-8: A sphere resized into an ellipsoid

Before writing the shape command, pass a vector to the resize opera-
tion to group together the new dimensions of the sphere along the x-, y-, 
and z-axes. As with all transformations, use a semicolon to end the entire 
statement.

The new ellipsoid stretches 5 units on either side of the origin along 
the x-axis, 5 units on either side of the origin along the y-axis, and 10 units 
on either side of the origin along the z-axis. 

You could also use resize to transform a basic cylinder (Figure 2-9):

resize([10, 5, 20]) cylinder(h=5, r1=5, r2=5);

Figure 2-9: A resized cylinder
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This statement resizes a basic cylinder with a height and two radii of 
5 units so that the transformed cylinder stretches 10 units along the x-axis 
(through the origin), 5 units along the y-axis (also through the origin), and 
20 units along the z-axis (from the origin).

More Ways to Combine 3D Shapes
In Chapter 1, you learned about three Boolean operations that allow you 
to combine multiple 3D shapes: union, difference, and intersection. You can 
also combine two shapes into one with the hull and minkowski operations.

Combining Shapes with hull
The hull operation creates a convex hull (or skin) around two shapes. To 
understand this, imagine stretching a balloon tightly around two or more 
shapes in order to create a single shape. For example, the following code 
creates a balloon surrounding both a sphere and a cube (Figure 2-10): 

hull() {
    translate([10, 0, 0]) sphere(8);
    translate([-10, 0, 0]) cube([4, 4, 4], center=true);
}

Figure 2-10: A hull stretched around a small cube  
and a big sphere

The hull operation has the same syntax as the Boolean operations 
described in Chapter 1. It can combine two or more shapes, and as with 
the union operation, the order of shapes does not matter. 



More Ways to Transform Shapes   33

Combining Shapes with minkowski
The minkowski operation creates a Minkowski sum of a collection of shapes. 
This means it wraps the edges of one shape with the characteristic of a sec-
ond shape. The following example wraps a sphere around the edges of a 
cylinder to create rounded edges (Figure 2-11):

$fn=50;
minkowski() {
    cylinder(h=15, r1=5, r2=5);
    sphere(4);
}

Figure 2-11: A sphere used to smooth the corners  
of a cylinder

The minkowski operation also has the same syntax as the Boolean opera-
tions described in Chapter 1. In this example, the edges of the cylinder 
become rounded edges because the smaller sphere has been embossed 
along the edges of the cylinder. It’s important to note that the minkowski 
operation produces a larger shape than the original cylinder, because wrap-
ping the sphere around the original cylinder adds volume. 

Combining Transformations
You can combine transformation operations by writing one operation in 
front of another. For example, the following code snippet applies the rotate 
operation before translate on each of three cylinders (Figure 2-12):

translate([5, 0, 0]) rotate([90, 0, 0]) cylinder(h=10, r1=4, r2=4);
translate([5, 0, 0]) rotate([0, 90, 0]) cylinder(h=10, r1=4, r2=4);
translate([5, 0, 0]) rotate([0, 0, 90]) cylinder(h=10, r1=4, r2=4);
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Figure 2-12: Three cylinders, rotated and then  
translated

OpenSCAD first executes the innermost transformation (the operation 
directly to the left of a shape), then applies the outermost transformation. 
If you applied the transformations in the reverse order, you’d get a different 
result. The next snippet applies the translate operation before the rotate 
operation (Figure 2-13):

rotate([90, 0, 0]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);
rotate([0, 90, 0]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);
rotate([0, 0, 90]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);

Figure 2-13: Three cylinders, translated and then  
rotated
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You get different results because OpenSCAD applies operations in 
order, starting with the transformation operation closest to the shape.

Summary
This chapter introduced several important operations for transforming 
shapes. You can now move, rotate, reflect, and resize shapes. You can also 
combine two shapes by forming a hull around them or by smoothing the 
corners of one shape with another. 

Here are some important points to remember:

•	 You can apply transformation operations to single shapes and com-
bined shapes.

•	 Combining shapes with the union operation can reduce the number of 
transformation operations that you need to apply to a complex design.

•	 Applying a series of rotate operations is often easier to manage than 
combining rotations into one rotate operation. 

•	 Reflecting combined shapes with mirror can save you time when you’re 
building symmetrical designs.

•	 When you’re applying multiple transformation operations, order 
matters.

•	 The transformation operation closest to the shape is applied first.

In the next chapter, you’ll learn how to convert 2D shapes into 3D 
shapes, apply transformation operations to 2D shapes, and create surpris-
ingly complex 3D shapes by combining and operating on basic 2D shapes.
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DESIGN TIME: TR ANSFORMING SHAPES

Before moving on to Chapter 3, practice the skills you learned in this chapter by building each of 
these complex shapes (Figure 2-14).

1. Heart 2. OpenSCAD logo

3. Guitar pick 4. Snowman

5. Modern table 6. Top hat

Figure 2-14: Practice building each of these shapes.
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(continued)

BIG PROJECTS: TR ANSFORMING SHAPES

Hone your transformation skills with these bigger, more difficult projects.

G A ME DIE

This project will help you when you’re missing a die in the Monopoly box. Build your own die 
(Figure 2-15) to practice the operations you learned in this chapter. 

Figure 2-15: Game die

3D-Printing Tip for the Game Die

The interior of a 3D-printed object consists of two parts: the infill and the shell. The infill is the 
interior volume of the object. The shell is the thick wall that forms the exterior shape of the 
design.

The fill density of a 3D-printed object describes how much volume of the object’s interior will 
be filled with plastic. It’s usually laid out in a crosshatched pattern to save time and plastic 
(although it’s certainly possible to change this pattern). Try varying the fill density of your die 
to see how lower fill densities decrease printing times, while higher fill densities increase them.

Since your die won’t be undergoing much structural stress, a 5 to 10 percent fill density should 
optimize both time and materials.
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DESK TOP ORG A NIZER

When you’re done playing with your die, put your design skills to a more practical use by building 
this desktop organizer (Figure 2-16) to hold your pencils and paper clips. 

Figure 2-16: Desktop organizer

3D-Printing Tip for the Desktop Organizer

Shell thickness is the thickness of the outer wall of the 3D-printed design. It describes the num-
ber of layers on the outside of the print. A thicker outer wall makes your object much stronger, 
which is important if your object is going to undergo repeated use and stress. Increasing the 
shell thickness of your print can be a good way to increase the durability of your 3D-printed 
object without having to dedicate more resources to increasing the fill density.

Shell thickness is often described in terms of nozzle diameters (as in, the size of the hole that 
the melted plastic squeezes though in your 3D printer). The default shell thickness is often two 
nozzle diameters, which is about 0.8 mm. Try varying the shell thickness of this design to see 
the effect it has on print time and material usage.
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2 D  S H A P E S

You’re now familiar with a good collec-
tion of basic OpenSCAD instructions 

for modeling simple 3D shapes, and you’ve 
seen operations that can transform those basic 

shapes into more complex designs. This chapter will 
teach you how to create and combine 2D shapes in 
order to build even more sophisticated 3D designs. 

We’ll start by showing you how to draw basic 2D shapes, and then 
we’ll describe how to build on those basic 2D shapes to create elaborate 3D 
designs. Using 2D shapes will allow you to create designs that are not pos-
sible to build with the 3D shapes and operations you’ve learned so far. In 
addition, knowing how to create 2D shapes is useful when you’re designing 
for other digital fabrication techniques, such as laser cutting, though that’s 
beyond the scope of this book. 
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Drawing Basic 2D Shapes
As with 3D shapes, you can build complex 2D shapes based on a few built-in 
2D primitives, called circle, square, and polygon. 

Drawing Circles with circle
The circle command allows you to draw a 2D circle by specifying its radius, 
like the sphere command from Chapter 1. For example, the following state-
ment draws a circle with a radius of 20 units (Figure 3-1):

circle(20);

Figure 3-1: A rendered circle with a radius of 20 units

Clicking the Preview button renders your circle with a slight depth 
(Figure 3-2).

Figure 3-2: A previewed circle with a radius of 20 units
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However, 2D shapes have no depth. They exist only in the xy-plane. 
To see 2D shapes in their true form, without depth, use the Render but-
ton. (Note that it’s not possible to mix 2D and 3D shapes in Render mode.) 
Because 2D shapes have no depth, it’s often easiest to create 2D designs by 
using the Top-view icon on the toolbar (Figure 3-3). 

Figure 3-3: Top-view icon

Drawing Rectangles with square
The 2D square command, which draws rectangles, specifies x and y dimensions 
as a single vector parameter. The following statement draws a rectangle that 
extends 25 units along the x-axis and 10 units along the y-axis (Figure 3-4):

square([25, 10]);

Figure 3-4: A rectangle with a width of 25 and  
height of 10 units

Use the square command to indicate that you want to draw a rectangle, 
followed by a set of parentheses. Within the parentheses, put square brack-
ets, and then within those, enter the dimensions of the square, separated 
by a comma. This 2D vector requires only x and y dimensions, as opposed 
to the 3D vector (x, y, and z) required by the 3D cube shape. The first num-
ber in the vector represents the width of the square along the x-axis. The 
second number in the vector represents the length of the square along 
the y-axis.
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Remember that you’ll need to click the Render button to see the rect-
angle as a 2D shape.

Drawing Polygons with polygon
If you want to create a 2D shape that isn’t built into OpenSCAD, you can 
create your own 2D shapes with the polygon command. 

The following statement uses the polygon command to draw a triangle 
with vertices at [0, 0], [10, 0], and [10, 10] (Figure 3-5):

polygon([ [0, 0], [10, 0], [10, 10] ]);

Figure 3-5: A triangle with three vertices

A polygon is defined by a list of the shape’s corners, called vertices. Each 
vertex in this list is a vector containing the coordinates of a corner point in 
the polygon. Group each vertex as a vector within square brackets, then add 
an extra set of brackets around the entire list of vertices to organize the col-
lection as a vector of vectors.

Be sure to list the vertices in order, as though you were walking 
around the edge of the polygon (in either direction). Also, you don’t need 
to specify the starting point twice; OpenSCAD will finish the polygon for 
you automatically.

Since polygons can have any number of vertices, you can create increas-
ingly complex shapes, like this one with eight vertices drawn with the fol-
lowing statement (Figure 3-6): 

polygon([
  [ 0,  0], [20,  0],
  [20,  5], [ 5,  5],
  [ 5, 10], [20, 10],
  [20, 15], [ 0, 15]
]);
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Figure 3-6: A more complex polygon with eight vertices 

Drawing Words with text
Another way to use 2D shapes in your designs is to create symbolic patterns, 
such as words. Using textual elements in your designs can be useful for per-
sonalization. You may also want to use emoji fonts to access pre-drawn sym-
bols or simply stamp a version or serial number onto your design.

Use the text command to draw text shapes in OpenSCAD. Text in 
OpenSCAD (as in other programming languages) is considered a string 
of characters. Since a string of characters can be arbitrarily long, quotation 
marks (" ") are used to indicate the beginning and end of the text string. 
Text strings can contain letters, punctuation, numbers, and (if the font 
used supports Unicode) emoji characters. 

This statement creates the string "Hello, OpenSCAD" (Figure 3-7): 

text("Hello, OpenSCAD", size=10);

Figure 3-7: Creating a 2D text shape
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Follow the text command with parentheses containing a string of 
characters. The strings should start and stop with double quotes (" "). The 
parentheses can also contain an optional size parameter, which sets the 
text size to 10 in this case. Notice in Figure 3-7 that the tallest letters in the 
string reach the first tick mark (which represents 10 units) on the y-axis.

The size parameter is optional for text shapes. If you leave off the size 
parameter, the default text size is 10. Another optional parameter for draw-
ing text shapes is font. You can also use the optional font parameter to draw 
text in any font installed on your computer. The following statement draws 
a string of text in Courier font (Figure 3-8):

text("Hello, OpenSCAD", font="Courier");

Figure 3-8: Changing the text shape’s font to Courier

N O T E 	 If you don’t know the names of the fonts installed on your computer, you can ask 
OpenSCAD to give you a list by selecting Help4Font List from the menu. 

Fonts that support Unicode characters will often contain emoji. You 
can draw any character supported by the font, including emoji shapes 
(Figure 3-9):

text("", font="Arial Unicode MS");

Figure 3-9: Using text to draw a crown emoji
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 It’s also possible to draw numeric values with the text command. If you 
want to create a shape with a numeric value (Figure 3-10), be sure to con-
vert the value to a string with the str function:

text(str(123), size=20);

Figure 3-10: Drawing a text shape with numbers 

Rather than putting the number between quotation marks, apply the 
str function to a numeric value in order to turn it into a string. This is par-
ticularly helpful when the numeric value is stored in a variable, as we’ll see 
in Chapter 4.

Applying Transformation and Boolean Operations on 
2D Shapes

You can apply the same transformation and Boolean operations you learned 
in Chapters 1 and 2 to 2D shapes—and it’s done pretty much the same way 
as when you apply them to 3D shapes. The only difference is that instead of 
requiring 3D vectors, the translate, mirror, and resize operations require 2D 
vectors containing x- and y-coordinates, and the rotate operation requires 
only a single angle of rotation (for the z-axis).

For example, the following design uses translate, difference, and rotate 
to draw an askew rectangle with three circles cut out of it (Figure 3-11):

rotate(30) {
    difference() {
        square([120, 40]);
        translate([20, 20]) circle(15);
        translate([60, 20]) circle(15);
        translate([100, 20]) circle(15);
    }
}
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Figure 3-11: Transformation and Boolean operations  
on 2D shapes

Just as with the 3D shapes, the order in which you apply transforma-
tions and Boolean operations on a 2D shape will affect the arrangement 
and placement of the resulting shape. Consider the difference between 
subtracting a circle from a square versus subtracting a square from a 
circle. The following difference operation subtracts a circle from a square 
(Figure 3-12):

difference() {
    square([5, 5]);
    circle(5, $fn=50);
}

Figure 3-12: Subtracting a circle from a square
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And this difference operation subtracts a square from a circle 
(Figure 3-13):

difference() {
    circle(5, $fn=50);
    square([5, 5]); 
}

Figure 3-13: Subtracting a square from a circle

Extruding Shapes Vertically with linear_extrude
You can’t 3D-print 2D shapes directly, but you can use them as building 
blocks for creating 3D shapes (which can then be 3D-printed as physical 
objects). This section describes two of OpenSCAD’s powerful operations for 
creating 3D shapes from 2D shapes.

The linear_extrude operation takes a flat shape and “lifts” it up along 
the z-axis while building walls corresponding to the shape’s initial bound-
ary. The following statement extrudes the letter A into a 3D shape with a 
height of 5 units (Figure 3-14):

linear_extrude(5) text("A");

The linear_extrude operation takes a single parameter, the height of 
the 3D shape you’re creating, followed by the 2D shape you’d like to stretch 
into 3D. As with the transformation operations you already know, end the 
entire statement with a semicolon. 

You could also provide the linear_extrude operation the optional 
parameters of twist, slices, and scale to build more complex 3D shapes. 
The twist parameter specifies an angle at which to twist the 2D shape 
during extrusion. The slices parameter controls how smooth a twist will 
be—specifically, how many segments will be used to complete the twist. 
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Since extrusion extends a shape upward, each of these segments will turn 
into a horizontal “slice,” which is why the parameter is named slices. If you 
don’t specify it, OpenSCAD will choose a relatively coarse value. The scale 
parameter changes the size of the 2D shape during extrusion.

Figure 3-14: Linear extrusion of a 2D shape into a  
3D shape

Use all of these parameters to transform a rectangle into the 3D shape 
drawn in Figure 3-15:

linear_extrude(100, twist=30, slices=25, scale=1/3) {
  square(100, center=true);
}

Figure 3-15: Twisting, scaling, and extending a 2D shape  
into a 3D shape with 25 horizontal  slices
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The parameters twist, slices, and scale are optional. Although this 
example shows all three parameters used at once, you can use any variation, 
such as only scale or only twist.

Extruding Shapes Along a Circle with rotate_extrude
Rather than extruding a 2D shape along a linear path, use the rotate_extrude 
operation to move the 2D shape along a circular path, which creates a donut-
like shape called a torus (Figure 3-16):

rotate_extrude() {
  translate([100, 0]) circle(40);
}

Figure 3-16: The rotate_extrude operation of a  
2D circle into a 3D torus

The rotate_extrude operation is a two-step process that first rotates the 
2D shape by 90 degrees around the x-axis, then moves the 2D shape in a 
circle around the z-axis. If you were to cut out a slice of the resulting donut, 
the shape of that slice would look like the original 2D shape. 

When using rotate_extrude, take care to ensure that the shape doesn’t 
rotate into itself. In the code that draws Figure 3-16, you do this by first 
translating the shape away from the z-axis so that no parts of the 2D shape 
are touching the z-axis.

The rotate_extrude operation also takes an optional angle parameter that 
allows you to specify the angle of rotation. Figure 3-17 demonstrates a circle 
that has been extruded along a 135-degree rotation around the z-axis.

rotate_extrude(angle=135) {
  translate([100, 0]) circle(40);
}
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Figure 3-17: The rotate_extrude with a 135-degree  
angle parameter

T IP S FOR USING MULT IPL E L INES INS T E A D OF SINGL E L INES

Though we use curly brackets to help visually organize these rotate_extrude 
examples, curly brackets are optional if they enclose a single shape. So this 
multiline statement

rotate_extrude() {
    translate([100, 0]) {
        circle(40);
    }
}

is the same as this single-line statement:

rotate_extrude() translate([100, 0]) circle(40);

And, though there are no curly brackets in the multiline statement

polygon([
  [ 0,  0], [20,  0],
  [20,  5], [ 5,  5],
  [ 5, 10], [20, 10],
  [20, 15], [ 0, 15]
]);
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we used for Figure 3-6, we could rewrite this statement as

polygon([[ 0,  0], [20,  0], [20,  5], [ 5,  5], [ 5, 10], [20, 10],  
[20, 15], [ 0, 15]]);

or

polygon([[0,0],[20,0],[20,5],[5,5],[5,10],[20,10],[20,15],[0,15]]);

OpenSCAD ignores both the spaces between elements and new lines, so 
you have some flexibility in how you organize your code to make it more (or 
less) readable. While using indentation, new lines, and curly brackets can help 
communicate the nuances of a complex sequence of operations, consolidating 
elements onto one line can also be useful once you become more comfortable 
coding with OpenSCAD.

Growing and Shrinking a Shape with offset
Imagine you want to build a fancy cross-shaped cookie cutter. You now 
know how to create a cross shape by performing a union of two rectangles, 
and you know how to extrude it by using linear_extrude to make it 3D. But to 
specify the wall thickness, you need the offset operation, which allows you 
either to grow or shrink a shape by a specific amount. Use offset to hollow 
out your cookie cutter by shrinking one cross, and then subtract the small 
cross from the larger one. 

In the following design, pass offset a negative value to shrink your 2D 
cross (Figure 3-18):

offset(-2) {
  union() {
    square([100, 30], center=true);
    square([30, 100], center=true);
  }
}

Place the code for the 2D shapes to offset in curly brackets following 
the offset operation. In parentheses, specify the amount (in millimeters) to 
offset. A positive value will grow a shape, and a negative value will shrink a 
shape.

N O T E 	 When shrinking a shape, the inner corners become rounded, but when growing a 
shape, the outer corners become rounded. Experiment with this to build intuition on 
how offset works.
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Figure 3-18: Shrinking an object by passing  
offset a negative value

Now you can reuse that code to build the walls of your cross-shaped 
cookie cutter (Figure 3-19):

linear_extrude(30) {
1 difference() {
  2 union() {
      square([100, 30], center=true);
      square([30, 100], center=true);
    }
  3 offset(-2) {
      square([100, 30], center=true);
      square([30, 100], center=true);
    }
  }
}

Figure 3-19: Cross-shaped cookie cutter
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Define two squares to create the outer cross with a union operation 2. 
Next, define two more squares to create the inner cross 3, shrink that 
cross with offset, and then subtract it from the outer cross 1. This leaves 
you with a hollowed-out cross shape. 

Importing 2D Shapes with import
Just as with 3D shapes, you can import 2D shapes from files created in other 
2D design programs. OpenSCAD supports importing the .dxf and .svg 2D  
file formats. These formats are commonly used with popular 2D vector 
graphic design tools, such as Adobe Illustrator and Inkscape (an open 
source alternative to Adobe Illustrator). OpenSCAD only supports import-
ing shapes that are closed polygons, containing no “open-ended” sections. 
Also, make sure you convert all segments in a .dxf file to straight lines.

The syntax of the import command is the same for importing both 2D 
and 3D shapes. You just need to pass the filename in quotation marks to 
import, and make sure the file is saved in the same folder/directory as your 
project. For example, use the following statement to import the drawing in 
Figure 3-20:

import("drawing.dxf");

Figure 3-20: An imported .dxf vector graphic

Even though the imported file looks round, it actually consists of many 
short line segments, similar to the polygons you learned to create earlier 
in this chapter. Inkscape was used to draw this 2D smiley-face shape. An 
important final step in the process was to convert all of the line segments in 
the shape to very small straight lines.
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Once you import a 2D shape, it behaves exactly like a built-in shape, 
and you can transform it and combine it with other shapes. The following 
statement first imports the smiley face shown in Figure 3-20, then extrudes 
it into the shape shown in Figure 3-21:

linear_extrude(height=500, scale=3) import("drawing.dxf");

Figure 3-21: An extruded and scaled .dxf vector graphic

Now you have a 3D smiley-face shape that you can 3D-print as a stamp. 

Summary
In this chapter, you learned how to design and create 3D shapes based 
on 2D shapes. You now should be able to create, combine, and transform 
simple 2D shapes like circles, rectangles, polygons, and text. You can create 
both internal and external outlines of 2D shapes with the offset operation, 
import vector graphics, and transform 2D shapes into 3D shapes.

By now you should be able to imagine a wide variety of designs that you 
could create with OpenSCAD 2D and 3D shapes. Sometimes it’s easier to 
build a complex 3D design by thinking about its 2D shadow first, and then 
you can stretch the 2D shadow into 3D. 

Here are some important points to remember when working with 2D 
shapes:

•	 Rendering a 2D design will display the actual 2D view of the shape, 
while a Preview window of the design will appear to add a small amount 
of height along the z-axis.

•	 3D shape transformation vectors require three parameters: [x, y, z]; 
most 2D shape transformation vectors require only two parameters:  
[x, y]. 
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•	 2D rotations need only a single parameter: a number to represent the 
angle of rotation within the xy-plane.

•	 The Top view will often give you the best perspective when designing 
your 2D shapes.

•	 Extruding 2D shapes and text is necessary in order to combine them 
with 3D shapes.

•	 Text strings start and stop with double quotes.

•	 You can use the text shape to draw numeric values by converting the 
value to a string with the str function.

•	 Only fonts that support Unicode can be used to draw emoji, but think 
of how much fun you could have extruding emoji shapes!

•	 No part of a 2D shape can cross the z-axis when you use rotate_extrude 
on that shape.

•	 Think of 2D shapes as a “cross section” of the resulting 3D shape from a 
rotate_extrude operation. 
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DESIGN TIME: 2D SHAPES

Before moving on to Chapter 4, practice the skills you learned in this chapter by building each of 
the complex designs in Figure 3-22.

1. Fruit bowl 2. House

3. Stamp 4. Space Needle

5. Nice day 6. Star

Figure 3-22: Practice drawing these 2D designs.
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(continued)

BIG PROJECTS: 2D SHAPES

Continue to practice the skills you learned in Chapters 1 through 3 with these three big projects.

S TORY T EL L ING DICE

Use the basic game die you created in Chapter 2 to generate a collection of storytelling dice 
(Figure 3-23). Create dice for nouns, verbs, decisions, animals, heroes, villains, or any collection of 
related concepts. This will help you practice using and placing text shapes.

Figure 3-23: Storytelling dice

3D-Printing Tip for the Storytelling Dice

OpenSCAD is “unit-less.” Often, but not always, if you import an .stl file to prepare it for 3D 
printing, the software will use millimeters as the unit for your design. It’s important to adjust 
final dimensions for your 3D model as the last step before printing your model. Use the scal-
ing features of your 3D-printing preparation software to check/change the final dimensions of 
your 3D print.

Play around with resizing your storytelling dice. What size makes the most sense? Be sure to 
make the dice big enough so you can read the text on all sides.
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PROJEC T BOX FOR S TORY T EL L ING DICE

Create a project box to hold your storytelling dice (Figure 3-24). Practice using the offset opera-
tion to create a ridge in the wall of the box to keep the lid firmly in place. Don’t forget to make 
small adjustments to the measurements of the lid so that the inner ridge fits snugly inside the box.

Figure 3-24: Project box

3D-Printing Tip for the Project Box

This box needs to be big enough to hold your storytelling dice with the lid in place. Most 
3D-printing preparation software will allow you to change the size of your 3D model either 
by specifying a scalar percentage for each axis or by setting an absolute size for a certain 
dimension. You can set the other axes and dimensions to scale either uniformly or not at all.
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T ROPH Y

Create a trophy (Figure 3-25) by using the shapes and operations introduced in this chapter. 
Start by designing a 2D profile of the cup and stem that you can rotate around the z-axis with 
rotate_extrude. Notice the embellishments on some of the edges of the trophy.

Figure 3-25: Trophy

3D-Printing Tip for the Trophy

Each 3D printer has its own build volume that determines the maximum measurement for each 
dimension of your 3D print. Be sure to stay within the build dimensions for your printer when 
you resize your model. In fact, your 3D-printing preparation software will warn you if you’re 
exceeding your printer’s dimensions. 

Try to print this trophy at a larger size than the build volume of your 3D printer. You can 
accomplish this by splitting your final trophy into two parts: the base and the trophy. By using 
the difference operation, you can split your model into two pieces. Export each of these as 
separate .stl files, each containing a different part of the trophy. Then, scale each part in the 
3D-printing preparation software so that you can print each separate piece to be as large as 
possible. A little superglue will allow you to recombine the two pieces into one extra-large 
trophy.
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U S I N G  L O O P S  A N D  V A R I A B L E S

Starting with this chapter, you’ll learn 
ways to use OpenSCAD to work smarter, 

not harder. First, you’ll learn to use a very 
useful programming tool called a loop. Loops 

let you draw many similar shapes with only a few 
lines of code. 

This is particularly useful when your designs have repeated features. 
For instance, if you’re creating a model of the Empire State Building, typing 
one individual statement for each window in the building would consume 
a lot of time. With a loop, you can repeat a single window along a fixed 
pattern so OpenSCAD can take care of the tedious work of copying and 
pasting the same window many times. You’ll also learn how to use variables 
to keep track of important data related to your designs. Because these new 
OpenSCAD tools will allow you to create more complicated designs, you’ll 
also learn how to use comments to leave notes for yourself and other col-
laborators on your design. 

Z
Y

X
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Leaving Notes with Comments
In this chapter, the designs are a bit more complex than in previous chap-
ters, so we’ll use comments in the coding examples to explain important 
details in our designs. Comments provide a way for you to leave notes to your-
self and others who might read your code. OpenSCAD ignores comment 
statements, as they are meant only as notes for the humans who read them 
rather than as instructions for OpenSCAD to draw a particular shape. 

Writing Single-Line Comments with //
Single-line comments start with // and continue until the end of the line. 
They are useful for leaving short notes so you can remember later what your 
thought process was when you were creating your OpenSCAD design.

Writing Multiline Comments with /* */
Multiline comments begin with /* and end with */. OpenSCAD ignores every-
thing inside a multiline comment. Multiline comments are useful for temporar-
ily ignoring parts of your design when you want to focus on a particular element. 
Multiline comments make it easy to ignore multiple statements at once.

The following code shows single-line and multiline comments, which 
results in exactly one shape being drawn (a cuboid, Figure 4-1), as the other 
OpenSCAD statements are enclosed in comments and ignored:

cube([5, 10, 20]);

//sphere(5);

/*
cylinder(h=5, r1=10, r2=10);
cube([50, 50, 50]);
*/

Figure 4-1: A single cube among a collection  
of comments
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Repeating Code with a for Loop
The main focus of this chapter is on getting OpenSCAD to take care of the 
tedious and error prone “copy-and-paste” approach to typing very similar 
statements in order to draw a collection of similar shapes. If, for example, 
you want to draw 10 identical cylinders on a straight line, you could write 
10 statements—one for each cylinder—changing only the vector parameter 
in the translate operation to prevent overlap, as in the following design 
(Figure 4-2): 

translate([10, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([20, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([30, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([40, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([50, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([60, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([70, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([80, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([90, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([100, 30, 0]) cylinder(h=4, r1=4, r2=4);

Figure 4-2: A row of cylinders drawn with 10 separate statements or  
drawn with a single for loop

Notice that the only change from one cylinder to the next is the increased 
position along the x-axis: the x position of the first cylinder is 10, the x posi-
tion of the second cylinder is 20, and so on, until the last cylinder is drawn at 
an x position of 100. 

Instead of using 10 separate statements, you can use a single for loop 
to generate this collection of cylinders. You just need to write a loop that 
draws the first cylinder 10 units from the x-axis, then increases the x posi-
tion by 10 units every time a new cylinder is drawn, until drawing the last 
cylinder 100 units from the axis.

The following pseudocode shows the for loop syntax:

for (variable = [start: increment: end]) {
  // one or more statements to be repeated
}
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The for keyword indicates that you want to repeat OpenSCAD state-
ments. Then you create a variable to keep track of the changing value after 
each repetition. The variable has a start value, an increment value, and an 
end value. Similar to grouping multiple shapes together in order to apply 
a single transformation, use curly brackets ({ }) to enclose all of the state-
ments you want to repeat. 

The following example uses a single for loop to draw 10 cylinders 
instead of using 10 separate statements:

for (1x_position = [10:10:100]) {
    translate([x_position, 30, 0]) cylinder(h=4, r1=4, r2=4); 
}

A variable called x_position 1 keeps track of the position of each cyl-
inder. This variable has an initial value of 10; then every time the for loop 
repeats, the value of x_position increases by 10 so that the next cylinder is 
drawn 10 units farther along the x-axis. Once x_position is equal to 100, 
the last cylinder is drawn and the loop stops repeating. The resulting 
drawing will look the same as using 10 separate statements, as shown in 
Figure 4-2.

You can use loops to repeat shapes along many types of patterns. 
Figure 4-3 shows a cone repeating in a rotational pattern around the z-axis, 
and here’s the corresponding for loop:

for (angle=[0:45:315]) {
    1rotate([0, 0, angle]) 2translate([10, 0, 0]) 3cylinder(h=5, r1=2, r2=0);
}

Figure 4-3: Ten cones, rotated around the z-axis,  
generated with a for loop
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Inside the curly brackets, the loop creates a cone 3, translates it 10 units  
along the x-axis 2, and then rotates it by angle degrees 1. The first cone 
is drawn when the value of the angle variable is 0, so it is not rotated at 
all. The value of the angle variable increases by 45 each time the loop is 
repeated, rotating each cone accordingly. The last value of the angle vari-
able is 315, so the last cone drawn by the loop is rotated by 315 degrees 
around the z-axis.

Debugging for Loops with echo
Sometimes it’s useful to examine the value of a variable as it changes 
during the repetition of a for loop. For instance, if you want to double-
check your mental math, it can be easier to see the exact values being 
generated by the for loop. Use the echo function to print each succes-
sive value of a variable to the console window, and check the console 
window (Figure 4-4) to gather feedback about the execution of your 
OpenSCAD code:

for (x_position = [10:10:100]) {
    translate([x_position, 30, 0]) cylinder(h=4, r1=4, r2=4); 
    echo("x:", x_position); //a good way to check your mental math
}

Figure 4-4: Console output generated with echo

The echo function is helpful for debugging your programs. For exam-
ple, you can use it to visualize all the values of a variable that controls the 
number of times a for loop repeats. The echo function provides a useful 
way to gather feedback about your for loops, because it will print out every 
value generated by the for loop. Adding string labels (like "x:") to your 
console statements can help organize the console window output. Labels 
and variables in echo functions should be separated with commas (,).
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Using Variables and Arithmetic
Variables are used in conjunction with for loops to keep track of a pattern 
created by the looping. You can either use the generated values directly, 
or you can perform arithmetic on them to produce more sophisticated 
repetitions. 

In this section, you’ll learn variable naming best practices, math-
ematical operations to perform on variables, and applications of variables 
within loops. 

Naming Variables
Neither the x_position variable from the preceding for loop example nor the 
angle variable from Figure 4-3 is built into OpenSCAD. Those names were 
chosen to describe how the values are used in the design. The x_position 
variable describes the x-position of the cylinder, while angle describes the 
angle of rotation of the cone.

OpenSCAD allows you to name your variables however you want, as long 
as you don’t include spaces or use any symbols other than letters, under-
scores, or numbers. Be sure to select a name that helps you remember a vari-
able’s purpose. This allows you to keep track of multiple variables in a design 
more easily, which can help tremendously when debugging errors or sharing 
your design.

Applying Mathematical Operations on Variables
To start exploring how OpenSCAD applies mathematical operations on 
variables, say you assign the values 10 and 3 to the following variables: 

value1 = 10;
value2 = 3;

To perform mathematical operations like finding the sum, difference, 
product, quotient, or remainder of these values, OpenSCAD lets you use 
standard symbols.

OpenSCAD also respects the conventional order of operations that you 
are probably familiar with from math class. Assigning the result of each of 
these arithmetic operations to a variable will help you separate your calcula-
tion statements from your output statements:

sum = value1 + value2;
difference = value1 - value2;
product = value1 * value2;
quotient = value1 / value2;
remainder = value1 % value2;

Now, use the echo function to display the result of each mathemati-
cal operation (Figure 4-5). Each echo function uses a label to help identify 
which number is which in the console window.
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echo("Addition:", sum);
echo("Subtraction:", difference);
echo("Multiplication:", product);
echo("Division:", quotient);
echo("Modulo:", remainder);

Figure 4-5: Console output of the five arithmetic operators

Using Math and Variables Inside for Loops
You can use arithmetic inside a for loop to make a single variable represent 
two patterns. The following design creates 13 spheres that are all generated 
by the same for loop (Figure 4-6): 

for (faces=[3:11:15]) {
    2 $fn = faces;
    x_position = faces*10;
    translate([3x_position, 0, 0]) sphere(r=5);
    4 echo("faces:", faces, "x-position:", x_position);
}

Figure 4-6: A succession of increasingly smoother spheres
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Notice how the faces variable created by the for loop specifies both the 
number of faces used to render the sphere 2 and the position of the sphere 
along the x-axis 3. With each repetition of the for loop, the value of faces 
increases by one 1, while the value of x_position is updated by multiplying 
the new value of the faces variable by 10. The echo function 4 displays 
the changing values of faces and x_position. Figure 4-7 shows the console 
output.

Figure 4-7: The console output of a succession of  
increasingly smoother spheres 

Using Arithmetic to Create Unique Patterns
In addition to using arithmetic to leverage the power of a for loop to pro-
gressively change characteristics of a shape, you can also use arithmetic 
to create interesting patterns. The following code generates a sequence of 
cylinders of increasing heights by using a quadratic pattern to increase the 
height of each cylinder (Figure 4-8):

for (1x=2[1:1:10]) {
    height = 3x*x;
    x_position = 45*x;
    translate([x_position, 0, 0]) cylinder(h=height, r1=2, r2=2);
}

The preceding design uses a for loop to increase one variable, called 
x 1, from 1 to 10 2. The x variable increases by one each time the loop 
repeats, so this loop repeats 10 times. This variable controls both the posi-
tion along the x-axis and height of a series of cylinders. By creatively using 
arithmetic, you change the x position of the cylinder by 5 4 every time the 
loop repeats. The height of the cylinder grows at a different rate, by squar-
ing the value of x every time the loop repeats 3; this is known as quadratic 
growth.
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Figure 4-8: A succession of cylinders following a quadratic  
pattern to increase height 

Using Nested Loops to Draw 2D and 3D Grids
OpenSCAD even lets you repeat a loop, so you can put a for loop inside 
another for loop. Whereas you can use one for loop to create a line of 
shapes, you can use a for loop inside another for loop to repeat that line 
of shapes to create a grid of shapes with only a few lines of code. This is 
called nesting the loops. The following design uses nested for loops to 
draw a grid of cylinders (Figure 4-9):

1 for (y_pos = [10:10:50]) { 
2 for (x_pos = [10:10:100]) {
     translate([x_pos, y_pos, 0]) cylinder(h=4, r1=4, r2=4); 
   3 echo("x:", x_pos, "y:", y_pos);
   } // x_pos loop
} // y_pos loop

The preceding code uses one loop to draw a line of 10 cylinders 2. 
That for loop is repeated by the first for loop 1, so the line of cylinders 
repeats. Two variables—that is, the x_pos and y_pos variables—work together 
to change both the x position and y position of the repeated cylinder. The 
inner loop repeats 10 times, while the outer loop repeats 5 times. This 
generates a total of 50 cylinders. The echo function is used to keep track 
of the changing values of both variables in the console window 3. Notice 
that comments are used to indicate which bracket belongs to which loop. 
Commenting brackets isn’t necessary but can be helpful when you have 
many curly brackets next to each other. 
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Figure 4-9: A grid of cylinders drawn with nested for loops

You now know how to generate 50 cylinders with four lines of code, 
which certainly beats writing a long list of 50 statements to generate each 
cylinder individually. This would be the perfect technique for drawing the 
many windows in a skyscraper.

Generating the Windows in a Skyscraper with Nested Loops
Listing 4-1 draws a building with 60 windows (Figure 4-10) by using nested 
for loops:

num_rows = 10;
num_cols = 6;

building_width = num_cols*5;
building_height = num_rows*6;

1 difference() {
2 cube([building_width, 10, building_height]);

3 for (z = [1:1:num_rows]) {
  for (x = [0:1:num_cols-1]) {
  4 x_pos = x*5+1;
    z_pos = z*5;
    translate([x_pos, -1, z_pos]) cube([3, 3, 4]);
  } // x loop
  } // z loop
} // difference

Listing 4-1: Drawing a skyscraper with 60 windows by using nested for loops
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Figure 4-10: A window grid on a skyscraper

Listing 4-1 uses variables (named num_rows and num_cols) to control not 
only the number of windows, but also the width and height of the build-
ing. First, it draws a large cuboid to represent the building 2. Next, it uses 
nested for loops to draw a grid of 60 cuboids 3. Finally, the difference oper-
ation subtracts the cuboids from the larger building to create recessed win-
dows 1. Two variables (x_pos and z_pos) are used to calculate the specific  
x position and z position of each window prior to drawing the cuboid 4. 

Our organization of the code in Listing 4-1 makes it easy to change 
the skyscraper’s characteristics. The variables num_rows and num_cols not 
only control the number of times the two loops repeat, but also set the 
width and height of the building, because the values of the building_width 
and building_height variables are dependent on the values of num_rows and 
num_cols. Making one change to either num_rows or num_cols will completely 
change the skyscraper’s look. You’ll learn more about the advantages of 
this sort of organization in the next chapter. 

Triple Nesting to Create a 3D Grid of Shapes
You can also draw a 3D grid of shapes by adding another layer of nesting—
that is, by putting a loop inside a loop, inside a loop—although this might 
take a while to render since it will generate a large number of shapes 
(Figure 4-11):

for (r = [0:15:255]) {
  for (g = [0:15:255]) {
    for (b = [0:15:255]) {
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      translate([r, g, b]) color([r/255, g/255, b/255]) cube(5);
    } // b loop
  } // g loop
} // r loop

Figure 4-11: A nested for loop representing the RGB  
color space

This triple nesting essentially uses a third loop to repeat a grid of 
shapes. The preceding design uses three nested loops to draw a cube rep-
resenting the RGB (red, green, blue) color space. The color transforma-
tion takes a 3D vector indicating the percentage of red, green, and blue 
light that should be represented in the color of the shape. Since RGB uses 
255 as the maximum value, dividing by 255 results in a decimal between 0 
and 1. The color transformation can be useful for debugging and organiz-
ing your designs, but it is not very useful for 3D printing, since the color 
of a 3D print depends entirely on the type of filament used. Thus, the 
color transformation is effective only in Preview mode and will not dis-
play in Render mode.

Summary 
This chapter introduced the concept of looping, which lets you repeat state-
ments without rewriting the same code. Looping lets you tell the computer 
to do all of the work of rewriting a statement over and over again. Variables 
are an important part of looping in OpenSCAD, although they are not 
exclusive to looping. Variables can also help you keep track of important 
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values. Through the use of arithmetic operators, variables can act as impor-
tant starting points for other variables, which is useful when you want to 
make changes to your design.

The following are some important tips for using loops:

•	 If you find yourself copying, pasting, and making minor changes to a 
repeating statement, consider generating the repetition with a loop.

•	 Use arithmetic to create sophisticated repetitions based on the pattern 
created by a loop.

•	 Give variables names that describe their purpose.

•	 Organizing all of your variables at the top of your program makes it 
easy to change your design.

•	 Use the echo function to output the value of a variable as a loop repeats. 
This can help you keep track of variables that are the result of compli-
cated arithmetic.

•	 Label all echo function output so you can output several variables when 
you have nested loops. 

•	 If you want to use variable values generated by a for loop in a text 
shape, remember to convert the number to a string with str (as men-
tioned in Chapter 3).

•	 The color transformation is useful for debugging in Preview mode, but 
it does not translate to Render mode or 3D printing.

•	 Comments are notes programmers leave to help explain their coding 
choices. 

•	 OpenSCAD ignores comments, but humans use comments to help fig-
ure out what coding statements are trying to accomplish.
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DESIGN TIME: LOOPS AND VARIABLES

Before reading further, practice the skills you learned in this chapter by building each of the 
complex designs in Figure 4-12.

1. Regular prisms 2. Pyramid

3. Magic coins 4. Flower

5. Grooved-edge coin 6. Stairs

Figure 4-12: Practice drawing these complex designs.
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BIG PROJECTS: LOOPS

Practice the skills you learned in Chapters 1 to 4 with the following three projects.

DE TA IL T ES T

Use loops to generate this detail test (Figure 4-13) for your 3D printer. This design helps you 
understand the lower limits of the printability of the smallest details on your designs. OpenSCAD 
will always render a virtual model with all of the details you’ve specified, but just because you 
can render fine details virtually doesn’t mean every detail will be visible when you 3D-print your 
design. Some details are just too small to print.

Figure 4-13: Detail test

3D-Printing Tip for the Detail Test

In Chapter 1, you played around with varying the resolution of your 3D print by selecting 
High, Medium, or Low quality default settings. Print this detail test a few times, each time 
using your 3D printing preparation software to manually select a different layer height. Try to 
determine the smallest (close to 0.1 mm) and largest (close to 0.34 mm) layer heights for your 
printer; then make two prints of this design to see the effect of each layer height on the fine 
detail resolution of your prints. 

TOW ERS OF H A NOI PUZ ZL E

Create a Towers of Hanoi puzzle using two loops (Figure 4-14). One loop should create the 
pegs, and one loop should create the discs. Remember to create holes in each disc that are 
slightly larger than the peg.

(continued)
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Figure 4-14: Towers of Hanoi puzzle

3D-Printing Tip for the Towers of Hanoi Puzzle

This design uses two loops: one for the discs and one for the bars. The picture represents how 
you might play the Towers of Hanoi game (which requires you to move all discs to the oppo-
site bar by only stacking smaller discs on top of larger discs). The game begins in this configu-
ration, with each disc stacked on a larger disc beneath it.

However, if you try to print your Towers of Hanoi game in this configuration, you won’t be 
able to play! The discs would print as one solid unit. Once you have created your design, try 
to modify the loop that creates the discs so that they appear horizontally behind the game 
board. This will allow you to print the individual discs as separate units.

T IC-TAC-TOE G A ME

Use loops to create a tic-tac-toe game (Figure 4-15).

Figure 4-15: Tic-tac-toe game
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(continued)

3D-Printing Tip for the Tic-Tac-Toe Game

Don’t forget that holes should have slightly larger diameters than pins; otherwise, the pieces 
of this tic-tac-toe game won’t fit together. Also, notice how the game pieces are arranged rela-
tive to the game board. This arrangement will print just fine. However, you might want to use 
three different colors to print the Xs, Os, and game board. In that case, you can successively 
comment out sections of your code to render and download three different .stl files for printing 
with different filaments.





5
M O D U L E S

In this chapter, you’ll learn how to turn com-
plex designs into more manageable compo-

nents called modules. Modules are separate 
sections of code that organize a collection of 

stand-alone statements, and they’re particularly useful 
for two reasons. If your code is long and complicated, 
using modules can break your code into smaller sub-
sections, which helps make your code more readable.  
And if your design has duplicate or similar shapes, you can use a single 
module to define the shape, reducing the amount of code you need to 
write to create complex designs.

This chapter also describes how to use variables and parameters to 
customize your modules. Finally, we’ll explain how to group similar mod-
ules into a separate file (often called a library) to make it easier to organize 
designs, share designs, and use designs others have created.

Z
Y

X
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Simplifying Code with Modules
To understand how using modules might simplify your code, let’s take 
another look at the code for drawing the cross-shaped cookie cutter 
(Figure 5-1) you built in Chapter 3.

Figure 5-1: The cross-shaped cookie cutter

We’ve reproduced the code in Listing 5-1. Do you see any repeated code?

linear_extrude(30) {
    difference() {
        union() {
            square([100, 30], center=true);
            square([30, 100], center=true);
        }
        offset(-2) {
            square([100, 30], center=true);
            square([30, 100], center=true);
        }
    }
}

Listing 5-1: The original cross-shaped cookie cutter program

The cookie cutter is made by taking the difference of two crosses, 
so the square commands to create the cross shape are repeated twice. 
Duplicate code almost always causes problems, because any change you 
make to a shape’s dimensions must be made twice (or however many times 
the code is duplicated). If you forget to change every instance, you’ll need 
to spend time fixing it later, or worse, end up with lasting mistakes in your 
design.
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To improve this design, you can use a module to create a cross shape, 
and then use that module to create each of the two crosses. The following 
pseudocode shows the syntax of a module definition:

module ModuleName() {
    // code used to define the new shape
}

Use the module keyword to start defining a new module. Then give the 
module a name that describes the new shape you are creating. Module 
names have the same restrictions as variable names, meaning you can only 
use lowercase and uppercase letters, underscores, or the digits 0 to 9. A 
good name should help readers understand what the module does without 
making them read the actual code that defines the module. Following the 
ModuleName, add an empty pair of parentheses followed by the code enclosed 
in curly brackets. The code you write inside the curly brackets is no differ-
ent from any other OpenSCAD code.

The module definition will stand alone as a separate section of your 
design. So, defining a module won’t actually draw the new shape. It’s simply 
a recipe that describes how to create a shape. To see the shape, you must 
create it by inserting the module name into your design, just as you would 
to create any other shape. Here’s the syntax for using a module:

ModuleName();

A module is an example of a programmer-defined shape. In fact, all 
the OpenSCAD commands you have used so far, including sphere, cylinder, 
and linear_extrude, are actually modules that are built into the language. An 
implied union operation occurs when shapes are combined within a module, 
so you can transform and combine the shape(s) generated by a module with 
any operation you’ve seen so far.

Write some new code for your cookie cutter by creating a cross module, 
as shown in Listing 5-2.

module cross()1 {
    square([100, 30], center=true);
    square([30, 100], center=true);2
}

linear_extrude(30) {
    difference() {
      3 cross();
      4 offset(-2) cross();
    }
}

Listing 5-2: The new cross-shaped cookie cutter program, improved with a module

Use the module keyword to start the definition of the new shape. Give it the 
name cross 1 to describe the shape you’re creating. In curly brackets follow-
ing the name, enter the code for the shapes that define the cross 2. Finally, 
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tell OpenSCAD to draw the cross by using the module name followed by a set 
of parentheses 3 4. Notice that you use the cross module twice, so you can 
subtract one cross shape from the other with the difference operation. 

T IP S

Curly brackets are optional if they enclose a single shape. So this

offset(-2) {
  cross();
}

is the same as this:

offset(-2) cross();

And, a union of a single shape is the same as the shape itself, which means 
that this

union() {
  cross();
}

is the same as this:

cross();

Splitting Your Design into Multiple Files
Sometimes when creating a new design, you’ll want to reuse a component 
from a previous project. A good way to organize this is to make the compo-
nent into a module. Putting this module definition into a separate file will 
allow you to easily use it in both designs. Saving modules separately helps 
you find and reuse your new shapes in as many projects as you like, as well 
as easily share them with others. Also, if you make improvements to a mod-
ule defined in a file that is used by several designs, those improvements will 
be applied the next time you open each design. Organizing module defini-
tions into separate files is often called creating a library, especially when a 
new file has multiple related modules defined within it.

To learn how to save your module in a separate file, let’s split the cross-
shaped cookie-cutter design into two files. We’ll use one file to define 
a cross shape, and then use that module in the second file to create a 
cookie cutter. First, create two empty OpenSCAD files: cross-module.scad 
and cookie-cutter.scad. Make sure you save the two files in the same folder 
so OpenSCAD can find the two files. Also, note that these filenames were 
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chosen to clearly indicate the purpose of each file. Carefully choosing your 
filenames will help you organize your projects in the future, especially as 
you build more and more OpenSCAD projects.

In cross-module.scad, copy the module definition from Listing 5-2, 
including the curly brackets, and then paste it into the file you just cre-
ated. Be sure to save cross-module.scad after you’ve pasted the code so that 
OpenSCAD can use the newest version when you connect the files. The new 
cross-module.scad file should contain only the following code:

module cross() {
    square([100, 30], center=true);
    square([30, 100], center=true);
}

Now in cookie-cutter.scad, remove the module definition and add the fol-
lowing line at the top of your file:

use <cross-module.scad> 

linear_extrude(30) {
    difference() {
        cross();
        offset(-2) cross();
    }
}

Instead of typing the module definition in cookie-cutter.scad, the first line 
tells OpenSCAD to use code from cross-module.scad. This is what provides 
the definition for the cross shape.

The use keyword tells OpenSCAD to load the modules from a different 
file. The syntax for the use keyword is as follows:

use <path/to/filename.scad>

After the use keyword, add angle brackets (< >), and inside the angle 
brackets, specify the name of the .scad file you want to use. If the file you 
want to use is not in the same folder as your main design file, specify either 
the absolute or relative path to the file. A use statement allows you to use the 
module definitions from the file, but it will not immediately result in any 
shape being drawn.

Generating a preview of cookie-cutter.scad will now produce the same 
shape as in Figure 5-1. However, generating a preview of cross-module.scad 
will not produce any shape. That is because cross-module.scad currently only 
contains a definition of the cross module. In order to see what the cross 
shape looks like by generating a preview of cross-module.scad, you need to 
add a statement to draw the cross:

cross();

module cross() {
    square([100, 30], center=true);
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    square([30, 100], center=true);
}

Adding Parameters to Your Modules
Because shapes come in different sizes, you’ll likely want your modules to 
allow for some variation. You already know that built-in OpenSCAD mod-
ules, like sphere, can take a parameter, such as sphere(r=30);, where the 
parameter specifies the sphere’s radius. You can add such parameters to 
your own modules as well. 

The following pseudocode shows the full syntax for specifying a mod-
ule, including parameters:

module ModuleName(parameterName = defaultValue, ...) {
 // statements used to define the shape
}

Instead of leaving the parentheses after the module definition empty, add 
a parameterName, which is a placeholder for a value that you’ll provide when-
ever you use the module. You can also give each parameter a defaultValue, so 
if the user of a module doesn’t specify a value for a parameter, the module 
will use the default value instead. Providing a default value allows people to 
use the module without having to specify all parameters, which can be bene
ficial when experimenting with a module, or it can hide distracting details 
when the default value is a common choice. To create multiple parameters, 
specify multiple parameter names, separated by commas, and be sure to give 
each parameter a different name.

You may have noticed that parameters look a lot like variables. In fact, 
inside a module, parameters behave as if they were variables. It’s good prac-
tice to give parameters names that describe their purpose. As with variables 
and module names, parameter names can only include letters, underscores, 
or numbers.

Listing 5-3 shows how to add parameters to the cross module:

module cross(width=30, length=100) {
    square([length, width], center=true);
    square([width, length], center=true);
}

Listing 5-3: Defining the cross module with parameters

Inside the parentheses, you add the width and length parameters, which 
define the width and length of each arm of the cross. 

To create a cross shape with the cross module, provide specific values 
for each parameter each time you use the module, as shown in Listing 5-4.

use <cross-module.scad>

linear_extrude(30) {
    difference() {
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        cross(20, 100);
        offset(-2) cross(20, 100);
    }
}

Listing 5-4: Specifying values for the cross module

The order of the numbers indicates which should be interpreted as 
the width of the cross and which should be interpreted as the length of the 
cross. Since the width parameter comes first in the definition of the module, 
the first number in the parentheses is assigned to the width parameter, and 
the second number is assigned to the length parameter.

OpenSCAD also allows you to name your parameters explicitly when 
you use a module, which can be helpful when you create a shape with a 
large number of parameters (and keeping track of the order becomes 
unwieldy):

cross(width=20, length=100);

When you use a module and name your parameters, the order of the 
parameters is not important. Switching the order of the length and width 
parameters does not affect the appearance of the shape:

cross(length=100, width=20); 

Now the module is truly dynamic; you can use it to create cookie cutters 
of any size (Figure 5-2).

Figure 5-2: A variety of cookie cutters, each created with  
different parameters
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Building a LEGO Brick
In this section, we’ll walk through a complex modeling project that uses 
parameters, modules, and for loops in a single design. You’ll design a 
LEGO brick shape that has two studs in one direction and any number 
of studs in the other direction. Studs are the small bumps on the top of 
a LEGO brick that fit into other LEGO bricks to hold them together. 
Figure 5-3 shows a LEGO brick with two rows and four studs per row.

Figure 5-3: A LEGO brick with a 2×4 grid of studs

Before coding a complicated design like this, sketching a few hand-
drawn versions of your shape can help you gain a firm understanding of the 
dimensions and patterns that exist within the shape (Figure 5-4). 

Figure 5-4: A hand-drawn exploration of the dimensions of LEGO bricks of various sizes
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The dimensions of LEGO bricks are readily available online. We’ve 
taken our dimensions from Wikipedia:

•	 The height of a brick is 9.6 mm.

•	 The height of a stud is 1.7 mm.

•	 The diameter of a stud is 4.8 mm.

Each new stud adds 8 mm to the width of the brick to accommodate not 
only the diameter of a stud, but also the empty space surrounding a stud. 
The length of a brick is also dependent on the number of studs. You’ll gener-
ate only bricks with two rows of studs, which implies a fixed brick length of 
16 mm for this example.

Exploring a variety of hand-drawn LEGO shapes makes it easier to 
identify the OpenSCAD statements necessary for defining a LEGO brick 
module.

Listing 5-5 defines a LEGO brick module.

module LEGObrick(studs_per_row=4) {
    $fn=30;
    
    width = studs_per_row * 8;

    cube([width, 16, 9.6]);
    
    for (x_position=[4 : 8 : width-4]) {
        translate([x_position, 4, 1.7]) cylinder(h=9.6, d=4.8);
        translate([x_position, 12, 1.7]) cylinder(h=9.6, d=4.8);
    }
}

LEGObrick(4);

Listing 5-5: Drawing a LEGO brick with modules

Start by creating a module named LEGObrick with a studs_per_row param-
eter. This parameter represents the number of studs along the top of the 
LEGO brick, which determines the overall width along the x-axis of the 
brick. LEGO bricks come in different sizes, so this parameter will be useful 
as a way to reuse the same module to draw a variety of brick sizes. We chose 
to set a default value of 4 studs per row, but this is an arbitrary choice.

A variable called width is created to keep track of the overall width of 
the brick, which is based on studs_per_row. Each additional stud increases 
the width of the brick by 8 mm:

width = studs_per_row * 8;

Other dimensions of the LEGO brick remain fixed, unrelated to the 
number of studs per row:

    cube([width, 16, 9.6]);
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A for loop is used to draw each repeated stud in its proper position:

for (x_position=[41 : 82 : width-43]) {
    translate([x_position, 4, 1.7]) cylinder(h=9.6, d=4.8);
    translate([x_position, 12, 1.7]) cylinder(h=9.6, d=4.8);
}

Inside the for loop, the variable x_position keeps track of the x posi-
tion of each stud. The first stud is centered at x = 4 mm 1, and each addi-
tional stud is positioned 8 mm 2 away from the previous stud. Similarly, 
the last stud in each row is centered 4 mm from the overall width of the 
brick 3. Two rows of studs are drawn with the exact same values on the 
x-axis. Since we’re restricting ourselves to just two studs on the y-axis, it’s 
easier to position the rows explicitly at y = 4 mm and y = 12 mm instead of 
using a second loop.

The LEGObrick module is now complete, which means you can use it to 
create LEGO bricks of various sizes, like the ones in Figure 5-5. 

Figure 5-5: A variety of LEGO bricks created with the same  
LEGObrick module

This module is only a simplified design of a LEGO brick, however; it 
won’t function as a real brick would, because the current design doesn’t 
include an interior mechanism on the bottom of the brick for snapping 
bricks together. We leave that as a challenge for you.
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T IP S

You might have noticed a new use of the cylinder module to generate the 
LEGOBrick module:

    cylinder(h=9.6, d=4.8);

This version of cylinder uses a single d parameter to indicate that both 
faces of the cylinder should have the same diameter. In past chapters, we 
would have drawn a cylinder with two separate parameters to indicate the 
radius of individual faces:

    cylinder(h=9.6, r1=2.4, r2=2.4);

OpenSCAD provides four alternative ways of using a cylinder module. 
Each method uses a different combination of named parameters:

    cylinder(h, r|d, center)
    cylinder(h, r1|d1, r2|d2, center)

The | indicates that you can either use r or d, depending on whether you 
prefer using the radius or diameter to define cylinder faces. If both faces have 
the same size, it can be easier and less error-prone to define the size of both 
faces just once. Otherwise, you can use two different parameters to indicate the 
size of each face. Which version you use is up to you!

In prior chapters, we used a single version of the cylinder module to 
reduce the number of new OpenSCAD commands needed to draw both 
cylinder and cone shapes. Alternative versions of the cylinder module are 
introduced in this chapter to illustrate the variety of choices you have in regard 
to choosing and naming parameters. Alternative versions of cylinder and 
other OpenSCAD modules are listed in Appendix A: OpenSCAD Language 
Reference.

Sharing and Collaborating
If you save your modules in separate files, you can reuse your new shapes in 
multiple designs, as you saw earlier in this chapter. Keeping your modules 
separate also allows you to share common design components with other 
people or use other people’s components instead of building everything 
yourself. Splitting a design into multiple modules allows you to collaborate 
more easily.

Let’s walk through a possible collaboration. Say you and a friend 
want to work together to make a 3D animation of a LEGO castle. To save 
time, you decide to split the design into two tasks that can be completed 
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in parallel using two different computers. Your friend decides to design a 
module that will draw a LEGO brick shape, while you will be in charge of 
designing a castle that is made from LEGO brick shapes.

You and your friend first decide what the LEGO module should look like. 
You agree on a name for the module (LEGObrick), any necessary parameters 
and their defaults (studs_per_row), with a default of three studs, and the 
basic shape and size of each brick (24 × 16 × 9.6 mm for a 3×2 brick). Your 
friend then goes off and builds a simple version of the LEGObrick module in a 
file called LEGObrick-module.scad, shown in Figure 5-6: 

LEGObrick();
module LEGObrick(studs_per_row=3) {
    cube([24, 16, 9.6]);
}

Figure 5-6: A simple version of the LEGObrick module

Even though the LEGObrick module isn’t complete (this simple version of 
the module doesn’t have studs yet), you can still use it as a building block 
to start creating the castle design in a file called castle-wall.scad, as shown in 
Figure 5-7.

Figure 5-7: A wall of the LEGO castle that uses a basic  
version of the LEGObrick module



Modules   91

Meanwhile, your friend keeps working on the LEGObrick module, and 
every time it improves, your friend shares their new version of LEGObrick-
module.scad with you. Because OpenSCAD designs are plaintext files (with 
a .scad extension), you can share them by emailing the files as attachments, 
copying and pasting OpenSCAD code directly from email or other docu-
ments, or by using more advanced services like GitHub to make designs 
public. 3D design-sharing websites also exist. One of the more popular ones, 
which supports OpenSCAD directly, is Thingiverse (https://thingiverse.com/).

Every time your friend shares an updated version of LEGObrick-module 
.scad, you replace your old version of the file with the new version. Your castle 
design in castle-wall.scad will update to use the newest definition of LEGObrick 
each time you Preview or Render your castle code. Over time, your design 
may look more like the one shown in Figure 5-8.

Figure 5-8: Building the castle by using the updated  
LEGObrick module

This collaboration strategy saves you time, because you and your friend 
can work on the LEGObrick module and castle design simultaneously. You 
don’t have to wait for your friend to finish a part before you can make prog-
ress on your own part, while your friend can see how small changes in their 
module design effect the overall castle design.

Summary
In this chapter, you learned how to organize your design into smaller logi-
cal components by using modules, which can make your OpenSCAD code 
more readable, facilitate collaboration, and help you customize your design.

When using modules, remember these key concepts:

•	 Module definitions have three parts: a name, a parameter list, and a body.

•	 The body of the module contains a collection of OpenSCAD statements 
that define the unique shape of the module.

https://thingiverse.com/
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•	 To use a module, create the shape by using the name of the module in 
your design. If your module isn’t showing up, check that you’re actu-
ally using the name of the module in your code statements; it’s possible 
you’ve only defined the module.

•	 When designing a module, choose module names and parameters that 
obviously describe their purpose, so someone using your module won’t 
need to read your module definition to know what it does. This can also 
help you later if you have forgotten the module’s details.

•	 Parameters are useful for specifying a module’s characteristics. 
Identifying which variables should be included as parameters is an 
important part of designing a module.

•	 Specifying default values for parameters is a useful way to make some 
parameters optional.

•	 Separating your module definition into other files helps you use the 
module in other OpenSCAD designs. You can also group related mod-
ules into a library. As with modules and variables, choose filenames that 
adequately describe their purpose.

•	 Connecting your design to a module with the use keyword won’t imme-
diately add new shapes to your design. You have to explicitly use the 
module in your code to see the new shape. 

•	 It’s common practice to draw the shape defined by a module at the top 
of a module definition file. This is helpful for testing purposes. 

Try searching online for examples of OpenSCAD modules to see more 
examples of user-defined shapes. You can learn a lot by inspecting and tin-
kering with other people’s solutions, especially when it comes to figuring 
out which parameters to include.
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DESIGN TIME: MODULES

Practice using modules to define each of the shapes in Figure 5-9. We’ve suggested a few 
parameters for each module. Feel free to create modules with a different list of parameters. 

1. Ring with hole_diameter, height, and 
 thickness parameters

2. Pencil holder with diameter, height,
 and thickness parameters

3. Pencil cap with letter and pencil
 _diameter parameters

4. Name tag with name, length, width,
 and height parameters

5. Bag hook with hole_radius, height,
 and thickness parameters

6. Box with length, width, height, and
 thickness parameters

Figure 5-9: Practice using modules to create these designs.
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BIG PROJECTS: MODULES

Now try your hand at these two projects. 

SK YSCR A PER 

Design a module that generates a variety of skyscrapers (Figure 5-10). Control the design of 
your skyscraper by using parameters to determine its length, width, height, and number of win-
dows. Don’t forget to draw windows on the other side of the skyscraper!

Figure 5-10: A variety of skyscrapers generated with the same module

L EGO L IBR A RY 

Build a library of creative brick modules by adding definitions for multiple brick types to the 
same file. Use parameters to control the length of each brick. Create corner bricks, wall bricks, 
and double-sided bricks (Figure 5-11). Try to create your own unique brick type to add to the 
library.

Figure 5-11: A variety of corner, wall, and double-sided LEGO bricks



6
D Y N A M I C  D E S I G N S  W I T H 

I F   S T A T E M E N T S

In this chapter, you’ll learn how to use if 
statements to create OpenSCAD designs 

that respond differently to a variety of condi-
tions. This powerful programming tool gives 

your designs the power to choose from several options 
and execute only certain lines of code. As a result, you 
can create dynamic designs that adapt to changing 
circumstances. For instance, you can use if statements 
to reconfigure a design quickly for 3D printing.

As an example project, here you will learn to use if statements to vary 
the length of tick marks on a ruler to indicate inch, half-inch, and quarter-
inch increments depending on the position of the tick mark. You’ll also 
learn how to use random numbers to vary repeated shapes in order to cre-
ate a more organic variety of design characteristics.

Z
Y

X
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Using if Statements
An if statement uses a Boolean expression (an expression that evaluates 
to either true or false) to compare two values, then determines whether to 
execute code based on that comparison. If the Boolean expression in an 
if statement evaluates to true, the indicated code statements are executed. 
Otherwise, the statements are skipped entirely. The Boolean expression 
describes a condition that must be satisfied in order for the indicated state-
ments to be added to the design.

The following shows if statement syntax:

if (<boolean expression>) {
  // code that is executed only when the boolean expression is true
}

Listing 6-1 is a variation on the skyscraper design created in Chapter 4. 
This new version uses if statements to decide where to place windows and 
doors in the skyscraper (Figure 6-1).

num_rows = 10;
num_col = 6;

building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
  cube([building_width, 10, building_height]);

  for (1 z = [1:1:num_rows]) {
    for  (x = [0:1:num_col-1]) {
    2 if (z == 1) {
      3 translate([x*5+1, -1, -1]) cube([3, 3, 8]); // door
      }
    4 if (z > 1) {
      5 translate([x*5+1, -1, z*5]) cube([3, 3, 4]);  // window
      }
    }
  }
}

Listing 6-1: Using if statements to insert doors and windows depending on floor number

Figure 6-1 shows a skyscraper with doors on the first floor and windows 
on every subsequent floor. Two for loops in Listing 6-1 create the rows and 
columns of windows and doors in this design. The z variable 1 controls the 
vertical position of each row. Next, two if statements use those z values to 
decide whether to add a window or a door to the design. If z equals 1 2, a 
large door is added to the design 3. If z is greater than 1 4, a small window 
is added to the design 5.
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Figure 6-1: A grid of windows on a skyscraper,  
with a row of doors

We’ll evolve this skyscraper design throughout the rest of the chapter. 
However, you might feel that a skyscraper is not a skyscraper without more 
details, especially on the other sides of the building. We totally agree and 
leave the exercise of adding more detail to this simple design as a challenge 
to the reader.

Defining Complex Conditions
You can use an if statement to evaluate many types of conditions by utilizing 
a combination of six Boolean operators and one of two logical operators. In 
addition, you can specify a default scenario (which is executed if the speci-
fied condition is false) by connecting an else statement with an if statement. 
Finally, you can connect several related conditions together by using an else 
if statement. 

Choosing Boolean Operators
OpenSCAD uses six Boolean operators to evaluate the content of variables 
within a Boolean expression. Each of these operators will result in true if 
the comparison is valid, and false if the comparison is not valid:

<    less than

>    greater than

<=    less than or equal to

>=    greater than or equal to

==    equal to

!=    not equal to

The symbols used for many of these Boolean operators are prob-
ably familiar to you from math class. OpenSCAD (as with most other 
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programming languages) changes the symbols a bit so that you can easily 
type them on a keyboard. For instance, you’re probably used to seeing the ≤ 
symbol to indicate less than or equal to. However, programming languages 
commonly use <= instead. In the same way, >= replaces ≥, and != replaces ≠. 
Finally, be sure not to confuse == with =. Because the single equal sign 
already has a use (assigning a value to a variable), Boolean expressions use 
the double equal sign (==) to test whether two values are “equal to” each 
other. For example, Listing 6-1 tests for the equality of two values by using 
the equals (==) operator.

This collection of Boolean operators provides many choices for evalu-
ating variables to determine whether a condition is true or false. You can 
now write a loop that generates different shapes depending on the number 
of times the loop has repeated. As you will see later, you can also specify 
that you’d like to draw a shape only if a certain condition is not true. Using 
Boolean operators in an if statement allows you to create dynamic designs 
with a relatively small number of statements.

Using Logical Operators to Combine Boolean Expressions
Additionally, you can combine multiple Boolean expressions with one of 
two logical operators: && (which stands for and) and || (which means or).

If you use the && operator, all conditions need to be true in order for 
the indicated statements to execute. If you use the || operator, at least one 
of multiple conditions needs to be true. For a better sense of how the && 
operator works, consider the following: 

if (x > 10 && y <= 20) {
  translate([x, y, 0]) cube([3, 4, 3]);
}

This code segment draws a translated cube only when x is greater than 
10 and y is less than or equal to 20. 

Now consider this if statement that uses the || operator:

if (x > 10 || y <= 20) {
  translate([x, y, 0]) cube([3, 4, 3]);
}

A translated cube is drawn when either x is greater than 10 or y is less 
than or equal to 20. Only one of the Boolean expressions connected by an 
or operator needs to evaluate to true in order for the shape to be drawn. 
The cube will also be drawn if both Boolean expressions connected by the 
or operator are true. 

Following an Expanded Order of Operations
You can construct complex Boolean expressions that involve many arith-
metic, Boolean, and logical operators. As in math class, where you learn to 
perform multiplication before addition, even if addition comes first in the 
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arithmetic expression, OpenSCAD evaluates expressions following a well-
defined order of operations: 

1.	 ( )

2.	 ^

3.	 *, /, %

4.	 +, -

5.	 <, >, <=, >=

6.	 ==, !=

7.	 &&

8.	 ||

Operators at the same level in the order of operations are performed 
according to the order of their occurrence in the expression as it is read 
from left to right. Otherwise, operators at the top of this list have a higher 
precedence and are calculated prior to operators at the bottom of the list, 
even if that means the expression is calculated from the inside out.

Making Two-Way Choices with if…else Statements
A basic if statement executes a section of code only when the Boolean 
condition is true. To execute alternate code when the Boolean condition is 
false, attach an else statement to an if statement. An if...else statement 
creates a two-way branch in your code, allowing you to execute different col-
lections of statements for each truth condition.

Consider the following if...else syntax:

if (<boolean expression>) {
  // code that is executed only when the boolean expression is true
}
else {
  // code that is executed only when the boolean expression is false
}

If the Boolean expression in the if statement is true, the first group 
of statements is executed. If the Boolean expression in the if statement is  
false, the statements contained within the else section is executed. The else 
section of an if statement is often called the default condition, because it 
describes what should happen when the condition specified in the if state-
ment is false. An else statement is an optional extension to an if statement 
and is appropriate for mutually exclusive branching scenarios, where there is 
no possibility that you want to include both sections of code in your design.

You could easily redesign Listing 6-1 by using an else statement. The sky-
scraper in Figure 6-1 has exactly one row of doors. All of the remaining rows 
will have windows. Because the for loop should sometimes draw a door and 
all other times draw a window, you could rewrite the if statement like this:

num_rows = 10;
num_col = 6;
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building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
  cube([building_width, 10, building_height]);

  for (z = [1:1:num_rows]) {
    for (x = [0:1:num_col-1]) {
      if (z == 11) {
       2 translate([x*5+1, -1, -1]) cube([3, 3, 8]); // door
      }
      else {
       3 translate([x*5+1, -1, z*5]) cube([3, 3, 4]);  // window
      }
    }
  }
}

If the Boolean expression z == 1 1 is true, OpenSCAD draws a door 2. 
If the Boolean expression is false, OpenSCAD draws a window 3.

Using Extended if Statements
An extended if statement attaches a condition to an else statement to cre-
ate an ordered collection of related decisions. OpenSCAD evaluates the 
Boolean expressions in an extended if statement in order until one of the 
expressions evaluates to true. You can optionally include an else statement 
at the end of an extended if to provide a catchall default option in case all 
of the decisions evaluate to false.

The syntax for an extended if statement looks like this:

if (<boolean expression>) {
  // code that is executed only when the boolean expression is true
}
else if (<boolean expression>) {
  // code that is executed only when the first boolean expression is false
  // and the second boolean expression is true
}
else {
  // optional default scenario
  // code that is executed only when both boolean expressions are false
}

You can add as many else if statements as needed to describe any number 
of mutually exclusive design possibilities, which is particularly useful when 
you want to ensure that exactly one of many related outcomes should hap-
pen. Each Boolean expression in the extended if statement is evaluated in 
order until one is found that evaluates to true. Only the code section for that 
Boolean expression is executed, while the remaining sections are skipped. If 
no Boolean expressions are true, the code specified in the optional else sec-
tion (if provided) is executed. Because the else section describes the default 
possibility, it must be included at the end of an extended if statement.
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Listing 6-2 uses an extended if statement to draw tick marks of vari-
ous sizes on a ruler (Figure 6-2). This design creates an inch-based ruler 
with tick marks at three repeating intervals: one inch, a half inch, and 
a quarter inch. Tick marks at inch intervals are the longest, followed by 
slightly shorter half-inch tick marks, and even shorter quarter-inch tick 
marks. OpenSCAD is unit-less, so this design uses basic proportionality to 
divide every inch on the ruler into four equal-sized “gaps.” It is intended to 
be resized to its exact width in your 3D-printing preparation software just 
prior to printing.

ruler(5);

module ruler(inches) {
1 gap_size = 1; // 1 unit per quarter inch
  total_marks = 4 * inches; // inch, half inch, quarter inch
    
  width = gap_size * total_marks;
  length = 4 * gap_size;
  height = 0.5 * gap_size;
    
  mark_width = 0.25 * gap_size; 
  mark_height = 1.5 * height;

  // main ruler body
  difference() {
    cube([width, length, height]);
    translate([width-gap_size, length-gap_size, -0.5]) 
      cylinder(h=height+1, r=0.15*length, $fn=20);
  }

  // tick marks
2 for(t = [1:1:total_marks-1]) {
    mark_x = gap_size * t - 0.5 * mark_width;

  3 if (t%4 == 0) { // inch marks and number labels
      translate([gap_size * t, 0.65 * length, 0])
        linear_extrude(mark_height)
          text(str(t/4), size=gap_size, halign="center");
      translate([mark_x, 0, 0])
        cube([mark_width, 0.5 * length, mark_height]);
    }
  4 else if (t%2 == 0) { // half-inch marks
      translate([mark_x, 0, 0])
        cube([0.75 * mark_width, 0.25 * length, mark_height]);
    }
  5 else { // quarter-inch marks
      translate([mark_x, 0, 0])
        cube([0.5 * mark_width, 0.125 * length, mark_height]);
    }
  }
}

Listing 6-2: Using extended if statements to differentiate tick mark sizes on a ruler
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Figure 6-2: A five-inch ruler

First, a collection of variables is defined to help us organize our 
design 1: gap_size indicates that one OpenSCAD unit will represent the 
width taken by a single quarter-inch gap between tick marks, and total 
_marks keeps track of the total number of tick marks needed (according  
to the inches parameter of the ruler module). We’ll need four tick marks 
per inch as we’ll include marks at the inch, half-inch, and quarter-inch 
intervals. The other variables relate the proportionality of various features 
of the ruler to these two initial choices. Organizing the module variables 
in this manner allows you to quickly update your design in the future. For 
instance, you might decide to make a longer ruler in your next version. This 
change could easily be accomplished by making a single change: the calcu-
lation that determines the value of length variable.

The for loop 2 draws something for every needed tick mark, except 
for the first and last tick marks, which are meant to be inferred (as they are 
the beginning and end of the ruler). The t variable in the for loop keeps 
track of the number of tick marks being drawn, while mark_x is used to 
keep track of the location of each new tick mark along the x-axis. The first 
Boolean expression 3 tests whether the t variable is divisible by 4 (remem-
ber, % calculates the remainder). If this condition is true, the longest tick 
mark is added to the design to indicate an inch interval. If the t variable 
isn’t divisible by 4, the second Boolean expression 4 tests whether it is divis-
ible by 2. And if it is, the second-longest tick mark is added to the design 
to indicate a half-inch mark. Only if the t variable isn’t divisible by either 
4 or 2 will the shortest tick mark be added to the design 5 by the else 
statement.

Notice the careful ordering of the decisions used in this extended if 
statement. The for loop produces a series of numbers that are each evalu-
ated by the extended if statement: 1, 2, 3, 4, 5, 6, 7, 8, and so on. Numbers 
like 4, 8, and 12 are divisible by both 4 and 2, so which condition should be 
executed? Extended if statements evaluate each decision in order, execut-
ing only the code contained in the if statement with the first Boolean 
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expression that is true. Even though some numbers are divisible by both 4 
and 2, the second decision 3 is evaluated only if the first expression 2 is 
false. Thus, only one tick mark is drawn for each value of t in the for loop. 
This is an example of a mutually exclusive scenario: one, and only one, of 
the three tick mark lengths should be drawn for each value of t.

Using Nested if Statements
Placing an if statement inside another if statement is a way to guarantee 
that a Boolean expression should be considered only if another Boolean 
expression is true. At a basic level, a nested if statement can replace the && 
operator:

if (x < 8 && y == 10) {
  // code that is executed only when both boolean expressions are true
}

So you could rewrite the preceding code with a nested if statement:

if (x < 8) {
  if (y == 10) {
    // code that is executed only when both boolean expressions are true
  }
}

It’s probably easiest to use the && operator for simple combinations of 
Boolean expressions that all need to be true for satisfying certain design 
conditions. However, using nested if statements can be easier when you 
want to test the outcome of multiple Boolean expressions that can either be 
true or false:

if (x < 8) {
  if (y == 10) {
    // code that is executed only when both x < 8 and y == 10
  }
  else if (y < 10) {
    // code that is executed only when both x < 8 and y < 10
  }
  else {
    // code that is executed only when both x < 8 and y > 10
  }
} else {
  if (y == 10) {
    // code that is executed only when both x >= 8 and y ==10
  }
  else {
    // code that is executed only when both x >= 8 and y !=10
  }
}

It’s usually possible to describe complex conditions using a variety 
of combinations of Boolean operators, logical operators, extended if 
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statements, and nested if statements. Often, the best choice is the combi-
nation of conditions that makes the most sense to the person creating the 
design.

Useful Applications of if Statements
You should include an if statement whenever you want your OpenSCAD 
design to vary according to a specific condition. The following situations 
are examples of when you may want to use if statements in your projects.

Setting Up a Design Mode and Print Mode
Consider the Towers of Hanoi project from Chapter 4. When designing 
the series of stacking discs, it was convenient to visualize the discs stacked 
vertically on one of the pegs. However, that configuration is not the best for 
3D-printing the design, because the disks are resting on top of each other, 
and you wouldn’t want all the disks to be printed as one piece. 

A useful technique is to create two versions of your design: one config
uration for visualizing the final result and one for 3D-printing it. Use design 
mode to build your design in a way that is easy to visualize, and use print mode 
to reorganize the same design in a way that is better for 3D printing.

Listing 6-3 incorporates these two design configurations; Figure 6-3 
depicts print mode.

$fn = 100;
mode = "print"; // or "design"

cube([200, 60, 10], center=true);

for (x = [-60:60:60]) {
  translate([x, 0, 5]) cylinder(h=70, r=4);
}

1 if (mode == "design") {
  for (d = [2:1:7]) {
    translate([-60, 0, 10 + (7-d)*10]) disc(d*4, 5);
  }
}
2 else if (mode == "print") {
  for (d = [2:1:7]) {
    if (d > 4) {
      translate([60*d - 350, 60, 0]) disc(d*4, 5);
    }
    else {
      translate([60*d - 200, 100, 0]) disc(d*4, 5);
    }
  }
}

module disc(disc_radius, hole_radius) {
  difference() {
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    cylinder(h=10, r=disc_radius, center=true);
    cylinder(h=11, r=hole_radius, center=true);
  }
}

Listing 6-3: Using if statements to differentiate print mode and design mode

Figure 6-3: A Towers of Hanoi project set up for printing

Listing 6-3 uses a variable named mode and an extended if statement 
to decide whether to draw the shapes in "print" mode or "design" mode. 
If mode == "design" 1, the disks are displayed vertically, stacked on top of 
one another, which makes it easy to visualize and check for correctness. If 
mode == "print" 2, the discs are arranged in two horizontal rows, which is an 
appropriate setup for 3D printing. This differentiation allows you to quickly 
switch back and forth between the two configurations. When you are ready 
to print, all you need to do is change the value of mode to "print" to make 
the design change automatically. 

Using Random Numbers as a Design Element
Random numbers are a fun way to add unpredictable elements to your 
designs, which is convenient when a design has features that you want to be 
similar, but not exactly the same. For instance, you could easily use random 
numbers to generate an entire city of skyscrapers, all with different heights, 
widths, and numbers of windows. 

When you roll a six-sided die, you can expect that one of the six values 
(1, 2, 3, 4, 5, 6) on the die will be the result of the roll, but you can’t predict 
the exact outcome. A similar procedure happens with the rands function. 
You can be certain that a decimal value within a specified range will be 
picked without knowing exactly which value will be picked until the state-
ment is executed.
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 Use the mathematical rands function to generate random numbers. 
The following line of code picks two random decimal numbers between 0 
and 1:

number_list = rands(0, 1, 2);

The first parameter you pass to rands specifies the lowest decimal num-
ber that the random number generator can choose. In this case, the lowest 
possible number is 0.0. The second parameter specifies the highest possible 
number, which is 1.0 for this example. The third parameter, 2, specifies how 
many numbers will be picked. The variable number_list remembers the gen-
erated list of random numbers so you can use them later.

The following code segment chooses three random numbers from 10 
to 20, then stores the list of three numbers in a variable called number_list. 
Each random number in the list is then printed to the console window 
with the number_list variable, followed by the position of each number in 
the list within square brackets ([ ]). As with most programming languages, 
OpenSCAD considers the first element in a list to be in position [0]:

number_list = rands(10, 20, 3);

echo(number_list[0]);
echo(number_list[1]);
echo(number_list[2]);

Every time you preview this code, you will see a different combination of 
three randomly chosen decimal numbers from 10 to 20 printed to the console. 

The rands function can choose any decimal number within the range 
you provide, but sometimes it’s convenient to restrict a design to working 
only with integers (that is, numbers without decimals). If your design needs 
to pick a random integer within a certain range, the mathematical round 
function can be used to map randomly generated decimals to integers. 
The round function examines the decimal extension of a number to decide 
whether the decimal number should be “rounded up” or “rounded down” 
according to whether the decimal extension is >= 0.5 or < 0.5, respectively:

number_list = rands(9.5, 20.49, 3);

echo(round(number_list[0]));
echo(round(number_list[1]));
echo(round(number_list[2]));

Every time you run this code, you will see a different combination of 
three integers from 10 to 20 printed to the console because of the use of 
the mathematical round function in each echo statement. Notice that the first 
two parameters of the rands function have been changed to 9.5 and 20.49 
in order to ensure that each integer in the original range (that is, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, or 20) is picked an approximately equally likely 
number of times. Because we wouldn’t want to allow for a random choice of 
20.5 and have it rounded up to 21, we use 20.49 as the highest possible value 
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that can be generated. This produces a slightly lower possibility of 20 being 
randomly generated as compared to the other integer values in the range, 
but the difference is very small. 

Random numbers are a useful way to generate design elements only 
a certain percentage of the time. For instance, you could modify your sky-
scraper design from the preceding chapter so that 50 percent of the time, 
the skyscraper includes a water tower on top of the roof. 

Listing 6-4 draws the same simple skyscraper from Listing 6-2. This new 
version of the design sometimes includes a water tower to the top of the 
building (Figure 6-4).

num_rows = 10;
num_col = 6;

building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
  cube([building_width, 10, building_height]);

  for (z = [1:1:num_rows]) {
    for (x = [0:1:num_col-1]) {
      if (z == 1) {
        translate([x*5 + 1, -1, -1]) cube([3, 3, 8]);
      }
      else {
        translate([x*5 + 1, -1, z*5]) cube([3, 3, 4]);
      }
    }
  }
}

1 draw_tower = rands(0, 1, 1);

2 if (draw_tower[0] < 0.5) {
   translate([building_width/6, 5, building_height])
     watertower(building_width/4);
}

module watertower(width) {
  $fn = 20;
  cylinder(h=5, r=width/2);
  translate([0, 0, 5]) cylinder(h=5, r1=width/2, r2=0);
}

Listing 6-4: if statements and random numbers to sometimes draw a water tower

After drawing a basic building, the design generates a list with a single 
random number between 0 and 1 1. This list is stored in the draw_tower vari-
able. An if statement 2 tests the randomly generated number and draws 
a water tower on top of the skyscraper only if the number generated is less 
than 0.5. That means the skyscraper will have a water tower approximately 
50 percent of the time, and no water tower the other 50 percent of the time. 
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Figure 6-4: A skyscraper with a water tower

Next, let’s use random numbers to create a city block of randomly sized 
skyscrapers (Figure 6-5):

1 use <skyscraper.scad>

num_buildings = 5;

2 width_list = rands(10, 30, num_buildings); 
length_list = rands(20, 30, num_buildings);
height_list = rands(20, 100, num_buildings);

window_row_list = rands(2.5, 10.49, num_buildings);
window_col_list = rands(2.5, 10.49, num_buildings);

watertower_list = rands(0, 1, num_buildings);

for (n=[0:1:num_buildings-1]) {
3 width = width_list[n]; 
  length = length_list[n];
  height = height_list[n];

4 window_rows = round(window_row_list[n]);
  window_cols = round(window_col_list[n]);

  watertower = round(watertower_list[n]);

  translate([0, n*30, 0]) {
  5 skyscraper(width, length, height, window_rows, window_cols, watertower);
  }
}
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Figure 6-5: A row of randomly sized skyscrapers, some  
with a water tower

The skyscraper module is imported from skyscraper.scad 1 to keep the 
design small and manageable. Next, lists of random numbers (of size num 
_buildings) are generated for each parameter of the skyscraper module 2. 
A for loop then draws a number of skyscrapers according to the value 
indicated by the num_buildings variable. For each new skyscraper, variables 
are assigned random numbers from the appropriate spot in each list 3. 
Decimals are rounded to integer values 4 for parameters where decimal 
values wouldn’t make sense (you wouldn’t want half of a window to be 
drawn). Finally, this collection of randomly generated values specifies the 
various parameters 5 of each new skyscraper. Every time you preview or 
render this design, each building will be rendered differently, because the 
random values used to generate each skyscraper will be different. This tech-
nique is useful for making repeated computer-generated designs appear 
more organic and natural.

Summary
This chapter introduced the concept of creating conditional branches with 
if statements that allow you to create designs that adapt to changing circum-
stances. Each section of an if statement executes only when a specific condi-
tion is true, allowing you to generate designs with varying characteristics. 
This variety allows you to describe complex designs concisely. 
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When utilizing if statements to create dynamic designs, keep these con-
cepts in mind:

•	 if statements use a Boolean expression to evaluate whether a condition 
is true or false. 

•	 if statements execute only if their Boolean expression is true. 

•	 All expressions in OpenSCAD are evaluated according to an order of 
operations, which means that a complex Boolean expression can be 
evaluated from the inside out.

•	 A nested if statement is an if statement placed inside another if 
statement.

•	 To indicate what should happen when a Boolean expression is false, 
extend an if statement with an else statement. 

•	 You can combine several mutually exclusive decisions in one extended 
if statement.

•	 An else statement allows you to provide a default collection of state-
ments that execute when none of the Boolean conditions in an 
extended if statement are true.

•	 You can use if statements with random numbers to generate an organic 
naturalness to your design.

•	 if statements can help you organize your design into modes (like 
"print" or "design"), making it easy to change important configuration 
details. 
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DESIGN TIME: IF STATEMENTS 

Before reading further, practice the skills you learned in this chapter by building each of these com-
plex designs (Figure 6-6). Be sure to use at least one if statement in each exercise. 

1. Wave 2. Brick wall

3. Necklace 4. Wallpaper

5. LEGO bricks with hole (when possible) 6. Random city block

Figure 6-6: Practice creating all of these designs.
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BIG PROJECTS: DECISIONS

Practice the skills you’ve learned so far by modeling the following three projects.

R A NDOM FOR ES T

Generate a forest (Figure 6-7) by using random numbers to choose from a variety of tree modules. 
Design each tree module to take width and height as parameters.

Figure 6-7: Random forest

CLOCK

Design a clock that uses if statements to vary the design characteristics of its face markings. Try to 
emphasize 15-minute positions (Figure 6-8). It may help to use nested if statements to apply differ-
ent transformation operations to various sections of the text-based hour labels of the clock. Applying 
the same operations to every number won’t produce the orientations you see in Figure 6-8. 

Figure 6-8: Clock
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CIT Y OF R A NDOM SK YSCR A PERS

Extend various exercises in this chapter to generate an entire city of randomly sized skyscrapers 
(Figure 6-9).

Figure 6-9: City of randomly sized skyscrapers





7
D E S I G N I N G  B I G  P R O J E C T S

In this chapter, you’ll extend the lessons 
you’ve learned so far to build a complex 

design with OpenSCAD. Specifically, you’ll 
employ an iterative design cycle to plan and 

complete a larger project. First, you’ll apply computa-
tional thinking to analyze and plan your design. Then, 
you’ll apply the popular walking skeleton approach to 
evolve a low-fidelity prototype from a basic, abstract  
design into a highly detailed final design. Using this method, you’ll con-
nect all the project’s major components before fleshing out each compo-
nent’s individual details. As a final step, you’ll fill in the smaller details to 
finish the project.

Z
Y

X
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The Design Cycle
The design cycle is a common methodology with four sequential stages to 
help develop solutions to complex design projects:

Investigate

Understand what you’re trying to accomplish. What important consid-
erations or constraints might affect your solution? What do you need in 
order to accomplish your goals? Can you picture what you’re trying to 
build?

Plan

Divide the process for building your solution into a series of steps. 
Because you’re designing with OpenSCAD (a programming language), 
you can apply computational thinking concepts (decomposition, abstrac-
tion, finding patterns, and algorithms) at this stage of the design cycle to 
identify the best approach to accomplish your goals.

Create

Follow your plan. Creation often reveals new problems, so it’s better 
to build big-picture solutions before focusing on the details. Using 
a walking skeleton approach to develop a complex design can help 
make it easier to repeat the Create stage several times. Each repetition 
of the Create stage (called a design iteration) adds more detail to the 
overall design, allowing you to focus on the most important structural 
details first. 

Evaluate

Compare each iteration of the Create stage (what you’ve actually built) 
with the original problem (what you intended to build). Identify areas 
of concern and then repeat any step of the design cycle as needed. 

Keep in mind that the stages of the design cycle are more like a looping 
cycle. You will probably revisit stages several times throughout the process 
until you are satisfied with your final design. 

Leaning Tower of Pisa Model
Let’s follow the design cycle to create a model of Italy’s famous Leaning 
Tower of Pisa (Figure 7-1). 

The focus of this project is to combine the design process with com-
putational thinking, so we’ll create a recognizable likeness of this famous 
building, rather than an architecturally accurate scale model. 
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Figure 7-1: The Leaning Tower of Pisa (photo by Svetlana Tikhonova,  
covered by the CC0 1.0 Universal [CC0 1.0] Public Domain  
Dedication license; replicated in Figures 7-2 to 7-4)

Step 1: Investigate—Define Multiple Views 
The first step is to search for photos of the Leaning Tower of Pisa to help 
visualize the final design. We collected images showing different views to 
provide a sense of what the building looks like from every angle, including 
front, back, left, right, and top. We (unsurprisingly) couldn’t find a photo of 
the bottom view, but we looked for photos that clearly show how the tower 
interacts with the ground. 

The Investigate step of the design cycle is important even if you want to 
build something of your own invention. If you can’t find an exact picture of 
what you want to build, look for something similar. If you don’t have any luck, 
sketch a rough draft of your intended design by hand. Visualizing your design 
before you code it will save you much time and frustration. The idea is to draw 
a map of your development process before typing a single line of code. 

Step 2: Plan—Apply Computational Thinking 
With a firm understanding of what the Leaning Tower of Pisa looks like, 
you’ll analyze the building to identify where you can apply the principles of 
computational thinking: decomposition, patterns, abstraction, and algorithms. 
Applying these principles when creating designs with OpenSCAD (or any 
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other programming language for that matter) will help you work smarter, 
not harder, and will allow the computer to do the tedious work for you. 

Decomposition

Decomposition is the process of breaking a large, complex problem into 
smaller, easier-to-describe subproblems, which helps you recognize when 
to create modules and separate files for a large project. One way to decom-
pose the Leaning Tower of Pisa is to divide the building into three distinct 
sections (bottom, middle, and top), all of which are “leaning” at the same 
angle. You then can break those three sections into smaller subcomponents, 
like columns, levels, fences, and archways (Figure 7-2). 

Archway

Top section

Level

Bottom section

Middle section

Fence

Column

Figure 7-2: Using basic decomposition to break the tower into smaller components
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Patterns

Finding patterns in a design is a bit like decomposition, because the goal is 
to break a complex design into smaller, more manageable pieces. However, 
the objective with patterns is to summarize the process by which elements 
repeat (Figure 7-3). 

Level

Level

Level

Level

Level

Level

Repeating
archways

Repeating
columns

Repeating
columns

Figure 7-3: Patterns of repeating shapes 

For instance, the middle section of the Leaning Tower of Pisa is com-
posed of essentially the same group of shapes repeated six times. Each of 
those “levels” also includes repeated arches/columns around its outside 
circumference. In fact, both the bottom and the top sections also contain 
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repeated arches/columns (although at different sizes and intervals from the 
middle section). Additionally, the top section has two fences with repeated 
posts, as well as a repeated archway shape in numerous sizes. 

Abstraction

Abstraction is the process of summarizing smaller details with higher-level 
descriptions in order to communicate big-picture information. Rendering 
each section of the Leaning Tower of Pisa as a cylinder is a general abstrac-
tion that omits a lot of detail (Figure 7-4). 

Abstraction

Figure 7-4: Diagram of the Leaning Tower of Pisa abstracted as three cylinders

Abstracting the three sections as cylinders allows you to focus on larger 
elements (like the angle of the tower’s lean and each section’s proportional 
sizing) before considering the smaller, less consequential features. 

Algorithms

Because so much repetition exists within the Leaning Tower of Pisa’s archi-
tecture, our design algorithm for creating the tower requires numerous 
loops. For instance, the columns around the tower’s perimeter involve a 
loop that repeatedly increments the angle of rotation. The looping columns 
occur in all three sections (bottom, middle, and top), although each section 
contains different numbers of repeating columns of various sizes. 



Designing Big Projects   121

The multiple use cases for the different sizes of columns around the 
tower’s perimeter suggest that a parameterized column module would be 
an appropriate algorithmic choice; incorporating parameters in the mod-
ule allows you to reuse the same basic code for each section of the tower. In 
fact, the design for this project provides many opportunities to use modules 
in your code. Each of the basic components you identify during a project’s 
Decomposition and Patterns analysis will likely be a candidate for a module. 
In this case, you can create modules for the top section, middle section, bot-
tom section, level, column, archway, and fence.

Step 3: Create—Use a Walking Skeleton Approach 
The goals of the first two steps of the design cycle are understanding what 
you want to build and creating a well-defined strategy for breaking a large, 
complex project into a collection of manageable pieces. In step 3, you start 
coding by using the walking skeleton development process, allowing you to 
evolve the design from rough building blocks into a final highly detailed fin-
ished piece. You’ll use this approach to create several versions of the tower, 
making incremental improvements with each design iteration (Figure 7-5). 

Figure 7-5: Using the walking skeleton approach for the evolution of the Leaning Tower  
of Pisa

The first versions of the top, middle, and bottom sections in Figure 7-5 
are rough abstractions of the final, detailed versions of those same sections. 
The design’s main pieces are connected first as an architectural skeleton, 
then fleshed out over time in an evolutionary process—hence the name, 
walking skeleton.

Step 4: Evaluate—Decide Which Design Process Steps to Repeat
The “final” step of the design cycle is more of a question than anything 
else. Does your design accomplish what you intended? Based on the answer, 
decide which steps of the design process you need to revisit. 

To answer that question for the tower example, you’ll visually compare 
the rendered OpenSCAD model of the tower with a photograph of the real 
Leaning Tower of Pisa. In fact, you’ll apply the Evaluate step after each 
iteration of the walking skeleton to determine which features to add for the 
next iteration.
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Walking Skeleton: Building the Leaning Tower of Pisa
For the remainder of this chapter, you’ll build several versions of the 
Leaning Tower of Pisa in a series of design iterations to demonstrate the 
walking skeleton development process. Each version will add more details, 
so you’ll compare each iteration with the reference photo and reconsider 
your plan and algorithms as you go. This approach allows you to apply the 
design cycle to each iteration without having to worry too much about the 
way the code is organized or connected.

Iteration 1: Connecting the Tower’s Basic Building Blocks
The goal for the first version of the tower design is to create and connect 
the building’s three sections: top, middle, and bottom. You’ll also include a 
platform for stability (the tower is leaning, after all). 

Decomposing the building’s overall design into smaller pieces provides 
the setup to evolve the design in stages, as you’ll be able to edit the tower’s 
various sections independently. Initially, you’ll generate only basic cylinders 
as big-picture approximations of each section’s design, because the first 
stage of a walking skeleton focuses solely on connecting the project’s sepa-
rate building blocks (Figure 7-6). 

Figure 7-6: An abstract tower with three sections
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Although you could use a series of modules contained within one 
very large file, you’ll instead separate these sections into stand-alone files 
(bottom.scad, middle.scad, and top.scad) and create one connector file (tower 
.scad). Having the code in separate files allows you to create, find, and edit 
relevant modules for each section easily. You could also use this multi-file 
approach to collaborate with others, so each person could focus on a differ-
ent file simultaneously. 

The trickiest part of this first step is considering how the different com-
ponents of the design interact with each other. Usually, this means identify-
ing the crucial information each piece of the design needs in order to be 
drawn. For instance, to draw an abstract, cylinder-based representation of 
each section, you need, at minimum, a height and radius for that section. 
The main project file (tower.scad) will communicate that information to 
each section via module parameters. 

Because the top, middle, and bottom sections all use a cylinder as an 
abstract representation of the final design, creating those files first is rela-
tively easy. The code for each section looks very similar at this stage of the 
design, which is another advantage of abstraction. You don’t need to worry 
about small details at the moment, so you can copy and paste code in the 
three files with only minimal changes.

The bottom.scad file defines a cylinder to create a simple version of the 
tower’s lowest section:

// bottom.scad v1
1 module bottom_section(width, height) {
    radius = 0.5 * width;
    cylinder(h=height, r=radius);
}

The tower.scad file communicates the dimensions for the bottom section 
to the bottom_section module via the width and height parameters 1.

Next, the middle.scad file defines a starting version of the middle 
section:

// middle.scad v1
1 module middle_section(width, height) {
    radius = 0.5 * width;
    cylinder(h=height, r=radius);
}

Again, the tower.scad file communicates the width and height to the 
middle_section module via the width and height parameters 1.

Similarly, the top.scad file defines a basic cylinder to represent the tow-
er’s top section:

// top.scad v1
1 module top_section(width, height) {
    radius = 0.5 * width;
  2 cylinder(h=height, r=radius);
}
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As with the bottom and middle sections, the tower.scad file uses param-
eters to supply needed dimensions to the top_section module 1. The order 
and number of parameters in each of the three modules is the same. This 
is a deliberate choice to simplify the design’s architecture. As the complex-
ity of the design increases, this consistent interface between top.scad, bottom.
scad, middle.scad, and tower.scad will make adjusting the proportions of each 
section easier. The decision to think of each cylinder’s measurements in 
terms of the structure’s radius rather than its diameter 2 was also deliber-
ate (though somewhat arbitrary). At this stage, using width as the cylinder’s 
diameter would also make sense.  

Next we create tower.scad, which provides the necessary dimensions and 
connects the tower’s three sections with the platform: 

// tower.scad v1
1 use <bottom.scad>
use <middle.scad>
use <top.scad>

2 tower_height = 100;
tower_width = 0.3 * tower_height;
bottom_height = 0.2 * tower_height;
middle_height = 0.65 * tower_height;
top_height = 0.15 * tower_height;

base_width = 2 * tower_width;
base_height = 0.1 * tower_width;

lean_angle = 4;

3 $fn = 20;

4 rotate([lean_angle, 0, 0]) {
    color("grey") {
        bottom_section(tower_width, bottom_height);
    }
    color("lightgrey") {
        translate([0, 0, bottom_height])
            middle_section(tower_width, middle_height);
    }
    color("white") {
        translate([0, 0, bottom_height + middle_height])
          5 top_section(tower_width, top_height);
    }
}

color("lightgreen") {
 6 cube([base_width, base_width, base_height], center=true);
}
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The first section of the tower.scad file links to the three files described 
previously that define the tower’s top, middle, and bottom sections 1. 
The next section defines variables to help organize the tower’s important 
characteristics 2. 

Since the design includes not only the tower but also a platform for 
stability, you create variables to organize the overall tower’s height and 
width (tower_height and tower_width), the height of each section of the tower 
(bottom_height, middle_height, and top_height), the height and width of the 
platform (base_height and base_width), and the overall angle of the “lean” of 
the tower (lean_angle). You initially set the tower_height variable to an arbi-
trary value, and then use it as part of the definition for most of the other 
variables. For instance, the height of the bottom section is 20 percent of the 
tower_height variable, so if you want to change the size of the entire design, 
you need to change only the tower_height variable’s value. 

Next, you use a relatively small number of segments (20) to approxi-
mate curved shapes to speed up the rendering of the initial designs 3. The 
last design iteration increases the number of segments to 100 in order to 
generate smoother curved surfaces in the final design. 

To avoid duplicating the same rotate operation for all three sections, 
you use a single operation to apply a consistent angle of rotation to each 
of the three sections 4. Each section is called via the appropriate module, 
with parameters to adjust its width and height. The translate operation 
moves the middle and top sections along the z-axis 5. 

Finally, you draw the platform as a simple cuboid 6. You also 
apply different colors to the ground and each section to signify basic 
proportionality.

From this point on, you won’t need to make major changes to the 
tower.scad file. Your initial efforts to size and place each section correctly 
will form the architectural “skeleton” of the tower design, while your next 
design iterations will fill in missing details for the tower’s top, middle, and 
bottom sections. The only changes you might need to make to this file in 
the future would involve adjusting parameters to tweak proportionality 
as your design evolves, or changing $fn to increase the rendered model’s 
smoothness. You’d simply swap out numerical values rather than write new 
code statements to make those changes.

Iteration 2: Finding Repetition in the Middle Section 
Let’s take a closer look at the tower’s middle section (middle.scad) for the 
second iteration and apply some computational thinking techniques from 
the planning stage—namely, decomposition and finding patterns. In the 
middle section, the same collection of shapes (or levels) repeats vertically 
six times (Figure 7-7).
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Figure 7-7: Abstract Leaning Tower of Pisa with  
a looping middle section

Figure 7-8 shows just one of those repeated level shapes. 

Figure 7-8: A single level shape
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To create these repeated levels, you need to make the following changes 
to the middle.scad file: 

// middle.scad v2
level(50, 25);

module middle_section(width, height) {
   level_height = height / 6;
   level_radius = 0.5 * width;

 1 for (h=[0:1:5]) {
     floor_offset = h * level_height;
       
     translate([0, 0, floor_offset]) 
       level(level_radius, level_height);
   }
} 

2 module level(level_radius, level_height) {
    lip_height = 0.1 * level_height;
    inner_radius = 0.7 * level_radius;
    overhang_height = 0.3 * level_height;
  3 overhang_radius = 0.95 * level_radius;
    
    // lip
    translate([0, 0, level_height - lip_height])
      cylinder(h=lip_height, r=level_radius);
    
    // overhang
    translate([0, 0, level_height - lip_height - overhang_height]) 
       cylinder(h=overhang_height, r=overhang_radius); 
    
    // inner structure
    cylinder(h=level_height, r=inner_radius);
}

These changes add more detail to the middle section so it’s no longer an 
abstract cylinder. The level module 2 organizes all the shapes that construct 
each floor of the middle section, and a for loop 1 creates a new level shape 
repeatedly for each of the six floors in the section. Each level of this section 
now includes a lip that extends to the full radius of the tower, an overhang 
that provides a ceiling for columns, and an inner structure to house stairs, 
doors, and so forth. You create several variables to relate the size of each level 
feature (lip_height, inner_radius, overhang_height, and overhang_radius) to the 
level module parameters (level_radius and level_height) 3.

With this repeating level module, you can simultaneously update all six 
floors at once by making a change in exactly one place. For instance, if you 
want to make each level’s lip a little thicker or change the overhang radius to 
provide more room for columns, you can make a single, simple change to the 
level module definition. Because you are adding detail to only the middle_ 
section module in this phase of our walking skeleton approach, middle.scad is 
the only file you needed to update for the second iteration of the tower design. 
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To see these new changes reflected in the overall design (Figure 7-7), 
save middle.scad, and then preview the entire design in tower.scad. In addi-
tion to making your design changes permanent, saving the middle.scad file 
lets OpenSCAD know you want other files to use the updated code. If you 
want to see the middle_section or level shapes in isolation, create the shape 
at the top of middle.scad and then preview that file. You can include a state-
ment to draw a middle_section or level shape in middle.scad without worrying 
that the shape will also automatically show up in other files. Connecting 
another file with middle.scad with a use directive simply means that module 
definitions from middle.scad will be accessible in tower.scad. No drawn shapes 
from middle.scad will be shown unless the connected file uses a module from 
middle.scad. 

Iteration 3: Adding More Details to the Middle Section
The next pattern to consider in your computational thinking is the repeti-
tion of columns and arches along each floor’s perimeter in the middle sec-
tion (Figure 7-9).

Figure 7-9: A level with repeated columns

To apply these new patterns to the design, you create a column shape and 
repeat that new shape along the circumference of the level module. This 
means you need to modify the middle.scad file again, as that’s where the 
level module is defined. To create a column shape, you also define a column 
module in a new column.scad file. 

In the design cycle’s planning phase, you noticed that columns and 
arches repeat around the circumference of each of the tower’s three sec-
tions. Because you need to include column shapes in multiple files, defining 
the column module in a separate file makes it easier for different sections 
to use that new shape definition. Columns and arches repeat in different 
patterns in each section, and they also vary in their ornamentation. That’s 
why at this initial stage, you’ll focus on creating an abstract column with 
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basic components (Figure 7-10). You can then update this basic definition 
of a column in a later design iteration.

Figure 7-10: An abstract column

Creating a column module in a separate file called column.scad makes it 
easier to share and evolve your use of columns in the future as needed: 

// column.scad v3
1 module column(col_width, col_height) { 
    col_radius = 0.5 * col_width;
  2 orn_height = 0.05 * col_height; 
     
    translate([-col_radius, -col_radius, col_height - orn_height]) 
        cube([col_width, col_width, orn_height]);
    cylinder(h=col_height, r=col_radius);
    translate([-col_radius, -col_radius, 0]) 
        cube([col_width, col_width, orn_height]);
} 
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As with other modules, you include two parameters (col_width and 
col_height) in the column module 1 to provide the necessary information 
to create a column shape. Based on the column height and column width, 
variables are created (col_radius and orn_height) to describe the column’s 
radius and the ornamentation’s height included at both the top and bot-
tom of a column 2. While it may seem to make the module definition 
more complicated, defining and using these variables rather than placing 
repeated arithmetic calculations as module parameters or inside opera-
tions reduces the number of possibilities for error, groups all of the design 
assumptions at the top of the module, and makes it easier to update all uses 
of a measurement. 

To invoke this new column module, you then modify the level module 
in middle.scad to draw repeating columns and arches around the circumfer-
ence of each level:

// middle.scad v3
1 use <column.scad>
...
module level(level_radius, level_height) {
  2 lip_height = 0.1 * level_height;
    inner_radius = 0.7 * level_radius;
    overhang_height = 0.3 * level_height;
    overhang_radius = 0.95 * level_radius;
    
    num_cols = 24;
    angle_size = 360 / num_cols;
    
    col_height = 0.65 * level_height;
    col_width = 0.2 * col_height;  
    
    arch_depth = 2 * (level_radius - inner_radius); 
    
    // lip
    translate([0, 0, level_height - lip_height])
        cylinder(h=lip_height, r=level_radius);

    translate([0, 0, col_height]) {
        difference() {
            // overhang
            cylinder(h=overhang_height, r=overhang_radius); 
           
            // arches
          3 for (i=[0:1:num_cols-1]) {
                angle = i * angle_size + angle_size/2;
                rotate([0, 0, angle])
                    translate([inner_radius, 0, 0]) 
                        rotate([0, 90, 0]) 
                            cylinder(h=arch_depth, r=col_width, center=true);
            }
        }
    }
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    // inner structure
    cylinder(h=level_height, r=inner_radius);
    
    // columns
  4 for (i=[0:1:num_cols-1]) {
        angle = i * angle_size;
        rotate([0, 0, angle])
            translate([overhang_radius - 0.5 * col_width, 0, 0]) 
                column(col_width, col_height);
    }
}

Comparing this updated version of middle.scad with the version from 
your second design iteration reveals three major additions to the level 
module. First, column.scad is connected to this file 1 with a use directive 
so that you can use the new column module to draw column shapes in this 
file. Next, variables are defined to describe the number of columns per 
level (num_cols), the angle at which the columns should be repeated along 
the circumference of the tower (angle_size), the width and height of each 
column (col_width and col_height), and the depth of the arch connecting 
every two columns that will be carved away from the overhang of each level 
(arch_depth) 2. 

After creating the overhang, you include a for loop within a difference 
operation to carve away arches between the location of each column 3. A 
final for loop repeats columns along the level’s circumference 4. You could 
combine these two loops into a single for loop that uses an if statement; 
however, the loops are separated here to make the logic clearer. 

As before, to see these new changes reflected in the overall design, 
save both middle.scad and column.scad; then preview the entire tower design 
in tower.scad. To see only the middle section without the rest of the tower, 
include a statement to draw a middle_section shape at the top of middle.
scad; then preview the design in middle.scad. You can also easily see only a 
column shape by including a statement to draw a column shape at the top 
of column.scad and then previewing the design in that file. 

After using a relatively small amount of code to add a large number 
of repeating columns and arches to the middle section, that section of the 
tower (Figure 7-11) is now more recognizably similar to our reference photo 
of the Leaning Tower of Pisa (Figure 7-1). 

However, as you can see in Figure 7-11, the top and bottom sections 
are still abstract simplifications. Applying the design cycle’s Evaluate 
step after each iteration of the walking skeleton helps identify missing 
details that might offer the most noticeable improvements to a design. 
After this iteration, you should once again consult the reference photo 
(Figure 7-1) to decide which section of the tower now most needs 
improvement. 
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Figure 7-11: Leaning Tower of Pisa with  
modularized columns

Iteration 4: Adding Details to the Top Section 
The top of the tower is missing fences, repeating columns, and archways 
(windows and doors), so the next iteration focuses on adding those details. 
You’ll add two fences to the top section, as well as alternating archways of 
different sizes and heights (Figure 7-12), so you’ll modify top.scad by adding 
a fence module and an archway module. You’ll draw the archway module in 
different sizes to create the doors and windows shown in the top section of 
our reference photograph (Figure 7-1).



Designing Big Projects   133

Figure 7-12: Fenced-in top section with alternating  
archways of different sizes

This updated version of the top.scad file adds the fence and archway 
details to the tower’s top section:

// top.scad v4
module top_section(width, height) {
  1 top_radius = 0.4 * width;
    room_radius = 0.75 * top_radius;
        
    num_doors= 5;
    door_angle= 360 / num_doors;
    
    overhang_height = 0.1 * height;
    overhang_width = 1.1 * top_radius;
    
    door_height = 0.6 * height;
    door_width = 0.35 * height;
    
    window_height = 0.25 * height;
    window_width = 0.15 * height; 
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    // overhang
    translate([0, 0, height - overhang_height])
        cylinder(h=overhang_height, r=overhang_width);  
    
    //inner structure
    difference() {
        cylinder(h=height, r=top_radius);  
        
        translate([0, 0, 1]) {
            cylinder(h=height-2, r=room_radius);
            
          2 for (i=[0:1:num_doors-1]) {
                angle = i * door_angle;
                rotate([0, 0, angle])
                    translate([top_radius-2, 0, 0.25*height]) 
                        // doors
                        archway(door_height, door_width, room_radius);
                rotate([0, 0, angle+0.5*door_angle])
                    translate([top_radius - 2, 0, 0.6*height]) 
                        // windows
                        archway(window_height, window_width, room_radius);
            }
        }
    }
    
    //fencing
    translate([0, 0, height]) 
        fence(15, 3, top_radius, 1);
  3 fence(20, 3, 0.5*width, 1); 
}

4 module fence(num_posts, fence_height, fence_radius, post_width) { 
    post_radius = 0.5 * post_width;
    angle_size = 360/num_posts;
    ring_height = 0.5;
    post_height = fence_height - ring_height;

    translate([0, 0, post_height])
        ring(fence_radius - post_width, fence_radius, ring_height); 
    translate([0, 0, post_height / 2])
        ring(fence_radius - post_width, fence_radius, ring_height);

    for (i=[0:1:num_posts-1]) {
        angle = i * angle_size;
        rotate([0, 0, angle])
            translate([fence_radius - post_radius, 0, 0])
                cylinder(h=post_height, r=post_radius);
    }
}

5 module ring(inner_radius, outer_radius, height) { 
    difference() {
        cylinder(h=height, r=outer_radius);
        translate([0, 0, 1])
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            cylinder(h=height+2, r=inner_radius, center=true);
    }
}

6 module archway(height, width, depth) { 
    radius = 0.5 * width;
    
    rotate([90, 0, -90]) {
        translate([0, (height - radius) / 2, -depth / 2])
            cylinder(h=depth, r=radius);
        cube([width, height - radius, depth], center=true);
    }
}

As with the other module definitions, you begin by defining variables 
to describe the top section’s various features 1. You base the number of 
windows on the number of doors (num_doors), but otherwise, you deliberately 
choose variable names that are self-documenting. A for loop contained 
within a difference operation subtracts repeated windows and doors from 
the top section’s inner structure 2. Windows and doors have similar shapes, 
so you define a single archway module that lets you vary the size of window 
and door shapes with the height, width, and depth parameters 6.

The top_section module ends by drawing two fence shapes 3. These 
fences are basically the same shape but different sizes, so you define a fence 
module to construct them 4. You also include a ring module to make it 
easier to create various fencing rings 5. This definition of a ring module is 
transferred from a previous Design Time activity (see Chapter 5). Reusing 
modules from prior projects can save a lot of time and effort.

To simplify the project’s organization, you include the fence, ring, and 
archway modules only in the top.scad file since no other section contains those 
shapes. As with previous design iterations, save your updates to top.scad; then 
preview the design to see those changes in other files. 

The top_section module now produces a more detailed version of the 
top of the tower (Figure 7-13).

Figure 7-13: Fenced-in top section with alternating archways, detail view
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Comparing this design iteration with the tower’s reference photo 
(Figure 7-1), your evaluation suggests that the bottom section now needs 
the most attention.

Iteration 5: Adding Details to the Bottom Section
This update modifies the bottom.scad file to include the major missing fea-
tures (columns and arches): 

// bottom.scad v5

1 use <column.scad> 

module bottom_section(width, height) {
    radius = 0.5 * width;
    inner_radius = 0.9 * radius;
    lip_radius = 1.05 * radius;
    lip_height = 0.05 * height;
    overhang_height = 0.2 * height;
    
    num_cols = 14;
    angle_size = 360 / num_cols;
    col_height = height - overhang_height;
    col_width = 0.1 * col_height;
 
    // lip
    translate([0, 0, height - lip_height])
        cylinder(h=lip_height, r=lip_radius);
    
    // inner structure
    cylinder(h=height, r=inner_radius);
    
    // columns
  2 for (i=[0:1:num_cols-1]) {
        angle = i * angle_size;
        rotate([0, 0, angle])
            translate([radius - 0.5*col_width, 0, 0])
                column(col_width, col_height);
    }
    
    // arches
    translate([0, 0, col_height]) 
        difference( ) {
          // overhang
          cylinder(h=overhang_height, r=radius);        
        
          // arches  
        3 for (i=[0:1:num_cols-1]) {
            angle = i * angle_size + angle_size/2;
            rotate([0, 0, angle]) 
                translate([inner_radius, 0, 0])
                    rotate([0, 90, 0])
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                      cylinder(h=radius-inner_radius, r=col_width);
        }
    }
}

You first include column.scad in order to access the column module 1. 
This allows you to use a for loop to draw columns around the bottom sec-
tion’s perimeter 2. Columns in the bottom section are bigger than those in 
the middle section, so parameters for drawing a column are set accordingly. 
You add the arches next, also with a for loop 3.

Save bottom.scad and then preview the design to reveal new details in the 
tower’s bottom section (Figure 7-14). 

Figure 7-14: Tower with the updated bottom section
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The tower is now visually similar to the actual Leaning Tower of Pisa. 
You can apply the Evaluate stage one more time, but adding more details 
might not produce much benefit if you intend to make a small 3D print of 
the model. 

Final Evaluation of the Design Cycle
At this stage, the tower looks very similar to the Leaning Tower of Pisa. 
Making a slight modification to $fn in tower.scad increases the design’s 
smoothness, providing an even closer likeness (Figure 7-15).

Figure 7-15: Smoother tower with $fn=100  
instead of $fn=20

You left the smallest details for last, which is a deliberate feature of the 
walking skeleton approach to project development. Every design iteration 
focuses on one major area, specifically chosen to provide the most notice-
able improvement to the overall tower design. As mentioned previously, 
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because you plan to 3D-print this model, you omit especially small details, 
but could have included the following:

•	 The missing columns and arches from the top section.

•	 The missing rectangular doorways from the middle and bottom 
sections.

•	 The different ornamentation of columns and arches in each section.

•	 Columns are not basic cylinders, so you could have given the top of a 
column a smaller radius than the bottom.

We mention these missing features as potential exercises for readers 
who want to continue doing design iterations of this model. Larger 3D 
prints potentially could reveal those smaller design features.

Design Organization Overview
For your first design iteration, you split the building into three low-fidelity 
sections, each having a separate .scad file. This way, all you needed to do 
was preview only one file (tower.scad), because that file connected together 
the three other files. Figure 7-16 shows the initial project’s organization, 
which reduced the amount of code in any one file, making it easier to find 
and modify specific parts.

tower.scad middle.scad

top.scad

bottom.scad

Figure 7-16: Initial architecture for the Leaning  
Tower of Pisa project

Throughout the design process, you used decomposition to find oppor-
tunities to break larger components of the tower into smaller pieces. After 
your last iteration, the project organization evolved to contain many mod-
ules and an additional file (Figure 7-17). This final project organization 
illustrates the main principle of the walking skeleton approach to develop-
ment. Your initial project organization focused on connecting big pieces of 
the project, while your final organization reveals all of the smaller details 
you added incrementally during each iteration. 

The organization and development process described here is only one 
way to build this project. Aside from organizing the project into a different 
collection of separate .scad files (or even one massive .scad file), you could 
have created a different set of modules to decompose the tower into smaller 
building blocks. 
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We also missed several opportunities to reduce the need for repeating 
code by including additional if statements or for loops. For instance, you 
could have created a separate column_ring module to “factor out” the inclu-
sion of columns and arches around the tower’s circumference. With careful 
use of if statements and parameters, you could have used the column_ring 
module to draw both the columns and arches in all three sections, greatly 
simplifying the code required in the top_section, middle_section, and bottom 
_section modules. 

middle_section

level

tower.scad

middle.scad

ring

archway

top_section

fence

top.scad

bottom_section

bottom.scad

column

column.scad

Figure 7-17: Final architecture for the Leaning Tower of Pisa

A design can evolve over time without major changes to the overall proj-
ect’s organization. You don’t need to know all the modules or files you’ll need 
to create at the beginning of a project; you can make those decisions as you 
gain a better understanding of what you’re building. Each time you apply 
the Evaluate stage of the design cycle, you have an opportunity to reconsider 
which changes to make to your design.

Summary
This chapter introduced the benefits of deliberately following the design 
cycle when building a complex project. You applied computational thinking 
to guide the planning phase and a walking skeleton approach to combine 
the Build and Evaluate stages into a looping procedure. You connected the 
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design’s most important features first and then incrementally developed 
each component’s major features. Only during the final stages of develop-
ment did you consider the smaller, more nuanced details.

To recap, keep these concepts in mind when designing a complex 
project:

•	 Draw a sketch of the project you want to build, and label it with pat-
terns, abstractions, and decompositions to help you understand how to 
organize your code. 

•	 Describing the minimum information needed to draw a new shape can 
help guide you to understand which parameters might be necessary for 
a new module. 

•	 Using self-documenting naming conventions will help organize your 
code by revealing the purpose of each new variable or module.

•	 Use color to help organize different pieces of an evolving design. 

•	 Make sure to save individual files when you make any changes, so other 
files can use the newest version of that file.

•	 Connect your project’s most important pieces first, even if those pieces 
are big-picture abstractions. 

•	 Design a project’s smallest details in the final stages of your walking 
skeleton development approach.

The design cycle and walking skeleton development model are common 
approaches, and you can find abundant material online for further read-
ing. We encourage you to explore these concepts further as you create new 
designs with OpenSCAD.





A F T E R W O R D

After reading this book, especially if you 
engaged with the Design Time and Big 

Project exercises, you should have a solid 
grasp on how to create 3D-printable designs 

with the OpenSCAD programming language. In clos-
ing, we’ll provide some helpful pointers on where to 
go next, as well as help contextualize how OpenSCAD 
fits into the larger ecosystems of the open source and 
maker movements.

Learn More About OpenSCAD
We have covered a significant portion of OpenSCAD’s available fea-
tures here; however, there are still more advanced features to uncover. 
A variety of resources are available for you to unlock OpenSCAD’s full 
creative power:

Z
Y

X
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Visit the OpenSCAD online documentation
Once you’re ready to take your OpenSCAD skills further, your first 
stop should be the official online OpenSCAD documentation (https://
openscad.org/documentation). This is the place to look for other well-
structured guides to learning more about OpenSCAD. You’ll find 
tutorials, a user manual, a more complete language reference, and 
regularly updated links to many other learning materials, including 
books, articles, and videos. 

Remix someone else’s OpenSCAD design
For slightly less structured learning, try to remix an existing 
OpenSCAD design. Learning to read code written by other people 
can result in substantial improvements to your own coding and orga-
nizational skills. You can easily search online for OpenSCAD designs 
and be sure to check out two of the most popular 3D design-sharing 
websites: https://thingiverse.com/ and https://youmagine.com/. Searching for 
openscad will result in thousands of OpenSCAD designs available for 
you to use and remix. 

Most of the designs are also available as OpenSCAD code, which you 
can explore to see how other people solve challenging design problems 
in code. Creating a remix of someone else’s design by integrating your 
own customized innovations into their code is a great way to demon-
strate that you truly understand how all the pieces of their design fit 
together. 

Join the OpenSCAD community
Engaging with other like-minded people in the thriving OpenSCAD 
community of designers is another way to supplement your learning. 
Sometimes your design ideas might present unique challenges that no 
amount of reading or searching will illuminate. Asking the OpenSCAD 
community for help could offer the perfect solution. 

The official OpenSCAD community page (https://openscad.org/community) 
has a chat room as well as a mailing list and forum where OpenSCAD 
users discuss projects, ask for help, and even facilitate development of 
OpenSCAD itself. OpenSCAD is open source software, and develop-
ment discussions often take place in the same forums where community 
members hang out. In addition to finding answers to your most perplex-
ing design problems, participating in the OpenSCAD forum means that 
you can offer help to others, and you might even be able to influence the 
development of the OpenSCAD software itself by suggesting new features 
or reporting bugs.

The Open Source Ethos
As we’ve mentioned several times throughout the book, OpenSCAD is open 
source software. Proprietary 3D design software is typically expensive and 

https://thingiverse.com/
https://youmagine.com/
https://openscad.org/community
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usually carries a steep learning curve. Even “free” web-based 3D-design tools 
often require creating an account, which can raise concerns about privacy or 
longevity of the service. The OpenSCAD community of developers wanted 
to create a truly free and accessible 3D-modeling platform to open the world 
of solid CAD modeling to everyone, especially people interested in the inter-
section of coding and 3D design. Hundreds of people have donated their 
time and effort to create and improve OpenSCAD for you, in the hopes that 
removing some of these traditional barriers will encourage more people to 
learn and use 3D modeling to solve problems both big and small.

Motivation and Ecosystem
Why would so many people spend so much time and effort to turn some-
thing that is traditionally “hard” and “expensive” into something that 
is both free and so much more accessible and approachable? Important 
motivating reasons behind making OpenSCAD open source include the 
following:

•	 Supporting communities that celebrate cross-cultural and cross-
discipline explorations

•	 Supporting and engaging with the inclusive teaching, learning, and 
sharing of important STEM/STEAM skills 

•	 Encouraging individuals to share the benefits of their work and efforts 
with others

•	 Empowering individuals to make things better by providing change-
making ownership of existing creations through a crowd-based iterative 
design process

•	 Believing that paying it forward encourages others also to pay it for-
ward, resulting in a magnified benefit to society

In fact, the OpenSCAD open source project also exists because of the 
kindness of strangers. The OpenSCAD development community relies 
upon many other open source projects that were each created so that oth-
ers could use the technology to (hopefully) make the world a better place. 
Some of the most prominent are as follows:

•	 Qt to help build the OpenSCAD user interface (https://qt.io/)

•	 CGAL for help evaluating constructive solid geometry (CSG) when 
OpenSCAD designs are rendered (https://cgal.org/) 

•	 OpenCSG and OpenGL to help generate CSG previews for OpenSCAD 
designs (http://opencsg.org/ and https://www.opengl.org/)

•	 Boost for its large toolbox of C++ convenience libraries (https://boost.org/)

•	 Eigen to provide fast and well-tested linear algebra functions (https://
eigen.tuxfamily.org/)

We would like to thank the developers of OpenSCAD and every open 
source project for their time and valuable contributions.

https://qt.io/
https://cgal.org/
http://opencsg.org/
https://www.opengl.org/
https://boost.org/
https://eigen.tuxfamily.org/
https://eigen.tuxfamily.org/
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Online Citizenship
It can be easy to forget that real people are on the other side of the screen 
you use to access the internet. The open source software movement relies 
heavily upon the idea of online citizenship, making sure that the distrib-
uted social network of the internet helps promote positive social change 
while supporting the advancement of human rights. Here are a few start-
ing principles for online citizenship we hope you’ll take with you as you 
continue your journey with OpenSCAD and other open source software 
projects: 

Give credit
Provide attribution when you use something someone else has created. 
This helps support the original creator (even with kudos) and demon-
strates that you’re aware of the privileges of “standing on the shoulders 
of giants.”

Have empathy for others
Remember that the people you interact with online don’t necessarily 
share your background, language, culture, or inside jokes. Maintain 
and model a respectful and considerate use of communication in all 
community spaces. Be respectful of the cultural and environmental 
impact of the things you create.

Pay it forward 
Create things that help solve problems for real people. Share your cre-
ations, especially when you’ve created something by using tools that 
other people have given away for free. 

OpenSCAD and the Maker Movement
It would be an oversight to overlook OpenSCAD’s relationship with the 
maker movement. Making has become an increasingly popular term to 
describe taking a creative, DIY approach to problem-solving. Making usu-
ally involves trying to solve a problem by using an iterative design process 
and a variety of machines, tools, and materials: cardboard prototyping, 3D 
printing, laser cutting, electronics, soldering, woodworking, sewing, CNC 
(computer numeric control) machining, vinyl cutting, screen printing, 
water-jet cutting, and so on. 

OpenSCAD is a key software tool for the maker community. Although 
this book focuses on designing with OpenSCAD in anticipation of 3D print-
ing, 3D printing only scratches the surface of what the maker community 
has created with OpenSCAD. Combining OpenSCAD and 3D printing is 
a great solution for many problems, but it’s not always the best solution. 
Developing a far-reaching, holistic sense of the design tools and paradigms 
collected under the maker umbrella provides many benefits.
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Making and Creative Problem-Solving 
We have used the word design intentionally to describe OpenSCAD cre-
ations, because each OpenSCAD project is created for a specific reason, 
often to solve a physical problem in the real world. Fundamental to the 
notion of design is the practice of problem-solving. Similar to swimming, 
problem-solving through design is a skill that can be truly learned only 
when you are “in the water.” Every time you finish an OpenSCAD proj-
ect, you increase your capacity to design a specific solution to a specific 
problem. 

The maker movement rightly recognizes creative problem-solving 
through design as a transferable skill. If you are new to the maker move-
ment, you might find it surprising that designing a sewing kit can help with 
your ability to create a well-ordered sequence of OpenSCAD code or that 
creating a multilayered screen print can help you decompose a complicated 
problem into well-defined smaller parts. You can acquire these higher-order 
design skills in any medium. In addition to the transferable programming 
and 3D-printing techniques you’ve learned in this book, we hope that you 
will consider applying your new problem-solving and design proficiency in a 
few other interesting directions. 

2D Fabrication
The world of 2D fabrication is a vast landscape for applying the skills you’ve 
learned in this book. Extruding a 2D shadow to create a 3D design is a pow-
erful 3D design tool. However, many maker tools use 2D files (such as .svg 
or .dxf) to manufacture physical versions of their design. 2D fabrication 
machines (such as laser cutters, vinyl cutters, water-jet cutters, and so on) 
essentially cut the outline of the 2D shape into flat pieces of wood, metal, 
vinyl, felt, cardboard, or most other flat materials. Because OpenSCAD 
makes it so easy to use variables, arithmetic, loops, and if statements to 
place and combine shapes, many makers use OpenSCAD to create purely 
2D designs specifically for these machines.

Here are a few ideas to inspire your 2D creativity with OpenSCAD:

•	 Use a collection of loops to generate small, circular holes along the 
perimeter of a 2D leather sewing pattern you’ve created in OpenSCAD. 
Then, cut out the pattern with a laser cutter or a cutting machine. 
Leather is difficult to punch a needle through, but using OpenSCAD 
loops to generate the holes will help save time and effort.

•	 Use a CNC wood cutter to cut out a life-size version of a piece of flat-
pack furniture you’ve designed with OpenSCAD 2D shapes. Although 
3D printers have a relatively small printing area, CNC cutters can cut 
a rather large surface area. 3D printers can be used for prototyping, 
while the usable furniture is created on a large CNC machine.

•	 After you’ve 3D-printed a few prototype versions of a flat 2D gear you’ve 
designed and extruded with OpenSCAD, use a water-jet cutter to cut it 
out of metal. Plastic gears don’t last nearly as long as metal gears, espe-
cially if you’re actually using them for your bike.
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Physical Computing
Many interactive maker projects combine electronics and computers with 
other physical components to create something with dynamic character-
istics. What if your OpenSCAD designs could sense and respond to the 
world, or even move? A variety of inexpensive, pocket-size computers are 
available that can supercharge the interactivity of the designs you create 
with OpenSCAD. 

These miniature computing platforms utilize a variety of sensors and 
output (like microphones, temperature sensors, movement sensors, speak-
ers, motors, and LEDs) to interact with the real world. A few of the most 
popular small computing platforms are listed here:

•	 Raspberry Pi (https://raspberrypi.org/)

•	 Arduino (https://arduino.cc/)

•	 micro:bit (https://microbit.org/) 

•	 Circuit Playground (https://learn.adafruit.com/introducing-circuit- 
playground/)

Each of these devices has a large online community with plenty of 
learning resources available. Combine OpenSCAD with one of these 
inexpensive pocket-size computers to explore areas like robotics, physical 
computing, wearable computing, human-robot interaction, or the Internet 
of Things. Here are some examples of projects you might create with 
OpenSCAD and one of the preceding devices:

•	 Automatic plant/garden watering systems

•	 Totally new, interactive digital instruments

•	 Physical enclosures for personal, multinode data centers

•	 Personal assistive devices to help with accessibility for people with 
disabilities 

By using OpenSCAD to invent creative new uses for these electronic 
devices, you’re setting up your project to be easily customizable, shareable, 
and extensible. Maybe you can even create something that kick-starts your 
own open source project.

Makerspaces
Making can happen anywhere, but getting together at a central location so 
that like-minded creators can share ideas and troubleshoot solutions has 
become popular for makers. A makerspace is a physical location and com-
munity of makers that provides a collection of tools, machines, and learning 
resources. Makerspaces provide access to equipment that might be too expen-
sive to own personally and serve as a physical community for makers that can 
offer the same benefits as the virtual communities mentioned previously. You 
can find makerspaces (big and small, free and fee-based) at libraries, schools, 
independent venues, and maker faires or festivals (https://makerfaire.com/).

https://raspberrypi.org/
https://arduino.cc/
https://microbit.org/
https://learn.adafruit.com/introducing-circuit-playground/
https://learn.adafruit.com/introducing-circuit-playground/
https://makerfaire.com/
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If your local community doesn’t yet provide access to a centralized, shared 
location for making, some makerspaces have gone virtual. Many online ven-
dors allow you to upload designs for 3D printing or 2D cutting in a variety of 
materials, providing an affordable stepping-stone for creating a physical ver-
sion of your design when you don’t have access to a fabrication machine.

Final Ideas for More Practice
We’d like to leave you with some final advice. The key to mastering any skill 
is a combination of learning and doing. If you have only read this book 
without actually coding or designing, you’ve skipped a big portion of the 
learning potential, but it’s not too late! You can put this book down right 
now and go back to any project.

If you’re looking for more examples of well-defined design exercises, 
the following screenshots present a few visual ideas from the OpenSCAD 
community that should work well as inspiration for “next step” projects. You 
can also check out https://openscad.org/gallery for more curated examples.

Customizable Measuring Spoons
Creating a measuring spoon module is a good intermediate design project 
(Figure 1). The primary challenge with this project is to create a single 
OpenSCAD module with the spoon size, units, and configuration (nested 
stacking spoons or spoons that lay flat) as parameters. The measuring 
spoon shape and labels can then be generated from those parameters. Can 
you generate 3D-printed measuring spoons with the exact measurements 
required to trust when cooking or baking?

Figure 1: A collection of measuring spoons with several sizes  
and configurations 

https://openscad.org/gallery
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These measuring spoons were generated from OpenSCAD code 
originally designed by charliearmorycom. You can find the Customizable 
Measuring Spoon project at https://www.thingiverse.com/thing:51874/.

Customizable Vacuum Tool
Designing a custom tip to fit the end of a vacuum hose is a good example 
of a project that needs to interface with an existing physical tool. Creating 
a well-fit physical connection will require both careful measurement and 
continued experimentation with a 3D printer in order to perfect dimensions. 
Additionally, this project offers the opportunity to create a customizable noz-
zle, which can be generated by one or more module parameters (Figure 2).

Figure 2: A collection of vacuum tool tips with  
parameterized nozzles

The OpenSCAD code used to generate these customized vacuum nozzle 
tips was originally designed by Ziv Botzer. The Customizable Vacuum Tool 
project can be found online at https://www.thingiverse.com/thing:1571860/.

Customizable Flowerpots
Using OpenSCAD to create a flowerpot module will allow you to design 
something that combines the decorative with the functional. This inter-
mediate-level project will allow you to scale your 3D prints both large and 
small, depending on the size of the plant you’d like to house (Figure 3). 
There are several opportunities for parameters in this project, with a bonus 
challenge of generating both the flowerpot and the saucer tray from the 
same module. Don’t forget to include a hole in the bottom of the flowerpot 
for water to drain into the saucer!

The OpenSCAD code used to generate this collection of flowerpots came 
from the Customizable Flower Pot (classic style) project by Robert Wallace, 
which is available online at https://www.thingiverse.com/thing:2806583/.

https://www.thingiverse.com/thing:51874/
https://www.thingiverse.com/thing:1571860/
https://www.thingiverse.com/thing:2806583/
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Figure 3: A collection of flowerpots and saucers trays of different sizes  
and shapes

Drawer Box
Remember the desktop organizer you created as a Big Project in Chapter 2. 
This box and drawer organizer is a more complex organizer idea, which 
can be taken in many directions. The initial challenge is to tune the box 
dimensions in order to make the drawers slide easily, yet firmly, into the 
box. Customizing sizes and designs of the box, drawers, and drawer layout 
(ideally via parameterized modules) are also good future challenges. Notice 
how this project includes useful details like small, spherical nubs on box 
dividers to keep drawers in place, as well as for loop-generated holes on 
all three sides of the box to reduce both the time and material required to 
3D-print a Drawer Box (Figure 4).

Figure 4: A desktop organizer with several different drawer configurations



152   Afterword

The Drawer Box project by Gian Pablo Villamil can be found online at 
https://www.thingiverse.com/thing:421886/.

Lab Clamps
Designed for use in a physics classroom, this project is a good example 
of using 3D printing to manufacture replacements for items that are nor-
mally cost prohibitive. 3D-printing mechanical parts designed to fit with 
existing tools or parts is always challenging. In this example, a series of 
clamps and stands are designed to be mated with metal bolts (Figure 5). 
Designing an appropriate inner structure to mate firmly with these bolts 
can require some experimentation. Projects like this are a good example of 
how OpenSCAD and 3D printing can work together as a service project for 
a school or community center.

Figure 5: A collection of clamps and stands for physics experiments

The Lab Clamps project was created by Mark Schober. You can find the 
code used to generate the clamps in this picture (along with more details on 
how to incorporate metal bolts and mass manufacture these parts with sili-
cone molds) at https://www.modelingscience.org/post/3d-print-your-own-lab-clamps/.

Chess Set
Designing a chess set is a favorite project among both artists and 3D-printing 
enthusiasts. While the example shown is very close to a classic chess set 
(Figure 6) and would likely require sourcing a 3D model of a horse’s head, 
many designs exist online for creating a more contemporary or abstract 
chess set. Creating a base module would help provide a consistent size and 
design for your own chess set, while creating a separate module for each 
piece would make it easy to organize your 3D printing.

https://www.thingiverse.com/thing:421886/
https://www.modelingscience.org/post/3d-print-your-own-lab-clamps/
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Figure 6: A custom chess set

The code used to generate this chess set was designed by Tim Edwards 
and is available at https://www.thingiverse.com/thing:585218/.

Pegboard Wizard
Have you ever needed to organize a collection of tools or hardware using 
a pegboard? This last example leverages the modular potential of a stan-
dard pegboard to create a library of useful container bins and tool holders 
(Figure 7). Create a single module with many parameters, or a collection of 
modules with fewer parameters. Either way, this project will test your ability 
to apply principles of computational thinking while you also create a useful 
organizational solution to your offline toolkit.

Figure 7: A collection of pegboard organizers created by the pegboard wizard

Pegstr - Pegboard Wizard was designed by Marius Gheorghescu and is 
available at https://www.thingiverse.com/thing:537516/.

https://www.thingiverse.com/thing:585218/
https://www.thingiverse.com/thing:537516/
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Syntax

Create a 2D or 3D shape with a collection of parameters. Terminate the 
command with a semicolon (;):

shape(...);

Create a shape that has been transformed by a series of operations. 
Terminate the statement with a semicolon (;):

transformation2(...) transformation1(...) shape(...);

Create a variable to name and refer to an important value; values are 
assigned once and cannot change:

var_name = value;

Create a user-defined shape called name with zero or more parameters. 
User-defined shapes work the same way as built-in shapes:

module name(...) { ... } 
name(...); 

Create a user-defined mathematical operation called name with zero or 
more parameters: 

function name(...) = ...;
name(...);
or
name = function(...) ...;
name(...);

Import and immediately execute the OpenSCAD code in filename.scad:

include <filename.scad>

Import and make usable (but don’t immediately execute) the 
OpenSCAD functions and modules in filename.scad:

use <filename.scad>
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Operators
Operators are listed in decreasing order of precedence. When multiple 
operators from the same level of precedence occur in an expression, 
the operators are evaluated in order of occurrence (from left to right):

^

*, /, %

+, -

<, >, <=, >=

==, !=

&&

||

2D Shapes

Draw a circle of the defined radius or diameter:

circle(radius | d=diameter)

Draw a square with length = size and width = size (equal sides); option-
ally center the square at (0,0):

square(size, center)

Draw a rectangle with width along the x-axis and length/depth along 
the y-axis defined by a vector; optionally center the square at (0,0):

square([width, height], center)

Draw a polygon that connects all of the points defined by the vector of 
[x, y] points:

polygon([[x1, y2], [x2, y2], ..., [xn, yn]])

Draw a polygon that connects all of the points defined by the vector of 
[x, y] points; optionally define a collection of paths for polygons with 
holes:

polygon([points], [paths])
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Draw words defined by the text string; optionally specify the size, font, 
horizontal alignment, vertical alignment, letter spacing, direction, lan-
guage, and script of the text:

text(text, size, font, halign, valign, 
spacing, direction, language, script)

Import a 2D SVG or DXF file:

import("filename.svg")

3D Shapes

Draw a sphere centered at (0, 0, 0) with the specified radius or 
diameter:

sphere(radius | d=diameter)

Draw a cube with length = size, width = size, and height = size (equal 
sides); optionally center the cube at (0,0,0):

cube(size, center)

Draw a cuboid with width along the x-axis, length/depth along the 
y-axis, and height along the z-axis defined by a vector; optionally center 
the cube at (0,0,0):

cube([width, depth, height], center)

Draw a cylinder with the specified height and radius or diameter; 
optionally center the cylinder at (0,0,0):

cylinder(h, r|d, center)

Draw a cone with the specified height and radii or diameters; optionally 
center the cone at (0,0,0):

cylinder(h, r1|d1, r2|d2, center)
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Draw a 3D solid defined by vectors of points and faces; optionally use 
convexity to improve the preview of complex concave shapes:

polyhedron([points], [faces], convexity)

Import an STL, OFF, 3MF, or AMF file:

import("filename.stl")

Draw a 3D height map of the data file; optionally center the shape at 
(0,0) and use convexity to improve the preview of complex concave 
shapes:

surface(file = "filename.dat", center, convexity)

Boolean Operations

Group multiple shapes together into one shape:

union() { ... }

Subtract one or more shapes from an initial shape:

difference() { ... }

Draw the overlapping region of multiple shapes:

intersection() { ... }

Shape Transformations

Translate a shape according to a 2D or 3D vector:

translate([x, y, z])

Rotate a shape around each axis according to the angles defined by a 
vector:

rotate([x, y, z])
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Rotate a shape a specific angle around the z-axis:

rotate(angle)

Scale a shape according to the scale factors defined by a 2D or 3D 
vector:

scale([x, y, z])

Resize a shape according to the dimensions defined by a 2D or 3D vec-
tor; optionally use auto to preserve the object aspect ratio in the unspec-
ified dimensions:

resize([x, y, z], auto, convexity)

Reflect a shape according to the perpendicular vector of a symmetry 
plane passing through the origin:

mirror([x, y, z])

Multiply the geometry of all child elements with the given 4 × 4 affine 
transformation matrix:

multmatrix(matrix)

Change a shape’s color according to a predefined color name or hexa-
decimal color value; optionally make the color (semi) transparent:

color("colorname | #hex", alpha)

Change a shape’s color according to an RGB or RGBA vector. Each 
value in the vector ranges from 0 to 1 and represents the proportion of 
red, green, blue, and alpha present in the color.

color([r, g, b, a])

Move 2D outlines outward or inward by a given radius (for rounded 
corners) or delta + chamfer (for sharp or cut-off corners):

offset(r|delta, chamfer)
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Create a 2D shape by projecting a 3D shape onto the xy-plane; when cut 
= true, create a 2D slice of the intersection of a 3D object and the xy-
plane; optionally, when cut = true:

projection(cut)

Create a convex hull around one or more shapes:

hull() { ... }

Draw the Minkowski sum of multiple shapes:

minkowski() { ... }

Extrude a 2D shape into 3D with the given height along the z-axis; 
optionally center the shape at (0,0) or specify the convexity, twist, slices, 
and scale of the extrusion:

linear_extrude(height, center, convexity, twist, slices, scale)

Extrude a 2D shape around the z-axis to form a solid that has rota-
tional symmetry:

rotate_extrude(angle, convexity)

Loops, Decisions, and List Comprehensions

Repeat a collection of shapes according to the start, step, and end 
(inclusive) values of a control variable:

for (var_name = [start:step:end]) { ... }

Draw the intersection of all the shapes generated by the for loop:

intersection_for(var_name = [start:step:end]) { ... }

Execute commands only if the Boolean test is true:

if (boolean_test) { ... }
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Execute a collection of commands if the Boolean test is true; otherwise, 
execute alternate commands:

if (boolean_test) { ... } else { ... }

Generate a list of values according to a for loop:

list_var = [ for (i = range|list) func(i) ]

Generate a list of values according to a for loop, but only if the value 
causes a certain condition to be true:

list_var = [ for (i = ...) if (condition(i)) func(i) else ... ]

Generate a list of lists according to a for loop:

list_var = [ for (i = ...) let (assignments) func(...) ]

Other Shape Operations

Force the generation of a mesh even in preview mode:

render(convexity) { ... }

Inside a user-defined module, select the children specified by an index, 
vector, or range:

children(index | vector | range)

Modifier Characters

*    Disables the drawing of a shape.

!    Shows only a particular shape.

#    �Highlights a shape in red for debugging purposes; highlighted 
shape will be rendered.

%    Highlights a shape in gray; highlighted shape will not be rendered.
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Special Variables

Writable:

$fa    Minimum angle for a fragment of an arc.

$fs    Minimum size of a fragment of an arc.

$fn    Number of fragments used to define an arc; ignores $fa and $fs.

$vpr    Viewport rotation angles in degrees.

$vpt    Viewport translation.

$vpd    Viewport camera distance.

$vpf    Viewport field of view.

Read-only:

$t    Current animation step, normalized to a value between 0 and 1.

$children    Number of module children.

$preview     True if Preview mode is used.

Mathematical Functions

sin(ANGLE)    Calculates the sine of an angle in degrees.

cos(ANGLE)    Calculates the cosine of an angle in degrees.

tan(ANGLE)    Calculates the tangent of an angle in degrees.

acos(NUMBER)    Calculates the arc (inverse) cosine, in degrees, of a 
number.

asin(NUMBER)    Calculates the arc (inverse) sine, in degrees, of a number.

atan(NUMBER)    Calculates the arc (inverse) tangent, in degrees, of a 
number.

atan2(y, x)    Two-value arc (inverse) tangent; returns the full angle 
(0–360) made between the x-axis and the vector [x, y].

abs(NUMBER)    Calculates the absolute value of a number.

sign(NUMBER)    Returns a unit value that extracts the sign of a value.

floor(NUMBER)    Calculates the largest integer not greater than the 
number.

ceil(NUMBER)    Calculates the next highest integer value.

round(NUMBER)    Calculates the rounded version of the number.

ln(NUMBER)    Calculates the natural logarithm of a number.

exp(NUMBER)    Calculates the mathematical constant e (2.718 . . .) raised 
to the power of the parameter.

log(NUMBER)    Calculates the base 10 logarithm of a number.

pow(NUMBER, NUMBER)    Calculates the result of a base raised to an 
exponent.
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sqrt(NUMBER)    Calculates the square root of a number.

rands(min, max, count, seed)    Generates a vector of random numbers; 
optionally includes the seed for generating repeatable values.

min(VECTOR | a, b, c)    Calculates the minimum value in a vector or list 
of parameters.

max(VECTOR | a, b, c)    Calculates the maximum value in a vector or list 
of parameters.

norm(VECTOR)    Returns the Euclidean norm of a vector.

cross(VECTOR, VECTOR)    Calculates the cross-product of two vectors in 3D 
space.

Other Functions

len(VECTOR|STRING)    Calculates the length of a vector or string 
parameter.

echo(STRING)    Prints a value to the console window for debugging 
purposes.

concat(VECTOR,VECTOR, ...)    Returns a new vector that’s the result of 
appending the elements of the supplied vectors.

lookup(...)    Looks up a value in a table and linearly interpolates 
whether there’s no exact match.

str(...)    Converts all parameters to strings and concatenates.

chr(NUMBER | VECTOR | STRING)    Converts ASCII or Unicode values to a 
string.

ord(CHARACTER)    Converts a character into an ASCII or Unicode value.

search(...)    Finds all occurrences of a value or list of values in a vector, 
string, or more complex list-of-list construct.

version()    Returns the OpenSCAD version as a vector.

version_num()    Returns the OpenSCAD version as a number.

parent_module(INDEX)    Returns the name of the module idx levels above 
the current module in the instantiation stack.

is_undef(VARIABLE), is_list(VARIABLE), is_num(VARIABLE), is_bool(VARIABLE), 
is_string(VARIABLE), is_function(VARIABLE)    Returns true if the argument 
is of the specified type.

assert(expression)    Will cause a compilation error if the expression is 
not true.

let (variable = value) ...     Assigns a value to a variable only in the fol-
lowing expression.
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Cone:

cylinder(h=20, r1=5, r2=0); 

Cylinder:

cylinder(h=20, r=5); 

Smooth sphere:

sphere(10, $fn=100); 

Sphere:

sphere(10); 

Centered cuboid:

cube([30, 20, 10], center=true); 

3D Primitives
Cuboid:

cube([30, 20, 10]);
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Regular polygon:

circle(10, $fn=5);

Circle:

circle(10); 

Centered rectangle:

square([30, 20], center=true); 

2D Shapes
Rectangle:

square([30, 20]); 

Regular prism:

cylinder(h=5, r=5, $fn=6); 

Centered smooth truncated cone:

cylinder(h=10, r1=3, r2=5, $fn=100, center=true); 
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Multiple subtractions from a shape:

difference() {
  sphere(10);
    
  cube([15, 15, 15]);
  cylinder(h=15, r=5); 
}

Combining Shapes
Subtracting from a shape:

difference() {
  sphere(10);
  translate([0,-15,0]) cube([15,30,15]);
}

Text:

text("hello", font="Sans", size=20);

Irregular polygon:

polygon([[0,0], [10,0], [10,10], [5,10]]); 
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Minkowski sum: 

minkowski() {
    sphere(10, $fn=50);
    cylinder(h=20, r=5); 
}

Convex hull:

hull() {
    sphere(10);
    cylinder(h=20, r=5); 
}

Subtracting from combined shapes:

difference() {
  union() {
      sphere(10);
      cylinder(h=30, r=5, center=true); 
  }
  cube([10, 30, 10], center=true);
}

Intersection of two shapes:

intersection() {
  cube([10, 10, 10]);
  cylinder(h=15, r=5); 
}



170   Appendix B

Rotate an extrusion of a 2D shape:

rotate_extrude(angle=180) translate([10, 0]) 
 circle(5);

Extrude a 2D shape:

linear_extrude(height=10) {
    polygon([[0, 0], [10, 0], 
             [10, 10], [5, 10]]); 
}

Resize dimensions:

resize([15, 20, 4]) sphere(r=5, $fn=32); 

Reflection:

mirror([1, 0, 0]) translate([5, 0, 0]) 
 cylinder(h=1, r=5, $fn=5); 

Rotation:

rotate([0, 0, 60]) cube([30, 20, 10]);

Transformations
Translation:

translate([5, 10, 0]) cube([5, 3, 1]); 
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Repeat the repetition of a shape:

for (z=[0:15:45]) {
  for (x=[0:10:40]) {
    translate([x, 0, z]) cube([5, 5, 10]);
  }
}

Vary characteristics of a repeated shape:

for (x=[0:1:4]) {
    h = x*5 + 5;
    translate([x*10, 0, 0]) cube([5, 5, h]);
}

Loops
Repeat a shape:

for (x=[0:10:40]) {
    translate([x, 0, 0]) cube([5, 5, 10]);
}
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linear_extrude operation, 47–49
logical operators, 98
lookup() function, 164
loops

debugging, 65
for loops, 63–65, 67–68, 161–162, 

171
nesting, 69–72
visual reference, 171

loops and variables project, 74

M
maker movement, 146–149
mathematical operations, 66–69, 

163–164
measuring spoons project, 149–150
micro:bit, 148
minkowski operation, 33
Minkowski sum, 33, 161, 169
mirror operations, 28–30, 160
modifier characters, 162
module keyword, 81
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modules
overview, 79–82
naming, 81
parameters, 84–85

modules project, 93
moving shapes, 7–10
multi-file approach, 123
multiline comments, 62
multmatrix operations, 160

N
naming variables, 135
nesting, 69–72, 103–104
numeric values, 45

O
offset operations, 51–53, 160
online citizenship, 146
open source ethos, 144–146
OpenSCAD

overview, xv–xviii, 2–3
resources, 143–144, 155–164
visual reference, 165–171

operators, 98, 157
or (||) operators, 98
ord() function, 164
order of operations, 66,  

98–99
organization and development  

process, 139–140
origins, 3

P
parameters

overview, 2
$fn, 11–12
center=true, 8
font, 44
length, 85
modules, 84–85
order of, 5
scale, 48, 160
size, 44
slices, 47–48
twist, 47
width, 85

patterns, 119–120
Pegboard Wizard, 153

physical computing, 148
pointed cones, 5–6
polygon commands, 41–43
polygons, 167–168
practice projects

2D shapes, 56
chess set, 152–153
city of random skyscrapers, 113
clock, 112
detail test, 75
drawer boxes, 151–152
flowerpots, 150–151
lab clamps, 152
LEGO library, 94
loops and variables, 74
measuring spoons, 149–150
modules, 93
Pegboard Wizard, 153
project box, 58
random forest, 112
skyscraper, 94
storytelling dice, 57
tic-tac-toe game, 76–77
Towers of Hanoi puzzle,  

75–76
trophy, 59
vacuum tools, 150

Preview window, 2–3
print mode, 104–105
prisms, 167
problem-solving, 147
project box project, 58
project organization, 139–140
projection operations, 161

Q
quadratic growth, 68

R
random forest project, 112
random numbers, 105–109
rands() function, 106
Raspberry Pi, 148
read-only variables, 163
rectangles, 167
Render mode, 19–20
render operations, 162
repetition, 125–128, 171
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resize operations, 30–32, 160, 170
rotate operations, 26–28, 159–160, 170
rotate_extrude operations, 49–50

S
scale parameter, 48, 160
search() function, 164
self-documenting names, 135
semicolons (;), 3
shapes

centering, 8
combining, 12–19, 32–33, 168–169
extruding, 161
moving, 7–10
reflecting, 28–30
rotating, 26–28, 159–160
scaling, 30–32, 160
smoothing, 11–12
transforming, 159–161
See also 2D shapes

shimmering walls, 15–16
single-line comments, 62
size parameter, 44
skins, 32
skyscraper project, 94
slices parameter, 47–48
smoothing shapes, 11–12
sphere commands, 3–4
spheres, 3–4, 166
square brackets ([ ]), 3
square commands, 41–42
statements, 2
.stl format

exporting and, 19–20
importing, 6–7

storytelling dice project, 57
str() function, 45, 164
string of characters, 43
studs, 86
.svg format, 53
syntax, 156

T
terminology, xxi, 155–164
text commands, 43–45, 168
Thingiverse, 91
3D design, xxii–xxiii

3D printing, 19–20
3D shapes, 158–159, 166–167
3D-View toolbar, xxiii
tic-tac-toe game, 76–77
torus, 49
Towers of Hanoi puzzle, 75–76
transformation operations

overview, 25–26
2D shapes, 45–47
combining, 33–35
mirror operations, 28–30, 160
resize operations, 30–32, 160, 170
rotate operations, 26–28, 159–160, 

170
rotate_extrude operations, 49–50
visual reference, 170

translate operations, 8–10, 159, 170
triple nesting, 72
trophy project, 59
truncated cones, 5
twist parameter, 47
2D fabrication, 147
2D shapes

overview, 157–158
Boolean operations, 45–47
drawing, 40–45
extruding, 47–50
growing, 51–53
importing, 53–54
shrinking, 51–53
transformation operations, 45–47
visual reference, 167–168

U
union operations, 12, 17–19, 32
use keyword, 83

V
vacuum tools project, 150
variables

overview, 64
mathematical operations, 66–69
naming, 66, 135
read-only, 163
writable, 163

vectors, 3, 9
version() function, 164
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vertices, 42
visual reference, 165–171
vocabulary, xxi, 155–164

W
walking skeleton approach, 121, 122–138

width parameter, 85
words, 43–45
writable variables, 163

X
x-, y-, and z-axes, xxii–xxiii
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