

Microsoft Azure
Security Technologies
Certification and
Beyond

Gain practical skills to secure your Azure
environment and pass the AZ-500 exam

David Okeyode

BIRMINGHAM—MUMBAI

Microsoft Azure Security Technologies
Certification and Beyond
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Vijin Boricha
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Sayali Pingale
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Nilesh Mohite

First published: September 2021
Production reference: 1070921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80056-265-3
www.packt.com

http://www.packt.com

I am grateful to many people who have helped and supported me through
the process of writing this book. To my wife and best friend, Brenda Tao. To
my parents, who taught me everything I know (Jacob and Hope Okeyode).
And to the three best sisters and encouragers in the world (Pemi, Elizabeth,

and Esther). I love you all.

– David Okeyode

Contributors

About the author
David Okeyode is a cloud security architect at the Prisma cloud speedboat at Palo Alto
Networks. Before that, he was an independent consultant helping companies secure
their cloud environments through private expert-level training and assessments. He
holds 15 professional certifications across the Azure and AWS platforms, including the
Azure Security Engineer, Azure DevOps, and AWS Security Specialist certifications. He
has also authored two cloud computing courses for the popular cybersecurity training
platform Cybrary.

David has over a decade of experience in cybersecurity (consultancy, design, and
implementation) and over 6 years of experience as a trainer. He has worked with
organizations of different sizes, from start-ups to major enterprises to government
organizations.

David has developed multiple vulnerable-by-design automation templates that can be
used to practice cloud penetration testing techniques. He regularly speaks about cloud
security at major industry events, such as Microsoft Future Decoded and the European
Information Security Summit.

David is married to a lovely girl who makes the best banana cake in the world. They love
traveling the world together and intend to do missions in Asia very soon!

About the reviewers
Dharam Chhatbar is a seasoned information security professional who has more than 11
years of experience in various verticals of InfoSec, delivering impactful and high-quality
risk-reduction work. He has helped secure many banks and retail firms and is currently
working at a top Fortune 500 company. He holds a master's degree, is a fervent learner,
and has earned several global certifications, such as CISSP, GSLC (GIAC), CCSP, CSSLP,
GMOB, and some related to the cloud, such as Azure (AZ500), GCP (PCSE), and AWS
(SAA). His key competencies include vulnerability management, application security,
cloud security, VA/PT, and managing teams/vendors. He has also reviewed the book
CISSP (ISC)² Certification Practice Exams and Tests by Ted Jordan.

I would like to thank my parents, Bina and Jagdish; my wife, Chaital;
and my sister, Hina, for their continued support and encouragement with

everything that I do and for motivating me to always achieve my ambitions.

Rod Trent is a security CSA for Microsoft and an Azure Sentinel global SME helping
customers migrate from existing SIEMs to Azure Sentinel to achieve the promise of better
security through improved efficiency without compromise.

Rod is a husband, dad, and recently a first-time grandfather. He spends his spare time
(if such a thing does truly exist) simultaneously watching episodes of The Six Million
Dollar Man and writing KQL queries.

Table of Contents
Preface

Section 1: Implement Identity and Access
Security for Azure

1
Introduction to Azure Security

Technical requirements� 4
Shared responsibility model� 4
Setting up a practice environment�6
Create a free trial Azure subscription� 7

Summary� 11
Questions� 12
Further reading� 12

2
Understanding Azure AD

What Azure AD is not
(what is Azure AD?)� 14
Azure AD versus on-premises AD� 14
Azure AD – an identity provider for
Microsoft cloud services� 14
Azure AD – an identity provider for
modern applications� 16

Modern authentication protocols�17
Hands-on exercise – review your Azure
AD tenant� 18
Hands-on exercise – add a custom
domain to Azure AD (optional)� 21

Azure AD editions� 24
Hands-on exercise – sign up for an
Azure AD Premium P2 trial� 25

Azure AD object management� 28
Azure AD users� 28
Azure AD groups� 29
Azure AD and Azure RBAC roles� 30
Service principals� 31
Hands-on exercise – Azure AD user
creation and group management� 31
Hands-on exercise – Azure AD
role assignment� 39

viii Table of Contents

Summary� 44
Questions� 44

Further reading� 45

3
Azure AD Hybrid Identity

Technical requirements� 48
Implementing Azure AD
hybrid identity� 48
Azure AD Connect� 48
Preparing for Azure AD Connect
installation� 49
Hands-on exercise – deploying an
Azure VM hosting an AD domain
controller� 50
Hands-on exercise – preparing for
Azure AD Connect deployment� 59

Selecting a hybrid identity
authentication method� 65
Federation� 67
Pass-Through Authentication (PTA)� 69
Azure AD Connect deployment options� 70
Hands-on exercise – deploying Azure
AD Connect PHS� 71

Implementing password
writeback� 85
Summary� 86
Questions� 86
Further reading� 87

4
Azure AD Identity Security

Technical requirements� 90
Implementing Azure AD
Password Protection � 90
Hands-on exercise – Configuring the
custom banned password list feature
of Azure AD Password Protection� 93

Securing Azure AD users
with multi-factor
authentication (MFA)� 101
Hands-on exercise – Enabling MFA
by changing user state� 102

Implementing conditional
access policies� 108
Conditional access – How policies
are evaluated� 111
Conditional access best practices� 112
Hands-on exercise – Implementing
conditional access� 113

Protecting identities with Azure
AD Identity Protection� 122
Identity protection – risk categories� 122
Identity protection – detection types� 125
Identity protection – risk levels� 125
Identity protection – policies� 126

Table of Contents ix

Exercise – Implementing Azure AD
Identity Protection� 128

Summary� 137

Question� 137
Further reading� 137

5
Azure AD Identity Governance

Technical requirements� 140
Protecting privileged access
using Azure AD Privileged
Identity Management (PIM)� 140
What is Azure AD PIM?� 140
How does Azure AD PIM work?� 141
Exercise – Azure AD Privileged
Identity Management� 142

Configuring PIM access reviews� 154
Exercise – Create an access review
and review PIM auditing features� 155

Summary� 162
Questions� 163
Further reading� 163

Section 2: Implement Azure Platform
Protection

6
Implementing Perimeter Security

Technical requirements� 168
Securing the Azure virtual
network perimeter� 168
Implementing Azure
Distributed Denial of Service
(DDoS) Protection� 169
Hands-on exercise – provisioning
resources for the exercises in
Chapters 6 and 7� 171
Hands-on exercise – implementing the
Azure DDoS protection Standard� 178

Implementing Azure Firewall� 183

Hands-on exercise – implementing
Azure Firewall� 184

Implementing a Web
Application Firewall (WAF)
in Azure� 200
Application Gateway WAF� 200
Front Door WAF� 201
Hands-on exercise – configuring
a WAF on Azure Application Gateway� 202

Summary� 214
Questions� 214
Further reading� 215

x Table of Contents

7
Implementing Network Security

Technical requirements� 218
Implementing virtual network
segmentation � 218
Implementing NSGs� 218
Implementing ASGs� 220
Hands-on exercise – Configuring
NSGs and ASGs� 221

Implementing platform
service network security� 230
Firewall for PaaS services
(and firewall exceptions)� 231
Service endpoints� 232

Hands-on exercise: Configuring a
firewall and service endpoints on
a storage account� 233

Securing Azure network
hybrid connectivity� 242
Implementing Azure Bastion� 243
Hands-on exercise: Configuring
Azure Bastion� 244
Hands-on exercise: Cleaning
up resources� 248

Summary� 249
Question� 250
Further reading� 250

8
Implementing Host Security

Technical requirements� 252
Hands-on exercise – provisioning
resources for this chapter's exercises� 252

Using hardened baseline
VM images� 256
Protecting VMs from viruses
and malware� 258
Hands-on exercise deploying the
Microsoft Antimalware extension
for Azure� 260

Implementing system update
management for VMs� 263
Hands-on exercise – implementing
Azure Automation Update
Management� 264

Implementing vulnerability
assessment for VMs� 269
Encrypting VM disks with
Azure Disk Encryption� 271
Hands-on exercise – implementing
Azure Disk Encryption� 272

Securing management ports
with JIT VM access� 280
Hands-on exercise – enabling JIT
VM access� 282

Summary� 289
Questions� 289
Further reading� 290

Table of Contents xi

9
Implementing Container Security

Technical requirements� 292
An overview of
containerization in Azure� 292
Hands-on exercise – providing
resources for the chapter
exercises� 295
Introducing ACR� 299
ACR pricing tiers� 300

ACR security best practices� 300
Configuring service firewall rules
for ACR� 301
Restricting access using a
private endpoint� 303
Using Azure AD RBAC for secure
authentication and access control� 304
Implementing container image
vulnerability and compliance scanning � 306
Hands-on exercise – securing ACR� 307

Introducing AKS� 319
Understanding the AKS architecture� 319

AKS security best practices� 320
Limiting access to the API server
using authorized IP address ranges� 320
Implementing a private AKS cluster
using a private endpoint� 322
Controlling access to cluster resources
using Kubernetes RBAC and Azure AD� 323
Regularly upgrading the cluster
control plane� 324
Regularly applying OS updates to
worker nodes� 326
Implementing pod-managed identities� 327
Cleaning up the resources� 336

Summary� 336
Questions� 336
Further reading� 337

Section 3: Secure Storage, Applications,
and Data

10
Implementing Storage Security

Technical requirements� 342
Azure Storage overview� 342
Azure Blob service hierarchy� 343
Azure Files service hierarchy� 344

Implementing encryption
at rest� 344

Implementing encryption
in transit� 348
Hands-on exercise – provisioning a
storage account with encryption in
transit enforced� 349

xii Table of Contents

Configuring storage account
authorization� 358
Protect access to the Storage
account keys� 359
Grant limited access to using Shared
Access Signatures (SAS)� 360
Implementing storage account key
management with Key Vault� 362
Disabling key-based authorization
options� 364
Disabling anonymous
(unauthenticated) Blob access� 365

Implementing Azure AD authorization
for the Blob service� 367
Implementing ADDS or Azure ADDS
authentication for Azure Files� 367
Hands-on exercise – configuring
storage account access controls� 368

Implementing Azure Defender
for Storage� 379
Cleaning up resources� 379

Summary� 380
Question� 380
Further reading� 380

11
Implementing Database Security

Technical requirements� 382
Database options in Azure� 382
Azure SQL deployment options� 383
Implementing defense in
depth for Azure SQL� 384
Protecting Azure SQL against
unauthorized network
connections� 385
Implementing IP firewall rules� 386
Implementing server-level
firewall rules� 386
Implementing database-level
firewall rules� 387
Implementing Azure SQL
private endpoints� 388
Hands-on exercise – provisioning
resources for chapter exercises� 389
Hands-on exercise – implementing
network access control� 396

Protecting Azure SQL against
unauthorized user access� 401
Hands-on exercise – implementing
Azure AD authentication
and authorization� 402

Protecting Azure SQL
against vulnerabilities� 409
Enabling Azure SQL database auditing� 410
Implementing Azure Defender for SQL� 410

Protecting Azure SQL against
data leakage and theft
(database encryption)� 412
Implementing Transparent Data
Encryption (TDE) – encryption at rest� 412
Implementing encryption in transit� 413
Implementing Azure SQL Database
Always Encrypted� 414
Hands-on exercise – implementing
Always Encrypted� 415

Table of Contents xiii

Cleaning up resources� 419
Summary� 419

Question� 419
Further reading� 420

12
Implementing Secrets, Keys, and Certificate Management
with Key Vault

Technical requirements� 422
Introducing Azure Key Vault� 422
Understanding secrets, keys,
and certificates� 423
Understanding Key Vault
pricing tiers� 424
Managing access to Key Vault� 425
Hands-on exercise – managing access
to Key Vault resources� 428

Protecting Key Vault resources� 439
Hands-on exercise – protecting Key
Vault resources� 441

Cleaning up resources� 444
Summary� 444
Question� 445
Further reading� 445

13
Azure Cloud Governance and Security Operations

Technical requirements� 448
Implementing Azure cloud
governance� 448
Understanding management groups� 448
Understanding Azure Policy� 450
Understanding Azure RBAC� 455
Hands-on exercise – implementing
management groups and Azure Policy� 460

Understanding logging and
monitoring� 464
Azure Service Health� 464
Azure Monitor� 465
Log Analytics� 470

Addressing cloud security
challenges with Security Center�471

Cloud Security Posture Management� 472
Cloud Compliance Posture Management�472
Threat protection� 474

Managing security operations
with Azure Sentinel� 475
Data collection� 476
Detecting threats� 478
Investigating incidents� 478
Responding to incidents� 478
Hands-on exercise – implementing
Azure Sentinel� 478

Cleaning up resources� 485
Summary� 485
Questions� 486
Further reading� 486

xiv Table of Contents

Assessments

Chapter 1 – Introduction to
Azure Security� 489
Chapter 2 – Understanding
Azure AD� 489
Chapter 3 – Azure AD Hybrid
Identity� 490
Chapter 4 – Azure AD Identity
Security� 490
Chapter 5 – Azure AD Identity
Governance� 490
Chapter 6 – Implementing
Perimeter Security� 490
Chapter 7 – Implementing
Network Security� 491

Chapter 8 – Implementing
Host Security� 491
Chapter 9 – Implementing
Container Security� 491
Chapter 10 – Implementing
Storage Security� 491
Chapter 11 – Implementing
Database Security� 491
Chapter 12 – Implement
Secrets, Keys, and Certificate
Management with Key Vault� 492
Chapter 13 – Azure Cloud
Governance and Security
Operations� 492

Other Books You May Enjoy
Index

Preface
Security is a key part of any well-architected design. In this book, you will gain both the
knowledge and the practical skills to significantly reduce the attack surface of your Azure
workloads and protect your organization from constantly evolving threats to public cloud
environments such as Azure.

Beyond preparing you for the Azure Security Engineer certification exam (AZ-500), this
book will help you gain a clear understanding of how to secure your Azure environments
and workloads using native Azure security capabilities.

This book is a comprehensive security guide for those who are looking to take the AZ-500
exam and for those who are interested in securing their Azure infrastructure. Complete
with hands-on tutorials, projects, and self-assessment questions, this easy-to-follow guide
will take you beyond the foundations of Azure security. You will not only learn about
security technologies in Azure but also how to configure and manage them.

By the end of this book, you will be well-versed in different Azure security technologies/
services and will also have learned how to protect your Azure infrastructure from
modern threats.

Who this book is for
This book is for new and experienced security professionals, cloud administrators,
architects, and developers with an interest in understanding Azure platform security and
how to implement workload security in Azure.

Technical professionals who are preparing to take the Azure Security Engineer
certification exam (AZ-500) will also benefit tremendously from reading this book.

xvi Preface

What this book covers
Chapter 1, Introduction to Azure Security, helps you to understand how security works in
Azure and set up a practice environment.

Chapter 2, Understanding Azure AD, helps you to understand what Azure Active
Directory (AD) is and how to implement identity management.

Chapter 3, Azure AD Hybrid Identity, covers how to implement Azure AD hybrid identity
and configure its status.

Chapter 4, Azure AD Identity Security, covers how to protect Azure AD identities with
advanced identity security best practices.

Chapter 5, Azure AD Identity Governance, covers how to protect privileged access using
Azure AD Privileged Identity Management.

Chapter 6, Implementing Perimeter Security, covers how to implement platform perimeter
protection to secure Azure workloads.

Chapter 7, Implementing Network Security, covers how to configure network security best
practices for IaaS and PaaS.

Chapter 8, Implementing Host Security, covers how to implement host security best
practices in Azure.

Chapter 9, Implementing Container Security, covers how to implement container security
best practices in Azure.

Chapter 10, Implementing Storage Security, covers how to protect data in Azure Storage
using multilayered security.

Chapter 11, Implementing Database Security, covers how to protect Azure SQL databases
against unauthorized access, data theft, and vulnerabilities.

Chapter 12, Implementing Secrets, Keys, and Certificates Management with Key Vault,
covers how to secure privileged application configuration and credentials using Key Vault.

Chapter 13, Azure Cloud Governance and Security Operations, covers how to implement
Azure cloud governance, address cloud security challenges with Security Center, and
manage security operations with Azure Sentinel.

Preface xvii

To get the most out of this book
Foundational-level knowledge of the Azure cloud platform, as well as a general knowledge
of technical concepts such as AD, networking, and encryption, is required.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781800562653_ColorImages.pdf.

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Microsoft-Azure-Security-
Technologies-Certification-and-Beyond. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "The UPN format for external user accounts is
<alias>_<HomeTenant>#EXT#@domain.suffix."

A block of code is set as follows:

CREATE USER "<EMMY_UPN>"

FROM EXTERNAL PROVIDER

WITH DEFAULT_SCHEMA = dbo;

http://www.packtpub.com/sites/default/files/downloads/9781800562653_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800562653_ColorImages.pdf
https://github.com/PacktPublishing/Microsoft-Azure-Security-Technologies-Certification-and-Beyond
https://github.com/PacktPublishing/Microsoft-Azure-Security-Technologies-Certification-and-Beyond
https://github.com/PacktPublishing/

xviii Preface

Any command-line input or output is written as follows:

New-Item -Path "c:\" -Name "packtaz500" -ItemType "directory"

Set-Location -Path "c:\packtaz500"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click Exit to close the Microsoft Azure Active Directory Connect window once the
configuration is complete."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts
Once you've read Microsoft Azure Security Technologies Certification and Beyond, we'd love
to hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-800-56265-9

A common attack entry point for Azure environments is identity compromise. This is
why mitigating identity security risks and configuring secure access is a key component
of a comprehensive Azure security strategy. In this section, you will gain a clear
understanding of Azure Active Directory (Azure AD), Microsoft's cloud-based identity
and access management service, and how to secure your cloud identities using features
such as multi-factor authentication, password protection, conditional access, identity
protection, and privileged identity management. Not only will just the concepts and
theory be made clear; we will also walk through many exercises as well!

This part of the book comprises the following chapters:

•	 Chapter 1, Introduction to Azure Security

•	 Chapter 2, Understanding Azure AD

•	 Chapter 3, Azure AD Hybrid Identity

•	 Chapter 4, Azure AD Identity Security

•	 Chapter 5, Azure AD Identity Governance

Section 1:
Implement Identity
and Access Security

for Azure

1
Introduction to
Azure Security

Security is a core component of any well-architected environment, and this is no different
for Azure. Every workload that your organization implements in Azure needs to be
implemented with security in mind. The risk associated with not doing this could range
from an attacker being able to use your Azure resources to mine cryptocurrency at your
expense to an attacker being able to gain access to sensitive customer data that could
result in massive fines or sanctions against your company. It could also lead to reputation
damage that may lead to customers moving to a competitor.

But how does cloud security work? Is it different from traditional security? Do you have
to unlearn everything that you know about managing on-premises security and start from
the beginning? You'll be glad that the answer to that latter question is "No." The principles
of digital security are the same whether your workload sits in a traditional on-premises
data center or in a cloud environment such as Microsoft Azure. The way you apply those
principles, however, is quite different. Some of those differences are due to the dynamic
and elastic nature of cloud environments. The ability to rapidly provision and release
resources introduces new challenges that traditional security models struggle to address
effectively, but we'll be covering how to solve this in this book – that is, we'll focus on how
we apply security principles to secure dynamic Azure environments.

4 Introduction to Azure Security

In any discussion on Azure security, it is critical to understand the "shared responsibility
model," that is, which security tasks are handled by the cloud provider (Microsoft in this
case) and which tasks are handled by the cloud consumers (us). In this chapter, I will
introduce this concept and show how cloud security responsibilities vary depending on
the type of service that you are using in Azure – Software as a Service (SaaS), Platform
as a Service (PaaS), or Infrastructure as a Service (IaaS). I will also walk you through
how to set up an Azure subscription that you can use to follow along with the hands-on
sections of this book.

In this chapter, we're going to cover the following topics; however, feel free to skip to the
next chapter if the information covered is already familiar to you:

•	 Shared responsibility model

•	 Setting up a practice environment

Technical requirements
To follow along with the instructions in this chapter, you'll need the following:

•	 An outlook.com account that you will use to sign up for your Azure subscription.
Make sure that this is an account that you have not previously used to sign up for a
free trial Azure subscription. This is because every Microsoft account is entitled to
only one free trial signup. You can sign up for a new outlook.com account by going to
https://outlook.live.com/owa/ and clicking Create free account.

•	 A PC with a web browser: The PC can run Windows, macOS, or GUI-based Linux,
as long as it has a web browser installed and it has internet connectivity.

•	 A credit card: This will be needed during the sign-up process to validate your
identity. The credit card will not be charged during the trial. You have to explicitly
convert a free trial subscription to a pay-as-you-go subscription for it to be charged.

•	 A valid phone number: This will also be needed to validate your identity.

Shared responsibility model
As organizations transition their workloads from their on-premises data centers to the
Azure cloud platform, the responsibility of security also shifts. One of these shifts is that
you are no longer solely responsible (as an organization) for all aspects of security as you
may be used to in a traditional environment. Security is now a concern that both the
cloud provider (Microsoft) and the cloud customers (us) share. This is called the shared
responsibility model and all cloud providers, including Microsoft's competitors such as
AWS and GCP, follow this model as well.

http://outlook.com
https://outlook.live.com/owa/

Shared responsibility model 5

The diagram in Figure 1.1 clearly highlights this. It is from a whitepaper on the shared
security model that was published by Microsoft. You can download the whitepaper from
this URL: https://azure.microsoft.com/en-gb/resources/shared-
responsibility-for-cloud-computing/. In the diagram, the gray represents the
security responsibilities that are transferred to Microsoft when we adopt Azure, while the
blue represents security responsibilities that we still have to take care of as Azure customers:

Figure 1.1 – Shared responsibilities for different cloud service models

One of the things that I would like to highlight in the diagram is that regardless of the
cloud service model that we are using in Azure – IaaS, PaaS, or SaaS – we are never
without security responsibility. Here are some other lessons that I want you to take from
this section:

•	 Your security responsibility varies depending on the model of service that you are using
in Azure.

If you are using an IaaS service such as a virtual machine, you have more security
responsibilities to take care of. For example, you are responsible for patching the
operating system of your Azure-hosted virtual machines.

https://azure.microsoft.com/en-gb/resources/shared-responsibility-for-cloud-computing/
https://azure.microsoft.com/en-gb/resources/shared-responsibility-for-cloud-computing/

6 Introduction to Azure Security

If you are using a PaaS service such as Azure App Service, you have fewer security
responsibilities to take care of. For example, you are not responsible for patching
the operating system used by the service, but you are still responsible for how you
configure the service and also for controlling access to it.

If you are using a SaaS service such as Azure Search, you have even fewer security
responsibilities, but you are still responsible for controlling access to your data.

•	 Not fulfilling your security responsibilities leaves you exposed to threats and attacks in
those areas.

Have a good look at the diagram again. Wherever you see blue in the diagram, if
you do not have a strategy to address those responsibilities, you are leaving yourself
exposed to threats! Don't worry too much about this right now – by the end of this
book, you'll be equipped with the knowledge and skills that you need to effectively
take care of these security responsibilities.

In this section, we established the foundational concept of shared security responsibilities
in Azure. This clarified for us what we are responsible for depending on the service model
that we are using. In the next section, we will set up a test environment that we can use to
practice the implementation of security controls in Azure.

Setting up a practice environment
One of the best ways to learn a new concept is through hands-on practice. This book
includes walk-throughs that allow you to gain a practical experience of the concepts
being discussed:

Figure 1.2 – Practice environment

Setting up a practice environment 7

To follow along with these walk-throughs, you will need access to an Azure subscription,
and I will be walking you through how to sign up for one if you do not have an existing
subscription now. If you have an existing subscription that you can use, feel free to skip
the next section.

Create a free trial Azure subscription
To set up a free trial subscription, follow these steps:

1.	 Open a browser window and browse to https://signup.azure.com/.

2.	 In the Sign in window, enter your Outlook.com account and click Next:

Figure 1.3 – Enter your email address

3.	 In the Your profile window that opens, the Country/Region, First name, Last name,
and Email address fields should already be completed using information from your
email profile. Enter the right values if the auto-completed values are not correct.

4.	 Enter your phone number (without the country code).

https://signup.azure.com/

8 Introduction to Azure Security

5.	 Skip Company VatID. Leave it empty and click Next. Depending on your Country/
Region setting, this field may not be displayed, or you may be presented with a
different option:

Figure 1.4 – Enter your profile information

6.	 In the Identity verification by phone section, ensure your country code and phone
number are correct, then click on Text me:

Setting up a practice environment 9

Figure 1.5 – Enter your phone number for identity verification

7.	 A verification code will be sent to your phone number. Enter the verification code
and click Verify code.

8.	 In the Identity verification by card section, fill in Cardholder Name (as it appears
on your credit card), Card number, Expires, and CVV:

Figure 1.6 – Enter your credit card information

10 Introduction to Azure Security

9.	 Enter your address information and click Next.

10.	 In the Agreement section, select only I agree to the subscription agreement, offer
details, and privacy statement and click on Sign up:

Figure 1.7 – Conclude the sign-up process

Important note
Clicking on subscription agreement, offer details, and privacy statement will
take you to the respective documentation, where you can read the details to
stay informed of what you are agreeing to when signing up.

The signup process will begin. It should only take a few minutes, after which you
will be redirected to the Azure portal.

11.	 To verify your subscription, in the Azure portal, click on Microsoft Azure in the
top-left corner and click on Subscriptions under Navigate:

Summary 11

Figure 1.8 – Verify your new subscription

12.	 In the Subscriptions window, you should see a subscription named Free Trial:

Figure 1.9 – Your new trial subscription

Congratulations! You now have an Azure subscription that you can use to follow along
with the rest of the book.

Summary
In this chapter, we saw how cloud security is similar to yet different from traditional
security. We also discussed the shared security model concept and highlighted how we
have fewer security responsibilities when we adopt a cloud platform such as Microsoft
Azure, but we are never without security responsibilities! And finally, I walked you
through the process of setting up an Azure subscription, which puts you in a great place to
follow along with the hands-on sections in the rest of this book.

12 Introduction to Azure Security

Azure security is a deep and complex topic and we're only just getting started. In the next
chapter, we'll start discussing one of the most important aspects of implementing security
for your Azure environments – securing identity and access using Azure Active Directory.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 True or false: When a workload is migrated from on-premises to Azure, you offload
all security responsibilities to Microsoft.
a. True

b. False

2.	 Which cloud service model requires the greatest security effort on the part of
the customer?
a. Infrastructure as a Service (IaaS)

b. Platform as a Service (PaaS)

c. Software as a Service (SaaS)

3.	 True or false: The principles of digital security are the same whether your workload
sits in a traditional on-premises data center or in a cloud environment such as
Microsoft Azure.
a. True

b. False

4.	 Which security responsibility is solely that of the cloud provider when we move
to Azure?
a. Network controls

b. Client and endpoint protection

c. Physical security

d. Identity and access management

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure shared security responsibility documentation: https://docs.microsoft.
com/en-us/azure/security/fundamentals/shared-responsibility

https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility

2
Understanding

Azure AD
Many cloud-related security breaches start with a compromised user identity. Once
an attacker gets a foot in the door using the compromised credential, they can escalate
privileges or gather intelligence to move further in the attack chain. This is why securing
identity is important in any discussion on cloud security. This chapter will equip you
with a thorough understanding of Azure Active Directory (Azure AD) – Microsoft's
cloud-based identity and access management service, which functions as the identity
provider for Azure and other cloud services. The foundational concepts discussed in this
chapter are needed to fully grasp the identity security topics covered in the third and
fourth chapters. Here are the topics that we will cover in this chapter with accompanying
hands-on exercises:

•	 What Azure AD is not (what is Azure AD?)

•	 Modern authentication protocols

•	 Azure AD editions

•	 Azure AD object management

14 Understanding Azure AD

What Azure AD is not (what is Azure AD?)
From my experience, knowing what Azure AD is not is as important as knowing what
Azure AD is. Understanding what Azure AD is not will help you avoid some of the
common confusion out there about this service, so let's start out with this statement:
Azure AD is NOT on-premises Active Directory in Azure! As a matter of fact, it has a
different use case and structure from on-premises Active Directory (AD). I personally
would have called it Azure Identity Service or some other name to avoid confusion with
on-premises Active Directory, but it seems that Microsoft wanted to keep the Active
Directory brand name going.

So, if Azure AD is not on-premises AD in Azure, what is it then? I will give you two
descriptions to help you understand what it is. Here is the first one: Azure AD is the
identity provider for Microsoft cloud services. You may be thinking to yourself, what does
that even mean? Let's check it out.

Azure AD versus on-premises AD
Let's have a quick look at the differences between Azure AD and on-premises AD.

Azure AD is queried using the REST API over HTTP (80) and HTTPS (443) instead
of LDAP, which is used to query on-premises AD over TCP ports 389 (LDAP) or 686
(LDAPS).

Azure AD uses modern authentication protocols that use web transport such as SAML,
WS-Federation, and OpenID Connect for authentication (and OAuth for authorization)
instead of Kerberos, which is used by on-premises AD.

Azure AD users and groups are created in a flat structure, and there are no
Organizational Units (OUs) or Group Policy Objects (GPOs). On-premises AD has
a hierarchical structure with OUs and containers.

Azure AD includes native federation services (for example, it has native federation built in
with other Azure AD tenants). It does not rely on (ADFS).

Azure AD – an identity provider for Microsoft
cloud services
When a customer signs up for any Microsoft cloud service (an Azure subscription, an
Office 365 subscription, or a Dynamics365 subscription), as you did in the first chapter, an
Azure AD tenant is transparently created in the background. This is where the identities
(users, groups, and service principals) that are allowed to access those services are stored
and managed (Figure 2.1):

What Azure AD is not (what is Azure AD?) 15

Figure 2.1 – Azure AD as identity provider for Microsoft Cloud Services

In order to access Microsoft cloud services such as Azure, users are redirected to Azure
AD to authenticate. Only when authentication is successfully completed in Azure AD can
access be granted.

So, does this mean that for every Microsoft cloud service that you sign up for, you always
have to have a brand new separate Azure AD tenant? (By the way, Azure AD tenant refers
to a single instance of Azure AD):

Figure 2.2 – A single Azure AD tenant linked with multiple Microsoft cloud services

16 Understanding Azure AD

The answer to that question is NO! Organizations do not have to have different Azure
AD tenants for multiple Microsoft cloud services. Multiple cloud service instances can be
linked with the same Azure AD tenant. For example, it is common for organizations to
implement separate Azure AD subscriptions for development and production workloads.
These subscriptions can both be linked with the same Azure AD tenant (Figure 2.2).

Azure AD – an identity provider for modern
applications
My second description of Azure AD is related to its use case – the PRIMARY use
case of Azure AD is to securely authenticate access to applications that support modern
authentication protocols regardless of where they are hosted!

That statement sounds profound but what does it mean? It means that beyond support for
Microsoft cloud services, Azure AD can actually provide authentication for any software
as a service (SaaS) or hosted application that supports modern authentication protocols
(Figure 2.3)! This is powerful as it means that we can centrally manage authentication
and access for all our cloud and supported on-premises applications with Azure AD. This
includes thousands of SaaS applications, including popular ones such as Salesforce, Box,
AWS, and Dropbox. It also includes custom applications that may be hosted on-premises
or in the cloud:

Figure 2.3 – Centralized identity management using Azure AD

But what do modern authentication protocols mean? Why do we need them? What was
wrong with the authentication protocols that we had?

Modern authentication protocols 17

Modern authentication protocols
To understand why we need modern authentication protocols, let's go back in time
to see how things were. Years ago, a typical organization needed only on-premises
domain controllers (running Active Directory) to provide authentication for their
business applications. This was a time when the users, the servers running the business
applications, and the domain controllers lived happily within the same network perimeter.
Authentication occurred using either Kerberos or NTLM, which are both protocols
designed to authenticate scenarios where both the application and the identity provider
lived on the same network. You could tell this from the number of network ports that
needed to be opened for Kerberos to work (Figure 2.4).

Times have changed since then! The majority of business applications that organizations
use are now cloud-hosted (living in someone else's data centers). It is not practical to
expose all the ports that Kerberos alone needs to work to the internet! This was why we
needed modern authentication protocols! The most common modern authentication/
authorization protocols are OpenID Connect 1.0, SAML 2.0, and OAuth 2.0
(authorization framework):

Figure 2.4 – Legacy authentication protocols

All modern authentication protocols have one thing in common (regardless of the
differences in their specific implementations) – they operate using web transport. This
means that they can pass authentication and authorization tokens over HTTP and HTTPS,
making it easy to deliver authentication and authorization across different environments.

18 Understanding Azure AD

Hands-on exercise – review your Azure AD tenant
Now that you have some understanding of what Azure AD is, let's go to the Azure portal
to review the Azure AD tenant that was created for us when we signed up for our Azure
subscription in Chapter 1, Introduction to Azure Security. You will need to do this from
your Windows or macOS machine with an internet connection:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 Sign in to the portal using the account that you used to sign up in the
previous chapter.

3.	 Click the portal menu icon in the top-left corner and select Azure Active Directory:

Figure 2.5 – Select Azure AD

4.	 In the Default Directory | Overview blade, review the information contained in the
Tenant information section:

Your role shows the role that the signed-in account has in Azure AD. The Global
administrator role gives full control to perform all operations on the tenant.
We will be covering Azure AD roles in a later discussion.

https://portal.azure.com
https://portal.azure.com

Modern authentication protocols 19

License shows the current edition of our Azure AD license. Our current license
edition is Azure AD Free (license options and differences will be covered later in
this chapter).

Tenant ID shows the unique tenant ID of our Azure AD tenant.

Primary domain shows the default domain name that was created for our Azure
AD tenant when we signed up for our Azure subscription. This initial domain name
is made up of information from the email that we used to sign up with a suffix of
onmicrosoft.com. This domain name will be used as the User Principal Name
(UPN) suffix of our users. For example, if I create a user called david in my Azure
AD tenant, the UPN for my user will be david@davidpacktaz500outlook.
onmicrosoft.com. Obviously, this is not ideal for an organization. We can add
a custom domain name to replace the default one as the primary and we will be
doing this in an optional exercise shortly:

Figure 2.6 – Azure AD tenant information

mailto:david@davidpacktaz500outlook.onmicrosoft.com
mailto:david@davidpacktaz500outlook.onmicrosoft.com

20 Understanding Azure AD

5.	 Still in the Default Directory | Overview blade, click on Users (in the section
labeled Manage):

Figure 2.7 – Azure AD Users option

6.	 You will see a list of users in your Azure AD tenant:

Figure 2.8 – Azure AD Users blade

At the moment, we have a single user, but we will be adding more users in later exercises
in this book. Leave the browser open for the next exercise.

Modern authentication protocols 21

Hands-on exercise – add a custom domain to Azure AD
(optional)
In this exercise, we will be adding a custom domain name to Azure AD. This domain
name will be used to replace the onmicrosoft.com default name. This exercise requires
you to have a public DNS name that you have purchased from a DNS provider. You
must also have the permissions to manage that DNS zone as you will need to create new
records as part of this process. In my case, I have purchased azureblueteam.io from
GoDaddy (https://godaddy.com) and I will be using this for the instructions:

1.	 We will stay in the Users | All Users blade, click on Custom domain names (in the
section labeled Manage), then click on Add custom domain:

Figure 2.9 – Click to add a custom domain

2.	 In the Custom domain name box, enter the public DNS name that you want to add
to Azure AD, then click Add domain:

Figure 2.10 – Add a custom domain

https://godaddy.com

22 Understanding Azure AD

3.	 In the window that opens, make a note of the information displayed as you will
need to add the record to your DNS zone for verification. You can choose to use
either a TXT record or an MX record. I will be using the TXT record for my
verification:

Figure 2.11 – Domain name verification record

4.	 Head over to your DNS zone and add the required record using the information
from Step 3. My DNS provider is GoDaddy and my DNS zone is hosted with them.
Make sure to allow some time for the DNS record to replicate:

Figure 2.12 – Add a verification record

Modern authentication protocols 23

5.	 Back in the Azure portal, click on Verify.

6.	 After the record is verified successfully, click on the Make primary option to
configure the newly verified domain name as the primary domain name of your
Azure AD tenant. Click on Yes to confirm:

Figure 2.13 – Configure the primary domain name

If you head back to the Default Directory | Custom domain names blade, you should
see that your new custom domain is verified and that it is configured as the primary
domain name:

Figure 2.14 – Verified primary custom domain name

Now that you have a clearer understanding of what Azure AD is, its use cases, and how to
work with it, let's shift our focus to talk about Azure AD editions. The significance of this
will become clearer as we get deeper into Azure AD features in later chapters.

24 Understanding Azure AD

Azure AD editions
The features of Azure AD that you can use depends on the edition of Azure AD that
you have, and your licensing based on pricing. For example, if you want to implement
advanced identity security capabilities of Azure AD such as Identity Protection and
Privileged Identity Management, you need to have the right Azure AD edition that
enables these capabilities. We will cover both Identity Protection and Privileged Identity
Management in Chapter 4, Azure AD Identity Security.

Before July 2019, we had five editions of Azure AD (Free, Basic, Office 365 Apps, Premium
P1, and Premium P2) but after July 2019, we only have four editions (Free, Office 365
Apps, Premium P1, and Premium P2). The reason for bringing this up is to give you a
clearer context in case you come across an older blog or document that still references the
Basic edition of Azure AD. Just be aware that the "Basic" edition has now gone away!

Alex Simons (https://twitter.com/Alex_A_Simons), the Corporate Vice
President of Product Management at the Microsoft Identity division, took to Twitter to
announce the end of the Azure AD Basic edition: https://twitter.com/Alex_A_
Simons/status/1159556024207962112. I recommend following Alex if you are
interested in getting the latest updates on Azure AD.

Here is a short description of the Azure AD editions that we have:

•	 Azure AD Free: This is the edition of Azure AD that is included with new Azure
subscriptions. It includes enough features to get us introduced to the capabilities of
Azure AD, but it lacks advanced management and security features. It also does not
have any Service-Level Agreement (SLA) guarantee!

•	 Azure AD Office 365 Apps: This is the edition of Azure AD that is included with
new Office 365 subscriptions. It has a few more capabilities than the free edition
(capabilities such as Self-Service Password Reset, which allows users to reset their
own passwords without the need to contact an administrator) and has an SLA.

https://twitter.com/Alex_A_Simons
https://twitter.com/Alex_A_Simons/status/1159556024207962112
https://twitter.com/Alex_A_Simons/status/1159556024207962112

Azure AD editions 25

•	 Azure AD Premium P1: This edition can be purchased as a standalone offering or
as part of the Enterprise Mobility Suite (EMS) or Microsoft 365 bundles. It has
important security capabilities such as conditional access, Self-Service Password
Reset, and so on. If you are interested in implementing identity and access in the
best possible secure way, at a minimum, you need to be on the Premium P1 edition.

•	 Azure AD Premium P2: This edition includes every feature of all other Azure
Active Directory editions enhanced with advanced security capabilities such as
Identity Protection and Identity Governance (Privileged Identity Management,
access reviews) capabilities. We'll cover what these are in later chapters.

For a full comparison of the features of the various Azure AD editions, please refer to this
link: https://azure.microsoft.com/en-gb/pricing/details/active-
directory/.

Hands-on exercise – sign up for an Azure AD Premium
P2 trial
For us to implement the full feature set of Azure AD and gain the experience that we need
to not only pass the AZ-500 exam but also to be successful on the job, we need to have the
Azure AD Premium P2 license. In this exercise, we will be signing up for the Azure AD
Premium P2 trial for our tenant:

1.	 In the Azure AD blade in the Azure portal, click on Licenses:

Figure 2.15 – Azure AD Licenses

https://azure.microsoft.com/en-gb/pricing/details/active-directory/
https://azure.microsoft.com/en-gb/pricing/details/active-directory/

26 Understanding Azure AD

2.	 In the Licenses | Overview blade, click on All products, then click on + Try / Buy:

Figure 2.16 – Try the Azure AD Premium P2 license

3.	 In the Activate blade, click to expand Free trial (under AZURE AD PREMIUM
P2), then click on Activate:

Figure 2.17 – Activate Azure AD Premium P2 trial license

Azure AD editions 27

4.	 It could take a few minutes for the license to be activated even after you get
a Successful message. You may also need to refresh the browser for the activated
trial to be visible. Once this is completed, you should have 100 Azure AD Premium
P2 licenses, which we will be assigning to new users in future exercises:

Figure 2.18 – Azure AD Premium P2 licenses

5.	 In the left-hand menu, click on Overview. The Tenant information section should
now display your license as Azure AD Premium P2:

Figure 2.19 – Validating tenant license information

Leave the portal open for the upcoming exercises.

Now that you understand the different editions of Azure AD, let's look at how to manage
the different objects that Azure AD supports in the next section.

28 Understanding Azure AD

Azure AD object management
There are different types of objects stored in Azure AD, with each object fulfilling
a specific role regarding identity and access. The main objects that we will be covering are
the following:

•	 Users

•	 Groups

•	 Roles

•	 Service principals

At the end of this section, we will be completing some hands-on exercises to create and
manage the different object types that we have discussed.

Azure AD users
We mentioned in previous sections of this chapter that the primary use case for Azure AD
is to manage secure authenticated access to an organization's Microsoft cloud services and
applications that support modern authentication protocols regardless of where they are
hosted. For users to be able to access these services that are protected by Azure AD, they
need a user account. There are two main types of user accounts in Azure AD – internal
and external.

Internal user accounts are user identities created in the Azure AD tenant by an
administrator or user identities that are synchronized from a connected on-premises
Active Directory environment to Azure AD (we will cover on-premises synchronization in
Chapter 3, Azure AD Hybrid Identity). The UPN format of an internal user is <alias>@
domain.suffix. For example, if I create a user called david in my Azure AD tenant
that has a custom primary domain name of azureblueteam.io, the user will have
a UPN of david@azureblueteam.io.

External user accounts are user identities from other Azure AD tenants or Microsoft
accounts (outlook.com, hotmail.com, and so on) that are invited as guest
users to an Azure AD tenant. The UPN format for external user accounts is
<alias>_<HomeTenant>#EXT#@domain.suffix. For example, if a user called
brenda who belongs to the cloudsecnews.com Azure AD tenant is invited as
a guest user of my tenant, Brenda's UPN in my tenant will be brenda_cloudsecnews.
com#EXT#@davidpacktaz500outlook.onmicrosoft.com:

http://azureblueteam.io
http://outlook.com
http://hotmail.com

Azure AD object management 29

Figure 2.20 – Azure AD user account sources

Now that you understand the user object in Azure AD, in the next section, we will cover
the group object in Azure AD.

Azure AD groups
Groups in Azure AD serve the same function as groups in any other identity system, they
are used to organize users and they make it easier to assign and manage permissions. For
example, it is more effective to assign permissions to a group than to individual users.
Once access is granted to a group, future access can then be granted or revoked through
group membership going forward. Like user accounts, groups can either be created by
administrators in Azure AD or synchronized from a connected on-premises Active
Directory environment.

Azure AD supports two types of groups: security groups, which are primarily used to
manage access to shared resources, and Microsoft 365 groups, which serve a similar
function to distribution groups, which you may be familiar with in Active Directory (but
it can also be used to assign access to resources).

30 Understanding Azure AD

When we create groups in Azure AD, we need to specify how members will be assigned
to the group. This can either be by direct assignment, where we manually add or remove
users from the group (this is called assigned membership) or by dynamic assignment,
where we define membership rules based on user or device attributes and the group
membership is automatically derived as a result (this is called dynamic membership).
Dynamic assignment requires a minimum of an Azure AD Premium P1 license.
A dynamic group assignment can be either for devices or users, but not for both. (To
make your life easier, consider assignment and membership to be synonymous terms for
this paragraph.)

It is also important to note that groups can have owners and the owners do not have to be
a member of the group. Group owners are able to manage the group and its membership.

Azure AD and Azure RBAC roles
The term role describes a collection of permissions. Permission describes an action that
can be performed on a resource such as read, write, and delete. We can examine the
permissions under a role to see what it allows us to do.

A key point to note is that Azure resources (deployed in our Azure subscriptions) and
Azure AD have separate permission systems. This means that the roles used to grant
access to Azure AD are different from the roles used to grant access to Azure resources
(Figure 2.21):

Figure 2.21 – Azure AD roles versus Azure RBAC roles

Azure AD object management 31

Azure AD roles are used to manage access to Azure AD while Azure Role-Based Access
Control (RBAC) roles are used to manage access to Azure resources such as storage
accounts, SQL databases, and so on. Both Azure AD and Azure resources have multiple
built-in roles with predefined permissions that organizations may use to grant access to
users and applications. Both support custom roles that are created by administrators. At
the time of writing, there are currently 60 built-in Azure AD roles and over 220 Azure
RBAC built-in roles. We will cover RBAC in greater detail in Chapter 13, Azure Cloud
Governance and Security Operations, later in this book.

Service principals
It is not only users that need to authenticate to Azure AD to access resources. Applications
may also need to authenticate to Azure AD! But how does Azure AD identify an
application that cannot perform an interactive sign-in? It does this using a special identity
called a service principal. A service principal is an application identity in Azure AD. You
can think of it as an Azure AD object representing an application that needs access to
Azure resources.

The object has a client ID (which you can think of as the application username) and
it can either use a generated secret or an uploaded certificate as the password. Both
the client ID and the certificate or secret can then be used from within an
application code to authenticate to Azure AD. This is the preferred way to grant access to
an application instead of creating a dummy user account. The process of creating a service
principal for an application is called application registration.

Hands-on exercise – Azure AD user creation and group
management
In this hands-on exercise, we will work with the two most common object types in Azure
AD – users and groups. Here are the tasks that we will be completing in this exercise:

•	 Create three Azure AD users (Brenda Tao, Emmy Crown, and John Lakeside).

•	 Create a static Azure AD group called cloud-architects with Brenda and
Emmy as members.

•	 Create a dynamic Azure AD group called hr-team that automatically adds any
user whose department attribute is set to HR as a member.

32 Understanding Azure AD

Figure 2.22 illustrates where we will be at the end of this exercise.

Figure 2.22 – Creating Azure AD users and groups

Let's complete the tasks with the following steps:

1.	 Still in the Azure AD console (within the Azure portal), under the Manage section,
click on Users, then click on New user to create a new user:

Figure 2.23 – Create a new Azure AD user

Azure AD object management 33

2.	 In the New user window, configure the following:

Create User: Selected

Add the following under Identity:

User name: brenda

Name: Brenda Tao

First name: Brenda

Last name: Tao

Add the following under Password:

Select Let me create the password.

Initial Password: QqLXXma6hAfs (You can enter any complex password. I
recommend using the same password for all the exercises to keep things simple.)

Add the following under Groups and roles:

Groups: Leave default setting:

Roles: Leave default setting.

Figure 2.24 – Configure new Azure AD user

34 Understanding Azure AD

Add the following under Settings:

Block sign in: No (This configuration is useful if you want to create an account
before a user needs it. If it is set to Yes, the account will be created but sign-in will
not be allowed.)

Usage Location: Select a location close to you. I will be using United Kingdom.

Add the following under Job Info:

Job title: Cloud Solutions Architect

Department: IT

Company name: Enter the name of a fictional company. I am using Azure Blue
Team.

Manager: Leave default setting:

Figure 2.25 – Configure new Azure AD user

Azure AD object management 35

3.	 Repeat Steps 1 and 2 to create the following users:

Emmy Crown:

User name: emmy

Name: Emmy Crown

Job title: Cloud Solutions Architect

Department: IT

John Lakeside:

User name: john

Name: John Lakeside

Job title: HR Manager

Department: HR

4.	 We should now have four users in Azure AD, including the three new users (Figure
2.26). Notice that the Directory synced column displays No for all the users. This
is because they were all created directly in the cloud and not synchronized from an
on-premises Active Directory server. We will cover this in a later chapter:

Figure 2.26 – New Azure AD users

36 Understanding Azure AD

5.	 In the Azure AD console, under the Manage section, click on Groups, then click on
New Group to create a new group (Figure 2.27):

Figure 2.27 – Create a new Azure AD group

6.	 In the New Group window, configure the following:

Group type: Security

Group name: cloud-architects

Group description: A Group for Cloud Architects

Azure AD roles can be assigned to the group: No

Membership type: Assigned

Owners: Click on No owners selected → select Brenda Tao → click Select.

Members: Click on No members selected → search for and select Brenda Tao and
Emmy Crown → click Select.

Click on Create.

Azure AD object management 37

Figure 2.28 – Configure a new Azure AD group

7.	 In the Groups | All Groups window, click on New Group to create a second group.

8.	 In the New Group window, configure the following:

Group type: Security

Group name: hr-team

Group description: A Group for HR Department Members

Azure AD roles can be assigned to the group: No

Membership type: Dynamic User (Notice how you can either select Dynamic User
or Dynamic Device but not a mixture of both!)

Owners: Leave default setting.

38 Understanding Azure AD

Dynamic User Members: Click on Add dynamic query → in the Dynamic
membership rules window, in the Configure Rules section, configure the
following:

Property: department

Operator: equals

Value: HR

Click on Save:

Figure 2.29 – Add a dynamic group membership rule

9.	 Click on Create.

10.	 We should now have two groups in Azure AD: one static group and another
dynamic user group (Figure 2.30). Notice that the Source column displays Cloud
for both groups. This is because they were all created directly in the cloud and not
synchronized from an on-premises Active Directory server. Leave the window open
for the next exercise:

Figure 2.30 – New Azure AD groups

Azure AD object management 39

In this exercise, we created three Azure AD users, a static Azure AD group, and another
Azure AD dynamic user group. In the next exercise, we will assign roles to these objects to
grant them permissions in Azure AD and to our Azure subscription.

Hands-on exercise – Azure AD role assignment
In this hands-on exercise, we will assign permissions to users and groups using role
assignments. Azure AD has a separate permission system from Azure resources. Users
having permissions in Azure AD does not mean that they also have access to Azure
resources. Here are the tasks that we will be completing in this exercise:

•	 Assign the Global Administrator role to Brenda Tao in Azure AD.

•	 Assign the Owner role to the cloud-architects group in our Azure
subscription.

Figure 2.31 illustrates where we will be at the end of this exercise:

Figure 2.31 – Configuring Azure AD and Azure subscription role assignments

40 Understanding Azure AD

Let's complete these tasks with the following steps:

1.	 In the Azure AD console (within the Azure portal), under the Manage section,
click on Roles and administrators, then select Global administrator. There are
multiple Azure AD built-in roles that we can assign to users and we can also create
custom roles:

Figure 2.32 – Select an Azure AD role

2.	 In the Global administrator | Assignments window, click on Add assignments,
select Brenda Tao, and click on Add:

Figure 2.33 – Add an Azure AD role assignment

Azure AD object management 41

3.	 Brenda Tao should now be displayed as a Global Administrator in Azure AD:

Figure 2.34 - Azure AD Global Administrators

4.	 In the Azure portal, click on Microsoft Azure in the top-left corner to go to the
home page:

Figure 2.35 – Go to the home page

5.	 On the home page, click on the Subscriptions icon:

Figure 2.36 – Click on the Subscriptions icon

42 Understanding Azure AD

6.	 In the Subscriptions window, click on your Azure subscription:

Figure 2.37 – Select your subscription

7.	 In the Subscriptions window, select Access control (IAM), then click on Add role
assignments:

Figure 2.38 – Configure subscription role assignment

Azure AD object management 43

8.	 In the Add role assignment window, configure the following:

Role: Owner

Assign access to: User, group, or service principal

Select the cloud-architects group.

Click on Save:

Figure 2.39 – Add role assignment

Congratulations! You have just granted permissions to users and groups in both Azure
AD and an Azure subscription.

44 Understanding Azure AD

Summary
In this chapter, we laid a solid foundation of Azure AD that we will be building on in
subsequent chapters. We discussed what Azure AD is, the different object types that it
supports, and how to manage these object types. This information is necessary before we
get into deeper discussions on managing access to Azure resources.

In the next module, we will cover how to integrate an on-premises Active Directory server
with Azure AD to create a centralized identity and access framework for both on-premises
legacy applications and modern cloud applications.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 True or False? Azure AD is on-premises Active Directory on Azure.

a. True

b. False

2.	 Which of the following is not a source of user identities in Azure AD?

a. An internal user created by an administrator.

b. An internal user synchronized from on-premises.

c. An external user invited by an administrator.

d. An internal user imported from ADFS.

3.	 Which of the following is not a valid Azure AD edition?

a. Free

b. Office 365

c. Basic

d. Premium P1

e. Premium P2

Further reading 45

4.	 You have the following two groups in your Azure AD tenant (Figure 2.41):

Figure 2.40 – Add role assignment
You have a requirement to add all London users and their devices into
London-Group. What should you do?

a. �Delete London-Group. Create a new group named London-Group that has
a membership type of Office 365. Add users and devices to the group.

b. Add a membership rule to London-Group.

c. �Change the membership type of London-Group to Assigned. Create
two new groups that have dynamic memberships. Add the new groups to
London-Group.

d. Modify the membership rule of London-Group.

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure AD Built-In Roles: https://docs.microsoft.com/en-us/azure/
active-directory/roles/permissions-reference

•	 Azure RBAC Built-In Roles: https://docs.microsoft.com/en-us/
azure/role-based-access-control/built-in-roles

•	 Azure Custom Roles: https://docs.microsoft.com/en-us/azure/
role-based-access-control/custom-roles

https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles

3
Azure AD Hybrid

Identity
Most organizations are not starting from nothing when they adopt Azure. They
already have an identity solution such as Active Directory Domain Services (AD DS)
on-premises to manage identity and access for existing applications. As it is not an
effective strategy to maintain multiple independent silos of user credentials, how should
such organizations approach their adoption of Azure and Azure Active Directory (AD)?
Luckily, Azure AD supports the synchronization of identities from existing on-premises
AD using a tool called Azure AD Connect.

In this chapter, you will learn about this tool, the concepts to consider before deploying
it, the different authentication options that it supports, and how to choose the best
authentication option for your use case. By the end of this chapter, you will understand by
practice how to implement Azure AD Connect to establish a hybrid identity architecture
between your on-premises AD and Azure AD.

Here are the topics that we will cover in this chapter:

•	 Implementing Azure AD hybrid identity

•	 Selecting a hybrid identity authentication method

•	 Implementing password writeback in a hybrid identity scenario

48 Azure AD Hybrid Identity

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

•	 An on-premises AD domain environment. The first exercise in this chapter will
walk you through the setup of an environment.

Implementing Azure AD hybrid identity
Maintaining multiple independent silos of user credentials carries with it an increased
risk of a data breach. How many times have we heard of security breaches that happened
as a result of ex-employees having unrevoked access to sensitive systems after leaving
their former organization? The access should have been disabled but because the
victim organization had many independent access control systems, it was missed. One
solution to this is to establish a centralized identity system where the provisioning and
de-provisioning of user identities happen in one place. This way, if a user leaves an
organization, the user account only needs to be disabled once in the central system! This is
exactly what Azure AD Connect can help organizations that already have an on-premises
AD DS solution to achieve as they adopt Azure AD.

Azure AD Connect
So, what is Azure AD Connect? It is a tool that can be used to synchronize objects such as
user accounts and groups from an on-premises AD DS environment into Azure AD. It can
be installed on-premises on any domain-joined Windows Server 2012 or later system.

Once deployed and configured, on-premises AD DS becomes the source of truth for digital
identities in the organization. What this means is that users, groups, and contact objects
in on-premises AD DS are automatically synchronized to Azure AD (Figure 3.1). This
allows us to centralize digital identity provisioning and management:

•	 When new objects are created on-premises, they are automatically created in
Azure AD.

•	 When those objects are disabled on-premises, they are automatically disabled in
Azure AD.

•	 When those objects are deleted on-premises, they are automatically deleted in
Azure AD.

Implementing Azure AD hybrid identity 49

•	 When the attributes of those objects are modified on-premises, the modifications
are automatically applied in Azure AD.

It is important to clarify that when we use the term objects in relation to Azure AD
Connect synchronization, this only applies to user, group, and contact objects. For
example, computer objects or shared folder objects in on-premises AD DS are not
synchronized to Azure AD. We can also configure the scope of synchronization based on
domains, Organizational Units (OUs), group membership, or attribute values (we will
cover this in more detail later):

Figure 3.1 – Azure AD Connect

Apart from synchronizing AD DS objects and their attributes to Azure AD, Azure AD
Connect can also facilitate some writeback from Azure AD to on-premises AD DS. This
opens up interesting use cases, such as self-service password reset.

Preparing for Azure AD Connect installation
Before deploying the Azure AD Connect tool, there are three essential steps that are
recommended to prepare for the installation:

•	 Prepare a system running Windows Server 2012 or above in our on-premises
environment. This will be the system that we will deploy the Azure AD Connect
tool on. Apart from the operating system requirement, it also needs to be joined to
our on-premises domain.

•	 Prepare two accounts with required permissions in on-premises AD DS and Azure
AD. Installing and configuring Azure AD Connect requires an Azure AD account
with the Global Administrator role assignment and an on-premises AD DS account
with Enterprise Administrator permissions. The Enterprise Administrator permission
in on-premises AD DS is required to create a synchronized user account in AD DS
and it is only required when we install and configure Azure AD Connect.

50 Azure AD Hybrid Identity

•	 Perform a health check on the on-premises AD DS objects to identify and remediate
potential issues that may lead to synchronization errors later. A good tool to use for
this is the free Microsoft IdFix tool. The tool can be used to identify common issues
such as duplicate or malformed proxyAddresses and userPrincipalName.
We will be using this tool in our hands-on exercise:

Figure 3.2 – Azure AD Connect pre-deployment preparation

Now that you have an idea of the steps needed to prepare for the implementation of Azure
AD hybrid identity, we will proceed to deploy an AD domain controller, which we will use
to complete other exercises that we will cover in this chapter.

Hands-on exercise – deploying an Azure VM hosting an
AD domain controller
In this hands-on exercise, we will complete the following tasks:

•	 Task 1: Deploy an Azure VM hosting an AD domain controller.

•	 Task 2: Create test users in AD DS.

Task 1 – deploying an Azure VM hosting an AD domain controller
Let's follow these steps:

1.	 Open a web browser and browse to this GitHub Azure Quickstart template:
https://github.com/Azure/azure-quickstart-templates/tree/
master/application-workloads/active-directory/active-
directory-new-domain.

https://github.com/Azure/azure-quickstart-templates/tree/master/application-workloads/active-directory/active-directory-new-domain
https://github.com/Azure/azure-quickstart-templates/tree/master/application-workloads/active-directory/active-directory-new-domain
https://github.com/Azure/azure-quickstart-templates/tree/master/application-workloads/active-directory/active-directory-new-domain

Implementing Azure AD hybrid identity 51

2.	 On the Create a new Windows VM and create a new AD Forest, Domain and DC
page, click on Deploy to Azure:

Figure 3.3 – Deploying a template to Azure

3.	 Sign in to the portal using the account that you used to sign up for your Azure account:

Figure 3.4 – Signing in to the Azure portal

52 Azure AD Hybrid Identity

4.	 On the Create an Azure VM with a new AD Forest blade, initiate a template
deployment with the following settings:

Subscription: Select your subscription.
Resource group: Create new | Name: onpremises-rg.
Region: Select the Azure region closest to your location.
Admin Username: onpremadmin.
Admin Password: QqLXXma6hAfs (you can enter any complex password. I
recommend using the same password for all the exercises to keep things simple).
Domain Name: az500lab.com.
Dns Prefix: az500lab-XXXXX (enter a random number to replace the
XXXXX placeholder).
Vm Size: Standard_D2s_v3.

5.	 Accept the default values for the remaining settings.

6.	 Click Review + create:

Figure 3.5 – Configuring the template parameters

Implementing Azure AD hybrid identity 53

After the validation has passed, click Create:

Figure 3.6 – Deploying the template

7.	 Wait for the deployment to complete. It could take between 15 to 20 minutes to
complete so feel free to come back to it later. After the deployment has completed,
click on Go to resource group:

Figure 3.7 – Waiting for the deployment to complete

54 Azure AD Hybrid Identity

8.	 In the onpremises-rg resource group blade, click on the deployed adVM
VM resource:

Figure 3.8 – Clicking on the adVM VM resource

9.	 In the adVM blade, in the Overview section, copy the DNS name value:

Figure 3.9 – Copying the adVM DNS name

10.	 On your system, open the Remote Desktop Connection (RDP) client and enter the
DNS name that you copied earlier, then click on Connect:

Implementing Azure AD hybrid identity 55

Figure 3.10 – Connecting to the adVM VM using RDP

11.	 In the Windows Security prompt, click on More choices | Use a different account
and enter the following details:

Username: onpremadmin

Password: QqLXXma6hAfs (or the password that you entered in Step 4)

12.	 Click OK to connect:

Figure 3.11 – Connecting to the adVM VM using RDP

56 Azure AD Hybrid Identity

13.	 In the security prompt that comes up, select Don't ask me again for connections to
this computer to prevent future prompts on certificate trust. Click Yes:

Figure 3.12 – Skipping future certificate trust prompts
You should now be connected to the VM using RDP:

Figure 3.13 – Connected to the adVM VM

Implementing Azure AD hybrid identity 57

Now that we've completed Task 1, let's move on to Task 2.

Task 2 – creating test users in AD DS
Let's follow these steps:

1.	 Within the RDP session to the adVM VM, right-click the Start button (lower-left
corner) and click on Command Prompt (Admin) to open the command console as
an administrator:

Figure 3.14 – Opening the command console as an administrator

2.	 Within the command-line console, type powershell and press Enter to switch to
the PowerShell console:

powershell

58 Azure AD Hybrid Identity

This is what it looks like in the console:

Figure 3.15 – Switching to the PowerShell console

3.	 Within the PowerShell console, run the following commands to download and run
a script that will create test users and groups. Note that the script assumes that you
used the az500lab.com domain name when you deployed the domain controller:

New-Item -Path "c:\" -Name "packtaz500" -ItemType
"directory"

Set-Location -Path "c:\packtaz500"

Invoke-WebRequest -Uri "https://raw.githubusercontent.
com/davidokeyode/azure-offensive/master/
packtaz500testusers.ps1" -OutFile "packtaz500testusers.
ps1"

.\packtaz500testusers.ps1

When prompted to enter a password for the test users, enter the password
QqLXXma6hAfs (or any other complex password. It is recommended to use the
same password as earlier to keep things simple):

Figure 3.16 – Entering a password when prompted

Implementing Azure AD hybrid identity 59

4.	 In the PowerShell console, enter dsa.msc and press Enter to open Active Directory
Users and Computers:

Figure 3.17 – Opening Active Directory Users and Computers

5.	 Review the OU called OrgUsers to see the OUs, groups, and users created by
the script:

Figure 3.18 – Reviewing AD objects

Leave the RDP session open for later exercises in this chapter.

Hands-on exercise – preparing for Azure AD Connect
deployment
In this section, we'll carry out two tasks:

•	 Task 1: Create an Azure AD user with the Global Administrator role.

•	 Task 2: Run IdFix to identify and remediate potential object synchronization issues.

60 Azure AD Hybrid Identity

Unlike in the previous section, we'll cover both tasks in one set of instructions:

1.	 In the Azure portal, go to the Azure AD console:

Figure 3.19 – Deploying the template

2.	 In the Azure AD console, click on Users and then click on New user:

Figure 3.20 – Creating a syncadmin user

3.	 In the New user blade, create a new user with the following settings:

User name: syncadmin, and select @<Azure-AD-DNS-domain-name> where
<Azure-AD-DNS-domain-name> represents the default Azure AD primary DNS
domain. You will need it later in this lab.

Implementing Azure AD hybrid identity 61

Name: syncadmin.

Password: Click Let me create the password and type QqLXXma6hAfs
(you can enter any complex password in the initial password text box).

Groups: 0 groups selected.

Roles: Click User and select Global administrator.

Important Note
An Azure AD user with the Global Administrator role is required to implement
Azure AD Connect.

4.	 Accept the default values for the remaining settings.

5.	 Click Create:

Figure 3.21 – Creating the syncadmin user

62 Azure AD Hybrid Identity

6.	 Open an InPrivate browser window (or Incognito if you are using Chrome),
browse to the Azure portal, https://portal.azure.com, sign in with the
syncadmin temporary credentials, and update it when prompted:

Figure 3.22 – Updating the syncadmin credentials

7.	 In the RDP session to the adVM VM, open PowerShell as an administrator if you
have closed the previous session, then run the following commands to download
and run the IdFix tool:

Set-Location -Path "c:\packtaz500"

[Net.ServicePointManager]::SecurityProtocol
= [Net.SecurityProtocolType]::Tls, [Net.
SecurityProtocolType]::Tls11, [Net.
SecurityProtocolType]::Tls12, [Net.
SecurityProtocolType]::Ssl3

[Net.ServicePointManager]::SecurityProtocol = "Tls,
Tls11, Tls12, Ssl3"

Invoke-WebRequest -Uri "https://github.com/microsoft/
idfix/raw/master/publish/setup.exe" -OutFile "idfix.exe"

.\idfix.exe install

https://portal.azure.com

Implementing Azure AD hybrid identity 63

8.	 In the Application Install - Security Warning window, click Install:

Figure 3.23 – Clicking to install IdFix

9.	 In the Open File - Security Warning window, click on Run:

Figure 3.24 – Clicking to run IdFix

64 Azure AD Hybrid Identity

10.	 In the IdFix Privacy Statement message box, click OK:

Figure 3.25 – Clicking to accept the privacy terms
In the IdFix toolbar, click Query. You should see a few objects with errors but the one
that we are concerned with is the error for the user object named Kerri Ondrich.
You can see that IdFix has identified invalid characters in the userPrincipalName
attribute and also proposed a fix in the UPDATE column.

To apply the fix, set the ACTION column for the user object to EDIT, then click
on Apply:

Figure 3.26 – Applying the recommended fix to a user object

Selecting a hybrid identity authentication method 65

11.	 In the Apply Pending dialog box, click Yes.:

Figure 3.27 – Clicking Yes to apply the update
Notice the COMPLETE status in the ACTION column, which indicates a
successful write

12.	 In the IdFix toolbar, click Query again to verify that the error for the user object
named Kerri Ondrich is no longer displayed (as it has been corrected).

Congratulations! You have successfully prepared your on-premises AD environment for
integration with Azure AD. In the next section, we will start reviewing some of the choices
that we need to make when implementing hybrid identity.

Selecting a hybrid identity authentication
method
When implementing Azure AD Connect using custom settings, we have the option
to choose the authentication method that we want to use. There are three options that
are available:

•	 Password Hash Synchronization (PHS)

•	 Federation

•	 Pass-Through Authentication (PTA)

PHS is one of the authentication methods that we can implement when we configure
hybrid identity using Azure AD Connect. It is the default option. So, how do we
implement this authentication method?

1.	 First, we install Azure AD Connect on-premises. This creates a secure outbound
connection between on-premises AD DS and Azure AD.

66 Azure AD Hybrid Identity

2.	 We select the PHS option and configure the scope of synchronization that identifies
the boundary of the objects that we want Azure AD Connect to synchronize to
Azure AD.

3.	 Azure AD Connect synchronizes the user objects, attributes, and password hashes
from an on-premises AD DS instance to Azure AD:

Important Note
Passwords are never stored in clear text or encrypted with a reversible
algorithm in Azure AD but are hashed with a strong one-way hashing
algorithm such as SHA256. When Azure AD Connect synchronizes the
password hash of user objects, it synchronizes a SHA256 hash of the original
MD4 hash that is stored in on-premises AD DS. This is a security measure
to prevent an on-premises pass-the-hash attack in the unlikely event that
the hash stored in Azure AD is stolen. You can read more about this here:
https://docs.microsoft.com/en-us/azure/active-
directory/hybrid/how-to-connect-password-hash-
synchronization.

Figure 3.28 – PHS

So, what does the authentication process look like for a user when this authentication
method is implemented?

1.	 When an unauthenticated user tries to access a cloud application, they are
redirected to the Azure AD user sign-in page.

https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-password-hash-synchronization
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-password-hash-synchronization
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-password-hash-synchronization

Selecting a hybrid identity authentication method 67

2.	 The user signs in with a username and password. Azure AD fulfills the
authentication request as it has the password hash of the user.

3.	 The user's client receives an access token from Azure AD that they can use to access
the cloud application.

The main advantage of using this authentication method is that it does not rely on our
on-premises infrastructure to fulfill authentication requests. Even if the connection between
on-premises AD DS and Azure AD is broken, Azure AD can still fulfill authentication
requests as it has the user password hashes. Another advantage of this method is that we
can implement a security feature called leaked credential detection. This security feature
detects whether our user credentials have been identified in publicly leaked username/
password pairs (we will discuss this feature in more detail in Chapter 4, Azure AD Identity
Security, of this book).

The main downside of the PHS authentication method is that it does not support
on-premises AD DS user-level security. This means that organizations that want to enforce
their on-premises AD DS user security and password policies will not be able to so with this
authentication method. This is because authentication requests are not fulfilled on-premises
so those policies cannot be applied. Also, on-premises Multi-Factor Authentication (MFA)
servers cannot be used with this authentication method. So, if an organization uses a
third-party on-premises MFA server, this will not factor in authentication requests. Another
downside is that some organizations may not be allowed to synchronize password hashes
outside of their environment to an infrastructure that is not completely in their control. This
is especially true for very highly regulated industries. For those special cases, they may not
be able to implement this option.

Federation
For those organizations that may not be able to implement PHS due to the compliance
requirements of password hash storage, an option that they can implement is federation.
This option allows organizations to configure a trust relationship between their
on-premises federation servers and Azure AD. With the federation authentication method,
authentication requests are redirected to the on-premises federation servers in order to
be fulfilled on-premises. The method currently supports two federation services – Active
Directory Federation Services (AD FS) and PingFederate (another federation service
similar to AD FS). So, how do we implement this authentication method?

1.	 First, we install Azure AD Connect on-premises. This creates a secure outbound
connection between on-premises AD DS and Azure AD.

68 Azure AD Hybrid Identity

2.	 We select one of the federation options (AD FS or PingFederate) and configure the
scope of synchronization, which identifies the boundary of the objects that we want
Azure AD Connect to synchronize to Azure AD.

3.	 Azure AD Connect synchronizes the user objects and attributes from an
on-premises AD DS instance to Azure AD. Password hashes are not synchronized:

Figure 3.29 – Hybrid identity federation

So, what does the authentication process look like for a user when this authentication
method is implemented?

1.	 When an unauthenticated user tries to access a cloud application, they are
redirected to the Azure AD user sign-in page.

2.	 Azure AD then redirects the user to the federation sign-in page.

3.	 The user signs in with a username and password.

4.	 The federation server fulfills the authentication request on-premises.

The main advantage of using this authentication method is that password hashes are
not synchronized to Azure AD, which enables certain organizations to fulfill very strict
regulatory requirements. Another advantage of this method is that on-premises AD DS
user-level security policies will be applied and an on-premises MFA server can be used.
This is because authentication requests are fulfilled on-premises.

Selecting a hybrid identity authentication method 69

The main downside of the federation authentication method is that it depends on the
availability of the on-premises infrastructure. If the on-premises infrastructure experiences
downtime, no one will be able to authenticate to cloud applications! To prevent this,
organizations end up having a redundant implementation of the federation proxy server
and the federation server, which increases the complexity and the ongoing management
overhead of the implementation. Another downside of this method is that the leaked
credential detection security feature cannot be used for hybrid identity as Azure AD does
not have the user password hashes.

Pass-Through Authentication (PTA)
PTA is another option that can be implemented by organizations that have a compliance
requirement to keep password hash storage in-house. This is achieved using a lightweight
agent that can be installed on one or more on-premises servers (it can even be installed
on the same server that Azure AD Connect is installed on). So, how do we implement this
authentication method?

First, we install Azure AD Connect on-premises. This creates a secure outbound
connection between on-premises AD DS and Azure AD.

We select one of the PTA options and configure the scope of synchronization that identifies
the boundary of the objects that we want Azure AD Connect to synchronize to Azure AD.

Azure AD Connect synchronizes the user objects and attributes from an on-premises AD
DS instance to Azure AD. Password hashes are not synchronized.

We download and install the PTA agent on-premises:

Figure 3.30 – PTA

70 Azure AD Hybrid Identity

So, what does the authentication process look like for a user when this authentication
method is implemented?

1.	 When an unauthenticated user tries to access a cloud application, they are
redirected to the Azure AD user sign-in page.

2.	 The user signs in with a username and password.

3.	 Azure AD collects the user's authentication information, encrypts the password
using the public key of the on-premises authentication agent, and temporarily
places it in a queue.

4.	 An on-premises PTA agent retrieves the username and encrypted password from
the queue over a pre-established persistent connection. The agent then decrypts the
password by using its private key.

5.	 The agent validates the username and password against an on-premises AD
DS server.

6.	 The agent returns the authentication response back to Azure AD.

PTA allows us to keep our password hashes on-premises without the management
overhead of AD FS. However, it still has the disadvantage of relying on customer
infrastructure. What you will usually see is that customers use PTA as their primary
option with PHS as a backup option (for disaster recovery).

Azure AD Connect deployment options
When installing Azure AD Connect, we have the option to use Express Settings or
Custom Settings. The Express Settings option automatically uses certain defaults, such as
PHS (instead of presenting us with an option to select the authentication method that we
want to implement), synchronization of all users in a single domain (instead of giving us
filtering options to decide which objects we want to sync), and the use of SQL Express for
the synchronization database.

The Custom Settings option gives us the flexibility to select our implementation options
and customize the tool for our specific requirements:

•	 We can select the authentication method that we want to implement (PHS, PTA,
or federation).

•	 If we select federation or PTA, we can choose to use the PHS option as a backup in
the event that our on-premises infrastructure experiences downtime.

•	 We can choose to use the built-in SQL Express database or a licensed SQL server for
the synchronization database implementation.

Selecting a hybrid identity authentication method 71

•	 We can customize our setup to work for a multi-domain scenario.

•	 We can choose to filter the objects that Azure AD Connect synchronizes to Azure
AD by domain, OU, group, or even object attributes.

•	 We can choose the object attributes that we want Azure AD Connect to synchronize
from on-premises AD DS to Azure AD.

Figure 3.31 shows the window where we are presented with the choice of selecting either
the Express Settings option or the Custom Settings option:

Figure 3.31 – Azure AD Connect deployment options

Now that we have an understanding of Azure AD hybrid identity authentication and
deployment options, we will proceed to set this up in the next exercise.

Hands-on exercise – deploying Azure AD Connect PHS
In this exercise, we will complete the following tasks:

•	 Task 1: Install Azure AD Connect.

•	 Task 2: Verify directory synchronization.

72 Azure AD Hybrid Identity

Let's follow these steps:

1.	 Within the RDP session to adVM, from Server Manager, click on the Start button,
then click on Server Manager to open the Server Manager console:

Figure 3.32 – Opening Server Manager

2.	 In the Server Manager console, click on Local Server in the left-hand tab, then
click On in front of the IE Enhanced Security Configuration option:

Selecting a hybrid identity authentication method 73

Figure 3.33 – Configuring IE Enhanced Security Configuration

3.	 In the Internet Explorer Enhanced Security Configuration window, set both
options to Off and click OK:

Figure 3.34 – Setting Internet Explorer Enhanced Security Configuration to Off

4.	 Within the RDP session to adVM, open a web browser and browse to https://
www.microsoft.com/en-us/download/details.aspx?id=47594.

https://www.microsoft.com/en-us/download/details.aspx?id=47594
https://www.microsoft.com/en-us/download/details.aspx?id=47594

74 Azure AD Hybrid Identity

5.	 Click on Download on the web page that opens:

Figure 3.35 – Clicking to download Azure AD Connect

6.	 On the download prompt, click on Run to both download and run the installer:

Figure 3.36 – Downloading and running the installer

7.	 In the Microsoft Azure Active Directory Connect wizard that opens, select the
option to agree to the license terms and privacy notice, then click Continue:

Figure 3.37 – Downloading and running the installer

Selecting a hybrid identity authentication method 75

8.	 On the Express Settings page, select the Customize option:

Figure 3.38 – Selecting Customize

9.	 On the Install required components page, leave all the optional configuration
options deselected and click Install:

Figure 3.39 – Installing Azure AD Connect

76 Azure AD Hybrid Identity

10.	 On the User sign-in page, review the available options. These are the options
that we discussed earlier in this chapter. Ensure that only Password Hash
Synchronization is selected and click Next:

Figure 3.40 – Selecting Password Hash Synchronization

11.	 On the Connect to Azure AD page, enter the credentials of the syncadmin
account that was created earlier:

USERNAME: syncadmin@<Azure-AD-DNS-domain-name>

PASSWORD: QqLXXma6hAfs (or the complex password that you used earlier):

Selecting a hybrid identity authentication method 77

Figure 3.41 – Entering Azure AD credentials

12.	 When prompted to connect your directories, click on Add Directory to add the
az500lab.com forest:

Figure 3.42 – Adding the on-premises forest

13.	 In the AD forest account window, configure the following:

Select account option: Create new AD account

ENTERPRISE ADMIN USERNAME: AZ500LAB\onpremadmin

78 Azure AD Hybrid Identity

PASSWORD: QqLXXma6hAfs (or the complex password that you used earlier)

Click OK:

Figure 3.43 – Configuring the on-premises Enterprise Admin account

14.	 Once the directory is successfully added, click Next:

Figure 3.44 – Verifying that the on-premises domain was added

Selecting a hybrid identity authentication method 79

15.	 On the Azure AD sign-in configuration page, note the warning stating users
will not be able to sign in to Azure AD with on-premises credentials if the UPN
suffix does not match a verified domain name, and enable the Continue without
matching all UPN suffixes to verified domains checkbox:

Figure 3.45 – Continuing without matching UPN suffixes

80 Azure AD Hybrid Identity

16.	 On the Domain and OU filtering page, select the Sync selected domains and OUs
option and ensure that only the OrgUsers OU is selected. This option allows us to
filter the scope of objects that we want Azure AD Connect to synchronize to Azure
AD based on the domain and OU:

Figure 3.46 – Continuing without matching UPN suffixes

17.	 On the Uniquely identifying your users page, accept the default settings.

18.	 On the Filter users and devices page, accept the default settings.

Selecting a hybrid identity authentication method 81

19.	 On the Optional features page, select Password writeback and click Next. We
will complete the configuration of the password writeback feature in a later exercise
and test it:

Figure 3.47 – Enabling password writeback in Azure AD Connect

82 Azure AD Hybrid Identity

20.	 On the Ready to configure page, ensure that the Start the synchronization process
when configuration completes checkbox is selected, then click Install to continue
with the installation process:

Important Note
Installation should take about 2 minutes.

Figure 3.48 – Concluding the configuration and installing

Selecting a hybrid identity authentication method 83

21.	 Click Exit to close the Microsoft Azure Active Directory Connect window once
the configuration is completed:

Figure 3.49 – Exiting after the installation has completed

22.	 Open a web browser and navigate to the Azure portal, https://portal.
azure.com, then open the Azure AD console.

https://portal.azure.com
https://portal.azure.com

84 Azure AD Hybrid Identity

23.	 In the Azure AD console, click on Users. Notice that the list of user objects includes
user accounts that were synchronized from on-premises AD DS. Review the
Directory synced column to identify the synchronized users:

Figure 3.50 – Reviewing the Directory synced column

Congratulations! You have now successfully implemented a hybrid identity setup with
on-premises AD and Azure AD.

Synchronization Rules Editor
The synchronization of objects from on-premises AD to Azure AD can be
managed using another tool called the Synchronization Rules Editor. This tool
is installed by default when we install Azure AD Connect. It can be used to
configure complex synchronization rules such as preventing users with certain
attributes from being synchronized to Azure AD. You can learn more about
it from this document: https://docs.microsoft.com/en-us/
azure/active-directory/hybrid/how-to-connect-sync-
change-the-configuration.

https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sync-change-the-configuration
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sync-change-the-configuration
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sync-change-the-configuration

Implementing password writeback 85

Implementing password writeback
Password writeback is a popular feature of Azure AD Connect. It allows us to write
password changes in Azure AD back to on-premises AD, provided that the password
does not violate the on-premises AD password policy. It is supported for all three hybrid
identity authentication methods (PHS, federation, and PTA).

The main use case of this feature is to implement a self-service password reset solution.
This way, a user can reset their password using the Forgot Password option from a
cloud application, and the password is written to Azure AD and then written back to
on-premises AD!

It is worth noting that administrators control the scenarios where this will be possible. For
example, we can choose the users/groups that will be able to use this feature and we can
configure the additional authentication methods that will be required for a reset request
(Figure 3.51). For security reasons, you may choose not to enable this feature for highly
privileged user accounts:

Figure 3.51 – Reviewing the Directory synced column

I strongly recommend going through this link by Microsoft to find out how this feature
works: https://docs.microsoft.com/en-us/azure/active-directory/
authentication/concept-sspr-writeback.

https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-sspr-writeback
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-sspr-writeback

86 Azure AD Hybrid Identity

Summary
In this chapter, we covered the necessary steps to plan for an Azure AD hybrid identity
implementation and what to consider when selecting the right authentication method for
your implementation. We also covered the different deployment options of the Azure AD
Connect tool and the implementation of password writeback for self-service password reset
scenarios. The knowledge that you gained in this chapter has equipped you with how to
create a centralized identity and access framework using Azure AD and on-premises AD.

In the next chapter, we will start to cover how to secure our Azure identities using the
built-in security capabilities of Azure AD.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 Which of the following is not a hybrid identity authentication method when
implementing Azure AD Connect?

a. Password hash synchronization

b. Active Directory Federation Services

c. Pass-through authentication

d. Instant authentication

2.	 You need to recommend a hybrid identity implementation that ensures that
password policies and user login restrictions applied to user accounts in
on-premises AD are applied to users when authenticating to cloud applications that
use Azure AD. Your solution should use the least amount of servers possible. Which
authentication method should you recommend?

a. Password hash synchronization

b. Federated identity with Active Directory Federation Services

c. Password hash synchronization with seamless single sign-on

d. Pass-through authentication with seamless single sign-on

Further reading 87

3.	 You have implemented hybrid identity using Azure AD Connect. Your
implementation currently synchronizes all on-premises identities to Azure AD.
You need to prevent users who have a givenName attribute that starts with DEMO
from being synced to Azure AD. Your solution must minimize administrative effort.
What should you use?

a. The Azure AD Connect wizard

b. Active Directory Users and Computers

c. The Synchronization Rules Editor

d. The Web Service configuration tool

4.	 True or false: Passwords stored in Azure AD are stored with a reversible
encryption algorithm.

a. True

b. False

5.	 You plan to deploy Azure AD Connect using the Express Settings deployment
option. Which two roles and groups are required to perform this installation? You
must use the principle of least privilege.

a. The Domain Admins group in Active Directory

b. The Security Administrator role in Azure AD

c. The Global Administrator role in Azure AD

d. The Enterprise Admins group in Active Directory

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Password hash synchronization: https://docs.microsoft.com/en-us/
azure/active-directory/hybrid/whatis-phs?WT.mc_id=AZ-
MVP-5003870

•	 Pass-through authentication: https://docs.microsoft.com/en-us/
azure/active-directory/hybrid/how-to-connect-pta?WT.mc_
id=AZ-MVP-5003870

•	 Azure AD authentication methods: https://docs.microsoft.com/
en-us/azure/active-directory/authentication/concept-
authentication-methods?WT.mc_id=AZ-MVP-5003870

https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-phs?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-phs?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-phs?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-authentication-method﻿s?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-authentication-method﻿s?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-authentication-method﻿s?WT.mc_id=AZ-MVP-5003870

4
Azure AD Identity

Security
A common attack entry point to Azure environments is by compromising Azure AD
identities and credentials. The risk is greater if the compromised identity belongs to a
privileged account, which has broader access in the environment. Mitigating identity
security risks and configuring secure access is a key objective of the Azure Security
Engineer certification exam.

In previous chapters, we covered Azure AD and how to manage its identities. In this
chapter, we will explore how to secure those Azure identities using the advanced security
features of Azure AD. By the end of this chapter, you will understand how to configure
protection against common identity-related attacks in Azure AD.

Here are the topics that we will cover in this chapter with accompanying hands-on
exercises:

•	 Implementing Azure AD Password Protection

•	 Securing Azure AD users with multi-factor authentication (MFA)

•	 Implementing Conditional Access policies

•	 Protecting identities with Azure AD Identity Protection

90 Azure AD Identity Security

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 The Tor Browser downloaded and installed on your computer.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Implementing Azure AD Password Protection
Many identity systems rely on password complexity requirements to protect against
password-related attacks such as password guessing and brute force. While this can
provide a level of protection by forcing users to select passwords that are difficult to crack,
it can also give a false sense of security. The reason for this is that there are passwords that
users can select that may satisfy password complexity requirements but can still be easily
guessed by attackers.

Take a password such as Pa$$w0rd1, for example. This password meets most complexity
requirements (nine characters; includes uppercase and lowercase characters; includes
special characters; includes digits). However, it is a common password that attackers are
aware of, and this makes accounts that use it vulnerable to password spray attacks. The
mitigation, in this case, is to ensure that your users cannot choose weak and vulnerable
passwords like this even if they meet the required complexity policy. This is where the
feature of Azure AD called Password Protection can help us!

So, what is Azure AD Password Protection? It is a native feature of Azure AD that has
three main functionalities:

1.	 Global banned password list:

This is essentially an automatically generated list of vulnerable passwords that Azure
AD users are banned from using regardless of whether they satisfy complexity
requirements. This list is compiled and regularly updated by the Azure AD Identity
Protection team (not by the customer) based on their intelligence-gathering
activities. To prevent cyber criminals from using this list for attacks, Microsoft does
not publish it. The list is automatically used as a password filter for every password
SET or RESET OPERATION in Azure AD.

So how do we enable this functionality of password protection? The good thing
is that it is enabled by default for all Azure AD tenants regardless of the edition
(Free, Office 365, Premium P1 and P2) and cannot be disabled (Figure 4.2).

Implementing Azure AD Password Protection 91

2.	 Custom banned password list:

In addition to the global banned password list, a customer with an Azure AD
Premium P1 or P2 license may add their own custom list of a thousand banned
passwords. This way, administrators can manage their own list of vulnerable
passwords to block.

When implemented, the combined global and custom banned password list is used
as a password filter for every password SET or RESET OPERATION to prevent
the variants of the passwords from both lists from being chosen by users/admins
(Figure 4.1).

This functionality of Azure AD Password Protection is only available in Azure AD
Premium P1 or P2 editions (Figure 4.2).

Figure 4.1 highlights how the global and custom banned password list
functionalities of Password Protection work:

 Figure 4.1 – Azure AD Password Protection
Step 1: User or administrator initiates a password set or reset operation.

Step 2: The specified password is validated against password variants in both the
Global banned password list and the Custom banned password list.

Step 3: If the specified password does not match any password or variant in both
lists, the password is accepted and applied by Azure AD. If the specified password
matches any password or variant in any of the lists, the user or admin is blocked
from choosing that password.

92 Azure AD Identity Security

3.	 Active Directory Domain Services (ADDS) integration:

The functionality of Password Protection allows us to extend both global and
custom banned password lists to our on-premises Active Directory environments.
Similar to the custom banned password list capability, it requires Azure AD
Premium P1 or P2 editions (Figure 4.2):

Figure 4.2 – Azure AD Password Protection licensing
Figure 4.3 highlights how the ADDS integration capability of Password
Protection works:

Figure 4.3 – Azure AD Password Protection ADDS integration
Step 1: Configure the password protection custom banned password list in Azure
AD (remember that the global banned password list is enabled by default and
cannot be disabled).

Implementing Azure AD Password Protection 93

Step 2: Prepare a member server that is joined to the on-premises domain. This
is a mandatory requirement. The member server will be used as the password
protection proxy service. This server will download the banned password lists
directly from the Azure AD (via the internet) to avoid the domain controller having
to connect outbound to the internet.

Step 3: Install the Azure AD Password Protection DC agent on the domain controller
and the Azure AD Password Protection proxy service on the member server.

Step 4: The Password Protection agent on the domain controller through the
password protection proxy service requests that the password protection policy be
downloaded from Azure AD (it does this at startup and on an hourly schedule).

Step 5: Whenever there is a password change operation performed on-premises, the
password will be validated against the downloaded banned password list.

Now that you have some understanding of Azure AD Password Protection, you
will implement and verify one of its features – the custom banned password list, in
the next exercise.

Hands-on exercise – Configuring the custom banned
password list feature of Azure AD Password Protection
Here are the tasks that will be completed in this exercise:

•	 Reviewing Azure AD licensing

•	 Enabling and configuring the custom banned password list

•	 Disabling Azure AD security defaults

•	 Verifying custom banned password lists

Let's now complete the aforementioned tasks by performing the following steps:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 Sign in to the portal using the account that you used to sign up in the
previous chapter.

https://portal.azure.com
https://portal.azure.com

94 Azure AD Identity Security

3.	 Click the portal menu icon in the top-left corner and select Azure Active Directory:

Figure 4.4 – Selecting Azure AD

4.	 In the Default Directory | Overview blade, click on Licenses and then click on
Licensed Features:

Figure 4.5 – Selecting Azure AD licenses

Implementing Azure AD Password Protection 95

5.	 In the Licenses | Licensed features blade, search for password protection
(lowercase). Review the Feature available column. You should see that the
three password protection features are available. Close the Licenses | Licensed
features blade:

Figure 4.6 – Verifying the Password Protection feature

6.	 In the Default Directory | Overview blade, click on Security and then click on
Authentication Methods and Password protection:

Figure 4.7 – Configuring password protection

96 Azure AD Identity Security

7.	 In the Authentication methods | Password protection blade, configure the following:

Custom banned passwords

Enforce custom list: Yes

Custom banned password list: superclouds

Password protection for Windows Server Active Directory

Enable password protection on Windows Server Active Directory: No

Leave the other settings as their default settings and then click on Save.

Close the Authentication methods | Password protection blade.

Close the Security | Getting started blade:

Figure 4.8 – Configuring the custom banned password list

Implementing Azure AD Password Protection 97

Important note
When a password is added to the custom banned password list, variants of the
password are also automatically blocked. For example, adding superclouds
to the list automatically blocks variants such as $upercl0ud$ and
$upercl0uds123.

8.	 In the Default Directory | Overview blade, click on Properties and then click on
Manage Security defaults:

Figure 4.9 – Azure AD Properties

9.	 In the Enable Security Defaults blade, configure the following:

Enable Security Defaults: No.

We'd love to understand why you're disabling Security defaults so we can make
improvements: Select Other.

In the textbox, enter Testing.

98 Azure AD Identity Security

Click Save:

Important note
Security defaults is a setting that is automatically enabled on new Azure AD
tenants. It configures Microsoft-managed identity security settings that enforce
the following: It requires all users and admins to register for MFA; it challenges
users with MFA when they log in using a new device or app; it disables
authentication from legacy authentication clients that have no MFA support.
As we will be implementing customer-managed identity security capabilities in
this chapter, we should disable this setting to avoid a conflict with the features
that we will be implementing and testing.

Figure 4.10 – Disabling security defaults

Implementing Azure AD Password Protection 99

10.	 Open a new InPrivate or Incognito browser window and browse to the Azure
portal: https://portal.azure.com.

11.	 In the Sign in window, enter the username of the user named Brenda that you
created in Chapter 2, Understanding Azure AD, and then click Next:

Figure 4.11 – Signing in as Brenda

12.	 In the Enter password window, enter the initial password that you configured
for the user in Chapter 2, Understanding Azure AD. The recommended password
was QqLXXma6hAfs (if you used a different password, make sure you enter this
instead). Click Sign in.

13.	 In the Update your password window, enter the following:

Current password: Enter the initial password again.

New password: superclouds.

Confirm password: superclouds.

Click Sign in.

You should receive an error message about the password being banned.

https://portal.azure.com

100 Azure AD Identity Security

You can try using variations of the banned password, such as $upercl0ud$ and
$upercl0uds123. You should receive the same message:

Figure 4.12 – Blocked banned password error message

14.	 In the Update your password window, enter the following:

Current password: Enter the initial password again.

New password: Enter a complex password. Make a note of this password as you will
need it later.

Confirm password: Re-enter the complex password.

Click Sign in.

Leave the browser open for the next exercise.
In this exercise, you enabled and configured the custom banned password list for Azure
AD. This is one of the functionalities of password protection that we discussed earlier. In
the next section, we will discuss how to protect Azure AD identities using the native MFA
capabilities of Azure AD.

Securing Azure AD users with multi-factor authentication (MFA) 101

Securing Azure AD users with multi-factor
authentication (MFA)
If we look at the threat landscape against user identities today, there are few types of
attacks where having a complex password can help. Complex passwords could provide
some mitigation against threats such as password spray and brute-force attacks, but they
offer no mitigation against other prominent identity threats such as credential stuffing,
breach replay, phishing, database extraction, and malware sniffing. Why? Because in all
those cases, the password is already exposed! For example, in the case of a successful
phishing attack, the attacker already has the password! This is why MFA is critical to
identifying security. Luckily for us, Azure AD comes with native MFA capabilities that are
easy to implement.

Azure AD MFA enables users to validate their identities using an additional form of
authentication (beyond username and password) during sign-in. When implemented,
users have the option of validating their identities using any of the methods below in
combination with their passwords:

•	 Phone call: The Azure AD MFA service places a call to the user's registered phone
number. The user then approves the authentication using their phone keypad.

•	 Text message: The Azure AD MFA service sends a six-digit code to the user's
registered mobile phone number. The user then enters the verification code into the
sign-in interface to complete the authentication.

•	 Mobile app notification: The Azure AD MFA service sends a verification request
to a user's smartphone, which asks them to complete the verification by selecting
Verify in the mobile app.

•	 Mobile app verification code: The Azure AD MFA service sends a six-digit OATH
verification code to the user's mobile app. The user then enters this code on the
sign-in page. This code is changed every 30 seconds.

•	 Open Authentication (OATH) compliant tokens (hardware or software): The
Azure AD MFA service prompts the user to enter the one-time password code
displayed on their OATH device. The user enters this code on the sign-in page to
complete authentication.

There are different ways to implement MFA in Azure AD. The basic method is to
enable MFA by changing a user state. This is also referred to as per user MFA and you
will configure this in the next exercise. The downside to this method is that the user
will be prompted for MFA for all applications that they access (except if their source IP
is configured as a trusted IP for exclusion). Users getting prompted for MFA for every
application may result in a poor user experience.

102 Azure AD Identity Security

A better option is to enable MFA with conditional access policies. This option allows us
to only prompt users for MFA based on the conditions that we define, providing a more
granular MFA experience. For example, we can configure a policy to challenge users for
MFA only if they are connecting from an unexpected or unusual location, but if they are
working from a trusted office network, they are not prompted. We will cover conditional
policies in more detail later in this chapter, but for now, just know that this option requires
Azure AD Premium editions (P1 or P2).

Hands-on exercise – Enabling MFA by changing
user state
In this exercise, we will enable MFA for users by using the basic method of changing a
user's state. Here are the tasks that we will complete:

•	 Task 1: Enable MFA for the user – Brenda Tao.

•	 Task 2: Complete the MFA registration process for the user.

Let's now complete the aforementioned tasks by performing the following steps:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 Sign in to the portal using the account that you used to sign up in the previous chapter.

3.	 Click the portal menu icon in the top-left corner and select Azure Active Directory:

Figure 4.13 – Selecting Azure AD

4.	 In the Default Directory | Overview blade, click on Security and then click on MFA:

https://portal.azure.com
https://portal.azure.com

Securing Azure AD users with multi-factor authentication (MFA) 103

Figure 4.14 – Azure AD MFA option

5.	 In the Multi-Factor Authentication | Getting started blade, click on Additional
cloud-based MFA settings. This will open a new browser page where you can see
the MFA configuration options.

This is where we can enable or disable app passwords that allow users to create
unique account passwords for apps that do not support MFA. We can also configure
trusted IPs for which to skip MFA:

Figure 4.15 – Configuring MFA settings

104 Azure AD Identity Security

6.	 In the multi-factor authentication service settings page, scroll down to the
verification options section, ensure that only the Text message to phone and
Notification through mobile app options are selected. Click on Save and then
click on Close:

Figure 4.16 – MFA verification options

7.	 On the multi-factor authentication service settings page, click on users, select
Brenda Tao, and then click on Enable. Click on enable multi-factor auth and then
click on Close:

Figure 4.17 – Enabling user MFA

Securing Azure AD users with multi-factor authentication (MFA) 105

8.	 Open a different browser in InPrivate or incognito mode and browse to the Azure
Portal: https://portal.azure.com.

9.	 In the Sign in window, enter Brenda's username and then click Next:

Figure 4.18 – Signing in as Brenda

10.	 In the Enter password window, enter the password that you set for Brenda earlier.
Click Sign in.

11.	 In the More information required window, click Next:

Figure 4.19 – MFA registration prompt

https://portal.azure.com

106 Azure AD Identity Security

12.	 In the Keep your account secure window, click on Next. Then, click on Next again:

Figure 4.20 – MFA registration setup

13.	 Open the Microsoft Authenticator app on your mobile phone and click on Add
Account à Work or school account à Scan QR code à Click Next.

14.	 In the Scan the QR Code window, scan the QR code and then click Next:

Figure 4.21 – MFA device QR code scan

Securing Azure AD users with multi-factor authentication (MFA) 107

15.	 A notification will be sent to your mobile phone, approve the notification, and then
click Next:

Figure 4.22 – MFA device notification approved

16.	 In the Phone window, select your country code and enter your phone number.
Click Next:

Figure 4.23 – MFA phone registration

108 Azure AD Identity Security

17.	 Enter the verification code sent to your phone and click Next. Click Next again, and
then click Done:

Figure 4.24 – MFA registration verification code

We have now successfully enabled MFA for a user and completed the registration of the
user's device for MFA verification. In the next section, we will start to look at the more
advanced security capabilities of Azure AD, starting with conditional access.

Implementing conditional access policies
Conditional access is an Azure AD feature that protects applications by requiring certain
criteria (beyond identity authentication) to be met before access is granted. What exactly
does this mean? For us to understand how conditional access works, let's review how
normal application access works with Azure AD and then compare the process to how it
works when we implement conditional access:

Figure 4.25 – Normal application access (without conditional access)

Implementing conditional access policies 109

Figure 4.25 illustrates the normal application access flow (without conditional access):

•	 Step 1: A user accesses an application that uses Azure AD as its identity provider.

•	 Steps 2 and 3: The user's client is redirected to Azure AD, which validates the first
factor of authentication – the user's password. If MFA is required, MFA will also
be verified.

•	 Steps 4 and 5: Following successful verification, the user's client is granted an access
token for the application.

Now, let's compare this with the flow using conditional access:

Figure 4.26 – Normal application access (with conditional access)

Figure 4.26 illustrates the following:

•	 Step 1: A user accesses an application that uses Azure AD as its identity provider.

•	 Steps 2, 3: The user's client is redirected to Azure AD, which validates the first
factor of authentication – the user's password.

•	 Step 4: Following successful password verification, the request is evaluated using the
configured conditional access policies. We can have one or more conditional access
policies configured. A conditional access policy is made up of two main parts: the
conditions to match and the control to apply.

110 Azure AD Identity Security

The conditions are based on information signals relating to the specific
authentication request. Common conditions include user information (for
example, role assignment or group membership), user location (source IP address),
user device information, and client application, which the user is trying to access.

The control could be to allow access, block access, or require MFA if the defined
conditions are matched in the authentication request.

•	 Steps 5, 6, and 7: The result of the conditional access policy evaluation is passed on
to the user's client.

Here are some of the common use cases of conditional access:

•	 Requiring MFA: For administrators only; per application (for example,
when accessing Azure management portals); only for access attempts from
untrusted networks

•	 Blocking legacy authentication

•	 Requiring trusted locations for MFA registration

•	 Blocking access by location

•	 Requiring compliant devices

Important note
Legacy authentication is a term used to describe authentication requests made
from older Office clients such as an Office 2010 client and any application client
that uses legacy mail protocols such as IMAP/SMTP/POP3.

Legacy authentication clients pose a major security risk as they do not support
MFA. An attacker could use legacy clients to bypass configured MFA policies.
The best way to mitigate this risk is to block attempts from clients using legacy
authentication.

Now that you have some understanding of conditional access policies, let's look at how
policies are evaluated if we have multiple conditions in a policy or multiple policies in
a tenant.

Implementing conditional access policies 111

Conditional access – How policies are evaluated
Certain rules govern how conditional access policies are evaluated when determining
whether an access attempt will be allowed or blocked. Here are the two critical rules to be
aware of:

1.	 Here is the first rule: If a policy has multiple conditions, all conditions MUST be
met in order for the policy control to be applied. What does this statement mean?
Let's try to understand it using an example.

Figure 4.27 shows a single conditional policy called Policy-1. Policy-1 has three
conditions defined – Member of HR-Group; Windows OS; and Browser Client.
The policy also has the control set to allow access:

Figure 4.27 – Multi-condition conditional access policy
For this policy to apply to an authentication request, all three conditions must
be met by that request. In our example, the user Brenda's authentication request
matches the three configured conditions, therefore, this policy will match, and the
defined control (allow access) will be applied. If Brenda's authentication request
only matches one of the three defined conditions, this policy will not be applied to
the request and the next policy will be evaluated.

2.	 Here is the second rule: If there are multiple conditional access policies, all
matching policies will be applied, and if there is a conflict in resulting controls, the
Block access control always wins. What does this mean? Let's look at an example to
try to make sense of it.

112 Azure AD Identity Security

Figure 4.28 shows two conditional access policies called Policy-1 and Policy-2:

Figure 4.28 – Multi-condition conditional access policy
Policy-1 has three conditions defined – Member of HR-Group; Windows OS; and
Browser Client. The defined control is to allow access.

Policy-2 has a single condition defined – the New York location. The defined
control is to block access.

Because the user Brenda's authentication request matches the three defined conditions
of Policy-1, the policy will match. But because the authentication request also matches
the defined condition of Policy-2, it will match also. In this situation, the net effective
control that will apply will be a combined result of all matching policies. In this case,
access will be blocked for Brenda because a Block access control result always wins
when conflicting controls apply. Hopefully, that makes sense to you.

Next, let's review the best practices.

Conditional access best practices
As you can see from previous explanations, conditional access is a powerful feature that
we can use to implement. However, to avoid issues down the line, there are best practices
that it is recommended to follow. A failure to follow these best practices can have severe
consequences, including the risk of locking everyone in your organization out from being
able to access applications. Here are the five key ones:

1.	 Do not use the block access control for any policy that includes all users or all
applications. This configuration blocks access to your entire organization, and it is
not a good idea.

Implementing conditional access policies 113

2.	 Avoid the use of the require domain join or require compliant
device access controls for any policy that includes all users or all applications.
If you are yet to have a domain-joined device or a compliant device in your
organization, this will lock everyone out.

3.	 Before configuring conditional access policies, it is highly recommended to create
two emergency access or break-glass accounts that you can use to roll back an
organization-wide misconfiguration. The two emergency accounts should be excluded
from conditional access policies that block access or that require further compliance.

4.	 Use the what-if tool to test policies before enabling them. You can read more
at this link: https://docs.microsoft.com/en-gb/azure/active-
directory/conditional-access/what-if-tool.

5.	 And finally, roll out new policies in phases. It is recommended to have a group of
users that can act as your pilot group to evaluate the impact before rolling out to the
wider organization. This way, you can verify that your policies behave as expected.

Now that you have some understanding of conditional access policies and best practices to
follow, we will implement conditional access in the next exercise.

Hands-on exercise – Implementing conditional access
Here are the tasks that will be completed in this exercise:

•	 Task 1: Configure a conditional access policy.

•	 Task 2: Test the conditional access policy.

Let's now complete the aforementioned tasks by performing the following steps:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 Sign in to the portal using the account that you used to sign up in the previous chapter.

https://docs.microsoft.com/en-gb/azure/active-directory/conditional-access/what-if-tool
https://docs.microsoft.com/en-gb/azure/active-directory/conditional-access/what-if-tool
https://portal.azure.com
https://portal.azure.com

114 Azure AD Identity Security

3.	 Click the portal menu icon in the top-left corner and select Azure Active Directory:

Figure 4.29 – Selecting Azure AD

4.	 In the Default Directory | Overview blade, in the Manage section, click Security.
In the Protect section, click Conditional Access:

Figure 4.30 – Selecting conditional access policies

Implementing conditional access policies 115

5.	 On the Conditional Access | Policies blade, click + New policy:

Figure 4.31 – Creating a new conditional access policy

6.	 On the New blade, configure the following settings:

Name: Azure-Management-External-Policy

Assignments

Click Users and groups, select the Users and Groups checkbox, and then, on the
Select blade, click Brenda Tao and then click Select:

Figure 4.32 – Configuring a conditional access policy

116 Azure AD Identity Security

7.	 Click Cloud apps or actions, click Select apps, click Microsoft Azure
Management, and then click Select:

Figure 4.33 – Conditional access cloud apps configuration

8.	 Review the warning that this policy impacts access to the Azure portal:

Figure 4.34 – Conditional policy lockout warning

Implementing conditional access policies 117

9.	 Click Conditions, followed by Sign-in risk, and then, on the Sign-in risk blade,
review the risk levels but do not make any changes and then close the Sign-in
risk blade:

Figure 4.35 – Configuring conditional access sign-in risk configuration

118 Azure AD Identity Security

10.	 Click Device platforms, review the device platforms that can be included, and then
click Done:

Figure 4.36 – Conditional access device platform configuration

Implementing conditional access policies 119

11.	 Click Locations and review the location options without making any changes:

Figure 4.37 – Conditional access location configuration

120 Azure AD Identity Security

12.	 Click Grant in the Access controls section and then, on the Grant blade, review the
control options and then select Block access. You can see that conditional access
can be used to apply MFA on a granular basis. Click Select:

Figure 4.38 – Conditional access control configuration

13.	 Set Enable policy to On. Then, click Create:

Figure 4.39 – Conditional access enable policy

Implementing conditional access policies 121

At this point, you have a conditional access policy that blocks the user Brenda from
signing in to the Azure portal. In the remaining steps, you will sign in to the Azure
portal as Brenda to verify that access is now blocked. You will also delete the policy
before proceeding.

14.	 Open an InPrivate or Incognito window.

15.	 In the new browser window, navigate to the Azure portal: https://portal.
azure.com. Sign in with Brenda's user account. You will receive a message about
the user not having permission:

Figure 4.40 – Conditional access block message

16.	 Close the InPrivate/Incognito browser window. You have now verified that the
newly created conditional access policy blocks access when Brenda signs in to the
Azure portal.

17.	 Back in the browser window, in the Conditional Access | Policies blade, click on
the ellipsis next to the conditional access policy that was created earlier and then
click on Delete. When prompted to confirm, click Yes:

Figure 4.41 – Deleting a conditional access policy

https://portal.azure.com
https://portal.azure.com

122 Azure AD Identity Security

In this exercise, you implemented a conditional access policy to block access when a user
signs in to the Azure portal. In the next section, we will cover another advanced security
capability of Azure AD – identity protection.

Protecting identities with Azure AD Identity
Protection
So, what is identity protection? Here is my definition – It is an automated identity risk
detection service provided by Microsoft. But what does this mean?

If you think about it, there is a wealth of useful security information in Azure AD sign-in
activities. By analyzing sign-in activities, we can uncover suspicious events that indicate
that a user's identity has been compromised. For example, if we notice a sign-in event that
deviates from a user's normal sign-in behavior, this could indicate that the user's identity
is being used by someone other than the user.

The issue is that manual analysis to uncover these types of incidents involves a lot of
administrative effort and may be practically impossible depending on the size of the
environment. This is where identity protection comes in. It can help us to automate the
detection of indicators of compromise and suspicious actions (for our user identities)
in Azure AD sign-in activities.

The great thing about identity protection is that it is not only about detection, but we can
also investigate any risks that have been identified using its reports. We can even export
the detections to third-party systems for further analysis and we can configure policies to
react to risks that are detected.

Using identity protection requires an Azure AD Premium P2 license. To understand
identity protection, there are four main concepts that we need to grasp – risk categories,
detection types, risk levels, and policies.

Identity protection – risk categories
One term that you will often hear when discussing identity protection is risk. Risk
describes a suspicious activity or event related to a user identity. Identity protection can
detect two categories of risks – User risks and Sign-in risks.

Protecting identities with Azure AD Identity Protection 123

A user risk represents the likelihood that a user account has been compromised. Identity
protection can detect the following user risk types:

Important note
If you are using a hybrid identity configuration with Azure AD Connect as
described in Chapter 3, Azure AD Hybrid Identity, leaked credential detection
will only work with the password hash sync option enabled.

The two user risk types are detected offline, as indicated in the preceding table. We will get
into what offline means in the next sub-section.

A sign-in risk represents the likelihood that a given sign-in request is coming from
someone else other than the legitimate user. In other words, it goes beyond detecting the
fact that a user's credentials have been compromised to detecting that the credentials
are actively being used by someone else to sign in as the user. Identity protection uses
different techniques to detect sign-in risks. Identity protection can detect the following
sign-in risk types:

124 Azure AD Identity Security

Protecting identities with Azure AD Identity Protection 125

Important note
If you are using a hybrid identity configuration with Azure AD Connect as
described in Chapter 3, Azure AD Hybrid Identity, password spray detection
will only work with the password hash sync option enabled.

The sign-in risk types can either be detected offline or in real time, as indicated in the
preceding table. In the next section, we will discuss what these detection types mean.

Identity protection – detection types
Detection types in identity protection indicate the reporting latency between when
suspicious activity happens and when the risk is flagged by identity protection. There are
two types of detection as shown in the tables in the previous section: real-time or offline.

Real-time detection means that there is a latency of 5-10 minutes between when
suspicious activity occurs and when it is flagged.

Offline detection means there is a latency of 2-4 hours between when suspicious activity
occurs and when it is flagged; for example, the leaked credential user risk detection type
that detects user leaked credentials on the dark web or paste bin sites happens offline. This
means that there could be a latency of 2-4 hours between when the leak is identified and
when it is flagged by identity protection.

Identity protection – risk levels
Identity protection categorizes risks in three levels: low, medium, and high. You can think
of the risk level as a confidence indicator that the user or sign-in has been compromised:

•	 A High-risk level event means there is a strong indicator that the user's identity
has been compromised, and any user accounts impacted should be remediated
immediately.

•	 A Medium-risk level event means there is a potential risk, and any user accounts
impacted should be remediated, but the urgency is lower.

•	 A Low-risk level event means that immediate action may not be required, but when
combined with other risk detections, it may provide a strong indication that the
identity has been compromised.

Microsoft disclosed information on how risk levels were calculated in the past, but this is
no longer the case. This information is now kept confidential. The risk level is useful when
we configure identity protection policies to respond to risk events. For example, we could
configure a risk policy to block sign-in for high-risk level detections.

126 Azure AD Identity Security

Identity protection – policies
The previous concepts of identity protection that we have discussed are about detecting
risks. The other aspect is to respond to the risks that have been detected. Identity
protection policies can be configured to automate the response to risk detections in your
environment. There are three default policies in identity protection that administrators
can choose to enable:

1.	 Sign-in risk policy: This policy can be used to automate the response to sign-in
risk detections based on the risk level.

First, we decide the level of risk that we are willing to accept – High, medium, or
low. We then configure the control that we want to apply to the risk. There are three
options: block access, allow access, or allow access but require MFA.

For example, we can configure this policy to require MFA for users if a medium-
level sign-in risk is detected.

Microsoft's recommendation is to set the sign-in risk threshold to Medium.
This way, the policy is only triggered for medium and high severity sign-in risk
detections, thereby reducing user interruptions. We always want to strike the right
balance between security and user experience. If we trigger this policy for low-level
sign-in risk detections, we will introduce additional user interruptions, but increase
our security posture.

Important note
Using the sign-in risk policy automates the response to sign-in risk detections
on a global level for all applications. Another method that we can use to
respond to detected sign-in risks is to configure a conditional access policy to
automate the response to sign-in risk detections on a per-application basis.

2.	 User risk policy: This policy can be used to automate the response to user risk
detections based on the risk level.

First, we decide the level of risk that we are willing to accept – High, medium, or
low. We then configure the control that we want to apply if the risk level is detected.
We have three options: block access, allow access, or allow access but require a
password change.

For example, we can require users to change their passwords if their accounts are
flagged for a high-level user risk. Microsoft's recommendation is to set the user risk
threshold to High. This way, the policy is only triggered for high severity user risk
detections, thereby reducing user interruptions.

Protecting identities with Azure AD Identity Protection 127

3.	 Azure AD MFA registration policy: This third policy is not really about automating
the response to risk detections. It can be used to roll out MFA across an organization.

You may be thinking, why is this option under identity protection then? This is a
valid question. The reason is to allow for user self-remediation. For example, if we
configure a sign-in risk policy to allow access but require MFA for medium sign-in
risk detections, sign-in attempts that are identified as suspicious will fail for users
who are yet to register their MFA device, and they may need to call the help desk,
leading to an increased workload.

Enabling this policy is a great way to ensure that new users in our organization have
registered for MFA on their first day so that they are ready for the interruptions that
may be caused when suspicious activities are detected.

Figure 4.42 illustrates the user access flow with identity protection policies configured:

Figure 4.42 – Identity protection flow

•	 Step 1: A user accesses an application that uses Azure AD as its identity provider.

•	 Steps 2, 3: The user's client is redirected to Azure AD, which validates the first
factor of authentication – the user's password.

•	 Step 4: Following successful password verification, the user and sign-in risk levels
are evaluated by identity protection.

128 Azure AD Identity Security

•	 If no user or sign-in risk is detected and the MFA registration policy does not apply,
the flow continues.

•	 If a user or sign-in risk is detected, access can either be blocked, allowed without
interruptions, allowed with MFA (for sign-in risk), or allowed with a password
change required (for user risk). The control that will be applied is based on the risk
level detected and the control that is configured in the identity protection policies.

•	 Steps 5, 6, and 7: The result of the identity protection policy evaluation is passed on
to the user's client.

Now that you have some understanding of Azure AD identity protection, in the
next exercise, you will configure its policies (user risk and sign-in risk) to respond to
risk detections.

Exercise – Implementing Azure AD Identity Protection
Here are the tasks that will be completed in this exercise:

•	 Viewing Azure AD Identity Protection options in the Azure portal

•	 Configuring a user risk policy

•	 Configuring a sign-in risk policy

•	 Simulating risk events against the Azure AD Identity Protection policies

•	 Reviewing the Azure AD Identity Protection reports

Let's now complete the aforementioned tasks by performing the following steps:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 Sign in to the portal using the account that you used to sign up in the
previous chapter.

3.	 Click the portal menu icon in the top-left corner and select Azure Active Directory:

https://portal.azure.com
https://portal.azure.com

Protecting identities with Azure AD Identity Protection 129

Figure 4.43 – Selecting Azure AD

4.	 In the Default Directory | Overview blade, in the Manage section, click Security
followed by Identity Protection:

Figure 4.44 – Selecting Identity Protection

130 Azure AD Identity Security

5.	 In the Identity Protection | Overview blade, review the Protect, Report, and
Notify sections:

Figure 4.45 – Reviewing Identity Protection configuration options

6.	 In the Identity Protection | Overview blade, in the Protect section, click User risk
policy. Configure User risk remediation policy with the following settings:

Assignments:

Click Users. On the Include tab of the Users blade, ensure that the All users option
is selected.

Protecting identities with Azure AD Identity Protection 131

Still on the Users blade, switch to the Exclude tab, click Select excluded users,
select your current user account, and then click Select. This is an important step to
ensure that we do not lock ourselves out!

User risk:

Click User risk. On the User risk blade, select Low and above, and then click Done.

Controls:

Click Access. On the Access blade, ensure that the Allow access option and the
Require password change checkbox are selected and then click Done.

Set Enforce policy to On and click Save:

Figure 4.46 – Configuring a user risk remediation policy

7.	 On the Identity Protection | User risk policy blade, in the Protect section, click
Sign-in risk policy. Configure the Sign-in risk remediation policy with the
following settings:

Assignments:

Click Users – All users. On the Include tab of the Users blade, ensure that the All
users option is selected.

132 Azure AD Identity Security

On the Users blade, switch to the Exclude tab, click Select excluded users, select
your user account, and then click Select. This is an important step to ensure that we
do not lock ourselves out!

Sign-in risk:

Click Sign-in risk. On the Sign-in risk blade, select Low and above, and then
click Done.

Controls:

Click Access. On the Access blade, ensure that the Block access option is selected
and then click Done.

Set Enforce Policy to On and then click Save.

Leave the browser open:

Figure 4.47 – Configuring a sign-in risk remediation policy

8.	 On your PC, open an InPrivate or Incognito browser window and then navigate
to the ToR Browser Project page at https://www.torproject.org/
projects/torbrowser.html.en.

https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en

Protecting identities with Azure AD Identity Protection 133

9.	 Download the version of the ToR browser for your operating system. Install it with
the default settings:

Figure 4.48 – Downloading the ToR browser

10.	 Once the installation completes, start the ToR browser and use the Connect option
on the initial page to connect to the ToR network:

Figure 4.49 – Connecting to the ToR network

11.	 In the ToR browser, browse to the Application Access Panel URL:
https://myapps.microsoft.com.

https://myapps.microsoft.com

134 Azure AD Identity Security

12.	 In the sign-in window, sign in with Brenda's account:

Figure 4.50 – Authenticating with Brenda's account

13.	 You will be presented with the message Your sign-in was blocked. This is expected
since the sign-in risk policy that we configured blocks any sign-in risk level with the
low-risk level and above. Close the ToR browser:

Figure 4.51 – Identity protection block message

14.	 Back in the Azure portal, in the Report section, click Risky users. Review the
report and identify any entries referencing Brenda's user account. Note that it could
take a few minutes for the risk event to be visible in the portal:

Protecting identities with Azure AD Identity Protection 135

Figure 4.52 – Identity protection risky users report

15.	 In the Reports section, click Risky sign-ins. Review the report and identify any
entries corresponding to the sign-in with Brenda's user account:

Figure 4.53 – Identity protection risky sign-ins report

136 Azure AD Identity Security

16.	 In the Reports section, click Risk detections. Review the report and identify any
entries representing the sign-in from an anonymous IP address generated by the
ToR browser. Note: It may take 10-15 minutes for risks to show up in the reports:

Figure 4.54 – Identity Protection risk detections
Now that you have tested Identity Protection, let's clean up our account to prevent
conflicts in later exercises.

17.	 In the Protect section, click User risk policy. Set Enforce policy to Off. Click Save.

18.	 In the Protect section, click Sign-in risk policy. Set Enforce policy to Off.
Click Save.

At this point, you have enabled Azure AD Identity Protection and configured its built-in
policies (user risk policy and sign-in risk policy) to respond to identity risk events. You
have also validated the effectiveness of the configuration by simulating risk events.

It is worth highlighting that the sign-in risk policy that we configured in this exercise
applies on a global level for all applications. There is an option to integrate Identity
Protection and conditional access by creating Risk-based Conditional Access Policies.
This approach uses Identity Protection risk-detection sign-in events as a condition in a
conditional access policy. For example, if Identity Protection detects a risky sign-in, a
conditional access policy can be used to require the affected user to authenticate with MFA.

Summary 137

Summary
In this chapter, we covered how to configure protection against password-related attacks
using Azure AD Password Protection and MFA. We also discussed how to implement
conditional access policy controls and assignments to ensure that only authentication
requests that meet organization policies are allowed access. And finally, we walked through
how to implement identity protection to detect and respond to risky identity events.

In the next chapter, we will take this further by covering how to properly govern
privileged access in our Azure environments using Azure AD Privileged Identity
Management (PIM) and Access Reviews. See you in the next chapter!

Question
As we conclude, here is a question for you to test your knowledge regarding this chapter's
material. You will find the answer in the Assessments section of the Appendix:

1.	 Which of the following is not a best practice for implementing conditional access?

a. Excluding break-glass accounts from conditional access policies that block access

b. Applying policies to "all users" and "all cloud apps"

c. Evaluating your policy using the what if tool

d. Rolling out new policies in phases (pilot group)

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Identity Protection policies: https://docs.microsoft.com/en-us/
azure/active-directory/identity-protection/concept-
identity-protection-policies?WT.mc_id=AZ-MVP-5003870.

•	 Simulating risk detections in Identity Protection: https://docs.microsoft.
com/en-us/azure/active-directory/identity-protection/
howto-identity-protection-simulate-risk?WT.mc_id=AZ-
MVP-5003870.

https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/concept-identity-protection-policies?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/concept-identity-protection-policies?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/concept-identity-protection-policies?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/howto-identity-protection-simulate-risk?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/howto-identity-protection-simulate-risk?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/howto-identity-protection-simulate-risk?WT.mc_id=AZ-MVP-5003870
https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/howto-identity-protection-simulate-risk?WT.mc_id=AZ-MVP-5003870

5
Azure AD Identity

Governance
Privileged identities are attractive to attackers because they can be used to gain broad
access to an environment, often resulting in a significant business impact. Identity
governance ensures that the risk to an organization is reduced even if a user account is
compromised. To achieve this, processes need to be in place to ensure that privileged
access is granted to the right people only for the duration that it is needed and removed
when that duration expires. This way, the chances of an adversary gaining privileged
access that could be used to cause significant damage are reduced.

This chapter will equip you with an understanding of how to implement the principles of
identity governance using two features of Azure AD Premium P2 – Azure AD Privileged
Identity Management (PIM) and Access Review.

Here are the topics that we will cover in this chapter with accompanying hands-on exercises:

•	 Protecting privileged access using Azure AD Privileged Identity Management (PIM)

•	 Configuring PIM access reviews

Let's get started!

140 Azure AD Identity Governance

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Protecting privileged access using Azure AD
Privileged Identity Management (PIM)
A privileged identity has administrative permissions for our Azure environments. These
identities have more permissions for our Azure environments than a typical user. They
are usually limited to a small number of users, which may include IT administrators or
business users responsible for managing a line of business applications.

As you can imagine, these identities are high-value targets for attackers because of
the level of access that is granted to them. If we fail to protect privileged access, an
attacker that compromises a privileged user's identity could take advantage of the user's
permissions to move laterally within our environments.

When thinking about protecting privileged access, here are some principles that we may
want to adopt. Comprehensive privileged identity protection requires the following:

•	 Access should only be granted to people that require it.

•	 Access should only be granted when needed (just in time).

•	 Access should only be granted at the level that is needed (just enough).

•	 Access should only be granted for the duration that it is needed (time-bound).

These principles fall into the category of what some security professionals refer to as zero
trust principles. It may sound like simple common sense to you, but managing this type of
access protection at scale is complicated. This is where a service such as Azure AD PIM
can help us.

What is Azure AD PIM?
So, what is Azure AD PIM? It is an Azure service that helps us to manage privileged
administrative role assignments to Azure AD and Azure resources. With PIM
configured, we can minimize the number of people who have privileged access to Azure
AD and Azure resources and only grant the required access when needed and for the
duration that it is needed.

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 141

To use Azure AD PIM, we need to have and assign Azure AD Premium P2 licenses for
users who will be using PIM.

How does Azure AD PIM work?
To get a clearer understanding of how PIM can help us, let's check out some information
on how role assignment works with PIM.

Let's say that an admin, David, wants to ensure that a user, Brenda, can be assigned to
the Global Admin role in Azure AD by PIM whenever she needs to perform a task that
requires the role. He also wants to ensure that the user Bradley can be assigned to the
subscription owner role by PIM whenever he needs it to perform a task:

Figure 5.1 – Azure AD PIM workflow

Figure 5.1 shows the flow for this:

•	 Step 1: The admin, David, will need administrative privileges in PIM to be able to
complete the configuration process.

•	 Step 2: Once the admin has the right privilege, they will need to onboard the roles
that they want to protect into PIM, in this case, the Azure AD Global Admin role
and the Azure resource owner role. David can configure a time limit for which the
onboarded roles can be assigned. For example, he can configure the Global Admin
role in Azure AD to be assignable for a maximum of 8 hours.

142 Azure AD Identity Governance

•	 Step 3: David can make Brenda eligible for the global admin role and Bradley
eligible for the subscription owner role. Eligible means that the user can request to
be assigned the role by PIM whenever they need it to perform a task.

•	 Step 4: Eligible users can then request to take on a role in PIM whenever they
need it to perform a task.

•	 Step 5: PIM verifies their eligibility based on what the administrator
configured earlier.

•	 Step 6: If configured, PIM can request the user to provide a justification and also
forward the request to an approver.

•	 Step 7: If the requesting user satisfies the configured requirements, PIM configures
the requested role assignment for the user only for the duration that is allowed
or requested. Once the assignment time expires, PIM automatically removes the
role assignment.

A great way to understand any concept is to use it. In the next exercise, you will walk
through the implementation of Azure AD PIM from the perspectives of the administrator,
user, and approver.

Exercise – Azure AD Privileged Identity Management
Here are the tasks that will be completed in this exercise:

•	 Task 1: Configure PIM users and roles.

•	 Task 2: Activate PIM roles with approval.

Here are the steps to complete these tasks:

1.	 Open a web browser and browse to the Azure portal URL: https://portal.
azure.com.

2.	 In the Azure portal, in the Search resources, services, and docs textbox at
the top of the Azure portal page, type Azure AD Privileged Identity
Management and then press the Enter key:

https://portal.azure.com
https://portal.azure.com

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 143

Figure 5.2 – Searching for Azure AD PIM

3.	 On the Azure AD Privileged Identity Management blade, in the Manage
section, click Azure AD roles. In the Manage section, click Roles. Then,
click + Add assignments:

Figure 5.3 – Adding a PIM assignment

144 Azure AD Identity Governance

4.	 On the Add assignments blade, in the Select role dropdown, select Billing
Administrator. Click the No member selected link, on the Select member(s)
blade, click Brenda Tao, and then click Select:

Figure 5.4 – Assigning a user to a role in PIM

5.	 Back on the Add assignments blade, click Next. Ensure that Assignment type is set
to Eligible and then click Assign:

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 145

Figure 5.5 – Configuring PIM role assignment settings

Note
Eligible assignment type means that the user needs to go through a request
process in PIM to be assigned to the role. Active assignment type means that
the role is automatically assigned to the user without the need to go through a
request process.

146 Azure AD Identity Governance

6.	 Back on the Default Directory | Roles blade, in the Manage section, click
Assignments. Verify on the Eligible assignments tab that Brenda Tao is shown as a
billing administrator:

Figure 5.6 – Verifying PIM role assignment

7.	 In the Manage section, click Roles. Then, click the Billing Administrator role:

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 147

Figure 5.7 – Selecting a role in PIM

8.	 On the Billing Administrator | Assignments blade, click the Role settings icon in
the toolbar of the blade and review the configuration settings for the role. Click Edit:

Figure 5.8 – Editing role settings in PIM

148 Azure AD Identity Governance

9.	 On the Activation tab, configure the following:

Activation maximum duration (hours): 3.

On activation, require: None.

Require justification on activation: Selected.

Require ticket information on activation: Not selected.

Require approval to activate: Selected.

Select approver(s): Select your current user account.

Then, click Next: Assignment:

Figure 5.9 – Configuring role setting activation in PIM

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 149

10.	 In the Assignment tab, clear the Allow permanent active assignment checkbox,
leaving all the other settings as their default values. Then, click Next: Notification:

Figure 5.10 – Configuring role setting assignments in PIM

150 Azure AD Identity Governance

11.	 In the Notification tab, review the configuration and then click Update:

Important note
Anyone trying to use the Billing Administrator role will now require approval
from your user account before they can be assigned to the role.

Figure 5.11 – Configuring a role setting notification in PIM

12.	 Open a new InPrivate or Incognito browser window and sign in to the Azure portal
as the user Brenda Tao. You will also need to complete the MFA verification.

13.	 While signed in as Brenda Tao, navigate to the Privileged Identity Management
blade.

14.	 On the Privileged Identity Management | Quick start blade, in the Tasks section,
click My roles.

You will see just the roles that Brenda is eligible to request here.

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 151

15.	 On the My roles | Azure AD roles blade, in the Eligible assignments list, in the
row displaying the Billing Administrator role, click Activate:

Figure 5.12 – Activating a role as a PIM user

16.	 On the Activate – Billing Administrator blade, in the Reason textbox, type the
following text to justify the activation: Role needed for some tasks.
Click Activate.

Leave the browser window open as we will come back to it for verification. For now,
we will switch back to our user browser session to approve Brenda's request:

Figure 5.13 – Adding justification for role activation

152 Azure AD Identity Governance

17.	 Switch back to the browser window where you are logged in to the Azure portal
with your user account. In the Tasks section, click Approve requests.

18.	 On the Approve requests blade, in the Requests for role activations section, select
the checkbox for the entry representing the role activation request to the Billing
Administrator role by Brenda Tao. Then, click Approve:

Figure 5.14 – Approving a role activation request as a PIM approver

19.	 On the Approve Request blade, in the Justification textbox, type the following
text to provide a reason for activation as an approver: Role approved to
complete needed tasks for three hours. Note the start and end times,
and then click Confirm:

Note
You also have the option of denying requests.

Protecting privileged access using Azure AD Privileged Identity Management (PIM) 153

Figure 5.15 – Adding justification for the role activation approval

20.	 You should see a successful notification in the top-right corner:

Figure 5.16 – Reviewing a notification

154 Azure AD Identity Governance

21.	 Switch back to the InPrivate/InCognito browser window where you are logged in to
the Azure portal as Brenda Tao.

22.	 On the My roles | Azure AD roles blade, click the refresh button. Then, click the
Active Assignments tab and verify that the Billing Administrator role is now
activated for Brenda. Note the end time also:

Figure 5.17 – Verifying active role assignments

23.	 Sign out and close the InPrivate browser window.

In this exercise, you implemented Azure AD PIM and a verified privileged role activation
workflow with approval. In the next section, we will cover how to extend PIM with a
capability referred to as access review.

Configuring PIM access reviews
It is a security best practice to regularly review privileged access that has been assigned.
This is because required access for employees and guests changes over time as people
move teams or leave organizations and we want to ensure that old access permissions are
cleaned up when this happens. Azure AD PIM has a functionality called access review
that allows us to implement this. The core use case of this Azure AD PIM feature is to reduce
the risk associated with stale access assignments.

Access review allows us to assign designated reviewers for sensitive Azure AD and Azure
resource roles in our organizations. Reviewers will then be reminded to either approve
or revoke role assignments at review time. If a reviewer approves the role for a user, the
assignment is extended until the next review period. If the reviewer revokes the role for a
user, access is removed. We can also configure self-review, which allows users to approve
or revoke their own access at review time based on whether access is still required.

Configuring PIM access reviews 155

We can also configure the default behavior if the designated reviewer fails to complete the
review. Here are the four options that we have:

•	 No change: Unreviewed access will be left unchanged (extended).

•	 Remove access: Unreviewed access will be revoked and removed.

•	 Approve access: Unreviewed access will be approved and extended.

•	 Take recommendations: Take the system's recommendation on approving or
revoking unreviewed access. The recommendation is usually based on usage
(whether a user has signed in recently within the past month).

Now that you have an idea of what the PIM access review feature entails, in the next
exercise, you will configure a monthly recurring access review for the Azure AD Global
Administrator role to reduce the risk associated with stale role assignments. You will do
this by creating a PIM access review to ensure that the role assignments are still valid.

Exercise – Create an access review and review PIM
auditing features
Here are the tasks that will be completed in this exercise:

•	 Task 1: Create an access review and review PIM auditing features.

•	 Task 2: Review PIM alerts, summary information, and detailed audit information.

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to the Azure portal URL:https://portal.
azure.com. Sign in with your user account.

2.	 In the Azure portal, in the Search resources, services, and docs textbox at
the top of the Azure portal page, type Azure AD Privileged Identity
Management and press the Enter key:

Figure 5.18 – Searching for Azure AD PIM

https://portal.azure.com
https://portal.azure.com

156 Azure AD Identity Governance

3.	 On the Azure AD Privileged Identity Management blade, in the Manage section,
click Azure AD roles. Then, click Access reviews:

Figure 5.19 – Selecting Access reviews

4.	 On the Default Directory | Access reviews blade, click New. On the Create
an access review blade, specify the following settings (leave others with their
default values):

Review name: Global Administrator Review.

Description: Monthly review of the global administrator role.

Start date: Today's date.

Frequency: Monthly.

Duration (in days): 14 (This defines the number of days that the review will be
open for input from reviewers. You cannot set a number that causes overlapping
reviews. For example, the maximum duration that can be set for a monthly review is
27 days to avoid overlap).

End: Never.

Review role membership (permanent and eligible): Global Administrator.

Reviewers: Selected users.

Select reviewers: Your current user account.

Configuring PIM access reviews 157

Expand and review the Upon completion settings and Advanced settings sections.

Click Start. It will take about a minute for the review to deploy:

Figure 5.20 – Configuring access review parameters

158 Azure AD Identity Governance

5.	 On the Default Directory | Access reviews blade, under the Global Administrator
Review header, click the Global Administrator entry:

Figure 5.21 – Verifying existing reviews

6.	 On the Global Administrator Review blade, examine the Overview page and note
that the Progress chart shows users in the Not reviewed category:

Figure 5.22 – Verifying the review status

Configuring PIM access reviews 159

7.	 On the Global Administrator Review blade, in the Current section, click
Results. Note that your user account and Brenda Tao's account are listed as having
access to this role. Notice the Recommended action column. This provides
recommendations on whether to keep the user's access based on usage:

Figure 5.23 – Verifying the review results

8.	 Click Brenda Tao to view a detailed audit log with entries representing PIM
activities that involve the user. Close the blade to return to the previous blade:

Figure 5.24 – Reviewing audit logs

160 Azure AD Identity Governance

9.	 On the Default Directory | Access reviews blade, in the Current section, click
Settings. Review the Reviewers tab and the When completed tab. The When
completed tab allows us to configure the behavior if reviewers do not complete the
review before the time expiry:

Figure 5.25 – Configuring review settings

10.	 Close the Global Administrator Review | Settings blade.

11.	 On the Default Directory | Access reviews blade, in the Tasks section, click Review
access. Then, click on the Global Administrator Review option:

Figure 5.26 – Reviewing role access

Configuring PIM access reviews 161

12.	 On the Global Administrator Review blade, select Brenda Tao. In the Reason
textbox, type role still needed. Click Approve to keep the role assignment
to Brenda for another 30 days:

Figure 5.27 – Completing an access review as a user

13.	 Close the Global Administrator Review blade.

14.	 In the Default Directory | Access reviews blade, in the Manage section, click
Access reviews, and then select the Global Administrator review:

Figure 5.28 – Selecting an access review

162 Azure AD Identity Governance

15.	 Note that the Progress chart has been updated to show your review:

Figure 5.29 – Verifying the access review results
Close the Global Administrator Review blade.

16.	 In the Default Directory | Access reviews blade, in the Manage section, click
Alerts, and then click Settings.

17.	 On the Alert settings blade, review the preconfigured alerts and risk levels.

Congratulations! You have successfully configured and validated a PIM access review. The
skill that you learned in this section will help you to mitigate the risk of stale access in
your Azure environment.

Summary
In this chapter, you learned how to implement identity governance using Azure AD PIM
and Azure AD PIM access reviews. The information in this chapter has equipped you with
the skills needed to reduce the risks associated with compromised privileged identity and
stale access. This helps to reduce the blast radius in the event of an identity security breach.

In the next chapter, we will begin to cover the concept of network perimeter security
in Azure.

Questions 163

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 If a user fails to complete an access review before the end date and the default
behavior is configured as "Take recommendations," what will happen if the user has
not signed in within the past month?

a. The user's access will be left unchanged.

b. The user's access will be revoked and removed.

c. The user's access will be approved and extended.

d. The administrator will be presented with an option to revoke the user's access.

2.	 If a user is made eligible for a role in PIM, which of the following statements
describes what this means?

a. It means that the user is automatically assigned to the role.

b. It means that the user can request to be assigned the role by PIM whenever they
need it to perform a task.

c. It means that the user cannot request to be assigned to the role.

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure AD PIM overview: https://docs.microsoft.com/en-us/
azure/active-directory/privileged-identity-management/
pim-configure?WT.mc_id=AZ-MVP-6003870.

•	 Activate Azure AD roles in PIM: https://docs.microsoft.com/en-us/
azure/active-directory/privileged-identity-management/
pim-how-to-activate-role?WT.mc_id=AZ-MVP-6003870&tabs=new.

•	 Activate Azure resource roles in PIM: https://docs.microsoft.
com/en-us/azure/active-directory/privileged-identity-
management/pim-resource-roles-activate-your-roles?WT.mc_
id=AZ-MVP-6003870.

•	 Zero Trust Resource Center: https://docs.microsoft.com/en-us/
security/zero-trust/.

https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-configure?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-configure?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-configure?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-how-to-activate-role?WT.mc_id=AZ-MVP-6003870&tabs=new
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-how-to-activate-role?WT.mc_id=AZ-MVP-6003870&tabs=new
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-how-to-activate-role?WT.mc_id=AZ-MVP-6003870&tabs=new
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-resource-roles-activate-your-roles?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-resource-roles-activate-your-roles?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-resource-roles-activate-your-roles?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-resource-roles-activate-your-roles?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/security/zero-trust/
https://docs.microsoft.com/en-us/security/zero-trust/

The Azure cloud platform offers multiple options to organizations for hosting their
workloads, including virtual machines and containers in both private and public
networks. This section will cover how to secure your workloads in the cloud, from
the perimeter (the outer boundary between the untrusted public internet and your
workloads) to the actual services that host our applications. We will walk through many
hands-on scenarios, including the implementation of DDoS protection, Web Application
Firewall, Disk Encryption, just-in-time virtual machine access, Kubernetes RBAC with
Azure Active Directory, and more. By the end of this section, you will have a solid
understanding of how to secure your cloud workloads using a multi-layered approach.

This part of the book comprises the following chapters:

•	 Chapter 6, Implementing Perimeter Security

•	 Chapter 7, Implementing Network Security

•	 Chapter 8, Implementing Host Security

•	 Chapter 9, Implementing Container Security

Section 2:
Implement Azure

Platform Protection

6
Implementing

Perimeter Security
The Azure cloud platform allows customers to create logically isolated private networks
called virtual networks. These isolated networks are used to host IaaS and PaaS services,
which require network isolation or traffic control measures managed by the customer.
Securing these private networks from attacks and unauthorized access starts at the
perimeter (the outer boundary between the untrusted public internet and your Azure
virtual network resources).

In this chapter, we will look at what perimeter security looks like for Azure virtual
networks, and how to use services and features of the platform to implement perimeter
protection. Here are the topics that we will cover in this chapter, along with accompanying
hands-on exercises:

•	 Securing the Azure virtual network perimeter

•	 Implementing Azure Distributed Denial of Service (DDoS) Protection

•	 Implementing Azure Firewall

•	 Implementing a Web Application Firewall (WAF) in Azure

168 Implementing Perimeter Security

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Securing the Azure virtual network perimeter
A network perimeter is the outer boundary between the untrusted public internet and
our Azure virtual network resources (Figure 6.1). This is where we have to start in any
discussion regarding securing our Azure virtual networks. There are two main objectives
of network perimeter security:

•	 To filter Distributed Denial of Service (DDoS) attacks before they can cause a
denial of service for legitimate users of services hosted in our networks. The Azure
platform has a service that we can use to achieve this objective – the Azure DDoS
Protection service.

•	 To protect virtual network workloads against malicious ingress and egress network
traffic originating from external networks. The Azure platform has various services
that we can use to achieve this objective. The ones that we will cover in this chapter
are the ones that we can use depending on our requirements: Azure Firewall,
Azure Web Application Firewall, and Network Virtual Appliance (NVA):

Figure 6.1 – Azure network perimeter security

Implementing Azure Distributed Denial of Service (DDoS) Protection 169

Figure 6.1 highlights the main perimeter security services that we will cover in this chapter
and how they are positioned in an Azure network architecture.

In the next section, we will start with a discussion of the Azure DDoS protection service.

Implementing Azure Distributed Denial of
Service (DDoS) Protection
A DDoS attack is a collection of attack types aimed at disrupting the availability of a target
by overwhelming it with malicious traffic. The Azure DDoS protection service enables us
to protect our internet-facing virtual network workloads from DDoS attacks before the
availability of our service is impacted (Figure 6.1).

The service identifies malicious attempts to overwhelm the network and blocks them
before they reach our Azure resources. Legitimate traffic from customers still flows into
Azure without any interruption (Figure 6.1). It uses the scale and elasticity of Microsoft's
global network to mitigate DDoS attacks at the Azure network edge.

Before we get into more details on this service, let's review the different categories of
DDoS attacks so that we are clear on what this service protects against and what it does
not. There are three main categories of common DDoS attacks:

•	 Volumetric DDoS attacks: These attacks create congestion by overwhelming
the network bandwidth capabilities of a target to make it inaccessible. This is
the equivalent of what happens in a traffic jam – when vehicles cannot move
forward because there is too much traffic. Examples of volumetric DDoS attacks
are amplification floods and UDP floods. Mitigating this category of DDoS attack
usually involves having a large enough bandwidth to absorb the traffic and scrub
them with a network that scales on demand. The Azure DDoS protection service can
protect against this category of DDoS attack.

•	 Protocol DDoS attacks: These attacks abuse weaknesses in layers 3 and 4 of the
network protocol stack (OSI model) to render a target inaccessible. They are
sometimes referred to as state-exhaustion attacks. Examples include reflection attacks
and SYN flood attacks. Mitigating this type of attack usually involves the use of client
probing techniques to differentiate between legitimate clients and malicious clients.
The Azure DDoS protection service can protect against this category of DDoS attack.

170 Implementing Perimeter Security

•	 Application DDoS attacks: These attacks are designed to exploit application-
level weaknesses and vulnerabilities with the intent of making them unavailable.
They are also referred to as Layer 7 DDoS attacks because they target application-
layer processes (Layer 7 refers to the Open Systems Interconnect (OSI) model).
Mitigation usually involves deep behavioral analysis of application network traffic.
Examples include HTTP protocol violation attacks such as slowloris, low, and slow
attacks. The Azure DDoS protection service DOES NOT protect against this category
of DDoS attack. A Web Application Firewall (WAF) in Azure can be used to protect
against these. We will cover the implementation of a WAF later in this chapter.

Now that you have an understanding of what the Azure DDoS protection service can do
and what it cannot do, let's review the service tiers that it offers. The service offers two
service tiers – Basic and Standard.

The Basic tier is what we get by default when we deploy internet-facing workloads in
our Azure virtual networks. It automatically protects our public-facing virtual network
workloads for free! No customer intervention or configuration is required. It just works
transparently in the background when we assign a public IP to a virtual network resource.
It continually looks for indicators of DDoS attacks and automatically mitigates the attack
once it is detected.

The Standard tier also automatically protects our public-facing virtual network workloads
from DDoS attacks, but it adds extra capabilities, such as the following:

•	 Intelligently learning the traffic patterns of our applications and tuning the DDoS
protection profile appropriately

•	 Providing detailed metrics, alerts, and reports in the case of an attack

•	 Customer access to the Microsoft DDoS Rapid Response (DRR) team, who can
help with attack investigation during an ongoing attack or in a post-attack analysis

•	 Cost protection to ensure that we receive service credits if a successful DDoS attack
results in us incurring costs due to scaled-out workloads or outbound data transfer

Now that you have some understanding of how the Azure DDoS protection service can
help to protect against DDoS attacks at the perimeter of our virtual networks, let's go
ahead and implement it. However, before we can do this, we need to set up resources that
we can use to follow along with the exercises in this chapter and the next one.

Implementing Azure Distributed Denial of Service (DDoS) Protection 171

Hands-on exercise – provisioning resources for the
exercises in Chapters 6 and 7
To follow along with the exercises in this chapter and the next one, we will provision
some Azure resources to work with. We have prepared an Azure ARM template in the
GitHub repository of this book for this purpose. The template will deploy an Azure virtual
network with two subnets as shown in Figure 6.2. The public subnet will have a Windows
Server 2019 VM that is reachable from the public internet. The private subnet will have an
Ubuntu Linux VM that is not reachable directly from the internet. Here are the tasks that
we will complete in this exercise:

•	 Task 1: Initialize template deployment in GitHub.

•	 Task 2: Complete the parameters and deploy the template to Azure:

Figure 6.2 – Chapter 6 exercises scenario

Let's begin deploying our template:

1.	 Open a web browser and browse to http://bit.ly/az600-c6-template.
This link will open the GitHub repository that has an ARM template to deploy the
resources that we need.

172 Implementing Perimeter Security

2.	 In the GitHub repository that opens, click on Deploy to Azure:

Figure 6.3 – Clicking on the "Deploy to Azure" option

3.	 In the Sign in window, enter your administrative username and password to
authenticate to your Azure subscription:

Figure 6.4 – Authenticating to Azure

4.	 In the Custom Deployment window, configure the following:

Subscription: Select the subscription that you want to deploy the resources to.

Resource group: Create New | Name: azuresec-c6-rg | OK.

Region: Select an Azure region close to your location.

Implementing Azure Distributed Denial of Service (DDoS) Protection 173

Storagename: Leave the default value.

Vm-dns: Leave the default value.

Admin User: Leave the default value.

Admin Password: Enter a complex password. Make a note of the password that you
use. We recommend that you select one complex password that you use throughout
the scenarios in this book to keep things simple.

Vmsize: Leave the default value.

Location: Leave the default value.

_artifacts Location: Leave the default value.

_artifacts Location Sas Token: Leave the default value.

Click on Review + create:

Figure 6.5 – Configuring template parameters

174 Implementing Perimeter Security

5.	 After the template validation has passed, click on Create. This will begin the
deployment process, which takes about 7 to 10 minutes to complete. Grab yourself a
cup of water, tea, or coffee and wait for the deployment to complete:

Figure 6.6 – Deploying the Pentest VM template

6.	 Once the deployment is complete, click on the Outputs tab. Make a note of the
winvm-dns value. This is the public DNS name of the public Windows VM that we
just deployed:

Implementing Azure Distributed Denial of Service (DDoS) Protection 175

Figure 6.7 – Obtaining the Windows VM DNS name

7.	 On your client system, open an RDP client and enter the winvm-dns value that
you made a note of earlier. Click on Connect. The instructions here describe the use
of a Windows RDP client. If you are using a different RDP client, the instructions
may vary.

To open the Windows RDP client, execute mstsc from the Windows run dialog, or
type mstsc in the Windows Start menu:

Figure 6.8 – Connecting to the Windows VM using RDP

176 Implementing Perimeter Security

8.	 When prompted to sign in, click on More choices | Use a different account. Enter
the following information:

Username: azureadmin.

Password: Enter the password that you configured during template deployment:

Figure 6.9 – Authenticating using the RDP client

9.	 When prompted about the certificate warning, select the Don't ask me again for
connections to this computer option and then click Yes:

Implementing Azure Distributed Denial of Service (DDoS) Protection 177

Figure 6.10 – Skipping the certificate warning

10.	 You should now have an RDP session to the public Windows VM! Keep this session
open as you will need it for the later exercises:

Figure 6.11 – RDP session to the public Windows VM

178 Implementing Perimeter Security

In this exercise, we provisioned some Azure resources that we need for the rest of
the exercises in this chapter. In the next section, we will implement the Azure DDoS
protection service as our first line of perimeter defense.

Hands-on exercise – implementing the Azure DDoS
protection Standard
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create a DDoS protection plan.

•	 Task 2: Enable DDoS for a new virtual network.

•	 Task 3: Disable DDoS for a virtual network.

Let's now complete the aforementioned tasks by performing the following steps:

1.	 Open a web browser and browse to https://portal.azure.com.

2.	 On the left-hand side, click on the portal menu and then click on Create a resource:

Figure 6.12 – Clicking to create a resource

3.	 In the search area at the top of the screen, type DDoS protection plan and
click it. Then, click on the Create button:

Figure 6.13 – Entering "DDoS protection plan"

4.	 In the Create a DDoS protection plan blade, configure the following:

Name: azsec-DdoS.

Subscription: Select your subscription.

https://portal.azure.com

Implementing Azure Distributed Denial of Service (DDoS) Protection 179

Resource group: azuresec-c66-rg.

Location: Select the same region that you set when you deployed the template earlier.

Click on Create:

Figure 6.14 – Entering the DDoS protection plan parameters

5.	 In the Search resources, services, and docs box at the top of the portal, type
virtual network and select the Virtual networks option:

Figure 6.15 – Entering and selecting "virtual network"

180 Implementing Perimeter Security

6.	 In the Virtual networks blade, click on azsec-VirtualNetwork, and then click on
DDoS protection:

Figure 6.16 – Selecting the virtual network DDoS configuration

7.	 In the azsec-VirtualNetwork | DDoS protection blade, select the Enable option
and configure the following:

DDoS protection plan: azsec-DDoS

Click Save:

Figure 6.17 – Configuring the virtual network DDoS option

Implementing Azure Distributed Denial of Service (DDoS) Protection 181

This applies the DDoS plan that we created earlier to our virtual network. In the next step,
we will remove the DDoS plan from the network as the service can be expensive!

1.	 In the azsec-VirtualNetwork | DDoS protection blade, select the Disable option
and click on Save:

Figure 6.18 – Disabling DDoS protection

2.	 In the Search resources, services, and docs box at the top of the portal, type DDoS
and then select the DDoS protection plans option:

Figure 6.19 – Searching for DDoS protection plans

182 Implementing Perimeter Security

3.	 In the DDoS protection plans blade, click on azsec-DDoS and then click on Delete:

Figure 6.20 – Deleting a DDoS protection plan

4.	 Click Yes when prompted to delete the plan:

Figure 6.21 – Confirming DDoS protection plan deletion

So, in the preceding exercise, we created an Azure DDoS plan and enabled DDoS
protection for an Azure virtual network to establish perimeter security. We also disabled
the plan to avoid a huge cost to our subscription.

From a central governance perspective, we can configure an Azure policy to auto
enable and apply a DDoS protection plan when new virtual networks are created in our
subscription. To learn more about this approach, you can refer to this documentation:
https://aka.ms/ddosvnetpolicy-techcommunity.

In the next section, we will look at the next layer of perimeter defense that we can
configure for an Azure virtual network using Azure Firewall.

https://aka.ms/ddosvnetpolicy-techcommunity

Implementing Azure Firewall 183

Implementing Azure Firewall
Azure Firewall is a perimeter network security solution in Azure. It inspects incoming
and outgoing virtual network connections to protect against malicious traffic before they
impact our workloads. The main difference between Azure Firewall and a third-party
firewall appliance deployed as a VM in Azure (called a network virtual appliance – NVA)
is that it is a managed service. This means that we do not have to worry about managing
the underlying OS updates, application updates, high availability, and scalability for Azure
Firewall as these are managed for us by Microsoft. We simply deploy the service, configure
it, use it, and pay for what we use. From a security perspective, Azure Firewall offers the
following capabilities:

•	 Define application rules to allow or deny connections to specified domain
names. For example, Allow access to github.com; Block access to
gambling.com. This is solely URL filtering. No TLS termination or deep packet
inspection is taking place.

•	 Define network rules to allow or deny connections based on the source IP
address, destination IP address, source port, destination port, and protocol;
for example, Block access for connections with a source IP
of 1.1.1.1; Allow internet connections to port 80 of an
internal web server.

•	 Define Network Address Translation (NAT) rules to translate inbound network
requests for delivery to internal services.

•	 Alert or block network connections to or from malicious IP addresses and domains
based on Microsoft's threat intelligence information. This is referred to as threat
intelligence-based filtering.

184 Implementing Perimeter Security

Microsoft recommends implementing Azure Firewall in a hub and spoke topology as
shown in Figure 6.22 for workload perimeter security. However, if you have multiple
Azure subscriptions and are implementing services in multiple Azure regions, you may
have to deploy so many instances of Azure Firewall that it becomes ineffective to manage
them individually. This is where Azure Firewall Manager can help us. Firewall Manager
provides centralized firewall management across subscriptions and regions. We manage our
configuration and policies from one place and deploy them to multiple firewall instances.
This significantly reduces the complexity of deploying policies to multiple Azure firewalls:

Figure 6.22 – Hub and Spoke Virtual Network architecture

You may also have noticed that the security capabilities of Azure Firewall are very limited
when compared with the capabilities of a next-generation firewall, such as a Palo Alto
appliance. Customers can choose to implement a third-party firewall appliance as a VM
for virtual network perimeter security. These appliances are called NVAs in Azure and
we can choose to implement these instead of Azure Firewall. In the next exercise, we will
implement an Azure firewall for workload perimeter security. Note that the process of
implementing Azure Firewall or an NVA is very similar, so the steps in the next exercise
are applicable in either scenario.

Hands-on exercise – implementing Azure Firewall
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create an Azure firewall subnet.

•	 Task 2: Deploy an Azure firewall in the subnet.

Implementing Azure Firewall 185

•	 Task 3: Create a default route and associate it with the private subnet.

•	 Task 4: Configure an egress application and network rules on the firewall.

•	 Task 5: Test the firewall.

Let's get into the steps to complete this:

1.	 In the Search resources, services, and docs box at the top of the portal, type
virtual network and select the Virtual networks option:

Figure 6.23 – Searching for "virtual network"

2.	 In the Virtual networks blade, click on azsec-VirtualNetwork and then click
on Subnets:

Figure 6.24 – Selecting virtual network subnets

186 Implementing Perimeter Security

3.	 In the azsec-VirtualNetwork | Subnets blade, click on + Subnet to create a new
subnet that we will deploy Azure Firewall to:

Figure 6.25 – Creating a new subnet

4.	 In the + Subnet blade, configure the following:

Name: AzureFirewallSubnet (note that the name must be exactly
AzureFirewallSubnet otherwise you will get errors when creating the firewall)

Subnet address range: 10.0.2.0/24

Leave the other settings as their default values and then click Save:

Implementing Azure Firewall 187

Figure 6.26 – Configuring new subnet parameters

5.	 You should get a notification in the top-right corner informing you that the subnet
has been successfully created. Close the Add subnet blade. You should now see the
new AzureFirewallSubnet:

Figure 6.27 – Selecting the Azure Firewall subnet

188 Implementing Perimeter Security

6.	 In the Search resources, services, and docs textbox at the top of the portal, type
Firewall and then select the Firewalls option:

Figure 6.28 – Searching for Firewalls

7.	 Click on the Create firewall button that appears and configure the following:

Subscription: Select your subscription.

Resource group: azuresec-c5-rg.

Name: azsec-Firewall.

Region: Select the same region that you set when you deployed the template earlier.

Choose a virtual network: The Use existing setting.

Virtual network: azsec-VirtualNetwork (azuresec-c5-rg).

Public IP address: Add new: azsec-FirewallIp

Leave the other settings as their default values.

Click Review + create.

Then, click Create.

This will create the Azure Firewall service in the subnet that we created earlier. Wait
for the deployment to complete:

Implementing Azure Firewall 189

Figure 6.29 – Configuring new firewall parameters

8.	 Once the deployment is complete, click on the Go to resource button:

Figure 6.30 – Firewall deployment completion

190 Implementing Perimeter Security

9.	 In the azsec-Firewall blade, make a note of the Firewall private IP value. We will
need this value in later steps:

Figure 6.31 – Recording the firewall's internal IP

In the next step, we will begin the creation of a custom route table with a default route
to direct traffic to AzureFirewallSubnet. This route will configure outbound traffic
through the firewall:

1.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type route tables and then press the Enter key:

Figure 6.32 – Searching for Route tables

Implementing Azure Firewall 191

2.	 On the Route tables blade, click + Add. Configure the following settings in the
Create Route table blade:

Subscription: Select your subscription.

Resource group: azuresec-c5-rg.

Region: Select the same region that you set when you deployed the template earlier.

Name: private-subnet-routetable.

Propagate gateway routes: No.

Click Review + create.

Then, click Create:

Figure 6.33 – Configuring new route table parameters

192 Implementing Perimeter Security

3.	 Once the deployment is complete, click on the Go to resource button:

Figure 6.34 – Route table deployment completion

4.	 Now that we have created a route table, we need to add a "user-defined route" entry
to route selected traffic to the firewall. To do this, on the private-subnet-routetable
blade, in the Settings section, click Routes and then click + Add:

Figure 6.35 – Adding routes to the route table

Note
In the previous step, we created a user-defined route entry to send traffic that we
specify to the firewall. A user-defined route is a custom route entry configured
by us. This contrasts with system route entries that are automatically created by
the platform to implement default routing behaviors and cannot be modified by
a user. User-defined route entries will override conflicting system routes.

Implementing Azure Firewall 193

5.	 On the Add route blade, configure the following settings:

Route name: internet-route

Address prefix: 0.0.0.0/0

Next hop type: Virtual appliance

Next hop address: The value that you made a note of in step 9

Then, click OK:

Figure 6.36 – Configuring new route parameters

194 Implementing Perimeter Security

6.	 On the private-subnet-routetable blade, in the Settings section, click Subnets and
then click + Associate:

Figure 6.37 – Associating a route table with subnet

7.	 On the Associate subnet blade, configure the following settings:

Virtual network: azsec-VirtualNetwork

Subnet: private-subnet

Then, click OK:

Figure 6.38 – Configuring route association parameters
This will associate the route table with the private subnet. In the next steps, we will
create application and network rules on the firewall for egress traffic that we want to
allow from our private subnet.

Implementing Azure Firewall 195

8.	 In the Search resources, services, and docs textbox at the top of the portal, type
Firewall and then select the Firewalls option. Click on azsec-Firewall.

9.	 On the azsec-Firewall blade, in the Settings section, click Rules. Then, click the
Application rule collection tab, and then click + Add application rule collection:

Figure 6.39 – Adding an application rule

10.	 On the Add application rule collection blade, configure the following settings:

Name: egress-firewall-app-rule

Priority: 200

Action: Allow

Target FQDNs

name: allow-bing-search-engine

Source type: IP address

Source: 10.0.0.0/16

Protocol:Port: http:80, http:443

Target FQDNs: www.bing.com

Leave the others as their default values.

196 Implementing Perimeter Security

Then, click Add:

Figure 6.40 – Configuring application rule parameters

11.	 On the azsec-Firewall | Rules blade, click the Network rule collection tab and then
click + Add network rule collection:

Figure 6.41 – Adding a network rule

Implementing Azure Firewall 197

12.	 On the Add network rule collection blade, specify the following settings (leave the
others as their default values):

Name: egress-firewall-network-rule

Priority: 200

Action: Allow

IP Addresses

name: allow-dns

Protocol: UDP

Source type: IP address

Source: 10.0.0.0/16

Destination type: IP address

Destination Address: *

Destination Ports: 53

Leave the others as their default values.

Click Add:

Figure 6.42 – Adding network rule parameters
Now that we have configured the egress firewall rules, we will be testing the
behavior from the private Linux VM that was deployed as part of our template.

198 Implementing Perimeter Security

13.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type azsecwinvm and then press the Enter key:

Figure 6.43 – Searching for azsecwinvm

14.	 On the azsecwinvm blade, click Connect and, in the drop-down menu, click RDP.
Click Download RDP File and use it to connect to the azsecwinvm Azure VM via
Remote Desktop.

15.	 When prompted to authenticate, provide the following credentials:

Username: azureadmin.

Password: Enter the password that you configured during template deployment.

16.	 Within the RDP session, click the Start button and then type putty 10.0.1.4:

Figure 6.44 – Opening an SSH session using PuTTY

17.	 In the PuTTY window, authenticate using the following credentials:

Username: azureadmin.

Password: Enter the password that you configured during template deployment:

Implementing Azure Firewall 199

Figure 6.45 – Entering Linux VM credentials

18.	 In the shell session, type the following command and press Enter to test egress
access to a destination that is not allowed. You should receive a deny message due to
No rule matched:

curl www.google.com

Here is a screenshot of the output:

Figure 6.46 – Testing connectivity using curl

19.	 In the shell session, type the following command and then press Enter to test egress
access to a destination that is not allowed. This should be successful:

curl www.bing.com

Here is a screenshot of the output:

Figure 6.47 – Testing connectivity using curl

Close the PuTTY SSH session, but leave the RDP session open as we will need it for
later exercises.

Congratulations! You have just implemented an Azure firewall with network and
application rules. In the next section, we will look at the implementation of another
perimeter security defense service – Web Application Firewall.

200 Implementing Perimeter Security

Implementing a Web Application Firewall
(WAF) in Azure
Web and API applications are popular workload types to host in Azure virtual networks.
They are also increasingly targeted by malicious attacks that exploit commonly known
vulnerabilities, such as SQL injection and cross-site scripting.

Apart from getting developers to follow good coding security practices when developing
web applications, a WAF can also be deployed at the network perimeter as an added layer
of protection against these exploits and vulnerabilities. WAF can be deployed with three
services in Azure:

•	 The Azure Application Gateway WAF SKU: This is a regional-level WAF that can
be deployed in Azure virtual networks to protect public-facing or private workloads.

•	 Azure Front Door WAF: This is a WAF service that is integrated with the Azure
Front Door global service.

•	 Azure Content Delivery Network (CDN): Similar to the WAF on Azure Front
Door, this is a global service that is integrated with the Azure CDN service. This
capability is currently under public preview at the time of writing this book.

•	 For the purpose of the exam objectives, we will look at both the Application Gateway
and the Front Door services. We will configure the application gateway in our
hands-on exercise.

Application Gateway WAF
Azure Application Gateway is a web traffic load balancer that enables us to manage traffic
to our web applications. Traditional load balancers operate at the transport layer (OSI
Layer 4 – TCP and UDP) and route traffic based on the source IP address and port to a
destination IP address and port. Application Gateway operates on Layer 7 and can route
traffic based on additional attributes of an HTTP request, for example, the URI path or
host headers:

Implementing a Web Application Firewall (WAF) in Azure 201

Figure 6.48 – Azure Application Gateway architecture

As mentioned earlier, the Application Gateway service can be deployed in a designated
subnet within our Azure virtual networks.

WAF on Application Gateway supports three rule sets: core rule sets 3.1, 3.0, and 2.2.9
from the Open Web Application Security Project (OWASP). These rules protect our web
applications from malicious activity.

WAF on Application Gateway can be set to either detection mode or prevention mode. In
detection mode, the WAF monitors and logs all threat alerts, but it does not block them.
In prevention mode, the WAF blocks intrusions and attacks that the rules detect, but it
also logs them in the WAF logs.

Front Door WAF
Azure Front Door is a highly scalable, globally distributed application and CDN. It uses
the anycast protocol with split TCP and Microsoft's global network to improve global
connectivity and performance for our web applications:

Figure 6.49 – Azure Front Door WAF

202 Implementing Perimeter Security

Figure 6.49 shows how Front Door receives client requests through a point of presence
that is close to end users, and uses the Microsoft high throughput backbone network to
accelerate delivery to the backend application instead of the traffic being routed entirely
over the public internet. Azure WAF, when integrated with Front Door, stops application
denial-of-service and targeted application attacks at the Azure network edge.

In the next section, you will configure an application gateway WAF to protect a web
application in Azure.

Hands-on exercise – configuring a WAF on Azure
Application Gateway
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create a subnet for Azure Application Gateway.

•	 Task 2: Create an application gateway.

•	 Task 3: Add a health probe.

•	 Task 4: Configure path-based routing.

•	 Task 5: Test the application gateway.

Here are the steps to complete the tasks:

1.	 In the Azure portal, locate the azsec-VirtualNetwork virtual network, select
Subnets, and then click on + Subnet:

Figure 6.50 – Adding a new subnet

Implementing a Web Application Firewall (WAF) in Azure 203

2.	 In the + Subnet blade, configure the following:

Name: AppGwSubnet

Subnet address range: 10.0.3.0/24

Leave the other settings as their default values and then click Save:

Figure 6.51 – Configuring the subnet parameters

204 Implementing Perimeter Security

3.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type Application gateway and then press Enter:

Figure 6.52 – Searching for the application gateway

4.	 Click on the Create application gateway button and configure the following:

Subscription: Select your subscription.

Resource group: azuresec-c5-rg.

Application gateway name: azsec-app-gw.

Region: Select the same region that you set when you deployed the template earlier.

Tier: WAF V2.

Enable autoscaling: Yes.

Minimum instance count: 1.

Maximum instance count: 2.

Firewall status: Enabled.

Firewall mode: Prevention.

Availability zone: None.

HTTP2: Disabled.

Virtual network: azsec-VirtualNetwork.

Subnet: AppGwSubnet (10.0.3.0/24).

Click Next : Frontends >.

Then, click Create:

Implementing a Web Application Firewall (WAF) in Azure 205

Figure 6.53 – Configuring the application gateway parameters

5.	 In the Frontends tab, configure the following:

Frontend IP address type: Public

Public IP address: Add new: azsec-app-gw

206 Implementing Perimeter Security

Click Next : Backends >:

Figure 6.54 – Configuring the application gateway frontend

6.	 On the Backends tab, select Add a backend pool:

Figure 6.55 – Configuring the application gateway backend

Implementing a Web Application Firewall (WAF) in Azure 207

7.	 In the Add a backend pool blade, configure the following settings:

Name: linux-web-server

Add backend pool without targets: No

Target type: Virtual machine

Target: azseclinvm-nic (10.0.1.4)

Then, click Add:

Figure 6.56 – Adding a backend pool

208 Implementing Perimeter Security

8.	 Back in the Backends tab, click on Next : Configuration >:

Figure 6.57 – Clicking on "Next : Configuration >"

9.	 In the Configuration tab, select Add a routing rule:

Figure 6.58 – Adding a routing rule

Implementing a Web Application Firewall (WAF) in Azure 209

10.	 In the Add a routing rule blade, configure the following:

Rule name: webapp-http-rule

Listener

Listener name: webapp-http-rule-listener

Frontend IP: Public

Protocol: HTTP

Port: 80

Listener type: Basic

Error page url: No:

Figure 6.59 – Configuring routing rule parameters

210 Implementing Perimeter Security

11.	 Click on the Backend targets tab and then configure the following:

Target type: Backend pool

Backend target: linux-web-server

HTTP settings: Click Add new:

Figure 6.60 – Adding the backend target

12.	 In the Add a HTTP setting blade, configure the following:

HTTP settings name: webapp-http-setting

Leave the other settings as their default values.

Click Add.

Then, click Add again:

Implementing a Web Application Firewall (WAF) in Azure 211

Figure 6.61 – Adding an HTTP setting

13.	 Back in the Create application gateway blade, click Next : Tags >. Then, click Next
: Review + create:

Figure 6.62 – Clicking on "Next : Tags >"

212 Implementing Perimeter Security

14.	 After the validation has passed, click on Create. Wait for the deployment to complete:

Figure 6.63 – Clicking to create the application gateway

15.	 Once the deployment is complete, click on Go to resource group:

Figure 6.64 – Application gateway deployment completion

Implementing a Web Application Firewall (WAF) in Azure 213

16.	 In the Resource group blade, select azsec-app-gw. Copy the Frontend public IP
address value:

Figure 6.65 – Recording the application gateway's public IP

17.	 Open a new browser tab and browse to the public IP that you copied in step 16.
You should reach the default Apache server page. This means that traffic is passing
through the application gateway to the backend web server hosted on the Linux VM:

Figure 6.66 – The Ubuntu default page

Congratulations! You have successfully configured the Azure Application Gateway WAF.

214 Implementing Perimeter Security

Summary
In this chapter, you learned how the Azure DDoS protection service can be implemented to
mitigate DDoS threats against applications and resources deployed in our virtual networks.

You also learned how Azure Firewall can be used to inspect incoming and outgoing virtual
network connections to protect against malicious traffic before it impacts our application
workloads. We also covered how Azure Firewall Manager can reduce the complexity of
deploying policies to multiple firewalls from a centralized management service.

And finally, we covered how WAF (in Application Gateway or Azure Front Door) can be
implemented to secure web applications against common exploits, such as SQL injection
and cross-site scripting.

The information in this chapter has equipped you with the skills required to secure the
perimeter of your Azure virtual networks from attacks and unauthorized access. In the
next chapter, we will take this further by looking at network security for our virtual
network workloads. We will be using the same resources that we deployed in this chapter
for the exercises. See you in the next chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 You need to deploy the Azure Firewall service in a virtual network in Azure. What
should you do first?

a. Create a new subnet in the virtual network.

b. Create an NSG and associate it with the virtual network.

c. Delete and recreate the virtual network.

d. Configure DDoS protection for the virtual network.

2.	 You have a web app named customapp. You need to protect customapp using a
WAF. What should you do?

a. Deploy Azure Front Door.

b. Add an extension to customapp.

c. Deploy Azure Firewall.

d. Deploy DDoS Protection.

Further reading 215

3.	 You deployed an Azure VM named web-vm1 in an Azure virtual network subnet.
You need to ensure that all outbound traffic from the VM is routed through a
network virtual appliance. What should you configure?

a. A user-defined route

b. A network security group

c. An application security group

d. A system route

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure DDoS Protection standard documentation: https://docs.microsoft.
com/en-us/azure/ddos-protection/?WT.mc_id=AZ-MVP-6003870

•	 Azure Firewall Manager documentation: https://docs.microsoft.com/
en-us/azure/firewall-manager/?WT.mc_id=AZ-MVP-6003870

•	 Azure Web Application Firewall on Azure Application Gateway: https://docs.
microsoft.com/en-us/azure/web-application-firewall/ag/
ag-overview?WT.mc_id=AZ-MVP-6003870

•	 Web Application Firewall core rule sets: https://docs.microsoft.com/
en-us/azure/web-application-firewall/ag/application-
gateway-crs-rulegroups-rules?WT.mc_id=AZ-MVP-6003870

https://docs.microsoft.com/en-us/azure/ddos-protection/?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/ddos-protection/?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/firewall-manager/?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/firewall-manager/?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/application-gateway-crs-rulegroups-rules?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/application-gateway-crs-rulegroups-rules?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/application-gateway-crs-rulegroups-rules?WT.mc_id=AZ-MVP-6003870

7
Implementing

Network Security
In the previous chapter, we covered the options that we have to secure the perimeters of
our virtual networks in Azure. However, not all threats come from outside the network!
We also need to ensure that we have a reduced network attack surface and can contain
breaches to a reduced blast radius even if an attacker gains a foothold on our network.
This is in line with the principles of zero trust and micro-segmentation.

In this chapter, we will look at what network security looks like in Azure from both the
IaaS and PaaS perspectives. We will also cover how to implement Azure platform features
to deliver a highly secure network architecture. Here are the topics that we will cover in
this chapter, with accompanying hands-on exercises:

•	 Implementing virtual network segmentation

•	 Implementing platform service network security

•	 Securing Azure network hybrid connectivity

218 Implementing Network Security

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Implementing virtual network segmentation
Let's assume for a minute that you work for a global financial organization that is looking
to perform a lift-and-shift migration of key systems into virtual networks in Azure. Part
of the requirements that they have is to ensure that only required network connections
can reach these key systems even if the connection originates from within the same
network. How do you implement this level of control? There are two Azure network
security capabilities that we can use to achieve this – Network Security Group (NSG)
and Application Security Group (ASG).

Implementing NSGs
An NSG is a simple packet filter that we can use to filter network traffic to and from
Azure resources in a virtual network. The terminology that I used here is intentional.
An NSG is a packet filter, not a firewall! It does not have the capabilities that the Azure
firewall or a Network Virtual Appliance (NVA) has because the use cases are different.
With NSGs, we have a mechanism for controlling traffic between resources within
a virtual network. We can allow or deny inbound or outbound network traffic on
a subnet or individual resource basis, making it a great candidate for implementing
micro-segmentation (Figure 7.1):

Implementing virtual network segmentation 219

Figure 7.1 – NSGs can be applied to a subnet or individual resources

For each rule in an NSG, we can specify any combination of source/destination IP,
source/destination port, and protocol (Figure 7.2). Each rule has a priority number that
determines the order of evaluation (refer to the first column in Figure 7.2). The rules with
the lower priority numbers will be evaluated first. For example, if I have a deny rule with
a priority number of 2000 and an allow rule for the same traffic with a priority number
of 3000, the traffic will be denied as rule 2000 will be evaluated first and once there is
a match, evaluation stops (similar to typical firewall behavior):

Figure 7.2 – NSG rules

220 Implementing Network Security

When we create an NSG, it comes with certain default rules that we cannot delete or
modify. However, we can override those rules by specifying rules with lower priority
numbers ahead of them. The default rules are those with very high priority numbers
(65000 and above) in Figure 7.2.

While NSGs are great, using an IP address to define that segmentation could be difficult
to manage as IP addresses are usually transient in a cloud environment and could change.
Also, in an autoscaling scenario where new instances are constantly provisioned and
deprovisioned, using IP addresses to define our NSG rules means that we constantly have
to be keeping our rules updated with the latest IP information. This is where ASGs can
help us. We will look at what ASGs are in the next section.

Implementing ASGs
ASG allows us to group a set of VMs under an application tag and define NSG traffic
rules based on that. This may not make sense to you now, but it will all become clear once
you do the hands-on exercise. The primary use case of ASGs is to implement simplified
micro-segmentation in Azure virtual networks.

In Figure 7.3, you can see that ASGs are associated with VMs. The first VM is associated
with an ASG called WebServer, the second VM is associated with an ASG called
AppServer, while the third VM is associated with an ASG called DBserver:

Figure 7.3 – ASG sample scenario

Now, when we apply our NSG rules, instead of using IP addresses that could change,
we use the ASGs to specify our source and destination targets. For example, the first
rule allows traffic to port 8080 from any VM associated with the WebServer ASG to
any VM associated with the AppServer ASG, while the second rule allows traffic to port
3308 from any VM associated with the AppServer ASG to any VM associated with the
DBServer ASG. This is what ASGs allow us to implement!

Implementing virtual network segmentation 221

This setup also makes it easy to implement security policies for dynamic workloads as
we mentioned earlier. So, if we bring up a new web server, for example, all we need
is to make sure that it is associated with the WebServer ASG and the right rules will
automatically apply. We do not need to update the NSG rules with the IP address of the
new instance.

One last thing to note about ASGs is that they are limited to a single virtual network,
so we cannot use them across virtual network peers, only within a virtual network. In the
next exercise, we will implement NSGs and ASGs in a virtual network.

Hands-on exercise – Configuring NSGs and ASGs
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create an ASG and associate it with the private Linux VM.

•	 Task 2: Create an NSG.

•	 Task 3: Add inbound block and allow rules to the NSG.

•	 Task 4: Attach the NSG to the private subnet.

•	 Task 5: Verify that the NSG rule is working.

An ASG enables you to group servers with similar functions, such as web servers:

1.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type Application security groups and press the Enter key:

Figure 7.4 – Searching for ASGs

2.	 Click on Create an application security group and configure the following settings:

Subscription: Select your subscription.

Resource group: azuresec-c6-rg.

Name: web-server-asg.

222 Implementing Network Security

Region: Select the same region that you set when you deployed the template earlier.

Click Review + create.

Then, click Create:

Figure 7.5 – Configure ASG parameters
Wait for the deployment to complete. In the next steps, we will associate the newly
created ASG with the private Linux VM.

3.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type azseclinvm and press the Enter key:

Figure 7.6 – Searching for the Linux VM

Implementing virtual network segmentation 223

4.	 In the Settings section, click on Networking, and then click on the Application
Security Groups tab. Click on Configure the application security groups and
configure the following settings:

Application security groups: web-server-asg

Click Save:

Figure 7.7 – Associating the ASG with the Linux VM
The ASG should now be associated with the Linux VM, as shown here:

Figure 7.8 – Reviewing the associated ASG
In the next steps, we will use our NSG to implement micro-segmentation.

224 Implementing Network Security

5.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type Network security groups and then click on Network
security groups:

Figure 7.9 – Searching for NSGs

6.	 In the Network security groups blade, click on + Add and configure the
following settings:

Subscription: Select your subscription.
Resource group: azuresec-c6-rg.
Name: private-vm-nsg.
Region: Select the same region that you set when you deployed the template earlier.
Click Review + create.
Then, click Create:

Figure 7.10 – Configuring NSG parameters

Implementing virtual network segmentation 225

7.	 Once the deployment completes, click on Go to resource. In the private-vm-nsg
blade, click on Inbound security rules and then click on + Add:

Figure 7.11 – Adding an inbound security rule to the NSG

8.	 In the Add inbound security rule blade, configure the following:

Source: Any

Source port ranges: *

Destination: Application security group

Destination application security group: web-server-asg

Destination port ranges: 80, 443

Protocol: TCP

Action: Allow

Priority: 1000

Name: allow-web-traffic

Description: Allow web traffic to web servers

226 Implementing Network Security

Then, click Add to create the rule:

Figure 7.12 – Configuring inbound security rule parameters

Implementing virtual network segmentation 227

9.	 Repeat steps 7 and 8 to add the following security rule:

Source: Any

Source port ranges: *

Destination: Application security group

Destination application security group: web-server-asg

Destination port ranges: 22

Protocol: TCP

Action: Deny

Priority: 900

Name: deny-ssh-traffic

Description: Deny SSH traffic to web servers

Then, click Add to create the rule.
10.	 On the private-vm-nsg | Inbound security rules blade, in the Settings section,

click on Network interfaces and then click on the + Associate tab:

Figure 7.13 – Associating an NSG with the VM's network interface

228 Implementing Network Security

11.	 In the Associate network interface blade, click on azseclinvm-nic to associate the
NSG with the network interface of the Linux VM:

Figure 7.14 – Selecting a network interface with which to associate the NSG
In the next steps, we will verify that our NSG is working by checking that we can
connect to it over TCP port 80 (HTTP), but that we can no longer connect to
it over TCP port 22 (SSH).

12.	 In the RDP session of the azsecwinvm Windows VM, click the start button and
type putty 10.0.1.4. This should fail as we have an NSG rule to deny an SSH
connection to any VM that is associated with the web-server-asg ASG:

Figure 7.15 – Attempt to connect to a Linux VM via SSH (using PuTTY)

Implementing virtual network segmentation 229

13.	 Still in the RDP session of the azsecwinvm Windows VM, on the desktop, double-
click the Google Chrome icon to open the browser. Browse to http://10.0.1.4.
You should be able to reach the Apache server hosted on the Linux VM:

Figure 7.16 – Connecting to the Linux VM using HTTP

14.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type Network security groups, and then click on Network
security groups:

Figure 7.17 – Searching for NSGs

230 Implementing Network Security

15.	 In the Network security groups blade, click on private-vm-nsg. Click on Network
interfaces. Click on the ellipsis in front of azseclinvm-nic and click Dissociate.
Then, click Yes when prompted for confirmation:

Figure 7.18 – Dissociating an NSG from the Linux VM's network interface

Congratulations! You have now successfully implemented an NSG that uses an ASG in its
security rule. This can be implemented at scale to achieve very granular segmentation in
your Azure virtual networks. In the next section, we will take a slightly different direction
to discuss how to implement network firewall rules for our Azure PaaS services that are
not deployed in a virtual network.

Implementing platform service network
security
Earlier in this chapter, we covered how the Azure firewall or third-party NVAs can be
used to protect services within a virtual network. The question here is, what if the service
is not in a virtual network? Many platform services, such as Azure Storage and Azure Key
Vault, cannot be deployed in an Azure virtual network, so how do we secure them from
the network perspective?

Implementing platform service network security 231

Firewall for PaaS services (and firewall exceptions)
By default, platform services have public endpoints that accept connections from clients
on any network, and this includes the internet! There is an option to limit that network
access by allowing ONLY network traffic originating from specified, trusted IP addresses
or IP ranges (Figure 7.19):

Figure 7.19 – Sample firewall rule for an Azure PaaS service

Even though we can configure this restriction for some platform services, we need to be
a bit careful with the implementation. Why, you may ask? The reason is that when we
configure a firewall for supported PaaS services, all requests that are not explicitly allowed
are blocked. You may be thinking to yourself, this is exactly what I want! But you have to
consider that this also includes network traffic from other Azure services, and this could
affect the functionality of certain features that rely on interactions with other services.

232 Implementing Network Security

For example, if we have our VM disks in a storage account and we want to use the Azure
backup service to protect those disks, without explicitly allowing the IP addresses of the
Azure backup service, the backup process will fail! However, it is a tricky thing to keep IP
addresses used by Microsoft services up to date in our rules as they are dynamic and could
change. So how do we handle this? We do this by configuring the exception to Allow
trusted Microsoft services (Figure 7.20):

Figure 7.20 – Adding PaaS firewall exceptions

Any time you implement a platform service in Azure, always verify whether this option
exists in its firewall settings and consider if you need to implement it.

Service endpoints
There are situations where services hosted in our virtual networks need to access platform
services such as Azure Storage. This could be for a variety of reasons, for example, to store
data in a storage account. For these scenarios, a virtual network service endpoint provides
secure and direct connectivity to Azure services over an optimized route using the Azure
backbone network instead of the internet (Figure 7.21):

Figure 7.21 – Azure PaaS firewall with service endpoint scenario

Implementing platform service network security 233

Using service endpoints together with a firewall for PaaS services allows us to isolate
platform services only for private network access, as shown in Figure 7.21. In the next
hands-on exercise, you will configure the PaaS firewall and service endpoint to ensure that
a storage account can only be accessed privately.

Hands-on exercise: Configuring a firewall and service
endpoints on a storage account
Here are the exercises that we will complete in this exercise:

•	 Task 1: Obtain file share mounting information and store in a notepad.

•	 Task 2: Service endpoint configuration.

•	 Task 3: Test the storage connection from the private subnet that is connected to the
Linux VM to confirm that access is allowed.

•	 Task 4: Test the storage connection from the public subnet to confirm that access
is denied.

Let's go through the steps to accomplish these tasks:

1.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type azsecvmstrg, and then press Enter:

Figure 7.22 – Searching for the storage account

234 Implementing Network Security

2.	 In the File service section, click on File shares and then select the azsec share:

Figure 7.23 – Selecting the azsec file share

3.	 In the azsec window, click on Connect, select the Linux tab, and make a note of
the mount command. You can copy the information into a notepad document. This
information will be required in the later steps of this exercise. Close the Connect
blade, and then close the azsec blade:

Figure 7.24 – Copying the connection information for the file share

Implementing platform service network security 235

4.	 On the Storage account blade, in the Settings section, click on Networking, click
on Selected networks, and then click on the + Add existing virtual network tab:

Figure 7.25 – Adding a service endpoint connection

5.	 In the Add networks blade, configure the following:

Subscription: Select your subscription.

Virtual network: azsec-VirtualNetwork.

Subnets: private-subnet.

236 Implementing Network Security

Then, click on Enable:

Figure 7.26 – Configuring service endpoint parameters

Implementing platform service network security 237

6.	 This will enable a service endpoint for private-subnet. You will get a confirmation
when this is completed, as shown here. Click on Add to proceed with the process:

Figure 7.27 – Adding the new service connection

238 Implementing Network Security

7.	 Click on Save to complete the process:

Figure 7.28 – Saving the configuration
Now that we have the service endpoint configured, we will test access to the storage
account by mounting the azsec file share on the Linux VM since it is connected to
the private subnet. If the mounting process is successful, this means that the private
subnet has access to the storage account. Leave the Azure portal open.

8.	 In the RDP session of the azsecwinvm Windows VM, click the start button and
type putty 10.0.1.4 to connect to the Linux VM over SSH. Authenticate to the Linux
VM with the following credentials:

Username: azureadmin.

Password: Enter the password that you configured during the template deployment.

Implementing platform service network security 239

9.	 Confirm that there is currently no file share mounted on the Linux VM by
running the sudo df -Th command. As can be seen here, no file share
is currently mounted:

Figure 7.29 – Confirming a mounted file share

10.	 Run the commands copied in step 3 to mount the azsec file share on the Linux VM:

Figure 7.30 – Running the commands to mount the file share

240 Implementing Network Security

11.	 To confirm that the azsec file share was successfully mounted on the Linux VM,
run the sudo df -Th command and, as can be seen in the following screenshot,
the file share mounted successfully:

Figure 7.31 – Verifying the mounted file share
The preceding screenshot confirms that the private subnet has access to the storage
account. To confirm that the public internet does not have access to the storage
account, we will try to access the storage account from the Azure portal.

12.	 Back in the Azure portal, in the Storage account blade, select File shares and then
click on azsec to attempt to access the file share:

Figure 7.32 – Attempting to access the file share from the portal over the internet

Implementing platform service network security 241

13.	 You should get an error informing you that you do not have access to the file share,
as seen here. This confirms that access from the public internet is now restricted:

Figure 7.33 – Reviewing the denied access message

In this hands-on exercise, you learned how to implement platform service firewall and
service endpoints on a storage account. Even though we focused on the storage account,
implementation for other platform services follows a similar process. In the next section,
we will cover the implementation of Azure Bastion!

242 Implementing Network Security

Securing Azure network hybrid connectivity
Exposing our VM management ports to the public internet carries with it some inherent
risks; for example, the VMs are exposed to threats such as port scanning, vulnerability
scanning, and brute-force attacks from malicious hosts on the internet (Figure 7.34):

Figure 7.34 – Threats to publicly exposed virtual network workloads

To contain this threat surface, we could deploy a jump box at the public side of our
perimeter network, but this creates extra management overhead as we have to update,
back up, and troubleshoot the jump box going forward. This is where Azure Bastion
can help us. In the next section, we will introduce Azure Bastion and explain how to
implement it.

Securing Azure network hybrid connectivity 243

Implementing Azure Bastion
So, what is Azure Bastion? It is a fully managed service that provides a way for us to
seamlessly connect to our private VMs using RDP and SSH over a web browser (using
the Azure portal). In Figure 7.35, the user connects to Azure Bastion through the Azure
portal, and the Bastion service then provides that private RDP and SSH connection to the
VMs in the virtual network. The result of this is that our VMs do not need to have public
IP addresses assigned to them. RDP and SSH RDP connections are contained within
a customer's network and the connections are secured using TLS to prevent man-in-the-
middle attacks:

Figure 7.35 – Azure Bastion implementation

The service is also fully managed by Microsoft even though it is deployed in our network,
so we do not need to manage infrastructure or software updates and patches. Supported
virtual network resources for Azure Bastion include VMs, VM Scale Sets, and Dev-Test
Labs. In the next hands-on exercise, we will walk through how to configure Azure Bastion
to securely manage our virtual network resources.

244 Implementing Network Security

Hands-on exercise: Configuring Azure Bastion
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create a subnet for Azure Bastion.

•	 Task 2: Deploy Azure Bastion.

•	 Task 3: Connect to the Windows VM using Azure Bastion.

•	 Task 4: Monitor and disconnect a remote session.

Before you can use Azure Bastion, you need to create a subnet on the virtual network that
the azsecwinvm VM uses:

1.	 In the Azure portal, locate and select the azsec-VirtualNetwork virtual network,
click on Subnets, and then click on + Subnet:

Figure 7.36 – Adding a new subnet

2.	 In the Add subnet blade, configure the following:

Name: AzureBastionSubnet (note that you need to use the subnet name,
AzureBastionSubnet, exactly as it is otherwise you will experience errors
when creating Azure Bastion)

Subnet address range: 10.0.3.0/24

Securing Azure network hybrid connectivity 245

Leave the other settings as their default values and then click Save:

Figure 7.37 – Configuring subnet parameters

3.	 In the Azure portal, select or search for Virtual machines, select the azsecwinvm
VM, select Connect, and then select Bastion and Use Bastion:

Figure 7.38 – Selecting the option to use Azure Bastion

246 Implementing Network Security

4.	 Review and use the default values, such as the Azure Bastion resource name, subnet,
and the option to create a new public IP address. Select Create, and then wait a few
minutes for the Azure Bastion resource to be created:

Figure 7.39 – Configuring Azure Bastion parameters

5.	 After the Azure Bastion resource has been created, you are prompted to enter
credentials to connect to the VM.

Securing Azure network hybrid connectivity 247

6.	 Enter the azureadmin username and password that you specified during the
template deployment. Then, click on Connect to proceed:

Figure 7.40 – Connecting to the VM using Azure Bastion

7.	 Once you click on Connect, you should see a screen like the following, which shows
that you have been able to connect to the VM using Azure Bastion:

Figure 7.41 – Connecting to the Azure VM

8.	 To disconnect from the session, close the current browsing tab and the session will
be disconnected.

Congratulations! You have now completed the hands-on exercises in this chapter.
In the next section, we will clean up all the resources that we have created in the last
two chapters.

248 Implementing Network Security

Hands-on exercise: Cleaning up resources
Here is the task that we will complete in this exercise:

•	 Task 1: Delete the azuresec-c6-rg resource group.

Here are the steps to complete the task:

1.	 In the Azure portal, in the Search resources, services, and docs textbox at the top
of the Azure portal page, type Resource groups and then press Enter:

Figure 7.42 – Searching for Resource groups

2.	 In the Resource groups blade, click on azuresec-c6-rg:

Figure 7.43 – Selecting the resource group

Summary 249

3.	 In the azuresec-c6-rg blade, click on Delete resource group. When prompted for
confirmation, type azuresec-c6-rg and then click Delete:

Figure 7.44 – Deleting the resource group

Congratulations! You have now cleaned up the resources that we deployed for the
exercises in this chapter.

Summary
In this chapter, you learned how to implement network segmentation for Azure virtual
network workloads using NSGs and ASGs. You also learned how the Azure PaaS Firewall
can restrict public access to supported PaaS services such as Azure Storage, and how
service endpoint features can be used to access supported PaaS services privately over
the Azure backbone network.

Finally, we covered how the Azure Bastion service can be used to securely connect to
virtual network VMs over the internet without publicly exposing them.

The information in this chapter has equipped you with the skills needed to implement
secure access to your Azure virtual network workloads. In the next chapter, you will learn
how to implement host security best practices in Azure. See you in the next chapter!

250 Implementing Network Security

Question
As we conclude, here is a question for you to test your knowledge regarding this chapter's
material. You will find the answer in the Assessments section of the Appendix:

1.	 You have attached an NSG to an Azure subnet that has a VM deployed in it. An
NSG rule with priority number 104 denies traffic to the Azure Storage destination
prefix. Another NSG rule with priority number 106 allows traffic to the Azure
Storage UK South destination prefix. Will traffic destined for a storage account
in the UK South region be allowed?

a. Yes, it will be allowed.

b. No, it will not be allowed.

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure service endpoint: https://docs.microsoft.com/en-us/azure/
virtual-network/virtual-network-service-endpoints-
overview?WT.mc_id=AZ-MVP-6003870

•	 Azure Storage firewall exceptions: https://docs.microsoft.com/en-us/
azure/storage/common/storage-network-security?tabs=azure-
portal#exceptions?WT.mc_id=AZ-MVP-6003870

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#exceptions?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#exceptions?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#exceptions?WT.mc_id=AZ-MVP-6003870

8
Implementing Host

Security
The Azure cloud platform offers a broad range of computing services, including user-
managed options such as Virtual Machines (VMs), Virtual Machine Scale Sets
(VMSSes), and Windows Virtual Desktops (WVDs). User-managed compute options
provide a greater level of flexibility when we host applications on them. This is because
we can install any application or dependency that is needed since we have control of the
operating system. This also means that we are responsible for securing the services from
the operating system level and upward in the stack.

In this chapter, we will focus on the key security best practices that we can implement to
protect user-managed computing resources in Azure. The following are the main topics
that we will cover alongside this chapter's hands-on exercises:

•	 Using hardened baseline VM images

•	 Protecting VMs from viruses and malware

•	 Implementing system update management for VMs

•	 Implementing vulnerability assessment for VMs

•	 Encrypting VM disks with Azure Disk Encryption

•	 Securing management ports with just-in-time access

252 Implementing Host Security

As you can see, each topic has been structured to align with a security best practice for
securing hosts in Azure. Let's get into this!

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in
Chapter 1, Introduction to Azure Security.

Before we proceed and cover security best practices, let's prepare our Azure subscription
for the hands-on exercises that we will be completing later in this chapter.

Hands-on exercise – provisioning resources for this
chapter's exercises
To follow along with the exercises in this chapter, we will provision some Azure resources
to work with. We have prepared an Azure ARM template in this book's GitHub repository
for this purpose. The template will deploy an Azure virtual network with a single subnet.
This subnet will have a Windows Server 2019 VM that can be reached from the public
internet. Here are the tasks that we will complete in this exercise:

•	 Task 1: Initialize template deployment in GitHub.

•	 Task 2: Complete our parameters and deploy the template to Azure:

Figure 8.1 – Hands-on exercise resources

Technical requirements 253

Let's start deploying our template:

1.	 Open a web browser and browse to http://bit.ly/az500-c6-template.
This link will open this book's GitHub repository, which contains an ARM template
for deploying the resources that we need.

2.	 In the GitHub repository that opens, click on Deploy to Azure:

Figure 8.2 – Deploying the template to Azure

3.	 In the Sign in window, enter your administrative username and password to
authenticate to your Azure subscription:

Figure 8.3 – Authenticating to Azure

http://bit.ly/az500-c6-template

254 Implementing Host Security

4.	 In the Custom Deployment window, configure the following:

Subscription: Select the subscription that you want to deploy the resources to.
Resource group: Create New → Name: azuresec-c6-rg → OK.
Region: Select an Azure region close to your location.
Storagename: Leave as the default value.
Vm-dns: Leave as the default value.
Admin User: Leave as the default value.
Admin Password: Enter a complex password. Make a note of the password that
you use. We recommend that you select one complex password that you will use
throughout the scenarios in this book to keep things simple.
VMsize: Leave as the default value.
Location: Leave as the default value.
_artifacts Location: Leave as the default value.
_artifacts Location Sas Token: Leave as the default value.
Then, click on Review + Create:

Figure 8.4 – Configuring template parameters

Technical requirements 255

5.	 Once the template validation has passed, click on Create. This will begin the
deployment process, which takes about 7 to 10 minutes to complete. Grab yourself
a cup of water, tea, or coffee and wait for the deployment to complete.

Figure 8.5 – Creating the resources

Wait for the deployment to complete. At the end of the deployment, you can review the
resources that were created. In the next section, we will start looking at the first security
best practice of using hardened baseline VM images.

256 Implementing Host Security

Using hardened baseline VM images
One of the first choices that we need to make when deploying a VMs in Azure is the image
that it will be based on. We have three options to choose from:

•	 Microsoft-provided marketplace image

•	 Third party-provided marketplace image

•	 Customer-provided image

The decision that we make here has an impact on the security posture of the virtual
machine after deployment! The image that users choose when deploying VMs in Azure
could be one that has vulnerable binaries and configurations that need to be patched or
reconfigured after deployment.

The best practice here is to choose a hardened image that already has baseline security
configurations and the most recent patches applied. But where can we get this? Customers
who are willing could build the hardened images themselves using an automation tool
such as Packer or a service such as Azure Image Builder.

Information
Packer is an open source tool created by Hashicorp that can be used to
automate the creation of any type of machine image, including Azure VM
images. The Azure Image Builder service, which does something similar,
is built on Packer. A walkthrough on how to use Packer to automate the
creation of an Azure Linux image can be found here: https://docs.
microsoft.com/en-us/azure/virtual-machines/linux/
build-image-with-packer.

The Shared Image Gallery is an Azure service that can be used to store and
distribute VM images with users or user groups within and across Azure
subscriptions.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer

Using hardened baseline VM images 257

The images can then be distributed across the organization using a service called the
Shared Image Gallery. For other customers, who are willing to pay for this, Center for
Internet Security (CIS) hardened images are also available in the Azure marketplace,
as shown in the following screenshot:

Figure 8.6 – CIS hardened images in the Azure marketplace

258 Implementing Host Security

So, now that we know where we can get hardened images from, how do we enforce their
use? The easiest way to enforce this is to use Azure Policy, which defines a list of trusted
images that users can choose from. If you are wondering what Azure Policy is, don't
worry – we will cover this in detail in Chapter 13, Azure Cloud Governance and Security
Operations. For now, just know that it provides a way for us to monitor and enforce resource
configuration in our Azure subscriptions. The following is a screenshot of an Azure Policy
definition in GitHub that can be used for this (https://github.com/Azure/azure-
policy/tree/master/samples/Compute/allowed-custom-images):

Figure 8.7 – Approved VM images policy

In this section, we discussed the importance of using a hardened VM image for the virtual
machines that you deploy in Azure. We will learn how to protect VMs from malicious
software in the next section.

Protecting VMs from viruses and malware
VMs, VM Scale Sets (VMSSes), and Windows Virtual Desktops (WVDs) in Azure,
just like any other computer system, can be vulnerable to malicious software attacks.
The recommendation is to install antimalware protection on all user-managed systems
in Azure to protect against compromise due to viruses, worms, spyware, and other
malicious software.

We can either use a Microsoft-provided endpoint protection solution such as the free
Microsoft Antimalware for Azure, or an endpoint protection solution from third-party
security vendors such as Palo Alto, Symantec, Trend Micro, and more.

https://github.com/Azure/azure-policy/tree/master/samples/Compute/allowed-custom-images
https://github.com/Azure/azure-policy/tree/master/samples/Compute/allowed-custom-images

Protecting VMs from viruses and malware 259

Microsoft Antimalware for Azure is a free endpoint protection solution that can be
used in the absence of an alternative. It has very limited capabilities compared to paid
alternatives such as Microsoft Defender for Endpoint or third-party security offerings. Its
capabilities are very much limited to signature-based runtime protection against malware
for Windows VMs (Linux VMs are not supported). It also has no support for Endpoint
Detection and Response (EDR) capabilities.

To install the Microsoft Antimalware agent for a Windows VM in Azure, we can deploy
the Microsoft antimalware extension (Figure 8.8). Security events will be logged in the
Windows Event system logs and can be collected using the Azure Diagnostic agent or the
Microsoft Monitoring Agent:

Figure 8.8 – Approved VM images policy

If you are planning to use a third-party antimalware offering, you can deploy the solution
using a custom script extension, which can be used to run a PowerShell script (Windows) or
a Bash script (Linux) on a VM, post-deployment. You can also deploy the solution using a
VM configuration management tool such as Chef, Puppet, or Microsoft Endpoint Manager.

Azure Policy has built-in policy definitions that can be used to monitor and enforce
the deployment of an antimalware extension on Windows VMs, as shown in the
following screenshot:

Figure 8.9 – Approved VM images policy

260 Implementing Host Security

In the next section, you will learn how to implement and configure the Microsoft
Antimalware solution for a VM in Azure.

Hands-on exercise deploying the Microsoft
Antimalware extension for Azure
Here is what we will complete in this exercise:

•	 Task 1: Deploy the Microsoft Antimalware extension on a Windows Server VM.

Let's look at the steps:

1.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type azsecwinvm and press Enter:

Figure 8.10 – Searching for the Windows VM by name

2.	 In the Virtual machine blade, click on Extensions, and then click on + Add:

Figure 8.11 – Adding a new VM extension

Protecting VMs from viruses and malware 261

3.	 In the New resource blade, click on the Microsoft Antimalware option:

Figure 8.12 – Selecting the Microsoft Antimalware extension

4.	 In the Microsoft Antimalware blade, click on Create:

Figure 8.13 – Creating the extension

262 Implementing Host Security

5.	 In the Install extension blade, configure the following:

Real-time protection: Enable.

Run a scheduled scan: Enable.

Scan type: Quick.

Leave the other settings as their default values.

Click OK:

Figure 8.14 – Configuring the antimalware parameters

6.	 Wait for a few minutes for the extension to be deployed:

Figure 8.15 – Reviewing the installation of the extension

Congratulations! You have successfully configured the Microsoft Antimalware extension
for an Azure VM. The same process can be followed to install a third-party antimalware
solution using a custom script extension. In the next section, we will discuss how to
manage system updates.

Implementing system update management for VMs 263

Implementing system update management
for VMs
Update management is one of the most important security processes in any environment.
Unpatched operating systems or software puts organizations at risk of serious security
breaches. This is further complicated by the unpredictable nature of updates for different
software. Updates can come quickly and frequently when newly discovered security flaws
or attack vectors are addressed.

Azure has a service called Azure Automation that we can use to manage operating system
updates for Windows and Linux systems, regardless of where they are hosted – in Azure,
in other public cloud environments, or in on-premises data centers.

The update management feature of Azure Automation supports multiple OS platforms,
including Windows Server (2008 and newer), CentOS 6 and 7 (x64), Red Hat Enterprise
6 and 7 (x64), SUSE Linux Enterprise Server 12, 15, and 15.1 (x64), Ubuntu 14.04 LTS,
16.04 LTS, and 18.04 LTS (x64). At the time of writing this book (early 2021), Windows
clients and Azure Kubernetes Service nodes are not supported.

There are three main components of this solution:

•	 An Azure Automation account
•	 A Log Analytics workspace
•	 The Microsoft Monitoring Agent

As shown in the following diagram, the Monitoring Agent collects information about
missing updates and sends them to a Log Analytics workspace. The updates are then
installed by runbooks in Azure Automation:

Figure 8.16 – System update management for Azure VMs

When an update deployment is created, the deployment creates a schedule that starts a
master update runbook at the specified time for the included computers.

264 Implementing Host Security

The master runbook then starts a child runbook on each agent to install the required
updates. To reduce this attack surface, the recommendation is to keep management
ports such as RDP and SSH closed, and only open them when needed for administrative
tasks. This is exactly what just-in-time (JIT) VM access allows us to do, without the
management overhead of closing and opening these ports manually.

Hands-on exercise – implementing Azure Automation
Update Management
Here is what we will complete in this exercise:

•	 Task 1: Create a Log Analytics workspace.

•	 Task 2: Create an automation account.

•	 Task 3: Enable update management for an Azure VM.

Let's get started.

1.	 In the Azure portal, in the Search resources, services, and docs text box at the top of
the Azure portal home page, type log analytics workspace and press Enter:

Figure 8.17 – Searching for Log Analytics workspaces

2.	 In the Log Analytics workspaces blade, click on + New, and then click on + Add:

Figure 8.18 – Creating a new workspace

Implementing system update management for VMs 265

3.	 In the Create Log Analytics workspace blade, configure the following:

Subscription: Select your Azure subscription.

Resource group: azuresec-c6-rg.

Name: update-mgmt-workspace.

Region: Select the same region that you deployed resources in earlier in
this chapter.

Click Review + Create, and then click on Create:

Figure 8.19 – Configuring the parameters for the workspace
Wait for the deployment to complete.

4.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type automation accounts and press Enter:

Figure 8.20 – Searching for Automation Accounts

266 Implementing Host Security

5.	 In the Automation Accounts blade, click on + New, and then click on + Add.
6.	 In the Add Automation Account blade, configure the following:

Name: update-mgmt-aac.

Subscription: Select your Azure subscription.

Resource group: azuresec-c6-rg.

Location: Select the same region that you deployed resources in earlier in this chapter.

Create Azure Run As account: Yes.

Click on Create:

Figure 8.21 – Configuring the parameters for the Automation Account
Wait for the deployment to complete.

7.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type virtual machines and press Enter:

Figure 8.22 – Searching for virtual machines

Implementing system update management for VMs 267

8.	 In the Virtual machines blade, select all VMs. In the top-right corner, click the
ellipsis icon, click on Services, and then click on Update Management:

Figure 8.23 – Configuring update management for VMs

9.	 In the Enable Update Management blade, select CUSTOM, then click to change
the Log Analytics workspace to the one you created earlier:

Figure 8.24 – Changing the workspace for Update Management

268 Implementing Host Security

10.	 In the Custom configuration blade, configure the following:

Log Analytics workspace Subscription: Select your subscription.

Location: Select the same region that you deployed resources in earlier in this
chapter.

Workspace: update-mgmt-workspace.

Automation account Subscription

Account: update-mgmt-aac.

Click OK.

Ignore the warning message that appears:

Figure 8.25 – Selecting the workspace and Automation Account

Implementing vulnerability assessment for VMs 269

11.	 Back in the Enable Update Management blade, ensure all VMs are selected, and
then click Enable:

Figure 8.26 – Enabling VM update management

Congratulations! You have successfully configured update management for Azure
VMs. After a while, you will begin to see the update statuses of the VMs in the Update
Management section of Azure automation. You can also configure a schedule for
the update installation from there. In the next section, we will look at vulnerability
management for VMs in Azure.

Implementing vulnerability assessment
for VMs
When we talk about VM vulnerability scanning, the Azure Defender plan of Security
Center has functionality that we can use for this. This functionality is called Azure
Defender for Servers. It uses a third-party solution known as Qualys in the background,
but the process and integration are abstracted from us.

270 Implementing Host Security

Even though Qualys is used, we do not need to obtain a Qualys license or have a
relationship with Qualys. Everything is handled seamlessly inside Security Center:

Figure 8.27 – Azure Defender for VMs

There are four stages to using this functionality:

1.	 Deploy the Qualys vulnerability scanner extension. The extension can be deployed
to Azure VMs from Azure Security Center.

2.	 The extension gathers information and artifacts concerning the VM and sends
them to the Qualys cloud service. Network communication between the VM
and the Qualys cloud service is needed for this.

3.	 The Qualys cloud service conducts the vulnerability assessment and sends its
findings to Security Center.

4.	 Recommendations can be accessed in Security Center via the console or through
the API.

A customer can also choose to use other solutions for VM vulnerability assessment.
For example, the Palo Alto Prisma Cloud compute solution can be used to consolidate
vulnerability management for code, configuration, VMs, containers, and serverless functions.

Encrypting VM disks with Azure Disk Encryption 271

Encrypting VM disks with Azure Disk Encryption
VM disks are encrypted at rest in Azure data centers. While this will protect against data
theft if someone breaks into one of the Microsoft data centers and steals a bunch of disks
(an unlikely scenario), it will not prevent an attacker or a malicious insider with the right
credentials from taking a snapshot of a VM disk, and then mounting it on another system
to access its data (a more likely scenario). The recommendation to prevent this likely
scenario is to enable volume-level encryption, and the easiest way to implement this is to
utilize a feature called Azure Disk Encryption (ADE).

ADE leverages built-in OS encryption capabilities to provide volume-level encryption
for your OS and its data disks. For Windows VMs in Azure, ADE uses the built-in
BitLocker feature. For Linux VMs in Azure, ADE uses the DM-Crypt feature. To store the
encryption secrets and keys, ADE uses Azure Key Vault (which we will cover in Chapter 12,
Implementing Secrets, Keys, and Certificate Management with Key Vault).

Regarding pricing, there are charges associated with the use of Azure Key Vault, but the
disk encryption feature itself is not charged for use.

Regarding supported operating systems, Windows 8 and later are supported for the
Windows client family, Windows Server 2008 R2 and later are supported for the Windows
server family, and most official Linux distributions in the Azure marketplace are also
supported, including Ubuntu, RedHat, Centos, and SUSE.

So, how does ADE work? When ADE is enabled on an Azure VM, an extension is
deployed to the VM. This extension enables and configures volume encryption on the
VM and stores the symmetric key used for encryption as a secret in an Azure Key Vault
resource. This secret will be unique for each VM. To add an extra layer of protection
for the encryption secret, we can protect or wrap it using an RSA 2048 asymmetric key,
referred to as the Key Encryption Key (KEK). This key will be used to encrypt the secret
before it is stored in the Key Vault (Figure 8.28). This also makes it easier to rotate the keys
as we only need to rotate the KEK instead of all the unique symmetric keys:

Figure 8.28 – Azure Disk Encryption integration with Key Vault

272 Implementing Host Security

There are some additional points to note when implementing ADE:

•	 Basic A-series VMs, or VMs with less than 2 GB of memory, are not supported.

•	 A VM in Azure has an OS disk and could have one or more data disks attached. The
OS disk must be encrypted to be able to encrypt the data disks.

•	 It is not enough for data disks to be attached to a VM from the Azure platform – the
volumes must also be mounted within the OS before they can be encrypted
with ADE.

•	 Using ADE does not prevent VM backups from working. VMs with encrypted disks
using Azure Disk Encryption can be backed up using Azure Backup. The main
thing to watch out for is that the Recovery Services Vault must reside on the same
subscription and region.

•	 For a more comprehensive list of considerations when using ADE, please refer
to this FAQ document: https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/disk-encryption-faq.

To implement VM disk encryption at scale, ADE can be enabled using a resource
manager template. This way, we can ensure that our VM disks are encrypted at the
point of deployment.

Hands-on exercise – implementing Azure Disk
Encryption
Here is what we will complete in this exercise:

•	 Task 1: Create an Azure Key Vault resource.

•	 Task 2: Create a key that will be used to protect the encryption secrets.

•	 Task 3: Enable Azure Disk encryption on a VM.

Here are the steps to complete these tasks:

1.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type key vault and press Enter:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-faq
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-faq

Encrypting VM disks with Azure Disk Encryption 273

Figure 8.29 – Searching for key vault

2.	 In the Key vaults blade, click on + New to create a new key vault:

Figure 8.30 – Creating a new key vault resource

3.	 In the Create key vault blade, configure the following:

Subscription: Select your Azure subscription.

Resource group: azuresec-c6-rg.

Key vault name: azsec-<random_number>. Replace <random_number>
with a randomly selected number to ensure that the name is unique in the
vault.azure.net DNS zone; for example, azsec-120321.

Region: Select the same region that you deployed the template to earlier. The key
vault must be in the same subscription and region as the encrypted disks.

Pricing tier: Standard.

Days to retain deleted vaults: Leave as the default setting.

Purge protection: Leave as the default setting.

274 Implementing Host Security

Click Next: Access policy >. It will take about a minute for the review to deploy:

Figure 8.31 – Configuring the parameters for the new key vault

4.	 In the Access policy tab, ensure that the option for Azure Disk Encryption
for volume encryption is selected. Selecting this option will grant ADE the
permission it needs to retrieve secrets from the vault and unwrap keys. Then,
click on Review + create:

Figure 8.32 – Configuring the key vault for ADE

Encrypting VM disks with Azure Disk Encryption 275

5.	 In the Review + create tab, after the validation has passed, click on Create. Wait for
the deployment to complete:

Figure 8.33 – Creating a key vault with the configured parameters

The Key Vault resource that you just created will be used to store the VM encryption
secrets! But before we enable encryption, let's generate an RSA 2048 key that will be
used to protect the encryption secrets before they are stored in the Key Vault.

6.	 Once the deployment has been completed, click on Go to resource:

Figure 8.34 – Viewing the deployed resources

276 Implementing Host Security

7.	 In the Key vault resource blade, click on Keys, and then select + Generate/Import:

Figure 8.35 – Generating a new key in the key vault

8.	 In the Create a key blade, configure the following:

Options: Generate.

Name: Disk-Encryption-KEK.

Key Type: RSA.

RSA Key Size: 2048.

Leave other options as their default settings.

Click Create:

Encrypting VM disks with Azure Disk Encryption 277

Figure 8.36 – Configuring the parameters for the new key
Now that we have created our key vault and the encryption key, we can proceed to
enable ADE throughout.

9.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type azsecwinvm and press Enter.

10.	 Open the Windows VM resource that was created as part of the deployment
template earlier in this chapter:

Figure 8.37 – Searching for the Windows VM by name

278 Implementing Host Security

11.	 In the azsecwinvm virtual machine blade, click on Disks, and then click on
Additional settings:

Figure 8.38 – Configuring the VM's disk settings

12.	 In the Disk settings blade, configure the following:

Disks to encrypt: OS and data disks

Key vault and key: Click on the Click to select a key link:

Figure 8.39 – Encrypting both OS and data disks

Encrypting VM disks with Azure Disk Encryption 279

13.	 In the Select key from Azure Key Vault blade, configure the following:

Key vault: Select the key vault resource that you created earlier.

Key: Disk-Encryption-KEK.

Version: Select the latest key version that's displayed.

Click on Select:

Figure 8.40 – Configuring the key vault and key to use

14.	 Back in the Disk settings blade, click on Save. This will begin the encryption
process.

15.	 On the left-hand pane, select Extensions. You should see two extensions that were
provisioned as part of the process:

Figure 8.41 – Reviewing the VM extensions

280 Implementing Host Security

16.	 If you review the secrets repository of the key vault resource, you will also see a
wrapped BitLocker encryption secret that was used for volume encryption:

Figure 8.42 – Reviewing the secret in the key vault

Congratulations! You have successfully protected sensitive data stored in an Azure VM
disk using the Azure disk encryption feature. You now know how to configure the key
vault resource needed to store the secrets, generate the encryption key needed to encrypt
the secrets, and then implemented the feature. We will cover the Key Vault resource in
more detail in Chapter 12, Implementing Secrets, Keys, and Certificate Management with
Key Vault. In the next section, we will cover how to secure the management ports of our
VMs using JIT VM access.

Securing management ports with JIT VM
access
Internet attackers are always hunting for connected systems with open management
ports. Once a target has been identified, it can be scanned for vulnerabilities that could
be exploited, or a brute-force login attack could be performed. If the host is successfully
compromised, it can be used as the entry point to proceed further in an attack chain or
even used as a landing zone to compromise other victims!

To reduce this attack surface, the recommendation is to keep management ports such as
RDP and SSH closed and only open them when needed for administrative tasks. This is
exactly what JIT VM access allows us to do, without the management overhead of closing
and opening these ports manually.

To use JIT, we need to enable the Azure Defender pricing tier of Azure Security Center
(you will be doing this in the following hands-on exercise). To enable JIT for a VM, you
must be a resource manager VM (classic VMs are not supported), the VM must have an
associated Network Security Group (NSG), and it should be powered on.

Securing management ports with JIT VM access 281

So, how does JIT VM access work? The first thing we need to do is enable the feature for
a VM that we want to protect. We can enable it from Security Center (Security Center 
Just in time VM access  Not configured  Select VM  Enable JIT  Save) or from
the VM configuration (Virtual Machine  Configuration  Enable JIT).

When we enable the feature, we can specify the management port that we want to protect,
the approved IP address that can access the port, and the maximum time that the port can
be kept open for, as shown here:

Figure 8.43 – Configuring the management port options

After enabling JIT, Security Center ensures that the protected ports are blocked in the
NSG associated with that VM, as shown in the following diagram:

Figure 8.44 – Security Center JIT adding a block rule

282 Implementing Host Security

Whenever a user needs to connect to the VM on the protected management port, they
can authenticate to the Azure portal and request access to the management port for a
limited time (Virtual Machine  Connect  Request Access). Security Center will
then auto-configure the NSG to allow the inbound traffic. Once the maximum time has
expired, the access will be automatically removed, as shown here:

Figure 8.45 – Authenticated users can request temporary access

Now that we have some understanding of JIT VM access and how it works, in the next
section, we will head on over to the Azure portal to see this capability in action!

Hands-on exercise – enabling JIT VM access
This is what we will complete in this exercise:

•	 Task 1: Enable Security Center – Azure Defender plan.

•	 Task 2: Enable and configure JIT for a Windows VM.

•	 Task 3: Verify JIT network security group rules and audit log.

Here are the steps to complete these tasks:

1.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure home portal page, type security center and press Enter. This will
open the Security Center management pane:

Figure 8.46 – Searching for Security Center

Securing management ports with JIT VM access 283

2.	 In the Security Center | Getting started blade, scroll down and click on Upgrade
to upgrade to the Azure Defender plan. You will need this to use the JIT feature
that we are about to implement:

Figure 8.47 – Upgrading the Security Center plan

3.	 Wait for the upgrade to complete. Do not click on the option to Install agents for
now. Once the upgrade is complete, you should see a Trial started notification in
the top-right corner:

Figure 8.48 – Trial started notification

284 Implementing Host Security

4.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type azsecwinvm and press Enter. This will open
the Windows VM management pane:

Figure 8.49 – Searching for the Windows VM by name

5.	 In the Virtual machine blade, click on Configuration, and then click on Enable
just-in-time. This will enable JIT protection for the VM:

Figure 8.50 – Enabling just-in-time VM access

6.	 In the left pane, click on Networking. Review the Inbound port rules section.
You will notice that Security Center has added a deny rule to block the RDP
management port:

Securing management ports with JIT VM access 285

Figure 8.51 – Reviewing the security center block rule

7.	 To request temporary access, click on Configuration in the left-hand pane, and
then click on Open Azure Security Center:

Figure 8.52 – Opening Azure Security Center from the VM blade

286 Implementing Host Security

8.	 In the Just-in-time VM access blade, you can review VMs that have JIT enabled,
VMs that do not have JIT enabled, and VMs that do not support JIT. In the
Configured tab, click on the ellipsis icon in front of azsecwinvm, and then click
on Edit:

Figure 8.53 – Editing VM JIT configuration

9.	 In the JIT VM access configuration blade, click on port 3389 and review the
current settings. You will see that we can configure the allowed source IP address
block when users request temporary access to connect to the VM using this
management port. We can also configure the maximum allowed time per request
before access will be removed. Click on Discard, then close the JIT VM access
configuration blade to return to the previous blade:

Figure 8.54 – Configuring the management port options for JIT

Securing management ports with JIT VM access 287

10.	 Back in the Just-in-time VM access blade, select azsecwinvm, and then click on
Request access:

Figure 8.55 – Requesting JIT VM access

11.	 In the Request access blade, configure the following for port 3389:

Toggle: On

Allowed Source IP: My IP

Time Range: Leave as the default setting

Enter request justification: Needed for admin tasks

Click on Open ports. Then, close the Just-in-time VM access blade to return to the
previous blade:

Figure 8.56 – Completing the request parameters

288 Implementing Host Security

12.	 Back in the azsecwinvm blade, click on the Networking tab. Review the Inbound
port rules section. You will notice that Security Center has added an allow rule on
top of the deny rule to allow the RDP management port from your single source IP.
This access will be automatically removed after the request time expires:

Figure 8.57 – Reviewing the Security Center JIT allow rule

13.	 In the left pane, click on Activity log. You should see the audit trail of JIT access
being requested and granted. You can click on each event to review the full JSON
log entry:

Figure 8.58 – Reviewing the audit logs for JIT

Congratulations! You have successfully protected the management port of an Azure VM
with JIT access capabilities in Security Center. This is one of the objectives that is called
out in the Azure Security Engineer certification guideline, and it will also be useful in
the real world. Remember to clean up the resources that we created for the exercises by
deleting the azuresec-c6-rg resource group in the Azure portal. This will remove all the
resources that we created in this chapter.

Summary 289

Summary
In this chapter, we covered how to implement best practices for host security in Azure.
We learned about reducing the risks of introducing vulnerabilities by choosing a hardened
VM image, implementing an update management process, and continuously scanning
VMs for vulnerabilities. We also learned how to implement disk encryption to protect
against data exfiltration.

Finally, we covered how to implement JIT access for sensitive VM management ports to
reduce the attack surface that's exposed to external adversaries.

The information in this chapter has equipped you with the skills needed to protect your
VM workloads in Azure.

See you in the next chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 You have two Windows VMs in Azure. Win-VM1 is an F-Series Windows Server
2008 R2 VM with 4 GB of memory. Win-VM2 is an A-Series Windows Server 2016
VM with 8 GB of memory. Which of these VMs can be protected with Azure Disk
Encryption (ADE)?

a. Win-VM1 only

b. Win-VM2 only

c. Both Win-VM1 and Win-VM2

d. None of the VMs
2.	 You have an Azure subscription. The subscription contains 100 VMs that run

Windows Server 2016 or Windows Server 2019. You need to deploy Microsoft
Antimalware on these VMs. What should you do?

a. Connect to each VM and add a Windows feature.

b. Add an extension to each VM using an automation script.

c. Recreate the VMs.

290 Implementing Host Security

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Azure Disk Encryption for Linux VMs: https://docs.microsoft.com/
en-us/azure/virtual-machines/linux/disk-encryption-
overview?WT.mc_id=AZ-MVP-6003870

•	 Azure Disk Encryption for Windows VMs: https://docs.microsoft.
com/en-us/azure/virtual-machines/windows/disk-encryption-
overview?WT.mc_id=AZ-MVP-6003870

•	 ASC Just-In-Time VM Access: https://docs.microsoft.com/en-us/
azure/security-center/security-center-just-in-time?WT.mc_
id=AZ-MVP-6003870

•	 ASC VM Vulnerability Scanning: https://docs.microsoft.com/en-us/
azure/security-center/deploy-vulnerability-assessment-
vm?WT.mc_id=AZ-MVP-6003870

•	 Security Best Practices for IaaS in Azure: https://docs.microsoft.
com/en-us/azure/security/fundamentals/iaas?WT.mc_id=AZ-
MVP-6003870

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/security-center-just-in-time?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/security-center-just-in-time?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/security-center-just-in-time?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/deploy-vulnerability-assessment-vm?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/deploy-vulnerability-assessment-vm?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security-center/deploy-vulnerability-assessment-vm?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security/fundamentals/iaas?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security/fundamentals/iaas?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/security/fundamentals/iaas?WT.mc_id=AZ-MVP-6003870

9
Implementing

Container Security
Containers have been around for a long time. However, recently, they have become
commonplace within an enterprise. The Azure platform continues to extend services that
we can use to host containerized applications (for example, Container Registry, Kubernetes
Service, Container Instances, App Service, "Functions", and Batch). In this chapter, we will
be going over containerization in Azure, the container security threat landscape for Azure,
and how to implement security across three key services – Azure Container Registry
(ACR), Azure Container Instances (ACI), and Azure Kubernetes Services (AKS). We
will cover the following main topics with accompanying hands-on exercises:

•	 An overview of containerization in Azure

•	 Introducing ACR

•	 ACR security best practices

•	 Introducing AKS

•	 AKS security best practices

As you can see, each topic has been structured to align with a security best practice for
securing hosts in Azure.

292 Implementing Container Security

Let's get started!

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

•	 A GitHub template to deploy test resources: http://bit.ly/az500-c9-
template.

Before we proceed to cover the security best practices, let's prepare our Azure subscription
for the hands-on exercises that we will be implementing later in the chapter.

An overview of containerization in Azure
A container is a portable way in which to package and run software packages. It provides
an efficient way to package application code, and all the necessary dependencies, to run
in any computing environment. In general, when we talk about containerization, there
are three main aspects to it. These three aspects are clearly highlighted in Figure 9.1:

Figure 9.1 – An overview of containerization in Azure

http://bit.ly/az500-c9-template
http://bit.ly/az500-c9-template

An overview of containerization in Azure 293

The first aspect is to BUILD container images that contain application code, dependencies,
and runtime. This is sometimes referred to as the BUILD TIME. Building container
images is beyond the scope of this course, but it is important to mention it as security
decisions begin at this stage. In Azure, there are different options that can be used to build
container images. A developer could spin up a virtual machine (VM) in Azure, install
Docker on it, and use it to build container images. A service called ACR can also be used.
However, the most likely option is to automate everything using Azure Pipelines.

From a security perspective, the objective should be to reduce the risk of an attacker
compromising our environment using containers running from this image. To achieve
this objective, we can follow good security practices such as the following:

•	 Only use trusted base images. Images can contain malicious code or vulnerable
components, so be extra careful with images from untrusted sources such as
public registries.

•	 Avoid including sensitive information such as passwords or secrets in an image.
This is because anyone with access to the image at any time in its life cycle can
access any file or information included in it.

After the container images are ready, they need to be STORED and DISTRIBUTED.
Images are stored in repositories called container registries. Docker clients can connect
to registries to upload images (which is referred to as push) or to download images
(which is referred to as pull). If you are familiar with Docker, you have probably interacted
with the most popular container registry platform in the world – Docker Hub. Docker
Hub is most popular for its public registry, which is accessible to everyone, but it also has
a private option that allows organizations to implement access control policies.

Additionally, the Azure cloud platform has a service that we can use as a public or private
container registry. The service is called ACR, and we will learn how to secure it later in
this chapter.

The third aspect is to RUN images as containers in an environment. The Azure platform
has multiple options that we can use to run container images. These runtime options
are generally divided into two categories (please refer to Figure 9.1). The first category
is runtime options without orchestration (or standalone container runtime options).
Services such as VMs, ACI, App Service, Functions, and Batch fall under this category.
These services do not support orchestration capabilities and are tailored toward running
single container workloads. This does not mean that they cannot run multiple container
instances – they can. It just means that they are not designed to make the running of
multiple container workloads easy.

294 Implementing Container Security

The second category is runtime options with orchestration. Services such as AKS, Azure
Service Fabric, and Azure RedHat for OpenShift (ARO) fall under this category. These
options are designed to simplify the running of distributed containerized workloads
across multiple hosts. This is referred to as orchestration. Here are some capabilities of
container orchestration options that standalone options do not have:

•	 Scheduling: This enables us to automatically find a suitable machine with sufficient
resources to run our container on.

•	 Affinity/Anti-affinity: This means that we can specify a set of containers that run
close to each other (for performance reasons) or sufficiently far apart from each
other (for availability reasons). The orchestrator will manage the enforcement of this
configuration for us.

•	 Health monitoring: The orchestrator watches out for container failures and
automatically reschedules them in the case of a failure.

•	 Failover: The orchestrator constantly keeps track of what is running on each cluster
node and reschedules containers from failed nodes to healthy nodes.

•	 Scaling: The orchestrator can add or remove container instances to match demand,
either manually or automatically.

•	 Networking: The orchestrator provides a shared overlay network to facilitate
container communication across multiple hosts (such as cluster nodes).

•	 Service discovery: The orchestrator implements a simplified way for containers
to automatically locate each other even as they are moved between host machines
and change IP addresses.

•	 Coordinated application upgrades: The orchestrator manages container workload
upgrades in a way that prevents application downtime and enables a rollback if
there are any issues.

In this chapter, we will cover the security of AKS; however, before we go any further, let's
go over to our Azure environment to prepare a scenario that we can use to follow along
with the exercises in this chapter.

Hands-on exercise – providing resources for the chapter exercises 295

Hands-on exercise – providing resources for
the chapter exercises
To follow along with the exercises in this chapter, we will provide some Azure resources
to work with. We have prepared an ARM template in the GitHub repository of this book
for this purpose. The template will deploy an Azure virtual network with a public subnet,
as shown in Figure 9.2. The subnet will have an Ubuntu Linux VM that can be accessed
over SSH. Here are the tasks that we will complete in this exercise:

•	 Task 1: Initialize the template deployment in GitHub.

•	 Task 2: Complete the parameters and deploy the template to Azure:

Figure 9.2 – Resources created for the exercise scenarios

296 Implementing Container Security

Let's begin deploying our template deployment:

1.	 Open a web browser and browse to http://bit.ly/az500-c9-template.
This link will open the GitHub repository that has an ARM template to deploy the
resources we need.

2.	 In the GitHub repository that opens, click on Deploy to Azure:

Figure 9.3 – Deploying the template to Azure

3.	 If required, sign in with your administrative username and password to authenticate
your Azure subscription.

4.	 In the Custom Deployment window, configure the following:

Subscription: Select the subscription that you want to deploy the resources to.

Resource Group: Navigate to Create New → Name: azuresec-c9-rg → OK.

Region: Select an Azure region that is close to your location.

Vm-dns: Leave the default value.

Admin User: Leave the default value.

Admin Password: Enter a complex password. Make a note of the password that
you use. We recommend that you select one complex password that you can use
throughout the scenarios in this book to keep things simple.

http://bit.ly/az500-c9-template

Hands-on exercise – providing resources for the chapter exercises 297

Vmsize: Leave the default value.

Location: Leave the default value.

Resource Tags: Leave the default value.

_artifacts Location: Leave the default value.

_artifacts Location Sas Token: Leave the default value.

Click on Review + Create:

Figure 9.4 – Configuring the template parameters

298 Implementing Container Security

5.	 After the template validation has passed, click on Create. This will begin the
deployment process, which takes about 7 to 10 minutes to complete. Grab yourself
a cup of water, tea, or coffee, and wait for the deployment to complete:

Figure 9.5 – Deploying the template

6.	 After the deployment has been completed, click on the Outputs tab. Make
a note of the linvm-dns value. This is the public DNS name of the Linux VM that
we just deployed:

Figure 9.6 – Obtaining the Linux VM DNS name

In this exercise, we provisioned some Azure resources that we need for the rest of the
exercises in this chapter. In the next section, we will begin to look at ACR and examine
how to secure it.

Introducing ACR 299

Introducing ACR
ACR is a managed Docker registry service that we can use to store and distribute
container images and other containerization artifacts. Other artifacts that we can store
in ACR include Helm, which is a packaging format that is used to deploy applications
for Kubernetes, such as Helm charts.

ACR is based on the open source Docker Registry 2.0 service, which is the same service
that the popular Docker Hub registry (https://hub.docker.com/) is based on.

Because ACR is a managed service, we do not need to manage the underlying
infrastructure, operating system (OS), or application; this gives us fewer security
responsibilities to fulfill. Before we explore how to implement security for ACR,
let's discuss how this service works. Figure 9.7 illustrates this clearly:

1.	 First, we create a container registry with the Azure portal, Azure CLI, or Azure
PowerShell. The registry will receive a fully qualified domain name that should be
unique in the acr.net domain.

2.	 Then, we use the Docker client's login and push commands to authenticate and
upload our container images into the registry.

3.	 We can then reference our images that are stored in ACR when deploying to
services that run container images. The runtime engine will pull and run the images
from our registry:

Figure 9.7 – Container image flow

https://hub.docker.com/

300 Implementing Container Security

Now that you understand how the container registry works, let's take a look at the
different pricing tier options and the impact of our selection on the security capabilities
that we can implement.

ACR pricing tiers
ACR is available in three tiers, and we need to specify a tier during creation. The pricing
tier that we select has an impact on the security capabilities that we can implement. The
three tiers are Basic, Standard, and Premium.

The BASIC tier is a cost-optimized entry point for developers looking to learn about
Container Registry, while the STANDARD tier is an entry-level production option with
more storage capacity and throughput than the basic tier. From a security perspective,
both tiers support the same security capabilities:

•	 Webhook integration: This is useful when we want to trigger container scans in
a third-party service based on registry events. Security services such as the Palo
Alto Prisma Cloud Compute service leverages this capability to scan container
images on image push events.

•	 Azure Active Directory (Azure AD) authentication: This allows us to control
authentication and access to the registry using Azure AD credentials.

•	 Microsoft-managed platform encryption: This ensures that our images are
encrypted at rest in the Azure data centers using keys that are managed by the
Azure platform.

The PREMIUM tier has more storage capacity and throughput than the standard
tier. From a security perspective, it supports advanced security functionalities such as
geo-replication, private endpoints, content trust, and encryption using customer-managed
keys. Geo-replication provides registry resilience in the case of a regional outage.
We will cover private endpoints, content trust, and encryption using customer-managed
keys when we discuss the security best practices.

ACR security best practices
To protect container image assets in our registries, there are certain security
configurations that we should implement. In this book, we will cover the following
security best practices:

•	 Configuring service firewall rules (premium only)

•	 Restricting access using a private endpoint (premium only)

ACR security best practices 301

•	 Using Azure AD role-based access control (RBAC) for secure authentication and
access control

•	 Implementing container image vulnerability and compliance scanning

In the following sections, we will cover these best practices in detail so that you can gain
an understanding of them and the risks they help us to mitigate. Additionally, you have
an upcoming hands-on exercise to complete where you will be able to implement some
of these best practices.

Configuring service firewall rules for ACR
To pull or push images to ACR, a client, such as a Docker daemon running on a
developer's laptop, or an Azure pipeline agent needs to interact with its REST endpoint
over HTTPS. By default, ACR accepts connections over the internet from hosts on any
network (Figure 9.8):

Figure 9.8 – ACR's public endpoint

Here, the risk is that an attacker could start to probe the container registry for weak
credentials, or if an authorized identity is already compromised, an attacker could access
the contents of the registry from any network on the internet.

302 Implementing Container Security

The best practice here is to restrict this access to trusted public IP addresses only, as shown
in Figure 9.9:

Figure 9.9 – ACR service firewall rules

This feature is only available to the premium container registry service tier, and there
is a limit of 100 network access rules. To implement this feature from the Azure portal,
we can modify the network settings, as shown in Figure 9.10:

Figure 9.10 – Configuring the service firewall rule

ACR security best practices 303

Additionally, we can use the Azure CLI command-line tool to implement this in two steps.
First, we need to change the default action to deny access. Second, we need to allow our
trusted IP address. Here are the commands to complete this:

az acr update --name <acr_name> --default-action Deny

az acr network-rule add --name <acr_name> --ip-address
<trusted-ip-address>

In some cases, we might want to go further than simply restricting access through the
registry's public endpoint. For instance, we might want to eliminate exposure to the public
internet. This is where the next best practice of using a private endpoint can be of help.

Restricting access using a private endpoint
A private endpoint allows clients located in our private networks to securely access the
registry over a private link using a private IP address (please refer to Figure 9.11). This
feature eliminates exposing our container registry to the internet and reduces the risk of
data exfiltration.

To use this capability, we require the premium container registry service tier. It is
important to note that once this capability has been enabled, Azure Security Center
(ASC) cannot perform image vulnerability scanning for that registry. Enhanced container
security solutions such as Palo Alto Prisma Cloud Compute (formerly known as
Twistlock) can still scan images for this scenario:

Figure 9.11 – ACR's private endpoint

304 Implementing Container Security

To implement this feature from the Azure portal, we can modify the network settings of
the container registry. We can also implement it using Azure CLI or Azure PowerShell.
The process is covered in the official documentation, which can be found at https://
docs.microsoft.com/en-us/azure/container-registry/container-
registry-private-link.

Using Azure AD RBAC for secure authentication and
access control
To perform registry management operations against the ACR's API endpoint, the client
needs to be authenticated and authorized to perform the operation that is being requested.
There are three main ways to authenticate with ACR:

•	 Using the admin user

•	 Using an Azure AD identity

•	 Using an authentication token

The first authentication method is to use the admin user. Every container registry
includes an admin user account that has unrestricted permissions to perform any
operation. Because the account has full access, it should be treated with extreme care.
It is disabled by default, but it can be enabled using the Azure portal, as shown in Figure
9.12. It can also be enabled using other management tools, such as Azure CLI and
Azure PowerShell:

Figure 9.12 – Enabling the ACR admin user

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link

ACR security best practices 305

To authenticate with the admin user account, we can specify the name of our registry
as the username and one of the automatically generated passwords (Figure 9.12). The
primary downside of this authentication method is that all clients that authenticate with
this account will appear as a single user in the logs. This is not good for auditing in the
case of an incident.

The best practice is to keep this account disabled and use an authentication method, such
as Azure AD, that supports an individual identity per client. This can be governed at scale
using Azure Policy. We will cover Azure Policy in Chapter 13, Azure Cloud Governance
and Security Operations.

The second authentication method is to use an Azure AD identity admin user. This
could be a user identity, a service principal, or a managed identity. Service principals are
great for non-interactive clients such as Continuous Integration (CI) pipelines that are
used to automate the build of container images and publish them to the registry. Managed
identities are great for non-interactive clients that run on Azure services that support
managed identities such as a Docker VM or Kubernetes service cluster. User identities
are great for developers and DevOps engineers that need to interact with the
container registry.

To assign permissions to Azure AD identities, we use Azure RBAC. When assigning
permissions, the best practice is to follow the principle of least privilege, that is, do not
assign more permissions than what is needed for the task:

Figure 9.13 – ACR RBAC roles

For example, if a container runtime node needs to be able to pull images from the
registry, the AcrPull role is sufficient for that (the Reader role gives permissions to the
management plane, which, in this case, is not needed). Figure 9.13 shows the built-in roles
and the associated permissions.

306 Implementing Container Security

RBAC for container registries can be configured from the Azure portal, as shown in Figure
9.14. Additionally, we can configure RBAC using other Azure management tools such as
PowerShell and CLI:

Figure 9.14 – Add role assignment

While the built-in roles are sufficient for most use cases, we can also create custom roles
to use for permission assignments.

The third option (using an authentication token) is currently in preview as, at the time
of writing, it is only available to the premium tier of ACR. It allows us to generate tokens
that give permissions on a repository level.

Implementing container image vulnerability and
compliance scanning
Container images could include libraries and dependencies that are out of date
or vulnerable. They could also include sensitive secrets and keys or insecure
configurations. Our objective is to mitigate the risk of deploying vulnerable container
images to runtime from our container registries. To achieve this, we can ensure that
images stored in the registry are continually scanned for vulnerabilities and compliance.

ASC, which we will cover in the last chapter of this book, has a feature, called Azure
Defender for container registries, that we can use to implement a container vulnerability
assessment. This feature requires the standard tier of ASC and relies on a third-party
service (such as Qualys) to perform the vulnerability assessment:

ACR security best practices 307

Figure 9.15 – Azure Defender for container registries

Figure 9.15 shows an example flow for this. After a new container image is pushed into the
registry (1), a webhook is triggered in ASC (2), and this triggers an image scan.

The image is pulled from the registry (3). It is then run in an isolated sandbox
environment with the Qualys scanner, which extracts a list of known vulnerabilities.
The results are returned to ASC (4), which alerts us to any detected issues along with
actionable recommendations (5).

While this feature of ASC is better than nothing, it is worth noting that it is also limited
in its capabilities. For example, it does not support the scanning of private registries,
Windows images, and super-minimalist images. It is also limited in the assessment that
it does, as it only supports the scanning of vulnerabilities and not compliance. To support
a more comprehensive container scanning scenario, third-party services such as the
Prisma Cloud Compute solution (formerly known as Twistlock) can be implemented.

This feature can be enabled by enabling the Azure Defender for container registries feature
of Security Center; you will be doing this in the hands-on exercise next.

Hands-on exercise – securing ACR
In this exercise, we will complete the following tasks:

•	 Task 1: Disable the Admin user for ACR.

•	 Task 2: Configure RBAC for ACR.

•	 Task 3: Enable Azure Defender for ACR for image vulnerability assessment.

•	 Task 4: Authenticate and push images to ACR.

308 Implementing Container Security

Here are the steps to complete the preceding tasks:

1.	 Open a web browser and browse to https://portal.azure.com.

In the search box at the top of the screen, type in azseccr and click on the
container registry resource:

Figure 9.16 – Searching for the container registry

2.	 In the Container registry window, click on Access keys underneath the Settings
section. Review the admin account username and passwords. Note that the
passwords can be regenerated:

Figure 9.17 – Reviewing the ACR admin credentials

ACR security best practices 309

3.	 Make a note of the registry name and the login server address (you will need them
in steps 14, 16, and 17 of this exercise). Then, click to disable the Admin user:

Figure 9.18 – Making a note of the admin credentials
Next, we will configure RBAC to give a system-managed identity the permission to
push images to the registry.

4.	 In the container registry blade, click on Access control (IAM). Then, click on Add
role assignments:

Figure 9.19 – Adding a role assignment

310 Implementing Container Security

5.	 In the Add role assignment blade, configure the following:

Role: AcrPush.

Assign access to: User, group, or service principal.

Select: Search for and select azseclinvm.

Click on Save:

Figure 9.20 – Configuring the role assignment
We have now successfully assigned the AcrPush role to the Linux VM's
system-managed identity. This gives it the permission to push images into
the registry but nothing else. We will verify this later in this exercise.

ACR security best practices 311

Next, we will enable Azure Defender for container registries, which will ensure that
images in container registries are assessed for vulnerabilities.

6.	 In the Settings section, click on Security. Then, click on the Security Center link.
This opens Security Center in a new browser tab:

Figure 9.21 – Clicking on Security Center

312 Implementing Container Security

7.	 In the Security Center window, in the Cloud Security section, click on Azure
Defender. Then, click on Enable Azure Defender:

Figure 9.22 – Enabling Azure Defender

8.	 In the Getting started window, ensure that your subscription is selected, then
click on Upgrade. This enables Azure Defender for supported resources in that
subscription. You should be able to view the supported resources listed, including
the container registry images:

ACR security best practices 313

Figure 9.23 – Upgrading the Security Center SKU for subscription

9.	 Close the Getting started window. DO NOT install the agents:

Figure 9.24 – Closing the Getting started window

314 Implementing Container Security

10.	 Back in the ASC main window, in the Azure Defender pane (you might need to
refresh the browser to get an updated view), pay attention to the container registries
that are now protected by Azure Defender. This means we now have vulnerability
assessment enabled for images in the container registries:

Figure 9.25 – Clicking on Container image scanning

11.	 Use an SSH client, such as PuTTY, to connect to the Linux VM that was deployed
as part of the template earlier in this chapter (please refer to the Hands-on exercise
– providing resources for the chapter exercises section). Use the DNS name that
you made a note of earlier:

ACR security best practices 315

Figure 9.26 – SSHing into the Linux VM

12.	 When prompted, authenticate using the following credentials:

Username: azureadmin.

Password: Enter the password that you entered during template deployment.

13.	 To push images to the registry, first, we need to switch to the root user and
authenticate with Azure CLI using the system-assigned identity of the VM. To do
this, use the following commands:

sudo su -

az login --identity

316 Implementing Container Security

Here is a screenshot of the output:

Figure 9.27 – Authenticating to Azure CLI

14.	 Next, we will authenticate to the container registry with az acr login. This
command uses the token that we created earlier when we ran the az login
command. Replace <acrName> with the name that you made a note of in step 3
of this exercise:

az acr login --name <acrName>

You should get a Login Succeeded message, as shown in the following screenshot:

Figure 9.28 – Verifying a successful login

15.	 To view a list of current local images, switch to the root privilege and use the
docker images command, as follows:

docker images

ACR security best practices 317

You should see a single node image, as shown in the following screenshot:

Figure 9.29 – Listing images in the local cache

16.	 To push the local image to the container registry, first, we need to tag it with the
login server address of the registry. Replace <acrLoginServer> with the login
server value that you made a note of in step 3:

docker tag node:13.5-alpine <acrLoginServer>/node:13.5-
alpine

Here is a screenshot of this:

Figure 9.30 – Tagging an image with the registry address

17.	 Push the image to ACR using the docker push command. Replace
<acrLoginServer> with the login server value that you made a note of earlier:

docker push <acrLoginServer>/node:13.5-alpine

Here is a screenshot of this:

Figure 9.31 – Pushing the image into the container registry

318 Implementing Container Security

18.	 If you go back to the container registry in the Azure portal, in the Repositories
section, you should now be able to view the image there:

Figure 9.32 – Viewing the image in the registry

19.	 Go back to the SSH session of the Linux VM. Let's attempt to list the container
registries in the Azure subscription using the following command:

az acr list

The list returned will be empty, as shown in the following screenshot. This is
because the assigned role does not have permission to do this:

Figure 9.33 – Listing images in the registry

Congratulations! You have now successfully implemented some security best practices for
ACR. In the next section, we will take a look at one of the container runtime options that
we mentioned earlier, that is, AKS.

Introducing AKS 319

Introducing AKS
Kubernetes is an open source container orchestration solution for automating the
deployment, scaling, and management of containerized workloads. It offers all the
elements of orchestration that we described earlier in this chapter. It was initially designed
by Google, but it has now been donated to the Cloud Native Computing Foundation
(CNCF) who now maintains it.

So, what is the relationship between AKS and native Kubernetes? Put simply, deploying
Kubernetes by ourselves and configuring the infrastructure needed from scratch is
a complex process. AKS abstracts these complexities from us by providing a managed
Kubernetes service. We simply specify what our Kubernetes cluster should look like and
the Azure platform builds it for us!

Understanding the AKS architecture
A Kubernetes cluster is divided into two components. The control plane provides the core
Kubernetes services and orchestration of application workloads (marked in red in Figure
9.34), while the worker nodes run our containerized application workloads (marked in
purple in Figure 9.34):

Figure 9.34 – The AKS architecture

320 Implementing Container Security

The worker node pools can either be a Linux OS pool, a Windows OS pool,
or a combination of Linux and Windows pools. For Linux OS pools, the default base
image uses Ubuntu 18.04 if the Kubernetes version is 1.18 or higher. If it is less, it uses
Ubuntu 16.04 as the default base image.

A container runtime is software that executes containers and manages container images
on a node. The runtime helps abstract away sys-calls or OS-specific functionality to run
containers on Linux or Windows. AKS clusters using Kubernetes version 1.19 node pools
and greater use containerd as their container runtime. In comparison, AKS clusters
using Kubernetes prior to v1.19 for node pools use Moby (upstream Docker) as their
container runtime.

Native Kubernetes has a rich ecosystem of development and management tools such as
Helm, Draft, and the Kubernetes extension for Visual Studio Code. These tools work
seamlessly with AKS.

AKS security best practices
There are multiple attack vectors that an adversary could exploit to compromise our
AKS instances. For this reason, our security strategy should follow a defense-in-depth
approach that includes multiple layers of protection. In the following sections, we will
cover some of these layers.

Limiting access to the API server using authorized IP
address ranges
The Kubernetes API server is the central management endpoint for an AKS cluster.
Developers and administrators use client management tools, such as kubectl,
to connect to it to perform cluster operations such as deploying applications, creating
cluster objects, and scaling the number of nodes.

By default, the API server uses a public IP address with access to any IP address. From
a security perspective, our objective should be to minimize any attacks on the Kubernetes
control plane components. One way to do this is to limit the IP addresses that can
communicate with the API server using the authorized IP range feature:

AKS security best practices 321

Figure 9.35 – The AKS authorized IP range

This feature enables us to apply an IP filter list that only allows trusted public IP addresses
to communicate with the API server. To implement this feature from the Azure portal,
we can modify the networking settings of the AKS service, as shown in Figure 9.36:

Figure 9.36 – Modifying the AKS authorized IP range

322 Implementing Container Security

We can also use the Azure CLI command-line tool to implement this feature. For an
existing cluster, you can do this using the following commands:

az aks update --resource-group <resource_group_name> --name
<aks_cluster_name> --api-server-authorized-ip-ranges <ip_
address_range>

In some cases, we might want to go further than simply restricting access through the API
server's public endpoint. For instance, we might want to eliminate any exposure to the
public internet altogether. This is where the next best practice of using a private endpoint
can be of help.

Implementing a private AKS cluster using a private
endpoint
A private endpoint allows clients located in our private networks to securely access the
AKS cluster over a private link using a private IP address (Figure 9.37). This feature
eliminates exposing our cluster to the internet and reduces the risk of data exfiltration:

Figure 9.37 – An AKS private endpoint

When enabled, the cluster API server endpoint has no public IP address, as shown in
Figure 9.37. This way, we can ensure that network traffic remains on the private network.
The implementation of this feature can be carried out with the Azure CLI. The process is
covered in the official documentation at https://docs.microsoft.com/en-us/
azure/aks/private-clusters.

https://docs.microsoft.com/en-us/azure/aks/private-clusters
https://docs.microsoft.com/en-us/azure/aks/private-clusters

AKS security best practices 323

Controlling access to cluster resources using
Kubernetes RBAC and Azure AD
To perform any cluster operation on the Kubernetes API server (for example, creating
or deleting resources), users must be authenticated and authorized to perform the
requested action.

AKS can be configured to use Azure AD for user authentication. This helps us to
centralize identity management, with Azure AD as the single source of validating user
identities. And if you have a hybrid identity set up, as we discussed in Chapter 4, Azure
AD Identity Security, you can also authenticate with on-premises identities.

When this feature is implemented, we can use Azure AD users, groups, or service
principals as subjects in Kubernetes RBAC. To make sense of how Azure AD will
work with Kubernetes RBAC, let's spend a few moments reviewing how Kubernetes
RBAC works.

Kubernetes uses an RBAC system to define and assign the actions that users can perform
in a cluster. The permissions can be defined as either Roles or ClusterRoles. To grant
permissions within a namespace (logical grouping) in a cluster, we define a Role. To grant
permissions at the cluster level, we define a ClusterRole. Figure 9.38 shows a side-by-side
comparison of an example Role definition and an example ClusterRole definition.
You can see that the ClusterRole definition does not have namespace metadata
defined, as it grants permissions across the cluster:

Figure 9.38 – The Role and ClusterRole definitions

324 Implementing Container Security

Once we have defined roles to grant permissions to the resources, we can assign the
permissions using either a RoleBinding or a ClusterRoleBinding. To assign
permissions to users for a given namespace, we use RoleBinding. To assign permissions
across the entire cluster, we use ClusterRoleBinding. Figure 9.39 shows examples
of RoleBinding and ClusterRoleBinding with Azure AD identities defined as
subjects for both of the bindings:

Figure 9.39 – The RoleBinding and ClusterRoleBinding definitions

It is worth noting that Microsoft is extending this integration further with a new feature
that is currently in preview. This feature will allow us to grant access to the Kubernetes
resources using Azure RBAC, which will further simplify access control for AKS. You can
read more about this feature at https://docs.microsoft.com/en-us/azure/
aks/manage-azure-rbac.

Regularly upgrading the cluster control plane
Whenever a new version of Kubernetes is released by the community, Microsoft makes
this available to AKS, but we have to upgrade either using the portal or a command-line
tool such as Azure CLI. A good security practice is to perform periodic upgrades to the
latest Kubernetes version. This ensures that we apply the latest security releases and can
use these new features. The window of support from Kubernetes 1.19 is one year, so you
will be expected to upgrade once a year to stay in support.

The upgrade process itself should have no impact on our workloads, as the cluster will
trigger a cordon and drain of the nodes in a rolling fashion. To perform this operation,
we can use the Azure portal or the Azure CLI tool. In the Azure portal, we can review the
Cluster configuration section of our AKS resource to view any available upgrades and
trigger the process (Figure 9.40):

https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac
https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac

AKS security best practices 325

Figure 9.40 – Upgrading the Kubernetes version

If we are using the Azure CLI for the process, we can use the following command to check
for available upgrades:

az aks get-upgrades --resource-group <resource_group> --name
<aks_cluster_name> --output table

We can trigger the upgrade process using the following command:

az aks upgrade --resource-group <resource_group> --name <aks_
cluster_name> --kubernetes-version <Kubernetes_version>

Another point that is worth noting is that we cannot skip minor upgrades when
performing the process. For example, we cannot upgrade from version 1.18.X to version
1.20.X without upgrading to version 1.19.X first.

326 Implementing Container Security

Regularly applying OS updates to worker nodes
The node OS upgrade process is different depending on which node pools you have
implemented – Linux or Windows.

Security updates are automatically downloaded and applied to Linux nodes in AKS. These
updates include OS security fixes or kernel updates. Some of these updates might require
a node reboot to complete the process. In this case, AKS does not automatically reboot
these Linux nodes to complete the update process. To address this scenario, a solution
such as kured (which is short for KUbernetes REboot Daemon) can be used to watch
the Linux nodes for pending reboots. If a pending reboot is detected, the node is drained
and the workloads running on it are moved to other nodes in the cluster. Once the reboot
has been completed, the node is added back to the cluster and pods can be scheduled to
run on it. To minimize the risk of disruption, kured is permitted to reboot only one node
at a time.

For Windows nodes, the latest updates are not automatically applied. We need to monitor
for updates and apply them using our own processes.

For both Linux and Windows nodes, there is an alternative to relying on an update
process to apply the latest OS security fixes. This alternative is to swap the OS image.
AKS provides one new image per week with the latest OS and container runtime patches
installed. These releases can be reviewed at https://github.com/Azure/AKS/
releases. Whenever we upgrade the Kubernetes version of our cluster, as described
earlier, the OS images are also swapped with the image version that has the latest OS and
runtime updates installed. However, we can trigger this process outside of a Kubernetes
version upgrade by specifying the --node-image-only parameter, as follows:

az aks upgrade --resource-group myResourceGroup --name
myAKSCluster --node-image-only

To verify whether our node pool is on the latest node image, we can use the
following command:

az aks nodepool get-upgrades --nodepool-name <nodepool_name>
--cluster-name <aks_cluster_name> --resource-group <resource_
group>

In the next section, we will discuss pod-managed identities.

https://github.com/Azure/AKS/releases
https://github.com/Azure/AKS/releases

AKS security best practices 327

Implementing pod-managed identities
There are numerous scenarios where pods running in Kubernetes require access to other
Azure services. One common scenario is when a pod needs to retrieve secrets or keys in
the Azure key vault at runtime. The best practice for this scenario is to use pod-managed
identities that are linked in Azure AD. Note that this feature is in preview at the time of
writing, and it only works for Linux pods and containers (support for Windows containers
is coming soon).

When implemented, this feature enables our applications running in AKS to dynamically
obtain an Azure AD token that can be used to access other Azure services. Each pod that
requires access, first, needs to be assigned a unique Azure AD managed identity. When
pods request access to an Azure service, the traffic is automatically redirected to the Node
Management Identity (NMI) server. NMI identifies the pod that requests access and
checks for Azure identity mappings in the AKS cluster. Then, NMI requests an access
token from Azure AD based on the pod's identity mapping. Azure AD provides an access
token to NMI, which is returned to the pod. This pod can then use the access token to
access services in Azure:

Figure 9.41 – AKS POD Managed Identity

328 Implementing Container Security

Two components handle the operations that allow our pods to use managed identities.
They are as follows:

•	 The NMI server: This is a pod that runs as a DaemonSet on each node in the AKS
cluster. The NMI server listens for pod requests to Azure services.

•	 The Azure resource provider: This queries the Kubernetes API server and checks
for an Azure identity mapping that corresponds to a pod.

In the next hands-on exercise, we will grant an Azure AD user (Brenda) access to
Kubernetes resources using Kubernetes RBAC.

Hands-on exercise – implementing AKS Azure AD
integration
In this exercise, we will complete the following tasks:

•	 Task 1: Create AKS cluster resources for development.

•	 Task 2: Interact with cluster resources using Azure AD identities.

Here are the steps to complete the preceding tasks:

1.	 Open a web browser and browse to the Azure portal at https://portal.
azure.com. Sign in using the azureadmin credentials.

2.	 In the Azure portal, click on Create a resource. In the Create a resource blade,
search for Kubernetes service and then select Kubernetes service.

3.	 In the Basics tab, configure the following:

Subscription: Select your Azure subscription.

Resource group: azuresec-c9-rg.

Kubernetes cluster name: azsec-aks.

Region: Select a region that is close to you.

Availability zones: None.

Node count: 1.

Leave all the other settings as their default values.

Click on Next: Node pools >:

AKS security best practices 329

Figure 9.42 – Configuring the AKS cluster details

4.	 In the Node pools tab, click on Next: Authentication >.

5.	 In the Authentication tab, configure the following:

AKS-managed Azure Active Directory: Enabled

Leave all the other settings at their default values.

330 Implementing Container Security

Click on Review + create:

Figure 9.43 – Enabling AKS-managed Azure AD

6.	 In the Review + create tab, click on Create. Wait for the deployment to complete.

7.	 After the deployment has been completed, click on the Cloud Shell icon in the
upper-right corner of the Azure portal. Select Bash. If prompted, proceed to create
a storage account:

Figure 9.44 – Clicking on the icon to open Cloud Shell

AKS security best practices 331

8.	 In the Bash session within the Cloud Shell pane, run the following command to get
the cluster admin credentials:

az aks get-credentials --resource-group azuresec-c9-rg
--name azsec-aks --admin

You should see a message about the context being merged:

Figure 9.45 – Authenticating to AKS

9.	 Create a namespace, called development, in the AKS cluster using the
following command:

kubectl create namespace development

You should see a response that verifies that the namespace has been created:

Figure 9.46 – Creating a development namespace

10.	 Create a role for the development namespace. This role grants full permissions
to the namespace. In a production environment, you might want to restrict
this further:

code role-development-namespace.yaml

This will open the code editor. In the open window, copy and paste the following
YAML definition and then save it using Ctrl + S:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: development-user-full-access

 namespace: development

rules:

- apiGroups: ["", "extensions", "apps"]

332 Implementing Container Security

 resources: ["*"]

 verbs: ["*"]

- apiGroups: ["batch"]

 resources:

 - jobs

 - cronjobs

 verbs: ["*"]

Here is a screenshot of what it looks like:

Figure 9.47 – Creating a role definition file

11.	 Create the role using the following command:

kubectl apply -f role-development-namespace.yaml

Here is a screenshot of the output:

Figure 9.48 – Creating a role definition

AKS security best practices 333

12.	 In Chapter 2, Understanding Azure AD, of this book, we created an Azure AD group,
called cloud-architects, with both Brenda and Emmy as members. Obtain the
object ID of that group using the following command:

az ad group show --group cloud-architects --query
objectId -o tsv

Here is the output of the command:

Figure 9.49 – Obtaining an object ID
Make a note of this ID, as we will need it in the next step to grant the group access
to Kubernetes resources.

13.	 Create a RoleBinding definition for the cloud-architects group
to use the previously created role for namespace access. Create a file,
named rolebinding-development-namespace.yaml, using the
following command:

code rolebinding-development-namespace.yaml

This will open the empty file in the code editor. In the open window, copy and
paste the following YAML definition. On the last line, replace **PLACEHOLDER**
with the group object ID output from the previous command and then save using
Ctrl + S:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: development-user-access

 namespace: development

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: development-user-full-access

subjects:

- kind: Group

 namespace: cloud-architects

 name: **PLACEHOLDER**

334 Implementing Container Security

Here is a screenshot of what it looks like:

Figure 9.50 – Creating a role binding file

14.	 Create the RoleBinding using the following command:

kubectl apply -f rolebinding-development-namespace.yaml

Here is a screenshot of the output:

Figure 9.51 – Applying a role binding definition file

15.	 Create another namespace that the cloud-architects AD group does not have
access to using the following command:

kubectl create namespace production

Now, for everything that we have configured to work, we need to enable
AKS-managed Azure AD integration on the AKS cluster.

16.	 Enable AKS-managed Azure AD integration on the AKS cluster using the following
commands. Replace <group_object_id> with the group object ID that you
made a note of earlier:

tenantId=$(az account show --query tenantId -o tsv)

az aks update -g azuresec-c9-rg -n azsec-aks --enable-
aad --aad-admin-group-object-ids <group_object_id>
--aad-tenant-id $tenantId

AKS security best practices 335

17.	 Now, let's test that a user can authenticate using their Azure AD credentials
and authorize:

az aks get-credentials --resource-group azuresec-c9-rg
--name azsec-aks --overwrite-existing

18.	 Schedule a basic NGINX pod in the development namespace:

kubectl run nginx-dev --image=mcr.microsoft.com/oss/
nginx/nginx:1.15.5-alpine --namespace development

19.	 When prompted, sign in with Brenda's credentials. Once this has been
authenticated successfully, the pod will be created:

Figure 9.52 – Authenticating as Brenda

20.	 View pods in the development namespace using the following command:

kubectl get pods --namespace development

Here is a screenshot of the output:

Figure 9.53 – Listing pods in the development namespace

21.	 Try to view pods outside of the development namespace. You should get an error:

kubectl get pods --all-namespaces

Here is a screenshot of the output:

Figure 9.54 – Attempting to list pods for all namespaces

Congratulations! You have successfully configured Azure AD integration with Kubernetes
RBAC for the AKS cluster. This information is useful for when you want to implement
granular control to Kubernetes resources in an AKS cluster. In the next section, we will
remove all the resources that we have created.

336 Implementing Container Security

Cleaning up the resources
In the Azure portal, delete the azuresec-c9-rg resource group. This will remove all
the resources that we created for the exercises in this chapter.

Summary
In this chapter, you learned how to secure containerized workloads in Azure. We covered
the security best practices that you can implement to secure your images at ship time
in a container registry and at runtime in AKS. The skills that you have gained in this
chapter will provide a strong foundation that you can build on for further container
security studies.

In the next chapter, we will cover Azure storage and how to secure the data stored in it.
See you in the next chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 From ASC, you enable Azure Defender for container registries for the vulnerability
assessment of images in a container registry. You have pushed two container images
into the registry – a Windows image and a Linux image. Which of these images will
be scanned for vulnerabilities?

a. The Windows image only

b. The Linux image only

c. Both the Windows and Linux images

d. None of the images

2.	 You have an Azure AD tenant, named spicycrabs.xyz, and an AKS cluster called
AKS1. You discover that developers cannot sign in with their Azure AD credentials
to create Kubernetes resources on AKS1. What can you do to address this while
minimizing administrative efforts?

a. Update the settings of AKS1 to enable Azure AD integration.

b. Recreate AKS1 with Azure AD integration enabled.

c. From AKS1, upgrade the version of Kubernetes.

d. From Azure AD, implement Azure AD Premium.

Further reading 337

3.	 You have an Azure subscription that contains a standard-tier container registry
named ACR-1. The subscription uses the free tier of ASC. You upload several
container images to ACR-1. You discover that vulnerability security scans were not
performed. You need to ensure that the images are scanned for vulnerabilities when
they are uploaded to ACR-1. What should you do?

a. From the Azure portal, modify the pricing tier settings of Security Center.

b. From Azure CLI, lock the container images.

c. Modify the pricing tier of ACR-1 to premium.

d. Push the container images to ACR-1 by using Docker.

Further reading
To learn more on the subject, please refer to the following resources:

•	 Content trust in Azure Container Registry: https://docs.microsoft.com/
en-us/azure/container-registry/container-registry-content-
trust

•	 ACR private endpoints: https://docs.microsoft.com/en-us/azure/
container-registry/container-registry-private-link

•	 Azure Container Registry roles and permissions: https://docs.microsoft.
com/en-us/azure/container-registry/container-registry-
roles?tabs=azure-cli

•	 AKS security concepts: https://docs.microsoft.com/en-us/azure/
aks/concepts-security

•	 AKS cluster security: https://docs.microsoft.com/en-us/azure/aks/
operator-best-practices-cluster-security

•	 AKS pod security: https://docs.microsoft.com/en-us/azure/aks/
developer-best-practices-pod-security

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-content-trust
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-content-trust
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-content-trust
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-roles?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-roles?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-roles?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/aks/concepts-security
https://docs.microsoft.com/en-us/azure/aks/concepts-security
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-security
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-security
https://docs.microsoft.com/en-us/azure/aks/developer-best-practices-pod-security
https://docs.microsoft.com/en-us/azure/aks/developer-best-practices-pod-security

Modern applications interact with different types of data stores and external services.
As you can imagine, these data stores and external services are prime targets for
attackers looking to steal sensitive information from organizations! This section will
walk you through how to mitigate risks to your applications and data by implementing
encryption at rest and in transit, network and user access management, threat
protection capabilities, secrets management, and more. By the end of this section, you
will be well equipped to mitigate the risks of your cloud applications being breached and
your data being stolen.

This part of the book comprises the following chapters:

•	 Chapter 10, Implementing Storage Security

•	 Chapter 11, Implementing Database Security

•	 Chapter 12, Implementing Secrets, Keys, and Certificate Management with
Key Vault

•	 Chapter 13, Azure Cloud Governance and Security Operations

Section 3:
Secure Storage,

Applications,
and Data

10
Implementing

Storage Security
Azure Storage is the primary data storage solution in Azure. It offers services that can
be used to store different datasets, including files, messages, tables, and other types
of information. As you can imagine, this service is a prime target for attackers who
are looking to steal sensitive information from organizations! Azure Storage provides
multilayered security options to protect our data. Our focus in this chapter will be on
how to implement these security options for two primary services of Azure Storage – Blob
and Files. Here are the topics that we will cover in this chapter:

•	 Implementing encryption at rest

•	 Implementing encryption in transit

•	 Configuring storage account authorization

•	 Implementing Azure Defender for Storage

As you will see, each topic has been structured to align with a security best practice for
securing storage in Azure. Let's get into this!

342 Implementing Storage Security

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Before we proceed to cover the security best practices, let's familiarize ourselves with the
Azure Storage service.

Azure Storage overview
As mentioned earlier, Azure Storage is Microsoft's data storage solution in the cloud. The
solution consists of core services that can be used to store different datasets for modern
data storage scenarios, as follows (Figure 10.1):

•	 Blob Service, which is object-based storage for text and binary data. Data stored in
this service is primarily accessed using a REST API.

•	 Files Service, which offers fully managed file shares in the cloud that can be
accessed using standard Server Message Block (SMB), Network File System
(NFS), or REST APIs. File shares created in this service can be mounted on cloud
or on-premises systems as we would mount a typical SMB share.

•	 Table Service, which offers a NoSQL data store for storing semi-structured
application datasets accessed over a REST API or OData.

•	 Queue Service, which offers a messaging store for reliable communication between
decoupled application components:

Figure 10.1 – Azure storage services

For our purpose in this chapter, we will focus on two of the services – Azure Blob and
Azure Files.

Azure Storage overview 343

Azure Blob service hierarchy
The Azure Blob service contains the following components as shown in Figure 10.2:

•	 Storage account: To use and access the Blob service, we need to create an
Azure storage account. This is the parent resource where we define a lot of the
configuration options.

•	 Container: The Blob service in a storage account consists of containers. These
containers are effectively folders that can be used to store objects/data.

•	 Blob: Blob stands for Binary Large Object. These are the actual objects that we are
storing in the containers that we have created. It could be any type of object or file.

Access to objects in the Blob service is through an HTTP/HTTPS endpoint (blob.
core.windows.net). The URL address is a combination of the storage account name,
the container, and the object name.

For example, if we have a storage account with the name superclouds, a container
named public, and a file within the container named README.txt, the access URL of
the object will be https://superclouds.blob.core.windows.net/public/
README.txt (Figure 10.2):

Figure 10.2 – Azure Blob service components and access

The Blob service of a storage account can have multiple containers, but containers cannot
be nested. Also, we can have different levels of access configured. We will cover this topic
later in this chapter when we discuss authentication and authorization.

https://blob.core.windows.net
https://blob.core.windows.net
https://superclouds.blob.core.windows.net/public/README.txt
https://superclouds.blob.core.windows.net/public/README.txt

344 Implementing Storage Security

Azure Files service hierarchy
The components of the Azure Files service are similar to that of Azure Blob but instead of
working with containers, we are working with file shares that can be mounted in Windows
or Linux operating systems:

Figure 10.3 – Azure Files service components

In the next sections, we will start to look at security best practices that apply to these two
services in Azure storage – Blob and Files.

Implementing encryption at rest
Anytime the topic of storage security comes up, a common concern for organizations is
ensuring that data is encrypted at rest and in transit. In many cases, this is a mandatory
measure required for compliance with industry and government regulations such as PCI,
HIPAA, and FedRAMP.

The great thing about Azure Storage is that encryption at rest is automatic and enabled by
default for all services, including Blob and Files. This encryption is powered by a feature
called Storage Service Encryption (SSE). This feature is also referred to as service-level
encryption. SSE is enabled for all new and existing storage accounts at no additional cost
and cannot be disabled.

Implementing encryption at rest 345

SSE ensures that data written to any Azure Storage service is encrypted with a 256-bit
Advanced Encryption Standard (AES) cipher, which is one of the strongest block ciphers
available. The process transparently decrypts data that is read from Azure Storage before
returning it to a client.

By default, SSE uses encryption keys that are managed by the Azure platform. However,
customers can enhance this with their own encryption keys stored in Azure Key Vault.
This enhancement is only available for the Blob and Files services. A key reason why
organizations may want to do this is to meet compliance requirements that mandate
for encryption keys to be in the control of the organization. This enhancement can be
implemented from the Encryption blade of the storage account resource (Figure 10.4):

Figure 10.4 – Selecting the encryption type

There is another enhancement option that we can implement called infrastructure
encryption. As of the time of writing, this option can only be enabled at the time of
creation of the storage account and not afterward.

346 Implementing Storage Security

When this feature is configured, data written to services in a storage account is encrypted
two times – once at the service level and once at the infrastructure level with different keys
(Figure 10.5). But why would we want to implement this option with SSE already enabled
by default? The answer is simple: to protect against a scenario where one of the encryption
keys may be compromised. If this were to happen, the additional layer of encryption
continues to protect our data in Azure Storage:

Figure 10.5 – Azure Storage encryption levels

To enable this feature, we must first register to use it using either the Azure CLI or Azure
PowerShell. The command to do so with the Azure CLI is as follows:

Register to use the feature

az feature register --namespace Microsoft.Storage --name
AllowRequireInfraStructureEncryption

It is worth noting that this can also be done from the Subscription blade in the
Azure portal.

After registering to use the feature, we can configure it using any of the Azure
management options – the portal, CLI, or PowerShell. Here is the Azure CLI command
to create a storage account with the feature enabled:

Create a storage account with infrastructure encryption
enabled

az storage account create --name <storage-account-name>
--resource-group <resource-group-name> --location <location>
--sku <storage-account-sku> --kind StorageV2 --require-
infrastructure-encryption

Implementing encryption at rest 347

To configure the same thing from the Azure portal, we can do this from the Advanced tab
of the storage account creation process, as shown:

Figure 10.6 – Azure Storage encryption levels

There is a final scenario that we need to discuss before we end this section and that is
encryption scopes. If we have a storage account that stores data for different customers,
we may want to create secure boundaries by encrypting individual containers and
objects with different encryption keys. Encryption scopes allow us to achieve this. With
encryption scopes, we can manage encryption at rest, at the level of an individual blob or
container (Figure 10.7). This feature is only available for the Blob service:

Figure 10.7 – Blob storage encryption scopes

348 Implementing Storage Security

So, in summary, here are the encryption at rest options that we discussed for Azure Storage:

•	 Storage service encryption using Microsoft managed keys: Enabled by default at
no additional cost and cannot be disabled.

•	 Storage service encryption using customer managed keys: Enhancement that can
be configured by a customer. The customer will need to pay the additional cost of
using the Key Vault service.

•	 Infrastructure level encryption: Enhancement that can be configured by the
customer only at the time of creation.

•	 Encryption scopes: Enhancement that can be configured by the customer to create
secure boundaries in a multi-customer data storage scenario where the data of
multiple customers is stored in the same storage account.

In the next section, we will turn our focus to encryption in transit.

Implementing encryption in transit
Another security concern that organizations have is the encryption of data as it moves
from one location to another. The Azure platform implements a data link layer encryption
method to encrypt all Azure data traffic within an Azure region or between Azure regions.
This encryption uses the IEEE 802.1AE MAC Security (MACsec) standards and requires
no action on our part.

However, we will also want to enforce transport-level encryption when data is moved
outside network boundaries not controlled by Microsoft. Azure Storage has a Secure
transfer required option that we can configure to accept requests only from secure
connections that support encryption.

When this option is configured, the Blob service will only accept HTTPS requests and
will reject HTTP requests. With the option configured, the Files service will also reject
insecure connections made over SMB 2.1 and SMB 3.0 without encryption. Figure 10.8
shows this setting enabled for an existing storage account from the configuration pane of
the storage account:

Implementing encryption in transit 349

Figure 10.8 – Configuring options for encryption in transit

Another option that we can configure for encryption in transit is to enforce a minimum
required version of Transport Layer Security (TLS) for connection requests to a storage
account (Figure 10.8). The best practice here is to require TLS 1.2 at a minimum even
though TLS 1.0 and 1.1 are supported for backward compatibility.

In the next hands-on exercise, you will implement a storage account that enforces
encryption in transit.

Hands-on exercise – provisioning a storage account
with encryption in transit enforced
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create a storage account with encryption in transit enforced.

•	 Task 2: Verify encryption in transit.

350 Implementing Storage Security

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to http://bit.ly/az500-c10-file. This
will take you to a sample template file. Download and save this file on your PC.

2.	 Open a web browser and browse to the Azure portal – https://portal.
azure.com. Sign in with your administrator credentials.

3.	 On the home page, click on Create a resource:

Figure 10.9 – Creating a new Azure resource

4.	 In the New blade, search for Storage account and select Storage account:

Figure 10.10 – Searching for and selecting Storage account

5.	 In the Storage account blade, click on Create to create a new account:

Figure 10.11 – Creating a new storage account

http://bit.ly/az500-c10-file
https://portal.azure.com
https://portal.azure.com

Implementing encryption in transit 351

6.	 In the Create a storage account blade, in the Basics tab, configure the following:

Subscription: Select the subscription that you want to deploy the resources into.

Resource group: Create new | Name: azuresec-c10-rg | OK.

Storage account name: azsecstorXXXX (where XXXX is a random number).

Region: Select an Azure region close to your location.

Performance: Standard.

Redundancy: Locally-redundant storage (LRS).

Click on Next: Advanced > to proceed to the Advanced tab.

Here is a screenshot of the configuration parameters:

Figure 10.12 – New storage configuration settings

352 Implementing Storage Security

7.	 In the Advanced tab, review the following security configurations:

Enable secure transfer: Ensure that this option is selected to enforce only protocols
that support encryption in transit.

Enable infrastructure encryption: As we discussed earlier in the Implementing
encryption at rest section, this option will not be configurable until you register the
feature for your subscription. Leave it at its current setting.

Enable blob public access: We will discuss this configuration option later but for
now, leave it at its default setting.

Enable storage account key access: We will discuss this configuration option later
but for now, leave it at its default setting.

Minimum TLS version: Version 1.2.

Leave the other settings at the default values and click on Next: Networking > to
proceed to the Networking tab:

Figure 10.13 – Configuring storage security options

Implementing encryption in transit 353

8.	 In the Networking tab, leave all the settings at the default values and click on Next:
Data protection > to proceed to the Data protection tab.

9.	 In the Data protection tab, leave all the settings at the default values and click on
Next: Tags > to proceed to the Tags tab.

10.	 In the Tags tab, leave all the settings at the default values and click on Next: Review
+ Create to proceed to the Review + create tab.

11.	 In the Review + create tab, wait for the validation to pass, then click on Create.
Wait for the deployment to complete:

Figure 10.14 – Reviewing settings and deploying a new storage account

354 Implementing Storage Security

12.	 Once the deployment completes, click on Go to resource:

Figure 10.15 – Click to open the newly deployed resource

13.	 In the storage account resource blade, in the Blob service section, click on
Containers, then click on + Container to create a new container:

Figure 10.16 – Creating a new container

14.	 In the New container blade, configure the following:

Name: public.

Public access level: Blob (anonymous read access for blobs only).

Implementing encryption in transit 355

Ignore the warning for now. We will come back to it later in this chapter. For now,
click on Create:

Figure 10.17 – Configuring public access settings and creating a new container

15.	 Back in the Containers blade, click on the public container, then click on Upload:

Figure 10.18 – Uploading a new object to a container

356 Implementing Storage Security

16.	 In the Upload blob blade, select the sample template file that you downloaded in
Step 1, then click on Upload:

Figure 10.19 – Selecting an object and uploading to a container

17.	 Back in the public Container blade, click on the sample template file, then click
to copy the URL of the object as shown in the following screenshot:

Figure 10.20 – Copying the object URL

Implementing encryption in transit 357

18.	 Open a new browser tab and browse to the object URL that you just copied. This
should be successful as the URL should be using HTTPS:

Figure 10.21 – Viewing the public blob in the browser using HTTPS

19.	 In the address bar, modify the URL from HTTPS to HTTP. You should receive an
error message that HTTP is not supported, as shown:

Figure 10.22 – Viewing the public blob in the browser using HTTP

Congratulations! You have successfully created a storage account that enforces encryption
in transit, and you verified this configuration. In the next section, we will look at storage
account authorization, the options that are available, and security considerations around
implementing them.

358 Implementing Storage Security

Configuring storage account authorization
To access data in the Blob or Files service, a client needs to be authenticated and
authorized. Authentication verifies the identity of a client that is making the connection
request while authorization grants or denies access to the identified client. Both the
Azure Blob and Azure Files services support different authentication and authorization
options, as shown in Figure 10.23. In general, the authorization options that are supported
can be classified into two categories:

•	 Key-based authorization options such as a storage account key and shared
access signature

•	 Identity-based authorization options such as Azure AD and on-premises AD

The best practice is to always implement identity-based authorization where possible as it
provides better security and auditability:

Figure 10.23 – Azure Storage authentication options

Important note
The only exception to the authentication and authorization of connection
requests is objects or container resources in the Blob service that have been
made available for anonymous access.

In the following sections, we will cover some best practices around implementing the
supported authorization options for the Azure Blob and Files services. Here are some
authorization best practices that we will cover:

•	 Protect access to the Storage account keys.

•	 Grant limited access to using Shared Access Signatures (SAS).

•	 Implement Storage account key management with Key Vault.

Configuring storage account authorization 359

•	 Disabling key-based authorization options.

•	 Disabling anonymous (unauthenticated) Blob access.

Let's now review each of these security practices in detail.

Protect access to the Storage account keys
Every storage account in Azure has two auto-generated access keys – a primary key
and a secondary key. The keys grant full access to the management plane and the data
plane of the storage account and all its resources! Because of the level of access that these
keys have, we do not want them to fall into the wrong hands as they could be used to
modify any account configuration and gain access to data stored in the storage services
(including Blob and Files services).

At a minimum, we want to closely guard these keys by controlling who can read them.
One way to do that is by limiting the identities that have this permission in Azure RBAC:
Microsoft.Storage/storageAccounts/listkeys/action. Figure 10.24 shows
an RBAC role with this permission excluded:

Figure 10.24 – Excluding RBAC permissions

While limiting the identities that can read storage account keys is great, we may want
to take this a step further by disabling the option to access Azure Storage using storage
account keys. We will discuss this next.

360 Implementing Storage Security

Grant limited access to using Shared Access
Signatures (SAS)
As mentioned earlier, it is not recommended to use the storage account keys to access
storage resources. There is significant risk involved in distributing a key with an unlimited
privilege level. So, what other option can we use in cases where it may not be possible
to implement identity-based authorization? We can use a SAS token. The main use case
for SAS is to grant access to storage account resources for a limited time range without
sharing the storage account key:

Figure 10.25 – Generating a SAS token

Configuring storage account authorization 361

A SAS token allows us to use key-based authorization with restrictions that we define.
For example, we can define the operations that the token can be used to perform, we can
define a start time and an expiry time, we can define the source IP address that the token
can be used from, and other configuration parameters (Figure 10.25). A SAS token is
signed with one of the storage account keys using standard cryptography functionality
(SHA-256). If a storage account key is regenerated, all SAS tokens that it was used to sign
will be revoked.

Other useful information to know is that SAS tokens can be generated at the account level
or the service level. An account-level SAS can be used to delegate access to the resources
of multiple storage services (that is, Blob, Files, Queue, or Table) while a service-level SAS
can be used to delegate access to resources within a single service (that is, container or
blob). Figure 10.25 shows the configuration of an account-level SAS. You can see that we
have the option to grant access to resources in more than one service.

Ad hoc SAS versus stored access policy SAS
There are two methods that we can use to generate SAS tokens. The first method is
ad hoc. With ad hoc SAS creation, configuration parameters such as the permissions
of the token, its validity start time, and its expiry time are specified with the token itself
(Figure 10.26). The downside to this method is that once the token is issued, we have no
control over the original parameters that we defined. If the token needs to be revoked
before its defined expiry time, the storage account key that was used to sign that token
needs to be regenerated, which may have a bigger impact if we have used the key to sign
other tokens:

Figure 10.26 – Service-level SAS token

362 Implementing Storage Security

The second method is to use a stored access policy. With this method, the configuration
parameters such as the permissions of the token, its validity start time, and its expiry time
are decoupled from the token and stored on the server side (Figure 10.27). This means that
we can control the parameters on the server side after the token has been issued. With this
method, revoking a token can be done by modifying the expiry time of the access policy
in Azure Storage:

Figure 10.27 – Service-level SAS using an access policy

Important note
SAS tokens are keys that grant permissions to storage resources and they
should be protected from malicious or unintended use. Ensure that they
are distributed only through secure channels and have a plan in place for
identifying and revoking a compromised SAS.

In the next section, we will cover the use of Azure Key Vault for storage account
key management.

Implementing storage account key management with
Key Vault
We mentioned earlier that the best practice is to use identity-based authorization
options. However, there are cases where this may not be possible, for example, in
a third-party integration scenario. In such cases, the best practice is to rotate the storage
keys periodically. This is something that we can do manually from the Azure portal
(Figure 10.28), but this is not very efficient:

Configuring storage account authorization 363

Figure 10.28 – Regenerating storage account access keys

A more effective method is to integrate Azure Storage with Azure Key Vault and let
Key Vault handle the periodic automatic key regeneration. At the time of writing,
implementing this option is only possible using management command-line tools – the
Azure CLI or Azure PowerShell (it is not yet configurable in the portal).

364 Implementing Storage Security

Here are the three main steps to implement this:

1.	 First, we assign Storage Account Key Operator Service Role to the Key Vault
service. This gives Key Vault the permissions to list and regenerate the keys.

2.	 Next, we configure a Key Vault access policy to allow an administrator to configure
managed storage accounts in Key Vault and to generate SAS tokens signed by the
keys that are managed by Key Vault.

3.	 We then configure the storage account key management in Key Vault and specify
a key regeneration period:

Figure 10.29 – Azure Storage and Key Vault integration

You can follow the instructions here to implement this: https://docs.microsoft.
com/en-us/azure/key-vault/secrets/overview-storage-keys. Once the
keys are managed in Key Vault, clients can gain access by making calls to the Key Vault
resource, to generate SAS tokens signed by the storage key.

Disabling key-based authorization options
Using key-based authorization options (storage account key and SAS) to access data in
Azure Storage is not a best practice. The main reasons for this are security and auditability.
Security because it is easier to compromise keys than identities that can be backed by
security techniques such as MFA. Auditability because if a key is being used by someone
who should not be using it, this cannot be easily identified in the audit logs. For these
reasons, we may want to disable the option to use key-based authorization options
to access Azure Storage resources. This way, an exposed or stolen storage account key
or a compromised SAS token cannot be used by an attacker as the authorization attempt
will be rejected by the storage service.

This feature can be implemented in the Configuration blade of the Azure Storage
resource (Figure 10.30) by setting the Allow storage account key access option to
Disabled. It is worth noting that this feature is in preview, at the time of writing:

https://docs.microsoft.com/en-us/azure/key-vault/secrets/overview-storage-keys
https://docs.microsoft.com/en-us/azure/key-vault/secrets/overview-storage-keys

Configuring storage account authorization 365

Figure 10.30 – Disabling key-based authentication

Once we have disabled this option, any authorization request with a storage key or
SAS tokens will be denied. Authorization to storage services will only be possible with
identity-based authorization options.

Disabling anonymous (unauthenticated) Blob access
Earlier in this chapter, we discussed the components of the Azure Blob service. To remind
us of what we discussed, here is a short summary: the Blob service exists in a storage
account and consists of containers. Containers are effectively folders that can be used to
store objects/data:

Figure 10.31 – Blob container access levels

366 Implementing Storage Security

When we create a new container, we need to configure a public access level to define
whether anonymous (unauthenticated) access will be allowed or not (Figure 10.31). We
have three options that we can select from:

•	 Private: Does not allow any anonymous access. Access needs to be authenticated.

•	 Blob: Allows anonymous access to a known object URL.

•	 Container: Allows the container files to be listed and accessed anonymously.

While the anonymous options (Blob and Container) make it convenient for us to share
data, they also present a security risk that could lead to a data breach. The best practice is
to allow anonymous access only when necessary for your scenario (for example, a content
store for public websites).

There is a configuration option called Allow Blob public access that we can use to
disable all anonymous access to storage services, regardless of the public access setting
for individual containers. With this option disabled, Azure Storage rejects all anonymous
requests to that storage account regardless of the previous configuration of the containers:

Figure 10.32 – Disabling public blob access

We can configure this option in the Configuration blade of the storage account resource
(Figure 10.32). We can also configure this using command-line management tools
and enforce it at scale using Azure Policy. In the next sections, we will discuss how to
implement identity-based authorization options for Azure Storage.

Configuring storage account authorization 367

Implementing Azure AD authorization for the Blob
service
We mentioned earlier in this chapter that the Azure Blob service supports authentication
and authorization using Azure AD. We also mentioned that this is the preferred
authorization option to use when possible.

For clients to access blob resources with Azure AD identities, they need to be granted
permission using Azure RBAC. This permission can be granted to any Azure AD security
principal, including users, groups, service principals, and managed identities. The
permission can also be granted at any of these scopes: management group, subscription,
resource group, storage account, or Blob service container.

Azure provides the following built-in roles that we can use to grant permissions, but we
can also create custom roles if the default ones do not fit our requirements:

•	 Storage Blob Data Owner: Gives full access to Azure Storage blob containers and
data, including permission to assign POSIX access control

•	 Storage Blob Data Contributor: Gives read, write, and delete access to Azure
Storage blob containers and data but no permission to assign access

•	 Storage Blob Data Reader: Gives only read access to Azure Storage blob containers
and data

With Azure AD, access to a blob resource is a two-step process. First, a supported identity
(user, service principal, or managed identity) authenticates to Azure AD and an OAuth
2.0 token is returned. The token is then used to request access to Azure Blob. You will
configure this in the next hands-on exercise in this chapter.

Implementing ADDS or Azure ADDS authentication for
Azure Files
Azure Files supports two options for identity-based authentication over SMB. The first
option is through on-premises Active Directory Domain Services (AD DS). The second
option is through Azure AD DS. For this to work, AD DS users must be synchronized
to Azure AD in a hybrid identity scenario as we discussed in Chapter 3, Azure AD
Hybrid Identity.

368 Implementing Storage Security

Regardless of the option that we implement, authentication works using the Kerberos
protocol. When a client requests to access data in Azure file shares, the request is
redirected to the domain service that was implemented for authentication. This could
be either AD DS or Azure AD DS. If the authentication request is successful, a Kerberos
token is returned to the client. The client then uses the Kerberos token to perform
authorization against Azure file shares.

Refer to this documentation to see how to implement this: https://docs.
microsoft.com/en-us/azure/storage/files/storage-files-
identity-auth-active-directory-enable.

In the next section, you will implement storage account access controls in a hands-on
exercise.

Hands-on exercise – configuring storage account
access controls
Here are the tasks that we will complete in this exercise:

•	 Task 1: Disable anonymous (unauthenticated) blob access.

•	 Task 2: Configure SAS key-based authorization.

•	 Task 3: Configure Azure RBAC for blob access.

•	 Task 4: Disable key-based authorization options.

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to the Azure portal.

2.	 In the Search resources, services, and docs box at the top of the portal, type
azsecstor and select the storage account that you created earlier in this chapter:

Figure 10.33 – Searching for and selecting a storage account

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-identity-auth-active-directory-enable
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-identity-auth-active-directory-enable
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-identity-auth-active-directory-enable

Configuring storage account authorization 369

3.	 In the azsecstorXXXX blade, click on Configuration in the Settings section. Set
the Allow Blob public access blade to Disabled, then click on Save:

Figure 10.34 – Disabling blob public access

4.	 On the left-hand side, click on Containers in the Blob service section, then click on
the container named public that we created earlier:

Figure 10.35 – Selecting a blob container

370 Implementing Storage Security

5.	 In the public Container blade, click on Change access level and review the message
displayed. Notice that you cannot change the configuration to allow anonymous
access because we have disabled it for this storage account. Click OK to close out of
this window:

Figure 10.36 – Attempting to change the container access level

6.	 Click on the sampletemplate.json object that you uploaded in the first
exercise and copy the URL as shown:

Figure 10.37 – Copying the blob URL

Configuring storage account authorization 371

7.	 Open a new browser tab and browse to the URL that you copied. You should receive
an error message that unauthenticated access is not allowed:

Figure 10.38 – Reviewing the error message
To gain access to this object, we will need to be authorized using key-based
authorization or identity-based authorization. Let's go to configure key-based
authorization using a SAS token generated via the stored access policy method that
we discussed earlier.

8.	 Go back to the Azure portal tab where you have the sampletemplate.json
object selected. Click on Generate SAS and configure the following:

Signing method: Account key.

Signing key: Key 1.

Permissions: Read.

Start: Configure a time just before your current time.

Expiry: Configure any time in the next date from your current date.

Allowed protocols: HTTPS only.

372 Implementing Storage Security

Click on Generate SAS token and URL:

Figure 10.39 – Configuring SAS token settings and generating it
Generating a SAS using this option is called the ad hoc method that we discussed
earlier in this chapter.

Configuring storage account authorization 373

9.	 In the output that is returned, copy the Blob SAS URL:

Figure 10.40 – Copying the generated SAS token

10.	 Open a new browser tab and browse to the URL that you copied. You should be
able to access the file. Leave this browser tab open as we will use it to verify the
configuration to disable key-based authorization later:

Figure 10.41 – Accessing the blob with the generated SAS token

11.	 Go back to the Azure portal tab where you generated the SAS. Close the section to
return to the container blade:

Figure 10.42 – Closing the container blade

374 Implementing Storage Security

12.	 Back in the public Container blade, click on Switch to Azure AD User Account:

Figure 10.43 – Switch to Azure AD authentication
You should receive an error message that you do not have permission to access blob
data with your Azure AD credentials! This is because even as a subscription owner
we do not have access to the data plane of Azure Storage by default. The access that
we have been using so far has been key-based authorization:

Figure 10.44 – Verifying Azure AD permission
Now, let's go to configure Azure RBAC to grant access.

Configuring storage account authorization 375

13.	 In the current window, click on Access Control (IAM) on the left-hand side:

Figure 10.45 – Selecting Access Control (IAM)

14.	 In the public | Access Control (IAM) blade, click on Add role assignments:

Figure 10.46 – Adding a new role assignment

376 Implementing Storage Security

15.	 In the Add role assignment blade, configure the following:

Role: Storage Blob Data Contributor

Assign access to: User, group, or service principal

Select: The admin account that you are currently logged in as

Click on Save:

Figure 10.47 – Configuring and assigning a role

Configuring storage account authorization 377

16.	 Once the role is assigned, click on Overview on the left-hand side. You should now
be able to access container resources using your Azure AD user account:

Figure 10.48 – Verifying the Azure AD permission

17.	 Close the public Container blade to go back to the storage account blade:

Figure 10.49 – Closing the container blade

378 Implementing Storage Security

18.	 In the storage account blade, click on Configuration and set the option for Allow
storage account key access to Disabled, then click on Save. This disables key-based
authorization for this storage account:

Figure 10.50 – Disabling storage account key access

19.	 Go back to the browser tab that has the SAS URL open from Step 10 of this exercise.
Refresh the page. You should receive an error message that key-based authorization
is now disabled:

Figure 10.51 – Verifying key-based authentication

Congratulations! You have configured various storage account access control options and
verified that your configurations worked.

In the next section, we will cover how to implement Azure Defender for Storage to detect
suspicious activities in our storage accounts.

Implementing Azure Defender for Storage 379

Implementing Azure Defender for Storage
Read, write, and delete requests to the Blob and Files services are logged by the storage
service as resource logs. Azure Defender for Storage can ingest these logs and analyze
them for suspicious events. Without a service like this, analyzing these logs requires
security expertise and a significant amount of time.

When Azure Defender for Storage detects unusual and potentially harmful events, it
raises an alert in Security Center for us to investigate and remediate threats. We will cover
Security Center in a later chapter:

Figure 10.52 – Enabling Azure Defender for Storage

Azure Defender for Storage can be enabled from the Security blade of a storage account
resource in the Azure portal or from the pricing and settings blade in Security Center
(Figure 10.52). This can also be enabled at scale using Azure policy.

Cleaning up resources
In the Azure portal, delete the azuresec-c10-rg resource group. This will remove all
the resources that we created for the exercises in this chapter.

380 Implementing Storage Security

Summary
In this chapter, you learned how to secure storage in Azure. We covered security best
practices that you can implement for encryption at rest and in transit, and also how to
secure access by implementing recommended authentication options. The skills that
you gained in this chapter have equipped you with the knowledge of how to implement
multilayered security to protect your critical data in Azure Storage.

In the next chapter, we will cover Azure SQL Database and how to secure data stored in it.
See you in the next chapter!

Question
As we conclude, here is a question for you to test your knowledge regarding this chapter's
material. You will find the answer in the Assessments section of the Appendix:

1.	 You discovered that some ad hoc SAS tokens are compromised and you need to
revoke access to all SAS tokens that have been generated. What is the easiest way
to accomplish this?

a. Regenerate the storage account keys.

b. Manually revoke the SAS tokens.

c. Inform the users to stop using their SAS tokens.

d. Delete the storage account.

Further reading
To learn more on the subject, consult the following resources:

•	 Azure blob security recommendations: https://docs.microsoft.com/
en-us/azure/storage/blobs/security-recommendations

•	 Azure storage encryption for data at rest: https://docs.microsoft.
com/en-us/azure/storage/common/storage-service-
encryption?toc=/azure/storage/blobs/toc.json

•	 Azure Storage SAS: https://docs.microsoft.com/en-us/azure/
storage/common/storage-sas-overview

•	 Manage storage account keys with Key Vault and the Azure CLI: https://docs.
microsoft.com/en-us/azure/key-vault/secrets/overview-
storage-keys

https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/key-vault/secrets/overview-storage-keys
https://docs.microsoft.com/en-us/azure/key-vault/secrets/overview-storage-keys
https://docs.microsoft.com/en-us/azure/key-vault/secrets/overview-storage-keys

11
Implementing

Database Security
The Azure cloud offers multiple database options to store application data. Customers
can choose from a range that includes relational, NoSQL, and in-memory databases.
The database technologies on offer also span both proprietary database management
systems such as Microsoft SQL and open source systems such as MySQL, PostgreSQL,
and MongoDB. Regardless of the option that we choose to use, we need to implement a
comprehensive security strategy to protect our Azure databases from common risks such
as unauthorized access, data leakage/theft, and database vulnerabilities. This chapter will
cover how to implement this type of holistic database security.

Our focus in this chapter will be on the Azure SQL database options, but the same
protection options that we cover can be applied to the other database services in Azure.
Here are the topics that we will cover in this chapter:

•	 Database options in Azure
•	 Azure SQL deployment options
•	 Implementing defense in depth for Azure SQL
•	 Protecting Azure SQL against unauthorized network connections
•	 Protecting Azure SQL against unauthorized user access
•	 Protecting Azure SQL against vulnerabilities
•	 Protecting Azure SQL against data leakage and theft

382 Implementing Database Security

Each topic has been structured to align with recommended database security best
practices in Azure. Let's get into this!

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Before we proceed to cover the security best practices, let's prepare our Azure subscription
for the hands-on exercises that we will be completing later in the chapter.

Database options in Azure
Modern business applications rarely interact with a single type of dataset. Increasingly,
organizations are adopting a flexible approach that allows them to use different data stores
to persist application data based on the workload type or usage pattern of that application.
The Azure cloud enables organizations to adopt this approach by offering different
database options to fit the needs of modern app developers. Figure 11.1 shows the range of
database options available in Azure:

Figure 11.1 – Database options in Azure

Azure SQL deployment options 383

As you can see from the preceding diagram, there are multiple relational database options
that are available, including open source database engines such as PostgreSQL, MySQL,
and MariaDB. Before we proceed further in our discussion, let's review the options that
we have when we implement Azure SQL.

Azure SQL deployment options
When we talk about Azure SQL, we are referring to a family of products in Azure
that is built on Microsoft's popular SQL Server database engine (Figure 11.2). This
family of products offers two deployment categories based on the use case of the
customer – Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)
(Figure 11.2).

In the IaaS category, we have the option to implement SQL Server on an Azure VM.
This is similar to what most organizations already do on-premises, only that the VM is
hosted in Azure instead of on-premises data centers. The advantage of this option is that
the customer has control of the OS and the SQL database engine. This means that the
customer has a greater level of flexibility to apply customizations. The downside to this
option is that the customer is responsible for managing the OS and the SQL database
engine going forward. This means that responsibilities such as OS and SQL Server
upgrades, patching, monitoring, and other database management functions are owned
by the customer going forward. That is a lot of work! But this is not unusual. This is the
standard technology trade-off – flexibility versus management responsibilities:

Figure 11.2 – SQL database options in Azure

384 Implementing Database Security

In the PaaS category, we have two deployment options – Azure SQL Database and
Azure SQL Managed Instance. The Azure SQL Managed Instance option gives us an
instance of SQL Server but abstracts the overhead of managing the underlying VM from
us. Customers do not have access to the OS or the underlying infrastructure as they are
managed automatically by the Azure cloud platform! From a security perspective, we have
fewer responsibilities to take care of as we do not need to get involved with OS upgrades
and patching but it does mean that we have less control and less flexibility to implement
customizations. This is the option that Microsoft recommends for customers who are
looking to migrate their on-premises SQL workloads to Azure without re-architecting
their applications. This is because it has a higher degree of feature compatibility with
on-premises SQL Server.

The second option that we have in the PaaS category is Azure SQL Database. This option
abstracts the overhead of managing both the OS and the SQL Server instance away
from us. With that being said, do not think for a minute that we do not have security
responsibilities to take care of because of these abstractions – we do! And in the next
section, we will highlight what these are before we delve into them in detail.

Important note
For our purpose in this chapter, our focus will be on Azure SQL; however, what
we discuss is applicable to other platform database services in Azure.

Implementing defense in depth for Azure SQL
There are multiple attack vectors that an adversary could exploit to compromise our Azure
SQL database instances. For this reason, our security strategy should follow a defense-in-
depth approach that includes the following layers of protection:

•	 Protection against unauthorized network access

•	 Protection against unauthorized user access

•	 Protection against vulnerabilities and threats

•	 Protection against data leakage and theft

Protecting Azure SQL against unauthorized network connections 385

Figure 11.3 shows this defense:

Figure 11.3 – Azure SQL defense in depth

In the following sections in this chapter, we will cover these different layers of protection
in detail starting with the mitigation of unauthorized network access.

Protecting Azure SQL against unauthorized
network connections
When an Azure SQL database instance is created, it is deployed into an Azure SQL logical
server. The logical server acts as the administrative frontend for SQL databases. As shown in
Figure 11.4, one logical server can contain multiple SQL databases and elastic pool databases:

Figure 11.4 – Azure SQL components

386 Implementing Database Security

To protect data in our SQL databases, we should only allow access from trusted and
necessary clients. Here are some ways to control network access to Azure SQL databases.

Implementing IP firewall rules
By default, a logical SQL server has a public endpoint that is reachable on the public
internet using the DNS name in the following format:

<unique_server_name>.yourservername.database.windows.net.

Clients can use this endpoint to connect to databases contained in the server. Azure SQL
Database has a built-in firewall that can be used to define trusted network resources that
are allowed to establish a connection to our databases. With this feature implemented,
connection requests from IP addresses that are not explicitly allowed will be dropped:

Figure 11.5 – Azure SQL Server and database firewall rules

As shown in Figure 11.5, these firewall rules can be configured on the logical server level
or on individual database levels for more granular restrictions.

Implementing server-level firewall rules
Server-level firewall rules allow us to define trusted connection sources for all the
databases within the same logical server. There are three kinds of rules that we can
configure at the server level.

Protecting Azure SQL against unauthorized network connections 387

The first kind of rule is the IP address rule, which allows us to specify public IP address
ranges that are allowed to connect to databases within a logical server (Figure 11.6). The
second kind of rule is the virtual network rule, which allows us to define Azure virtual
network subnets that are allowed to connect over the Azure private WAN to databases in
the logical server. This second type of rule is similar to the concept of service endpoints
that we discussed in previous chapters. It is the Azure service rule, which can be used to
allow network connection from all Azure public IP addresses including from other Azure
customer subscriptions! This is a really broad range!

Figure 11.6 – Azure SQL server-level firewall rules

As shown in Figure 11.6, we can configure server-level IP firewall rules using the Azure
portal, Azure PowerShell, or Transact-SQL (T-SQL) statements. To configure this using the
Azure portal, we can modify the Firewalls and virtual networks setting of the logical server.

Implementing database-level firewall rules
Database-level firewall rules allow access to an individual database on a logical server. This
option is useful if we have a need to implement more granular network access control for
individual databases in the same logical server. There is only one type of rule that we can
configure at the database level – the IP address rule, which can be used to define public
IP address ranges that are allowed to connect to a specific database. Another advantage of
database-level firewall rules is agility. Because the firewall rules are stored in the database
itself, they follow the database wherever it is moved or replicated to.

388 Implementing Database Security

As of the time of writing (mid-2021), database-level IP firewall rules can only be
configured using T-SQL. The following is an example statement that can be used:

EXECUTE sp_set_database_firewall_rule @name =
N'DBFirewallRule',

 @start_ip_address = '1.1.1.1', @end_ip_address = '1.1.1.1'

Once both or either of the server-level or database-level firewall rules are defined,
connection requests from IP addresses that are not explicitly allowed will be dropped
(Figure 11.5).

Implementing Azure SQL private endpoints
Another option that we can implement for network access control is to configure a private
endpoint. This is similar to the implementation of private endpoints that we covered in
Chapter 9, Implementing Container Security, of this book. Configuring this option allows
us to connect to a logical server via a private IP address within a specific virtual network
and subnet (Figure 11.7):

Figure 11.7 – Azure SQL IP private endpoint

Protecting Azure SQL against unauthorized network connections 389

With this option configured, we could choose to deny public network access, thereby
forcing private-only connectivity (Figure 11.8). This option can be configured in the
Firewalls and virtual networks setting of a logical server:

Figure 11.8 – Azure SQL Deny public network access option

One of the best ways to understand a concept is to practice it. In the next two sections, we
will provision resources in Azure to use for exercises and we will see some of the concepts
that we have discussed in action.

Hands-on exercise – provisioning resources for
chapter exercises
To follow along with the exercises in this chapter, we will provision some Azure resources
to work with. We have prepared an ARM template in the GitHub repository of this book
for this purpose. The template will deploy an Azure virtual network with two subnets
as shown in Figure 11.9. The public subnet will have a Windows Server 2019 VM that is
reachable from the public internet. The private subnet will have an Ubuntu Linux VM
that is not reachable directly from the internet. Here are the tasks that we will complete
in this exercise:

•	 Task 1: Obtain your user account object ID.

•	 Task 2: Initialize template deployment in GitHub.

390 Implementing Database Security

•	 Task 3: Complete the parameters and deploy the template to Azure:

Figure 11.9 – Resources deployed for exercise scenarios

Let's begin the steps to complete the tasks.

In order to grant access to the Key Vault resource that will be deployed in the template, we
need to obtain the object ID of our Azure AD user account as we will need to specify it as
an input parameter:

1.	 Open a web browser and browse to the Azure portal (https://portal.azure.
com). Sign in with your admin user account credentials.

2.	 In the Azure portal, click on the Cloud Shell icon in the top-right corner of the
Azure portal. You can select Bash or PowerShell:

Figure 11.10 – Clicking the icon to open Cloud Shell

https://portal.azure.com
https://portal.azure.com

Protecting Azure SQL against unauthorized network connections 391

3.	 In the Bash or PowerShell session within the Cloud Shell pane, run the following
command to get the object ID of your user account:

az ad signed-in-user show --query objectId --output tsv

Make a note of the object ID displayed in the output. You will need this information
in a later step:

Figure 11.11 – Obtaining the object ID of the user account

4.	 Open a web browser and browse to http://bit.ly/az500-c11-template.
This link will open the GitHub repository that has an ARM template to deploy the
resources that we need.

5.	 In the GitHub repository that opens, click on Deploy to Azure:

Figure 11.12 – Starting the template deployment

http://bit.ly/az500-c11-template

392 Implementing Database Security

6.	 In the Sign in window, enter your administrative username and password to
authenticate to your Azure subscription:

Figure 11.13 – Authenticating to Azure

7.	 In the Custom Deployment window, configure the following:

Subscription: Select the subscription that you want to deploy the resources into.

Resource group: Create new | Name: azuresec-c11-rg | OK.

Region: Select an Azure region close to your location.

Storagename: Leave default value.

Vm-dns: Leave default value.

Admin User: Leave default value.

Admin Password: Enter a complex password. Make a note of the password that you
use. We recommend that you select one complex password that you use throughout
the scenarios in this book to keep things simple.

Vmsize: Leave default value. If no default value is displayed, this is because the
default size is not available to deploy in the region selected. Click on Change size,
and select an available VM size.

Location: Leave default value.

Protecting Azure SQL against unauthorized network connections 393

Object Id: Enter the object ID value that you obtained in the first task of this exercise.

_artifacts Location: Leave default value.

_artifacts Location Sas Token: Leave default value.

Click on Review + create:

Figure 11.14 – Configuring template parameters

394 Implementing Database Security

8.	 After the template validation has passed, click on Create. This will begin the
deployment process, which takes about 7 to 10 minutes to complete. Grab yourself a
cup of water, tea, or coffee and wait for the deployment to complete:

Figure 11.15 – Deploying the template

9.	 After the deployment has completed, click on the Outputs tab. Make a note of the
following values:

winvmdns: This is the public DNS name of the Windows VM that was just deployed.

winvmuser: This is the administrator username of the Windows VM that was
just deployed.

Protecting Azure SQL against unauthorized network connections 395

sqlserverName: The DNS of the SQL server.

sqladminuser: The administrator username of the SQL server.

keyVaultName: The name of the Key Vault resource that was deployed:

Figure 11.16 – Obtaining the Windows VM DNS name

10.	 On your client system, open an RDP client and enter the winvmdns value that you
made a note of earlier and connect to it. Use the following credentials when prompted:

Username: azureadmin.

396 Implementing Database Security

Password: Enter the password that you configured during the template deployment:

Figure 11.17 – RDP session to the public Windows VM

In this exercise, we provisioned some Azure resources that we need for the rest of the
exercises in this chapter. In the next section, we will walk through the implementation of
network access control for Azure SQL databases.

Hands-on exercise – implementing network access
control
Here are the tasks that we will complete in this exercise:

•	 Task 1: Connect to the SQL server from the Windows VM.

•	 Task 2: Add a server-level firewall rule to allow connections from the
Windows VM.

•	 Task 3: Verify the server-level firewall rule that was added.

Protecting Azure SQL against unauthorized network connections 397

Here are the steps to complete the tasks:

1.	 In the RDP session to the Windows VM, click on the Start button, expand
Microsoft SQL Server Tools 18, and then click on Microsoft SQL Server
Management Studio:

Figure 11.18 – Opening Microsoft SQL Server Management Studio

398 Implementing Database Security

2.	 In the Microsoft SQL Server Management Studio window, configure the following:

Server type: Database Engine.

Server name: Enter the value of the sqlserverName output that you made a note of
in the previous exercise.

Authentication: SQL Server Authentication.

Login: sqladmin.

Password: The password that you configured during the template deployment.

Click on Connect:

Figure 11.19 – Connecting to the SQL server
You will receive a message about your client IP not having access to the server. This
is because, by default, no IP address is granted access. Because our credentials have
permissions to modify the firewall rules for SQL servers, we can sign in from this
window and add the rule to allow the Windows VM public IP. We will do this in the
next step.

3.	 In the New Firewall Rule window, click on Sign In…. When prompted to
authenticate, use your Azure administrator sign-in credentials that you used to sign
in when you created the resources:

Protecting Azure SQL against unauthorized network connections 399

Figure 11.20 – Signing in to create a new firewall rule

4.	 Still in the New Firewall Rule window, configure the following:

Name: Allow-Lab-Windows-VM

Leave the other settings at the default values and click OK:

Figure 11.21 – Configuring the name for the firewall
This will automatically add the firewall rule to allow the Windows VM and connect
you to the SQL server. In the next steps, we will verify this rule, but for now, close
Microsoft SQL Server Management Studio (SSMS).

400 Implementing Database Security

5.	 Open a web browser and browse to https://portal.azure.com.

6.	 In the search area at the top of the screen, type sqlsrv and click on the SQL Server
resource that was created in the previous exercise:

Figure 11.22 – Searching for the SQL server

7.	 In the SQL Server window, click on Firewalls and virtual networks under the
Security section. Review the rule that was added to allow your Windows VM to
connect to the server:

Figure 11.23 – Verifying the firewall rule

https://portal.azure.com

Protecting Azure SQL against unauthorized user access 401

Leave the Azure portal open for the next hands-on exercise.

In this section, we covered the first layer of protection – network access control for Azure
SQL databases. In the next section, we will cover the second layer of implementing
authentication and authorization.

Protecting Azure SQL against unauthorized
user access
Preventing unauthorized network connections may be the first layer of security for
Azure SQL databases but clients still need to be authenticated and authorized before
they can gain access. Authentication validates the identity of the client that is requesting
access while authorization validates the operations that an identity can perform in a SQL
database. Azure SQL Database supports two types of authentication: SQL authentication
and Azure Active Directory (Azure AD) authentication.

SQL authentication uses a username and password that is stored in the master database
(for server-wide access) or individual databases. When a new SQL logical server is created
in Azure, we need to specify a local server admin credential. This credential is referred to
as the server admin account. This account can authenticate to any database on that server
as the database owner. We can use the initial server admin account to create additional
SQL logins and users.

The second option is to implement Azure AD authentication so that Azure AD identities
(both cloud and hybrid) can be used to authenticate access to our SQL server and
databases. When using Azure AD, this can be cloud-only identities or even Azure AD
hybrid identities (password hash, pass-through, and federated authentication). The best
practice is to implement Azure AD authentication as it means that we could centralize
authentication and authorization for SQL databases while leveraging advanced identity
security capabilities of Azure AD that we covered in Chapter 4, Azure AD Identity Security,
and Chapter 5, Azure AD Identity Governance, of this book.

Authorization in SQL databases is controlled by permissions granted by assigning a role
to a user or a group. Authorization is granted the same way regardless of authentication
method – SQL authentication or Azure AD authentication. From a security standpoint,
users should only be granted privileges that they need and use to perform their
organization functions.

In the next hands-on exercise, we will walk through the implementation of Azure AD
authentication for Azure SQL.

402 Implementing Database Security

Hands-on exercise – implementing Azure AD
authentication and authorization
In Chapter 2, Understanding Azure AD, we created two Azure AD user accounts named
Brenda and Emmy. In this demonstration, we will make Brenda an Azure AD admin
for the SQL server that we deployed earlier. We will then use Brenda's account to grant
permission to Emmy as a database owner for the AdventureWorks database. Here are
the tasks that we will complete in this exercise:

•	 Task 1: Configure the Azure AD admin for SQL Server.

•	 Task 2: Add a server-level firewall rule to allow connections from the
Windows VM.

•	 Task 3: Connect to a SQL database as an Azure AD user.

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to https://portal.azure.com.

2.	 In the search area at the top of the screen, type sqlsrv and click on the SQL Server
resource that was created in the previous exercise:

Figure 11.24 – Searching for the SQL server

3.	 In the SQL Server window, click on Active Directory admin in the Settings section,
then click on Set admin:

https://portal.azure.com

Protecting Azure SQL against unauthorized user access 403

Figure 11.25 – Configuring the Azure AD admin for SQL Server

4.	 On the Add admin page, search for Brenda's Azure AD user account user (note
that Microsoft accounts cannot be added). Click to select the account, then click
on Select:

Figure 11.26 – Adding an Azure AD admin user

404 Implementing Database Security

5.	 At the top of the Active Directory admin page, select Save:

Figure 11.27 – Saving the Azure AD admin configuration
The preceding process will add Brenda's account as a database owner to the master
database of the SQL server. This gives her full access to all databases in the SQL
logical server. In the next steps, we will use Brenda's new permission to add Emmy's
account as a database owner for the AdventureWorksDB database.

6.	 Open the RDP session to the Windows VM and open Microsoft SSMS. In the
Microsoft SQL Server Management Studio window, configure the following:

Server type: Database Engine.

Server name: Enter the value of the sqlserverName output that you made a note of
in the previous exercise.

Protecting Azure SQL against unauthorized user access 405

Authentication: Azure Active Directory - Universal with MFA (we are selecting
this option because MFA is enabled for Brenda's credentials).

User name: Brenda's UPN information.

Click on Connect.

Authenticate with Brenda's credentials and complete the MFA process. If prompted
to change Brenda's password, go ahead and change it:

Figure 11.28 – Connecting to SQL Server
You are now connected to the SQL server as Brenda.

406 Implementing Database Security

7.	 In the Microsoft SQL Server Management Studio window, in the Object Explorer
pane, expand Databases, right-click the AdventureWorksDB database, and select
New Query:

Figure 11.29 – Creating a new query
This will open a new query window.

Protecting Azure SQL against unauthorized user access 407

8.	 In the query window, enter the following query. Replace <EMMY_UPN> with
the user principal name of user Emmy. In my scenario, this will be emmy@
azureblueteam.io. Proceed to click on Execute to execute the SQL query. The
first three lines create the user. The last two lines assign roles to the user:

CREATE USER "<EMMY_UPN>"

FROM EXTERNAL PROVIDER

WITH DEFAULT_SCHEMA = dbo;

ALTER ROLE db_owner ADD MEMBER "<EMMY_UPN>";

ALTER ROLE db_accessadmin ADD MEMBER "<EMMY_UPN>";

Here is a screenshot of this:

Figure 11.30 – Executing the query
You should receive a message about the commands completing successfully. You
can now close SSMS. When prompted about saving the SQL query, select No. In
the next steps, we will connect as Emmy to the AdventureWorksDB database to
verify access.

408 Implementing Database Security

9.	 In the RDP session to the Windows VM, open Microsoft SSMS. In the Microsoft
SQL Server Management Studio window, configure the following:

Server type: Database Engine.

Server name: Enter the value of the sqlserverName output that you made a note of
in the previous exercise.

Authentication: Azure Active Directory - Password (we are selecting this option
because MFA is not enabled for Emmy's credentials).

User name: Emmy's UPN information.

Click on Options:

Figure 11.31 – Entering SQL Server connection information

10.	 In the Connection Properties menu, configure the following:

Connect to database: AdventureWorksDB

Click on Connect:

Protecting Azure SQL against vulnerabilities 409

Figure 11.32 – Entering SQL database connection information

Congratulations! You are now authenticated to a SQL database with an Azure AD
user credential.

In the next section, we will cover how to implement threat detection and protection for
Azure SQL databases.

Protecting Azure SQL against vulnerabilities
A holistic security strategy should not only include preventing successful attacks, but should
also include detecting ongoing threats that may have bypassed existing defenses. There are
two sides to implementing this for our SQL databases. The starting point is to enable Azure
SQL database auditing to record database operations. The other side is to implement
Azure Defender for SQL to analyze the logs and stay alert for suspicious events.

410 Implementing Database Security

Enabling Azure SQL database auditing
Azure SQL auditing is a feature that can be used to record database events to an audit log
in an Azure Storage account, Log Analytics workspace, or event hub. The main use case
of this feature is to record database operations for further analysis. Another use case is for
compliance purposes.

This feature is not enabled by default. Using the Azure portal, we can enable it at the server
or database level from the Security section (Figure 11.33). Enabling it at the database
level enables it only for that specific database. Enabling it at the server level ensures that
auditing is enabled for all existing and newly created databases on the server:

Figure 11.33 – Enabling Azure SQL auditing

After auditing is enabled, we can define the events and operations that we want to be
recorded in the logs using an auditing policy. By default, all actions, queries, and stored
procedures executed against the database, as well as successful and failed logins, will be
audited. We can customize audited events by using the Set-AzSqlDatabaseAudit
Azure PowerShell cmdlet, Azure CLI, or REST API.

Implementing Azure Defender for SQL
After enabling auditing, we can implement Azure Defender for SQL to automate the
analysis of the audit logs. This service will detect unusual behavior and potentially
harmful attempts to access or exploit databases by using different methods to analyze the
logs. Any suspicious or unusual activities detected will raise an alert in Azure Security
Center, and we will be able to view details of the detections and recommendations for
further investigation.

Protecting Azure SQL against vulnerabilities 411

Azure Defender for SQL is not enabled by default. It can be enabled at the subscription
level (in Security Center) or at the server level from the Security Center section:

Figure 11.34 – Enabling Azure Defender for SQL

Azure Defender for SQL provides three main functionalities:

•	 Data discovery and classification: Analyzes database data and shows columns
within tables that may have sensitive information and need to be further protected.

•	 Vulnerability assessment: Identifies database configurations for vulnerabilities
and alerts when found. It also provides remediation instructions for the identified
vulnerabilities.

•	 Threat detection: Identifies and alerts on suspicious database activities, such as
unusual database access and patterns, SQL injection attacks, and credential brute
force attacks.

In the next section, we will cover how data encryption works for Azure SQL databases.

412 Implementing Database Security

Protecting Azure SQL against data leakage and
theft (database encryption)
Databases store sensitive information that should not be exposed. To mitigate the risk of
data exposure and theft, we need to ensure that data encryption is enforced at all levels
(at rest and in transit). There are different features of Azure SQL that help us to achieve
this. Let's look at them.

Implementing Transparent Data Encryption (TDE) –
encryption at rest
Data, backups, and logs in Azure SQL databases are stored on storage systems located in
Microsoft-managed data centers. To mitigate the risk of data leakage in case of storage
disk theft, or unsecured decommissioning of storage media in the data centers, the service
transparently encrypts data before storing it on disks. This functionality is referred to as
Transparent Data Encryption (TDE). The great thing is that this functionality is enabled
by default!

With TDE, data is transparently encrypted before it is stored on disks. Data is also
transparently decrypted when read request operations are performed by authorized
clients. To verify TDE, you can view the setting in the Security section of a SQL database,
as shown in Figure 11.35:

Figure 11.35 – Verifying TDE

Protecting Azure SQL against data leakage and theft (database encryption) 413

TDE uses encryption keys that are managed by the Azure platform by default but a
customer with higher compliance requirements could choose to use customer-managed
keys for the encryption instead. This option can be configured in the Security section of a
SQL logical server, as shown in Figure 11.36:

Figure 11.36 – Configuring a customer-managed key

In the next sections, we will review other encryption considerations for Azure SQL databases.

Implementing encryption in transit
Client applications interact with data stored in Azure SQL databases. This could be an
administrator using a tool such as SSMS to perform some management operations or
application code reading or writing data to the service. In both of these scenarios, there is
a risk that malicious actors could intercept data as it flows to and from our databases.

To mitigate this risk, all connections to and from Azure SQL databases enforce Transport
Layer Security (TLS) encryption by default. This ensures that data is protected as it flows
between clients and our databases. If a malicious actor manages to intercept this traffic,
they would not be able to read the data.

414 Implementing Database Security

To further strengthen this, we should make sure that our clients enforce server certificate
validation and newer TLS versions. For example, if your client uses the ADO.NET driver,
ensure that the Encrypt=True and TrustServerCertificate=False options are
configured to force the client to verify the server's TLS certificate.

Implementing Azure SQL Database Always Encrypted
A common security and compliance challenge that organizations face is how to ensure
separation between those who manage data and those who use data. For example, an
administrator may need access to perform management operations on databases, but
you might not want them to be able to view sensitive data such as credit card numbers
and the health information of your customers. One of the ways to address this is to make
sure that sensitive data is always encrypted in our databases and only visible to the client
application that uses it. The Always Encrypted technology supported by Azure SQL can
be used to implement this solution:

Figure 11.37 – Always Encrypted

With Always Encrypted, we enable encryption for columns that contain sensitive data in
our databases and make the keys available only to the applications that need to access that
data in plain text (Figure 11.37). The encryption uses the AES-256 algorithm to encrypt
data in the database.

Protecting Azure SQL against data leakage and theft (database encryption) 415

To implement this, we can use the Always Encrypted wizard in SSMS to create Always
Encrypted keys. This involves the creation of column encryption keys (that will be used
to encrypt columns) and a column master key that will be used to encrypt the column
encryption keys. In the next hands-on exercise, we will implement this.

Hands-on exercise – implementing Always Encrypted
Here is the task that we will complete in this exercise:

•	 Task 1: Configure Always Encrypted using SSMS.

Here are the steps to complete this task:

1.	 In the RDP session to the Windows VM, open Microsoft SSMS.

2.	 In the Microsoft SQL Server Management Studio window, configure the following:

Server type: Database Engine.

Server name: Enter the value of the sqlserverName output that you made a note of
in the previous exercise.

Authentication: SQL Server Authentication.

Login: sqladmin.

Password: The password that you configured during the template deployment.

Click on Connect:

Figure 11.38 – Connecting to the SQL server

416 Implementing Database Security

You will receive a message about your client IP not having access to the server. This
is because by default, no IP address is granted access. Because our credentials have
permissions to modify the firewall rules for SQL servers, we can sign in from this
window and add the rule to allow the Windows VM public IP. We will do this in the
next step.

3.	 In Object Explorer to the left, expand Databases | AdventureWorksDB | Tables.
Right-click on SalesLT.Customer and click Encrypt Columns…:

Figure 11.39 – Encrypt database column

Protecting Azure SQL against data leakage and theft (database encryption) 417

4.	 In the Always Encrypted window, click Next. In the Column Selection section,
select PasswordHash and PasswordSalt. In Encryption Type, select Deterministic
for the two columns and click Next:

Figure 11.40 – Selecting columns to encrypt

418 Implementing Database Security

5.	 In the Master Key Configuration section, select Azure Key Vault and click Sign
In. Authenticate with your Azure administrator credentials. Select the key vault that
starts with azsec in its name. Then click Next:

Figure 11.41 – Specifying a Key Vault resource

6.	 In the Run Settings section, click on Next. In the Summary section, click on
Finish. When prompted to authenticate, sign in with your Azure.

7.	 Sign in to the Azure account again. Encryption should now be complete.

Congratulations! You have now implemented Azure SQL Database Always Encrypted to
protect against data leakage even from authorized users.

Cleaning up resources 419

Cleaning up resources
In the Azure portal, delete the azuresec-c11-rg resource group. This will remove all
the resources that we created for the exercises in this chapter.

Summary
In this chapter, we covered how to implement a comprehensive security strategy for
Azure SQL. We discussed, and you implemented, protection against unauthorized
network connections, unauthorized user access, data leakage and theft, and database
vulnerabilities.

The information and hands-on exercises that we covered in this chapter have equipped
you with the knowledge and skills to implement a multi-layered security strategy to
protect databases in Azure against common risks. In the next chapter, we will cover Azure
subscription governance.

Question
As we conclude, here is a question for you to test your knowledge regarding this chapter's
material. You will find the answer in the Assessments section of the Appendix:

1.	 You have multiple Azure SQL databases. You need to ensure that administrators
cannot view customer-sensitive data in certain columns of the databases that they
manage. What functionality do you need to implement?

a. Implement encryption at rest with TDE.

b. Switch TDE to customer-managed keys.

c. Implement column-level encryption with Always Encrypted.

d. Implement encryption in transit with TLS.

420 Implementing Database Security

Further reading
To learn more on the topic, refer to the following links:

•	 Azure SQL security responsibilities – https://docs.microsoft.com/
en-us/azure/azure-sql/database/security-overview?WT.mc_
id=AZ-MVP-6003870

•	 Azure SQL Advanced Threat Protection – https://docs.microsoft.
com/en-us/azure/azure-sql/database/threat-detection-
overview?WT.mc_id=AZ-MVP-6003870

•	 Azure AD Authentication for Azure SQL Database – https://docs.
microsoft.com/en-us/azure/azure-sql/database/
authentication-aad-overview?WT.mc_id=AZ-MVP-6003870

•	 Azure SQL TLS considerations – https://docs.microsoft.com/en-us/
azure/azure-sql/database/connect-query-content-reference-
guide#tls-considerations-for-database-connectivity?WT.mc_
id=AZ-MVP-6003870

https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/threat-detection-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/threat-detection-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/threat-detection-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-content-reference-guide#tls-considerations-for-database-connectivity?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-content-reference-guide#tls-considerations-for-database-connectivity?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-content-reference-guide#tls-considerations-for-database-connectivity?WT.mc_id=AZ-MVP-6003870
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-content-reference-guide#tls-considerations-for-database-connectivity?WT.mc_id=AZ-MVP-6003870

12
Implementing
Secrets, Keys,

and Certificate
Management with

Key Vault
Modern applications often interact with external systems, services, and data stores. These
interactions rely on privileged credentials in the form of connection strings, API keys,
client secrets, and certificates. Storing these privileged credentials in code or application
configuration files is a bad practice and it increases the risk of exposure or leakage.

To mitigate this risk, we need to ensure that this sensitive information is stored and
handled securely and is only visible to the application that uses them at runtime. The
Azure Key Vault service offers capabilities that we can use to implement this best practice.
By the end of this chapter, you will have gained the knowledge, skills, and practical
experience to implement Azure Key Vault to secure sensitive application information.

422 Implementing Secrets, Keys, and Certificate Management with Key Vault

Here are the topics that we will cover:

•	 Introducing Azure Key Vault

•	 Understanding secrets, keys, and certificates

•	 Understanding Key Vault pricing tiers

•	 Managing access to Key Vault

•	 Protecting Key Vault resources

Each topic is designed to help your understanding of this service and how you can use
it to implement secret management best practices in Azure. Let's get into this!

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Introducing Azure Key Vault
At its core, Key Vault is a cloud service that we can use to securely store and safeguard
secrets, keys, and certificates that applications use (Figure 12.1).

It allows us to streamline how applications access sensitive configuration parameters. How
does it do this? It does this by providing the following capabilities:

•	 Centralizing the storage of application secrets: This ensures that we only need to
make changes in one place instead of on distributed instances of our application.

•	 Implementing access control to restrict who can access application secrets.

•	 Implementing audit logging so that we can review how and when application
secrets are accessed.

Understanding secrets, keys, and certificates 423

Figure 12.1 – Storing sensitive application configuration parameters

Before we go any further in our discussion, let's take some time to understand what we
mean by secrets, keys, and certificates in Key Vault.

Understanding secrets, keys, and certificates
Secrets are data under 25 KB that our applications can store or retrieve in plain text. They
are stored as a name-value pair of strings. Passwords, API keys, and connection strings
can be stored securely as secrets in Key Vault.

Keys are cryptographic keys generated using an algorithm. Key Vault supports multiple
sizes and algorithms of the RSA and Elliptic Curve (EC) key types. We can import RSA
keys that we generated elsewhere into our vault, or we can generate RSA and EC keys
in the vault itself. Depending on the pricing tier of Key Vault that we deployed (we will
cover pricing tiers later in this chapter), the keys could either be software-protected or
hardware-protected using Hardware Security Modules (HSMs).

424 Implementing Secrets, Keys, and Certificate Management with Key Vault

Certificates refer to SSL/TLS X.509 certificates. These could either be self-signed
certificates generated in the vault or certificates generated by external Certificate
Authorities (CAs) that are integrated with Key Vault or that are imported into the vault.
It is important to note that Key Vault does not issue publicly trusted certificates or resell
them. What Key Vault can provide is the ability to simplify and automate certain tasks
such as enrolment and renewal for supported integrated CAs. At the moment, two CAs
are supported – DigiCert and GlobalSign.

Key Vault allows us to have multiple versions of the same secret, key, or certificate. This
gives us flexibility in how we manage these objects. Client applications have the flexibility
to pin the version of a particular secret, key, or certificate by referencing the version
number in the object URL as shown here:

https://{vault-name}.vault.azure.net/{object-type}/{object-
name}/{object-version}

If a version number is not referenced, the latest version of the object will be retrieved.

Another important point to note is that secrets, keys, and certificates are immutable
in the vault. This means that the value of an existing version cannot be modified once
created (metadata such as tags can be modified but not the object values). We will need to
create a new version to add a different value. This is great as it provides protection against
ransomware attack scenarios where an attacker could look to corrupt existing versions to
make them unusable.

Before going any further, let's cover the different pricing tiers of Key Vault and the
significance of our selection to the feature capabilities that we can use.

Understanding Key Vault pricing tiers
The first step to protecting sensitive application secrets in Azure is to create a Key Vault
resource in an Azure region of our choice. This is the resource that stores our secrets, keys,
and certificates. When we create this resource, we need to specify the pricing tier that we
want. The pricing tier that we select defines the capabilities that are available for us to use.
Azure Key Vault has two pricing tiers – the standard tier and the premium tier.

The main difference between these two tiers is this: the standard tier supports only
software-protected keys while the premium tier supports HSM-protected keys.

Note
Hardware Security Modules (HSMs) are special hardware that can be used to
perform cryptographic operations in a secure environment.

Managing access to Key Vault 425

The key advantage of using the premium tier is that HSM keys offer stronger protection
against tampering. HSM-protected keys in premium tier vaults are backed by nCipher
HSMs, which are Federal Information Processing Standards (FIPS) 140-2 Level 2
validated. So, if an organization needs to meet that level of compliance, this helps them to
achieve that. It is worth mentioning that the HSMs that are used by premium tier vaults
are shared with other customers. If you have a requirement to have a dedicated HSM only
for your use case, there is another service in Azure called Azure Dedicated HSM that you
can consider. This service is validated for FIPS 140-2 Level 3 and eIDAS Common Criteria
EAL4+ standards.

Now that you understand the different pricing tiers of Azure Key Vault, let's look at how
to manage access to the sensitive information that we store in it.

Managing access to Key Vault
Once we have created a Key Vault resource, we can add our application secrets, keys,
and certificates to it. When an application needs to access information stored in the vault,
it can access it over a REST API (Figure 12.2). This access always requires authentication
and authorization (there is no option to grant anonymous access). Azure Key Vault's
REST API uses Azure AD to authenticate requesting applications or clients.

Figure 12.2 – Azure Key Vault REST API

426 Implementing Secrets, Keys, and Certificate Management with Key Vault

After a requesting client is authenticated using Azure AD and an OAuth token has been
granted, the Key Vault API will then verify whether the requesting identity has the
required permission to perform the operation that is being requested (authorization).
This permission can be granted to Azure AD security principals such as users, service
principals, and managed identities. To understand how permission is granted in Key
Vault, let's review the two planes of access for Key Vault resources – the Management
plane and the Data plane.

The Management plane is where permission is granted to manage the Key Vault resource
itself. Access that we can grant in this plane includes permissions to create and delete the
vault, retrieve, or modify vault properties, and update access policies. Access to this plane
is granted using Role-Based Access Control (RBAC) as shown in Figure 12.3.

The Data plane is where permission is granted to the secret information stored in the
vault. Access that we can grant in this plane includes permissions to get, list, or update
the values of secrets, keys, and certificates in the vault. Access to this plane is granted
using an access policy or RBAC as shown in Figure 12.3.

The main advantage of this architecture is that we can implement proper separation
of roles. The fact that a user can manage a vault as part of their role does not mean they
have automatic access to data in the vault. This is just like how giving someone the key
to access a room does not automatically grant them access to a safe in the room that uses
a different key!

Figure 12.3 – The Key Vault management plane versus the data plane

Managing access to Key Vault 427

You might be wondering which option to use to manage permissions to the Data
plane between the access policy or RBAC. What I will say is that using RBAC has some
advantages that are difficult to ignore. The main advantage is that we can manage ALL
permissions for the vault in one place (a unified management experience). The other
advantage of the RBAC model is the ability to scope data plane access to individual
secrets, keys, and certificates in the vault, which is not possible with the access policy
model! You will implement this in your hands-on exercise, so you will see how it works.

When granting access to secrets, keys, and certificates in the vault, we should always
follow the principle of least privilege and grant only the minimum set of permissions
needed. This helps to reduce the impact radius in the event of a breach. With the access
policy model, this can be done by restricting the operations that an identity is allowed to
perform, but as mentioned, this model is not granular to individual objects. For example,
we can grant an application's service principal permission to GET secrets in a vault using
the data plane access policy. This will grant that application the permission to READ all
secrets in that vault but not to CREATE or LIST them.

With the RBAC model, we can apply the principle of least privilege in the same way
as other Azure resources – by assigning roles at a more specific scope. There are eight
built-in rules that we can use out of the box (Figure 12.4). None of these roles have
management plane access by default to keep the planes separate, which is a good idea.

Figure 12.4 – Key Vault's built-in RBAC roles

In many cases, users in developer roles will usually only need READ, CREATE, and
LIST permissions to development-environment vault resources ,while only production
applications will be granted READ permissions to production-environment vault
resources.

428 Implementing Secrets, Keys, and Certificate Management with Key Vault

A scenario that we may encounter is when we need to grant vault data plane access to
Azure services to allow them to seamlessly access information stored in the vault as part
of an automated process. The way to do this is to configure an advanced access policy.
There are three main use cases for an advanced access policy as shown in Figure 12.5:

Figure 12.5 – Advanced access policy options

The first use case is to grant access to Azure Virtual Machines for deployment, which can
be used to specify whether Azure Virtual Machines is permitted to retrieve certificates
stored as secrets from the key vault. The second option is to grant access to Azure
Resource Manager for template deployment, maybe to retrieve a secure value (such as
a password) as a parameter during deployment. The third use case is for Azure Disk
Encryption volume encryption to allow VMs to retrieve secrets from the vault to unwrap
encryption keys.

In the next hands-on exercise, you will create a Key Vault resource in Azure, and
implement access management for it.

Hands-on exercise – managing access to Key Vault
resources
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create an Azure AD service principal for testing.

•	 Task 2: Create a key vault with purge protection enabled.

•	 Task 3: Grant Key Vault data plane access to an admin user.

•	 Task 4: Add a secret to the key vault.

•	 Task 5: Grant permission to a single secret to a service principal.

•	 Task 6: Verify access to a secret in the key vault.

Managing access to Key Vault 429

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to the Azure portal https://portal.azure.
com. Sign in with the azureadmin credentials.

2.	 In the Azure portal, click on the Cloud Shell icon in the top-right corner.
Select Bash.

3.	 In the Bash session within the Cloud Shell pane, run the following command to
create a service principal that we will use for testing key vault access:

az ad sp create-for-rbac --name app-kv-test --skip-
assignment

4.	 In the output of the command, make a note of the values for appID, password,
and tenant. You will need these values for a later step in this exercise.

Figure 12.6 – Create a service principal

5.	 Open a web browser and browse to the Azure portal – https://portal.
azure.com. Sign in with your administrator credentials.

6.	 On the home page, click on Create a resource.

Figure 12.7 – Create a new Azure resource

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

430 Implementing Secrets, Keys, and Certificate Management with Key Vault

7.	 In the Create a resource blade, search for Key Vault and select Key Vault.

Figure 12.8 – Search for and select Key Vault

8.	 In the Key Vault blade, click on Create to create a new vault.

9.	 In the Create a key vault blade, in the Basics tab, configure the following:

Subscription: Select the subscription that you want to deploy the resources into.

Resource Group: Create new → Name: azuresec-c12-rg → OK.

Key vault name: azseckvXXXX (where XXXX is a random number).

Region: Select an Azure region close to your location.

Pricing tier: Standard

Soft-delete: Notice that Soft-delete is now enabled by default. We will cover
Soft-delete later in this chapter.

Days to retain deleted vaults: Leave the default setting of 90 days.

Purge Protection: Enable purge protection. We will cover purge protection later
in this chapter.

Click on Next: Access policy > to proceed to the Access policy tab.

Here is a screenshot of the configuration parameters:

Managing access to Key Vault 431

Figure 12.9 – Configure key vault basic parameters

10.	 In the Access policy tab, review and configure the following settings:

Permission model: Azure role-based access control. This will allow us to use
RBAC for vault object permissions.

432 Implementing Secrets, Keys, and Certificate Management with Key Vault

Leave the other settings as their default values and click on Review + create to
proceed to the Review + create tab:

Figure 12.10 – Configure key vault access policy settings

11.	 Click on Create to begin the creation of the vault with the configured settings. Wait
for the deployment to complete. Once it has completed, click on Go to resource:

Figure 12.11 – Configure key vault access policy settings

Managing access to Key Vault 433

12.	 In the resource blade of the key vault that was just created, verify that your
administrator account does not have default access to the data plane of the vault
by clicking on Secrets in the Settings section. You will receive a warning about not
being authorized:

Figure 12.12 – Verify data plane access

13.	 To grant permissions to the data plane, we will need to use RBAC as that was the
model that we configured when we created the vault. To do this, click on Access
control (IAM) + Add Add role assignment:

Figure 12.13 – Add role assignment to key vault

434 Implementing Secrets, Keys, and Certificate Management with Key Vault

14.	 In the Add role assignment blade, configure the following to grant access to your
current admin account:

Role: Key Vault Administrator. This role grants full data plane access to the Key
Vault resource.

Assign access to: User, group, or service principal.

Select: Select the administrator account that you are currently using.

Click on Save to apply the role assignment.

Figure 12.14 – Configure and apply the role assignment to the key vault

15.	 To add a new secret into the vault, click on Secrets (notice that the warning message
is now gone). Click on + Generate/Import and configure the following:

Name: Api-Key

Value: 123456789

Leave other settings as their default values, then click on Create:

Managing access to Key Vault 435

Figure 12.15 – Add a secret into the key vault

16.	 To allow the test service principal that we created earlier to read the value of this
new secret, click on the Api-Key secret, then click on Access control (IAM) +
Add Add role assignment.

Figure 12.16 – Configure permission for a single secret

436 Implementing Secrets, Keys, and Certificate Management with Key Vault

17.	 In the Add role assignment blade, configure the following to grant access to your
current admin account:

Role: Key Vault Secrets User. This role grants permission to read the content
of secrets. In this scenario, we are granting permission to read a single secret.

Assign access to: User, group, or service principal.

Select: app-kv-test

Click on Save to apply the role assignment:

Figure 12.17 – Configure and apply the role assignment to the key vault secret
Before we can test, we will need the URL of the secret, so let's obtain it.

Managing access to Key Vault 437

18.	 Still in the Api-Key secret blade, click on Overview, then click on the version number:

Figure 12.18 – Configure and apply role assignment to a key vault secret

19.	 In the Secret Version blade, copy the Secret Identifier URL and make a note of it.
We will use this in a later step.

Figure 12.19 – Obtain the secret URL

438 Implementing Secrets, Keys, and Certificate Management with Key Vault

To test this, we will authenticate using the test service principal in Cloud Shell and
attempt to retrieve the value of the secret.

20.	 In the Azure portal, click on the Cloud Shell icon in the top-right corner.
Select Bash.

21.	 In the Bash session within the Cloud Shell pane, run the following command to
authenticate as the service principal that we created earlier. Replace <APP_ID>
with the appID value from Step 4. Replace <APP_PASSWORD> with the password
value from Step 4. Replace <TENANT_ID> with the tenant value from Step 4:

az login --service-principal --username <APP_ID>
--password <APP_PASSWORD> --tenant <TENANT_ID>

Here is a screenshot of the command and its output:

Figure 12.20 – Authenticate with the service principal

22.	 Obtain an access token for Key Vault using the following command. The command
will authenticate to Azure AD, obtain an access token for Key Vault, and store that
token as a variable:

token=$(az account get-access-token --resource https://
vault.azure.net --query accessToken --output tsv)

Protecting Key Vault resources 439

23.	 Access the value of the secret using the access token obtained for the service
principal. Replace <SECRET_URI> with the Secret Identifier URL that you made
a note of in Step 19. You should be able to see the value of the secret in the vault!

curl <SECRET_URI>?api-version=2016-10-01 -H
"Authorization: Bearer $token" | jq

Here is a screenshot of the command and its output:

Figure 12.21 – Retrieve the secret value from the key vault

Congratulations! You have now configured access to Key Vault resources using RBAC. In
the next section, we will cover how to protect the resources in a vault.

Protecting Key Vault resources
Azure Key Vault has capabilities to protect us against accidental or malicious vault or
vault object deletion and disasters. There are three main capabilities that we will cover
in this section: Soft-Delete, Purge Protection, Backup and Restore. Let's start with the
soft-delete feature.

440 Implementing Secrets, Keys, and Certificate Management with Key Vault

Key Vault soft-delete allows us to recover both deleted vaults and deleted vault objects
within a configurable retention period (Figure 12.23). This is similar to the recycle bin
capability of the Windows operating system. With soft-delete enabled, a deleted secret,
key, certificate, or vault will remain recoverable for a period of 7 to 90 calendar days
(depending on what the administrator configures). Deleted vaults will remain in our
subscription as hidden vaults. This feature is now enabled by default for all newly created
vaults (you will see this when you do the hands-on exercise for this chapter).

Figure 12.22 – Key Vault soft-delete and purge protection

Purge protection, on the other hand, is used to protect deleted vaults and objects during
the retention period. When purge protection is enabled, vaults or vault objects in the
deleted state cannot be purged (permanently deleted) until the retention period has
expired. This allows us to enforce the retention policy of our organization even after
a delete operation. Figure 12.23 shows how soft-delete and purge protection work
together to protect vaults and objects stored in them.

Protecting Key Vault resources 441

The third feature is the ability to back up and restore objects in the vault. This is a
capability that is only used occasionally. The reason for this is Key Vault already has
built-in capabilities to prevent data loss. For example, previous versions of objects in the
vault cannot be deleted so this protects us even if someone maliciously corrupts a value in
the vault – we can simply reference the previous version. Azure Key Vault content is also
automatically replicated to another region within the same geography. This replication is
transparent to the user and happens in the background. In the event of a region failure,
Microsoft automatically fails over the service. This failover and even the failback happens
automatically, and in the background, using DNS redirection.

So, in which scenario do we want to implement backup? The main reason is if we want
to be able to recover objects that have been permanently deleted from the vault as, at
the time of writing this book, backup can only be done on an object level. There is no
Microsoft-provided way to back up an entire key vault in a single operation.

In the next hands-on exercise, you will implement protection for objects stored in a Key
Vault resource.

Hands-on exercise – protecting Key Vault resources
Here are the tasks that we will complete in this exercise:

•	 Task 1: Verify soft-delete and purge protection.

•	 Task 2: Restore a deleted secret.

•	 Task 3: Configure backup and restore.

Here are the steps to complete the tasks:

1.	 Open a web browser and browse to the Azure portal.

2.	 In the Search resources, services, and docs box at the top of the portal, type
azseckv and select the key vault that you created earlier, in the previous section
of this chapter:

Figure 12.23 – Search and select the Key Vault resource

442 Implementing Secrets, Keys, and Certificate Management with Key Vault

3.	 In the azseckvXXXX | Secrets blade, click on Secrets in the Settings section. Select
the Api-Key secret that was created in the first exercise of this chapter:

Figure 12.24 – Select the secret resource in Key Vault

4.	 In the Api-Key blade, click on Delete, then click on Yes to confirm the
delete operation:

Figure 12.25 – Delete a secret from the vault

5.	 In the azseckvXXXX | Secrets blade, click on Manage deleted secrets:

Figure 12.26 – Manage deleted secrets

Protecting Key Vault resources 443

6.	 In the Manage deleted secrets blade, select the Api-Key secret that was just
deleted. Notice that the option to Purge is grayed out. This is because purge
protection was enabled for this vault when we created it. Click on Recover to
recover the deleted secret:

Figure 12.27 – Recover deleted secret

7.	 Click on Refresh and verify that the secret is recovered:

Figure 12.28 – Verify the recovered secret

444 Implementing Secrets, Keys, and Certificate Management with Key Vault

8.	 Click on the recovered Api-Key secret, then click on Download Backup. Click on
Download when prompted. This will download an encrypted backup copy of this
secret to your system. You can use this backup to restore this secret even after it is
permanently deleted.

Figure 12.29 – Download the backup of a secret resource

Congratulations! You have implemented and verified protection for a Key Vault resource
and its data. In the next section, we will clean up the resources that we created for the
exercises.

Cleaning up resources
In the Azure portal, delete the azuresec-c12-rg resource group. This will remove all
the Azure resources that we created for the exercises in this chapter.

In the Azure Cloud Shell, use the following command to delete the service principal that
was created in this chapter:

az ad sp delete –id <APP_ID>

Replace <APP_ID> with the appID value that you noted in Step 4 of the first exercise in
this chapter.

Summary
In this chapter, we covered how to implement secret management using a Key Vault
resource in Azure. The knowledge and skills that you have gained in this chapter have
equipped you to mitigate the risk of exposing privileged credentials and sensitive
application configurations in code by storing them securely in Key Vault.

Question 445

In the next chapter, we will cover how to implement a good cloud governance strategy
and how to manage security operations using Azure cloud-native tools. See you in the
next chapter!

Question
As we conclude, here is a question for you to test your knowledge regarding this chapter's
material. You will find the answer in the Assessments section of the Appendix:

1.	 You have an Azure subscription that contains an Azure key vault named
uksth-vault. In the vault, you create a secret named appsecret. An
application developer registers an application in Azure Active Directory
(Azure AD). You need to ensure that the application can access appsecret.
What should you do?

a. In Azure AD, create a role.

b. In Azure Key Vault, create a key.

c. In Azure Key Vault, create an access policy.

d. In Azure AD, enable Azure AD Application Proxy.

Further reading
To learn more on the subject, check out the following material:

•	 Azure Key Vault access control – https://docs.microsoft.com/en-us/
azure/key-vault/general/security-features

•	 Azure Key Vault secrets, keys, and certificates – https://docs.microsoft.
com/en-us/azure/key-vault/general/about-keys-secrets-
certificates

•	 Azure Key Vault soft-delete – https://docs.microsoft.com/en-us/
azure/key-vault/general/soft-delete-overview

•	 Azure Key Vault network security – https://docs.microsoft.com/en-us/
azure/key-vault/general/network-security

https://docs.microsoft.com/en-us/azure/key-vault/general/security-features
https://docs.microsoft.com/en-us/azure/key-vault/general/security-features
https://docs.microsoft.com/en-us/azure/key-vault/general/about-keys-secrets-certificates
https://docs.microsoft.com/en-us/azure/key-vault/general/about-keys-secrets-certificates
https://docs.microsoft.com/en-us/azure/key-vault/general/about-keys-secrets-certificates
https://docs.microsoft.com/en-us/azure/key-vault/general/soft-delete-overview
https://docs.microsoft.com/en-us/azure/key-vault/general/soft-delete-overview
https://docs.microsoft.com/en-us/azure/key-vault/general/network-security
https://docs.microsoft.com/en-us/azure/key-vault/general/network-security

13
Azure Cloud

Governance and
Security Operations

A good governance strategy helps us maintain control over the applications and resources
that have been deployed in our Azure environments and reduces any risks that are
introduced. Implementing security monitoring ensures that we can quickly identify,
remediate, and investigate vulnerabilities and threats.

In this chapter, you will gain the knowledge and skills needed to implement governance
using some of the native tools in Azure. You will also gain a solid understanding of how to
monitor security operations in an Azure environment.

Here are the topics that we will cover in this chapter:

•	 Implementing Azure cloud governance

•	 Understanding logging and monitoring

•	 Addressing cloud security challenges with Security Center

•	 Managing security operations with Azure Sentinel

Let's get into this!

448 Azure Cloud Governance and Security Operations

Technical requirements
To follow along with the instructions in this chapter, you will need the following:

•	 A PC with an internet connection.

•	 An Azure subscription. You can use the same subscription that you set up in the
first chapter of this book.

Implementing Azure cloud governance
The traditional approach to enforcing organizational standards is to prevent teams from
creating their own services, and instead to have the IT team define and deploy services on
their behalf. This approach is often the solution in on-premises situations, but it reduces
the agility of teams and slows down their ability to innovate.

A good cloud governance model should seek to enforce the security and compliance
standards of the organization while allowing different teams to create and own their
resources in the cloud. The Azure cloud provides several options that we can use
to implement this model but for our objectives, we will cover management groups,
Azure Policy, Azure RBAC, and Azure Blueprints. Let's start by understanding what
management groups are and how we can make use of them to implement governance in
Azure.

Understanding management groups
To keep things simple, a management group is a logical construct that allows us to group
subscriptions. But why would we want to group subscriptions?

The first benefit is that it makes it much easier to manage multiple subscriptions as a
single, logical group. This way, we can apply governance controls such as RBAC and
Azure Policy once at the management group level and have them inherited by all the
subscriptions in the group. This can be seen in the following diagram:

Implementing Azure cloud governance 449

Figure 13.1 – Management group governance controls

The second benefit is visibility as we can aggregate reporting at a higher level. For
example, instead of viewing billing for each subscription, we can group them and view
billing for all the subscriptions in the group.

The next question is, how can we start using management groups? If an organization is
new to Azure, then management groups are not enabled by default. There is an initial
setup process to enable them. This can be done in the Azure portal by searching for the
Management groups option and enabling it, as shown in the following screenshot:

Figure 13.2 – Enabling management groups

450 Azure Cloud Governance and Security Operations

Once the enabling process is completed, a ROOT management group will be created in the
directory. At this point, all existing subscriptions in the directory are automatically made
children of this root management group. There can only be one ROOT management group:

Figure 13.3 – Management group hierarchy

As shown in the preceding diagram, we can create child management groups under the
root group and even nest groups within each other, up to six levels. This allows us to be
flexible when we're designing a hierarchy that will fit our organization, while still ensuring
that we can apply security and governance policies globally at the root level (Figure 13.3).

Once we have the root management group enabled, child management groups created,
and our environment structured in the way that we want, it is time to start applying
controls. Azure Policy is one of the main services that we can use to apply security and
governance policies in Azure. We will cover this in the next section.

Understanding Azure Policy
Azure Policy is a configuration assessment and enforcement service. It can be used to
assess and enforce configuration for both existing resources and new resources before they
are deployed.

Let's look at how Azure Policy works for a moment. This will help us get a clearer
understanding of this service. The first thing you must know is that the "policy engine"
that does the assessment and enforcement configuration is embedded within Azure's
control plane – Resource Manager. The significance of this is that any policy that we
apply will be assessed, regardless of the management tool that users in our organizations
use to provision resources – the Azure portal, Azure CLI, or Azure PowerShell.

Implementing Azure cloud governance 451

Let's say that we have defined a policy that restricts the allowed VM sizes to only one size
– the Standard_D2s_v3 with a deny effect (we will talk about effects later in this section),
as shown in the following diagram:

Figure 13.4 – Azure Policy example

Once applied, existing resources will be assessed against that policy, and they will be
flagged for compliance or violation (existing resources will not be modified or stopped
with a deny effect). However, new resource deployments that violate that policy will be
blocked, regardless of the tool that is used, due to the deny effect.

To implement Azure Policy, there are three aspects to understand:

•	 The first aspect is the policy definition, where we define the configuration that we
want to assess/enforce.

•	 The second aspect is the policy assignment, where we assign the defined policy at a
resource hierarchy scope.

•	 And finally, we have the policy evaluation, where the definition will be assessed or
enforced based on the effect that we configured.

Let's look at these three aspects in more detail.

Policy definition
An Azure Policy definition is a JSON template that defines the configuration that we want
to check for and the effect to apply if there is a match. The structure of this template is in a
classic IF THIS, THEN THAT format. In other words, if this configuration exists or does
not exist, then apply this effect.

452 Azure Cloud Governance and Security Operations

The following is the JSON structure of an Azure Policy definition:

{

 "if": {

 <condition> | <logical operator>

 },

 "then": {

 "effect": "deny | audit | append | auditIfNotExists |
deployIfNotExists | disabled | Modify"

 }

}

Note
Seven effects can be applied for a policy definition. They are briefly described
here:

Deny: Denies the configuration change from being applied.

Audit and AuditIfNotExists: Does not stop the configuration change.
It just logs a warning in the activity log.

Append and Modify: Adds a configuration or alters the resource
configuration before applying it.

DeployIfNotExists: Deploys a template if the configuration does
not exist.

Disabled: Disables the policy definition.

In the example that we mentioned earlier, if the VM size is not Standard_D2s_v3, then
apply a deny effect, the policy definition template will look like this:

{

 "if": {

 "allOf": [

 {

 "field": "type",

 "equals": "Microsoft.Compute/virtualMachines"

 },

 {

 "not": {

Implementing Azure cloud governance 453

 "field": "Microsoft.Compute/virtualMachines/sku.
name",

 "in": "Standard_D2s_v3"

 }

]

 },

 "then": {

 "effect": "Deny"

 }

}

The good thing is that we do not need to start writing our own policy definitions from
scratch: there are hundreds of built-in policy definitions already in Azure that we can start
with. However, we can also write our own custom policy definitions.

After defining our policies, we can group them for easier assignment later. A grouping of
policy definitions is called an initiative. The main use case of an initiative is to simplify
policy assignments. Instead of assigning 100 individual policy definitions, we can group
them as one initiative and assign them once:

Figure 13.5 – Grouping policy definitions as initiatives

It is common for organizations to create initiatives that are in line with specific goals or
purposes. For example, security-related policy definitions can be grouped as a security
initiative, while policy definitions related to the PCI-DSS compliance framework can be
grouped as a PCI-DSS initiative (Figure 13.5).

454 Azure Cloud Governance and Security Operations

Policy assignment
Once we have our policy definition or initiative, we can assign it at different scopes in
our resource hierarchy. We can assign policy definitions or initiatives at the management
group level (both the root management group and child management group levels). This
is useful if we want to apply consistent governance controls to multiple subscriptions in
a group (Figure 13.6). We can also assign policy definitions/initiatives at the subscription
and resource group levels (Figure 13.6), but not at the resource level:

Figure 13.6 – Policy assignment at different scopes

Implementing Azure cloud governance 455

Policy assignments are automatically inherited by all child resources. A definition or
initiative that's applied to a subscription level will apply to all resource groups and
resources in that subscription.

Exclusions can be added to policy assignments. For example, if we assign a definition
at the subscription scope to prevent any network resources from being created, we
can further exclude a resource group that has been designated to contain networking
resources. We can then use RBAC to grant access to this networking resource group to
administrators that have the responsibility of creating networking resources.

Another use case for exclusion is if we want a more permissive policy at a lower level of
the hierarchy. For example, let's say we assign a policy at the root management group level
that restricts resource creation to only the UK West and UK South regions. However, we
want one subscription to be allowed to create resources in West Europe as well. What we
can do here is exclude the subscription from the higher-level policy assignment and assign
its own policy directly.

Policy evaluation
Once the policy has been defined and assigned, the evaluation process begins to assess
both existing and new resource deployments. The effects that have been defined will then
be applied.

Note that it could take around 30 minutes for the evaluation of existing resources to start
when a policy definition is applied, or when an applied policy definition is updated.

While policies are great for applying guardrails to our cloud environments, we also want
to control the access that users and applications have in our environment.

Understanding Azure RBAC
Access management for cloud resources is a critical security function for any organization
that is using the cloud. Azure Role-Based Access Control (RBAC) is an authorization
system that we can use to control who has access to Azure resources, and what they can
do with those resources. We introduced this in Chapter 2, Understanding Azure AD, but
we will discuss this further here.

456 Azure Cloud Governance and Security Operations

At a high level, you can think of RBAC as granting security principals (users, groups, and
applications) access to Azure resources by assigning roles to them. For example, RBAC
can be used to grant a user access to manage all virtual machines in a subscription, while
another user is granted access to manage all storage accounts across multiple subscriptions
in a management group.

Azure RBAC is made up of the following components: security principals, role definitions,
and role assignment. Security principals are the Azure AD objects that we can assign
permissions to. They can be users, groups, service principals, or managed identities. We
covered security principals in Chapter 2, Understanding Azure AD, so we will review the
other components here.

Role definition
Role definition (sometimes referred to as role) describes a collection of permissions. A
permission describes an action that can be performed on a resource, such as read, write,
and delete. The actual content of a role definition defines different actions that are allowed
or excluded, as well as the scope that a role can be applied to. For example, here are the
permissions for the Contributor role in Azure:

 {

 "assignableScopes": [

 "/"

],

 "description": "Grants full access to manage all resources,
but does not allow you to assign roles in Azure RBAC, manage
assignments in Azure Blueprints, or share image galleries.",

 "id": "/subscriptions/{subscriptionId}/providers/Microsoft.
Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c",

 "name": "b24988ac-6180-42a0-ab88-20f7382dd24c",

 "permissions": [

 {

 "actions": [

 "*"

],

 "notActions": [

 "Microsoft.Authorization/*/Delete",

Implementing Azure cloud governance 457

 "Microsoft.Authorization/*/Write",

 "Microsoft.Authorization/elevateAccess/Action",

 "Microsoft.Blueprint/blueprintAssignments/write",

 "Microsoft.Blueprint/blueprintAssignments/delete",

 "Microsoft.Compute/galleries/share/action"

],

 "dataActions": [],

 "notDataActions": []

 }

],

 "roleName": "Contributor",

 "roleType": "BuiltInRole",

 "type": "Microsoft.Authorization/roleDefinitions"

}

Here, we can see that a role definition supports two types of operations:

•	 Control plane operations, which describe the management actions that the role can
perform. These are defined in the "actions": [] section. An example of a
management action is being permitted to create a storage account.

•	 Data plane operations, which describe the data actions (within a resource) that
the role can perform. These are defined in the "dataActions": [] section.
An example of a data action is being permitted to read the data that is stored in a
storage account.

In the preceding permissions, we can also see that certain operations can be excluded
for a role. The "notActions": [] section defines management actions that a role is
restricted from performing, while the "notDataActions": [] section defines data
actions that a role is restricted from performing.

In the example of the Contributor role, the role has permission to perform all management
actions (*), but it is restricted (by the not actions definition) from performing
authorization-related management actions, which means that the role cannot be used to
assign permissions.

458 Azure Cloud Governance and Security Operations

Scope
Scope is the level that we want permissions on. We can apply RBAC to any scope in
the Azure resource hierarchy – the root management group, child management group,
subscription, resource group, and even the resource itself, as shown here:

Figure 13.7 – Role assignment scopes

Scopes are structured in a parent-child relationship. When we grant access to a parent
scope, those permissions are inherited by the child scopes:

Implementing Azure cloud governance 459

Figure 13.8 – Multiple role assignments

The result of assigning multiple roles at different scopes is a culmination of all the
permissions (Figure 13.8).

Role assignment
Once we have determined the who, what, and where, we can combine those elements to
grant the access that we want. Role assignment is the process of attaching a role definition
to a user, group, service principal, or managed identity at a scope to grant access:

Figure 13.9 – Role assignment

460 Azure Cloud Governance and Security Operations

The preceding diagram shows the Marketing group (security principal) being assigned
the Contributor role (role definition) at the Sales resource group level (scope). In the
following hands-on exercise, you will implement management groups and Azure Policy to
establish governance for an Azure subscription.

Hands-on exercise – implementing management
groups and Azure Policy
Here are the tasks that we will complete in this exercise:

•	 Task 1: Implement management groups

•	 Task 2: Implement Azure Policy

•	 Task 3: Test Azure Policy

Follow these steps to complete these tasks:

1.	 Sign in to the Azure portal at https://portal.azure.com/.
2.	 In the Search resources, services, and docs box at the top of the portal,

type Management groups and select Management groups to navigate to the
Management groups blade.

3.	 Review the messages at the top of the Management groups blade. If you have not
created management groups previously, select Start using management groups.

4.	 Create a management group with the following settings:

Management group ID: azsec-first-MG

Management group display name: First Child Management Group
5.	 From the list of management groups, click the entry representing the newly created

management group.
6.	 On the azsec-first-MG blade, click Subscriptions.
7.	 On the azsec-first-MG | Subscriptions blade, click + Add. Then, on the Add

subscription blade, from the Subscription drop-down list, select the subscription
you are using in this lab and click Save. The following diagram shows the current
state of our configuration based on what we have done in this exercise:

https://portal.azure.com/

Implementing Azure cloud governance 461

Figure 13.10 – Root management group and child management group

8.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Policy and press Enter.

9.	 On the Policy blade, in the Authoring section, select Definitions. Review the
built-in definitions. You can use the Category drop-down to filter the list of policies.
Review the policies marked under the Security category.

10.	 In the Search text box, type Allowed locations.

Note
The Allowed locations policy allows you to restrict the location of your
resources, not resource groups. To restrict the locations of resource groups, you
can use the Allowed locations for resource groups policy.

11.	 Click the Allowed locations policy definition to display its details.
12.	 On the Allowed locations blade, click Assign.
13.	 On the Basics tab of the Allowed locations blade, click the ellipsis (…) button next

to the Scope text box and, on the Scope blade, specify the following settings:

Subscription: Select your Azure subscription.

Resource group: Leave as the default.
14.	 Click Select.

462 Azure Cloud Governance and Security Operations

15.	 On the Allowed locations blade, on the Basics tab, specify the following settings
(leave the others with their default values):

Assignment name: Data residency governance – East US

Description: Allow resources to be created in East US Only for Subscription

Policy enforcement: Enabled

Click Next.
16.	 On the Parameters tab of the Allowed locations blade, from the Allowed locations

drop-down list, select East US as the only allowed location.

Note
You can select more than one location. If the policy required a different set of
parameters, this tab would provide those selections.

17.	 Click Review + create, followed by Create, to create the policy assignment. The
following diagram shows the current state of the configuration based on the steps
that we have completed already:

Figure 13.11 – Data residency governance policy assigned at the subscription scope

Implementing Azure cloud governance 463

Note
You will see a notification stating that the assignment was successful and that
the assignment might take around 30 minutes to complete.

The reason the Azure Policy assignment might take up to 30 minutes to take
effect is that it must replicate globally. Typically, this only takes a few minutes.
If the next task fails, simply wait a few minutes and attempt its steps again.

Now, let's test the data residency governance policy that we just applied.
18.	 In the Azure portal, in the Search resources, services, and docs text box at the top

of the Azure portal home page, type Virtual networks and press Enter.
19.	 On the Virtual Networks blade, click + New.

Note
First, you must try to create a virtual network in UK South. Since this is not an
allowed location, the request should be blocked.

20.	 On the Basics tab of the Create virtual network blade, specify the following
settings (leave the others with their default values):

Resource group: Create new à azsec-c13-rg à OK

Name: uksth-vnet

Region: UK South

Click Review + create.
21.	 On the Review + create tab of the Create virtual network blade, take note of the

Validation failed message.

Note
If the Validation Failed warning does not appear, click Previous and wait a
few more minutes.

22.	 Click the error message to open the Errors blade. You will see a detailed error
message stating that the deployment of the resource was disallowed by Azure Policy.

23.	 Close the Errors blade. Then, on the Create virtual network blade, click the Basics
tab, and, from the Region drop-down list, select East US.

464 Azure Cloud Governance and Security Operations

24.	 Click Review + create and verify that the validation passed. Then, click Create and
verify that the virtual network was created successfully.

25.	 Go back to the Subscription blade and delete the policy assignment that we created
to avoid future restrictions in our lab environment.

Congratulations! You have successfully implemented management groups and Azure
Policy. In the next section, we will start to look at logging and monitoring. The knowledge
that you will gain will give you a strong understanding of different types of logging data in
Azure and some of the core monitoring services. Let's get into it!

Understanding logging and monitoring
When we talk about logging and monitoring, it is very easy to jump right into what we
should be doing, but that is not where we should start in Azure. Security is a shared
responsibility, as we emphasized in Chapter 1, Introduction to Azure Security, and this
extends to security operations. The first place we should start with monitoring is getting
visibility into what we are not responsible for but could impact us. For example, we do not
manage the underlying storage infrastructure in Azure, yet something could be happening
at that level that impacts the workload that we are running. In this section, we will cover
three main services:

•	 Azure Service Health

•	 Azure Monitor

•	 Log Analytics

Let's look at each in detail.

Azure Service Health
Azure Service Health is a personalized Azure status monitoring service (personalized
meaning it gives us information in the context of the resources and regions that we are using
or that we have defined). It tracks four types of health events and highlights these to us:

Service issues: Problems with Azure services that a customer is using.

Planned maintenance: Upcoming maintenance tasks that may impact service availability
and stability.

Understanding logging and monitoring 465

Health advisories: Upcoming changes in Azure services that may impact a customer; for
example, Azure service features that will soon be deprecated or a resource usage quota
that may soon be exceeded.

Security advisories: Security notifications related to services that an organization is using.

The great thing is that we can configure proactive notifications for this so that we are made
aware when an issue is detected, or when there is an advisory that we need to act upon.

Azure Monitor
In terms of our responsibility for monitoring our services, Azure Monitor is critical for
this. Azure Monitor is the central service for collecting and analyzing telemetry in Azure.
It collects two fundamental types of data: metrics and logs.

The following diagram provides a high-level view of Azure Monitor. On the left are the
sources for monitoring data; that is, Azure, operating systems, and custom sources. At the
center of the diagram are the data stores for metrics and logs. Finally, on the right, we have
the functions that Azure Monitor performs with this data, such as analysis, alerting, and
streaming to external systems. You can see that this is a very comprehensive service!

Figure 13.12 – Azure Monitor overview

Before we proceed, let's take a moment to review three of the core pieces of data for
monitoring in Azure: Metrics, Activity Logs, and Resource Logs.

466 Azure Cloud Governance and Security Operations

Understanding Metrics, Activity Logs, and Resource Logs
There is no security monitoring without data. Without raw information that we can
collect from services, systems, and applications, there is nothing to analyze for insights
and issues. Core monitoring in Azure consists of some key data: Metrics, Activity logs,
and Resource logs. Let's begin with Metrics.

Metrics
Metrics are numerical values that describe some aspect of a system at a point in time. What
does this mean? We primarily mean regular health and performance data from Azure
resources that's emitted by the Azure platform into Azure Monitor. This is the equivalent
of Resource Monitor information about CPU, memory, and network utilization, if you
are familiar with the Windows OS. Data collected from here can be analyzed to uncover
anomalies in resource behavior that could expose incidents such as crypto mining (due to
unusual CPU utilization spikes) or data exfiltration (due to unusual network egress traffic):

Figure 13.13 – Azure Metrics

How do we enable metrics collection? The good thing is that we do not need to do
anything to enable metrics. They are enabled and collected by default. Once we have
created an Azure resource that supports metrics, this data is collected by the Azure
platform and sent into the Azure Monitor metrics data store.

How often is the data sent? Metrics are emitted every minute for most Azure resources.
But there are a few metrics that are emitted every 5 minutes. More information can be
found in this document: https://docs.microsoft.com/en-us/azure/azure-
monitor/essentials/metrics-supported.

Where are they stored and how long are they retained? Metrics are stored in the metrics
data store of Azure Monitor and retained for 93 days for free. We can export to a third-
party service for longer retention.

https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported

Understanding logging and monitoring 467

What can we do with this data, once collected?

•	 We can analyze and visualize the data using a free tool called Metrics Explorer.

•	 We can visualize the data using Azure Monitor Workbooks, which is also free.

•	 We can configure Alerts using a metrics alert rule. There is a cost associated
with alerts.

•	 We can use this data as a trigger for automated events such as autoscaling.
For example, if the CPU metrics of an App service exceed the 80% threshold,
automatically scale out.

Activity Logs
Activity Logs is a platform log in Azure that provides insights into subscription-level
events. What does this mean? For example, when the configuration of an Azure resource
is modified or when a virtual machine is started, this will be logged in Activity Logs. So,
these are management plane events that have significant security benefits, such as being
able to perform forensics in the event of a breach:

Figure 13.14 – Azure Activity Logs

How do we enable it? Similar to metrics, this is enabled by default! Whenever an
administrative-level event or operation occurs in an Azure subscription, it is logged.

How long are they retained? Data is retained for 90 days in Azure, which means we can
only review them as far back as the last three months.

Resource Logs
Resource Logs are logs that are generated by Azure resources, which is why they are
referred to as resource logs. They used to be called diagnostic logs.

468 Azure Cloud Governance and Security Operations

Are they collected by default as well? Unlike metrics and activity logs, resource logs
are not collected by default. And the method of collection varies depending on the
resource's type. For platform services that are managed by Microsoft, we can configure the
diagnostic settings to collect resource logs, as shown here:

Figure 13.15 – Enabling Diagnostic settings for PaaS to collect resource logs

For IaaS services such as virtual machines and virtual machine scale sets, we can install an
agent to collect the resource logs, as shown here:

Understanding logging and monitoring 469

Figure 13.16 – Enabling Diagnostic settings for IaaS to collect resource logs

Where can we store the logs? We can select one of three options when we enable
collection. We can send the logs to a Log Analytics workspace for event correlation and
analysis, we can send the logs to an Azure Event Hub to forward outside of Azure to, for
example, a third-party SIEM, or we can send the logs to Azure Storage for archiving or to
be collected by another service. The following diagram highlights this:

Figure 13.17 – Diagnostic setting options

Next, we'll look at Log Analytics.

470 Azure Cloud Governance and Security Operations

Log Analytics
What is Log Analytics? At its core, it is a log aggregation and correlation tool. It collects
and stores data from multiple log sources and allows us to query across the different
logs using a custom query language. For example, if we have thousands of services
implemented in Azure and we want to analyze their logs to identify the top 10 errors
across different resource types, we can simply write a query in Log Analytics to obtain this
information, so long as the data from all these sources is collected. Log Analytics replaced
a previous service in Azure called Operations Management Suite (OMS).

The starting point for using Log Analytics is to create a Log Analytics workspace in
our preferred Azure region. This is the resource that stores and organizes the data that
we will be collecting. Once we have our workspace, we can start collecting data from
different sources.

What sources can we collect data from? We can collect data from multiple sources,
including metrics, activity logs, and resource logs, which we covered earlier. We can
also collect data from VMs hosted anywhere (on-premises, Azure, or third-party cloud
providers) using an agent, and also from custom sources using the REST API:

Figure 13.18 – Log Analytics workspace

Before data is stored in the Log Analytics workspace, it is organized into tables that store
data from a particular source (Figure 13.18). For example, the Event table stores data
collected from Windows event logs, the Syslog table stores data collected from Linux
syslogs, the AzureActivity table stores Azure Activity log data, the AzureMetrics table
stores Azure metrics data, and so on.

Addressing cloud security challenges with Security Center 471

To retrieve, consolidate, and analyze data in the workspace, we use a query language called
Kusto Query Language (KQL). A query syntax usually starts with the name of the table
in the workspace that we are pulling data from, followed by the pipe symbol and a set of
commands and operators to filter and process that data (see the examples shown in the
preceding diagram).

For more complex analysis, you might use the join or union command to retrieve data
from multiple tables to analyze the results together, as shown in the preceding diagram.
Apart from searching for and analyzing workspace data using KQL, we can also save our
search queries and visualize them, as well as configure alerts.

When it comes to analyzing data in our workspace, we can do the analysis ourselves
using KQL, as mentioned earlier, but we can also use monitoring solutions to make things
easier. Monitoring solutions include pre-defined analytics logic for gathering insights.
So, the predefined logic will process data in our workspace without exposing us to the
underlying queries.

Now that you have some understanding of monitoring and analysis in Azure, let's turn
our attention to managing security operations for Azure environments, starting with the
central service for managing security posture: Security Center!

Addressing cloud security challenges with
Security Center
The main cause of breaches in the public cloud is the misconfiguration of cloud services.
This is where Azure customers have configured resources and services in an insecure way.
This misconfiguration is then exploited by attackers to breach their environment.

This challenge is compounded by the fact that workloads in the cloud are dynamic and
constantly changing. This characteristic is both a strength and a challenge. On one hand,
end users are empowered to do more. On the other hand, it is challenging to ensure
that the ever-changing services and workloads are configured up to our security and
compliance standards.

Attackers are also not relenting in their efforts. Attacks are increasingly getting more
sophisticated, and they could be from anywhere – there are both internal threats and
external threats.

The other challenge is that security skills are in short supply. We can see this just by looking
at the logs that we covered earlier in this chapter alone. There is a wealth of security
insights that can be obtained from activity logs and resource logs, but there's just not
enough people or even expertise to identify every threat chain out there and deduce the
right queries to detect them.

472 Azure Cloud Governance and Security Operations

Azure Security Center (ASC) can help address some of these challenges. At its core, it
provides three main functionalities:

•	 Cloud Security Posture Management

•	 Cloud Compliance Posture Management

•	 Threat protection

Let's look at these functionalities in detail.

Cloud Security Posture Management
First, let's talk about Cloud Security Posture Management. This is where Security
Center uses Azure Policy (the same Azure Policy that we covered earlier) to monitor the
configuration of our services in Azure and raises a flag if an insecure configuration is
detected.

The way this works is that when we enable Security Center, a built-in, security-focused
policy initiative is automatically assigned to all Security Center registered subscriptions.
This policy initiative will continually discover new services that we are deploying in Azure
and assess if they are configured according to security best practices. If they are not, they
are flagged, and we get a prioritized list of recommendations for what we need to fix to
harden our security posture. This built-in policy initiative is under the Security Center
category and contains only Audit policies:

Figure 13.19 – ASC Security Posture Management

The main benefit of this functionality is that it can improve our security hygiene and reduce
the attack surface. The output of this capability is a security score for your environment,
along with actionable recommendations of what we can do to improve this score.

Cloud Compliance Posture Management
This functionality extends the posture management capability of Security Center to
regulatory compliance frameworks.

Addressing cloud security challenges with Security Center 473

When we register a subscription in Security Center, it automatically assigns policy
initiatives that align with the Azure CIS, PCI DSS 3.2, ISO 27001, and SOC TSP
regulatory standards. It will then flag services that have been configured in a way that
is not compliant with the requirements of these frameworks. We can also download
compliance reports in PDF format:

Figure 13.20 – ASC Compliance Posture Management

The main benefit of this functionality is that we can streamline the process to meet
regulatory compliance requirements.

For both Security and Compliance Posture Management, organizations with multiple
subscriptions that use management groups to structure their subscription hierarchy could
configure Security Center policies at a central level, as shown in the following diagram:

Figure 13.21 – ASC Centralized Policy Management

474 Azure Cloud Governance and Security Operations

In the preceding diagram, Security Center policies have been assigned at a management
group level instead of using individual subscriptions. We can do this from the Azure portal.

Threat protection
Following the recommendations of both Cloud Security Posture Management and Cloud
Compliance Posture Management will help reduce the attack surface area of our Azure
subscriptions and tenants!

However, Security Center extends its use case beyond the public cloud with its threat
protection capabilities. You will also hear this capability being referred to as the Azure
Defender module. And yes – this is the same Azure Defender that we have covered for
other services in this book. This capability is powered by and managed in Security Center:

Figure 13.22 – Security center threat protection (Azure Defender)

The threat protection capabilities of Security Center allow us to address threats without
requiring us to be security experts. It extends to both IaaS and PaaS services and covers
three main areas:

•	 Threat protection for Azure compute resources: This covers Windows and Linux
systems anywhere, not just in Azure. It also covers platform compute services in
Azure such as App Service and Azure containers.

•	 Threat protection for Azure data resources: This covers platform storage and
databases in Azure. This includes SQL Database and SQL Data Warehouse, Azure
Storage, and Azure Cosmos DB.

•	 Threat protection for Azure service layers: This covers Azure DNS, Azure
Resource Manager, and Azure Key Vault.

Events from all these different sources are collected in a Log Analytics workspace that
is used by Security Center (Figure 13.22). Different methods are then used to identify
and detect threats. This includes using information from security intelligence data feeds,
machine learning algorithms, and reputation assessments (Figure 13.22).

Managing security operations with Azure Sentinel 475

Now that you understand what Security Center is about, let's turn our attention to another
important Azure service for managing the overall security operations of both Azure and
non-Azure environments: Azure Sentinel.

Managing security operations with Azure
Sentinel
Azure Sentinel is a scalable, SIEM, and SOAR solution that's hosted on the Azure
platform. What do we mean by this? Let's review what SIEM and SOAR are.

SIEM stands for Security Information Event Management. It works by collecting log and
event data generated from multiple sources, collating the data on a centralized platform,
and performing automated analysis of that data to detect threats. This is not a full
description of what a SIEM is but a short review. Many SIEMs, including Azure Sentinel,
have capabilities beyond these.

SOAR stands for Security Orchestration, Automation, and Response. SOAR allows
companies to collect threat-related data from a range of sources and automate responses
to those threats:

Figure 13.23 – SIEM and SOAR

Looking at the descriptions, it makes sense for these solutions to work together. SIEM
collects logs and events from data sources and detects threats, while SOAR acts on
detected threats and automates responses to them (Figure 13.23).

Azure Sentinel, being a cloud-native SIEM and SOAR solution, has four main aspects that
we will cover:

•	 First, we collect log and event data from multiple sources, both inside Azure and
outside Azure.

•	 Sentinel then detects threats using different methods.

•	 We can then investigate threats that have been detected in Sentinel.

476 Azure Cloud Governance and Security Operations

•	 Finally, we can automate responses to incidents using something called playbooks:

Figure 13.24 – Four main aspects of Azure Sentinel

Let's look into these four aspects in more detail.

Data collection
To start using Azure Sentinel, we need to create a centralized place to store the data that
we will be collecting. That centralized place is a Log Analytics workspace. This is the
same workspace that we have discussed previously. In this scenario, Azure Sentinel is the
frontend application, while a Log Analytics Workspace acts as the backend data store:

Figure 13.25 – Azure Sentinel workspace

Managing security operations with Azure Sentinel 477

Once we have our workspace, we need to collect log and event data for analysis
and investigation:

Figure 13.26 – Collecting data in the Sentinel workspace

Here are the different options that we have when it comes to collecting data in our Azure
Sentinel workspace:

•	 We can collect data from Azure and other cloud services such as Office 365. We can
even collect data from other cloud providers, such as the AWS platform.

•	 We can collect data from Windows and Linux operating systems using an agent.

•	 We can collect data from different applications, including custom ones, using the
REST API.

•	 Some data can be collected in PUSH mode, where the sources push the data to
Sentinel, while other data can be collected in PULL mode, where Sentinel reaches
out to collect the data, usually on a schedule.

•	 Some sources require us to install an agent such as an operating system if others,
especially those using the API, are agentless.

•	 Some data that's collected is RAW LOGS, while some are security events from other
solutions, such as Security Center or even third-party security solutions.

So, as you can see, there is quite a range of options when it comes to collecting data.

478 Azure Cloud Governance and Security Operations

Detecting threats
Having data is not enough – we also need insights from the data, which is why, after we
have data in Azure Sentinel, we want to be proactive about analyzing that data to detect
threats. To do this, Azure Sentinel provides out-of-the-box, built-in templates. These
templates are called Analytics Rule Templates. They are designed by the Microsoft team,
and they are based on known threats and common attack vectors. We can create Analytics
Rules to analyze our data based on these built-in templates, but we can also create our
own custom rules.

While analytics rules allow us to analyze our data to gain insights, Workbooks allow us to
visualize and monitor data by creating dashboards. Similar to analytics, Sentinel also has
built-in workbook templates that we can use to quickly create standard workbooks. We can
also create our own custom workbooks from custom queries that we write using the KQL.

Investigating incidents
When a threat is detected by Sentinel using an Analytics rule, an incident is raised. An
incident represents a detected threat and all the relevant evidence for investigating it.
Sentinel allows us to group multiple related alerts under an incident to reduce alert fatigue.

Responding to incidents
For the response part of Sentinel, playbooks are used. A security playbook is a collection
of procedures that can be triggered in response to an incident. Security playbooks in
Azure Sentinel are based on Azure Logic Apps, which means that we get all the power,
customization, and integration capabilities of Logic Apps.

The good thing is that we do not need to build everything from scratch. There are multiple
playbooks that we can start with, all of which can be found in this GitHub repository:
https://github.com/Azure/Azure-Sentinel/tree/master/Playbooks.

In the next hands-on exercise, you will implement Azure Sentinel to manage the security
operations of an Azure subscription.

Hands-on exercise – implementing Azure Sentinel
Here are the tasks that we will complete in this exercise:

•	 Task 1: Create a Log Analytics workspace.

•	 Task 2: Onboard Azure Sentinel.

•	 Task 3: Connect Azure Activity to Sentinel.

https://github.com/Azure/Azure-Sentinel/tree/master/Playbooks

Managing security operations with Azure Sentinel 479

•	 Task 4: Create a rule that uses the Azure Activity data connector.

•	 Task 5: Create a playbook.

•	 Task 6: Create a custom alert and configure the playbook as an automated response.

•	 Task 7: Invoke an incident and review the associated actions.

Follow these steps to complete these tasks:

1.	 Sign in to the Azure portal at https://portal.azure.com/ using your
administrator credentials.

2.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Log Analytics workspaces and press Enter.

3.	 On the Log Analytics workspaces blade, click + New.
4.	 On the Basics tab of the Create Log Analytics workspace blade, specify the

following settings (leave the others with their default values):

Subscription: Select your Azure subscription.

Resource group: azsec-c13-rg.

Name: azsec-workspace-XXXX (where XXXX is a random number).

Region: Select a region close to you.
5.	 Click Next: Pricing tier >. On the Pricing tier tab of the Create Log Analytics

workspace blade, accept the default Pay-as-you-go (Per GB 2018) pricing tier and
click Review + create.

6.	 On the Review + create tab of the Create Log Analytics workspace blade,
click Create.

7.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Azure Sentinel and press Enter.

8.	 On the Azure Sentinel blade, click + New.
9.	 On the Add Azure Sentinel to a workspace blade, select the Log Analytics

workspace you created earlier and click Add.

Note
Azure Sentinel has very specific requirements for workspaces. For example,
workspaces created by Azure Security Center cannot be used. You can find
more information about this here: https://docs.microsoft.com/
en-us/azure/sentinel/quickstart-onboard.

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/sentinel/quickstart-onboard
https://docs.microsoft.com/en-us/azure/sentinel/quickstart-onboard

480 Azure Cloud Governance and Security Operations

Next, we will configure Azure Sentinel to use the Azure Activity data connector.
10.	 In the Azure portal, on the Azure Sentinel | Overview blade, in the Configuration

section, click Data connectors.
11.	 On the Azure Sentinel | Data connectors blade, review the list of available

connectors, click the entry representing the Azure Activity connector (scroll to the
right if needed), review its description, and then click Open connector page.

12.	 On the Azure Activity blade, click the Configure Azure Activity logs link.
13.	 On the Azure Activity log blade, click the entry representing the Azure

subscription you are using in this lab and then click Connect.
14.	 Navigate back to the Azure Sentinel | Data connectors blade and click Refresh.
15.	 On the Azure Sentinel | Data connectors blade, click Azure Activity.
16.	 Verify that the Azure Activity pane displays the Data received graph (you might

have to refresh your browser's page). The following diagram shows the current
configuration that we have, based on the steps that we have completed:

Figure 13.27 – Activity Logs connected to Azure Sentinel

Note
It may take over 5 minutes before the graph reflects any events included in the
Azure Activity logs.

Next, we will create a rule that uses the Azure Activity data connector.
17.	 On the Azure Sentinel | Configuration blade, click Analytics.
18.	 On the Azure Sentinel | Analytics blade, click the Rule templates tab. Review the

types of rules that you can create. Each rule is associated with a specific Data Source.

In the listing of rule templates, type Suspicious into the search bar form and click
the Suspicious number of resource creation or deployment entry associated with
the Azure Activity data source. Then, in the pane displaying the rule template
properties, click Create rule (scroll to the right of the page if needed). This rule has
a medium severity.

Managing security operations with Azure Sentinel 481

19.	 On the General tab of the Analytic rule wizard – Create new rule from template
blade, accept the default settings and click Next: Set rule logic >.

20.	 On the Set rule logic tab of the Analytic rule wizard – Create new rule from
template blade, accept the default settings and click Next: Incident settings >.

On the Incident settings tab of the Analytic rule wizard – Create new rule from
template blade, accept the default settings and click Next: Automated response
>. This is where you can add a playbook, implemented as a Logic App, to a rule to
automate the process of remediating an issue.

21.	 On the Automated response tab of the Analytic rule wizard – Create new rule
from template blade, accept the default settings and click Next: Review >.

22.	 On the Review and create tab of the Analytic rule wizard – Create new rule from
template blade, click Create. You now have an active rule.

Next, we will create a playbook. A security playbook is a collection of tasks that can
be invoked by Azure Sentinel in response to an alert.

23.	 Download the following template file, which will be used later in this exercise:
https://raw.githubusercontent.com/PacktPublishing/
Implementing-Microsoft-Azure-Security-Technologies/main/
chapter-13/changeincidentseverity.json.

24.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Deploy a custom template and press Enter.

25.	 On the Custom deployment blade, click the Build your own template in the
editor option.

26.	 On the Edit template blade, click Load file, locate the
changeincidentseverity.json file that you downloaded in Step 23, and
click Open.

27.	 On the Edit template blade, click Save.
28.	 On the Custom deployment blade, ensure that the following settings are configured

(leave any others as their default values):

Subscription: Select your Azure subscription.

Resource group: azsec-c13-rg.

Location: Select the same location that you have been using in this chapter.

Playbook Name: Change-Incident-Severity.

Username: Enter your email address.

Click Review + create and then click Create.

https://raw.githubusercontent.com/PacktPublishing/Implementing-Microsoft-Azure-Security-Technologies/main/chapter-13/changeincidentseverity.json
https://raw.githubusercontent.com/PacktPublishing/Implementing-Microsoft-Azure-Security-Technologies/main/chapter-13/changeincidentseverity.json
https://raw.githubusercontent.com/PacktPublishing/Implementing-Microsoft-Azure-Security-Technologies/main/chapter-13/changeincidentseverity.json

482 Azure Cloud Governance and Security Operations

Wait for the deployment to complete. The following diagram shows the
configuration that we have implemented already:

Figure 13.28 – Analytics rule in Sentinel

29.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Resource groups and press Enter .

30.	 On the Resource groups blade, from the list of resource groups, click the
azsec-c13-rg entry.

31.	 On the azsec-c13-rg resource group blade, in the list of resources, click the entry
representing the newly created Change-Incident-Severity logic app.

32.	 On the Change-Incident-Severity blade, click Edit.

Note
On the Logic Apps Designer blade, each of the four connections displays a
warning. This means that each needs to be reviewed and configured.

33.	 On the Logic Apps Designer blade, click the first Connections step.
34.	 Click Add new, ensure that the entry in the Tenant drop-down list contains your

Azure AD tenant's name, and click Sign-in.
35.	 When prompted, sign in with your Azure administrator account.

Managing security operations with Azure Sentinel 483

36.	 Click the second Connection step and, from the list of connections, select the
second entry, which represents the connection you created in the previous step.

37.	 Repeat the previous steps for the remaining two Connection steps.

Note
Ensure no warnings are displayed on any of the steps.

38.	 On the Logic Apps Designer blade, click Save to save your changes.

Next, we will create a custom alert and configure a playbook as an automated
response.

39.	 In the Azure portal, navigate back to the Azure Sentinel | Overview blade.
40.	 On the Azure Sentinel | Overview blade, in the Configuration section,

click Analytics.
41.	 On the Azure Sentinel | Analytics blade, click + Create and, from the drop-down

menu, click Scheduled query rule.
42.	 On the General tab of the Analytic rule wizard – Create new rule blade, specify

the following settings (leave the others with their default values):

Name: Response-Playbook

Tactics: Initial Access
43.	 Click Next: Set rule logic >.
44.	 On the Set rule logic tab of the Analytic rule wizard – Create new rule blade, in

the Rule query text box, paste the following rule query:

AzureActivity

 | where ResourceProviderValue == "Microsoft.
Authorization"

 | where OperationNameValue == "Microsoft.Authorization/
policyAssignments/delete"

Note
This rule identifies the removal of the Azure Policy assignment. If you receive a
parse error, IntelliSense may have added values to your query. Ensure the query
matches; otherwise, paste the query into Notepad and then from Notepad to
the rule query.

484 Azure Cloud Governance and Security Operations

45.	 On the Set rule logic tab of the Analytic rule wizard – Create new rule blade, in
the Query scheduling section, set Run query every to 5 Minutes.

46.	 On the Set rule logic tab of the Analytic rule wizard – Create new rule blade,
accept the default values of the remaining settings and click Next: Incident
settings >.

47.	 On the Incident settings tab of the Analytic rule wizard – Create new rule blade,
accept the default settings and click Next: Automated response >.

48.	 On the Automated response tab of the Analytic rule wizard – Create new rule
blade, in the Alert automation dropdown list, select the checkbox next to the
Change-Incident-Severity entry and click Next: Review >.

49.	 On the Review and create tab of the Analytic rule wizard – Create new rule blade,
click Create.

Note
You now have a new active rule called Response-Playbook. If an event is
identified by the rule logic, it will result in a medium severity alert, which will
generate a corresponding incident.

Next, we will invoke an incident and review the associated actions.
50.	 In the Azure portal, navigate to the Azure policy blade and click on Assignments.

Check your secure score. By now, it should have been updated.
51.	 In the Policy | Assignments blade, click the ellipsis button in front of the Data

residency governance – East US policy assignment. Click Delete assignment, then
click Yes to confirm the operation.

52.	 In the Azure portal, in the Search resources, services, and docs text box at the top
of the Azure portal home page, type Activity log and press Enter .

53.	 Navigate to the Activity log blade and note that there's a Delete policy assignment
entry. This may take a minute to appear.

54.	 In the Azure portal, navigate back to the Azure Sentinel | Overview blade.
55.	 On the Azure Sentinel | Overview blade, review the dashboard and verify that it

displays an alert corresponding to the deletion of the just-in-time VM access policy.

Note
It can take up to 5 minutes for alerts to appear in the Azure Sentinel |
Overview blade.

Cleaning up resources 485

56.	 On the Azure Sentinel | Overview blade, in the Threat Management section, click
Incidents.

57.	 Verify that the blade displays an incident with either a medium or high severity level.

Note
It can take up to 5 minutes for the incident to appear in the Azure Sentinel |
Incidents blade.

Review the Azure Sentinel | Playbooks blade. You will find a count of
successful and failed runs. You have the option to assign a different severity
level and status to an incident.

58.	 With that, you have created an Azure Sentinel workspace, connected it to Azure
Activity logs, created a playbook and custom alerts that are triggered in response
to the removal of just-in-time VM access policies, and verified that the
configuration is valid.

In the next section, we will clean up the resources that we created for this chapter's exercises.

Cleaning up resources
In the Azure portal, delete the azuresec-c13-rg resource group. This will remove all
the resources that we created for the exercises in this chapter.

Summary
Congratulations! You have come to the end of this chapter! In this chapter, we covered
services that we can use to implement a solid cloud governance strategy in Azure. We
also covered services that we can use to monitor the health, performance, and security
operations of Azure services.

The skills that you have gained in this chapter have helped you learn how to reduce the
risk of vulnerabilities being introduced into your Azure environments, as well as how to
effectively identify and resolve threats that are detected.

486 Azure Cloud Governance and Security Operations

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1.	 You need to ensure that when Azure Sentinel identifies a threat, an incident is
automatically created. Which component of Sentinel should you implement?

a. Analytics

b. Data connectors

c. Playbooks

d. Workbooks
2.	 You need to ensure that when Azure Sentinel identifies a threat, a ticket is logged in a

service management platform. Which component of Sentinel should you implement?

a. Analytics

b. Data connectors

c. Playbooks

d. Workbooks

Further reading
To learn more on the topics covered in this chapter, you can refer to the following links:

•	 Security Center Tiers: https://azure.microsoft.com/en-gb/pricing/
details/azure-defender/

•	 Cloud Security Posture Management: https://docs.microsoft.com/
en-us/azure/security-center/tutorial-security-policy

•	 Cloud Security Compliance Management: https://docs.microsoft.com/
en-us/azure/security-center/security-center-compliance-
dashboard

•	 Security Center Threat Protection: https://docs.microsoft.com/en-us/
azure/security-center/azure-defender

•	 Onboard Azure Sentinel: https://docs.microsoft.com/en-us/azure/
sentinel/quickstart-onboard

https://azure.microsoft.com/en-gb/pricing/details/azure-defender/
https://azure.microsoft.com/en-gb/pricing/details/azure-defender/
https://docs.microsoft.com/en-us/azure/security-center/tutorial-security-policy
https://docs.microsoft.com/en-us/azure/security-center/tutorial-security-policy
https://docs.microsoft.com/en-us/azure/security-center/security-center-compliance-dashboard
https://docs.microsoft.com/en-us/azure/security-center/security-center-compliance-dashboard
https://docs.microsoft.com/en-us/azure/security-center/security-center-compliance-dashboard
https://docs.microsoft.com/en-us/azure/security-center/azure-defender
https://docs.microsoft.com/en-us/azure/security-center/azure-defender
https://docs.microsoft.com/en-us/azure/sentinel/quickstart-onboard
https://docs.microsoft.com/en-us/azure/sentinel/quickstart-onboard

Further reading 487

•	 Azure Sentinel Built-In Analytic Templates: https://docs.microsoft.com/
en-us/azure/sentinel/tutorial-detect-threats-built-in

•	 Azure Sentinel Custom Analytic Rules: https://docs.microsoft.com/
en-us/azure/sentinel/tutorial-detect-threats-custom

•	 Azure Sentinel Automated Threat Response: https://docs.microsoft.com/
en-us/azure/sentinel/tutorial-respond-threats-playbook

https://docs.microsoft.com/en-us/azure/sentinel/tutorial-detect-threats-built-in
https://docs.microsoft.com/en-us/azure/sentinel/tutorial-detect-threats-built-in
https://docs.microsoft.com/en-us/azure/sentinel/tutorial-detect-threats-custom
https://docs.microsoft.com/en-us/azure/sentinel/tutorial-detect-threats-custom
https://docs.microsoft.com/en-us/azure/sentinel/tutorial-respond-threats-playbook
https://docs.microsoft.com/en-us/azure/sentinel/tutorial-respond-threats-playbook

Assessments
In the following pages, we will review all of the practice questions from each of the
chapters in this book and provide the correct answers.

Chapter 1 – Introduction to Azure Security
1.	 False – Cloud security is a responsibility that both the Cloud provider (Microsoft)

and the Cloud customers (us) share.
2.	 a. Infrastructure as a Service (IaaS). If we are using an IaaS service such as a

virtual machine, we have more security responsibilities to take care of.
3.	 True – The principles of digital security are the same whether our workload sits in

a traditional on-premises data center or in a cloud environment such as Microsoft
Azure. The way we apply those principles is what differs.

4.	 c. Physical security. The cloud provider is solely responsible for physical security.

Chapter 2 – Understanding Azure AD
1.	 False – Azure AD is Microsoft's cloud-based identity and access management

service that supports modern authentication/authorization protocols.
2.	 d. Internal user imported from ADFS. Users cannot be imported from ADFS. It is

a federation service. Other answer options are valid.
3.	 c. Basic. The basic edition of Azure AD has been deprecated.
4.	 c. Change the membership type of "London-Group" to Assigned. Create two

new groups that have dynamic memberships. Add the new groups to "London-
Group". A dynamic group assignment can be either for devices or users, but not
for both. The membership type will need to be modified and two dynamic groups
added to it.

490 Assessments

Chapter 3 – Azure AD Hybrid Identity
1.	 d. Instant authentication. There is no hybrid authentication method called instant

authentication. Other answer options are valid.
2.	 d. Pass-through authentication with seamless single sign-on. With pass through

authentication, authentication requests are fulfilled on-premises and it does not
have the server management overhead of ADFS.

3.	 c. The Synchronization Rules Editor - The Synchronization Rules Editor can be
used to configure complex synchronization rules like preventing users with certain
attributes from being synchronized to Azure AD.

4.	 False. Passwords stores in Azure AD are NOT stored with a reversible
encryption algorithm.

5.	 c and d. The Global administrator role in Azure AD and the Enterprise Admins
group in Active Directory.

Chapter 4 – Azure AD Identity Security
1.	 b. Applying policies to "all users" and "all cloud apps". This is not a best practice.

As a minimum, break-glass accounts should be excluded from policies that have
block access control.

Chapter 5 – Azure AD Identity Governance
1.	 b. The user's access will be revoked and removed. The option to "Take

recommendation" is based on usage (whether a user has signed in recently
within the past month). If the user has not signed in within the past month, the
recommendation will be to revoke access.

2.	 b. It means that the user can request to be assigned the role by PIM whenever
they need it to perform a task. Eligible assignment type means that the user has to
go through a request process in PIM.

Chapter 6 – Implementing Perimeter Security
1.	 a. Create a new subnet in the virtual network. We need to create a subnet called

AzureFirewallSubnet.
2.	 a. Deploy Azure Front Door. Azure Front Door is one of the services in Azure with

WAF integration.

Chapter 7 – Implementing Network Security 491

3.	 a. A user-defined route. A user-defined route is used to send traffic to a customer
specified route path in Azure.

Chapter 7 – Implementing Network Security
1.	 b. No, it will not be allowed as the rule with the lowest priority will be the first to

be matched.

Chapter 8 – Implementing Host Security
1.	 a. Win-VM1 only. Win-VM2 cannot be protected with Azure Disk Encryption as it

is an A-Series VM.
2.	 b. Add an extension to each VM using an automation script. The Microsoft anti-

malware agent can be deployed to Azure virtual machines using a VM extension.

Chapter 9 – Implementing Container Security
1.	 b. The Linux image only. Azure Defender currently only supports Linux image

scans in the registry.
2.	 a. Update the settings of AKS1 to enable Azure AD integration. In order for users

to authenticate using their Azure AD credentials, Azure AD integration will need to
be enabled.

3.	 a. From the Azure portal, modify the pricing tier settings of Security Center.
Azure Defender for Container Registry is an option that can be enabled in the
Azure Defender plan of Security Center.

Chapter 10 – Implementing Storage Security
1.	 a. Regenerate the storage account keys. Regenerating the storage account keys will

invalidate any token that has been signed with the keys.

Chapter 11 – Implementing Database Security
1.	 c. Implement column-level encryption with Always Encrypted.

492 Assessments

Chapter 12 – Implement Secrets, Keys, and
Certificate Management with Key Vault

1.	 c. In Azure Key Vault, create an access policy. There are two options to grant
access to objects in a Key Vault resource. Using an access policy or applying a role
assignment using RBAC

Chapter 13 – Azure Cloud Governance and
Security Operations

1.	 a. Analytics. Using an Analytics rule, Sentinel can automatically create an incident
when a threat is detected.

2.	 c. Playbooks. Using a playbook, we can trigger a response to an incident including
raising a ticket in a service management platform.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

494 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Azure Sentinel
Richard Diver, Gary Bushey
ISBN: 978-1-83898-092-4

•	 Understand how to design and build a security operations center

•	 Discover the key components of a cloud security architecture

•	 Manage and investigate Azure Sentinel incidents

•	 Use playbooks to automate incident responses

•	 Understand how to set up Azure Monitor Log Analytics and Azure Sentinel

•	 Ingest data into Azure Sentinel from the cloud and on-premises devices

•	 Perform threat hunting in Azure Sentinel

https://www.packtpub.com/product/learn-azure-sentinel/9781838980924

Other Books You May Enjoy 495

Penetration Testing Azure for Ethical Hackers

David Okeyode, Karl Fosaaen

ISBN: 978-1-83921-293-2

•	 Identify how administrators misconfigure Azure services, leaving them open
to exploitation

•	 Understand how to detect cloud infrastructure, service, and application
misconfigurations

•	 Explore processes and techniques for exploiting common Azure security issues

•	 Use on-premises networks to pivot and escalate access within Azure

•	 Diagnose gaps and weaknesses in Azure security implementations

•	 Understand how attackers can escalate privileges in Azure AD

https://www.packtpub.com/product/penetration-testing-azure-for-ethical-hackers/9781839212932

496

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Microsoft Azure Security Technologies Certification and Beyond, we'd
love to hear your thoughts! If you purchased the book from Amazon, please click here to
go straight to the Amazon review page for this book and share your feedback or leave a
review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-56265-9

Index

A
access reviews 154
account-level SAS 361
ACR security, best practices

about 300, 301
access, restricting with private

endpoint 303, 304
Azure AD RBAC, using for

secure authentication and
access control 304-306

container image, implementing for
vulnerability and compliance
scanning 306, 307

service firewall rules,
configuring 301-303

Active Directory Domain
Services (AD DS)

about 367
test users, creating 57-59

Active Directory Federation
Services (AD FS) 67

Activity Logs 467
ad hoc 361
ad hoc SAS

versus stored access policy SAS 361, 362

advanced access policy
about 428
use cases 428

Advanced Encryption Standard (AES) 345
AKS Azure AD integration

implementing 328-335
AKS security, best practices

about 320
access, controlling to cluster resources

with Azure AD 323, 324
access, controlling to cluster resources

with Kubernetes RBAC 323, 324
access, limiting to API server with

authorized IP address ranges 320-322
cluster control plane,

upgrading 324, 325
OS updates, applying to

worker nodes 326
pod-managed identities,

implementing 327, 328
private AKS cluster, implementing

with private endpoint 322
resources, cleaning up 336

application DDoS attacks 170
Application Gateway WAF 200
application registration 31

498 Index

application rules 183
Application Security Group (ASG)

configuring 221-230
implementing 220

authentication 358
authorization

about 358
identity-based authorization options 358
key-based authorization options 358

Azure
containerization 292-294
database options 382
Microsoft Antimalware extension,

deploying for 260-262
URL 7
Web Application Firewall (WAF),

implementing 200
Azure Active Directory (Azure AD) 401
Azure AD

about 14
custom domain, adding to 21-23
identity provider, for Microsoft

cloud services 14-16
identity provider, for modern

applications 16
versus on-premises AD 14

Azure AD authentication
about 401
implementing, for Azure SQL 402-409

Azure AD authorization
implementing, for Azure SQL 402-409
implementing, for Blob device 367

Azure AD Connect 48, 49
Azure AD Connect deployment

options 70, 71
preparing 59-65

Azure AD Connect installation
preparing 49, 50

Azure AD Connect PHS
deploying 71-84

Azure AD DS 367
Azure ADDS authentication

implementing, for Azure Files 368
Azure AD editions 24, 25
Azure AD group management 31-39
Azure AD hybrid identity

implementing 48
Azure AD Identity Protection

identities, protecting with 122
implementing 128-136

Azure AD object management
about 28
groups 29, 30
roles 30, 31
service principal 31
users 28, 29

Azure AD Password Protection
custom banned password list

feature, configuring 93-100
functionalities 90, 92
implementing 90-93

Azure AD PIM
about 140, 141
exercise 142-154
used, for protecting privileged

access 140
working with 141, 142

Azure AD Premium P2 trial
signing up 25-27

Azure AD RBAC
using, for secure authentication

and access control 304-306
Azure AD role assignment 39-43
Azure AD roles 31
Azure AD tenant

reviewing 18-20

Index 499

Azure AD users
authentication methods 101
creating 31-39
securing, with Multi-Factor

Authentication (MFA) 101
Azure Application Gateway

WAF, configuring on 202-213
Azure Automation Update Management

implementing 264-269
Azure Bastion

configuring 244-247
implementing 243

Azure Blob
service hierarchy 343

Azure cloud governance
implementing 448

Azure Container Registry (ACR)
about 299
pricing tiers 300
securing 307-318

Azure DDoS Protection service 168
Azure DDoS protection standard

implementing 178-182
Azure Dedicated HSM 425
Azure Defender for SQL

functionalities 411
implementing 410

Azure Defender for Storage
implementing 379
resources, cleaning up 379

Azure Disk Encryption (ADE)
about 271
implementing 272-280
VM disks, encrypting with 271, 272

Azure Distributed Denial of
Service (DDoS) protection

BASIC tier 170

implementing 169, 170
STANDARD tier 170

Azure Files
service hierarchy 344

Azure Firewall
about 168
capabilities 183
implementing 183-199

Azure Firewall Manager 184
Azure Key Vault

about 422, 423
access, managing 425-428
back up and restore 441
pricing tiers 424, 425
purge protection 440
resource access, managing 428-438
resources, protecting 439-444
soft delete 440

Azure Kubernetes Services (AKS)
about 319
architecture 319, 320

Azure Monitor
about 465
Activity Logs 467
Metrics 466
Resource Logs 467, 469

Azure network hybrid connectivity
securing 242

Azure Policy
about 450, 451
assignment 451-455
definition 451-453
evaluation 451, 455
implementing 460-463

Azure RBAC
about 455
role assignment 459

500 Index

role definition 456, 457
scope 458

Azure RBAC roles 30
Azure RedHat for OpenShift (ARO) 294
Azure resources

cleaning up 444
implementing 389-396
providing 295-299
provisioning 171-178
provisioning, exercise 252-255

Azure Security Center (ASC)
about 303, 472
Cloud Compliance Posture

Management 473
Cloud Security Posture

Management 472
threat protection 474
used, for addressing cloud

security challenges 471
Azure security controls, test environment

setting up 6, 7
Azure Sentinel

data collection 476, 477
implementing 478-485
incidents, investigating 478
incidents, responding 478
threats, detecting 478
used, for managing security

operations 475, 476
Azure Service Health 464
Azure service rule 387
Azure SQL

defense-in-depth approach,
implementing for 384, 385

deployment options 383, 384
protecting, against data

leakage and theft 412

protecting, against unauthorized
network connections 385, 386

protecting, against unauthorized
user access 401

protecting, against vulnerabilities 409
Azure SQL Database Always Encrypted

implementing 414-418
Azure SQL database auditing

enabling 410
Azure SQL databases

network access control,
implementing for 396-401

Azure SQL private endpoints
implementing 388, 389

Azure Storage 341
Azure virtual network perimeter

securing 168, 169
Azure VM, hosting AD domain controller

deploying 50-56
Azure Web Application Firewall 168

B
Binary Large Object (Blob) 343

C
Center for Internet Security (CIS) 257
Certificate Authorities (CAs) 424
certificates 424
Cloud Compliance Posture

Management 473
Cloud Native Computing

Foundation (CNCF) 319
cloud security challenges

addressing, with Azure Security
Center (ASC) 471

Index 501

Cloud Security Posture Management 472
conditional access

about 108
best practices 112
evaluating 111, 112
implementing 113-122
policies, implementing 108-110
use cases 110

conditional access policy
conditions to match 109
control to apply 109

container registries 293
containerization

in Azure 292-294
Continuous Integration (CI) 305
custom domain

adding, to Azure AD 21-23

D
database-level firewall rules

implementing 387, 388
database options

in Azure 382
defense-in-depth approach

implementing, for Azure SQL 384, 385
deployment options

in Azure SQL 383, 384
detection types, identity protection

offline detection 125
real-time detection 125

Distributed Denial of Service
(DDoS) attack

about 168, 169
application DDoS attacks 170
protocol DDoS attacks 169
volumetric DDoS attacks 169

Docker Hub 293

Docker Hub registry
URL 299

E
Elliptic Curve (EC) 423
encryption, at rest

implementing 344-348
options 348

encryption, in transit
implementing 348, 413
used, for provisioning storage

account 349-357
Endpoint Detection and

Response (EDR) 259
Enterprise Mobility Suite (EMS) 25

F
Federal Information Processing

Standards (FIPS) 425
federation 67-69
firewall

configuring 233-241
for PaaS services 231, 232

free trial Azure subscription
creating 7-11

Front Door WAF 201

G
Group Policy Objects (GPOs) 14
groups 29

H
hardened baseline VM images

using 256-258

502 Index

Hardware Security Modules
(HSMs) 423, 424

hybrid identity authentication method
federation 67-69
Pass-Through Authentication

(PTA) 69, 70
Password Hash Synchronization

(PHS) 65-67
selecting 65

I
identity-based authorization option 358
identity protection

detection types 125
policies 126, 127
risk categories 122-125
risk levels 125

identity provider
for Microsoft cloud services 14-16
for modern applications 16

IdFix tool 50
Infrastructure as a Service (IaaS) 383
infrastructure encryption 345
initiative 453
IP address rule 387
IP firewall rules

implementing 386

J
just-in-time (JIT) VM access

about 264
enabling 282-288
management ports, securing

with 280-282

K
key-based authorization option 358
Key Encryption Key (KEK) 271
keys 423
KUbernetes REboot Daemon (kured) 326
Kusto Query Language (KQL) 471

L
leaked credential detection 67
legacy authentication 110
Log Analytics 470
logging 464

M
MAC Security (MACsec) 348
management group

about 448-450
implementing 460-463

management ports
securing, with just-in-time (JIT)

VM access 280-282
Metrics 466
Microsoft Antimalware extension

deploying, for Azure 260-262
Microsoft cloud services

identity provider 14-16
Microsoft DDoS Rapid Response

(DRR) team 170
modern applications

identity provider 16
modern authentication protocols

about 17
Azure AD tenant, reviewing 18-20
custom domain, adding to

Azure AD 21-23

Index 503

monitoring 464
Multi-Factor Authentication (MFA)

about 67, 101
Azure AD users, securing 101
enabling, by changing user state 102-108

N
network access control

implementing, for Azure SQL
databases 396-401

Network Address Translation
(NAT) rules 183

Network File System (NFS) 342
network perimeter 168
network perimeter security

objectives 168
network rules 183
Network Security Group (NSG)

about 280
configuring 221-230
implementing 218, 219

Network Virtual Appliance
(NVA) 168, 183, 184, 218

Node Management Identity (NMI) 327

O
OAuth 2.0 17
offline detection 125
on-premises AD

versus Azure AD 14
OpenID Connect 1.0 17
Open Web Application Security

Project (OWASP) 201
Operations Management Suite (OMS) 470
Organizational Units (OUs) 14, 49

P
PaaS services

firewall 231, 232
Pass-Through Authentication

(PTA) 69, 70
password complexity requirements 90
Password Hash Synchronization

(PHS) 65-67
password protection 90
password writeback

implementing 85
PIM access reviews

configuring 154, 155
creating, exercise 155-162

PIM auditing features
reviewing, exercise 155-162

PingFederate 67
Platform as a Service (PaaS) 383
platform service network security

implementing 230
service endpoints 232, 233

pod-managed identities
about 327
Azure resource provider 328
NMI server 328

policies, identity protection
about 126
Azure AD MFA registration policy 127
sign-in risk policy 126
user risk policy 126

privileged access
protecting, with Azure AD PIM 140

privileged identity 140
protocol DDoS attacks 169

504 Index

R
real-time detection 125
Remote Desktop Connection (RDP) 54
resource group

cleaning up 485
Resource Logs 467, 469
resources

cleaning up 248, 249
risk

about 122
sign-in risk 123
user risk 123

Risk-based Conditional
Access Policies 136

risk levels, identity protection
High-risk level 125
Low-risk level 125
Medium-risk level 125

Role-Based Access Control (RBAC)
about 31, 456
using 426

S
SAML 2.0 17
secrets 423
Security Information Event

Management (SIEM) 475
security operations

managing, with Azure Sentinel 475, 476
Security Orchestration, Automation,

and Response (SOAR) 475
server-level firewall rules

implementing 386, 387
Server Message Block (SMB) 342

service endpoints
configuring 233-241
with firewall, for PaaS services 232, 233

service-level encryption 344
service-level SAS 361
service principal 31
Shared Access Signatures (SAS)

used, for granting limited
access 360, 361

shared responsibility model 4-6
sign-in risk 123
software as a service (SaaS) 16
SQL authentication 401
SQL Server Management

Studio (SSMS) 399
storage account authorization

access controls, configuring 368-378
access keys, protecting 359
AD DS authentication, for

Azure Files 368
anonymous Blob access,

disabling 365, 366
Azure AD authorization, implementing

for Blob service 367
Azure AD DS authentication,

for Azure Files 368
configuring 358, 359
key-based authorization options,

disabling 364, 365
key management, implementing

with Key Vault 362, 364
limited access, granting to Shared

Access Signatures (SAS) 360, 361
Storage Service Encryption (SSE) 344
stored access policy 362
Synchronization Rules Editor 84
system update management

implementing, for VMs 263

Index 505

T
test users

creating, in AD DS 57-59
threat protection 474
Transact-SQL (T-SQL) 387
Transparent Data Encryption (TDE)

implementing 412, 413
Transport Layer Security (TLS) 349, 413

U
User Principal Name (UPN) 19
user risk 123

V
virtual network rule 387
virtual networks 167
virtual network segmentation

implementing 218
VM disks

encrypting, with Azure Disk
Encryption (ADE) 271, 272

VMs
protecting, from viruses and

malware 258, 259
system update management,

implementing 263
vulnerability assessment,

implementing 269, 270
VM Scale Sets (VMSSes) 258
volumetric DDoS attacks 169
vulnerability assessment

implementing, for VMs 269, 270

W
Web Application Firewall (WAF)

about 170
configuring, on Azure Application

Gateway 202-213
implementing, in Azure 200

Windows Virtual Desktops (WVDs) 258

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Implement Identity and Access Security for Azure
	Chapter 1: Introduction to Azure Security
	Technical requirements
	Shared responsibility model
	Setting up a practice environment
	Create a free trial Azure subscription

	Summary
	Questions
	Further reading

	Chapter 2: Understanding Azure AD
	What Azure AD is not (what is Azure AD?)
	Azure AD versus on-premises AD
	Azure AD – an identity provider for Microsoft
cloud services
	Azure AD – an identity provider for modern applications

	Modern authentication protocols
	Hands-on exercise – review your Azure AD tenant
	Hands-on exercise – add a custom domain to Azure AD (optional)

	Azure AD editions
	Hands-on exercise – sign up for an Azure AD Premium P2 trial

	Azure AD object management
	Azure AD users
	Azure AD groups
	Azure AD and Azure RBAC roles
	Service principals
	Hands-on exercise – Azure AD user creation and group management
	Hands-on exercise – Azure AD role assignment

	Summary
	Questions
	Further reading

	Chapter 3: Azure AD Hybrid Identity
	Technical requirements
	Implementing Azure AD hybrid identity
	Azure AD Connect
	Preparing for Azure AD Connect installation
	Hands-on exercise – deploying an Azure VM hosting an AD domain controller
	Hands-on exercise – preparing for Azure AD Connect deployment

	Selecting a hybrid identity authentication method
	Federation
	Pass-Through Authentication (PTA)
	Azure AD Connect deployment options
	Hands-on exercise – deploying Azure AD Connect PHS

	Implementing password writeback
	Summary
	Questions
	Further reading

	Chapter 4: Azure AD Identity Security
	Technical requirements
	Implementing Azure AD Password Protection
	Hands-on exercise – Configuring the custom banned password list feature of Azure AD Password Protection

	Securing Azure AD users with multi-factor authentication (MFA)
	Hands-on exercise – Enabling MFA by changing
user state

	Implementing conditional access policies
	Conditional access – How policies are evaluated
	Conditional access best practices
	Hands-on exercise – Implementing conditional access

	Protecting identities with Azure AD Identity Protection
	Identity protection – risk categories
	Identity protection – detection types
	Identity protection – risk levels
	Identity protection – policies
	Exercise – Implementing Azure AD Identity Protection

	Summary
	Question
	Further reading

	Chapter 5: Azure AD Identity Governance
	Technical requirements
	Protecting privileged access using Azure AD Privileged Identity Management (PIM)
	What is Azure AD PIM?
	How does Azure AD PIM work?
	Exercise – Azure AD Privileged Identity Management

	Configuring PIM access reviews
	Exercise – Create an access review and review PIM auditing features

	Summary
	Questions
	Further reading

	Section 2:
Implement Azure Platform Protection
	Chapter 6: Implementing Perimeter Security
	Technical requirements
	Securing the Azure virtual network perimeter
	Implementing Azure Distributed Denial of Service (DDoS) Protection
	Hands-on exercise – provisioning resources for the exercises in Chapters 6 and 7
	Hands-on exercise – implementing the Azure DDoS protection Standard

	Implementing Azure Firewall
	Hands-on exercise – implementing Azure Firewall

	Implementing a Web Application Firewall (WAF) in Azure
	Application Gateway WAF
	Front Door WAF
	Hands-on exercise – configuring a WAF on Azure Application Gateway

	Summary
	Questions
	Further reading

	Chapter 7: Implementing Network Security
	Technical requirements
	Implementing virtual network segmentation
	Implementing NSGs
	Implementing ASGs
	Hands-on exercise – Configuring NSGs and ASGs

	Implementing platform service network security
	Firewall for PaaS services (and firewall exceptions)
	Service endpoints
	Hands-on exercise: Configuring a firewall and service endpoints on a storage account

	Securing Azure network hybrid connectivity
	Implementing Azure Bastion
	Hands-on exercise: Configuring Azure Bastion
	Hands-on exercise: Cleaning up resources

	Summary
	Question
	Further reading

	Chapter 8: Implementing Host Security
	Technical requirements
	Hands-on exercise – provisioning resources for this chapter's exercises

	Using hardened baseline VM images
	Protecting VMs from viruses and malware
	Hands-on exercise deploying the Microsoft Antimalware extension for Azure

	Implementing system update management for VMs
	Hands-on exercise – implementing Azure Automation Update Management

	Implementing vulnerability assessment
for VMs
	Encrypting VM disks with Azure Disk Encryption
	Hands-on exercise – implementing Azure Disk Encryption

	Securing management ports with JIT VM access
	Hands-on exercise – enabling JIT VM access

	Summary
	Questions
	Further reading

	Chapter 9: Implementing Container Security
	Technical requirements
	An overview of containerization in Azure
	Hands-on exercise – providing resources for the chapter exercises
	Introducing ACR
	ACR pricing tiers

	ACR security best practices
	Configuring service firewall rules for ACR
	Restricting access using a private endpoint
	Using Azure AD RBAC for secure authentication and access control
	Implementing container image vulnerability and compliance scanning
	Hands-on exercise – securing ACR

	Introducing AKS
	Understanding the AKS architecture

	AKS security best practices
	Limiting access to the API server using authorized IP address ranges
	Implementing a private AKS cluster using a private endpoint
	Controlling access to cluster resources using Kubernetes RBAC and Azure AD
	Regularly upgrading the cluster control plane
	Regularly applying OS updates to worker nodes
	Implementing pod-managed identities
	Cleaning up the resources

	Summary
	Questions
	Further reading

	Section 3:
Secure Storage, Applications,
and Data
	Chapter 10: Implementing Storage Security
	Technical requirements
	Azure Storage overview
	Azure Blob service hierarchy
	Azure Files service hierarchy

	Implementing encryption at rest
	Implementing encryption in transit
	Hands-on exercise – provisioning a storage account with encryption in transit enforced

	Configuring storage account authorization
	Protect access to the Storage account keys
	Grant limited access to using Shared Access
Signatures (SAS)
	Implementing storage account key management with Key Vault
	Disabling key-based authorization options
	Disabling anonymous (unauthenticated) Blob access
	Implementing Azure AD authorization for the Blob service
	Implementing ADDS or Azure ADDS authentication for Azure Files
	Hands-on exercise – configuring storage account access controls

	Implementing Azure Defender for Storage
	Cleaning up resources

	Summary
	Question
	Further reading

	Chapter 11: Implementing Database Security
	Technical requirements
	Database options in Azure
	Azure SQL deployment options
	Implementing defense in depth for Azure SQL
	Protecting Azure SQL against unauthorized network connections
	Implementing IP firewall rules
	Implementing server-level firewall rules
	Implementing database-level firewall rules
	Implementing Azure SQL private endpoints
	Hands-on exercise – provisioning resources for chapter exercises
	Hands-on exercise – implementing network access control

	Protecting Azure SQL against unauthorized user access
	Hands-on exercise – implementing Azure AD authentication and authorization

	Protecting Azure SQL against vulnerabilities
	Enabling Azure SQL database auditing
	Implementing Azure Defender for SQL

	Protecting Azure SQL against data leakage and theft (database encryption)
	Implementing Transparent Data Encryption (TDE) – encryption at rest
	Implementing encryption in transit
	Implementing Azure SQL Database Always Encrypted
	Hands-on exercise – implementing Always Encrypted

	Cleaning up resources
	Summary
	Question
	Further reading

	Chapter 12: Implementing Secrets, Keys, and Certificate Management with Key Vault
	Technical requirements
	Introducing Azure Key Vault
	Understanding secrets, keys, and certificates
	Understanding Key Vault pricing tiers
	Managing access to Key Vault
	Hands-on exercise – managing access to Key Vault resources

	Protecting Key Vault resources
	Hands-on exercise – protecting Key Vault resources

	Cleaning up resources
	Summary
	Question
	Further reading

	Chapter 13: Azure Cloud Governance and Security Operations
	Technical requirements
	Implementing Azure cloud governance
	Understanding management groups
	Understanding Azure Policy
	Understanding Azure RBAC
	Hands-on exercise – implementing management groups and Azure Policy

	Understanding logging and monitoring
	Azure Service Health
	Azure Monitor
	Log Analytics

	Addressing cloud security challenges with Security Center
	Cloud Security Posture Management
	Cloud Compliance Posture Management
	Threat protection

	Managing security operations with Azure Sentinel
	Data collection
	Detecting threats
	Investigating incidents
	Responding to incidents
	Hands-on exercise – implementing Azure Sentinel

	Cleaning up resources
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Introduction to Azure Security
	Chapter 2 – Understanding Azure AD
	Chapter 3 – Azure AD Hybrid Identity
	Chapter 4 – Azure AD Identity Security
	Chapter 5 – Azure AD Identity Governance
	Chapter 6 – Implementing Perimeter Security
	Chapter 7 – Implementing Network Security
	Chapter 8 – Implementing Host Security
	Chapter 9 – Implementing Container Security
	Chapter 10 – Implementing Storage Security
	Chapter 11 – Implementing Database Security
	Chapter 12 – Implement Secrets, Keys, and Certificate Management with Key Vault
	Chapter 13 – Azure Cloud Governance and Security Operations

	Other Books You May Enjoy
	Index

