
Z
Y

X

J U S T I N G O H D E A N D M A R I U S K I N T E L

P R O G R A M M I N G W I T H

O P E N S C A D
A B E G I N N E R ’ S G U I D E T O C O D I N G

3 D - P R I N T A B L E O B J E C T S

F U L L COLOR

PROGRAMMING WITH OPENSCAD

San Francisco

by Just in Gohde and Marius Kintel

P R O G R A M M I N G
W I T H O P E N S C A D

A B e g i n n e r ’s G u i d e t o C o d i n g
3 D - P r i n t a b l e O b j e c t s

[V]

PROGRAMMING WITH OPENSCAD. Copyright © 2021 by Justin Gohde and Marius Kintel.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59327-954-7 (print)
ISBN-13: 978-1-59327-927-1 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editor: Dapinder Dosanjh
Developmental Editor: Jill Franklin
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Miro Hrončok
Copyeditor: Sharon Wilkey
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Emelie Battaglia
Indexer: Beth Nauman-Montana

The following images are reproduced with permission: Figure 1 in the introduction was created by
Gustavb and is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. The
photo of the Leaning Tower of Pisa featured in Figures 7-1 to 7-4 is by Svetlana Tikhonova. The image is
covered by the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data
LCCN: 2020943329

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Authors
Justin Gohde has been teaching math and computer science for more
than 20 years. He is the head of computer science at Trinity School in
Manhattan, New York, where he oversees the computer science curriculum
and programs, including the Design Lab makerspace, which features a
wide collection of rapid prototyping tools for supporting computer science,
robotics, and other STEAM-focused projects.

Marius Kintel is the primary author and maintainer of OpenSCAD. He is
a software engineer with more than 20 years of professional experience in
diverse fields such as 3D visualization, physical computing, manufactur-
ing automation, and cloud computing. In 2007, he became involved in the
RepRap project out of an interest in learning electronics and the opportu-
nity to transfer his knowledge of 3D graphics into the creation of tangible
objects. Together with the rest of the local RepRap team at the Metalab
hackerspace in Vienna, Austria, he created OpenSCAD out of a need for
an open source multiplatform design tool more suitable for 3D printing.
The project was adopted by the maker community at large and has since
grown to become one of the most popular open source 3D modeling tools
for 3D printing.

About the Technical Reviewer
Miro Hrončok is a software engineer mostly working on integrating the
Python ecosystem into Fedora Linux. Besides that, he also takes care of the
3D printing stack (including OpenSCAD) in Fedora. He teaches Python
and 3D printing basics at the Faculty of Information Technology, Czech
Technical University in Prague.

B R I E F C O N T E N T S

Acknowledgments . xiii

Introduction . xv

Chapter 1: 3D Drawing with OpenSCAD . 1

Chapter 2: More Ways to Transform Shapes . 25

Chapter 3: 2D Shapes . . 39

Chapter 4: Using Loops and Variables . . 61

Chapter 5: Modules . 79

Chapter 6: Dynamic Designs with if Statements . 95

Chapter 7: Designing Big Projects . . 115

Afterword . 143

Appendix A: OpenSCAD Language Reference . 155

Appendix B: OpenSCAD Visual Reference . 165

Index . . 173

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xiii

INTRODUCTION	 xv
What Is OpenSCAD? . xv
Who This Book Is For . xvi
Why Learn to Code with OpenSCAD? . . xvi
3D Printing and OpenSCAD . . xviii
What’s in This Book . . xviii
Terminology and Conventions Used in This Book . . xxi
A Brief Introduction to 3D Design with OpenSCAD . xxii

Understanding 3D Points . . xxii
Using the OpenSCAD 3D-View Toolbar . xxiii

Final Tips for Getting the Most Out of This Book . xxiii

1
3D DRAWING WITH OPENSCAD	 1
Why Use OpenSCAD? . 2
Getting Started with OpenSCAD . . 2
Drawing Basic 3D Shapes . 3

Drawing Cuboids with cube . 3
Drawing Spheres with sphere . 3
Drawing Cylinders and Cones with cylinder . 4

Importing 3D Models with import . 6
Modifying Basic Shapes . 7

Moving Shapes . 7
Smoothing Curves with $fn . 11

Combining 3D Shapes with Boolean Operations . 12
Subtracting Shapes with difference . . 13
Carving Out Overlapping Shapes with intersection . 16
Grouping Shapes with union . 17

Getting Ready for 3D Printing . . 19
Summary . 20

Calibration Pyramid . . 23
Smiley-Face Pendant . 24
Hole-and-Pins Test . 24

2
MORE WAYS TO TRANSFORM SHAPES	 25
OpenSCAD Shape Transformations . . 25

Rotating Shapes with rotate . 26
Reflecting Shapes with mirror . 28
Scaling Shapes with resize . . 30

x Contents in Detail

More Ways to Combine 3D Shapes . 32
Combining Shapes with hull . 32
Combining Shapes with minkowski . 33

Combining Transformations . 33
Summary . 35

Game Die . 37
Desktop Organizer . 38

3
2D SHAPES	 39
Drawing Basic 2D Shapes . 40

Drawing Circles with circle . 40
Drawing Rectangles with square . 41
Drawing Polygons with polygon . . 42
Drawing Words with text . 43

Applying Transformation and Boolean Operations on 2D Shapes 45
Extruding Shapes Vertically with linear_extrude . . 47
Extruding Shapes Along a Circle with rotate_extrude . . 49
Growing and Shrinking a Shape with offset . 51
Importing 2D Shapes with import . 53
Summary . 54

Storytelling Dice . 57
Project Box for Storytelling Dice . 58
Trophy . 59

4
USING LOOPS AND VARIABLES	 61
Leaving Notes with Comments . 62

Writing Single-Line Comments with // . 62
Writing Multiline Comments with /* */ . 62

Repeating Code with a for Loop . 63
Debugging for Loops with echo . 65
Using Variables and Arithmetic . 66

Naming Variables . 66
Applying Mathematical Operations on Variables . 66
Using Math and Variables Inside for Loops . 67
Using Arithmetic to Create Unique Patterns . 68

Using Nested Loops to Draw 2D and 3D Grids . . 69
Generating the Windows in a Skyscraper with Nested Loops 70
Triple Nesting to Create a 3D Grid of Shapes . 71

Summary . 72

Detail Test . 75
Towers of Hanoi Puzzle . 75
Tic-Tac-Toe Game . . 76

Contents in Detail xi

5
MODULES	 79
Simplifying Code with Modules . 80
Splitting Your Design into Multiple Files . 82
Adding Parameters to Your Modules . 84
Building a LEGO Brick . 86
Sharing and Collaborating . . 89
Summary . 91

Skyscraper . 94
LEGO Library . 94

6
DYNAMIC DESIGNS WITH IF STATEMENTS	 95
Using if Statements . 96
Defining Complex Conditions . 97

Choosing Boolean Operators . 97
Using Logical Operators to Combine Boolean Expressions 98
Following an Expanded Order of Operations . 98
Making Two-Way Choices with if…else Statements . 99
Using Extended if Statements . 100
Using Nested if Statements . 103

Useful Applications of if Statements . 104
Setting Up a Design Mode and Print Mode . 104
Using Random Numbers as a Design Element . 105

Summary . 109

Random Forest . 112
Clock . 112
City of Random Skyscrapers . . 113

7
DESIGNING BIG PROJECTS	 115
The Design Cycle . 116
Leaning Tower of Pisa Model . 116

Step 1: Investigate—Define Multiple Views . . 117
Step 2: Plan—Apply Computational Thinking . 117
Step 3: Create—Use a Walking Skeleton Approach 121
Step 4: Evaluate—Decide Which Design Process Steps to Repeat 121

Walking Skeleton: Building the Leaning Tower of Pisa . 122
Iteration 1: Connecting the Tower’s Basic Building Blocks 122
Iteration 2: Finding Repetition in the Middle Section 125
Iteration 3: Adding More Details to the Middle Section 128
Iteration 4: Adding Details to the Top Section . 132
Iteration 5: Adding Details to the Bottom Section . 136
Final Evaluation of the Design Cycle . . 138

Design Organization Overview . 139
Summary . 140

xii Contents in Detail

AFTERWORD	 143
Learn More About OpenSCAD . 143
The Open Source Ethos . 144

Motivation and Ecosystem . 145
Online Citizenship . 146

OpenSCAD and the Maker Movement . . 146
Making and Creative Problem-Solving . 147
2D Fabrication . 147
Physical Computing . 148
Makerspaces . 148

Final Ideas for More Practice . 149
Customizable Measuring Spoons . 149
Customizable Vacuum Tool . 150
Customizable Flowerpots . 150
Drawer Box . . 151
Lab Clamps . 152
Chess Set . 152
Pegboard Wizard . 153

A
OPENSCAD LANGUAGE REFERENCE	 155
Syntax . 156
Operators . 157
2D Shapes . 157
3D Shapes . 158
Boolean Operations . 159
Shape Transformations . . 159
Loops, Decisions, and List Comprehensions . 161
Other Shape Operations . 162
Modifier Characters . 162
Special Variables . 163
Mathematical Functions . 163
Other Functions . 164

B
OPENSCAD VISUAL REFERENCE	 165
3D Primitives . 166
2D Shapes . 167
Combining Shapes . 168
Transformations . 170
Loops . 171

INDEX	 173

A C K N O W L E D G M E N T S

First, the authors would like to acknowledge the hard work and significant
efforts put in by so many folks operating behind the scenes to make this
book happen. As technical reviewer, Miro Hrončok made many, many
insightful and meaningful contributions to the evolution of each chapter.
His feedback and advice were well seen, well considered, and well appreci-
ated. We’d also like to thank everyone at No Starch for their remarkable
patience, dedication, and guidance throughout the book writing process.
In particular, we’d like to acknowledge and thank Bill Pollock for agreeing
to publish one of the first books about OpenSCAD, Tyler Ortman for get-
ting the ball rolling, and finally Jill Franklin and Dapinder Dosanjh for get-
ting the project back on track and over the finish line.

Justin would like to thank the many Trinity students and faculty who
helped prototype the core lessons and activities presented in this book—in
particular, colleagues Noah Segal, Mark Schober, Rob Newton, Jean Kim,
and Andrew Rose for their thoughtful contributions to the conversation.
Much gratitude is owed to Chris Martin, for initiating scores of London
chats on the pedagogical importance of using starting points to motivate
self-reflective, inquiry-based learning. And, finally, an infinite debt of
thanks is due to Yasuho Mori due to her eternal patience, persistent opti-
mism, and steadfast support.

Marius would like to thank all contributors and users of OpenSCAD.
In particular he would like to thank Torsten Paul, who has been instru-
mental in keeping OpenSCAD moving forward over a number of years.

xiv Acknowledgments

Also, thanks to the Metalab hackerspace in Vienna, and all the diverse
and colorful individuals that frequent the space, for creating an inspiring
environment where projects like OpenSCAD can evolve. Special thanks
go to Claire Wolf for single-handedly cranking out the initial codebase for
OpenSCAD and Philipp Tiefenbacher for being an amazing project partner
and visionary who helped bootstrap all the activities that eventually became
OpenSCAD. And finally, to Jane Tingley for her continuous support,
encouragement, and unwavering belief.

Programming with OpenSCAD: A Beginner’s
Guide to Coding 3D-Printable Objects intro-

duces the versatile, text-based OpenSCAD
3D CAD software. This book guides readers

through using arithmetic, variables, loops, modules,
and decisions to design a series of increasingly complex
3D designs, all of which are suitable for 3D printing.

What Is OpenSCAD?
OpenSCAD (pronounced Open-S-CAD) is text-based software for creat-
ing solid 3D models. It allows you to design these models by writing code,
which gives you (the designer) full control over the modeling process and
allows for easy changes to any part of your design throughout that process.
OpenSCAD also makes it easy to create designs that are defined by configu-
rable parameters, which means you can build designs with change in mind.

I N T R O D U C T I O N

Z
Y

X

xvi Introduction

OpenSCAD is a descriptive programming language: its coding statements
describe the shape, size, and combination of each component of your overall
design. OpenSCAD provides two main 3D modeling techniques: you can
create complex objects from combinations of simpler shapes (known as
constructive solid geometry) or extrude 2D .dxf or .svg outlines into 3D shapes.
Unlike most other free software for creating 3D models (such as Blender),
OpenSCAD focuses on the mechanical, rather than the artistic, aspects of
3D design. Thus, OpenSCAD is the application to use when you’re plan-
ning to create 3D-printable models, but probably not what you’re looking
for when you’re more interested in making computer-animated movies.

OpenSCAD is free, open source software that’s available to download
for Windows, macOS, and Linux, as well as other systems. Specific system
requirements are available at https://openscad.org/downloads. This book covers
OpenSCAD 2021.01, which is the latest version at the time of writing.

Who This Book Is For
This book is for beginners who are either new to code, new to 3D design,
or new to OpenSCAD. While no prior background with either coding or
3D design is necessary to access the material presented in this book, some
experience with introductory algebra would be helpful. No particular math
beyond basic arithmetic (adding, subtracting, multiplying, and dividing)
is required. However, some previous experience using variables in simple
equations would be a useful starting point, as would some experience
graphing points on the xy-plane.

 In line with our intentions to make this book beginner-friendly, we
have deliberately chosen to focus on a subset of OpenSCAD. Our goal is to
introduce its most useful elements in an accessible manner. In some cases,
that means we briefly introduce a topic earlier in the book that we return to
in more depth in later chapters. This spiraling is intended to help you form
a strong foundation in the basics before adding layers of nuance. Our exam-
ples and projects have been curated to allow for maximum creative utility
while still making the topic accessible to readers who are new to coding.

Why Learn to Code with OpenSCAD?
While learning to code can be fun and exciting, it can also be challenging
for beginners to figure out the where and why behind the inevitable errors in
their coding projects. In contrast to the opaqueness of other text-based pro-
gramming languages (in which it’s hard to see what’s going on behind the
scenes), OpenSCAD’s visual nature gives users immediate feedback regard-
ing the correctness of a particular approach.

Writing text-based code to create a 3D object is a powerful and effec-
tive way to learn how to structure long sequences of coding statements.
Like more familiar imperative programming languages (JavaScript,
Python, and so on), OpenSCAD includes variables and common control
structures (such as if statements and loops) and supports the creation of

https://openscad.org/downloads

Introduction xvii

programmer-defined modules and libraries. Additionally, OpenSCAD
employs common syntax elements, such as using curly brackets ({ }) and
semicolons (;), to organize statements as well as the familiar set of arithme-
tic operators and conventions. OpenSCAD not only opens up the world of
text-based 3D design, but also teaches skills that are transferable to many
other popular programming languages.

Learning to code with OpenSCAD also offers unique advantages for
developing computational thinking. This computer-specific approach uses
decomposition, abstraction, patterns, and algorithms to solve a problem in
a way that makes it easy for a computer to carry out the solution. Developing
an intuition for computational thinking can be difficult for beginners in
other programming languages, but OpenSCAD makes it easy with algo-
rithms and coding statements that literally take shape. Applying abstraction
and patterns means visually identifying the repetitive and predictable ele-
ments in a design; decomposition becomes splitting a complex design into
well-defined smaller pieces, and algorithms naturally extend from creating
a list of steps that need to happen in order to create a design. The tactile
feedback that comes from turning an OpenSCAD design into a physical
3D-printed object adds an entirely new dimension to learning to code.

STEM (science, technology, engineering, math) and STEAM (add art
into the mix) are two recently popular acronyms that describe learning
activities existing at the intersection of two or more of these traditionally
separated disciplines. Learning to code with OpenSCAD is like taking a
holistic, STEAM-based approach to learning how to code. OpenSCAD cod-
ing projects require translating visual shapes into concisely worded textual
descriptions, and vice versa. Designs that start as hand-drawn sketches
are converted to mathematical coordinate representation, with features
that are estimated with proportionality. Designing with OpenSCAD code
requires navigating both orthogonal and perspective views of 3D objects,
and thinking about 3D shapes in terms of their 2D shadows. 3D-printing an
OpenSCAD design develops engineering skills by requiring the consider-
ation of physical tolerances and the adjustment of machine settings. In true
STEAM fashion, this book asks you to simultaneously develop, combine,
and practice skills typically relegated to the separate disciplines of technol-
ogy, engineering, art, and math as you learn to code with OpenSCAD.

Learning to code with OpenSCAD has quite a few advantages:

•	 OpenSCAD is popular, free, and open source.

•	 OpenSCAD is easy to learn and uses a common and transferable,
text-based syntax that is shared with other popular programming
languages.

•	 Designing 3D objects with OpenSCAD preserves a discoverable design
history. Unlike other 3D-design software, where clicking Undo removes
a step, with OpenSCAD, you can easily modify earlier steps in the
design process without erasing later ones.

•	 The compact size of text-based OpenSCAD files (.scad) makes sharing,
storing, and modifying OpenSCAD models faster and more efficient
than working with typical 3D-modeling file formats.

xviii Introduction

•	 OpenSCAD has an easy-to-find console window for immediate and easy
debugging feedback.

•	 OpenSCAD coding projects are 3D-printable.

•	 OpenSCAD is an effective first programming language choice for
visual learners.

•	 Learning to code with OpenSCAD builds a foundation in computa-
tional thinking while also reinforcing spatial and mathematical reason-
ing in an interdisciplinary, STEAM-based context.

3D Printing and OpenSCAD
Most people use OpenSCAD to create designs for 3D printing. At its core, 3D
printing is a tool for transforming virtual models into actual physical objects.
OpenSCAD is a great choice of software to use when you’re creating parts to
manufacture with a 3D printer. However, access to a 3D printer is in no way a
prerequisite for this book or for learning to use OpenSCAD. We certainly rec-
ognize the appeal of seeing and touching your 3D designs, so we’ve sprinkled
3D-printing tips throughout this book, anticipating that many readers will
want to interact with their virtual designs in the real world.

3D printing is used in an ever-increasing number of areas: mechanical
engineering, product design, animation, architecture, sculpture, medicine,
geology, rocketry, and the list goes on. 3D printing first gained popularity
for its uses in rapid prototyping, which allows designers to create physi-
cal models and receive real-world feedback much faster than previously
possible. However, in addition to prototyping early versions of a design,
3D-printing technologies have advanced to the point where it’s now possible
to directly manufacture products in a variety of materials. Designers can
now use 3D printing to build the final version of their design, using many
types of plastic, glass, metal, magnets, cement, porcelain, bio-matter, and
even edible foods! In fact, it’s no longer unusual for mechanical engineers
to 3D-print metal rocket-engine parts, for dentists to 3D-print porcelain
dental implants, for architects to 3D-print residential houses in cement, or
for sculptors and jewelers to 3D-print a wax base for a lost-wax casting.

Although many types of 3D-printing technologies exist, fused-filament
fabrication remains the cheapest and most readily accessible technology
available. Most of the 3D-printing tips in this book are best suited for fused-
filament fabrication, which builds a 3D form by melting successive layers of
plastic on top of each other.

What’s in This Book
This book is split into three sections:

•	 Chapters 1 through 3 introduce how to draw and combine basic 3D and
2D shapes.

Introduction xix

•	 Chapters 4 through 6 introduce loops, modules, and decisions so that
you can add new layers of efficiency to your design process.

•	 Chapter 7 serves as a case study to reinforce prior topics and introduce
higher-level design skills that work hand in hand with computational
thinking.

A series of Design Time challenges accompany the first six chapters of
the book. These exercises provide quick designs to replicate, suitable to the
scope of each chapter’s content. A small collection of Big Projects conclude
each chapter. These projects, which require substantively more time and
effort than the Design Time activities, are deliberately chosen to present a
cumulative challenge.

The designs in both the Design Time and Big Project sections are pre-
sented without absolute coordinates, as they are intended to inspire you to
build toward a general resemblance without focusing too much on details.
For these exercises, the big details like proportionality and shape combi-
nations matter more than anything else. All Design Time and Big Project
exercises are well suited for 3D printing.

The following list gives a breakdown of the topics presented in each
chapter:

Chapter 1: 3D Drawing with OpenSCAD
Introduces the OpenSCAD interfaces and teaches you to draw and
place a few of the OpenSCAD primitive 3D shapes: cuboids, spheres,
cylinders, and cones. OpenSCAD can also import 3D shapes gener-
ated by other applications, and we introduce that here as well. Another
important concept covered is how to combine multiple shapes in a few
ways. Finally, you’ll learn how to export an OpenSCAD 3D design for
3D printing. The Big Projects in this chapter are designed to help you
get to know the settings on your 3D printer’s preparation software.

Chapter 2: More Ways to Transform Shapes
Presents a variety of additional transformation operations that can be
applied to the 3D shapes introduced in Chapter 1. You’ll learn how to
rotate, mirror, and adjust the proportionality of 3D shapes. You’ll also
learn more sophisticated methods of combining shapes, including how
to wrap a hull around two shapes and how to spread the properties of
one shape along the edges of another shape with the minkowski opera-
tion. 3D-printing tips in this chapter introduce the concepts of infill
and shell. The Big Projects ask you to combine multiple topics from
Chapters 1 and 2 to produce objects you may actually use: a game die
and a desktop organizer.

Chapter 3: 2D Shapes
Discusses an alternate way of approaching 3D design—building up a
3D form from its 2D shadow. You’ll learn how to draw with primitive
OpenSCAD 2D shapes, including circles, rectangles, polygons, and text
(including emoji). You’ll also learn how to combine those 2D shapes by

xx Introduction

using most of the same operations you studied in Chapter 2, as well as a
new 2D operation called offset. Finally, you’ll see how to bring 2D shapes
into the 3D world by extending them along the z-axis with a variety of
new operations. 3D-printing tips in this chapter discuss resizing your
3D models for printing, including how to break a large model into mul-
tiple pieces so you can grow your 3D prints beyond the limited size of
your 3D printer’s build platform. The Big Projects include storytelling
dice, a dice holder, and a 3D trophy built from a 2D profile.

Chapter 4: Using Loops and Variables
Introduces a new tool for computational thinking: the for loop. You’ll
learn how to use variables and for loops to repeat shapes. The best part
is that you’ll learn how to vary the characteristics of a shape (such as
its size, position, or rotation) as it’s repeatedly drawn by the loop. This
chapter also introduces comments and console printing as useful tools
for planning and debugging your designs. 3D-printing tips in this chap-
ter relate to exploring a few gotchas that may surprise you when you try
to create 3D-printed objects from OpenSCAD designs: the limitations
of small-scale features, reconfiguring a design to avoid fusing together
parts that are supposed to be separate, and breaking a design into sepa-
rate .stl files to print different pieces with different-colored filament.
The Big Projects include a detail test, a Towers of Hanoi game, and a
tic-tac-toe game.

Chapter 5: Modules
Introduces yet another computational thinking tool: decomposing a
design into multiple modules. You’ll learn to use OpenSCAD modules
to create your own shapes, as well as use separate files to group your
new shapes into a reusable (and shareable) library. You’ll also create
and use parameters to control characteristics of your shapes, as well
as define variables within modules so that updating the design of new
shapes is quick and easy. The Big Projects in this chapter include a sky-
scraper module and a library of new LEGO brick designs.

Chapter 6: Dynamic Designs with if Statements
Introduces the if statement, which allows you to create dynamic designs
that change according to a certain condition. You’ll learn to create a
variety of complex conditions using Boolean and logical operators, as
well as extended if statements, and if...else statements. You’ll auto-
mate some of the design configurations suggested in the Big Projects
from Chapter 4, as well as incorporate random numbers to add fun and
unpredictable elements to your design and make repeated elements
more organic and natural. The Big Projects include creating a random
forest, a clock face, and a city of random skyscrapers.

Chapter 7: Designing Big Projects
Presents a capstone project that walks through the process behind
creating a big, multifile design. You’ll apply formal characteristics of

Introduction xxi

computational thinking by using the iterative design cycle to reinforce
and expand the ideas presented in the first six chapters. You’ll leverage
the walking skeleton approach to evolve a simple version of the Leaning
Tower of Pisa into a 3D model that bears a high resemblance to the
actual tower. You can 3D-print this building as a trophy to congratulate
yourself for all that you will have learned by following along with the
material presented in the book.

If you get stuck on any exercise in this book, suggested solutions to the
Design Time and Big Project exercises (along with all chapter examples)
are available at https://programmingwithopenscad.github.io/.

Terminology and Conventions Used in This Book
Many introductory books on programming and computational thinking are
available, and each author makes tough decisions as to how much granular
detail is necessary for the audience they are trying to reach. As this book
is meant for beginners, we have chosen to keep a high level of abstraction
with regard to our vocabulary and conventions. Although some of the fol-
lowing terms have more precise definitions in other circumstances, our phi-
losophy for this book is consistent with “don’t sweat the small stuff.”

We use the following vocabulary in the book:

Shape   Any graphical 2D or 3D object created by OpenSCAD.

Design   An OpenSCAD creation (that is, an OpenSCAD program),
which usually consists of a combination of multiple shapes.

Operation   An OpenSCAD command that changes the appearance/
properties of one or more shapes.

Parameter   Any value that specifies characteristics of shapes, opera-
tions, modules, or functions.

Preview   The process of quickly displaying a design on-screen.

Render   The process of fully evaluating the geometry of a design (and
showing it on-screen). Once it’s rendered, you can export a design.

Units   All dimensions in OpenSCAD are specified in units. A unit
is usually a millimeter (by 3D-printing industry convention), but
OpenSCAD is technically unitless. All models should be explicitly sized
in 3D-printing preparation software just prior to printing.

Width   The dimension associated with the x-axis, which is the “left-
right” axis when 3D printing.

Length   The dimension associated with the y-axis, which is the
“forward-backward” axis when 3D printing.

Height   The dimension associated with the z-axis, which is the “up-
down” axis when 3D printing.

2D shapes   Shapes with a width and length, but no height.

3D shapes   Shapes with a width, length, and height.

https://programmingwithopenscad.github.io/

xxii Introduction

A Brief Introduction to 3D Design with OpenSCAD
If you’ve never worked with virtual 3D models before, manipulating the
3D designs you create in this book via the use of a 2D computer screen can
be confusing at first. Understanding some of the basics involved in creating
the illusion of 3D space on a 2D surface can also help you navigate the tran-
sition to a 3D-modeling environment.

Understanding 3D Points
3D objects have a width, length, and height, so drawing a representation
of 3D shapes requires the use of three separate axes: the x-axis, y-axis, and
z-axis (Figure 1). The intersection of all three axes is called the origin and
is indicated as the point (0, 0, 0) on the graph. Each axis proceeds in both
positive and negative directions from the origin. Although a width, length,
or height must be positive, the position of an object on a particular axis may
be in the negative direction (which is relative to the location of the origin).

Figure 1: 3D coordinate system (Cartesian coordinate system. Created by Gustavb using
PSTricks, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license: https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_3D.svg)

Sometimes a 2D screen makes it hard to determine the exact 3D point
being viewed. For instance, in Figure 1, the point (3, 0, 5) could also be
interpreted as the point (0, 4, 3.5). When in doubt about the size or posi-
tion of a particular shape, rotate your design to gain a fuller perspective of
the feature. As you rotate your design, a miniature graph legend (circled in
red in Figure 2) rotates accordingly to help you keep track of which axis is
which.

https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_3D.svg

Introduction xxiii

Figure 2: The graph legend keeps track of axis labels.

This legend is helpful because the axes in OpenSCAD aren’t labeled.
This graph legend is a good feedback tool for interpreting the changing
orientation of the width, length, and height as you rotate your view to under-
stand each part of your design.

Using the OpenSCAD 3D-View Toolbar
OpenSCAD uses a variety of perspectives and color shading (as does other
3D CAD software) to facilitate the representation of 3D shapes on a 2D
computer screen. In addition to using a mouse, touchscreen, or trackpad to
rotate your design, the OpenSCAD 3D-View toolbar (Figure 3) provides sev-
eral buttons for quickly rotating the 3D view of your design to an orthogo-
nal 2D view, which can help reveal a shape’s true location and dimensions.

Figure 3: Quick 2D orthogonal views of a 3D shape

In order, the buttons reveal the following 2D views: right, top, bottom,
left, front, and back.

Final Tips for Getting the Most Out of This Book
OpenSCAD has many more advanced features and capabilities than are
included in this book. Consider these chapters a starting point in your explo-
ration of the design possibilities offered by OpenSCAD. We’ve included
an Afterword to provide a context for the development of OpenSCAD as
an open source project, and to provide suggestions for further learning
once you’ve finished reading the book. We encourage you to consult the

xxiv Introduction

documentation resources at https://openscad.org/, as well as the language ref-
erence (Appendix A) included in the back of this book to explore the full
range of possibilities offered by the language. For a quick view of the basic
features of OpenSCAD covered in the first four chapters of the book, we’ve
also included a visual reference (Appendix B).

To truly learn how to design and code 3D-printable objects with
OpenSCAD, you’ll need to put the book down periodically. Give yourself
an opportunity to type and modify our examples, as well as to create your
own versions of our Design Time and Big Project exercises. Then, use the
book as a starting point for designing and coding your own projects. In fact,
once you’ve learned something new, take a break from the book. Remix or
extend our projects and examples, or design something entirely new. Try to
design something useful, something that will help you apply that new lesson
to a project you’re genuinely interested in. Show off and share your designs.
Maybe even give your 3D-printed objects as a gift. Learning something new
is much easier when you’re genuinely engaged with the topic, so most of all,
have fun!

https://openscad.org/

1
3 D D R A W I N G W I T H O P E N S C A D

This chapter introduces the OpenSCAD
3D design software with its own built-in

programming language. You’ll learn how
to use text-based commands to draw the basic

3D shapes that will act as the building blocks for all
the designs in this book. OpenSCAD’s easy-to-learn
programming language, specifically designed for 3D
printing, is a descriptive language that offers a more
natural way of describing geometry than traditional
programs.

Z
Y

X

2 Chapter 1

Why Use OpenSCAD?
OpenSCAD is an open source program that is freely available for download.
It is one of the most widely used 3D design software applications in the
maker community, and as a result, many online resources are available.
OpenSCAD was built to enable nondesigners to easily create 3D models.
It does not have a graphical user interface like Photoshop. Instead, you
define your design with text-based code, which makes it easier to move
around different parts, change earlier steps in the design process, share
sections of your designs with other people, discuss your design problems
in forums, and email designs to others. You can do similar things in Open
SCAD as are possible with other high-end tools; however, OpenSCAD is
quick to learn, simple to use, and more accessible.

Getting Started with OpenSCAD
Creating a 3D design with OpenSCAD is a two-step process. First, in the
Editor window, type a code statement to give OpenSCAD instructions
about what to display. Figure 1-1 shows a code statement to draw a simple
OpenSCAD shape circled in red.

Figure 1-1: Code for a cube in the Editor window

This OpenSCAD code statement has two parts. The first part indi-
cates the type of shape you want to draw (in this case, a cuboid). The
second part, which contains what are called parameters, indicates the
properties of that shape. Parameters allow you to specify values that
modify the appearance of the shape. Parameters are always placed
between parentheses ().

Next, draw your shape in the Preview window by clicking the Preview
button (circled in red in Figure 1-2) to see a quick visual preview of your
design.

3D Drawing with OpenSCAD 3

Figure 1-2: Drawing a cube after clicking the Preview button

Drawing Basic 3D Shapes
In this section, you’ll learn how to write OpenSCAD code to draw cuboids
(cubes or 3D rectangles), spheres, and cylinders, and you’ll learn how to
import shapes from other design programs.

Drawing Cuboids with cube
Use the cube command to create a cuboid (as shown in Figure 1-2):

cube([5, 10, 20]);

The first part of the statement, cube, indicates that you want to draw a
cuboid. The parameters inside the parentheses modify the cube command
by specifying how big you want your cuboid to be. The square brackets
([]) indicate a vector that organizes the three dimensions of your cuboid.
The order of the numbers in the vector is important: 5 is the width of the
cuboid along the x-axis, 10 is the length of the cuboid along the y-axis, and
20 is the height of the cuboid along the z-axis. Finally, mark the end of the
statement with a semicolon (;).

Notice that one corner of the cuboid touches the origin: the point at
which the three axes meet, represented by the coordinates (0, 0, 0).

Drawing Spheres with sphere
To draw a sphere, use the sphere command followed by the sphere’s radius
in parentheses to indicate its size. For example, the following statement
draws a sphere with a radius of 10 units (Figure 1-3):

sphere(10);

4 Chapter 1

Figure 1-3: A sphere with a radius of 10 units

You can change the size of a sphere by changing its radius. Unlike
cuboids, which might have three distinct measurements for width, length,
and height, a sphere has the same measurements along all three axes.
That’s why the basic sphere command has only one number inside the
parentheses. As with the cube command, mark the end of the code state-
ment with a semicolon. But unlike with the cube command, OpenSCAD
centers a sphere around the origin.

Drawing Cylinders and Cones with cylinder
To draw a cylinder, use the cylinder command followed by parentheses con-
taining the cylinder’s height and the length of the two radii of the circles
that form its top and bottom. The following statement draws a cylinder with
two radii of the same size (Figure 1-4):

cylinder(h=20, r1=5, r2=5);

Figure 1-4: A cylinder with a height of 20 units, a
bottom radius of 5 units, and a top radius of 5 units

3D Drawing with OpenSCAD 5

Because keeping track of the cylinder’s three parameters can be con-
fusing, OpenSCAD allows you to label each parameter and include them
in the command in any order. In parentheses, set the following values: h,
which is the height of the cylinder along the z-axis; r1, which is the radius at
the bottom of the cylinder; and r2, which is the radius at the top of the cyl-
inder. As with the sphere and cube commands, use a semicolon to mark the
end of the statement.

PA R A ME T ER OR DER

It’s perfectly fine to pass parameters to cylinder without labels for height and
radii, so entering cylinder(15, 8, 8) is equivalent to cylinder(h=15, r1=8, r2=8).
However, if you don’t use labels, the parameters must be in the exact order for it
to be read properly. If using labels, you can enter the parameters in any order, for
example: cylinder(r1=8, r2=8, h=15).

The two radii of a cylinder don’t need to have the same measurements.
When they’re different, the cylinder looks more like a cone with its top cut off
(or, a truncated cone, according to mathematicians), as shown in Figure 1-5:

cylinder(h=20, r1=5, r2=3);

Figure 1-5: A cone with a height of 20 units, a
bottom radius of 5 units, and a top radius of 3 units

You can draw a pointed cone, like the one in Figure 1-6, by assigning
one of the radii a radius of 0:

cylinder(h=20, r1=0, r2=5);

6 Chapter 1

Figure 1-6: A pointed cone with a height of 20 units,
a bottom radius of 0 units, and a top radius of 5 units

Notice also that, unlike the shapes drawn with the sphere and cube com-
mands, cylinders are centered around the z-axis, with one face touching the
xy-plane.

Importing 3D Models with import
OpenSCAD allows you to import shapes from other 3D design programs
if they’re saved in the .stl format, which is a common format for 3D mod-
els. You can import these preexisting 3D shapes with the import command.
For example, use the following statement to import a popular file called
3DBenchy.stl (Figure 1-7):

import("3DBenchy.stl");

Figure 1-7: An imported 3D model of a boat often
used to calibrate 3D printers

3D Drawing with OpenSCAD 7

To import a 3D shape, place the .stl file’s name within parentheses after
the import command. Enclose the name of the file in quotation marks (" ")
to indicate that the filename is literal text and should not be interpreted by
OpenSCAD. Note that you should save the .stl file in the same folder/direc-
tory as your OpenSCAD program, and be sure to save your OpenSCAD pro-
gram before you generate a preview of your design; otherwise, OpenSCAD
might have trouble finding the file. Mark the end of the statement with a
semicolon.

Modifying Basic Shapes
Some of the basic ways to alter the shapes you draw with OpenSCAD
include moving or smoothing them.

Moving Shapes
If the design you’re creating has more than one shape, you’ll need to
know how to move those shapes around the Preview window. Otherwise,
by default, they will sit on top of each other, and you may not be able
to see the shapes of different sizes. For example, consider the following
design (Figure 1-8):

cube([20, 10, 10]);
sphere(5);
cylinder(h=30, r1=2, r2=2);

Figure 1-8: Multiple shapes drawn with default
positioning

8 Chapter 1

Centering Shapes with center=true

By default, the sphere command draws a sphere so that it’s centered around
the origin; the cube, cylinder, and import commands don’t do this. If you
want to draw other shapes so that they’re also centered around the origin,
add the center=true parameter inside the parentheses, as in this snippet
(Figure 1-9):

cube([5, 10, 20], center=true);

Figure 1-9: A cuboid centered around the origin

Now the cuboid’s center will be at (0, 0, 0). You can also add the
center=true parameter to cylinder shapes in order to center cylinders and
cones around the origin. It’s not possible to center imported shapes with
center=true.

Moving Shapes to a Specific Location with translate

To move a shape to a specific location in the Preview window, use the
translate operation. This operation modifies a shape as a whole so it’s
included right before the shape it’s meant to modify.

For example, the following statement draws a cuboid that is shifted
from its default position by 10 units in the negative direction along the
x-axis, 20 units in the positive direction along the y-axis, and 0 units
along the z-axis (Figure 1-10):

translate([-10, 20, 0]) cube([20, 10, 10]);

3D Drawing with OpenSCAD 9

Figure 1-10: A translated cuboid with a starting
corner at (–10, 20, 0)

The translate operation uses square brackets to group the x, y, and z
dimensions into a vector. Similar to specifying the dimensions of a cube
shape, the order of the numbers in the vector is important. The first number
in the translation vector describes movement along the x-axis; the second
describes movement along the y-axis; and the third describes movement along
the z-axis. Finally, mark the end of the entire statement with a semicolon.

You may have noticed that the vector you use to modify the translate
operation moves the shape’s starting corner—the corner that touches the
origin by default. Figure 1-11 shows how the translate operation moves the
cuboid relative to the origin (the original cube is shown in gray). You can
use the axes legend to predict the location of your shapes after the translate
operation has been applied.

Figure 1-11: A cuboid moved 10 units along the
x-axis and 20 units along the y-axis, compared
with the same-sized cuboid at the origin

10 Chapter 1

To create a more complex design, you may need to move shapes around
in different configurations. Use the translate operation in front of a command
to move it into a different position. For instance, the following statements draw
a cuboid, a sphere, and a cylinder in one Preview window (Figure 1-12):

translate([-10, 10, 0]) cube([20, 10, 10]);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2);

Figure 1-12: Three distinct shapes, translated
from default positions

Both the sphere and cylinder move according to their respective center
points, while the cube moves relative to the corner that touches the origin.
Notice that the movement is different if you apply the same translation
operations to a cube and cylinder that have been centered (Figure 1-13):

translate([-10, 10, 0]) cube([20, 10, 10], center=true);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2, center=true);

Figure 1-13: Three distinct shapes, translated
from centered positions

3D Drawing with OpenSCAD 11

Smoothing Curves with $fn
You might be wondering why the spheres and cylinders you’ve drawn so far
don’t appear to be round, but instead are formed by a series of flat panels.
That’s because OpenSCAD, like most 3D design software, uses a collection
of straight lines to approximate a curve. To save on memory and reduce
the processing time required to draw complex shapes, OpenSCAD uses
a relatively small number of these lines by default. The cylinder shown in
Figure 1-13, for example, uses only six line segments to approximate the
curve of the circular faces of the cylinder.

To make your cylinders and spheres smoother, specify the number of
line segments used to approximate a curve by including the $fn param-
eter. Setting $fn to 10, for instance, makes a cylinder look a bit rounder,
because it draws the circumference of the cylinder with 10 line segments
(Figure 1-14):

cylinder(h=20, r1=2, r2=2, $fn=10);

Figure 1-14: Approximating the curve of a cylinder
with 10 line segments

As with other parameters, include $fn in the parentheses within the
command.

Although the cylinder in Figure 1-14 is rounder than a default cylinder,
it’s still not visibly round. Increase $fn to an even larger value in order to
make the cylinder rounder (Figure 1-15):

cylinder(h=20, r1=2, r2=2, $fn=50);

With 50 line segments, the curve in this cylinder looks a lot smoother.
After a certain point, though, increasing $fn will stop showing any vis-
ible effect. Also, note that OpenSCAD takes longer to generate shapes
with large $fn values (as there are more details to generate), so be sure to

12 Chapter 1

consider the trade-off between smoothness and computational overhead
when you set $fn. Generally, $fn=50 will produce a “roundness” that is more
than sufficient.

Figure 1-15: A cylinder with a curve approximated
with 50 line segments

Combining 3D Shapes with Boolean Operations
Sometimes you’ll want to create shapes with features that are more com-
plex than the basic shapes you’ve made so far. The Boolean operations in
OpenSCAD allow you to combine multiple shapes, like cuboids, spheres,
cylinders, and cones, into one shape (Figure 1-16). You can do this by using
one of three operations: union, difference, or intersection.

union intersectiondifference

Figure 1-16: An illustration of basic Boolean operations

The union operation groups two shapes together, the difference opera-
tion subtracts one shape from another, and the intersection operation keeps
only the parts where two shapes intersect with each other.

3D Drawing with OpenSCAD 13

BOOL E A N OPER AT IONS

You can think of Boolean as yes/no. It’s commonly used in math and software
engineering when you need to define whether something exists or doesn’t exist.
The Boolean operations discussed here define whether a volume of space
should have material or should be empty.

Subtracting Shapes with difference
Let’s start by subtracting shapes with the difference operation (Figure 1-17):

difference() {
 cube([10, 10, 10]);
 sphere(5);
}

Figure 1-17: A sphere subtracted from a cuboid
with the difference operation

Indicate a difference operation, followed by a set of parentheses, and then
enter at least two commands between a set of curly brackets. Order matters
when you use the difference operation; it keeps only the first shape, remov-
ing the parts of that shape where the remaining shapes intersect it. Notice in
Figure 1-18 what happens when you exchange the order of the two shapes:

difference() {
 sphere(5);
 cube([10, 10, 10]);
}

14 Chapter 1

Figure 1-18: A cuboid subtracted from a sphere
with the difference operation

Reversing the operations creates a sphere with a slice missing, precisely
where cube would have drawn a cuboid shape on top of the original sphere.

Debugging difference Operations with #

It can be easy to lose track of the shape you’re subtracting because it is no
longer visible in the design. To make things easier, place a hash mark (#) in
front of a subtracted shape to create a ghost version of the shape. The fol-
lowing code is identical to the code that drew Figure 1-17, except it uses a
hash mark to render the sphere as a ghost-like image (Figure 1-19):

difference() {
 cube([10, 10, 10]);
 #sphere(5);
}

Figure 1-19: A ghost version of a subtracted
sphere to help with problem-solving

3D Drawing with OpenSCAD 15

Use the hash mark to help you debug your designs, and then when your
design is correct, be sure to remove the hash mark from your code.

Avoiding “Shimmering Walls” with the difference Operation

When subtracting shapes with the difference operation, you may sometimes
end up with “shimmering walls” like those in Figure 1-20.

Figure 1-20: Two cuboids subtracted from a larger
cuboid create shimmering walls

The shimmering walls appear because the subtracted shapes share a
face with the shape they’re being subtracted from. This creates an ambigu-
ous scenario; should the face remain or be subtracted? Because of this con-
cern, a model with shimmering walls isn’t 3D-printable.

To solve this issue, only subtract shapes that extend slightly beyond the
size of the outer shape (Figure 1-21).

Figure 1-21: Two slightly larger cuboids subtracted
from an outer cuboid

16 Chapter 1

Once you’ve removed the ghost shapes, the remaining shape should
contain no shimmering walls (Figure 1-22):

difference() {
 cube([10, 10, 10]);

 translate([-1, 2.5, 2.5]) cube([12, 5, 5]);
 translate([2.5, 2.5, -1]) cube([5, 5, 12]);
}

Figure 1-22: A subtracted shape that is fit for 3D printing

You should now be able to 3D-print this design.

Carving Out Overlapping Shapes with intersection
You can also carve away everything except the overlapping portion of two
shapes by using the intersection operation (Figure 1-23):

intersection() {
 sphere(5);
 cube([10, 10, 10]);
}

3D Drawing with OpenSCAD 17

Figure 1-23: The cutout of an overlapping sphere
and cuboid, drawn with the intersection operation

First, indicate the intersection operation followed by parentheses, and
then enter at least two commands between curly brackets. Unlike with the
difference operation, the order in which you include the shapes doesn’t mat-
ter with intersection.

Grouping Shapes with union
To group shapes into a single entity, use the union operation (Figure 1-24):

union() {
 cube([10, 10, 10]);
 sphere(5);
}

Figure 1-24: A sphere and a cuboid grouped
together with a union operation

18 Chapter 1

The union operation combines all the shapes inside the curly brackets
into one shape. Indenting all the lines that come between the curly brack-
ets makes your code readable and easy to understand. Similar to intersec-
tion and difference, there’s no way to modify the union operation, so you’ll
never need to put any information inside its parentheses.

Although it appears as if you can combine shapes by simply drawing
them on top of each other, each shape will still remain a separate entity.
This can be a problem when using the difference operation, as that opera-
tion subtracts only from the first shape inside the curly brackets. To avoid
this problem, you can group multiple shapes into one shape by using the
union operation. Include this grouped shape within difference as the first
shape. For example, the following program uses the union operation to
subtract a sphere from two shapes at once (Figure 1-25):

difference() {
 union() {
 cube([10, 10, 10]);
 cylinder(h=10, r1=2, r2=2);
 }
 sphere(5);
}

Figure 1-25: A sphere subtracted from a cylinder and
a cuboid grouped together with union

OpenSCAD first combines the cube and cylinder into one shape, and
then subtracts the sphere from that new shape. Without the union operation,
OpenSCAD would, instead, subtract both the cylinder and sphere from the
cuboid (Figure 1-26).

3D Drawing with OpenSCAD 19

Figure 1-26: A sphere and a cylinder subtracted
from a cuboid

Once you’ve created a complex shape with difference, intersection, or
union, a computer can easily break it into geometric primitives to generate
an accurate 3D model of your design. You can then print this complex 3D
model on a 3D printer or import it into a 3D virtual reality program.

Getting Ready for 3D Printing
When you’re ready to send your OpenSCAD design to another application
for 3D printing, you’ll need to export an .stl version of your design from
OpenSCAD. You can then import this file into your 3D printing prepara-
tion software to adjust the settings, then turn it into a physical object with a
3D printer.

To export an .stl version of your design, first render your design by
clicking the Render button (circled in red in Figure 1-27). Whereas Preview
generates a quick picture of your model, Render fully calculates all of the
surfaces needed to define the model. Especially complex designs require
more surfaces and might have slow Render times as a result.

Figure 1-27: Rendering a design with the Render button

20 Chapter 1

Finally, export your design as an .stl by selecting FileExportExport
as STL (Figure 1-28).

Figure 1-28: Exporting a design as an .stl file

Summary
Congratulations! You should now be able to create designs that include
cuboids, spheres, and cylinders in any size and draw them in OpenSCAD’s
Preview window. You can also import 3D shapes, smooth curves, and move
shapes to anywhere along the x-, y-, and z-axis. Finally, you also should know
how to create complex designs out of basic shapes by grouping, subtracting,
and cutting out overlapping shapes.

Here are some important points to remember:

•	 The name of an OpenSCAD command describes the type of shape
you’d like to draw.

•	 Commands are followed by parentheses. Information inside paren-
theses () modifies a command. The values inside the parentheses
are called parameters. You can think of parameters as adjectives that
describe characteristics of the shape.

•	 A semicolon (;) marks the end of most statements. Statements can
include both commands and operations.

•	 Use the translate operation to move your shapes around the Preview
window. Indicate the amount and direction of movement by changing
the vector parameter of the translate operation.

•	 Square brackets ([]) collect numbers together to form a vector. The
order of the numbers inside a vector is important.

•	 Boolean operations use curly brackets ({ }) to collect multiple shapes
together. These curly brackets also form a complete OpenSCAD state-
ment and do not require a semicolon to end the statement.

•	 Parentheses, square brackets, and curly brackets always come in pairs.

3D Drawing with OpenSCAD 21

•	 $fn can be used as a parameter to change the smoothness of a single
shape. You can also set $fn to a high value at the beginning of your code
to generate smooth curves for every shape in a design. High values for
$fn can result in slow rendering times.

•	 Use indentation to help make your code readable and easy to
understand.

•	 A design must be rendered before it can be exported as an .stl file.

22 Chapter 1

DESIGN TIME: 3D SHAPES

Practice your composition and design skills by building each of the complex shapes in Figure 1-29.
We strongly recommend that you finish building each shape before moving on.

1. Mouse 2. Yo-yo

3. Spinner 4. Epcot

5. Half-pipe 6. Ice cream cone

Figure 1-29: Practice drawing these shapes.

3D Drawing with OpenSCAD 23

BIG PROJECTS: 3D SHAPES

The following big projects will help you practice the commands covered in this chapter, and will
introduce you to some basic considerations for using your 3D printer, such as printer resolution and
temperature.

CA L IBR AT ION PY R A MID

Building a calibration pyramid, shown in Figure 1-30, will help you determine whether you need
to tweak the settings on your 3D printing preparation software. It will also help you practice using
cube and translate.

Figure 1-30: Calibration pyramid

•	 Try printing this at different resolutions. Try Low, Medium, and High quality. Compare
print times and results.

•	 Try printing this pyramid at different sizes. Measure the pyramid after you print it.
Check to make sure your physical measurements match the virtual measurements of
your 3D model.

•	 Tweak your software settings so the pyramid has straight lines at all corners after it’s
printed.

(continued)

24 Chapter 1

SMIL E Y-FACE PENDA N T

To create the smiley-face pendant shown in Figure 1-31, you’ll need to use your 3D printer to print
large, flat shapes. Flat shapes can be difficult to print because they tend to curl.

Figure 1-31: Smiley-face pendant

If you have a heated bed on your 3D printer, use it. Vary the temperature of your heated bed
to see which temperature works best for the type of filament you are using.

If you don’t have a heated bed, inserting thin helper disks can keep prints from curling. Helper
disks are 1 mm thick, so you can easily remove them after your print is complete. You can place
helper disks around the perimeter of your design, and then easily cut them off after you’ve finished
the print. Some 3D printing preparation software allow you to insert these discs automatically.
Otherwise, you can insert ultra-thin cylinders in your OpenSCAD design.

HOL E-A ND -PINS T ES T

To design a hole-and-pins test, you’ll use your 3D printer to print pieces that fit together, as shown
in Figure 1-32. If you design this properly, the pins should fit snugly inside the holes.

Figure 1-32: Hole-and-pins test

If you design the pins to be exactly the same size as the holes, the two pieces won’t fit together.
The pins should be slightly smaller than the holes. How much smaller depends on the type of filament
you’re using and your printer settings. Both the brand and type of plastic will make a difference.

2
M O R E W AY S T O

T R A N S F O R M S H A P E S

This chapter introduces a collection of
transformation operations that allow you

to have more control when creating complex
shapes. You’ll learn how to rotate, reflect, and

scale shapes; combine them with a shared hull; and
round out their edges. These transformation opera-
tions will expand your modeling toolbox and allow
you to create even more complex designs.

OpenSCAD Shape Transformations
First, you’ll learn how to use three transformation operations: rotate,
mirror, and resize. A transformation operation is a bit of code that comes
immediately before a shape to alter the shape’s position, size, or

Z
Y

X

26 Chapter 2

orientation. For illustrative purposes, we include a transparent gray outline
in this chapter’s examples to indicate where the original, untransformed
shape would have appeared.

Rotating Shapes with rotate
By default, OpenSCAD draws shapes so they’re oriented in a certain way. It
draws sphere shapes centered at (0, 0, 0), for example, and cube shapes with
a single corner at (0, 0, 0). Sometimes, though, you’ll want your shape to
have a different orientation.

One way to alter a shape’s default position is to rotate it. To rotate a
shape, specify the angle of rotation around each of the three axes, and
express the angles of rotation in degrees, which can be positive or negative.

The following code snippet rotates a cuboid 90 degrees around the
x-axis (Figure 2-1):

rotate([90, 0, 0]) cube([30, 20, 10]);

Figure 2-1: A cuboid rotated 90 degrees around
the x-axis

First, write the name of the transformation, and then inside the paren-
theses, provide rotate with a vector in square brackets ([]) to group together
the three axes of rotation. The first element in the vector is the degree of
rotation around the x-axis, the second is the degree of rotation around the
y-axis, and the third is the degree of rotation around the z-axis. Next, write
the code for the shape you want to rotate. As always, use a semicolon (;) to
end the entire statement.

Because you’re rotating the shape 90 degrees around the x-axis, its posi-
tion the x-axis stays fixed, and it gets a new position on the yz-plane.

More Ways to Transform Shapes 27

The following code snippet rotates the same cuboid around the y-axis
(Figure 2-2):

rotate([0, 180, 0]) cube([30, 20, 10]);

Figure 2-2: A cuboid rotated 180 degrees around
the y-axis

In this case, the shape’s position relative to the y-axis stays fixed, and its
position on the xz-plane moves by 180 degrees.

You can also rotate a shape around two axes with a single operation, as
in the following snippet (Figure 2-3):

rotate([-90, 0, -90]) cube([30, 20, 10]);

Figure 2-3: A cuboid rotated 90 degrees around
the x-axis and 90 degrees around the z-axis

28 Chapter 2

This cuboid is rotated around both the x- and z-axes. You might find
it easier to imagine this operation as two separate transformations: one
that rotates the shape around the x-axis and one that rotates it around the
z-axis. To rotate the shape counterclockwise by 90 degrees in both direc-
tions, set the angle of rotation for those axes to –90.

Even though rotation around multiple axes is possible with the applica-
tion of only one rotation operation, it’s best to separate the various rotations
into individual, repeated transformations. This is because it is sometimes
hard to predict which rotation will be applied first. Consider the difference
in the location of the cuboid when the rotation around the z-axis is applied
before the rotation around the x-axis (Figure 2-4):

rotate([-90, 0, 0]) rotate([0, 0, -90]) cube([30, 20, 10]);

Figure 2-4: A cuboid rotated –90 degrees around the
z-axis, then rotated –90 degrees around the x-axis

Explicitly applying multiple rotations in their intended order will result
in shapes ending up exactly where you’d like them to be after the rotations
are applied.

Reflecting Shapes with mirror
Another way to change a shape’s default position is to reflect it across an imagi-
nary 2D plane with the mirror transformation. As you might expect from
the name of the operation, mirror creates a mirror-like reflection of your
shape. The following statement reflects a truncated cone across the yz-plane
(Figure 2-5):

mirror([10, 0, 0])
 translate([0, 10, 0]) rotate([0, 90, 0]) cylinder(h=10, r1=5, r2=2);

More Ways to Transform Shapes 29

Figure 2-5: A truncated cone reflected across the yz-plane
via the vector [10, 0, 0]

The vector you pass to mirror contains the x, y, and z coordinates that
define an imaginary point. OpenSCAD then draws an imaginary line from
the origin to that point and uses the 2D plane that is perpendicular to that
line at the origin as the mirror, or plane of reflection.

To clarify this, Figure 2-6 shows the “mirror” as a semitransparent plane.

Figure 2-6: A truncated cone reflected across the yz-plane
via the vector [10, 0, 0]

The “mirror” is perpendicular to the vector, shown in green, drawn
from (0, 0, 0) to (10, 0, 0). Notice that you don’t have to use 10 as the x-axis
value to create this mirror; any nonzero x-axis value would cause the mirror

30 Chapter 2

operation to behave the same way, as your goal is only to specify a vec-
tor that is perpendicular to the mirror. The mirror plane always contains
the origin (0, 0, 0). In effect, the vector parameter of the mirror operation
describes how the mirror is rotated.

The next statement reflects a cylinder across the xy-plane (Figure 2-7):

mirror([0, 0, 10]) cylinder(h=10, r1=2, r2=5);

Figure 2-7: A cone reflected across the xy-plane via
the vector [0, 0, 10]

This example defines a point at (0, 0, 10), and the line from the defined
point to the origin is perpendicular to the xy-plane. The mirror operation is
particularly useful for quickly creating complex shapes that involve symme-
try. Using the mirror operation in such cases may save you time, as you can
focus on designing only one half of the object, and then use mirror to create
the second half.

Note that the mirror operation does not copy the shape; it moves the
shape into the mirrored position. If you want a fully symmetrical shape, first
create the shape, and then repeat it with the mirror operation in front of it.

Scaling Shapes with resize
The resize operation allows you to stretch or shrink specific dimensions of
individual shapes. When you resize a shape, you can specify its exact dimen-
sion along each axis. By stretching a sphere across a single axis, for exam-
ple, you can turn it into an ellipsoid (an elongated sphere).

The following code snippet uses resize to scale a sphere with a radius of
1 into an ellipsoid (Figure 2-8):

resize([10, 10, 20]) sphere(1, $fn=100);

More Ways to Transform Shapes 31

Figure 2-8: A sphere resized into an ellipsoid

Before writing the shape command, pass a vector to the resize opera-
tion to group together the new dimensions of the sphere along the x-, y-,
and z-axes. As with all transformations, use a semicolon to end the entire
statement.

The new ellipsoid stretches 5 units on either side of the origin along
the x-axis, 5 units on either side of the origin along the y-axis, and 10 units
on either side of the origin along the z-axis.

You could also use resize to transform a basic cylinder (Figure 2-9):

resize([10, 5, 20]) cylinder(h=5, r1=5, r2=5);

Figure 2-9: A resized cylinder

32 Chapter 2

This statement resizes a basic cylinder with a height and two radii of
5 units so that the transformed cylinder stretches 10 units along the x-axis
(through the origin), 5 units along the y-axis (also through the origin), and
20 units along the z-axis (from the origin).

More Ways to Combine 3D Shapes
In Chapter 1, you learned about three Boolean operations that allow you
to combine multiple 3D shapes: union, difference, and intersection. You can
also combine two shapes into one with the hull and minkowski operations.

Combining Shapes with hull
The hull operation creates a convex hull (or skin) around two shapes. To
understand this, imagine stretching a balloon tightly around two or more
shapes in order to create a single shape. For example, the following code
creates a balloon surrounding both a sphere and a cube (Figure 2-10):

hull() {
 translate([10, 0, 0]) sphere(8);
 translate([-10, 0, 0]) cube([4, 4, 4], center=true);
}

Figure 2-10: A hull stretched around a small cube
and a big sphere

The hull operation has the same syntax as the Boolean operations
described in Chapter 1. It can combine two or more shapes, and as with
the union operation, the order of shapes does not matter.

More Ways to Transform Shapes 33

Combining Shapes with minkowski
The minkowski operation creates a Minkowski sum of a collection of shapes.
This means it wraps the edges of one shape with the characteristic of a sec-
ond shape. The following example wraps a sphere around the edges of a
cylinder to create rounded edges (Figure 2-11):

$fn=50;
minkowski() {
 cylinder(h=15, r1=5, r2=5);
 sphere(4);
}

Figure 2-11: A sphere used to smooth the corners
of a cylinder

The minkowski operation also has the same syntax as the Boolean opera-
tions described in Chapter 1. In this example, the edges of the cylinder
become rounded edges because the smaller sphere has been embossed
along the edges of the cylinder. It’s important to note that the minkowski
operation produces a larger shape than the original cylinder, because wrap-
ping the sphere around the original cylinder adds volume.

Combining Transformations
You can combine transformation operations by writing one operation in
front of another. For example, the following code snippet applies the rotate
operation before translate on each of three cylinders (Figure 2-12):

translate([5, 0, 0]) rotate([90, 0, 0]) cylinder(h=10, r1=4, r2=4);
translate([5, 0, 0]) rotate([0, 90, 0]) cylinder(h=10, r1=4, r2=4);
translate([5, 0, 0]) rotate([0, 0, 90]) cylinder(h=10, r1=4, r2=4);

34 Chapter 2

Figure 2-12: Three cylinders, rotated and then
translated

OpenSCAD first executes the innermost transformation (the operation
directly to the left of a shape), then applies the outermost transformation.
If you applied the transformations in the reverse order, you’d get a different
result. The next snippet applies the translate operation before the rotate
operation (Figure 2-13):

rotate([90, 0, 0]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);
rotate([0, 90, 0]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);
rotate([0, 0, 90]) translate([5, 0, 0]) cylinder(h=10, r1=4, r2=4);

Figure 2-13: Three cylinders, translated and then
rotated

More Ways to Transform Shapes 35

You get different results because OpenSCAD applies operations in
order, starting with the transformation operation closest to the shape.

Summary
This chapter introduced several important operations for transforming
shapes. You can now move, rotate, reflect, and resize shapes. You can also
combine two shapes by forming a hull around them or by smoothing the
corners of one shape with another.

Here are some important points to remember:

•	 You can apply transformation operations to single shapes and com-
bined shapes.

•	 Combining shapes with the union operation can reduce the number of
transformation operations that you need to apply to a complex design.

•	 Applying a series of rotate operations is often easier to manage than
combining rotations into one rotate operation.

•	 Reflecting combined shapes with mirror can save you time when you’re
building symmetrical designs.

•	 When you’re applying multiple transformation operations, order
matters.

•	 The transformation operation closest to the shape is applied first.

In the next chapter, you’ll learn how to convert 2D shapes into 3D
shapes, apply transformation operations to 2D shapes, and create surpris-
ingly complex 3D shapes by combining and operating on basic 2D shapes.

36 Chapter 2

DESIGN TIME: TR ANSFORMING SHAPES

Before moving on to Chapter 3, practice the skills you learned in this chapter by building each of
these complex shapes (Figure 2-14).

1. Heart 2. OpenSCAD logo

3. Guitar pick 4. Snowman

5. Modern table 6. Top hat

Figure 2-14: Practice building each of these shapes.

More Ways to Transform Shapes 37

(continued)

BIG PROJECTS: TR ANSFORMING SHAPES

Hone your transformation skills with these bigger, more difficult projects.

G A ME DIE

This project will help you when you’re missing a die in the Monopoly box. Build your own die
(Figure 2-15) to practice the operations you learned in this chapter.

Figure 2-15: Game die

3D-Printing Tip for the Game Die

The interior of a 3D-printed object consists of two parts: the infill and the shell. The infill is the
interior volume of the object. The shell is the thick wall that forms the exterior shape of the
design.

The fill density of a 3D-printed object describes how much volume of the object’s interior will
be filled with plastic. It’s usually laid out in a crosshatched pattern to save time and plastic
(although it’s certainly possible to change this pattern). Try varying the fill density of your die
to see how lower fill densities decrease printing times, while higher fill densities increase them.

Since your die won’t be undergoing much structural stress, a 5 to 10 percent fill density should
optimize both time and materials.

38 Chapter 2

DESK TOP ORG A NIZER

When you’re done playing with your die, put your design skills to a more practical use by building
this desktop organizer (Figure 2-16) to hold your pencils and paper clips.

Figure 2-16: Desktop organizer

3D-Printing Tip for the Desktop Organizer

Shell thickness is the thickness of the outer wall of the 3D-printed design. It describes the num-
ber of layers on the outside of the print. A thicker outer wall makes your object much stronger,
which is important if your object is going to undergo repeated use and stress. Increasing the
shell thickness of your print can be a good way to increase the durability of your 3D-printed
object without having to dedicate more resources to increasing the fill density.

Shell thickness is often described in terms of nozzle diameters (as in, the size of the hole that
the melted plastic squeezes though in your 3D printer). The default shell thickness is often two
nozzle diameters, which is about 0.8 mm. Try varying the shell thickness of this design to see
the effect it has on print time and material usage.

3
2 D S H A P E S

You’re now familiar with a good collec-
tion of basic OpenSCAD instructions

for modeling simple 3D shapes, and you’ve
seen operations that can transform those basic

shapes into more complex designs. This chapter will
teach you how to create and combine 2D shapes in
order to build even more sophisticated 3D designs.

We’ll start by showing you how to draw basic 2D shapes, and then
we’ll describe how to build on those basic 2D shapes to create elaborate 3D
designs. Using 2D shapes will allow you to create designs that are not pos-
sible to build with the 3D shapes and operations you’ve learned so far. In
addition, knowing how to create 2D shapes is useful when you’re designing
for other digital fabrication techniques, such as laser cutting, though that’s
beyond the scope of this book.

Z
Y

X

40 Chapter 3

Drawing Basic 2D Shapes
As with 3D shapes, you can build complex 2D shapes based on a few built-in
2D primitives, called circle, square, and polygon.

Drawing Circles with circle
The circle command allows you to draw a 2D circle by specifying its radius,
like the sphere command from Chapter 1. For example, the following state-
ment draws a circle with a radius of 20 units (Figure 3-1):

circle(20);

Figure 3-1: A rendered circle with a radius of 20 units

Clicking the Preview button renders your circle with a slight depth
(Figure 3-2).

Figure 3-2: A previewed circle with a radius of 20 units

2D Shapes 41

However, 2D shapes have no depth. They exist only in the xy-plane.
To see 2D shapes in their true form, without depth, use the Render but-
ton. (Note that it’s not possible to mix 2D and 3D shapes in Render mode.)
Because 2D shapes have no depth, it’s often easiest to create 2D designs by
using the Top-view icon on the toolbar (Figure 3-3).

Figure 3-3: Top-view icon

Drawing Rectangles with square
The 2D square command, which draws rectangles, specifies x and y dimensions
as a single vector parameter. The following statement draws a rectangle that
extends 25 units along the x-axis and 10 units along the y-axis (Figure 3-4):

square([25, 10]);

Figure 3-4: A rectangle with a width of 25 and
height of 10 units

Use the square command to indicate that you want to draw a rectangle,
followed by a set of parentheses. Within the parentheses, put square brack-
ets, and then within those, enter the dimensions of the square, separated
by a comma. This 2D vector requires only x and y dimensions, as opposed
to the 3D vector (x, y, and z) required by the 3D cube shape. The first num-
ber in the vector represents the width of the square along the x-axis. The
second number in the vector represents the length of the square along
the y-axis.

42 Chapter 3

Remember that you’ll need to click the Render button to see the rect-
angle as a 2D shape.

Drawing Polygons with polygon
If you want to create a 2D shape that isn’t built into OpenSCAD, you can
create your own 2D shapes with the polygon command.

The following statement uses the polygon command to draw a triangle
with vertices at [0, 0], [10, 0], and [10, 10] (Figure 3-5):

polygon([[0, 0], [10, 0], [10, 10]]);

Figure 3-5: A triangle with three vertices

A polygon is defined by a list of the shape’s corners, called vertices. Each
vertex in this list is a vector containing the coordinates of a corner point in
the polygon. Group each vertex as a vector within square brackets, then add
an extra set of brackets around the entire list of vertices to organize the col-
lection as a vector of vectors.

Be sure to list the vertices in order, as though you were walking
around the edge of the polygon (in either direction). Also, you don’t need
to specify the starting point twice; OpenSCAD will finish the polygon for
you automatically.

Since polygons can have any number of vertices, you can create increas-
ingly complex shapes, like this one with eight vertices drawn with the fol-
lowing statement (Figure 3-6):

polygon([
 [0, 0], [20, 0],
 [20, 5], [5, 5],
 [5, 10], [20, 10],
 [20, 15], [0, 15]
]);

2D Shapes 43

Figure 3-6: A more complex polygon with eight vertices

Drawing Words with text
Another way to use 2D shapes in your designs is to create symbolic patterns,
such as words. Using textual elements in your designs can be useful for per-
sonalization. You may also want to use emoji fonts to access pre-drawn sym-
bols or simply stamp a version or serial number onto your design.

Use the text command to draw text shapes in OpenSCAD. Text in
OpenSCAD (as in other programming languages) is considered a string
of characters. Since a string of characters can be arbitrarily long, quotation
marks (" ") are used to indicate the beginning and end of the text string.
Text strings can contain letters, punctuation, numbers, and (if the font
used supports Unicode) emoji characters.

This statement creates the string "Hello, OpenSCAD" (Figure 3-7):

text("Hello, OpenSCAD", size=10);

Figure 3-7: Creating a 2D text shape

44 Chapter 3

Follow the text command with parentheses containing a string of
characters. The strings should start and stop with double quotes (" "). The
parentheses can also contain an optional size parameter, which sets the
text size to 10 in this case. Notice in Figure 3-7 that the tallest letters in the
string reach the first tick mark (which represents 10 units) on the y-axis.

The size parameter is optional for text shapes. If you leave off the size
parameter, the default text size is 10. Another optional parameter for draw-
ing text shapes is font. You can also use the optional font parameter to draw
text in any font installed on your computer. The following statement draws
a string of text in Courier font (Figure 3-8):

text("Hello, OpenSCAD", font="Courier");

Figure 3-8: Changing the text shape’s font to Courier

N O T E 	 If you don’t know the names of the fonts installed on your computer, you can ask
OpenSCAD to give you a list by selecting Help4Font List from the menu.

Fonts that support Unicode characters will often contain emoji. You
can draw any character supported by the font, including emoji shapes
(Figure 3-9):

text("", font="Arial Unicode MS");

Figure 3-9: Using text to draw a crown emoji

2D Shapes 45

 It’s also possible to draw numeric values with the text command. If you
want to create a shape with a numeric value (Figure 3-10), be sure to con-
vert the value to a string with the str function:

text(str(123), size=20);

Figure 3-10: Drawing a text shape with numbers

Rather than putting the number between quotation marks, apply the
str function to a numeric value in order to turn it into a string. This is par-
ticularly helpful when the numeric value is stored in a variable, as we’ll see
in Chapter 4.

Applying Transformation and Boolean Operations on
2D Shapes

You can apply the same transformation and Boolean operations you learned
in Chapters 1 and 2 to 2D shapes—and it’s done pretty much the same way
as when you apply them to 3D shapes. The only difference is that instead of
requiring 3D vectors, the translate, mirror, and resize operations require 2D
vectors containing x- and y-coordinates, and the rotate operation requires
only a single angle of rotation (for the z-axis).

For example, the following design uses translate, difference, and rotate
to draw an askew rectangle with three circles cut out of it (Figure 3-11):

rotate(30) {
 difference() {
 square([120, 40]);
 translate([20, 20]) circle(15);
 translate([60, 20]) circle(15);
 translate([100, 20]) circle(15);
 }
}

46 Chapter 3

Figure 3-11: Transformation and Boolean operations
on 2D shapes

Just as with the 3D shapes, the order in which you apply transforma-
tions and Boolean operations on a 2D shape will affect the arrangement
and placement of the resulting shape. Consider the difference between
subtracting a circle from a square versus subtracting a square from a
circle. The following difference operation subtracts a circle from a square
(Figure 3-12):

difference() {
 square([5, 5]);
 circle(5, $fn=50);
}

Figure 3-12: Subtracting a circle from a square

2D Shapes 47

And this difference operation subtracts a square from a circle
(Figure 3-13):

difference() {
 circle(5, $fn=50);
 square([5, 5]);
}

Figure 3-13: Subtracting a square from a circle

Extruding Shapes Vertically with linear_extrude
You can’t 3D-print 2D shapes directly, but you can use them as building
blocks for creating 3D shapes (which can then be 3D-printed as physical
objects). This section describes two of OpenSCAD’s powerful operations for
creating 3D shapes from 2D shapes.

The linear_extrude operation takes a flat shape and “lifts” it up along
the z-axis while building walls corresponding to the shape’s initial bound-
ary. The following statement extrudes the letter A into a 3D shape with a
height of 5 units (Figure 3-14):

linear_extrude(5) text("A");

The linear_extrude operation takes a single parameter, the height of
the 3D shape you’re creating, followed by the 2D shape you’d like to stretch
into 3D. As with the transformation operations you already know, end the
entire statement with a semicolon.

You could also provide the linear_extrude operation the optional
parameters of twist, slices, and scale to build more complex 3D shapes.
The twist parameter specifies an angle at which to twist the 2D shape
during extrusion. The slices parameter controls how smooth a twist will
be—specifically, how many segments will be used to complete the twist.

48 Chapter 3

Since extrusion extends a shape upward, each of these segments will turn
into a horizontal “slice,” which is why the parameter is named slices. If you
don’t specify it, OpenSCAD will choose a relatively coarse value. The scale
parameter changes the size of the 2D shape during extrusion.

Figure 3-14: Linear extrusion of a 2D shape into a
3D shape

Use all of these parameters to transform a rectangle into the 3D shape
drawn in Figure 3-15:

linear_extrude(100, twist=30, slices=25, scale=1/3) {
 square(100, center=true);
}

Figure 3-15: Twisting, scaling, and extending a 2D shape
into a 3D shape with 25 horizontal slices

2D Shapes 49

The parameters twist, slices, and scale are optional. Although this
example shows all three parameters used at once, you can use any variation,
such as only scale or only twist.

Extruding Shapes Along a Circle with rotate_extrude
Rather than extruding a 2D shape along a linear path, use the rotate_extrude
operation to move the 2D shape along a circular path, which creates a donut-
like shape called a torus (Figure 3-16):

rotate_extrude() {
 translate([100, 0]) circle(40);
}

Figure 3-16: The rotate_extrude operation of a
2D circle into a 3D torus

The rotate_extrude operation is a two-step process that first rotates the
2D shape by 90 degrees around the x-axis, then moves the 2D shape in a
circle around the z-axis. If you were to cut out a slice of the resulting donut,
the shape of that slice would look like the original 2D shape.

When using rotate_extrude, take care to ensure that the shape doesn’t
rotate into itself. In the code that draws Figure 3-16, you do this by first
translating the shape away from the z-axis so that no parts of the 2D shape
are touching the z-axis.

The rotate_extrude operation also takes an optional angle parameter that
allows you to specify the angle of rotation. Figure 3-17 demonstrates a circle
that has been extruded along a 135-degree rotation around the z-axis.

rotate_extrude(angle=135) {
 translate([100, 0]) circle(40);
}

50 Chapter 3

Figure 3-17: The rotate_extrude with a 135-degree
angle parameter

T IP S FOR USING MULT IPL E L INES INS T E A D OF SINGL E L INES

Though we use curly brackets to help visually organize these rotate_extrude
examples, curly brackets are optional if they enclose a single shape. So this
multiline statement

rotate_extrude() {
 translate([100, 0]) {
 circle(40);
 }
}

is the same as this single-line statement:

rotate_extrude() translate([100, 0]) circle(40);

And, though there are no curly brackets in the multiline statement

polygon([
 [0, 0], [20, 0],
 [20, 5], [5, 5],
 [5, 10], [20, 10],
 [20, 15], [0, 15]
]);

2D Shapes 51

we used for Figure 3-6, we could rewrite this statement as

polygon([[0, 0], [20, 0], [20, 5], [5, 5], [5, 10], [20, 10],
[20, 15], [0, 15]]);

or

polygon([[0,0],[20,0],[20,5],[5,5],[5,10],[20,10],[20,15],[0,15]]);

OpenSCAD ignores both the spaces between elements and new lines, so
you have some flexibility in how you organize your code to make it more (or
less) readable. While using indentation, new lines, and curly brackets can help
communicate the nuances of a complex sequence of operations, consolidating
elements onto one line can also be useful once you become more comfortable
coding with OpenSCAD.

Growing and Shrinking a Shape with offset
Imagine you want to build a fancy cross-shaped cookie cutter. You now
know how to create a cross shape by performing a union of two rectangles,
and you know how to extrude it by using linear_extrude to make it 3D. But to
specify the wall thickness, you need the offset operation, which allows you
either to grow or shrink a shape by a specific amount. Use offset to hollow
out your cookie cutter by shrinking one cross, and then subtract the small
cross from the larger one.

In the following design, pass offset a negative value to shrink your 2D
cross (Figure 3-18):

offset(-2) {
 union() {
 square([100, 30], center=true);
 square([30, 100], center=true);
 }
}

Place the code for the 2D shapes to offset in curly brackets following
the offset operation. In parentheses, specify the amount (in millimeters) to
offset. A positive value will grow a shape, and a negative value will shrink a
shape.

N O T E 	 When shrinking a shape, the inner corners become rounded, but when growing a
shape, the outer corners become rounded. Experiment with this to build intuition on
how offset works.

52 Chapter 3

Figure 3-18: Shrinking an object by passing
offset a negative value

Now you can reuse that code to build the walls of your cross-shaped
cookie cutter (Figure 3-19):

linear_extrude(30) {
1 difference() {
 2 union() {
 square([100, 30], center=true);
 square([30, 100], center=true);
 }
 3 offset(-2) {
 square([100, 30], center=true);
 square([30, 100], center=true);
 }
 }
}

Figure 3-19: Cross-shaped cookie cutter

2D Shapes 53

Define two squares to create the outer cross with a union operation 2.
Next, define two more squares to create the inner cross 3, shrink that
cross with offset, and then subtract it from the outer cross 1. This leaves
you with a hollowed-out cross shape.

Importing 2D Shapes with import
Just as with 3D shapes, you can import 2D shapes from files created in other
2D design programs. OpenSCAD supports importing the .dxf and .svg 2D
file formats. These formats are commonly used with popular 2D vector
graphic design tools, such as Adobe Illustrator and Inkscape (an open
source alternative to Adobe Illustrator). OpenSCAD only supports import-
ing shapes that are closed polygons, containing no “open-ended” sections.
Also, make sure you convert all segments in a .dxf file to straight lines.

The syntax of the import command is the same for importing both 2D
and 3D shapes. You just need to pass the filename in quotation marks to
import, and make sure the file is saved in the same folder/directory as your
project. For example, use the following statement to import the drawing in
Figure 3-20:

import("drawing.dxf");

Figure 3-20: An imported .dxf vector graphic

Even though the imported file looks round, it actually consists of many
short line segments, similar to the polygons you learned to create earlier
in this chapter. Inkscape was used to draw this 2D smiley-face shape. An
important final step in the process was to convert all of the line segments in
the shape to very small straight lines.

54 Chapter 3

Once you import a 2D shape, it behaves exactly like a built-in shape,
and you can transform it and combine it with other shapes. The following
statement first imports the smiley face shown in Figure 3-20, then extrudes
it into the shape shown in Figure 3-21:

linear_extrude(height=500, scale=3) import("drawing.dxf");

Figure 3-21: An extruded and scaled .dxf vector graphic

Now you have a 3D smiley-face shape that you can 3D-print as a stamp.

Summary
In this chapter, you learned how to design and create 3D shapes based
on 2D shapes. You now should be able to create, combine, and transform
simple 2D shapes like circles, rectangles, polygons, and text. You can create
both internal and external outlines of 2D shapes with the offset operation,
import vector graphics, and transform 2D shapes into 3D shapes.

By now you should be able to imagine a wide variety of designs that you
could create with OpenSCAD 2D and 3D shapes. Sometimes it’s easier to
build a complex 3D design by thinking about its 2D shadow first, and then
you can stretch the 2D shadow into 3D.

Here are some important points to remember when working with 2D
shapes:

•	 Rendering a 2D design will display the actual 2D view of the shape,
while a Preview window of the design will appear to add a small amount
of height along the z-axis.

•	 3D shape transformation vectors require three parameters: [x, y, z];
most 2D shape transformation vectors require only two parameters:
[x, y].

2D Shapes 55

•	 2D rotations need only a single parameter: a number to represent the
angle of rotation within the xy-plane.

•	 The Top view will often give you the best perspective when designing
your 2D shapes.

•	 Extruding 2D shapes and text is necessary in order to combine them
with 3D shapes.

•	 Text strings start and stop with double quotes.

•	 You can use the text shape to draw numeric values by converting the
value to a string with the str function.

•	 Only fonts that support Unicode can be used to draw emoji, but think
of how much fun you could have extruding emoji shapes!

•	 No part of a 2D shape can cross the z-axis when you use rotate_extrude
on that shape.

•	 Think of 2D shapes as a “cross section” of the resulting 3D shape from a
rotate_extrude operation.

56 Chapter 3

DESIGN TIME: 2D SHAPES

Before moving on to Chapter 4, practice the skills you learned in this chapter by building each of
the complex designs in Figure 3-22.

1. Fruit bowl 2. House

3. Stamp 4. Space Needle

5. Nice day 6. Star

Figure 3-22: Practice drawing these 2D designs.

2D Shapes 57

(continued)

BIG PROJECTS: 2D SHAPES

Continue to practice the skills you learned in Chapters 1 through 3 with these three big projects.

S TORY T EL L ING DICE

Use the basic game die you created in Chapter 2 to generate a collection of storytelling dice
(Figure 3-23). Create dice for nouns, verbs, decisions, animals, heroes, villains, or any collection of
related concepts. This will help you practice using and placing text shapes.

Figure 3-23: Storytelling dice

3D-Printing Tip for the Storytelling Dice

OpenSCAD is “unit-less.” Often, but not always, if you import an .stl file to prepare it for 3D
printing, the software will use millimeters as the unit for your design. It’s important to adjust
final dimensions for your 3D model as the last step before printing your model. Use the scal-
ing features of your 3D-printing preparation software to check/change the final dimensions of
your 3D print.

Play around with resizing your storytelling dice. What size makes the most sense? Be sure to
make the dice big enough so you can read the text on all sides.

58 Chapter 3

PROJEC T BOX FOR S TORY T EL L ING DICE

Create a project box to hold your storytelling dice (Figure 3-24). Practice using the offset opera-
tion to create a ridge in the wall of the box to keep the lid firmly in place. Don’t forget to make
small adjustments to the measurements of the lid so that the inner ridge fits snugly inside the box.

Figure 3-24: Project box

3D-Printing Tip for the Project Box

This box needs to be big enough to hold your storytelling dice with the lid in place. Most
3D-printing preparation software will allow you to change the size of your 3D model either
by specifying a scalar percentage for each axis or by setting an absolute size for a certain
dimension. You can set the other axes and dimensions to scale either uniformly or not at all.

2D Shapes 59

T ROPH Y

Create a trophy (Figure 3-25) by using the shapes and operations introduced in this chapter.
Start by designing a 2D profile of the cup and stem that you can rotate around the z-axis with
rotate_extrude. Notice the embellishments on some of the edges of the trophy.

Figure 3-25: Trophy

3D-Printing Tip for the Trophy

Each 3D printer has its own build volume that determines the maximum measurement for each
dimension of your 3D print. Be sure to stay within the build dimensions for your printer when
you resize your model. In fact, your 3D-printing preparation software will warn you if you’re
exceeding your printer’s dimensions.

Try to print this trophy at a larger size than the build volume of your 3D printer. You can
accomplish this by splitting your final trophy into two parts: the base and the trophy. By using
the difference operation, you can split your model into two pieces. Export each of these as
separate .stl files, each containing a different part of the trophy. Then, scale each part in the
3D-printing preparation software so that you can print each separate piece to be as large as
possible. A little superglue will allow you to recombine the two pieces into one extra-large
trophy.

4
U S I N G L O O P S A N D V A R I A B L E S

Starting with this chapter, you’ll learn
ways to use OpenSCAD to work smarter,

not harder. First, you’ll learn to use a very
useful programming tool called a loop. Loops

let you draw many similar shapes with only a few
lines of code.

This is particularly useful when your designs have repeated features.
For instance, if you’re creating a model of the Empire State Building, typing
one individual statement for each window in the building would consume
a lot of time. With a loop, you can repeat a single window along a fixed
pattern so OpenSCAD can take care of the tedious work of copying and
pasting the same window many times. You’ll also learn how to use variables
to keep track of important data related to your designs. Because these new
OpenSCAD tools will allow you to create more complicated designs, you’ll
also learn how to use comments to leave notes for yourself and other col-
laborators on your design.

Z
Y

X

62 Chapter 4

Leaving Notes with Comments
In this chapter, the designs are a bit more complex than in previous chap-
ters, so we’ll use comments in the coding examples to explain important
details in our designs. Comments provide a way for you to leave notes to your-
self and others who might read your code. OpenSCAD ignores comment
statements, as they are meant only as notes for the humans who read them
rather than as instructions for OpenSCAD to draw a particular shape.

Writing Single-Line Comments with //
Single-line comments start with // and continue until the end of the line.
They are useful for leaving short notes so you can remember later what your
thought process was when you were creating your OpenSCAD design.

Writing Multiline Comments with /* */
Multiline comments begin with /* and end with */. OpenSCAD ignores every-
thing inside a multiline comment. Multiline comments are useful for temporar-
ily ignoring parts of your design when you want to focus on a particular element.
Multiline comments make it easy to ignore multiple statements at once.

The following code shows single-line and multiline comments, which
results in exactly one shape being drawn (a cuboid, Figure 4-1), as the other
OpenSCAD statements are enclosed in comments and ignored:

cube([5, 10, 20]);

//sphere(5);

/*
cylinder(h=5, r1=10, r2=10);
cube([50, 50, 50]);
*/

Figure 4-1: A single cube among a collection
of comments

Using Loops and Variables 63

Repeating Code with a for Loop
The main focus of this chapter is on getting OpenSCAD to take care of the
tedious and error prone “copy-and-paste” approach to typing very similar
statements in order to draw a collection of similar shapes. If, for example,
you want to draw 10 identical cylinders on a straight line, you could write
10 statements—one for each cylinder—changing only the vector parameter
in the translate operation to prevent overlap, as in the following design
(Figure 4-2):

translate([10, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([20, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([30, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([40, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([50, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([60, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([70, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([80, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([90, 30, 0]) cylinder(h=4, r1=4, r2=4);
translate([100, 30, 0]) cylinder(h=4, r1=4, r2=4);

Figure 4-2: A row of cylinders drawn with 10 separate statements or
drawn with a single for loop

Notice that the only change from one cylinder to the next is the increased
position along the x-axis: the x position of the first cylinder is 10, the x posi-
tion of the second cylinder is 20, and so on, until the last cylinder is drawn at
an x position of 100.

Instead of using 10 separate statements, you can use a single for loop
to generate this collection of cylinders. You just need to write a loop that
draws the first cylinder 10 units from the x-axis, then increases the x posi-
tion by 10 units every time a new cylinder is drawn, until drawing the last
cylinder 100 units from the axis.

The following pseudocode shows the for loop syntax:

for (variable = [start: increment: end]) {
 // one or more statements to be repeated
}

64 Chapter 4

The for keyword indicates that you want to repeat OpenSCAD state-
ments. Then you create a variable to keep track of the changing value after
each repetition. The variable has a start value, an increment value, and an
end value. Similar to grouping multiple shapes together in order to apply
a single transformation, use curly brackets ({ }) to enclose all of the state-
ments you want to repeat.

The following example uses a single for loop to draw 10 cylinders
instead of using 10 separate statements:

for (1x_position = [10:10:100]) {
 translate([x_position, 30, 0]) cylinder(h=4, r1=4, r2=4);
}

A variable called x_position 1 keeps track of the position of each cyl-
inder. This variable has an initial value of 10; then every time the for loop
repeats, the value of x_position increases by 10 so that the next cylinder is
drawn 10 units farther along the x-axis. Once x_position is equal to 100,
the last cylinder is drawn and the loop stops repeating. The resulting
drawing will look the same as using 10 separate statements, as shown in
Figure 4-2.

You can use loops to repeat shapes along many types of patterns.
Figure 4-3 shows a cone repeating in a rotational pattern around the z-axis,
and here’s the corresponding for loop:

for (angle=[0:45:315]) {
 1rotate([0, 0, angle]) 2translate([10, 0, 0]) 3cylinder(h=5, r1=2, r2=0);
}

Figure 4-3: Ten cones, rotated around the z-axis,
generated with a for loop

Using Loops and Variables 65

Inside the curly brackets, the loop creates a cone 3, translates it 10 units
along the x-axis 2, and then rotates it by angle degrees 1. The first cone
is drawn when the value of the angle variable is 0, so it is not rotated at
all. The value of the angle variable increases by 45 each time the loop is
repeated, rotating each cone accordingly. The last value of the angle vari-
able is 315, so the last cone drawn by the loop is rotated by 315 degrees
around the z-axis.

Debugging for Loops with echo
Sometimes it’s useful to examine the value of a variable as it changes
during the repetition of a for loop. For instance, if you want to double-
check your mental math, it can be easier to see the exact values being
generated by the for loop. Use the echo function to print each succes-
sive value of a variable to the console window, and check the console
window (Figure 4-4) to gather feedback about the execution of your
OpenSCAD code:

for (x_position = [10:10:100]) {
 translate([x_position, 30, 0]) cylinder(h=4, r1=4, r2=4);
 echo("x:", x_position); //a good way to check your mental math
}

Figure 4-4: Console output generated with echo

The echo function is helpful for debugging your programs. For exam-
ple, you can use it to visualize all the values of a variable that controls the
number of times a for loop repeats. The echo function provides a useful
way to gather feedback about your for loops, because it will print out every
value generated by the for loop. Adding string labels (like "x:") to your
console statements can help organize the console window output. Labels
and variables in echo functions should be separated with commas (,).

66 Chapter 4

Using Variables and Arithmetic
Variables are used in conjunction with for loops to keep track of a pattern
created by the looping. You can either use the generated values directly,
or you can perform arithmetic on them to produce more sophisticated
repetitions.

In this section, you’ll learn variable naming best practices, math-
ematical operations to perform on variables, and applications of variables
within loops.

Naming Variables
Neither the x_position variable from the preceding for loop example nor the
angle variable from Figure 4-3 is built into OpenSCAD. Those names were
chosen to describe how the values are used in the design. The x_position
variable describes the x-position of the cylinder, while angle describes the
angle of rotation of the cone.

OpenSCAD allows you to name your variables however you want, as long
as you don’t include spaces or use any symbols other than letters, under-
scores, or numbers. Be sure to select a name that helps you remember a vari-
able’s purpose. This allows you to keep track of multiple variables in a design
more easily, which can help tremendously when debugging errors or sharing
your design.

Applying Mathematical Operations on Variables
To start exploring how OpenSCAD applies mathematical operations on
variables, say you assign the values 10 and 3 to the following variables:

value1 = 10;
value2 = 3;

To perform mathematical operations like finding the sum, difference,
product, quotient, or remainder of these values, OpenSCAD lets you use
standard symbols.

OpenSCAD also respects the conventional order of operations that you
are probably familiar with from math class. Assigning the result of each of
these arithmetic operations to a variable will help you separate your calcula-
tion statements from your output statements:

sum = value1 + value2;
difference = value1 - value2;
product = value1 * value2;
quotient = value1 / value2;
remainder = value1 % value2;

Now, use the echo function to display the result of each mathemati-
cal operation (Figure 4-5). Each echo function uses a label to help identify
which number is which in the console window.

Using Loops and Variables 67

echo("Addition:", sum);
echo("Subtraction:", difference);
echo("Multiplication:", product);
echo("Division:", quotient);
echo("Modulo:", remainder);

Figure 4-5: Console output of the five arithmetic operators

Using Math and Variables Inside for Loops
You can use arithmetic inside a for loop to make a single variable represent
two patterns. The following design creates 13 spheres that are all generated
by the same for loop (Figure 4-6):

for (faces=[3:11:15]) {
 2 $fn = faces;
 x_position = faces*10;
 translate([3x_position, 0, 0]) sphere(r=5);
 4 echo("faces:", faces, "x-position:", x_position);
}

Figure 4-6: A succession of increasingly smoother spheres

68 Chapter 4

Notice how the faces variable created by the for loop specifies both the
number of faces used to render the sphere 2 and the position of the sphere
along the x-axis 3. With each repetition of the for loop, the value of faces
increases by one 1, while the value of x_position is updated by multiplying
the new value of the faces variable by 10. The echo function 4 displays
the changing values of faces and x_position. Figure 4-7 shows the console
output.

Figure 4-7: The console output of a succession of
increasingly smoother spheres

Using Arithmetic to Create Unique Patterns
In addition to using arithmetic to leverage the power of a for loop to pro-
gressively change characteristics of a shape, you can also use arithmetic
to create interesting patterns. The following code generates a sequence of
cylinders of increasing heights by using a quadratic pattern to increase the
height of each cylinder (Figure 4-8):

for (1x=2[1:1:10]) {
 height = 3x*x;
 x_position = 45*x;
 translate([x_position, 0, 0]) cylinder(h=height, r1=2, r2=2);
}

The preceding design uses a for loop to increase one variable, called
x 1, from 1 to 10 2. The x variable increases by one each time the loop
repeats, so this loop repeats 10 times. This variable controls both the posi-
tion along the x-axis and height of a series of cylinders. By creatively using
arithmetic, you change the x position of the cylinder by 5 4 every time the
loop repeats. The height of the cylinder grows at a different rate, by squar-
ing the value of x every time the loop repeats 3; this is known as quadratic
growth.

Using Loops and Variables 69

Figure 4-8: A succession of cylinders following a quadratic
pattern to increase height

Using Nested Loops to Draw 2D and 3D Grids
OpenSCAD even lets you repeat a loop, so you can put a for loop inside
another for loop. Whereas you can use one for loop to create a line of
shapes, you can use a for loop inside another for loop to repeat that line
of shapes to create a grid of shapes with only a few lines of code. This is
called nesting the loops. The following design uses nested for loops to
draw a grid of cylinders (Figure 4-9):

1 for (y_pos = [10:10:50]) {
2 for (x_pos = [10:10:100]) {
 translate([x_pos, y_pos, 0]) cylinder(h=4, r1=4, r2=4);
 3 echo("x:", x_pos, "y:", y_pos);
 } // x_pos loop
} // y_pos loop

The preceding code uses one loop to draw a line of 10 cylinders 2.
That for loop is repeated by the first for loop 1, so the line of cylinders
repeats. Two variables—that is, the x_pos and y_pos variables—work together
to change both the x position and y position of the repeated cylinder. The
inner loop repeats 10 times, while the outer loop repeats 5 times. This
generates a total of 50 cylinders. The echo function is used to keep track
of the changing values of both variables in the console window 3. Notice
that comments are used to indicate which bracket belongs to which loop.
Commenting brackets isn’t necessary but can be helpful when you have
many curly brackets next to each other.

70 Chapter 4

Figure 4-9: A grid of cylinders drawn with nested for loops

You now know how to generate 50 cylinders with four lines of code,
which certainly beats writing a long list of 50 statements to generate each
cylinder individually. This would be the perfect technique for drawing the
many windows in a skyscraper.

Generating the Windows in a Skyscraper with Nested Loops
Listing 4-1 draws a building with 60 windows (Figure 4-10) by using nested
for loops:

num_rows = 10;
num_cols = 6;

building_width = num_cols*5;
building_height = num_rows*6;

1 difference() {
2 cube([building_width, 10, building_height]);

3 for (z = [1:1:num_rows]) {
 for (x = [0:1:num_cols-1]) {
 4 x_pos = x*5+1;
 z_pos = z*5;
 translate([x_pos, -1, z_pos]) cube([3, 3, 4]);
 } // x loop
 } // z loop
} // difference

Listing 4-1: Drawing a skyscraper with 60 windows by using nested for loops

Using Loops and Variables 71

Figure 4-10: A window grid on a skyscraper

Listing 4-1 uses variables (named num_rows and num_cols) to control not
only the number of windows, but also the width and height of the build-
ing. First, it draws a large cuboid to represent the building 2. Next, it uses
nested for loops to draw a grid of 60 cuboids 3. Finally, the difference oper-
ation subtracts the cuboids from the larger building to create recessed win-
dows 1. Two variables (x_pos and z_pos) are used to calculate the specific
x position and z position of each window prior to drawing the cuboid 4.

Our organization of the code in Listing 4-1 makes it easy to change
the skyscraper’s characteristics. The variables num_rows and num_cols not
only control the number of times the two loops repeat, but also set the
width and height of the building, because the values of the building_width
and building_height variables are dependent on the values of num_rows and
num_cols. Making one change to either num_rows or num_cols will completely
change the skyscraper’s look. You’ll learn more about the advantages of
this sort of organization in the next chapter.

Triple Nesting to Create a 3D Grid of Shapes
You can also draw a 3D grid of shapes by adding another layer of nesting—
that is, by putting a loop inside a loop, inside a loop—although this might
take a while to render since it will generate a large number of shapes
(Figure 4-11):

for (r = [0:15:255]) {
 for (g = [0:15:255]) {
 for (b = [0:15:255]) {

72 Chapter 4

 translate([r, g, b]) color([r/255, g/255, b/255]) cube(5);
 } // b loop
 } // g loop
} // r loop

Figure 4-11: A nested for loop representing the RGB
color space

This triple nesting essentially uses a third loop to repeat a grid of
shapes. The preceding design uses three nested loops to draw a cube rep-
resenting the RGB (red, green, blue) color space. The color transforma-
tion takes a 3D vector indicating the percentage of red, green, and blue
light that should be represented in the color of the shape. Since RGB uses
255 as the maximum value, dividing by 255 results in a decimal between 0
and 1. The color transformation can be useful for debugging and organiz-
ing your designs, but it is not very useful for 3D printing, since the color
of a 3D print depends entirely on the type of filament used. Thus, the
color transformation is effective only in Preview mode and will not dis-
play in Render mode.

Summary
This chapter introduced the concept of looping, which lets you repeat state-
ments without rewriting the same code. Looping lets you tell the computer
to do all of the work of rewriting a statement over and over again. Variables
are an important part of looping in OpenSCAD, although they are not
exclusive to looping. Variables can also help you keep track of important

Using Loops and Variables 73

values. Through the use of arithmetic operators, variables can act as impor-
tant starting points for other variables, which is useful when you want to
make changes to your design.

The following are some important tips for using loops:

•	 If you find yourself copying, pasting, and making minor changes to a
repeating statement, consider generating the repetition with a loop.

•	 Use arithmetic to create sophisticated repetitions based on the pattern
created by a loop.

•	 Give variables names that describe their purpose.

•	 Organizing all of your variables at the top of your program makes it
easy to change your design.

•	 Use the echo function to output the value of a variable as a loop repeats.
This can help you keep track of variables that are the result of compli-
cated arithmetic.

•	 Label all echo function output so you can output several variables when
you have nested loops.

•	 If you want to use variable values generated by a for loop in a text
shape, remember to convert the number to a string with str (as men-
tioned in Chapter 3).

•	 The color transformation is useful for debugging in Preview mode, but
it does not translate to Render mode or 3D printing.

•	 Comments are notes programmers leave to help explain their coding
choices.

•	 OpenSCAD ignores comments, but humans use comments to help fig-
ure out what coding statements are trying to accomplish.

74 Chapter 4

DESIGN TIME: LOOPS AND VARIABLES

Before reading further, practice the skills you learned in this chapter by building each of the
complex designs in Figure 4-12.

1. Regular prisms 2. Pyramid

3. Magic coins 4. Flower

5. Grooved-edge coin 6. Stairs

Figure 4-12: Practice drawing these complex designs.

Using Loops and Variables 75

BIG PROJECTS: LOOPS

Practice the skills you learned in Chapters 1 to 4 with the following three projects.

DE TA IL T ES T

Use loops to generate this detail test (Figure 4-13) for your 3D printer. This design helps you
understand the lower limits of the printability of the smallest details on your designs. OpenSCAD
will always render a virtual model with all of the details you’ve specified, but just because you
can render fine details virtually doesn’t mean every detail will be visible when you 3D-print your
design. Some details are just too small to print.

Figure 4-13: Detail test

3D-Printing Tip for the Detail Test

In Chapter 1, you played around with varying the resolution of your 3D print by selecting
High, Medium, or Low quality default settings. Print this detail test a few times, each time
using your 3D printing preparation software to manually select a different layer height. Try to
determine the smallest (close to 0.1 mm) and largest (close to 0.34 mm) layer heights for your
printer; then make two prints of this design to see the effect of each layer height on the fine
detail resolution of your prints.

TOW ERS OF H A NOI PUZ ZL E

Create a Towers of Hanoi puzzle using two loops (Figure 4-14). One loop should create the
pegs, and one loop should create the discs. Remember to create holes in each disc that are
slightly larger than the peg.

(continued)

76 Chapter 4

Figure 4-14: Towers of Hanoi puzzle

3D-Printing Tip for the Towers of Hanoi Puzzle

This design uses two loops: one for the discs and one for the bars. The picture represents how
you might play the Towers of Hanoi game (which requires you to move all discs to the oppo-
site bar by only stacking smaller discs on top of larger discs). The game begins in this configu-
ration, with each disc stacked on a larger disc beneath it.

However, if you try to print your Towers of Hanoi game in this configuration, you won’t be
able to play! The discs would print as one solid unit. Once you have created your design, try
to modify the loop that creates the discs so that they appear horizontally behind the game
board. This will allow you to print the individual discs as separate units.

T IC-TAC-TOE G A ME

Use loops to create a tic-tac-toe game (Figure 4-15).

Figure 4-15: Tic-tac-toe game

Using Loops and Variables 77

(continued)

3D-Printing Tip for the Tic-Tac-Toe Game

Don’t forget that holes should have slightly larger diameters than pins; otherwise, the pieces
of this tic-tac-toe game won’t fit together. Also, notice how the game pieces are arranged rela-
tive to the game board. This arrangement will print just fine. However, you might want to use
three different colors to print the Xs, Os, and game board. In that case, you can successively
comment out sections of your code to render and download three different .stl files for printing
with different filaments.

5
M O D U L E S

In this chapter, you’ll learn how to turn com-
plex designs into more manageable compo-

nents called modules. Modules are separate
sections of code that organize a collection of

stand-alone statements, and they’re particularly useful
for two reasons. If your code is long and complicated,
using modules can break your code into smaller sub-
sections, which helps make your code more readable.
And if your design has duplicate or similar shapes, you can use a single
module to define the shape, reducing the amount of code you need to
write to create complex designs.

This chapter also describes how to use variables and parameters to
customize your modules. Finally, we’ll explain how to group similar mod-
ules into a separate file (often called a library) to make it easier to organize
designs, share designs, and use designs others have created.

Z
Y

X

80 Chapter 5

Simplifying Code with Modules
To understand how using modules might simplify your code, let’s take
another look at the code for drawing the cross-shaped cookie cutter
(Figure 5-1) you built in Chapter 3.

Figure 5-1: The cross-shaped cookie cutter

We’ve reproduced the code in Listing 5-1. Do you see any repeated code?

linear_extrude(30) {
 difference() {
 union() {
 square([100, 30], center=true);
 square([30, 100], center=true);
 }
 offset(-2) {
 square([100, 30], center=true);
 square([30, 100], center=true);
 }
 }
}

Listing 5-1: The original cross-shaped cookie cutter program

The cookie cutter is made by taking the difference of two crosses,
so the square commands to create the cross shape are repeated twice.
Duplicate code almost always causes problems, because any change you
make to a shape’s dimensions must be made twice (or however many times
the code is duplicated). If you forget to change every instance, you’ll need
to spend time fixing it later, or worse, end up with lasting mistakes in your
design.

Modules 81

To improve this design, you can use a module to create a cross shape,
and then use that module to create each of the two crosses. The following
pseudocode shows the syntax of a module definition:

module ModuleName() {
 // code used to define the new shape
}

Use the module keyword to start defining a new module. Then give the
module a name that describes the new shape you are creating. Module
names have the same restrictions as variable names, meaning you can only
use lowercase and uppercase letters, underscores, or the digits 0 to 9. A
good name should help readers understand what the module does without
making them read the actual code that defines the module. Following the
ModuleName, add an empty pair of parentheses followed by the code enclosed
in curly brackets. The code you write inside the curly brackets is no differ-
ent from any other OpenSCAD code.

The module definition will stand alone as a separate section of your
design. So, defining a module won’t actually draw the new shape. It’s simply
a recipe that describes how to create a shape. To see the shape, you must
create it by inserting the module name into your design, just as you would
to create any other shape. Here’s the syntax for using a module:

ModuleName();

A module is an example of a programmer-defined shape. In fact, all
the OpenSCAD commands you have used so far, including sphere, cylinder,
and linear_extrude, are actually modules that are built into the language. An
implied union operation occurs when shapes are combined within a module,
so you can transform and combine the shape(s) generated by a module with
any operation you’ve seen so far.

Write some new code for your cookie cutter by creating a cross module,
as shown in Listing 5-2.

module cross()1 {
 square([100, 30], center=true);
 square([30, 100], center=true);2
}

linear_extrude(30) {
 difference() {
 3 cross();
 4 offset(-2) cross();
 }
}

Listing 5-2: The new cross-shaped cookie cutter program, improved with a module

Use the module keyword to start the definition of the new shape. Give it the
name cross 1 to describe the shape you’re creating. In curly brackets follow-
ing the name, enter the code for the shapes that define the cross 2. Finally,

82 Chapter 5

tell OpenSCAD to draw the cross by using the module name followed by a set
of parentheses 3 4. Notice that you use the cross module twice, so you can
subtract one cross shape from the other with the difference operation.

T IP S

Curly brackets are optional if they enclose a single shape. So this

offset(-2) {
 cross();
}

is the same as this:

offset(-2) cross();

And, a union of a single shape is the same as the shape itself, which means
that this

union() {
 cross();
}

is the same as this:

cross();

Splitting Your Design into Multiple Files
Sometimes when creating a new design, you’ll want to reuse a component
from a previous project. A good way to organize this is to make the compo-
nent into a module. Putting this module definition into a separate file will
allow you to easily use it in both designs. Saving modules separately helps
you find and reuse your new shapes in as many projects as you like, as well
as easily share them with others. Also, if you make improvements to a mod-
ule defined in a file that is used by several designs, those improvements will
be applied the next time you open each design. Organizing module defini-
tions into separate files is often called creating a library, especially when a
new file has multiple related modules defined within it.

To learn how to save your module in a separate file, let’s split the cross-
shaped cookie-cutter design into two files. We’ll use one file to define
a cross shape, and then use that module in the second file to create a
cookie cutter. First, create two empty OpenSCAD files: cross-module.scad
and cookie-cutter.scad. Make sure you save the two files in the same folder
so OpenSCAD can find the two files. Also, note that these filenames were

Modules 83

chosen to clearly indicate the purpose of each file. Carefully choosing your
filenames will help you organize your projects in the future, especially as
you build more and more OpenSCAD projects.

In cross-module.scad, copy the module definition from Listing 5-2,
including the curly brackets, and then paste it into the file you just cre-
ated. Be sure to save cross-module.scad after you’ve pasted the code so that
OpenSCAD can use the newest version when you connect the files. The new
cross-module.scad file should contain only the following code:

module cross() {
 square([100, 30], center=true);
 square([30, 100], center=true);
}

Now in cookie-cutter.scad, remove the module definition and add the fol-
lowing line at the top of your file:

use <cross-module.scad>

linear_extrude(30) {
 difference() {
 cross();
 offset(-2) cross();
 }
}

Instead of typing the module definition in cookie-cutter.scad, the first line
tells OpenSCAD to use code from cross-module.scad. This is what provides
the definition for the cross shape.

The use keyword tells OpenSCAD to load the modules from a different
file. The syntax for the use keyword is as follows:

use <path/to/filename.scad>

After the use keyword, add angle brackets (< >), and inside the angle
brackets, specify the name of the .scad file you want to use. If the file you
want to use is not in the same folder as your main design file, specify either
the absolute or relative path to the file. A use statement allows you to use the
module definitions from the file, but it will not immediately result in any
shape being drawn.

Generating a preview of cookie-cutter.scad will now produce the same
shape as in Figure 5-1. However, generating a preview of cross-module.scad
will not produce any shape. That is because cross-module.scad currently only
contains a definition of the cross module. In order to see what the cross
shape looks like by generating a preview of cross-module.scad, you need to
add a statement to draw the cross:

cross();

module cross() {
 square([100, 30], center=true);

84 Chapter 5

 square([30, 100], center=true);
}

Adding Parameters to Your Modules
Because shapes come in different sizes, you’ll likely want your modules to
allow for some variation. You already know that built-in OpenSCAD mod-
ules, like sphere, can take a parameter, such as sphere(r=30);, where the
parameter specifies the sphere’s radius. You can add such parameters to
your own modules as well.

The following pseudocode shows the full syntax for specifying a mod-
ule, including parameters:

module ModuleName(parameterName = defaultValue, ...) {
 // statements used to define the shape
}

Instead of leaving the parentheses after the module definition empty, add
a parameterName, which is a placeholder for a value that you’ll provide when-
ever you use the module. You can also give each parameter a defaultValue, so
if the user of a module doesn’t specify a value for a parameter, the module
will use the default value instead. Providing a default value allows people to
use the module without having to specify all parameters, which can be bene
ficial when experimenting with a module, or it can hide distracting details
when the default value is a common choice. To create multiple parameters,
specify multiple parameter names, separated by commas, and be sure to give
each parameter a different name.

You may have noticed that parameters look a lot like variables. In fact,
inside a module, parameters behave as if they were variables. It’s good prac-
tice to give parameters names that describe their purpose. As with variables
and module names, parameter names can only include letters, underscores,
or numbers.

Listing 5-3 shows how to add parameters to the cross module:

module cross(width=30, length=100) {
 square([length, width], center=true);
 square([width, length], center=true);
}

Listing 5-3: Defining the cross module with parameters

Inside the parentheses, you add the width and length parameters, which
define the width and length of each arm of the cross.

To create a cross shape with the cross module, provide specific values
for each parameter each time you use the module, as shown in Listing 5-4.

use <cross-module.scad>

linear_extrude(30) {
 difference() {

Modules 85

 cross(20, 100);
 offset(-2) cross(20, 100);
 }
}

Listing 5-4: Specifying values for the cross module

The order of the numbers indicates which should be interpreted as
the width of the cross and which should be interpreted as the length of the
cross. Since the width parameter comes first in the definition of the module,
the first number in the parentheses is assigned to the width parameter, and
the second number is assigned to the length parameter.

OpenSCAD also allows you to name your parameters explicitly when
you use a module, which can be helpful when you create a shape with a
large number of parameters (and keeping track of the order becomes
unwieldy):

cross(width=20, length=100);

When you use a module and name your parameters, the order of the
parameters is not important. Switching the order of the length and width
parameters does not affect the appearance of the shape:

cross(length=100, width=20);

Now the module is truly dynamic; you can use it to create cookie cutters
of any size (Figure 5-2).

Figure 5-2: A variety of cookie cutters, each created with
different parameters

86 Chapter 5

Building a LEGO Brick
In this section, we’ll walk through a complex modeling project that uses
parameters, modules, and for loops in a single design. You’ll design a
LEGO brick shape that has two studs in one direction and any number
of studs in the other direction. Studs are the small bumps on the top of
a LEGO brick that fit into other LEGO bricks to hold them together.
Figure 5-3 shows a LEGO brick with two rows and four studs per row.

Figure 5-3: A LEGO brick with a 2×4 grid of studs

Before coding a complicated design like this, sketching a few hand-
drawn versions of your shape can help you gain a firm understanding of the
dimensions and patterns that exist within the shape (Figure 5-4).

Figure 5-4: A hand-drawn exploration of the dimensions of LEGO bricks of various sizes

Modules 87

The dimensions of LEGO bricks are readily available online. We’ve
taken our dimensions from Wikipedia:

•	 The height of a brick is 9.6 mm.

•	 The height of a stud is 1.7 mm.

•	 The diameter of a stud is 4.8 mm.

Each new stud adds 8 mm to the width of the brick to accommodate not
only the diameter of a stud, but also the empty space surrounding a stud.
The length of a brick is also dependent on the number of studs. You’ll gener-
ate only bricks with two rows of studs, which implies a fixed brick length of
16 mm for this example.

Exploring a variety of hand-drawn LEGO shapes makes it easier to
identify the OpenSCAD statements necessary for defining a LEGO brick
module.

Listing 5-5 defines a LEGO brick module.

module LEGObrick(studs_per_row=4) {
 $fn=30;

 width = studs_per_row * 8;

 cube([width, 16, 9.6]);

 for (x_position=[4 : 8 : width-4]) {
 translate([x_position, 4, 1.7]) cylinder(h=9.6, d=4.8);
 translate([x_position, 12, 1.7]) cylinder(h=9.6, d=4.8);
 }
}

LEGObrick(4);

Listing 5-5: Drawing a LEGO brick with modules

Start by creating a module named LEGObrick with a studs_per_row param-
eter. This parameter represents the number of studs along the top of the
LEGO brick, which determines the overall width along the x-axis of the
brick. LEGO bricks come in different sizes, so this parameter will be useful
as a way to reuse the same module to draw a variety of brick sizes. We chose
to set a default value of 4 studs per row, but this is an arbitrary choice.

A variable called width is created to keep track of the overall width of
the brick, which is based on studs_per_row. Each additional stud increases
the width of the brick by 8 mm:

width = studs_per_row * 8;

Other dimensions of the LEGO brick remain fixed, unrelated to the
number of studs per row:

 cube([width, 16, 9.6]);

88 Chapter 5

A for loop is used to draw each repeated stud in its proper position:

for (x_position=[41 : 82 : width-43]) {
 translate([x_position, 4, 1.7]) cylinder(h=9.6, d=4.8);
 translate([x_position, 12, 1.7]) cylinder(h=9.6, d=4.8);
}

Inside the for loop, the variable x_position keeps track of the x posi-
tion of each stud. The first stud is centered at x = 4 mm 1, and each addi-
tional stud is positioned 8 mm 2 away from the previous stud. Similarly,
the last stud in each row is centered 4 mm from the overall width of the
brick 3. Two rows of studs are drawn with the exact same values on the
x-axis. Since we’re restricting ourselves to just two studs on the y-axis, it’s
easier to position the rows explicitly at y = 4 mm and y = 12 mm instead of
using a second loop.

The LEGObrick module is now complete, which means you can use it to
create LEGO bricks of various sizes, like the ones in Figure 5-5.

Figure 5-5: A variety of LEGO bricks created with the same
LEGObrick module

This module is only a simplified design of a LEGO brick, however; it
won’t function as a real brick would, because the current design doesn’t
include an interior mechanism on the bottom of the brick for snapping
bricks together. We leave that as a challenge for you.

Modules 89

T IP S

You might have noticed a new use of the cylinder module to generate the
LEGOBrick module:

 cylinder(h=9.6, d=4.8);

This version of cylinder uses a single d parameter to indicate that both
faces of the cylinder should have the same diameter. In past chapters, we
would have drawn a cylinder with two separate parameters to indicate the
radius of individual faces:

 cylinder(h=9.6, r1=2.4, r2=2.4);

OpenSCAD provides four alternative ways of using a cylinder module.
Each method uses a different combination of named parameters:

 cylinder(h, r|d, center)
 cylinder(h, r1|d1, r2|d2, center)

The | indicates that you can either use r or d, depending on whether you
prefer using the radius or diameter to define cylinder faces. If both faces have
the same size, it can be easier and less error-prone to define the size of both
faces just once. Otherwise, you can use two different parameters to indicate the
size of each face. Which version you use is up to you!

In prior chapters, we used a single version of the cylinder module to
reduce the number of new OpenSCAD commands needed to draw both
cylinder and cone shapes. Alternative versions of the cylinder module are
introduced in this chapter to illustrate the variety of choices you have in regard
to choosing and naming parameters. Alternative versions of cylinder and
other OpenSCAD modules are listed in Appendix A: OpenSCAD Language
Reference.

Sharing and Collaborating
If you save your modules in separate files, you can reuse your new shapes in
multiple designs, as you saw earlier in this chapter. Keeping your modules
separate also allows you to share common design components with other
people or use other people’s components instead of building everything
yourself. Splitting a design into multiple modules allows you to collaborate
more easily.

Let’s walk through a possible collaboration. Say you and a friend
want to work together to make a 3D animation of a LEGO castle. To save
time, you decide to split the design into two tasks that can be completed

90 Chapter 5

in parallel using two different computers. Your friend decides to design a
module that will draw a LEGO brick shape, while you will be in charge of
designing a castle that is made from LEGO brick shapes.

You and your friend first decide what the LEGO module should look like.
You agree on a name for the module (LEGObrick), any necessary parameters
and their defaults (studs_per_row), with a default of three studs, and the
basic shape and size of each brick (24 × 16 × 9.6 mm for a 3×2 brick). Your
friend then goes off and builds a simple version of the LEGObrick module in a
file called LEGObrick-module.scad, shown in Figure 5-6:

LEGObrick();
module LEGObrick(studs_per_row=3) {
 cube([24, 16, 9.6]);
}

Figure 5-6: A simple version of the LEGObrick module

Even though the LEGObrick module isn’t complete (this simple version of
the module doesn’t have studs yet), you can still use it as a building block
to start creating the castle design in a file called castle-wall.scad, as shown in
Figure 5-7.

Figure 5-7: A wall of the LEGO castle that uses a basic
version of the LEGObrick module

Modules 91

Meanwhile, your friend keeps working on the LEGObrick module, and
every time it improves, your friend shares their new version of LEGObrick-
module.scad with you. Because OpenSCAD designs are plaintext files (with
a .scad extension), you can share them by emailing the files as attachments,
copying and pasting OpenSCAD code directly from email or other docu-
ments, or by using more advanced services like GitHub to make designs
public. 3D design-sharing websites also exist. One of the more popular ones,
which supports OpenSCAD directly, is Thingiverse (https://thingiverse.com/).

Every time your friend shares an updated version of LEGObrick-module
.scad, you replace your old version of the file with the new version. Your castle
design in castle-wall.scad will update to use the newest definition of LEGObrick
each time you Preview or Render your castle code. Over time, your design
may look more like the one shown in Figure 5-8.

Figure 5-8: Building the castle by using the updated
LEGObrick module

This collaboration strategy saves you time, because you and your friend
can work on the LEGObrick module and castle design simultaneously. You
don’t have to wait for your friend to finish a part before you can make prog-
ress on your own part, while your friend can see how small changes in their
module design effect the overall castle design.

Summary
In this chapter, you learned how to organize your design into smaller logi-
cal components by using modules, which can make your OpenSCAD code
more readable, facilitate collaboration, and help you customize your design.

When using modules, remember these key concepts:

•	 Module definitions have three parts: a name, a parameter list, and a body.

•	 The body of the module contains a collection of OpenSCAD statements
that define the unique shape of the module.

https://thingiverse.com/

92 Chapter 5

•	 To use a module, create the shape by using the name of the module in
your design. If your module isn’t showing up, check that you’re actu-
ally using the name of the module in your code statements; it’s possible
you’ve only defined the module.

•	 When designing a module, choose module names and parameters that
obviously describe their purpose, so someone using your module won’t
need to read your module definition to know what it does. This can also
help you later if you have forgotten the module’s details.

•	 Parameters are useful for specifying a module’s characteristics.
Identifying which variables should be included as parameters is an
important part of designing a module.

•	 Specifying default values for parameters is a useful way to make some
parameters optional.

•	 Separating your module definition into other files helps you use the
module in other OpenSCAD designs. You can also group related mod-
ules into a library. As with modules and variables, choose filenames that
adequately describe their purpose.

•	 Connecting your design to a module with the use keyword won’t imme-
diately add new shapes to your design. You have to explicitly use the
module in your code to see the new shape.

•	 It’s common practice to draw the shape defined by a module at the top
of a module definition file. This is helpful for testing purposes.

Try searching online for examples of OpenSCAD modules to see more
examples of user-defined shapes. You can learn a lot by inspecting and tin-
kering with other people’s solutions, especially when it comes to figuring
out which parameters to include.

Modules 93

DESIGN TIME: MODULES

Practice using modules to define each of the shapes in Figure 5-9. We’ve suggested a few
parameters for each module. Feel free to create modules with a different list of parameters.

1. Ring with hole_diameter, height, and
 thickness parameters

2. Pencil holder with diameter, height,
 and thickness parameters

3. Pencil cap with letter and pencil
 _diameter parameters

4. Name tag with name, length, width,
 and height parameters

5. Bag hook with hole_radius, height,
 and thickness parameters

6. Box with length, width, height, and
 thickness parameters

Figure 5-9: Practice using modules to create these designs.

94 Chapter 5

BIG PROJECTS: MODULES

Now try your hand at these two projects.

SK YSCR A PER

Design a module that generates a variety of skyscrapers (Figure 5-10). Control the design of
your skyscraper by using parameters to determine its length, width, height, and number of win-
dows. Don’t forget to draw windows on the other side of the skyscraper!

Figure 5-10: A variety of skyscrapers generated with the same module

L EGO L IBR A RY

Build a library of creative brick modules by adding definitions for multiple brick types to the
same file. Use parameters to control the length of each brick. Create corner bricks, wall bricks,
and double-sided bricks (Figure 5-11). Try to create your own unique brick type to add to the
library.

Figure 5-11: A variety of corner, wall, and double-sided LEGO bricks

6
D Y N A M I C D E S I G N S W I T H

I F S T A T E M E N T S

In this chapter, you’ll learn how to use if
statements to create OpenSCAD designs

that respond differently to a variety of condi-
tions. This powerful programming tool gives

your designs the power to choose from several options
and execute only certain lines of code. As a result, you
can create dynamic designs that adapt to changing
circumstances. For instance, you can use if statements
to reconfigure a design quickly for 3D printing.

As an example project, here you will learn to use if statements to vary
the length of tick marks on a ruler to indicate inch, half-inch, and quarter-
inch increments depending on the position of the tick mark. You’ll also
learn how to use random numbers to vary repeated shapes in order to cre-
ate a more organic variety of design characteristics.

Z
Y

X

96 Chapter 6

Using if Statements
An if statement uses a Boolean expression (an expression that evaluates
to either true or false) to compare two values, then determines whether to
execute code based on that comparison. If the Boolean expression in an
if statement evaluates to true, the indicated code statements are executed.
Otherwise, the statements are skipped entirely. The Boolean expression
describes a condition that must be satisfied in order for the indicated state-
ments to be added to the design.

The following shows if statement syntax:

if (<boolean expression>) {
 // code that is executed only when the boolean expression is true
}

Listing 6-1 is a variation on the skyscraper design created in Chapter 4.
This new version uses if statements to decide where to place windows and
doors in the skyscraper (Figure 6-1).

num_rows = 10;
num_col = 6;

building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
 cube([building_width, 10, building_height]);

 for (1 z = [1:1:num_rows]) {
 for (x = [0:1:num_col-1]) {
 2 if (z == 1) {
 3 translate([x*5+1, -1, -1]) cube([3, 3, 8]); // door
 }
 4 if (z > 1) {
 5 translate([x*5+1, -1, z*5]) cube([3, 3, 4]); // window
 }
 }
 }
}

Listing 6-1: Using if statements to insert doors and windows depending on floor number

Figure 6-1 shows a skyscraper with doors on the first floor and windows
on every subsequent floor. Two for loops in Listing 6-1 create the rows and
columns of windows and doors in this design. The z variable 1 controls the
vertical position of each row. Next, two if statements use those z values to
decide whether to add a window or a door to the design. If z equals 1 2, a
large door is added to the design 3. If z is greater than 1 4, a small window
is added to the design 5.

Dynamic Designs with if Statements 97

Figure 6-1: A grid of windows on a skyscraper,
with a row of doors

We’ll evolve this skyscraper design throughout the rest of the chapter.
However, you might feel that a skyscraper is not a skyscraper without more
details, especially on the other sides of the building. We totally agree and
leave the exercise of adding more detail to this simple design as a challenge
to the reader.

Defining Complex Conditions
You can use an if statement to evaluate many types of conditions by utilizing
a combination of six Boolean operators and one of two logical operators. In
addition, you can specify a default scenario (which is executed if the speci-
fied condition is false) by connecting an else statement with an if statement.
Finally, you can connect several related conditions together by using an else
if statement.

Choosing Boolean Operators
OpenSCAD uses six Boolean operators to evaluate the content of variables
within a Boolean expression. Each of these operators will result in true if
the comparison is valid, and false if the comparison is not valid:

<   less than

>   greater than

<=   less than or equal to

>=   greater than or equal to

==   equal to

!=   not equal to

The symbols used for many of these Boolean operators are prob-
ably familiar to you from math class. OpenSCAD (as with most other

98 Chapter 6

programming languages) changes the symbols a bit so that you can easily
type them on a keyboard. For instance, you’re probably used to seeing the ≤
symbol to indicate less than or equal to. However, programming languages
commonly use <= instead. In the same way, >= replaces ≥, and != replaces ≠.
Finally, be sure not to confuse == with =. Because the single equal sign
already has a use (assigning a value to a variable), Boolean expressions use
the double equal sign (==) to test whether two values are “equal to” each
other. For example, Listing 6-1 tests for the equality of two values by using
the equals (==) operator.

This collection of Boolean operators provides many choices for evalu-
ating variables to determine whether a condition is true or false. You can
now write a loop that generates different shapes depending on the number
of times the loop has repeated. As you will see later, you can also specify
that you’d like to draw a shape only if a certain condition is not true. Using
Boolean operators in an if statement allows you to create dynamic designs
with a relatively small number of statements.

Using Logical Operators to Combine Boolean Expressions
Additionally, you can combine multiple Boolean expressions with one of
two logical operators: && (which stands for and) and || (which means or).

If you use the && operator, all conditions need to be true in order for
the indicated statements to execute. If you use the || operator, at least one
of multiple conditions needs to be true. For a better sense of how the &&
operator works, consider the following:

if (x > 10 && y <= 20) {
 translate([x, y, 0]) cube([3, 4, 3]);
}

This code segment draws a translated cube only when x is greater than
10 and y is less than or equal to 20.

Now consider this if statement that uses the || operator:

if (x > 10 || y <= 20) {
 translate([x, y, 0]) cube([3, 4, 3]);
}

A translated cube is drawn when either x is greater than 10 or y is less
than or equal to 20. Only one of the Boolean expressions connected by an
or operator needs to evaluate to true in order for the shape to be drawn.
The cube will also be drawn if both Boolean expressions connected by the
or operator are true.

Following an Expanded Order of Operations
You can construct complex Boolean expressions that involve many arith-
metic, Boolean, and logical operators. As in math class, where you learn to
perform multiplication before addition, even if addition comes first in the

Dynamic Designs with if Statements 99

arithmetic expression, OpenSCAD evaluates expressions following a well-
defined order of operations:

1.	 ()

2.	 ^

3.	 *, /, %

4.	 +, -

5.	 <, >, <=, >=

6.	 ==, !=

7.	 &&

8.	 ||

Operators at the same level in the order of operations are performed
according to the order of their occurrence in the expression as it is read
from left to right. Otherwise, operators at the top of this list have a higher
precedence and are calculated prior to operators at the bottom of the list,
even if that means the expression is calculated from the inside out.

Making Two-Way Choices with if…else Statements
A basic if statement executes a section of code only when the Boolean
condition is true. To execute alternate code when the Boolean condition is
false, attach an else statement to an if statement. An if...else statement
creates a two-way branch in your code, allowing you to execute different col-
lections of statements for each truth condition.

Consider the following if...else syntax:

if (<boolean expression>) {
 // code that is executed only when the boolean expression is true
}
else {
 // code that is executed only when the boolean expression is false
}

If the Boolean expression in the if statement is true, the first group
of statements is executed. If the Boolean expression in the if statement is
false, the statements contained within the else section is executed. The else
section of an if statement is often called the default condition, because it
describes what should happen when the condition specified in the if state-
ment is false. An else statement is an optional extension to an if statement
and is appropriate for mutually exclusive branching scenarios, where there is
no possibility that you want to include both sections of code in your design.

You could easily redesign Listing 6-1 by using an else statement. The sky-
scraper in Figure 6-1 has exactly one row of doors. All of the remaining rows
will have windows. Because the for loop should sometimes draw a door and
all other times draw a window, you could rewrite the if statement like this:

num_rows = 10;
num_col = 6;

100 Chapter 6

building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
 cube([building_width, 10, building_height]);

 for (z = [1:1:num_rows]) {
 for (x = [0:1:num_col-1]) {
 if (z == 11) {
 2 translate([x*5+1, -1, -1]) cube([3, 3, 8]); // door
 }
 else {
 3 translate([x*5+1, -1, z*5]) cube([3, 3, 4]); // window
 }
 }
 }
}

If the Boolean expression z == 1 1 is true, OpenSCAD draws a door 2.
If the Boolean expression is false, OpenSCAD draws a window 3.

Using Extended if Statements
An extended if statement attaches a condition to an else statement to cre-
ate an ordered collection of related decisions. OpenSCAD evaluates the
Boolean expressions in an extended if statement in order until one of the
expressions evaluates to true. You can optionally include an else statement
at the end of an extended if to provide a catchall default option in case all
of the decisions evaluate to false.

The syntax for an extended if statement looks like this:

if (<boolean expression>) {
 // code that is executed only when the boolean expression is true
}
else if (<boolean expression>) {
 // code that is executed only when the first boolean expression is false
 // and the second boolean expression is true
}
else {
 // optional default scenario
 // code that is executed only when both boolean expressions are false
}

You can add as many else if statements as needed to describe any number
of mutually exclusive design possibilities, which is particularly useful when
you want to ensure that exactly one of many related outcomes should hap-
pen. Each Boolean expression in the extended if statement is evaluated in
order until one is found that evaluates to true. Only the code section for that
Boolean expression is executed, while the remaining sections are skipped. If
no Boolean expressions are true, the code specified in the optional else sec-
tion (if provided) is executed. Because the else section describes the default
possibility, it must be included at the end of an extended if statement.

Dynamic Designs with if Statements 101

Listing 6-2 uses an extended if statement to draw tick marks of vari-
ous sizes on a ruler (Figure 6-2). This design creates an inch-based ruler
with tick marks at three repeating intervals: one inch, a half inch, and
a quarter inch. Tick marks at inch intervals are the longest, followed by
slightly shorter half-inch tick marks, and even shorter quarter-inch tick
marks. OpenSCAD is unit-less, so this design uses basic proportionality to
divide every inch on the ruler into four equal-sized “gaps.” It is intended to
be resized to its exact width in your 3D-printing preparation software just
prior to printing.

ruler(5);

module ruler(inches) {
1 gap_size = 1; // 1 unit per quarter inch
 total_marks = 4 * inches; // inch, half inch, quarter inch

 width = gap_size * total_marks;
 length = 4 * gap_size;
 height = 0.5 * gap_size;

 mark_width = 0.25 * gap_size;
 mark_height = 1.5 * height;

 // main ruler body
 difference() {
 cube([width, length, height]);
 translate([width-gap_size, length-gap_size, -0.5])
 cylinder(h=height+1, r=0.15*length, $fn=20);
 }

 // tick marks
2 for(t = [1:1:total_marks-1]) {
 mark_x = gap_size * t - 0.5 * mark_width;

 3 if (t%4 == 0) { // inch marks and number labels
 translate([gap_size * t, 0.65 * length, 0])
 linear_extrude(mark_height)
 text(str(t/4), size=gap_size, halign="center");
 translate([mark_x, 0, 0])
 cube([mark_width, 0.5 * length, mark_height]);
 }
 4 else if (t%2 == 0) { // half-inch marks
 translate([mark_x, 0, 0])
 cube([0.75 * mark_width, 0.25 * length, mark_height]);
 }
 5 else { // quarter-inch marks
 translate([mark_x, 0, 0])
 cube([0.5 * mark_width, 0.125 * length, mark_height]);
 }
 }
}

Listing 6-2: Using extended if statements to differentiate tick mark sizes on a ruler

102 Chapter 6

Figure 6-2: A five-inch ruler

First, a collection of variables is defined to help us organize our
design 1: gap_size indicates that one OpenSCAD unit will represent the
width taken by a single quarter-inch gap between tick marks, and total
_marks keeps track of the total number of tick marks needed (according
to the inches parameter of the ruler module). We’ll need four tick marks
per inch as we’ll include marks at the inch, half-inch, and quarter-inch
intervals. The other variables relate the proportionality of various features
of the ruler to these two initial choices. Organizing the module variables
in this manner allows you to quickly update your design in the future. For
instance, you might decide to make a longer ruler in your next version. This
change could easily be accomplished by making a single change: the calcu-
lation that determines the value of length variable.

The for loop 2 draws something for every needed tick mark, except
for the first and last tick marks, which are meant to be inferred (as they are
the beginning and end of the ruler). The t variable in the for loop keeps
track of the number of tick marks being drawn, while mark_x is used to
keep track of the location of each new tick mark along the x-axis. The first
Boolean expression 3 tests whether the t variable is divisible by 4 (remem-
ber, % calculates the remainder). If this condition is true, the longest tick
mark is added to the design to indicate an inch interval. If the t variable
isn’t divisible by 4, the second Boolean expression 4 tests whether it is divis-
ible by 2. And if it is, the second-longest tick mark is added to the design
to indicate a half-inch mark. Only if the t variable isn’t divisible by either
4 or 2 will the shortest tick mark be added to the design 5 by the else
statement.

Notice the careful ordering of the decisions used in this extended if
statement. The for loop produces a series of numbers that are each evalu-
ated by the extended if statement: 1, 2, 3, 4, 5, 6, 7, 8, and so on. Numbers
like 4, 8, and 12 are divisible by both 4 and 2, so which condition should be
executed? Extended if statements evaluate each decision in order, execut-
ing only the code contained in the if statement with the first Boolean

Dynamic Designs with if Statements 103

expression that is true. Even though some numbers are divisible by both 4
and 2, the second decision 3 is evaluated only if the first expression 2 is
false. Thus, only one tick mark is drawn for each value of t in the for loop.
This is an example of a mutually exclusive scenario: one, and only one, of
the three tick mark lengths should be drawn for each value of t.

Using Nested if Statements
Placing an if statement inside another if statement is a way to guarantee
that a Boolean expression should be considered only if another Boolean
expression is true. At a basic level, a nested if statement can replace the &&
operator:

if (x < 8 && y == 10) {
 // code that is executed only when both boolean expressions are true
}

So you could rewrite the preceding code with a nested if statement:

if (x < 8) {
 if (y == 10) {
 // code that is executed only when both boolean expressions are true
 }
}

It’s probably easiest to use the && operator for simple combinations of
Boolean expressions that all need to be true for satisfying certain design
conditions. However, using nested if statements can be easier when you
want to test the outcome of multiple Boolean expressions that can either be
true or false:

if (x < 8) {
 if (y == 10) {
 // code that is executed only when both x < 8 and y == 10
 }
 else if (y < 10) {
 // code that is executed only when both x < 8 and y < 10
 }
 else {
 // code that is executed only when both x < 8 and y > 10
 }
} else {
 if (y == 10) {
 // code that is executed only when both x >= 8 and y ==10
 }
 else {
 // code that is executed only when both x >= 8 and y !=10
 }
}

It’s usually possible to describe complex conditions using a variety
of combinations of Boolean operators, logical operators, extended if

104 Chapter 6

statements, and nested if statements. Often, the best choice is the combi-
nation of conditions that makes the most sense to the person creating the
design.

Useful Applications of if Statements
You should include an if statement whenever you want your OpenSCAD
design to vary according to a specific condition. The following situations
are examples of when you may want to use if statements in your projects.

Setting Up a Design Mode and Print Mode
Consider the Towers of Hanoi project from Chapter 4. When designing
the series of stacking discs, it was convenient to visualize the discs stacked
vertically on one of the pegs. However, that configuration is not the best for
3D-printing the design, because the disks are resting on top of each other,
and you wouldn’t want all the disks to be printed as one piece.

A useful technique is to create two versions of your design: one config
uration for visualizing the final result and one for 3D-printing it. Use design
mode to build your design in a way that is easy to visualize, and use print mode
to reorganize the same design in a way that is better for 3D printing.

Listing 6-3 incorporates these two design configurations; Figure 6-3
depicts print mode.

$fn = 100;
mode = "print"; // or "design"

cube([200, 60, 10], center=true);

for (x = [-60:60:60]) {
 translate([x, 0, 5]) cylinder(h=70, r=4);
}

1 if (mode == "design") {
 for (d = [2:1:7]) {
 translate([-60, 0, 10 + (7-d)*10]) disc(d*4, 5);
 }
}
2 else if (mode == "print") {
 for (d = [2:1:7]) {
 if (d > 4) {
 translate([60*d - 350, 60, 0]) disc(d*4, 5);
 }
 else {
 translate([60*d - 200, 100, 0]) disc(d*4, 5);
 }
 }
}

module disc(disc_radius, hole_radius) {
 difference() {

Dynamic Designs with if Statements 105

 cylinder(h=10, r=disc_radius, center=true);
 cylinder(h=11, r=hole_radius, center=true);
 }
}

Listing 6-3: Using if statements to differentiate print mode and design mode

Figure 6-3: A Towers of Hanoi project set up for printing

Listing 6-3 uses a variable named mode and an extended if statement
to decide whether to draw the shapes in "print" mode or "design" mode.
If mode == "design" 1, the disks are displayed vertically, stacked on top of
one another, which makes it easy to visualize and check for correctness. If
mode == "print" 2, the discs are arranged in two horizontal rows, which is an
appropriate setup for 3D printing. This differentiation allows you to quickly
switch back and forth between the two configurations. When you are ready
to print, all you need to do is change the value of mode to "print" to make
the design change automatically.

Using Random Numbers as a Design Element
Random numbers are a fun way to add unpredictable elements to your
designs, which is convenient when a design has features that you want to be
similar, but not exactly the same. For instance, you could easily use random
numbers to generate an entire city of skyscrapers, all with different heights,
widths, and numbers of windows.

When you roll a six-sided die, you can expect that one of the six values
(1, 2, 3, 4, 5, 6) on the die will be the result of the roll, but you can’t predict
the exact outcome. A similar procedure happens with the rands function.
You can be certain that a decimal value within a specified range will be
picked without knowing exactly which value will be picked until the state-
ment is executed.

106 Chapter 6

 Use the mathematical rands function to generate random numbers.
The following line of code picks two random decimal numbers between 0
and 1:

number_list = rands(0, 1, 2);

The first parameter you pass to rands specifies the lowest decimal num-
ber that the random number generator can choose. In this case, the lowest
possible number is 0.0. The second parameter specifies the highest possible
number, which is 1.0 for this example. The third parameter, 2, specifies how
many numbers will be picked. The variable number_list remembers the gen-
erated list of random numbers so you can use them later.

The following code segment chooses three random numbers from 10
to 20, then stores the list of three numbers in a variable called number_list.
Each random number in the list is then printed to the console window
with the number_list variable, followed by the position of each number in
the list within square brackets ([]). As with most programming languages,
OpenSCAD considers the first element in a list to be in position [0]:

number_list = rands(10, 20, 3);

echo(number_list[0]);
echo(number_list[1]);
echo(number_list[2]);

Every time you preview this code, you will see a different combination of
three randomly chosen decimal numbers from 10 to 20 printed to the console.

The rands function can choose any decimal number within the range
you provide, but sometimes it’s convenient to restrict a design to working
only with integers (that is, numbers without decimals). If your design needs
to pick a random integer within a certain range, the mathematical round
function can be used to map randomly generated decimals to integers.
The round function examines the decimal extension of a number to decide
whether the decimal number should be “rounded up” or “rounded down”
according to whether the decimal extension is >= 0.5 or < 0.5, respectively:

number_list = rands(9.5, 20.49, 3);

echo(round(number_list[0]));
echo(round(number_list[1]));
echo(round(number_list[2]));

Every time you run this code, you will see a different combination of
three integers from 10 to 20 printed to the console because of the use of
the mathematical round function in each echo statement. Notice that the first
two parameters of the rands function have been changed to 9.5 and 20.49
in order to ensure that each integer in the original range (that is, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, or 20) is picked an approximately equally likely
number of times. Because we wouldn’t want to allow for a random choice of
20.5 and have it rounded up to 21, we use 20.49 as the highest possible value

Dynamic Designs with if Statements 107

that can be generated. This produces a slightly lower possibility of 20 being
randomly generated as compared to the other integer values in the range,
but the difference is very small.

Random numbers are a useful way to generate design elements only
a certain percentage of the time. For instance, you could modify your sky-
scraper design from the preceding chapter so that 50 percent of the time,
the skyscraper includes a water tower on top of the roof.

Listing 6-4 draws the same simple skyscraper from Listing 6-2. This new
version of the design sometimes includes a water tower to the top of the
building (Figure 6-4).

num_rows = 10;
num_col = 6;

building_width = num_col * 5;
building_height = num_rows * 6;

difference() {
 cube([building_width, 10, building_height]);

 for (z = [1:1:num_rows]) {
 for (x = [0:1:num_col-1]) {
 if (z == 1) {
 translate([x*5 + 1, -1, -1]) cube([3, 3, 8]);
 }
 else {
 translate([x*5 + 1, -1, z*5]) cube([3, 3, 4]);
 }
 }
 }
}

1 draw_tower = rands(0, 1, 1);

2 if (draw_tower[0] < 0.5) {
 translate([building_width/6, 5, building_height])
 watertower(building_width/4);
}

module watertower(width) {
 $fn = 20;
 cylinder(h=5, r=width/2);
 translate([0, 0, 5]) cylinder(h=5, r1=width/2, r2=0);
}

Listing 6-4: if statements and random numbers to sometimes draw a water tower

After drawing a basic building, the design generates a list with a single
random number between 0 and 1 1. This list is stored in the draw_tower vari-
able. An if statement 2 tests the randomly generated number and draws
a water tower on top of the skyscraper only if the number generated is less
than 0.5. That means the skyscraper will have a water tower approximately
50 percent of the time, and no water tower the other 50 percent of the time.

108 Chapter 6

Figure 6-4: A skyscraper with a water tower

Next, let’s use random numbers to create a city block of randomly sized
skyscrapers (Figure 6-5):

1 use <skyscraper.scad>

num_buildings = 5;

2 width_list = rands(10, 30, num_buildings);
length_list = rands(20, 30, num_buildings);
height_list = rands(20, 100, num_buildings);

window_row_list = rands(2.5, 10.49, num_buildings);
window_col_list = rands(2.5, 10.49, num_buildings);

watertower_list = rands(0, 1, num_buildings);

for (n=[0:1:num_buildings-1]) {
3 width = width_list[n];
 length = length_list[n];
 height = height_list[n];

4 window_rows = round(window_row_list[n]);
 window_cols = round(window_col_list[n]);

 watertower = round(watertower_list[n]);

 translate([0, n*30, 0]) {
 5 skyscraper(width, length, height, window_rows, window_cols, watertower);
 }
}

Dynamic Designs with if Statements 109

Figure 6-5: A row of randomly sized skyscrapers, some
with a water tower

The skyscraper module is imported from skyscraper.scad 1 to keep the
design small and manageable. Next, lists of random numbers (of size num
_buildings) are generated for each parameter of the skyscraper module 2.
A for loop then draws a number of skyscrapers according to the value
indicated by the num_buildings variable. For each new skyscraper, variables
are assigned random numbers from the appropriate spot in each list 3.
Decimals are rounded to integer values 4 for parameters where decimal
values wouldn’t make sense (you wouldn’t want half of a window to be
drawn). Finally, this collection of randomly generated values specifies the
various parameters 5 of each new skyscraper. Every time you preview or
render this design, each building will be rendered differently, because the
random values used to generate each skyscraper will be different. This tech-
nique is useful for making repeated computer-generated designs appear
more organic and natural.

Summary
This chapter introduced the concept of creating conditional branches with
if statements that allow you to create designs that adapt to changing circum-
stances. Each section of an if statement executes only when a specific condi-
tion is true, allowing you to generate designs with varying characteristics.
This variety allows you to describe complex designs concisely.

110 Chapter 6

When utilizing if statements to create dynamic designs, keep these con-
cepts in mind:

•	 if statements use a Boolean expression to evaluate whether a condition
is true or false.

•	 if statements execute only if their Boolean expression is true.

•	 All expressions in OpenSCAD are evaluated according to an order of
operations, which means that a complex Boolean expression can be
evaluated from the inside out.

•	 A nested if statement is an if statement placed inside another if
statement.

•	 To indicate what should happen when a Boolean expression is false,
extend an if statement with an else statement.

•	 You can combine several mutually exclusive decisions in one extended
if statement.

•	 An else statement allows you to provide a default collection of state-
ments that execute when none of the Boolean conditions in an
extended if statement are true.

•	 You can use if statements with random numbers to generate an organic
naturalness to your design.

•	 if statements can help you organize your design into modes (like
"print" or "design"), making it easy to change important configuration
details.

Dynamic Designs with if Statements 111

DESIGN TIME: IF STATEMENTS

Before reading further, practice the skills you learned in this chapter by building each of these com-
plex designs (Figure 6-6). Be sure to use at least one if statement in each exercise.

1. Wave 2. Brick wall

3. Necklace 4. Wallpaper

5. LEGO bricks with hole (when possible) 6. Random city block

Figure 6-6: Practice creating all of these designs.

112 Chapter 6

BIG PROJECTS: DECISIONS

Practice the skills you’ve learned so far by modeling the following three projects.

R A NDOM FOR ES T

Generate a forest (Figure 6-7) by using random numbers to choose from a variety of tree modules.
Design each tree module to take width and height as parameters.

Figure 6-7: Random forest

CLOCK

Design a clock that uses if statements to vary the design characteristics of its face markings. Try to
emphasize 15-minute positions (Figure 6-8). It may help to use nested if statements to apply differ-
ent transformation operations to various sections of the text-based hour labels of the clock. Applying
the same operations to every number won’t produce the orientations you see in Figure 6-8.

Figure 6-8: Clock

Dynamic Designs with if Statements 113

CIT Y OF R A NDOM SK YSCR A PERS

Extend various exercises in this chapter to generate an entire city of randomly sized skyscrapers
(Figure 6-9).

Figure 6-9: City of randomly sized skyscrapers

7
D E S I G N I N G B I G P R O J E C T S

In this chapter, you’ll extend the lessons
you’ve learned so far to build a complex

design with OpenSCAD. Specifically, you’ll
employ an iterative design cycle to plan and

complete a larger project. First, you’ll apply computa-
tional thinking to analyze and plan your design. Then,
you’ll apply the popular walking skeleton approach to
evolve a low-fidelity prototype from a basic, abstract
design into a highly detailed final design. Using this method, you’ll con-
nect all the project’s major components before fleshing out each compo-
nent’s individual details. As a final step, you’ll fill in the smaller details to
finish the project.

Z
Y

X

116 Chapter 7

The Design Cycle
The design cycle is a common methodology with four sequential stages to
help develop solutions to complex design projects:

Investigate

Understand what you’re trying to accomplish. What important consid-
erations or constraints might affect your solution? What do you need in
order to accomplish your goals? Can you picture what you’re trying to
build?

Plan

Divide the process for building your solution into a series of steps.
Because you’re designing with OpenSCAD (a programming language),
you can apply computational thinking concepts (decomposition, abstrac-
tion, finding patterns, and algorithms) at this stage of the design cycle to
identify the best approach to accomplish your goals.

Create

Follow your plan. Creation often reveals new problems, so it’s better
to build big-picture solutions before focusing on the details. Using
a walking skeleton approach to develop a complex design can help
make it easier to repeat the Create stage several times. Each repetition
of the Create stage (called a design iteration) adds more detail to the
overall design, allowing you to focus on the most important structural
details first.

Evaluate

Compare each iteration of the Create stage (what you’ve actually built)
with the original problem (what you intended to build). Identify areas
of concern and then repeat any step of the design cycle as needed.

Keep in mind that the stages of the design cycle are more like a looping
cycle. You will probably revisit stages several times throughout the process
until you are satisfied with your final design.

Leaning Tower of Pisa Model
Let’s follow the design cycle to create a model of Italy’s famous Leaning
Tower of Pisa (Figure 7-1).

The focus of this project is to combine the design process with com-
putational thinking, so we’ll create a recognizable likeness of this famous
building, rather than an architecturally accurate scale model.

Designing Big Projects 117

Figure 7-1: The Leaning Tower of Pisa (photo by Svetlana Tikhonova,
covered by the CC0 1.0 Universal [CC0 1.0] Public Domain
Dedication license; replicated in Figures 7-2 to 7-4)

Step 1: Investigate—Define Multiple Views
The first step is to search for photos of the Leaning Tower of Pisa to help
visualize the final design. We collected images showing different views to
provide a sense of what the building looks like from every angle, including
front, back, left, right, and top. We (unsurprisingly) couldn’t find a photo of
the bottom view, but we looked for photos that clearly show how the tower
interacts with the ground.

The Investigate step of the design cycle is important even if you want to
build something of your own invention. If you can’t find an exact picture of
what you want to build, look for something similar. If you don’t have any luck,
sketch a rough draft of your intended design by hand. Visualizing your design
before you code it will save you much time and frustration. The idea is to draw
a map of your development process before typing a single line of code.

Step 2: Plan—Apply Computational Thinking
With a firm understanding of what the Leaning Tower of Pisa looks like,
you’ll analyze the building to identify where you can apply the principles of
computational thinking: decomposition, patterns, abstraction, and algorithms.
Applying these principles when creating designs with OpenSCAD (or any

118 Chapter 7

other programming language for that matter) will help you work smarter,
not harder, and will allow the computer to do the tedious work for you.

Decomposition

Decomposition is the process of breaking a large, complex problem into
smaller, easier-to-describe subproblems, which helps you recognize when
to create modules and separate files for a large project. One way to decom-
pose the Leaning Tower of Pisa is to divide the building into three distinct
sections (bottom, middle, and top), all of which are “leaning” at the same
angle. You then can break those three sections into smaller subcomponents,
like columns, levels, fences, and archways (Figure 7-2).

Archway

Top section

Level

Bottom section

Middle section

Fence

Column

Figure 7-2: Using basic decomposition to break the tower into smaller components

Designing Big Projects 119

Patterns

Finding patterns in a design is a bit like decomposition, because the goal is
to break a complex design into smaller, more manageable pieces. However,
the objective with patterns is to summarize the process by which elements
repeat (Figure 7-3).

Level

Level

Level

Level

Level

Level

Repeating
archways

Repeating
columns

Repeating
columns

Figure 7-3: Patterns of repeating shapes

For instance, the middle section of the Leaning Tower of Pisa is com-
posed of essentially the same group of shapes repeated six times. Each of
those “levels” also includes repeated arches/columns around its outside
circumference. In fact, both the bottom and the top sections also contain

120 Chapter 7

repeated arches/columns (although at different sizes and intervals from the
middle section). Additionally, the top section has two fences with repeated
posts, as well as a repeated archway shape in numerous sizes.

Abstraction

Abstraction is the process of summarizing smaller details with higher-level
descriptions in order to communicate big-picture information. Rendering
each section of the Leaning Tower of Pisa as a cylinder is a general abstrac-
tion that omits a lot of detail (Figure 7-4).

Abstraction

Figure 7-4: Diagram of the Leaning Tower of Pisa abstracted as three cylinders

Abstracting the three sections as cylinders allows you to focus on larger
elements (like the angle of the tower’s lean and each section’s proportional
sizing) before considering the smaller, less consequential features.

Algorithms

Because so much repetition exists within the Leaning Tower of Pisa’s archi-
tecture, our design algorithm for creating the tower requires numerous
loops. For instance, the columns around the tower’s perimeter involve a
loop that repeatedly increments the angle of rotation. The looping columns
occur in all three sections (bottom, middle, and top), although each section
contains different numbers of repeating columns of various sizes.

Designing Big Projects 121

The multiple use cases for the different sizes of columns around the
tower’s perimeter suggest that a parameterized column module would be
an appropriate algorithmic choice; incorporating parameters in the mod-
ule allows you to reuse the same basic code for each section of the tower. In
fact, the design for this project provides many opportunities to use modules
in your code. Each of the basic components you identify during a project’s
Decomposition and Patterns analysis will likely be a candidate for a module.
In this case, you can create modules for the top section, middle section, bot-
tom section, level, column, archway, and fence.

Step 3: Create—Use a Walking Skeleton Approach
The goals of the first two steps of the design cycle are understanding what
you want to build and creating a well-defined strategy for breaking a large,
complex project into a collection of manageable pieces. In step 3, you start
coding by using the walking skeleton development process, allowing you to
evolve the design from rough building blocks into a final highly detailed fin-
ished piece. You’ll use this approach to create several versions of the tower,
making incremental improvements with each design iteration (Figure 7-5).

Figure 7-5: Using the walking skeleton approach for the evolution of the Leaning Tower
of Pisa

The first versions of the top, middle, and bottom sections in Figure 7-5
are rough abstractions of the final, detailed versions of those same sections.
The design’s main pieces are connected first as an architectural skeleton,
then fleshed out over time in an evolutionary process—hence the name,
walking skeleton.

Step 4: Evaluate—Decide Which Design Process Steps to Repeat
The “final” step of the design cycle is more of a question than anything
else. Does your design accomplish what you intended? Based on the answer,
decide which steps of the design process you need to revisit.

To answer that question for the tower example, you’ll visually compare
the rendered OpenSCAD model of the tower with a photograph of the real
Leaning Tower of Pisa. In fact, you’ll apply the Evaluate step after each
iteration of the walking skeleton to determine which features to add for the
next iteration.

122 Chapter 7

Walking Skeleton: Building the Leaning Tower of Pisa
For the remainder of this chapter, you’ll build several versions of the
Leaning Tower of Pisa in a series of design iterations to demonstrate the
walking skeleton development process. Each version will add more details,
so you’ll compare each iteration with the reference photo and reconsider
your plan and algorithms as you go. This approach allows you to apply the
design cycle to each iteration without having to worry too much about the
way the code is organized or connected.

Iteration 1: Connecting the Tower’s Basic Building Blocks
The goal for the first version of the tower design is to create and connect
the building’s three sections: top, middle, and bottom. You’ll also include a
platform for stability (the tower is leaning, after all).

Decomposing the building’s overall design into smaller pieces provides
the setup to evolve the design in stages, as you’ll be able to edit the tower’s
various sections independently. Initially, you’ll generate only basic cylinders
as big-picture approximations of each section’s design, because the first
stage of a walking skeleton focuses solely on connecting the project’s sepa-
rate building blocks (Figure 7-6).

Figure 7-6: An abstract tower with three sections

Designing Big Projects 123

Although you could use a series of modules contained within one
very large file, you’ll instead separate these sections into stand-alone files
(bottom.scad, middle.scad, and top.scad) and create one connector file (tower
.scad). Having the code in separate files allows you to create, find, and edit
relevant modules for each section easily. You could also use this multi-file
approach to collaborate with others, so each person could focus on a differ-
ent file simultaneously.

The trickiest part of this first step is considering how the different com-
ponents of the design interact with each other. Usually, this means identify-
ing the crucial information each piece of the design needs in order to be
drawn. For instance, to draw an abstract, cylinder-based representation of
each section, you need, at minimum, a height and radius for that section.
The main project file (tower.scad) will communicate that information to
each section via module parameters.

Because the top, middle, and bottom sections all use a cylinder as an
abstract representation of the final design, creating those files first is rela-
tively easy. The code for each section looks very similar at this stage of the
design, which is another advantage of abstraction. You don’t need to worry
about small details at the moment, so you can copy and paste code in the
three files with only minimal changes.

The bottom.scad file defines a cylinder to create a simple version of the
tower’s lowest section:

// bottom.scad v1
1 module bottom_section(width, height) {
 radius = 0.5 * width;
 cylinder(h=height, r=radius);
}

The tower.scad file communicates the dimensions for the bottom section
to the bottom_section module via the width and height parameters 1.

Next, the middle.scad file defines a starting version of the middle
section:

// middle.scad v1
1 module middle_section(width, height) {
 radius = 0.5 * width;
 cylinder(h=height, r=radius);
}

Again, the tower.scad file communicates the width and height to the
middle_section module via the width and height parameters 1.

Similarly, the top.scad file defines a basic cylinder to represent the tow-
er’s top section:

// top.scad v1
1 module top_section(width, height) {
 radius = 0.5 * width;
 2 cylinder(h=height, r=radius);
}

124 Chapter 7

As with the bottom and middle sections, the tower.scad file uses param-
eters to supply needed dimensions to the top_section module 1. The order
and number of parameters in each of the three modules is the same. This
is a deliberate choice to simplify the design’s architecture. As the complex-
ity of the design increases, this consistent interface between top.scad, bottom.
scad, middle.scad, and tower.scad will make adjusting the proportions of each
section easier. The decision to think of each cylinder’s measurements in
terms of the structure’s radius rather than its diameter 2 was also deliber-
ate (though somewhat arbitrary). At this stage, using width as the cylinder’s
diameter would also make sense.

Next we create tower.scad, which provides the necessary dimensions and
connects the tower’s three sections with the platform:

// tower.scad v1
1 use <bottom.scad>
use <middle.scad>
use <top.scad>

2 tower_height = 100;
tower_width = 0.3 * tower_height;
bottom_height = 0.2 * tower_height;
middle_height = 0.65 * tower_height;
top_height = 0.15 * tower_height;

base_width = 2 * tower_width;
base_height = 0.1 * tower_width;

lean_angle = 4;

3 $fn = 20;

4 rotate([lean_angle, 0, 0]) {
 color("grey") {
 bottom_section(tower_width, bottom_height);
 }
 color("lightgrey") {
 translate([0, 0, bottom_height])
 middle_section(tower_width, middle_height);
 }
 color("white") {
 translate([0, 0, bottom_height + middle_height])
 5 top_section(tower_width, top_height);
 }
}

color("lightgreen") {
 6 cube([base_width, base_width, base_height], center=true);
}

Designing Big Projects 125

The first section of the tower.scad file links to the three files described
previously that define the tower’s top, middle, and bottom sections 1.
The next section defines variables to help organize the tower’s important
characteristics 2.

Since the design includes not only the tower but also a platform for
stability, you create variables to organize the overall tower’s height and
width (tower_height and tower_width), the height of each section of the tower
(bottom_height, middle_height, and top_height), the height and width of the
platform (base_height and base_width), and the overall angle of the “lean” of
the tower (lean_angle). You initially set the tower_height variable to an arbi-
trary value, and then use it as part of the definition for most of the other
variables. For instance, the height of the bottom section is 20 percent of the
tower_height variable, so if you want to change the size of the entire design,
you need to change only the tower_height variable’s value.

Next, you use a relatively small number of segments (20) to approxi-
mate curved shapes to speed up the rendering of the initial designs 3. The
last design iteration increases the number of segments to 100 in order to
generate smoother curved surfaces in the final design.

To avoid duplicating the same rotate operation for all three sections,
you use a single operation to apply a consistent angle of rotation to each
of the three sections 4. Each section is called via the appropriate module,
with parameters to adjust its width and height. The translate operation
moves the middle and top sections along the z-axis 5.

Finally, you draw the platform as a simple cuboid 6. You also
apply different colors to the ground and each section to signify basic
proportionality.

From this point on, you won’t need to make major changes to the
tower.scad file. Your initial efforts to size and place each section correctly
will form the architectural “skeleton” of the tower design, while your next
design iterations will fill in missing details for the tower’s top, middle, and
bottom sections. The only changes you might need to make to this file in
the future would involve adjusting parameters to tweak proportionality
as your design evolves, or changing $fn to increase the rendered model’s
smoothness. You’d simply swap out numerical values rather than write new
code statements to make those changes.

Iteration 2: Finding Repetition in the Middle Section
Let’s take a closer look at the tower’s middle section (middle.scad) for the
second iteration and apply some computational thinking techniques from
the planning stage—namely, decomposition and finding patterns. In the
middle section, the same collection of shapes (or levels) repeats vertically
six times (Figure 7-7).

126 Chapter 7

Figure 7-7: Abstract Leaning Tower of Pisa with
a looping middle section

Figure 7-8 shows just one of those repeated level shapes.

Figure 7-8: A single level shape

Designing Big Projects 127

To create these repeated levels, you need to make the following changes
to the middle.scad file:

// middle.scad v2
level(50, 25);

module middle_section(width, height) {
 level_height = height / 6;
 level_radius = 0.5 * width;

 1 for (h=[0:1:5]) {
 floor_offset = h * level_height;

 translate([0, 0, floor_offset])
 level(level_radius, level_height);
 }
}

2 module level(level_radius, level_height) {
 lip_height = 0.1 * level_height;
 inner_radius = 0.7 * level_radius;
 overhang_height = 0.3 * level_height;
 3 overhang_radius = 0.95 * level_radius;

 // lip
 translate([0, 0, level_height - lip_height])
 cylinder(h=lip_height, r=level_radius);

 // overhang
 translate([0, 0, level_height - lip_height - overhang_height])
 cylinder(h=overhang_height, r=overhang_radius);

 // inner structure
 cylinder(h=level_height, r=inner_radius);
}

These changes add more detail to the middle section so it’s no longer an
abstract cylinder. The level module 2 organizes all the shapes that construct
each floor of the middle section, and a for loop 1 creates a new level shape
repeatedly for each of the six floors in the section. Each level of this section
now includes a lip that extends to the full radius of the tower, an overhang
that provides a ceiling for columns, and an inner structure to house stairs,
doors, and so forth. You create several variables to relate the size of each level
feature (lip_height, inner_radius, overhang_height, and overhang_radius) to the
level module parameters (level_radius and level_height) 3.

With this repeating level module, you can simultaneously update all six
floors at once by making a change in exactly one place. For instance, if you
want to make each level’s lip a little thicker or change the overhang radius to
provide more room for columns, you can make a single, simple change to the
level module definition. Because you are adding detail to only the middle_
section module in this phase of our walking skeleton approach, middle.scad is
the only file you needed to update for the second iteration of the tower design.

128 Chapter 7

To see these new changes reflected in the overall design (Figure 7-7),
save middle.scad, and then preview the entire design in tower.scad. In addi-
tion to making your design changes permanent, saving the middle.scad file
lets OpenSCAD know you want other files to use the updated code. If you
want to see the middle_section or level shapes in isolation, create the shape
at the top of middle.scad and then preview that file. You can include a state-
ment to draw a middle_section or level shape in middle.scad without worrying
that the shape will also automatically show up in other files. Connecting
another file with middle.scad with a use directive simply means that module
definitions from middle.scad will be accessible in tower.scad. No drawn shapes
from middle.scad will be shown unless the connected file uses a module from
middle.scad.

Iteration 3: Adding More Details to the Middle Section
The next pattern to consider in your computational thinking is the repeti-
tion of columns and arches along each floor’s perimeter in the middle sec-
tion (Figure 7-9).

Figure 7-9: A level with repeated columns

To apply these new patterns to the design, you create a column shape and
repeat that new shape along the circumference of the level module. This
means you need to modify the middle.scad file again, as that’s where the
level module is defined. To create a column shape, you also define a column
module in a new column.scad file.

In the design cycle’s planning phase, you noticed that columns and
arches repeat around the circumference of each of the tower’s three sec-
tions. Because you need to include column shapes in multiple files, defining
the column module in a separate file makes it easier for different sections
to use that new shape definition. Columns and arches repeat in different
patterns in each section, and they also vary in their ornamentation. That’s
why at this initial stage, you’ll focus on creating an abstract column with

Designing Big Projects 129

basic components (Figure 7-10). You can then update this basic definition
of a column in a later design iteration.

Figure 7-10: An abstract column

Creating a column module in a separate file called column.scad makes it
easier to share and evolve your use of columns in the future as needed:

// column.scad v3
1 module column(col_width, col_height) {
 col_radius = 0.5 * col_width;
 2 orn_height = 0.05 * col_height;

 translate([-col_radius, -col_radius, col_height - orn_height])
 cube([col_width, col_width, orn_height]);
 cylinder(h=col_height, r=col_radius);
 translate([-col_radius, -col_radius, 0])
 cube([col_width, col_width, orn_height]);
}

130 Chapter 7

As with other modules, you include two parameters (col_width and
col_height) in the column module 1 to provide the necessary information
to create a column shape. Based on the column height and column width,
variables are created (col_radius and orn_height) to describe the column’s
radius and the ornamentation’s height included at both the top and bot-
tom of a column 2. While it may seem to make the module definition
more complicated, defining and using these variables rather than placing
repeated arithmetic calculations as module parameters or inside opera-
tions reduces the number of possibilities for error, groups all of the design
assumptions at the top of the module, and makes it easier to update all uses
of a measurement.

To invoke this new column module, you then modify the level module
in middle.scad to draw repeating columns and arches around the circumfer-
ence of each level:

// middle.scad v3
1 use <column.scad>
...
module level(level_radius, level_height) {
 2 lip_height = 0.1 * level_height;
 inner_radius = 0.7 * level_radius;
 overhang_height = 0.3 * level_height;
 overhang_radius = 0.95 * level_radius;

 num_cols = 24;
 angle_size = 360 / num_cols;

 col_height = 0.65 * level_height;
 col_width = 0.2 * col_height;

 arch_depth = 2 * (level_radius - inner_radius);

 // lip
 translate([0, 0, level_height - lip_height])
 cylinder(h=lip_height, r=level_radius);

 translate([0, 0, col_height]) {
 difference() {
 // overhang
 cylinder(h=overhang_height, r=overhang_radius);

 // arches
 3 for (i=[0:1:num_cols-1]) {
 angle = i * angle_size + angle_size/2;
 rotate([0, 0, angle])
 translate([inner_radius, 0, 0])
 rotate([0, 90, 0])
 cylinder(h=arch_depth, r=col_width, center=true);
 }
 }
 }

Designing Big Projects 131

 // inner structure
 cylinder(h=level_height, r=inner_radius);

 // columns
 4 for (i=[0:1:num_cols-1]) {
 angle = i * angle_size;
 rotate([0, 0, angle])
 translate([overhang_radius - 0.5 * col_width, 0, 0])
 column(col_width, col_height);
 }
}

Comparing this updated version of middle.scad with the version from
your second design iteration reveals three major additions to the level
module. First, column.scad is connected to this file 1 with a use directive
so that you can use the new column module to draw column shapes in this
file. Next, variables are defined to describe the number of columns per
level (num_cols), the angle at which the columns should be repeated along
the circumference of the tower (angle_size), the width and height of each
column (col_width and col_height), and the depth of the arch connecting
every two columns that will be carved away from the overhang of each level
(arch_depth) 2.

After creating the overhang, you include a for loop within a difference
operation to carve away arches between the location of each column 3. A
final for loop repeats columns along the level’s circumference 4. You could
combine these two loops into a single for loop that uses an if statement;
however, the loops are separated here to make the logic clearer.

As before, to see these new changes reflected in the overall design,
save both middle.scad and column.scad; then preview the entire tower design
in tower.scad. To see only the middle section without the rest of the tower,
include a statement to draw a middle_section shape at the top of middle.
scad; then preview the design in middle.scad. You can also easily see only a
column shape by including a statement to draw a column shape at the top
of column.scad and then previewing the design in that file.

After using a relatively small amount of code to add a large number
of repeating columns and arches to the middle section, that section of the
tower (Figure 7-11) is now more recognizably similar to our reference photo
of the Leaning Tower of Pisa (Figure 7-1).

However, as you can see in Figure 7-11, the top and bottom sections
are still abstract simplifications. Applying the design cycle’s Evaluate
step after each iteration of the walking skeleton helps identify missing
details that might offer the most noticeable improvements to a design.
After this iteration, you should once again consult the reference photo
(Figure 7-1) to decide which section of the tower now most needs
improvement.

132 Chapter 7

Figure 7-11: Leaning Tower of Pisa with
modularized columns

Iteration 4: Adding Details to the Top Section
The top of the tower is missing fences, repeating columns, and archways
(windows and doors), so the next iteration focuses on adding those details.
You’ll add two fences to the top section, as well as alternating archways of
different sizes and heights (Figure 7-12), so you’ll modify top.scad by adding
a fence module and an archway module. You’ll draw the archway module in
different sizes to create the doors and windows shown in the top section of
our reference photograph (Figure 7-1).

Designing Big Projects 133

Figure 7-12: Fenced-in top section with alternating
archways of different sizes

This updated version of the top.scad file adds the fence and archway
details to the tower’s top section:

// top.scad v4
module top_section(width, height) {
 1 top_radius = 0.4 * width;
 room_radius = 0.75 * top_radius;

 num_doors= 5;
 door_angle= 360 / num_doors;

 overhang_height = 0.1 * height;
 overhang_width = 1.1 * top_radius;

 door_height = 0.6 * height;
 door_width = 0.35 * height;

 window_height = 0.25 * height;
 window_width = 0.15 * height;

134 Chapter 7

 // overhang
 translate([0, 0, height - overhang_height])
 cylinder(h=overhang_height, r=overhang_width);

 //inner structure
 difference() {
 cylinder(h=height, r=top_radius);

 translate([0, 0, 1]) {
 cylinder(h=height-2, r=room_radius);

 2 for (i=[0:1:num_doors-1]) {
 angle = i * door_angle;
 rotate([0, 0, angle])
 translate([top_radius-2, 0, 0.25*height])
 // doors
 archway(door_height, door_width, room_radius);
 rotate([0, 0, angle+0.5*door_angle])
 translate([top_radius - 2, 0, 0.6*height])
 // windows
 archway(window_height, window_width, room_radius);
 }
 }
 }

 //fencing
 translate([0, 0, height])
 fence(15, 3, top_radius, 1);
 3 fence(20, 3, 0.5*width, 1);
}

4 module fence(num_posts, fence_height, fence_radius, post_width) {
 post_radius = 0.5 * post_width;
 angle_size = 360/num_posts;
 ring_height = 0.5;
 post_height = fence_height - ring_height;

 translate([0, 0, post_height])
 ring(fence_radius - post_width, fence_radius, ring_height);
 translate([0, 0, post_height / 2])
 ring(fence_radius - post_width, fence_radius, ring_height);

 for (i=[0:1:num_posts-1]) {
 angle = i * angle_size;
 rotate([0, 0, angle])
 translate([fence_radius - post_radius, 0, 0])
 cylinder(h=post_height, r=post_radius);
 }
}

5 module ring(inner_radius, outer_radius, height) {
 difference() {
 cylinder(h=height, r=outer_radius);
 translate([0, 0, 1])

Designing Big Projects 135

 cylinder(h=height+2, r=inner_radius, center=true);
 }
}

6 module archway(height, width, depth) {
 radius = 0.5 * width;

 rotate([90, 0, -90]) {
 translate([0, (height - radius) / 2, -depth / 2])
 cylinder(h=depth, r=radius);
 cube([width, height - radius, depth], center=true);
 }
}

As with the other module definitions, you begin by defining variables
to describe the top section’s various features 1. You base the number of
windows on the number of doors (num_doors), but otherwise, you deliberately
choose variable names that are self-documenting. A for loop contained
within a difference operation subtracts repeated windows and doors from
the top section’s inner structure 2. Windows and doors have similar shapes,
so you define a single archway module that lets you vary the size of window
and door shapes with the height, width, and depth parameters 6.

The top_section module ends by drawing two fence shapes 3. These
fences are basically the same shape but different sizes, so you define a fence
module to construct them 4. You also include a ring module to make it
easier to create various fencing rings 5. This definition of a ring module is
transferred from a previous Design Time activity (see Chapter 5). Reusing
modules from prior projects can save a lot of time and effort.

To simplify the project’s organization, you include the fence, ring, and
archway modules only in the top.scad file since no other section contains those
shapes. As with previous design iterations, save your updates to top.scad; then
preview the design to see those changes in other files.

The top_section module now produces a more detailed version of the
top of the tower (Figure 7-13).

Figure 7-13: Fenced-in top section with alternating archways, detail view

136 Chapter 7

Comparing this design iteration with the tower’s reference photo
(Figure 7-1), your evaluation suggests that the bottom section now needs
the most attention.

Iteration 5: Adding Details to the Bottom Section
This update modifies the bottom.scad file to include the major missing fea-
tures (columns and arches):

// bottom.scad v5

1 use <column.scad>

module bottom_section(width, height) {
 radius = 0.5 * width;
 inner_radius = 0.9 * radius;
 lip_radius = 1.05 * radius;
 lip_height = 0.05 * height;
 overhang_height = 0.2 * height;

 num_cols = 14;
 angle_size = 360 / num_cols;
 col_height = height - overhang_height;
 col_width = 0.1 * col_height;

 // lip
 translate([0, 0, height - lip_height])
 cylinder(h=lip_height, r=lip_radius);

 // inner structure
 cylinder(h=height, r=inner_radius);

 // columns
 2 for (i=[0:1:num_cols-1]) {
 angle = i * angle_size;
 rotate([0, 0, angle])
 translate([radius - 0.5*col_width, 0, 0])
 column(col_width, col_height);
 }

 // arches
 translate([0, 0, col_height])
 difference() {
 // overhang
 cylinder(h=overhang_height, r=radius);

 // arches
 3 for (i=[0:1:num_cols-1]) {
 angle = i * angle_size + angle_size/2;
 rotate([0, 0, angle])
 translate([inner_radius, 0, 0])
 rotate([0, 90, 0])

Designing Big Projects 137

 cylinder(h=radius-inner_radius, r=col_width);
 }
 }
}

You first include column.scad in order to access the column module 1.
This allows you to use a for loop to draw columns around the bottom sec-
tion’s perimeter 2. Columns in the bottom section are bigger than those in
the middle section, so parameters for drawing a column are set accordingly.
You add the arches next, also with a for loop 3.

Save bottom.scad and then preview the design to reveal new details in the
tower’s bottom section (Figure 7-14).

Figure 7-14: Tower with the updated bottom section

138 Chapter 7

The tower is now visually similar to the actual Leaning Tower of Pisa.
You can apply the Evaluate stage one more time, but adding more details
might not produce much benefit if you intend to make a small 3D print of
the model.

Final Evaluation of the Design Cycle
At this stage, the tower looks very similar to the Leaning Tower of Pisa.
Making a slight modification to $fn in tower.scad increases the design’s
smoothness, providing an even closer likeness (Figure 7-15).

Figure 7-15: Smoother tower with $fn=100
instead of $fn=20

You left the smallest details for last, which is a deliberate feature of the
walking skeleton approach to project development. Every design iteration
focuses on one major area, specifically chosen to provide the most notice-
able improvement to the overall tower design. As mentioned previously,

Designing Big Projects 139

because you plan to 3D-print this model, you omit especially small details,
but could have included the following:

•	 The missing columns and arches from the top section.

•	 The missing rectangular doorways from the middle and bottom
sections.

•	 The different ornamentation of columns and arches in each section.

•	 Columns are not basic cylinders, so you could have given the top of a
column a smaller radius than the bottom.

We mention these missing features as potential exercises for readers
who want to continue doing design iterations of this model. Larger 3D
prints potentially could reveal those smaller design features.

Design Organization Overview
For your first design iteration, you split the building into three low-fidelity
sections, each having a separate .scad file. This way, all you needed to do
was preview only one file (tower.scad), because that file connected together
the three other files. Figure 7-16 shows the initial project’s organization,
which reduced the amount of code in any one file, making it easier to find
and modify specific parts.

tower.scad middle.scad

top.scad

bottom.scad

Figure 7-16: Initial architecture for the Leaning
Tower of Pisa project

Throughout the design process, you used decomposition to find oppor-
tunities to break larger components of the tower into smaller pieces. After
your last iteration, the project organization evolved to contain many mod-
ules and an additional file (Figure 7-17). This final project organization
illustrates the main principle of the walking skeleton approach to develop-
ment. Your initial project organization focused on connecting big pieces of
the project, while your final organization reveals all of the smaller details
you added incrementally during each iteration.

The organization and development process described here is only one
way to build this project. Aside from organizing the project into a different
collection of separate .scad files (or even one massive .scad file), you could
have created a different set of modules to decompose the tower into smaller
building blocks.

140 Chapter 7

We also missed several opportunities to reduce the need for repeating
code by including additional if statements or for loops. For instance, you
could have created a separate column_ring module to “factor out” the inclu-
sion of columns and arches around the tower’s circumference. With careful
use of if statements and parameters, you could have used the column_ring
module to draw both the columns and arches in all three sections, greatly
simplifying the code required in the top_section, middle_section, and bottom
_section modules.

middle_section

level

tower.scad

middle.scad

ring

archway

top_section

fence

top.scad

bottom_section

bottom.scad

column

column.scad

Figure 7-17: Final architecture for the Leaning Tower of Pisa

A design can evolve over time without major changes to the overall proj-
ect’s organization. You don’t need to know all the modules or files you’ll need
to create at the beginning of a project; you can make those decisions as you
gain a better understanding of what you’re building. Each time you apply
the Evaluate stage of the design cycle, you have an opportunity to reconsider
which changes to make to your design.

Summary
This chapter introduced the benefits of deliberately following the design
cycle when building a complex project. You applied computational thinking
to guide the planning phase and a walking skeleton approach to combine
the Build and Evaluate stages into a looping procedure. You connected the

Designing Big Projects 141

design’s most important features first and then incrementally developed
each component’s major features. Only during the final stages of develop-
ment did you consider the smaller, more nuanced details.

To recap, keep these concepts in mind when designing a complex
project:

•	 Draw a sketch of the project you want to build, and label it with pat-
terns, abstractions, and decompositions to help you understand how to
organize your code.

•	 Describing the minimum information needed to draw a new shape can
help guide you to understand which parameters might be necessary for
a new module.

•	 Using self-documenting naming conventions will help organize your
code by revealing the purpose of each new variable or module.

•	 Use color to help organize different pieces of an evolving design.

•	 Make sure to save individual files when you make any changes, so other
files can use the newest version of that file.

•	 Connect your project’s most important pieces first, even if those pieces
are big-picture abstractions.

•	 Design a project’s smallest details in the final stages of your walking
skeleton development approach.

The design cycle and walking skeleton development model are common
approaches, and you can find abundant material online for further read-
ing. We encourage you to explore these concepts further as you create new
designs with OpenSCAD.

A F T E R W O R D

After reading this book, especially if you
engaged with the Design Time and Big

Project exercises, you should have a solid
grasp on how to create 3D-printable designs

with the OpenSCAD programming language. In clos-
ing, we’ll provide some helpful pointers on where to
go next, as well as help contextualize how OpenSCAD
fits into the larger ecosystems of the open source and
maker movements.

Learn More About OpenSCAD
We have covered a significant portion of OpenSCAD’s available fea-
tures here; however, there are still more advanced features to uncover.
A variety of resources are available for you to unlock OpenSCAD’s full
creative power:

Z
Y

X

144 Afterword

Visit the OpenSCAD online documentation
Once you’re ready to take your OpenSCAD skills further, your first
stop should be the official online OpenSCAD documentation (https://
openscad.org/documentation). This is the place to look for other well-
structured guides to learning more about OpenSCAD. You’ll find
tutorials, a user manual, a more complete language reference, and
regularly updated links to many other learning materials, including
books, articles, and videos.

Remix someone else’s OpenSCAD design
For slightly less structured learning, try to remix an existing
OpenSCAD design. Learning to read code written by other people
can result in substantial improvements to your own coding and orga-
nizational skills. You can easily search online for OpenSCAD designs
and be sure to check out two of the most popular 3D design-sharing
websites: https://thingiverse.com/ and https://youmagine.com/. Searching for
openscad will result in thousands of OpenSCAD designs available for
you to use and remix.

Most of the designs are also available as OpenSCAD code, which you
can explore to see how other people solve challenging design problems
in code. Creating a remix of someone else’s design by integrating your
own customized innovations into their code is a great way to demon-
strate that you truly understand how all the pieces of their design fit
together.

Join the OpenSCAD community
Engaging with other like-minded people in the thriving OpenSCAD
community of designers is another way to supplement your learning.
Sometimes your design ideas might present unique challenges that no
amount of reading or searching will illuminate. Asking the OpenSCAD
community for help could offer the perfect solution.

The official OpenSCAD community page (https://openscad.org/community)
has a chat room as well as a mailing list and forum where OpenSCAD
users discuss projects, ask for help, and even facilitate development of
OpenSCAD itself. OpenSCAD is open source software, and develop-
ment discussions often take place in the same forums where community
members hang out. In addition to finding answers to your most perplex-
ing design problems, participating in the OpenSCAD forum means that
you can offer help to others, and you might even be able to influence the
development of the OpenSCAD software itself by suggesting new features
or reporting bugs.

The Open Source Ethos
As we’ve mentioned several times throughout the book, OpenSCAD is open
source software. Proprietary 3D design software is typically expensive and

https://thingiverse.com/
https://youmagine.com/
https://openscad.org/community

Afterword 145

usually carries a steep learning curve. Even “free” web-based 3D-design tools
often require creating an account, which can raise concerns about privacy or
longevity of the service. The OpenSCAD community of developers wanted
to create a truly free and accessible 3D-modeling platform to open the world
of solid CAD modeling to everyone, especially people interested in the inter-
section of coding and 3D design. Hundreds of people have donated their
time and effort to create and improve OpenSCAD for you, in the hopes that
removing some of these traditional barriers will encourage more people to
learn and use 3D modeling to solve problems both big and small.

Motivation and Ecosystem
Why would so many people spend so much time and effort to turn some-
thing that is traditionally “hard” and “expensive” into something that
is both free and so much more accessible and approachable? Important
motivating reasons behind making OpenSCAD open source include the
following:

•	 Supporting communities that celebrate cross-cultural and cross-
discipline explorations

•	 Supporting and engaging with the inclusive teaching, learning, and
sharing of important STEM/STEAM skills

•	 Encouraging individuals to share the benefits of their work and efforts
with others

•	 Empowering individuals to make things better by providing change-
making ownership of existing creations through a crowd-based iterative
design process

•	 Believing that paying it forward encourages others also to pay it for-
ward, resulting in a magnified benefit to society

In fact, the OpenSCAD open source project also exists because of the
kindness of strangers. The OpenSCAD development community relies
upon many other open source projects that were each created so that oth-
ers could use the technology to (hopefully) make the world a better place.
Some of the most prominent are as follows:

•	 Qt to help build the OpenSCAD user interface (https://qt.io/)

•	 CGAL for help evaluating constructive solid geometry (CSG) when
OpenSCAD designs are rendered (https://cgal.org/)

•	 OpenCSG and OpenGL to help generate CSG previews for OpenSCAD
designs (http://opencsg.org/ and https://www.opengl.org/)

•	 Boost for its large toolbox of C++ convenience libraries (https://boost.org/)

•	 Eigen to provide fast and well-tested linear algebra functions (https://
eigen.tuxfamily.org/)

We would like to thank the developers of OpenSCAD and every open
source project for their time and valuable contributions.

https://qt.io/
https://cgal.org/
http://opencsg.org/
https://www.opengl.org/
https://boost.org/
https://eigen.tuxfamily.org/
https://eigen.tuxfamily.org/

146 Afterword

Online Citizenship
It can be easy to forget that real people are on the other side of the screen
you use to access the internet. The open source software movement relies
heavily upon the idea of online citizenship, making sure that the distrib-
uted social network of the internet helps promote positive social change
while supporting the advancement of human rights. Here are a few start-
ing principles for online citizenship we hope you’ll take with you as you
continue your journey with OpenSCAD and other open source software
projects:

Give credit
Provide attribution when you use something someone else has created.
This helps support the original creator (even with kudos) and demon-
strates that you’re aware of the privileges of “standing on the shoulders
of giants.”

Have empathy for others
Remember that the people you interact with online don’t necessarily
share your background, language, culture, or inside jokes. Maintain
and model a respectful and considerate use of communication in all
community spaces. Be respectful of the cultural and environmental
impact of the things you create.

Pay it forward
Create things that help solve problems for real people. Share your cre-
ations, especially when you’ve created something by using tools that
other people have given away for free.

OpenSCAD and the Maker Movement
It would be an oversight to overlook OpenSCAD’s relationship with the
maker movement. Making has become an increasingly popular term to
describe taking a creative, DIY approach to problem-solving. Making usu-
ally involves trying to solve a problem by using an iterative design process
and a variety of machines, tools, and materials: cardboard prototyping, 3D
printing, laser cutting, electronics, soldering, woodworking, sewing, CNC
(computer numeric control) machining, vinyl cutting, screen printing,
water-jet cutting, and so on.

OpenSCAD is a key software tool for the maker community. Although
this book focuses on designing with OpenSCAD in anticipation of 3D print-
ing, 3D printing only scratches the surface of what the maker community
has created with OpenSCAD. Combining OpenSCAD and 3D printing is
a great solution for many problems, but it’s not always the best solution.
Developing a far-reaching, holistic sense of the design tools and paradigms
collected under the maker umbrella provides many benefits.

Afterword 147

Making and Creative Problem-Solving
We have used the word design intentionally to describe OpenSCAD cre-
ations, because each OpenSCAD project is created for a specific reason,
often to solve a physical problem in the real world. Fundamental to the
notion of design is the practice of problem-solving. Similar to swimming,
problem-solving through design is a skill that can be truly learned only
when you are “in the water.” Every time you finish an OpenSCAD proj-
ect, you increase your capacity to design a specific solution to a specific
problem.

The maker movement rightly recognizes creative problem-solving
through design as a transferable skill. If you are new to the maker move-
ment, you might find it surprising that designing a sewing kit can help with
your ability to create a well-ordered sequence of OpenSCAD code or that
creating a multilayered screen print can help you decompose a complicated
problem into well-defined smaller parts. You can acquire these higher-order
design skills in any medium. In addition to the transferable programming
and 3D-printing techniques you’ve learned in this book, we hope that you
will consider applying your new problem-solving and design proficiency in a
few other interesting directions.

2D Fabrication
The world of 2D fabrication is a vast landscape for applying the skills you’ve
learned in this book. Extruding a 2D shadow to create a 3D design is a pow-
erful 3D design tool. However, many maker tools use 2D files (such as .svg
or .dxf) to manufacture physical versions of their design. 2D fabrication
machines (such as laser cutters, vinyl cutters, water-jet cutters, and so on)
essentially cut the outline of the 2D shape into flat pieces of wood, metal,
vinyl, felt, cardboard, or most other flat materials. Because OpenSCAD
makes it so easy to use variables, arithmetic, loops, and if statements to
place and combine shapes, many makers use OpenSCAD to create purely
2D designs specifically for these machines.

Here are a few ideas to inspire your 2D creativity with OpenSCAD:

•	 Use a collection of loops to generate small, circular holes along the
perimeter of a 2D leather sewing pattern you’ve created in OpenSCAD.
Then, cut out the pattern with a laser cutter or a cutting machine.
Leather is difficult to punch a needle through, but using OpenSCAD
loops to generate the holes will help save time and effort.

•	 Use a CNC wood cutter to cut out a life-size version of a piece of flat-
pack furniture you’ve designed with OpenSCAD 2D shapes. Although
3D printers have a relatively small printing area, CNC cutters can cut
a rather large surface area. 3D printers can be used for prototyping,
while the usable furniture is created on a large CNC machine.

•	 After you’ve 3D-printed a few prototype versions of a flat 2D gear you’ve
designed and extruded with OpenSCAD, use a water-jet cutter to cut it
out of metal. Plastic gears don’t last nearly as long as metal gears, espe-
cially if you’re actually using them for your bike.

148 Afterword

Physical Computing
Many interactive maker projects combine electronics and computers with
other physical components to create something with dynamic character-
istics. What if your OpenSCAD designs could sense and respond to the
world, or even move? A variety of inexpensive, pocket-size computers are
available that can supercharge the interactivity of the designs you create
with OpenSCAD.

These miniature computing platforms utilize a variety of sensors and
output (like microphones, temperature sensors, movement sensors, speak-
ers, motors, and LEDs) to interact with the real world. A few of the most
popular small computing platforms are listed here:

•	 Raspberry Pi (https://raspberrypi.org/)

•	 Arduino (https://arduino.cc/)

•	 micro:bit (https://microbit.org/)

•	 Circuit Playground (https://learn.adafruit.com/introducing-circuit-
playground/)

Each of these devices has a large online community with plenty of
learning resources available. Combine OpenSCAD with one of these
inexpensive pocket-size computers to explore areas like robotics, physical
computing, wearable computing, human-robot interaction, or the Internet
of Things. Here are some examples of projects you might create with
OpenSCAD and one of the preceding devices:

•	 Automatic plant/garden watering systems

•	 Totally new, interactive digital instruments

•	 Physical enclosures for personal, multinode data centers

•	 Personal assistive devices to help with accessibility for people with
disabilities

By using OpenSCAD to invent creative new uses for these electronic
devices, you’re setting up your project to be easily customizable, shareable,
and extensible. Maybe you can even create something that kick-starts your
own open source project.

Makerspaces
Making can happen anywhere, but getting together at a central location so
that like-minded creators can share ideas and troubleshoot solutions has
become popular for makers. A makerspace is a physical location and com-
munity of makers that provides a collection of tools, machines, and learning
resources. Makerspaces provide access to equipment that might be too expen-
sive to own personally and serve as a physical community for makers that can
offer the same benefits as the virtual communities mentioned previously. You
can find makerspaces (big and small, free and fee-based) at libraries, schools,
independent venues, and maker faires or festivals (https://makerfaire.com/).

https://raspberrypi.org/
https://arduino.cc/
https://microbit.org/
https://learn.adafruit.com/introducing-circuit-playground/
https://learn.adafruit.com/introducing-circuit-playground/
https://makerfaire.com/

Afterword 149

If your local community doesn’t yet provide access to a centralized, shared
location for making, some makerspaces have gone virtual. Many online ven-
dors allow you to upload designs for 3D printing or 2D cutting in a variety of
materials, providing an affordable stepping-stone for creating a physical ver-
sion of your design when you don’t have access to a fabrication machine.

Final Ideas for More Practice
We’d like to leave you with some final advice. The key to mastering any skill
is a combination of learning and doing. If you have only read this book
without actually coding or designing, you’ve skipped a big portion of the
learning potential, but it’s not too late! You can put this book down right
now and go back to any project.

If you’re looking for more examples of well-defined design exercises,
the following screenshots present a few visual ideas from the OpenSCAD
community that should work well as inspiration for “next step” projects. You
can also check out https://openscad.org/gallery for more curated examples.

Customizable Measuring Spoons
Creating a measuring spoon module is a good intermediate design project
(Figure 1). The primary challenge with this project is to create a single
OpenSCAD module with the spoon size, units, and configuration (nested
stacking spoons or spoons that lay flat) as parameters. The measuring
spoon shape and labels can then be generated from those parameters. Can
you generate 3D-printed measuring spoons with the exact measurements
required to trust when cooking or baking?

Figure 1: A collection of measuring spoons with several sizes
and configurations

https://openscad.org/gallery

150 Afterword

These measuring spoons were generated from OpenSCAD code
originally designed by charliearmorycom. You can find the Customizable
Measuring Spoon project at https://www.thingiverse.com/thing:51874/.

Customizable Vacuum Tool
Designing a custom tip to fit the end of a vacuum hose is a good example
of a project that needs to interface with an existing physical tool. Creating
a well-fit physical connection will require both careful measurement and
continued experimentation with a 3D printer in order to perfect dimensions.
Additionally, this project offers the opportunity to create a customizable noz-
zle, which can be generated by one or more module parameters (Figure 2).

Figure 2: A collection of vacuum tool tips with
parameterized nozzles

The OpenSCAD code used to generate these customized vacuum nozzle
tips was originally designed by Ziv Botzer. The Customizable Vacuum Tool
project can be found online at https://www.thingiverse.com/thing:1571860/.

Customizable Flowerpots
Using OpenSCAD to create a flowerpot module will allow you to design
something that combines the decorative with the functional. This inter-
mediate-level project will allow you to scale your 3D prints both large and
small, depending on the size of the plant you’d like to house (Figure 3).
There are several opportunities for parameters in this project, with a bonus
challenge of generating both the flowerpot and the saucer tray from the
same module. Don’t forget to include a hole in the bottom of the flowerpot
for water to drain into the saucer!

The OpenSCAD code used to generate this collection of flowerpots came
from the Customizable Flower Pot (classic style) project by Robert Wallace,
which is available online at https://www.thingiverse.com/thing:2806583/.

https://www.thingiverse.com/thing:51874/
https://www.thingiverse.com/thing:1571860/
https://www.thingiverse.com/thing:2806583/

Afterword 151

Figure 3: A collection of flowerpots and saucers trays of different sizes
and shapes

Drawer Box
Remember the desktop organizer you created as a Big Project in Chapter 2.
This box and drawer organizer is a more complex organizer idea, which
can be taken in many directions. The initial challenge is to tune the box
dimensions in order to make the drawers slide easily, yet firmly, into the
box. Customizing sizes and designs of the box, drawers, and drawer layout
(ideally via parameterized modules) are also good future challenges. Notice
how this project includes useful details like small, spherical nubs on box
dividers to keep drawers in place, as well as for loop-generated holes on
all three sides of the box to reduce both the time and material required to
3D-print a Drawer Box (Figure 4).

Figure 4: A desktop organizer with several different drawer configurations

152 Afterword

The Drawer Box project by Gian Pablo Villamil can be found online at
https://www.thingiverse.com/thing:421886/.

Lab Clamps
Designed for use in a physics classroom, this project is a good example
of using 3D printing to manufacture replacements for items that are nor-
mally cost prohibitive. 3D-printing mechanical parts designed to fit with
existing tools or parts is always challenging. In this example, a series of
clamps and stands are designed to be mated with metal bolts (Figure 5).
Designing an appropriate inner structure to mate firmly with these bolts
can require some experimentation. Projects like this are a good example of
how OpenSCAD and 3D printing can work together as a service project for
a school or community center.

Figure 5: A collection of clamps and stands for physics experiments

The Lab Clamps project was created by Mark Schober. You can find the
code used to generate the clamps in this picture (along with more details on
how to incorporate metal bolts and mass manufacture these parts with sili-
cone molds) at https://www.modelingscience.org/post/3d-print-your-own-lab-clamps/.

Chess Set
Designing a chess set is a favorite project among both artists and 3D-printing
enthusiasts. While the example shown is very close to a classic chess set
(Figure 6) and would likely require sourcing a 3D model of a horse’s head,
many designs exist online for creating a more contemporary or abstract
chess set. Creating a base module would help provide a consistent size and
design for your own chess set, while creating a separate module for each
piece would make it easy to organize your 3D printing.

https://www.thingiverse.com/thing:421886/
https://www.modelingscience.org/post/3d-print-your-own-lab-clamps/

Afterword 153

Figure 6: A custom chess set

The code used to generate this chess set was designed by Tim Edwards
and is available at https://www.thingiverse.com/thing:585218/.

Pegboard Wizard
Have you ever needed to organize a collection of tools or hardware using
a pegboard? This last example leverages the modular potential of a stan-
dard pegboard to create a library of useful container bins and tool holders
(Figure 7). Create a single module with many parameters, or a collection of
modules with fewer parameters. Either way, this project will test your ability
to apply principles of computational thinking while you also create a useful
organizational solution to your offline toolkit.

Figure 7: A collection of pegboard organizers created by the pegboard wizard

Pegstr - Pegboard Wizard was designed by Marius Gheorghescu and is
available at https://www.thingiverse.com/thing:537516/.

https://www.thingiverse.com/thing:585218/
https://www.thingiverse.com/thing:537516/

A
O P E N S C A D L A N G U A G E

R E F E R E N C E

This language reference provides short
descriptions of most OpenSCAD features,

serving as a quick reminder of how to use
functionality described in this book or a way

of discovering new OpenSCAD features. Consult the
official OpenSCAD reference at https://openscad.org/
documentation for the full manual.

Z
Y

X

https://openscad.org/documentation
https://openscad.org/documentation

156 Appendix A

Syntax

Create a 2D or 3D shape with a collection of parameters. Terminate the
command with a semicolon (;):

shape(...);

Create a shape that has been transformed by a series of operations.
Terminate the statement with a semicolon (;):

transformation2(...) transformation1(...) shape(...);

Create a variable to name and refer to an important value; values are
assigned once and cannot change:

var_name = value;

Create a user-defined shape called name with zero or more parameters.
User-defined shapes work the same way as built-in shapes:

module name(...) { ... }
name(...);

Create a user-defined mathematical operation called name with zero or
more parameters:

function name(...) = ...;
name(...);
or
name = function(...) ...;
name(...);

Import and immediately execute the OpenSCAD code in filename.scad:

include <filename.scad>

Import and make usable (but don’t immediately execute) the
OpenSCAD functions and modules in filename.scad:

use <filename.scad>

OpenSCAD Language Reference 157

Operators
Operators are listed in decreasing order of precedence. When multiple
operators from the same level of precedence occur in an expression,
the operators are evaluated in order of occurrence (from left to right):

^

*, /, %

+, -

<, >, <=, >=

==, !=

&&

||

2D Shapes

Draw a circle of the defined radius or diameter:

circle(radius | d=diameter)

Draw a square with length = size and width = size (equal sides); option-
ally center the square at (0,0):

square(size, center)

Draw a rectangle with width along the x-axis and length/depth along
the y-axis defined by a vector; optionally center the square at (0,0):

square([width, height], center)

Draw a polygon that connects all of the points defined by the vector of
[x, y] points:

polygon([[x1, y2], [x2, y2], ..., [xn, yn]])

Draw a polygon that connects all of the points defined by the vector of
[x, y] points; optionally define a collection of paths for polygons with
holes:

polygon([points], [paths])

158 Appendix A

Draw words defined by the text string; optionally specify the size, font,
horizontal alignment, vertical alignment, letter spacing, direction, lan-
guage, and script of the text:

text(text, size, font, halign, valign,
spacing, direction, language, script)

Import a 2D SVG or DXF file:

import("filename.svg")

3D Shapes

Draw a sphere centered at (0, 0, 0) with the specified radius or
diameter:

sphere(radius | d=diameter)

Draw a cube with length = size, width = size, and height = size (equal
sides); optionally center the cube at (0,0,0):

cube(size, center)

Draw a cuboid with width along the x-axis, length/depth along the
y-axis, and height along the z-axis defined by a vector; optionally center
the cube at (0,0,0):

cube([width, depth, height], center)

Draw a cylinder with the specified height and radius or diameter;
optionally center the cylinder at (0,0,0):

cylinder(h, r|d, center)

Draw a cone with the specified height and radii or diameters; optionally
center the cone at (0,0,0):

cylinder(h, r1|d1, r2|d2, center)

OpenSCAD Language Reference 159

Draw a 3D solid defined by vectors of points and faces; optionally use
convexity to improve the preview of complex concave shapes:

polyhedron([points], [faces], convexity)

Import an STL, OFF, 3MF, or AMF file:

import("filename.stl")

Draw a 3D height map of the data file; optionally center the shape at
(0,0) and use convexity to improve the preview of complex concave
shapes:

surface(file = "filename.dat", center, convexity)

Boolean Operations

Group multiple shapes together into one shape:

union() { ... }

Subtract one or more shapes from an initial shape:

difference() { ... }

Draw the overlapping region of multiple shapes:

intersection() { ... }

Shape Transformations

Translate a shape according to a 2D or 3D vector:

translate([x, y, z])

Rotate a shape around each axis according to the angles defined by a
vector:

rotate([x, y, z])

160 Appendix A

Rotate a shape a specific angle around the z-axis:

rotate(angle)

Scale a shape according to the scale factors defined by a 2D or 3D
vector:

scale([x, y, z])

Resize a shape according to the dimensions defined by a 2D or 3D vec-
tor; optionally use auto to preserve the object aspect ratio in the unspec-
ified dimensions:

resize([x, y, z], auto, convexity)

Reflect a shape according to the perpendicular vector of a symmetry
plane passing through the origin:

mirror([x, y, z])

Multiply the geometry of all child elements with the given 4 × 4 affine
transformation matrix:

multmatrix(matrix)

Change a shape’s color according to a predefined color name or hexa-
decimal color value; optionally make the color (semi) transparent:

color("colorname | #hex", alpha)

Change a shape’s color according to an RGB or RGBA vector. Each
value in the vector ranges from 0 to 1 and represents the proportion of
red, green, blue, and alpha present in the color.

color([r, g, b, a])

Move 2D outlines outward or inward by a given radius (for rounded
corners) or delta + chamfer (for sharp or cut-off corners):

offset(r|delta, chamfer)

OpenSCAD Language Reference 161

Create a 2D shape by projecting a 3D shape onto the xy-plane; when cut
= true, create a 2D slice of the intersection of a 3D object and the xy-
plane; optionally, when cut = true:

projection(cut)

Create a convex hull around one or more shapes:

hull() { ... }

Draw the Minkowski sum of multiple shapes:

minkowski() { ... }

Extrude a 2D shape into 3D with the given height along the z-axis;
optionally center the shape at (0,0) or specify the convexity, twist, slices,
and scale of the extrusion:

linear_extrude(height, center, convexity, twist, slices, scale)

Extrude a 2D shape around the z-axis to form a solid that has rota-
tional symmetry:

rotate_extrude(angle, convexity)

Loops, Decisions, and List Comprehensions

Repeat a collection of shapes according to the start, step, and end
(inclusive) values of a control variable:

for (var_name = [start:step:end]) { ... }

Draw the intersection of all the shapes generated by the for loop:

intersection_for(var_name = [start:step:end]) { ... }

Execute commands only if the Boolean test is true:

if (boolean_test) { ... }

162 Appendix A

Execute a collection of commands if the Boolean test is true; otherwise,
execute alternate commands:

if (boolean_test) { ... } else { ... }

Generate a list of values according to a for loop:

list_var = [for (i = range|list) func(i)]

Generate a list of values according to a for loop, but only if the value
causes a certain condition to be true:

list_var = [for (i = ...) if (condition(i)) func(i) else ...]

Generate a list of lists according to a for loop:

list_var = [for (i = ...) let (assignments) func(...)]

Other Shape Operations

Force the generation of a mesh even in preview mode:

render(convexity) { ... }

Inside a user-defined module, select the children specified by an index,
vector, or range:

children(index | vector | range)

Modifier Characters

*   Disables the drawing of a shape.

!   Shows only a particular shape.

#   �Highlights a shape in red for debugging purposes; highlighted
shape will be rendered.

%   Highlights a shape in gray; highlighted shape will not be rendered.

OpenSCAD Language Reference 163

Special Variables

Writable:

$fa   Minimum angle for a fragment of an arc.

$fs   Minimum size of a fragment of an arc.

$fn   Number of fragments used to define an arc; ignores $fa and $fs.

$vpr   Viewport rotation angles in degrees.

$vpt   Viewport translation.

$vpd   Viewport camera distance.

$vpf   Viewport field of view.

Read-only:

$t   Current animation step, normalized to a value between 0 and 1.

$children   Number of module children.

$preview    True if Preview mode is used.

Mathematical Functions

sin(ANGLE)   Calculates the sine of an angle in degrees.

cos(ANGLE)   Calculates the cosine of an angle in degrees.

tan(ANGLE)   Calculates the tangent of an angle in degrees.

acos(NUMBER)   Calculates the arc (inverse) cosine, in degrees, of a
number.

asin(NUMBER)   Calculates the arc (inverse) sine, in degrees, of a number.

atan(NUMBER)   Calculates the arc (inverse) tangent, in degrees, of a
number.

atan2(y, x)   Two-value arc (inverse) tangent; returns the full angle
(0–360) made between the x-axis and the vector [x, y].

abs(NUMBER)   Calculates the absolute value of a number.

sign(NUMBER)   Returns a unit value that extracts the sign of a value.

floor(NUMBER)   Calculates the largest integer not greater than the
number.

ceil(NUMBER)   Calculates the next highest integer value.

round(NUMBER)   Calculates the rounded version of the number.

ln(NUMBER)   Calculates the natural logarithm of a number.

exp(NUMBER)   Calculates the mathematical constant e (2.718 . . .) raised
to the power of the parameter.

log(NUMBER)   Calculates the base 10 logarithm of a number.

pow(NUMBER, NUMBER)   Calculates the result of a base raised to an
exponent.

164 Appendix A

sqrt(NUMBER)   Calculates the square root of a number.

rands(min, max, count, seed)   Generates a vector of random numbers;
optionally includes the seed for generating repeatable values.

min(VECTOR | a, b, c)   Calculates the minimum value in a vector or list
of parameters.

max(VECTOR | a, b, c)   Calculates the maximum value in a vector or list
of parameters.

norm(VECTOR)   Returns the Euclidean norm of a vector.

cross(VECTOR, VECTOR)   Calculates the cross-product of two vectors in 3D
space.

Other Functions

len(VECTOR|STRING)   Calculates the length of a vector or string
parameter.

echo(STRING)   Prints a value to the console window for debugging
purposes.

concat(VECTOR,VECTOR, ...)   Returns a new vector that’s the result of
appending the elements of the supplied vectors.

lookup(...)   Looks up a value in a table and linearly interpolates
whether there’s no exact match.

str(...)   Converts all parameters to strings and concatenates.

chr(NUMBER | VECTOR | STRING)   Converts ASCII or Unicode values to a
string.

ord(CHARACTER)   Converts a character into an ASCII or Unicode value.

search(...)   Finds all occurrences of a value or list of values in a vector,
string, or more complex list-of-list construct.

version()   Returns the OpenSCAD version as a vector.

version_num()   Returns the OpenSCAD version as a number.

parent_module(INDEX)   Returns the name of the module idx levels above
the current module in the instantiation stack.

is_undef(VARIABLE), is_list(VARIABLE), is_num(VARIABLE), is_bool(VARIABLE),
is_string(VARIABLE), is_function(VARIABLE)   Returns true if the argument
is of the specified type.

assert(expression)   Will cause a compilation error if the expression is
not true.

let (variable = value) ...    Assigns a value to a variable only in the fol-
lowing expression.

B
O P E N S C A D V I S U A L R E F E R E N C E

This appendix is a quick visual reference
for drawing, transforming, and combining

the 3D and 2D shapes covered in this book.
Paired with each screenshot is an example

OpenSCAD statement that can be used to generate
the image. In some cases, we’ve included a “shadow”
object to illustrate what shapes looked like before an
operation took place. Example code statements don’t
generate these shadow objects.

Z
Y

X

166 Appendix B

Cone:

cylinder(h=20, r1=5, r2=0);

Cylinder:

cylinder(h=20, r=5);

Smooth sphere:

sphere(10, $fn=100);

Sphere:

sphere(10);

Centered cuboid:

cube([30, 20, 10], center=true);

3D Primitives
Cuboid:

cube([30, 20, 10]);

OpenSCAD Visual Reference 167

Regular polygon:

circle(10, $fn=5);

Circle:

circle(10);

Centered rectangle:

square([30, 20], center=true);

2D Shapes
Rectangle:

square([30, 20]);

Regular prism:

cylinder(h=5, r=5, $fn=6);

Centered smooth truncated cone:

cylinder(h=10, r1=3, r2=5, $fn=100, center=true);

168 Appendix B

Multiple subtractions from a shape:

difference() {
 sphere(10);

 cube([15, 15, 15]);
 cylinder(h=15, r=5);
}

Combining Shapes
Subtracting from a shape:

difference() {
 sphere(10);
 translate([0,-15,0]) cube([15,30,15]);
}

Text:

text("hello", font="Sans", size=20);

Irregular polygon:

polygon([[0,0], [10,0], [10,10], [5,10]]);

OpenSCAD Visual Reference 169

Minkowski sum:

minkowski() {
 sphere(10, $fn=50);
 cylinder(h=20, r=5);
}

Convex hull:

hull() {
 sphere(10);
 cylinder(h=20, r=5);
}

Subtracting from combined shapes:

difference() {
 union() {
 sphere(10);
 cylinder(h=30, r=5, center=true);
 }
 cube([10, 30, 10], center=true);
}

Intersection of two shapes:

intersection() {
 cube([10, 10, 10]);
 cylinder(h=15, r=5);
}

170 Appendix B

Rotate an extrusion of a 2D shape:

rotate_extrude(angle=180) translate([10, 0])
 circle(5);

Extrude a 2D shape:

linear_extrude(height=10) {
 polygon([[0, 0], [10, 0],
 [10, 10], [5, 10]]);
}

Resize dimensions:

resize([15, 20, 4]) sphere(r=5, $fn=32);

Reflection:

mirror([1, 0, 0]) translate([5, 0, 0])
 cylinder(h=1, r=5, $fn=5);

Rotation:

rotate([0, 0, 60]) cube([30, 20, 10]);

Transformations
Translation:

translate([5, 10, 0]) cube([5, 3, 1]);

OpenSCAD Visual Reference 171

Repeat the repetition of a shape:

for (z=[0:15:45]) {
 for (x=[0:10:40]) {
 translate([x, 0, z]) cube([5, 5, 10]);
 }
}

Vary characteristics of a repeated shape:

for (x=[0:1:4]) {
 h = x*5 + 5;
 translate([x*10, 0, 0]) cube([5, 5, h]);
}

Loops
Repeat a shape:

for (x=[0:10:40]) {
 translate([x, 0, 0]) cube([5, 5, 10]);
}

I N D E X

Symbols and Numbers
(hash mark), 14
$fn parameter, 11–12
&& (and), 98
/* */ (multiline comments), 62
// (single-line comments), 62
[] (square brackets), 3
{ } (curly brackets), 13, 17–18,

50–51, 82
|| (or), 98
< > (angle brackets), 83
2D fabrication, 147
2D shapes

overview, 157–158
Boolean operations, 45–47
drawing, 40–45
extruding, 47–50
growing, 51–53
importing, 53–54
shrinking, 51–53
transformation operations,

45–47
visual reference, 167–168

3D design, xxii–xxiii
3D printing, 19–20
3D shapes, 158–159, 166–167
3D-View toolbar, xxiii

A
abstraction, 120
algorithms, 120–121
and (&&) operators, 98
angle brackets (< >), 83
Arduino, 148
arithmetic, 66–69
assert() function, 164
axes, xxii–xxiii

B
best practices

collaboration, 89–91
comments, 62
indentation, 21
module naming, 81
variable naming, 66

Boolean operations
overview, 12–19, 159
2D shapes, 45–47
combining, 98
if statements, 98
if.else statements, 99–100

C
center=true parameters, 8
chess set project, 152–153
children operations, 162
chr() function, 164
circle commands, 40–41, 167
Circuit Playground, 148
city of random skyscrapers project, 113
clock project, 112
code statements, 2
collaboration, 89–91
color transformation, 72, 124, 160
comments, 62
community page, 144
complex conditions, 97–104
computational thinking, 117–118
computing platforms, 148
concat() function, 164
cones, 4–6, 166–167
creative problem-solving, 147
cross-shaped cookie cutter, 80–82
cube commands, 3
cuboids, 3, 166

174 Index

curly brackets ({ }), 13, 17–18,
50–51, 82

curves, 11–12
cylinder commands, 4–6, 89, 166

D
debugging

difference operations, 14–15
for loops, 65

decomposition, 118
design cycle, 116
design mode, 104–105
design organization, 139–140
detail test project, 75
difference operations, 12–16, 46–47
documentation, 144
donut-like shapes, 49
drawer boxes project, 151–152
.dxf format, 53

E
echo() function, 65, 164
Editor window, 2
else statements, 99–100
emoji shapes, 44
extended if statements, 100–103

F
faces variable, 68
file formats

.dxf format, 53

.stl format, 6–7, 19–20

.svg format, 53
flowerpots project, 150–151
font parameters, 44
for loops

overview, 63–65, 161–162
mathematical operations, 67–68
visual reference, 171

G
Gheorghescu, Marius, 153
GitHub, 91
grids, 69–72

H
hash mark (#), 14
hull operations, 32, 161, 169

I
if statements

overview, 95–97, 161–162
applications of, 104–109
Boolean operators, 98
extended, 100–103
nested, 103–104
order of operations, 98–99

if.else statements, 99–100
import commands, 6–7
indentation, 21
intersection operations, 12, 16–17, 161,

169
is() function, 164

L
lab clamps project, 152
Leaning Tower of Pisa model

design process, 116–121
walking skeleton approach,

122–139
LEGO projects, 86–89, 94
len() function, 164
length parameter, 85
let() function, 164
libraries, 79, 82
linear_extrude operation, 47–49
logical operators, 98
lookup() function, 164
loops

debugging, 65
for loops, 63–65, 67–68, 161–162,

171
nesting, 69–72
visual reference, 171

loops and variables project, 74

M
maker movement, 146–149
mathematical operations, 66–69,

163–164
measuring spoons project, 149–150
micro:bit, 148
minkowski operation, 33
Minkowski sum, 33, 161, 169
mirror operations, 28–30, 160
modifier characters, 162
module keyword, 81

Index 175

modules
overview, 79–82
naming, 81
parameters, 84–85

modules project, 93
moving shapes, 7–10
multi-file approach, 123
multiline comments, 62
multmatrix operations, 160

N
naming variables, 135
nesting, 69–72, 103–104
numeric values, 45

O
offset operations, 51–53, 160
online citizenship, 146
open source ethos, 144–146
OpenSCAD

overview, xv–xviii, 2–3
resources, 143–144, 155–164
visual reference, 165–171

operators, 98, 157
or (||) operators, 98
ord() function, 164
order of operations, 66,

98–99
organization and development

process, 139–140
origins, 3

P
parameters

overview, 2
$fn, 11–12
center=true, 8
font, 44
length, 85
modules, 84–85
order of, 5
scale, 48, 160
size, 44
slices, 47–48
twist, 47
width, 85

patterns, 119–120
Pegboard Wizard, 153

physical computing, 148
pointed cones, 5–6
polygon commands, 41–43
polygons, 167–168
practice projects

2D shapes, 56
chess set, 152–153
city of random skyscrapers, 113
clock, 112
detail test, 75
drawer boxes, 151–152
flowerpots, 150–151
lab clamps, 152
LEGO library, 94
loops and variables, 74
measuring spoons, 149–150
modules, 93
Pegboard Wizard, 153
project box, 58
random forest, 112
skyscraper, 94
storytelling dice, 57
tic-tac-toe game, 76–77
Towers of Hanoi puzzle,

75–76
trophy, 59
vacuum tools, 150

Preview window, 2–3
print mode, 104–105
prisms, 167
problem-solving, 147
project box project, 58
project organization, 139–140
projection operations, 161

Q
quadratic growth, 68

R
random forest project, 112
random numbers, 105–109
rands() function, 106
Raspberry Pi, 148
read-only variables, 163
rectangles, 167
Render mode, 19–20
render operations, 162
repetition, 125–128, 171

176 Index

resize operations, 30–32, 160, 170
rotate operations, 26–28, 159–160, 170
rotate_extrude operations, 49–50

S
scale parameter, 48, 160
search() function, 164
self-documenting names, 135
semicolons (;), 3
shapes

centering, 8
combining, 12–19, 32–33, 168–169
extruding, 161
moving, 7–10
reflecting, 28–30
rotating, 26–28, 159–160
scaling, 30–32, 160
smoothing, 11–12
transforming, 159–161
See also 2D shapes

shimmering walls, 15–16
single-line comments, 62
size parameter, 44
skins, 32
skyscraper project, 94
slices parameter, 47–48
smoothing shapes, 11–12
sphere commands, 3–4
spheres, 3–4, 166
square brackets ([]), 3
square commands, 41–42
statements, 2
.stl format

exporting and, 19–20
importing, 6–7

storytelling dice project, 57
str() function, 45, 164
string of characters, 43
studs, 86
.svg format, 53
syntax, 156

T
terminology, xxi, 155–164
text commands, 43–45, 168
Thingiverse, 91
3D design, xxii–xxiii

3D printing, 19–20
3D shapes, 158–159, 166–167
3D-View toolbar, xxiii
tic-tac-toe game, 76–77
torus, 49
Towers of Hanoi puzzle, 75–76
transformation operations

overview, 25–26
2D shapes, 45–47
combining, 33–35
mirror operations, 28–30, 160
resize operations, 30–32, 160, 170
rotate operations, 26–28, 159–160,

170
rotate_extrude operations, 49–50
visual reference, 170

translate operations, 8–10, 159, 170
triple nesting, 72
trophy project, 59
truncated cones, 5
twist parameter, 47
2D fabrication, 147
2D shapes

overview, 157–158
Boolean operations, 45–47
drawing, 40–45
extruding, 47–50
growing, 51–53
importing, 53–54
shrinking, 51–53
transformation operations, 45–47
visual reference, 167–168

U
union operations, 12, 17–19, 32
use keyword, 83

V
vacuum tools project, 150
variables

overview, 64
mathematical operations, 66–69
naming, 66, 135
read-only, 163
writable, 163

vectors, 3, 9
version() function, 164

Index 177

vertices, 42
visual reference, 165–171
vocabulary, xxi, 155–164

W
walking skeleton approach, 121, 122–138

width parameter, 85
words, 43–45
writable variables, 163

X
x-, y-, and z-axes, xxii–xxiii

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

NO STARCH PRESS

RESOURCES
Visit https://nostarch.com/programmingopenscad/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

LEARN PYTHON VISUALLY
Creative Coding with Processing.py
by tristan bunn
296 pp., $49.99
isbn 978-1-7185-0096-9

MATH ADVENTURES WITH
PYTHON
An Illustrated Guide to
Exploring Math with Code
by peter farrell
304 pp., $29.95
isbn 978-1-59327-867-0

HARDCORE PROGRAMMING FOR
MECHANICAL ENGINEERS
Build Engineering Applications
from Scratch
by angel sola
600 pp., $59.99
isbn 978-1-7185-0078-5

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
by william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

More no-nonsense books from

COMPUTER GRAPHICS
FROM SCRATCH
A Programmer's Introduction
to 3d Rendering
by gabriel gambetta
248 pp., $49.99
isbn 978-1-7185-0076-1

THE BOOK OF INKSCAPE,
2ND EDITION
The Definitive Guide to the
Graphics Editor
by dmitry kirsanov
536 pp., $49.99
isbn 978-1-7185-0175-1

https://nostarch.com/programmingopenscad/
mailto:sales@nostarch.com
http://www.nostarch.com

Z
Y

X

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

F U L L
CO LO R

$29.99 ($39.99 CDN)

OpenSCAD is a free, open source software application
available for Windows, macOS, or Linux with its own
built-in script-based programming language for creating
3D CAD objects. Its visual, user-friendly nature provides
immediate feedback on the results of your code, making
it perfect for those new to 3D modeling. The STEAM-
focused, project-based tutorials in Programming with
OpenSCAD will teach you the basics of coding, 3D
printing, and computational thinking.

You’ll start by defining, drawing, and displaying
geometric primitives with text-based code, and then move
on to transformation operations like rotating, reflecting,
scaling, and combining shapes. You’ll replicate objects
with loops, differentiate your designs with if statements,
and organize scripts into separate files with modules.
Along the way, you’ll find tips on 3D-printing your
projects as well as end-of-chapter design exercises.

You’ll also learn how to apply:

• Transformation operations, such as rotate, reflect, and
scale, to create complex shapes

• Extrusion techniques for turning 2D shapes into
elaborate 3D designs

• Computational thinking concepts like decomposition,
abstraction, and pattern recognition

• OpenSCAD’s Boolean, Minkowski and hull
operations, which allow you to combine multiple
3D shapes into one

• 3D design fundamentals, like navigating the xyz-axis,
orthogonal and perspective views, and constructive
solid geometry

This fun and creative introduction to coding will inspire
visual learners of all kinds, from advanced middle
schoolers to artists and lifelong learners. It’s the perfect
starting point in your exploration of text-based 3D design.

A B O U T T H E A U T H O R S

Justin Gohde has been teaching math and computer
science for more than 20 years. As the head of computer
science at Trinity School in Manhattan, New York, he
oversees the Design Lab makerspace, which features
rapid prototyping tools for supporting STEAM-focused
projects. Marius Kintel is a software engineer with more
than 20 years of professional experience. He is the
primary author and maintainer of OpenSCAD.

C O V E R S O P E N S C A D 2 0 2 1 . 0 1

C O - W R I T T E N
B Y O P E N S C A D ’ S

P R I M A R Y A U T H O R
A N D M A I N T A I N E R

A S T E A M - B A S E D
A P P R O A C H

T O L E A R N I N G
T O C O D E

	About the Authors
	Contents in Detail
	Acknowledgments
	Introduction
	What Is OpenSCAD?
	Who This Book Is For
	Why Learn to Code with OpenSCAD?
	3D Printing and OpenSCAD
	What’s in This Book
	Terminology and Conventions Used in This Book
	A Brief Introduction to 3D Design with OpenSCAD
	Understanding 3D Points
	Using the OpenSCAD 3D-View Toolbar

	Final Tips for Getting the Most Out of This Book

	Chapter 1: 3D Drawing with OpenSCAD
	Why Use OpenSCAD?
	Getting Started with OpenSCAD
	Drawing Basic 3D Shapes
	Drawing Cuboids with cube
	Drawing Spheres with sphere
	Drawing Cylinders and Cones with cylinder

	Importing 3D Models with import
	Modifying Basic Shapes
	Moving Shapes
	Smoothing Curves with $fn

	Combining 3D Shapes with Boolean Operations
	Subtracting Shapes with difference
	Carving Out Overlapping Shapes with intersection
	Grouping Shapes with union

	Getting Ready for 3D Printing
	Summary
	Calibration Pyramid
	Smiley-Face Pendant
	Hole-and-Pins Test

	Chapter 2: More Ways to Transform Shapes
	OpenSCAD Shape Transformations
	Rotating Shapes with rotate
	Reflecting Shapes with mirror
	Scaling Shapes with resize

	More Ways to Combine 3D Shapes
	Combining Shapes with hull
	Combining Shapes with minkowski

	Combining Transformations
	Summary
	Game Die
	Desktop Organizer

	Chapter 3: 2D Shapes
	Drawing Basic 2D Shapes
	Drawing Circles with circle
	Drawing Rectangles with square
	Drawing Polygons with polygon
	Drawing Words with text

	Applying Transformation and Boolean Operations on 2D Shapes
	Extruding Shapes Vertically with linear_extrude
	Extruding Shapes Along a Circle with rotate_extrude
	Growing and Shrinking a Shape with offset
	Importing 2D Shapes with import
	Summary
	Storytelling Dice
	Project Box for Storytelling Dice
	Trophy

	Chapter 4: Using Loops and Variables
	Leaving Notes with Comments
	Writing Single-Line Comments with //
	Writing Multiline Comments with /* */

	Repeating Code with a for Loop
	Debugging for Loops with echo
	Using Variables and Arithmetic
	Naming Variables
	Applying Mathematical Operations on Variables
	Using Math and Variables Inside for Loops
	Using Arithmetic to Create Unique Patterns

	Using Nested Loops to Draw 2D and 3D Grids
	Generating the Windows in a Skyscraper with Nested Loops
	Triple Nesting to Create a 3D Grid of Shapes

	Summary
	Detail Test
	Towers of Hanoi Puzzle
	Tic-Tac-Toe Game

	Chapter 5: Modules
	Simplifying Code with Modules
	Splitting Your Design into Multiple Files
	Adding Parameters to Your Modules
	Building a LEGO Brick
	Sharing and Collaborating
	Summary
	Skyscraper
	LEGO Library

	Chapter 6: Dynamic Designs with if Statements
	Using if Statements
	Defining Complex Conditions
	Choosing Boolean Operators
	Using Logical Operators to Combine Boolean Expressions
	Following an Expanded Order of Operations
	Making Two-Way Choices with if…else Statements
	Using Extended if Statements
	Using Nested if Statements

	Useful Applications of if Statements
	Setting Up a Design Mode and Print Mode
	Using Random Numbers as a Design Element

	Summary
	Random Forest
	Clock
	City of Random Skyscrapers

	Chapter 7: Designing Big Projects
	The Design Cycle
	Leaning Tower of Pisa Model
	Step 1: Investigate—Define Multiple Views
	Step 2: Plan—Apply Computational Thinking
	Step 3: Create—Use a Walking Skeleton Approach
	Step 4: Evaluate—Decide Which Design Process Steps to Repeat

	Walking Skeleton: Building the Leaning Tower of Pisa
	Iteration 1: Connecting the Tower’s Basic Building Blocks
	Iteration 2: Finding Repetition in the Middle Section
	Iteration 3: Adding More Details to the Middle Section
	Iteration 4: Adding Details to the Top Section
	Iteration 5: Adding Details to the Bottom Section
	Final Evaluation of the Design Cycle

	Design Organization Overview
	Summary

	Afterword
	Learn More About OpenSCAD
	The Open Source Ethos
	Motivation and Ecosystem
	Online Citizenship

	OpenSCAD and the Maker Movement
	Making and Creative Problem-Solving
	2D Fabrication
	Physical Computing
	Makerspaces

	Final Ideas for More Practice
	Customizable Measuring Spoons
	Customizable Vacuum Tool
	Customizable Flowerpots
	Drawer Box
	Lab Clamps
	Chess Set
	Pegboard Wizard

	Appendix A: OpenSCAD Language Reference
	Syntax
	Operators
	2D Shapes
	3D Shapes
	Boolean Operations
	Shape Transformations
	Loops, Decisions, and List Comprehensions
	Other Shape Operations
	Modifier Characters
	Special Variables
	Mathematical Functions
	Other Functions

	Appendix B: OpenSCAD Visual Reference
	3D Primitives
	2D Shapes
	Combining Shapes
	Transformations
	Loops

	Index

