

Practical Hardware
Pentesting

A guide to attacking embedded systems and
protecting them against the most common
hardware attacks

Jean-Georges Valle

BIRMINGHAM—MUMBAI

Practical Hardware Pentesting
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar
Content Development Editor: Romy Dias
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: March 2021
Production reference: 1040321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-913-3
www.packt.com

http://www.packt.com

To my father. I wouldn't be who I am without you.

Contributors

About the author
Jean-Georges Valle is a hardware penetration tester based in Belgium. His background
was in software security, with hardware being a hobby, and he then started to look into
the security aspects of hardware. He has spent the last decade testing various systems,
from industrial logic controllers to city-scale IoT, and from media distribution to power
metering. He has learned to attack embedded systems and to leverage them against
cloud-scale infrastructure. He is the lead hardware technical expert in an offensive
security team of a big four company.

Jean-Georges holds a master's degree in information security and focuses on security at
the point of intersection with hardware and software, hardware and software interaction,
exploit development in embedded systems, and open source hardware.

I wish to thank my parents for supporting me and loving me
unconditionally, Vito and Jon for giving me an opportunity when I needed

it, and Ieva for accepting that this book was competing with her for my time
and attention.

About the reviewers
Ryan Slaugh has been a maker and breaker of things for over 20 years. Ryan got his start
in electrical systems, and augmented his learning to include the analog, digital, embedded,
software, and cybersecurity fields. He continues to practice and add to his skill sets in
his home lab, and this allows him to do what he loves the most: solve problems with
technology. When not working with technology, Ryan enjoys traveling around the globe
and exploring the less inhabited areas of the Pacific Northwest. His greatest joy is being
with his family on their small hobby farm in Washington State, USA.

Neeraj Thakur is a manager in the risk advisory practice of Deloitte and comes with more
than 9 years' experience in the area of information and cybersecurity. He holds a master's
degree in cybersecurity from the Indian Institute of Information Technology, Allahabad,
and has extensive experience in penetration and security testing of various embedded
devices and IoT-enabled products. He is a certified ISA/IEC 62443 cybersecurity
fundamentals specialist and has worked extensively in the areas of industrial automation
and control system security. He has delivered multiple sessions on IoT and ICS security,
as well as in the security community, including Nullcon and CySeck. Neeraj is passionate
about reverse engineering and security innovations using Python.

Table of Contents
Preface

Section 1: Getting to Know the Hardware

1
Setting Up Your Pentesting Lab and Ensuring Lab Safety

Prerequisites – the basics you
will need 4
Languages 5
Hardware-related skills 5
System configuration 5
Setting up a general lab 7
Safety 8

Approach to buying test
equipment 9
Home lab versus company lab 9
Approaching instrument selection 10
What to buy, what it does, and when
to buy it 11

Small tools and equipment 21
Renting versus buying 23

The component pantry 23
The pantry itself 23
The stock 24

Sample labs 25
Beginner 25
Amateur 26
Pro 27

Summary 27
Questions 28

2
Understanding Your Target

The CPU block 30
CPU roles 30
Common embedded systems
architectures 31

The storage block 34
RAM 34
Program storage 34
Storing data 35

ii Table of Contents

The power block 35
The power block from a pentesting
point of view 35

The networking blocks 36
Common networking protocols in
embedded systems 36

The sensor blocks 41

Analog sensors 41
Digital sensors 42

The actuator blocks 42
The interface blocks 43
Summary 43
Questions 44
Further reading 44

3
Identifying the Components of Your Target

Technical requirements 46
Harvesting information –
reading the manual 47
Taking a system analysis approach 47
For our Furby manual 47

Harvesting information —
researching on the internet 49
For the Furby 49

Starting the system diagram 52
For our Furby 53

Continuing system exploration
– identifying and putting
components in the diagram 54
Opening the Furby 54
Manipulating the system 54
Dismantling the Furby 55
Identifying chips 55
Chips in the Furby 56
Identifying unmarked/mysterious chips 59
Furby — the mystery meat 61
The borders of functional blocks 68

Summary 68
Questions 69

4
Approaching and Planning the Test

The STRIDE methodology 72
Finding the crown jewels in the
assessed system 74

Security properties – what do
we expect? 77
Communication 78
Maintenance 78
System integrity and self-testing 79

Protection of secrets or security
elements 79

Reaching the crown jewels –
how do we create impacts? 80
STRIDE through the components to
compromise properties 80
For the example system – the Furby 82

Planning the test 85

Table of Contents iii

Balancing your scenarios 85

Summary 91

Questions 91
Further reading 91

Section 2: Attacking the Hardware

5
Our Main Attack Platform

Technical requirements 96
Introduction to the bluepill
board 97
A board to do what? 97
What is it? 97

Why C and not Arduino? 98
The documentation 99
Memory-projected registers 100

The toolchain 100
The compilation process 101
Driving the compilation 102

Flashing the chip 104
Putting it into practice for the bluepill 104

Introduction to C 106
Operators 107
Types 108
The dreaded pointer 109
Preprocessor directives 110
Functions 111

Summary 112
Questions 112
Further reading 112

6
Sniffing and Attacking the Most Common Protocols

Technical requirements 114
Hardware 114

Understanding I2C 115
Mode of operation 115
Sniffing I2C 123
Injecting I2C 128
I2C man in the middle 128

Understanding SPI 129
Mode of operation 130
Sniffing SPI 132
Injecting SPI 133
SPI – man in the middle 133

Understanding UART 134
Mode of operation 135
Sniffing UART 137
Injecting UART 137
UART – man in the middle 138

Understanding D1W 139
Mode of operation 139
Sniffing D1W 141
Injecting D1W 141
D1W – man in the middle 142

Summary 142
Questions 143

iv Table of Contents

7
Extracting and Manipulating Onboard Storage

Technical requirements 146
Finding the data 146
EEPROMs 146
EMMC and NAND/NOR Flash 147
Hard drives, SSDs, and other storage
mediums 147

Extracting the data 148
On-chip firmware 148
Onboard storage – specific interfaces 149
Onboard storage – common interfaces 149

Understanding unknown
storage structures 151
Unknown storage formats 151
Well-known storage formats 152
Let's look for storage in our Furby 153

Mounting filesystems 159
Repacking 160
Summary 161
Questions 161
Further reading 161

8
Attacking Wi-Fi, Bluetooth, and BLE

Technical requirements 164
Basics of networking 164
Networking in embedded
systems using Wi-Fi 165
Selecting Wi-Fi hardware 165
Creating our access point 165
Creating the access point and the
basic network services 166

Networking in embedded
systems using Bluetooth 169

Bluetooth basics 169
Discovering Bluetooth 171
Native Linux Bluetooth tools – looking
into the joystick crash 175
Sniffing the BT activity on your host 178
Sniffing raw BT 179
BLE 182

Summary 188
Questions 188

9
Software-Defined Radio Attacks

Technical requirements 190
Introduction to arbitrary
radio/SDR 190

Understanding and selecting
the hardware 191
Looking into a radio device 192

Table of Contents v

Receiving the signal – a look at
antennas 192

Looking into the radio spectrum 194
Finding back the data 198
Identifying modulations – a
didactic example 200
AM/ASK 201
FM/FSK 202
PM/PSK 203

MSK 204
Getting back to our signal 205

Demodulating the signal 206
Clock Recovery MM 210
WPCR 211

Sending it back 212
Summary 212
Questions 213

Section 3: Attacking the Software

10
Accessing the Debug Interfaces

Technical requirements 218
Debugging/programming
protocols – What are they
and what are they used for? 218
Legitimate usage 218
Using JTAG to attack a system 219

Finding the pins 224
The PCB "plays nicely" 225
A bit harder 228

Very hard – JTAGulating 228

Using OpenOCD 231
Installing OpenOCD 232
The adapter file 233
The target file 234

Practical case 240
Summary 246
Questions 247

11
Static Reverse Engineering and Analysis

Technical requirements 250
Executable formats 250
Understanding operating
system formats 251

Dump formats and memory
images 256

Dump structure – the bluepill as
an example 257

Analyzing firmware –
introduction to Ghidra 258
Getting to know Ghidra with a very
simple ARM Linux executable 258

vi Table of Contents

Going into second gear – Ghidra on
raw binaries for the STM32 268
First identification pass 272

Reversing our target function 277

Summary 278
Questions 279

12
Dynamic Reverse Engineering

Technical requirements 282
What is dynamic reverse
engineering and why do it? 282
Leveraging OpenOCD and GDB 283
GDB? But... I know nothing about it! 285

Understanding ARM
assembly – a primer 287
General information and syntax 288

Exploring the most useful
ARM instructions 291

Using dynamic reverse
engineering – an example 296
First Ghidra inspection 297
Reversing the expected password 297
Of course, I aced the test 307

Summary 308
Questions 308

13
Scoring and Reporting Your Vulnerabilities

Scoring your vulnerabilities 312
Being understandable to
everyone 316
Building your report template 316
Usage of language in a report 317

Report quality 318

When engineers do not want
to re-engineer 319
Summary 322
Questions 322

14
Wrapping It Up – Mitigations and Good Practices

Industry good practices – what
are they and where to find
them 324
OWASP IoT top 10 324
The CIS benchmarks 327
NIST hardware security guidelines 328

Common problems and
their mitigations 328
Establishing a trust relationship
between the backend and a device 328
Storing secrets and confidential data 330

Table of Contents vii

Cryptographic applications in
sensitive applications 330
JTAG, bootloaders, and serial/UART
interfaces 331

What about now? Self-teaching
and your first project 332
Closing words 333

Assessments

Chapter 1 335
Chapter 2 335
Chapter 3 336
Chapter 4 338
Chapter 5 338
Chapter 6 340
Chapter 7 341

Chapter 8 341
Chapter 9 342
Chapter 10 342
Chapter 11 343
Chapter 12 344
Chapter 13 345

Other Books You May Enjoy
Index

Preface
This book focuses on hardware security.

It will teach you how hardware systems are architected and how to understand the general
architecture of a system. You will also learn where to find information about a system,
which may exist in unexpected places.

We will examine the basic protocols that electronic devices use, look at how to attack the
protocols, and learn how to leverage these attacks against the device as a whole.

You will learn how to identify the scenarios that matter for impacting the way a system
works, how to test for them during a hardware assessment, and how to reach a system's
'crown jewels'.

In this book, we will teach you how to leverage attacks against hardware, with very cheap
tools, to reach the software that runs on the device. You will learn how to extract and
analyze this software, and how to alter the software's behavior through direct hardware/
software interaction.

Who this book is for
This book is for security professionals and researchers who want to get started with
hardware security assessment but don't know where to start. Electrical engineers who
want to understand how their devices can be attacked, and how to protect against these
attacks, or makers and tinkerers who want to understand how they can recycle or reuse a
system that seems to be locked down, will also find this book useful.

x Preface

What this book covers
Chapter 1, Setting Up Your Pentesting Lab and Ensuring Lab Safety, will go through what
hardware to buy and when, how to arrange your lab and how to keep yourself safe.

Chapter 2, Understanding Your Target, explains how to understand the functionality of a
system, and how to reverse engineer an embedded system.

Chapter 3, Identifying the Components of Your Target, will help understand how to identify
chips and their relationships.

Chapter 4, Approaching and Planning the Test, will show how to identify the risk scenarios
and threats to a target system and how to organize the test

Chapter 5, Our Main Attack Platform, will go over the microcontroller platform we
will use to attack the target systems, and will demonstrate the usage of common
hardware protocols

Chapter 6, Sniffing and Attacking the Most Common Protocols, covers the most common
hardware protocols and how to attack them

Chapter 7, Extracting and Manipulating Onboard Storage, covers the different hardware
formats used to store information and how to extract and manipulate them

Chapter 8, Attacking Wi-Fi, Bluetooth, and BLE, covers the most common forms of
wireless communication and how to attack them

Chapter 9, Software-Defined Radio Attacks, introduces you to software-defined radio and
how to intercept and attack proprietary wireless communications

Chapter 10, Accessing the Debug Interfaces, introduces you to hardware-specific debugging
protocols and how to exploit them in order to attack embedded systems

Chapter 11, Static Reverse Engineering and Analysis, introduces you to binary reverse
engineering tools and methodology in order to understand and attack the firmware that
runs on your target system.

Chapter 12, Dynamic Reverse Engineering, leverages the two previous chapters to show you
how to interact and attack firmware while it is running on the target system.

Chapter 13, Scoring and Reporting Your Vulnerabilities, teaches you how to report the
problems you have found on the target system to your clients.

Chapter 14, Wrapping It Up – Mitigations and Good Practices, orients you towards the
solutions that can be given to your clients in order to solve the problems you have found.

Preface xi

To get the most out of this book
You should be familiar with Linux and be able install software on your own. All the
examples and code have been developed on Debian Linux, but any distribution should work.

While it is possible to follow all the examples on a virtual machine, you may encounter
USB connectivity issues. If you experience unstable communication with your
hardware tools please proceed with a real installation.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Practical-Hardware-Pentesting. If there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/3sHBxRI.

Download the color images
We also provide a PDF file containing color images of the screenshots/diagrams used
in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781789619133_ColorImages.pdf.

Conventions used
A number of text conventions are used throughout this book.

https://github.com/PacktPublishing/Practical-Hardware-Pentesting
https://github.com/PacktPublishing/Practical-Hardware-Pentesting
https://github.com/PacktPublishing/
http://bit.ly/3sHBxRI
http://www.packtpub.com/sites/default/files/downloads/9781789619133_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789619133_ColorImages.pdf

xii Preface

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "For example, this is adding 1 to every byte received on ttyUSB0
and sends it to ttyUSB1"

A block of code is set as follows:

[xxx.xx] usb xxx: New USB device found, idVendor=04d8,
idProduct=fc92, bcdDevice= 1.00

[xxx.xx] usb xxx: New USB device strings: Mfr=1, Product=2,
SerialNumber=0

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import serial

#imports the serial module

serin = serial.Serial('/dev/ttyUSB0', 115200)

#opens serial adapter one

serout = serial.Serial('/dev/ttyUSB1', 115200)

Any command-line input or output is written as follows:

#udevadm control --reload-rules

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Connect device button and set up the analyzer"

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

mailto:customercare@packtpub.com

Preface xiii

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

After reading this section, you will know how to set up an assessment lab, understand
the global architecture of an embedded system, know how to identify the different
components, and understand how they act together in order to make the system run.
Once you are able to understand all aspects of how a system works, you will be able to
follow a risk modeling methodology to plan your tests according to the threats against
the target system.

This section comprises the following chapters:

• Chapter 1, Setting Up Your Pentesting Lab and Ensuring Lab Safety

• Chapter 2, Understanding Your Target

• Chapter 3, Identifying the Components of Your Target

• Chapter 4, Approaching and Planning the Test

Section 1:
Getting to Know the

Hardware

1
Setting Up Your

Pentesting Lab and
Ensuring Lab Safety

Embedded systems, in the broadest definition of the term, are all around us in our
everyday lives (examples being our phones, our routers, our watches, our microwaves,
and more). They all have a small computer inside them and take care of very critical
aspects of our lives, and also collect and protect data that is very critical to us. Sadly, the
embedded system industry is lagging behind the usual computing industry in terms of
security. In the last 10 years, we have seen examples of how this lack of security in these
kinds of systems can lead to very tangible impacts on the real world (for example, the
Mirai botnet; the Stuxnet virus; a wave of attacks against routers; some countries stealing
other countries' drones by spoofing the Global Positioning System (GPS); and so on).
This is why it is very important to train more and more people on how to find problems
in these kinds of systems, not only because the problems are already here but also because
there will be more and more such systems, and their ever-growing number will manage
more and more crucial aspects of our lives (think about autonomous vehicles; drone
delivery; robots to assist the elderly; and so on).

4 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Helping you start with assessing the security of these kinds of systems is the first goal
of this book. The second goal of this book is that you have fun while you learn because
testing these kinds of systems is going to be interesting, and I take great pleasure in
making the learning process enjoyable for you. You may ask yourself: How is it going to be
fun for me? For me, it is because you are messing with the most trusted part of the system:
the hardware. Not only you are messing with the most fundamental elements of the
system, but you also are in direct contact with it; you will be soldering, drilling, scrapping,
and touching the system to pop a shell! You will not only code to compromise your target
system, but (hopefully rarely) the blood, sweat, and tears will not be figurative!

In this chapter, you will learn how to set up your lab, from a simple, low investment
suitable for learning at home up to a professional testing environment. This chapter will
get you up to speed on how to invest your money efficiently to achieve results and, most
importantly, how not to kill yourself on the job.

The following topics will be covered in this chapter:

• The basic things you will need to get started

• The different types of (common) tools available for your labs, what to get, and at
which point

• The approach to acquiring test equipment, and the difference between a company
and a home lab

• Basic items you will want in a lab, what they are, what are their uses, and the
approach to setting up a lab

• Examples of ramping up your lab: basic, medium, and professional labs

Prerequisites – the basics you will need
Before going into the things you will need to buy, let's have a look at the basics you will
need to go through our joint exploration of an unknown system (a Furby), and start
working on your own systems.

Prerequisites – the basics you will need 5

Languages
To be able to script activities and interact automatically with most systems, you will need
to be familiar with at least one high-level programming or scripting language (I will use
Python for the examples in this book, but any other scripting language such as Perl, Bash,
PowerShell, and more will also work) and one low-level programming language to write
your own firmware and customize the examples. I will also use C (on the attack platform)
since it is the most popular programming language for embedded systems, but any
language that has a compiler for your target system will work.

Hardware-related skills
You will need to learn actual, manual skills that are not purely knowledge-based; the main
obstacles people fear when starting hardware hacking are soldering and electronics. For
both of these skills, you can approach them in a knowledge-based way: learn about Ohm's
law; the physics of semiconductors; what is an eutectic mixture and temperature; and all
of the theoretical background. To be honest, I would not recommend approaching the
skills like that. Of course, you will need the knowledge down the road, but don't start with
this. Solder things; make light-emitting diodes (LEDs) blink; learn how to use transistors
as switches. In short: do things, accept failure, and learn from it; burning a transistor will
cost you a few cents but you will not repeat your error; burning your fingers will hurt
but this will heal in a few days (there are safety instructions in the book—read them very
carefully). You have far more chances to disgust yourself by learning a lot of laws and
formulas while never using them than by having a problem, finding the correct formula,
and solving your problem with it!

System configuration
Having a nice desktop computer will really improve your experience in the lab. Even
if, in today's world, people tend to use laptops more and more, this can prove to be a
challenge when you are attacking hardware. A laptop will not block you from attacking,
but a desktop will definitely prove easier. A laptop's main challenge will be the very limited
physical interfaces available on it (still, you can work with it).

6 Setting Up Your Pentesting Lab and Ensuring Lab Safety

You don't need a powerful computer to start with (I use a 7-year-old i7: nothing fancy),
but really pay attention to the interfaces. It is very common for me to use 5-6 Universal
Serial Bus (USB) ports when I am attacking hardware; for example, when operating on
any embedded system, I typically have attached the following to my computer (not even
counting my convenience peripherals such as keyboard, mouse, headset, having a dual-
screen setup, and so on):

• USB:

- A bus pirate

- An OpenBench logic analyzer

- One or two USB to Universal Asynchronous Receiver/Transmitter
(UART) bridges

- A microcontroller unit (MCU) board

- A function generator

- My programmable power supply
• Ethernet:

- My internet connection

- My oscilloscope
Good luck doing that with a laptop without using an external USB hub, especially when
these hubs can interfere with the functionality of some peripherals (for example, the
USB-UART bridges I use tend to become unstable if used over a USB hub—using a good-
quality powered USB hub can help).

One of the main contention points is the operating system. I use Linux, but using a
Windows-based machine (especially if you use the Windows Subsystem for Linux (WSL)
for anything but access hardware peripherals) will not really limit you in the end. (I will
base the examples in this book on Linux. If you don't want to install a machine with
Linux, just run a virtual machine (VM) but be aware that some of the most popular and
free virtualization software does not really support USB passthrough very well.)

Prerequisites – the basics you will need 7

Setting up a general lab
The setup of the lab itself is very important and will be quite determinant in terms of your
ease of use and comfort in the lab. You will spend a lot of hours thinking and hacking in
there, thus the room and its furniture will be quite important to your comfort. You will
need to consider the following factors:

• Your chair: Invest in a good wheeled desk chair with easily movable arm support
and good back and lumbar support. The racecar seat-looking chairs targeted at
gamers can be a good type to look into, but really pay attention to the armrests and
a system that allows you to move them away and set them to the desired height
easily. More often than not, they will annoy you when using your soldering iron, but
you will want them to support your arms when typing, for example.

• Your work table: Three factors are critical—the height of the table (so you don't kill
your back when operating close to a printed circuit board (PCB), for example) and
its surface. For the surface, I like clear colors (to be able to easily see a component
that slipped, for example) with a slightly textured surface (so the components don't
skid too far too easily). Also, the larger your work surface, the better it is to spread
the inevitable clutter.

• Shelving: You will want to have shelving on top of your work table in order to be
able to have your instruments on top of your work area without them eating up
the space available. I like to have the shelving approximately 50 cm higher than the
surface of my work table in order to be able to easily manipulate the interface of
the instruments and put back probes without having to stand up from my chair nor
having to kill my neck when I look at waveforms or a specific knob or button.

• Light: Good and powerful lighting of your work area is crucial; not only you will be
manipulating a variety of very small things (components, cables, connectors, and
others), but it becomes even more important when operating under magnification
(for example, for soldering).

• Anti-static measures: An anti-static mat is really practical to protect sensitive
devices against electrostatic discharge. They come with a bracelet that ensures any
electrostatic charge you may have built up is dissipated. It is also important to avoid
flooring that will make you build up such charges (such as carpets).

8 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Safety
There are inherent risks linked with opening and interacting with live systems. Please read
these carefully—safety first!

Please follow these safety tips at all times:

1. If there is a risk of electric shock, never ever do your tests alone and be sure to
brief the person who is with you on how to quickly kill the power and react. Have
emergency services' number preeminently displayed; a fire extinguisher that can be
used on live electricity; first aid training; and so on.

2. Whenever your fingers or instruments go near a system, ensure it is either
disconnected from the mains (that is, wall plug electricity—110/220V (where V
stands for volts)) or that you are physically isolated from the mains part of the board
(for example, use silicon mats to isolate the dangerous part of the power section).

3. If a system is mains-powered, always, always use an insulation transformer.

4. Wear adequate clothing, remove jewelry and, if you are sporting long hair, always tie
this up (which will prevent it from getting in the way).

5. If the system sports any kind of battery, insulate the battery rails appropriately (with
electrically insulating sticky tape, for example). Some battery types are dangerous
and can catch fire or explode if shorted. I really advise you to have a look at videos
of shorted lithium-polymer batteries: you don't want this kind of catastrophic
failure happening in your home, lab, or office.

6. You will work with sharp and hot tools and objects, so having a first aid kit available
is always a good idea.

7. There is a debate about what is dangerous: voltage or current. Actually: energy kills,
so both voltage and current can be dangerous. For example, you may have already
survived a > 10 kilovolt (kV) electric shock from electrostatic discharge (the sparks
you can feel when removing a pullover, for example), but 2,000 A at 1 V will char
you to death, and people regularly get killed by mains power. The gist is, whether
amps or voltage are present, treat it as dangerous.

8. Soldering equipment is very hot and will set things on fire if you are not cautious;
always have a smoke detector in your lab, along with a fire extinguisher. Use the
holder your soldering iron comes with (or buy one); they are usually shrouded to
avoid contact with random objects.

Approach to buying test equipment 9

Safety is of the utmost importance—there is no need for all the fancy test equipment we
will now go through if there is no one to operate it.

Approach to buying test equipment
These are my personal opinions and views. Especially regarding measurement equipment
and tools, you will find a lot of heated argument about the different brands, models,
and tools. Engineers tend to be reasonable but they are human beings, and there will
be fanboys. You will find on different forums people with their opinions and the deeply
rooted belief that what is working best for them is the best for anyone. The golden rule is
the following:

• Get information upfront

• Make up your mind

• Be reasonable

• Get what works best for you

Home lab versus company lab
Some very important distinctions have to be made between your own personal laboratory
equipment and what you use in a company laboratory. Not only will the money for the
home lab come from your own pocket, but some options (such as renting) may not be
realistic for a home lab. Additionally, a company lab is subject to the safety rules of a work
environment. You should meet with your company's occupational safety manager in order
to comply with the adequate regulations regarding the storage of hazardous or corrosive
chemicals, ventilation/air extraction, handling of possible fire hazards, and so on (as a side
note, this is a very practical and reasonable way to get out of this noisy open space).

Hacked equipment and Chinese copies
In a home lab, one of the best reminders of why you are doing the assessment is the fact
that some instrument companies are suspected by the community of actually producing
hackable instruments in order to boost their sales. And their instruments get hacked.
This is a reminder that there is a very real community (and not a fabled hacker hidden
in their parents' cellar) that is going after electronic devices in order to get the most out
of them, unlocking features that are normally paid for, and potentially costing money to
the company that produces the instruments. From a hobbyist point of view, it may be not
really legal, but it is a common practice for hobbyists to maximize their investment by
modifying or hacking existing instruments.

10 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Since legality and repeatability are key in a company laboratory, I would advise against
hacking instruments in this context. If the current laboratory setup of your company is
not enabling a test to take place, your company should have a budget to buy (or rent) the
adequate instruments or be able to offset the cost to a client.

The same goes for Chinese copies of programmers and logic analyzers—you may not care
about it in a private setting, but in a professional setting the lower quality can actually turn
back to bite you. The gist is, as long as you are doing this as a hobby, the decision to hack
your instruments is on you, but if you are doing this professionally, buy the real thing and
get reimbursed, or bill your client.

Approaching instrument selection
Measurement instruments are like cars; it's all a question of balance.... You can find
the following:

• The Italian sports car type—the luxury thing that will be able to do everything
(short of cooking for you), which costs an insane amount of money and actually
very few people can get the most out of. It may not be worth it in an assessment
context unless you have a really specific need. If it is the case, it may be smarter to
just rent the instrument. Brands that I classify in this category: Teledyne-LeCroy,
Rohde & Schwartz, and high-end Keysight (formerly Agilent).

• The good-quality German car that is doing everything quite well. It may be a good
investment if you are actually doing this a lot and need a reliable, solid instrument
that will get you far for a long time. Brands that I classify in this category: mid-range
Keysight, Tektronix, Yokogawa, and very high-end Siglent or Rigol.

• Le French car type—it's going to be doing almost the same thing that the German
car does, for a fraction of the price, with a lot less style, and maybe for a shorter
time. Brands that I classify in this category: mid-range Siglent or Rigol.

• The no-frills, cheap Japanese car—it's going to be efficient and cheap, get you from
point A to point B, but you're not going to get a lot out of it on the speedway. Brands
that I classify in this category: low-range Siglent or Rigol.

• The "el cheapo" Chinese car. It is cheap; it's a box with an engine and a driving
wheel, but not much more. Also, don't have a crash in it: its safety is not so well
engineered. Brands that I classify in this category: OWON.

Approach to buying test equipment 11

And just as with a car, you can find very interesting second-hand deals! Don't
underestimate second-hand instruments—a lot of renting companies sell their used
equipment second-hand, and you can score pretty sweet deals like that. (My first
oscilloscope was a second-hand 100 MHz-bandwidth Phillips, which I scored on eBay
and used for 3 years without a problem.)

What to buy, what it does, and when to buy it
Here is a table of the main types of different instruments, what they are used for, and how
much they are needed (0 being the highest priority):

12 Setting Up Your Pentesting Lab and Ensuring Lab Safety

DMM
The DMM is your principal tool—you will be using it all the time. I really mean all...
the... time....This is probably the piece of equipment you will find the most fanboy
discussion around, and they can scale from a few USDs for handheld Chinese super
low-end to a few thousand for a brand name, high-quality, precision-bench DMM. My
first recommendation is: get two—a good workhorse from a good brand (no need to go
to the super-expensive Fluke ones for your first one) for which you can make a reasonable
investment, and an "expendable," low-precision one (in the 20-30 USD range). The reason
behind having two DMMs is that you may have to measure voltage and current at the
same time but this is not very often, so investing in two good ones isn't worth it.

Approach to buying test equipment 13

DMM basics
Your DMM will come with a manual. Read it. Even if you have used a multimeter before,
you have to know the basic characteristics of the tool you will be using.

If you have never used a multimeter, it should come with at least these functions:

• Voltage measure: This will measure the voltage difference between the two test leads.
If your DMM doesn't have an auto-range function (like most entry-level meters), you
will have to set the measuring range and set it to direct or alternating voltage.

• Current measure: This will measure the current (the amount of electricity) passing
through the leads. Again, pay attention to the range. Most of the time, you will have
to change the connector one of the leads is plugged into (from V to A; sometimes
there is even a mA connector for lower ranges).

• Resistance measure: This will measure the resistance between leads by creating a
known voltage between the leads and measuring the current that the resistance lets
go through. Again, pay attention to the range. The resistance is inferred by using
Ohm's law:

Voltage (in volts: V) = Resistance (in Ohms: Ω) x Current (in amperes: A).
• Continuity test: When the test leads are connected with a negligible resistance,

the multimeter will beep.

Tip
Never use the continuity measurement or resistance measurement modes
on a live circuit—not only can the reading be false but you can also damage
your DMM!

Getting your workhorse
You will be able to find a curated list of DMMs with their characteristics and
comparison on the EEVblog forum. (I also warmly encourage you to watch the videos
from EEVblog—Dave Jones' style isn't for everybody, but I personally like it a lot and his
videos are always very educative.)

The list can be found here: https://www.eevblog.com/forum/testgear/
multimeter-spreadsheet/.

I really don't recommend going for a very cheap Chinese DMM, nor can I point you
toward an exact model since it may not be valid in a few months.

https://www.eevblog.com/forum/testgear/multimeter-spreadsheet/
https://www.eevblog.com/forum/testgear/multimeter-spreadsheet/
https://www.eevblog.com/forum/testgear/multimeter-spreadsheet/

14 Setting Up Your Pentesting Lab and Ensuring Lab Safety

The elements to pay attention to when selecting a DMM (in order of priority) are
the following:

• The DMM really should be of a safety rating compatible with what you are
measuring (at least CAT III, as you will be measuring main voltages at some point)
and the probes should be really sharp. In a worst-case scenario, you can always buy
replacement probes.

• Bandwidth, precision (the number of displayed digits), and the count numbers
should be as high as your budget allows.

• The speed of the continuity test (try to find review videos)—you want it to be as fast
as possible.

• The available ranges—you really want as wide a range of measurement as possible,
both of alternating current (AC) and direct current (DC) (it should range from
millivolts to at least 1,000 volts; from a few ohms to a few dozens of megaohms; and
from a few microamps to 10 or 20 amps for current).

• The input impedance (that is, the capability of the meter to read the voltage from
a circuit without disturbing the circuit)—you want at the very least 10 megaohms
(the higher the better).

• A serviceable fuse that you can replace easily.

• Good back-lighting to help with screen visibility when you are working late.

Soldering tools
Get a good temperature-controlled soldering iron with widely available replacement
tips. Again, it is desirable to have a good workhorse and a lower-quality secondary iron
(you will very rapidly be confronted with the necessity to rework surface mount parts;
it is often tricky with a single iron and very often results in damaged PCB pads). The
temperature control is very important since you will be confronted with leaded and
unleaded solder, which have a different melting temperature; different-sized components
with their own thermal mass (that is, how much heat does the component source from
your iron before getting hot); and so on (get both irons with temperature control; the
secondary doesn't need to be as precise as the main one). Some additional supplies are
also extremely useful, as listed here:

• Liquid and tacky flux: This allows the melted solder to flow much more easily on
the leads and pads. You will be constantly removing and re-soldering parts from
PCBs, and flux will be helping you tremendously, especially for surface-mounted
device (SMD) parts.

Approach to buying test equipment 15

• Soldering wick: This is an invaluable tool to remove excess solder and clean PCB
pads before soldering back a part.

• Fluxed, leaded solder: Get two different thicknesses, one in the 0.5 mm range and
the other one as thin as you can get for SMD rework. You will find leaded solder a
lot easier to work with as it melts at lower temperatures, flows better, is much easier
to wick out, and allows you to drown unleaded solder on multi-leaded chips to
remove them. Since unleaded solder has a lower melting temperature, it is tricky to
keep multiple leads in a nice melted blob of solder on all leads to remove it. Alloying
the unleaded solder with additional leaded solder will help you a lot with this.

• A third hand: Yes—this tool's name sounds strange but it is a common tool. It is
a heavy-based tool with two (or more) springy pincers that will hold components
in place while you are soldering. To get how it is helpful, just imagine yourself
soldering, with a soldering iron in one hand and the solder wire in the other. How
would you hold parts or wires in place? These are really small, very light things that
can move under the smallest shock and tend to do this at the worst moment possible.

• Tips: When you select your iron, try to find one for which the tips are reasonably
cheap for different shapes; you will find the default conical tip that most irons come
with to be actually impractical compared to a truncated cone.

• Tweezers: A soldering iron will get too hot for your grubby little fingers very fast.
Having a nice set of cheap tweezers with different tip shapes will be very helpful to
hold and manipulate small components.

• Side cutters: Flush side cutters are very useful to cut component leads very close to
the PCB.

• A PCB holder: This will allow you to hold firmly a PCB (and orient it easily) while
you work on it.

Logic analyzer
Here, there are two distinct ways, either open source software-based (sigrok) or
proprietary ones (there are plenty, but Saleae is well known as being easy to use).
Saleae hardware is, in my opinion, a little bit expensive for the punch they pack but it
is balanced by very good software. It is possible to find Chinese copies of some of their
(either older or smaller) models, but I would refer to the excerpt on knock-offs at the
beginning of the chapter. Sigrok is compatible with a very wide list of hardware (you can
find it here: https://sigrok.org/wiki/Supported_hardware). I personally use
both: an OpenBench Logic Sniffer (by dangerous prototypes) with sigrok at home, and
Saleae at work.

https://sigrok.org/wiki/Supported_hardware
https://sigrok.org/wiki/Supported_hardware
https://sigrok.org/wiki/Supported_hardware

16 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Here is what to look for in a logic analyzer:

• Sample speed: This is the speed at which the analyzer samples the signal and
determines the maximum speed of signal you can read accurately. The Nyquist
criterion tells us that to read a signal accurately, you have to sample it at least at
twice the speed of the signal.

• The number of inputs: The higher the better, but you can cover a very large
percentage of buses with the basic 8-channel analyzers.

• The input protection: You may plug a probe on the wrong thing; you may
accidentally burn a test system when fiddling with wires; your soldering iron may
be badly grounded; and more.... There are a thousand things that can kill your
analyzer; either have spares or good protection.

• The input impedance: Similar to the DMMs—at the very least, 10 megaohms.

Bus pirate
Easy—there is only one. There is a debate about which version to use (v4 can be buggy
sometimes, so go for v3). The bus pirate is a tool that will allow you to interact and play
with the most common protocols used to talk with chips.

MCU platform
The MCU platform will be the most controversial piece on the forums and on the internet
in general.

I strongly recommend getting familiar with a vendor platform in the Advanced RISC
Machine (ARM) family because of these factors:

1. The ARM architecture will be a very common target.

2. It is widely supported in term of compilers and debuggers with open source
toolchains (GCC, OpenOCD, GDB, and so on).

3. Development boards are very cheap, plentiful, easy to find, and quite complete.

4. You can find screaming fast platforms for quite a cheap price.

5. Packages with a large number of very fast I/O are very common.

6. The necessary passive components to support the MCU can be quite low.

Approach to buying test equipment 17

I am very partial to the STM32 family from STMicroelectronics. It may have its quirks,
but the development boards are incredibly cheap. Some quite capable MCUs can be found
mounted on cheap Chinese boards, in the 4 USD range (delivered) on popular websites
(eBay, AliExpress, and so on) offering a ton of I/Os and quite decent hardware peripheral.
A few bucks more will get you an official board, which includes a programmer (that can
be used to program the cheap ones quite easily). This is my personal opinion and mainly
comes from the fact that these cheap development boards were among the first ones I had
access to and, hence, I learned to use the quirks and features of the family quite well.

Plenty of other vendors (Texas Instruments, Cypress, NXP, and so on) offer quite
comparable boards in the same price range. My main advice would be: choose a vendor
and a family, get well acquainted to it, and stick with it. The chances are that you'll be able
to select the family member with the speed and peripheral set that will fit your needs best
when you have a specific requirement set.

JTAG adapter
JTAG, to start with, is an interface that was designed to test the soldering of integrated
circuits. It was designed as a shift register that was able to activate all the leads of a CPU in
order to be able to test the electrical connections. The basic design of JTAG was conceived
to allow for the daisy-chaining of chips in order to have a single chain that could be
leveraged to test a board. It was later enriched with CPU-specific features (that are not
well standardized) in order to allow for in-circuit debugging and programming. It can be
very useful for your own developments or to get access to the internal states of a chip if it
is not disabled in production.

JTAG is based on a (minimum) four-wire bus (data in, data out, test, and clock). This bus
is piloting a state machine in each target chip. (JTAG will be covered in more depth in
Chapter 10, Accessing the Debug Interfaces.)

Oscilloscope
An oscilloscope will be a very useful tool for exploring signals and probing different lines.
Basically, an oscilloscope will allow you to visualize a voltage in function of time. To get a
good grip on the basic operation of an oscilloscope, please refer to Tektronix's guide XYZs
of Oscilloscopes and read your oscilloscope manual from front to back.

18 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Selecting your oscilloscope is almost easy—the baseline is that you want to get the most
bandwidth and the most memory size for your budget. The question of whether to select
a two-channel or a four-channel oscilloscope is very common. As usual, it boils down to
a tradeoff. If you can get a four-channel with a bandwidth of 100 MHz or more within
your budget, get it. A four-channel oscilloscope is very useful if you are exploring systems
where more analog electronics are used and where you want to correlate an event's
occurrence relative to another event.

Before taking your decision, it is really important that you watch test videos and, if
possible, teardowns to compare the usability of your different candidates and the
possibilities of repairing them in the case of problems. Do not underestimate repairability,
I broke the screen of a 500 USD scope and I was really happy to be able to fix it with a 30
USD Chinese screen.

The bandwidth
The bandwidth of an oscilloscope is actually not equal to the maximal speed you will
be able to measure. It is what is called a -3 decibel (dB) bandwidth. A -3 dB bandwidth is
the frequency at which the instrument will measure a signal at half of its actual power.

This means that a 100 MHz-bandwidth oscilloscope will measure a 100 MHz, 1 V
peak-to-peak p sine wave as a 0.7 V peak-to-peak signal!

To accurately read a sine wave (that is, at its actual voltage level), you will need at least
three times the bandwidth of the signal.

Bandwidth is the characteristic of an oscilloscope with the most impact on the buying
price. Take what the maximal and usual frequencies that you need to measure will be and
make your decision accordingly.

Regarding the number of channels, it is very simple: the more channels you have, the
better it is. Take into account in your decision that, most of the time, you will need one or
two channels; measuring three and more signals is not something you will need every day,
but you will be happy to have it when you need it.

The probes
There are two main types of probes: active and passive. To make it simple, you can only
use passive probes under 350MHz (for higher speed, you will need active probes). Passive
probes are quite cheap and come with a manual switch between different "damping
ratios" that can be taken into account in the oscilloscope's interface. The probes are really
important, same as the DMMs; you will want very sharp probes with a wire grabber.
Good-quality probes are quite common with oscilloscopes. Don't forget to compensate
your probes—the procedure should be described in your scope's manual.

Approach to buying test equipment 19

Display
Most modern oscilloscopes come with additional display functions, such as Fast Fourier
Transform (FFT), which allows you to see the signal in the frequency domain instead of
the usual time domain); XY display (which allows you to see the signal on a channel in
function of another channel); and X/Sin(X) (read Chris Rehorn's excellent paper Sin(x)/x
Interpolation: An Important Aspect of Proper Oscilloscope Measurements and about the
Nyquist-Shannon Signal sampling theorem).

Interfaces
It is very common to find network (Ethernet) remote commands and display; Video
Graphics Array (VGA) output; USB storage of measured waveforms. This can be very
useful to display waveforms on your computer or extract the samples from a measurement
for later processing.

References
Just as with DMM, a list is maintained on the EEVblog forum: https://www.eevblog.
com/forum/testgear/digital-oscilloscope-comparison-chart/.

Hot air gun
A hot air gun shoots hot air at a controllable temperature and flow rate. This is very
practical to solder or unsolder surface-mounted components. Some accessories and
consumables are inseparable companions to an hot air gun: solder paste (to tin your
pads, this can be deposed pad by pad with a toothpick) and Kapton tape (this is a type of
heat-resistant sticky tape that can be used to protect components next to the one you are
soldering or desoldering). I would recommend using leaded solder paste but this can be
tricky to get in Europe or the US. The use of a hot air gun requires practice to be efficient
and I would recommend watching technique videos and train on junk/broken boards
before going at it on an important PCB.

Here are the things that you have to look for in pretty much all of the hot air stations you
will find:

• Regulated temperature

• Regulated airflow

• Replaceable air gun head (to be able to have thin or wide flows; it can also be
interesting to replace the head with a square one for bigger quad-flat packages
(QFPs) or quad-flat no-leads packages (QFNs).

https://www.eevblog.com/forum/testgear/digital-oscilloscope-comparison-chart/
https://www.eevblog.com/forum/testgear/digital-oscilloscope-comparison-chart/
https://www.eevblog.com/forum/testgear/digital-oscilloscope-comparison-chart/

20 Setting Up Your Pentesting Lab and Ensuring Lab Safety

FPGA platform
FPGAs are really practical for fast logic processing. Their main downside is that
most of them require a proprietary programming and synthesis (the FPGA lingo for
compilation). At the time of writing of this book, only the Lattice iCE40 had an open
source development tool chain available (and support for the Xilinx 7 series is supposed
to be coming up soon). Most of the proprietary environments are quite expensive if you
want to cover most of the chips of the vendor, but some development kits come with a
development environment limited to the chip that is on the board. I personally use an
Artix-7 Arty board that I was trained on by Toothless Consulting's Dmitry Nedospasov,
and I am very happy with it.

Vendor
A few vendors share most of the FPGA market: Xilinx; Intel (who acquired Altera);
Lattice; and Microsemi (who acquired Actel). As for MCUs, most of them are almost
equivalent (short of their development environments); depending on the time you are
buying, just take the best development board you can find and stick to the vendor.

Language
A very common question is the language to develop with, being Verilog or VHDL. Verilog
tends to be more common in the US, while VHDL is more common in Europe. The most
important part is that both languages are equivalent; you can achieve exactly the same
results and it is more a matter of taste. From my point of view, I tend to find VHDL is a bit
more descriptive but as a downside, it requires more boilerplate code. I personally prefer
Verilog since it is terser and easier to find examples for.

Lab power supply
Your lab power supply will allow you to power up your circuits and your target system.
Some very practical features you really want on your supply are listed here:

• Current limitation: This will allow you to prevent things from burning when you
are messing with the circuitry. I usually measure the current consumption of the
circuit in a normal context (over an hour, for example) and set the current limit
5-10% higher than the measured consumption.

• Current measurement: This will allow you to detect some more power-consuming
behaviors in the target system, such as radiofrequency (RF) emission.

Approach to buying test equipment 21

• Multiple (at least two) variable outputs: This will allow you to run some part
of your target system at a voltage less than what they are intended to run at, or
at a current limited to less than what they need, potentially triggering some
interesting errors.

• The ability to chain outputs in case you need some higher voltage than usual.

Programmable power supplies aren't needed to start, but they can come in handy later when
you need to program some behavior in function of time or other behaviors on your target
system. They are usually more expensive than the simple ones but can come in handy.

Small tools and equipment
You will need a lot of different small tools in your lab. I personally use multiple mugs and
boxes to keep them ready near my work area. Some examples are listed here:

• Tweezers: There are different point shapes and quality. You will have a very frequent
use for sharp pointy ones for very small SMD components (0201, for example)
and rounded, slightly larger ones for more common packages (0805, for example).
The lowest-quality ones tend to bend quite easily, and I find that investing in
medium-quality tweezers can be advantageous. You can find these for quite cheap
on bidding sites such as eBay.

• Scalpels: I tend to use n°4 medical scalpel handles with detachable blades. They
replace very advantageously the usual X-ACTO knives (even if the blades are a little
less sturdy) since the blades are very cheap in packs of 100 and are available in a lot
of different shapes.

I keep a stock of the following blades:

- n°26: for general cutting work and scrapping traces

- n°23: for cutting work that needs some force and cutting plastic

- n°19: for scrapping traces
• Screwdrivers: You will need a set of long- and thin-precision screwdrivers with

multiple heads (at least flat, pozidriv, torx, and hex) in multiple sizes. The best
approach here is to buy a set of screwdrivers with multiple heads and sizes. I would
also advise that, when you have to buy a set of security bits, you buy one with the
following: security hex, security torx, tri-wings, tri-groove, pig noses, and clutch
A and G.

22 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Some vendor-specific and even customer-specific screw/screwdriver couples
exist, but this can usually be defeated with a bi-component epoxy compound or,
in extreme cases, with a bit of aluminum casting or computer numerical control
(CNC) machining.

• Clamps: The type of clamps you will be most interested in are called Kelly forceps.
This type is used to keep things together with a bit of force, like holding boards
together while soldering or holding wires in place while glue is curing.

• Pliers: You will very often use cutting pliers and long-necked ones to cut leads,
remove connectors, and for a variety of different tasks. Again, buying decent-quality
pliers will ensure they can survive small amounts of abuse that is very common in
regular usage. I would advise investing in a good-quality wire stripper plier (of the
simplest, flat kind that looks like a pair of pliers with multiple teeth sizes for the
different wire sizes). I find that self-stripping tools tend to rip and break the cables
that usually come with embedded systems far too easily.

• Breadboard: A breadboard is a tool where you can plug multiple wires and
through-hole components temporarily. This is very useful to make small temporary
circuits to power components and to have some glue logic, level shifting,
modulation, and so on. You can easily start with cheap breadboards from bidding
sites but they degrade quite quickly. Better quality brands such as 3M degrade less
quickly, are a bit expensive, but hold better value over time.

Breadboarded circuits tend to be very fragile due to the way the components are
mounted. Due to stray capacitance, I would not advise using breadboards with
frequencies over 5 MHz. The indispensable companions to the breadboard are
jumper wires (a length of wire with male or female connectors crimped at the end).
Just find cheap lots of male-male, female-female, and female-male on bidding sites
and buy some. I consider these consumables since I regularly cut them for ease of
connection to a breadboard.

• Perfboard/Stripboard: These plates of PCB have either copper dots or strips you
can cut and solder together in order to create circuits. They are more solid than
breadboards and behave a bit better at higher frequencies.

• Magnification: As a first step, I recommend buying a few magnifying glasses that
you can mount on your third hand (if it doesn't come with one already). At a later
stage, and especially if you are working with very small components (0201 SMD
or a lot of very fine-pitch MCUs, for example), a stereo microscope is very useful
to see what you are actually soldering and keep a sense of depth to position your
iron accurately.

The component pantry 23

Renting versus buying
It is quite common for companies to rent their test equipment long-term. It may or may
not be interesting depending on your volume of use for a certain type of equipment.
For example, you may need a specialized piece of equipment (such as a high-end
software-defined radio (SDR); a vector network analyzer; a very very fast oscilloscope)
for a specific engagement but you will very rarely use it in your normal work; then, it
may be very practical and economically right to rent the piece instead of buying it.
In a professional context, my approach for it is the following:

• If it is less than 2,000€, just buy it—renting will not be worth the hassle

• If I know I will not use it again in the next 6 months or if it is over 10,000€, rent it.

• The scope in the middle is then just a matter of calculation, as follows:

- (daily rent cost) x (number of days foreseen in the following year) < 50% price:
rent it.

- else, buy it.
Additionally, renting a piece of equipment before buying it will allow you to evaluate its
interface and its performance across the spectrum of your different usages. Now that we
have seen the different instruments we need to interact with components, let's have a look
at those.

The component pantry
You will need a component pantry—by that, I mean that you will need at least an
assortment of common resistors, capacitors, transistors, and voltage regulators always at
hand. More often than not, you will find yourself in need of a jellybean component and
will actually gain a lot of time by just having it available.

The pantry itself
Buy some of those drawer cabinets commonly sold to people that are making jewelry
or doing any other hobby involving a lot of small pieces. Buy enough of them so that you
can sort easily the (quite large) number of parts you will end up storing. Start by buying
two to three of them; that will cover you for a few years. They are not really expensive and
are really worth it.

24 Setting Up Your Pentesting Lab and Ensuring Lab Safety

I would advise labeling the drawers as quickly as possible and finding an organization
system that suits you. For example, I have a column for through-hole resistors; another
for surface mount; some drawers for capacitors; some for coils; and a column dedicated
to silicon (diodes, transistors, voltage regulators, electrically erasable programmable
read-only memory (EEPROM) , and others)

I also have a lot of custom shelves made out of cheap medium-density fiberboard (MDF)
planks and brackets just screwed in the wall. There, I keep labeled boxes with development
kits, instruments, a lot of electronic waste for cannibalization, instruments I rarely use,
and others.

The stock
To start, I would advise keeping the following in stock:

• A collection of common resistors (buy some cheap E12 resistor kit on eBay) in
through-hole (THT) and surface mount (SMT— a lot in 0805 and a few in 0402).

• A (small) collection of chemical and ceramic capacitor in common values (a
few in the picofarad range: 0.1µ, 10µ, 47µ mainly, and a few big ones for power
decoupling). For the packages, same thing as the resistors: a mix of through-hole
and surface mount.

• A few power (1N4004) and signal (1N4118) diodes. A few Zener diodes for
common voltage levels won't hurt (5, 3.3, 2.5, 1.8, 1.2). Zener diodes are designed
to let current flow at a given voltage level, allowing you to protect circuitry against
voltage spikes or to use them as a crude voltage conversion.

• At least a dozen fixed voltage regulators for the common voltages (5, 3.3, 2.5,
1.8, 1.2) and a few beefy adjustable ones (LM317 in a TO-220 package is very,
very useful).

• Some standard transistors (both Field Effect Transistors (FETs) and Bipolar
Junction Transistors (BJT), again in a mix).

• A few salvaged power supplies that can provide you with 24, 12, and 5 V (the
powerful USB chargers that come with modern phones will give out a nice stable
5 V with decent amperage, are plentiful). Power supplies are very common e-waste
and you can usually score a dozen for a small bill in any flea market... keeping them
useful and out of the waste pile is both good for your wallet and the planet.

To keep my stock filled and enrich it, my strategy is to always order 10-15% more
than I need in projects, just to cover the usage and not to have to follow individual
component use (1 minute of your time is worth more money that the few fractions
of cent a resistor costs).

Sample labs 25

Now, you should really play around with the components in your stock, learn about them,
and make a few classical circuits to learn how they work and what they are actually doing,
since keeping things you don't know how to use just for the sake of hoarding wouldn't
make much sense, would it?

Now that we have looked at our instruments and components, let's have a look at a
possible evolution path for your lab.

Sample labs
In this section, we will be looking at different states of a home laboratory (from beginner
to pro) that you could take inspiration from. When a piece of equipment is not described
at a given level, it means that the piece is kept from the level before. Some pieces of
equipment are not necessary before a given level of maturity (for example, the pro level
doesn't have a new hot air station because it is kept from the amateur level).

Beginner
At this stage, the goal is to kickstart the activity as cheaply as possible, acquire knowledge,
and check that you like it without burning too much money. Have a look at the
following table:

Price: <500€.

26 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Amateur
At this point, you like the activity but you are starting to be limited by your equipment.
You have circumvented some limitation by doing hacks, you have rolled out your own
code to drive peripherals for common protocols on your current MCU and bit-banged
some, but your platform is starting to become slow, your scope is not fast enough or
lacking digital trigger, and more. Here are some pieces of equipment you can buy to solve
these problems:

Price: <2,000€

Summary 27

Pro
At this point you are doing it regularly, so you will pretty much know what you will need.
Have a look at the following table:

Price: ~8,000€

Summary
In this chapter, we have seen the different tools that you will use and the different elements
you will need to pay attention to when creating your laboratory.

A usually underestimated aspect of the lab is comfort—you will really spend a lot of
time in there, so a good chair and a lot of natural light are quite important. I hope you will
find all of these tips useful in the long run and that they will avoid you having to learn the
hard way (like I did...I indeed spent money stupidly and burnt myself and shocked myself
and hated my chair and... well pretty much did every possible mistake I speak about in
this chapter...).

In the next chapter, you will learn how to approach a target system and harvest
information about it.

28 Setting Up Your Pentesting Lab and Ensuring Lab Safety

Questions
1. Why would you want two DMMs?

2. What is a 3 dB bandwidth?

3. Above which frequency will a breadboard parasitic capacitance interfere with
the signals?

4. Who produces the bus pirate?

5. What is an oscilloscope?

6. What is the gist of the Nyquist-Shannon signal sampling theorem?

7. What is the main difference between active and passive oscilloscope probes?

2
Understanding

Your Target
When we look at the current state of developments in hardware, we can see that
developers rely on two assumptions:

• The hardware can be trusted.

• An attacker will not attack the hardware to threaten the software and the ecosystem.

However, if we look at the current situation, we can see that these premises are not
true anymore. We own cars, phones, TVs, and other devices, and knowledge about this
hardware is not reserved for a handful of electrical engineers anymore. Not only is that
knowledge now widespread and accessible, thanks to the internet, but the cost of the tools
necessary to mount hardware attacks has gone down drastically.

Attacking the hardware is not only interesting because the trust assumptions on
which software and ecosystem security is built do not really hold anymore (and hence
representing a weak link in the security chain) but because there is a direct and physical
relationship with the system. Soldering, cutting, and drilling are ways to form a more
direct relationship with systems than spending hours purely coding and mean we will
interact at a way deeper and more intimate level of system functionality.

30 Understanding Your Target

Now, how do these systems work? Before grabbing your trusted soldering iron, let's talk
about the big blocks that compose an embedded system (or a computer in general).

Embedded systems all share common functional blocks (that is, groups of components
that will achieve a function). These blocks interact with each other to provide the
product's functionality.

In this chapter, we will go through functional blocks and will explain what functionality
they provide. You will find that these blocks are also found in more classical (that is,
non-embedded) systems. Knowing what typical blocks to expect in a system and how
they interact together will help you in understanding how your target system works.
Knowledge of these interactions will be important, from a pentesting point of view, to
understand how they provide security properties and to help you find security issues.

The following topics will be covered in this chapter:

• The CPU block

• The storage block

• The power block

• The networking blocks

• The sensor blocks

• The actuator blocks

• The interface blocks

The CPU block
The CPU's goal is to process information. This is the core of the system and is your
ultimate target in a penetration test. In the vast majority of cases, the CPUs you will be
testing will have a von Neumann architecture (that is, the bus for data and instructions
is shared) and rarely a Harvard architecture (a separate bus for data and instructions).
From a penetration testing point of view, Harvard architectures are less exposed to buffer
overflows since these buffers typically contain data that cannot usually be executed.

CPU roles
The CPU itself will perform the following activities:

• Executing the different arithmetic and logic instructions, such as addition,
multiplication, subtraction, division, and so on

• Reading and writing memory

The CPU block 31

• Managing the different hardware peripherals that are integrated with it,
such as UART, SPI, cryptographic peripherals, storage peripherals, and so on

• Reacting to interrupts from, and communicating with, the embedded
hardware peripherals

In the literature, you will sometimes find references to MCUs (or µCU) and MPUs. MCU
designates a microcontroller and MPU a microprocessor. The main differences between
an MCU and an MPU are that MCUs have on-chip program storage while MPUs use
external storage for it. Both MCUs and MPUs are forms of CPUs.

Common embedded systems architectures
In the general computing world, the x86 (and its modern implementations found in
most computers) architectures are largely dominating the market (this is the architecture
found in most PCs). This architecture has its limitations, though, which make it not
always suitable for embedded systems (mainly due to its power requirements and price).
A processor architecture consists of the instructions and operations the CPU accepts
(called an Instruction Set Architecture (ISA)) and how they are interpreted to drive the
data processing. Basically, it details what to tell the processor, whether to do an addition,
a subtraction, read and write to memory, and more.

The ISA is the description of the architecture:

• The list of the instructions that the CPU accepts (what they do and how)

• The description of the different registers and how they influence the behavior
of the data processing

The description of an ISA and the architecture is a big corpus of data and documentation
that you will study depending on your current target. It is not my goal here to describe in
depth how the different architecture behaves in detail (that would fill the book, being its
entire contents, and would make it quite boring).

I will go through the most common architectures found in the embedded world in order
for you to be aware of their existence and their main characteristics but, if you need to dig
down to the architecture level, you will need to study the details on your own.

32 Understanding Your Target

ARM
Acorn RISC Machine (ARM) is a von Neumann architecture with two execution modes
with different characteristics :

• Thumb mode:

- It is a 16-bit instruction, 32-bit data ISA (but the Thumb-2 extension added a few
32-bit instructions to provide equivalent functions to the ARM instructions).

- Code is very compact since the instructions are 16-bit.
• ARM mode:

- 32-bit instructions

- Available in both 64- and 32-bit flavors (the instructions stay the same; this mainly
changes the size of the operands)

This is a very popular architecture since ARM's business model makes it very easy to
create CPUs with a set of companion peripherals that are targeted at a specific application
(for example, for a phone, you could make a CPU tailored to your needs (for a few million
dollars) with a touch display driver, inputs for a microphone, a peripheral to drive RAM,
flash storage, and more, and for a much cheaper heating controller – something with just
a few timers, some basic input/outputs, and that's it). ARM is actually a fabless (without
fabrication) vendor. ARM actually designs the core of the CPU and licenses the core
design to other vendors that actually put peripherals around it and make (or have them
made by a third party) the final chips. This is the architecture that gives life to most of
today's smartphones, TVs, and a lot of consumer electronics.

MIPS
Microprocessor without Interlocked Pipeline Stages (MIPS) is an architecture that
is usually present in networking equipment (routers, switches, and so on) and in some
consumer products (PSP, cable routers, and so on). This von Neumann type architecture
is available in 32-bit and 64-bit variants. The architecture supports co-processors natively.
These co-processors are used for application-specific hardware acceleration. In late 2018,
Wave Computing, the new owner of the MIPS architecture, announced the open-sourcing
of the ISA for 2019 to compete with other open source architectures, such as Reduced
Instruction Set Computer V, also known as RISC-V.

The CPU block 33

Atmel AVR
The Atmel AVR architecture (present in ATtiny, ATmega, and so on) is a Harvard
type, 8-bit to 16-bit RISC architecture. It is usually present in low-power Internet
of Things/embedded-type consumer goods and older industrial systems. This is the
architecture that powers most of the Arduino type development boards. Getting familiar
with this architecture's MCUs is very practical to develop quick and cheap attack tools.

PIC
The PIC family of micro-controllers (made by the Microchip company) is a Harvard-type
architecture, available from 8-bit to 32-bit ISA implementations. The relatively low price of
the PIC family ensures its pervasive presence in low-cost, low-processing power devices.

RISC-V
The RISC-V (pronounced risk-five) silicon architecture (and its open source OpenRISC
companion ISA) is entirely open source and, as of 2019, has been physically implemented
by multiple companies. Due to the open source nature of the ISA, it is widely used
in academic contexts (for example, I learned the fundamentals of CPU architecture
at university with a lot of RISC I examples) and is believed to become a significant
competitor to ARM, thanks to the royalty-free nature of the ISA. Large vendors of
specialized MCUs have already announced the migration of their lines towards RISC-V
(Marvell, Western Digital, and so on). It is a von Neumann architecture available in 32
and 64 bits and, in the future, also in 128-bit word length.

Other architectures
There are a lot of other architectures on the market (HC8, Blackfin, and so on). They
are less common or more targeted towards specialized markets. Testing on these
infrastructures requires closer collaboration or higher research investment due to their
less documented or more closed nature.

Information box
Check the list of CPU architectures described at https://
en.wikipedia.org/wiki/Comparison_of_instruction_
set_architectures, if you want to know more.

https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures

34 Understanding Your Target

The storage block
Storage blocks are components (or groups of components) used to store information. Two
storage blocks are always present, the RAM (for lower-end MCUs, it is usually in the CPU
chip itself and for higher-end MCUs, it is outside of the chip) and the program storage.
Some optional additional long-term storage can be present (usually as flash memory on
modern systems, but it can vary from spinning hard drives, EEPROMs, to diode matrix
ROMs on older systems).

RAM
RAM is very fast, tightly CPU-coupled (and usually more expensive) memory. This is
where the CPU usually fetches its instructions from, stores the short-term results of
its operations (they are then stored for the long term in a slower and cheaper storage
medium such as flash), and so on. The main characteristics of RAM in current systems
are as follows:

• Very fast compared to long-term storage (for example, EEPROM, flash, or a
hard drive)

• Much more expensive compared to long-term storage (for example, EEPROM,
flash, or a hard drive)

• Loses its content on power loss (this is called volatile memory)

With research advancing around a new type of non-volatile, fast memory (mainly FRAM),
this paradigm could change in the next few years. From a pentesting point of view, being
able to dump RAM can allow us to find pieces of data of interest such as decrypted bits of
code, crypto material, and so on.

Program storage
This is slower, non-volatile, and cheaper memory. This memory (usually flash in modern
MCUs, but this is one of the roles of the hard drive on a normal computer) stores the
instructions the CPU will fetch and execute after its boot sequence. Some architectures
and implementations will fetch and execute data directly from it; some others will
have a RAM transfer mechanism before executing the instructions. Depending on the
system, this can be external to the CPU chip but it is always interesting to dump from a
penetration testing point of view since the code (and sometimes other pieces of data of
interest) is located here.

The power block 35

Storing data
Storing data can be done in the RAM for short-term retention. The storage media can be
external or internal to the CPU chip (when it's internal, it usually uses a portion of the
same media that is used for the program storage). The external storage usually takes the
form of a serial or I2C EEPROM on small systems. Larger systems can sport just about
any kind of storage, from the smallest EEPROMs to enterprise-grade hard drives or
SSDs. The largest storage forms (more than a handful of megabytes) usually embed
some form of filesystem or in-house "packing" system for the firmware. This form of
packing is usually used to organize the content, compressing or reducing the storage size
(stripping unnecessary headers of files).

The power block
The power block's role is to power the different parts and subsystems within the system.
It is of the utmost importance that the power section is approached by taking a lot of
precautions and using protection. Some of the systems you will test will expose dangerous
voltages or components. No test is important enough that you take the risk of maiming or
killing yourself. Living to be able to do more tests and to get back to your family safe and
sound is the most important part of your job as a hardware penetration tester.

The power block from a pentesting point of view
From a pentesting point of view, studying the power block will allow you to identify the
different voltage levels used within the system. Do not assume that everything happens in
one physical space; in modern systems, it is very common to have power rails distribute
power across the system with higher voltage, more powerful electricity sources, and local
regulation that is physically near the consumer components. This allows a reduction in the
risk of electrical noise disturbing components sharing the same power rail.

Some advanced attacks (for example, glitching or differential power analysis) target the
power block. These kinds of attacks will not be covered in this book since they require
a firm understanding of how the CPU behaves with respect to power.

Information box
If you are interested in these kinds of power attacks, look into differential
power analysis and fault injection (glitching). Colin O'Flynn's website is a good
start for theory, software, and hardware regarding this.

36 Understanding Your Target

The networking blocks
The networking block allows the system to communicate. This communication can be
done with other systems (mesh networking), with sensors, or with the system's backend.
There is a wide variety of physical transport means (wired or not) for protocols over these
layers. The typical interesting scenarios on a network level all pertain to breaching the
trust between the system and its communication peers.

From a system point of view, we will typically listen to the traffic as a first step to evaluate
the security of the communication with its peer to verify how hard it is to impersonate
a peer, for example:

• We will look into impersonating a remote sensor to fool the system into harvesting
fake data or to evaluate the system's capability to handle malformed information.

• We will look into impersonating the backend to distribute malicious firmware
updates to evaluate the possibility of leveraging the system for nefarious activities.

From a peer point of view, we will proceed with the same state to evaluate the possibility
of impersonating the system. For example, we will look into impersonating the system to
do the following:

• Evaluate the possibility of reporting erroneous data to the backend

• Harvest firmware updates for further analysis

Common networking protocols in embedded systems
This section covers different (but far from all...) networking protocols commonly used in
embedded systems.

They are further classified as follows:

• Physical layers: Physical layers take care of the actual signal that transports
the information.

• Transport layers: Transport layers take care of the aspects linked with... you
guessed it… transporting the information (called the payload). This model allows
the encapsulation of information, allowing you to change, after the fact, what is
transported or what transports what.

• Logic layers: Logic layers (to put it simply, check the OSI layer model if you want
more details about how things are sliced) are what is finally transported and the
logic attached to it.

The networking blocks 37

The networking block can take different forms. Let's have a look at the most common
forms of networking in embedded systems.

Bluetooth/BLE
Bluetooth and BLE are mainly used to connect systems over short ranges (depending
on the device class, from 10 cm for class 3 to 100 m for class 1). It uses a 24-channel
(or 23-channel, depending on the country's regulation) system on a frequency from 2.4
to 2.48 GHz. BLE and BT2.0 are targeted at reducing power consumption. They use
a frequency hopping technique to avoid interference. This frequency hopping makes
the sniffing of Bluetooth a little bit less straightforward than other, simpler, radio layers.
The normal Bluetooth function requires the pairing of devices (unless the device has no
human interface, such as headsets and the like). This pairing (optional in BLE) allows the
devices to exchange keys used to cipher communication.

Bluetooth services
Bluetooth services are protocol submodules that provide the device consuming the
Bluetooth interface with different functionalities. Let's have a look at these functionalities.

SDP
The Service Discovery Protocol (SDP) allows you to discover services and profiles
available on the device. This can reveal non-standard services that may be worth
looking into.

RFCOMM
The RadioFrequency COMMunication (RFCOMM) service acts as a communication
means between a device and an endpoint or an intermediary. It allows the client to
connect to the device over a serial connection. Depending on the device, it can lend you
a connection to a shell on the underlying operating system, a connection expecting AT
commands, or more specific interfaces.

OBEX
The OBject EXchange (OBEX) layer allows Bluetooth devices to exchange objects over
a connection-oriented protocol. Objects can be transmitted bi-directionally over different
protocols on top of OBEX. Files can be transferred to the file system of the server over
FTP, phone book contacts accessed over the phonebook access protocol, and more.

38 Understanding Your Target

Ethernet
Ethernet is the familiar network plug found at the back of almost every computer. Sniffing
is easy with regular network sniffing software (Wireshark) and the availability of common
attack tools will ease attacking the system. In a pentesting context, the fact that we will be
providing the connectivity to the system will also ease the harvesting and attack phases.

Wi-Fi
Wi-Fi is a popular consumer technology. Its pervasiveness also ensures that attack tools
(hardware and software) are widely available. In a pentesting context, the fact that we will
be providing the connectivity to the system will also ease the harvesting and attack phases.
Wi-Fi provides the user with multiple (optional) ciphering modes (WPA, WPA2, and
more), including an utterly broken one (WEP).

IPv4/IPv6
Both IPv4 and IPv6 are very well known protocols that allow the transport of applicative
payloads. IPv4 has a 32-bit address space and IPv6 has a 128-bit address space. Both of
these protocols are widely documented and a plethora of attack tools are available.

ISM band protocols
The Industrial, Scientific, and Medical (ISM) band is a set of radio frequencies that
are free to use, under some conditions, without carrying a valid radio operator license.
Some of these frequencies are actually reserved for some specific uses and may or may
not be free to use in your own country. Please double-check with your local radio-
communication authority before doing anything (the device you are testing could use
frequencies that are not allowed in your own country).

Zigbee
Zigbee is based on IEEE 802.15.4 as a physical layer. This standard can use different
frequencies (based on the location):

The networking blocks 39

Zigbee is often used for premises automation and can be used as both star (with a central
node and branches) and meshed (with a net of nodes) topologies. Zigbee's main use case
is related to its very low power consumption (its cousin, Z-Wave, operates at a lower
800-900 MHz ISM band and is slower). It is a quite mature protocol, that is often used for
battery-powered systems where the battery life is a crucial aspect of the product. Zigbee
security mainly relies on its optional encryption settings.

LoRa
LoRaWAN is a star topology network that uses a chirp spread spectrum technique to
achieve the transportation of small data packets over long distances within a very small
power budget. It has different data rates (and hence different power consumption profiles)
that can be selected. It can either use a proprietary modulation scheme (that has been
reversed) or Frequency Shift Keying (FSK) modulation for higher data rates. The security
of the system relies on a 128-bit AES key for the integrity and authentication of messages.
Devices and the application are identified with a 64-bit key.

LoRa uses different channels and frequencies depending on the geographical region:

Information box
LoRa is a stack of both physical and transport layers.

Sigfox
Sigfox is also a star topology network. It uses both Gaussian Frequency Shift Keying
(GFSK), used for downlink, and Differential Binary Phase Shift Keying (DBPSK),
used for uplink modulation schemes to achieve the same goal as LoRaWAN (that is, the
long-range, low-power transmission of short messages). It does not natively support
encryption on a network level, but still, the messages are authenticated with a key of
unknown nature at the time this book was written. In the Sigfox transmission model,
every communication is initiated by the device, constraining the time frame for an
attacker to emit a message towards the device (although the downlink message is also
authenticated with a network key, which renders the device protected against simple
network attacks at the time of writing).

40 Understanding Your Target

Here are the Sigfox frequencies depending on your location:

Sigfox is a stack of both physical and transport layers.

HyperText Transport Protocol
The HyperText Transport Protocol (HTTP) is a clear text protocol that is very easy to
deploy (using a simple web server). Its use in itself is a vulnerability since traffic is easily
modifiable and readable by an attacker using commodity tools.

HyperText Transport Protocol with Security (HTTPS)
This is an encrypted and authenticated version of HTTP. In its basic usage, the
authentication part only ensures that the parties involved are indeed the ones the
connection has been established with. Ensuring that the server is indeed the server it
pretends to be, it requires that the certificates that are presented during the connection
establishment are signed by a trusted third-party certification authority (this is called a
certificate chain). Ensuring the client is indeed trusted requires some additional form
of authentication. The security layer HTTPS relies upon SSL/TLS, which provides an
integrated way to authenticate clients via the use of client certificates. It is not uncommon
for embedded devices to validate the certificate chain incorrectly.

Message queues
The message queue services allow the sending and receiving of messages to and from a
device. Many very popular open or closed applications are used in doing so (RabbitMQ,
MQTT, Apache ActiveMQ, and others). These services usually authenticate clients with a
cryptographic key or username and password combinations. A very common problem is
the reuse of these authentication factors across devices (the device identification being left
to other means), which allows the impersonation of any device if the credentials are stolen
on a single device.

NFC
Near Field Communication (NFC) is a modulated magnetic field that allows
communication at very close ranges (and can also power a passive device such as a card or
a tag that has no local energy source). This is an interesting communication path to look
into to circumvent some physical access control devices, for example.

The sensor blocks 41

The sensor blocks
The sensors provide the CPU with input from the real world. Sensors are external
peripherals that allow the system to sense the real world. They usually fall into
two categories:

• Analog sensors

• Digital sensors

Analog sensors
Analog sensors usually trigger a change in their electrical characteristics (through a form
of voltage divider or another physical effect) relative to the physical quantity they measure
and provide the CPU with a variable voltage (sometimes amplified). This voltage is read
through an Analog to Digital Converter (ADC), which is a peripheral within the CPU
chip itself or an external chip.

A lot of real-world physical characteristics can be read through analog sensors, as shown
in the following table:

42 Understanding Your Target

There is an entire field of engineering dedicated to creating analog sensors. From a
pentesting point of view, it is always interesting to research how they work since it can
sometimes give you creative ideas about how to circumvent or influence them in a
malicious way.

Digital sensors
Digital sensors are usually a convenient package built around an analog sensor. They
free up a CPU ADC (at the expense of using a spot on a communication bus). They also
free the developer from having to calibrate the analog sensor and sometimes from going
through a time-consuming (hence costly) characterization phase. These kinds of sensors
are as diverse as the analog sensor and they provide a digital interface too. The common
peripheral interfaces they use are described in Chapter 6, Sniffing and Attacking the Most
Common Protocols.

From a pentesting point of view, the inputs received from the digital sensor are largely
considered as trusted and very well defined by developers. This tends to make the code
that handles this kind of input very brittle.

The actuator blocks
The actuators actually act on the world (these are the things that actually do things
that can be perceived by humans as "the things the system does," such as triggering
heating, moving, and so on). These are your servos, your motors, your power transistors,
and so on.

The interface blocks 43

From a penetration testing point of view, interacting with the actuators can help you with:

• Collecting data that allows you to understand how the system works. Sometimes
the data itself can be interesting in a creative way to exfiltrate internal states from
the system (think about the original iPod 4G firmware extraction by Nils "nilss"
Schneider where he extracted the boot loader via a piezo bleeping – how cool
is that?!).

• Some actuators have a feedback mechanism (for example, a linked position sensing
system). These sensors' presence may not be self-evident when looking at the
sensor-related chips and interfaces on the circuit board.

• Since the actuator blocks are the way the system acts in the real world, special
attention should be given to them for safety-critical systems. They are a very
effective way to make your client realize the potential economic and image impact
that can come from their device being compromised (making a ship's autopilot
change its course towards the shore or a syringe pump empty its content all at once
will make the client very aware of the actual impact of a compromise).

It may seem far-fetched but there have been examples where systems were compromised
through the understanding of how the system works and the abuse of the actuator.
For example, the bypass of the Armatix IP1 smart gun with magnets (attack by Plore,
presented at DefCON 25) where the safety of the system was completely bypassed through
the external replacement of an electromagnet with a permanent magnet.

The interface blocks
The interface block encompasses every subsystem that provides the user with feedback,
being visual (screens, status LEDs, and so on) or otherwise haptic feedback. Just like the
actuator block, these can be leveraged as (usually high-speed) exfiltration interfaces.
Depending on how you look at it, you can classify the interfaces here that are targeted
at pure point-to-point physical/bus communication (serial, USB, and so on).

Summary
In this chapter, we went through different functional blocks in an embedded system. Not
all of them are always present in a system, but having this basic understanding will allow
you to classify the different components in a system. You really need to concentrate on the
Safety section in the previous chapter, which is the most important section of the whole
chapter. Don't be overconfident; be wary of electricity – nobody wins against physics.

44 Understanding Your Target

With the knowledge of these different blocks, you will be able to better analyze and
classify how a system works internally and will be able to put the different components in
the block they belong to when you crack open a system.

In the next chapter, we will go through a system to learn how to map system functions
and the functional blocks they belong to.

Questions
1. What is OBEX?

2. What is the most prevalent CPU architecture in consumer goods?

3. What is the ISM band? Is there a worldwide frequency band available for it?

4. Is LoRa natively cyphered?

5. Can the HTTP/S protocol be leveraged for client authentication?

6. What is the main difference between Harvard and von Neumann CPU
architectures?

7. Is the RAM of an MCU usually inside or outside of the MCU chip?

Further reading
To learn more about the topics covered in this chapter, you can refer to the following:

• Watch conference presentations about embedded systems (any security
conference – the Hackaday Supercon, or others; for example, Samy Kamkar's
excellent talk at the Hackaday Supercon: https://www.youtube.com/
watch?v=tlwXmNnXeSY or some fun x86 hardware backdoor at DEFCON:
https://www.youtube.com/watch?v=jmTwlEh8L7g).

• Listen to the excellent Amp Hour podcast (https://theamphour.com/).

https://www.youtube.com/watch?v=tlwXmNnXeSY
https://www.youtube.com/watch?v=tlwXmNnXeSY
https://www.youtube.com/watch?v=jmTwlEh8L7g
https://theamphour.com/

3
Identifying the
Components of

Your Target
In this chapter, you will learn, based on an easy-to-get embedded system, how to identify
components, make educated guesses about which functional block they belong to, and
how to set up a piece of documentation that will help us understand the relationships
between the components during our test.

The following topics will be covered in this chapter:

• Harvesting information – reading the fine manual

• Harvesting information – researching on the internet

• Starting the system diagram

• Continuing system exploration – identifying and putting components in
the diagram

Let's get started!

46 Identifying the Components of Your Target

Technical requirements
The following are the hardware requirements for this chapter:

• A test system so that you can apply the techniques and tools we will go through in
this chapter. I will be using a simple children toy (a Furby, in this case; you can find
one pretty easily on private sales websites or second-hand stores) as an example. You
may wish to use one or more test systems (I strongly advise that you have more than
a single test system available when doing hardware pentesting as it is very common
to destroy components or modules during your research; a lot of things can go
wrong, and having two to three test systems upfront will save you quite a bit of time)
yourself if you want to follow along (some minor details could change depending on
the version you get) or use another cheap kid's toy (or any other simple system for
that matter) to deploy the same logic on your own.

• Some sharp tools (scalpels or hobby knives).

• Cutting pliers, wire strippers, and electrical tape.

• An entry-level multimeter will be necessary.

• Some screwdrivers may come in handy.

• A clean, white, stable working work surface, in a well-ventilated (but without an air
draft) room that you can leave as-is during the course of multiple days of work (best
reason ever to send the tenants of open spaces to hell...) is strongly recommended.

• If possible, try to get anti-static mats since the product you will be working with is
static-sensitive (assuming that you don't know that already).

• A good quality chair, since you will spend quite a long time sitting down
and working.

• Another desk with your main system set up on it and an internet connection is also
a must-have.

Please read the safety tips in Chapter 1, Setting Up Your Pentesting Lab and Ensuring Lab
Safety, again.

Install your favorite (technical) drawing program. Use one that you are familiar with, as
long as it allows you to manipulate text and graphical blocks (I use LibreOffice Draw, but
if you feel more at ease with any other productivity suite, Inkscape, or just paper and a
pencil, that's fine by me).

Harvesting information – reading the manual 47

Harvesting information – reading the manual
This is a very basic and logical act, isn't it? However, you may have a different approach
than the average user reading the manual. Your approach will consider each section of
the manual and infer what it tells you about the inner workings of the system.

Taking a system analysis approach
The manual will describe the following:

• If and how the system can interact with the environment

• If and how the user can interact with the system

• How the system will inform the user about its internal status

• If (but usually not how) the system interacts with other system

• How the system is powered

The manual will inform us about the following:

• What sensors are present to sense the environment

• Where some sensors are (and sometimes which type) for user interaction

• What display block components are present

• Whether some networking capabilities are present

Now, let's look at our Furby manual.

For our Furby manual
We will read the Furby's manual and infer some information from it:

48 Identifying the Components of Your Target

Harvesting information — researching on the internet 49

By simply going through the manual, we have been able to gather information about the
system without opening it at all.

Harvesting information — researching on the
internet
Scour the internet for all the information you can find – anything that could be useful for
your project.

The following information sources are of particular interest:

• Manuals for the main system or add-ons.

• Support/repair manuals for the main system or add-ons.

• Patents related to the system.

• Academic articles and known flaws and attacks on the technologies you know the
system uses.

• User groups and wikis.

• Previous research that's been done regarding the system (existing vulnerabilities,
articles, "Maker" analysis of the product, and more).

• Mobile phone application stores.

• If the system uses radio communication and is sold in the US, there will be
a Federal Communication Commission (FCC) filing with an FCC number
indicated on the system.

Now, let's look at what we'll need for the Furby.

For the Furby
I have been able to find out the following information regarding the Furby:

• One patent directly linked to the toy, US6544098, which was filed in 1998 by David
Mark Hampton and Caleb Chung.

50 Identifying the Components of Your Target

• This patent covers an older version of the toy; some descriptions may not be
extremely accurate regarding the current version:

Harvesting information — researching on the internet 51

There are multiple user communities dedicated to getting the most out of their toys. From
there, I retrieved the following information:

52 Identifying the Components of Your Target

Multiple teardown videos show the following:

There are three different versions for Android phone and a single one for iPhone:

- APKs for Android have been downloaded for further investigation
• The assembly source code for an older version of the toy has been leaked (this is

very interesting, but since it is not entirely legal, I will not link it here):

- Downloaded for further investigation

Starting the system diagram
The system diagram will be one of the main documents we will use to identify the various
components and subsystems. I will be using LibreOffice Draw to do this (it's free and you
can use it too if you so wish), but you can use whatever diagram software you like or even
a whiteboard or pen and paper – it doesn't really matter.

In this schema, I have the seven blocks that were presented in Chapter 1, Setting Up
Your Pentesting Lab and Ensuring Lab Safety (Power, Networking, Storage, CPU, Sensor,
Actuator, and Interface).

You will be able to find a template and multiple versions in the repository for this book.

Before you get started, establish a convention for yourself. My personal convention is
as follows:

• Empty rectangles for blocks.

• Ovals for components, with the background color indicating the level of confidence
I have in the information.

• Arrows for buses or data paths.

• Lines for power control or analog connections.

Starting the system diagram 53

I also color code the objects according to the confidence level I have in them:

• Green: It's certain at this point.

• Yellow: I am reasonably certain that it exists, but I have doubts about the details
(such as the exact model).

• Orange: It should be there, but I have reasons to doubt its presence.

• Red: Changed my mind but not ready to delete it yet.

For our Furby
You will be able to find the functional schema for this stage in the GitHub repository for
this book, which can be found at ch3/functional_diagram_1.odg.

In the following diagram, we can see how the components have been ventilated between
the different functional blocks:

Figure 3.1 – Components in blocks

Now, let's explore the system in more detail.

54 Identifying the Components of Your Target

Continuing system exploration – identifying
and putting components in the diagram
We will power on the system as described in the manual; that is, we'll insert the required
number of batteries and boot the system.

Start interacting with it, learn where the sensors are, try to feel around to see where
certain things are, look for where the screws are, and get a general feeling for the system.

Opening the Furby
From now on, it is recommended that you do the following:

• Be smart and take precautions – you will be dealing with pointy, sharp, and other
objects that can hurt you. At the end of the day, you will only be losing 30 seconds
of your life and sparing yourself a trip to E.R.

• Take note of which screw goes where. Put all screws, bits, nuts, bolts, and pieces in a
nice bowl, magnetic recipient, or sorting tray if available.

• Document as much as possible and take pictures of everything (the higher the
definition, the better). You will forget things 3 or 4 days down the road (yes, this
gray cable harness, the left one, was it for connector A or B?). Again, these 30
seconds feeling like a tourist and taking plenty of pictures will save you an afternoon
trying to figure out whether the weird gray thing was holding piece X or Y in place.

Manipulating the system
We will also be manipulating the system (in that we will be touching it with our hands,
moving it while it's open, screwing it, unscrewing it, probing it, turning it, and more).
Embedded systems are not engineered for this at all; they are made to sit firm while
being held by screws, glue, and plastic supports. Out interference may actually damage
the system, so we should take the following precautions to prevent this and to protect
ourselves from accidents:

• Reread the safety directions provided in Chapter 1, Setting Up Your Pentesting Lab
and Ensuring Lab Safety.

• Wires soldered to the PCB are not made to move a lot, be pulled, torn, and support
all of the abuse that we will inevitably put on them. I like to put a blob of hot glue
on the solder joint, which acts as a force relief and prevents the actual copper in the
wire from moving (copper tends to break easily).

Continuing system exploration – identifying and putting components in the diagram 55

• Plastic connectors tend to easily rip from the PCBs, especially when they have
plastic clasps that hold them securely and you unplug/plug them repeatedly. I like to
remove the clasps with a scalpel blade and secure the connector to the PCB with a
bit of cyanoacrylate glue.

• Some battery powered systems don't have an on/off switch and removing the
batteries can be tiring. Get in there and add an on/off switch just next to the
batteries. This will save you a lot of time (unless you're forced to do otherwise, add
the switch to the wire connected to the positive side of the batteries and hot glue it
securely in place).

• Probing and holding a PCB at the same time is hard, so get yourself a PCB vise or,
even better, one of those PCB workstations with articulated arms that can be 3D
printed or bought on eBay.

• Some systems don't have an on/off visual indicator. Most of the time, it's just a
matter of adding a LED and a resistor.

• If the system is mains powered or connected to an equally dangerous power source
(these 12 V/56 A server PSUs can grill meat just fine if you are unlucky enough for
the current to start flowing), find a way to add a very visible, very obvious "I AM
PLUGGED IN TO DEADLY POWER" indicator – it's not because the system is
sleeping that the mains/high energy won't kill you. For this, I use a lamp with a
red bulb, placed in parallel to the extension cord, for projects like this, as well as an
isolation transformer.

Dismantling the Furby
You will be able to find the dismantling picture in the GitHub repository for this book, in
the ch3/dismantling_pictures folder.

Identifying chips
Take pictures (as readable as possible) of every circuit board, in relationship to others
and themselves.

Take closeups of every chip and module you find.

Identify the markings (if they have not been rubbed off or erased) and try to identify the
package. The package is the name of the physical package the chip comes in. There are
plenty of them – some standard, some not. Please refer to https://en.wikipedia.
org/wiki/List_of_integrated_circuit_packaging_types as a basic way
to identify them. There is no other means to memorize and recognize them but to see and
use plenty of different ones.

https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types

56 Identifying the Components of Your Target

Chips in the Furby
We will now try to get a general sense of how to find more detailed information about
chips. Since we found the chips in the Furby, we need to know what they are doing. We
can learn about them by looking at the part numbers on the chips and identifying the
package family.

Main package families and markings
You should be able to identify the following packages:

Continuing system exploration – identifying and putting components in the diagram 57

On top of the chips, there are markings, which are usually as follows:

• Some kind of company logo

• A model reference number

• A lot number and/or fabrication date

Normally, the markings are written in white, but they can wear out. In this case, just a little
bit of spit rubbed on it (or solvent if you are squeamish) may make them easier to see.

Sometimes, markings are lasered or sanded off. In this case, you can usually identify the
chips by studying their function and pinout.

58 Identifying the Components of Your Target

The best way to find out information about a chip is to do a quick internet search:

• On a general search engine: The markings we found and datasheet. This will
(hopefully) give us a document that describes the chip's behavior and connections.

• On websites dedicated to electronic components (mouser, DigiKey, element14,
arrow, and so on): The markings should link us to a page (if the site sells the
component), along with a link to the datasheet.

Here, we can find the following information:

Continuing system exploration – identifying and putting components in the diagram 59

Now, let's learn how to identify unmarked/mysterious chips.

Identifying unmarked/mysterious chips
This is a trickier activity; it is not uncommon for a vendor to erase markings/use an
unmarked chip (or even have their own marking put on the chip) in order to impede their
products from being analyzed or replicated.

60 Identifying the Components of Your Target

Identifying an unknown chip boils down to performing an investigation:

• The environment:

- What other chips did you identify that are connected to it?

- What are its suspected functions? (Is it connected to a storage chip, an MCU, or an
analog sensor? Does it act as glue logic between an MCU and a peripheral?)

• The chip itself:

- What package is the chip using? Is it through-hole or surface mount? How many
legs (leads) does it have?

- Can we identify pin functions? (Are some pin(s) connected to the ground? Are
they connected to the power rails? Are they used as an analog to digital (ADC)
converter or digital to analog (DAC) converter? Are they connected to actuators?)

- Once powered, what voltage is it powered with?

- Is it using an external oscillator (a crystal or another form of oscillator)?
With this information in mind, you can then go to a chip vendor website. These websites
(DigiKey, Mouser, Keil, and so on) usually propose a parametric search engine where
you can input your data. You will generally end up with a handful of candidates across
websites (not every vendor sells chips from all chip makers). Harvest the datasheets for
the aforementioned candidates and match your chip's connections with the pin-out of the
adequate footprint/package.

Epoxy blobs
Epoxy blobs (they look like black epoxy resin blobs) are very common in high-volume
products (that is, systems that are produced in very high numbers for which every tenth
of a cent saved counts). They are usually hiding one or more die.

Information Box
A die is the actual piece of silicon for the chip. Typically, when you picture a
chip in your mind, you think of a more or less square, black plastic object. This
is actually what is called a package; that is, a die enclosed in an epoxy package
with its electric contacts (the pads) wired to "legs" (the leads).

Continuing system exploration – identifying and putting components in the diagram 61

Often, packaging a die (that is, putting it in a plastic case, adding the lead, bonding the
pads to the lead with gold wire, and so on) can cost a fair amount of money with respect
to the cost of the die itself. So, if the product is made in large numbers, if the die is very
cheap or if the die is custom-made for the application, it can make economic sense to
directly wire the pads to the traces on the printed circuit board (PCB). Epoxy blobs can
prove difficult to work with since the tricks used to identify chips (using the pinout of the
package and so on) don't really make sense anymore. Looking into the signals that get in
and out of the blob can help in identifying these functions. It is possible to remove the
epoxy using dangerous chemicals and inspecting the exposed die with a microscope, but
this is an advanced technique that requires significant know-how and that goes beyond
the scope of an introductory book.

Furby — the mystery meat
In this section, we will look at the components we had trouble identifying. Here, the
goal is either to identify them formally or get the best idea possible about their
functionality/roles.

Z100401K9 and 3D3G
We were unable to find references for Z100401K9 and 3D3G. These chips are on a
daughterboard, where we suspect the main MCU is located. Let's start probing around
with our multimeter.

Please read your multimeter's manual and familiarize yourself with operating it (the
same applies to all your tools, actually). We will be using two of its most common modes
of operation:

• Direct current voltage reading (also known as DC, as in the kind you find across a
battery where the voltage stays the same, as opposed to AC, which is the kind you
find in the wall plug where the voltage varies periodically between two voltages). This
DC voltage reading tells you the voltage (the difference of potential) between your
two probes. Since voltage only has a difference between TWO points, the usual point
of reference is called ground (also marked as GND for short). The usual ground is
(for DC circuits) the negative pole of your batteries, but (and I must really insist this
because it confuses a lot of people when they are starting) this is just a way to call a
shared reference point. Measuring this only makes sense when the toy is turned on.

• A continuity test, which tells you if there is a direct path (that is, a simple wire)
between your two probes. Do this with the tool turned off completely (that is,
batteries removed). When you place your probes between two points that are
connected, your multimeter will beep.

62 Identifying the Components of Your Target

By probing around the two chips, we can identify the following connections:

Figure 3.2 – Probing the power section chips

The round component marked 470 with a PCB reference of L6 is an inductor (that is,
a coil), D6 is a diode, and C58 (to the right of D6) is a capacitor.

They are arranged as follows:

Figure 3.3 – Equivalent schematic for the Z100

This is a very typical step-up transformer. This is used to maintain a high enough
voltage for the rest of the circuit to function properly when the battery voltage starts to
decrease (batteries have a discharge curve where the voltage goes down with the charge).
I strongly encourage you to have a look at the different types of topology available. You
don't need to learn them off by heart (unless you are an electrical engineer, in which
can you probably know them already) – knowing what they are and how to find their
references is much more important.

Continuing system exploration – identifying and putting components in the diagram 63

3D3G is a typical 3.3 V LDO that's used to provide the circuit with the 3.3 V needed by
the components. There are a few voltages (called logic levels) that are very typical for chips
to be powered with or to communicate over. The most classic is 5 V (called TTL), which is
still present today mainly for compatibility reasons. 3.3 V is the most common as of today,
but lower voltages are becoming more and more common (1.8 V, 1.2 V, 0.95 V) to limit
consumption and heat dissipation while having faster clocks.

Both of these components can be found in the power block.

The green module with an epoxy blob
First, with your multimeter in continuity mode, you can find out which pin is the ground
pin. Weirdly, I didn't find a pin connected to neither the batteries (we will call this VBAT),
the boosted output of the batteries (we will call this VBATB), or the 3.3 V rail. Maybe this
IC is only provided with power when consumption needs to be reduced (this will later
prove to be right)? By probing around, we can find out that the two pins are connected to
the High Speaker. One is indeed switching to 3.3V shortly before the toy "speaks," and two
pins read varying voltage levels (this can be a sign that these can actually be digital buses).

Let's take note of the pinouts:

Figure 3.4 – Pinout of the green module

We can confirm if the pins are digital buses or not by looking at the signal using either a
logic analyzer or an oscilloscope (two really useful tools you will really, really want to have
in your toolbox).

An oscilloscope is, simply put, a very fast multimeter that regularly reads the voltages
between the probe point and a reference point (usually an alligator clip attached to the
probe) and shows you the value of these samples as a function of time.

64 Identifying the Components of Your Target

By looking at the signal on a scope, we will no signal structure that actually looks like a
digital signal (digital signals usually toggle between a high and a low state in quite clear
states and don't linger somewhere in the middle). It is more likely that this module is
actually just acting as an (inverting) audio amplifier, as shown in the following image:

Figure 3.5 – Traces of the signals on the oscilloscope

The preceding image was extracted from my oscilloscope through a dedicated vendor
utility. When you look at the dynamics of the signal, signal 1 (the middle line) has a very
low amplitude (the scale is 200 mV/Div) that matches the behavior of the signal that is
going through the speaker (signal 2, the lower line, with a scale of 2 V/Div).

This module goes into the interface block.

Continuing system exploration – identifying and putting components in the diagram 65

The blue module with an epoxy blob
This module is marked FR and all my test toys are French-speaking, which means this
may be responsible for speech synthesis. Let's probe around and identify the pins:

Figure 3.6 – The SPI blue module

From our naming convention, we can expect a Serial-Parallel Interface (SPI) style
communication. SPI will be covered in Chapter 6, Sniffing and Attacking the Most
Common Protocols. Let's probe these pins while they're functioning to verify if there's
correlation with the sounds:

Figure 3.7 – Traces of the SPI signal on the oscilloscope

66 Identifying the Components of Your Target

The following is an zoomed-in image showing the start of the signal:

Figure 3.8 – Zoomed-in version of the start of the signal

Indeed, these signals (one clock, one data in, one data out, and a chip enabled) are
very typical of SPI (I will go through the typical protocols used for chip-to-chip
communication in Chapter 6, Sniffing and Attacking the Most Common Protocols). The
sip_wp (typos on PCB silkscreens are not uncommon; the engineer typed sip instead
of spi – wp is a very common shorthand in datasheets for write protection) test pad
connected to the pin between the ground and power (3.3v pin) hints at a SPI EEPROM.
Maybe the data for speech synthesis is stored here. At this point, we may not want to be
too destructive, so we should lift the module and try to dump and reprogram it at a later
stage. We can note that down on our functional diagram. This could actually be the SPI
EEPROM, as discussed in the patent, and the ATMLH306 may be used for something else
(storing the general status of the "learning" of the toy, maybe?).

This module probably goes in the storage block.

A big epoxy blob behind the eyes' LCD
This is a contender for hiding the main MCU (and possibly other dies).

This blob has a very large number of traces exiting from it since it is directly driving an
LCD with a fair number of pixels in it. It is possible that there is a dedicated LCD driver
die hidden under the epoxy.

Continuing system exploration – identifying and putting components in the diagram 67

By following traces with our multimeter (and with the help of a very fine needle to follow
vias from side to side of the PCB (a via is a hole in the fiberglass that is plated with a
conductive material to allow a trace to jump from one side to the other or a layer to another,
so when you see a trace ending on a hole or with a hole in it, that's a via), we can see
(by probing with our multimeter in continuity mode) that it is connected to the following:

• The LCD's zebra strips (a zebra strip, also known as an elastomeric connector, is a
flexible piece of foam that has conductive zones).

• A 32,768 Hz crystal (this is commonly used for RTCs, though it is better for time
stability for the driver of communication protocols).

• The piezo element we suspect is the emitter for networking (it's in parallel with a 3.3
mH inductor and driven through a transistor, but it could also be driven from the
IR output of the TSP50C04).

• The electret microphone that is acting as the receiver for ultrasound networking.
The TSP50C04 is not acting as a receiver, so this module isn't hosting only this die
(or the die that performs voice synthesis).

• The SPI EEPROM.

• The ATMLH308 i2C EEPROM.

• The movement sensor on the green daughter board.

The variety of protocols, buses, and peripherals it is connected to doesn't leave any room
for doubt: this is where the MCU die is hosted. We can also reasonably assume that the
speech synthesis die is also hosted under the same epoxy blob. This blob is not a single
component and will not appear in the functional diagram as such, but this investigation
allowed us to locate two very important components (the MCU and screen driver).

An epoxy blob on the side PCB
This module is actually a "daughterboard" that's connected perpendicularly to the main
PCB. There is a soldered bus toward the main blue PCB that has 17 connections toward
it. We have already seen that the main power regulation, as well as the motor driving and
sensing, happens on this daughterboard. This board also hosts a sensor that is probably
acting as a position sensor (a black box that makes spring/rattling noises when tapped,
probably an archaic multi-axis vibration/acceleration sensor that the toy uses to sense
when it is being shaken).

68 Identifying the Components of Your Target

The blob is connected to the following:

• The aluminum sticky tapes, which are used as touch sensors

• The AT5561S (H bridge/motor driver).

• The SPI bus (marked on the connector).

This is probably a cheap general-purpose MCU acting as a slave for motor driving and
touch sensing.

The borders of functional blocks
As we have seen from our example systems, a component can sometimes fulfill functions
in multiple blocks (for example, our side MCU). In this case, I like to split the component
into two sub-components that I can put in their respective blocks.

Sometimes, this can be a little bit tricky since, for example, some components are powered
from their communication interface (look into the Dallas 1-wire interface) or use a sensor
for communication (in our example system, the microphone is used as a sensor for loud
sound detection and as a communication receiver for receiving ultrasound). In such cases,
the selected block will be to a judgment call. Do not let the functional diagram become a
problem for you – it is there to assist you, so just add plenty of annotations and continue
your investigation.

Summary
In this chapter, we have learned how to harvest data on a system without having to
open it. This process included collecting documentations and pieces that will feed our
investigation and reflection process.

We then learned how to open a system and the necessary precautions that we must take
when doing so in order to protect our test system and ourselves. This primary approach to
the system will feed our ongoing analysis and will allow us to understand how the system
will actually implement the functionality it provides to the user.

In the next chapter, we will go through a methodology that will help you assess where
the important bits of information are in a system, as well as how to assess how they should
be protected.

Questions 69

Questions
The following questions have not necessarily been answered in this chapter, so you may
need to do some research on your own. The first part of this chapter was about searching
for information on an unknown system. Use your head or your keyboard!

1. When you are arranging the contractual framework for pentesting with your client,
how many test systems should you request?

2. Can you formally guarantee your client that all the test systems that they provided
will be returned to them in a full functioning and undamaged state?

3. When I was inspecting the green amplifier module, I looked into the pins that
were varying to check if these were digital buses or not. Look at the signal from the
oscilloscope for these pins and at the signal for actual digital buses for the blue FR
module. Do you have any idea why an oscillating signal such as a digital bus can be
read as a floating-point value by your multimeter?

4. Using a chip vendor website, have a look at the 74HC14 and compare the price of
the through-hole package and the surface mount package for the same chip maker.
The die inside is exactly the same. What does this tell you?

5. The 74HC14 is a member of a logic family called the 74 family. Can you find a another
very common logic family? If so, what are the main differences between them?

6. What is FCC? What type of system should you try to look for in the FCC database?

7. The patent hinted at a 6502-based architecture, but it is not clear if this is still the
case in the real system. Is 6502 a Harvard or Von Neumann architecture?

4
Approaching and
Planning the Test

In this chapter, we will go through the security properties that are necessary to ensure that
a system (an alarm, a connected doorbell, and so on) is secure enough. Not every property
will exist in every system since they may not be relevant to particular systems. This
chapter will also introduce the STRIDE methodology, which allows you to map threats
that are relevant to the system. In a real-world test, this can be used to build the attack
scenarios that your client will want you to execute.

The following topics will be covered in this chapter:

• The STRIDE methodology

• Applying the methodology to the example system

• Basic security properties

• Planning the test

Let's get started!

72 Approaching and Planning the Test

The STRIDE methodology
This methodology was built to evaluate the threats that can be applied to a system (this
is called threat modeling). This was devised by Praerit Garg and Loren Kohnfelder at
Microsoft. STRIDE is an acronym for the six main avenues of attacks used to compromise
a system:

These domains are as follows:

The STRIDE methodology 73

The goal of the methodology is to ensure that you will go through all of these threats for
the components and the systems at play. This is sometimes a little bit tedious, depending
on the granularity level you choose to place yourself at. With experience, you will learn to
dynamically adapt at the granularity level to target common problems (from a component
level up to a functional block or a whole system level). There are no one-size-fits-all
answers, but often, your own experience and understanding of the system (and hence the
risks linked with them) will make you avoid questions that make little sense for a specific
system or context.

Tip
Microsoft provides a tool (https://www.microsoft.com/en-us/
securityengineering/sdl/threatmodeling) that supports
the methodology and a deck of cards that supports the scenario definition
workshops with the clients.

For example, the goal of this methodology is to end up with certain conclusions, such as
the following:

• If a piece of local storage contains temperature data in a consumer weather station,
it would not make a lot of sense to protect it against tampering/reading by ciphering
its content.

• Protecting the piece of storage, this time used to store encryption keys for a police
TErrestrial TRunked RAdio (TETRA) radio that could be recovered from a trash
container or stolen, would totally make sense.

Now, let's consider the following questions:

• How can we find what is worth protecting?

• Is the necessary protection already in place?

• Can we compromise the existing protection?

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

74 Approaching and Planning the Test

Let's use the following diagram to understand this better:

Figure 4.1 – A link between the security functions, the crown jewels, and how the findings are related

We have findings if we manage to compromise an existing security property OR if a
security property should be there but isn't.

We will answer these questions in the following sections.

Finding the crown jewels in the assessed system
In every system, there are "crown jewels" – the crispy, fat, tasty morsels an attacker will
have as an ultimate target. Losing these (or one of these) is generally the client's worst
nightmare. If the client has a mature risk management process, these crown jewels are
usually ranked high on the business risk scale. If it doesn't, then you have to speak with
your client to point this out.

Successful attacks on the crown jewels can lead to different impacts for the company
that produces the system. These impacts can be varied (such as legal implications, loss of
business, damage to the company's reputation (usually referred to as image risk), loss of
human life, and so on).

Depending on the system, these are the crown jewels that have to be determined with the
client. They can be very diverse and are usually very specific to the system.

The STRIDE methodology 75

Here are a few examples of systems that have potential crown jewels (and their related
security properties) for different systems:

76 Approaching and Planning the Test

Security properties – what do we expect? 77

These crown jewels are the ultimate goal of your test. They are the things you are trying to
reach. Compromising these jewels is the goal you reach when you're trying to compromise
different security mechanisms. Compromising these mechanisms is what you test inside
the defined scenarios. Usually, your scenarios are chained to reach the crown jewel(s).

Each of these crown jewel defense mechanisms should be the subject of at least one
scenario. Some of these scenarios are defined as a high-level story, as follows:

• An attacker manages to run a pirated game on our console by bypassing the media
authentication mechanism.

• An attacker manages to run a pirated game on our console by disabling the
authentication code in the firmware.

• An attacker manages to steal a user's private data by inserting unsigned code into
the phone's kernel.

• An attacker manages to use our phone as a zombie by forcing an un-validated app
to be downloaded.

• An attacker manages to steal our recipe by reading the ingredient dosage on the
PLC interface.

• An attacker manages to steal our recipe by reading the ingredient dosage in the
PLC cyphered network traffic.

• An attacker manages to crash our stock and damage our reputation by triggering a
heart attack in the patients sporting our pacemaker.

We will now look into what the usual security mechanisms are and what properties they
should have.

Security properties – what do we expect?
We are now going to look into an embedded system. But what do we want to find in there?
What do we want to test and why do we want to verify that it is done properly?

Not every system will require each of these functions (communication, maintenance,
self-test, and so on), but these functions should at least have been considered by the
client in their security requirements. From there, either the security properties are
integrated as risk mitigation or the linked risk has been formally accepted within their
risk management process – that is, if these risk management steps were followed in the
product design.

78 Approaching and Planning the Test

Very often, these steps (establishing formal security requirements and integrating the
unfulfilled mitigations in the risk management process) are overlooked. This is bad for
the product, but this is very common. These are two findings for your report right here!

Now, let's look at the usual functions of a system and what the security trinity
(confidentiality, integrity, and availability) of security properties (and trust, when
applicable) mean for the different aspects of the system.

Communication
The communication security properties ensure that the system can communicate securely
with other systems over unsecured communication channels. Let's take a look at this in
more detail:

• Confidentiality: Communications should be ciphered so that eavesdropping is
impossible (or very hard).

• Integrity: Any form of disturbance in the communication should be (at least)
detected and remediated (at any layer) to make the system able to detect tampering
or errors in the communication.

• Trust: The parties involved, and their communication, should be authenticated
adequately.

• Availability: Communication should be available (if it makes sense for the system).

Maintenance
The goal of the maintenance function is to ensure that the system can be securely updated
and maintained. This is very common for a system with external libraries (that can be
vulnerable) or one that should have vulnerabilities of its own. The ability to securely fix
these problems should be present and should not be leveraged as an attack path easily.
Let's take a look at this in more detail:

• Confidentiality: The updates should be ciphered (or at least happen over a
ciphered channel).

• Integrity: The integrity of the updates should be verified (through signature or
hash verification).

• Trust: The origin of the updates should be verified (through signature verification).

• Availability: Unless very specific circumstances have been outlined, a way to update
the system must be foreseen and must be available.

Security properties – what do we expect? 79

System integrity and self-testing
The system will be outside the control of the client, and there is no way to guarantee who
has control of the physical environment on the consumer's premises, nor the security of
the supply chain. For example, some US three-letter agencies have been known to alter
the firmware of a major networking equipment vendor for the final clients of interest. The
system should be able to verify that it is running in a trusted way when possible. Let's take
a look at this in more detail:

• Integrity: The system should be able to verify it is running without modifications.

• Trust: The system should be able to verify that every element in the trust chain
involved in its final running state is safe and trusted (look into the concept of
trusted boot chain, trusted computing platforms, and more).

• Availability: The system should be able to verify it is running code that can be
trusted and that can be traced back to a trusted source of code.

Protection of secrets or security elements
The things that ensure security (embedded certificates, keys, and so on) should be
properly protected. Storing them within an un-ciphered, easily accessible external chip
or making them easy to dump from an MCU can easily lead to the whole edifice being
compromised. Let's look at this in more detail:

• Confidentiality: Secrets should be kept secret.

• Integrity: If a secret is changed, the system must be able to detect the change.

• Trust: The origin of the secrets should be verifiable.

• Availability: The secrets should be available, and the system should fail graciously
if they are not.

Depending on the system, other aspects could be taken into account (since some systems
may have other critical aspects to them), but the principles should stay the same. Now that
we have looked into the desired properties, let's look at how we can leverage deficiencies.

80 Approaching and Planning the Test

Reaching the crown jewels – how do we create
impacts?
The means to achieving these target goals will involve using STRIDE to evaluate the
components of the system. We will try to reason about the system to see how we can reach
those crown jewels (usually by weakening or compromising security properties). During
the evaluation process, we will look at the system within its ecosystem (as a functional
part of a whole process) and try to understand how we can reach the crown jewels by
compromising it.

Once the crown jewels have been identified, we will evaluate the components in terms of
STRIDE to understand how they can allow us to reach the crown jewels.

STRIDE through the components to compromise
properties

Tip
Some other methodologies exist to take care of this, but they are far beyond
the scope of this book. If you are interested, you can refer to EBIOS
(https://www.ssi.gouv.fr/en/guide/ebios-risk-
manager-the-method/) or ISO/IEC 13335-2 (https://www.iso.
org/standard/21755.html).

The first step is to make or acquire an overview of the general architecture of both your
components and flows:

• The architecture of the system itself

• The architecture of the ecosystem

Once this has been established or acquired, you will go through each of these "actors" (the
components) and relationships (the data flow). Then, you must consider the possibilities
of the methodologies approaches (spoofing, tampering, repudiation, information leak,
denial of service, and escalation of privileges) for each of them. Do this in the light of your
best knowledge regarding the technology in use (and research about it if you don't really
know enough).

(https://www.ssi.gouv.fr/en/guide/ebios-risk-manager-the-method/)
(https://www.ssi.gouv.fr/en/guide/ebios-risk-manager-the-method/)
https://www.iso.org/standard/21755.html
https://www.iso.org/standard/21755.html

Reaching the crown jewels – how do we create impacts? 81

This may be the port that reaches more into your imagination. For each component,
ask yourself "what if ?" regarding the following:

• Spoofing: Can I pose as this chip (for example, a chip on a board, or a
sub-processor that is doing DSP)? Can I send fake messages on a communication
bus? Can I pretend to be the backend or the DNS server?

• Tampering: Can I change the data in that flash? Can I change or replace the code
that runs on the MCU?

• Repudiation: Can I access the circuitry of a tamper-evident device without leaving
any trace of this?

• Information leak: Can I read the network traffic? Can I steal keys that are stored
in an EEPROM?

• Denial of service: Can I make the device crash by sending data or pressing
buttons randomly?

• Escalation of privileges: Can I access the management menu? Can I change settings
without being authorized to?

Once you've done this, you have to agree on the test approach you wish to use with
your client. This approach type depends on the type of scenario they want to look into
(malicious internal personnel, external attacker, and so on).

The test approach
In pentesting, there are three classical approaches: white box, gray box, and black box.
These three approaches represent three types of attackers, and each has its own pros
and cons.

Black box
The attacker is given the exact same level of information as a user, a few systems to test,
and then they are sent on their merry way:

• Pros: This approach generally mimics an external attacker that has no internal
knowledge about the system. It is very representative of the majority of attacks that
the client's system will endure in real life.

• Cons: This is long and expensive for the client. There is no guarantee that even the
simplest flaws are going to be exposed. Even wrongly implemented security features
or properties relying on security by obscurity could stay undiscovered, hence
providing a very low level of assurance to the client.

82 Approaching and Planning the Test

Gray box
The tester is given some general but internal information about the system architecture,
the protocols used for communication, and the security requirements used for
system design:

• Pros: This is a good balance between information and test efficiency/speed. It can
be a good representation of an attacker with internal knowledge (a disgruntled
employee, for example).

• Cons: Establishing the Non-Disclosure Agreement (NDA) to cover the
documentation can go beyond the standard NDA, and the client may not
like the idea of sharing documentation.

White box
The tester is given full access to the internal documentation, the source code, and all
schematics. These are potentially given to developers of the system so that they can
ask questions:

• Pros: This gives the best assurance level to the client.

• Cons: It requires having good knowledge of the technology stack being used by
the system.

For the example system – the Furby
In this section, we will look into finding the crown jewels and applying the STRIDE
methodology to the Furby toy.

As you may recall (Chapter 2, Understanding Your Target, and Chapter 3, Identifying the
Components of Your Target), the "ecosystem" of the toy can be seen as follows:

• The toy is becoming mature by the user taking care of it physically.

• The toy is becoming mature by the user taking care of it via the app.

• The toy can switch its personality, depending on the way it is taken care of.

• The toy can talk to other toys.

• The toy can talk with the app (and have eggs in the app).

Reaching the crown jewels – how do we create impacts? 83

Since we don't have a real client, let's give ourselves some "crown jewels" targets:

• Make the toy quote Shakespeare instead of saying gibberish sentences (a malicious
mind would have it say inappropriate things to a child, and that wouldn't be very
good for the image of a toy vendor).

• Change the evolution state of the toy at will by manipulating its storage.

• Change what is displayed by the eyes of the Furby at will.

• Harvest all the goodies and objects in the app.

• Have control of the eggs in the app.

• Make the toy crash or execute code remotely.

We will stay away from reversing the Android application in the testing phases as much
as possible since that is outside the scope of this book. If you are interested in this subject,
please refer to the Learning Android Forensics book from Packt.

In the following subsections, we will go through the STRIDE methodology for the toy's
components and ask ourselves the questions our test should answer.

Spoofing
I don't appreciate when conference talks start with a dictionary definition – I feel that it
just underlines the inability of the speaker to explain things with simple words. Spoofing
is simple: it means posing as someone or something you are not (and misbehaving). These
questions, if answered with yes, all fall into the spoofing domain:

• Can we pose as the app to the toy?

• Can we pose as the toy to the app?

• Can we pose as a toy to another toy?

• The app has a version dedicated to collectors called "war in-between stars" that
provides specific character versions of the toy. Can we fake having one while we
don't own a real one?

• Can we pose as a legitimate user and fake taking care of it?

84 Approaching and Planning the Test

Tampering
Tampering: Noun. "Tampering is the action"... Just joking. To tamper with something
means to change it maliciously. These questions, if answered with yes, all fall into the
tampering domain:

• Can we change the settings and characteristics that are stored in the Furby?

• Can we change the stored sounds/speech synthesis settings?

• Can we change the Furby's eye patterns?

• Can we make it fully grown/evolved in one go?

Repudiation
To repudiate means to deny being responsible for an action. Since the toy has no concept
of identity, this does not apply in this context.

Information disclosure
Let's see if we can find out information that we are not supposed to have access to:

• Can we dump internal EEPROMS and find out what information they are storing
and how?

• Can we abuse the MCU to dump its program?
• Can we sniff ultrasound communication and understand how it works?

Denial of service
Let's see if we can make things unresponsive:

• Can we make the toy crash remotely for good (that is, to manually restart the
device) or if we sustain our attack?

Escalation of privileges
Let's see if we can do things we are not supposed to be doing:

• Can we run code on the toy MCU?

• Can we run code on the user's phone?

• Can we trigger behaviors we are not supposed to be triggering (for instance,
laying hundreds of eggs, creating bugged objects, and so on)?

With all of these questions in our mind, let's see how they link to our scenarios by
learning how to plan the test and discuss its budget with our client.

Planning the test 85

Planning the test
After some workshops with your client and gaining more information about the target
system, you should have identified the following:

• The crown jewels and their security functions

• The testing scenarios and questions (and validated them with your client)

• Identified a global "difficulty level" for your scenarios (depending on the "box color",
you may already know if a certain component or security function is more or less
well-protected)

Now, the question is, How do we allocate time to which scenario? This is a difficult
question, especially when you're utilizing a black box approach (since you have no details
about the system architecture). Let's talk more about this balancing act.

Balancing your scenarios
Typically, your scenarios will have an associated impact and difficulty. Let's be realistic:
at this point, these impacts and difficulties are mainly "gut feelings" since we haven't
done any exploratory surgery yet and the client may not be very forthcoming about
the internals.

I usually define these difficulties as follows:

86 Approaching and Planning the Test

Planning the test 87

Now, we must classify the impact of these scenarios:

88 Approaching and Planning the Test

Planning the test 89

90 Approaching and Planning the Test

Once you have done this scoring exercise for each scenario, multiply the impact and
difficulties score to get a priority ranking for your different scenarios. At this point, all
you need to do is negotiate a time budget affectation for each scenario with your client.

Doing a time budget negotiation is always the hardest part (as always, having people part
with their money is not the easiest):

• Factor in the price of the equipment you will need to acquire. Some companies will
accept to reimburse you with an equipment bill, some will accept an equipment
budget being in the contract, while others won't want to hear about it. If they don't
want to hear about it, just "sprinkle" in additional days so that they can pay for the
necessary equipment.

• For each scenario, add a day where you will consume upfront to get to know the
system, explore the functionalities that you may not be aware of (for example,
storing games on a hard drive, how the application store works, how things are
connected, and so on), and perform external research (some people may have
published articles, for example).

• Get to know yourself. Maybe you are a beginner and you need 2 days for a difficulty
1 scenario. You may have a colleague in your company that works abroad who is an
expert on the specific CPU architecture you will be using, but they may have a high
day rate. If you are a beginner, I would advise the following:

Add a little bit of "time fat" for unexpected circumstances and external research.
• Do not forget the reporting and report proofing time.

Summary 91

Summary
In this chapter, we learned about the STRIDE methodology and understood how to
use it to define various attack scenarios. You then learned how to use the methodology
efficiently by using it again and again against real-world devices. When you start out,
you will probably sit for hours thinking about "Is this possible?", "How can I do this?",
and reading about the components and attack methods that are available to use. This is
absolutely normal and should not make you feel discouraged.

In the next chapter, we will become familiar with the attack tool we will be using
throughout this book and also (finally!) start with practical assignments.

Questions
1. What does STRIDE stand for?

2. What is the goal of the methodology, from a risk and practical standpoint?

3. What are the 5W criteria for traces?

4. Can you actually test for a scenario where the state actor operates above your level
(that is, you have an amateur lab and the putative actor is a criminal group)?

5. Why is a system being able to update itself very important?

6. What is a black box test? What are its advantages for the client?

7. What is a crown jewel?

Further reading
To learn more about the topics that were covered in this chapter, please refer to the
following link:

• The starting article for STRIDE: https://www.microsoft.com/security/
blog/2009/08/27/the-threats-to-our-products/

https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/
https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/

In this section, you will get up close and personal with hardware, using off-the-shelf tools
and a very cheap, but quite capable, hardware platform (a cheap development board) to
analyze and attack in-circuit protocols. You will also become more familiar with common
wireless protocols and how to use them to attack hardware devices.

This section comprises the following chapters:

• Chapter 5, Our Main Attack Platform

• Chapter 6, Sniffing and Attacking the Most Common Protocols

• Chapter 7, Extracting and Manipulating Onboard Storage

• Chapter 8, Attacking Wi-Fi, Bluetooth, and BLE

• Chapter 9, Software-Defined Radio Attacks

Section 2:
Attacking the

Hardware

5
Our Main Attack

Platform
We cannot interact physically with the systems (humans are not very well equipped to see
and produce precise and fast electrical signals, are they?) and we may not want to risk our
main computer platform by connecting it directly to a device under test (DUT). We will
need a specialized tool for this.

In this chapter, we will look at the main tool we will use to actively attack our targets.
The bluepill board we are going to use is very cheap, accessible, and can be programmed
with an entirely open source toolchain. We will review what it is exactly, its hardware, its
variants, and how to program it (with a little introduction to C) before actually using it
to attack protocols and chips in the next chapters.

In this chapter, we will cover the following topics:

• Introduction to the bluepill board

• Why C and not Arduino?

• The toolchain

• Introduction to C

96 Our Main Attack Platform

Technical requirements
In order to be able to program and use the bluepill, it is essential to have the following:

• A bluepill board (I'd advise you to buy a few, as they are always useful; search for
bluepill stm32f103 on any bidding site).

• A breadboard.

• An STLINK USB stick: This looks like a USB stick with pins on the side opposite
to the USB connector.

• A few wires for connections.

For the examples, you will require the following:

• Protocol: I2C: Chip: A PDIP 24LC I2C EEPROM

• Protocol: SPI: Chip: An MX25L8008 flash on a DIP breakout

• Protocol: UART: Any USB-to-serial adapter (the cheap ones based on CP2102 will
do the job perfectly and they are useful tools too. Ordering more than one is a great
idea; you need at least two)

• Protocol: Dallas 1-Wire: Chip: A DS18B20 (a temperature sensor)

You may want to also buy or find components that are using the same protocol but that
are slightly different, so as to train yourself in adapting the examples.

In terms of the compilation of programs and flashing, install the following (for a
Debian-based system):

• gcc-arm-none-eabi

• libnewlib-arm-none-eabi

• binutils-arm-none-eabi

• gdb-multiarch

• openocd

• make

• texane st-link (https://github.com/texane/stlink)

https://github.com/texane/stlink

Introduction to the bluepill board 97

Note
Please be aware that the version that your distribution sports may not be
sufficiently new. If this is the case, it could have a problem with the cheaper
clones (in that case, install from source by following the instructions here:
https://github.com/texane/stlink/blob/master/doc/
compiling.md).

You can refer to the code used in this chapter at the following link:

https://github.com/PacktPublishing/Practical-Hardware-
Pentesting

Check out the following link to see the Code in Action video:

https://bit.ly/307nM2u

Introduction to the bluepill board
A board to do what? What is the board? What can it do? How much does it cost? Why
this one? Where is the documentation? Yes, you surely have plenty of questions! You will
sometimes need a reminder while testing or doing the exercises, so I will also point to the
chip's documentation. These questions are exactly what we are going to be talking about
in the following sub-headings.

A board to do what?
Well, we will need to interface the board with the circuit we will want to attack. Since a
general-usage PC doesn't really have a readily accessible interface board to connect with
the most common protocols, we will use a bluepill to do so.

What is it?
The bluepill is a colloquial name for many different boards that have the following
characteristics:

• Are cheaply available on bidding or Chinese goods sites such as eBay, Taobao, and
AliExpress (in the €1.5 range at the time of writing this book)

• Host an STM32F103C8T6 (or drop-in replacement parts from Chinese chip
manufacturers) and its basic power circuity

• Break out most of the interesting pins in a format that can be plugged into
a breadboard

https://github.com/texane/stlink/blob/master/doc/compiling.md
https://github.com/texane/stlink/blob/master/doc/compiling.md
https://github.com/PacktPublishing/Practical-Hardware-Pentesting
https://github.com/PacktPublishing/Practical-Hardware-Pentesting
https://bit.ly/307nM2u

98 Our Main Attack Platform

The STM32F103C8T6 is a quite capable (32 bits, 72 MHz) microcontroller produced by
STMicroelectronics that comes with a wide range of typical general-use peripherals:

• Two 12-bit ADCs

• Two I2Cs

• Two SPIs

• Three USARTs

• A USB

• A CAN

• GPIOs

We can now use these to interface with our target systems. Also, in quite practical terms,
it is possible to program it directly in C (which we will use in the book) or use the
Arduino IDE and API to program.

Important note
Some vendors are selling boards that have a clone of the STM32F103C8T6 on
it. These should be fine, but the programming software may complain about it.

Why C and not Arduino?
The C programming language has a reputation for being hard to use and complex.
Trust me, it is not. This reputation comes from the fact it doesn't come with a lot of the
convenience functions of more modern languages. The simplicity that comes with this
language makes it shine when the resources are constrained and when the execution
needs to be really efficient, like on a microcontroller!

While I am quite sure that most of the examples in the book could be written using the
Arduino IDE and API, it would do the following:

• Hide too much of the compilation chain and the programming process from you

• Prevent you from actually understanding the capabilities of the chip

• Make it difficult for you to actually know what is happening on the chip (since it
uses some of the chip capabilities to provide you with convenience functions)

• Actually consume quite a bit of storage space to provide you with these
convenience functions

Why C and not Arduino? 99

All of this (unless you actually have a degree in electrical engineering or experience in
programming embedded systems) would hinder your ability to understand your actual
targets! It would do so because you will understand some fundamental concepts about
the way in which microcontrollers work and are used on your targets!

Aside from that, you definitely should buy an Arduino and play around with it, but I will
not focus on that here. You can even use the STM32duino libraries on this platform!

The documentation
The datasheet has a scope that is restricted to the model itself. Like most of the chip
manufacturers, their chips are named in a nomenclature that allows us to decipher the
capabilities of the chip that is soldered on the bluepill. For example, let's look at the
nomenclature for STM32F103C8T6:

• STM32: The family; a line of 32-bit cortex M-based MCUs.

• F1: This is a general-purpose, medium-density chip (F0s are even cheaper, L0s are
energy-efficient chips, F3s are used for digital signal processing, and so on).

• F103: This is a 73 MHz chip with a CAN and USB.

• C: This is the pin count (48 for C).

• 8: This tells us that the chip has 64 KB of Flash and 20 KB of RAM.

• T: This is the package (the dimensions of the plastic capsule that encloses the
silicon). T is LQFP (low-profile quad flat package).

• 6: This chip is designed to work in a "normal" range of temperature and not be
exposed to too much heat or humidity, and so on.

In STMicro vocabulary, the document that will provide you with the detailed information
of the family is a "reference manual." It will give you the addresses of the different
memory-projected registers. It also explains the way in which the peripherals are
programmed and all the things that are shared across the family members, irrespective
of how much memory they have, how many leads are available on this package or that
package, and so on.

Tip
The datasheet can be found here: https://www.st.com/resource/
en/datasheet/stm32f103c8.pdf. The reference manual can be
found here: https://www.st.com/resource/en/reference_
manual/cd00171190.pdf.

https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.st.com/resource/en/reference_manual/cd00171190.pdf
https://www.st.com/resource/en/reference_manual/cd00171190.pdf

100 Our Main Attack Platform

Reading the documentation
In the reference manual, you will find a description of all the peripherals that are on the
chip. While reading the documentation for a peripheral, you should expect to always
find the same following sequence:

• Functional description of the peripheral:

- How the peripheral type behaves in general

- What the available functionalities of the peripheral type are

- How to initialize and configure the peripheral type

- How to use the internal peripheral behavior (what the interrupts are, how they
play out together, which bit is flipped by which events, and so on)

• Configuration of the registers for the peripheral: A description of all the registers
(their addresses and all of their bits) that manage the peripherals, and for each
instance of the same peripheral type

• A register map: A brief overview of all the registers described in the configuration

Memory-projected registers
Like most (if not all) programming languages, the main thing C does is make the CPU
core move values from memory locations to other memory locations. In order to react
to the programming, the chip has special memory regions where memory locations are
actually special storage units ("the registers," as opposed to generic storage locations) that
react to the stored value by altering the chip behavior. At some of these special addresses
(that is, some registers), it is the behavior of the chip itself (such as its clock and turning
peripherals on and off) that is set, and for others, it is the behavior of peripherals around
the CPU that is altered. This concept is called memory-projected register and is the basis
of the operation of MCUs and CPUs. Let's now dive into how this is translated in a binary
that defines the MCU's behavior.

The toolchain
We will use a set of tools to transform a high-level language (yes, I wrote that, C is a high-
level language) into the binary code that the chip understands and is laid out in a file that
it can execute. To make it short, it's called compilation (compilation is actually one step
of it, but it is a quite easy shorthand). We will push this file to the chip and have it run our
code. In order to do that, we will have to use a set of tools and I will describe these in the
following sections.

The toolchain 101

The compilation process
Under the generic compilation concept, the way it is understood by most people, we turn
the code into something that can be executed by a computer. From the push of a button
or a sternly typed command line, we see a file appear that we can run (a .exe file, a .elf
file, or other formats). In reality, this is (of course) a little bit more complicated.

The compilation in itself
The goal of the compilation process is to turn a human-readable language (C, C++,
assembly opcodes, Java, and so on) into a sequence of instructions that the decoding
unit in the CPU can understand.

For the bluepill, we will use the GNU Compiler Collection (GCC) and, more specifically,
a flavor (gcc-am-none-eabi) that is geared toward our architecture (arm) without any
specific operating system (none-eabi).

In order to be able to understand the process, we will perform this operation on our
local machine since it is easier to see the result than on the bluepill, and the process is
essentially the same.

First, let's compile a simple hello world code:

$ cat hello.c

#include <stdio.h>

int main(){printf("hello world!");}

$ gcc -c hello.c

$ file hello.o

hello.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV),
not stripped

$ chmod u+x hello.o

$./hello.o

bash: ./hello.o: cannot execute binary file: Exec format error

Here, gcc -c means compile only. When we try to execute hello.o, the error tells us
that this is not a binary file that our computer knows how to execute. This is because we
need to put it in a format it understands.

If you need to include header files (header files described by the functions provided by a
library or another .o file), use -I to provide the path to the header directory and use the
#include directive in the source file.

102 Our Main Attack Platform

The linking
The linking turns object files into an understandable format for the operating system. In
our example, the printf() function is provided by an external library (the description
of what the library provides comes from the #include <stdio.h> line), but the
operating system has no clue as to which library just by looking at the object file. This
is the linker's job (we will use gcc to call the linker) to link it (and put the relevant
information) into a file format that the operating system will understand:

$ gcc -o hello.elf hello.o

$./hello.elf

hello world!

This process (since it is not very clear in our very small example) is very important as soon
as a project is divided into multiple source files. Each will become a .o object file and will
be linked together as something that is usable.

Driving the compilation
Of course, a project can do the following:

• Encompass dozens of files.

• Need to be compiled in a debug version.

• Search for the location of libraries.

• ... and a myriad of other tasks that it would not be very practical to do by hand
each time.

That is why there are tools to drive the compilation process. The simplest and most
ubiquitous one is Make. Make is driven by a description file called a Makefile.

Anatomy of a Makefile
A Makefile can be complex (if you look at a big file for a complex project) but is composed
of very simple elements:

• Variables: These are usually used to store things that you can use later. It is very
common to put the name of the compiler, options, and path in variables. The
affectation is done with the VARIABLENAME= value outside of targets and the
evaluation with $(VARIABLENAME).

The toolchain 103

• Targets: The things make must do in order to achieve the goal (the goal in question
is usually a file). Targets can be described with dependencies in order to take care of
the tasks required by the current target (again, usually a file). The file's dependencies
follow a : after a target name. make looks at the change date of the files listed in the
dependencies and only launches the tasks for the dependency files that are more
recent than the target.

Let's have a look at a very simple Makefile to compile our hello world example:

CC=arm-none-eabi-gcc

hello : hello.o

 $(CC) -o hello hello.o

hello.o : hello.c

 $(CC) -c -o hello.o hello.c

Let's discuss a few terms from this Makefile:

• CC: A variable that contains the name of the compiler executable

• hello: Our main target, which requires hello.o in order to be started

• hello.o: A requirement target for hello

Important note
In Makefiles, before a list of tasks (such as the $(CC) directive (the tasks
for the target)), there must be a tabulation (\t) and not just a space. If the
make command tells you a separator is missing, this means that your editor
transformed the tab into multiple spaces, and this will not work.

To illustrate the dependencies system, let's try a number of things:

$ make # (1)

make: 'hello' is up to date.

$ rm hello # (2)

$ make

gcc -o hello hello.o

$ touch hello.c # (3)

$ make

gcc -c -o hello.o hello.c

gcc -o hello hello.o

104 Our Main Attack Platform

Let's understand this code:

• First, we see that everything is up to date (1).

• If we remove the executable file (the hello file), make will rebuild just that (2).

• If we make the source file more recent than the outputs produced (3), make
rebuilds everything.

Make is very powerful and allows much more than this simple example. I strongly
encourage you to read some Makefiles to get used to its possibilities and, of course,
read the documentation on Make's website:

https://www.gnu.org/software/make/

Now we can build code, let's see how we can push it to the chip.

Flashing the chip
The easiest and most versatile software for STM32 chips on Linux is an open source
implementation of ST's programming protocol. This software is available in the most
modern distribution in a packaged format as the stlink-tools package.

Information box
For more information on the stlink-tools package, you can refer to the
following link: https://github.com/texane/stlink.

It comes with different tools:

• st-flash: The basic tool to read from and write to the embedded Flash of
an STM32.

• st-info: This tool gives you information regarding the connected chip.

Now, enough with the examples, let's do the real thing.

Putting it into practice for the bluepill
In order to make our first program for our chips, we will need to do the following:

1. First, we will need to write a simple C program that will initialize the chip and blink
the onboard LED.

https://www.gnu.org/software/make/
https://github.com/texane/stlink

The toolchain 105

2. In the second step, we will use a linker script that will tell our compiler how to
arrange the executable format in a way that is understood by our STM32.

3. Finally, we will flash it to the chip.

Using libopencm3
Before we start coding, we will need a corpus of information that will help us with
providing all of the addresses of the different registers and constants that will help set
them up without constantly doing (usually quite error-prone) bitwise arithmetic with
raw values. Additionally, the opencm3 library comes with convenience functions to
set up and use peripherals that we will use later on.

Here is how to get the library:

$ git clone https://github.com/libopencm3/libopencm3.git

...

$ cd libopencm3

$ make

...

$cd ..

At this point, the library is ready to be used.

The code
The chip needs to be initialized for the following purposes:

• To tell the chip which clock source to use (its internal oscillator or a more precise
external crystal)

• To know what to do with the clock source in order to clock itself (via an internal
component called a PLL, it can multiply or divide the clock source to feed the
different clock signals it needs)

• To determine what peripherals to initialize in order to use the general-purpose
input/output to which the LED is attached

• To toggle the pin that commands the LED wait a bit, toggle the pin that commands
the LED ... and repeat infinitely

The entire code and Makefile can be found in the book's Git repository in bluepill/
ch5/blink (do not forget to clone it and its submodules with --recursive).

106 Our Main Attack Platform

Try to read the Makefile and understand what it does, as well as what the different
targets do:

• Connect your STLINK stick to the bluepill and flash the code to it (with make
flash). Connect the GND on the STLINK to the GND on the bluepill, 3V3
to 3V3, SWD to SWD, and SWCLK to SWCLK).

• Try to change the value in the second while loop to make it blink slower.

• Try to change the value in the second while loop to make it blink faster.

• Search the libopencm3 documentation to see how you could replace the
rcc_clock_setup_in_hse_8mhz_out_72mhz function.

• Read the function code and the reference manual to understand how it works
(in the RCC chapter of the reference manual).

• Make the MCU run at 48 MHz from the HSI through the PLL (there is an already
made function in libopencm3 for that) and see how it influences the blinking speed.

• Download ST STM32Cube software, start a new project with the STM32F130C8,
and then go to the clock management tab and look at how the different peripheral
buses are clocked.

Now that we've seen how code is transformed into a binary that can be transferred to the
chip, let's look a bit more into the code and how it works.

Introduction to C
C will be your bread and butter for developing your attacks. Yes, there are easier, more
modern, less cumbersome languages, but the following is true:

• The abstraction level prevents you from understanding what is happening on
the hardware.

• Most of your reversing targets will be C-based.

So, pony up, and learn the language that makes the hardware run!

This is really intended as a crash course that will just allow you to understand the code
that comes with this book. There are plenty of resources on C on the internet if you
want to dig deeper (and trust me, you will want to).

Introduction to C 107

Operators
C comes with most of the operators you are expecting:

108 Our Main Attack Platform

You may already be familiar with the majority of the statements:

The comments can come in two forms:

Numeral bases as literals are also very straightforward:

Types
Variables have a type. This is so that the compiler knows what kind of operation to apply
to the variable.

The main types in C are as follows:
int: an integer value, usually 4 bytes

short : a short integer, usually 2 bytes

char : enough to hold a character, usually a byte

float : a representation of a real (floating point) value,
usually 4 bytes. Attention, the precision is limited !

Introduction to C 109

That's it. There are no evolved types such as strings, lists, and hash maps out of the box.
This is a very concise language where you have to create the evolved types you may
need from the basic types. But don't underestimate C. The chances are that it is still the
language that created the code managing the hardware in most of the devices you own.
The majority of the kernels, the low-level libraries, are written in C because it is extremely
efficient, both for size and for pure code performance.

The dreaded pointer
Pointers are making people afraid of C, and this is somewhat ridiculous. Pointers, just by
themselves, are making people afraid of this language. Generations of students have been
frustrated by the dreaded and mystical beast called "segmentation fault" (the error that
usually comes from flawed pointer operations).

It is true that people are scared of pointers, and I cannot fathom why. They are easy.

A variable is held at a memory location. The pointer is the address of this location. Done
... finished. It is no more complicated than that. Of course, our systems hold this address
in a location in memory.

The notation for pointers is * (a pointer is a type and it points to a value with a type so
that the compiler can perform a size calculation). The notation of "get address of " is &,
while, within an expression, * is used as a dereference (that is, "this thing that is at the
address I am applying the * to"):

int a = 5; // a holds 5, for example at address 632

int b = 8;

int * a_ptr = & a; // a_ptr, a pointer to an int, holds the
value 632

*a_ptr = 6; // the address 632 now hold the value 6, and so
does a (cause it is at address 632)

b = b + *a_ptr; // b holds 14

* a_ptr = b + *a_ptr;//a holds 20,a_ptr still holds 632

In C, pointers are the way in which arrays are managed, either with dynamic allocation
(almost never used in MCUs), or statically with the [] shorthand syntax:

int a[4];

for(int i=0;i<4;i++){ a[i]= i}; // we initialize the array with
0,1,2,3

110 Our Main Attack Platform

a[0] = 1; // arrays are 0 based since the address of the array
holds the first value

*(a+0) == a[1]; // is now true, a+0 actually holds the address
of the first value

Since the array is so easy to use, it is also used to hold strings:

char * s1 = "hello reader !"; // s holds the address of the
first character,

 //"" tells the compiler that the
initial value it is a 0

 //terminated array of characters

char s2[15]; // declare a new array

char * s1_ptr = s1; // s1_ptr holds the address of
the first character of s1

char * s2_ptr = s2; // s2_ptr holds the address of
the first character of s2

while(*s1_ptr != 0){*s2_ptr++ = *s1_ptr++; };

 /* string are 0(null character)
terminated, and we use this to

 copy to the target array, i
used the ++ shorthand to do all

 of this in one statement */

*s2_ptr = 0; //We 0 terminate our target
string since the while didn't

 //execute for the last 0

s2[0]='H'; // Change the first value of s2 to the character H,
it is now "Hello reader !"

s1[0]='H'; // This will crash ! (we will see why in the static
reverse engineering chapter)

Like I said before, this is just a crash course, but for now, you are able to code for the
bluepill, push code onto it, and start having fun!

Preprocessor directives
Preprocessor directives are directives that a special piece of code in the compiler
(the preprocessor) understands. They begin with # and are used by the preprocessor
to do text replacement or file inclusion.

Introduction to C 111

The most frequently used directives are the following:

Multiple other directives exist including #undef, #else, and more besides.

Functions
Declaring a function in C is very easy:

function_return_type function_name(type_arg1 arg1, type_arg2
arg2){

body of function

}

Then, the function_name variable simply holds a pointer to the assembly code
that implements the function. One consequence of this is that it is possible to use
function pointers as variables that hold a reference to a function that you can change
and call dynamically.

112 Our Main Attack Platform

Summary
In this chapter, we have programmed our main attack platform for the first time and then
installed and compiled the library that will help us interact with its peripheral. We also
had a brief introduction to the language we are going to use to program it – C.

In the next chapter, we will go through the most common protocols used in embedded
systems, and learn how to find them, sniff them, and then attack them with our bluepills.

Questions
1. What is the GPIOC_ODR register that I XOR in the blinking example? Can you

achieve the same effect by using other registers?

2. Is it possible to have the MCU run at 72 MHz for the HSI? Why or how? What is to
be expected then?

3. What are the premade frequency assignment functions available in libopencm3?

4. XOR each character of the string Z9kvzrj8 with 0x19 in a C program. What does
this mean?

5. What is the address of the GPIOC_ODR register? How can we find that easily?

Further reading
Read more about the C language:

• The seminal C book: The C Programming Language, by Brian Kernighan and Dennis
Ritchie; ISBN 978-0131103627

• 21st Century C, by Ben Klemens; ISBN 978-1449327149, because just because the
language is 40 years old, doesn't mean you have to write it like it was 40 years ago

Read more about GNU Make:

• Managing Projects with GNU Make, by Robert Mecklenburg, Andy Oram, and Steve
Talbott; ISBN 978-0596006105

6
Sniffing and

Attacking the Most
Common Protocols

Now that we've seen how to program the chip, let's apply it to an application and use it
to actually start attacking systems. We will do that by looking into a number of standard
protocols that are used to communicate between chips and the outside world. They usually
define only the physical layer for chip-to-chip communication and (almost) never go into
higher levels of abstractions. In this chapter, we will learn how to operate, sniff, and attack
I2C, SPI, UART, and Dallas 1-Wire (D1W).

In this chapter, we will cover the following topics:

• Understanding I2C

• Understanding, sniffing, and attacking SPI

• Understanding, sniffing, and attacking UART

• Understanding, sniffing, and attacking D1W

114 Sniffing and Attacking the Most Common Protocols

Technical requirements
In this chapter, we will look into, sniff, inject, and man-in-the-middle the most common
hardware protocols. There are a small number of things that you can get for yourself if
you want to replicate the practical demonstrations. (These are not absolutely necessary
but there is both a theoretical and a practical know-how aspect to what is covered in this
chapter. I warmly recommend that you actually replicate the exercises.)

Hardware
In order to be able to follow along, get yourself the following:

• A breadboard

• Two blue pills (very cheap Chinese STM32 boards; see https://
stm32duinoforum.com/forum/wiki_subdomain/index_title_Blue_
Pill.html)

• An STLink to program them (sometimes the UART bootloaders are not
wired correctly)

• Jumper wires

• Any logic analyzer (we will use an open bench analyzer)

The following peripherals are required:

• I2C: A PDIP 24LC I2C EEPROM

• SPI: An MX25L8008 flash on a DIP breakout

• UART: Any USB-to-serial adapter (The cheap ones based on CP2102 will do the job
perfectly, as they are useful tools. Ordering more than one is a great idea.)

• D1W: A DS18B20 (a temperature sensor)

 The software needed for Linux is as follows:

• arm-gcc-eabi-none

• stlink

• sigrok

• Fritzing (to see the breadboard implementation of the components)

https://stm32duinoforum.com/forum/wiki_subdomain/index_title_Blue_Pill.html
https://stm32duinoforum.com/forum/wiki_subdomain/index_title_Blue_Pill.html
https://stm32duinoforum.com/forum/wiki_subdomain/index_title_Blue_Pill.html

Understanding I2C 115

In this chapter, there are a few schemas that show how to connect components to
a breadboard. Since the book is printed in grayscale, it may not always be very easy
to differentiate the wires. If it is not clear enough for you, please download Fritzing,
a software that can show (in color) the breadboard schematic files that are in the GitHub
repository: https://github.com/PacktPublishing/Practical-Hardware-
Pentesting/tree/main/bluepill/ch6.

The GitHub repository also contains all of the example code.

Let's start with I2C.

Check out the following link to see the Code in Action video:

https://bit.ly/3q2TkRK

Understanding I2C
I2C (pronounced as I-two-see, or I-square-see), short for Inter-Integrated Circuit, is
a protocol that was invented by Phillips in the early 80s to be used in televisions. Due to
its easy topology and low part count, it is now widely adopted.

Mode of operation
I2C connects chips with two wires: one is data (bidirectional) and the other is clock (of
course, with a shared ground). On the bus, one chip acts as the master and the others as
slaves (but they can exchange this role if this functionality is foreseen).

Physical layer
A very important feature on the I2C bus is that both lines (classically called Serial Data
(SDA) for the data line and Serial Clock (SCL) for the clock line) are pulled up. This
means they both have a resistor to the logical positive rail (also called VCC or VDD)
in order to guarantee that the bus is high when no chip is pulling it to ground level
(low). The bus normally uses a bus topology, but at low speeds, it is possible to use a star
topology. Both the bus master and slaves can (and will) clock the bus.

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6
https://bit.ly/3q2TkRK

116 Sniffing and Attacking the Most Common Protocols

The bus classically looks like this:

Figure 6.1 – General I2C architecture

Speed is very important regarding the physical layer (and will have an impact when you
want to impersonate a chip, for example).

I2C comes in multiple speed grades, as shown in the following table:

The speed mainly has an impact on the values of the pullup resistor for the
following reasons:

• Everything on a board (traces, components, and more) has parasitic values (that
is, the values that come from the environment, the package itself, and a plethora of
other factors).

• The traces of the bus have a parasitic capacitance (but also their own resistance,
inductance, and more); it is possible that the traces and the pullup resistor act as
resistance that is charging a capacitor.

Understanding I2C 117

While the impact of this is very limited at slower speeds, it can be measurable and even
disturbing at higher frequencies (this is the reason behind not using a breadboard at fast
speed in Chapter 1, Setting Up Your Pentesting Lab and Ensuring Lab Safety).

Information box
The rule of thumb is, the higher the speed, the lower the resistance (lower
resistance implies more current, which implies faster response – this is a rule of
thumb; the capacitance of the circuit has an impact but you can't change it).

To calculate the needed resistance, the following formula can be applied. This is
a simplified version; there is a formula that takes the parasitic capacitance of the traces
into account, but it is hard to measure. Typical capacitance is taken into account in the
Imin values indicated in the following formula:

Here is a table of resistance for common logic-level values (in reality, select the closest
smallest standard value in the resistors you have available):

Important note
Not every MCU can sink this much current easily! If you don't pay attention,
you can easily burn your pin (or your MCU). Some additional transistors can
solve this problem. Selecting a value too low for the pullup resistor will lower
the state change time but can also change the minimal voltage and make it not
close enough to GND. This can prevent the system from working.

118 Sniffing and Attacking the Most Common Protocols

Logic levels and voltage translation
This logic translation is mainly used for I2C but can also be applied to other protocols.

I2C doesn't really force a specific value for the logic levels, and both the slaves and
the master can pull the SDA low. However, it is then necessary to use a bidirectional
voltage-level translation that is able to cope with this. Dedicated chips exist but they tend
to be expensive. Thankfully, an engineer for Philips has provided us with a clever trick to
do this using just two MOSFETs. The arrangement is shown in the following diagram:

Figure 6.2 – Bidirectional voltage translation

The original author (Herman Schutte) suggests using BSS138 MOSFETs for 5 V<>3.3
V translation. This MOSFET typically drives with a gate voltage of 1.3 V (refer to the
datasheet). So, you will need to find replacements if your logic levels are lower (than 1.8 V
to be on the safe side). You may need to find a MOSFET with a lower gate threshold. Some
vendors offer BSS138 with a very low minimal gate threshold. You may need to buy a few
dozen, find the ones that are more on the lower end of the spectrum, and select those
specific ones in the lot for your voltage translation. I found BSS138 with a Vgs as low as
700 mV in a lot from Diode Incorporated.

Understanding I2C 119

The physical format of the bits
The bits are transferred by encoding them in the way SDA and SCL behave relative to
one another.

The bits are transmitted as shown:

Figure 6.3 – I2C sampling

The sampling is typically done around the middle of the active clock cycle (that is, SCL is
high, as shown in the preceding figure) or on an SCL raising edge. The sampling reads the
state of SDA to get a 0 or 1 from the signal.

A few special conditions that are not following the normal bit encoding or behavior rules
are used to support additional signaling between the devices:

• Start condition: To start communication on the bus, the bus master pulls SDA low
while SCL is kept high:

Figure 6.4 – I2C start condition

120 Sniffing and Attacking the Most Common Protocols

• Stop condition: To stop communication on the bus, the bus master pulls SDA high
while SCL is kept high:

Figure 6.5 – I2C stop condition

• Restart condition: This is similar to the start condition. During a transaction,
SDA goes low while SCL is kept high:

Figure 6.6 – I2C restart condition

• Pause: The slave keeps SCL low, preventing the master from clocking SCL
(the master detects it and pauses the transmission) and frees up SCL for the
master when it is done:

Understanding I2C 121

Figure 6.7 – I2C pause

We have covered the physical layer, so let's have a look at the logical layer now.

Logical layer
I2C supports an addressing system over 7 bits (or 10 bits with an extension but this is not
supported by all devices). This means that the theoretical maximum number of devices is
126 (the zero address is supposed to be a broadcast, but this is not actually implemented
in all chips).

Every device has a 7-bit address and the last bit of the byte is used to indicate whether this
is a read or write request:

122 Sniffing and Attacking the Most Common Protocols

Understanding I2C 123

This is a complete description of an I2C transaction between a master and slave.
Now that we know this, let's sniff a communication and see how the protocol is used in
the communication.

Sniffing I2C
There are at least two ways to sniff I2C: the generic way (with any logic analyzer) or by
using the Bus Pirate.

The target circuit we use as an example is any micro-controller (a blue pill for us)
connected to an I2C chip (PCF8574P for me).

Information box
Since it will probably be the first time you interact with your USB devices, don't
forget to set up udev rules (for Linux) in order to be able to interact with
them without needing superuser privileges.

Look into your system log (dmesg for Linux) after plugging in the device and note
down the vendorid and product ID values. For example, this is what dmesg says for
my logic sniffer:

[xxx.xx] usb xxx: New USB device found, idVendor=04d8,
idProduct=fc92, bcdDevice= 1.00

[xxx.xx] usb xxx: New USB device strings: Mfr=1, Product=2,
SerialNumber=0

[xxx.xx] usb xxx: Product: Logic Sniffer CDC-232

Create a file for udev (usually in /etc/udev/rules.d/) with a line like this:

SUBSYSTEMS=="usb", ATTRS{idVendor}=="[vendor id you noted
down]", ATTRS{idProduct}=="[product id you noted down]",
MODE:="0666"

Reload the rules with the following (as root/sudo):

#udevadm control --reload-rules

Now that we have seen how the protocol is behaving, let's have a look at how we can read it.

Using a generic logic analyzer
While we're using the logic analyzer for the first time for I2C, it is of course also usable for
the other protocols.

124 Sniffing and Attacking the Most Common Protocols

We will use an open bench logic analyzer and sigrok (the open bench logic analyzer is
open source hardware and sigrok is open source software).

We will need to connect the following.

The blue pill, the EEPROM, the two pullup resistors, and the serial adapter need to be
connected like so:

Figure 6.8 – I2C usage connection

Open the Fritzing schematic (https://github.com/PacktPublishing/
Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_
Schematics) to identify the components.

To connect the analyzer to the circuit, do the following:

1. Connect the ground together.

2. Connect pin 0 of the analyzer to the SCL line.

3. Connect pin 1 of the analyzer to the SDA line.

4. Connect the analyzer to USB.

5. Launch PulseView (sigrok's GUI) and connect it to the logic analyzer.

6. Click on the Connect device button and set up the analyzer as shown:

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics

Understanding I2C 125

Figure 6.9 – Connecting the logic analyzer

7. Select the logic analyzer pins you used from the menu with this icon: . Click on
the sniffing button until you see a waveform that looks like this:

Figure 6.10 – Adding a decoder

126 Sniffing and Attacking the Most Common Protocols

8. Add a decoder (I2C) by clicking on the yellow-and-green button on the top bar.

9. Click on the I2C decoder to select which line is SCL and which is SDA (in my sniff,
I used pins 6 and 7: 7 as SCL and 6 as SDA).

Now we can see on the decoder line what the values that transited on the I2C bus are!

Now you can sniff I2C with a logic analyzer.

Using the Bus Pirate
This is also applicable to other protocols.

The Bus Pirate offers multiple easy ways to interact with I2C but has the downside of
coming without a GUI. It is available as a serial device on your computer and you can
interact with it on the command line. It can sniff I2C up to 100 KHz.

All the commands related to I2C are documented here: http://
dangerousprototypes.com/docs/Bus_Pirate_I2C (the commands for the
other protocols have their own pages).

The Bus Pirate can sniff (relatively) low-speed I2C and render the traffic in the same
syntax it would use to emit the I2C traffic. You will then be able to replay the traffic really
easily. Just connect the Bus Pirate pins to the previous breadboard.

Let's give this a try:

1. Connect to the command-line interface of the Bus Pirate (screen or minicom,
whichever is your favorite serial client; for me, it is screen). Don't forget the udev
rules; you can even give a cool persistent name such as /dev/buspirate with
the SYMLINK directive. I'll let you search how to use udev directives by yourself;
maybe there will be questions on this at the end of the chapter!:

$screen /dev/ttyUSB0 115200

2. Put it in I2C mode in the terminal (4) and launch the snif macro (2).

3. Power the circuit.

You should see something like this:
[0xa0+0x00+0x01+[0xa1+0xXX-0xff]

0xXX is dependent on the content of your EEPROM. If it has never been written to,
it will be a random value.

http://dangerousprototypes.com/docs/Bus_Pirate_I2C
http://dangerousprototypes.com/docs/Bus_Pirate_I2C

Understanding I2C 127

Let's look into the datasheet for the EEPROM and make sense of this traffic:

• [: The start condition

• 0xa0: But the device address was 0x50 in the sigrok sniff! Remember how the
address is on 7 bits and uses the eighth bit of the byte to indicate read or write?
0x50 << 1 = Oxa0 = is the write address of the peripheral at 0x50.

Information box
<< means shift to the right.

We need to be familiar with the following.

The C notation for bit-wise and Boolean operators (as these operations are
extensively used in embedded systems) is really important. Please refer
to the GNU C manual: https://www.gnu.org/software/
gnu-c-manual/gnu-c-manual.html#Bitwise-Logical-
Operators.

Memory representation of various types (that is, how an integer, a float,
or a long long is represented in memory and what this representation entails
in term of limitations) is also very important to know; you don't really need to
know the details intimately but knowing they exist and how to find out how
they work will sometimes open interesting doors for you.

• +: The address is ACKed by the EEPROM.

• 0x00: First bit of the address...

• + is ACKed.

• 0x01: Second bit of the address...

• + is ACKed.

• [: We restart.

• 0xa1: 0xa0 | 1 = 0xa1 – the last bit is 1, so we want to read.

• 0xXX: We read a byte that we NACK (since it is the last byte we want).

• And the state machine of the MCU just clocks in a byte anyway (because that is how
it works) and stops.

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Bitwise-Logical-Operators
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Bitwise-Logical-Operators
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Bitwise-Logical-Operators

128 Sniffing and Attacking the Most Common Protocols

Injecting I2C
Injecting I2C can be really tricky for two reasons:

• Not all masters on an I2C bus are able to follow the multi-master arbitration
protocol. In order to be able to inject I2C on a live bus, if the multi-master is
not supported, we will need to get crafty (either by studying the period at which
the master is transmitting and leverage pauses or by actually doing a man in the
middle).

• Remember how I2C is an open collector bus with pullup resistors? This means that
you have to pull down the bus (actually do a bus stretching like you were a slave)
and use its pullups. Sometimes, this makes the bus masters that don't support the
multi-master functionality behave really weirdly and sometimes crash (that can also
be interesting but, in my experience, not very useful).

Otherwise, injecting I2C is just a matter of connecting another master on the bus without
a pullup resistor (it is using the existing ones) and avoiding collisions.

Exercise
1. Connect one blue pill and flash the code for the I2C sniffing example.

2. Do the same for the second blue pill without dedicated pullup resistors (there
shouldn't be any collision unless you are really, really, really unlucky).

3. What do you see on both serial outputs?

4. What do you conclude?

I2C man in the middle
By using a micro-controller with two I2C peripherals (such as the blue pills), we can put
ourselves physically in between the master and slaves, acting as a slave to the master and
as a master to the slaves. For this, we just have to know the expected address of the slave.

Here is how to put the components on a breadboard:

Understanding SPI 129

Figure 6.11 – I2C man-in-the-middle connection

We will alter the traffic to have the master read p-e-n-t-e-s-t every 100 bytes.

The code is in this chapter's folder in the cloned directory. Compare it to the reading code,
play with the interrupts, and try to understand it.

Understanding SPI
SPI, or serial-to-parallel interface, is a (usually minimum) three-wire bus. One acts as
the clock (CLK), one as Master Out Slave In (MOSI), and one as Master In Slave Out
(MISO). If multiple slaves are present in the bus, there is also an additional wire per slave
called CS or SS (Chip Select or Slave Select, usually active low).

Here is how multiple slaves are connected:

Figure 6.12 – SPI general architecture

SPI only manages how the bits are transferred on the line; there is no logical layer in the
protocol (like I2C has).

130 Sniffing and Attacking the Most Common Protocols

On systems where the speed of transfer is important, SPI can come in the QSPI flavor
(queued SPI/quad SPI) where there are four data lines. You should note that some chips
support both modes and can switch between them with internal commands (that is,
commands in the data that are transported by SPI, not commands determined by the SPI
protocol itself).

Now that we have seen how the chips are connected, let's see how it works.

Mode of operation
First things first, SPI has a frequency. This frequency is determined by the master (which
is pulsing the clock) and must fall within the max frequency that the currently selected
peripheral (with a CS wire) supports.

The second thing to take into account with SPI is two parameters called CPOL and CPHA.
These parameters manage the clock polarity and clock phase:

• Clock Polarity (CPOL) governs the fact that the clock wire is considered active
high or low.

• Clock Phase (CPHA) governs the timing at which the data will be sampled on the
adequate wire in respect to the clock cycles.

This creates four "modes" (CPOL and CPHA names are inherited from PIC MCUs but this
became a de facto standard).

SPI mode 0
In this mode, the clock is active high. Data is sampled on the leading edge of the clock
cycle and changed on the trailing edge:

Figure 6.13 – SPI mode 0 timing

Understanding SPI 131

SPI mode 1
In this mode, the clock is active high. Data is sampled on the trailing edge of the clock
cycle and changed on the leading edge of the following clock cycle:

Figure 6.14 – SPI mode 1 timing

SPI mode 2
In this mode, the clock is active low. Data is sampled on the leading edge of the clock cycle
and changed on the trailing edge:

Figure 6.15 – SPI mode 2 timing

132 Sniffing and Attacking the Most Common Protocols

SPI mode 3
In this mode, the clock is active low. Data is sampled on the trailing edge of the clock cycle
and changed on the leading edge of the following clock cycle:

Figure 6.16 – SPI mode 3 timing

Now that we know what SPI is supposed to look like, let's have a look at it.

Sniffing SPI
Like we did for I2C, we will now sniff SPI.

The sniffing protocols are largely the same for all of them: put the circuit using the
protocol in place, connect your logic analyzer to the appropriate pins, and launch
PulseView. Refer to the Sniffing I2C section if you have forgotten.

Build up the circuit as shown here:

Figure 6.17 – SPI usage connection

Understanding SPI 133

This is basically the same deal as for I2C: just connect the ground together, then connect
pin 0 to CLK, pin 1 to MISO, pin 2 to MOSI, and pin 3 to CS.

Launch PulseView and add an SPI decoder.

The code for the blue pill is here: https://github.com/PacktPublishing/
Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_
client.

We will follow the same pattern and now inject data on an SPI bus.

Injecting SPI
To inject SPI, just add your master to the bus, the MOSI to the MOSI line, the MISO to
the MISO line, CS to CS, and CLK to CLK, and listen to the CLK line to establish a pattern
and avoid collisions.

If multiple peripherals are present, you will also have to manage the CS line.

SPI – man in the middle
Put yourself between the master and the slaves; act as a slave to the master and as a master
to the slave. An (easily worked around) problem is that most of the hardware peripherals
included in the MCUs need an external CS/SS. Just connect to the ground so that the
peripheral believes it is always selected if the MCU you use needs it.

Important note
Depending on the speed of the communication between the original master
and the original slave (and the speeds supported by the original slave), it
is not always possible to man-in-the-middle SPI with a micro-controller.
Especially with SPI EEPROMs, the communication is not transactional (that
is, the MCU finishes asking its questions and then the EEPROM answers). For
some EEPROMs, the EEPROM starts to send back data while the MCU is still
sending commands. If you have to face this kind of situation, look into SPI Spy
(https://github.com/osresearch/spispy), an FPGA-based
tool that can solve this.

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_client
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_client
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_client
https://github.com/osresearch/spispy

134 Sniffing and Attacking the Most Common Protocols

Here is the connection schema in the Fritzing folder. Open the Fritzing document here to
better see the components and connection points as shown in the following figure:

Figure 6.18 – SPI man-in-the-middle connection

The code is here: https://github.com/PacktPublishing/Practical-
Hardware-Pentesting/tree/main/bluepill/ch6/spi_mitm.

Now we are going to look into UART (serial link).

Understanding UART
UART (otherwise known as RS232 or serial) is a time-based protocol. The data travels on
two wires.

From the MCU point of view, they are named as follows:

• RX (Receive): The wire on which data comes from the peripheral

• TX (Transmit): The wire on which data goes to the peripheral

The flow control can come in two main flavors:

• With hardware flow control: Two additional control wires control the flow of
the data. This hardware flow control itself can come in two flavors: either with
control from the master, CTS (Clear To Send), or from the slave, DTR (Data
Terminal Ready).

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_mitm
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/spi_mitm

Understanding UART 135

• Without hardware flow control: UART without hardware flow control only takes
care of "transporting the bits." There is no logic layer to it.

Error detection is also possible in the form of a parity bit added at the end of
the transmission.

It can connect multiple devices but is not taking care of the addressing (the payload will
have to take care of this). It also serves as a base of multiple "flavors" of communication
(IrDA, smartcard communication, and more).

Here are the different signals:

Now that we have seen the different signals, let's see how they are used to send data.

Mode of operation
In the UART schema, idle lines are high, and the signal is sent by pulling it low.

This is assured by a pullup resistor that is normally taken care of on the TX line (meaning
the MCU takes care of the pullup resistor on its TX and the peripheral on its own TX
(which is the MCU's RX)). But why is it important, you ask? In the end, there is a pullup
on each line. True, but these resistors can be internal to both the MCU and the peripheral
and as we will need to put ourselves on these lines, we will need to pay attention that we
don't disturb this mechanism too much.

The first parameter to know is called the baud rate, which is the number of bits sent by
second. This is a critical parameter since the protocol is time-based. This determines the
time of the transmission for one bit.

136 Sniffing and Attacking the Most Common Protocols

There is a list of "usual" baud rates and their corresponding symbol times. The symbol
time is very practical to determine the correct baud rate to set on your devices:

Tip
UART operations are very sensitive to the precision of the clock. Try to always
use a crystal oscillator as the clock source since internal RC oscillators (build
with resistors and capacitors) tend to be less precise and drift more.

UART transmissions always start with a start bit (to signal the line is not idle and a finish
with one or more stop bit). The transmission can be of any number of bits (but is usually
7 or 8 bits long). The transmission can also contain a parity bit to allow for error detection
(this bit is optional).

A very common way to describe the settings of serial communication is a string that goes:
Baud rate/number of bits – Presence of the parity bit (Yes/No) – Number of stop bits.

For example, 9600/8-N-1 is a very common configuration (9,600 bps/8 bits – No
parity – 1 stop bit).

Understanding UART 137

Sniffing UART
Sniffing UART with a logic analyzer is very straightforward. Connect the ground
together and your analyzer in the usual way: PIN 0 to the RX and PIN 1 to the TX. Then
sniff and add a UART decoder in PulseView. You can also just connect the ground of
a USB-to-serial adapter to the circuit ground and its RX pin to the direction you want to
sniff (do not connect its TX pin as it could disturb the communication).

Injecting UART
The simplest way is to connect the TX pin of a USB-to-serial adapter to the line you want
to inject traffic in. This does not always work because your TX pin could pull the line too
high for the original sender to transmit.

Here is an example situation:

Figure 6.19 – The problem with UART injection

In a normal situation, the MCU pin pulls the pin to ground with a given strength (usually
it is quite "strong," with very low resistance). This changes the voltage on the line to be
very low (not null, since there is still a little bit of resistance; the pullup and the resistance
act as a voltage divider), low enough to be under the threshold that the peripheral pin
detected as 0/LOW.

When we add our pullup in parallel to the normal pullup, we actually lower the resulting
resistance (resistors in series = sum of resistances. Resistors in parallel = sum of the
inverse). This means that it is possible that we (or the original MCU) aren't able to pull the
line low enough for the MCU to detect a LOW (this also means that too much current can
flow through the MCU's or your UART adapter's pin, damaging it in the process).

138 Sniffing and Attacking the Most Common Protocols

In this case, do the following:

• Remove the pullup on your adapter if possible or change the value of your pullup
resistor (to a higher one; the already-present pullup of the peripheral TX will act as
a divider).

• If this doesn't work, go in the man-in-the-middle direction.

Exercise
Adapt the code of the UART script of the I2C example to inject your UART traffic instead
of showing the I2C traffic (get inspiration from the bit of script in the next section).

UART – man in the middle
You can use two USB-to-serial adapters on your computer and use a simple Python
program to alter the content of the communication (do not forget to cut or disconnect the
original connections).

For example, the following code adds 1 to every byte received on ttyUSB0 and sends it
to ttyUSB1:

#! /usr/bin/python

import serial

#imports the serial module

serin = serial.Serial('/dev/ttyUSB0', 115200)

#opens serial adapter one

serout = serial.Serial('/dev/ttyUSB1', 115200)

#opens serial adapter two

while(True):

 c = serin.read()

#read one char on adapter 1

 c = chr(ord(c)+1)

#add one

 serout.write(c)

#prints on adapter 2

Now we are looking into a protocol that we have to bit-bang since there is no hardware
peripheral for it. D1W is a pretty nifty protocol that is used for simple applications such as
ensuring that a guard did their rounds. With what I will show you in the next section, you
will be able to take a guard job and stay in your sentry box during cold winter nights...

Understanding D1W 139

Understanding D1W
D1W is a one-wire bus. It is usually used for simple sensors (temperature or humidity)
and has "buttons" that just show a unique identifier. This is an interesting bus where
the power of the device can also come from the wire that is used to transmit data. This
is usually not supported by hardware peripherals in MCUs; you need to bit-bang the
protocol. Bit-banging a protocol means that we will implement the protocol manually
by using the GPIOs of the blue pill. 1-Wire is an open-drain bus (like I2C or UART) and
hence needs an external pullup resistor (usually of 5k ohms) to set the voltage to a known
state when the MCU disconnects the pin (also called floating as in the code).

Mode of operation
The communication on the D1W is time-based and is initialized by sending a reset pulse
that the slave will answer to (the presence pulse).

The reset pulse
The reset pulse is initialized by the master pulling low the data line for at least 480 µS.

So, the first challenge is to set up the GPIO. For this, we will use and have a precise
enough time source to measure the 480 µS. So, we will need to use a timer. Please have
a look at the client (since the man-in-the-middle code is event-driven, it is better to start
with a more sequential program) code for this in the GitHub repository here: https://
github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/
main/bluepill/ch6/1w_client. The setup code is in libLHP.

The presence pulse
Now the master listens on the bus for at least 480 µS and each device will pull down the
line for 80 to 240 µs as shown in the following figure:

Figure 6.20 – D1W timing diagram

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/1w_client
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/1w_client
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/1w_client

140 Sniffing and Attacking the Most Common Protocols

Now that we have seen what the presence pulse is, let's look at the other operations.

Reading and writing
Basically, all reads and writes are started by the master. To write a 0, the master pulls down
the line for 80 to 120 µs and to write a 1, it pulls down the line very shortly (1 µS) and lets
the resistor pull up the bus.

To read, the master pulls the line low and measures whether the bus goes high in the
next 15 µs. If it does it is a 1 and if it's doesn't it's a 0. All the timings are described in the
MAX31820 datasheet (https://github.com/PacktPublishing/Practical-
Hardware-Pentesting/tree/main/datasheets) on page 17:

Figure 6.21 – D1W timing diagram, READ and WRITE

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/datasheets
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/datasheets

Understanding D1W 141

D1W also uses a Cyclic Redundancy Check (CRC) to enable the detection of errors.
Please refer to the D1W documentation to learn how to use it (this will have an impact on
the man in the middle since the CRC has to be corrected if we change data).

Sniffing D1W
Here is the connection schema: https://github.com/PacktPublishing/
Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_
Schematics. Open the Fritzing document here to better see the components and
connection points as shown in the following figure:

Figure 6.22 – D1W connection

As usual, connect the ground together, connect pin 0 to the data line, and sniff and add
the D1W analyzer.

Injecting D1W
Connect a master to the data line and just act as the master (sending requests and
reading answers).

The communication on the D1W bus is (in the vast majority of cases) very spaced out.
The chances of collision are very low but if you get a CRC error, just wait for a few ms
before retrying).

https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics
https://github.com/PacktPublishing/Practical-Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics

142 Sniffing and Attacking the Most Common Protocols

D1W – man in the middle
Open the Fritzing document to better see the components and connection points as
shown in the following figure:

Figure 6.23 – D1W man in the middle

This is basically the same deal as usual: act as a slave to the master and as a master to the
slave. Here we are modifying the temperature readout and the CRC.

Summary
In this chapter, we have seen the most common of circuit protocols, how to sniff them,
and how to man-in-the-middle them. This will allow you to take control of most of the
slower-speed protocols and will provide you with the necessary tools and approaches to
alter the behavior of a system and find secrets that are exchanged on the wires.

In the next chapter, we will learn how to identify the access points to these signals and,
if necessary, how to create our own access points.

Questions
1. You are visualizing something and you are pretty sure there is some UART traffic on

your scope. You see the following waveform. What is the baud rate?

Questions 143

Figure 6.24 – UART oscilloscope signal: what is the baudrate?

2. What is QSPI?

3. What is the usage of the parity byte in UART?

4. Who invented the I2C protocol?

5. How can you use multiple 24LC EEPROMs on the same I2C bus?

6. You have to man in the middle an I2C bus with two different devices and a master.
Sadly, the hardware peripheral on the blue pill can only have a single address and
you can't think of a way to have it alternate between the addresses (the master
apparently talks randomly to the devices). What would be your approach?

7. 0x41 0x20 0x76 0x65 0x72 0x79 0x20 0x76 0x65 0x72 0x79
0x20 0x73 0x65 0x72 0x69 0x6f 0x75 0x73 0x20 0x6b 0x65
0x79 0x21

^

0x08 0x00 0x1a 0x0a 0x04 0x1c 0x00 0x14 0x0c 0x1c 0x18
0x52 0x0a 0x45 0x1d 0x19 0x0a 0x07 0x12 0x54 0x04 0x17
0x0a 0x00?

7
Extracting and

Manipulating
Onboard Storage

Embedded systems store their data and sometimes their code on media that can take
multiple forms on the board (chips, external storage such as SD cards, and so on).
Getting access to this storage is crucial to be able to analyze the code and get access to
security-relevant elements. In this chapter, we will go through multiple components that
can hold this data, how to extract data from the component, how to understand how it is
stored, and lastly, how to peruse and change the data (in raw form or with a filesystem).

The following topics will be covered in this chapter:

• Finding the data

• Extracting the data

• Understanding unknown storage structures

• Mounting filesystems

• Repacking

146 Extracting and Manipulating Onboard Storage

Technical requirements
The software required is as follows:

• Binwalk

• A Linux machine

The hardware required (to repeat the examples) is as follows:

• The Bus Pirate

• An I2C or SPI EEPROM (you should already have this from the previous chapter)

Check out the following link to see the Code in Action video:
https://bit.ly/383OzkJ

Finding the data
Before parsing the data, we have to find it. In addition to classical storage media (hard
drives, Solid State Drive (SSDs), onboard USB storage, and more), embedded systems use
more specific chips and systems to store data, and some of them are listed as follows:

• EEPROMs

• EMMC and NAND/NOR Flash

• Static RAM, and so on...

Let's look at each of them in the following sections.

EEPROMs
EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash memory
are "one-chip" storage solutions that keep the data even when the power is off. They are
available on pretty much every existing protocol (I2C, (Q)SPI, 1-Wire, and more). Locating
these chips is not always easy (especially if they are unmarked or rebranded) but (as already
discussed in the component identification section in the previous chapter), it is possible to
identify them by elimination or by sniffing the protocol on the board. Typically, the storage
capacity is small, and the storage structure is custom made for the system (that is, it does
not embed a typical, well-known filesystem like bigger storage mediums).

https://bit.ly/383OzkJ

Finding the data 147

EMMC and NAND/NOR Flash
EMMC is a physical variant of MMC (MultiMediaCard) in which the chip is soldered on
the board instead of being removable. It is entirely possible to remove the chip (doing so
is called chip-off) and use an adapter to read it as a classical MMC (with a USB adapter),
basically transforming it into a USB thumb drive.

NAND and NOR Flash are also soldered directly on the board but don't really
offer a "standard" protocol to talk to the chip and need a lower-level approach
(such as programming the adequate protocol on a micro-controller) or a specific
adapter/programmer.

These chips come with multiple "standard" footprints (EMMC: BGA221, BGA162,
BHA186, and more; NAND/NOR: BGA137, BGA63, and more) that all require a different
adapter (to accommodate the footprint). These adapters can be found on auction sites
or from Chinese retail sites (AliExpress, TaoBao, and so on). Single-use adapters are
reasonably priced but require a reflowing phase (that is, resoldering the chip on the
adapter, for which you will very probably need a paste application stencil), which can be
tricky to master and comes with a risk of damaging the chip (it is pretty common to short
pins while manually reflowing a BGA chip).

Reusable ones (with a clamshell adapter) are more expensive but (if you are doing this
often) are worth the price since you will bypass the reflowing step and the risks that
come with it.

Hard drives, SSDs, and other storage mediums
While less common on simple systems (such as systems running from simple
micro-controllers), it is pretty common to find systems that are running a full-fledged OS
(that is, the same kind that runs on a laptop or desktop computer) for the simple reason
that the system is a computer in the commonly understood sense of the term.

For example, anything running Android (such as a Linux kernel) is a complete computer
and comes with high-speed data interfaces (PATA/SATA, M.2, PCI-E/X, and more). It is
then pretty tempting for a system constructor to leverage the relatively cheap storage price
by using commonly available interfaces, especially given the small form factors currently
available. M.2 sticks or 1.8" SSD drives are very small and provide huge capacities
compared to the usual specific embedded solutions.

Some older styles of storage are also found on more legacy/industrial systems (for
example, CompactFlash/Microdrive) that need specific adapters. USB adapters for these
styles of storage are quite commonplace on auction sites.

148 Extracting and Manipulating Onboard Storage

Extracting the data
For cases where we don't have the data already (that is, we did not succeed in getting
updates), we need to extract the data from its storage place to our computer. Being able to
process and modify the data on a computer will allow us to use higher-level programming
languages and tools.

Let's have a look at the most common things we have to extract.

On-chip firmware
Most micro-controllers will embed their programs (that is, their firmware), at least
partially, on on-chip (or on-module) flash or other forms of storage, such as EEPROM.
The worst-case scenario for us is cases where programs are stored in One-Time
Programmable (OTP) memory, such as the MCU used in the Furby toy (in a masked
ROM) or a lot of very cheap MCUs.

For example, most ARM chips come with on-chip flash. The ESP family of chips has
a flash storage chip on the module from where the chip retrieves its program. These can
usually store long-term variables (across reboots). It is very important for us to be able to
retrieve this data if we want to be able to reverse-engineer the program behavior.

An essential step in acquiring the firmware is to find an adequate hardware programmer
and the associated software. Most chips will use some form or variation of the JTAG
interface (we will talk in more detail about JTAG in Chapter 10, Accessing the Debug
Interfaces). In modern chips, it is very common to find the correct hardware programmer
(bundled with the software) integrated into the development kit for the target chip. This
programmer usually allows us to read back the binary form of the program that is stored
in the onboard flash. Some commercial products implement protection against reading
back this data, but they can sometimes be bypassed. Bypassing these protections usually
requires some more advanced and specific attacks (such as finding bugs in bootloaders
or glitching), but these attacks are usually complex and fall out of the scope of this
introductory book.

Depending on the complexity of the device, it is also possible that a bootloader (for
example, U-Boot) will be present on the device. If this is the case and you manage to get
access to it (from a debug serial console, for example), it should be possible to extract the
storage via the serial cable; for example, U-Boot's md or nand commands can help:

• https://www.denx.de/wiki/view/DULG/UBootCmdGroupNand

• https://www.denx.de/wiki/view/DULG/UBootCmdGroupMemory

https://www.denx.de/wiki/view/DULG/UBootCmdGroupNand
https://www.denx.de/wiki/view/DULG/UBootCmdGroupMemory

Extracting the data 149

Onboard storage – specific interfaces
Unless the device is supported by mainstream tools (such as flashrom), you will have
to implement a specific dumping tool on a micro-controller or use a tool such as the
Bus Pirate to access the content. Flashrom is usually used for BIOS flash chips but also
supports many other flash chips, for example, the Macronix 25L8008 SPI flash we used in
the previous chapter.

The details of the behavior can be found by reading the datasheet. To dump the content to
your computer, you will have to implement this behavior. This is usually implemented on
a micro-controller and the data is transferred over serial. This transfer is achieved using
a USB-to-serial device and a variant of the script we used to man-in-the-middle UART.
The exercise to modify the script to write to a file instead of writing to the other UART
serial bridge is left to you.

Onboard storage – common interfaces
If the device uses a standard interface (SATA, MMC, SD card, or others), it should
be recognized (at least as a device) by your computer. It should show up in your logs
(you can display your log with the dmesg command) as being available as a device
(in the /dev directory).

For example, my USB adapter connects and detects an 8 GB micro SD card as /dev/sdg
(this specific adapter is based on a Realtek RTS5169 chip and supports multiple media,
CompactFlash, SD card, memory sticks, and more):

$dmesg|tail

[112959.731873] usb 2-1: new high-speed USB device number 8
using xhci_hcd

[112959.930354] usb 2-1: New USB device found, idVendor=0bda,
idProduct=0161, bcdDevice=61.23

[112959.930357] usb 2-1: New USB device strings: Mfr=1,
Product=2, SerialNumber=3

[...]

[112959.933071] usb-storage 2-1:1.1: USB Mass Storage device
detected

[112959.933314] scsi host8: usb-storage 2-1:1.1

[112960.955475] scsi 8:0:0:0: Direct-Access Generic- Compact
Flash 1.00 PQ: 0 ANSI: 0 CCS

[...]

[...]

[112961.001598] scsi 8:0:0:3: Direct-Access Generic- MS/MS-Pro

150 Extracting and Manipulating Onboard Storage

1.00 PQ: 0 ANSI: 0 CCS

[...]

[113022.188644] sd 8:0:0:2: [sdg] 15564800 512-byte logical
blocks: (7.97 GB/7.42 GiB)

[113022.191353] sdg: sdg1 sdg2

If your media is recognized like this (here, it shows sdg: sdg1 sdg2), the best tool to
image it is dd. dd is a part of coreutils (and is most probably installed by default on
your Linux box).

dd has a peculiar syntax for a Linux command-line utility, without the usual - or -- as
a flag indicator. The options you will want to use are as follows:

• if=<path to the input file>: This can be /dev/ device (in the end,
you are using a Unix box, where everything is a file).

• of=<path to the outputfile>.

• bs=<block size>: This support k, M, and G shorthands; usually 1M will do.

• oflag=<a comma separated list of flags for output>: I
personally like to use the sync flag here, especially when writing to flash devices, in
order to ensure that the data doesn't end up in a kernel buffer, which makes dd quit
while the kernel is actually still writing.

• status=progress: (Only available in recent versions of dd.) This will show
you a progress indication (older versions of dd will only print this when they
receive a USR1 signal; use kill -USR1 <dd process id> if you have an
older version).

Take the following example:

1. To dump an SD card to a file, use the following:

dd if=/dev/sdg1 of=./dump.bin bs=1k status=progress

2. To put the modified data on an SD card, use the following:

dd if=./dump_modified.bin of=/dev/sdg1 bs=1k oflag=sync
status=progress

Now that we have saved the storage to our machine, let's look into it.

Understanding unknown storage structures 151

Understanding unknown storage structures
More often than not, light systems (those not embedding a full-fledged OS such as Linux)
will have a pretty well-documented way of storing their firmware internally (since this
storage form is crucial for the target MCU to function properly, it is well described in the
target MCU datasheet). On the other hand, the way the data is stored by the firmware
itself is very much left to the firmware developer device.

Unknown storage formats
There is no definitive way to reverse engineer the way data is stored, as for most reverse
engineering, it is as much an art as it is a science. The only way to get a good knack for
it is, just like soldering, doing it again and again, but having spent a fair share of my time
reversing a lot of different things, such as network protocols, storage structures, and more,
I can give you some pointers.

Understanding the way the data is organized for storage depends on multiple factors.
There are some general hints that can help you along the way.

Note the following about the data itself:

• Will the data change a lot in terms of content (such as settings or readings) or is
it "mostly static" (such as firmware and executable code)?

• Will the data change a lot in terms of size (such as strings or structure data with
members that are optional) or is it mostly static (such as binary readings, binary
fields, and so on)?

• Will the changing data be of variable size or is it well organized? Will it be of
fixed-size chunks?

Consider the following data processing commonalities:

• The developers will tend to store similar data together (images next to images, text
together, and so on).

• Code reuse. For example, when you look at compression, the same algorithm will
be reused multiple times, and hence block and code structure will be repeated, and
so on.

• Storage optimization. For example, data that would be relevant on a per-file storage
basis on a computer wouldn't make sense on a space-constrained system (why keep
image data headers if I am guaranteed by construction that I will only store 64x64,
24-bit, per-pixel color image information?).

152 Extracting and Manipulating Onboard Storage

Consider the following for the storage media:

• How is the storage media itself organized?

- Is the chip organized in blocks, pages, or sectors?

- Is it easy to make random, relatively small accesses or does the MCU have to read
"big chunks" of data?

• How is the storage media behaving regarding large numbers or write cycles? (For
example, flash only supports a given number of write cycles before dying. If the chip
controller is not implementing wear leveling (to spread data in order to avoid killing
blocks prematurely), the firmware author may have been tempted to implement
a home-made system for that.)

Consider the following for a classical storage scheme:

• FAT: FAT is well known as a filesystem, but this filesystem actually gets its name
from the concept of file allocation tables. It is very common to put a "table
of contents" in front of your storage, with the start address and size of your
storage item (possibly with a filename and other attributes such as timestamps of
modification, and so on).

• Size and value pairs, the same way it is used in a lot of network protocols.

• Fixed-size "blocks," for example, 100 bytes for preference, then 2 KB for static
strings, then 5 KB for pictures, and so on.

So, understanding the way storage is organized requires some detective work and does not
necessarily involve well-known structures and mechanisms.

Well-known storage formats
Sometimes, the storage format is well known (because someone reversed and documented
it before or because it uses well-known mechanisms) and tools are available to extract
it. One of the best known and most extensive in terms of support of different packing
mechanisms is Binwalk (https://github.com/ReFirmLabs/binwalk).

Binwalk will search the target file for well-known headers and try to extract them for you
(with -e).

Binwalk is Python-based and is a very useful tool to analyze firmware and storage images
(even if the format is not a well-known one, as it contains tools to help you analyze it).
You really should read the documentation (https://github.com/ReFirmLabs/
binwalk/wiki) and train yourself on multiple firmware images (router updates are
really ideal for that).

https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk/wiki
https://github.com/ReFirmLabs/binwalk/wiki

Understanding unknown storage structures 153

Binwalk will be able to find the following:

• General compression formats (.gz, .lzma, .xz, and so on)

• Linux kernels and images

• Filesystems (SquashFS, JFFS2, and so on)

Let's look for storage in our Furby
Let's look into the EEPROM and the SPI blob. We will dump them and look at their
content in order to guide you through an example of the tools and processes used for it.

First candidate – the ATMLH306 I2C EEPROM
The first data store we identify is an I2C EEPROM. Let's dump it to a file.

Extract it from the Printed Circuit Board (PCB), mount it on a breakout, and connect
it to our Bus Pirate as shown in the following photo:

Figure 7.1 – I2C EEPROM extracted and connected to the Bus Pirate

Once the Bus Pirate has connected successfully (it will show in the output of dmesg),
we can go on.

154 Extracting and Manipulating Onboard Storage

Let's verify that our connection works by scanning the I2C bus with the following actions
in the Bus Pirate text menu:

$screen /dev/ttyACM0 115200

HiZ>m

[...]

4. I2C

[...]

x. exit(without change)

(1)>4

I2C mode:

 1. Software

 2. Hardware

(1)>2

Set speed:

 1. 100KHz

 2. 400KHz

 3. 1MHz

(1)>1

Clutch disengaged!!!

To finish setup, start up the power supplies with command

'W'

Ready

I2C>W

POWER SUPPLIES ON

Clutch engaged!!!

I2C>P

Pull-up resistors ON

I2C>(1)

Searching I2C address space. Found devices at:

0xA0(0x50 W) 0xA1(0x50 R)

Depending on your version, the Bus Pirate output can be slightly different. Now we will
connect to the Bus Pirate in binary mode using a Python script and save the EEPROM to
a file. You will be able to find the script and the dumped data on the GitHub repository in
the ch7 directory to output the content to a file (and the output if you can't find a Furby).

Understanding unknown storage structures 155

Now let's look into this file:

$hexdump output_eeprom_file

00000000 00 03 00 00 00 cc 00 00 00 03 00 00 00 cc 00 00
|................|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
|................|

00000020 00 00 2c 01 00 ec b2 01 00 00 2c 01 00 ec b2 64
|..,.......,....d|

00000030 00 00 00 00 00 a0 f5 64 00 00 00 00 00 a0 f5 00
|.......d........|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 07
|................|

00000050 00 00 00 00 00 58 0d 07 00 00 00 00 00 58 0d 00
|.....X.......X..|

00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|................|

*

000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f8 00
|................|

00000100

We are starting by just doing a hex dump to look at the general content (Is there a lot of
data? A lot of 0s? What does it look like?).

This EEPROM is very small, but looking at the content, we can already see some kind of
structure emerge. There is a lot of symmetry between the left side (the first 8 bytes) and
the right side (the next 8 bytes). We don't have a lot of data to start a static analysis (and
certainly not to launch Binwalk on) but this is promising for the dynamic analysis (that is,
changing the EEPROM content and seeing what happens). We can deduce from the size of
the storage that the sounds and the eye pictures are not stored here (too small).

Let's now look at the second storage chip.

Second candidate – the FR-marked SPI blob
The SPI chips are a little more complicated and contain more data, and we will approach
it in two steps (dump and analysis). By covering I2C and SPI, you will be ready to face
most on-board storage for systems that use bare-metal MCUs. More complex systems
(such as ones that embed a full-fledged Linux system) will usually use parallel flash chips
that require more advanced soldering skills and equipment to dump (but are largely
within your reach with training).

156 Extracting and Manipulating Onboard Storage

Dumping it
We know this is an SPI chip, so let's remove it from the board and put it on a breadboard.
Doing this, we find a footprint under the mouse bite daughter board.

When we sniffed the SPI chip traffic, the MCU was using a 0xAB instruction to wake the
SPI chip up and a 0x3 instruction for reads. I first suspected a 25LC SPI EEPROM from
Atmel (there was already an I2C from this vendor on the board).

Looking further into the format of the communication, I found a document where
somebody had already dumped this EEPROM (so I happened to be wrong; it is an
MX23L3254 from its JDEC identifier) and partially reverse-engineered the storage
format of the SPI chip (Michael Coppola, ReCON 2014: https://mncoppola.
files.wordpress.com/2014/07/performing-open-heart-surgery-on-
a-furby-recon-2014.pdf).

Let's use the (correct) RDID instruction and check whether it is the case in our
hardware version:

$./dump_25lc_BP.py

b'\xc2\x05\x16'

Indeed, it is the case.

Apparently, we should be able to easily dump it with flashrom. It failed with my Bus
Pirate v4 (due to some firmware differences, but it worked on my Bus Pirate v3). Let's use
flashrom to dump the SPI flash:

$sudo flashrom -V -c MX23L3254 -p busp

rate_spi:dev=/dev/ttyUSB0 -r out.bin

flashrom v1.1-rc1-28-g712ba3a0 on Linux 5.1.3 (x86_64)

flashrom is free software, get the source code at https://
flashrom.org

flashrom was built with libpci 3.5.2, GCC 8.3.0, little endian

Command line (7 args): flashrom -V -c MX23L3254 -p buspirate_
spi:dev=/dev/ttyUSB0 -r out.bin

Using clock_gettime for delay loops (clk_id: 1, resolution:
1ns).

Initializing buspirate_spi programmer

Detected Bus Pirate hardware 3.5

...

The following protocols are supported: SPI.

Probing for Macronix MX23L3254, 4096 kB:

https://mncoppola.files.wordpress.com/2014/07/performing-open-heart-surgery-on-a-furby-recon-2014.pdf
https://mncoppola.files.wordpress.com/2014/07/performing-open-heart-surgery-on-a-furby-recon-2014.pdf
https://mncoppola.files.wordpress.com/2014/07/performing-open-heart-surgery-on-a-furby-recon-2014.pdf

Understanding unknown storage structures 157

probe_spi_rdid_generic: id1 0xc2, id2 0x516

Found Macronix flash chip "MX23L3254" (4096 kB, SPI) on
buspirate_spi.

This chip's main memory can not be erased/written by design.

Reading flash... done.

Raw bitbang mode version 1

Bus Pirate shutdown completed.

The original chip is a mask ROM, so we cannot change the content.

The MX25L8008E we used in Chapter 6, Sniffing and Attacking the Most Common
Protocols, is a perfect, writable drop-in replacement (honestly out of sheer luck!).

Having a well-stocked component stock and keeping a decent amount of questionable
e-waste around will both (and just as often!) create routine "is it really useful?" discussions
with your significant other and save your buttocks during engagements.

Unpacking it
We know from the presentation that Binwalk and strings will not yield results. But let's
try anyway.

Dealing with strings

There are two command-line tools of interest:

• Strings well... looks for strings in a file and dumps them to stdout. Something a lot
of people overlook is trying all the different possible encodings (depending on what
you are analyzing, this can be relevant, especially if you are dealing with Windows
executables and DLLs or non-Latin alphabets; you will find a script in this chapter's
folder do automate this: string_all_enc.sh).

• iconv converts between different encodings. This is especially useful for "weird"
characters, such as é, ñ, and so on.

Dealing with packed data

Binwalk will try to peruse a file for known formats but will also allow us to have an
overview of the entropy in a file (look into https://en.wikipedia.org/wiki/
Entropy_(information_theory)). Entropy is roughly the measure of how random
data looks. Measuring the entropy is a good way to get an idea of whether the data you are
looking at is cyphered or compressed and the global layout of a file.

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Entropy_(information_theory)

158 Extracting and Manipulating Onboard Storage

Launch this command:

$binwalk -E out.bin

The following figure shows the entropy in the file:

Figure 7.2 – Entropy in a file

We can clearly see four zones:

• The header zone, which should contain information about the organization
of the file

• A big, very entropic zone

• A medium zone with widely varying entropy

• An anentropic zone

Mounting filesystems 159

These are probably the following:

• The zone with the offsets

• Image or sound data (we remember from the patent that the sound may be
voice-synthesized, taking up much less space than actually digitized sound)

• Image or sound data (well, the other type compared to the previous section)

• Padding (the data is actually full of 0x01 at the end)

• Michael's parser works on our data and can extract pictures, great!

We can see that the data Michael found and ours differ:

$md5sum hisdata.bin

4c0955f8623ac9380296d41edf7817d3 hisdata.bin

$md5sum out.bin

e91fadd53a0ddd44fe7d335a5f92a904 out.bin

His data has 2,806 pieces of data and ours has 2,820. Even if it is the same version of the
toy (2012), we may have another firmware version.

I'll leave it as an exercise to you to write a small script to identify the zones with the
two entropies:

• The first zone (with the entropy's "plateau") is the sound data.

• The second is the images.

When we look at the organization of the storage in the header of the EEPROM, we
see that it is based on the concept of FAT, with the number of "files," and the offsets to
the different files with their size stored in front of their content. This is a very classical
organization scheme.

Mounting filesystems
The mount command (you have to be privileged to use it; use sudo) is the main tool
for this.

Modern versions of the command recognize the filesystem automatically. If the detection
is not working but you know the filesystem in use, the -t option will allow you to force
the filesystem format to be used.

160 Extracting and Manipulating Onboard Storage

To list the filesystems your kernel is currently supporting, look into the /proc/
filesystems file (as a side note, not all modules can be mounted; to get a list of what
it does support, look into the /lib/modules/$(uname -r)/kernel/fs directory).

Some filesystems used in embedded systems may not be supported in some usual
distribution kernels and so you may need to do the following:

• Recompile your kernel with more filesystems.

• Compile additional modules for your kernel.

• Use userspace filesystem management (such as FUSE).

Since most of the firmware or storage images we get are in the form of a file instead of
a block device, some options are useful for managing this specific case. They are managed
through the -o command-line switch. This switch uses a comma-separated list to manage
multiple options (whether the options are global or filesystem-specific):

• loop: Makes mount use a file as a block device

• offset=xxx: Skips xxx bytes in the target block device

Repacking
The repacking process is mainly taking the reverse path we took for packing, recreating
a consistent image with the modifications we want.

I would strongly encourage you to look into the firmware modkit if you need to
repack routers and other xx-WRT-based firmware (https://code.google.com/
archive/p/firmware-mod-kit/).

Since most of the standard filesystems that are mounted from a file with a -o loop option
will be read-only, a common approach is to work on the files on a normal directory on
your computer, create an empty image of the necessary size, recreate an empty filesystem,
and copy the files onto it.

Some systems may not implement the filesystems completely and you may need to tailor
the filesystem creation (or use specific versions) for it to work with the final target system.

https://code.google.com/archive/p/firmware-mod-kit/
https://code.google.com/archive/p/firmware-mod-kit/

Summary 161

Summary
In this chapter, we saw the different media that can be used in embedded systems and the
tools we need to approach them, extract them, understand their structures, and modify
them. Since the ways to store data are very variable from one system to another, it is not
possible to go through every possible variation but, after reading this chapter, you will
know (at least partially) the possible tools that you can use, how things are generally
organized, and some concepts you could think about when reverse-engineering storage
schemes. These tools are very powerful but, like any tool, are limited by the skill of the
person that uses them. That's why you should practice and read the documentation of the
tools as much as possible.

In the next chapter, we will look into how to modify the stored elements and, from the
changes in the system behavior, better understand the structure of the stored data.

Questions
1. What tool can you use to take an image of a peripheral that is recognized by your

Linux machine?

2. What is the use of the -o loop command-line switch for mount?

3. Why are the lists in cat /proc/filesystems and /lib/modules/xxx/
kernel/fs/ different?

4. You found a module marked eUSB on a device you are testing. What is it? How
would you read it?

5. What is the eMMC standard? How would you read it?

6. What is FUSE? What is user space? How can you use it?

Further reading
Read the mount, iconv, dd, and Binwalk documentation (use the man command).
Look at the firmware modkit wiki, and check how to recompile a kernel or modules for
your distribution.

8
Attacking Wi-Fi,

Bluetooth, and BLE
In this chapter, we will learn how to peek and poke into the network connection of
an embedded system. Embedded systems use more diverse network types and media
in addition to their usual IP/Ethernet/Wi-Fi. We will peek into the most usual types
(Ethernet, TCP/IP, HTTPS, Bluetooth, Wi-Fi, and USB) and look into the solutions
available for the more custom types, such as unknown radio links, sound, and so on.
Networking is usually a very interesting field to look into since developers tend to make
mistakes here too, which allows us to peek into the internal workings of the systems and
their relationship with the digital world.

In this chapter, we will cover the following topics:

• Basics of networking

• Networking in embedded systems using Wi-Fi

• Networking in embedded systems using Bluetooth

Let's get started!

164 Attacking Wi-Fi, Bluetooth, and BLE

Technical requirements
For this chapter, we will need the following:

• A Linux laptop with a Wi-Fi card and an Ethernet card to act as a Wi-Fi gateway.
Depending on your requirements, it is possible that the Wi-Fi card that is
embedded in your laptop has not been adapted for the test. You need a card that
supports raw injection (for example, based on an Atheros AR9271, Ralink RT3070,
or Realtek 8187L, though you will have to search on your own to find an adequate
one. Alfacards sell adapters that are usually targeted at injection).

• Hardware capable of sniffing Bluetooth traffic (I use an Ubertooth One), with a
Bluetooth 4.0 capable dongle and BBlueZ installed.

Check out the following link to see the Code in Action video:
https://bit.ly/3b5LkuT

Basics of networking
Networking relies on a few basic concepts:

• Encapsulation: Just like a matryoshka doll, network packets behave like a box in a
box in a box in a... you get the point. The OSI model describes the seven classics layers
of encapsulation that are potentially present in all communications. For example, it
is possible to change the physical layer of a packer without impacting the upper layer
(that is what happens when you send an ethernet frame over Wi-Fi, for example).

• Routing: Routing allows a packet to reach its destination without the sender
knowing exactly how to get to it or the destination knowing exactly how to send
the response to the sender. This boils down, in a very oversimplified fashion, to
each machine knowing how to reach a given number of networks (or groups of
networks) and having a machine to give packets to when it doesn't know how to
reach the destination network.

• Connection: A connection is a logical link that's established between two devices,
where both are aware of the other system being connected to another and of the
state of data transfer between the two. A well-known protocol that behaves in a
connected way is TCP (as opposed to UDP, where the connection state is not kept
by the systems).

Now, let's look at networking in embedded systems using Wi-Fi.

https://bit.ly/3b5LkuT

Networking in embedded systems using Wi-Fi 165

Networking in embedded systems using Wi-Fi
Wi-Fi is a well-known radio network that is used by a lot of embedded systems. We
will learn how to intercept traffic by mounting our own access point and listening and
changing the traffic that goes through it. The methodology we will use is common to most
Wi-Fi traffic analysis (phone apps, connected devices, and so on).

Selecting Wi-Fi hardware
Just like for Wi-Fi attacks, not every Wi-Fi chipset is capable of doing everything we need.
Depending on your device requirements, it is possible that you may have to buy some
specific hardware:

• Check that your hardware is compatible with the Wi-Fi band used by your device
(a/b/g/n).

• Check that your device supports injection: https://www.aircrack-ng.org/
doku.php?id=compatible_cards.

• Check that your hardware driver supports Access Point (AP) mode. You can check
if the following command outputs something:

$sudo iw list|sed -n -r '/ace modes/,/^\t[^\t]/p'

If the output is empty, you should get another device that supports injection:
$airmon-ng start wlan0 # sets it in monitor mode

$aireplay-ng --test wlan0mon

If the output say 0%, you should get another device.

Creating our access point
We will create an access point for the device to connect to.

In terms of Wi-Fi, the device must want/offer the following:

• The device offers a Wi-Fi network of its own

• The device joins a network that we can control

• The device looks for a specific network to join

https://www.aircrack-ng.org/doku.php?id=compatible_cards
https://www.aircrack-ng.org/doku.php?id=compatible_cards

166 Attacking Wi-Fi, Bluetooth, and BLE

In terms of functionality, the device needs, at the very least, the following:

• DHCP

• DNS

• Routing

Some other services may be needed, depending on the specific device.

Control on the joined network
To create our access point, we will use hostapd (a piece of software that will allow us to
easily create and manage the access point). Before we create our network, we will need
to know which cipher the device supports (WEP or the WPA family) in order to create
a network it can connect to. Depending on the country the system comes from and your
country of residence, you may have to tweak the country code of your Wi-Fi for it to work.

Creating the access point and the basic network
services
First, set up your machine's own local network and routing. Then, create your hostapd
configuration file like so (you should adapt it to your needs; that is, change your country,
the needed cipher family, and so on. Type man 5 hostpad.conf into a Terminal to get
an explanation of the different directives):

#Wifi interface, the names appears in the command : ip addr

interface=wlx00c0ca1a03ef

#Name of the AP

ssid=hostile_wifi_do_not_connect

#Channel

channel=8

#mode (g is 2.4GHz, 54Mbps)

hw_mode=g

driver=nl80211

#where you live

country_code=BE

3 is wep and wpa

auth_algs=3

#wpa2

Networking in embedded systems using Wi-Fi 167

wpa=2

#preshared keys

wpa_key_mgmt=WPA-PSK

rsn_pairwise=CCMP

#the password

wpa_passphrase=TestPass

Now, we are going to create the configuration file for dnsmasq. This will allow us to
provide DNS and DHCP services to the newly created network (type man 8 dnsmasq for
the details of the configuration. There is a lot there, but you should only need to change
non-obvious values). The following is the contents of the dnsmasq.conf file:

#dhcp

#listen on the wifi interface, the names appears in the command
: ip addr

interface=wlx00c0ca1a03ef

dhcp-authoritative

#we will give adresses in this range, for 24 hours

dhcp-range=192.168.254.2,192.168.254.3,24h

Log DHCP transactions.

log-dhcp

#dhcp add services

#gateway

dhcp-option=option:router,192.168.254.1

#subnet

dhcp-option=option:netmask,255.255.255.252

#dns server

dhcp-option=option:dns-server,192.168.254.1

#dns

listen-address=192.168.254.1

#spoofed DNS entries

addn-hosts=./spoof.hosts

log dns

log-queries

168 Attacking Wi-Fi, Bluetooth, and BLE

Let's create a shell script that launches the access point, gives it an IP, launches dnsmasq,
and tells our machine to act as an IPV4 NATting router. The following is the code from
the ap.sh file:

#! /bin/bash

#change to the name of your device

WIFIIFACE=wlx00c0ca1a03ef

#change to the name of your output interface

OUTIFACE=eth0

#enables ipv4 routing

echo 1 > /proc/sys/net/ipv4/ip_forward

hostapd ./hostapd.conf &

ip addr flush dev $WIFIIFACE

ip addr add 192.168.254.1/24 dev $WIFIIFACE

dnsmasq --no-daemon --log-queries -C dnsmasq.conf

iptables -t nat -A POSTROUTING -o $OUTIFACE -j MASQUERADE

At this point, when you launch this script, a Wi-Fi AP with the name hostile_wifi_do_
not_connect should appear. You should be able to connect to it and navigate normally.

However, at this point, we cannot access the traffic with an attack proxy (for example, ZAP
from OWASP) or by redirecting the traffic to our custom services. We can achieve this by
having the attack proxy listening on a reachable interface (here, 192.168.0.2 is on the
eth0 side of the capturing access point, on ports 8080 and 8443) and modifying our
script so that it redirects all the traffic over ports 80 and 443 to the proxy with firewall
rules (or by providing a proxy in the DHCP settings (for more information, read about
the Web Proxy Auto-Discovery (WPAD) protocol and pac files; you can add it to the
dnsmasq configuration file with dhcp-option 252)):

ATK_PROXY_IP=192.168.0.2

iptables -t nat -A PREROUTING -i $WIFIIFACE -j DNAT -p tcp
--dport 80 --to-destination $ATK_PROXY_IP:8080

iptables -t nat -A PREROUTING -i $WIFIIFACE -j DNAT -p tcp
--dport 443 --to-destination $ATK_PROXY_IP:8443

You can redirect any connection like this – just change the ports to a server that's adequate
for the protocol (ZAP will work for HTTP/S, but you may need to write your own for
more specific services).

Networking in embedded systems using Bluetooth 169

At this point, you should be able to log all the traffic from the device and tamper with
it with "normal" network tools (ettercap, ZAP proxy, nmap, and so on) that are very
well-documented all over the internet.

Other Wi-Fi attacks
Some other attacks exists, but they usually target the Wi-Fi infrastructure, not the device.
An excellent introduction book is Vivek Ramachandran's Wireless Penetration Testing
Beginner's Guide.

Networking in embedded systems using
Bluetooth
Many devices have Bluetooth connectivity available, from phones to headsets to input
devices. Let's see what we can look at with this interface.

Bluetooth basics
Bluetooth is a radio protocol that operates between 2.4 and 2.48 GHz. It is not easy to sniff
because it is transmitted by hopping on multiple frequencies pseudorandomly (depending
on the address of the master device) and has several variants:

• BT/1.x (2000), also known as the ancestor: This has not been deployed in new
products for a long time. It had privacy problems since it was sending a unique ID
over the air.

• BT/2.x (2004), also known as classic Bluetooth: This has been around for years
and is "kind of " kept in the hands of the big players of the market. This is the doing
of Apple since, to be able to be used by iPhones, you have to send an entry ticket to
them (called the MFi). It is faster than BT1 and introduces a better pairing system
and effort in terms of energy consumption.

• BT/3.x (2009), also known as "high speed" (HS): This comes with some (optional)
hi-speed transfers over Wi-Fi and introduces connection less low latency data
transfer and some more effort in terms of consumption.

• BTLE/4.x (2010), also known as "Low Energy" or "smart": This actually adds a
Bluetooth Low Energy (BLE) on top of classic and HS, with a very large reduction
in terms of power consumption for the BLE part.

• BT5.x (2018): This is the latest version, but it is only supported by some flagship
phones and a few devices at the moment. Adoption will probably be larger in
the future.

170 Attacking Wi-Fi, Bluetooth, and BLE

Bluetooth, of course, supports addressing, and the addresses look like ethernet
MAC addresses:

• 6 bytes

• 2 vendor IEEE-assigned OUI bytes (NAP)

• 1 IEEE-assigned Upper Address Part (UAP), not directly present in the traffic but
deductible from the data

• 3 Lower address parts (LAPs) in the sent packets

If we can find the full address, we can deduce the channel hopping sequence and sniff the
communication (more on that later).

Bluetooth, in addition to a physical (PHY) layer that acts as the radio link, implements
other layers in the protocol. Each layer is managed by a different part of the protocol and
managed by the layer above it (from the IEEE Bluetooth proposal):

Figure 8.1 – Bluetooth protocol stack model

Now that we've looked into the protocol stack, let's get familiar with the tools we will
be using.

Networking in embedded systems using Bluetooth 171

Discovering Bluetooth
In this section, we will learn how to discover Bluetooth devices and work with them. First,
find out the name of your Bluetooth device by using the following command:

$hcitool dev

Devices:

 hci0 00:1A:7D:DA:71:13

My Bluetooth device is hci0 with a hardware address of 00:11:67:2E:B3:5D.

Let's find out what it can do:

$hciconfig hci0 -a

hci0: Type: Primary Bus: USB

 BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO

MTU: 64:8

 UP RUNNING

 RX bytes:304197 acl:0 sco:0 events:867 errors:0

 TX bytes:16504 acl:0 sco:0 commands:369 errors:0

 Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87

 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

 Link policy: RSWITCH HOLD SNIFF PARK *
can "sniff",i means receive only

 Link mode: SLAVE ACCEPT

 Name: 'xxx'

 Class: 0x100104

 Service Classes: Object Transfer

 Device Class: Computer, Desktop workstation

 HCI Version: 4.0 (0x6) Revision: 0x22bb *<
accepts BT4.0

 LMP Version: 4.0 (0x6) Subversion: 0x22bb

 Manufacturer: Cambridge Silicon Radio (10) *
manufacturer of the radio

172 Attacking Wi-Fi, Bluetooth, and BLE

BlueZ (the official Linux BT stack) can provide you with a lot of information, such as
the following:

• The hciconfig hci0 commands list supported commands.

• sudo bccmd -d hci0 pslist lists adapter settings (psread will dump them,
psget will get one, and psset will change one).

• bt-adapter -i lists more general adapter information but shows the BLE GATT
characteristics of our adapter.

I usually have five Bluetooth devices around my desk:

• A headset

• A joystick

• My work phone (a fruity, expensive device that has been forced on me)

• My testing phone (which I use for security things, a bit "saltier")

• My watch (which doesn't have a discoverable mode; I have to use the Wear OS
application to connect my phone to it)

Let's put them all into discoverable mode and scan for discoverable devices:

$hcitool scan

Scanning ...

 70:26:05:AC:09:37 WH-1000XM2 * This is
my bluetooth headset

 D5:24:02:10:01:17 MOCUTE-032S_A02-24D5 * This is a
Bluetooth joystick

 14:C2:13:D6:95:EF Fruity * The
fruity one

 C0:EE:FB:21:9B:2D Salty * My
testing phone

bt-adapter -d provides more information when scanning, such as the device class.

As expected, the watch is missing. Also, we had to put everything in discoverable mode
manually. Using the BlueZ tool can help with "normally" manipulating the devices
(associating with them, forgetting them, and so on) but not discovering devices that are
not advertising themselves. Now, let's learn how to get to know a BT classic device better:

$sudo hcitool -i hci0 info C0:EE:FB:21:9B:2D

Requesting information ...

Networking in embedded systems using Bluetooth 173

 BD Address: C0:EE:FB:21:9B:2D

 OUI Company: OnePlus Tech (Shenzhen) Ltd (C0-EE-FB)

 Device Name: Salty

 LMP Version: 4.0 (0x6) LMP Subversion: 0x7d3

 Manufacturer: Qualcomm (29)

 Features page 0: 0xff 0xfe 0x8f 0xfe 0xd8 0x3f 0x5b
0x87

 <3-slot packets> <5-slot packets> <encryption>
<slot offset>

 <timing accuracy> <role switch> <hold mode>
<sniff mode>

 <RSSI> <channel quality> <SCO link> <HV2
packets>

 <HV3 packets> <u-law log> <A-law log> <CVSD>
<paging scheme>

 <power control> <transparent SCO> <broadcast
encrypt>

 <EDR ACL 2 Mbps> <EDR ACL 3 Mbps> <enhanced
iscan>

 <interlaced iscan> <interlaced pscan> <inquiry
with RSSI>

 <extended SCO> <AFH cap. slave> <AFH class.
slave>

 <LE support> <3-slot EDR ACL> <5-slot EDR ACL>

 <sniff subrating> <pause encryption> <AFH cap.
master>

 <AFH class. master> <EDR eSCO 2 Mbps> <extended
inquiry>

 <LE and BR/EDR> <simple pairing> <encapsulated
PDU>

 <non-flush flag> <LSTO> <inquiry TX power>
<EPC>

 <extended features>

 Features page 1: 0x07 0x00 0x00 0x00 0x00 0x00 0x00
0x00

174 Attacking Wi-Fi, Bluetooth, and BLE

So, this phone supports encryption, RSSI (the quality of the radio link), and simple
pairing (it can work in different modes, depending on the other party, in terms of
comparing numbers or PIN mode). Let's compare it to fruity:

$sudo hcitool -i hci0 info C0:EE:FB:21:9B:2D >

hci_tool_info_salty

$ sudo hcitool -i hci0 info 14:C2:13:D6:95:EF >

hci_tool_info_fruity

$ comm -3 <(cat hci_tool_info_salty |grep -P '^\t\t'|tr -d
'\t\n' |sed 's/> />\n/g'|sort) <(cat hci_tool_info_fruity |grep
-P '^\t\t'|tr -d '\t\n' |sed 's/> />\n/g'|sort)

 <3-slot EDR eSCO>

 <EDR eSCO 3 Mbps>

 <err. data report>

 <EV4 packets>

 <EV5 packets>

<hold mode>

Salty supports hold mode (while fruity does not), while fruity supports EDR, EV4, and
EV5 (when it comes to voice packets, fruity is a bit more modern). This tidbit is useful for
comparing new versions of a device, for example.

Let's see how we can enumerate the services available on a device. Let's use our joystick,
which should be presented as an HID device:

$ sdptool -i hci0 browse D5:24:02:10:01:17

Browsing D5:24:02:10:01:17 ...

Service Name: Gamepad

Service Description: Bluetooth KB

Service Provider: MOCUTE

Service RecHandle: 0x10002

Service Class ID List:

 "Human Interface Device" (0x1124)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 PSM: 17

 "HIDP" (0x0011)

Language Base Attr List:

 code_ISO639: 0x656e

Networking in embedded systems using Bluetooth 175

 encoding: 0x6a

 base_offset: 0x100

Profile Descriptor List:

 "Human Interface Device" (0x1124)

 Version: 0x0100

Browsing D5:24:02:10:01:17 ...

Service Search failed: Connection timed out

Service Name: Port

Service RecHandle: 0x10001

Service Class ID List:

 "Serial Port" (0x1101)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 1

Here, we can see that the joystick times out when we browse the services and
actually crashes.

Native Linux Bluetooth tools – looking into the
joystick crash
This crash is a perfect example of something that happens when devices are not very
well-programmed. Normal Bluetooth activity such as browsing the service should never
crash the joystick (you have to press the reset button to make it react again). This will be
the perfect opportunity for us to look into the core of the Linux Bluetooth userland tool.

Let's see exactly when it crashes.

Investigating the crash with a high-level interface to BlueZ/
libbluetooth
Let's start by installing pyBlueZ. You can do this by running the following command on
a Linux Terminal:

sudo pip3 install pyBlueZ

176 Attacking Wi-Fi, Bluetooth, and BLE

pyBlueZ is a very quick way to interact with libbluetooth and offers very nice,
high-level access to the library. It will allow you to find devices and services,
explore devices, connect to services, and so on. I strongly encourage you to read the
documentation (https://github.com/pyBlueZ/pyBlueZ) and try out the
examples provided.

Let's scan the visible devices in Python with the pyBlueZ example:

ipython3

Python 3.7.3 (default, Apr 3 2019, 05:39:12)

[snip]

In [1]: import bluetooth

 ...:

 ...: nearby_devices = bluetooth.discover_devices(lookup_
names=True)

 ...: print("found %d devices" % len(nearby_devices))

 ...:

 ...: for addr, name in nearby_devices:

 ...: print(" %s - %s" % (addr, name))

 ...:

found 3 devices

 FC:45:96:C1:4C:99 - Grayson 9915

 C0:EE:FB:21:9B:2D - Salty

 D5:24:02:10:01:17 - MOCUTE-032S_A02-24D5

When we run the pyBlueZ service enumeration example (pybuez/exemples/
sdp-browse.py D5:24:02:10:01:17), the services get enumerated at a lower
level of detail than with sdptool, and the joystick doesn't crash!

Let's look a little bit more into the device with BlueZ. Let's enumerate the RFCOMM
services (we can normally connect with the RFCOMM services to look for trouble):

// on the joystick

$./rfcomm_enum_services.py D5:24:02:10:01:17

found 2 services on D5:24:02:10:01:17

found RFCOM service:

Service Name: Port

 channel/PSM: 1

 svc classes: 0x1101

// on salty, a lot more since it is a phone

https://github.com/pyBlueZ/pyBlueZ

Networking in embedded systems using Bluetooth 177

$./rfcomm_enum_services.py C0:EE:FB:21:9B:2D

found 15 services on C0:EE:FB:21:9B:2D

found RFCOM service:

Service Name: Headset Gateway

 channel/PSM: 2

 svc classes: 0x1112

 svc classes: 0x1203

found RFCOM service:

[...snip...]

Service Name: OBEX File Transfer

 channel/PSM: 20

 svc classes: 0x1106

Let's connect to the joystick RFCOMM:

$./rfcomm_enum_port.py D5:24:02:10:01:17 0x1101

found 1 port(s)

service 'Port' available on port(s): [1]

connected. type stuff

At this point, the device-specific search starts, which means you can try to type in certain
commands, such as modem-style AT commands. The accepted commands depend
on the device (you will have to search the device manual or look into the device's BT
profile definition, and maybe even sniff the connection or the activity of an application
to find out more about how the device is used), but you can now connect to an arbitrary
RFCOMM service from your device.

BlueZ – getting down and dirty with libbluetooth
So, what is sdptool doing differently? Let's clone the BlueZ source tree:

git clone https://git.kernel.org/pub/scm/bluetooth/bluez.git

Let's git checkout to the adequate version (the one installed on your system so that
you don't have any issues with tools and libraries) and build it but don't install it:

./bootstrap && ./configure --enable-testing --enable-
experimental --enable-deprecated && make

Now, let's have a look at sdptool.

178 Attacking Wi-Fi, Bluetooth, and BLE

By slightly patching sdptool, we can see that the device is crashing when it looks into a
service sublevel with a sublevel ID of 0.

Now, let's patch it a bit more, like so:

// if (sdp_get_group_id(rec, &sub_context.group) != -1) {

if (sdp_get_group_id(rec, &sub_context.group) > 0) {

Now, the device doesn't crash anymore! This indicates that not only the records in SDP are
returned by the device incorrectly, but that it crashes on this particular value! Now, let's
see if it crashes on any unused values. Let's patch sdptool again:

if (sdp_get_group_id(rec, &sub_context.group) != -1) {

// patch start

 if(sub_context.group.value.uuid16 == 0) {

 sub_context.group.value.uuid16 = 0x1003; //
patched value

 }

// patch end

As we can see, the device crashes (on multiple values, such as 0x1003, 0xabab, and
so on).

With that, we've found that the device crashes (DoS) if you try to enumerate SDP services
that don't exist on the device! The main goal here was to show that we can instrument
legitimate tools (in this example, by adding a few printf calls and changing some tests)
so that we can look at our devices and find problems.

Sniffing the BT activity on your host
We can use btmon to trace what is happening on our machine when we are connecting to
the device.

Let's run btmon and associate it with the joystick (btmon is very verbose and you can
write a trace to a file with -w). The trace file can be opened with Wireshark:

Networking in embedded systems using Bluetooth 179

Figure 8.2 – Trace file opened in Wireshark

Use bthci_acl.dst.bd_addr and bthci_acl.src.bd_addr as display filters
(in Wireshark, this is the line on top of the packet list) to remove what you don't need.

But how is this useful to me? you will say...:

• If your device is conforming to normal profiles, it will allow you to look into how
it works.

• If it doesn't, this means that you will need an app or a driver to snoop on. Since
most devices that need an app to interact with will be available on Android, we
can leverage the fact that all Android phones are Linux devices that rely on BlueZ
(until KitKat) and can produce btmon style files with the Bluetooth HCI Snoop Log
(I'll let you search the internet about how to enable and retrieve it with adb).

Sniffing raw BT
Let's plug in our Ubertooth ONE, install the host tools and then update it to the correct
firmware to it (that is, bluetooth_rxtx; the dfu process is described in the Ubertooth
documentation here: https://github.com/greatscottgadgets/ubertooth/
wiki/Firmware).

https://github.com/greatscottgadgets/ubertooth/wiki/Firmware
https://github.com/greatscottgadgets/ubertooth/wiki/Firmware

180 Attacking Wi-Fi, Bluetooth, and BLE

Ubertooth comes with a variety of command-line tools (the manuals for them can be
found at https://github.com/greatscottgadgets/ubertooth/tree/
master/host/doc; we will be using ubertooth-rx) to receive Ubertooth frames.
Let's try it out:

$sudo ubertooth-rx

systime=1563641019 ch=62 LAP=d695ef err=0 clkn=60351 clk_
offset=5001 s=-42 n=-55 snr=13

systime=1563641019 ch=62 LAP=d695ef err=0 clkn=60383 clk_
offset=4995 s=-42 n=-55 snr=13

systime=1563641019 ch=34 LAP=d695ef err=0 clkn=61554 clk_
offset=1826 s=-42 n=-55 snr=13

systime=1563641019 ch=66 LAP=d695ef err=0 clkn=61602 clk_
offset=1829 s=-40 n=-55 snr=15

<turning on Fruity>

systime=1563641085 ch=69 LAP=9e8b33 err=0 clkn=6929 clk_
offset=4937 s=-31 n=-55 snr=24

systime=1563641085 ch=69 LAP=9e8b33 err=0 clkn=6961 clk_
offset=4946 s=-35 n=-55 snr=20

systime=1563641085 ch=69 LAP=9e8b33 err=2 clkn=7025 clk_
offset=4938 s=-35 n=-55 snr=20

systime=1563641085 ch=39 LAP=9e8b33 err=2 clkn=7548 clk_
offset=1822 s=-30 n=-55 snr=25

systime=1563641085 ch=71 LAP=9e8b33 err=1 clkn=7577 clk_
offset=4949 s=-31 n=-55 snr=24

<turning Fruity off and Salty on>

systime=1563641212 ch=31 LAP=9e8b33 err=2 clkn=35228 clk_
offset=1810 s=-44 n=-55 snr=11

systime=1563641212 ch=31 LAP=9e8b33 err=1 clkn=35260 clk_
offset=1812 s=-44 n=-55 snr=11

systime=1563641212 ch=31 LAP=9e8b33 err=1 clkn=35292 clk_
offset=1802 s=-43 n=-55 snr=12

systime=1563641212 ch=31 LAP=9e8b33 err=1 clkn=35324 clk_
offset=1807 s=-43 n=-55 snr=12

systime=1563641212 ch=37 LAP=9e8b33 err=0 clkn=37140 clk_
offset=1811 s=-42 n=-55 snr=13

systime=1563641212 ch=37 LAP=9e8b33 err=0 clkn=37236 clk_
offset=1811 s=-42 n=-55 snr=13

https://github.com/greatscottgadgets/ubertooth/tree/master/host/doc
https://github.com/greatscottgadgets/ubertooth/tree/master/host/doc

Networking in embedded systems using Bluetooth 181

systime=1563641213 ch=28 LAP=f5a32f err=1 clkn=39324 clk_
offset=1820 s=-41 n=-55 snr=14

systime=1563641213 ch=28 LAP=f5a32f err=0 clkn=39356 clk_
offset=1823 s=-41 n=-55 snr=14

systime=1563641213 ch=28 LAP=f5a32f err=1 clkn=39420 clk_
offset=1829 s=-40 n=-55 snr=15

systime=1563641213 ch=60 LAP=f5a32f err=0 clkn=39448 clk_
offset=1821 s=-43 n=-55 snr=12

First, the joystick (which is paired to Fruity) is looking for its master (the LAP 0xd695ef
is pretty recognizable – look at the lower bytes of Fruity's address). Then, Fruity sends
packets with a LAP of 0x9e8b33, but there is nothing like that we are aware of. This is
normal and this is the General Inquiry Access Code, which is used by all devices to search
for other devices. After a few attempts, Fruity will try to connect to another device it has
in memory, which means we can look into a connection in a more specific way. Let's try to
spy on the watch connection.

Let's turn on the Bluetooth on Fruity and try to connect to the watch while dumping
the traffic. However, we will see nothing! bluetooth-rx only sees BT3, and the
connection with the watch happens to be on BLE. We will come back to this later when
we look at BLE.

Let's have a look at the connection between the joystick and Salty:

$sudo ubertooth-rx -l 219b2d

systime=1563643388 ch=34 LAP=219b2d err=0 clkn=790 clk_
offset=1908 s=-48 n=-55 snr=7

offset < CLK_TUNE_TIME

CLK100ns Trim: 5908

systime=1563643391 ch=43 LAP=219b2d err=1 clkn=8818 clk_
offset=2321 s=-40 n=-55 snr=15

[...]

systime=1563643394 ch=51 LAP=219b2d err=1 clkn=21418 clk_
offset=2616 s=-63 n=-55 snr=-8

offset > CLK_TUNE_TIME

CLK100ns Trim: 366

Clock drifted 366 in 6.446250 s. 5 PPM too fast.

systime=1563643396 ch=78 LAP=219b2d err=0 clkn=24984 clk_
offset=2250 s=-42 n=-55 snr=13

[...]

182 Attacking Wi-Fi, Bluetooth, and BLE

systime=1563643400 ch=15 LAP=219b2d err=0 clkn=40282 clk_
offset=2175 s=-44 n=-55 snr=11

UAP = 0xfb found after 12 total packets.

Here, we can see that, even though Ubertooth only knew the LAP, it has been able to find
the UAP (UAP = 0xfb, which was found after 12 total packets):

$sudo ubertooth-rx -l 219b2d -u fb

Calculating complete hopping sequence.

Hopping sequence calculated.

26446 initial CLK1-27 candidates

[...]

systime=1563644251 ch=50 LAP=219b2d err=0 clkn=56554 clk_
offset=2276 s=-39 n=-55 snr=16

[Snip...hugely random time it is luck dependent, sometimes
it's seconds, sometimes 10min, the more traffic the better,
sometimes unplugging the Ubertooth and relaunching helps]

Acquired CLK1-27 = 0x05d95a7

Now, we are capturing a lot more! However, most of the information has been cyphered
(and the link key is stored on the device you're associated with; for example, with an
Android device, it is available in the developer tools).

Ubertooth One is very practical if you wish to view BT traffic that is not directly visible
with higher-level tools. When it comes to attacking lower-level Bluetooth signals, the
documentation is sometimes a little bit terse – but again, read and learn!

BLE
Now, let's have a look at BT 4.x (low energy /smart). The main introduction, from a
security point of view, is the Generic ATTributes (GATT) profile. These GATTs are
key/value stores that allow us to interact with the device very easily.

Scanning for BLE
To find BLE devices, we can use hcitool lescan:

$sudo hcitool lescan

LE Scan ...

FC:45:96:C1:4C:99 Grayson 9915 /*my watch*/

Networking in embedded systems using Bluetooth 183

D9:F2:25:36:4C:76 (unknown)

72:35:46:95:30:89 (unknown)

72:35:46:95:30:89 (unknown)

D9:F2:25:36:4C:76 Braceli5-9574 * interesting, that's my
girlfriend's activity tracker and she D9:F2:25:36:4C:76
(unknown) * turned her phone off, let's look into it

D9:F2:25:36:4C:76 Braceli5-9574

D9:F2:25:36:4C:76 Braceli5-9574

As you can see, we found a few different devices from the scan.

Enumerating BLE GATTs
Now that we have found some devices (my watch and an activity tracker), let's look at
their attributes and services:

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --primary

attr handle = 0x0001, end grp handle = 0x0007 uuid: 00001800-
0000-1000-8000-00805f9b34fb

attr handle = 0x0008, end grp handle = 0x0008 uuid: 00001801-
0000-1000-8000-00805f9b34fb

attr handle = 0x0009, end grp handle = 0x000f uuid: 0000ff20-
0000-1000-8000-00805f9b34fb

attr handle = 0x0010, end grp handle = 0xffff uuid: 0000fee7-
0000-1000-8000-00805f9b34fb

Since there are thousands of different UUIDs available, we must look at the Bluetooth
website or at the GATT identification tools to find their meanings. (I made a small script
that builds a CSV from a folder with XML GATT characteristics and services descriptions
– bgparser2csv.py can be found in this book›s GitHub repository. There is also the
excellent nRF mobile connect application for Android that has a pretty good database
of UUIDs.)

attr handle and end grp handle define handle groups per service.

184 Attacking Wi-Fi, Bluetooth, and BLE

Let's identify our services:

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --primary
|cut -d' ' -f 11 | while read -r line; do echo -n "$line ";grep
$line gatt_uuid

.csv;echo; done

00001800-0000-1000-8000-00805f9b34fb "00001800-0000-1000-
800[...],"Generic Access'

00001801-0000-1000-8000-00805f9b34fb "00001801-0000-1000-
800[...],"Generic Attribute'

0000ff20-0000-1000-8000-00805f9b34fb *unknown in our db

0000fee7-0000-1000-8000-00805f9b34fb *unknown in our db

Let's identify their characteristics:

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76
--characteristics

handle = 0x0002, char properties = 0x0a, char value handle =
0x0003, uuid = 00002a00-0000-1000-8000-00805f9b34fb

handle = 0x0004, char properties = 0x02, char value handle =
0x0005, uuid = 00002a01-0000-1000-8000-00805f9b34fb

handle = 0x0006, char properties = 0x02, char value handle =
0x0007, uuid = 00002a04-0000-1000-8000-00805f9b34fb

handle = 0x000a, char properties = 0x84, char value handle =
0x000b, uuid = 0000ff21-0000-1000-8000-00805f9b34fb

handle = 0x000d, char properties = 0x10, char value handle =
0x000e, uuid = 0000ff22-0000-1000-8000-00805f9b34fb

handle = 0x0011, char properties = 0x12, char value handle =
0x0012, uuid = 0000fea1-0000-1000-8000-00805f9b34fb

handle = 0x0014, char properties = 0x02, char value handle =
0x0015, uuid = 0000fec9-0000-1000-8000-00805f9b34fb

Here, we can see the following:

• There are two handles by characteristics (the first contains the value attributes
listed here, while the second contains its value)

• The characteristics have properties in that they have bit fields (that is, values
can be ORed) that describe the operations supported (described in the BLE
core 4.2 specification).

Networking in embedded systems using Bluetooth 185

Here are the values of the characteristic bitfield:

Let's identify the characteristics:

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76
--characteristics|cut -d ' ' -f 15|while read -r uuid;do echo
-n "$uuid ->";grep $uuid gatt_uuid.csv|cut -d ',' -f 4 |tr -d
'\n' ;echo;done

00002a00-0000-1000-8000-00805f9b34fb ->"Device Name'

00002a01-0000-1000-8000-00805f9b34fb ->"Appearance'

00002a04-0000-1000-8000-00805f9b34fb ->"Peripheral Preferred
Connection Parameters'

0000ff21-0000-1000-8000-00805f9b34fb ->

0000ff22-0000-1000-8000-00805f9b34fb ->

0000fea1-0000-1000-8000-00805f9b34fb ->

0000fec9-0000-1000-8000-00805f9b34fb ->

With that, we have identified the services and the characteristics we can use to
communicate with the joystick.

186 Attacking Wi-Fi, Bluetooth, and BLE

Interacting with BLE GATTs
At this point, we don't know what the characteristics do, nor how we can interact with
them. Let's read and write some values so that we can make educated guesses about what
they do:

#the handle of device name

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
read -a 3

Characteristic value/descriptor: 42 72 61 63 65 6c 69 35 2d 39
35 37 34

#the long uuid of device name

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
read -u 00002a00-0000-1000-8000-00805f9b34fb

handle: 0x0003 value: 42 72 61 63 65 6c 69 35 2d 39 35 37 34

#the short id of device name

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
read -u 2a00

handle: 0x0003 value: 42 72 61 63 65 6c 69 35 2d 39 35 37 34

#all the handles listed in characteristics, the characteristic
and the value handle

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76
--characteristics|tr ' ' '\n'|tr -d ','|egrep '^0x[0-9a-f]
{4}'|while read -r handle; do echo -n "$handle -> "; sudo
gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-read -a
$handle;done

0x0002 -> Characteristic value/descriptor: 0a 03 00 00 2a

0x0003 -> Characteristic value/descriptor: 42 72 61 63 65 6c 69
35 2d 39 35 37 34 *Braceli5-9574*

0x0004 -> Characteristic value/descriptor: 02 05 00 01 2a

0x0005 -> Characteristic value/descriptor: 40 14

0x0006 -> Characteristic value/descriptor: 02 07 00 04 2a

0x0007 -> Characteristic value/descriptor: 28 00 20 03 00 00 f4
01

0x000a -> Characteristic value/descriptor: 84* 0b 00 21 ff *
read will fail, extended, write

0x000b -> Characteristic value/descriptor read failed:
Attribute can't be read

0x000d -> Characteristic value/descriptor: 10* 0e 00 22 ff *
read will fail, notify

Networking in embedded systems using Bluetooth 187

0x000e -> Characteristic value/descriptor read failed:
Attribute can't be read

0x0011 -> Characteristic value/descriptor: 12 12 00 a1 fe

0x0012 -> Characteristic value/descriptor: 07 00 00 00 00 00 00
00 00 00

0x0014 -> Characteristic value/descriptor: 02 15 00 c9 fe

0x0015 -> Characteristic value/descriptor: d9 f2 25 36 4c 76

Now that we can read them, let's delve a bit deeper into reading the descriptors of the
services and their characteristics.

Services basically only show a short UUID (2, 4, or 16 bytes); for example:

handle 01 value is 00 18 for
00001800-0000-1000-8000-00805f9b34fb.

handle 03 value is 2a 00 for 00002a00-0000-1000-8000-
00805f9b34fb.

Characteristics are a bit more interesting since they hold their attributes, the descriptor
number for their value, and their UUID (see the values in bold in the preceding code block).

Let's read a value, change it, and then read it back to see if the writing went wrong:

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
read -a 3

Characteristic value/descriptor: 42 72 61 63 65 6c 69 35 2d 39
35 37 34

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
write-req -a 3 -n 0x4242424242

Characteristic value was written successfully

$sudo gatttool -i hci0 -t random -b D9:F2:25:36:4C:76 --char-
read -a 3

Characteristic value/descriptor: 00 42 42 42 42 42

Well, that was a lot to learn about Bluetooth LE! Now, it's your turn to play with some
Bluetooth devices. Try out the following to test your BLE devices:

• Try to write to attributes you are not supposed to
• Write values you are not supposed to (and link your writes to the behavior of the

device, along with the different attributes and anything interesting you may have found)
• Check if you can find values that are damaging to the user's privacy
• And a lot of other things – get creative!

188 Attacking Wi-Fi, Bluetooth, and BLE

BLE connection security
Just like BL classic, BLE supports pairing and connection cyphering. As for many devices
in a classic that lack input for the user, a large number of BLE devices don't implement
anything. This gives an attacker free rein to connect to and interact with the device.

This lack of BLE security should already be a finding in itself, and I encourage you to read
more about the BLE security modes, levels, and pairing/bonding possibilities so that you
can propose adequate remediations.

Summary
In this chapter, we looked into the two main wireless networking protocols that are used
by embedded systems and how to attack them. Probing network activity is always very
interesting and can point you toward some relevant security elements, such as keys and
certificates that were identified during the S.T.R.I.D.E. exercise (Chapter 4, Approaching
and Planning the Test). This is also a good starting point when your interactions with
the system are limited because you cannot damage the system, or you only have a very
limited number of test systems. In the next chapter, we will look into attacking other radio
interfaces that can't easily be reached with common tools.

Questions
1. What is the DHCP configuration directive for giving a proxy to the test system?

2. Do you think that other DHCP parameters could be leveraged for security testing?
Can you think of some examples?

3. In the DNS part of the netmasq config, I added a list of DNS "spoofed" hosts. What
do you think they can be used for?

4. In the DNS part of the netmasq config, I added logging for the queries. What do
you think this can be used for?

5. What does GATT stand for?

6. What is the main security problem with the common implementation of BLE?

9
Software-Defined

Radio Attacks
Modern embedded devices communicate a lot over radio interfaces in order to be
independent of cables. It is very common for them to use the well-established protocols
(such as Wi-Fi or Bluetooth) that we already looked into in previous chapters. There
are numerous systems that don't need such complex protocols (or are constrained due
to other design considerations, such as cost, complexity, processing power, and more)
but still have a need for radio communications. In this case, they tend to use other
protocols that are not necessarily easy to interface with out of the box. In this case, we
need to be able to interact with these custom protocols in order to be able to test the
communication's security. This is the domain of Software-Defined Radio (SDR).

We will go over the following topics in this chapter:

• Introduction to arbitrary radio/SDR

• Understanding and selecting the hardware

• Looking into the radio spectrum

• Finding back the data

190 Software-Defined Radio Attacks

• Identifying modulations

• Demodulating the signal

• Sending it back

Technical requirements
You will need at least an SDR adapter. The bare minimum hardware requirement is an
RTLSDR stick that I will talk about in the next section. You will also need the following
software tools:

• GNU Radio

• Gqrx

• baudline

• Audacity

• Python

Check out the following link to see the Code in Action video:
https://bit.ly/3uKVsRz

Introduction to arbitrary radio/SDR
SDR allows you to receive (and emit if you have the adequate license and hardware)
arbitrary radio signals. The adapter acts as a device that can sample (some can also emit)
radio signals around a frequency you can specify and that is it. All the signal processing
is done on the software. The theoretical aspects of the sampling and how the samples
represent the radio data is a little complicated; it is not absolutely necessary to understand
it to start but it will become very useful later when you start to develop your own scripts
and signal processing chains in GNU Radio.

Note
To understand the theoretical principles of SDR and basic usage of GNU Radio,
I strongly advise looking at this excellent series of videos by Michael Ossman:
https://greatscottgadgets.com/sdr/1/.

https://bit.ly/3uKVsRz
https://greatscottgadgets.com/sdr/1/

Understanding and selecting the hardware 191

Understanding and selecting the hardware
As usual, the hardware capabilities and costs are linked. Here is a list of the main domains
that the hardware selection impacts, with a list of the main SDR adapters and their
capabilities per domain.

The hardware will mainly define the following:

• The frequencies you can access are as follows:

- RTL-SDR (receive only): 20 MHz–1.75 GHz

- HackRF: 10 MHz–6 GHz

- BladeRF: 300 MHz–3.8 GHz

- USRP: 70 MHz–6 GHz
• The width of the spectrum you can cover in one shot is as follows (the sample rate

in MS/s is the number of samples it takes per second. It is also the width of the
spectrum that is captured):

- RTL-SDR: 2.4 MS/s

- HackRF: 20 MS/s

- BladeRF: 40 MS/s

- USRPs: 61 MS/s

The higher the sample rate you have, the faster you can explore the spectrum, but it
will (most of the time) not impact your capability to analyze signals since most of
the signals have a bandwidth of a few dozens of KHz in the lower frequencies.

• The price range is as follows:

- RTL-SDR: ~25€

- HackRF: ~300€

- BladeRF: ~400€

- USRPs: ~1,000€+
Once you have decided on your hardware, let's use it to look into a radio device.

192 Software-Defined Radio Attacks

Looking into a radio device
First, get yourself one of the multiple radio-emitting simple gadgets that are currently on
the market (such as a garage opener or a radio-commanded relay box) and see whether
information is available in the FCC documentation (https://www.fcc.gov/oet/
ea/fccid or https://fccid.io/). Since the Furby does not use radio, I'll look
into an IKEA radio-controlled LED lighting device (ANSLUTA). There is no apparent
FCC number on the emitter or receiver, but a simple internet search lends the FCC ID as
FHO-E1205. Opening the emitter (using the same approach we used in previous chapters)
shows a TI CC 2500 chip. Looking into the CC2500 documentation, we can see that the
frequency should be ~2.45 GHz (2.4–2.48 from the CC2500 datasheet: https://www.
ti.com/lit/gpn/cc2500) and this is confirmed by the FCC documentation.

If you are using an RTL-SDR, this frequency will be out of your reach. Pick a wireless
garage door opener in the lower ISM bands (433 MHz–800 MHz, depending on where
you live). The principles will be the same.

Receiving the signal – a look at antennas
When looking into an antenna to receive your signal, there will be two cases:

• The device emits on a frequency for which commercial antennas are available. Just
buy an antenna; you can reuse it later and it will be nicely designed, and you won't
have to worry.

• The device emits on a frequency for which commercial antennas are not available.
Most of the time, we will be working quite close to the device we will be testing. That
means we won't need a very performant antenna to be able to receive the signal, but
we will need something that works at least half-decently in our target band.

Antenna design could cover two or three books on its own (it is a very complex
domain on its own), their pros and cons too (look into antenna books on your
favorite bookseller's website if you want confirmation). For our usage, we can just
use simple, throwaway dipole antennas that I stick to a length of PVC tube, or buy
a ready-made antenna that matches our frequency range of interest.

Now, let's look at what to do when you don't have a commercial antenna.

Making a quick and dirty dipole antenna
The dipole antenna is very simple. It is two lengths of wire forming an antenna of
a fractional length of the signal wavelength.

https://www.fcc.gov/oet/ea/fccid or https://fccid.io/
https://www.fcc.gov/oet/ea/fccid or https://fccid.io/
https://www.ti.com/lit/gpn/cc2500
https://www.ti.com/lit/gpn/cc2500

Understanding and selecting the hardware 193

Usually, half-wavelength works great (but 1/4, 1/8, and more can be used if 1/2 is too big).
The wavelength is C x (1/(Frequency)).

Let's imagine something emitting at 520 MHz (in my country, that can be medical devices,
radio microphones on onboard vehicular communication, and so on).

Now, let's calculate the antenna parameters for 520 MHz:

Next, we build the antenna by measuring two adequate lengths of wire for the target
frequency (for a half-wave, measure two quarter wavelengths, for a quarter-length,
measure two eighths, and so on).

For a half-wave 520 MHz antenna, that is 2 x 14.4 mm.

In the following figure, we can see how the wires are connected to the SDR device:

Figure 9.1 – Dipole antenna connection

194 Software-Defined Radio Attacks

This should be enough for correct reception. Just keep in mind that the dipole antenna
is unbalanced; you should (it helps but is not mandatory) use a balun (balanced/
unbalanced) right before the dipole in order to balance it (to overly simplify, it avoids
unwanted currents coming into your receiver and correctly references the signal). Either
buy one that fits your transmission line impedance (depends on your coax type and
length) or make an air-choke by making a coil of a few turns of your coax (this is a bit
more complicated to do but is basically free; it requires you to measure the capacitance to
determine the correct length of coax to coil up). To do so, look into this: https://www.
instructables.com/id/Air-Choke-Ugly-Balun-for-Ham-Radio/.

Here is the (not) very fancy 75 cm/branch half-wavelength antenna I use for 100 MHz:

Figure 9.2 – Antennas don't have to be fancy to work

This uses an ugly 3D-printed balun from http://www.dk0tu.de/users/DB4UM/
c3d1pole/.

https://www.instructables.com/id/Air-Choke-Ugly-Balun-for-Ham-Radio/
https://www.instructables.com/id/Air-Choke-Ugly-Balun-for-Ham-Radio/
http://www.dk0tu.de/users/DB4UM/c3d1pole/
http://www.dk0tu.de/users/DB4UM/c3d1pole/

Looking into the radio spectrum 195

Looking into the radio spectrum
Gqrx is a GNU Radio application that allows you to have a nice GUI to set the frequency
of your hardware and have a visual representation of the radio spectrum around the set
frequency. It also allows you to hear some common modulations, such as narrow- or
wide-band FM (WFM), lower and upper side band (LSB and USB), and others.

Let's fire up Gqrx and set up the source (hackrf for hackrf, RTLSDR for RTLSDR,
and so on):

Figure 9.3 – Selecting the source: a HackRF example

196 Software-Defined Radio Attacks

The following screenshot shows the Gqrx main window:

Figure 9.4 – Gqrx main window

The frequency you are listening to is as follows:

• A: The frequency you are listening to

• B: The frequency delta between the hardware-centering frequency and the part of
the captured data the software processing is focusing on

• C: The frequency the hardware is centered on (that is, the frequency it will be
capturing data around)

• D: Same as A

Looking into the radio spectrum 197

• E: The signal processing chain that will be applied to the data (here, set up to listen
to (W)FM radio)

• F: The FFT scope

• G: The cascade scope (that is, the history of the FFT scope that flows down like
a cascade)

Now, let's have a look at ~90 MHz. Normally, you can see two subwindows: a top one (the
FFT) and a bottom one (the cascade) where you see peaks at frequencies that are emitting
signals in the FFT and the history of these peaks in the cascade. Set the mode to WFM
(right side of the GUI) and move the cursor to one of these peaks. You should now hear
music (such as songs or someone speaking)! Wonderful, this is your first SDR use!

Now, look at the FFT plot in the following figure and you can see you have a big, thin peak
right in the middle. This is your hardware center frequency (the big peak at 2.429 GHz
in the following example). This peak comes from the hardware and cannot be removed.
It would pollute your signals and that is the reason why you always have a shift next to
the center frequency (the vertical line at 2.4355 GHz in the following figure) to listen to a
specific frequency.

If we move to 2.45 GHz (go on the frequency and use your mouse wheel), we can have
a look at our radio controller (not shown in the figure for clarity purposes). Here, our
main problem is that the portion of the spectrum we are looking at (2.45 GHz) is pretty
crowded (it's an ISM band after all; plenty of devices (including Wi-Fi) are emitting there):

Figure 9.5 – FFT and cascade plots in Gqrx

198 Software-Defined Radio Attacks

So, let's go from 2.4 to 2.48 GHz by a step of our 1/2 sample rate and click on the device to
see it emitting.

I find that mine is emitting around 2.436 GHz. Can you see the horizontal lines in the
cascade? These are radio pulses you see when you click the remote control buttons.

Finding back the data
GNU Radio is a set of software tools that allows you to create a signal processing chain for
the data that comes from your SDR hardware (or a file) to either your hardware again (to
emit) or a file. The blocks in its GUI (gnuradio-companion) are individual processing
steps in the signal processing chain. Data comes from a source toward a sink (both are
files or your SDR hardware driver, your sound card, or... well, it can be a lot of things:
another program, a network endpoint, and so on).

Note
gnuradio-companion (grc) has two main GUI frameworks it can talk to:
QT and WX. Depending on your installation, you may have to change the
framework in the generate options block. The GUI-related processing blocks
will also have to be changed in the processing flow itself.

So, let's fire up gnuradio-companion and make a receiver.

First, let's replicate Gqrx and let's have an FFT visualization. FFT is a visualization of
the signal in the frequency domain (that is, the strength of the different components as
a function of their frequency).

Add a source (depending on your hardware, the osmocom source for hackrf, for
example; right column, Ctrl + F to search) and an FFT sink (it can be named FFT or
Frequency sink, depending on the version; for now, default values should be fine,
just change your sample rate variable to the best your hardware can do) and link them
(by drawing from the output of your source to the input of the FFT).

All .grc files describe a signal processing chain in GNU Radio and are available in the
Git repository of the book. I will also provide a file with the samples that are coming from
my receiver so that you can replicate these steps (you will need to replace the osmocom
source with a file source pointing to the sample file).

Open fft.grc and run it:

Finding back the data 199

Figure 9.6 – A typical FFT plot (here, centered on Wi-Fi frequencies)

Now, let's center on our emitting channel:

• Focus on it by reducing the sample rate (it removes signals from higher and lower
frequencies) in the Osmocom source block.

• Add a low-pass filter, a width around what the signal you receive seems to be (it
focuses even more sharply). This is the low-pass filter block.

• Add two scopes: one on our raw signal and one on our mag^2 (the square of the
magnitude will make emissions "pop out"). These are the time sink blocks.

It should look like this:

Figure 9.7 – Our flow graph with additional visualizations

200 Software-Defined Radio Attacks

Run it to see the size of the received samples on the time domain (use fft-scope.grc
if you can't make it work on your own):

Figure 9.8 – Example of the three visualization flowgraphs

Here, we can see that the trains of magnitude (top scope) have the same width and
spacing. If we zoom closer into one, it is not clear at this point whether it is a repeated
signal, but they don't seem to contain clear on/off sequences inside. This is not on-off
keying (OOK), and in the bottom FFT, we cannot see "spikes" that could indicate
frequency shift keying (FSK). So now, what is the modulation?

Identifying modulations – a didactic example
What we now have is a very common question when looking into unknown signals: what
is the modulation? Finding the correct modulation and parameters can require a bit of
detective work, even if you know the parameters. This section is more of an illustration
of the process of reversing a signal modulation than directly a recipe (since there is no
recipe). Some people are currently working in an academic context on projects to train
neural networks to do signal classification, meaning there is no straightforward way to
recognize modulations.

In the case of the light controller, we can already reduce the candidate's number because
we know (from the FCC documentation and opening the device) that it embeds a
CC2500. The datasheet tells us that it supports a few modulation schemes: 2-FSK, GFSK,
MSK, and OOK. We already eliminated two (OOK and FSK) but how do we tell the
difference between them?

Identifying modulations – a didactic example 201

First, let's talk about what modulation is. Modulation is a way to transmit information
in a radio signal. It can be digital (OOK, FSK, G-FSK) or analog (AM, FM, and more).
Modulation is the way the information is "inserted" in the physical characteristics of the
signal (changes in frequency, phase, amplitude, and others).

Second, let's talk about what modulation is not.

Modulation is not encoding. Encoding is the way to describe data, not the way data is
inserted in the signal. Let's take an example with a very simple modulation: OOK. OOK is
basically knowing whether a signal is on or off. Now, how can you encode data over OOK?
You can do it in multiple ways, actually! Take the following examples:

• You can have long pulses for 0 and short for 1 (or vice versa).

• You can have data encoded in the transition of the modulation. For example, if a
modulated signal changed in the symbol time slot from low to high, it's a 1, and if
from high to low, it's a 0 (this is called Manchester encoding).

• You can use the length of the pause in between high pulses to encode the
information.

• And others...

When looking into a signal, you will also have to understand how that data is encoded.

Here are a few common modulations (there are plenty of modulations), as well as a brief
explanation of how they work and how to recognize them.

AM/ASK
The main points related to AM/ASK are as follows:

• Modulation: Amplitude modulation/amplitude OOK.

• Type: Analog/digital.

• How it works: The signal amplitude (for AM/ASK) or the fact that it is there or not
(OOK) carries the information.

• How to recognize it in GNU Radio: In a scope view coming from a mag or a
mag^2 block, we can see trains of data.

202 Software-Defined Radio Attacks

Visual examples of modulation (sending 1,0,0,0,1,1,0,1) are shown in the following figure:

Figure 9.9 – ASK modulation

Next, let's look at FM/FSK.

FM/FSK
The main points related to FM/FSK are as follows:

• Modulation: Frequency modulation/FSK.

• Type: Analog/digital.

• How it works: The carrier frequency is modulated to carry the information,
going a little up or down to carry the information (for example, in FM radio, this
is done in a continuous way (as opposed to a discrete way in FSK) to carry the
sound frequency.

• How to recognize it in GNU Radio: In the FFT, for FSK, you will see two (or more;
two spikes is 2-FSK, three is 3-FSK, and so on) peaks very close to each other when
looking at the signal up close. For analog FM, the peak of the carrier frequency will
be consistently wide.

Visual examples of modulation (sending 1,0,0,0,1,1,0,1) are shown in the following figure:

Identifying modulations – a didactic example 203

Figure 9.10 – FSK modulation

Next, let's look at PM/phase shift keying (PSK).

PM/PSK
The main points related to PM/PSK are as follows:

• Modulation: Phase modulation/phase shift keying.
• Type: Analog/digital.
• How it works: The phase of the carrier is shifted to carry the information.
• How to recognize it in GNU Radio: When you use a Complex to Mag phase block

and output the results to a scope, you can see brutal changes in the signal phase.

Visual examples of modulation (sending 1,0,0,0,1,1,0,1) phase changes are hard to see in
the signal itself, but see how the sine jumps:

Figure 9.11 – PSK modulation

204 Software-Defined Radio Attacks

Next, let's look at minimum shift keying (MSK).

MSK
The main points related to MSK are as follows:

• Modulation: Minimum shift keying.

• Type: Digital.

• How it works: The amplitude and phase of the carrier are shifted to carry
the information.

• How to recognize it in GNU Radio: You will see both magnitudes and phase
change in the output of a Complex to Mag phase block and quite often, the changes
will be in sync. MSK acts on two variables (magnitude and phase) and transmits
symbols instead of just bits.

Since MSK is very hard to see in the signal itself (phase jumping especially), here is an AM
modulation also sending symbols so that you can understand the difference between a bit
and a symbol better (sending 1,0,2,3,1,2,0,1):

Figure 9.12 – AM modulation

Let's now learn how to get back our signal.

Identifying modulations – a didactic example 205

Getting back to our signal
So, what about our transmitter? We see trains of transmission on the magnitude scope but
no obvious variation in length or rhythms in the train; it's not really looking like OOK.
Within the pulses (the wagons in the train), we see some variations in amplitude but
no real on/off. We don't see clear spikes in frequency, so it's not an x-FSK. The CC2500
datasheet (https://www.ti.com/lit/ds/swrs040c/swrs040c.pdf) leaves us
with GFSK and MSK as possible modulations.

Let's look into the signal to see whether we can identify one of these two:

Figure 9.13 – Looking into the CC2500 signal

Let's look into GFSK. GFSK stands for Gaussian FSK; it is basically the same as FSK with
a filter that ensures a smooth transition between the frequencies, hiding the very clear
spikes we can see in simple FSK (in the preceding figure: FFT plot/waterfall plot).

MSK is using both amplitude and phase to carry the information and we don't see
multiple "heights" in the trains that were output by the Mag^2 block (in the scope plot).

It doesn't show something that would contradict it being GFSK.

https://www.ti.com/lit/ds/swrs040c/swrs040c.pdf

206 Software-Defined Radio Attacks

Demodulating the signal
At this point, GFSK and MSK are still possible candidates (since we had amplitude
variations in the pulses). Let's adjust our filtering to just see the signal. Add a file sink to
your GNU Radio flowgraph (grab a file sync block in the GUI and route the output of the
final block to the input of the file sink; the filename is in the file sink block options) and
capture an emission.

Open your output file in Audacity (File | Import | Raw data | 32-bit float) and adjust your
sample rate to the one you used in your flowgraph. The file in Audacity looks as follows:

Figure 9.14 – Signal in Audacity

You can now trim the file to keep just the emission. Export it as Other uncompressed file
| RAW headerless | 32bits float.

Now, let's work on this isolated sample to try to demodulate it.

Demodulating the signal 207

GFSK is frequency-based, so if we try to demodulate the cut sample with a quadrature
demod block, we should see something significant. Let's output it to a file sink after the
quadrature demod (sampled-simpleqdemod.grc) and open it in baudline:

Figure 9.15 – Output of the attempted quadrature demod in baudline

Now we can see trains in the waveform window. We are going in the right direction. At
this point, we have a little problem; we need to measure the time width that the smallest
peaks take but the signal is so fast that baudline's ruler (on top of the waveform window)
cannot go that low (it is graduated in milliseconds).

Well, we will then lie to baudline and load the file with a sample rate divided by 1,000.
Let's say that I sampled the signal at 2 MS/s; that means that there are 2 million samples
per second. If we load our file at 2 MS/s, it will appear 1,000 times slower in baudline,
meaning that we can now use the ruler and replace the units with microseconds.

When we measure the fastest peaks (at the head of a train, they are called the preamble
and are there to allow clock synchronization), we find that they are 8 µsec wide. As
is, it would be 125 Kbauds, a data rate that is supported by the CC2500, which means
we are still consistent! So now we have a good candidate for the baudrate. Let's refilter
the demodulated signal (125e3 width and half of this in the cutoff; see sampled-
simpleqdemod-refilterbds.grc).

It looks quite okay for the quadrature demodulation of a GFSK signal! Maybe it's still FSK
but we didn't see the signal well in the FFT. When looking into an unknown signal, keep
in mind that your assumptions are still assumptions; backtracking on them is not a bad
thing. At this point, we don't really know whether it is GFSK or FSK. Let's keep in mind
that the modulations are quite close (frequency with transition smoothing for GFSK;
maybe we can get away with just treating it as FSK).

208 Software-Defined Radio Attacks

Here is how it looks in baudline:

Figure 9.16 – Checking the baudrate in baudline

Now, let's center our signal (the train is not alternating around 0 and we need that to
decode it). So, let's add an add const block in front of a scope sink in GNU Radio and
let's center it around 0:

1. Enable the scope sink.

2. Disable the file sink.

3. Enable repeats in the file source in sampled-simpleqdemod-refilterbds.grc.

Here is the zero-centered signal (before, the bottom of the signal was at 0, while now the
signal is alternating around 0):

Figure 9.17 – Zero-centered signal

Now we need to use a Muller & Muller clock recovery block (Clock Recovery MM; the
details are covered later in the chapter):

Demodulating the signal 209

First, we need to know how many samples we have per symbol. I was sampling at 2 MS/s
and the peak is 8 µsec: 2e6 * 9e-6 = 16 samples per symbol.

Let's bit-slice the output and sink it to a file. When we look into this file, we see that we
indeed have output bits (1 byte per byte), but we don't see the preamble (usually 010101
or 101010)! We either did something wrong when processing the signal or one of our
assumptions was bad. When we look back at the signal, we see that the preamble is looking
just like sine, not regular pulses. This means that it is probably Manchester encoded! Do
you remember Manchester encoding? The encoding is in the direction of the change.

One peak like that is 2.4 bits (to say almost 2.5 bits) in Manchester, so let's correct our
baudrate to 125*2.4 = 300 Kbauds. Let's try this with our manual processing; let's add a
GFSK block in parallel and plot it to see whether GNU Radio is doing a better job at this
than us:

Figure 9.18 – Attempted demodulated signal

No dice, we don't get the preamble either, but when we look at the waveform, it is kind of
unstable. There is something to it but there is definitely something wrong with the signal
processing. Now, the waveform in the preceding screenshot is kind of looking like what I
had when I was looking at the amplitude. I'll recapture the signal at a better sampling rate
(10 MS/s) and look into OOK again.

210 Software-Defined Radio Attacks

When looking into it, actually the amplitude is looking more stable; was it OOK in the
end and did I go on a wild goose chase? (Totally something that happens when I try to
devise what modulation is in use.) If I do a complex to mag squared, with a line level
correction a Clock Recovery MM, and reevaluate the baudrate ((10e6 * 9e-6)/2.5 = 36
samples per symbol, which is 277,777 bauds, which is possible but we'll try 40 samples per
symbol too since humans like round numbers), then I really have something that looks
like a preamble! It works at 40 samples per symbol!

This wild goose chase had the merit of allowing us to go through the different common
modulations and to give us a leg up on how to identify a modulation!

Clock Recovery MM
Muller & Muller Clock Recovery is notoriously tricky to set up (and finicky; it is sensitive
to signal level, for example). Let's have a look at the parameters and documentation of
Clock Recovery MM:

• The documentation says the following:

"The peak to peak input signal amplitude must be symmetrical about zero", " M&M
timing error detector (TED) is a decision directed TED, and this block uses a symbol
decision slicer referenced at zero."

The signal must be centered on zero.

"The input signal peak amplitude should be controlled to a consistent level
(e.g. +/- 1.0) before this block to achieve consistent results for given gain settings;
as the TED's output error signal is directly affected by the input amplitude."

Signal conditioning for MM is very important. Signal normalization is crucial
(we need to have a signal that is roughly symmetrical, without "big peaks").

• Omega (ω): Sample per symbol (that is, symbol rate), but it is an initial estimate.
Clock Recovery MM is actually an adaptative filter; omega can and will change a
little during the signal processing.

• Mu (µ): Initial phase. This is not important; it will change very rapidly internally,
and we don't know the phase of the signal, so leave it at 0.

• Mu gain: The gain in the phase feedback loop.

• Omega gain: The gain in the frequency/sample per symbols feedback loop.

• Omega relative limit: The maximum variation of omega we want.

Demodulating the signal 211

Note
Wow, this is a lot to digest. The original article
(https://pdfs.semanticscholar.org/
ef0a/539a61e05df52faeeeb8ca408e2f12575a8b.pdf) is a
nightmare of mathematical formulas that needs a good day to read and another
to reread and digest. It is a lot but I really encourage you to invest the time and
effort.

So, is there something more practical for asynchronous analysis?

WPCR
Definitely! Let's have a look a Michael Ossmann's Whole Packet Clock Recovery
(WPCR) tool (https://github.com/mossmann/clock-recovery).

The tool needs files that contain one burst. I reused Michael's burst detection flowgraph
that he showed at GRCon16 (available here: https://www.youtube.com/
watch?v=rQkBDMeODHc).

Let's try the tool on our trimmed sample file:

./clock-recovery/wpcr.py file7_0_0.02444290.dat

peak frequency index: 230 / 9197

samples per symbol: 39.986957 *

clock cycles per sample: 0.025008

clock phase in cycles between 1st and 2nd samples: 0.104727

clock phase in cycles at 1st sample: 0.092223

symbol count: 231

[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,
1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,
0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

https://pdfs.semanticscholar.org/ef0a/539a61e05df52faeeeb8ca408e2f12575a8b.pdf
https://pdfs.semanticscholar.org/ef0a/539a61e05df52faeeeb8ca408e2f12575a8b.pdf
https://github.com/mossmann/clock-recovery
https://www.youtube.com/watch?v=rQkBDMeODHc
https://www.youtube.com/watch?v=rQkBDMeODHc

212 Software-Defined Radio Attacks

And we got it! WPCR managed to find data on and in the transmission. We got the
symbol rate and the number of symbols and it extracted the data! Now you have the tools
you need to start decoding radio transmissions! This is not a simple matter and a lot of
trial and error is involved if you don't have a formal signal processing background (don't
worry, I don't have one either).

Sending it back
If your hardware supports it, you can record a sample file with a file sink. This can easily
be played back using your device as a sink instead of a source (file source -> Osmocom
sink GNU Radio block for hackrf, for example). Just be sure that you are keeping
the same sampling rate! You can also create modulated signals from Python (or any
programming language) to send arbitrary signals.

Before sending anything, be sure to check the following:

• Check that it is legal in your country depending on the frequency (on 2.4 GHz,
it is (https://en.wikipedia.org/wiki/ISM_band) if you respect the
on-air time).

• That you are not disturbing other receivers around you. Be very wary of the strength
of the signal you are sending!

You can use a Faraday cage (a metallic container to isolate radio signals) for most of
your tests by using a discarded microwave (for 2.4 GHz) or find/build one yourself
for cheap (ammo cans, a big metallic paint pot with a few holes for the cables, and
more). There are a lot of guides available on the internet.

In order to send back data that you captured (that is, a replay attack), you can use the data
you captured (from a file source in GNU Radio) and link the output to an appropriate sink.

Summary
SDR provides you with a very powerful (albeit relatively complex) way to interact with
arbitrary radio signals used by your target embedded system. In this chapter, we were
able to go over the hardware you may need, building simple antennas that fit the signal
frequency you want to interact with and the different signal modulations. This is a
complex field that will require you to study very actively its intricacies to be used to the
fullest extent of its power (and pass certifications to be able to send signals) but will allow
you to interact with the communications at a very intimate level.

In the next chapter, we will go back to tinkering with circuits and will look into the typical
debug interfaces we can use to interact with processors.

https://en.wikipedia.org/wiki/ISM_band

Questions 213

Questions
1. What is the difference between encryption and encoding?

2. What is an FFT? What does it do?

3. What is a modulation scheme?

4. What are the characteristics of an SDR platform that you should take into account
before buying?

5. If the half- and quarter-wavelength antennas work, why not use a wavelength
antenna?

After reading this section, you will know how to access debug interfaces, be familiar with
the basics of reversing a firmware image, be able to identify common executable formats,
and be capable of altering a system's behavior on the fly with on-chip debugging.

This section comprises the following chapters:

• Chapter 10, Accessing the Debug Interfaces

• Chapter 11, Static Reverse Engineering and Analysis

• Chapter 12, Dynamic Reverse Engineering

• Chapter 13, Scoring and Reporting Your Vulnerabilities

• Chapter 14, Wrapping It Up – Mitigations and Good Practices

Section 3:
Attacking the

Software

10
Accessing the

Debug Interfaces
Most microcontrollers (MCUs) come with some sort of debugging/programming
interface. The standard interface is called JTAG (Joint Test Action Group). It is an
industry standard and is usually present in chips with a pin count high enough to support
it. Serial Wire Debug (SWD) is a derivative of JTAG for lower-count chips. Some vendors
also have their own variants (DebugWIRE for Atmels, Spy-Bi-Wire (serialized JTAG) on
TI's MSP430s, PICs ICSP, and others). Now how do we find them, access them, and use
them? This is what we will discuss in this chapter.

In this chapter, we will first cover the JTAG protocol and then learn how to find the JTAG
pins. We will then learn how to install and use OpenOCD. Toward the end of the chapter,
we will also cover some practical use cases.

In this chapter, we will cover the following topics:

• What is JTAG used for?

• The JTAG protocol

• Finding JTAG pins/test points

• ARM JTAG – TAPs and the debug engine in OpenOCD

• OpenOCD: usage and scripting

218 Accessing the Debug Interfaces

Technical requirements
• An FDTI2232 board (with the appropriate udev rules – you know how to do it)

• A bluepill

• A JTAGulator

• An unknown device on which you found a JTAG port (WRT45G boards, a
development board, and so on). Basically, go to your local flea market and buy
advanced junk (such as modems, set-top boxes, and media players). Not only will it
train you with your components opening and identification skills, but you will also
have real devices to hack. Remember, these are not just knowledge-based skills but
something you do with your hands!

Yes, your significant other will probably get angry at the mess. However, a good side effect
is that, now, you know how to get rid of your e-waste properly.

Check out the following link to see the Code in Action video:

https://bit.ly/3rdYE6c

Debugging/programming protocols – What are
they and what are they used for?
The in-circuit debugging protocols have legitimate usages that we can use and abuse for
our tests. First, let's see how they are supposed to be used.

Legitimate usage
The debug protocols are used to achieve multiple goals and some are listed here:

• Test the physical soldering of the boards (this was the initial goal of JTAG).

• Program the chips in development or production.

• Help in debugging the programs during development.

Since the board will have the main micro-controller interact with the chips that are on
the circuit board, it can be hard to develop in a completely simulated environment. This is
because, unlike a general-purpose computer, there is almost no commonality between two
different boards (a general-purpose computer has an OS and this OS provides a good layer
of hardware abstraction).

https://bit.ly/3rdYE6c

Debugging/programming protocols – What are they and what are they used for? 219

Using JTAG to attack a system
The test subsystem is a very interesting target for us since it will provide us with the means
to interact with (and alter) the inner workings of a system.

Understanding the JTAG protocol
Since JTAG will allow us to debug the chip, it is a very handy attack point. Let's look
into it.

JTAG is a daisy-chained serial protocol with 4 (or 5) signals:

• TDI (Test Data In): The debug data enters the chip from this signal/pin.

• TDO (Test Data Out): The debug data exits the chip from this signal/pin.

• TCLK (Test CLocK): The serial clock.

• TMS (Test Mode Select): Manages the state of the JTAG engine.

• TRST (Test ReSeT): (optional).

The following diagram shows how multiple devices are daisy-chained and the general
architecture of a JTAG bus:

Figure 10.1 – JTAG bus architecture

Each device will have a shift register expecting data from TDI and output data on TDO
(of course, clocked by TCLK). This whole structure is called a scan chain.

220 Accessing the Debug Interfaces

Each engine must adhere to the following state machine; the transitions (0,1) are
determined by the state of the TMS signal:

Figure 10.2 – JTAG state machine

All devices' states (and transitions) are managed by toggling the TMS state and cycling the
clock, just like SPI.

The JTAG standard (IEEE 1149.1) states that the transitions are done on the falling edge
of the TCLK signal, but the sampling is done on the raising edge (that is, the TMS value is
read on the transition from low to high and applied on the transition from high to low).

The states mean the following:

• Test-Logic-Reset: Where the test logic is reset.

• Select-IR-scan: The state that allows entering the instruction register logic.

• Select-DR-scan: The state that allows entering the data register logic.

• capture-xR: First, state a register logic branch. It mainly allows you to enter the
pause state before shifting data in the register if you want to (going through exit1,
pause as much as you want, then exit2, then shift).

Debugging/programming protocols – What are they and what are they used for? 221

• pause-xR: Allows you to pause the shifting.

• exit1 and exit2: Allows you to exit or return to shifting.

• update-xR: Commits the data you shifted to the real register.

Let's understand the instruction register in the next section.

Understanding the JTAG registers – instruction register
The instruction register (IR) contains (as its name implies) instructions. It is sampled in
the Shift-IR state (on the raising edge).

The standard defines mandatory instructions as shown in the following table:

222 Accessing the Debug Interfaces

Other instructions are defined but optional for standard compliance (and hence are not
necessarily supported by all chips):

Let's now look at the data register.

Debugging/programming protocols – What are they and what are they used for? 223

Understanding the JTAG registers – data register
The data register (DR) holds, well... data. It is used to enter the data needed by an
instruction or to read the data returned by an instruction. The data is shifted in and out
of the register in the Shift-DR state machine state.

JTAG adapter
As I indicated in Chapter 1, Setting Up Your Pentesting Lab and Ensuring Lab Safety, in
the different lab levels, there are a lot of JTAG adapters available. The main difference
between them lies in the software packages (or lack thereof) that are provided, the list of
chips supported by the vendor (for closed source software packages, if your target chip
is not supported, you are out in the cold), their speed, and their price. Here is a small
comparison of the adapters I know and use/have used:

• SEGGER J-Link:

- Pros: One of the most popular in the professional world. It is fast and supports a
large variety of chips. The software is available for all three major OSes (Windows/
Linux/macOS).

- Con: Price; closed source.
• Black Magic Probe:

- Pros: Acts as a GDB server; open source. It's possible to use the firmware on a
bluepill with some fixes.

- Cons: Only supports ARM chips.
• FTDI based adapters (FTDI2232 breakouts, JTAGkey, Olimex's JTAG,

and others):

- Pros: Very common, very cheap, very flexible; supported by OpenOCD; no
firmware (chip support is done on the PC, allowing you to easily add/change things).

- Cons: Needs manual setup; can be intimidating the first few times.
To be honest, you should start by buying an FTDI2232H breakout board (in the $10-15
range on your favorite bidding website). Not only is this what I will use in the examples
but it is cheap (so you have no fear of killing it) and it will allow you to learn the most
since everything happens because you set it up. It is the adapter that gives you a good
opportunity to learn since there is almost no "behind-the-scenes" magic happening.

224 Accessing the Debug Interfaces

A note on SWD
Single wire debug (SWD) is common on chips where the pin count is reduced (pin count
is tightly linked to chip price). This version is used to reduce the number of pins used
for debugging. To simplify, SWD is a serialized version of JTAG where the TDI/TDO/
TMS signals are multiplexed in the serial data. SWD signals are data (SWDIO) and clock
(SWDCLK); an SWDO (trace port) signal is optional. Please note that the SWD topology
is not serial (the chips are not one after the other in a daisy-chain) but a star topology.

Other debug protocols
Sometimes, you will evaluate a product that doesn't seem to use JTAG or SWD. Some
other (non-ARM) vendors sometimes have specific debug/programming protocols and
the companion hardware and software packages:

• Spy-by-wire: Texas implementation of a serialized JTAG (mainly used on MSP430)

• DebugWIRE: ATMEL SPI debug protocol for AVR microcontrollers

• Microchip PICs ICSP protocol (also SPI-like)

This is just here to make you aware of their existence and to the fact that there is more
than JTAG on the market.

Finding the pins
To connect to the JTAG pins, you first have to find them! It is a common practice among
vendors not to label the pins on the debug ports, not to populate resistors on production
boards to avoid JTAG access, or even not to route the pins at all! In this section, we will
go through the best-case scenario (the debug port is a standard, recognizable port) to the
worst practical case (pins are there but not labeled, or dispersed on test pads). It is possible
that the pins are not routed at all (that is, no trace is connecting the chip's pins to an
externally reachable connector), or even worse, a BGA chip has no trace when getting the
debug signal from the underside of the chip (in this case, there isn't a lot you can do).

Finding the pins 225

The PCB "plays nicely"
Sometimes typical debug ports can be found on the PCBs, labeled on the silkscreen or not.

Typical JTAG ports' pinouts look like this:

• ARM 10 pins (JTAG + SWD):

• ST 14 pins

• Infineon OCDS 16 pins

226 Accessing the Debug Interfaces

• ARM 20 pins (JTAG + SWD):

You can find more information on these connectors at the following links:

• http://infocenter.arm.com/help/topic/com.arm.doc.faqs/
attached/13634/cortex_debug_connectors.pdf

• https://www.infineon.com/dgdl/AP2400123_ocds_level1_
jtag[1].pdf

The debugging signals available on the typical connectors are as follows:

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf
https://www.infineon.com/dgdl/AP2400123_ocds_level1_jtag[1].pdf
https://www.infineon.com/dgdl/AP2400123_ocds_level1_jtag[1].pdf

Finding the pins 227

TDI, TMS, TRST, and TCLK expect to have a 10,000 pull-up resistor to VCC. Sometimes
the PCB provides it; sometimes the PCB expects the JTAG adapter to provide it;
sometimes the clip provides it on the pin. There is no rule!

228 Accessing the Debug Interfaces

To know who should provide the pull-ups (with the JTAG adapter unplugged from the
circuit), do the following:

1. Power off the PCB completely and measure the resistance between the three pins
and VCC. If it in the 5,000-100,000 Ohms range, the PCB provides the pull-up.
If it is open circuit (no connection), it is possible that the chip uses an internal,
programmable pull-up or that the JTAG adapter is expected to provide the pull-up;
continue to step 2).

2. Power the system but keep the MCU in the reset state (push the Reset button or
keep /RST low), and read the voltage on the TDI, TMS, TRST, and TCLK pins. It
should read low (if this is not the case, the CPU could have an internal resistor on
the pin, but you should have caught it at step 1). If it goes off when you release the
/RST signal, the CPU uses an internal, programmable pull-up.

3. If neither steps 1 nor 2 are positive, you should provide an external pull-up in the
10,000-100,000 range.

A bit harder
Sometimes, the JTAG pins will not be available in a nice recognizable connector. If you
managed to find the chip's datasheet and you see on it that JTAG pins are available, you
will have to get your multimeter, put it in continuity mode, and find pads or test points
where the signals are available. If there are none, you can always solder magnet wires to
the pins you need and make your own connector!

Very hard – JTAGulating
Sometimes you don't have a datasheet, or the chip is in a BGA package (and hence the
pins, being under that package, aren't reachable/traceable with your multimeter). In this
case, you have to search for the following:

• Test points or unpopulated component footprints (these are/may be used to
program the chip with a dedicated jig after soldering) or untented vias (vias that are
not covered with solder mask). These are pretty tricky since nothing prevents the
designer of the PCBs from spreading the test points apart on the PCB.

• Nonstandard connectors – most of the standard connectors are two rows but
nothing prevents the designer from using a single-row or a triple-row connector;
just bear in mind that the strict minimum is as follows:

- 4 for SWD (SWCLK, SWDIO, RST, and a shared ground)

- 6 for JTAG (TDI, TDO, TMS, TCLK, RST, and a shared ground)

Finding the pins 229

• Gold finger or traces that reach the border of a PCB and seem to be cut (this can be
used to program a whole panel of PCBs before the individual PCBs are broken away
from the panel).

• Connector footprints that seem to lead to unpopulated component footprints. It
is common to find PCBs where the debug/test connector for development was left
unconnected by leaving 0 Ohm resistors unpopulated in the final version once the
software and the production process are stable. This is especially common when
the firmware is on an external storage chip or if the chip was already programmed
before being soldered.

So, basically, you are in a situation where the following apply:

• You don't know if some pins/test points are part of the debug/JTAG.

• You don't know which pins/test points correspond to which signal.

Thankfully, there is a tool for that: Joe Grand's JTAGulator.

Basically, the JTAGulator will brute-force a set of pins in order to determine whether they
are part of a JTAG interface (and whether they are a serial interface also, just as a side
benefit). The JTAGulator has the benefit of having protected inputs so even if you connect
to something that could be dangerous for it (within reasonable limits), there is almost no
risk of damaging it.

Understanding the JTAGulator hardware
To use the JTAGulator board, we need to know a little bit about how it works. Let's look at
the board and its functionalities.

Here is a diagram of the main sections on the JTAGulator and what they are used for:

Figure 10.3 – The JTAGulator

The JTAGulator works with a very classical, text-based interface on your USB. By now, you
should be pretty comfortable with them and using your favorite terminal client for it.

230 Accessing the Debug Interfaces

The first step of connecting the board to your target system is to connect the ground
together, as usual (and preferably before powering them up). Then measure the power
voltage of the target MCU (or find the voltage in the datasheet). The JTAGulator supports
setting the I/O voltage from 1.2 to 3.3 V (the setting is done in the serial interface).

If your voltage falls outside of this range, you can do the following:

• Use one of the voltage translation circuits shown in earlier chapters.

• Use a dedicated chip such as the TI's TXS010x (used by the JTAGulator itself) or
LSF10x's, NXP's NTB and LFS family, DI's PI4U family, and others. But check that
the voltage range fits your need.

Again, re-read the safety instructions – especially if you are talking with a device that uses
a capacitive dropper power circuit on the mains! In my young hacker days, I lost a USB
hub to that – I could have lost my life!

So, now connect all your suspect pins to the JTAGulator. Power up both systems and
connect to the JTAGulator's serial interface (the pins or screw terminals don't make a
difference). The interface has a help menu (H) to select the different modes:

• i: IDCODE scan, searches for an IDCODE response (or something that looks
similar). This is supposed to be the default content of the DR when the debug
engine starts (but it doesn't find all the pins – since it doesn't interact with TDI,
it doesn't find it).

• b: BYPASS scan, tries to set the device in BYPASS mode, and hence finds TDI.

• d: Finds all the IDCODEs of the devices in the chain.

• t: Tests BYPASS.

• v: Sets the target voltage (1.2 to 3.3 V).

• u: Searches for the serial interface.

• p: Sets the serial interface in pass-through mode so you can talk to the device
through the JTAGulator.

Note
Do not connect anything to the VADJ pin of the JTAGulator!

An alternative to JTAGulator is JTAGEnum flashed on an Arduino. But this is so, so, so...
slow. It is not worth it in a professional environment; invest in a JTAGulator as soon as
you can.

Using OpenOCD 231

How does it work?
We will first identify the pins (except for TDI) with the JTAGulator. It will do so by
going through the following (simplified – some back and forth may be necessary
to validate candidates) sequence for all the possible pin arrangements (until a valid
arrangement is found):

• Toggles a candidate test reset to have IDCODE in the DR and the state machine in a
known state.

• Tries to set the device in DR shift state by wiggling the candidates' TMS and clock.

• Tries to clock the debug engine a bunch of times to see if at least one 32-bit word
comes on the pins that are left. Since on reset, the IDCODE is in the DR by default,
if it is the case, /TRST, TDO, TCLK, and TMS are identified.

Then we will do a BYPASS scan in order to find TDI. The sequence is quite similar, but it
will try to send all ones (BYPASS) to a candidate TDI pin and see if it finds a pattern on
the candidate TDO.

This works pretty similarly for UART and allows you to find candidate baud rates.

Note
If you use a lot of pins to scan, JTAGulating can be pretty long. Try to use other
methods to eliminate as many pins as possible.

If you are interested in how the JTAGulator works internally, it is open source. Have a look
at http://www.grandideastudio.com/jtagulator/.

Using OpenOCD
Open On-Chip Debugger (OpenOCD), is a piece of software that acts as a bridge
between your debugger interface and the JTAG interface. On one side, it will drive your
JTAG interface and on the other side, present a standard GDB server that the debugger
will use to drive it.

It will translate the debugger command I want to read a 32-bit value at address X to a
series of zeros and ones your JTAG interface will clock to TDI. The interface gets the
answer on TDO and sends it to OpenOCD, which translates it to an answer to GDB, the
value at X is Y.

http://www.grandideastudio.com/jtagulator/

232 Accessing the Debug Interfaces

As much as the GDB server side is well established and standardized, OpenOCD needs to
be able to talk correctly to your adapter and generate the correct series of zeros and ones
for your target CPU/MCU. For this, OpenOCD will need the correct configuration. This
is done in a series of configuration statements in TCL (http://openocd.org/doc/
html/Tcl-Crash-Course.html).

OpenOCD configuration files are not simply variable affectation but a complete
programming language (we will go through a few examples on our own).

Installing OpenOCD
There is always an option to rely on your package manager to install OpenOCD. sudo
apt install openocd (or any variation on the OS you've chosen) will probably
work. Since the support for the different debug adapters is flagged at compile time, I will
show you how to compile OpenOCD with support for the maximum number of adapters.

OpenOCD relies on a sourceforge Git tree: https://sourceforge.net/p/
openocd/code/ci/master/tree/.

Install the prerequisites and clone it (or download a tarball of a release version if you don't
care about the latest developments):

$sudo apt-get install libtool make pkg-config autoconf automake
texinfo libusb-dev libftdi-dev

[...]

$git clone --recurse-submodules https://git.code.sf.net/p/
openocd/code openocd-code

[..]

$ cd openocd-code

$./bootstrap

$./configure –help

[...]

In the help of configure, we see in the optional features that there are a lot of supported
adapters, with a lot of options. So, I came up with this little terminal magic command
that enables all the adapters (that are not deprecated on incompatibles):

./configure `./configure --help | egrep -e '^\s+--enable' |
egrep -v '(FEATURE|doxy|dummy|oocd)' | grep building | cut -d '
' -f3 | tr '\n' ' '`

http://openocd.org/doc/html/Tcl-Crash-Course.html
http://openocd.org/doc/html/Tcl-Crash-Course.html
https://sourceforge.net/p/openocd/code/ci/master/tree/
https://sourceforge.net/p/openocd/code/ci/master/tree/

Using OpenOCD 233

It basically builds the options list from the help and disables doxygen documentation
generation and the dummy adapter. Again, since terminal data processing will be very
useful to you, I encourage you to dissect this command to understand how it works
(you want to be a hacker, don't you?).

Now you can run make && sudo make install as usual.

The adapter file
Let's set up our adapter and our first scan chain by hand so we can understand how the
configuration files work. First, let's find the required documentation:

• The chip's documentation can be found at this link: https://www.ftdichip.
com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf.

• Application note for FTDI pins: https://www.ftdichip.com/Support/
Documents/AppNotes/AN_184%20FTDI%20Device%20Input%20
Output%20Pin%20States.pdf.

• Application note for JTAG: https://www.ftdichip.com/Support/
Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_
Example.pdf.

• The adapter setup file documentation can be found at this link: http://
openocd.org/doc/html/Debug-Adapter-Configuration.html.

That's a lot! So, let's have a look at a real setup to understand how it works. The mode used
for JTAG is called MPSSE, it is used for SPI-style interfaces. In the pin description file, we
can see, in MPSSE, the following:

• ADBUS0 or BDBUS0: TCK

• ADBUS1 or BDBUS1: TDI

• ADBUS2 or BDBUS2: TDO

• ADBUS3 or BDBUS3: TMS

OpenOCD takes this into account so we don't have to make the link explicitly between the
pin and the JTAG signal.

Note
Please note that nothing is preset for nTRST; we will have a general-purpose
I/O for this.

https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_184%20FTDI%20Device%20Input%20Output%20Pin%20States.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_184%20FTDI%20Device%20Input%20Output%20Pin%20States.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_184%20FTDI%20Device%20Input%20Output%20Pin%20States.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example.pdf
http://openocd.org/doc/html/Debug-Adapter-Configuration.html
http://openocd.org/doc/html/Debug-Adapter-Configuration.html

234 Accessing the Debug Interfaces

Let's look at the adapter file I use for my FTDI2232H breakout board:

interface ftdi # the interface driver is ftdi

ftdi_vid_pid 0x0403 0x6010 # indicates the usb identifiers

ftdi_layout_init 0x0c08 0x0f1b # 1)

ftdi_layout_signal nTRST -data 0x0100 -noe 0x0400 # 2)

ftdi_layout_signal nSRST -data 0x0200 -noe 0x0800 # 3)

adapter_khz 2000 # speed of the
adapter

The preceding code is explained in the following list:

1. ftdi_layout_init: This allows OCD to set up the pins of the chip. Let's look at
what the values mean:

2. ftdi_layout_signal nTRST: (Inverse) test reset signal – nTRST – is mapped
on AC0 and (inverse) enabled on AC3.

3. ftdi_layout_signal nSRST: (Inverse) system reset signal – nSRST – is
mapped on AC1 and (inverse) enabled on AC4.

Here, we can see that this tells OpenOCD where to map which JTAG signal on the chip
and how fast to use it.

The target file
Let's have a look at a familiar target: The STM32F103 that is on the bluepill. The
comments in italics are mine; the normal ones come from the OpenOCD file.

Using OpenOCD 235

Let's see what the different steps are in the file:

1. Defining the scan chain:

source [find target/swj-dp.tcl] # defines functions
to

 # use either JTAG
or SWD

source [find mem_helper.tcl] # defines shortcuts
mmw,

 # mrb, mrw

if { [info exists CHIPNAME] } { # defines a _
CHIPNAME

 # variable

 set _CHIPNAME $CHIPNAME

} else {

 set _CHIPNAME stm32f1x

}

set _ENDIAN little # tells openOCD the target
endianness

if { [info exists WORKAREASIZE] } { # defines RAM used
for

 # flash programming

 set _WORKAREASIZE $WORKAREASIZE

} else {

 set _WORKAREASIZE 0x1000

}

#jtag scan chain

if { [info exists CPUTAPID] } {

 set _CPUTAPID $CPUTAPID

} else {

 if { [using_jtag] } {

 set _CPUTAPID 0x3ba00477 # See STM Document

 # RM0008 Section
26.6.3

 } {

 set _CPUTAPID 0x1ba01477 # this is the SW-DP
tap

 # id not the jtag tap

236 Accessing the Debug Interfaces

id

 }

}

2. Defining the chips:

swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask
0xf -expected-id $_CPUTAPID

 #uses the function defined in swj-dp to

 #define a new test access port for jtag or

 #define a new debug access port for swd

if {[using_jtag]} {

 jtag newtap $_CHIPNAME bs -irlen 5 # for jtag defines
the boundary scan tap

}

set _TARGETNAME $_CHIPNAME.cpu

target create $_TARGETNAME cortex_m -endian $_ENDIAN
-chain-position $_TARGETNAME

$_TARGETNAME configure -work-area-phys 0x20000000 -work-
area-size $_WORKAREASIZE -work-area-backup 0

 #0x20000000 is the start of the ram

flash size will be probed

set _FLASHNAME $_CHIPNAME.flash

flash bank $_FLASHNAME stm32f1x 0x08000000 0 0 0 $_
TARGETNAME

 #0x80000000 is the start of the flash

3. Configuring our adapter's speed and target event handlers:

JTAG speed should be <= F_CPU/6. F_CPU after reset is
8MHz,

so use F_JTAG = 1MHz

adapter_khz 1000

adapter_nsrst_delay 100

if {[using_jtag]} {

 jtag_ntrst_delay 100

}

reset_config srst_nogate

if {![using_hla]} {arm6 arm7 arm8

Using OpenOCD 237

 # if srst is not fitted use SYSRESETREQ to

 # perform a soft reset

 cortex_m reset_config sysresetreq

}

$_TARGETNAME configure -event examine-end {

 # DBGMCU_CR |= DBG_WWDG_STOP | DBG_IWDG_STOP |

 # DBG_STANDBY | DBG_STOP | DBG_SLEEP

 mmw 0xE0042004 0x00000307 0

}

$_TARGETNAME configure -event trace-config {

 # Set TRACE_IOEN; TRACE_MODE is set to async; when using
sync

 # change this value accordingly to configure trace pins

 # assignment

 mmw 0xE0042004 0x00000020 0

}

That is a lot!

But if we read through it, we can see two main stages:

1. Preparation of the data for the TAP

2. Setup of the TAP

Let's connect our adapter to the bluepill based on the connections shown in the
following table:

238 Accessing the Debug Interfaces

Let's launch OpendOCD with our configuration:

$openocd -f ./ch10/ftdi2232h.tcl -f /usr/local/share/openocd/
scripts/target/stm32f1x.Cfg

Open On-Chip Debugger 0.10.0

[...]

adapter speed: 1000 kHz

adapter_nsrst_delay: 100

jtag_ntrst_delay: 100

none separate

cortex_m reset_config sysresetreq

Info : clock speed 1000 kHz

Info : JTAG tap: stm32f1x.cpu tap/device found:

0x4ba00477 (mfg: 0x23b (ARM Ltd.), part: 0xba00, ver: 0x4)

Warn : JTAG tap: stm32f1x.cpu UNEXPECTED: 0x4ba00477 (mfg:
0x23b (ARM Ltd.), part: 0xba00, ver: 0x4)

Error: JTAG tap: stm32f1x.cpu expected 1 of 1: 0x3ba00477 (mfg:
0x23b (ARM Ltd.), part: 0xba00, ver: 0x3)

Info : JTAG tap: stm32f1x.bs tap/device found: 0x16410041 (mfg:
0x020 (STMicroelectronics), part: 0x6410, ver: 0x1)

Error: Trying to use configured scan chain anyway...

Warn : Bypassing JTAG setup events due to errors

Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints

But something is wrong here! The IDCODE is wrong (UNEXPECTED: 0x4ba00477)!
What is happening? Actually, I took one of my boards with a CSK STM32F103 clone
instead of a genuine ST. It's convenient to show you what happens with an incorrect
IDCODE, isn't it?

With the genuine ST board, it works normally without signaling the wrong IDCODE:

$openocd -f ./ch10/ftdi2232h.tcl -f /usr/local/share/openocd/
scripts/target/stm32f1x.Cfg

Open On-Chip Debugger 0.10.0

[...]

adapter speed: 1000 kHz

adapter_nsrst_delay: 100

jtag_ntrst_delay: 100

none separate

Using OpenOCD 239

cortex_m reset_config sysresetreq

Info : clock speed 1000 kHz

Info : JTAG tap: stm32f1x.cpu tap/device found: 0x3ba00477
(mfg: 0x23b (ARM Ltd.), part: 0xba00, ver: 0x4)

Info : JTAG tap: stm32f1x.bs tap/device found: 0x16410041 (mfg:
0x020 (STMicroelectronics), part: 0x6410, ver: 0x1)

Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints

If your board has a clone, adapt the config file to use the correct IDCODE.

Now that we have seen how to connect to a device we know and already have the setup
files for use with OpenOCD, let's look into how it works and what we can do with it.

OpenOCD interfaces
OpenOCD will open three ports on your computer's local interfaces:

• A GDB server (usually port 3333): It expects connections from GDB.

• A telnet interface (usually port 4444): You can connect to it with telnet. It expects
manual OpenOCD commands, which are documented here: http://openocd.
org/doc/html/General-Commands.html.

• A TCL remote server (usually port 5555): You can automate things through it
by connecting with a script. Templates (Python and Haskell) can be found in the
contrib/rpc_example directory of the OpenOCD source.

Defining convenience functions for OpenOCD
When invoking OpenOCD, you can add as many -f directives as you like. I find it
very useful to make my own convenience functions in TCL for some basic utility
functions. If you are not familiar with the TCL (pronounced tickle, hence the feather
logo...) language, please refer to https://www.tcl.tk/man/tcl8.5/tutorial/
tcltutorial.html.

Please note that the tk gui functions are not available in OpenOCD's embedded
TCL interpreter.

http://openocd.org/doc/html/General-Commands.html
http://openocd.org/doc/html/General-Commands.html
https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

240 Accessing the Debug Interfaces

Practical case
Let's have a look at a DSL modem (an ABB 560NM that I bought from my local flea
market) that is sporting a JTAG connector. If you can't find the same modem, you will
have to find a random piece of hardware with a JTAG connector. This will be a very good
exercise in locating them.

Opening the case and going through the chip, I could easily identify the main CPU
as a Samsung S3C4530A (the markings have not been removed; it is a big chip with
Samsung and ARM markings and SC4530A is pretty visible). A bit of internet research
scores the datasheet for this chip. It is sold as an "Integrated system for embedded Ethernet
applications" and that fits the bill pretty nicely for a DSL modem. The datasheet is inside
the ch10 folder of the repository.

Next to it, there is an already populated 10-pin connector that is not connected to
anything on the system. It smells like JTAG!

Here, I can approach it in two ways:

• I can use my JTAGulator – it is fast and easy.

• Or I can use the fact that I have the datasheet to trace the JTAG pins of the
CPU (indicated in the datasheet) to the header pins with the continuity mode
of my DMM.

The Samsung ARM chip can be seen in the following figure:

Figure 10.4 – The Samsung chip

Since the chip is not BGA and I have a documented chip pinout in its datasheet, it is
very easy to find out the pinout with a DMM in continuity mode only (the JTAGulator is
expensive for a beginner – this is proof you don't always need it!).

Practical case 241

Here is the pinout:

Let's launch OpenOCD with the scan_chain.tcl config (this one just shows the
scan chain):

$openocd -f ftdi2232h.cfg.tcl -f scan_chain.tcl

Open On-Chip Debugger 0.10.0

[...]

adapter speed: 2000 kHz

srst_only separate srst_gates_jtag srst_open_drain connect_
deassert_srst

adapter_nsrst_delay: 100

adapter speed: 200 kHz

 TapName Enabled IdCode Expected IrLen IrCap IrMask

-- ------------------- -------- ---------- ---------- ----- ---
-- ------

Info : clock speed 200 kHz

Warn : There are no enabled taps. AUTO PROBING MIGHT NOT WORK!!

Info : JTAG tap: auto0.tap tap/device found: 0x1f0f0f0f (mfg:
0x787 (<unknown>), part: 0xf0f0, ver: 0x1)

Warn : AUTO auto0.tap - use "jtag newtap auto0 tap -irlen 4
-expected-id 0x1f0f0f0f"

Warn : gdb services need one or more targets defined

0x1f0f0f0f is the generic ID for ARM7/TMDI. It works!

So, this time, OpenOCD doesn't come with a practical target description file; we will have
to make one.

Let's define our variables:

transport select jtag # we want jtag

reset_config srst_only # we didn't find a trst pin so, srst
only

242 Accessing the Debug Interfaces

adapter_nsrst_delay 100 # some delay after the reset

ftdi_tdo_sample_edge falling # we want falling edge

 # sampling in the fdti

adapter_khz 30000 # after some tests this is the fastest

set _CHIPNAME S3C45 # to have a practical name

set _ENDIAN little # arm little

set _CPUTAPID 0x1f0f0f0f # our jtag id

And define our target and actions:

jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf
-expected-id $_CPUTAPID

 # classical
arm tap

set _TARGETNAME [format "%s.cpu" $_CHIPNAME] # a nice .cpu
target for the dap

target create $_TARGETNAME arm7tdmi -endian $_ENDIAN -chain-
position $_TARGETNAME

 # target creation

$_TARGETNAME configure -work-area-phys 0x30800000 -work-area-
size 0x20000 -work-area-backup 0

 # this is the trickiest, try values for the

 # work area, keep them aligned, this is

 # trial and error mostly

telnet_port 4444 # define ports

gdb_port 3333

tcl_port 6666

init

verify_ircapture disable

halt #stop the CPU

wait_halt #wait for the stop

poll #poll it once

Practical case 243

Now, we can get access to the modem memory and execution flow but... where? At what
addresses? We know ARM7 is a 32-bit architecture. We could dump the whole 4 GB
memory space if we were completely clueless. But let's dig a bit into the datasheet to refine
our dumping (and introduce you to TCL and OpenOCD).

First, when looking at Figure 4-1 – S3C4530A System Memory Map schema on the
datasheet, we realize that the actual memory space isn't 32-bits but 26 (so 64Mbytes
(2^26)/(2^10)/(2^10)=2^(26-10-10)=2^6=64)!

That should be much, much faster than dumping 4 GB!

Let's create a TCL file to do it:

echo "----DUMPING 0 16M"

dump_image dump_samsung_0x00000000_16M 0 0x1000000

echo "----DUMPED 0 16M"

echo, well... echoes text to the console, and the dump_image command... dumps
memory to a file:

• The documentation of the base OpenOCD function is here (dump_image,
load_image, mem2array, and so on): http://openocd.org/doc/html/
Tcl-Scripting-API.html.

• TCL integrated functions (commands) and operators are documented here (if,
foreach, echo, format, and so on): https://www.tcl.tk/man/tcl8.6/
TclCmd/contents.htm.

Let's dump the memory space:

$openocd -f ftdi2232h.cfg.tcl -f samsung-S3C45.tcl -f dump16M.
tcl

[...]

Info : JTAG tap: S3C45.cpu tap/device found: 0x1f0f0f0f (mfg:
0x787 (<unknown>), part: 0xf0f0, ver: 0x1)

Info : Embedded ICE version 1

Info : S3C45.cpu: hardware has 2 breakpoint/watchpoint units

verify Capture-IR is disabled

background polling: on

TAP: S3C45.cpu (enabled)

target halted in ARM state due to watchpoint, current mode:
System

cpsr: 0x6000005f pc: 0x00b3bd60

http://openocd.org/doc/html/Tcl-Scripting-API.html
http://openocd.org/doc/html/Tcl-Scripting-API.html
https://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm
https://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm

244 Accessing the Debug Interfaces

--- DUMPING 0 16M

dumped 16777216 bytes in 39.864220s (410.995 KiB/s)

--- DUMPED 0 16M

Here, we have our image file of the whole memory space! We will look into code analysis
in the next two chapters (of a homemade application though; since this piece of hardware
is hard to find, I want you to be able to follow in the next chapters).

But we would like to know how the memory is set up and where it is "mounted" in the
memory space. In order to do so, we have to parse the content of memory-mapped registers.

While reading the database, we see that the external memory is set up in multiple
registers. SYSCFG configures the high-level aspect (cache mode, write buffer, and so on),
the internal bus behavior (EXTDBWTH), another (ROMCON) sets up the physical layer
(RAC/CAS, and so on) and specifies the external RAM base address, and one actually
indicates the base address of the I/O (REFEXTCON).

I wrote code to make their content readable (samsung-S3C45-parse_and_dump.
tcl). Let's have a look at it to understand tcl a little bit. Let's have a look at the main
parsing function:

proc samsung_spe_regs {} { # function definition

 mem2array syscfg 32 0x3ff0000 1 # mem2array: read

 # address in a var

 mem2array clkcon 32 0x3ff3000 1 # mem2array varname

 # width addr sz

 mem2array extacon 32 0x3ff3008 2

 mem2array extdbwth 32 0x3ff3010 1

 mem2array romcon 32 0x3ff3014 6

 mem2array dramcon 32 0x3ff302c 4

 mem2array refextcon 32 0x3ff302c 1

 echo [format "SYSCFG 0x%08x" $syscfg(0)]

 parse_syscfg $syscfg(0) #this is a function call if 1
arg

 echo [format "CLKCON 0x%08x" $clkcon(0)] #format is a
bit

 # like printf

 foreach {n val} [array get extacon] { #[] evaluates a

Practical case 245

 # command,set

 #retun value as arg like `` in

 #shell

 echo [format "EXTACON%d 0x%08x" $n $val]

 parse_extacon $n $val #function call with
arguments

 }

 echo [format "EXTDBWTH 0x%08x" $extdbwth(0)]

 parse_extdbwth $extdbwth(0)

 foreach {n val} [array get romcon] {

 echo [format "ROMCON%d 0x%08x" $n $val]

 parse_romcon $n $val

 }

 foreach {n val} [array get dramcon] {

 echo [format "DRAMCON%d 0x%08x" $n $val]

 parse_dramcon $n $val

 }

 echo [format "REFEXTCON 0x%08x" $refextcon(0)]

 parse_refextcon $refextcon(0)

}

 samsung_spe_regs #function call w/o arguments

Just this code tidbit shows the main tcl and OpenOCD features/commands. A very
important thing you have to know about tcl is that it is a functional language (like caml,
lisp, haskell, erlang, scala, and more). To make it simple, a function cannot
change its arguments; you can only process data and return it.

Go read the other functions in samsung-S3C45-parse_and_dump.tcl to learn
more about parsing, printing, and bitwise manipulation!

246 Accessing the Debug Interfaces

If you don't find an ABB 560MN, I encourage you to write your own script for the JTAG
target you find, but for you to test it, here are the static values that were in my modem. At
the very bottom of the script, I parse the initial value for syscfg. Get inspired by it. Also,
tclsh is a command-line interpreter that can execute tcl scripts (but doesn't know
OpenOCD-specific commands):

Now you know how to find JTAG interfaces, how OpenOCD works, how to dump
memory, and so on! Find a victim and go get cracking!

Summary
In this chapter, we saw how to interact with JTAG, how to find JTAG pins, how it works,
how to use it to put a target under debugging control, how to dump its memory space, and
how to interact with OpenOCD with scripts.

At this point, you should be able to make OpenOCD debug your own programs on your
own boards!

In the next chapter, we will see how to reverse engineer a binary that we extracted (from
JTAG or an EEPROM, or by any other means). In the chapter after that, we will put JTAG
to work to directly alter the code that is executing on our target! Hang on – the best bits
are still to come!

Questions 247

Questions
1. What is JTAG?

2. What are the JTAG signals/pins and what do they do?

3. Was JTAG initially made to debug chips?

4. When using a JTAGulator, how come the IDCODE scan doesn't find TDI?
How come BYPASS does?

5. What is/are the OpenOCD command(s) to write a value at a specific address?
Why can it be interesting?

6. join [lmap b [lmap a [split "Bjo(u!UDM!gvo!@" {}] {expr
[scan $a %c]-1}] {format %c $b}] ""

11
Static Reverse

Engineering
and Analysis

In this chapter, we will look into the analysis of a piece of code, without having it execute.
The approach we will use is, first, to have a look at the code while it is executing. After this,
we'll manage to get the code from an external source such as a firmware update, EEPROM
dump, or another source. However, we can't get debug access on the CPU because of the
absence of JTAG or any other debug interface, because the emulator is unavailable, and
other reasons.

In order to be able to understand the code, we will go through the following steps. First,
we will understand how an operating system loads code for execution. In doing so, we will
look at what an executable format is and why it is needed, the most popular formats for
general-purpose and embedded systems, and an overview of common tools for finding
information on executable formats. We will then understand how to deal with a raw
dump (a bare-metal dump of a memory space or an EEPROM dump) and find relevant
information to analyze them. Toward the end of the chapter, we will look at a dedicated
reverse engineering program (Ghidra).

250 Static Reverse Engineering and Analysis

In this chapter, we will look at the following topics:

• Executable formats

• Dump formats and memory images

• Analyzing firmware – introduction to Ghidra

Technical requirements
For this chapter, we will need the following:

• A computer running Linux

• Ghidra (https://ghidra-sre.org/)

• readelf (in the elfutils package usually)

• pev (also usually packaged)

• qemu-system-arm if you don't have a Raspberry Pi

The code files for this chapter can be found in the repository you cloned initially.

Check out the following link to see the Code in Action video:

https://bit.ly/2OfFSwu

Executable formats
On a modern (after 1975) computer, the operating system is roughly split into two
main parts:

• The kernelland: This is the memory space of the code that manages both the
hardware and what happens in the userland. It generally doesn't have internal
memory protection and any crash here can crash the computer (or even damage
the hardware). It is also called ring 0 as an abuse of the memory protection rings
on x86 CPUs.

• The userland: This is the (virtual) memory space where the user executable lives.
The executables cannot access the hardware directly, they don't have a direct view
of the physical memory addresses, their execution can get interrupted by the kernel
scheduler, and they can crash happily without too much risk to the system. Also
known as ring 3, the least privileged of the x86 CPUs.

https://ghidra-sre.org/
https://bit.ly/2OfFSwu

Executable formats 251

Since the kernelland can manage a myriad of userland programs (that it has no clue
about beforehand), there must be a standard way to describe these programs so they can
be given what they need to run smoothly by the kernelland. This is basically what an
executable format is. An executable format will tell the OS the following:

• I contain a program made for this OS or another. (Does the OS recognize the
executable format?)

• I contain a program made for this CPU architecture. (Is the program compatible
with the current CPU architecture?)

• My program needs this list of external libraries to work. (Are they available
locally? Does the OS need to load them in the memory space that it will create for
the executable?)

• For each library, the program will need these exported functions (since the
functions can be at different addresses between two compilations or two versions of
the library, it will need a way to resolve these addresses – this is dynamic linking).

• You will be able to find the code of the program at this offset (this is called the
entry point).

It is very clear that, from a security point of view, the executable formats are a rich
environment to hide and hijack things, and from a defensive point of view (the
programmers trying to hide things from you) and an offensive point of view (you are
relying on information they provide to exploit a vulnerability). Just so you know, executable
format manipulation is the historical way viruses replicate on an operating system.

Now we've seen why we need standardized executable formats, let's have a quick look at
the most popular ones.

Understanding operating system formats
Since executable formats are OS-dependent, there are of course some competing
standards (https://xkcd.com/927/). Let's start with the most popular one in
embedded systems, the king of flexibility, the one that in the darkness binds them.

https://xkcd.com/927/

252 Static Reverse Engineering and Analysis

The Executable and Linkable Format
The Executable and Linkable Format (ELF) has been the standard on (most) *NIX
systems since the late 90s (besides OSX grandstanding alone in its corner, as usual). It
is relatively simple but powerful and allows embedding much more than executables. It
can contain libraries, object code, core dumps, debugging symbols, operating system and
CPU-specific "things"... anything short of the kitchen sink. It can target more than 16
Application Binary Interfaces (ABIs), more than 100 architectures, and more...

The first thing that comes in an ELF file is the file magic:
\x7fELF (0x7f,0x45,0x4c,0x46).

Let's have a look at a typical ELF header with readelf:

Executable formats 253

This is the general information about these ELF files, what CPU and OS they can run on,
where the sections start, and more. Just by reading the header, we already have a lot of
very interesting information!

If we dig a bit deeper into comparing them, we can look into the segments they need and
see the following:

• The bluepill needs very little. Actually, it is not relying on anything provided by the
kernel (which is normal since it is not a real executable but more of a container for
our compiled code). But look at our familiar addresses (flash @0x08000000, RAM
@0x20000000) with the correct access flags... A thing of beauty and joy forever:

Elf file type is EXEC (Executable file)

Entry point 0x8000c5d

There are 2 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz
MemSiz Flg Align

 LOAD 0x010000 0x08000000 0x08000000 0x00d44
0x00d44 R E 0x10000

 LOAD 0x020000 0x20000000 0x08000d44 0x0000c
0x0000c RW 0x10000

 Section to Segment mapping:

 Segment Sections...

 00 .text #text is usually the segment with

 # the code we want to analyze inside

 01 .data

• The Linux executable, on the other hand, needs a lot of kernel-provided things:

Elf file type is DYN (Shared object file)

Entry point 0x6130

There are 11 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr
PhysAddr

 FileSiz MemSiz
Flags Align

 PHDR 0x0000000000000040 0x0000000000000040
0x0000000000000040 [...]

254 Static Reverse Engineering and Analysis

 INTERP 0x00000000000002a8 0x00000000000002a8
0x00000000000002a8 [...]

[this is too long and of little value outside of
comparison right now, run readelf on your /bin/ls...
snip...]

 Section to Segment mapping:

 Segment Sections...

 00

 01 .interp

[...snip...]

 10 .init_array .fini_array .data.rel.ro .dynamic
.got

All the ELF information is stored as a series of records that are described here: https://
refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html. You can
interact with them directly in C or with the excellent pyelftools in Python.

Please run readelf with the other options (-S, -g, -t, or -a to see everything) on
the "blink" ELF file for bluepill (in the Ch5 directory) and look into their signification.
Normally, the tools we are going to use later will take care of loading everything properly,
but sometimes the people that make your targets can be sneaky and use the executable
format to try to hide things from you.

Let's now look into PE, the format for Windows.

The Portable Executable format
The Portable Executable (PE) format is the one used by Windows and is more common
in embedded systems than you would think. Sure, in modern systems, Linux is all the
rage, but older systems are often based on Windows CE or a full-fledged version. The
basic functions that can be found in ELF are all here but it is a bit more restricted in terms
of supported CPUs.

An example of using readpe (in the pev package) on a calc.exe file copied from a
Windows 10 machine is shown here:

$readpe calc.exe

DOS Header

 Magic number: 0x5a4d (MZ)

 Bytes in last page: 144

 Pages in file: 3

 Relocations: 0

https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html
https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html

Executable formats 255

 Size of header in paragraphs: 4

 Minimum extra paragraphs: 0

 Maximum extra paragraphs: 65535

 Initial (relative) SS value: 0

 Initial SP value: 0xb8

 Initial IP value: 0

 Initial (relative) CS value: 0

 Address of relocation table: 0x40

 Overlay number: 0

 OEM identifier: 0

 OEM information: 0

 PE header offset: 0xf8

COFF/File header

 Machine: 0x8664 IMAGE_FILE_MACHINE_
AMD64

 Number of sections: 6

 Date/time stamp: 1615788109 (Mon, 15 Mar
2021 06:01:49 UTC)

 Symbol Table offset: 0

 Number of symbols: 0

 Size of optional header: 0xf0

 Characteristics: 0x22

 Characteristics names

 IMAGE_FILE_EXECUTABLE_
IMAGE

 IMAGE_FILE_LARGE_ADDRESS_
AWARE

[...]

Imported functions

 Library

 Name: SHELL32.dll

 Functions

 Function

 Name: ShellExecuteW

 Library

 Name: KERNEL32.dll

256 Static Reverse Engineering and Analysis

 Functions

 Function

 Name: GetCurrentThreadId

 Function

[...]

As you can see, the PE format provides roughly the same kind of information that
can be found in ELF since it covers the same need (loading an image, linking libraries,
and more).

Dump formats and memory images
The first thing to know about raw formats is that they are not as raw as you think. When
you dump an EEPROM (SPI or I2C) or dump a chip's memory space, there is always an
underlying structure. A chip cannot magically turn a soup of bytes into something it can
use and run internally. To understand the structure of such an image, you will have to dig
into the chip's documentation.

When analyzing a dump, the following applies:

• There is always an underlying organization.

• Read the chip's documentation and its underlying architecture documentation.

• If it is a dump that is external to a device (that is, from a firmware update), then the
following applies:

- It can pack multiple updates for multiple chips.

- It can be applied in multiple passes (update chip1, then chip2, and so on) that
are necessarily reflected in the structure, but are not necessarily targeting your
chip of interest.

• If it is a dump that is internal to a device and internal to a chip (that is, MCU flash),
then the following applies:

- It can reference code that is externally stored (in an EEPROM, for example).

- It may be launched or used by internal boot microcode; do not assume it
executes first.

Dump formats and memory images 257

- It is very common to have code that is not linked to other pieces of code (there's
no jump to it, while a normal function will be jumped to via the architecture's
relevant instruction such as B, BL, JMP, or ARM) and that seems dead, but is
actually run by internal structures of the chip because it is sitting at a predetermined
address (interrupt service routines, for example).
If it is a dump that is internal to a device but external to a chip (that is, from an
EEPROM or an SD card):

- It is most probably launched or used by internal boot microcode or code running
inside an onboard flash; assume it does not execute first.

- If you have a full-fledged operating system to analyze, look into the possible
candidates for executables that are implementing the different services that the
device exposes or uses. When in this situation, there is an immense amount of code
available but most of it is only here to support the execution of a handful of core
services. The way you should focus your effort is this:

- Only reverse code that is specific to the device, not the supporting code:

 - Reverse the interpreted scripts first (Python, Perl, Bash, and others) since the
effort needed to find problems is less.

 - Reverse compiled code last and focus on the portions that handle external input.

- Harvest all the versions of the libraries and programs that act as support and run
them against the NIST's CVE database to identify vulnerable versions.

Let's look into typical formats for code dumps.

Dump structure – the bluepill as an example
If we look into our trusted bluepill, we already know that the memory space is divided
into different areas (we saw two sections in the ELF headers: flash @0x08000000, and
RAM @0x20000000) but how did we know that it was flash and RAM? This is because
the STM32 chip on the bluepill is actually an ARM Cortex chip and that all Cortex M of
the same range (M0, M0+, M1, M3, and others) share a (general) memory map where the
address range indicates a type of memory (both flash and RAM are two types of memory).

The STM32F103 is based on the Cortex M3 architecture. For the different architectures
(ARM or otherwise), the memory map will be described in the chip's (or the
architecture's) documentation.

258 Static Reverse Engineering and Analysis

Cortex M chips can be compliant with different architectures :

For our STM32, if we look into the Cortex M3 technical reference manual (search it on
the internet – ARM keeps moving it around; providing you with a link isn't worth it, as it
would be obsolete very fast), we can see that 0x08000000 is just described as Memory
with write-through cache attribute, while 0x00000000 is described as Typically ROM
or flash memory. So STMicro decided to place the flash at 0x08000000. But this is
stated in the STMicro documentation (the STM32F103C8 datasheet, page 34)! This is a
perfect example of the decisions an ARM implementer can have to make, which create
fundamental variations while staying within the architecture's specification (that is, NXP's
Cortexes have their flash at 0x0, as it is verbatim in the architecture documentation).

Analyzing firmware – introduction to Ghidra
Ghidra is an open source tool that will allow you to reverse engineer executables on a
lot of different CPU architectures for free. It also gives you a very nice feature when you
compare it to the most popular proprietary tool: C decompilation for free.

Its main proprietary competitor (IDA Pro) is very popular in the security community
but is extremely expensive and, all in all, only has one feature that Ghidra lacks: native
debugger integration (Ghidra support some level of integration with the usual debuggers
with external bridges). Given the extremely high license costs involved in IDA (this can
be explained, but I will not enter into this debate here), I have chosen to use Ghidra in this
book for you to be able to use a modern reverse engineering software suite.

I use IDA at work and Ghidra in my free time. Both are very good but Ghidra is open
source.

Getting to know Ghidra with a very simple ARM
Linux executable
The first thing we will look into is an ELF executable for a Raspberry Pi.

The image it is running on is in this chapter's folder (Ch11).

Analyzing firmware – introduction to Ghidra 259

Let's launch the file:

• On a Raspberry Pi (if we have one, copy it over with scp)

• Or within qemu, if we don't have a Raspberry Pi (follow this tutorial to do so:
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/)

Launching the ELF, we can see that it expects a password as the first argument:

pi@raspberrypi:~ $./1.elf

arguments needed : ./1.elf password

bye !

pi@raspberrypi:~ $./1.elf test

no !

Obviously, we want to find the password!

Let's launch the strings command on the ELF, to see if there is anything that looks like
a password:

pi@raspberrypi:~ $ strings 1.elf

[...]

arguments needed : %s password

bye !

yes !

no !

[...]

.ARM.attributes

We can see a lot of strings, but some look like what we saw when we launched the
executable (arguments needed : %s password), which looks like a printf
format string.

Let's launch Ghidra. The first window will allow us to manage the different files that can
come into a project. For this, let's import the 1.elf file (using File | Import).

https://azeria-labs.com/emulate-raspberry-pi-with-qemu/

260 Static Reverse Engineering and Analysis

When we look at the loading messages, we can see that it fails to load some
external symbols:

Figure 11.1 – Ghidra loading an ELF

This means that the program uses functions in shared libraries and that Ghidra has not
been able to load them.

Let's mount the image to be able to load these libraries. Since there is more than one
partition in the image, our first step will be to find out where the root partition starts in
the image:

$fdisk -lu <path>

Disk <path>: 1.7 GiB, 1845493760 bytes, 3604480 sectors

Units: sectors of 1 * 512 = 512 bytes

[..]

Device Boot Start End Sectors Size Id Type

<path>1 8192 532479 524288 256M c W95 FAT32 (LBA)

<path>2 532480 3604479 3072000 1.5G 83 Linux

Analyzing firmware – introduction to Ghidra 261

Our root fs partition starts at 512 * 532480 = 272629760 bytes in the image.

Let's set up our loop accordingly and mount it:

sudo losetup -o 272629760 /dev/loop0 <path>

sudo mount /dev/loop0 /mnt/tmp/

Now let's delete 1.elf from the project and reimport it into Ghidra and indicate the
location of the libraries:

• You may need to relaunch Ghidra as a superuser to be able to read the content of
the mount point.

• It is easier to just make a copy of the usual library path (lib/ and usr/lib/) and
change the ownership of this:

~/raspilibs$ sudo cp -r /mnt/tmp/lib/ ./

~/raspilibs$ mkdir usr

~/raspilibs$ sudo cp -r /mnt/tmp/usr/lib/ ./usr/

~/raspilibs$ sudo chown -R jg:jg ./*

Now let's reimport the file with the proper library path:

Figure 11.2 – Ghidra – loading with external libraries

262 Static Reverse Engineering and Analysis

Please follow these steps:

1. Import the target file.

2. Go to Options.

3. Check Load external libraries.

4. Set up the import path to the copied files (or directly to the place you mounted the
image if you launched Ghidra as root).

Both elf and the libraries it uses are loaded as shown in the following screenshot:

Figure 11.3 – Loaded elf and libraries

Let's double-click on the name of elf. Ghidra will launch its reversing interface and
propose to analyze the binary file. Select Yes and launch it with the default options.

Here are the main sections of the Ghidra interface:

Analyzing firmware – introduction to Ghidra 263

Figure 11.4 – Ghidra layout

The different sections are as follows:

• Section 1: Sections of the loaded executable.

• Section 2: Symbols used by the executable (imported or exported, functions,
classes, and others).

• Section 3: The data types that Ghidra identified in the executable (if Ghidra
identifies datatypes in libraries, you have to import them here).

• Section 4: The disassembly window. Here, the assembly opcode (the human-
understandable mnemonic corresponding to the binary in the file) is displayed.

• Section 5: The C equivalent code generated from the disassembly (known as the
decompiled code).

• Section 6: The output of the scripts.

Here, the executable has been stripped. This means the function names are not available to
us. We will have to find a way to identify the functions that are interesting to us.

264 Static Reverse Engineering and Analysis

We have multiple solutions to do that. We can follow the execution flow. We know that the
elf format defines an entry point. On a Linux executable, this will call a special function
in libc. This is the main library on Linux where all the base system functions are
managed. This special function will initialize the executable space and load libraries in the
memory space, and everything that puts the executable in an environment where it can
execute. The main function is usually provided as an argument to the libc initialization
so it can call it once the initialization is done. This is the case here:

Figure 11.5 – Initialization of an ELF file – jumping the libc initialization

When we look at the function labeled FUN_00010646, we can see in the decompiled
C code that it references a string that looks like what we saw in the execution.

Wait... what? How do I know that? These are the points to find out:

• You have to know how to read the disassembly view. The columns are as follows:

- Address

- Hex values in the file

- Disassembled opcode (you can find what it means here: https://developer.
arm.com/architectures/instruction-sets)

- Disassembled parameters for the opcode

- Ghidra comments
• You have to know that this is how the loader works in Linux.

• You have to know that parameters 1, 2, 3, and 4 are synonyms for r0, r1, r2, and r3
when Ghidra disassembles ARM ELF files (because in the ARM call convention,
these are the argument registers and r0 is the return value register). For other CPUs,
they can be synonyms for other registers.

https://developer.arm.com/architectures/instruction-sets
https://developer.arm.com/architectures/instruction-sets

Analyzing firmware – introduction to Ghidra 265

If we have no clue where the entry point is, or if it goes through a lot of strange
initialization code, we can always search for strings that we have seen with the string
search tool. Here is an example of searching for password:

Figure 11.6 – Searching for strings

After this, the next step is searching for passw:

Figure 11.7 – Searching for a specific string

Double-clicking on the found string leads us to FUN_00010646.

266 Static Reverse Engineering and Analysis

When we look at the decompiled C code for this function, we don't see real variable
names (they have been stripped from the executable), but we have a very good
approximation of the code that generated the function:

void FUN_00010464(int param_1,undefined4 *param_2)

{

 bool bVar1;

 int local_c;

 local_c = 0;

 bVar1 = true;

 if (param_1 < 2) {

 printf("arguments needed : %s password\nbye !",*param_2);

 exit(-1);

 }

 while (PTR_DAT_00021030[local_c] != '\0') {

 if (*(byte *)(param_2[1] + local_c) != (byte)~PTR_
DAT_00021030[local_c]) {

 bVar1 = false;

 }

 local_c = local_c + 1;

 }

 if (bVar1) {

 puts("yes !");

 exit(0);

 }

 puts("no !");

 exit(-1);

}

If this is a main function in C, param_1 should be argc (the number of command-line
arguments) and param_2 should be argv (an array of string pointers on the arguments).
This is very likely, since if param_1 <param_2, the message we saw when we launched
1.elf without arguments will be displayed.

Analyzing firmware – introduction to Ghidra 267

Here, we can see that it references an external variable: PTR_DAT_00021030. This is
addressed as an array of bytes that is compared, byte by byte, to the entered password. But,
as usual, the devil lies in the details. It is comparing the value of ~byte! If you remember
the introduction to C (Chapter 5, Our Main Attack Platform), this is a binary NOT (it flips
all the zeroes and ones of the value). If we double-click on the PTR_DAT_00021030
string in the disassembled code (it is in light turquoise and is a label reference), we can see
it in the disassembly window:

Figure 11.8 – Disassembled assembly

This actually points to another place where the data is. How do I know this? Because
Ghidra named the first variable PTR_DAT. This means this is a pointer (PTR) to data
(DAT). Additionally, to help us, Ghidra put the pseudo instruction addr here. This pseudo
instruction is normally used to fetch the address of a piece of data. Here, it is not really the
case. We can see in the second column that this actually is the direct address of the data.

So... what is at DAT_000105d4? If we double-click on it, Ghidra will show us what is
there, as shown in the following screenshot:

Figure 11.9 – Looking at data at the pointer's location

268 Static Reverse Engineering and Analysis

So, now let's try to binary NOT it byte by byte:

$echo -n -e

'\x8c\x8a\x8f\x9a\x8d\x8f\x9e\x8c\x8c\x88\x90\x8d\x9b\xde

'| perl -ne 'for $c (split(//,$_)){print(~$c);}'

superpassword!

Let's try it:

pi@raspberrypi:~ $./1.elf 'superpassword!'

yes !

Clearly, this very easy example is here to make you a little more familiar with Ghidra.
Now, let's go with something more complicated: a little crackme I wrote for the bluepill.

Going into second gear – Ghidra on raw binaries for
the STM32
The source code is available in a password-protected archive. The password will be given
by beating the crackme!

Let's connect the bluepill in the same configuration we used for the first serial/UART
exercise in Chapter 6, Sniffing and Attacking the Most Common Protocols, and load the
bluepill with the binary and see what the UART interface says:

$screen /dev/ttyUSB0 115200

UUID:ff5706708448535150398708

PASSWORD:test

NO!

If we run strings on the bin, we can find the PASSWORD: and YOU WIN! strings, but
that's pretty much it.

Analyzing firmware – introduction to Ghidra 269

Let's load the .bin into Ghidra:

1. The first thing that is different is that Ghidra has no clue what kind of processor the
binary is for (there is no ELF header to help it). We know it is a little-endian Cortex,
so let's select this in the Language menu:

Figure 11.10 – Selecting the architecture

2. This is the updated screenshot:

Figure 11.11 – Architecture selected

270 Static Reverse Engineering and Analysis

3. Now, in the options, we can tell it that the image has a base address of 0x08000000
(remember this from the ELF header and the compilation flash process?):

Figure 11.12 – Setting the base address

4. Now, let's open the binary and let Ghidra analyze it (add both aggressive instruction
options, so Ghidra will try to find instructions even if they are not directly in the
detected execution flow).

5. And now... ouch... there is a lot of assembly. And we don't know where to start
looking... Let's search for the PASSWORD string (Search | For Strings):

Figure 11.13 – Searching for strings

Analyzing firmware – introduction to Ghidra 271

6. Strangely, there is no real PASSWORD: string... Strange, but it is a starting point.
Let's look there:

Figure 11.14 – The strange password string

So, this is the place where the string is stored in memory. We have the reverse situation of
the one we had for the first ELF (a pointer to the place where the string is stored). Ghidra
will allow us to take the reverse path by using the cross-references (XREFs) in the fourth
column. Let's click on FUN_080001f0 to see what is happening there.

If we look into the decompiled C code, we can see a lot of variable affectation from values
that are on the program – a few function calls but most importantly, the following:

• A cross-reference to a PASSWORD: string and to a NO!\r\nPASSWORD: string
(but we didn't find it in the existing strings – maybe a clever compiler optimization
stored PASSWORD: as a pointer on NO!\r\nPASSWORD: offset to spare space!).

• A cross-reference to a YOU WIN! string.

• Three imbricated do{}while() loops with the outermost being a do{}
while(true): an infinite loop, very usual in microcontroller programming as the
main processing loop!

This is very probably our main function with some setup and the main control loop! Let's
rename the function main (with the L key while the function name is selected):

Figure 11.15 – Renaming a function

272 Static Reverse Engineering and Analysis

We can rename functions and variables like that, which will help us quite a bit in
understanding the program!

Now let's look into the three functions that are called one after the other before the
outermost main loop.

From what we have seen in the previous STM32 programs, they are probably doing some
kind of peripheral setup!

First identification pass
First, we will make a fast pass to try to identify the functions rapidly to make sense of the
general structure of the program. At this point, we will not delve too much into the details.
We will try our first approach and we will mainly rename the functions. If we find out that
we were wrong, we will rename them afterward.

Let's go through the functions.

FUN_08000e54();
Let's try to understand what this function does. We can see that it calls a lot of functions
with fixed arguments:

Figure 11.16 – First function's decompiled listing

Analyzing firmware – introduction to Ghidra 273

When we look into the first one, we can see that it selects something to do based on the
fixed argument in a switch:

Figure 11.17 – Selection switch

This is strange in itself, as you wouldn't select something to do in a switch based on a fixed
test case, right? This means that this probably comes from a library that the programmer
used with a fixed argument. This is a clue – let's keep that in mind.

Then we see that this is setting binary flags to a memory location that is stored in the
DAT_08000a00 variable. When looking at what it is pointing at, by double-clicking on it,
we can see that it points to 0x40021000:

Figure 11.18 – A strange address pointer

274 Static Reverse Engineering and Analysis

Since we looked at the memory map in the Cortex M3 technical reference manual (You
did, right? I asked you to look into it in the Dump structure – the bluepill as an example
section. Yes, I know that it was a short paragraph, and I would have skipped that too, but
now it is important!), we know that 0x40021000 is actually in a memory region that
is hosting the peripherals! So I was right – this function is doing some sort of setup! But
what exactly? What is at 0x40021000?

Let's continue exploring this function. After a little digging, we see that it doesn't really
write outside of the region (But maybe I am lying or I am wrong? You should really
explore by yourself; I will not be here to hold your hand on your engagements!).

If we look at the SMT32F103 technical reference (https://bit.ly/3ooOgq0), we can
see (page 50) that we are in 0x4002 1000 - 0x4002 13FF: Reset and clock control
(RCC) region.

FUN_08000e54(); is setting up some clock functionality! Let's rename it clock_
setup for now.

FUN_08000154();
I strongly encourage you to reverse engineer this function by yourself. You will discover
some funny compiler tricks that are used to calculate addresses, which you will find useful
to know in the future! We'll follow the same logic as the logic of the previous function.

Going through the different addresses (double-clicking) and the code of the function,
we see that the function writes to 0x4002 1000 - 0x4002 13FF: RCC region, and
0x4001 1000 - 0x4001 13FF: GPIO Port C region.

If you remember what we usually to do enable a GPIO port, we start by enabling its clock,
and then we set up its exact function. This function most probably sets up the GPIO! Let's
rename it gpio_setup for now.

FUN_080003a8();
We follow the same logic as for the previous function. Here, the function writes to
the following:

• 0x4002 1000 - 0x4002 13FF Reset and clock control RCC region

• 0x4001 3800 - 0x4001 3BFF USART1

Again, it starts by enabling the USART1 clock, and then we set up its exact function.
This function is setting up USART1! Let's rename it USART1_setup for now.

https://bit.ly/3ooOgq0

Analyzing firmware – introduction to Ghidra 275

FUN_0800041c();
This function starts with this function call:

FUN_0800041c(DAT_08000324,PTR_s_---_UUID:_08000320);

Let's understand this further:

• First argument: Here, we have a pointer to UART1
(*DAT_08000324=0x40013800).

• Second argument: The string that is printed on UART1. This is a function that
prints a string on UART, let's rename it UART_print.

First loop
This is the first loop:

Figure 11.19 – Listing of the first loop

We can see the following:

• puVar10 is initialized at 0x1FFFF7E8.

• puVar4 is initialized at 0x1FFFF7F4.

So, the loop is going through pointers at 0x1FFFF7E8, but this is not in the peripheral
memory space (0x4000 0000), nor in RAM (0x20000000), nor in flash (0x08000000).
When we check the STM32F103 technical reference manual (pages 50-52), it doesn't show.

If we search 0x1fff… Ah! We find that 0x1FFFF7E8 is actually the position of the
device's 96-bit unique device ID register. 96 bits = 96/8 = 12 bytes, so from 0x1FFFF7E8
to 0x1FFFF7F4.

Given the fact that on the serial interface the UUID is displayed, FUN_0800060e is
actually printing a hex value on the UART, we can see uVar11 is XORed with the value of
the unique identifier (it is initialized at 0). Strange. Why is it doing this? We may will find
out later...

276 Static Reverse Engineering and Analysis

The big while (true) loop
This is the main loop of the application. From here, everything is set up, so this will be
the main piece of code that will check the validity of our password and display the
winning string.

Here, we will continue renaming the functions and understanding how they work. At this
point, we will see that it is easier to attack the password validation or the displaying of the
flag (the winning string).

The deepest subloop
This is doing nothing for 0x000927C0 iterations. This is just a waiting loop.

The shallowest subloop
This is testing the value stored at 0x20000014 (in RAM) and loops again on the waiting
loop if this equals 0. This is probably a flag that is set when we enter something as a
password. This very probably means that what follows will be what is interesting to us.

The main loop
There are a few aesthetic/management functions (printing a carriage return, getting a
pointer to the receive buffer, and others).

Then a function (FUN_080001cc) return value is tested in order to print a YOU WIN!
string and calls the same function (FUN_08000174) five times (probably to decipher the
flag string).

Let's rename the following:

• FUN_080001cc as validate_password

• FUN_080001ccFUN_08000174 as decipher_flag

So now that we have quickly covered the general behavior of the program, let's look at our
potential victim functions.

Analyzing firmware – introduction to Ghidra 277

Reversing our target function
First, let's quickly look at the difficulty of reversing validate_password versus the
difficulty of reversing decipher_flag. It is always better to go for the easier path first
and attack the harder functions if you don't succeed with the easy ones:

Just at a first glance, we see that validate_password is much less complex than
the flag deciphering. When we look at the deciphering function, we see a lot more
XORing and shifting. We will start with Validate_password and only look into
decipher_flag if we don't manage to generate a valid password.

validate_password
First things first, let's find out what the function's arguments are.

In the main loop, we can see that the second argument is uVar11, the initial result that
was calculated by XORing the chip's unique identifier values.

Still looking in the main loop, we can see that uVar7 (the first argument), is a RAM
address (0x20000040). Well, since the other argument isn't the password, that must be
a pointer to a buffer that holds it. The fact that the loop test variable (bVar1) is tested for
0 after receiving the value stored in *param_1 (and param_1 being incremented in the
loop) also points to param_1 holding a pointer to a null terminated character string.

Now, for every character, the XORed UUID is decremented by the character's value
and then XORed with (character value << 8)). It is not obvious here but ^ has less
precedence in C than -: see https://en.cppreference.com/w/c/language/
operator_precedence.

https://en.cppreference.com/w/c/language/operator_precedence
https://en.cppreference.com/w/c/language/operator_precedence

278 Static Reverse Engineering and Analysis

The value that is left after doing that with all of the password's characters is returned. If it
is 0, the main loop prints the flag.

It is actually not that hard to find a password that will succeed the tests for your chip's own
unique identifier. You will have to first calculate the XOR value of all the 16-bit halfwords
in your UUID (it's a good thing the program gives you the hex value of it) and find a
password that when subtracted, and its characters values are sequentially subtracted,
shifted, and XORed from the initial value, ends up being 0.

I cannot provide you with a password since the UUID of your bluepill's STM32F103 chip
will certainly be different from mine. It's almost as if I designed this reversing challenge to
make you think and program!

Don't worry if you don't manage to do it by yourself – I give a good way to achieve it in
the questions. In the solution archive file, you'll be able to find a keygen for this crackme,
but going straight for it would be missing a good opportunity for learning.

Additionally, I tested that every possible XORed UUID value actually has a solution. Some
XORed UUIDs (very, very rare) may require more time for generation than others, but
they all have a solution.

In our next chapter, I have prepared another little crackme, with some additional
difficulties and tricks that will force us to do some dynamic analysis! I strongly suggest
that you go through all of the sections in this chapter on Ghidra and ensure you
understand the details of how I came to identify the functions well.

Summary
In this chapter, we saw the basic structure of the most common executable formats you
will encounter in your tests. There are others but you should now have at least an idea of
how executable formats work and how to approach an unknown format. We saw how to
look into the structure of a program without having the source code and how to use this
knowledge to bypass basic security mechanisms.

In the next chapter, we will add everything we learned in this chapter to what we learned
in the previous chapter to allow us to dig into the program's behavior while it is executing,
allowing us to bypass some more complicated security schemes.

Questions 279

Questions
1. We looked into ELF and PE as executable formats. Can you give me two more

formats? What are they used for?

2. In an ELF file, what are these sections: .text, .debug, .plt, .dynamic,
and.got?

3. What peripheral is at 0x40013000 on the bluepill?

4. We didn't really look into the Decipher_flag function. Its first argument is a
very random-looking array and its second argument is this very strange string:
NACAH IET Z ? A. With all of the shifting and XORing, this is most probably a
cyphering function. What algorithm is that?

5. Other clues regarding the Decipher_flag should be in there but aren't. What
clues and why?

6. In the first reverse engineering exercise (re1.bin), instead of reversing the
password validation string, we could just have patched the binary to accept an
incorrect password and flashed the patched version on the bluepill. How? What is the
offset of the instruction to patch? Patch it with what tool? With what instruction?

12
Dynamic Reverse

Engineering
In this chapter, we are going to look at dynamic reverse engineering. The first question
is what is dynamic reverse engineering and how does it compare with static reverse
engineering? What are the advantages and requirements of dynamic engineering? And
how can you interact with a program that is executing on the chip while it is executing,
look at (and change) memory content, alter the execution flow, step through the program
instructions, and more?

We will cover the following topics in this chapter:

• What is dynamic reverse engineering and why do it?

• Leveraging OpenOCD and GDB

• ARM assembly – a primer

• The usefulness of dynamic reverse engineering – an example

282 Dynamic Reverse Engineering

Technical requirements
We will pretty much need the same things as in the previous chapter for this dynamic
reverse engineering chapter:

• A Bluepill board and programmer

• Ghidra

• gdb-multiarch

As usual, the code files for this chapter can be found in the book's repository, which you
have already cloned in an earlier chapter.

Check out the following link to see the Code in Action video:

https://bit.ly/3bQz6FP

What is dynamic reverse engineering and why
do it?
Mainly, dynamic reverse engineering looks into code behaviors during execution.

There are multiple reasons this is more efficient than static reverse engineering:

• You can look at the variables while the program is executing.

• You can step through the code to better understand the different sections and steps.

• You can inspect the memory to extract things that are deciphered if you need to.

• In the case of self-modifying or dynamic code, you can directly inspect the
modified code.

But the requirements for dynamic reverse engineering are also more stringent than for
static reverse engineering:

• You need to have a platform that can execute the software (either real or emulated).

• The execution platform must allow you to debug the program (either with a
hardware or software debugger).

• You need to have a basic understanding of how the software works to look into the
execution flow.

https://bit.ly/3bQz6FP

Leveraging OpenOCD and GDB 283

• Most platforms will provide a good disassembly of the software but not necessarily
a decompiled version (that is, a translation from binary instructions to assembly
opcode but rarely a higher-level language like C). This means that you will need to
understand (or research) what the different processor instructions do.

Now, how can we achieve dynamic reverse engineering? Where do we start?

Leveraging OpenOCD and GDB
First, what do we want to do and how?

We want to achieve control over the target chip, and we want to be able to do the following:

• Control the execution flow in a typical debugger fashion (have a breakpoint, inspect
and change variables, and so on).

• Change the execution flow (change the result of a branching test, change CPU flags,
and so on).

• Have access to the RAM and possibly the ROM.

How can we achieve that? We saw that we can have very low-level access to the chip
with OpenOCD, but using it to achieve all of our goals is a pretty harrowing, complex,
and repetitive task. And what do we do about harrowing, complex, and repetitive tasks?
We automate them. Since debugging is such a common task, we will use tools that other
people built and leverage them to achieve our goals as depicted here:

Figure 12.1 – Debug chain

We saw that OpenOCD is opening a port that can be used as a GDB server. GDB servers are
the way for the GNU Debugger (GDB) to do remote debugging. They can run on remote
computers to allow for the debugging of machines that are of a different architecture or, for
example, on machines where the thing that is debugged could interfere with the debugging
process (the kernel, for example). In our situation, we use it to abstract both the architecture
and the fact that the target environment will not allow us to debug directly on it.

284 Dynamic Reverse Engineering

Let's flash our bluepill with the ch12 program in your cloned folder and, once flashed,
connect our bluepill to our JTAG adapter (as indicated in Chapter 10, Accessing the
Debug Interfaces) and create a clean debug environment with the appropriate OpenOCD
configuration files (you can find the clean environment in the GitHub cloned folder).

Load the target binary for this chapter (make flash in the chapter directory) and
connect the FTDI2232 board to the bluepill as indicated in Chapter 11, Static Reverse
Engineering and Analysis.

To start the debug session, launch the following command (adapt the second file to fit
your platform – genuine STM32 or clone):

openocd -f ./ftdi2232h.cfg.tcl -f ./clone_CSK.cfg &
gdb-multiarch -x ./gdbinit

The gdbinit file contains the necessary gdb commands to make it connect to the
OpenOCD gdb server:

set architecture arm #tells gdb-mutiarch which

 # architecture to use

target extended localhost:3333 #tells gdb to connect

 # to openOCD's gdb server

monitor reset halt #tells gdb to tell

 # openocd (monitor talks

 # directly to openocd) to

 #reset and stop

monitor reset_nag enable #... to enable the reset_nag

 # (if setup could

 # have been better on reset)

Let's launch it with the indicated command:

#openocd launching

Open On-Chip Debugger 0.10.0

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

adapter speed: 2000 kHz

Info : auto-selecting first available session transport "jtag".
To override use 'transport select <transport>'.[...]

#gdb launching

Leveraging OpenOCD and GDB 285

GNU gdb (Debian 8.2.1-2+b3) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: [...]

The target architecture is assumed to be arm

Info : accepting 'gdb' connection on tcp/3333

[..]

Info : JTAG tap: stm32f1x.cpu tap/device found: 0x4ba00477
(mfg: 0x23b (ARM Ltd.), part: 0xba00, ver: 0x4)

Info : JTAG tap: stm32f1x.bs tap/device found: 0x16410041 (mfg:
0x020 (STMicroelectronics), part: 0x6410, ver: 0x1)

JTAG tap: stm32f1x.cpu tap/device found: 0x4ba00477 (mfg: 0x23b
(ARM Ltd.), part: 0xba00, ver: 0x4)

JTAG tap: stm32f1x.bs tap/device found: 0x16410041 (mfg: 0x020
(STMicroelectronics), part: 0x6410, ver: 0x1)

target halted due to debug-request, current mode: Thread xPSR:
0x01000000 pc: 0x080013b8 msp: 0x20005000

[...]

(gdb)

If you tracked the content well, you will see that both the output of GDB and OpenOCD
are mixed. If you want to avoid this, just launch the two commands in separate terminals.

And here we go – we now have a gdb invite. The target is halted (not blinking anymore)
so we have a live debug session on the actual bluepill! Neat, right?

Now let's have a look at the new program in Ghidra (repeat the instructions from
Chapter 11, Static Reverse Engineering and Analysis, to launch the Ghidra analysis with
the new .bin).

GDB? But... I know nothing about it!
But learning about it is why you are here!

GDB is a complex beast that could be (and is) the subject of books on its own.

There are actually a few things, such as the main commands, you have to know (they are
the most useful).

Commands can most of the time be shortened to their first letter(s): typing d for display,
p for print, x for examine, and more, is really useful. In the following table, the optional
parts are between parentheses.

286 Dynamic Reverse Engineering

Here are the main commands you will be using all the time:

Understanding ARM assembly – a primer 287

Whoof! That's a lot! And only a small subset of the commands, but these are the ones
you will be using all... the... time. Don't forget, this is actually a skill that requires practice
to acquire. Don't be discouraged; persist and keep this in mind: I selected open source
software for everything in this book not just because it is free but also because it is
incredibly well-documented – read the manuals!

At this point, we know how to debug a program live on a chip and (a bit about) how to
manage the debugging process. Your fingers should be itching to hit the keyboard and
your mind boiling with hacking possibilities! Let's put that into practice, shall we?

Understanding ARM assembly – a primer
Wait... assembly? What? Wasn't C low-level enough?

Well, in short... No. In our case, Ghidra decompiles to C but Ghidra cannot (some things
are in development but at the time of writing are not mature enough to be regularly used)
directly act as a debugger frontend.

Additionally, it is very important for you to understand one or two assembly languages in
order to understand how an MCU/CPU actually executes code. Once you have integrated
one assembly language, all the others will be very, very similar in structure.

Between the assembly code for two different architectures, the mnemonics can be different
(mnemonic is the name for a binary instruction that the CPU understands), but the way
they interact will largely follow the same principles.

Also, the base operations are largely the same! After all, a CPU is nothing more than
a very fast calculator. You can expect all of them to be able to do integer additions,
subtractions, multiplication, tests, comparisons, and memory manipulations.

Wait! Didn't I forget division in there? And what about floating-point numbers? Well,
sometimes, you have to know that division is the worst enemy of a CPU – especially
floating-point division. The first thing you have to know is that the smaller ARMs
don't even support integer hardware division (https://community.arm.com/
developer/ip-products/processors/b/processors-ip-blog/posts/
divide-and-conquer)! And that floating-point math is also an option the ARM chip
maker has to pay for (look up for ARM floating-point unit (FPU) and that comes as a
kind of separate co-processor! Fascinating, isn't it?

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/divide-and-conquer
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/divide-and-conquer
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/divide-and-conquer

288 Dynamic Reverse Engineering

General information and syntax
Here is some general information about the ARM architecture. You have to keep this in
mind when reading ARM assembly code:

• Instructions come in two flavors: ARM (four byte instructions) and thumb (either
two or four instructions). The last bit of the PC register (the program counter,
holds the address of the current instruction) is used to indicate whether the
instruction mode is thumb or ARM in the CPUs that support both (0 means ARM,
1 means thumb). This means that the instructions have to be memory-aligned to at
least two bytes for thumb mode (due to the last address bit being used for the mode)
and four bytes for ARM mode.

• (Most) ARM chips support both a big-endian and little-endian operating mode.

• ARM chips have a barrel register for operands, making it easy to bit-shift operands
and operate on them in a single instruction.

• Most instructions come with conditional forms (that is, they will only be executed
if certain status flags are set) and sized forms (to indicate on what part of the target/
source registers/address it applies to) and can be suffixed with s to indicate that
the Current Program Status Register (CPSR) must be updated. Look into how an
ARM or thumb instruction is encoded if you want more details (http://www.
csbio.unc.edu/mcmillan/Comp411F18/Lecture06.pdf).

• The architectures have multiple versions and not all instructions are available on
all versions. See https://www.cs.umd.edu/~meesh/cmsc411/website/
proj01/arm/armchip.html and the architecture manuals relevant to your
architecture version of interest.

• The architectures (depending on the version) are sometimes available in 32-bit
(AARCH32) and 64-bit (AARCH64) flavors. The 64-bit version is available starting
with the ARMv8 ISA.

http://www.csbio.unc.edu/mcmillan/Comp411F18/Lecture06.pdf
http://www.csbio.unc.edu/mcmillan/Comp411F18/Lecture06.pdf
https://www.cs.umd.edu/~meesh/cmsc411/website/proj01/arm/armchip.html
https://www.cs.umd.edu/~meesh/cmsc411/website/proj01/arm/armchip.html

Understanding ARM assembly – a primer 289

The ARM registers are as follows:

290 Dynamic Reverse Engineering

At this point, the flags you are most interested in are the CPSR flags:

Understanding ARM assembly – a primer 291

The modes (on 5 bits) are as follows:

Now that we have seen the different registers and how they govern the chip's behavior, let's
look into the different instructions.

Exploring the most useful ARM instructions
All the instructions are documented on the ARM website. When you see a strange version
of an instruction pop up in GDB or an assembly dump, always refer to ARM's online
documentation (of course, the version relevant to your target architecture version) to know
what you are looking at.

I will only look into the most common instructions that are valid across all versions
and will not delve into the most complicated features of the ISA (please refer to the
ARM instruction documentation if you see strange things in a de-compilation, such as
exclamation marks).

Also note that not all flexibility (rotations, large ranges of immediate values, CPSR
updates, and so on) options and not all registers as operands are available for all
instructions in thumb mode since the constraints on instruction encoding are much
tighter than in ARM mode. Normally, and depending on your compiler's intelligence, you
will need to do some operations by hand, or your compiler may add instructions to do
the job for you. In some instances (for example, code injection), it may be a bit annoying.
When you reach this point, you will know how to fix that. As per usual, please refer to
ARM's documentation; these constraints will be indicated.

292 Dynamic Reverse Engineering

I will present just a few selected instructions that are the most common and useful for
your usage. When you encounter a strange instruction, please refer to the relevant
ARM manual.

If you didn't get the hint from the few preceding paragraphs:

• In case of doubt: Refer to ARM's documentation.

• Fear or a lack of understanding: Refer to ARM's documentation.

• Night terror, loss of hair, back pain, unexpected pregnancy: Refer to ARM's
documentation (or your local physician).

Here are the instructions:

• Memory and register transfer instructions:

These instructions come with size modifiers and condition modifiers. Note that
the [] syntax indicates a memory address and can indicate an additional offset.

For example:

Understanding ARM assembly – a primer 293

• Integer math instructions:

For example:

• Bit-wise operations instructions:

Whether you like it or not, these operations always update the N and Z flags in
the CPSR:

294 Dynamic Reverse Engineering

For example:

• Test instructions:

These instructions test things and update the CPSR accordingly:

For example: (in our example, r0 = 0xf, r1 = 0xf, r2 = 0xc, r3 = 0x3):

Understanding ARM assembly – a primer 295

1. Execution flow control instructions: These instructions control the execution. They
control jumping around within the code and the execution state:

Not all conditions are available on all versions of the architectures and the offsets
can be limited. As per usual, in case of doubt: refer to ARM's documentation.

For example : (r0 = 0 was just affected):

296 Dynamic Reverse Engineering

2. Stack management instructions:

For example:

Now that we have looked into the most commons instructions and how the CPU registers
change the CPU's behavior, let's put that into action!

Using dynamic reverse engineering – an
example
I've prepared a variant of the previous example that will pose us some challenges. I will
show you how to overcome these challenges both statically and dynamically in order for
you to be able to compare the amount of effort needed in both cases.

The rule of thumb when comparing dynamic and static approaches is that 99% of the
time, dynamic approaches are just easier and should be given priority if possible
(don't forget that you may not be able to get access to JTAG/SWD or other on-chip
debugging protocols).

In this section, we will also learn how to break where we want, inspect memory with GDB,
and all this good stuff!

The target program is located here in the folder you cloned, in the ch12 folder.

First, let's start by loading it into Ghidra and inspect it superficially. Pay attention to
setting the correct architecture and base address in Ghidra's loading window (refer to
the previous chapter if you don't remember how to do that or the base address value).

Using dynamic reverse engineering – an example 297

First Ghidra inspection
At first glance, the main function looks very similar to the main function in the previous
chapter. We can find the reference to the main function by searching a PASSWORD string
just like in the previous chapter and look into analyzing its structure.

I will let you work on the skills you acquired in the previous chapter to find the different
functions. In this executable, you will find the following again:

• A big while (true) loop that acts as the main event loop and blinks the bluepill's
LED while acting on a password being entered

• A function to initialize the clock

• A function to initialize the GPIOs

• A function to initialize the UART

• A value depending on the chip's unique identifier is calculated again in almost the
same way (calculate this value for your chip and note this value down)

• A function validates the password (just before a big if that triggers either the
printing of YOU WIN or NO)

• A function decrypts the winning string if the validation function returns an
(uint16_t) 0 value.

The similarity of the structure is intentional as this is your first time. If I were to repeat
the exact same steps as in the previous chapter, it wouldn't give you anything new to
learn, right?

Now, let's go through multiple methods of bypassing this password validation through
dynamic interaction with the system. We will go from the most complex to the simplest in
order to keep you focused and acquiring know-how (if you are anything like me, if there is
an easy way to bypass something, why go for the hard way?).

Reversing the expected password
The first thing we're going to do is try to see how the password is validated to understand
how to generate a password that passes the tests.

298 Dynamic Reverse Engineering

Let's have a look at the validation function equivalent C code that is output by Ghidra:

Figure 12.2 – The decompiled validation function is not actually doing what you think!

Humm... this is doing nothing directly with the parameters. This is copying the content of a
0x47 (71) long static array of bytes to RAM (and NOTs it) and then calls it as a function.

This is strange.

Or is it?

This is a very common technique to camouflage code (of course, a very simple version of
it). If a clear version of the opcode is not present in the .bin file (and hence not in the
flash of the MCU), a reverse engineering tool like Ghidra cannot detect that it is code!
Here, we have two possible approaches:

• Either we manually extract the content of the buffer from the .bin file, decipher it
(here, the cipher is just NOT'ing byte by byte, it is trivial on purpose), and have this
be de-compiled by Ghidra.

• Or, since we have JTAG access to the chip, we can just put a breakpoint on the
correct address in memory and let the MCU do the hard work for us.

I will leave the first solution for you to implement as an exercise. It should take more
or less 10 lines of Python or C code for such a simple task! You want to be a hacker?
Hack away!

Me? I'm a lazy guy. If a computer can work for me, well... So be it! I'll go for the
second solution.

Using dynamic reverse engineering – an example 299

First, let's fire up a screen session in a terminal so we can enter passwords and see how
it reacts:

screen /dev/ttyUSB0 115200

Let's fire up OpenOCD and GDB in a second terminal, as we did at the beginning of the
chapter, and let's poke around:

openocd -f ./ftdi2232h.cfg.tcl -f ./clone_CSK.cfg &
gdb-multiarch -x ./gdbinit

#openocd launching

[...]

target halted due to debug-request, current mode: Thread xPSR:
0x01000000 pc: 0x080013b8 msp: 0x20005000

[...]

And... and damn! It doesn't give me control back! No problem if that happens to you – a
little Ctrl + C will give you control back straight away:

^C

Program received signal SIGINT, Interrupt.

0x080003aa in ?? ()

(gdb)

After our Ctrl + C (^c), gdb tells us that the execution is stopped at address
0x080003aa in an unknown function (??).

Depending on your specific state, you may break at another address.

Do not panic – put your thinking hat on and take your towel with you (always).

This is not a problem. The chances are that you will be breaking very near this address
since it is in the waiting loop that blinks the LED, waiting for a password to be received
on the serial interface.

First things first, let's have a look at our registers:

(gdb) i r

r0 0x0 0

r1 0x8001a1d 134224413

r2 0x5b8d7f 5999999

r3 0x335d7 210391

r4 0x20004f88 536891272

300 Dynamic Reverse Engineering

r5 0x8001a74 134224500

r6 0x0 0

r7 0x20004f88 536891272

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0xf 15

sp 0x20004f88 0x20004f88

lr 0x80003bf 134218687

pc 0x80003aa 0x80003aa

xPSR 0x81000000 -2130706432

msp 0x20004f88 0x20004f88

[...]

We see that pc is indeed where it is supposed to be, everything looks fine and dandy.
So, now let's try to enter a password.

And... nothing works on the serial interface window! Thinking hat on... GDB is actually
blocking the execution of the code; the serial interface will not react to your inputs.
This is normal.

So, let's allow it to continue (continue or c in the gdb window) and see if the serial
works now. Yes, it does. Let's break it again and put a breakpoint on the address of the
password validation function, shall we?

In Ghidra, we can see that the address of the first instruction of the function is
0x080002b0:

Figure 12.3 – Finding a function address in Ghidra

Using dynamic reverse engineering – an example 301

Let's put a breakpoint there, let gdb resume execution, and enter a dummy password:

(gdb) b * 0x080002b0

#1

Breakpoint 1 at 0x80002b0

#2

(gdb) c

#3

Continuing.

Note: automatically using hardware breakpoints for read-only
addresses. #4

[entering 'aaa' in the serial console and enter]

Breakpoint 1, 0x080002b0 in ?? ()

#5

(gdb)

Let's dissect that:

1. b * 0x080002b0 asks GDB to put a breakpoint on the instruction stored at
address 0x080002b0. Check your pointers.

2. GDB tells me, Okay, I've put a breakpoint there.

3. Continue the execution please, my dear GDB... and it says it is happy to do so.

4. BUT it notifies me that it can't write at address 0x080002b0 (it is in flash and flash
cannot be written just like that; it has to be unlocked and written chunk by chunk).
In order to avoid doing so much back and forth, ARM chips come with some
internal debug systems that allow it to break when pc hits specific addresses that
cannot be easily written to).

5. Bam! The breakpoint has been hit! The execution is stopped after I enter a
dummy password.

Okay, now what can we do with that?

302 Dynamic Reverse Engineering

First things first, if you remember the code of the validation function, its arguments were
passed directly to the decoded code. Let's have a look at what they can be (remember the
calling convention for functions: arguments are in r0-3):

(gdb) p/x $r0

$2 = 0x20000028

(gdb) p/x $r1

$3 = 0x2169

The first argument is something in RAM, and the second is some kind of value. (This is
the transformed UUID value for your chip, which you noted down, right?)

Now, what is stored at this first address? Let's examine it:

(gdb) x/x 0x20000028

0x20000028: 0x00616161

(gdb) x/s 0x20000028

0x20000028: "aaa"

Ah! Ah! Ah! (See what I did there?) This is our password. Please note the usage of the
format modifier for the x command.

So, this is expected.

Now let's look into the deciphered code.

Ghidra tells us that the instruction that follows the decoding loops is at 0x080002f0.
Let's break there:

(gdb) b * 0x080002f0

Breakpoint 2 at 0x80002f0

(gdb) c

Continuing.

Breakpoint 2, 0x080002f0 in ?? ()

(gdb) c

(gdb) x/4i $pc

=> 0x80002f0: movs r0, #0

 0x80002f2: blx r3

 0x80002f4: mov r3, r0

 0x80002f6: mov r0, r3

Using dynamic reverse engineering – an example 303

So, the address of the deciphered code is in r3. We saw the buffer was 0x47 (71) long. We
are in thumb mode (so size 2 instructions). This should be 47/2 : about 35 instructions.
The last bit of the address is for the mode; we can get rid of that:

(gdb) x/35i ($r3 & (~1))

 0x20000128: push {r4, r5, r6, r7, lr}

 0x2000012a: eors r4, r4

 0x2000012c: eors r3, r3

 0x2000012e: eors r5, r5

 0x20000130: ldrb r5, [r1, r4]

 0x20000132: mov r8, r5

 0x20000134: mov r6, r8

 0x20000136: lsrs r6, r6, #4

 0x20000138: lsls r5, r5, #4

 0x2000013a: orrs r5, r6

 0x2000013c: movs r6, #255 ; 0xff

 0x2000013e: ands r5, r6

 0x20000140: movs r6, #15

 0x20000142: mov r8, r4

 0x20000144: mov r7, r8

 0x20000146: ands r7, r6

 0x20000148: add r6, pc, #16 ; (adr r6, 0x2000015c) #1

 0x2000014a: ldrb r6, [r6, r7]

 0x2000014c: eors r5, r6

 0x2000014e: adds r0, r0, r5

 0x20000150: adds r4, #1

 0x20000152: ldrb r5, [r1, r4]

 0x20000154: cmp r5, r3

 0x20000156: bgt.n 0x20000132

 0x20000158: eors r0, r2

 0x2000015a: pop {r4, r5, r6, r7, pc}

 0x2000015c: str r5, [r4, #36] ; 0x24

 0x2000015e: ldrb r4, [r6, #5]

 0x20000160: ldr r7, [r6, #32]

 0x20000162: subs r2, #55 ; 0x37

 0x20000164: ldr r4, [r2, r5]

 0x20000166: ldr r5, [r1, #100] ; 0x64

304 Dynamic Reverse Engineering

 0x20000168: add r3, r12

 0x2000016a: adds r4, #68 ; 0x44

 0x2000016c: vqadd.u8 q0, q8, <illegal reg q15.5>

That's more like it! We see a normal function prelude (saving intra-function registers
to the stack), some processing, and a function return. But GDB warns us about illegal
instruction parameters (0x2000016c).

When looking at the listing, we see that GDB indicates the usage of a PC relative piece
of data:

#1 : commented : adr r6, 0x2000015c)

This is very often used to store data in an assembly program. adr is a pseudo instruction
that tells the assembler, please add the offset to a label (a named position) in the code.

Let's look at what is stored there:

(gdb) x/4wx 0x2000015c

0x2000015c: 0x79746265 0x3a376a37 0x6e4d5954 0x34444463

(gdb) x/s 0x2000015c

0x2000015c: "ebty7j7:TYMncDD4"

This is indeed a string that is used in the process somehow.

Let's step through the first instructions, as an example of how to follow an execution flow.
We will first set up gdb so it shows us the interesting registers, content on each step:

(gdb) disp/x $r0

1: /x $r0 = 0x20000028

(gdb) disp/x $r1

2: /x $r1 = 0x20000028

(gdb) disp/x $r2

3: /x $r2 = 0x2169

(gdb) disp/x $r3

4: /x $r3 = 0x20000129

(gdb) disp/x $r4

5: /x $r4 = 0x20004f88

(gdb) disp/x $r5

6: /x $r5 = 0x8001a74

(gdb) disp/x $r6

Using dynamic reverse engineering – an example 305

7: /x $r6 = 0x0

(gdb) disp/x $r7

8: /x $r7 = 0x20004f70

(gdb) disp/x $r8

9: /x $r8 = 0x2

(gdb) disp/i $pc

10: x/i $pc

=> 0x80002f0: movs r0, #0

=> 0x80002f2: blx r3

Now we are ready to use stepi (step instruction) to see what is going on:

0x2000012b: eors r4, r4

0x2000012d: eors r3, r3

0x2000012f: eors r5, r5

This zeros r4, r3, and r5 (x^x = 0):

0x20000130: ldrb r5, [r1, r4]

0x20000132: mov r8, r5

0x20000134: mov r6, r8

This loads the first character of the password string in r5 (r1 is the address and r4 is
zeroed at this point) and copies it to r8 and r6:

0x20000136: lsrs r6, r6, #4

0x20000138: lsls r5, r5, #4

0x2000013a: orrs r5, r6

0x2000013c: movs r6, #255 ; 0xff

0x2000013e: ands r5, r6

This shifts r6 4 bits to the right, r5 4 bits to the left, and puts their ORed value in r4. It
then masks out the ORed result with 0xff, basically exchanging the 4 lower and 4 higher
bits of the password character and cleaning out the excess bits!

 0x20000140: movs r6, #15

 0x20000142: mov r8, r4

 0x20000144: mov r7, r8

 0x20000146: ands r7, r6

306 Dynamic Reverse Engineering

This moves 15 in r6, copies r4 in r8 and r7, and masks r7 with 15. But why? At this
point, r4 is 0! This may be used later – since we saw that r4 was used as an offset on
the loading of the password character, r4 is probably a counter! If that is the case, this
masking can be used as a kind of modulo... (it's very common to use masking for modulo
a power of two -1):

0x20000148: add r6, pc, #16 ; (adr r6, 0x2000015c)

0x2000014a: ldrb r6, [r6, r7]

This loads the first character of the string that was hidden in r6 and uses r7 and an offset!
r4 is definitely a counter here and r7 a modulo'ed version of it. This is a very typical
programming way to approach this:

0x2000014c: eors r5, r6

0x2000014e: adds r0, r0, r5

0x20000150: adds r4, #1

This is XORing the value of the bit swapped password character with the current ranks of
the strange string, adding this to r0 and incrementing the r4 counter:

0x20000152: ldrb r5, [r1, r4]

0x20000154: cmp r5, r3

0x20000156: bgt.n 0x20000132

This loads a new password character with the new offsetting r5. r3 is 0 so the cmp
checks r5-r3 and ... Wait … bgt.n? What is that? Do you remember what to do when
you have doubts? Go read the documentation here: https://community.arm.com/
developer/ip-products/processors/b/processors-ip-blog/posts/
condition-codes-1-condition-flags-and-codes.

So, it jumps if r5 > r3. And r3 is 0, so? This is testing for a 0 terminated string!

This is the main validation logic loop!

Once this is done, it does this:

0x20000158: eors r0, r2

0x2000015a: pop {r4, r5, r6, r7, pc}

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes

Using dynamic reverse engineering – an example 307

It XORs this sum with the UUID depending on the value it calculated, restores the caller
register values, and returns this value. The C code then checks whether this value is null
to actually display the winning string. We then just need to arrange it so that our sum is
equal to the UUID dependent value for the XOR to be null!

We have the whole logic!

Now let's write a keygen for this. This is very simple – you can do it. I will explain to you
how I approached this.

Making a keygen
So, we need to achieve the highest value possible per byte of the password in order to be
slightly under the target value and use a few bytes to reach it.

The first step will be to find, for each byte of the strange string, which nibble swapped
printable character (a half byte can be called a nibble) achieves the highest value. This
gives us a maximal value string.

Once we have this string, we know that by repeating it x times (x being the largest integer
divisor of the UUID dependent value by the max string value), we only have the reminder
to complete. We can almost finish that by adding more characters to the maximum value
string until we reach a reasonable value that we can finish with a few new characters. The
finishing characters follow the same principle to reach the target value.

I will give myself three characters (or four if needed, but three works for all possible values
of the UUID dependent value) and brute-force through the possible values to get three
printable characters.

This is doable. I've done it, and so can you. :)

As stated before, I am lazy. And I don't want to write a keygen, so let's just make the test
succeed, shall we?

Of course, I aced the test
Okay, so this is the easy solution.

Let's start from scratch and put a breakpoint on the final validation test:

(gdb) b * 0x08000428

Breakpoint 1 at 0x8000428

(gdb) c

Continuing.

308 Dynamic Reverse Engineering

[enter any password]

Breakpoint 1, 0x08000428 in ?? ()

(gdb)x/i $pc

=> 0x8000428: bne.n 0x8000492

(gdb)p/x $xPSR

$6 = 0x81000000

(gdb)set set $xPSR = ($xPSR | (1<<30))

(gdb) p/x $xPSR

$5 = 0xc1000000

(gdb)c

-> On serial you will see "YOU WIN! decompress w/ this :"

And this is why the security of something should never ever rely on a simple test. A way
to make it secure could have been to use a key derived from the password to decipher the
content of the string.

What is the added value over binary patching as in the
previous chapter?
If the program does any kind of self-check as it should, this is not detectable. But if this
was correctly protected, JTAG should be disabled. Check the STM32 manual to see how
to do that and how to protect the flash against readback. Be aware that these are not
endgame protections; they can be bypassed in multiple ways. Given enough money and
motivation, there is always a way.

Summary
In this chapter, we saw how an attacker can take complete control of the execution flow if
they have access to the JTAG interface. We used it to inspect memory while the firmware
was executing, and we managed to completely change the behavior of an executable.

In the following chapter, we will see how we can protect a device against all the different
problems we have found.

Questions 309

Questions
1. Give me the name of one band I like a lot. There is a pretty good source in

something that is written in this chapter – investigate!

2. ARM is a RISC architecture. How do you think there can be a RISC architecture
with such rich instructions and tests?

3. When typing i r (info register) in GDB, it shows other registers – msp, psp,
primask, basepri, and faultmask – and controls what they are.

4. Why did I choose to mask the highest bit in the UUID dependent value?

5. Let's say that you want to extract some code for a chip you don't have access to or
for which the JTAG was blocked. How could you approach that?

13
Scoring and

Reporting Your
Vulnerabilities

Now that you have managed to find a lot of problems in your target system, how do you
give a score to them and present them to your client? And even more importantly, how do
you actually explain the vulnerabilities so it makes sense to your client (both business- and
risk-management-wise)?

The most important aspects of scoring and reporting are the following:

• Be consistent (in scoring and format)

• Be clear

• Separate the information based on the audience

• Use a scoring system that is formally agreed on by the client

312 Scoring and Reporting Your Vulnerabilities

• If they want to adjust the scoring of a vulnerability, they own their risk but this
change must leave a written trace

• All the vulnerabilities must be discussed with the client. You may perceive
something as being critical, but the clients may have mitigation or countermeasures
in place you may not be aware of (for example, they could have a contractual clause
with their network provider that actually prevents your wonderful abuse of SMS
sending from getting out of hand).

Don't forget, the reporting and scoring part is very human and subjective – do not get
stuck or bitter because a client wants to score something lower than your perceived score.
They are the risk owner. But, keep a written record – always. Their bad decisions must not
come back to bite you on the backside!

We will cover the following topics in this chapter:

• Scoring your vulnerabilities

• Being understandable to everyone

• When engineers don't want to re-engineer

Now let's have a look together at the how.

Scoring your vulnerabilities
Remember how we used the "gut feeling" we had about the kind of attacker that could
compromise a system (In Chapter 4, Approaching and Planning the Test) to gauge the time
per scenario? We can use the same approach to build a scoring matrix that can be formally
validated upfront with our client.

Our scoring matrix is usually a two-dimensional array along the following two
dimensions:

• Technical complexity or probability of occurrence of the risk (depending on the
specific circumstances)

• Impact

For the technical complexity, it could very well happen that we over- or under-evaluated
the effort put into a specific scenario. With the actual vulnerabilities in hand, we can
be much more precise about the actual technical complexity that was necessary to
compromise the device's function.

Scoring your vulnerabilities 313

The actual impact has to be discussed in advance with the client. It is very clear that
an SME and a giant, multinational group will cope with a financial impact in a very
different way. For example, the big fish will probably have a lot more financial resources
than an SME but could be far more sensitive to reputational risk (stock valuation impact
and so on).

When agreeing on an impact scale with a client, the following impact dimensions have to
be considered:

• Financial loss: Direct or through missed opportunities.

• Legal risk: With special attention to the fact that multiple legal frameworks and
punishments may be of concern:

- Privacy laws: Especially if European citizens are concerned.

- Environmental laws

- Consumer protection laws: But explicitly exclude safety and electromagnetic
disturbance laws – these are highly specialized.

- Loss of life or "organic damage": Bodies getting cold on the floor can cost a pretty
penny and be terribly bad for the company's image.

- Contractual risk: Could the company be sued by consumers or other companies
due to the contract in place?

- Other specific regulations...
• Reputational risk: The company image at large. Do you want to run the risk of

being seen as selling bad quality products?

• Operational risk: Could the company infrastructure and resources be impacted by
the vulnerability in a way that would compromise its normal operations?

• Strategic risk: Will the vulnerability: Allow the product to be duplicated or faked
by a third party? Disrupt the financial model of the service? Provide an unfair
advantage to a competitor? Leak proprietary processes?

For each of the identified risks, the client will have to agree on its relevance and their
perception of the risk's scale. This perception can vary widely from client to client. For
example, an SME could see losing a million dollars as critical while a multinational
company could score this as medium. This can also vary widely between companies
depending on their risk appetite.

314 Scoring and Reporting Your Vulnerabilities

For each of these dimensions, you should have a list of corresponding factual measures,
for example:

• Regarding the privacy law, looking at 1 record is a 1, 10 records is a 2, 20 is a 3...
100,000 is a 9, and over 1 million is a 10.

• Reputational risk: one device being hacked is a 1, 5% of the pool is a 5, 20% is a 10...

There is a wide variation depending on the company's risk appetite, scales, granularity,
and so on.

Here are a few examples of matrices: (1 being considered as irrelevant, 2-3 low, 4-6
medium, 7-8 high, and 9-10 critical).

This is an example of a matrix for a client with a balanced risk appetite:

This is an example of a matrix for a client that is more risk-adverse:

Scoring your vulnerabilities 315

There are multiple ways to transcribe risk appetite. The scoring can be adapted or the
classification of the score can be adapted.

For example, an aggressive risk appetite can be seen as a change in the classification,
like so:

• 1-2 Considered irrelevant

• 2-5 Low

• 6-7 Medium

• 8-9 High

• And 10 as critical

There are as many ways to arrange this as you will have clients. The only critical point for
you is that this must be set in stone from the start.

Once this is agreed upon, you will turn to the part of engagement that is universally loved
by all testers – we all get the most fun from it... Well, actually, we all hate it with a passion,
to be honest, but... The section that is actually the most important in order to transmit the
right message to our clients is the report.

316 Scoring and Reporting Your Vulnerabilities

Being understandable to everyone
The report is actually the trickiest part of engagement. You may have found the slickest,
the smartest, the most impactful vulnerabilities of your whole career on a device, but
if you are not able to deliver your message in a clear and understandable way, finding
that and nothing is exactly the same... Let's see how we can minimize the risk of being
misunderstood by the client.

Building your report template
The first fundamental thing is: use a template. Not only is reinventing the wheel for every
report a waste of time but just imagine yourself in the client's shoes. If they receive two
entirely different documents, with different structures and a different approaches, they
will have a lot of trouble understanding the point. And if this is a re-test (very common
after you have found problems and they want to ensure that the vulnerabilities are actually
covered correctly), they won't be able to compare the reports to understand what was
done rightly or wrongly.

The template I use, outside of the purely a esthetic and contractual elements, flows
like this:

• Management overview: After a given hierarchical level, turning pages and
reading becomes hard – put it in first. Additionally, they are the ones signing the
checks – better keep them happy!

• Presentation of the device and the test's objectives

• Presentation of the execution of the test: Where, when, meeting dates, and
architectural overview.

• A risk management section:

- For each vulnerability, a non-technical explanation of the vulnerability, the
complexity of the attack and impacts, and nice, visible risk scoring.

- At the end, a reporting matrix: The name and reference number of the
vulnerability and final scoring. Risk management likes to see a nice recapitulation
table to see a lot of green or a lot of red. Management in general is a very color-
sensitive species.

Being understandable to everyone 317

• A separate technical description section, just in order for the company to be able to
ventilate the technical descriptions and the various pieces of evidence (screenshots,
files, and so on) to technical people. Keep the technical details away from
management – this is complicated and could cause a headache. Management is very
sensitive to mental strain in general; the less they have to think, the better they feel.
For each vulnerability, have the following:

- A technical description

- A piece of evidence (a screenshot, for example)

- If possible, a script for the technical personnel to be able to replicate the findings

- A recommendation on how to solve the issue of remediating the impact of
its realization

• A lexicon: You have to explain every technical word; people shouldn't have to search
the internet for technical words. If a word is explained in the lexicon, style it in a
specific way so your reader knows that they can find out what it means there.

• A legal section that is standard for your company and validated by your legal team.
This can be a pretty sensitive document and may end up being used in court. Cover
your bits!

We will talk at length about the types of remediation and controls and the effects they can
have in the last chapter.

For your mitigation's recommendations, do not necessarily focus on technical security
controls; physical and administrative controls can be just as effective (as a control
objective). Also keep in mind that preventive, detective, and curative controls (as a control
type) can be applied.

Usage of language in a report
Your language to be simple – overly simple, such as "Explaining a vulnerability to your
mom" simple. This is actually a test we use internally in my team: if your mom wouldn't
understand, it is too complicated.

318 Scoring and Reporting Your Vulnerabilities

You can be detailed in the explanation (at least in the technical section), but you have to
pay attention to the way you say things:

• A sequence of events and their consequences (business or technical) have to
be explicit.

• Use short sentences and keep the information density low. Your sentences must be
easy to digest information chunks.

• Use simple English words. You cannot assume that your reader is a native speaker or
is reading your report with translation software at the ready.

• Text must be agreeable to read and agreeable to the teams. You are talking about
somebody's work. If you antagonize them in your report, they will antagonize
you in the reporting meetings. For example, do not say "this is not implemented
correctly;" say "this may not have been taken into consideration in the design or
implementation phase."

• Never ever point the responsibility to a specific team, and even less so a specific
person. Creating something is a team effort and failures should be shared as much
as successes!

You also have to pay attention to the things you say, such as:

• Do not count on the technicality of your reader: Everything with a technical
consequence must be explicit (not only might your reader not be very technically
gifted but, if they were as security aware as you, they wouldn't need you).

• Do not count on the intelligence of your reader: Everything with a business
consequence must be explicit (if something is bound to happen, write it
explicitly – something that is clear to you will not necessarily be clear to someone
that has their nose in financial reports all day long!).

• Be direct: Do not imply information or "things." If it is in the report, it must
be explicit.

Report quality
You must have a quality control process in place for your report.

When engineers do not want to re-engineer 319

After all, you engage your company's reputation and relationship with your client when
you deliver a report. These are the precautions we take every time:

• This seems to be self-evident but modern word processors have pretty good
grammar and spelling checks: always use them.

• Always have someone else re-read the report before delivery. You may find
something that you have written completely clear, but it could be pretty obscure to
someone who isn't you.

• Always explain the scoring, vulnerability per vulnerability, to the proofreader and
note down the explanations in order to prepare for the delivery meeting.

• The delivered documents should not allow the client to modify the content on their
own. Always deliver a signed PDF.

• The more reports you write, the more common vulnerabilities you will find.
Compile your findings and reuse the most efficient text for a specific kind of
vulnerability. If you are in a company where security tests are a staple activity,
automated tools to assist you in drafting standardized reports are available on
the market.

Now that your report is written, let's go to the next step of report delivery, the
validation meeting.

When engineers do not want to re-engineer
When delivering your findings, there will always be a pre-delivery meeting. This meeting
exists in order to confirm your findings with the product teams and the management.
During these reviews, the engineering teams being on the defensive and/or claiming that
something can't be fixed (often for budget reasons or because an early go-to-market is
desirable) is a common trope.

Always keep minutes of these meetings and have them validated by the client.

For this meeting to have real value for both the testing team and the client, a few select
actors have to be present.

320 Scoring and Reporting Your Vulnerabilities

From the client's side:

• The security owner of the device from the client's side (most probably the party that
requested the assessment)

• A representative of the client's business side (the risk owner on the client's side)

• A representative of the client's compliance or legal side (that is, the party at the
client that is in charge of risk management)

• A representative of the client's device technical development team

From the testing team's side:

• A testing team responsible with knowledge of the business relationship between
your company and theirs (this is usually their commercial contact)

• A senior member of the testing team (in a small team, this is usually the same
person as the previous responsible)

• The actual testers – you have to have the actual person that was doing the test

I will go through the main common explanations for not going back to the drawing board
and try to give you some key pointers to help clients make better decisions. You should
be able to defend your stance, but always keep in mind that, in the end, your client is the
owner of their own risk and that you are there to help them find a suitable solution:

• "The remediation solution you specify isn't the right one for us": This can be a
fair point. Listen to your client's teams; they know their product and their
infrastructure. If they come up with a better remediation plan (or one that is a better
fit for them), it's also good. Don't fall into the "my solution is the best because it is
mine!" fallacy.

• "The remediation solution you propose is too expensive/complex/hard/incompatible
with our go-to-market date": Then, it is up to them to find a cheaper/simpler/faster
alternative. Although you can still help them to do so; this is called consulting and
has a price. Do not let your client try to drain your life force or financial resources.
If push comes to shove, always tell them that it is their risk, and they can always
accept the risk, but this is their internal processes at play. You are there to provide an
expert opinion, not to skew your opinion to satisfy some of their current constraints
(in an assessment context of course, when you are in a consulting context, you are
paid to find solutions).

When engineers do not want to re-engineer 321

• "We want to reduce the scoring because we think you scored the impact too high":
This can be a valid claim, but they have to demonstrate their claim. If they cannot
demonstrate the claim, just refuse to lower the scoring. You are acting as a trusted
advisor, and sometimes standing your ground is the best advice you can give them.
If they have a valid point and it fits the matrix that was agreed upon from the start,
then proceed. As per usual, keep a written record.

• "We want to reduce the scoring because we think you scored the technicality too low":
This is generally not a valid claim, but, in all fairness, you have to demonstrate your
position. At this point, keeping extensive documentation of the test and actually
having the tester in the room is invaluable. Answering this kind of challenge can
be as simple as "I have a master's degree in IT and I am not a state-sponsored team.
I broke your thingy anyways; your claim is invalid".

• "There are easier ways to achieve the result; we don't see why this is relevant": This, for
example, often comes in the context of denial of service against the application layer
(for example, when leveraging a compromised device to create artificial loads on
the backend servers if they are in scope). The engineering team will often argue that
a volumetric Denial of Service (DoS) against the servers (creating a lot of traffic
through a botnet is a volumetric DoS) would have achieved the same easily and
hence they don't need to fix the problem. In this case, offering to add a volumetric
DoS as a self-reported additional finding in the report for free is relatively efficient
but actually misses the point. The fact that your mission is to find potential
problems in a specific context should be stressed. Just because another context is
problematic, it doesn't mean that your findings should be overlooked.

In any case, always stay polite, reasonable, and professional in these meetings. You might
be pushing buttons that are sensitive on the internal client politics side of things...

In any case, always stay consistent, and don't lower your professional standards. The
clients will pay you for your expert opinion, not to fold under the slightest pressure.

322 Scoring and Reporting Your Vulnerabilities

Summary
In this chapter, we looked into giving a score to our findings that is aligned with our
client's risk appetite (and how to define this risk appetite with them in a way that benefits
both parties) and how to build a report template that fits our activity.

Now that we have looked into scoring our findings and putting them nicely into a report,
let's look into what we can tell our clients they should do about them.

Questions
1. Could you give me an example of a matrix for a company with an aggressive stance

towards risk?

2. Could you give me an example of vulnerability scoring for a company with a
conservative attitude towards risk (based on the balanced risk appetite matrix)?

3. How would you reflect the threat landscape of a company that has already been the
target of organized crime in the matrix?

4. Why, in your opinion, should the impact scales be agreed upon and set in stone
before the actual testing?

5. Why, in your opinion, should the internal risk management of the client be involved
in the delivery meeting?

14
Wrapping It Up –
Mitigations and
Good Practices

Now we have found a lot of vulnerabilities, stolen secrets, and disturbed and intercepted
communications, but how do we wrap up the story for our clients? How do we link this
to existing industry good practices and how do we advise our clients in order for them to
realize that they are not the only ones making these mistakes and, more importantly, on
how to fix them? And, since this is the last chapter of the book, what do you do next and
what kinds of things could you look into to satisfy your curiosity for research?

In order to advise your client on how to solve the problems you found, we will look into
the sources you can rely on to relate your findings to good practices (basically to tell your
client that their security is bad, and they should feel bad), then quick solutions to common
problems, and, in the end, how you can continue bettering yourself at hardware.

324 Wrapping It Up – Mitigations and Good Practices

We will cover the following topics in this chapter:

• Industry good practices – what are they and where to find them: What recognized
standards can you use to take a systematic approach in your reports?

• Common problems and their mitigations: The problems you will find the most and
what to do about them.

• What about now? Self-teaching and your first project.

Industry good practices – what are they and
where to find them
There isn't really an OWASP top 10 for hardware but there are some for very closely
related subjects that we can actually rely on for reference. Let's have a look at these
different standards so that you are aware of them and can select the ones that are the
most adequate for your project. Depending on the specific device, one or more standards
can apply. This has to be discussed with the client, but you can always refer to them as
good practices!

Different verticals (or industries) have different standards for security, safety, and
sometimes both. Let's have a look at the most common one (that is, a device targeted at
the consumer market): the OWASP IoT top 10, which is very often the default standard
framework you can use in most cases.

OWASP IoT top 10
The OWASP IoT top 10 is available here: https://wiki.owasp.org/index.php/
OWASP_Internet_of_Things_Project#tab=IoT_Top_10.

Just like the well-known web top 10, this one lists the 10 most common vulnerabilities
in IoT devices. Its main downside (which could make it less applicable to your specific
device) is that it focuses on IoT in the way that it is mostly understood, that is, as a
consumer-targeted device that is communicating with a vendor backend somewhere in
the cloud. When using it, you have to be aware that your client, if their device doesn't
exactly behave like this, could not really understand how the device is concerned with
this framework. The main upside of this set of good practices is that it regroups the most
common problems in any device!

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10

Industry good practices – what are they and where to find them 325

Let's look at the 10 items:

• Weak, guessable, or hard-coded passwords: Just as this suggests, weak passwords
are used by the device. You will most probably find these kinds of problems when
reversing the firmware or looking into the embedded filesystems. If the authentication
is only relying on password hashes, for example (even if they are well salted), it can be
a problem, especially if the hashes are shared across multiple devices!

• Insecure network services: This specific item is actually referencing the network
services that the device exposes to its network, locally or remotely. You may find
here things that are along the lines of usual web vulnerabilities (such as if the
device onboards a web server) but also buffer overflows in network-reachable
interfaces. We didn't focus on these in this book since they are not really very tightly
coupled with the hardware, but you will find plenty of things about these on a lot
of online challenge websites (peruse wechall.net, the phonebook for online security
challenges, to train yourself on that).

• Insecure ecosystem interfaces: The device is using APIs (on the backend side)
that are not well secured. Usually, since the API endpoints are not used outside of
the device, the vendor is lulled into a false sense of security regarding them. They
should also be looked into in the context of the test since attacking the backend
through a device (or through knowledge acquired from device analysis) should
be a major concern to the client. This is out of scope of this book, but you should
also have a look at the OWASP top 10 for APIs here: https://owasp.org/
www-project-api-security/.

• Lack of secure update mechanism: As usual, the title describes it very well, but you
really have to see it with all of the consequences of "secure" and "update":

- Is there an update mechanism? Can the vendor react to a vulnerability on the
device (either a vulnerability in their firmware itself or a vulnerability on an external
component they rely upon)?

- Is the update mechanism secure? Can you actually update the device with a
malicious firmware (that either allows you to make it behave maliciously or bricks it)?

https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

326 Wrapping It Up – Mitigations and Good Practices

• Use of insecure or outdated components: Is the device embedding software or
hardware components that are known to be insecure or have known vulnerabilities?
This usually requires significant effort to harvest all of the used software
components, especially if the device is running an embedded operating system such
as Linux. Either you can do it manually (this is very long) but some commercial
software offerings can help you scan through the libraries and embedded software.
Since I don't know any open source software that can help you do that (and I refuse
to put marketing material here), I will not name names, but it should be really easy
to find.

• Insufficient privacy protection: The device, in its function or communication,
is divulging (or not protecting enough!) private information about the customer.
This should be a prime concern of any client since the legal repercussions can be
pretty stringent (have a look into the EU's GDPR, California's Consumer Privacy
Act, and so on). According to the UN's conference on trade and development,
66% of countries have a consumer privacy protection law. Data sent in plaintext,
localization information, habits, and plenty of private details could be considered as
private information. Regroup everything you find and, since we are not lawyers and
we can't really be sure, report on everything you find to your customer. Best-case
scenario, their lawyers agree but your role is to allow them to actually know what is
going on!

• Insecure data transfer and storage: Data is sent in plaintext? Lack of ciphering of
the EEPROMs? Lack of signature and data integrity measures? All of these findings
fall into this section. Once again, your client will decide with living with it or not,
but you told them upfront, that's most important!

• Lack of device management: This one is actually a little bit of a cornerstone for
updating and managing the security elements (keys, customer information, and
so on). This is actually maintaining a good and secure inventory of the devices.
This is also a very annoying path of attack for the client's backend; imagine what
would happen if a malicious actor registered millions of fake devices with fake serial
numbers preventing legitimate clients from using their things. This a very funny
from a pentesting point of view and will probably make your client make a lot of
weird faces.

Industry good practices – what are they and where to find them 327

• Insecure default settings: As per usual, the device comes out of the box in an
unsecure state, cannot use security measures that are commonplace today (such as
only supporting WEP for Wi-Fi security), allows the use of admin/admin for setup,
doesn't force the client to change for something secure, and so on; all of these kinds
of thing fall into this category.

• Lack of physical hardening: Accessing the hardware was as easy as popping two
screws? There is no box-opening detection. The PCB has nicely labeled Serial,
JTAG, and SPI ports? This all goes in this category.

Now that we looked into the carpet bombing top 10, let's have a look a whole family of
best practices that you could drown inspiration upon for looking into firmware.

The CIS benchmarks
The CIS benchmarks are a whole family of baselines and indicators that you can draw
inspiration from when evaluating a device, more specifically, the diverse components
of its firmware. You will find a whole bunch of best practices here that can be applied to
embedded Linux systems, web servers, and so on.

Here is a (short) list of the ones I personally use the most when reporting on the security
level of an embedded system:

• Distribution-independent Linux

• Google Android

• Apache HTTP Server

• Printer devices (even when not talking about a printer, these have interesting points
if you are testing for a potential user of the device and not necessarily the vendor of
the device)

• Not everything is necessary relevant but these may be of interest if the device is
talking to them (especially to upsell other testing services if your company has
the capabilities): Amazon, Alibaba, Azure, and Google Cloud Platform

This is a lot of information to consider, so I sincerely invite you to peruse them so that you
can reference them in your reporting, if relevant.

328 Wrapping It Up – Mitigations and Good Practices

NIST hardware security guidelines
At the moment of writing, hardware security guidelines are being created by NIST. They
focus on how companies can get an assurance level on the hardware they are running
internally. It may or may not impact the things you will be testing for, but you should
definitely keep an eye on these guidelines once they are finalized. Why? Let's see:

• When your client is a device vendor, they will want to know if their device can
comply with these rules since it can be a no-go for a lot of their potential clients!

• When your client is not a device vendor but a potential user of the device, you will
want to double-check whether they can (or cannot) apply these guidelines to the
device you are testing.

OK... that was a lot of administrative things and frameworks. This is OK but not very cool!
Let's now look into what we can tell our clients about the possible mitigations when we
find a problem!

Common problems and their mitigations
Here are some key problems that are really common and some indications on how to
solve them.

Establishing a trust relationship between the backend
and a device
Here, the main problem is how to establish a trust relationship between a device in the
field and the management infrastructure. In order to tackle this problem, a few elements
have to be understood, not only about the device itself but also about its fabrication and
enrollment process.

The main challenge in the usual situation is that the vendor will want to reduce the actions
toward an individual device as much as possible in order to keep the manufacturing
costs as low as possible, keep the hardware cost as low as possible, but still get the highest
possible level of assurance for their money.

The questions you have to ask for the device are as follows:

• Is the MCU capable of reasonable cryptographic operations (that is, SSL/TLS)?

• Does the MCU have a secure enclave or TPM-like capabilities (ARM TrustZone, a
TPM chip, crypto-authentication chips)?

Common problems and their mitigations 329

The questions you have to ask for the production process are as follows:

• Do devices already go through a "per-device" process in the production process
(programming, testing, and so on)?

• Is the production contracted to a single manufacturer (and how trusted is
this manufacturer?

Let's start with the simplest (and also the one providing the highest level of assurance)
solution, which is to actually establish this trust relationship in a controlled environment.
If the devices are actually powered and tested in a trusted production plant, this is where
the relationship should be established. A good example process could be to deliver unique
keys to the device (for example, an enclave-stored keypair/client certificate unique to
the device and issued by a specific organizational unit of the backend's PKI) based on
a construction firmware, and then updating the device with the production firmware.
Outside of hardware, proven, secure storage devices (such as a TPM or a secure enclave),
there is no absolute guarantee that the trust-establishing element is actually secure
(against the most advanced attackers).

If the manufacturer isn't actually trusted or is changing frequently, the trust establishment
should be done in an environment that is controlled by the vendor. This is not as unusual
as you may think and happens where serious concerns about device counterfeiting or
critical intellectual property have to be protected (for example, ciphered FPGA bitstreams,
expensive devices, and so on).

Then, going down in the level of assurance offered to the vendor (if the previous solutions
are not possible and the device actually supports SSL/TLS operations), the generation of
a device-specific client certificate on device enrolling could be envisioned (for example,
based on a certificate request issued by the device on first connection to the backend, the
request being granted by the backend's PKI, and the key-pair being stored in the device's
secure enclave), with the chip authenticated by an enrollment-specific challenge response
scheme. Then, details of the enrollment process should be erased from the device through
an update to a production firmware.

Getting even lower on the trust scale, if client certificate management/secure storage by
device is not possible (very cheap devices and MCUs, small sensors, and so on), the trust
could be envisioned as uni-directional: the device onboards public keys for the backend
PKI and only verifies the certificate chain that is embedded in the SSL certificates. This is a
very low assurance level on its own, but it is better than nothing.

330 Wrapping It Up – Mitigations and Good Practices

Storing secrets and confidential data
Again, the only way to seriously protect these things is cryptography. Ideally, each device
will have unique per-device root keys that are either provided by the process we discussed
earlier and protected in an enclave (better) or derived from stable, device-specific factors
(for example, using a strong key derivation algorithm such as Password-Based Key
Derivation Function 2 (PBKDF2) with the main chip's unique ID as the password).
These root keys must never leave the main chip's silicon. When storing data securely on
an external device (for example, an external SPI flash), it is strongly advised to use a key
wrapping scheme in order to avoid exposing too many operations based on the same key
(to give a very simplified example, you store a cypher-key dictionary in the first block that
is ciphered with the root key and each chunk of the flash is protected with a different key
stored in the encrypted dictionary).

Additionally, each ciphered chunk should have an integrity violation detection mechanism
(such as a hash/HMAC, for example) in order for the system to be able to detect data
corruption or alteration.

Key wrapping based on chunks of external storage also has the following advantages:

• Avoiding that losing a chunk isn't making you lose the others.

• Avoiding that, you have to rewrite everything if a piece of information is changed
in a chunk "in the middle" (flash having a limited number of write cycles, this is not
to be neglected, also check the cryptographic scheme that has been selected, but it
is relevant for the good ones such as CBC, GCM, and so on, see https://csrc.
nist.gov/projects/block-cipher-techniques/bcm/current-
modes for more information).

Cryptographic applications in sensitive applications
These rules are, with your current ability to execute tests, things you will have to trust me
on. But if they interest you, please put everything I say in doubt and prove me wrong or
try to see how you can actually mount these kinds of attacks:

• Rule 1: Never invent your own cryptography, That's... it... no... argument, no
"yes but", NO. End of discussion. See Phil Zimmerman's An Introduction to
Cryptography here: https://www.cs.stonybrook.edu/sites/default/
files/PGP70IntroToCrypto.pdf (page 54) on why...

https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes
https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes
https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes
https://www.cs.stonybrook.edu/sites/default/files/PGP70IntroToCrypto.pdf
https://www.cs.stonybrook.edu/sites/default/files/PGP70IntroToCrypto.pdf

Common problems and their mitigations 331

• Rule 2: Embedded devices have to operate in very constrained, energetic
environments and all cryptographic implementations have to be checked for
side-channel attacks. Read about them; they are the subjects of entire books.
Also, you should yourself look into trivial examples of side channels, such as
taking more or less time to answer whether a password is long or not, but there
are implementations around that focus on minimizing the side channels. You
can search for them (an example for AES is found at https://core.ac.uk/
download/pdf/144774958.pdf). This kind of attack ruined the security of the
first generation of MIFARE DESFire RFID chips; do not underestimate them.

• Rule 3: Do not rely on things you think are secure but are outside of your silicon
for your randomness (and even then...). No... you may have a nice Chua's circuit
connected to an ADC on your chip and think it is a "rock-hard" source of
randomness (in general, this is the case), but not when your attacker can just cut
the trace or solder a wire to ground on your pin. Bad randomness generation has
already been the source of big security issues in the past (look into https://
github.com/g0tmi1k/debian-ssh). When randomness is that important,
the chip that the process is running on should come with a randomness generation
internal peripheral or the harvesting of randomness for the environment (from
uncorrelated multiple sources like the Linux kernel does) should be investigated.

JTAG, bootloaders, and serial/UART interfaces
You will find active JTAG pins, serial interfaces, and all kinds of things that should be
here. To put it simply... they shouldn't be here. Outside of a development board or the
manufacturing plant (remember that JTAG is also used to verify soldering), they should
be deactivated. There is no need for a U-Boot bootloader to wait even for a second before
jumping to the actual firmware. Not only should all of these interfaces be deactivated
in the chip (most chips have "fuses" to disable them that can be set in firmware in the
manufacturing plant) but every means of protecting the firmware against reading and
reverse engineering should be enabled. When you evaluate a device, always read the chips'
manuals. There is a way to prevent this, 99% of the time.

https://core.ac.uk/download/pdf/144774958.pdf
https://core.ac.uk/download/pdf/144774958.pdf
https://github.com/g0tmi1k/debian-ssh
https://github.com/g0tmi1k/debian-ssh

332 Wrapping It Up – Mitigations and Good Practices

What about now? Self-teaching and your first
project
This is all nice; you read through this whole book, played with a Furby, have a few
bluepills on your desk, as well as a JTAG adapter and a logic analyzer, but... now what?

Like I said before, this is as much a craft as it is a science... so, well, you have to practice!
Practice and practice again!

Here is a list of things you can play with for cheap:

• Old routers, modems, and telecom equipment in general: They are super easy to
find discarded in an office corner or at a flea market. They usually run some kind
of embedded operating system and you may find some things you are not used to
(VxWorks, Windows CE, Symbian, and so on) and "weird" architectures (8086, Z80,
68k, PPC, MIPS, and so on).

• Old toys: If you destroy an old toy that you bought for €1 at your local flea market,
you won't care! This means that you will actually learn a lot. Even when destroying
it you will learn (of course, you have to investigate on how you actually did it).
Another upside of old toys is that, since they're built to a price, they use big
components (but also epoxy blobs)!

- Musical ones: Not only is circuit bending to make them play strange noises very
fun in itself (look at the "Look mum no computer" YouTube channel for basic
electronics and circuit bending tip and tricks) but this is actually a good way to
learn more about the analog part of the circuits, the basic operation of transistors
and all.

- Educational toys (such as spelling toys and kid's computers): These are
especially interesting to play with for extracting EEPROMs, training yourself at
reversing storage formats, extracting and replacing strings, and so on.

- Radio-guided cars: These are great for studying and reversing specific radio
protocols (also, the commands are usually legal to send back even without a license).

• Old mobile phones (like really old ones) to get a sense of modern construction,
small SMD components, and so on.

• Cheap IoT things such as connected doorbells, thermostats, 3/4G gateways, and
so on.

Closing words 333

Once you have found some interesting targets, just apply the methodology, make
functional schemas, reverse the PCB layout, and so on... the toys are your oyster!

Closing words
I hope you had a lot of pleasure reading this book and that I've been able to get you started
on the path of messing with electronics and embedded systems. I think I can never repeat
this enough, but persistence and repetition are the key to learning hardware hacking; it is
a craft. You will burn yourself, cut yourself, burn components and tools, and other not-so-
agreeable moments will happen. You will be stuck at 3 A.M. hunting for bugs in your code
or looking for a vulnerability that may not really exist. The key thing is... don't let that
stop you. Like anything hacking- or making-related, persistence and courage are actually
what will allow you to succeed. A big part of this job is staying up to date on current
research: keep reading articles (new ones, old ones... read all the things!), follow security
conferences, read Hackaday, Y Combinator, participate in Capture the Flags (CTFs),
follow trainings (on a side note, having a serious training budget must be on your must
have list for job hunting), and be part of the community... Who knows, maybe one day
you will present research at a major conference (speaking about conferences, volunteer to
help; it makes speaking with people so easy)! Stay positive! Acknowledge that we are all
standing on the shoulders of giants, and help other people standing on your shoulders.
And the most important: be excellent to each other!

Jean-Georges Valle

Brussels, December 2020

Assessments

Chapter 1
1. To be able to measure more voltage and current at the same time.

2. The bandwidth of an instrument for which the measure's voltage will be 0.7 times
the real voltage.

3. 5 MHz.

4. Dangerous prototypes.

5. A tool to visualize electric signals.

6. To correctly sample a signal, you need to sample it at least at twice the frequency of
the signal.

7. Passive probes are limited in frequency, so use a scope that supports active probes
for signal > 200 MHz.

Chapter 2
1. A Bluetooth service that allows object exchanges.

2. ARM

3. A frequency band available for use without licensing; yes – 2.4GHz

4. Yes

5. Yes

6. Harvard architecture has separate instructions and data buses while both are on the
same bus for von Neumann architecture.

7. Usually inside but some MCUs support additional external memory.

336 Assessments

Chapter 3
1. Preferably three or more:

The first one will be used for exploratory surgery and getting familiar with the
system general architecture, identifying tricky or dangerous sections/subsystems,
soldering/soldering, probing, and so on without being slowed down by excessive
concerns about burning a system you will need for actual testing. This doesn't mean
you should be reckless with this one, nor that you will necessarily actually destroy it.

The second one will be used in case you destroy components in the first one, either
for component cannibalization to fix the first one or because the first become too
damaged. This will also be used to compare two systems later to see if some security
elements aren't shared when they shouldn't be (ciphering keys, certificated, and so
on) or to see if you can change a system's identity if it's relevant.

The third one will, since you are fairly familiar with the system at this point, allow
you to gather pre-initialization data (for example, the content of an EEPROM
or storage component before the system is provisioned or associated with a
backend system, et) so that you can test scenarios along the lines of: Can I force
re-enrollment while the system is supposed to prevent it ? Can I find flaws in the
system's enrollment logic? Can I pose as an already enrolled system and steal keys?
Can I force weak initialization of cryptography?

2. No, absolutely not – on the contrary, you should have contractual clauses
authorizing you to damage the test systems:

First, you can fail at any point by slipping, burning a component, and so on. This is
fundamentally different from software pentesting since once the magic smoke is out
of a component, no re-installation in the world will solve the problem.

Second, just imagine how limited you would be! You'd have no way to remove a
chip and dump it in a controlled environment, no way to scrape the solder-mask off
of a trace to probe it, and no way to replace the data in an EEPROM to see what it
changes on the system. This would be the equivalent, in a software pentest, of saying
"Please test this system, but you are not allowed to connect to it," which makes no
sense at all.

Chapter 3 337

3. When you are reading a voltage with your multimeter, you are actually using an
ADC. Simply put (there are thousands upon thousands of pages of literature on
them, including dedicated courses on them, their types, and so on), this electronic
device will try to "guess" more and more accurately where the voltage that you are
reading is compared to known voltages. It does this by sampling and comparing
it repeatedly. When you have a digital bus, sometimes, it will sample with the bus
in a high state, while other times, it will do so in a low state, appearing somewhere
between the two. The opposite technique can be used to produce floating-point
voltages too! Have a look at what ADCs are and at a technique called pulse width
modulation (PWM) if you are interested (you definitely should ;)). As a side note,
"real" floating-point voltage can also be produced by digital DACs.

4. At the time of writing, the price difference between the cheapest surface mount
(SMD) and the cheapest through-hole (TH) packages from the same chip producer
was 0.12€ per chip for the exact same die. The price of the packaging has a real
impact on the chip's price; more metal, more plastic, more manipulation = more
expensive. Think about the price part in the epoxy blob section and always keep this
in the back of your mind, especially when it comes to security considerations. It is
not uncommon for vendors to scrape a few cents here and there by selecting MCUs
without floating-point hardware or a security feature, thus opening interesting
possibilities for the pentester.

5. The 7400 and 4000 families are very popular for glue logic. Their main differences
come to the type of transistor they are historically made from (though this is not
true anymore). The 7400 family used to be made from BJT transistors, while the
4000 family used to be made from CMOS transistors. Due to this difference, the
7400 family used to be less energy efficient but faster. Today, you can find typical
7400 integrated circuits (ICs) made from CMOS or other transistor technologies
(the letters after the 74 usually indicate the technology used) to balance speed and
energy consumption.

6. The Federal Communications Commission keeps information about systems with
wireless communication.

7. The 6502 has an address and a data bus, which means it's a Von Neumann
architecture.

338 Assessments

Chapter 4
1. Spoofing, tampering, repudiation, information leak, Denial of Service, escalation

of privilege.

2. From a risk standpoint, it is meant to identify the threats that are the most relevant
to the product and test them. From a practical point of view, it allows the client to
decide where to spend the testing budget in a way that covers the most important
risks and helps us prioritize test scenarios.

3. Who, What, Where, Why, and How.

4. Yes and no; it depends on the following:

a. The color of the approach (black, gray, or white) since that gives you a leg up
compared to a more capable adversary.

b. The time budget available. Being honest to your client and saying that you need
more time because this specific test requires more effort is usually a reasonable way
to go about this.

5. This is very important because problems WILL be found, in the system itself or in
the components it relies on. From an impact perspective, if the system producer
cannot patch a vulnerability or a bug, it will impact its reputation.

6. This is a test where you simulate an attacker with no privileges/information about
the system. It is the most representative approach of attackers and will be the most
common attack that's performed against the system.

7. This is a business impact point that is especially sensitive for the client and is the
end goal for an attacker.

Chapter 5
1. It is the Output Data Register (ODR) for the bank of GPIO, the pin that drives the

LED it is attached to. The same effect can be achieved by toggling the output using
the BSRR and BRR registers of the GPIOC port.

2. No, because the PLL is only fed HDI/2 (4 MHz) and the maximum multiplier in the
PLL is 16 (so a 4*16 = 64 MHz output). Since the HSI (which is an RC resonator) is
less stable (frequency wise) than that of a crystal oscillator, the output clock will also
be less stable.

Chapter 5 339

3. Let' search though the library code for code that start with rcc_clock:
$grep 'rcc_clock_s' bluepill/libopencm3/include/
libopencm3/stm32/f1/rcc.h:

void rcc_clock_setup_in_hsi_out_64mhz(void);
void rcc_clock_setup_in_hsi_out_48mhz(void);
void rcc_clock_setup_in_hsi_out_24mhz(void);
void rcc_clock_setup_in_hse_8mhz_out_24mhz(void);
void rcc_clock_setup_in_hse_8mhz_out_72mhz(void);
void rcc_clock_setup_in_hse_12mhz_out_72mhz(void);
void rcc_clock_setup_in_hse_16mhz_out_72mhz(void);
void rcc_clock_setup_in_hse_25mhz_out_72mhz(void);

Note that only the in_hsi and in_hse_8mhz functions are compatible with the
bluepill with an 8 MHz crystal.

4. Here is an example of how to do it in C:

#include "stdio.h"
int main(){
 char * t = "Z9kvzrj8";
 int i=0;
 while(*(t+i) != 0){ //c strings are 0 terminated
 putchar(*(t+i) ^ 0x19);
 i++;
 }
 putchar('\n');
}

It will print C rocks!.

5. Let's go down the rabbit hole of preprocessor directives (in other words, solve what
all the defined variable values are and how they relate to one another):

$ grep -r 'ine GPIOC_ODR' bluepill/libopencm3/include/
libopencm3/stm32/f1
[...]/stm32/f1/gpio.h:#define GPIOC_ODR GPIO_ODR(GPIOC)
$ grep -r 'ine GPIO_ODR' bluepill/libopencm3/include/
libopencm3/stm32/f1
[...]/stm32/f1/gpio.h:#define GPIO_ODR(port)
MMIO32((port) + 0x0c)
$ grep -r 'ine GPIOC\s' bluepill/libopencm3/include/
libopencm3/stm32/f1
[...]/stm32/f1/gpio.h:#define GPIOC GPIO_PORT_C_BASE
$ grep -r 'ine GPIO_PORT_C' bluepill/libopencm3/include/
libopencm3/stm32/f1

340 Assessments

[...]/stm32/f1/memorymap.h:#define GPIO_PORT_C_BASE
(PERIPH_BASE_APB2 + 0x1000)
$ grep -r 'ine PERIPH_BASE_APB2\s' bluepill/libopencm3/
include/libopencm3/stm32/f1
[...]/stm32/f1/memorymap.h:#define PERIPH_BASE_APB2
(PERIPH_BASE + 0x10000)
$ grep -r 'ine PERIPH_BASE\s' bluepill/libopencm3/
include/libopencm3/stm32/f1
[...]/stm32/f1/memorymap.h:#define PERIPH_BASE
(0x40000000U)

Hence, 0x40000000 + 0x10000 + 0x1000 + 0x0c = 0x4001100c.
The simple way to do it is by using a preprocessor directive to print it when
compiling a program:

#pragma message "The value of GPIOC_ODR: " GPIOC_ODR

Chapter 6
1. The symbol time seems to be 8.8 microseconds, which is very probably

115,200 bauds.

2. Quad SPI. This is a variant of SPI where there are four data lines in order to speed
up transfer. This is very common for flash storage.

3. It is used to detect errors.

4. Phillips.

5. The 24LC has address pins that can be used to set the address on the hardware level.

6. You can bit-bang the I2C protocol (it is a bit complicated but examples can be
found) to accept any address on the slave side.

7. "I love binary operators !": ^ is the notation for the XOR operation (bit per bit,
a^b = 1 if a!=b, 0 if a=b). This mean that if you take a string byte by byte and
XOR it with a key (also byte by byte), the message is (badly) hidden. Here, it is
"I love binary operators!" ^ "A very very serious key!". This is a very common
method to make reverse engineering a little bit more complicated since it hides
printable characters.

Chapter 7 341

Chapter 7
1. dd.

2. Uses a file as a block device.

3. Because modules are only loaded if they are needed. You can manually load them
with modprobe if they are not loaded automatically.

4. eUSB is embedded USB. It is like a normal USB but the connector is different; it is a
2.54 mm pitch female connector. You can just strip a normal USB cable, add pins to
the wires, connect D+, D- , +5 V, and ground, and connect it to a normal computer.

5. It is a multimedia card. It is possible to desolder the chip from the PCB, clean it, and
use a clamshell adapter to read it from a normal computer.

6. FUSE is the "filesystem in userspace." It is a bridge between the kernel space (highly
privileged, direct access to the hardware) and the user space (less privileged, access
to the hardware mediated through the kernel). It is dedicated to implementing
filesystems in a less-privileged area (for example, to comply with licensing
constraints, refer to the history of ntfs-3g and zfs on Linux). It is very practical
to make your own user space filesystem drivers for special cases where, for example,
a specific system only implements a subset of a filesystem's functionalities.

Chapter 8
1. DHCP option 252 can point out the proxy configuration (PAC) file in option 252:

ex : dhcp-option=252, http://192.168.0.2/proxy.pac and
serve it over http.

2. Actually, a lot! We can set up the timeserver (to make certificate checks fail, for
example), try to make it boot to an external file (if it supports remote booting),
make it forward IP traffic, change its static routes, and more. Look at the supported
options list on the IANA website for more information.

3. Change the IP it associates with a legitimate server so that it talks to us instead.

4. It helps us identify the servers the device normally talks to.

5. A generic ATTribute profile.

6. A lack of security features being implemented in BLE allows an attacker to interact
freely with a device.

342 Assessments

Chapter 9
1. Encryption: The goal of encryption is to make it impossible to read for someone

who does not have the keys necessary to read the signal. The goal of encoding is to
make it easy or possible to transmit and receive but it does secure the information.

2. The fast Fourier transform is used to transform a signal in a time domain (what
did I receive and when?) to the frequency domain (what kind of frequencies is
my signal made out of?).

3. The modulation scheme indicates what change(s) in physical dimension(s)
(change in frequency, amplitude, phase, or a combination) of the signal is used
to encode the information.

4. Sampling frequency and available frequency range.

5. Imagine a signal as a sinusoidal of wavelength x. If our dipole antenna is
measuring x, the difference between one end and the other is 0! Our receiver
would have nothing to measure!

Chapter 10
1. It is a test interface and protocol that allows us to talk with an internal test engine.

The behavior of the test engine is not defined in JTAG itself but is engine-specific.

2. TCLK, TDI, TDO, and TMS. They respectively are Test Clock, Test Data In, Test Data
Out, and Test Mode Select. TCLK clocks the debug engine; the data comes in from
TDI, out from TDO, and TMS manages the state transition of the debug engine.

3. No, it was made to test the soldering of chips and PCBs; chip debugging was added
later as an afterthought.

4. Since IDCODE is present on the DR by default, the JTAGulator doesn't have to
send data to the chip to receive an IDCODE! A BYPASS scan finds it since it puts
the chip in BYPASS mode and sends a test pattern through it.

5. http://openocd.org/doc/html/General-Commands.html: mwd,
mww, mwh, and mwb. For example, it can be used to stop a watchdog. Look at the
stm32f1x.cfg file in OpenOCD!

6. Yes it is! Now you can execute your own TCL and test it!

http://openocd.org/doc/html/General-Commands.html

Chapter 11 343

Chapter 11
1. For example:

Mach-O: MacOS and iOS

a.out: Simplifier gcc output

COFF: Older Unix executable format

PEF: PowerPC BE/OS and MacOS classic

There are plenty!

2. .text: Usually the section that holds the executable instructions.debug: Usually
holds the debugging symbols.plt,.dynamic,.got: Sections that hold the
necessary information for the linker to solve the external symbols (functions and
data that come from external libraries). Reading about the linking mechanism in
elf is a very good idea!

3. SPI1

4. Let's start with the strange string. When you look into how strings are stored
in memory, you think of them as a list of characters, one after the other, in the
order of growing memory addresses. This seems logical since you access them by
incrementing a pointer. The thing is that the endianness (the direction a CPU stores
numbers in its registers) can actually matter. What if I told you to break the string
into blocks of four characters and read them in reverse?

 " NAC"+"AH I"+"ET Z"+ " ? A" -> "CAN " + "I HA" + "Z TE"
+ "A ? " -> "Can i haz tea ?"

Outside of a cute cat asking for a warm beverage, this should make your
spidey-sense tingle. Tiny Encryption Algorithm (TEA) is a very common cypher
in embedded systems. It is fast and easy to implement (and based on how it works,
this string/data reversing effect can happen with the same key when you cypher
and decipher on computers with different endianness). You should look into the
different cypher/crypto algorithms (symetric like TEA, blowphish, CAST, IDEA,
serpent, DES, and AES and asymmetric like RSA, Diffie-Hellman, and others) and,
if you don't recognize them at first sight, you should at least get the feeling "this
looks like a cypher" when reversing code.

344 Assessments

5. The TEA typical initialization vector (delta=0x9E3779B9) should be here. In
our code, it is replaced by 0x56455254 (VERT) because it is very common to
identify cypher algorithms with their initialization vectors or constant substitution
boxes (S-boxes). It is a common practice to try to hide the fact that you are using a
common algorithm like that.

6. Patching the instruction at offset 0x2a8 (that is the instruction Ghidra highlights
when clicking on the if in the decompiled view), Compare and Branch Non
Zero (CBNZ) with a Compare Branch Zero (CBZ) would do that. In Ghidra, just
right-click on the Instruction | Patch instruction, save it, and reflash the patched
version to the bluepill. Now it should accept all incorrect passwords (and refuse the
correct one).

Chapter 12
1. Grendel, actually. Once again, the weird key string, when read in the normal endian

direction reads like ytbe:7j7nMYT4DDc. You know, the online video service.

2. First, complicated instructions such as floating-point are off-loaded to a side
processor. And for all the tests and conditions, this is simply implemented in the
Silicon that decodes the instructions as simple switches that enable features around
the additional features. Also, a lot of the instructions share a lot in common, such
as how the tests actually reuse the logic operations by just ditching the results. This
simplifies the decoding unit implementation a lot.

3. msp and psp are the banked sp registers for the processes. This is not supported
on the STM32F103. The others are actually other core registers that are mainly
used in interrupt/exception management. See https://developer.arm.
com/documentation/dui0552/a/the-cortex-m3-processor/
programmers-model/core-registers.

4. Because, if it is set, it will require a very long password to sum up to such a big
value! And using a giant RAM buffer on a smallish MCU is never a good idea.

5. Buy a development board for the chip and flash a patched version of the binary that
doesn't disable JTAG. If this is not possible, you could always use an ARM emulator
(such as oaksim) to simulate the behavior.

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

Chapter 13 345

Chapter 13
1. This is an example of a matrix (the company is accepting a much higher overall

risk level):

1 is considered as irrelevant, 2-3 low, 4-5 medium, 6-7 high, and 8, 9, and 10 as critical.

2. This is an example of a matrix where we reflect the possibility of a more refined
attacker by reducing the impact of complexity on the reduction of the final risk
(that is, the attacker is more skilled and can pull off more complex attacks easily):

This is to avoid the client artificially changing the scales in order to lower the
scoring of vulnerabilities that they consider annoying to fix or remediate.

3. In order for you to have an internal party at the client that is acting as a
neutral party (that is, compliance has no conflict of interest with the technical
implementation team when it comes to do things properly) and usually have a much
stricter approach to regulation compliance than the business.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

348 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

AWS Penetration Testing
Jonathan Helmus
ISBN: 978-1-83921-692-3

• Set up your AWS account and get well-versed in various pentesting services

• Delve into a variety of cloud pentesting tools and methodologies

• Discover how to exploit vulnerabilities in both AWS and applications

• Understand the legality of pentesting and learn how to stay in scope

• Explore cloud pentesting best practices, tips, and tricks

• Become competent at using tools such as Kali Linux, Metasploit, and Nmap

https://www.packtpub.com/product/aws-penetration-testing/9781839216923

Other Books You May Enjoy 349

Learn Kali Linux 2019

Glen D. Singh

ISBN: 978-1-78961-180-9

• Explore the fundamentals of ethical hacking

• Learn how to install and configure Kali Linux

• Get up to speed with performing wireless network pentesting

• Gain insights into passive and active information gathering

• Understand web application pentesting

• Decode WEP, WPA, and WPA2 encryptions using a variety of methods, such as the
fake authentication attack, the ARP request replay attack, and the dictionary attack

https://www.packtpub.com/free-ebook/learn-kali-linux-2019/9781789611809

350

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
Acorn RISC Machine (ARM) 32
actuator blocks 42, 43
Advanced RISC Machine (ARM) 16
Advanced Technology

eXtended (ATX) 26
alternating current (AC) 14
analog sensors 41, 42
Analog to Digital Converter (ADC) 41, 60
antennas

used, for receiving signal 192
Application Binary Interfaces (ABIs) 252
arbitrary radio/SDR 190
ARM assembly

about 287
general information 288-291
syntax 288-291
useful instructions, exploring 291-296

ARM Linux executable
Ghidra with 258-267

assessed system
crown jewels, finding 74-77

Atmel AVR 33

B
baud rate 135
big while (true) loop 276
Binwalk 152
Bipolar Junction Transistors (BJT) 24
black box

about 81
cons 81
pros 81

BLE
about 182
connection security 188

BLE GATTs
enumerating 183-185
interacting with 186, 187

blue module
with epoxy blob 65, 66

bluepill
as example 257, 258

bluepill board
about 97, 98
need for 97

Bluetooth
discovering 171-175

352 Index

Bluetooth services
about 37
OBject EXchange (OBEX) 37
RadioFrequency COMMunication

(RFCOMM) 37
Service Discovery Protocol (SDP) 37

BlueZ source tree
cloning 177, 178

bootloaders 331
BT activity

sniffing, on host 178, 179
Bus Pirate

about 16
used, for sniffing I2C 126, 127

C
C

about 106
dreaded pointer 109, 110
functions 111
operators 107, 108
preprocessor directives 110, 111
types 108, 109
using 98

Capture the Flags (CTFs) 333
Chinese copies 9
Chip Select (CS) 129
CIS benchmarks 327
Clear To Send (CTS) 134
Clock Phase (CPHA) 130
Clock Polarity (CPOL) 130
Clock Recovery MM

parameters and documentation 210, 211
company lab

versus home lab 9
compilation 100

component pantry
about 23, 24
stock 24, 25

components
evaluating, in terms of STRIDE to

compromise properties 80, 81
computer numerical control (CNC) 22
confidential data

storing 330
consulting 320
CPU

roles 30, 31
CPU architectures

reference link 33
CPU block 30
crown jewels

reaching to 80
searching, in assessed system 74-77
searching, in Furby toy 82
testing scenarios, balancing 85-90
test, planning 85

crown jewels, targets
in Furby toy 83

cryptographic applications, in
sensitive applications

about 330
rules 330

Current Program Status
Register (CPSR) 288

Cyclic Redundancy Check (CRC) 141

D
D1W

about 139
injecting 141
man in the middle 142
sniffing 141

Index 353

D1W, mode of operation
presence pulse 139
reading 140, 141
reset pulse 139
writing 140, 141

data
finding 146
finding back 200
sending back 212

data extraction
about 148
onboard storage, common

interfaces 149-152
onboard storage, specific interfaces 149
on-chip firmware 148

data register (DR) 223
Data Terminal Ready (DTR) 134
DebugWIRE 224
decibel (dB) 18
deepest subloop 276
Denial of Service (DoS) 321
Differential Binary Phase Shift

Keying (DBPSK) 39
digital sensors 42
digital to analog (DAC) 60
dipole antenna

creating 192, 193
direct current (DC) 14
DMM

about 12
characteristics 13
continuity measure 13
current measure 13
resistance measure 13
voltage measure 13
workhorse, obtaining 13

dump formats
about 256, 257
structure 257, 258

Dynamic RE
using 296

dynamic reverse engineering
about 282
need for 282

E
Electrically Erasable Programmable

Read-Only Memory (EEPROM) 146
embedded systems architectures

about 31, 33
Acorn RISC Machine (ARM) 32
Atmel AVR 33
Microprocessor without Interlocked

Pipeline Stages (MIPS) 32
PIC 33
RISC-V 33

EMMC 147
epoxy blobs

about 60
behind eyes' LCD 66, 67
blue module with 65, 66
green module with 63, 64
on side PCB 67, 68

Ethernet 38
Executable and Linkable Format

(ELF) 252-254
executable formats

about 250, 251
kernelland 250
userland 250

354 Index

F
Fast Fourier Transform (FFT) 19
Federal Communication

Commission (FCC) 49
Field Effect Transistors (FETs) 24
file allocation tables 152
filesystems

mounting 159, 160
final validation test 307, 308
floating 139
floating-point unit (FPU) 287
FPGA platform

about 20
language 20
vendor 20

frequency shift keying (FSK) 39, 200
functional blocks

borders 68
Furby

about 49-52
chips 56
chips, identifying 55
components, identifying in diagram 54
components, putting in diagram 54
dismantling 55
manual, reading 47, 49
mystery meat 61
opening 54
package family, identifying 56-59
package family, marking 56-59
researching, on internet 49
system analysis approach, taking 47
system diagram 52, 53
system, manipulating 54, 55
unmarked/mysterious chips,

identifying 59, 60

Furby, mystery meat
3D3G 61, 62
blue module, with epoxy blob 65, 66
borders, of functional blocks 68
epoxy blob, behind eyes' LCD 66, 67
epoxy blob, on side PCB 67, 68
green module, with epoxy blob 63, 64
Z100401K9 61, 62

Furby storage
ATMLH306 I2C EEPROM 153-155
FR-marked SPI blob 155
FR-marked SPI blob, dumping 156, 157
FR-marked SPI blob, unpacking 157-159

Furby toy
crown jewels, finding 82
crown jewels, targets 83
STRIDE methodology, applying 82-84

G
Gaussian Frequency Shift

Keying (GFSK) 39
Generic ATTributes (GATT) 182
generic logic analyzer

used, for sniffing I2C 124-126
Ghidra

about 258
on raw binaries, for STM32 268-271
with ARM Linux executable 258-267

Ghidra inspection 297
Global Positioning System (GPS) 3
GNU Compiler Collection (GCC) 101
GNU DebuGger (GDB)

about 285, 287
leveraging 283-285

gray box
about 82
cons 82

Index 355

pros 82
green module

with epoxy blob 63, 64

H
hacked equipment 9
hard drives 147
hardware

defining 191
selecting 191
used, for looking into radio device 192

home lab
versus company lab 9

home laboratory
about 25
amateur 26
beginner 25
pro 27

home lab, versus company lab
Chinese copies 9
hacked equipment 9

hot air gun 19
HyperText Transport Protocol (HTTP) 40
HyperText Transport Protocol with

Security (HTTPS) 40

I
identification pass

about 272
big while (true) loop 276
deepest subloop 276
first loop 275
FUN_08000e54(); 272-274
FUN_080003a8(); 274
FUN_0800041c(); 275
FUN_08000154(); 274

functions 272
main loop 276
shallowest subloop 276

image risk 74
impact dimensions, with clients

financial loss 313
legal risk 313
legal risk, consumer protection laws 313
legal risk, contractual risk 313
legal risk, environmental laws 313
legal risk, loss of life 313
legal risk, organic damage 313
legal risk, privacy laws 313
operational risk 313
reputational risk 313
strategic risk 313

Industrial, Scientific, and
Medical (ISM) 38

industries
good practices 324

instruction register (IR) 221, 222
Instruction Set Architecture (ISA) 31
instrument selection

approaching 10, 11
Bus Pirate 16
DMM 12
FPGA platform 20
hot air gun 19
JTAG adapter 17
lab power supply 20
logic analyzer 15
MCU platform 16
oscilloscope 17
soldering tools 14

interface blocks 43
Inter-Integrated Circuit (I2C)

about 115
architecture 115

356 Index

injecting 128
injecting, exercise 128
man in the middle 128, 129
pause 120
sniffing 123
sniffing, with Bus Pirate 126, 127
sniffing, with generic logic

analyzer 124-126
speed grades 116

Inter-Integrated Circuit (I2C),
mode of operation

about 115
logical layer 121, 123
logic levels 118
physical format, of bits 119
physical layer 115-117
voltage translation 118

Inter-Integrated Circuit (I2C) sampling
about 119
restart condition 120
start condition 119
stop condition 120

IPv4/IPv6 38
ISM band protocols 38

J
Joint Test Action Group (JTAG)

about 217
using, to attack system 219

JTAG adapter
about 17, 223
comparison 223

JTAG pins
about 228, 331
PCB 225-228
searching 224

JTAG protocol 219, 220

JTAG registers
data register (DR) 223
instruction register (IR) 221, 222

JTAGulating 228, 229
JTAGulator

hardware 229, 230
reference link 231
working with 231

K
kilovolt (kV) 8

L
lab power supply

about 20
features 20

light-emitting diodes (LEDs) 5
Linux Bluetooth tools

joystick crash 175
joystick crash, investigating with

high-level interface to BlueZ/
libbluetooth 176, 177

logic analyzer
about 15
types 16

LoRa 39

M
main loop 276
Make

URL 104
Makefile

about 102
anatomy 102-104
terms 103

Index 357

Makefile, elements
targets 103
variables 102

Manchester encoding 201
Master In Slave Out (MISO) 129
Master Out Slave In (MOSI) 129
MCU platform 16
medium-density fiberboard (MDF) 24
memory images 256, 257
memory projected register 100
message queues 40
microcontroller unit (MCU) 6, 217
Microprocessor without Interlocked

Pipeline Stages (MIPS) 32
MiFi 169
modulations

AM/ASK 201
FM/FSK 202
identifying 200, 201
minimum shift keying (MSK) 204
PM/PSK 203, 204

MultiMediaCard (MMC) 147

N
NAND 147
nand command 148
Near Field Communication (NFC) 40
networking

connection 164
encapsulation 164
routing 164

networking blocks 36
networking, in embedded

systems with Bluetooth
basics 169, 170

networking, in embedded
systems with WiFi

about 165
access point, creating 165-168
basic network services, creating 166-168
hardware, selecting 165
joined networks, controlling on 166
Wi-Fi attacks 169

networking protocols, in
embedded systems

about 36
Bluetooth / BLE 37
Bluetooth services 37
Ethernet 38
HyperText Transport

Protocol (HTTP) 40
HyperText Transport Protocol

with Security (HTTPS) 40
IPv4 and IPv6 38
ISM band protocols 38
LoRa 39
message queues 40
Near Field Communication (NFC) 40
Sigfox 39
WiFi 38
Zigbee 38, 39

NIST hardware security guidelines 328
nomenclature 99
Non-Disclosure Agreement (NDA) 82
NOR Flash 147

O
OBject EXchange (OBEX) 37
One-Time Programmable (OTP) 148
on-off keying (OOK) 200

358 Index

Open On-Chip Debugger (OpenOCD)
adapter file 233, 234
convenience functions, defining 239
installing 232, 233
interfaces 239
leveraging 283-285
practical case 240-246
target file 234-239
using 231

operating system formats 251
oscilloscope

about 17
bandwidth 18
display 19
interfaces 19
probes 18
references 19

OWASP IoT top 10
about 324-327
reference link 324

OWASP IoT top 10, for APIs
reference link 325

P
password

highest value possible per
byte, achieving 307

reversing 297-306
Password-Based Key Derivation

Function 2 (PBKDF2) 330
pentesting, approaches

about 81
black box 81
gray box 82
white box 82

pentesting lab
general lab, setting up 7

hardware-related skills 5
languages 5
prerequisites 4
renting, versus buying 23
safety 8
small tools and equipment 21, 22
system configuration 5, 6

PIC 33
PLL 105
point of view

pentesting, from power block 35
Portable Executable (PE) format 254, 256
power block

about 35
from, pentesting point of view 35

pre-delivery meeting 319-321
printed circuit board (PCB) 7, 61, 153
program counter (PC) 288
protocols

debugging 218, 224
legitimate usage 218
programming 218

Q
quad-flat no-leads packages (QFNs) 19
quad-flat packages (QFPs) 19
queued SPI/quad SPI (QSPI) 130

R
RadioFrequency COMMunication

(RFCOMM) 37
radiofrequency (RF) 20
raw BT

sniffing 179-182
repacking process 160

Index 359

report
about 316
language usage 317, 318

report quality 318
report template

building 316, 317
Reset and clock control (RCC) 274
ring 0 250
ring 3 250
RISC-V 33
RS232 134

S
scan chain 219
secrets

storing 330
security, properties

about 77, 78
communication 78
maintenance function 78
protection, of secrets 79
protection, of security elements 79
self-testing 79
system integrity 79

segmentation fault 109
sensor blocks

about 41
analog sensors 41, 42
digital sensors 42

serial 134
Serial Clock (SCL) 115
Serial Data (SDA) 115
serial interfaces 331
serial-to-parallel interface (SPI)

about 65, 129, 130
injecting 133
man in the middle 133, 134

sniffing 132, 133
serial-to-parallel interface (SPI),

mode of operation
about 130
SPI mode 0 130
SPI mode 1 131
SPI mode 2 131
SPI mode 3 132

serial-to-parallel interface
(SPI), parameters

Clock Phase (CPHA) 130
Clock Polarity (CPOL) 130

Serial Wire Debug (SWD) 217
Service Discovery Protocol (SDP) 37
shallowest subloop 276
Sigfox 39
signal

demodulating 206-210
getting back 205

Single wire debug (SWD) 224
Slave Select (SS) 129
software-defined radio (SDR) 23
soldering tools 14, 15
Solid State Drive (SSDs) 146, 147
spy-by-wire 224
stlink-tools

st-flash 104
st-info 104

stlink-tools package
reference link 104

STM32
Ghidra, on raw binaries for 268-271

STM32F103c8t6
about 98
documentation 99
documentation, reading 100
nomenclature 99
peripherals description 100

360 Index

STMicro vocabulary 99
storage block

about 34
data, storing 35
program storage 34
RAM 34

STRIDE methodology
about 72-74
applying, to Furby toy 82-84

T
tabulation (\t) 103
target function

reversing 277
validate_password 277, 278

ternary operator 107
Terrestrial TRunked RAdio (TETRA) 73
Test CLocK (TCLK) 219
Test Data In (TDI) 219
Test Data Out (TDO) 219
test equipment

buying, approaches 9
home lab, versus company lab 9
instrument selection, approaching 10

Test Mode Persistence (TMP) 222
Test Mode Select (TMS) 219
Test ReSeT (TRST) 219
threat modeling

about 72
reference link 73

toolchain
about 100
compilation 102
compilation process 101
compilation process, goal 101
linking 102

toolchain, chip
code 105, 106
flashing 104
libopencm3, using 105
practicing, for bluepill 104

trust relationship, between
backend and device

establishing 328, 329

U
Universal Asynchronous

Receiver/Transmitter (UART)
about 6, 134, 135
injecting 137, 138
injecting, exercise 138
interfaces 331
man in the middle 138
mode of operation 135, 136
sniffing 137

Universal Serial Bus (USB) 6
unknown storage structures

about 151
unknown storage formats 151, 152
well-known storage formats 152

V
validate_password 277, 278
VCC 115
VDD 115
Video Graphics Array (VGA) 19
virtual machine (VM) 6
volts (V) 8
vulnerabilities

scoring 312-315

Index 361

W
war in-between stars 83
Web Proxy Auto-Discovery (WPAD) 168
white box

about 82
cons 82
pros 82

Whole Packet Clock Recovery
(WPCR) 211, 212

WiFi 38
Windows Subsystem for Linux (WSL) 6

Z
Zigbee 38, 39

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting to Know the Hardware
	Chapter 1: Setting Up Your Pentesting Lab and Ensuring Lab Safety
	Prerequisites – the basics you will need
	Languages
	Hardware-related skills
	System configuration
	Setting up a general lab
	Safety

	Approach to buying test equipment
	Home lab versus company lab
	Approaching instrument selection
	What to buy, what it does, and when to buy it
	Small tools and equipment
	Renting versus buying

	The component pantry
	The pantry itself
	The stock

	Sample labs
	Beginner
	Amateur
	Pro

	Summary
	Questions

	Chapter 2: Understanding Your Target
	The CPU block
	CPU roles
	Common embedded systems architectures

	The storage block
	RAM
	Program storage
	Storing data

	The power block
	The power block from a pentesting point of view

	The networking blocks
	Common networking protocols in embedded systems

	The sensor blocks
	Analog sensors
	Digital sensors

	The actuator blocks
	The interface blocks
	Summary
	Questions
	Further reading

	Chapter 3: Identifying the Components of Your Target
	Technical requirements
	Harvesting information – reading the manual
	Taking a system analysis approach
	For our Furby manual

	Harvesting information — researching on the internet
	For the Furby

	Starting the system diagram
	For our Furby

	Continuing system exploration – identifying and putting components in the diagram
	Opening the Furby
	Manipulating the system
	Dismantling the Furby
	Identifying chips
	Chips in the Furby
	Identifying unmarked/mysterious chips
	Furby — the mystery meat
	The borders of functional blocks

	Summary
	Questions

	Chapter 4: Approaching and Planning the Test
	The STRIDE methodology
	Finding the crown jewels in the assessed system

	Security properties – what do we expect?
	Communication
	Maintenance
	System integrity and self-testing
	Protection of secrets or security elements

	Reaching the crown jewels – how do we create impacts?
	STRIDE through the components to compromise properties
	For the example system – the Furby

	Planning the test
	Balancing your scenarios

	Summary
	Questions
	Further reading

	Section 2:
Attacking the Hardware
	Chapter 5: Our Main Attack Platform
	Technical requirements
	Introduction to the bluepill board
	A board to do what?
	What is it?

	Why C and not Arduino?
	The documentation
	Memory-projected registers

	The toolchain
	The compilation process
	Driving the compilation
	Flashing the chip
	Putting it into practice for the bluepill

	Introduction to C
	Operators
	Types
	The dreaded pointer
	Preprocessor directives
	Functions

	Summary
	Questions
	Further reading

	Chapter 6: Sniffing and Attacking the Most Common Protocols
	Technical requirements
	Hardware

	Understanding I2C
	Mode of operation
	Sniffing I2C
	Injecting I2C
	I2C man in the middle

	Understanding SPI
	Mode of operation
	Sniffing SPI
	Injecting SPI
	SPI – man in the middle

	Understanding UART
	Mode of operation
	Sniffing UART
	Injecting UART
	UART – man in the middle

	Understanding D1W
	Mode of operation
	Sniffing D1W
	Injecting D1W
	D1W – man in the middle

	Summary
	Questions

	Chapter 7: Extracting and Manipulating Onboard Storage
	Technical requirements
	Finding the data
	EEPROMs
	EMMC and NAND/NOR Flash
	Hard drives, SSDs, and other storage mediums

	Extracting the data
	On-chip firmware
	Onboard storage – specific interfaces
	Onboard storage – common interfaces

	Understanding unknown storage structures
	Unknown storage formats
	Well-known storage formats
	Let's look for storage in our Furby

	Mounting filesystems
	Repacking
	Summary
	Questions
	Further reading

	Chapter 8: Attacking Wi-Fi, Bluetooth, and BLE
	Technical requirements
	Basics of networking
	Networking in embedded systems using Wi-Fi
	Selecting Wi-Fi hardware
	Creating our access point
	Creating the access point and the basic network services

	Networking in embedded systems using Bluetooth
	Bluetooth basics
	Discovering Bluetooth
	Native Linux Bluetooth tools – looking into the joystick crash
	Sniffing the BT activity on your host
	Sniffing raw BT
	BLE

	Summary
	Questions

	Chapter 9: Software-Defined Radio Attacks
	Technical requirements
	Introduction to arbitrary radio/SDR
	Understanding and selecting the hardware
	Looking into a radio device
	Receiving the signal – a look at antennas

	Looking into the radio spectrum
	Finding back the data
	Identifying modulations – a didactic example
	AM/ASK
	FM/FSK
	PM/PSK
	MSK
	Getting back to our signal

	Demodulating the signal
	Clock Recovery MM
	WPCR

	Sending it back
	Summary
	Questions

	Section 3:
Attacking the Software
	Chapter 10: Accessing the
Debug Interfaces
	Technical requirements
	Debugging/programming protocols – What are they and what are they used for?
	Legitimate usage
	Using JTAG to attack a system

	Finding the pins
	The PCB "plays nicely"
	A bit harder
	Very hard – JTAGulating

	Using OpenOCD
	Installing OpenOCD
	The adapter file
	The target file

	Practical case
	Summary
	Questions

	Chapter 11: Static Reverse Engineering
and Analysis
	Technical requirements
	Executable formats
	Understanding operating system formats

	Dump formats and memory images
	Dump structure – the bluepill as an example

	Analyzing firmware – introduction to Ghidra
	Getting to know Ghidra with a very simple ARM Linux executable
	Going into second gear – Ghidra on raw binaries for the STM32
	First identification pass
	Reversing our target function

	Summary
	Questions

	Chapter 12: Dynamic Reverse Engineering
	Technical requirements
	What is dynamic reverse engineering and why do it?
	Leveraging OpenOCD and GDB
	GDB? But... I know nothing about it!

	Understanding ARM assembly – a primer
	General information and syntax
	Exploring the most useful ARM instructions

	Using dynamic reverse engineering – an example
	First Ghidra inspection
	Reversing the expected password
	Of course, I aced the test

	Summary
	Questions

	Chapter 13: Scoring and Reporting Your Vulnerabilities
	Scoring your vulnerabilities
	Being understandable to everyone
	Building your report template
	Usage of language in a report
	Report quality

	When engineers do not want to re-engineer
	Summary
	Questions

	Chapter 14: Wrapping It Up – Mitigations and Good Practices
	Industry good practices – what are they and where to find them
	OWASP IoT top 10
	The CIS benchmarks
	NIST hardware security guidelines

	Common problems and their mitigations
	Establishing a trust relationship between the backend and a device
	Storing secrets and confidential data
	Cryptographic applications in sensitive applications
	JTAG, bootloaders, and serial/UART interfaces

	What about now? Self-teaching and your first project
	Closing words

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Other Books You May Enjoy
	Index

