

Game Audio
 Programming 3

https://taylorandfrancis.com

Game Audio
 Programming 3
Principles and Practices

Edited by
Guy Somberg

First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please
contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-35413-8 (hbk)
ISBN: 978-0-367-34804-5 (pbk)
ISBN: 978-0-429-33125-1 (ebk)

Typeset in Minion
by codeMantra

Visit the companion website: https://www.routledge.com/9780367348045

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://www.routledge.com

To Emily, who is (hopefully) not yet sick of
these books getting dedicated to her.

https://taylorandfrancis.com

vii

Contents

Preface, xi

Acknowledgments, xv

Editor, xvii

Contributors, xix

Chapter 1 ◾ Sound Effect Categories 1
Florian Füsslin

seCtion i DSP

Chapter 2 ◾ Complex Numbers: A Primer for DSP
Programming 15
robert bantin

Chapter 3 ◾ Building Dynamic Analog-Style Filters:
Bi-Quadratic Cascades vs Digital Integrator
Cascades 29
robert bantin

Chapter 4 ◾ Modeling Atmospheric Absorption with a
Low-Pass Filter 51
niC taylor

viii ◾ Contents

seCtion ii Voice

Chapter 5 ◾ Software Engineering Principles of
Voice Pipelines 71
MiChael Filion

Chapter 6 ◾ A Stimulus-Driven Server Authoritative
Voice System 81
toMas neuMann

seCtion iii Audio Engines

Chapter 7 ◾ Building the Patch Cable 93
ethan Geller

Chapter 8 ◾ Split Screen and Audio Engines 119
aaron MCleran

Chapter 9 ◾ Voice Management and Virtualization 133
robert Gay

Chapter 10 ◾ Screen-Space Distance Attenuation 143
Guy soMberG

Chapter 11 ◾ Under the Influence: Using Influence Maps
for Audio 167
Jon MitChell

Chapter 12 ◾ An Importance-Based Mixing System 181
Guy soMberG

Contents ◾ ix

Chapter 13 ◾ Voxel-Based Emitters: Approximating the
Position of Ambient Sounds 205
niC taylor

Chapter 14 ◾ Improvisational Music 235
Charlie huGuenard

INDEX, 251

https://taylorandfrancis.com

xi

Preface

INTRODUCTION
Welcome to the third volume of Game Audio Programming: Principles and
Practices! It is always exciting to me when these books come together. So
many audio programmers pour their expertise onto the page, and I get the
privilege of collecting that knowledge into one place that can be shared
with the world. As an added bonus, I get to be the first one to read the
chapters and to learn from them. As with all of the books in this series,
all of the contributors worked very hard, and this volume would not exist
without their hard work and dedication.

Game audio programming is a job that requires many layers of exper-
tise. We have to be tools programmers, pipeline managers, build engi-
neers, experts in using our chosen middleware (both tools and APIs), and
more. We need to have an understanding of audio design and the tools,
techniques, and terminology that they use. There are many fundamental
techniques that apply globally, but each game genre has its own set of spe-
cific challenges that require their own distinctive solutions. Small wonder,
then, that there is always more to write about and always more to learn.

THIS BOOK
The chapters in this book touch on only some of these techniques that are
critical to our jobs. Some of them dive deep into a topic and provide spe-
cific solutions to individual problems, while others are broad overviews of
a subject and provide a concept of the scope of the problem and the kinds
of questions you may need to ask.

Here are brief summaries of all of the chapters in this book:

• Sound Effect: Categories by Florian Füsslin—Any game project,
no matter the genre or scale, will follow a pattern in the types of
audio assets that it requires. This chapter takes a tour of the various

xii ◾ Preface

categories that sound effects live in and the sorts of features that will
be necessary in order to feed the content. It is intended as a starting
point and a common frame of reference in creating a dialog between
the audio designers and the audio programmers.

• Complex Numbers: A Primer for DSP Programming by Robert
Bantin—Complex numbers show up a lot in DSP programming,
but they can feel a little bit mystical without the proper background.
This chapter uses an alternating current as a practical demonstra-
tion of how complex numbers are useful in solving real-world prob-
lems. With this primer, the math of DSPs will be more approachable.

• Building Dynamic Analog-Style Filters: Bi-Quadratic Cascades
vs Digital Integrator Cascades by Robert Bantin—The ubiqui-
tous biquad filter and the “cookbook” formulas by Robert Bristow-
Johnson have been implemented in innumerable audio engines,
and they work well for the most part. However, they exhibit some
 undesirable properties when their parameters are adjusted rapidly.
Digital Integrator Cascades, a technique by Hal Chamberlin, are an
alternative to the biquad filter that have some better properties for
this particular purpose.

• Modeling Atmospheric Absorption with a Low-Pass Filter by Nic
Taylor—Attenuation settings are often implemented in games as a
set of parameters, including a low-pass filter to model atmospheric
absorption. This chapter explores using the atmospheric features of
air temperature and humidity to provide a systematic way of setting
a low-pass filter cutoff for sound propagation.

• Software Engineering Principles of Voice Pipelines by Michael
Filion—Managing and delivering voice lines can be among the most
complex processes in a game project. This chapter takes a tour and
overview of the sorts of challenges that you are likely to run into and
some of the questions that you will need to ask.

• A Stimulus-Driven Server Authoritative Voice System by Tomas
Neumann—Spoken words are often at the core of why players con-
nect and relate to the characters within a video game. This chapter
presents some techniques for creating a voice system based on an
authoritative server that directs which lines are chosen, picks who
says something, and which client should play these lines.

Preface ◾ xiii

• Building the Patch Cable by Ethan Geller—In analog audio, any
point in the signal chain can be split off and plugged into any device
by using a patch cable. When we think about abstractions for game
audio, we tend to think of base classes and hierarchies, but this chap-
ter takes a different tactic with a more generic abstraction: the patch
cable. This chapter builds up a fully thread-safe multi-producer
multi-consumer patch abstraction.

• Split Screen and Audio Engines by Aaron McLeran—When imple-
menting a split-screen game where multiple players are all on the
same physical device, it can be difficult to figure out how to render
the audio. This chapter provides a simple solution, along with the
background math, and explanations of why it is the best solution to
the problem.

• Voice Management and Virtualization by Robert Gay—Game
audio engines, at their core, are about managing which sounds are
currently playing. This chapter discusses techniques for managing
real and virtual voice queues, and how to virtualize and realize the
currently playing sounds.

• Screen-Space Distance Attenuation by Guy Somberg—When mak-
ing a game like an ARPG where the camera is up in the sky look-
ing down at the action, it can be difficult for sound designers to
find appropriate min/max distances for 3D sounds. We can create a
meaningful value for sound designers by redefining the concept of
distance from “world distance to attenuation position” to “distance
in screen space.”

• Under the Influence: Using Influence Maps for Audio by Jon
Mitchell—Influence maps are a technology that comes from the AI
world, and are used a lot in RTS games. Applying the techniques
from influence maps to audio can create some extremely useful fea-
tures. This chapter discusses how to create and update influence
maps, and how to apply them to game audio.

• An Importance-Based Mixing System by Guy Somberg—Most of
the mixing tools that are in our toolbox are offline—that is, the deci-
sions are made at content authoring time, even if they are applied at
runtime. However, any mixing decision that is made at authoring
time can be negated by a particular situation in-game. This chapter

xiv ◾ Preface

goes through the algorithm of creating a mixing system based on the
concept of “importance,” which is calculated at runtime based on
what’s happening in the game.

• Voxel-Based Emitters: Approximating the Position of Ambient
Sounds by Nic Taylor—When implementing volumetric sounds
based on voxel emitters, there are many edge cases and corners to
understand and deal with. This chapter dives deep into these dark
corners, and provides mathematical and code solutions to them.

• Improvisational Music by Charlie Huguenard—Implementing a
dynamic note-based music system can be an effective way to author
music that changes with gameplay. Taking it one step further, we can
apply the lessons of jazz to author music on the fly. This chapter goes
through how to build such a system, and provides code examples
and homework assignments to improve the system.

PARTING THOUGHTS
My first job out of college was writing a software mixer for a slot machine
operating system, and that is where I got my first taste of (and love for)
audio programming. As I transitioned to working on video games, I
learned some good ways of solving game audio problems and some bad
ways, but I never had a resource like this book or the previous two vol-
umes. I wish I had it at the time, but I am excited that it exists now. I hope
that it is inspiring, educational, and valuable.

Guy Somberg

xv

Acknowledgments

Thanks to my contributors. Books like this don’t exist without your hard
work and expertise, and your determination to write it all down.

Thanks to Brian Fitzgerald, David Brevik, and Tyler Thompson, who
all gave me chances to prove myself and from whom I have learned a lot.

Thanks again to Thomas Buckeyne, who started me on my audio pro-
gramming journey.

Thanks to David Steinwedel, who was with me on my first big game
title, and whose partnership and friendship were both instrumental in
cementing my love of game audio programming.

Thanks once again to David Steinwedel, Jordan Stock, Andy Martin,
Pam Aranoff, Michael Kamper, Michael Csurics, and Erika Escamez—the
sound designers who have accompanied me on my audio programming
journey.

Thanks to Rick Adams, Jessica Vega, and the rest of the team at CRC
Press. I appreciate all of your hard work on my behalf in making this book
a reality.

And thanks to my wife Emily who is always helpful and supportive of
my work on this book.

https://taylorandfrancis.com

xvii

Editor

Guy Somberg has been programming audio engines for his entire
career. From humble beginnings writing a low-level audio mixer for slot
machines, he quickly transitioned to writing game audio engines for all
manner of games. He has written audio engines that shipped AAA games
like Hellgate: London, Bioshock 2, The Sims 4, and Torchlight 3, as well
as smaller titles like Minion Master, Tales from the Borderlands, and
Game of Thrones. Guy has also given several talks at the Game Developer
Conference, the Audio Developer Conference, and CppCon.

When he’s not programming or writing game audio programming
books, he can be found at home reading, playing video games, and play-
ing the flute.

https://taylorandfrancis.com

xix

Contributors

Aaron McLeran is a game audio veteran with AAA development experi-
ence as an interactive music composer, sound designer, and audio pro-
grammer for a number of award-winning games. He is currently the lead
audio programmer at Epic Games working on the audio engine for UE4.

Charlie Huguenard is a musician who learned how to code. For about
a decade, he’s made interactive experiences and tools for making inter-
active sound at companies like Facebook, Meow Wolf, Telltale Games,
Magic Leap, and Funomena. In his free time, he can be found poking
around the wilderness with a backpack and a hammock, taking in the
beauty of the Southwest from the highway, and narrowly avoiding injury
at one of the Bay Area’s many skate parks.

Ethan Geller is an audio programmer working on the Unreal Engine, which
is used by several games. Prior to working at Epic Games, Ethan worked
at Dolby and PlayStation, received his master’s degree from CCRMA
at Stanford, and went to undergrad for music composition at Indiana
University. Ethan’s primary research interests are HRTF personalization,
optimal filter design, and wave field capture/synthesis. He also plays drums.

Florian Füsslin had a 10-year music background when entering the game
industry with Crytek in 2006. During the past 14 years, he has contributed
to the audio pipeline of CRYENGINE and shipped all major Crytek titles
on multiple platforms, including the Crysis Franchise, Ryse: Son of Rome,
the VR titles The Climb and Robinson, and HUNT: Showdown. Being a ded-
icated gamer and living the passion for game audio, he is leading the audio
team in the role of an Audio Director. He is lecturing at the Hochschule
Darmstadt (h_da) and School of Audio Engineering in Frankfurt (SAE),
and has given talks at multiple international conferences.

xx ◾ Contributors

Jon Mitchell has worked as an audio programmer for United Front Games,
Radical Entertainment, and Codemasters, and is currently working with
the wonderfully talented and friendly people at Blackbird Interactive on
Homeworld 3. He lives in Vancouver with his partner, two destructive
cats, and the World’s Cutest Baby.

Michael Filion has been developing video games for his entire career of
more than 10 years with Ubisoft Québec, with the majority in the world
of audio. When explaining his work and passion to friends and family,
he often oversimplifies by stating that he is “responsible for ensuring the
bleeps and bloops are functional in video games.” He has had the opportu-
nity to work with many talented people on games such as Assassin’s Creed,
Child of Light, and Tom Clancy’s The Division. In between delivering great
titles, he enjoys traveling with his daughter and searching out different
craft brews from around the world.

Nic Taylor has 10 years of experience working on audio engines in the
video game industry. He started programming writing casual games for
Windows in the late 1990s as well as audio plug-ins for his own music
projects. Nic’s first audio engine integration from scratch was for Red 5
Studio’s custom MMO engine which was an early adopter of Wwise. Nic
has since done other audio engine integrations and feature work using
well-known engines. His last game project was with the Diablo team at
Blizzard Entertainment. Nic now has a different role in audio working on
language understanding of music queries at Google. On the side, he con-
tinues to produce music applying his interest in DSP and room acoustics.

Robert Bantin has been writing audio code for rather a long time. While
at school, he was an active member of the Amiga demo scene. At Salford
University, he studied acoustics and brought his coding experience to his
studies in the form of DSP and audio-focused applications. Upon graduat-
ing, he was recruited by Philips ASA Labs in Eindhoven in order to join
the MPEG technology program. After returning to the UK, he worked
at Thorn-EMI and brushed with their spin-off game audio middle-
ware: Sensaura GameCODA. He also worked at Yamaha and FXpansion
on several well-known DAW plug-ins, as well as writing some of Auro
Technologies’ first shippable code. Robert has since worked on a num-
ber of AAA games such as Guitar Hero Live, Dirt 4, and Tom Clancy’s
The Division 2. When he’s not programming, he can be found at home

Contributors ◾ xxi

building flying models with his son, attempting to shred on guitar, and
playing video games when no one is looking.

Robert Gay has been working in games ever since he graduated from
the University of Washington with a Bachelor of Science in Electrical
Engineering and a Bachelor of Fine Arts in Digital Arts & Experimental
Media. Starting as a Sound Designer in 2010 and then moving to being a
Technical Sound Designer, he finally moved to audio programming full
time while working at ArenaNet. Since then, he has worked at Amazon
as a Lead Game Audio Programmer and is currently a Senior Audio
Programmer working at Epic Games on the Unreal Engine.

Tomas Neumann has focused on improving audio technology in the game
industry for 15 years. By improving the audio capabilities and workflows of
CryEngine, he contributed to the development of the critically acclaimed
CRYSIS series. At Blizzard Entertainment, he developed the audio tech-
nology and voice system used for the award-winning Overwatch and con-
tributed to World of Warcraft and Warcraft 3 Reforged. Currently Tomas is
defining the audio pipeline and features of Blizzard’s shared game engine
development.

https://taylorandfrancis.com

1

C h a p t e r 1

Sound Effect
Categories

Florian Füsslin
Crytek GmbH

CONTENTS
1.1 Preamble 2

1.1.1 Interactive Media 2
1.1.2 The Big Three 3

1.2 The World 4
1.2.1 Environment 4
1.2.2 Weather 5
1.2.3 Particle Effects 5
1.2.4 Physics 6

1.3 Characters 7
1.3.1 Movement 7
1.3.2 Interactions 8

1.4 Feedback 9
1.4.1 Menu 10
1.4.2 Interface 10
1.4.3 Experience 10

1.5 Wrap-Up 11
1.5.1 Sound Effects Category Check List 11

1.6 Conclusion 12

2 ◾ Game Audio Programming 3

1.1 PREAMBLE
In the last two years, I have lectured on the subject of Game Audio at
various universities and audio schools. While giving those talks, I real-
ized that I ended up explaining terminology in greater detail than I had
anticipated. The general split of game audio production into dialog, music,
and sound effects makes sense to everyone. When I tried to break it into
smaller pieces, however, there were many follow-up questions on sound
effects in particular. Some people had either never heard of some sound
effect categories or didn’t associate anything with them. I consulted with
colleagues in the game industry about this observation, and it turns out
that even within this group of audio specialists, definitions and terminol-
ogies of sound effect categories vary. This chapter felt like a great oppor-
tunity to tackle the topic, and provide an overview of a potential project
structure, common complexity, and possible challenges. It can function
as a basis for a nomenclature for the project naming convention, and can
build the foundation for communication and collaboration between audio
designers and audio programmers. The goal is to enable you to handle all
sound effect requirements and requests coming your way in a structured
fashion.

1.1.1 Interactive Media

Most of the terminology around sound effects has been adopted from film
and audio post production, thinking in scenes and stems. Atmospheres
set the mood and background of a scene; foley effects support on-screen
sounds to add details and enhance drama; designed special effect sounds
create emotional reactions and support the actions. We have full control
of audio in this kind of linear media environment, so all of our sound
effects will play back exactly once and can be perfectly designed, timed,
balanced, and mixed to fit that particular scene.

But because games are interactive with player input, we have a lot less
control. Therefore, we have to think in sources (where is the sound emit-
ter), situations (when is it playing), and conditions (what states it is in). We
need a lot more assets to cover all potential scenarios and multiple varia-
tions to avoid repetition. In theory, every sound could play at any time
and be the most important sound playing at that moment, which requires
a constant shift in priorities and adjustment of the mix in real time. With
this complexity, game audio needs to develop new sub-categories within
the sound effects group.

Sound Effect Categories ◾ 3

1.1.2 The Big Three

The sound effects for most modern games usually fall into three major
categories:

 1. World—The game environment including ambiences, weather
 conditions, particle effects, and physics.

 2. Character—All protagonists and antagonists, their movement, and
their interactions.

 3. Feedback—Audio cues for menu, heads-up display, and enrichment
of the user experience.

It’s easy to see how these categories can map to the sounds for games like
an FPS or an MMORPG, but they are also applicable to other genres.
For example, in a soccer game, the world is the stadium, the character is
the ball, and feedback is the situational crowd reaction. In an RTS game,
the world is the battlefield, the units are the characters, and feedback is the
information about mission status, resources, and production.

These “big three” main categories can function as a starting point for
how we structure and manage our audio data in the project or audio mid-
dleware. In a soccer game, for example, we would need specific groups
and folders for each stadium, but we could treat and structure the crowd
globally. This line of thinking works for other categories as well. If our
game will always be in sunny daylight for all levels, then we don’t need any
weather effects, and we can treat our ambiences globally with no real-time
conditions.

In another scenario, we have an open world with different environments
ranging from a dense jungle to vast deserts, extreme weather conditions,
and a complete 24-hour day/night cycle featuring all four seasons. In this
case, we will probably design and structure per environment, including
dawn, day, dusk, and night layers. We will repeat this procedure per sea-
son, and support extreme weather conditions like seasonal types of rain in
the jungle and various sandstorms in the desert. All of this must be driven
by parameters so that our environments and conditions can adapt in real
time.

There are always exceptions to the rules, and each project has dif-
ferent requirements, which is why it is important to ask the following
questions:

4 ◾ Game Audio Programming 3

Do I need this (sub) category in my project? Do I see this category used
globally, or is it specific to one section of the game? Do I have to react to
real-time conditions, and if yes, what are they?

With these questions in mind, let’s dive deeper into the sub-categories
of the big three.

1.2 THE WORLD
The world represents the game environment and consists of the following
sub-categories:

• Environment—Ambiences and spot effects.

• Weather—All elements like rain or thunderstorms.

• Particle effects—Fires, sparks, steam, etc.

• Physics—Everything related to rolling, sliding, bending, collision,
and destruction.

1.2.1 Environment

Unless you are in space, there is always some noise. It can be a subtle
room tone, a rustling forest, or a cold mountain wind. This is called
ambience, sound bed, or atmosphere. Even if it is very subtle, it grounds
the player in the world and functions as the noise f loor and threshold
from which we can build our audio mix and dynamic range. This base
layer is usually designed as a static loop or a granular loop which is
rather sparse and steady to hide its repetition. To reduce the potential
monotony, we can add details which don’t need visual support such as
blooms or falling dust.

Once we have the base loop, we can build on it. Wind gusts can help
to make the ambience feel more dynamic, ideally driven by a parameter
like wind_intensity. If our project supports a full day and night cycle, we
will want to consider sweeteners for dawn, day, dusk, and night and drive
them via a time_of_day parameter. If our game ranges across all seasons,
we might use a season parameter to provide variants for spring, summer,
autumn, and winter.

In addition to the ambiences, we can use spot effects for positional
details to the environment. This can be a constant emitter like a waterfall,
a generator, or a windmill, or it can be randomly occurring like an insect
flyby, wind gust, or distant rumble. Ideally there is a corresponding visual

Sound Effect Categories ◾ 5

representation or a landmark we want the player to pay attention to, but
even without that, playing these sounds can still enliven and add depth to
the player’s environment.

1.2.2 Weather

Weather can be a big part of the perceived environment and ambience.
Due to its complex nature and the strong visual component, it makes
sense to treat it as a separate sub-category. Rain, for example, can range
from a sprinkle to a thunderstorm to a full-blown hurricane and will need
to blend between these via a parameter like rain_intensity. Wind can go
from a gentle breeze to a full storm all the way to a tornado, again driven
by a wind_intensity value.

If our weather simulation is dynamic, we also have to consider the time
before and the time after the effect. For example, a thunderstorm usu-
ally starts with gusts of wind which increase in intensity. Then they sud-
denly stop before the rain starts to fall with a couple of big drips before
the shower begins. Eventually the wind increases again during the rainfall
before it quiets down again. Finally, there is the aftermath. The ground is
wet with puddles, rivulets, and small streams. It is dripping from the roofs
and trees, and gurgling in the downspouts.

Even less noisy weather can have a strong impact on the audio. With
fog, for example, we may want to make everything sound more muted as
the fog gets thicker. Snow has a very similar effect. Falling snowflakes are
not very noisy, but they swallow all reflections, which reduces audibility
over distance. The acoustic difference is prominent.

1.2.3 Particle Effects

Similar to weather, particle effects also have a strong and very dynamic
visual component which can range in scale and size drastically. Because
they are often reused across the whole game, it makes sense to treat them
in their own environment sub-category. For example, a fire effect can
range from a small match all the way to a firestorm. The visual part often
does a copy and paste, treating it as more of the same scaled up or down.
For audio, playing the sound of a burning match one thousand times
still won’t make it a firestorm, and attempting to do so will not help our
performance.

Given this disparity, it makes sense to create assets for a fixed range
of scale and size such as small, medium, and large. In addition, we can

6 ◾ Game Audio Programming 3

drastically reduce the load on the audio engine and help to build a con-
vincing, manageable, and flexible toolkit by including parameters such as
size to drive a pitch effect or amount to trigger additional sweeteners like
an additional rumble or sizzle, or to switch the asset to a plural version of
the individual sound.

1.2.4 Physics

Physics describes everything that can collide, roll, slide, bend, or break in
our game world. While this is often tied to the actions the characters can
perform, it makes sense to keep it a global system and therefore tied to the
world and environment.

With physics, small design requests can quickly result in a very com-
plex system with a large number of assets needed. For example, maybe the
player can throw a stone to distract enemies. For audio, this feature means
that we need multiple stone impacts for all possible surface types in the
game like wood, metal, stone, and water. If the player can hold the throw
input to throw harder, we add an intensity from soft to hard. If the sizes
of the throwable rocks also vary, we also need to cater from pebble to brick
for all surface types. It is easy to end up with a couple hundred assets just
for the collision of one thing.

The closer we get to a real-world simulation, the more complex and
difficult it becomes to create believable outcomes. Just as with particles,
audio doesn’t scale with size: many small stone impacts don’t sound like
a big rock collision. To make it manageable to create these assets, we take
shortcuts by generating groups such as size (small, medium, large), throw-
ing intensity (soft, regular, hard), and use real-time parameters such as
mass, velocity, speed, and amount to drive real-time effects such as pitch
or volume. Also, we can design multi-impact sweeteners that trigger once
a certain threshold of “impacts per time” is reached.

While grouping can get us a fair distance, there will always be excep-
tions where we have to use original assets. A barrel is a good example.
While its surface is made of sheet metal, its internal resonance gives it
a distinct sound which will require a bespoke asset. A similar rule also
applies to breakable objects. A tree might consist of multiple sizes of wood
which splinter when the tree is destroyed, but simply playing the wood
splintering sound is unlikely to be convincing when the whole tree breaks
and comes down, for both the trunk and branches with leaves and foli-
age. Once again, we will need to design a bespoke asset in order to sound
realistic.

Sound Effect Categories ◾ 7

Sometimes it can make sense to move some elements to another cat-
egory based on what triggers them, even though the assets share a strong
relationship. For example, when the wind moves vegetation about (driven
by a wind_intensity parameter), it makes sense to keep it in the world
physics category. However, vegetation shuffle sounds caused by player
actions (such as walking through the vegetation or hitting it) would go
into the character category.

1.3 CHARACTERS
The category of characters includes everything that is related to player and
non-player assets with the following sub-categories:

• Movement—Clothes and footsteps.

• Interactions—Player control and everything the player can
manipulate.

1.3.1 Movement

In movies, the term “foley” describes the sounds that are added and
replaced during post production, either because they were not possible to
record properly on set or require special sound design. This includes foot-
steps on surfaces and sounds of cloth movement, as well as specific prop
sounds like a squeaking door for example. These sounds are often exag-
gerated to increase the drama and intensity of the scene. As video games
are silent from the start, we end up with a large amount of assets required
to cover our bases like basic movement of the main character. If our game
supports character customization or user-generated content with a wide
range of possible clothing styles, this can scale out of control, so we share
and reuse assets where possible.

For clothing sounds like cloth rustles and movement, we can group our
assets by speed (slow, medium, fast) or intensity (soft, regular, hard). For
different clothing styles, we can split our design into multiple layers, such as
fabric (the soft cloth-on-cloth movement), leather (typical c orrespondent
jacket crunch), and jingle (zippers, buttons, and chains). If we tie param-
eters to each layer and give clothing a specific layer value, we can create a
solid wardrobe of very-different-sounding clothes. There might be some
exceptions which need additional sweeteners because they have a specific
and unique-sounding element, like backpacks or gun belts. Together with
real-time effects and asset blending, a matrix like this should hold up for
the majority of our character movements.

8 ◾ Game Audio Programming 3

For footsteps, it is pretty common that we also need different move-
ment speeds (sneak, walk, and run/sprint), turning on the spot (shuffle),
or quickly accelerating/stopping (scuff). If our game supports jumping,
we also need a landing sound. If our character can fall, we have to think
about more heavy body-falls. This task becomes massive if we also have
to support different shoe types (e.g. boots, flip-flops, sneakers), different
character sizes, all genders, and even weather with dry and wet variants
for all surface types.

In order to manage the number of assets, we share the surface types
across all characters by splitting tip and toe and make the boot type an
iconic sweetener. A similar approach can work for landing and body-fall
where we share the surface and create generic assets for each type. We can
use size and gender as real-time parameters to drive a pitch or a delay
effect to manipulate the timing of how the individual assets are granularly
stitched together.

There will usually be exceptions to this matrix. Water is one as moving
in puddle-, ankle-, knee-, and hip-deep water all sound very different. A
parameter like depth can help to find a good balance between the amount
of assets, and real-time blending and modification.

Also specific boot types can require exceptions. While cowboy boots
with spurs is probably solved with the typical jingle added to the standard
boot, the distinct sound of high heels makes it tricky to share assets. One
possible shortcut could be to group the surface type as hard and soft or to
build our matrix around parameters like resonant and solid to cater for
the game we are making.

1.3.2 Interactions

Most of the sounds required for a game are based on the actions of the
player and the control inputs. This can range from a simple activity such
as opening a door or operating a rifle all the way to complex mechanics
like driving a car.

Most of the time, we can split an interaction into five consecutive
steps:

 1. Attempt—The initial control input: the player wants to perform an
action.

 2. Execution—The attempt put into action.

 3. Condition—Check plausibility and possible outcomes of the action.

Sound Effect Categories ◾ 9

 4. Result—The action based on the condition.

 5. Reaction—The game world responding to the result.

Let’s see how this works with a few examples:

Action: Opening an old rusty wooden door
Attempt Reaching for the latch
Execution Pushing down the door handle
Condition Check whether the door is locked
Result Either rattling the locked door or the door actually opening
Reaction The resonance of the creaking wood when slowly granting access

complemented by the reverb of the surroundings
Action: Shooting a gun
Attempt Aiming down the sights
Execution Pulling the trigger
Condition Check whether a bullet is in the chamber
Result Either the dry fire click or the muzzle-flash and the bullet leaving the

barrel
Reaction Gun tail and reflections of the surroundings
Action: Braking while driving a vehicle
Attempt Putting the foot on the pedal resulting in engine reducing its stress and

potentially dropping in rpm
Execution Pushing down on the pedal
Condition Check whether the braking is strong enough to make the wheels stop

turning with a surface-type-based squeak or the anti-lock braking
system kicking in with a rumble

Result Decrease in speed, less wind noise, and audibility of the tires
Reaction Dust settling

If we have a piece of complex machinery that the player can operate, it can
make sense to keep “attempt” and “execution” in the character c ategory
and move “condition,” “result,” and “reaction” to the world c ategory. For
example, operating the button to call an elevator is very character driven,
but the elevator moving, arriving, and opening its door is part of the world.

1.4 FEEDBACK
The player is constantly providing input to the game, so we will need a
stream of acoustic feedback and additional audio cues to make the player
aware about the status of the game, the overall progress, important
moments, and critical events.

10 ◾ Game Audio Programming 3

There are three sub-categories to feedback:

 1. Menu—Sounds required for the landing page.

 2. Interface—Elements for the in-game heads-up display.

 3. Experience—Emotional sound cues to trigger player excitement.

1.4.1 Menu

The menu is the first contact between the player and our product. The
game begins with the main menu, where players start their onboarding
by creating an avatar; setting difficulty, graphic, and sound options; or
adjusting the controls to their needs. Going in or out of a submenu, slider
movement, and button presses usually have sound attached to support
the physical interaction of the input device. Ideally these sounds should be
themed to our product. For example, in an ancient Roman action game, we
might want using sword whooshes for moving between the menu pages, a
shield smash to cancel, and a sword hit to confirm. The main menu also
offers an option to give a first glimpse of the game world by playing an
ambience or moody soundscape. In our example, this could be the sound
of a distant battle or marching soldiers.

1.4.2 Interface

The interface plays a major role in giving the player helpful informa-
tion about the status, progress, and events of the game. These events
might be acoustic support for banners and tutorial hints, f lashing icons
that highlight the controls, notifications of mission success, or warnings
that focus the player’s attention to a certain area of the screen or to an
important event which is about to happen. Like the menu, these sounds
should be themed to our product. We want to give these events a strong
audible identity while maximizing player readability. Using our Roman
action game example, we can support the banners with a sword pull-
ing from the sheath on appearance and holstering it when it disappears,
highlighting controls with a drum roll to underline the haptic nature,
or playing battle horn sounds to make the player aware that an attack is
underway.

1.4.3 Experience

The user experience is deeply connected to the emotional aspects of play-
ing a game. Audio can play a big role in achieving a memorable gaming

Sound Effect Categories ◾ 11

experience. HUD sounds are part of that, giving the player vital informa-
tion regarding the game status, critical events, or important information.
This can be an alert sound when your base is under attack in a real-time
strategy game, the heartbeat sound when running out of health in an
action game, or the ticking of the timer when falling behind in a racing
game.

Often, these sounds are unrealistic and designed to enhance the drama
or provide satisfaction. A good example is the successful hit feedback,
which is designed and exaggerated to celebrate the victorious moment, or
low-tone sub-bass rumbles which increase tension and build up a sense of
fear and danger long before the actual game event.

1.5 WRAP-UP
While this structure has been proven to work for a solid range of titles,
there will always be elements which might not fit into an existing category
and require a different structure based on the game you are making. The
list in Section 1.5.1 is meant to be a first check to give you a starting point
regarding your asset requirements, technical implementation, and project
structure.

1.5.1 Sound Effects Category Check List

• World

• Environment (e.g. ambiences, spot FX)

• Weather (e.g. rain, snow)

• Particle (e.g. fire, spark)

• Physics (e.g. collision, destruction)

• Character

• Movement (e.g. clothes, footsteps)

• Interaction (e.g. abilities, features)

• Feedback

• Menu (e.g. options, buttons)

• Interface (e.g. mini-map, events)

• Experience (e.g. hit feedback, health indicator)

12 ◾ Game Audio Programming 3

• Questions to answer:

• Do I need this (sub) category in my project?

• Do I see this category used globally or specifically?

• Do I have to react to real-time conditions, and if yes, what are
they?

1.6 CONCLUSION
It is important for us to talk about the sound effect requirements and
potential challenges early in production. The common use of audio mid-
dleware and the high standard of audio implementation with visual script-
ing in game engines allow the audio designers to build complex audio
behavior with minimum help from audio programmers. However, with
great power comes great responsibility: we want to enable audio designers
to build complex game audio with maximum flexibility, while keeping
maintenance, performance, and costs in consideration. I hope the sound
effect categories help you to avoid some pitfalls, master the challenges,
and strengthen the communication and collaboration between audio
 programmers and audio designers.

13

I
DSP

https://taylorandfrancis.com

15

C h a p t e r 2

Complex Numbers
A Primer for DSP Programming

Robert Bantin
Massive Entertainment — an Ubisoft Studio

2.1 INTRODUCTION
Although it may not be intuitively obvious, the concept of a “complex
number” (i.e. a compound value containing a real and an imaginary com-
ponent) can be very powerful when you are modeling something that has
both magnitude and phase. Consider the model of a spiral in Figure 2.1.
When you compare each point along the graph with the next, two proper-
ties can be observed:

 1. The relative angle from the origin increasing linearly.

 2. The relative distance from the origin growing geometrically.

CONTENTS
2.1 Introduction 15
2.2 Implementing Incremental Phase 16

2.2.1 Resistance Is Real; Reaction is Imaginary 18
2.2.2 The Voltage Before the Load 19
2.2.3 The Voltage After the Load 21

2.3 Implementing Geometric Growth 23
2.4 Combining Incremental Phase with Geometric Growth 25
2.5 Notation Used by DSP Programmers 26
2.6 Conclusion 28

16 ◾ Game Audio Programming 3

We can say that the angle here is our phase, while the distance is our
magnitude. Modeling this graph with mathematics is precisely the sort of
thing that complex numbers are for.

2.2 IMPLEMENTING INCREMENTAL PHASE
With the aim of producing this spiral graph using complex numbers, let’s
backtrack a little bit and examine how the phase of our model is incre-
menting. Consider the simpler model of a circle in Figure 2.2. If we look
at each point’s position on the horizontal axis, we could just as easily plot
these values on a horizontal time plot as vertical values and get a sinusoi-
dal wave, as shown in Figure 2.3.

Let us imagine that this circle model simulates an A.C. voltage gen-
erator and that these amplitude values in time are the real voltage out-
put from this model. On the circular graph, this output traces along each
point’s horizontal coordinate, so let’s say the horizontal axis is the real, or
Re, axis. The vertical axis is necessary to help track the steady phase rota-
tion of the model, but each point’s coordinate on this axis is not part of
the real output, so we’ll call this axis the imaginary, or Im, axis. If we set
the significance of these labels aside, we can just treat them as alternative
x and y labels.

FIGURE 2.1 A spiral graph.

Complex Numbers ◾ 17

FIGURE 2.2 A circle graph.

FIGURE 2.3 Time plot of the real axis.

18 ◾ Game Audio Programming 3

2.2.1 R esistance Is Real; Reaction is Imaginary

The reason why we’re bothering with these two axes is because we might
want to attach our A.C. voltage generator to some sort of load (i.e. an elec-
trical load to complete the circuit so that the voltage generator has some-
thing to push against). Figure 2.4 shows a circuit of a voltage generator
attached to an electric load for the power cable (marked with a capital Z).
This circuit is purposefully simplified so that we can illustrate how an
electrical load (in this case a very long power cable) might be connected to
our voltage generator. However, the contents of this electrical load may not
be simply dissipating energy in a purely resistive way.

To clarify, a purely resistive load (e.g. a resistance that turns electric
energy into heat) would only interact with the real component of the
 generator’s voltage output. Conversely, a purely reactive load (e.g. some
inductance or capacitance that stores electrical energy and then discharges
it in particular way) would only interact with the imaginary component of
the generator’s output.

Real-life electrical loads such as a power line on a national grid exhibit
both resistive (in this case, cable resistance) and reactive (in this case, cable
capacitance) load components. It would therefore be impossible to correctly
predict the real power drop across the power line without taking both the
resistive and reactive load components into account. As an example, it’s
possible for reactance to act like an open circuit (i.e. infinite resistance)

FIGURE 2.4 Circuit of a voltage generator attached to an electric load for the
power cable (marked with a capital Z).

Complex Numbers ◾ 19

below a certain frequency and act like a closed circuit (i.e. very low resis-
tance) above a certain frequency. In this case, how much power dissipa-
tion actually occurs with this type of reactance in parallel to the resistance
could depend greatly on the oscillation frequency of our generator, as well
as the length of the cable (because as the cable gets longer, the resistance
and reactance increase at different rates). This is why power engineers are
so careful about cable selection when designing power lines.

2.2.2 The Voltage Before the Load

Let’s look at the voltage generation before the load. If we take the Re and
Im values of each point in the circle model as Cartesian-style coordinates,
we can describe each point of our circle model at time interval t as a 2D
vector:

 S at t= [], bt

where a and b are the real and imaginary voltage states of the generator at
time interval t. Just think of t as a discrete time index: t = [0, 1, 2, 3, etc.].

If we were to attempt to progress the phase within S using vector math,
we could define a constant rotation vector as

 cosθ
 Q =

 sinθ

where θ is the phase increment between each time interval t.
Q would be applied to S of the current time interval to get the value of S

at the next time interval as follows:

 S St t+1 = × Q a= −[t tcos sθ θb ain , t tsin cθ θ+ b os]

You could then apply this incremental rotation in our simulation by reap-
plying the same vector operation to each time interval of S to get the next
time interval of S. You can thereby model the alternator turning over at an
angular rate of θ per time interval t.

For implementing this in code, the above equations would all work just
fine. However, in an era when a computer was a person, the mathemati-
cians of the day came up with a different approach that fit the tool they
had at the time: Algebra.

20 ◾ Game Audio Programming 3

They might have approached this problem by declaring S and Q as
follows:

S at t= + ibt

Q i= +cos sθ θin

The value i is a special coefficient that cannot be resolved into a real num-
ber until it is squared, at which point it becomes −1. The i is therefore used
to signify that the value on its own is “imaginary”—opposite to the nor-
mal “real” numbers that always produce a positive result when multiplied
by themselves. The value i is often described as “the square root of −1.”
While this is technically true, it is not a terribly helpful definition, so this
chapter will stick to the definition i2 = −1.

Within the context of our circle model, what we are saying here is that
when an Im axis component is multiplied with another Im axis component,
the result is transformed into an inverted Re axis component. Conversely,
when a Re axis component is multiplied with an Im axis component, the
result is transformed into an Im axis component.

So, let’s apply this to S and Q using an algebraic product:

S at t= + ibt

Q i= +cos sθ θin

S St t+1 = =Q a()t t+ +ib ()cos sθ θi in

Open out the brackets:

 S S1 = = 2
t t+ Q at tcos sθ θ+ +ia in ibt tcos sθ θ+ i b in

Remember that i2 = −1, so applying that here gives us:

 S St t+1 = =Q at tcos sθ θ+ +ia in ibt tcos sθ θ− b in

And then re-factorize the four terms into real and imaginary chunks:

 S St t+1 = =Q a()t tcos sθ θ− +b iin (a bt tsin cθ θ+ os)

Complex Numbers ◾ 21

You may begin to see that this little algebraic trick with i2 = −1 is what’s
doing the work of that vector operation for us, albeit with a somewhat
 different style of notation. That’s really all it is.

In any case, any complex number can be plotted on this Re/Im graph
(known as an Argand diagram after its creator, J.D. Argand) by treating its
real and imaginary components as Cartesian-style coordinates.

Now that we’ve got our phase progression correctly worked out using
complex numbers, we can reproduce the circle graph that we built in
Figure 2.2 by using complex numbers (Figure 2.5). Note that Figures 2.2
and 2.5 are identical, even though they were constructed using different
mechanisms.

2.2.3 The Voltage After the Load

Now that we have a way to simulate the complex voltage at the generator
source, let’s see how we could apply a load that’s both resistive and

FIGURE 2.5 The circle graph from Figure 2.2 achieved with complex algebra.

22 ◾ Game Audio Programming 3

 reactive. When we lump these two properties together, we usually call it
an impedance, so let’s declare a simple load as an impedance Z:

 Z R= + iX

where R is the resistive component of the load and X is the reactive com-
ponent of the load. Note that X is multiplied by i to show that it lives solely
in the imaginary realm.

Since this electric load is connected in series with our A.C. voltage
generator, the power drop P due to the impedance factor Z of the load is
described by

S2

 P =
Z

where S2 is all of our plotted values for S squared and averaged, resulting
in a single real number.

Substituting Z for (R i+ X) gives us

S2

 P = ()R i+ X

Now, to perform the division of this complex denominator, there’s another
trick. If we multiply the top and bottom of this fraction with the same
number, the overall effect will cancel out, so what we do is choose another
complex number for this purpose that nullifies the imaginary component
in the denominator. That’s actually pretty easy—we just take the existing
complex denominator and flip the sign of the imaginary component. This
number with the negated imaginary component is called the complex con-
jugate. In this case, it is simply

 R i− X

Multiplying the numerator and denominator by this complex conjugate
gives us

S R2 ()− iX
 P = ()R i+ −X R()iX

Complex Numbers ◾ 23

Opening out the brackets of the denominator eliminates the imaginary
component in the denominator:

S R2 ()− iX
 P =

R X2 2
+

Now the denominator is purely real. We just need to open the brackets of
the numerator:

S R2 2− iS X P =
R X2 2

+

To be clear then, the real and imaginary components of the power drop
are

S R2 −iS2 X Preal = 2 2 , P =
R X+ imag R X2 2

+

Hopefully you can now see that if we ignored the cable capacitance of the
power line, our simulation of the power drop across the load would only

S2

be . That estimate would make our prediction way off with even the
R

slightest amount of reactance—even though we said the reactance of the
load was purely imaginary.

To summarize thus far, what we are saying is that since our A.C. voltage
generator simulation needs to predict the effect of a load that can be both
resistive and reactive, we can pretend that there is a second, imaginary
voltage working orthogonally to the real one, and this helps us correctly
understand how the power would drop over that kind of combined load.

2.3 IMPLEMENTING GEOMETRIC GROWTH
Going back to the spiral model from Figure 2.1, we would need to grow
the magnitude geometrically to get the desired effect. Ideally, we’d need
to choose a growth factor and translate it into a real and imaginary factor
for S. Since the real and imaginary components are always orthogonal, we
can view these growth factors like a right-angled triangle and apply the
Pythagoras theorem:

C
B

A

24 ◾ Game Audio Programming 3

 C A2 2= + B2

where C is our growth factor, and A and B are the respective real and
imaginary components of that factor.

Since A and B will apply their scale equally, they need to be the same,
so we say

 C A2 2= 2

And therefore

C2

 B A= =
2

If we restate that S per interval of time t as

 S at t= + ibt

our constant growth factor Q would be

 Q A= + iB

Substituting for A and B, we get

C2 2C Q = + i
2 2

which we can factorize as

C2

 Q = +()1 i
2

And we can then apply the growth factor for each point of S as before:

 S St t+1 = Q

Complex Numbers ◾ 25

2.4 COMBINING INCREMENTAL PHASE
WITH GEOMETRIC GROWTH

In order to combine the rotational increment and the growth factor into a
single spiraling modifier for S, we can define Q as an aggregate of the last
two definitions:

 Q A= +cos sθ θiB in

where A and B are our respective real and imaginary growth components,
and θ is the phase increment between each time interval t.

Based on the formula we’ve been using for generating S along time
interval t,

 S St t+1 = Q

We can generate our spiral model with the following formula:

 S St t+1 = =Q St ()A icos sθ θ+ B in

Open out the brackets:

S St t+1 = =Q A()a bt tcos sθ θ− +in iB()a bt tsin cθ θ+ os

S St t+1 = =Q A ca At tosθ θ− +b isin sBat tinθ θ+ ciBb os

Re-factorize for the real and imaginary chunks:

 S St t+1 = =Q A()a At tcos θ θ− +b isin ()Bat tsin cθ θ+ Bb os

Because of the equivalence {A B≡ },

 S St t+1 = =Q A ()()a bt tcos θ θ− + sin i a()t t sinθ θ+ cb os

And since we’ve already stated that

C2

 B A= =
2

26 ◾ Game Audio Programming 3

we can substitute that here:

C2

 S St t+1 = =Q ()()a bcos sθ θ− +in i a()sin cθ θ+ b os
2 t t t t

Let’s pick some values now and graph them out. For growth factor C, we’re
3going to pick the first golden ratio = , and for the rotational increment,
2πwe’re going to pick θ = . The resulting graph is in Figure 2.6. Now that we

8
have our magnitude and phase properties worked out using complex num-
bers, we can see that the spiral graph in Figure 2.6 is identical to Figure 2.1.

2.5 NOTATION USED BY DSP PROGRAMMERS
Electrical engineers use complex algebra a lot, but they tend to use the
 letter i for alternating current. (Capital I is used for direct current.) To
avoid potential mix-ups, they opt for the letter j when referring to the
imaginary coefficient. For example, our load impedance would instead be
described as

FIGURE 2.6 The spiral graph from Figure 2.1 achieved with complex algebra.

Complex Numbers ◾ 27

 Z R= + jX

where R is the resistive load and X is the reactive load.
Since signal processing and DSP historically grew out of branches of

electrical engineering, you will mostly see j notation used in books and
papers, so be aware that j is not just some mystery scale factor. It’s the
imaginary coefficient getting its hands dirty.

For example, you might see the Discrete Fourier Transform defined as

N

 =∑
−1 − j kω n

Xk x e N
n

n=0

You will see this pairing of j and ω (frequency in radians) a lot in sig-
nal processing. In the world of digital audio, they’re almost inseparable—
particularly with the natural exponent e and the sample period (the time
duration of a single audio cycle) T:

 e− j Tω

where ωT is frequency in radians-per-sample.
Since Euler’s formula states that

e xix = +cos si xin

e x−ix = −cos si xin

these appearances with the natural exponent and the sample period are
nothing more than shorthand notation for

 e T− j Tω = −cos sω ωj Tin

And while the left-hand side is shorter to write down, the right-hand side
is easier to implement in code using either interleaved arrays or an array
of some kind of container that encapsulates both the real and imaginary
components of each element. In C++, using a container class such as
std::complex also allows the coder to make use of the overloaded math
operators of add, subtract, multiply, and divide in order to apply the spe-
cial complex number rules opaquely, which makes objects of such a con-
tainer class visibly cleaner to use in code (and with no additional impact
to performance).

28 ◾ Game Audio Programming 3

2.6 CONCLUSION
A complex number consists of a real and an imaginary component. Using
complex numbers, we can represent both amplitude and phase together.
Complex numbers work just like normal algebra, except that when an
imaginary component is multiplied with an imaginary component, the
result is an inverted real component. When a real component is multiplied
with an imaginary component, the result is an imaginary component,
so multiplying complex numbers needs to use the trick i2 = −1 to get to
the right answer. Conversely, dividing by a complex number requires
 multiplying the numerator and denominator of the fraction by the com-
plex conjugate (the same complex number with an inverted imaginary
 component), thereby eliminating the imaginary component in the denom-
inator. (Note that electrical engineers often use j instead of i to avoid con-
fusing the imaginary component with the standard symbol for alternating
current.)

Finally, Euler’s formula allows us to use eix shorthand in cases where the
real and imaginary components are cosine and sine functions, respectively.
This means that in code, we don’t usually implement the exponen-
tial function with an imaginary power and instead prefer to implement
a two-element container type that gets multiplied by cosine and sine
accordingly.

29

C h a p t e r 3

Building Dynamic
Analog-Style Filters
Bi-Quadratic Cascades vs
Digital Integrator Cascades

Robert Bantin
Massive Entertainment — an Ubisoft Studio

CONTENTS
3.1 Introduction 30
3.2 The Infinite Impulse Response (IIR) Filter 30

3.2.1 Pole-Zero Maps, the Z-Plane, the Unit Circle, and the
Inverse-Z Transform 32

3.2.2 Example: Math to Create a Notch Filter from Two
Poles and Two Zeros 34

3.2.3 Going Beyond a Bi-Quadratic Filter 38
3.2.4 Robert Bristow-Johnson’s Cookbook 39

3.2.4.1 Digital Butterworth Low-Pass Bi-Quadratic
Coefficients Derived from Analog
Butterworth Control Parameters 39

3.3 Digital Implementation of a Resistor-Capacitor (RC) Network 41
3.3.1 The Digital Integrator (DI) Filter 42
3.3.2 Example Code 43
3.3.3 A Fast ex Implementation 44

3.4 Building Standard Butterworth Filter Shapes with DI
Networks 45

3.4.1 Butterworth Low-Pass Filter 45
3.4.2 Butterworth High-Pass Filter 45

30 ◾ Game Audio Programming 3

3.1 INTRODUCTION
It’s a fairly regular occurrence that DSP coders get asked by sound design-
ers about dynamic filters (i.e. filters that can move their corner frequency
as they process) and why a particular dynamic filter sounds “harsh” or
“weird.” If it’s a simple low-pass or high-pass filter, the most likely reason
is that it was implemented using the ubiquitous “bi- quadratic filter” (or
“bi-quad”) structure. While this approach is generally excellent, it seems
to fall apart when modulating its cut-off or center frequency rapidly.

Prior to the bi-quad being widely adopted across the audio industry,
Hal Chamberlin [1] had been developing his own ideas in isolation and
came up with a vastly different approach to the one that later came to
popular research papers and textbooks. Neither approach is necessarily
superior to the other—there are pros and cons to both, and some will be
outlined in this chapter. However, Chamberlin’s approach really shines
in two important respects: Firstly, in its natural ability to emulate classic
Butterworth-type filter alignments (meaning those with a flat-as-possible
pass-band) and secondly, in the structure’s stability—particularly when
modulating the cut-off or center frequency rapidly. It is for these two
aspects that Chamberlin’s approach is measurably superior at building
dynamic analog-style filters. However, before diving headlong into some
of Hal Chamberlin’s work, let’s have a quick look at a more traditional
digital filter structure.

3.2 T HE INFINITE IMPULSE RESPONSE (IIR) FILTER
The IIR filter gets its name because if you throw a single amplitude value
at an IIR filter followed by digital silence, the output tails off forever, or
at least until all the filter states fall into the noise floor. This is due to

3.4.3 Butterworth Band-Pass and Notch Filters 46
3.5 Dealing with Resonance 46

3.5.1 The Concept 46
3.5.2 The Moog Ladder Filter Example 47

3.5.2.1 Why the First Thing People Try Doesn’t
Work Quite Right 47

3.5.2.2 The Feedback Delay Fix 48
3.5.2.3 Example Code 48

3.6 Conclusions 50
References 50

Building Dynamic Analog-Style Filters ◾ 31

the filter structure performing weighted averages of previous outputs as
negative feedback to the input processing, which could also be a weighted
average of current and/or previous inputs. The impulse response length is
governed by the amount of feedback.

Arguably the most famous of these filter structures (shown in a gener-
alized form in Figure 3.1) is the bi-quadratic filter, a name it gets from the
fact that the Z-plane design method leads you to a ratio of polynomials
and the quadratic or second-order polynomial ratio is quite versatile,
 particularly when cascaded with others.

∑ ∑
N −1 1M −

 y bk = −n kx a−n m ky −m (3.1)
n=0 m=1

where k is the sample time index, y is the output, x is the input, b is a
 collection of N input coefficients, n is the input coefficient index in the
range {0 ≤ <n N}, a is a collection of M output coefficients, and m is the
output coefficient index in the range {{1≤ <m M}.

T

xk yk

Key

A SINGLE UNIT DELAY AN ADDITION

DATA FLOWA MULTIPLICATION

b1

b0

b2

bN-1

–a1

–a2

–am–1

T

T

T

T

T

T

FIGURE 3.1 IIR schematic using “Direct Form-I.”

32 ◾ Game Audio Programming 3

3.2.1 P ole-Zero Maps, the Z-Plane, the Unit Circle, and the
Inverse-Z Transform

To apply the Z-plane design method, we first create a “pole-zero map”: a
2D graph that plots complex numbers as coordinates along a real axis and
an imaginary axis as shown in Figure 3.2. It’s an adaption of the Argand
diagram that treats complex numbers as 2D vectors. For more informa-
tion about complex numbers and algebra, refer to Chapter 2 “Complex
Numbers: A Primer for DSP Programming.”

The Z-plane is a plane along these two axes, so for simplicity, think of
the page that Figure 3.2 is on as the Z-plane. We place a “unit circle” on the
origin of the graph with a radius of 1.0. We can then plot a vector called
Z as a point that follows this unit circle based on its angle to the real axis,
ωT in radians-per-sample. This means that for any place along the unit
circle, Z is describing a frequency in radians that is normalized with the
sample rate in the range {0 2≤ ≤ωT π}, or equally {−π ≤ ≤ωT π}, as Z will
wrap around the circle indefinitely making these two ranges equivalent.

The Z-plane design method allows the designer to place two other types
of data, one called a “pole” and the other called a “zero.” This is not the
numerical value zero, rather the shape of zero as you might describe the
O’s in tic-tac-toe. Using the strategic placement of poles and zeros inside

Real

Z

Imag

wT

FIGURE 3.2 A pole-zero map.

Building Dynamic Analog-Style Filters ◾ 33

the unit circle, a transfer function of a digital filter can be designed with
respect to the angle (i.e. frequency) of Z:

∏Q−1
Z z− q

 H Z()=
∏

q=0
R−1 (3.2)

Z p− r
r =0

where H is the transfer function of the filter with respect to the frequency
described by Z, Q is the number of zero points zq (of which q is the index),
and R is the number of pole points pr (of which r is the index).

In other words, the transfer function H(Z) is equal to the product of
all distances between Z and each zero, divided by the product of all dis-
tances between Z and each pole. This gives importance to the unit circle
as it presents the designer with a strict limit—one that ensures that these
data points’ gain effect is between 0 and unity. There is sometimes reason
to place a zero point outside the unit circle as the product of all the zero
points controls the DC gain of the filter. However, putting a pole point
outside of the unit circle will make the filter unstable.

The next step is to apply the Inverse-Z transform, which turns this map
of poles and zeros into a discrete time function of current and previous
inputs, and previous outputs, that you can implement as a discrete-time
algorithm in code.

Crucially, though, you should think of the angle ωT at π or −π radians
per sample as the frequency at the Nyquist limit (i.e. the sample rate divided
by two). This implies that we are encouraged to design filters with poles
and zeros beyond the Nyquist limit or with negative frequency. While this
might seem counterintuitive, it is in fact necessary. If you were to place a
single pole or zero in the upper half of the unit circle, the time-domain fil-
ter that came out of the Inverse-Z transform would have a complex num-
ber output. Since we usually want a filter that takes a purely real input and
generates a purely real output, we can mirror the poles and zeros of the
upper half of the unit circle in the lower half of the unit circle (doubling
the filter order). Each mirror point is a complex conjugate of the original,
so when they multiply together in the transfer function H(Z), the imagi-
nary components will cancel each other out. There’s only one case where
this isn’t necessary: when the poles and/or zeros are lying on the real axis,
implying that the data point is only working around 0 Hz (also known as
D.C.) and/or the Nyquist limit (the maximum frequency expressible at a

34 ◾ Game Audio Programming 3

given sample rate). Most of the time you will want to design filters what
work in between those two limits, so as a natural consequence, the mini-
mum number of poles or zeros is usually two each and increases in steps
of two. When resolving a pole-zero map with just two poles and two zeros,
the transfer f unction H(Z) is then a ratio of two quadratic polynomials - in
other words, a bi-quadratic.

b Z 2
0 + +b Z H Z() = 1 2b
Z a2 (3.3)

+ +1 2Z a

where H is the transfer function of the filter with respect to the fre-
quency described by Z, using input coefficients [b0 b1 b2] and output
coefficients [a1 a2].

Equation 3.3 is the transfer function H(Z) as a bi-quadratic in one its
standardized forms. Note that the a0 coefficient is missing because this
term will eventually become the output parameter yk in Equation 3.1.

The challenge, then, is to fit the transfer function H(Z) as described
in Equation 3.2 into the function H(Z) described in Equation 3.3. Once
this has been done, the Inverse-Z transform converts all the terms as
either current and/or past inputs or past outputs. This is decided by H(Z)
as any terms with which it is multiplied become output terms, while the
rest become input terms. Every multiple of Z shifts a term’s sample time
index one unit into the future, such that a term like b 2

0Z becomes b0 2xk+ .
Likewise, dividing by Z shifts a term’s sample time index one unit into the
past, such that b Z −1

0 becomes b0 1xk− .

3.2.2 Example: Math to Create a Notch Filter from Two Poles
and Two Zeros

Here is a simple scenario where we want to attenuate a very specific
 frequency band while leaving the rest of the frequency spectrum relatively
untouched. If we stipulate that the notch should attenuate as much as it
can, the top half of the ratio in H(Z) should be zero (or almost zero) at our
desired frequency ωT .

According to function H(Z) in Equation 3.2, this means that a pole
should have no distance from Z at frequency ωT . We can achieve this by
placing a zero on the unit circle at an angle from the origin of ωT . We then
mirror this zero on the other side of the real axis to ensure a purely real
output from these zeros when their terms are multiplied together.

Building Dynamic Analog-Style Filters ◾ 35

For the latter side of that ratio, we could leave it at 1 and have no poles
at all. However, you’d end up with a very wide notch with lots of ripple on
either side of it, so let’s instead place a pole along the same angle ωT but
slightly closer to the origin. Let’s call that distance D, ensuring that it’s
in the range { }≤ <0 1D to keep the filter stable. Let’s also mirror the pole
on the other side of the real axis to ensure a purely real output from these
poles when their terms are multiplied together.

If we then trace Z around the unit circle, we can see that the ratio of dis-
tances from Z to any pole and zero is almost 1.0 all the way around until
we get close to the angle ωT or ω− T , whereupon the ratio (and therefore
the gain of the filter) falls to nothing because the distance to one of the
zero points is nothing (Figure 3.3).

Since this pole-zero map is in fact an Argand diagram, the posi-
tion of either pole or zero point above the real axis can be described as
Equation 3.4, and the position of either pole or zero point below the real
axis can be described as Equation 3.5. This is all thanks to Euler’s theorem.

 ω ω≡ +ω cos sine T j Tj T (3.4)

 ω ω≡ −ω− cos sine T j Tj T (3.5)

Real

Imag

Z
wT
–wT

D

FIGURE 3.3 A pole-zero map with two poles and zeros configured to make a
notch filter.

36 ◾ Game Audio Programming 3

where ωT is the angle from the real axis and j is the engineers’ equivalent
of the imaginary number i (such that j2 = −1).

The transfer function H(Z) for this specific pole-zero map then looks
like this:

()Z e− −j Tω ω()Z e− j T

 H Z()= ()j Tω ω()− j T (3.6)
Z D− −e Z De

Multiplying out the brackets and working through the terms gives us

Z Z2 0− −e Zj Tω ωe e− j T +

H Z()=
Z Z2 2− −j Tω ω (3.7)

De ZDe D− j T + e0

Z Z2 − −cos sω ωT Zj Tin − +Z Tcos sω ωZj in T +1
H Z()=

Z Z2 − −D Tcos sω ωZDj Tin − +ZD cos sω ωT ZDj in T D+ 2

(3.8)

Z Z2 − +2 cosωT 1H Z()=
Z Z2 2 (3.9)

− +2 cD Tosω D

If you then compare the bi-quadric equation with its standardized form in
Equation 3.3, the coefficients we are looking for are

b0 =1

b T1 = −2cosω

 b2 =1

a D1 = −2 cosωT

a = D2
2

If you implement this filter, you will get a notch that is centered around
the normalized frequency ωT , so to modulate it, you simply need to

2πfupdate the values of b1 and a1. Just remember that ωT = , where f in
fs

this case is your center frequency in Hz and fs is your sample rate. Setting

D close to 1 (say 0.95) will get you a tight notch with minimal ripple, but

Building Dynamic Analog-Style Filters ◾ 37

the attenuation of the notch will be small. Setting D to a lower value like
0.75 will not only increase the attenuation of the notch band, but will also
widen the notch band and increase the ripple on either side of it. Figure 3.4
shows the difference between a tight notch and a wide notch.

The only thing left to do is apply the Inverse-Z transform so we can see
how this transfer function becomes something implementable in the time
domain. This can be done providing you take the formula in Equation 3.3
and multiply both sides by the denominator in that ratio. This should give
you Equation 3.10.

 H Z()()Z a2 + +Z a = +b Z 2
1 2 0 b Z1 2+b (3.10)

Applying the Inverse-Z transform, we arrive at the following time domain:

 y ak k k+ +2 1+ +y a1 2 y b= +0 2x bk k k+ +1 1x b+ 2x (3.11)

Since we can’t practically work in the future, the only way to really imple-
ment this time domain equation is by shuffling all the sample time indexes
k two units into the past:

 y ak k+ +1 1y a− −2 2y bk k= +0 1x b x bk k− −1 2+ x 2 (3.12)

FIGURE 3.4 Tight notch (D = 0.95) vs wide notch (D = 0.75) at 1,000 Hz.

38 ◾ Game Audio Programming 3

If we then subtract both sides by ()a y1 1k k− −+ a y2 2 to solve for the current
output yk, we end up with

 y bk k= +0 1x b x bk−1 2+ −x ak k k− − −2 1y a1 2− y 2 (3.13)

This is the same as Equation 3.1, just described in the more specific
 bi-quadratic form of three input terms and two previous output terms.

3.2.3 Going Beyond a Bi-Quadratic Filter

A designer may want to create a higher-order filter using the same method.
They will just add more poles and zeros to suit—and lo and behold, the
transfer function H(Z) will be a ratio of higher-order polynomials. To be
clear, though, you don’t need to have equal numbers of poles and zeros.
The reason why filters implemented as higher-order polynomials are less
common in practice is that the accumulated filter state values within the
filter structure get larger as the order increases, and this can lead to preci-
sion issues and instabilities. There have been various alternative structures
derived to combat the issue of stability (lattice, ladder, a hybrid of the two),
but largely speaking, they don’t match the clinical simplicity of breaking
up a high-order structure into a series of second-order (bi-quadratic)
structures that can be cascaded together to get the same intended effect.
Each bi-quadratic stage adds an extra multiplication and addition to the
computation, but the accumulated filter state values never get larger than
twice the size of the input/output ranges, which a 32-bit floating point unit
can handle with ease. Figure 3.5 shows the difference between a higher-
order IIR and a bi-quadratic cascade.

If your design has an unequal number of poles and zeros, the last
 bi-quadratic stage can be padded out with zero-value coefficients to make
up the deficit, thus keeping the generic nature of the bi-quadratic filter
intact. And that’s probably the biggest benefit of using the bi-quadratic
filter: it can be used generically, which is great for building code libraries.
You only need to parameterize five coefficients per stage: b b0 1 b a2 1 a2 ;
and for that, you get a whole realm of possibilities. The only exception to
this trend is if you design a filter made purely of zeros—in effect using the
Z-plane design method to create a Finite Impulse Response filter. Since in
this case you only have current and/or past inputs to multiply with and
sum together, the most optimal solution is likely a dot-product that has
been made more efficient using blocks of SIMD operations.

Building Dynamic Analog-Style Filters ◾ 39

3.2.4 Robert Bristow-Johnson’s Cookbook

Robert Bristow-Johnson worked out a cookbook of formulas for
 approximating the classic Butterworth-shapes using bi-quadratic filter
structures [2], and no doubt these formulas have since been implemented
by expedient DSP coders many, many times over.

3.2.4.1 D igital Butterworth Low-Pass Bi-Quadratic Coefficients
Derived from Analog Butterworth Control Parameters

The original source material not only quotes the bi-quadratic coeffi-
cients we are familiar with, but also includes the one we normally leave

T

xk yk

xk

Key

A SINGLE UNIT DELAY AN ADDITION

DATA FLOWA MULTIPLICATION

yk

b1

b0

b2

b1

b0

b2

c1

c0

c2

b3

b4

–a1

–a2

–d1

–d2

–a1

–a2

–a3

–a4

T

T

T

T

T

T

T

T

T

TTT

T

T

TT

FIGURE 3.5 Higher-order IIR vs bi-quadratic cascade.

40 ◾ Game Audio Programming 3

out: a0. Since the Inverse-Z transform would place a0 as a scale factor
to the current output yk, to get the correct value, we need to divide the
right-hand side of Equation 3.13 by a0, which gives us this slightly modi-
fied version:

b x0 1k k+ +b x − b x − − a y y = 1 2 k k k− − −2 1a y 1 2 2
k (3.14)

a0

In practice, though, you would probably work out the reciprocal of a0 and
multiply or normalize each coefficient by a0. Also introduced is the inter-
mediary parameter α , which takes care of the Q-factor for our filter:

sinωT α = (3.15)
2Q

where ωT is the corner frequency in radians-per-sample and Q controls
the bandwidth at the corner frequency (typically 0.5 for a first-order
Butterworth low-pass filter).

The coefficients b b0 1 b a2 0 a a1 2 are then calculated by

1 c− osωTb0 =
2

b T1 = −1 cosω

1 c− osωTb2 = 2

a0 = +1 α

a T1 = −2cosω

a2 = −1 α

However, these “Digital Butterworth filters” don’t match their analog
equivalents exactly. Figure 3.6 shows a plot comparing the bi-quadratic
cookbook low-pass filter and the analog cascade.

Even if the filter response differences are not that critical to you, con-
sider that the design method used to derive these coefficients assumes that
the filter structure is in a steady state, which it only gets to after processing

Building Dynamic Analog-Style Filters ◾ 41

potentially hundreds of sample points due to the nested feedback paths
with different delay lengths. For a filter that is designed to move and then
stay put (like a parametric equalizer band), that’s fine, but if you’re aim-
ing to build a truly dynamic filter, then you can’t realistically expect this
implementation to behave as intended when the control parameters are
moving all the time. The intermediary results will be very unpredictable.

Lastly, all these bi-quadratic coefficients from the cookbook recipes
need to be recalculated every time just one of the control parameters
changes, which is potentially once per sample while any control param-
eter is moving.

Therefore, a bi-quadratic implementation of a Butterworth filter with
rapidly moving control parameters is at best cumbersome and at worst not
fit for purpose.

3.3 DIGITAL IMPLEMENTATION OF A RESISTOR-
CAPACITOR (RC) NETWORK

It seems that the digital techniques we have examined thus far are sub-
optimal facsimiles for the real thing. The issue with these techniques is
either that they focused on the inputs and outputs of an analog device or
 somehow warped themselves until their magnitude spectrum got close to

FIGURE 3.6 Bi-quadratic cookbook low-pass magnitude plot, with analog
 cascade comparison.

42 ◾ Game Audio Programming 3

the original. Hal Chamberlin’s approach was significantly different because
he was already very familiar with analog filter design and instead attempted
to upgrade those circuits to digital ones using a component-based approach.

Let us examine the simple circuit in Figure 3.7, which shows an RC low-
pass filter into an analog buffer. The buffer is there only to illustrate that if
several of these circuits were cascaded together, their individual behaviors
would not change as they don’t “see” each other. The resistor and capaci-
tor values should be regarded as lumped parameters, since we don’t care
what they are individually. Rather, their mathematical product is what is
important. This combination RC is known as the time constant τ and is
measured in seconds.

If you put a voltage impulse through a circuit like this, the response
afterward would be that of exponential decay at a rate governed by that
time constant. For example, it takes approximately 4τ to achieve 98% dis-
charge. Chamberlin’s approach began by attempting to replicate that part
of an analog filter digitally.

3.3.1 The Digital Integrator (DI) Filter

The digital integrator (DI) is the filter structure that Chamberlin cre-
ated to replace that buffered RC circuit. Figure 3.8 shows a schematic of
the DI.

 K e= −1 −ωT (3.16)

OUT1

C

R
IN

FIGURE 3.7 RC low-pass into an analog buffer.

K ykxk T
–

FIGURE 3.8 DI schematic.

Building Dynamic Analog-Style Filters ◾ 43

where K is the attenuation factor and ωT is the corner frequency in
radians-per-sample.

The DI makes use of feedback, so it is actually another form of IIR fil-
ter, albeit one made of a single pole and some additional feedback. It also
has just one filter state, so the time it takes to stabilize is miniscule com-
pared to a bi-quadratic IIR filter. This is already good news if we’re intend-
ing to modulate it rapidly. There’s only one coefficient K to worry about
too and nothing nearly as difficult to derive as one of Robert Bristow-
Johnson’s cookbook formulas. Figure 3.9 shows a DI cascade magnitude
plot compared with an analog cascade.

3.3.2 Example Code
#ifndef _DIGITAL_INTEGRATOR_INCLUDED_
#define _DIGITAL_INTEGRATOR_INCLUDED_

#include <math.h>

class DigitalIntegrator
{
public:
 DigitalIntegrator()
 : myZmin1(0.0f)
 , myAttenuatorK(1.0f)

FIGURE 3.9 DI cascade magnitude plot, with analog cascade comparison.

44 ◾ Game Audio Programming 3

 {}

 inline float Process(float anInput)
 {
 float output = myAttenuatorK * myZmin1;
 float inputSum = anInput + myZmin1 - output;
 myZmin1 = inputSum;

 return output;
 }

 inline void Reset() { myZmin1 = 0.0f; }
 inline void SetFreq(float aFreqInRadiansPerSample)
 {
 // optimize expf()
 myAttenuatorK = 1.0f - expf(-aFreqInRadiansPerSample);
 }
private:
 float myZmin1;
 float myAttenuatorK;
};

#endif // defined(_DIGITAL_INTEGRATOR_INCLUDED_)

3.3.3 A Fast ex Implementation

Since we are talking about modulating corner frequencies at sample rate,
we should also address the matter of the e−ωT term in Equation 3.16. In the
example code, we used expf() from <math.h> for clarity, but realistically
you’ll want to implement something more efficient in your code.

Option 1—Taylor Series
There is a Taylor series polynomial that approximates ex with

increasing accuracy as the number of terms used increases:

∞

 ≈ =∑ xn x x0 1 x x2 3

ex + + + + (3.17)
n=

! 0! 1! 2! 3!
0

n

Option 2—A Bespoke Polynomial Fit
Given that our range for x is limited to {0 ≤ <x π}, it might be bet-

ter to perform a regression on values for e−x in that range and see if
you can get a good curve with less terms than the Taylor series expan-
sion. Microsoft Excel with the “Data Analysis Toolpak” enabled can
help you do this.

Building Dynamic Analog-Style Filters ◾ 45

Option 3—A Self-Interpolating Lookup Table
Lookup tables are commonplace in optimizations, but in this

case, the values need a high degree of accuracy. Fortunately, the key
property of ex is that it is its own gradient, so you can use the table to
interpolate between the points in the table. Heavy recursion should
be avoided, but you may be surprised at how accurate you can get
with just a handful of recursions. As an example, using 8.24 fixed-
point arithmetic possible on a 32-bit ARM CPU, three iterations will
already exceed the precision of the number system itself.

3.4 B UILDING STANDARD BUTTERWORTH
FILTER SHAPES WITH DI NETWORKS

Now that we have our basic DI building block, let’s see how it works in
networks.

3.4.1 Butterworth Low-Pass Filter

For a first-order Butterworth low-pass filter, the DI building block is
unchanged. To increase the order, cascade separate instances of the DI
together as shown in Figure 3.10.

3.4.2 Butterworth High-Pass Filter

For a first-order Butterworth high-pass filter, take a single DI building
block and subtract it from the input. To increase the order, cascade sepa-
rate instances of this network together as shown in Figure 3.11.

ykxk DI

1st 2nd Nth

DI DI

FIGURE 3.10 DI low-pass cascade.

ykxk

– –DI DI

2nd NthIst

–DI

FIGURE 3.11 DI high-pass cascade.

46 ◾ Game Audio Programming 3

3.4.3 Butterworth Band-Pass and Notch Filters

Using the rules set in the previous two examples, cascade a low-pass DI
network with a high-pass DI network. Set the low-pass network’s corner
frequency above the high-pass network’s corner frequency to get a band-
pass filter, and do the reverse for a notch filter. To increase the order, cas-
cade separate instances of this network together as shown in Figure 3.12.

3.5 DEALING WITH RESONANCE
It’s hard to ignore the question of resonance when talking about dynamic
filters, as many dynamic filters in the analog domain either have reso-
nance or its reciprocal parameter “Q” as a control parameter. Resonance
in small amounts will add emphasis around the corner or center fre-
quency of a filter, and in larger amounts, it can get the filter to self-oscil-
late. Both extremes are musically interesting, particularly when the corner
or center frequency is modulating rapidly.

3.5.1 The Concept

Analog filter circuits will achieve resonance using some kind of con-
trolled feedback, typically by tapping off the immediate output of the fil-
ter into a separate amplifier such that the feedback path is buffered and
doesn’t interact with the output being passed on to the next stage of the
circuit. The resonance control parameter will then be used to vary how
much signal this separate amplifier feeds back into the input of the fil-
ter. It doesn’t take a lot of feedback to get the filter to self-oscillate (a few
percent), so the resonance amplifier will always attenuate to a varying
degree. If such a filter circuit is a cascade of multiple first-order filters,
then the feedback path is typically sent around the entire cascade. This is
crucial for resonance, as each first-order filter stage adds a 90° phase shift
at its corner frequency, and you need 180° of phase shift for the feedback
to cause resonance. This is why the resonant analog filters common to
musical applications are either second order or fourth order with a nega-
tive feedback path.

ykxk
– –

DI DI

2nd

DI
Ist2ndIst
DI

FIGURE 3.12 DI band-pass or notch cascade.

Building Dynamic Analog-Style Filters ◾ 47

3.5.2 T he Moog Ladder Filter Example
3.5.2.1 W hy the First Thing People Try Doesn’t Work Quite Right
Ignoring the clever overdriving features of this filter, the circuit can be
viewed as four first-order low-pass filters cascaded together with a negative
feedback path going from the final output to the first input. Figure 3.13
shows a Moog ladder filter schematic.

Since we now know how to build these filter stages using DIs, it would
be fair to assume that implementing such a filter digitally is pretty
straightforward. However, once tested out, you might notice that the
resonant peak around the corner frequency isn’t exhibiting the proper-
ties of “constant Q” (i.e. constant width on a logarithmic axis) and in fact
gets narrower and taller as the corner frequency increases. Worse, push-
ing that frequency far enough will create a peak so large that the code
will actually overflow. Obviously, this is not what we want, so what’s
caused this?

It is an unfortunate fact that many analog circuits are designed with-
out taking propagation delay into account because it’s so small that it’s
not really a factor. This is one of the ways in which digital simulations of
analog circuits fail: the digital version will be working at a discrete sam-
ple rate, and in our case, the output is four samples later than the input.
At very low corner frequencies, this delay translates to a very minor phase
shift, so the digital filter will appear to be working correctly. Go up in
frequency, and suddenly it’s a very different story.

For many years, the received wisdom was to oversample the filter so
that this phase gap between the output and input could be narrowed, and
without worrying about CPU performance, this does help a great deal.
Additionally, the corner frequency can be limited in range to prevent the
user from putting the code into a state where it will overflow. Nonetheless,
what this means is that building a decent-sounding digital recreation of a
resonant analog filter this way can be very CPU intensive, which is unde-
sirable for game audio.

ykxk

–R

DIDIDIDI

FIGURE 3.13 Moog ladder filter schematic.

48 ◾ Game Audio Programming 3

3.5.2.2 The Feedback Delay Fix
Tim Stilson and Julius Smith [3] and Antti Houvilainen [4] have published
research on this topic and have reasoned that it’s easier to further delay
the feedback path so that the signal fed back to the input is back-in-phase
“enough” to get the resonance behaving correctly at the range of corner
frequencies that we’re interested in. Figure 3.14 shows a Moog ladder filter
schematic with an added feedback delay of 2.5 samples.

2.5 samples’ delay is the preferred amount for a sample rate of 48 kHz
and can be achieved using some linear interpolation. The fractional delay
code shown below should be flexible enough to deal with this and higher
sample rates as required.

3.5.2.3 Example Code

#ifndef _FRACTIONAL_DELAY_INCLUDED_
#define _FRACTIONAL_DELAY_INCLUDED_

#include <cassert>
#include <cstring>

#define FRACTIONAL_DELAY_LENGTH (8)
#define FRACTIONAL_DELAY_MASK (FRACTIONAL_DELAY_LENGTH - 1)

static_assert((FRACTIONAL_DELAY_LENGTH & FRACTIONAL_DELAY_MASK) == 0,
 "FRACTIONAL_DELAY_LENGTH must be 2^N power");

class FractionalDelay
{
public:
 explicit FractionalDelay(float inFractionalDelay)
 : myFractionalDelay(inFractionalDelay)
 , myWholeNumberedDelay(static_cast<int>(inFractionalDelay))
 , myLERP(myFractionalDelay –
 static_cast<float>(myWholeNumberedDelay))
 , myWriteCursor(0)

ykxk

–R
1
2

DIDIDIDI

TTT
1
2

FIGURE 3.14 Moog ladder filter schematic with added feedback delay of 2.5
samples.

Building Dynamic Analog-Style Filters ◾ 49

 , myReadCursorA((myWriteCursor - myWholeNumberedDelay) &
 FRACTIONAL_DELAY_MASK)
 , myReadCursorB((myReadCursorA - 1) & FRACTIONAL_DELAY_MASK)
 {
 assert (myWholeNumberedDelay < FRACTIONAL_DELAY_LENGTH);
 Reset();
 }

 inline float Process(float anInput)
 {
 mySampleBuffer[myWriteCursor & FRACTIONAL_DELAY_MASK] = anInput;

 float output = myLERP * mySampleBuffer[myReadCursorB]
 + (1.0f - myLERP) * mySampleBuffer[myReadCursorA];

 ++myWriteCursor;
 myWriteCursor &= FRACTIONAL_DELAY_MASK;

 ++myReadCursorA;
 myReadCursorA &= FRACTIONAL_DELAY_MASK;

 ++myReadCursorB;
 myReadCursorB &= FRACTIONAL_DELAY_MASK;

 return output;
 }

 inline void Reset()
 {
 memset(
 mySampleBuffer, 0,FRACTIONAL_DELAY_LENGTH * sizeof(float));
 }

private:
 FractionalDelay() = delete;

 float myFractionalDelay;
 int myWholeNumberedDelay;
 float myLERP;
 int myWriteCursor;
 int myReadCursorA;
 int myReadCursorB;
 float mySampleBuffer[FRACTIONAL_DELAY_LENGTH];
};

#endif // defined(_FRACTIONAL_DELAY_INCLUDED_)

Despite this lo-fi approach, the digital artefacts it produces are minimal,
so most DSP coders are happy to live with it.

50 ◾ Game Audio Programming 3

3.6 CONCLUSIONS
While the bi-quadratic filter is flexible, it doesn’t perform well when emu-
lating analog Butterworth-type filters, both in a steady state and while
being modulated. The unpredictable results account for that “harshness” or
“weirdness” that a sound designer might notice. The digital integrator is less
flexible in that it only works with Butterworth-type filters, but when that’s
what the sound designer actually wants, it’s the ideal choice. Special consid-
eration has to be given when introducing resonance, but a fractional delay
in the feedback path can overcome this without the need to oversample.

REFERENCES

 1. H. Chamberlin. Musical Applications of Microprocessors, p. 488, Second
Edition, Hayden Books, Indianapolis, 1985.

 2. R. Bristow-Johnson. Cookbook formulae for audio EQ biquad filter
 coefficients. http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

 3. T. Stilson and J. Smith. Analyzing the Moog VCF with considerations for
digital implementation. In “Proceedings of the International Computer
Music Conference,” pp. 398–401, Hong Kong, China, August 1996.

 4. A. Houvilainen. Non-linear digital implementation of the Moog ladder
filter. In “Proceedings of the International Conference on Digital Audio
Effects,” pp. 61–64, Naples, Italy, October 2004.

http://www.musicdsp.org

51

C h a p t e r 4

Modeling Atmospheric
Absorption with a
Low-Pass Filter

Nic Taylor

CONTENTS
4.1 Introduction 52
4.2 Motivations 52
4.3 Review 53
4.4 Extreme Ranges 53
4.5 A Look at the Low-Pass Filter 54
4.6 Maths and Code 58

4.6.1 Extra Vocabulary 58
4.6.2 Math 59
4.6.3 API 60
4.6.4 Helper Functions 61
4.6.5 Implementation 62

4.7 Integration 63
4.8 Future Work 64
Appendix A: Absorption Coefficient 65
Appendix B: Root Finding 66

4.B.1 Newton’s Method 66
4.B.2 Trigonometric Solver 67

References 68

52 ◾ Game Audio Programming 3

4.1 INTRODUCTION
Air temperature, humidity, and atmospheric pressure (not to be confused
with acoustic pressure) change how sound is absorbed over distance.
This atmospheric absorption has the strongest effect on high frequencies
and so is often modeled as a low-pass filter as one component of the overall
attenuation settings for a sound instance. The attenuation settings, includ-
ing the low-pass filter, are exposed to the sound designer as a function of
distance and for the most part are then static.

This chapter explores using the atmospheric features of air tempera-
ture and humidity to provide a systematic way of setting a low-pass filter
cutoff for sound propagation. The cutoff frequency can audibly change
based on temperature and humidity. By plotting the frequency response
of atmospheric absorption, we can see that the low-pass filter is a good
approximation of the real-world values.

4.2 MOTIVATIONS
I was motivated to explore using atmospheric features to adjust attenua-
tion settings for two primary reasons:

 1. While working on open world games where the player could travel
from extreme environments such as Arctic-like zones to dense jungle
or desert, there was a desire to find subtle ways to influence sound so
that the environment would feel different without relying on ambient
sounds. Similar to how air temperature changes drastically between
day and night, the goal also included having a subtle change in percep-
tion in the same zone at different times of day.

 2. One common issue I had observed working on games was incon-
sistencies in attenuation settings resulting in bugs typically caught
toward the end of production. More than once, these inconsisten-
cies required a large refactoring of attenuation settings across the
entire game, so it seemed worthwhile to find a systematic way to
address attenuation. When it comes to the low-pass filter, using
well-understood atmospheric features like temperature and humid-
ity can set a decent starting point even if the attenuation settings
were still static in game.

Modeling Atmospheric Absorption ◾ 53

4.3 REVIEW
Attenuation of a point source as a function of distance, r, can be modeled
by the following equation [1]:

 L L= −10log 4π −r r2
p W α (4.1)

where LW is the sound pressure level of the source in decibels (dB),
10log 4πr 2 is the geometric attenuation, and αr is the atmospheric
absorption.

In game audio, the geometric attenuation (GA) is often modeled as a
curve that terminates at a given distance. And even though GA can be
computed infinitely, audio engines have an absolute threshold or cutoff
below which sounds are culled. The end of the attenuation curve can be
considered the distance at which the sound will reach the cutoff.

The atmospheric absorption, α , is often modeled as a low-pass filter.1
α is dependent on temperature, pressure, and humidity with a value in
decibels/meter. It is also dependent on frequency for which the frequency
response resembles a low-pass filter. This model will assume an idealized
atmosphere without wind and having a uniform temperature.2

4.4 EXTREME RANGES
Observing environments on Earth, temperature and humidity change the
atmospheric absorption coefficient the most. Atmospheric pressure even
at high elevations is almost negligible, so we can treat atmospheric pres-
sure as a constant.

The extreme ranges of temperature and humidity give some intuition as to
how variable the cutoff will be. Using Figure 4.1 as a guide, sounds that are all
near field or within 25 meters will have an effect that is perhaps not au dible.
Past 250 meters, the change in cutoff from a hot, dry environment to a cold,
dry environment can be in entirely different frequency bands. This difference
is potentially significant enough to impact the mixdown of the game.

1 Some audio engines also include a high-pass filter which sound designers use to remove distant
low-frequency content so that closer sounds have better low-end clarity.

2 A non-uniform temperature, where the ground temperature is different from that of the air above,
has interesting effects on sound propagation but is outside the scope of this chapter. See [1] for
more details.

54 ◾ Game Audio Programming 3

As a loose rule, cold temperatures have highest absorption with moder-
ate to high humidity, and hot temperatures have highest absorption with
dry humidity, as shown in Figure 4.2. For example, in Antarctica where
temperatures are often below −20°F, the humidity can almost approach
zero percent, and so it would be expected that there is relatively less atmo-
spheric absorption [2]. The Acoustics Wikibook [3] includes a compre-
hensive table of absorption coefficients at different temperatures and
humidity values.

4.5 A L OOK AT THE LOW-PASS FILTER
The frequency response of atmospheric absorption is mostly flat out to a
point where the frequencies begin to fall off. The falloff becomes nearly
linear on a logarithmic scale, so it shares key traits with the Butterworth
filter which is flat in the passband and also falls off linearly on a logarith-
mic plot as in Figure 4.3.3

3 All plots should line up together at –3 dB. However, there is a slight rounding issue as the filters
were approximated.

FIGURE 4.1 Cutoff frequencies by distance: (A) 70% humidity, 65°F; (B) 5%
humidity, 100°F; and (C) 5% humidity, −5°F.

Modeling Atmospheric Absorption ◾ 55

In Figures 4.3–4.8, the bold line is the computed atmospheric absorp-
tion, and the dashed and dash-dotted lines are the frequency responses of
a first- and second-order Butterworth filter.

The damping amount at the cutoff frequency of the Butterworth filter is
−3 dB. The filters are solved such that the cutoff frequency equals the point
where the atmospheric coefficient at the given distance, αr , is also −3 dB.

FIGURE 4.2 Absorption coefficients plotted by temperature and humid-
ity. Plots have been normalized by the range at each frequency to highlight
relative adsorption. From left to right: 5,000 Hz with a coefficient span of
0.46–17.9 dB/hm, 10,000 Hz with a span of 1.58–41.7 dB/hm, and 20,000 Hz with
a span of 6.0–90.8 dB/hm.

FIGURE 4.3 Frequency response of 75°F, 75% humidity at 10 m.

56 ◾ Game Audio Programming 3

FIGURE 4.4 Frequency response of 75°F, 75% humidity at 100 m.

FIGURE 4.5 Frequency response of 75°F, 75% humidity at 250 m.

Modeling Atmospheric Absorption ◾ 57

FIGURE 4.6 Frequency response of 110°F, 3% humidity at 250 m.

FIGURE 4.7 Frequency response of 20°F, 50% humidity at 250 m.

58 ◾ Game Audio Programming 3

Notice that before the cutoff frequency, the first-order filter is almost
identical with the atmospheric absorption. After the cutoff, the second-
order filter follows more closely. This is the same across combinations of
temperature and humidity.

4.6 MATHS AND CODE

4.6.1 Extra Vocabulary

Below are some terms that are used to compute the absorption coefficient.

• Molar concentration of water—Measured in moles/liter where mole
is the SI unit of measurement for the number of molecules [4].

• Relaxation frequency—The frequency in Hz where molecules relax
from vibration. Nitrogen and oxygen in the atmosphere change the
strength of absorption.

• Saturation vapor pressure—Pressure where water vapor is in
 equilibrium with its liquid state and is dependent on temperature.

• Triple point temperature—Temperature (and pressure) where
water can be in equilibrium in all three states: liquid, solid, and gas
(273.16 K).

FIGURE 4.8 Frequency response of 20°F, 95% humidity at 250 m.

Modeling Atmospheric Absorption ◾ 59

4.6.2 Math

The equation for the attenuation coefficient is [1, 3, 5]:

α τ= ×8.686 f P2 1/2 − −11 1 3
r r(1.84 10 + +τ −

r ()b b1 2 (4.2))

0.1068−3352/T fb1 = rN

f f2 2 (4.3)
rN +

0.01275−2239.1/T fb2 = rO
2 2 (4.4)

f frO +

where b1 and b2 are terms dependent on frN and frO , the relaxation frequen-
cies in Hz of nitrogen and oxygen. τ r is the ratio of the given temperature
in Kelvin and the reference air temperature. Similarly, Pr is the ratio of the
ambient atmospheric pressure in kilopascals and the reference ambient
atmospheric pressure [5].

To find the filter cutoff frequency requires solving for frequency f
given the coefficient α . To begin to solve for f , Equation 4.2 must be
expanded. Because of the large number of constants, some placeholders
are introduced: a1, a2, a3 for combined coefficients, N for nitrogen (or frN),
O for oxygen (or frO), and finally F f= 2 to avoid confusion with expo-
nents. a4 which is negative α is used for consistency. Substituting these in
Equation 4.2 yields

a N2 F a O3 F 0 = +a F1 N F2 +
+ 2 + a

O F+ 4 (4.5)

Creating common denominators and expanding out the equation will put
equation 4.6.1 in a form that can be solved as cubic equation of F :

a F ()N F2 2+ +()O F + +a NF O()2 F a+ +OF ()N F2 4+ +a N()2 2F O
=

1 2 3 ()+ F
 0 ()N F2 2+ +()O F

 (4.6)

As the denominator is guaranteed to be greater than zero, it can be
ignored. The coefficients are consolidated to form the cubic polynomial.
New placeholders will be used for the coefficients of the cubic equation:

60 ◾ Game Audio Programming 3

0 = +aF3 2bF + +cF d

a = a1

 b = +a N1 ()2 2O a+ +2 3N a O a+ 4 (4.7)

c a= +2 2
1N O a O2

2 N a+ +3N O2 a N()2 2
4 +O

d a= N O2 2
4

The absorption coefficient is a function of frequency, and there is some
frequency at which there is minimal or no absorption and a different,
greater frequency where the absorption is greater than the dampening at
the cutoff frequency (−3 dB for a Butterworth filter). Therefore, there will
exist a real root solution to the cubic equation. Appendix B contains more
discussion on finding roots of cubic equations.

4.6.3 API

For the implementation, a class FilterCutoffSolver will encapsulate an
environment’s atmosphere and expose a function, Solve(), which returns
the cutoff frequency given a distance.

Because several factors in Equation 4.2 are independent of distance,
these factors are computed once and stored in variables based on
Equation 4.6.

const double kPressureSeaLevelPascals = 101325.0;

class FilterCutoffSolver {
public:
 FilterCutoffSolver(const double humidity_percent,
 const double temperature_farenheit,
 const double pressure_pascals = kPressureSeaLevelPascals);

 double Solve(const double distance,
 const double cutoff_gain = 3.0) const;
private:
 double nitrogen_relax_freq;
 double oxygen_relax_freq;

 // Pre-computed coefficients independent of the absorption
 // coefficient.
 double a1, a2, a3;
};

Modeling Atmospheric Absorption ◾ 61

4.6.4 Helper Functions

These functions do not need to be exposed by the API but help in unit
 testing by being extracted from the FilterCutoffSolver class.

const double kReferenceAirTemperature = 293.15;

double FarenheitToKelvin(const double farenheit)
{
 return (farenheit + 459.60) * 5 / 9.0;
}

// Convert humidity to molar concentration of water vapor as a
// percentage
static double HumidityConcentration(
 const double humidity_percent, // 0 to 100.0
 const double temperature_kelvin,
 const double pressure_normalized)
{
 const double triple_point_temperature_water = 273.16;
 // Exponent to compute molar concentration
 const double csat = -6.8346 * pow(
 triple_point_temperature_water / temperature_kelvin, 1.261
) + 4.6151;
 // Saturation vapor pressure
 const double psat = pow(10, csat);
 // Humidity to molar concentration of water vapor
 return humidity_percent * psat / pressure_normalized;
}

static double NitrogenRelaxationFrequency(
 const double humidity_concentration,
 const double temp_normalized,
 double pressure_normalized)
{
 const double nitrogen_relax_factor = 9 +
 280 * humidity_concentration *
 exp(-4.170 * (pow(temp_normalized, -1.0 / 3) - 1.0));
 // An approximate expected value is 200 Hz.
 return pressure_normalized *
 (1.0 / sqrt(temp_normalized)) * nitrogen_relax_factor;
}

static double OxygenRelaxationFrequency(
 double humidity_concentration,
 double pressure_normalized)
{
 const double oxygen_relax_factor = 24 +
 40400 * humidity_concentration *

62 ◾ Game Audio Programming 3

 (0.02 + humidity_concentration) /
 (0.391 + humidity_concentration);
 // An approximate expected value is 25,000 Hz.
 return pressure_normalized * oxygen_relax_factor;
}

4.6.5 Implementation

The constructor performs the substitutions from Equation 4.6 to be stored
and cached for repeated calls to Solve().

FilterCutoffSolver::FilterCutoffSolver(
 const double humidity_percent,
 const double temperature_farenheit,
 const double pressure_pascals)
{
 const double temperature_kelvin =
 FarenheitToKelvin(temperature_farenheit);
 const double temp_normalized =
 temperature_kelvin / kReferenceAirTemperature;
 const double pressure_normalized =
 pressure_pascals / kPressureSeaLevelPascals;

 const double humidity_concentration =
 HumidityConcentration(humidity_percent,
 temperature_kelvin, pressure_normalized);

 // Low frequencies are affected more by nitrogen relaxation
 nitrogen_relax_freq = NitrogenRelaxationFrequency(
 humidity_concentration, temp_normalized, pressure_normalized);
 // Very high frequencies are affected more by oxygen relaxation
 oxygen_relax_freq = OxygenRelaxationFrequency(
 humidity_concentration, pressure_normalized);

 const double temp_norm_inv_cube =
 1.0 / (temp_normalized * temp_normalized * temp_normalized);
 const double nitrogen_relax_coefficient =
 temp_norm_inv_cube * 0.1068 *
 exp(-3352.0 / temperature_kelvin);
 const double oxygen_relax_coefficient =
 temp_norm_inv_cube * 0.01275 *
 exp(-2239.10 / temperature_kelvin);

 const double pressure_coefficient = 1.84e-11 / pressure_normalized;
 // Factor multiplied to the absorption quantities
 const double outer_coefficient = 8.686 * sqrt(temp_normalized);

 // Re-arrange the equation as a cubic polynomial with the

Modeling Atmospheric Absorption ◾ 63

 // absorption_coefficient as the constant factor -a4
 // 0 = a1*f^2 + a2*n*f^2/(n^2+f^2) + a3*o*f^2/(o^2+f^2) + a4 where
 // f is the variable frequency, n and o are nitrogen/oxygen
 // relaxation frequencies
 a1 = outer_coefficient * pressure_coefficient;
 a2 = outer_coefficient * nitrogen_relax_coefficient;
 a3 = outer_coefficient * oxygen_relax_coefficient;
}

Solve() collects the factors into the coefficients which form a cubic
 polynomial and returns the largest root as the filter cutoff frequency in Hz.

double FilterCutoffSolver::Solve(const double distance,
 const double cutoff_gain) const
{
 const double absorption_coefficient = cutoff_gain / distance;
 const double a4 = -absorption_coefficient;

 const double nitrogen_sq =
 nitrogen_relax_freq * nitrogen_relax_freq;
 const double oxygen_sq =
 oxygen_relax_freq * oxygen_relax_freq;

 // Expand the denominators (which can then be ignored)
 // and collecting terms
 const double a = a1;
 const double b = a1 * (nitrogen_sq + oxygen_sq) +
 a2 * nitrogen_relax_freq +
 a3 * oxygen_relax_freq + a4;
 const double c = a1 * nitrogen_sq * oxygen_sq +
 a2 * oxygen_sq * nitrogen_relax_freq +
 a3 * nitrogen_sq * oxygen_relax_freq +
 a4 * (nitrogen_sq + oxygen_sq);
 const double d = a4 * oxygen_sq * nitrogen_sq;

 const double root = FindFirstRoot(a, b, c, d);
 const double frequency_hz = sqrt(root);
 return frequency_hz;
}

4.7 INTEGRATION
From a performance viewpoint, it should be fine to compute the filter
 cutoff per game object per frame. Alternatively, a table of cutoffs at differ-
ent distances could be computed once—for example, when loading into a
zone. Using a pre-computed table, game objects could linearly interpolate

64 ◾ Game Audio Programming 3

the cutoff value between the two nearest keys. Having a table in mem-
ory also has the benefit of being able to visually inspect what the cutoff
 frequency is across distances.

For fast moving objects, the filter cutoff may need to be interpolated
with a slight delay over time or smoothing function to avoid sudden jumps
in the filter cutoff.4

Sound designers sometimes rely on an attenuation test world where
they can test a sound at different intervals and perform mix balancing.
The addition of humidity and temperature parameters would complicate
this work. As a result, instead of allowing a near infinite set of poten-
tial humidity and temperature combinations, the team can decide on a
few “atmosphere profiles” that the game will use. This should include an
easy mechanism to switch between these profiles so that testing can be
done without changing the game world or zones. Keep in mind that sound
designers may also want a way to override the atmospheric absorption
cutoff value.

4.8 FUTURE WORK
I acknowledge that the math and number of constants involved in the
computation of the frequency cutoff is heavy handed. Future work would
be attempting to determine whether the entire model could be simplified
to a linear equation. This approximation may not be too large a simplifi-
cation as the equations used here are only accurate to ±10% in the ideal
range in the first place [5].

This model assumes an ideal atmosphere without wind. Wind is a very
large component of sound propagation and one that I personally find very
interesting. However, wind’s impact on sound may not “sound” correct
without other cues to convey it. As an example, I have tried to add a “speed
of sound” feature to a couple of game engines but always ended up remov-
ing it. At a typical speed of 340 m/s, it seemed like the delay would easily
come across for sounds just a hundred meters away. However, the imple-
mentation would feel as if the sound engine was being unresponsive or lag-
ging. Perhaps the reason is that there are other subtle cues missing that the
brain requires for processing images and audio—cues that might become
available with continued improvements in areas like VR and 3D sound.

4 Wwise supports this behavior with Interpolation Mode Slew Rate from the Game Parameter
 properties [6].

Modeling Atmospheric Absorption ◾ 65

APPENDIX A: ABSORPTION COEFFICIENT
It is useful to compute the absorption coefficient given a frequency to test
the FilterCutoffSolver. Below is the implementation used to develop
FilterCutoffSolver.

double AbsorptionCoefficient(const double frequency_hz,
 const double humidity_percent,
 const double temperature_farenheit,
 const double pressure_pascals)
{

 const double temperature_kelvin =
 FarenheitToKelvin(temperature_farenheit);
 const double temp_normalized =
 temperature_kelvin / kReferenceAirTemperature;
 const double pressure_normalized =
 pressure_pascals / kPressureSeaLevelPascals;

 const double humidity_concentration = HumidityConcentration(
 humidity_percent, temperature_kelvin, pressure_normalized);

 const double nitrogen_relax_freq = NitrogenRelaxationFrequency(
 humidity_concentration, temp_normalized, pressure_normalized);
 double nitrogen_quantity =
 0.1068 * exp(-3352.0 / temperature_kelvin);
 nitrogen_quantity /= (nitrogen_relax_freq + frequency_hz *
 (frequency_hz / nitrogen_relax_freq));

 const double oxygen_relax_freq = OxygenRelaxationFrequency(
 humidity_concentration, pressure_normalized);
 double oxygen_quantity =
 0.01275 * exp(-2239.10 / temperature_kelvin);
 oxygen_quantity /= (oxygen_relax_freq +
 (frequency_hz * frequency_hz) / oxygen_relax_freq);

 const double pressure_quantity =
 1.84e-11 / pressure_normalized;
 const double relaxation_quantity =
 (nitrogen_quantity + oxygen_quantity)
 / (temp_normalized * temp_normalized * temp_normalized);

 double absorption_coefficient = 8.686 * sqrt(temp_normalized) *
 (pressure_quantity + relaxation_quantity);
 absorption_coefficient *= frequency_hz * frequency_hz;
 return absorption_coefficient;
}

66 ◾ Game Audio Programming 3

APPENDIX B: ROOT FINDING
The form of the cubic equation used for atmospheric absorption has three
real roots, and the solution for frequency happens to be the largest real
root.5 Figure 4.9 shows an example taken from a typical temperature and
humidity pair.

4.B.1 Newton’s Method

There are multiple ways to find the root of a cubic equation. Newton’s
method is nice because it is easy to visualize and converges quickly in
quadratic fashion to the root nearest the starting value [7].

We know that our root will be somewhere in the range of 5,000–20,000
Hz squared. Therefore, the starting value of Newton’s method needs to be
greater than the root to avoid converging on one of the lower, possibly neg-
ative roots. Since the frequency squared becomes quite large, I have found
that it takes more than ten iterations to converge by starting at a value
greater than half the sampling rate squared. One optimization would be
to use an intermediate function to estimate where the root is.

If you are interested in using Newton’s method, here is a naive
 implementation that can be used as a starting point.

double FindRootNewton(const double a, const double b,
 const double c, const double d,
 const double epsilon, const double start) {
 // First derivative
 const double a_prime = a * 3;
 const double b_prime = b * 2;
 const double c_prime = c;

5 The span of cubic equations was found by evaluating many combinations of temperature,
 humidity, and distance.

FIGURE 4.9 Typical cubic to be solved. Recall that the root is the frequency
 cutoff squared.

Modeling Atmospheric Absorption ◾ 67

 double x = start;
 double delta = epsilon;
 while (fabs(delta) >= epsilon) {
 const double cubic = ((a * x + b) * x + c) * x + d;
 const double quadratic = (a_prime * x + b_prime) * x +
 c_prime;
 delta = cubic / quadratic;
 x = x - delta;
 }
 return x;
}

4.B.2 Trigonometric Solver

The option I opted for was to solve the root directly by converting the cubic
equation into a depressed form as described on Wikipedia [8]. Because the
leading coefficient is always greater than zero, the implementation skips
extra checks to validate the result.

double FindFirstRoot(const double a, const double b,
 const double c, const double d) {
 // Trigonometric Cubic Solver
 // Assumes a, b, c, and d are all real and that a is > 0,
 // so at least one real root must exist.
 // Also assumes the first root is the largest and correct solution.

 // Convert to depressed cubic using change of variable.
 const double p = (3.0 * a*c - b*b) / (3.0 * a*a);
 const double q = ((2.0 * b*b*b) - (9.0 * b*a*c) +
 (27.0 * a*d*a)) / (27.0 * a*a*a);

 const const double theta = (3.0 * q * sqrt(-3.0 / p)) / (2.0 * p);
 const double depressed_root =
 2.0 * sqrt(-p / 3.0) * cos(acos(theta) / 3.0);

 // For debugging here are the other real roots:
 //const double t2 = -2.0 * sqrt(-p / 3.0) *
 // cos(acos(-theta) / 3.0);
 //const double t1 = -depressed_root - t2;

 const double root = depressed_root - b / (3.0 * a);
 return root;
}

One optimization here would be to replace acos with an approximation6
and/or rewrite using SIMD.

6 Cubic approximations have been solved for arccos, and your game engine may already be using one.

68 ◾ Game Audio Programming 3

REFERENCES

 1. Erik M. Salomons. Computational Atmospheric Acoustics. Springer Science,
Heidelberg, 2001, pp. 108–111.

 2. Antarctic’s Climate: The Key Factors, https://discoveringantarctica.org.
uk/oceans-atmosphere-landscape/atmosphere-weather-and-climate/
key-factors-behind-antarcticas-climate/.

 3. Engineering Acoustics/Outdoor Sound Propagation, https://en.wikibooks.
org/wiki/Engineering_Acoustics/Outdoor_Sound_Propagation#Sound_
attenuation.5B3.5D.

 4. Molar Concentration, https://en.wikipedia.org/wiki/Molar_concentration.
Last modified date: 21 June 2020.

 5. International Standard. Acoustics - Attenuation of Sound during Propagation
Outdoors (ISO 9613-1:1993(E)), 1993, pp. 1–3.

 6. Property Editor: Game Parameter, Wwise Help, https://www.audiokinetic.
com/library/edge/?source=Help&id=game_parameter_property_editor.

 7. Forman S. Acton. Numerical Methods that Work, Harper & Row, New York,
1970, pp. 180.

 8. Cubic Equation – Trigonometric Solution, https://en.wikipedia.org/wiki/
Cubic_equation#Trigonometric_solution_for_three_real_roots. Last
modified date: 22 June 2020.

https://discoveringantarctica.org.uk
https://discoveringantarctica.org.uk
https://discoveringantarctica.org.uk
https://en.wikibooks.org
https://en.wikibooks.org
https://en.wikibooks.org
https://en.wikipedia.org
https://www.audiokinetic.com
https://www.audiokinetic.com
https://en.wikipedia.org
https://en.wikipedia.org

69

II
Voice

https://taylorandfrancis.com

71

C h a p t e r 5

Software Engineering
Principles of
Voice Pipelines

Michael Filion
Ubisoft

5.1 INTRODUCTION
As games continue to grow larger, the number of spoken lines continues
to increase. As a result, the challenges for managing and delivering the
lines have increased as well. Designing and implementing a flexible and
robust voice pipeline becomes important in order to deliver the highest

CONTENTS
5.1 Introduction 71
5.2 Definitions 72
5.3 Defining Requirements 73
5.4 Design 74

5.4.1 Expecting the Unexpected 74
5.4.2 Platform Agnostic 75
5.4.3 Automation 75
5.4.4 Disaster Recovery/Revision Control 76
5.4.5 Integrating Third-Party Tools 77

5.5 Implementation 77
5.5.1 Deployment 78
5.5.2 Error Handling for Non-technical People 78
5.5.3 Nothing More Permanent than a Temporary Fix 80

5.6 Conclusion 80

72 ◾ Game Audio Programming 3

quality voice in-game. There are many challenges, both human and tech-
nological, related to any voice pipeline. Providing the necessary tools and
removing repetitive tasks allows the people responsible for voice to focus
on quality. Additionally, providing the proper debugging tools and infor-
mation allows programmers to empower less technical members of the
team to address problems as they arise in an efficient manner without
programmer intervention.

While this chapter will specifically discuss the design and implemen-
tation of voice pipelines for large-scale game productions (i.e. anything
related to a spoken line in the game on the audio side), the important points
can be adapted to a variety of different pipelines and contain reminders of
many solid software design principles.

5.2 DEFINITIONS
This chapter uses a number of terms that we will define here for clarity:

• Line—Any written or spoken piece of text that is used in-game.

• Voice—Any spoken text that is the product of a recording1 for the
game. Both line and voice can, at times, be used interchangeably.

• Pipeline—A collection of processes and/or related steps undertaken
in an ordered fashion. Explained differently, it is the method that
we use to take an input (i.e. written text) and produce an output
(i.e. spoken line triggered in the game). Figure 5.1 shows an example
of a basic pipeline.

• Continuous Integration—The process of automatically integrating
multiple developers’ work into a shared base.

• Digital Audio Workstation (DAW)—A tool that is used in the
recording, editing, and production of audio files.

1 Or produced through some other mechanism.

FIGURE 5.1 An example of a basic pipeline for taking written text and produc-
ing and implementing an audible voice line in-game.

Principles of Voice Pipelines ◾ 73

5.3 DEFINING REQUIREMENTS
Before implementing or beginning any cursory design of the required
voice pipeline, it is important to list all the requirements for your project.
Even between two different projects of comparable size and complexity,
small details can make all the difference.

What is the expected line count? Will it be 100 or 100,000 lines? This
means the difference between developing tools and automated processes to
deal with the massive quantity of files, and simply dragging and dropping
the files from one location to the next. This number will allow a proper
evaluation of the time invested versus the potential time savings. There is
no sense in spending 10 hours developing some tools where it would take
only 1 hour to manually treat all of the lines with an existing toolset.

In what manner will the text be delivered to the department for record-
ing? Will text be sent as it is written, or will it only be sent once approved
by the parties responsible? How will you track which lines have been
approved and/or already recorded? A spreadsheet will help, but what is the
potential for human error in this flow? Will adding any sort of tools for
validation and approval into this allow for greater quality control, or will
one person become a bottleneck?

Once the lines are recorded, how will they be sent from the recording
studio to the development team? There are well-known transfer methods
that can easily be automated such that the files are moved with existing
third-party tools (such as FTP or transfer to a NAS). Other solutions might
require more or less manual intervention depending on how those tools/
protocols were built.

Where will all of the files be stored before being integrated into the
game engine? Will they be stored in a revision control system such
as Perforce or Plastic SCM, or will they simply be stored on a NAS
 somewhere accessible to all members responsible for working with
these files?

What type of processing will need to be performed on the files before
being integrated into the engine? Will you need to enforce loudness stan-
dards, projection levels, file formats, sample rates, etc.?

Are you using middleware for your audio engine or is it a custom-
developed solution? This is the difference between doing a search online
to see if there are any third-party tools that can already perform many
(if not all) of the tasks that you need when treating your sound data and
knowing that you need to develop everything yourself.

74 ◾ Game Audio Programming 3

How will these files be stored once integrated? If these files will reside
alongside other game assets, there isn’t any extra work necessary. However,
the audio middleware might store them as raw WAV files which need to be
converted before being used in-game.

While the answers to these questions will reveal many details about
your requirements, there are still many more that have not been listed
here. It is important to review all of the requirements in conjunction with
the rest of the team and to bear in mind that something that worked for the
first release of SuperAwesome Game might not work for SuperAwesome
Game 2.

5.4 DESIGN
With the list of requirements in hand, now the time has come to define the
pipeline. The first version will almost never look like the final version used
at the end of production. It is important to iterate on the pipeline design
continually throughout the implementation process as new requirements
and technical challenges arise.

Starting with the individual steps in the pipeline, determining what
resources are required at each step will help flush out the overall design.
Sometimes the resources may seem obvious, but it is important to docu-
ment them for a new member of your team that joins several months after
the pipeline design has been completed and implementation has started.
This has the additional advantage of someone looking at the design and
pointing out errors or questions of concern.

5.4.1 Expecting the Unexpected

In an ideal world, all edge cases would be handled, and every possible
combination has an actionable item. Programming never exists in an ideal
world, and software users always find new ways to break tools that should
be impossible. Undoubtedly someone will think of a way to try and sim-
plify their workflow or execute some action incorrectly, leaving you with
an unexpected result. In a worst-case scenario, it ends up corrupting data
(or at least results in data that is less than optimal), which could result in a
bug in-game that never gets fixed because of time constraints.

Let’s be clear that there is no magic solution to prevent every user mis-
step or mistake. The important question will be: “How quickly can we
handle User X’s new action?” If it takes a week to implement a solution,
how many other users will invent new and creative ways to use the pipe-
line in that time?

Principles of Voice Pipelines ◾ 75

5.4.2 Platform Agnostic

This ties into the previous section’s principle in that you should not rely
on any particular piece of software when possible. Today your company’s
servers are running Windows, but will they be running Linux next year?
Your production is currently using Jenkins, but perhaps they will switch
to something like TeamCity because of the reduced manpower cost or the
budget suddenly opening up to purchase a commercial license. Tightly
integrating with any specific software, internal or third-party, may prove
detrimental in the future when someone makes decisions without fully
realizing their impact.

Some design choices will have little to no impact in any future soft-
ware migrations; others could render your pipeline absolutely useless or at
the very least require hours of additional work for migration. Having an
understanding from the outset of these potential hurdles will help make
informed decisions with other members of the production when consider-
ing changes.

5.4.3 Automation

Most game productions have already mastered continuous integration for
code and most types of data, including sound. However, automation can
be a real time saver when dealing with the large amounts of voice files with
different statuses that are being moved through the pipeline. Amazingly,
people often don’t think to ask for automation or are too afraid to request
it, even if they are executing the same repetitive tasks time and time again
by the same group of people.

There are many different options for how to implement your automa-
tion. Continuous Integration systems (such as Jenkins, JetBrains TeamCity,
or Atlassian Bamboo) are easy options, especially if they’re already pres-
ent in the wider game development pipeline. Many of these Continuous
Integration systems allow for easy integration using web UIs and don’t
always require the help of a build system or automation engineer. As an
additional bonus, they provide easy and graphical scheduling capabilities.

Another route is to use the Windows Task Scheduler, cron, or an equiv-
alent tool that is available on each system to schedule the process locally.
While this is definitely the least advantageous for a number of reasons
(what happens if there is a power outage, the workstation is turned off by
someone else, or a flood destroys your workstation), it will do in a pinch.
Anything that doesn’t require someone to click a button on a regular basis
is a win.

76 ◾ Game Audio Programming 3

When adding automation, it is important to think of a notification
strategy. The most basic strategy is to send an email when the process has
 finished – whether it has encountered issues or not. While this does poten-
tially create some extra volume of information, it serves as a reminder that
there is a process that is constantly running. This ensures that people don’t
forget that it exists and they continue to be conscious that their actions can
potentially have an impact on whether or not the process is completed suc-
cessfully. On the other hand, sending an email could simply annoy people
and make them enemies of the voice pipeline. It is important to have knowl-
edge of the team that will use the pipeline and adapt to their team culture.

It is easy to automate the tools developed specifically as part of the
voice pipeline. However, there can sometimes be greater opportunities in
automating third-party tools such as DAWs. Automating tasks that aren’t
especially complicated can be a huge win with little investment. If all files
need to be normalized, trimmed, and/or resampled, automating these
steps by calling a command line and providing a few parameters may cost
an hour of time but could potentially save hundreds of hours—especially
when dealing with 100,000 files or more.

Analytics and automation go hand in hand, where the time spent can be
justified by the information that the analytics provide. No matter which
system you use, keeping track of analytics to be able to identify how many
man-hours are saved and the return on investment can be useful when
making an analysis of potential future improvements and as a source of
personal pride. One additional benefit is that reviewing the analytics can
help point out problematic areas of the pipeline and provide a source of
inspiration for future improvements.

5.4.4 Disaster Recovery/Revision Control

Both Disaster Recovery and Revision Control help protect people from
their own mistakes. When receiving thousands of lines of recorded voice,
there is always the potential for human error, no matter how solid the
pipeline is. The question becomes: How to empower users to undo mis-
takes and recover accidentally deleted work?

One common solution is to use a revision control system such as
Perforce or Plastic SCM. These systems are built to handle large volumes
of data files and have fine-grained controls built-in to control the size of
the repository long-term. Administrators can determine the best policy
for data retention versus size-on-disk. Additionally, it is commonplace to
have a disaster recovery plan specifically for the revision control system in

Principles of Voice Pipelines ◾ 77

place for any data stored on these servers (such as daily backups, replica-
tion, etc.). Whatever the choice for a revision control system, it is impor-
tant to choose one that is well adapted to the type of data that you will be
manipulating, as not all systems handle binary data the same.

Of course, not everyone has the benefit of having a revision control
system available to them, and not everyone has the expertise to configure,
deploy, and manage these types of systems in addition to all of the other
tasks that are required of them. The barebones method is to have a shared
folder where the different people responsible can put recorded files to be
used in the pipeline. These could be stored on any cloud storage provider’s
platform, easily accessible to everyone (and easily deletable as well).

No matter how the data is stored, make sure it is accessible to those who
need access and that you develop a plan for a worst-case scenario (some-
one accidentally drops a mug full of coffee on the external hard drive,
destroying it) and a method to recover from it.

5.4.5 Integrating Third-Party Tools

Spending time creating a tool which duplicates the functionality of an exist-
ing third-party tool can sometimes seem wasteful but may end up being
an important and essential decision to avoid being stuck reimplementing
the same functionality in the middle of production. When designing a
voice pipeline, integrating third-party tools can save enormous amounts
of time. It is important to analyze and evaluate the tool’s history and how
the team responsible for supporting it responds to issues. Is there the pos-
sibility the tool will stop working if a certain server (which is in the control
of the vendor) is suddenly taken offline without any notice? What will
happen if the company that sells the tool suddenly stops responding to
support requests and closes their doors permanently? What if the tool is
open source and its development is suddenly stopped? These are not situ-
ations any developer with their own looming deadline wants to have to
experience, let alone mitigate the fallout. Simply reflecting on the impact
of losing one specific tool in the pipeline can be enough to push developers
into planning for the worst-case scenario before it arrives.

5.5 IMPLEMENTATION
With the long list of requirements in hand and your rough design done,
the next challenge is implementing everything. Most of the following sec-
tions discuss general software design principals and examples of their
application in the context of a voice pipeline.

78 ◾ Game Audio Programming 3

5.5.1 Deployment

Issues will happen, requirements will change, and new challenges will be
introduced into the pipeline many times throughout development. It’s
important to try and prevent that which is preventable, but the ability to
make changes and tweaks and have the result available immediately is
important. Many production teams already have a plan in place to distrib-
ute new code and data, but it is not always appropriate for always-running
processes that may be hard or impossible to test before deploying changes
to them. Regardless of how the game editor or a game build is created, the
needs for pipelines don’t always align with these deployment methods.
There are several different strategies for deployment, ranging from once
code/data is submitted and the result executable/build is available then it
is ready for use, all the way to long-term planning and infrequent releases
(think middleware or game engines releasing a polished version only a
few times a year). Obviously if there is a code fix that is needed for one
tool used in the voice pipeline, then waiting a week for it to be deployed is
going to be a bottleneck.

5.5.2 Error Handling for Non-technical People

When implementing any tool, it’s always a good practice to add in vali-
dations and debugging information. One of the most basic pieces of
 debugging/error logging that will be familiar to anyone who has worked
in C# is the following:

try
{
 FetchAudioFiles();
}
catch(Exception ex)
{
 Console.Error.WriteLine(ex.Message);
}

This is great as a first implementation or whenever you’re debugging a
specific action. However, it is almost always a complete failure as a useful
or meaningful piece of information for non-programmers. A null refer-
ence exception or access violation exception with a callstack will mean
nothing to people who aren’t coders. This means that we need to output
meaningful errors with actionable messages.

Principles of Voice Pipelines ◾ 79

To empower users to address issues, even ones that they may have
caused themselves, they need actionable messages. Consider the following
(contrived) example:

class ProgramA
{
 static void Main(string[] args)
 {
 using (StreamReader reader =
 new StreamReader(
 File.Open(@"C:\RandomFile.wav",
 FileMode.Open,
 FileAccess.Read, FileShare.None)))
 {
 Thread.Sleep(100000);
 }
 }
}

class ProgramB
{
 static void Main(string[] args)
 {
 try
 {
 File.Delete(@"C:\RandomFile.wav");
 }
 catch (UnauthorizedAccessException ex)
 {
 Console.Error.WriteLine(ex.Message,
 "Please ensure this file isn't open in any other program");
 }
 }
}

Running ProgramA will ensure that no other program (or user) can
delete the file. Executing these together will most likely result in the
exception being thrown for ProgramB. If the error message were sim-
ply the message text of the exception (Access to the path 'C:\
RandomFile.wav' is denied), it would not be clear to the user why
that is or what they can do to fix it. Adding a simple message such as
Please ensure this file isn't open in any other program will
help users (adding the program name goes a step further, making it
even easier).

80 ◾ Game Audio Programming 3

Proper messages and error handling aren’t specific to voice pipeline
design. However, because of the large amounts of data that voice pipelines
handle, the one-in-a-thousand type of errors are more likely to appear.
Without the proper actionable messages, the programmer responsible
for the pipeline can become a bottleneck and/or overwhelmed with the
amount of support given to users.

5.5.3 Nothing More Permanent than a Temporary Fix

One almost universal truth is that there is nothing more permanent than a
temporary fix, especially in software development. This adage refers to the
fact that any code or implementation that is submitted and declared as a
temporary fix has a reasonable chance of becoming a permanent addition
to the code base and/or pipeline.

It is important to remember this fact when deciding between spending
1–2 more days on a particular part of the pipeline and moving on to the
next task. Something that is “good enough for now” will usually come
back to haunt developers later on in production. Having a long-term
vision rather than simply focusing on the current deliverable or produc-
tion can help remind developers that they are building reusable processes
and tools.

5.6 CONCLUSION
Most of the topics that were discussed were basic software engineering
principles. Their importance in relation to a voice pipeline is in applying
these principles well and consistently. Implementing good error logging
some of the time, having a rigid set of failure principles that fail to con-
sider edge cases that haven’t happened, or monolithic designs will result in
a voice pipeline that is fragile, hard to use, and sucks up debugging time.
Keep in mind that the purpose of the pipeline is to be able to handle data
easily and flexibly, with the ultimate goal of adding high-quality data that
is important to the finished game.

While most game productions will have a limited lifetime, voice pipe-
lines often extend past this time into future projects. Forgetting this fact
can provide a source of frustration in the future because of rigid design
choices that limit the ability of developers to refactor and improve the
pipeline.

81

C h a p t e r 6

A Stimulus-Driven
Server Authoritative
Voice System

Tomas Neumann
Blizzard Entertainment

6.1 INTRODUCTION
Spoken words are often at the core of why players connect and relate to
the characters within a video game. Voices can be used for tutorials, to tell
the story, to create drama, or to convey gameplay information. Enemies
in the original Wolfenstein 3D were yelling “Achtung!” and “Mein Leben!”

CONTENTS
6.1 Introduction 81
6.2 Clarifying Terminology 82
6.3 The Purpose of a Server Authoritative Voice System 83

6.3.1 Playing in a Multiverse 83
6.4 Server Workflow 84

6.4.1 Collecting and Rating Stimuli 84
6.5 Client Workflow 85
6.6 Line Selection 86
6.7 Network Considerations 86

6.7.1 Prediction and Client-Only VO 87
6.7.2 Network Reliability 87

6.8 Voice Line Triggered Gameplay and Multi-Locale
Client Connections 88

6.9 Conclusion 89

82 ◾ Game Audio Programming 3

to telegraph their AI states; in The Witcher, the voice lines drive the cam-
era cuts in most of the in-game cinematics; Overwatch’s heroes warn each
other with a “Behind you!”; and in The Last of Us, we can hear the heart-
wrenching death cries of a young girl.

In a single-player offline game, the client makes all of the decisions
about which voice lines to play, but multiplayer games are more complex
because it may be necessary that all players hear the same variation of
a line. By playing the same line on all clients, all of the connected play-
ers can experience the world through a shared experience. And if some
funny voice lines have a rare probability to play, all players will share their
 surprise and this moment with each other when they do play.

In this chapter, I present some techniques which can be used to c reate a
voice system which is based on an authoritative server. The server directs
which lines are chosen, picks who says something, and which client should
play these lines.

6.2 CLARIFYING TERMINOLOGY
Game voice over (VO) is often called “dialog” or “dialogue.” Historically,
hardware channels on a soundcard were also called voices, often in the
context of a voice limit. However, these days the term “voice” is generally
used to describe spoken words in the field of game audio. The mechanism
through which game characters talk, at least in this chapter, are voices,
dialogue, and VO, and they are used interchangeably.

Some games like The Sims use an artificial language for all of their char-
acter dialog,1 but a vast majority of games need to translate and localize
their voice lines for each supported language or locale. A locale describes a
cultural set of words out of a language and country: for instance, es-ES for
Spanish spoken in Spain (sometimes referred to as “Castilian Spanish”)
or es-MX for Spanish in Mexico. Localization is the process of translating
a voice line in a manner culturally appropriate for a given locale, casting
voice talents appropriate to the preferences of that region, recording the
audio assets, and importing the data. Many multiplayer games allow play-
ers to connect to the same server or play directly with each other even if
their game clients are set to different locales.

A stimulus is an event that invokes a specific reaction; in the case of
this voice system, it can be as simple as what a game character should talk
about.

1 The artificial language in The Sims is called Simlish.

A Server Authoritative Voice System ◾ 83

6.3 T HE PURPOSE OF A SERVER AUTHORITATIVE
VOICE SYSTEM

Imagine a multiplayer fantasy game with a powerful raid boss who has
several random variations of voice lines to say when the group of brave
warriors all storm her throne room. Most likely all players are connected
together via voice chat to coordinate their attacks. If every game client
chooses randomly which voice line to play for the boss, there could be
some confusion amongst the friends why some players heard a different
voice line than their friends. If instead the game server picks the line and
informs all clients to play the same line, all of the players will experience
the world as more consistent and less artificial.

Additionally, imagine that the game designer had the tools to write
some additional “Easter egg” lines with a dramatically low probability
to play or which require some very specific criteria (e.g. all warriors are
paladins). When they rush through the door, the boss suddenly says, Is
any of you fools Leeroy Jenkins? If all of the players hear the same line, it
creates a magical shared moment for all those players. They now have a
story to share which would not be possible without an authoritative voice
system.

6.3.1 P laying in a Multiverse

While the server helps to create a world of consistency, there might arise
situations in a multiplayer game in which players who stand right next to
each other might want to hear different voice lines. One simple example
might be after your game character heals up to play a satisfied breath exert,
which the surrounding players probably do not need to hear. Similarly,
a player may hear other game characters telegraphing information to
them, while the players controlling those other characters might not be
aware that their character is speaking on someone else’s game client. In
Overwatch, every hero has an ultimate ability, and their voice lines each
have two variants: a hostile and a friendly one. Players in the same match
only hear one of them depending on what team they are on. There are also
examples where stimuli, such as those to warn a specific player, are not
executed on some clients. We will dive more into the details of selecting
voice lines later in this chapter.

In short, each player experiences a consistent shared world through a
personal lens that makes the most sense for them. In the examples below,
I focus on the challenges which arise from this setup. In practice, these
challenges are often the edge cases, but solving these problems early can

84 ◾ Game Audio Programming 3

make a dramatic difference in the capability of the voice system and the
perceived quality of VO in the game.

6.4 SERVER WORKFLOW
All connected clients send their player inputs to the server with very
 different bandwidth and latency times. The server receives these inputs,
simulates the world, and executes what the game characters might do and
say. A server-based voice system collects all requests over the length of the
server frame and then figures out which stimuli to send to which clients.

6.4.1 Collecting and Rating Stimuli

In a given frame, the server may have received multiple stimuli. Let’s take
an example of two frames and three game characters (Ana, Brigitte, and
Cain) each being played by three players (A, B, and C) on different clients.
Table 6.1 lists all the events.

In frame 10, the server must deal with only a single stimulus. Ana gets
shot in the back by an opponent, and we want to help Player A by casting
a little shout-out onto Brigitte or Cain to say: “Behind you!” This is really
only helpful for Player A. Brigitte and Cain both witnessed Ana receiv-
ing damage, so we pick the character most relevant to what Player A sees.
Let’s assume Brigitte was in the field of view of Player A, so the server
only sends a network message to Player A’s client indicating that Brigitte
should say the warning line. No other players receive this message—it
would be rather confusing for Player B to hear their character to say,
“Behind you!”

In frame 11, the server gets four requests in random order. Stimuli with
a higher priority override and interrupt lines spoken on the same charac-
ter. By sorting the stimuli within a frame by stimulus priority, it is easy to
work off the enqueued stimuli, and each character can be assigned their
most important line to say. In frame 11, the most important stimulus is a
death cry of Brigitte. This message is sent to all clients.

TABLE 6.1 List of Examples of Stimuli on Server

Frame Stimulus Priority Speaker Sent To

10 Witnesses Ana takes damage 4 Brigitte or Cain A
11 Brigitte dies 5 Brigitte A, B, C
11 Ana uses ability 4 Ana A, B, C
11 Brigitte uses ability 4 Brigitte None
11 Cain uses ability 4 Cain A, B, C

A Server Authoritative Voice System ◾ 85

The next three stimuli with the characters all using their ability have the
same priority of 4. Ana is alive and can talk, and all clients are informed
about her voice request. Brigitte is dead but more importantly is already
requested to say a higher-priority line within the same server frame. Her
additional voice request can be dropped, and no client ever receives a
request. Cain is also alive, so the server sends this request to all clients.

6.5 CLIENT WORKFLOW
Each client receives a unique set of VO information and commands, and
they have some flexibility to follow the server’s directives. One example
of what the received stimuli might be is shown in Table 6.2. The damage-
witnessed warning from frame 10 is only sent to Client A to make Brigitte
say the warning to the player controlling Ana. When Client A receives the
request to play a death line for Brigitte on the next frame, it needs to han-
dle the request by interrupting her previous warning line. Player A might
hear something like “Behin … Aaargh….” Clients B and C can just play
the death line directly, because they never received the warning request.
In the end, all clients hear Brigitte’s death line.

For the two remaining requests of frame 11 of Ana and Cain using their
ability, all clients received the same information, but each client can deter-
mine which of the two requests makes more sense to their players. For
example, there may be a mechanism in place that limits how many voice
lines of a certain category or with the same stimulus priority can play at
the same time.

Let’s say there are already two characters who are currently saying prior-
ity 4 lines and the game has a rule to only ever play three priority 4 lines on
a client. Which client should play which of Ana’s and Cain’s lines? Imagine
now Ana and Brigitte are nearby, while Cain is on the other side of the
map. Depending on the game type, it could make more sense for Clients A
and B to play Ana’s line, while Client C chooses to play Cain’s line.

While most lines are requested by the server and played consistently
on all the three clients, each client also makes specific decisions based on

TABLE 6.2 Examples of Stimuli Received by Client

Frame Stimulus Priority Speaker Sent to A Hears B Hears C Hears

10 Ana takes damage 4 Brigitte A Brigitte – –
11 Brigitte dies 5 Brigitte A, B, C Brigitte Brigitte Brigitte
11 Ana uses ability 4 Ana A, B, C Ana Ana –
11 Cain uses ability 4 Cain A, B, C – – Cain

86 ◾ Game Audio Programming 3

some game rules in order to improve the clarity and understanding of the
game world for each player.

6.6 LINE SELECTION
Until now, we have ignored the topic of line selection in order to focus
on stimulus handling. Once a server has selected which stimuli to send
to which clients, it must now decide which specific voice line should be
played on those clients. Voice line variants can have different probabilities
or extra criteria. Depending on the state of the game, the server might
pick, for instance, friendly or hostile versions of the same stimulus or spe-
cial lines depending on what map is active or which team is in the lead.
Once it makes the selection, the server can then send unique messages to
specific clients with different voice line IDs. From the client’s perspective,
it just receives a line ID and executes the line according to its playback
rules.

In Overwatch, when opponents of the hero McCree hear the line “It’s
high noon!” they learn quickly to take cover to avoid fatal hits. But all
members of his team hear him say the less threatening friendly variant
“Step right up.” What variant should the player controlling McCree hear?
Maybe the friendly version? After all, he is a member of his own team and
cannot harm himself. But having him say the enemy line sells the fantasy
of being a hero better and teaches the player in return to be very cautious
if they ever hear this line from another player. Table 6.3 shows how the
server would pick line variants and format packets to send to the clients
accordingly. Players M, N, and O are on one team, and Players P, Q, and R
are their opponents.

6.7 NETWORK CONSIDERATIONS
Sending information over the wire will always introduce issues to consider
and weigh against. Speech for a character is not something that requires
sending updates every frame—we mostly get away with telling the
 clients which character should say what line, specified by your system of
identification.

TABLE 6.3 Example of Friendly and Hostile Line Selection on Server

Frame Stimulus Speaker Friendly Variant Hostile Variant

20 High Noon by M McCree N, O M, P, Q, R

A Server Authoritative Voice System ◾ 87

6.7.1 P rediction and Client-Only VO

Latency is the time that it takes messages to travel from the client to the
server or vice versa. If we waited for the complete round trip from the
server to the client and back again every time a player wanted to jump
to verify whether the jump is legitimate, the game would not feel very
responsive. Often network models use a form of prediction, and the player
can jump right away, even if in some cases the server corrects the cli-
ent, e.g. when the player was stunned by someone else, which the client
mispredicted.

For VO, we do not want to wait for a round trip for a simple exhale
sound. Because these types of voice lines are not game critical, the client
can just pick a variation and play it. The server will inform bystanders
who observe the other player jump about the action, and their client will
also play a random jump exhale. In this case, the integrity of a consis-
tent world is not endangered if we cheat a little and play different voice
files.

The decision of which lines can be client-authoritative and which are
server-driven must be made per category. For example, if your game has
very distinct death callouts, that may be something you would wait for the
server to authenticate. Or, alternatively, you could prime all clients with
a random seed so that the same variations can be played without waiting
for the server assuming that you can guarantee that the stream of random
numbers remains in synch. There is plenty of detailed information avail-
able about how to reduce the perceived lag with multiplayer games, and
especially VO can also benefit from these techniques.

6.7.2 Network Reliability

A chat with your friendly colleague who is in charge of network messag-
ing will quickly reveal that it is a deep and complex topic. A server voice
system can contribute to a smoother gameplay experience if the data to
be sent over the wire is small and if the message reliability is chosen cor-
rectly. A reliable packet will be resent by the server if it does not receive a
confirmation that the packet was accepted by the client. Contrariwise, an
unreliable packet will be sent just once and never resent. The sender will
never know if it was accepted.

In order to reduce network usage, some “chatter” voice lines—lines
which are not meaningful to gameplay but which provide some immersive
quality to the game world—can be sent in an unreliable fashion. A player
with high packet-loss may experience that some characters do not say

88 ◾ Game Audio Programming 3

their chatter lines because the packet to inform their client to play the line
never was received. Voice lines which are important to the gameplay must
be sent reliably because it is more important for the player to hear the line
at all, even if there is a substantial delay.

6.8 V OICE LINE TRIGGERED GAMEPLAY AND
MULTI-LOCALE CLIENT CONNECTIONS

There might be situations when game designers want to time a certain
event after a voice line has finished playing, perhaps for a tutorial or an
impressive cinematic moment in the game. In a multiplayer game, it can
be dangerous to rely on the actual playback of a voice file on the client. The
client might not have a functioning sound card, or maybe a cheater could
replace the voice line on disk with a shorter or longer one to get an unfair
advantage.

Despite smaller timing challenges introduced by latency and packet
loss, the most secure option is to store durations of these voice files on
the server. The actual audio files are not needed because the server never
actually plays any sounds. However, if a game event needs to happen after
a voice line finishes, the server can start a timer with the duration of the
chosen voice file and then inform the client of the event after the timer
expires. The voice line duration can be extracted in a build process when
other game data is baked.

During localization, each voice line is marked either to be translated
exactly to match the original file length in the production language or to
give the localization team some freedom to shorten or lengthen their file
by a time or percentage. If the game allows clients with different locales to
connect to the same server and the server only uses the production lan-
guage timing, it is possible that the enqueued game event that is triggered
after the voice line will happen at different points in the audio file for dif-
ferent clients. In order to avoid this inconsistency, the server can always use
the maximum of all translated file variants of a voice line or only consider
the lengths of the locales of the clients currently connected to the server.

Table 6.4 shows examples of how the same voice line could have differ-
ent playback durations in different locales. If two players with en-US and
zh-TW locales play together, the server would wait 1.4 seconds to queue up

TABLE 6.4 Examples of Different Duration Times of a Voice Line

Locale en-US de-DE es-ES zh-TW

Duration in seconds 1.2 1.6 1.1 1.4

A Server Authoritative Voice System ◾ 89

the game event the game designer wants to invoke after the line, and the
player with en-US will wait 0.2 seconds after their line has finished play-
ing. If the same en-US player would play with someone in the es-ES locale,
then they would not wait any extra time, but the es-ES player would need
to wait 0.1 seconds.

6.9 CONCLUSION
For a multiplayer game, a server authoritative voice system allows for very
interesting gameplay features, dramatically higher clarity and quality in
VO for individual players, and hardening of anti-cheat efforts. But this
 feature comes with the additional cost of dealing with edge cases when
looking through the player-specific lens of the game world. There are
logistical hurdles to resolve and network issues and delays to be com-
pensated for. I hope I was able to introduce you to some techniques and
ideas and you have a kick start once you approach this field and consider
 developing a voice system yourself.

https://taylorandfrancis.com

91

III
Audio Engines

https://taylorandfrancis.com

93

C h a p t e r 7

Building the
Patch Cable

Ethan Geller
Epic Games

7.1 ON PATCH CABLES

Hand me that cable / Plug into anything

“Rock and Sing” by Big Thief

In the history of electricity, there are few mechanisms more human-
involved than the patch cable. Recall the first time you plugged a guitar

CONTENTS
7.1 On Patch Cables 93
7.2 C++ Audio Abstractions 95
7.3 First-Pass Abstractions 95
7.4 The Patch Cable Abstraction 97
7.5 Patch Inputs and Outputs 99

7.5.1 Circular Buffer 99
7.5.2 Patch Output 102
7.5.3 Ownership Semantics 105
7.5.4 Patch Input 105

7.6 Patch Cable Mixer 108
7.7 Patch Splitter 111
7.8 Patch Mixer Splitter 114
7.9 Patch Cable Abstraction Applications 116
7.10 Conclusion 117
References 118

94 ◾ Game Audio Programming 3

into an amp or heard your own voice amplified through a monitor. There’s
a satisfying click, and with it, you are audible; a circuit is closed, and you
are in it. So often we consider electricity a utility (a means to power your
refrigerator) or a luxury (a means to power your television), but analog
audio signals give us the chance to be complicit in the systems we use.
When you plug an instrument into an amp or a PA, you are engaging in
a century-old ritual in which your kinesics drive a current used to push
demoniac amounts of air.

This is what got me into audio in the first place. There’s no visual corre-
late for being amplified, nor is there one for resonating in a physical space.
These are experiences that are unique to sound: to have every motion of
your fingers along a fretboard interact with every surface of a room or to
glissando upward and find sudden resonances along the way. In many
cathedrals, a single sound at a single point in time will have seconds of
consequences.

Imagine my disappointment when I realized that very little of this
magic is reproducible in game audio programming. Granted, there is
plenty of software that lets you design and iterate on arbitrary signal flows:
MaxMSP/Pure Data, Supercollider, Reaktor Blocks, and Reason are all
brilliant tools for iterating on audio systems. But these are all sandboxes:
once we build the topology we want, it can’t be extracted into a component
of a larger piece of shipped software. Patches built in PureData must stay
in PureData—you can record the results of your patch, but you can’t take
it with you.1 Faust is the closest thing to what I’d like: a way to experiment
with routing signals within a larger piece of compiled software. However,
at the end of the day, there is still a distinct barrier between the systems I
use in Faust and the systems I use in my larger C++ codebase.

What makes this such a shame is that the act of playing a game is very
similar to playing an instrument. Compare the experience of playing gui-
tar through an amplifier with the experience of playing any action game.
You apply pressure to the left thumb stick; your avatar begins to run.
You press A while applying that same pressure to the thumb stick, and
your avatar jumps across a precipice, narrowly escaping death. You keep
the right trigger held down and tap the left trigger at just the right time,
and the tail of your car lurches out from behind you: you are drifting,
and it is badass. Watch any participant’s hands during a fighting game

1 This is only partially correct: Enzien did create and later open-source a service called Heavy,
which transcompiles PureData patches into C++.

Building the Patch Cable ◾ 95

tournament, and you will know that the best fighting games are as idiom-
atic as any Chopin étude.

7.2 C++ AUDIO ABSTRACTIONS
What I want is for game audio programming to be as joyful and easy as
patching my telecaster into my delay pedal, and this is not something that
exists in any game code base I have seen. The C++ standard is not con-
cerned with giving me this, nor should it be. But the true forte of C++ is
that you can pick and choose the abstractions you use on a case-by-case
basis. Smart pointers are the apotheosis of useful abstraction in C++: a
terse representation of a common pattern. What you lose in the ability
to micromanage the runtime, you gain in readability and programmer
efficiency. Having worked in both C and C++ codebases, I can tell you
that I work multiple times faster if I can use smart pointers, which means
I spend more time in C++ experimenting, testing, profiling, and iterating.

It’s not hyperbole when I say this is nearly all I care about when I write
code. Fast iteration times are the cornerstone of being good at your job: If
you can implement any idea faster, you can discover and implement the
best idea faster. But if it’s the case that useful abstractions in C++ are vital
to success, why do audio programmers suffer a dearth of abstractions for
their domain? There is certainly no shortage of common patterns in real-
time audio systems. In this chapter, we’ll build some abstractions for these
common patterns.

7.3 FIRST-PASS ABSTRACTIONS
Let’s write a mono, fixed-sample-rate audio system. Here’s an interface for
something that generates audio:

class AudioInputInterface
{
public:
 AudioInputInterface();
 virtual ~AudioInputInterface();
 virtual GenerateAudio(float* OutAudio, int32_t NumSamples) = 0;
}

And here’s an interface for something that receives audio:

class AudioOutputInterface
{
public:

96 ◾ Game Audio Programming 3

 AudioOutputInterface();
 virtual ~AudioOutputInterface();
 virtual ReceiveAudio(const float* InAudio, int32_t NumSamples) = 0;
}

And here’s an audio engine. It asks instances of AudioInputInterface to
generate audio, mixes that audio together, and then broadcasts the result-
ing audio to instances of AudioOutputInterface:

class AudioEngine
{
private:
 std::vector<AudioInputInterface*> Inputs;
 mutable std::mutex InputListMutationLock;
 std::vector<AudioOutputInterface*> Outputs;
 mutable std::mutex OutputListMutationLock;
 std::vector<float> ScratchAudioBuffer;
 std::vector<float> MixedAudioBuffer;

public:
 void RegisterInput(AudioInputInterface* InInput)
 {
 std::lock_guard<std::mutex> ScopeLock(InputListMutationLock);
 Inputs.push_back(InInput);
 }

 void UnregisterInput(AudioInputInterface* InInput)
 {
 std::lock_guard<std::mutex> ScopeLock(InputListMutationLock);
 auto found = std::find(Inputs.begin(), Inputs.end(), InInput);
 if (found != Inputs.end())
 Inputs.erase(found);
 }

 void RegisterOutput(AudioOutputInterface* InOutput)
 {
 std::lock_guard<std::mutex> ScopeLock(OutputListMutationLock);
 Outputs.push_back(InOutput);
 }

 void UnregisterOutput(AudioOutputInterface* InOutput)
 {
 std::lock_guard<std::mutex> ScopeLock(OutputListMutationLock);
 auto found = std::find(Outputs.begin(), Outputs.end(), InOutput);
 if (found != Outputs.end())
 Outputs.erase(found);
 }

Building the Patch Cable ◾ 97

 void ProcessAudio()
 {
 const int32_t NumSamples = 1024;
 MixedAudioBuffer.resize(NumSamples);
 ScratchAudioBuffer.resize(NumSamples);

 memset(MixedAudioBuffer.data(), 0, NumSamples * sizeof(float));

 // Poll inputs:
 std::lock_guard<std::mutex> ScopeLock(InputListMutationLock);
 for(AudioInputInterface* Input : Inputs)
 {
 Input->GenerateAudio(ScratchAudioBuffer.data(), NumSamples);
 // Mix it in:
 for(int32_t Index = 0; Index < NumSamples; Index++)
 MixedAudioBuffer[Index] += ScratchAudioBuffer[Index];
 }

 // Push outputs:
 std::lock_guard<std::mutex> ScopeLock(OutputListMutationLock);
 for(AudioOutputInterface* Output : Outputs)
 {
 Output>ReceiveAudio(MixedAudioBuffer.data(), NumSamples);
 }
 }
}

This simple interface provides a lot of opportunities for expansion. A DSP
processor or bus could implement both AudioInputInterface as well as
AudioOutputInterface. Heck, the AudioEngine class itself could imple-
ment the input and output interfaces and be plugged into other AudioEngine
instances. This is starting to look an awful lot like a way to build arbi-
trary audio topologies in C++. The advantage of doing something like this
is that it’s a zero copy, zero latency solution: Every registered instance of
AudioOutputInterface is going to get audio as soon as it is generated.

7.4 THE PATCH CABLE ABSTRACTION
This abstraction is not what I’m looking for. This sort of interface
might help me build and run a new synthesizer or source manager, but
it’s not helping me plug anything into anything else. What thread is
AudioEngine::ProcessAudio() getting called on? Probably not the same
thread as the network socket I want to send audio over or that I’m receiv-
ing audio from. Nor is it helping me pipe audio to the gameplay capture
system we’re trying to use to record replays to a directory of movie files.

98 ◾ Game Audio Programming 3

What if there’s a codec we’re trying to use that only takes 20 millisec-
onds of audio at a time and the number of samples per each callback of
ProcessAudio() is not exactly 20 milliseconds of audio? What if any
given call to GenerateAudio() or ReceiveAudio() takes a prohibitively
long amount of time?

With this framework, we’ve created a good set of interfaces to build a
single-threaded topology for audio signal processing. However, if anyone
else wants to try patching audio from our subsystem to theirs, they will have
to debug and understand our audio engine, rather than focus on theirs.

When I build an API that will allow you to send or receive an audio
signal, I don’t want to give you a buffer or a callback. I want to give you
one end of a patch cable, and I want you to be able to plug it into anything.
Consider the following API:

class AudioEngine
{
//...
public:
 PatchInput ConnectNewInput(uint32_t MaxLatencyInSamples);
 PatchOutput ConnectNewOutput(uint32_t MaxLatencyInSamples);
}

After calling ConnectNewInput(), you can pass the PatchInput object
around freely and push audio to it from whatever thread you want.

AudioEngine DefaultAudioEngine;
//...
PatchInput MySynthSend = DefaultAudioEngine.ConnectNewInput(4096);

// In your synth’s callback:
float* BufferOfGeneratedAudio = ...;
uint32_t NumSamplesInBuffer = 2048;
uint32_t NumSamplesPushedToEngine =
 MySynthSend.PushAudio(BufferOfGeneratedAudio, NumSamplesInBuffer);
// if NumSamplesPushedToEngine is less than NumSamplesInBuffer,
// we’ve maxed out our buffer.

In this example, MySynthSend is patched into DefaultAudioEngine, but
in principle, MySynthSend could be connected to anything, and it would
not change our core render loop. We can render as much as we want on
any thread as long as our buffer is big enough. We have finally arrived at
the useful abstraction we’re going to be implementing in this chapter: a
thread-safe patch cable composed of a circular buffer and smart pointers.

Building the Patch Cable ◾ 99

7.5 PATCH INPUTS AND OUTPUTS

7.5.1 Circular Buffer

Before we build our PatchInput and PatchOutput classes, we need to
decide on a buffering mechanism. If you read Game Audio Programming
Principles and Practices Volume 2, Chapter 3, “Multithreading for Game
Audio” (Murray 2019), then you’re already well informed about various
buffering mechanisms for transporting audio between threads: double
buffering mechanisms, lockless queues, and mutex-locked single arrays
are all good solutions for specific applications.

However, we are looking for a buffering mechanism that can be used
with arbitrary buffer sizes, callback rates, and preferably with as little
locking as possible. Because of this, we will use a circular buffer. Consider
the following implementation of a circular buffer, which is the style of
circular buffer implemented in the Unreal Engine, as well as the kind of
circular buffer I use personally for almost any application:

template <typename SampleType>
class CircularAudioBuffer
{
private:
 std::vector<SampleType> InternalBuffer;
 uint32_t Capacity;
 std::atomic<uint32_t> ReadCounter;
 std::atomic<uint32_t> WriteCounter;

public:
 CircularAudioBuffer()
 {
 SetCapacity(0);
 }

 CircularAudioBuffer(uint32_t InCapacity)
 {
 SetCapacity(InCapacity);
 }

 void SetCapacity(uint32_t InCapacity)
 {
 Capacity = InCapacity + 1;
 ReadCounter.store(0);
 WriteCounter.store(0);
 InternalBuffer.resize(Capacity);
 }

100 ◾ Game Audio Programming 3

 // Pushes some amount of samples into this circular buffer.
 // Returns the amount of samples read
 uint32_t Push(const SampleType* InBuffer, uint32_t NumSamples)
 {
 SampleType* DestBuffer = InternalBuffer.data();
 const uint32_t ReadIndex = ReadCounter.load();
 const uint32_t WriteIndex = WriteCounter.load();

 uint32_t NumToCopy = std::min(NumSamples, Remainder());
 const int32_t NumToWrite =
 std::min(NumToCopy, Capacity - WriteIndex);
 memcpy(
 &DestBuffer[WriteIndex],
 InBuffer,
 NumToWrite * sizeof(SampleType));

 memcpy(
 &DestBuffer[0],
 &InBuffer[NumToWrite],
 (NumToCopy - NumToWrite) * sizeof(SampleType));

 WriteCounter.store((WriteIndex + NumToCopy) % Capacity);

 return NumToCopy;
 }

 // Same as Pop() but does not increment the read counter.
 uint32_t Peek(SampleType* OutBuffer, uint32_t NumSamples) const
 {
 SampleType* SrcBuffer = InternalBuffer.data();
 const uint32 ReadIndex = ReadCounter.load();
 const uint32 WriteIndex = WriteCounter.load();

 uint32_t NumToCopy = std::min(NumSamples, Num());

 const int32 NumRead = std::min(NumToCopy, Capacity - ReadIndex);
 memcpy(
 OutBuffer,
 &SrcBuffer[ReadIndex],
 NumRead * sizeof(SampleType));

 memcpy(
 &OutBuffer[NumRead],
 &SrcBuffer[0],
 (NumToCopy - NumRead) * sizeof(SampleType));

 return NumToCopy;
 }

Building the Patch Cable ◾ 101

 // Pops some amount of samples into this circular buffer.
 // Returns the amount of samples read.
 uint32_t Pop(SampleType* OutBuffer, uint32_t NumSamples)
 {
 uint32_t NumSamplesRead = Peek(OutBuffer, NumSamples);

 ReadCounter.store(
 (ReadCounter.load() + NumSamplesRead) % Capacity);

 return NumSamplesRead;
 }

 // When called, seeks the read or write cursor to only
 // retain either the NumSamples latest data (if
 // bRetainOldestSamples is false) or the NumSamples oldest data
 // (if bRetainOldestSamples is true) in the buffer. Cannot be
 // used to increase the capacity of this buffer.
 void SetNum(uint32_t NumSamples, bool bRetainOldestSamples = false)
 {
 if (bRetainOldestSamples)
 {
 WriteCounter.store(
 (ReadCounter.GetValue() + NumSamples) % Capacity);
 }
 else
 {
 int64_t ReadCounterNum =
 ((int32)WriteCounter.load()) - ((int32) NumSamples);
 if (ReadCounterNum < 0)
 {
 ReadCounterNum = Capacity + ReadCounterNum;
 }

 ReadCounter.store(ReadCounterNum);
 }
 }

 // Get the number of samples that can be popped off of the buffer.
 uint32_t Num() const
 {
 const uint32_t ReadIndex = ReadCounter.load();
 const uint32_t WriteIndex = WriteCounter.load();

 if (WriteIndex >= ReadIndex)
 {
 return WriteIndex - ReadIndex;
 }
 else
 {

102 ◾ Game Audio Programming 3

 return Capacity - ReadIndex + WriteIndex;
 }
 }

 // Get the current capacity of the buffer
 uint32_t GetCapacity() const
 {
 return Capacity;
 }

 // Get the number of samples that can be pushed onto the
 // buffer before it is full.
 uint32_t Remainder() const
 {
 const uint32_t ReadIndex = ReadCounter.load();
 const uint32_t WriteIndex = WriteCounter.load();

 return (Capacity - 1 - WriteIndex + ReadIndex) % Capacity;
 }
};

This structure is safe for SPSC situations. Notice how we explicitly load
our read and write counters at the beginning of Peek(), Pop(), and Push()
but only increment them at the very end of Pop() and Push(). We then
truncate the amount of audio we push to the buffer based on our poten-
tially stale read counter or truncate the amount of audio we peek/pop
based on our potentially stale write counter. In short, if one thread is in
the middle of calling Push while another thread is calling Pop, the worst
thing that can happen is that we truncate the push and pop calls but we
never lock either call. If the buffer is suitably large enough, we won’t need
to worry about the push and pop calls fighting each other.

7.5.2 Patch Output

So now we’ve got a good buffering mechanism that will let us push audio
to a buffer from one thread (our patch input) and pop from that buffer
on another thread (our patch output). All we need is to wrap this circular
buffer in a way that abstracts away its life cycle. First, we’re going to create
a PatchOutput class that encapsulates our circular buffer and hides the
push mechanism for anyone besides the PatchInput class:

struct PatchOutput
{
private:
 // Internal buffer.
 CircularAudioBuffer<float> InternalBuffer;

Building the Patch Cable ◾ 103

 // For MixInAudio, audio is popped off of InternalBuffer onto
 // here and then mixed into OutBuffer in MixInAudio.
 std::vector<float> MixingBuffer;

 // This is applied in PopAudio or MixInAudio.
 std::atomic<float> TargetGain;

 std::atomic<int32_t> NumAliveInputs;

public:
 PatchOutput(uint32_t MaxCapacity, float InGain = 1.0f)
 : InternalBuffer(MaxCapacity)
 , TargetGain(InGain)
 , NumAliveInputs(0)
 {}

 // The default constructor will result in an uninitialized
 // disconnected patch point.
 PatchOutput()
 : InternalBuffer(0)
 , TargetGain(0.0f)
 , NumAliveInputs(0)
 {}

 // Copies the minimum of NumSamples or however many samples
 // are available into OutBuffer. Returns the number of samples
 // copied or -1 if this output’s corresponding input has been
 // destroyed.
 int32_t PopAudio(
 float* OutBuffer, uint32_t NumSamples, bool bUseLatestAudio)
 {
 if (IsInputStale())
 {
 return -1;
 }

 if (bUseLatestAudio
 && InternalBuffer.Num() > NumSamples)
 {
 InternalBuffer.SetNum(NumSamples);
 }

 int32 PopResult = InternalBuffer.Pop(OutBuffer, NumSamples);

 return PopResult;
 }

 // Sums the minimum of NumSamples or however many samples
 // are available into OutBuffer. Returns the number of

104 ◾ Game Audio Programming 3

 // samples summed into OutBuffer.
 int32_t MixInAudio(
 float* OutBuffer, uint32_t NumSamples, bool bUseLatestAudio)
 {
 if (IsInputStale())
 {
 return -1;
 }

 MixingBuffer.SetNumUninitialized(NumSamples, false);
 int32_t PopResult = 0;

 if (bUseLatestAudio
 && InternalBuffer.Num() > NumSamples)
 {
 InternalBuffer.SetNum(NumSamples);
 PopResult = InternalBuffer.Peek(
 MixingBuffer.GetData(), NumSamples);
 }
 else
 {
 PopResult = InternalBuffer.Pop(
 MixingBuffer.GetData(), NumSamples);
 }

 MixInBuffer(MixingBuffer.GetData(), OutBuffer, PopResult, Gain);

 return PopResult;
 }

 // Returns the current number of samples buffered on this output.
 size_t GetNumSamplesAvailable() const
 { return InternalBuffer.size(); }

 // Returns true if the input for this patch has been destroyed.
 bool IsInputStale() const { return NumAliveInputs == 0; }

 friend class PatchInput;
 friend class PatchMixer;
 friend class PatchSplitter;
};

I’ve added MixInAudio() for use with the PatchMixer class that we will
build later in this chapter. The MixInBuffer() function that it uses takes
an existing buffer and sums it into a different one2:

2 For dynamic gain values like these, we will need to interpolate from one gain value to the next in
order to avoid significant discontinuities.

Building the Patch Cable ◾ 105

void MixInBuffer(
 const float* InBuffer, float* BufferToSumTo,
 uint32_t NumSamples, float Gain)
{
 for(uint32_t Index = 0; Index < NumSamples; Index++)
 {
 BufferToSumTo[Index] += InBuffer * Gain;
 }
}

7.5.3 Ownership Semantics

Our PatchOutput holds a circular buffer, and there will be a PatchInput
class that will push audio to that circular buffer. The first concern we
should have here is how we handle the PatchInput and PatchOutput life
cycles: if a PatchInput instance is pushing audio to memory owned by the
PatchOutput class on a separate thread, how can we guarantee that the
PatchOutput instance won’t be destroyed while the PatchInput is using
it? We have two options:

using PatchOutputStrongPtr = std::shared_ptr<PatchOutput>;
using PatchOutputWeakPtr = std::weak_ptr<PatchOutput>;

We can have the PatchInput class own a strong pointer to its corre-
sponding PatchOutput in order to guarantee that it is not deleted until
the PatchInput instance is deleted as well. Alternatively, we can have the
PatchInput class own a weak pointer to the PatchOutput instance, and
any time we want to query or push audio to the PatchOutput instance, we
would attempt to lock the weak pointer, converting it to a strong pointer for
the scope of our work. Using a strong pointer has the advantage of avoid-
ing the overhead of incrementing and decrementing an atomic reference
count during every audio callback. Using a weak pointer has the advan-
tage of ensuring the circular buffer is deleted as soon as the PatchOutput
is deleted.

I’ve decided on the weak pointer, in order to ensure correctness.

7.5.4 Patch Input

Let’s take a look at the other end of our cable, the PatchInput class:

class PatchInput
{
private:
 // Weak pointer to our destination buffer.

106 ◾ Game Audio Programming 3

 PatchOutputWeakPtr OutputHandle;

public:
 // Valid PatchInputs can only be created from explicit outputs.
 PatchInput(const PatchOutputStrongPtr& InOutput)
 : OutputHandle(InOutput)
 , PushCallsCounter(0)
 {
 if (InOutput)
 {
 InOutput->NumAliveInputs++;
 }
 }

 PatchInput(const PatchInput& Other)
 : PatchInput(Other.OutputHandle)
 {
 if (auto StrongOutputPtr = OutputHandle.lock())
 {
 StrongOutputPtr->NumAliveInputs++;
 }
 }

 PatchInput& operator=(const PatchInput& Other)
 {
 OutputHandle = Other.OutputHandle;
 PushCallsCounter = 0;

 if (auto StrongOutputPtr = OutputHandle.lock())
 {
 StrongOutputPtr->NumAliveInputs++;
 }

 return *this;
 }

 // Default constructed PatchInput instances will always
 // return -1 for PushAudio and false for IsOutputStillActive.
 PatchInput()
 : PushCallsCounter(0)
 {}

 ~PatchInput()
 {
 if (auto StrongOutputPtr = OutputHandle.lock())
 {
 StrongOutputPtr->NumAliveInputs--;
 }

Building the Patch Cable ◾ 107

 }

 // Pushes audio from InBuffer to the corresponding PatchOutput.
 // Returns how many samples were able to be pushed or -1 if
 // the output was disconnected.
 int32_t PushAudio(const float* InBuffer, uint32_t NumSamples)
 {
 PatchOutputStrongPtr StrongOutput = OutputHandle.lock();

 if (!StrongOutput)
 {
 return -1;
 }

 int32_t SamplesPushed =
 StrongOutput->InternalBuffer.Push(InBuffer, NumSamples);

 return SamplesPushed;
 }

 void SetGain(float InGain)
 {
 PatchOutputStrongPtr StrongOutput = OutputHandle.lock();

 if (!StrongOutput)
 {
 return;
 }

 StrongOutput ->TargetGain = InGain;
 }

 // Returns false if this output was removed, because either
 // someone called PatchMixer::RemoveTap with this PatchInput
 // or the PatchMixer was destroyed.
 bool IsOutputStillActive() const
 {
 return !OutputHandle.expired();
 }

 friend class PatchMixer;
 friend class PatchSplitter;
};

And just like that, we’ve built a thread safe SPSC cable. There are two
ways we could be passing shared pointers around. The first option is to
encapsulate all of the state and APIs that the PatchInput will need to
use in a struct that is private to the PatchOutput class and instead give

108 ◾ Game Audio Programming 3

the PatchInput instance a shared pointer to that. The other option is to
delete the copy constructor on the PatchInput class and only reference
the PatchOutput with unique pointers. Under this second option, we
give the PatchInput a raw pointer to the PatchOutput and then have the
PatchOutput signal the PatchInput in its destructor. The PatchOutput
destructor would then need to lock its destructor with any PatchInput
calls that rely on it.

7.6 PATCH CABLE MIXER
The next thing we are going to need is a mixer, which will have an arbi-
trary amount of PatchInputs (potentially on multiple threads) and sum
them down to one PatchOutput.

class PatchMixer
{
private:
 // New taps are added here in AddNewPatch, and then are moved
 // to CurrentPatches in ConnectNewPatches.
 std::vector<PatchOutputStrongPtr> PendingNewInputs;

 // Contended by AddNewPatch, ConnectNewPatches,
 // and CleanUpDisconnectedTaps.
 mutable std::mutex PendingNewInputsCriticalSection;

 // Only accessed within PopAudio. Indirect array of taps that
 // are mixed in during PopAudio.
 std::vector<PatchOutputStrongPtr> CurrentInputs;
 mutable std::mutex CurrentPatchesCriticalSection;

 // Called within PopAudio. Flushes the PendingNewPatches array
 // into CurrentPatches. During this function, AddNewPatch is
 // blocked.
 void ConnectNewPatches()
 {
 std::lock_guard<std::mutex> ScopeLock(
 PendingNewInputsCriticalSection);

 // If AddNewPatch is called in a separate thread, wait until
 // the next PopAudio call to do this work.
 for (PatchOutputStrongPtr& Patch : PendingNewInputs)
 {
 CurrentInputs.push_back(Patch);
 }

 PendingNewInputs.reset();
 }

Building the Patch Cable ◾ 109

public:
 PatchMixer() {}

 // Adds a new input to the tap collector. Calling this is
 // thread safe, but individual instances of PatchInput are only
 // safe to be used from one thread.
 PatchInput AddNewInput(uint32_t MaxLatencyInSamples, float InGain)
 {
 std::lock_guard<std::mutex> ScopeLock(
 PendingNewInputsCriticalSection);

 PendingNewInputs.emplace_back(
 new PatchOutput(MaxLatencyInSamples, InGain));
 return PatchInput(PendingNewInputs.back());
 }

 // Mixes all inputs into a single buffer. This should only be
 // called from a single thread. Returns the number of non-silent
 // samples popped to OutBuffer.
 int32_t PopAudio(
 float* OutBuffer, int32_t OutNumSamples, bool bUseLatestAudio)
 {
 std::lock_guard<std::mutex> ScopeLock(
 CurrentPatchesCriticalSection);
 CleanUpDisconnectedPatches();
 ConnectNewPatches();

 memset(OutBuffer, 0, OutNumSamples * sizeof(float));
 int32_t MaxPoppedSamples = 0;

 for (int32_t Index = CurrentInputs.size() - 1; Index > 0; Index--)
 {
 PatchOutputStrongPtr& OutputPtr = CurrentInputs[Index];
 const int32_t NumPoppedSamples =
 OutputPtr->MixInAudio(
 OutBuffer, OutNumSamples, bUseLatestAudio);

 if (MaxPoppedSamples < 0)
 {
 // If MixInAudio returns -1, the PatchInput has been
 // destroyed.
 CurrentInputs.erase(CurrentInputs.begin() + Index);
 }
 else
 {
 MaxPoppedSamples =
 std::max(NumPoppedSamples, MaxPoppedSamples);
 }

110 ◾ Game Audio Programming 3

 }

 return MaxPoppedSamples;
 }

 // This returns the number of inputs currently connected to
 // this patch mixer. Thread safe, but blocks for PopAudio.
 size_t Num() const
 {
 std::lock_guard<std::mutex> ScopeLock(
 CurrentPatchesCriticalSection);
 return CurrentInputs.size();
 }

 // This function call gets the maximum number of samples that’s
 // safe to pop, based on the thread with the least amount of
 // samples buffered. Thread safe but blocks for PopAudio.
 int32_t MaxNumberOfSamplesThatCanBePopped() const
 {
 std::lock_guard<std::mutex> ScopeLock(
 CurrentPatchesCriticalSection);
 ConnectNewPatches();

 // Iterate through our inputs, and see which input has the
 // least audio buffered.
 uint32 SmallestNumSamplesBuffered =
 std::numeric_limits<uint32_t>::max();

 for (PatchOutputStrongPtr& Output : CurrentInputs)
 {
 if (Output)
 {
 SmallestNumSamplesBuffered =
 std::min(SmallestNumSamplesBuffered,
 Output->InternalBuffer.Num());
 }
 }

 if (SmallestNumSamplesBuffered ==
 std::numeric_limits<uint32>::max())
 {
 return -1;
 }
 else
 {
 // If this check is hit, we need to either change this
 // function to return an int64_t or find a different way
 // to notify the caller that all outputs have been
 // disconnected.

Building the Patch Cable ◾ 111

 assert(SmallestNumSamplesBuffered <=
 ((uint32_t)std::numeric_limits<int32_t>::max()));
 return SmallestNumSamplesBuffered;
 }
 }
};

7.7 PATCH SPLITTER
This implementation of PatchMixer is surprisingly simple, and now that
we have that in place, we’ll also want a splitter. The PatchSplitter will
have one PatchInput and distribute it to multiple PatchOutputs (also
potentially on different threads). Once again, the implementation using
the patch cable abstraction is straightforward.

class PatchSplitter
{
private:
 std::vector<PatchInput> PendingOutputs;
 mutable std::mutex PendingOutputsCriticalSection;

 std::vector<PatchInput> ConnectedOutputs;
 mutable std::mutex ConnectedOutputsCriticalSection;

 // Called from PushAudio().
 void AddPendingPatches()
 {
 std::lock_guard<std::mutex> ScopeLock(
 PendingOutputsCriticalSection);
 // Append PendingOutputs to ConnectedOutputs.
 ConnectedOutputs.insert(
 ConnectedOutputs.begin(),
 PendingOutputs.begin(), PendingOutputs.end());
 PendingOutputs.clear();
 }

public:
 PatchSplitter() {}

 // The destructor will mark every still connected PatchOutput
 // as stale.
 ~PatchSplitter() {}

 // Adds a new output. Calling this is thread safe, but
 // individual instances of PatchOutput are only safe to be
 // used from one thread. The returned PatchOutputStrongPtr
 // can be safely destroyed at any point.
 PatchOutputStrongPtr AddNewPatch(

112 ◾ Game Audio Programming 3

 uint32_t MaxLatencyInSamples, float InGain)
 {
 PatchOutputStrongPtr StrongOutputPtr =
 std::make_shared(new PatchOutput(
 MaxLatencyInSamples * 2, InGain));

 {
 std::lock_guard ScopeLock(PendingOutputsCriticalSection);
 PendingOutputs.push_back(StrongOutputPtr);
 }

 return StrongOutputPtr;
 }

 // This call pushes audio to all outputs connected to this
 // splitter. Only should be called from one thread.
 int32_t PushAudio(const float* InBuffer, int32_t InNumSamples)
 {
 AddPendingPatches();

 std::lock_guard<std::mutex> ScopeLock(
 ConnectedOutputsCriticalSection);

 int32_t MinimumSamplesPushed =
 std::numeric_limits<int32_t>::Max();

 // Iterate through our array of connected outputs from the end,
 // removing destroyed outputs as we go.
 for (int32_t Index = ConnectedOutputs.size() - 1;
 Index >= 0;
 Index--)
 {
 int32_t NumSamplesPushed =
 ConnectedOutputs[Index].PushAudio(InBuffer, InNumSamples);
 if (NumSamplesPushed >= 0)
 {
 MinimumSamplesPushed =
 std::min(MinimumSamplesPushed, NumSamplesPushed);
 }
 else
 {
 // If this output has been destroyed, remove it from our
 // array of connected outputs.
 ConnectedOutputs.erase(ConnectedOutputs.begin() + Index);
 }
 }

 // If we weren’t able to push audio to any of our outputs,
 // return -1.

Building the Patch Cable ◾ 113

 if (MinimumSamplesPushed == std::numeric_limits<int32_t>::max())
 {
 MinimumSamplesPushed = -1;
 }

 return MinimumSamplesPushed;
 }

 // This returns the number of outputs currently connected to
 // this patch splitter. Thread safe but blocks for PushAudio.
 size_t Num() const
 {
 std::lock_guard<std::mutex> ScopeLock(
 ConnectedOutputsCriticalSection);
 return ConnectedOutputs.size();
 }

 // This function call gets the maximum number of samples that’s
 // safe to push. Thread safe but blocks for PushAudio.
 int32_t MaxNumberOfSamplesThatCanBePushed() const
 {
 std::lock_guard<std::mutex> ScopeLock(
 ConnectedOutputsCriticalSection);

 // Iterate over our outputs, and get the smallest remainder of
 // all of our circular buffers.
 uint32_t SmallestRemainder = std::numeric_limits<uint32_t>::max();

 for (PatchInput& Input : ConnectedOutputs)
 {
 if (auto OutputHandlePtr = Input.OutputHandle.lock())
 {
 SmallestRemainder =
 std::min(SmallestRemainder,
 OutputHandlePtr->InternalBuffer.Remainder());
 }
 }

 if (SmallestRemainder == std::numeric_limits<uint32_t>::max())
 {
 return -1;
 }
 else
 {
 // If we hit this check, we need to either return an int64_t
 // or use some other method to notify the caller that all
 // outputs are disconnected.
 assert(SmallestRemainder <=
 ((uint32_t)std::numeric_limits<int32_t>::Max()));

114 ◾ Game Audio Programming 3

 return SmallestRemainder;
 }
 }
};

7.8 PATCH MIXER SPLITTER
Besides managing our array of inputs for PatchMixer and our array of
outputs for PatchSplitter, we didn’t really need to do much to create a
very robust SPMC and MPSC data structure.

In general, producer/consumers can be built using these two principles:

 1. MPSC behavior can be obtained by consuming from multiple SPSC
structures.

 2. SPMC behavior can be obtained by producing to multiple SPSC
structures.

PatchMixer follows from the first, and PatchSplitter follows from the
second. Given this, we can effectively create an MPMC data structure by
connecting an MPSC structure to an SPMC structure, as long as there is
some worker thread or fiber that can consume from the MPSC structure
and produce to the SPMC structure. That MPMC structure for us will
be PatchMixerSplitter: a class that will mix down inputs from multiple
threads and send the result to outputs on multiple threads.

class PatchMixerSplitter
{
private:
 PatchMixer Mixer;
 PatchSplitter Splitter;

 // This buffer is used to pop audio from our Mixer and push it to
 // our splitter.
 std::vector<float> IntermediateBuffer;

protected:
 // This class can be subclassed with OnProcessAudio overridden.
 virtual void OnProcessAudio(std::span<float> InAudio) {}
public:
 PatchMixerSplitter() {}

 // The destructor will mark every PatchOutput
 // and PatchInput which is still connected as stale.
 virtual ~PatchMixerSplitter() {}

Building the Patch Cable ◾ 115

 // Adds a new output. Calling this is thread safe, but
 // individual instances of PatchOutput are only safe to
 // be used from one thread. The returned PatchOutputPtr
 // can be safely destroyed at any point.
 PatchOutputStrongPtr AddNewOutput(
 uint32_t MaxLatencyInSamples, float InGain)
 {
 return Splitter.AddNewPatch(MaxLatencyInSamples, InGain);
 }

 // Adds a new input to the tap collector. Calling this is
 // thread safe, but individual instances of PatchInput are
 // only safe to be used from one thread.
 PatchInput AddNewInput(uint32_t MaxLatencyInSamples, float InGain)
 {
 return Mixer.AddNewInput(MaxLatencyInSamples, InGain);
 }

 // Mixes audio from all inputs and pushes it to all outputs.
 // Should be called regularly.
 void ProcessAudio()
 {
 int32_t NumSamplesToForward =
 std::min(Mixer.MaxNumberOfSamplesThatCanBePopped(),
 Splitter.MaxNumberOfSamplesThatCanBePushed());

 if (NumSamplesToForward <= 0)
 {
 // Likely there are either no inputs or no outputs connected,
 // or one of the inputs has not pushed any audio yet.
 return;
 }

 IntermediateBuffer.reset();
 IntermediateBuffer.insert(
 IntermediateBuffer.begin(), NumSamplesToForward, 0);

 // Mix down inputs:
 int32_t PopResult =
 Mixer.PopAudio(
 IntermediateBuffer.GetData(), NumSamplesToForward, false);
 assert(PopResult == NumSamplesToForward);

 OnProcessAudio(
 std::span<float>(IntermediateBuffer.data(),
 IntermediateBuffer.size()));

 // Push audio to outputs:

116 ◾ Game Audio Programming 3

 int32_t PushResult =
 Splitter.PushAudio(
 IntermediateBuffer.GetData(), NumSamplesToForward);
 assert(PushResult == NumSamplesToForward);
 }
};

Note the virtual function OnProcessAudio(), which will allow
PatchMixerSplitter to be subclassed and used as a thread safe, con-
solidated processing unit. Imagine that your reverb algorithm is too
expensive to run on your main audio render thread. You could run that
algorithm in a PatchMixerSplitter subclass and move the actual work
for your reverb to an arbitrary thread. It doesn’t have to stop there: you
can run any graph-based processing in an arbitrary thread using the
PatchMixerSplitter.

When task-based programming was becoming popular, we lamented
cases like audio rendering or VFX compositing pipelines which
involve sequential processing on large buffers of data. But by wrapping
PatchMixerSplitter::ProcessAudio() in a task, we could run our entire
rendering graph in parallel. Alternatively, you could also decide that the
drawbacks of this approach (giving up sample accuracy, allocating a cir-
cular buffer for every connection) are not worth it.

7.9 PATCH CABLE ABSTRACTION APPLICATIONS
Thanks to the five classes we’ve created, we can describe in just a few
words the process of parallelizing your entire DSP graph. If that isn’t proof
of the usefulness of an abstraction, I don’t know what is. There are other
tasks that are much easier to try out with our patching classes: dynamic
oversampling for better distortion processing, dynamically routed acous-
tic processing for nearby rooms in interior spaces, and runtime-configu-
rable audio analysis and instrumentation just to name a few.

I have briefly alluded to the drawbacks of our patching classes, but
there are some mitigation strategies for those drawbacks. The first and
most important of these drawbacks is that it’s much more difficult to
have strongly timed audio processing between components connected
with these patching classes, for example, making sure a wah filter on one
thread is sample accurate with one on a different thread. Strongly timed
systems are not impossible here, though. If you’ve used a modern DAW,
you can see that it is able to run DSP processing on multiple threads while
guaranteeing strong timing.

Building the Patch Cable ◾ 117

You may notice that this is already implemented in the
PatchMixerSplitter. When we pop from the PatchMixer, we only pop
as much as the minimum amount buffered to any input. When we push
to the PatchSplitter, we only push as much as the minimum amount
we can push to any output. By doing this, we are able to keep our inputs
synchronized for our PatchMixer and keep our outputs synchronized for
our PatchSplitter. This gives us the option of having fully deterministic,
strongly timed signal processing, as long as every input is patched and
starts from the same timestamp.

This may seem like something that is only possible in the realm of linear
media, but all you need is a little bit of premonition: start your system well
before you need to output the rendered audio. Finding a good place to start
your system may seem like a hard problem at first, but it gets easier over
time to spot the points where you can begin priming audio for playback.

7.10 CONCLUSION
Recently, a programmer reached out to me because they wanted to be able
to send Unreal’s native VOIP output to any arbitrary playback device on
Linux. While I did not have a Linux machine handy, I exposed an API
from our VOIP engine class:

Audio::FPatchOutputStrongPtr GetMicrophoneOutput();
Audio::FPatchOutputStrongPtr GetRemoteTalkerOutput();

I had also created an FVoiceEndpoint class that takes an
FPatchOutputStrongPtr and a device ID as constructor arguments.
After I told him about this API and that class, he was able to get the feature
up and running in an hour. When he told me it worked, I was overjoyed. I
finally felt like I was working with patch cables.

It was a fantasy of my 20s to become a game audio equivalent to David
Smith or Roger Linn. David Smith tweaked and redesigned a polyphonic
synthesizer endlessly before he came to the Prophet-5. To me, that synth
feels so much more material than anything I have worked on. The warmth
of the key-tracked filters, the aggression of their sawtooth VCO, and so
on: there are thousands of details that were added, removed, and changed
before arriving at the sheer physicality of that instrument.

The hard realization I made about software audio programming is that
the product of your work is inherently immaterial: a litany of instructions
for some weary processor out there in the world, collecting dust under the

118 ◾ Game Audio Programming 3

veneer of a frail plastic fan. And yet our work does have a material impact
in one important place: labor. When you write difficult code, it has conse-
quences for the people that need to finish using it before they can go home
and have dinner with their families.

I’ve been the victim of this in some cases and the perpetrator in others.
These are consequences much worse to me than any bug I could try and
introduce in a codebase. There’s one very effective cure I’ve found for this,
and it is this: build useful abstractions and APIs, make sure they are read-
able, document them, test them, and share them. Build something that
will let someone route VOIP audio to an external device within an hour
rather than within a 6-hour, energy-drink-fueled panic. At the very least,
take this abstraction, use it, and share it. The next time you see someone
panicking over the specifics of multithreaded audio, give them a patch
cable. The rest is intuition.

REFERENCES

Murray, Dan. “Multithreading for Game Audio.” Game Audio Programming
Principles and Practices Volume 2, edited by Guy Somberg. CRC Press, 2019,
pp. 33–62.

119

C h a p t e r 8

Split Screen and
Audio Engines

Aaron McLeran
Epic Games

CONTENTS
8.1 Introduction 120
8.2 3D Geometry 121

8.2.1 Frames of Reference 121
8.2.2 The Math of Transforms 123
8.2.3 Reversibility 123
8.2.4 Changing Frames of Reference Using Transforms 125

8.3 Listener Geometry 125
8.4 Listeners as a Frame of Reference 126
8.5 Multiple Listeners 127
8.6 Counterintuition: Playing Once 128

8.6.1 Multiple Triggering 128
8.6.2 Clipping and Phasing 128
8.6.3 Significantly Extra CPU Costs 129

8.7 Drawbacks and Edge Cases 129
8.7.1 Boundary Flipping 129
8.7.2 Singleton Systems 129
8.7.3 CPU Costs 130
8.7.4 Competitive Multiplayer 130

8.8 Additional Audio Considerations 130
8.8.1 Music 130
8.8.2 Local-Player-Only Audio 131
8.8.3 User Interface Audio 131

8.9 Rendering Twice: Dual Output 131

120 ◾ Game Audio Programming 3

8.1 INTRODUCTION
Split screen is a technique whereby a game engine provides multiple views
into the same game instance with separate controls given to multiple local
(non-networked) players. Each local player can control their own view,
and each view is independent. Exactly where and how the splits are dis-
played on the screen is up to the game engine and often provided as player
settings preference. For example, a player may choose to split a screen
between top and bottom or between left and right. The number of splits
supported is also up to the game and the game engine. Most games which
support split screen usually limit it to two screens, but there are many
notable examples that support up to four splits. Figure 8.1 shows some of
the possible arrangements.

In the early days of video gaming, when the Internet was less com-
mon, split screen was a commonly supported feature. For multiplayer
games without a network connection, it was a requirement. As networked
 multiplayer became more widely adopted in the early 2000s by ga ming
consoles, split screen began to fall out of favor. However, it has seen
 somewhat of a resurgence in recent years, especially with local split screen
in combination with networked multiplayer. In other words, multiple
players can play on one game console client while also playing along with
other players connected to the same game on remote clients.

Split screen support is fundamentally challenging from a CPU and
GPU resource point of view, as displaying multiple views requires render-
ing and processing more objects. Furthermore, many optimization tech-
niques that depend on frustum culling or distance-based culling are less
effective when multiple views in multiple locations can be rendered.

While graphical quality is reduced and rendering multiple views for
split screen can be confusing for players, the audio experience of split

8.10 Conclusion 131
References 132

FIGURE 8.1 From left to right, the most common split screen arrangements.
Vertical split, horizontal split, and four-way split.

Split Screen and Audio Engines ◾ 121

screen in particular suffers from a fundamental limit of human biology:
ears can’t be split. As a result, a number of things which might conceptu-
ally make sense for audio and split screen simply don’t work as you might
expect in practice.

This chapter will describe the technical issues involved with imple-
menting split screen for an audio engine and provide a reasonable solution
which compromises computational requirements, architectural simplic-
ity, and audio quality.

8.2 3D GEOMETRY
To understand the details of split screen for audio, it’s important to first
review the basic mathematics of 3D geometry.

8.2.1 Frames of Reference

3D geometry in a game engine is always defined relative to a frame of ref-
erence. A frame of reference is conceptually simple: it means the location
from which a given coordinate is based. A coordinate can also be con-
sidered to be a transformation from a point at the origin to some other
 location translated through space.

As a concrete example of a frame of reference, consider a simple point
plotted on an X–Y graph, as shown in Figure 8.2.

Typically, the origin of the X–Y graph is defined to be at (0, 0). A point
in the graph can be thought of as a transformation of a point at the origin
to a translation off the origin. The point at (4, 3) could be thought of as
a point at the origin transformed through a translation, relative to the
 origin, to the right 4 and up 5.

However, the origin of the graph could itself be relative to yet a dif-
ferent origin, whereby the entire X–Y graph we drew can be considered

(0,0)

(4,3)

FIGURE 8.2 Simple X–Y plot of a point relative to an origin (0, 0).

122 ◾ Game Audio Programming 3

to be a transform relative to a different origin. Each point, including the
origin, would translate relative to this other origin. This setup is shown in
Figure 8.3.

This change in representation is made relative to a frame of reference.
In the frame of reference G (Figure 8.2), the point is (4, 3). In the frame of
reference of G′ (Figure 8.3), the point is (8, 7).

It is important to emphasize that the absolute, non-relative, nature of
the points in the graph remain unchanged between the different frames
of reference. The only things that change are the numbers we use to
describe the geometry of those points. This is a powerful mathemati-
cal technique that can be used to solve difficult problems. Often, a hard
problem is made easy if it is considered, or reformulated, in a different
frame of reference.

Although Isaac Newton imagined a universal frame of reference as a
kind of absolute space and time from which everything in the universe
could be measured, game engines arbitrarily decide on some origin (called
the world origin), and everything is by default transformed relative to that
reference frame. This default transform is called the World Transform or
a World Space Transform. Transforms which are not measured from this
World origin but instead from some other point (usually some object)

(4,4)

(8,7)

G

(0,0)

G’

FIGURE 8.3 The original point, in the frame of reference of G, could also be
considered relative to a different arbitrary frame of reference, G′.

Split Screen and Audio Engines ◾ 123

are called Object Transform, Object Space Transform, or Local Space
Transform. In Figure 8.3, if G′ was a world origin, the point plotted rela-
tive to G′ would be a world-space transform, and the point plotted relative
to G would be an object-space, or local-space transform.

8.2.2 The Math of Transforms

The three operations which are used to describe 3D geometry relative
to a frame of reference are translation (T), scale (S), and rotation (R). In
a 3D game engine, to fully describe the geometry of an object, all three
 transformations are combined into a single matrix called a transform
matrix (M).

 M T= RS

Applying the transform matrix, M , on a point in space, p, we get p′, which
is that point transformed according to the matrix M:

p′ = Mp

 p′ = TRSp

p′ = T R()()Sp

Note that the application of the transforms follows right to left. First,
S, then R, then T are applied to the point, p. The order in which these
transformations are applied does change the outcome, as shown in
Figure 8.4.

Combining these matrices in any order results in a technically valid
transformation matrix. However, the standard convention is to first apply
scale, then rotation, then translation. This convention is used primarily
because it’s easier to conceptualize the results of these operations in this
order than other orders.

8.2.3 Reversibility

One important property of the linear transformations we use in 3D game
engines is that they are reversible. To undo the operation of a scale (S), we
multiply by its inverse (S−1):

 I S= −1S

124 ◾ Game Audio Programming 3

where I is the identity matrix—a matrix with ones in the diagonals and
zeroes everywhere else. A 3 × 3 identity matrix looks like this:

 1 0 0
 0 1 0
 0 0 1

In the case of a simple scalar transformation, this is identical to dividing a
scalar value by itself. This reversibility is true of the other transformations,
and dividing by a rotation or translation doesn’t have the same conceptual
analog. However, matrix inversions can be calculated for transformation
matrices used in 3D game engines. Thus, generally speaking, to reverse
a transformation matrix M , multiply by the inverse of the transform
matrix, M −1.

Since a transform M is a composite of underlying transforms of scale
(S), rotation (R), and translation (T), the inverse of M is as follows:

Rotate 45o Translate (x, 0)Original

Original Translate (x, 0) Rotate 45o

FIGURE 8.4 The order in which rotation and translation transformations are
applied in a given coordinate system (frame of reference) has an effect on the
resulting output.

Split Screen and Audio Engines ◾ 125

M T= R S

M S−1 = − − −1 1 1R T

The inverse transformations are applied in reverse order that they were
applied to begin with – that is, first inverse scale, then inverse rotation,
then inverse translation. This makes sense if you imagine the steps needed
to precisely undo scaling, rotating, and translating an object in a 3D scene.
You’d need to first move it back to the origin (undoing translation), reverse
the rotation, and then multiply the scaling by its inverse.

8.2.4 Changing Frames of Reference Using Transforms

If you have a local space (or object space) transform for object Plocal which is
relative to another object which has a world-space transform Vworld, you can
derive the world-space transform of Pworld by multiplying them together:

 P Vworld w= ×orld Plocal

If you consider only the translation operation, this formula is identical
to our first example of frames of reference of a point in an X–Y graph in
Figures 8.1 and 8.2.

This idea of “chaining” transforms and inverse transforms to go to and
from various frames of references (or spaces) is a key concept in 3D games
and specifically a key concept to understand how to deal with split screen
for audio engines.

8.3 LISTENER GEOMETRY
Audio engines typically have an object which contains properties which
represent information about a virtual listener. You can think of a virtual
listener as a pair of ears (or, more generally, a microphone) in a game
world. Audio is rendered from the perspective of this listener, and many
significant CPU optimizations are made based on the location and ori-
entation of this listener relative to sound sources. For VR games and
first-person games, listeners are almost invariably hooked up to head-
tracking mechanisms and represent the orientation of the player’s head
in the game.

Much like a camera and its transform, listeners usually have their 3D
orientation represented by a matrix transform of translation, orientation,
and scale—although the scale transform is almost always ignored. The

126 ◾ Game Audio Programming 3

listener transform is often set by the same code which sets up the camera
transform but not always. There are many cases where you may want to
render audio relative to a virtual listener even though there is no cam-
era transform available (e.g. tools which preview spatialization or game
features which allow listener traversal without changing a game’s camera
position).

3D sounds in games are panned and distance-attenuated relative to
this listener transform, though there are some notable exceptions. For
example, third-person games often have a hybrid listener setup where an
optional position vector is used to determine distance-attenuation vs the
translation of the listener transform.1 This decoupling is usually to com-
pensate for the fact that game cameras are often far above a controllable
game character, and attenuating from the camera position would result
in nearly all audio sounding far away, which is likely not the desired
effect.

8.4 LISTENERS AS A FRAME OF REFERENCE
3D sound in a game is usually represented in an efficient manner from
gameplay code as a world-space transform. Like listener transforms, only
the transform translation and rotation are relevant. Because of this, it’s
intuitive to think that an audio renderer would need to take into account
both the listener and the source transforms to be able to render 3D audio
of the source (i.e. build speaker maps for panning, render HRT, perform
distance attenuation, etc.). However, given the fact that we can compute a
transform of the sound that is relative to the listener transform, it’s pos-
sible to entirely ignore the geometry of the listener in an audio engine ren-
derer and essentially render audio from the perspective of the listener. This
trick greatly simplifies audio renderers and, it turns out, is a key concept
to supporting split screen.

Given a sound’s world-space transform, Soundworld, and given the world-
space listener transform, Listenerworld , it’s simple to compute the listener-
space sound transform, Soundlistener .

First, given the earlier discussion about composite transforms, the
Soundworld transform, which is set by the game engine, is composed of the
following chained transform equation:

 Listenerworld l× =Sound Sistener wound orld

1 For more details about how third-person camera attenuation works, see Somberg (2017).

Split Screen and Audio Engines ◾ 127

To derive the Soundlistener transform used by the audio renderer, multiply
both sides of this equation by the inverse world-space listener transform,
Listener −1

world , as follows:

 Listener −1
world w× ×Listener orld Sound Llistener = ×istener Sworld wound orld −1

Note that the order of operations here does matter, so only multiply the
inverse transform from the left on both sides to keep it simple. On the
right is a computable transform using any 3D math library which deals
with affine transform. (You can also work it out by hand to prove it.)
On the left, the inverse listener transform multiplied by the listener
transform cancel out, creating an identity transform (i.e. essentially
multiply by 1.0). This leaves the desired answer for the Soundlistener trans-
form since an identity matrix multiplied by any other matrix is just the
matrix itself:

I S× =ound −1
listener Listenerworld w× Sound orld

Sound L= ×iste r S−1

listener ne world wound orld

If the audio engine always uses listener-relative transforms for sounds, the
audio renderer (the low-level DSP mixing code required to actually gener-
ate audio from the parameters derived from higher level features) only ever
needs to deal with listener-relative sound spatialization and attenuation.
In fact, no representation of the listener is required to accurately render
audio; many details are consequently simplified, and there is a significant
reduction in code complexity.

8.5 MULTIPLE LISTENERS
From the perspective of the audio engine, the key difference with split
screen games is the addition of extra listeners. Each split screen view has
its own camera transform and a corresponding listener transform.

On first impulse, you might expect that an audio engine would have to
deal with many additional complexities and details to render audio from
multiple perspectives. However, if the audio engine uses listener-space
sound transforms, it becomes surprisingly easy to support any number
of additional listeners. The only additional step required before comput-
ing a given sound’s listener-relative transform is to determine that sound’s
 closest listener.

128 ◾ Game Audio Programming 3

As a result, an audio renderer already ignoring listener transforms
can continue to ignore listener transforms even in a multilistener game.
Essentially, once all sounds have been transformed relative to their closest
listener, all listeners can conceptually be superposed on top of each other,
each using the same conceptual identity matrix. All the panning, spatial-
ization, attenuation, and other 3D information and features are computed
correctly for each source relative to their closest listener, including occlu-
sion, attenuation, angular listener-based focus, reverb sends, and so on.

8.6 COUNTERINTUITION: PLAYING ONCE
Importantly, each sound is only ever rendered once in an audio engine
with this technique: from the perspective of the closest listener. It may
be counter-intuitive that this singular rendering would be preferred over
other more complex schemes. One such scheme could be that if a sound is
played that is in range to a listener, then it should be played from the per-
spective of that listener: if a sound is in the audible range of two listeners,
the sound should be played once for each listener. After all, this is exactly
what a graphics engine does in split screen rendering: the same object in
view to both screens will indeed be rendered twice.

There are several reasons why a multiple-playback scheme like that
doesn’t work well in practice for audio.

8.6.1 Multiple Triggering

Playing a sound multiple times for each listener in range would result in a
large percentage of 3D sounds in a game getting triggered multiple times.
Every gun shot, every footstep, every line of 3D dialogue…—everything
would be played multiple times. It would sound confusing in a two-player
split screen. In a four-player split screen, it would be total sonic chaos.
Players will not be able to distinguish which camera/listener any given
sound is coming from.

8.6.2 Clipping and Phasing

As of this writing, most audio engines still employ sample-based audio
playback techniques: i.e., every sound heard in a game is essentially audio
file playback. Although every modern audio engine uses a variety of tech-
niques to maximize sample variations during playback, with so many
sounds playing multiple times at the same time, there is a high probability
of sounds playing back which are of the exact same variation at the exact
same time (or possibly with slight timing differences). This situation will

Split Screen and Audio Engines ◾ 129

likely result in clipping: audio sources summing together to create audio
amplitudes larger than can be represented in the renderer (e.g. over 1.0).
In addition to clipping, identical sample file playback that is offset by a
small amount of time usually results in a comb-filter effect, what is often
referred to as “phasing.” When not intended for a special effect, this sound
is universally undesirable in games.

8.6.3 Significantly Extra CPU Costs

Rendering every sound multiple times will result in a correspondingly
larger CPU cost, often increasing linearly with the number of played
sounds. Rendering audio for a four-way split screen experience could
result in four times the CPU rendering cost.

8.7 D RAWBACKS AND EDGE CASES

8.7.1 Boundary Flipping

Sounds which are on the boundary between two listeners can suddenly
flip when the sound needs to be rendered suddenly to a different (closer)
listener. This switch can be particularly jarring if the two listeners are fac-
ing away from each other. A sound will be rendered, for example, behind
one listener and then suddenly be rendered in front of another. While
this is a real problem, it is usually not an issue for the majority of sounds
in practice. The situations where it would be potentially noticeable are
rare (they are literally boundary conditions), and usually there is enough
sonic complexity going on in the rest of the game that the artifacts are less
noticeable.

8.7.2 Singleton Systems

One drawback of the technique of playing each sound only on the closest
listener (and, in fact, split screen in general) for audio engines is that a
variety of audio engine features are often implemented assuming a single-
ton listener.

For example, the majority of audio engines traditionally implement a
listener-based reverb. In other words, what reverb settings to use (or which
convolution impulse response chosen) are based on where the listener is.
Running multiple reverbs, one for each listener, would be computation-
ally expensive as reverb is often one of the more expensive DSP effects in
games. For systems that assume a singleton listener (e.g. ambient zones,
dynamic ambient systems, global effects processing like underwater DSP

130 ◾ Game Audio Programming 3

effects), usually the first (primary) listener is nominated to be one used to
determine such settings and features. Though, strictly speaking, an audio
engine could run multiple instances of any of these features, it’s a matter
of taste for how to apply them for split screen.

8.7.3 CPU Costs

Although rendering a 3D sound once relative to the closest listener is
computationally less expensive than rendering it for each listener, there
is still an additional CPU cost for split screen audio rendering. The
 additional cost is usually a result of playing more sounds than would
otherwise be played—with multiple listener locations, more audio is
simply in range. Thus, doing CPU performance analysis between split
screen and non-split-screen games will usually result in some ratio of
additional cost somewhere between one and two times as expensive.
This factor may not seem like that much for an optimized audio ren-
derer, but split screen usually has CPU overhead across the board. To
compensate, it’s possible to reduce audio rendering quality or disable
certain features when in split screen mode in order to maintain a more
constant CPU profile.

8.7.4 Competitive Multiplayer

For competitive multiplayer games, rendering audio only from the per-
spective of the closest listener may have gameplay implications. A player
who can hear all audio from their perspective (even if far away) will have
a significant competitive advantage over a player who is always hearing
audio that is far from them but close to their split screen partner. This
may seem like a good argument for rendering the audio multiple times,
but that will not resolve this issue. Split screen audio (and graphics) will
fundamentally make a player have inferior information to be competitive,
so it’s not a reasonable constraint for split screen audio.

8.8 ADDITIONAL AUDIO CONSIDERATIONS
Besides 3D audio rendering techniques and singleton audio engine sys-
tems, there are other audio problems involved in split screen which need
to be considered.

8.8.1 Music

Music in split screen should always be a singleton—otherwise it will be
cacophony. It is up to the music system designer as to how each player in

Split Screen and Audio Engines ◾ 131

a split screen interacts with the music. For example, an interactive music
system which plays different music states based off stealth modes or action
modes will need take into account the actions and state of all players. Such
a system should largely operate identically between single screen and split
screen modes.

8.8.2 Local-Player-Only Audio

Often in multiplayer games, there is a portion of audio that is intended
to only play on the local player and not be heard by other players, such as
quest queues or health warnings. However, there are multiple local players
for split screen audio, and—in most cases—local-player-only sounds will
need to be played for each split screen player, even though many gameplay
systems are often written to assume there is only one listener.

8.8.3 User Interface Audio

Like local player audio, audio for interface feedback will need to always be
played regardless of the split screen mode. This should go without saying,
but again, there are sometimes complexities involved with making sure UI
and gameplay systems are written to support multiple listeners, especially
if the audio is 3D.

8.9 R ENDERING TWICE: DUAL OUTPUT
Although not widely done, it is possible to create separate audio render-
ing instances and render audio uniquely for each listener in a split screen
context. If each of these instances plays back on the same output audio
device endpoint heard by all players of a split screen game, this will suffer
from the exact same drawbacks as described earlier: CPU cost, chaos, con-
fusion, phasing, and clipping. However, if the instances are rendered to
different audio device endpoints and the players are using headphones, it’s
possible to allow players to hear audio only from their unique perspective.
This would be analogous to rendering to a different display for each player
(or to a VR headset for each player). And, like graphics, it would exactly
double the CPU cost for two-player split screen, quadruple for four-player
split screen, and so on.

8.10 CONCLUSION
If reasonable compromises are accepted, split screen support for audio
engines is surprisingly straightforward to implement. The key insight is
to convert world-space sound transforms to the listener-space transform

132 ◾ Game Audio Programming 3

of the sound’s closest listener. Usually, the experience of playing the same
game with your friend (or enemy) on the couch locally is compelling
enough to overcome any of the side effects of the technique. In general, if
players are playing a split-screen game, the overall experience should be
optimizing the social experience.

REFERENCES

Somberg, Guy. “Listeners for Third-Person Cameras.” Game Audio Programming
Principles and Practices, edited by Guy Somberg. CRC Press, 2017,
pp. 197–208.

133

C h a p t e r 9

Voice Management
and Virtualization

Robert Gay
Epic Games

9.1 T HE NEED FOR VOICE MANAGEMENT
In its most basic form, voice management is to games and game engines
what polyphony is to traditional hardware synthesizers. It is the feature
set responsible for dealing with scenarios when a system or collection of

CONTENTS
9.1 The Need for Voice Management 133
9.2 Sonifying a Forest 134
9.3 The Single Cap Trap 135
9.4 Real Voice Pools 135
9.5 Virtual Voice Pools 136
9.6 Reviving the Dead 137
9.7 Real Trees in a Virtual Forest 137
9.8 Rule Building 138
9.9 Virtual Pool Rules 139

9.9.1 Time-Based Rules 139
9.9.2 Distance-Based Rules 139
9.9.3 Volume-Based Rules 140
9.9.4 Voice Stealing 140
9.9.5 Realization 140

9.10 Runtime Asset Caching 141
9.11 Dynamic Pool Allocation 142
9.12 Conclusion 142

134 ◾ Game Audio Programming 3

systems attempts to play more sounds that the hardware can or should
sonify. Voice management encompasses multiple features and design pat-
terns which can be implemented to some level or another as your engine
or game requires. Regardless of scale and complexity, every project needs
to consider voice management—preferably as early in development as
possible.

Building an audio engine that caters to various types of games with
sonically complex scenarios requires complex systems of voice man-
agement. From this perspective, it is easier to scale features and func-
tionality down than up. Therefore, it is preferable to provide voice
management features in the hands of the sound designers which can be
enabled or disabled at will. Even if it is only the programmer that is to
be fiddling with voice management parameters, providing such a tool-
set remains useful for f lexibility and iterative development. Breaking
out voices into well-organized data structures that are configurable in
editor or development builds allows for rapid iteration and scalability,
which is paramount in dialing in the final game’s experience. This is
crucial, particularly when time becomes scarce and the development
cycle is nearing completion.

This chapter does not intend to indoctrinate a particular methodology
to manage voices, nor does it aim to hyperfocus on a particular aspect.
An entire textbook could be written on this topic in much further detail.
Rather, this chapter serves as an introduction to what voice management
is, an overview of the typical feature set it entails, and how a programmer
can begin building a system from the ground up that is readily extensible
and scalable.

9.2 S ONIFYING A FOREST
Sonification is the process of determining which sounds to play. In this
sense, voice management dances with the age-old philosophical question:
“If a tree falls in the forest and no one is around to hear it, does it make a
sound?”

As sounds play, the decision whether to sonify them is determined by
prioritizing the playing sounds against other playing sounds and compar-
ing their various properties. These properties may be simple, like attenu-
ation falloff—preferring to play closer (and therefore louder) sounds over
those further and quieter. Or they may be complex, such as evaluating a
rule that a sound designer has specified what should be considered more
aesthetically more important.

Voice Management and Virtualization ◾ 135

Furthermore, we must define what we mean when we refer to a “sound”
in an audio engine. For the purposes of this chapter, a sound will be con-
sidered as an asset, a real voice, or a virtual voice. An asset is any contigu-
ous body of audio data, compressed or uncompressed, to be processed and
rendered at runtime. A real voice refers to the voice that is to be actually
rendered and processed in the final mixed output buffer sent to hardware.
A virtual voice refers to any requested voice from a higher gameplay layer
that is logically playing but not necessarily being rendered. As a general
rule, a real voice is more expensive, both in processing power required
and memory than a virtual voice, as it requires an asset to be loaded into
memory and potentially decompressed at runtime.

9.3 THE SINGLE CAP TRAP
A single cap on permissible voices to play at once is rarely—if ever—a valid
full voice management solution, yet it is a good place to start the conversa-
tion of managing voices. Having a final cap can be a good idea as a last line
of defense from total voice saturation and producing performance bottle-
necks on other systems, but other systems should be in place to keep that
limit from being hit. In general, an engine requires two types of grouping
mechanisms that work in tandem to control performance and mix voice
requirements independently, which we will refer to as real and virtual
voice pools. These two concepts are too often conflated, which can over-
complicate or hinder the system’s design. When a single object combines
aspects of both, the number of states that it can be in are too numerous,
and it can be challenging to keep them straight.

The term pool here is being used in an abstract fashion. While it may
make sense to allocate real and virtual voice data up front in a traditional
memory pool, the term pool used here is referring to a group of voice ref-
erences that maintains a maximum number of allotted items that can be
played at once. In both the cases of real and virtual pools, a single ren-
dered voice may subscribe to multiple pools. In a way, a final cap could be
considered a form of a real voice pool in which all playing real voices are
members.

9.4 R EAL VOICE POOLS
Real voice pools are responsible for restricting the number of concur-
rent sounds played at a particular time that may share similar static asset
or performance characteristics. For example, such a pool may manage
streaming sounds that may be extremely large like music or ambience and

136 ◾ Game Audio Programming 3

require similar behavior to load and unload chunks of audio from disk.
Another type of pool may be made for sounds that are compressed using a
certain format that may have hardware restrictions on the number avail-
able to be decompressed at one time. Yet another could be a reserved num-
ber of real voices that are allowed to stop gracefully, fading over a quick
time period to avoid pops in audio. If a maximum single cap has been
instigated, best practice is to ensure the maximum number of voices for
each type of real voice pool is at or below the maximum single cap.

Because real voice pools deal with hardware-level rendering, they are
typically managed on a dedicated audio render thread. They may be soft-
ware imposed to avoid performance overage stressing other critical engine
systems or may be hardware imposed.

The real voice pool is performance-critical, so when a real voice pool
reaches its maximum, we assume that resources are starved. This situation
may manifest as undesired audible behavior such as sounds immediately
stopping or starting delayed. We can mitigate abrupt interruptions, avoid-
ing pops by applying fast transitions at the buffer level. Regardless, these
pools are generally a last line of defense for avoiding resource starvation
and constraining your audio system’s runtime performance and memory
characteristics. Therefore, it is recommended to stress test your game or
audio engine in many voice-heavy scenarios to determine what these pool
limits should be set at in order to avoid sudden, perceptible interruption.
When a real voice pool reaches its limits, it is crucial to include adequate
logging and other debug information in order to be able to determine how
best to tune the voice pools and their respective maximum distributions.

9.5 VIRTUAL VOICE POOLS
Whereas real voice pools manage resource limitations, virtual voice pools
manage perceptual limitations. Virtual voice pools limit sounds of a par-
ticular sonic category from flooding a sound mix. For example, a designer
may instigate a virtual pool limit on music by having at most two tracks
playing at once, one fading in and another fading out. Another pool may
exist to throttle ambience using a similar restriction for sounds tagged as
ambience. Yet another may be created to avoid having too many weapon
sounds. These are relatively simple examples, and more typically the vir-
tual voice pools are further divided to better control the maximum num-
ber of similar events that can be processed at any given time.

This pooling architecture helps to solve the perceptual problem that
humans can only process a limited number of sound events at once, and

Voice Management and Virtualization ◾ 137

playing more can lead to sonic confusion, while conveniently and conse-
quently culling sounds from stressing the real voice pool system. Virtual
pool voices may be tagged as a member of a single pool or multiple pools
within the engine’s content management system. By tuning the virtual
pool limits, sound designers have the indirect power to avoid real voice
pool saturation and sonic artifacts therein.

9.6 REVIVING THE DEAD
Enforcing a healthy virtual pool voice count is only half of the battle for
programmers and designers alike. Sounds that stop due to virtual pool
saturation often need to resume later once other higher priority voices
finish. There are two broad categories of sounds that need to be handled
differently: looping sounds that play continuously until a gameplay event
requests the sound to stop and “fire-and-forget” or “one-shot” sounds,
where a gameplay system requests a sound to be played without manag-
ing the sound’s lifetime. Generally, one does not need to resume one-shot
sounds that are short and transient, which have been terminated early to
enforce a pool’s voice limit. However, looping sounds and longer-tailed
one-shots typically require a virtualization mechanism in order to resume
playback.

There are many situations where virtual voices need to be resumed.
The classic example is when a player exits and re-enters the audible range
of a particular in-world asset such as a waterfall or fire. It may be tempt-
ing to despawn ambient attenuated sounds when their associated model
becomes visually occluded or culled, but an object’s visibility does not
necessarily coincide with the sound source’s audibility. Another example
may be when a scene requires a dense sonic landscape with many sources
that are persistent and the sound designer wants to dynamically prioritize
sounds closer to the listener. Virtualization can help manage both of these
examples.

9.7 REAL TREES IN A VIRTUAL FOREST
When a virtual voice pool is found to contain a number of active voices
that is greater than its limit, it must evict a sound from the pool, whether
that be a newly added sound or one of lower priority that has been play-
ing. Evicted sounds may be either killed, resulting in destruction of both
the virtual and real counterparts, or virtualized, resulting in the real voice
being stopped but the virtual counterpart persisting. When a voice stops
playing and space becomes available once again in the virtual voice pool,

138 ◾ Game Audio Programming 3

a real voice can then be recreated and played, a process called realization.
A real voice is typically comprised of an active object that is rendering
output to the hardware. A virtual voice is, ideally, a minimal set of data
required to determine whether or not a real voice should be created. In the
event that there is not enough space in one of the pools that a virtual voice
subscribes to when playback is requested, it should be virtualized imme-
diately without ever initiating a request to start a real voice.

In order to determine whether a virtual voice is eligible to play back
as a real voice when its subscribed virtual pools are saturated, this mini-
mal set of data is evaluated against a ruleset. This virtualization data is
a combination of runtime and static information about the sound asset.
Static virtualization data can be extracted when the assets are serialized or
compressed. If a sound’s virtualization ruleset requires volume data, one
common technique is to store a coarse array of root mean square volumes
and a corresponding seek table in order to allow for seeking and resuming
based on the elapsed time of the virtual voice.

As the game starts and stops sounds, space will be used up and freed,
respectively, in the virtual voice pools, requiring a mechanism to evaluate
virtualization logic. Typically, this logic happens on an audio logic thread,
which can run at a slower rate than the audio rendering thread. Depending
on the platform architecture, the audio logic can be evaluated on the main
game thread or on a dedicated thread. In situations where there is a dedi-
cated thread that needs to poll the gameplay state, the update rate of the
audio logic thread should be both configurable and independent of the
gameplay update rate.

9.8 RULE BUILDING
Each virtual pool has a set of rules that are evaluated when the pool
becomes saturated from the advent of a new playback request. These rules
determine whether a voice should continue playing as a real and virtual
voice (an active voice), as just a virtual voice (said to be virtualized), or
stopped entirely. Designing and applying these rules allows sound design-
ers to walk a balance between performance and aesthetics and to avoid
flooding virtual voice pools (and by extension real voice pools). A good
set of rules will have a minimal impact on the listening experience while
managing its actual performance.

The most basic rule is a Boolean value that determines whether a vir-
tual pool is active or not, which is a useful tool for both debugging and

Voice Management and Virtualization ◾ 139

isolation. This rule can help determine if sounds are stopping or cutting
out due to this system or another independent gameplay mechanism.
Using this basic rule effectively disables the pool: all playback requests
create a virtual voice in a single pool unrestricted by any rules or voice
limit.

Rule design should be as flexible as possible, since the rulesets will
undergo many iterations throughout the development lifecycle. Different
classes of sounds will need different rules, and the rules may even change
based on gameplay state. It is best to design the rule system in a way that
can be parameterized easily.

9.9 VIRTUAL POOL RULES
Rules can be broken down into the following three stages of evaluation:

 Individual Voice Rules V→ →oice Stealing Rules Virtualization Rule

The first stage of evaluating individual voice rules falls into three basic
classes: time-based rules, distance-based rules, and volume-based rules.

9.9.1 Time-Based Rules

Time-based rules compare how much time remains for a voice and a pre-
scribed value. For instance, a gunshot sound has a quiet tail, and its virtual
pool is saturated. The sound has been playing as a real voice for 5 seconds,
while only having a remaining playtime of 0.2 seconds. A time-based rule
may declare that beyond this limit, it is no longer a candidate for virtual-
ization and should be killed. Correspondingly, if the same sound has been
virtualized for 0.2 seconds and has 5 seconds of playtime remaining when
a slot then becomes available in the pool permitting it to play, it may or
may not make more sense to eject the sound from the virtual pool and no
longer process it as a virtual voice. In this case, it defers to the realization
settings (see Section 9.9.5) in order to determine whether to realize or kill
the voice.

9.9.2 Distance-Based Rules

Distance-based rules control whether a voice should be real based on the
sound source’s max distance (the distance at which its attenuation curve
reaches a terminally zero volume) plus an optional distance buffer. This
buffer avoids abrupt stopping and starting of the sound if the listener is

140 ◾ Game Audio Programming 3

quickly moving in and out of range. If a sound is close to being inaudible
due to its distance attenuation and a saturated voice pool, it does not need
to occupy a real voice. Even though distance-based rules bear some simi-
larity to volume-based rules (see Section 9.9.3), distance should be evalu-
ated separately because distance does not necessarily correspond linearly
with volume. Distance-based rules can prevent thrashing the virtualiza-
tion system with nearly inaudible sounds by preventing them from play-
ing when the sound is close to or beyond its max distance.

9.9.3 Volume-Based Rules

Volume-based rules evaluate whether a sound is a candidate for virtual-
ization or eviction based on whether its final output volume is below a
certain threshold. For example, a sound could be considered for virtual-
ization when its volume drops below a threshold of −40 dB. Each volume
rule may be evaluated pre attenuation or post attenuation. Post attenu-
ation, rules combine the distance attenuation and volume attenuation
together, which can simplify the rulesets. However, if the sound designers
desire more fine-grained control, they can select pre-attenuation and then
add a separate distance rule if required.

9.9.4 Voice Stealing

After all of the rules have been applied to all of the sounds in a virtual
pool, there may still be more real sounds than the virtual pool has allotted.
In such a case, the virtual pool needs to virtualize or stop a playing sound,
ideally one that is low priority and which will not adversely affect the mix
if it is stopped.

The most common technique to determine which sounds to virtualize
is to sort the list of currently playing sounds by one or more predicates
and virtualize or stop the lowest-priority sounds until the voice pool limit
is reached. The sorting predicates are usually fairly simple: how long the
sound has been playing, its current audibility, or a priority value that the
sound designers can set.

9.9.5 Realization

When a virtual voice is no longer able to play due to its pool being satu-
rated, it can be either stopped or virtualized. Correspondingly, when a
virtual voice is realized, there are a few potential ways in which it can
continue playback. Table 9.1 summarizes the various realization settings
that sound designers can choose from.

Voice Management and Virtualization ◾ 141

Each of these settings is useful in different contexts:

• Disabled—Short one-shot sounds. This is the cheapest option because
the sound can be simply stopped and there is no further logic required.

• Restart—Looping beds where the user has no discernable way to tell
the beginning of the sound from any other part of the loop. This is
the cheapest replay option, since it does not require a seek.

• Resume (Real Time)—Objects in game that emit a distinctive sound
such as music which can be interrupted, such as a music box or a
record player.

• Resume (Virtual Time)—Long-tailed one-shots such as reverberant
tails that decay over time and other sounds that have distinct, tem-
porally identifiable audible qualities.

9.10 RUNTIME ASSET CACHING
The voice management system is in a position to coordinate closely with
the asset loading system by providing hints for stream chunk loading and
unloading. For sounds that are fully loaded into memory (usually on level
load but potentially at runtime), no coordination is necessary since all of
the audio data is already resident. However, streamed sounds can resume
playback with reduced latency by ensuring that the next chunk of stream
data is always resident in memory. The appropriate stream chunk to load
depends on the realization settings for the sound:

• Disabled or Restart—Always keep the first chunk of the stream
 resident in memory while any instance of the voice is playing.

• Resume (Real Time)—Keep the most recently played chunk in
memory until the voice is stopped or realized.

TABLE 9.1 Virtualization Rules

Value Description

Disabled Stops virtual and corresponding real voice
Restart Restarts the real voice
Resume (Real Time) Resumes the real voice from elapsed time the real voice has

played
Resume (Virtual Time) Resumes the real voice from elapsed time the virtual voice

has played

142 ◾ Game Audio Programming 3

• Resume (Virtual Time)—Provide a periodic callback (or poll
elapsed time) to trigger prior to the time the next chunk is required,
which unloads the current chunk and loads the next chunk.

9.11 DYNAMIC POOL ALLOCATION
As a game’s play session changes context, it may be necessary to change
the limits on the virtual pools dynamically. For example, when the player
is interacting with a lobby or menu system, the limits can favor UI sounds,
whereas during a match or in-game the limits can be geared toward
actions, voices, and music. Throughout each context, different types of
sounds will take priority, so having the ability to change voice pool limits
will account for large stateful transitions.

In addition to game context, hardware and platform restrictions may
affect pool sizes as well: consoles, PCs, and mobile devices all have dif-
ferent characteristics that will affect how many real voices can be played
at once. Architectural differences among the platforms may also affect
the real voice limit or limits: threading models, CPU architecture, cach-
ing mechanisms, and supported compression formats all are factors in
the number of real voices. Another consideration for virtual voice pool
 limits is a client’s listening environment. For example, designers may
want to adjust pool limits based on the final output being sent to a TV, 5.1
 surround, phone speakers, or headphones.

9.12 CONCLUSION
Approaching voice management as a collection of real and virtual voices
assigned to real and virtual pools allows the rendered sound to be split
from the voice’s gameplay lifetime. Splitting the logic into individual voice
rules, voice stealing rules, and a voice’s virtualization rule makes the
whole process of determining playback priority manageable and scalable.

143

C h a p t e r 10

Screen-Space Distance
Attenuation

Guy Somberg
Echtra Games

CONTENTS

10.2 Distance Attenuation Review 144
10.3 The Problem with Action RPGs 145
10.4 The Meaning of Distance 146
10.5 Converting to Screen-Space 147
10.6 Screen-Space Distance Algorithm 148

10.6.1 Pixels Are Not Meaningful 148
10.6.2 The Range Is Too Small 149
10.6.3 Using the Wrong Camera 151

10.7 Next Steps 153
10.8 Rectangular Distances 154
10.9 On-Screen Debug Visualization 156

10.9.1 Describing the Shape 156
10.9.1.1 Circular Shape 156
10.9.1.2 Rectangular Shape 156

10.9.2 Debug Rendering Algorithm 158
10.9.3 Example Code for Unreal Engine 160

10.10 Conclusion 165
References 165

10.1 Introduction 144

144 ◾ Game Audio Programming 3

10.1 INTRODUCTION
Action RPGs like Torchlight, Diablo, and Path of Exile have many distinc-
tive challenges in their audio. One of the most fundamental challenges is
that of panning and attenuation, which are shared with many other games
that have a third-person perspective on the action. The problem is that the
distance to the camera is not a meaningful measurement at all in these
games—rather, it is the distance to the player that matters.

The problem of using the distance to the player for attenuation has
already been solved, and the solution is taken as a given in this chapter.
The thing that we’re going to do is take a step back and ask what we mean
by “distance.”

10.2 DISTANCE ATTENUATION REVIEW
The classical model of audio distance attenuation and panning has been in
use for decades. The listener is placed at the camera, and the distance from
each sound source to the listener position is passed into an attenuation func-
tion. These attenuation functions may encode a realistic sound falloff curve,
some generic nonrealistic but game-targeted function, or a custom curve
that is designed per event. Regardless of the actual function, the attenuation
is parameterized by the distance from the sound source to the listener.

This model is simple, but it works for many categories of games—
particularly well for first-person shooters. Unfortunately, it breaks down
when the camera and the player are not one and the same, which will
be the case in any game with a third-person camera. For a third-person
camera, we must separate the concept of the attenuation position from
that of the panning position. The attenuation position must be placed at
the player’s location, and the panning position must be placed at the cam-
era. This is the only way in which the attenuation and the panning of all
sounds will sound right.

Decoupling the attenuation and panning positions from the listener
requires a bit of vector math if your middleware doesn’t implement it for
you. Figure 10.1 shows how to go about this. The attenuation position (A)
is placed in the player’s head, and the panning position (L) is in the camera.
We calculate the distance from each of the three sound sources (A, B,
and C) to the attenuation position and then reposition each of the sounds
along the vector from the panning position to the sound source at the dis-
tance from the sound source to the attenuation position giving positions
A′, B′, and C′. For more details on this algorithm, see Somberg (2017).

Screen-Space Distance Attenuation ◾ 145

10.3 T HE PROBLEM WITH ACTION RPGs

In ARPGs, the player character is in the center of the screen, and the cam-
era is placed in the sky above the player at an angle. This setup is per-
fect for the attenuation/panning split because without it, audio distance
becomes meaningless. If the listener is in the camera, and a sound has a
max distance of 10 meters, at what point does it become audible? There is
no right answer when the distance is measured to the camera. Decoupling
attenuation and panning solves this problem by providing a real, in-world
meaning to distance. A sound which is configured to have a max distance
of 10 meters equates exactly to 10 meters in world space from the sound
source to the player character.

But let’s take a look at what the player sees in the world. Figure 10.2
shows a player character in a test level standing in the center of concentric
rings at 10 and 20 meters. If a sound designer wants a sound to be audible
only while it’s on the screen, what value should she choose for the max dis-
tance? Let’s try a few different values in Table 10.1 and see what happens.

Once again, we have a problem: there is no meaningful value that our
sound designer can choose that will give her the attenuation that she
wants. We are back to square one: our audio distance values have an intui-
tive meaning that matches the game world, but the values themselves are

FIGURE 10.1 Third-person camera setup with separated attenuation position.
Sound sources A, B, and C are repositioned to positions A′, B′, and C′.

146 ◾ Game Audio Programming 3

useless for mixing and tuning. This is particularly true in ARPGs because
in general, the things on the screen are the ones that matter.

10.4 THE MEANING OF DISTANCE
Taking a step back, we must question some of our fundamental assump-
tions. Our intuition leads us to state that the distances passed into our
audio engine must, perforce, be the straight-line distances from the sound
source to the attenuation position. However, there is nothing that says that
the measured distance must be the 3D distance.

One thing to note from Table 10.1 is that in every cell, we refer to sec-
tions of the screen where the attenuation matches or doesn’t match the
sound designer’s intent. More particularly, we do not refer to sections of
the world.

FIGURE 10.2 Player character in a test level.

TABLE 10.1 A Selection of Max Distances and Whether They Succeed in Matching the
Sound Designer’s Intention

Max Distance Audible Onscreen Inaudible Offscreen

10 meters True at the bottom of the screen
but only covers half the screen
or less on the sides and the top

True everywhere except at the
bottom of the screen

15 meters True for roughly the bottom half
of the screen

True for roughly the top half of
the screen

20 meters True everywhere except the upper Only true in the upper corners
corners

25 meters True everywhere False everywhere

Screen-Space Distance Attenuation ◾ 147

This observation leads us to the solution to our distance conundrum:
what if we measure distance in screen space instead of world space? All of
a sudden, our concept of distance no longer has an in-world analog, but
it does have an on-screen analog. And, particularly, our sound designer
can now select a value that describes exactly what she wants: that a sound
is only audible while it is on the screen and that it attenuates smoothly to
every point. She can now mix the entire game because she has an under-
standing of when a sound will actually play.

We will come back to the problem of the lack of an in-world analog later
in this chapter, but for now, let’s examine how to accomplish our screen-
space distance projection.

10.5 CONVERTING TO SCREEN-SPACE
The first thing we must do is write a function that will convert our world
space coordinates to screen space. In principle, this is fairly simple, given
the point, the camera’s view and projection matrices, and the viewport
size. We need to multiply the point by the view matrix and then the pro-
jection matrix, which will give us a 4D vector in “clip space.” Sometimes
the view and projection matrices are premultiplied by the graphics engine
as an optimization. We normalize the result into device coordinate space,
which gives us a vector in the range [−1…+1]. We rescale the values into
the range [0…1] and then multiply by the viewport size in order to get the
resulting position:

std::optional<Vector2> WorldSpaceToScreenSpace(
 const Vector3& Point,
 const Matrix4& View, const Matrix4& Projection,
 const Vector2& ViewportSize)
{
 auto ClipSpacePosition =
 Projection * View * Vector4(Point, 1.0f);
 if (ClipSpacePosition.W == 0.0f)
 return std::nullopt;
 ClipSpacePosition /= ClipSpacePosition.W;
 ClipSpacePosition.X = (ClipSpacePosition.X / 2.0f) + 0.5f;
 ClipSpacePosition.Y = 1.0f - (ClipSpacePosition.Y / 2.0f) - 0.5f;
 return Vector2{
 ClipSpacePosition.X * ViewportSize.X,
 ClipSpacePosition.Y * ViewportSize.Y };
}

Figure 10.3 shows the resulting coordinate space. Most 3D engines
already have such a function built in. In Unreal, this function is

148 ◾ Game Audio Programming 3

in UGameplayStatics::ProjectWorldToScreen(). In Unity, it is
Camera.WorldToScreenPoint(). As handy as these functions are, we can-
not use them with their default inputs (that is, the player’s active camera)
and in their default form—at least not directly. We’ll take a look at why
this is true in the next section.

10.6 SCREEN-SPACE DISTANCE ALGORITHM
It seems as though we ought to be able to use this as our algorithm:

 1. Convert attenuation position to screen space.

 2. Convert sound position to screen space.

 3. Find the 2D distance between the two points (∆ +X Y2 2∆).
Unfortunately, this won’t work for a few reasons.

10.6.1 Pixels Are Not Meaningful

Screen space is in pixels, and the number of pixels is not consistent from
computer to computer or even from moment to moment within a play ses-
sion (e.g. if the player changes resolution while running). What we need is
a coordinate in device coordinate space. Fortunately, we already have that
value as an intermediate result in our previous code, so we can just omit
the viewport size and renormalization from the code:

std::optional<Vector2> WorldSpaceToClipSpace(
 const Vector3& Point,
 const Matrix4& View, const Matrix4& Projection)
{
 auto ClipSpacePosition =

FIGURE 10.3 Screen-space coordinate system used for graphics.

Screen-Space Distance Attenuation ◾ 149

 Projection * View * Vector4(Point, 1.0f);
 if (ClipSpacePosition.W == 0.0f)
 return std::nullopt;
 ClipSpacePosition /= ClipSpacePosition.W;
 return Vector2{
 ClipSpacePosition.X, ClipSpacePosition.Y };
}

Figure 10.4 shows how this code has affected the coordinate space.

10.6.2 The Range Is Too Small

The code that we just described provides values for each axis in the range
[−1…+1]. What this means is that values at the edge of the screen have a
magnitude of 1 and the center of the screen has a magnitude of 0. Since
the attenuation position in an ARPG is either at or close to the center of
the screen, this means that the max distance for most sounds will be at a
value of 1.0. Technically, we could leave this alone, but the problem is that
we now have to hand these values off to two interested parties: the sound
designers and the audio middleware.

Let’s take a look at the audio middleware first. In general, off-the-shelf
audio middleware is not expecting to be operating in a scale where max
distance is 1. Figure 10.5 shows a Spatializer DSP in FMOD Studio with a
minimum distance of 0.6 and a maximum distance of 1.0. This is a prac-
tically unusable user experience. The min and max points on the slider
are practically touching, and the right 90% of the control is completely
unused. Other audio middleware has similar issues.

The second customer that will have problems with this scale is the
sound designers. The range of 0…1, although morally equivalent to
any other scale, will feel constricting to sound designers. At that scale,

FIGURE 10.4 Screen-space coordinate system centered at the center of the screen.

150 ◾ Game Audio Programming 3

miniscule changes can have meaningful effects on the distance, which
will make it difficult for the sound designers to come up with an intuition
for what the numbers mean. Recall that the whole point of this exercise is
to provide a meaningful value for distance that the sound designers can
use intuitively.

These statements about sound designers are all purely subjective and
patently false. Sound designers are supremely adaptable, and they will be
able to come up with an intuition for what the various values mean, no
matter what the range is. However, it is also true that a larger range is
easier for sound designers to work with, and the cost of doing so is a single
multiplication:

std::optional<Vector2> WorldSpaceToAudioSpace(
 const Vector3& Point,
 const Matrix4& View, const Matrix4& Projection)
{
 auto ClipSpacePosition =
 Projection * View * Vector4(Point, 1.0f);
 if (ClipSpacePosition.W == 0.0f)
 return std::nullopt;
 ClipSpacePosition /= ClipSpacePosition.W;
 return AudioSpaceScale * Vector2{
 ClipSpacePosition.X, ClipSpacePosition.Y };
}

My experience is that a value of 20.0f for AudioSpaceScale feels natural
for sound designers. Figure 10.6 shows the coordinate space with a scale
of 20, which is the final coordinate space that we will be using. However,
we are still not quite finished.

FIGURE 10.5 FMOD Studio Spatializer with minimum distance of 0.6 and
 maximum distance of 1.0.

Screen-Space Distance Attenuation ◾ 151

10.6.3 U sing the Wrong Camera

The last problem with our algorithm is that it is using the wrong camera.
Or, more precisely, it is using the player’s camera, which is correct only
some of the time. The problem comes about when the game supports
zooming. Compare the viewport from Figure 10.2, which shows the cam-
era fully zoomed out with the viewport from Figure 10.7, where the cam-
era is fully zoomed in. In Figure 10.7, the top of the screen cuts off at less
than 20 meters away, and the bottom of the screen is just a meter or two
away from the player. While Figure 10.2 also cuts off at the top around
20 meters, the sides and the bottom are much further away, providing the
player with a broader view of the action.

Depending on the game, it may be desirable for the audioscape to match
the viewport exactly. However, it is more likely that the desired effect is

FIGURE 10.6 Screen-space coordinate system centered at the center of the screen
and scaled to 20 units.

FIGURE 10.7 Player character in a test level with the camera zoomed in.

152 ◾ Game Audio Programming 3

that the fully zoomed-out view from Figure 10.2 is what the player should
be hearing, no matter how far in they have zoomed in their camera.

The precise details of how to accomplish this are very game-specific.
They depend on how the camera is placed in the world, whether it is a
right- or left-handed coordinate system, which axis is “up,” and v arious
other details. Let’s start with some pseudocode to show the shape of
the code:

// Return either a view and projection matrix separately or a
// premultiplied view/projection matrix
ViewProjectionMatrix GetAudioViewProjectionMatrix()
{
 auto Transform = CalculateCameraLocationAndOrientation();
 auto ViewMatrix = GetViewMatrix(Transform);
 auto ProjectionMatrix = GetProjectionMatrix(Transform);
 return ViewMatrix * ProjectionMatrix;
}

Real code is rarely so pithy. If you’re using Unreal, then the code will look
something like this (with error checking and some game-specific code
elided for brevity):

FMatrix GetAudioViewProjectionMatrix(
 const TOptional<FVector3>& OverridePosition,
 FIntRect* OutViewRect)
{
 // Find the camera component. Details are game-specific, so
 // this is a fakey placeholder.
 UCameraComponent* CameraComponent = GetCameraComponent();

 // Grab the camera view info from the camera. We will presume
 // that the camera’s view info does not
 // change meaningfully as the camera moves around.
 constexpr float UnusedDeltaTime = 0.0f;
 FMinimalViewInfo ViewInfo;
 CameraComponent->GetCameraView(UnusedDeltaTime, ViewInfo);

 // Make sure that we don’t get black bars
 ViewInfo.bConstrainAspectRatio = false;

 // Another fakey placeholder. This function should use game-
 // specific logic to calculate ViewInfo.Location and
 // ViewInfo.Rotation. If the OverridePosition is set, then
 // it should use that instead.
 CalculateViewInfoTransform(ViewInfo, OverridePosition);

Screen-Space Distance Attenuation ◾ 153

 // This section of code is adapted from
 // ULocalPlayer::GetProjectionData().
 // We need to build a structure that has all of the appropriate
 // matrices in order to be able to do the world->screen projection
 // Details of getting and error-checking ViewPort are omitted
 // for brevity. It is accessible from the PlayerController’s
 // LocalPlayer.
 auto X = Viewport->GetInitialPositionXY().X;
 auto Y = Viewport->GetInitialPositionXY().Y;
 auto SizeX = Viewport->GetSizeXY().X;
 auto SizeY = Viewport->GetSizeXY().Y;
 auto UnconstrainedRectangle =
 FIntRect{ X, Y, X + SizeX, Y + SizeY };
 if (OutViewRect != nullptr)
 *OutViewRect = UnconstrainedRectangle;

 FSceneViewProjectionData ProjectionData;
 ProjectionData.SetViewRectangle(UnconstrainedRectangle);
 ProjectionData.ViewOrigin = ViewInfo.Location;
 ProjectionData.ViewRotationMatrix =
 FInverseRotationMatrix{ ViewInfo.Rotation } * FMatrix{
 FPlane{0, 0, 1, 0},
 FPlane{1, 0, 0, 0},
 FPlane{0, 1, 0, 0},
 FPlane{0, 0, 0, 1} };
 FMinimalViewInfo::CalculateProjectionMatrixGivenView(
 ViewInfo, AspectRatio_MajorAxisFOV, nullptr, ProjectionData);

 return ProjectionData.ComputeViewProjectionMatrix();
}

.

We have sneaked ahead and added a couple of features to this function that
we will need later on: an override position and an output parameter that fills
in the view rectangle. We will be using these for debug visualization later on.

10.7 NEXT STEPS
With all of these details taken into account, our algorithm is now subtly
but importantly modified:

 1. Convert attenuation position to scaled clip space using the view
 projection from the fully zoomed-out camera.

 2. Convert sound position to scaled clip space using the view projection
from the fully zoomed-out camera.

 3. Find the 2D distance between the two points (∆ +X Y2 2∆).

154 ◾ Game Audio Programming 3

With this algorithm hooked up, sound designers can now start to assign
minimum and maximum distances to their sounds that are in screen
space. If there is already a pre-existing set of sounds, then they will have
to go through all of their existing assets and rebalance their ranges.

But even this algorithm is a little bit off. By taking the 2D distance
between the points, we are describing a circle in screen space around
which our sound is audible, rather than actually describing whether or not
the sound source is on the screen. We will need one more tweak in order
to fully describe our screen-space distance attenuation.

10.8 RECTANGULAR DISTANCES
Our coordinate system has a value of 20 units at the edges. If the listener
position is in the center of the screen, then the positions at the centers
along the edges of the screen will all have a distance of 20 units, and the
corners will all be 20 2 units away. In order for a sound to be audible
while it’s on the screen, the sound designers will have to set maximum
distances of over 28, which is far larger than intended.

What we actually want is a setup such that every point along the edge of
the screen is 20 units away from the attenuation position, no matter where
it is. Note that this is subtly different from having it be 20 units away from
the center of the screen—we still want to take the attenuation position
into account. Figure 10.8 shows how the distances need to work: we break
the screen into quadrants, and each quadrant’s axes are scaled to 20 units
away from the attenuation position.

In order to create this projection, we project our point and the attenu-
ation position into screen space, scale each axis of the projected point by
the size of the quadrant, and then return the maximum of the x and y
coordinates. We can express this in code thus:

Center

Attenuation position

20
20

20

20

FIGURE 10.8 Screen broken up into quadrants by the attenuation position,
rather than the center, with each quadrant having a logical size of 20 units.

Screen-Space Distance Attenuation ◾ 155

float GetDistanceSquared(
 const Vector2& ProjectedPosition,
 const Vector2& ProjectedAttenuationPosition)
{
 auto XDistance =
 ProjectedPosition.X – ProjectedAttenuationPosition.X;
 auto YDistance =
 ProjectedPosition.Y – ProjectedAttenuationPosition.Y;

 Vector2 RescaledPosition = ProjectedPosition;
 if (XDistance >= 0.0f)
 {
 RescaledPosition.X *=
 (20.0f - ProjectedAttenuationPosition.X) / 20.0f;
 }
 else
 {
 RescaledPosition.X *=
 (20.0f + ProjectedAttenuationPosition.X) / 20.0f;
 }
 if (YDistance >= 0.0f)
 {
 RescaledPosition.Y *=
 (20.0f - ProjectedAttenuationPosition.Y) / 20.0f;
 }
 else
 {
 RescaledPosition.Y *=
 (20.0f + ProjectedAttenuationPosition.Y) / 20.0f;
 }

 return std::max(RescaledPosition.X * RescaledPosition.X,
 RescaledPosition.Y * RescaledPosition.Y);
}

Working with rectangular coordinates may feel a bit foreign to sound
designers. It may be worthwhile to implement both circular and
 rectangular coordinates and see which one the sound designers like
better. Implementing a debug toggle that can switch at runtime is an
effective mechanism to help the sound designers hear and visualize the
difference.

If you choose to use rectangular distances instead of circular distances,
then the final algorithm only changes in step 3:

 1. Convert attenuation position to scaled clip space using the view pro-
jection from the fully zoomed-out camera.

156 ◾ Game Audio Programming 3

 2. Convert sound position to scaled clip space using the view projection
from the fully zoomed-out camera.

 3. Find the rectangular distance between the two points.

But once again, we are faced with a dilemma whether we use circular or
rectangular coordinates, because while the sound designers have a mean-
ingful value that they can understand for any given sound, they have no
way to visualize it in the world.

10.9 ON-SCREEN DEBUG VISUALIZATION
When our distance model was based on world coordinates, the natural
model for representing minimum and maximum distances on the screen
was a sphere. We could simply draw two spheres and call it a day. However,
we have to do a bit more work now that we have changed our distance
model. There is no standard off-the-shelf shape that we can draw that will
precisely describe the distance at which a sound will be audible. We will
have to construct our own shape.

10.9.1 Describing the Shape

Ultimately, for the max distance, we want to draw on the screen a shape
such that the sound is audible when the player character walks into that
shape and is inaudible when the player character leaves the shape.

10.9.1.1 Circular Shape
If the sound is at the center of the screen, then the shape that it will draw
on the screen is a circle centered about the origin, stretched out to an oval
at the aspect ratio of the rendered viewport. Figure 10.9 shows how we
build our shape in screen space. The nice thing is that, because our coor-
dinate system is resolution-independent, we can operate on the circle from
Figure 10.9b, and it will come out looking like an oval. We want to take
this oval and project it into the world such that the shape will still look like
an oval when projected back into screen space.

10.9.1.2 Rectangular Shape
If the sound is at the center of the screen, then the shape that it will draw
on the screen is a square centered about the origin, stretched out to a
rectangle at the aspect ratio of the rendered viewport. Figure 10.10 shows
how we build our shape in screen space. As with the circular shape, we

Screen-Space Distance Attenuation ◾ 157

(a)

(c)

(b)

FIGURE 10.9 Progression of circular shape. (a) Starting circle. (b) Circle scaled
to the desired radius (10 units = half the screen for this example). (c) Circle
stretched out to screen space.

158 ◾ Game Audio Programming 3

can operate on the rectangle from Figure 10.10a, and our shape will be
 rendered correctly.

10.9.2 Debug Rendering Algorithm

In order to draw our shape, we break it up into line segments. For each
point on the shape, we project it from screen space back into world space
at the plane of the attenuation position. By connecting all of these points
together, we get the shape that we’re interested in. Let’s take a look at the
algorithm in pseudocode as we have described it so far:

(a)

(b)

FIGURE 10.10 Progression of a rectangular shape. (a) Square scaled to the
desired distance (10 units = half the screen for this example). (b) Square stretched
out to screen space.

Screen-Space Distance Attenuation ◾ 159

void DrawDebug()
{
 // [Detail 1]

 std::vector<Vector3> Points;
 Plane PlayerPlane{ AtenuationPosition, UpVector };

 for (auto& ScreenSpacePoint : GetShape())
 {
 // Projecting from screen space to world space will return
 // a point at the near field and a ray into the scene.
 auto [WorldPosition, Direction] = ScreenToWorld(ScreenSpacePoint);

 // We intersect the ray with the player’s plane
 auto Point =
 LinePlaneIntersect(
 WorldPosition,
 WorldPosition + Direction,
 PlayerPlane));

 // [Detail 2]
 // [Detail 3]

 // Add the point to the list
 Points.push_back(Point);
 }

 // Draw line segments for each adjoining pair of points
 for (size_t i=0; i<Points.size(); i++)
 {
 DrawLine(Points[i], Points[i+1], Color);
 }

 // Draw one last line segment connecting the end of the circle
 // to the beginning
 DrawLine(Points.back(), Points.front(), Color);
}

There are three extra details that we have not yet covered that are marked
in comments in the pseudocode. Let’s fill those pieces in.

First, all of this so far has been ignoring the sound’s position and
just using the origin. In order to determine where to center our circle,
we must take our sound’s source position and project it into screen
space—but at the elevation of the attenuation position. If we do not adjust
the elevation, then the circle that we are drawing will not look correct
if the player is not at the same elevation as the sound. We will use our
GetAudioViewProjectionMatrix() function from Section 10.6.3, with

160 ◾ Game Audio Programming 3

the overridden position. This allows us to fill in our [Detail 1] with the
following:

auto SoundLocationOnGround = GetPosition();
SoundLocationOnGround.Z = AttenuationPosition.Z;
auto ScreenSpaceOffset =
 ProjectPointToScreenSpace(SoundLocationOnGround);

Let us skip the second detail for a moment and jump to the third detail.
If you implement this debug drawing function unmodified, your debug
draw circles will likely be invisible because they will be at the same Z posi-
tion as the ground. They will either be “Z fighting” and end up flickering,
or they will be completely invisible. In order to avoid this, we push the
debug draw circle up slightly in [Detail 3]:

Point.Z += VisibilityAdjustment;

Finally, we can get to the second detail. Now that we can actually see our
shape, it is close to but doesn’t actually match up with where the sound
is audible. The reason for the discrepancy is that this point is where the
sound would have to be if the attenuation position were at the sound’s
location, but what we want is where the attenuation position should be
given the sound’s location—the exact opposite. Fortunately, this is easy to
rectify by flipping the X and Y axes around the sound’s position. We can
now finish our algorithm by filling in [Detail 2]:

Point.X = SoundLocationOnGround.X –
 (TargetLocation.X - SoundLocationOnGround.X);
Point.Y = SoundLocationOnGround.Y –
 (TargetLocation.Y - SoundLocationOnGround.Y);

Finally, with all of these details filled in, we can draw our shape. When
using circular distance, the shape looks like an oval when viewed from the
camera’s default angle (Figure 10.11) but appears to be a strange, oblong,
off-center egg shape when viewed from above (Figure 10.12). When using
rectangular distance, the shape looks like a trapezoid when viewed from
the camera’s default angle (Figure 10.13) and is a slightly oblong trapezoid
when viewed from above (Figure 10.14).

10.9.3 Example Code for Unreal Engine

As before, the real code is never quite so terse as the equivalent pseudo-
code. In this section, we present one possible implementation using Unreal

Screen-Space Distance Attenuation ◾ 161

FIGURE 10.11 Circular min and max distance debug display from the game camera.

FIGURE 10.12 Circular min and max distance debug display from above.

FIGURE 10.13 Rectangular min and max distance debug display from the game
camera.

162 ◾ Game Audio Programming 3

Engine. Note that we take advantage of the extra parameters that we added
into GetAudioViewProjectionMatrix() earlier in order to override the
position and exfiltrate the view rectangle.

void DrawDebug(bool bUseCircleShape)
{
 // Get the sound’s position on the ground
 auto OriginalSoundLocation = GetLocation();
 auto SoundLocationOnGround = OriginalSoundLocation;
 SoundLocationOnGround.Z = AttenuationPosition.Z;

 // Find the view projection matrix given the sound’s location
 FIntRect ViewRect;
 auto ViewProjectionMatrix =
 GetAudioViewProjectionMatrix(SoundLocationOnGround, &ViewRect);
 if (!ViewProjectionMatrix.IsSet())
 return;

 // Now transform the original world location into -1..+1
 // screen space.
 FPlane TransformedPoint =
 ViewProjectionMatrix->TransformFVector4(
 FVector4{ OriginalSoundLocation, 1.f });
 if (TransformedPoint.W == 0.0f)
 return;

 const float RHW = 1.0f / TransformedPoint.W;
 FVector2D ScreenSpaceOffset{
 TransformedPoint.X * RHW, TransformedPoint.Y * RHW };

 auto InverseMatrix = ViewProjectionMatrix->InverseFast();
 FPlane PlayerPlane{ AttenuationPosition, FVector::UpVector };

FIGURE 10.14 Rectangular min and max distance debug display from above.

Screen-Space Distance Attenuation ◾ 163

 auto DrawShape = [&](float Distance, const FColor& Color)
 {
 // Make a circle in screen space at the max distance.
 // For each point in the circle:
 const float DistanceScale = Distance / 20.0f;
 TArray<FVector> Points;
 auto AddPoint = [&](FVector2D ScreenSpacePosition)
 {
 // Scale it to the max distance of the sound source
 ScreenSpacePosition *= DistanceScale;

 // Center our circle on the projected screen space location
 ScreenSpacePosition -= ScreenSpaceOffset;

 // Convert it to 0..1. Note that Y coordinates are from
 // the top of the screen, so we need to flip Y.
 ScreenSpacePosition.X = (ScreenSpacePosition.X + 1.0f) / 2.0f;
 ScreenSpacePosition.Y =
 1.0f - ((ScreenSpacePosition.Y + 1.0f) / 2.0f);

 // Finally, skew the position into view space.
 ScreenSpacePosition.X *= ViewRect.Width();
 ScreenSpacePosition.Y *= ViewRect.Height();

 // Get a world origin and direction from the screen coordinate
 FVector WorldOrigin;
 FVector WorldDirection;
 FSceneView::DeprojectScreenToWorld(
 ScreenSpacePosition, ViewRect, InverseMatrix,
 WorldOrigin, WorldDirection);

 // Intersect our line with the player’s plane
 auto TargetLocation =
 FMath::LinePlaneIntersection(
 WorldOrigin, WorldOrigin + WorldDirection, PlayerPlane);

 // Here’s the problem, though: our projected point is where
 // the sound would have to be located if the player’s
 // attenuation position were at the sound’s location. In
 // order to make this a real point, we have to flip it
 // around the X and Y axes, which is what is happening here.
 TargetLocation.X =
 SoundLocationOnGround.X –
 (TargetLocation.X - SoundLocationOnGround.X);
 TargetLocation.Y =
 SoundLocationOnGround.Y –
 (TargetLocation.Y - SoundLocationOnGround.Y);

 // Finally, we add a few centimeters to the Z axis in order

164 ◾ Game Audio Programming 3

 // to make sure that the line that we draw doesn’t intersect
 // with the ground geometry.
 TargetLocation.Z += 10.0f;
 Points.Add(TargetLocation);
 };

 int PointCount;
 if (bDrawCircle)
 {
 PointCount = 16;
 const float RadiansPerPoint =
 2.0f * PI / static_cast<float>(PointCount);
 Points.Reserve(PointCount);
 for (int i = 0; i < PointCount; i++)
 {
 auto Angle = static_cast<float>(i) * RadiansPerPoint;
 // Start with a circle in -1..+1 space
 AddPoint(FVector2D{ FMath::Cos(Angle), FMath::Sin(Angle) });
 }
 }
 else
 {
 PointCount = 4;
 Points.Reserve(PointCount);
 AddPoint(FVector2D{ -1.0f, -1.0f });
 AddPoint(FVector2D{ -1.0f, 1.0f });
 AddPoint(FVector2D{ 1.0f, 1.0f });
 AddPoint(FVector2D{ 1.0f, -1.0f });
 }

 // Finally, draw the shape by connecting lines among all of
 // the points
 for (int i = 0; i < (PointCount - 1); i++)
 {
 // Just in case...
 if (!Points.IsValidIndex(i)
 || !Points.IsValidIndex(i + 1))
 continue;

 DrawDebugLine(World, Points[i], Points[i + 1], Color);
 }

 // Close the circle by connecting the last point to the first one.
 DrawDebugLine(World, Points.Last(), Points[0], Color);
 };

 DrawShape(MinDistance, MinDistanceColor);
 DrawShape(MaxDistance, MaxDistanceColor);
}

Screen-Space Distance Attenuation ◾ 165

10.10 CONCLUSION
Attenuating sounds by screen-space distance is a powerful and effective
technique. At a fundamental level, the algorithm for calculating panning
and attenuation is unchanged: we calculate the distance and reposition
the sound and the appropriate panning position based on the distance
to the attenuation position. What we have done in this chapter is take a
step back and redefine the concept of distance to be calculated in screen
space. By calculating the distance in screen space, we are able to provide
sound designers with a way to understand when a sound will be audible
that translates particularly well for ARPGs, so long as our debug display
is robust.

REFERENCES

Somberg, Guy. “Listeners for Third-Person Cameras.” Game Audio Programming
Principles and Practices, edited by Guy Somberg. CRC Press, 2017,
pp. 197–208.

https://taylorandfrancis.com

167

C h a p t e r 11

Under the Influence
 Using Influence Maps for Audio

Jon Mitchell
Blackbird Interactive

CONTENTS
11.1 Introduction 168
11.2 How Are IMs Useful for Audio? 169
11.3 Storing Influence Maps 169

11.3.1 Grid 169
11.3.2 Sparse Grids 171
11.3.3 “Infinite” Influence Maps 171
11.3.4 Combining Different Representations 172

11.4 Building the Maps 172
11.4.1 Adding Points 172
11.4.2 Adding Points across Cell Boundaries 172
11.4.3 Adding Radii 172
11.4.4 GPU Accelerated IMs 173

11.5 Updating 173
11.5.1 Event-Based 173
11.5.2 Continuous 174
11.5.3 Static 174

11.6 Querying 175
11.7 Debugging and Visualizing 175
11.8 Feature Case Study: Grid Activity Report (GAR) 175

168 ◾ Game Audio Programming 3

11.1 INTRODUCTION
Influence maps (IMs) are a well-established game AI technique, origi-
nating in RTS games. RTS AI needs to make high-level strategic deci-
sions about its goals, as well as low-level tactical decisions about how
individual units should react and navigate the game’s landscape. AI
players and units can’t see the game in the way the human player does, so
all their knowledge comes from inspecting the state of the game directly.
An AI unit may need to make hundreds of checks per second, such as
the following:

• What is the nearest enemy unit to me?

• How dangerous is the nearest enemy unit?

• How many friendly units are nearby?

• Do my nearby friendly units have the firepower to defeat nearby
enemies?

IMs can make the code to answer questions like this simpler. The game
map is divided into a grid, and grid cells are populated using an IM func-
tion representing a feature of the game data. For example:

• Combat level—Total damage inflicted on units in the last 10 seconds.

• Enemy threat level—Summed power of enemy weapons within
range of the cell.

• Balance of power—Enemy threat level – Friendly threat level.

Rather than complex code which needs to make direct queries of game
entity data, we can make simple mathematical checks:

11.8.1 Feature Design 175
11.8.2 Feature Implementation 177

11.8.2.1 Region Thresholds 177
11.8.2.2 Cluster Analysis 178
11.8.2.3 Cluster Tracking and Thresholding 179

11.9 Conclusion 179
References 180

Using Influence Maps for Audio ◾ 169

bool isUnitInDanger =
 EnemyThreatMap.SumValuesInRadius(position, radius) <
 PlayerThreatMap.SumValuesInRadius(position,radius);

Figure 11.1 shows an overview of the stages of creating and using an influ-
ence map.

Generally, audio programmers and designers aren’t too concerned about
the details of game AI implementation, but there can be a substantial
amount of overlap in some areas, especially gameplay code. We use
much the same sort of queries as AI to help determine things like the
following:

• What stems of interactive music should we play next?

• What line of dialog is the most appropriate to play in response to a
game event?

• What sound should we play knowing the sounds that have played
recently in this area of the game?

Just like AI decisions, these queries require that the game gather a
 context-specific state from the game objects, evaluates conditions on that
state, and chooses an appropriate response. Gameplay audio code already
frequently makes use of game AI techniques like finite state machines,
behavior trees, blackboards, and stimulus-response systems, and IMs
work extremely well in tandem with them.

11.3 STORING INFLUENCE MAPS

11.3.1 Grid

The simplest implementation of an IM is a 2D array—a contiguous block
of memory, with each cell in the grid having a permanently allocated,
directly addressable area of memory. This is the easiest to write, and with
densely populated grids, it can sometimes be the most performant from a
CPU perspective. Most likely, this is the best approach to start with until
it no longer works for your game. The main disadvantage is memory con-
sumption: if you have an enormous game world, then even a coarse grid

11.2 H OW ARE IMs USEFUL FOR AUDIO?

170 ◾ Game Audio Programming 3

FIGURE 11.1 An overview of the stages of creating and using an IM.

Using Influence Maps for Audio ◾ 171

can use a significant amount of memory, especially if you have many IMs
for different game contexts. Also, when the grid is sparse (that is, it has
very few active entries relative to its size), then not only are large sections
of memory sitting idle, but any queries that operate on large areas of the
grid will be needlessly performing operations as they traverse the mostly
empty array.

11.3.2 Sparse Grids

Rather than directly allocating the whole grid, a sparse grid keeps track
of which cells are active, and all cell accesses are indirect. With an empty
grid, the memory overhead is only the size of the tracking structures, and
summing the values of a mostly empty map will be fast. The downsides
come as the density of the grid increases. The cost of the accesses can add
up, and by the time the grid is full, the memory and CPU consumption are
much worse than a plain 2D array.

11.3.3 “Infinite” Influence Maps

Mike Lewis (2015) discusses “Infinite” IMs in an article published at
GameAIPro. This article is well worth reading and has a good discus-
sion of the pros and cons of various discrete, grid-based IM implementa-
tions. Infinite IMs essentially reject this approach in favor of using a set
of influence sources with a known position, radius, and differentiable
falloff function. This lets you determine influence at an arbitrary point
and solves the problem of handling very large regions, as well as the per-
formance problems you can have where influence needs to be propagated
across large regions touching large numbers of cells. However, it adds
complexity to building and querying. In a way, the Control Sources sys-
tem used in our RTS (described in Mitchell 2019) could be considered a
system of this type. It also consists of a set of influences with points and
radii, where the exact falloff value of each source is calculated at the point
of query rather than being continuously evaluated. This approach has a
lot in common with how game engines handle physics entities and other
object/object interactions, and many of the same spatial partitioning and
broad-phase optimizations can be applied. For simplicity, I’ll only be dis-
cussing discrete IMs, but if you need large areas of influence and high
query resolution over a large gameplay area, this may be your only real-
istic option.

172 ◾ Game Audio Programming 3

11.3.4 Combining Different Representations

As with most game data, the final choice of data structure for a given map
will depend on how it’s populated and how frequently it is accessed, but
there’s no reason your game has to use a single data representation for
each of its maps. So long as you have a shared interface to query the maps,
the under-the-hood representation for each needn’t be important to client
code.

11.4 BUILDING THE MAPS

11.4.1 Adding Points

If you’ve written any low-level 2D drawing code, writing to an IM will
seem very familiar to you. Writing a point value to a single cell is just the
same as writing a pixel!

11.4.2 Adding Points Across Cell Boundaries

When writing to an IM cell, we initially placed the full influence value
in a single cell, so if the value depended on an object’s position, the IM
value would snap from one cell to another as the object moved across the
map. For some of our queries, this gave inaccurate results, so we added
the option to blend the influence value across adjoining cells. The blend
amount for each cell is computed as the ratio of the size of a single cell
to the amount of overlap a cell placed at an object’s position would have.
An object placed exactly at the cell center overlaps exactly, and so that
cell receives 100% influence, whereas an object at the corner of four cells
should receive 25% of the total influence in each cell. This is essentially
like drawing an anti-aliased pixel, except we’re not concerned with how
the result looks but preserving the property that 100% of the influence
value is stored in the grid—this is important to ensure that queries where
we sum the values in a region give us the results we expect. Figure 11.2
shows several examples of blending a point influence value across neigh-
boring cells.

11.4.3 Adding Radii

Adding a point of influence with a center, a radius, and a falloff function
is essentially the same problem as rasterizing a filled, shaded 2D circle.
Especially for larger radii or high-resolution maps, computing these val-
ues every time can be expensive. In many cases, the radius and falloff

Using Influence Maps for Audio ◾ 173

functions are known ahead of time and remain constant for each game
entity, so these can be computed once and then cached. Continuing the
2D graphics analogy even further, using these pre-computed values is
basically the same as software sprite rendering.

11.4.4 GPU Accelerated IMs

Given the heavy overlap between 2D rendering, textures, and simple
grid-based IMs, leveraging the GPU to provide the drawing, blitting,
and blending operations that can be slow on a CPU seems like a natural
fit. You then have the problem of getting the results of the GPU opera-
tions back to the CPU for use in the game itself, but audio responses don’t
always have the extremely tight latency requirements of code that needs
to respond directly to player input. If only the results of the queries are
needed, rather than the maps in their entirety, then the amount of data to
move should be relatively small.

11.5 UPDATING

11.5.1 Event-Based

Game events like impact damage, deaths, and collisions are transient,
and unless we track them somehow, this knowledge can’t be used by our
audio systems. We use IMs to track deaths, damage, and targeting changes,
updating the map every time an event happens. Maps have a fade-out value

FIGURE 11.2 Blending a point influence value across neighboring cells.

174 ◾ Game Audio Programming 3

which is subtracted from each active cell every N seconds, essentially giv-
ing the game a windowed history of where events have recently occurred.

11.5.2 Continuous

If the IM function relies on the location of an object or set of objects, and
the client code needs this function to be spatially and temporally accu-
rate, you may have no choice but to build your IM every frame. This can
be a worst-case scenario for large IMs, involving gathering a large set of
game objects to retrieve the location from, clearing out a large grid, and
propagating the falloff values to many cells. This may cause performance
problems, but it’s easy to get the system up and running.

If performance becomes an issue, you can replace the underlying data
structures and implementation easily when optimizing. Since building
maps based on continuously updating values has the distinct stages of
gathering game state and writing the cells, this makes them good candi-
dates for implementation via job systems or other parallel approaches. If
the map is also double-buffered, then the current version of the map can
be used for querying while the next version is built over as many frames as
needed to maintain performance.

11.5.3 Static

IMs aren’t only useful for monitoring the history of game events or watch-
ing dynamic game state—there are lots of potential uses for a map that
is built once when the game starts, and is only queried (never updated)
subsequently:

• Ground surface type—Map cells contain an integer switch value to
select a game object’s footstep sounds or tire tread sounds.

• FX send amount—Map cells contain a floating-point parameter
value to control the amount of an entity’s audio FX, such as reverb
wet/dry and early reflections.

• Ambient volume control—Map cells contain a set of floating-point
parameters used to drive the volume levels of background ambient
sounds.

Static maps of this sort can also be built offline from a game’s splat maps
or other level data or hand authored.

Using Influence Maps for Audio ◾ 175

11.6 QUERYING
Our maps implement a simple querying interface, allowing us to
either retrieve a single cell value or return the aggregate value of a
given area. This interface can be backed by any of the described storage
structures.

public interface IQueryInfluenceMap<T>
where T : struct, IEquatable<T>
{
 Number<T> GetCellValue(GridCell cell);
 Number<T> SumValuesInRect(Rect rect);
 Number<T> MaxValueInRect(Rect rect);
 Number<T> MinValueInRect(Rect rect);
 Number<T> SumValuesInRadius(Vector2 point, Real radius);
 Number<T> MaxValueInRadius(Vector2 point, Real radius);
 Number<T> MinValueInRadius(Vector2 point, Real radius);
 Number<T> SumOfAllValues();
 Number<T> MaxOfAllValues();
 Number<T> MinOfAllValues();
}

11.7 DEBUGGING AND VISUALIZING
Since they are just 2D grids with a numerical value, IMs can be easily
rendered to a texture and projected onto your game world or displayed
in 2D in another window. Many uses of IM rely on the aggregation of
multiple IMs by taking their sum, minimum, maximum, or by logical
operations like AND/OR/XOR. These operations can be performed by
texture blend modes or shader code, giving you a direct visualization of
the results the game works with. Figure 11.3 is a screenshot of our IM
visualizer.

11.8 FEATURE CASE STUDY: GRID ACTIVITY REPORT (GAR)

11.8.1 Feature Design

One use we made of IMs in our most recent RTS project was to drive some
of our commander speech. The game map is divided into nine sectors cor-
responding to the compass directions and a “central” sector, as shown in
Figure 11.4.

Dialog lines were written to inform the player about the state of play in
these sectors, to alert them to events they should pay attention to. Some
example situations are as follows.

176 ◾ Game Audio Programming 3

FIGURE 11.3 Screenshot of IM visualizer showing enemy threat values and the
clusters extracted from those values.

FIGURE 11.4 GAR sectors and clustered IM values.

Using Influence Maps for Audio ◾ 177

11.8.2 Feature Implementation

To help implement these contexts, we created maps for the following:

• Enemy danger—The map contains the threat levels of each enemy
unit currently aiming at or firing at a friendly unit, if they are in fir-
ing range of the targeted unit. Since the points of influence are game
object locations, this map is constantly updated. For performance
reasons, it is not updated every frame.

• Friendly damage—The map contains the locations where friendly
units have taken damage. This map is event-driven, updating
when we receive OnHit events on friendly units. Every few seconds,
the map is updated to reduce the cell values, so the values fall off
over time.

11.8.2.1 Region Thresholds
The values in our maps are constantly changing and are monitored to
determine when it’s most appropriate to play the speech events. The first
approach we tried was tracking the sum of the values in the GAR sectors.
This worked well for triggering our combat_casualties events. We speci-
fied different thresholds for low, medium, and heavy casualties and queued
the appropriate speech requests whenever the thresholds were crossed. It
didn’t work nearly as well for determining when to play combat_start
events, largely because the unit locations were continuously moving. We’d
hear dialog like the following:

Enemy engaged! Small force in northeast sector! Enemy Engaged!
Small force in north sector!

What was really happening, of course, is that a single, medium-sized
group of units was attacking from two sectors simultaneously. What we

Event Name Context Example Lines

combat_start The enemy is engaging Enemy engaged! Medium
you. You will be told the force in southwest sector!
strength of the attacking Contact with medium enemy
force and the location force!

combat_casualties Your units are being Units in north-east sector
damaged taking heavy losses!

Battle review needed—heavy
damage in central sector

178 ◾ Game Audio Programming 3

needed to be able to do was identify clusters of activity to be able to treat
them as a single entity.

11.8.2.2 Cluster Analysis
Finding clusters, at least in a grid of values, isn’t too hard—for all active
cells in a grid, a cluster is the set of cells that can reach each other via
a path through the other active cells. This is very similar to cliques in
a graph. For each active cell in our map, we can recursively check the
active neighbor cells to see if they’re already used in a cluster, adding if
not. This essentially flood-fills the grid of active cells, stopping when we
hit inactive cells.

void FindClusters(IMap map, Collection<Cluster> clusters)
{
 foreach(GridCell cell in map.ActiveCells)
 {
 if(IsActiveAndFree(cell))
 {
 continue;
 }

 Cluster newCluster = new Cluster();
 Cluster.Add(cell);
 Clusters.Add(newCluster);

 SearchNeighbours(cell,map,newCluster);
 }
}
bool IsActiveAndFree(IMap map, Cell cell)
{
 if (mAssignedCells.Contains(cell))
 {
 return false;
 }

 if (!map.ActiveCells.Contains(cell))
 {
 return false;
 }

 return true;
}

void SearchNeighbors(Cell firstCell, IMap map, Cluster cluster)
{

Using Influence Maps for Audio ◾ 179

 // For simplicity, the "self" cell is considered a Neighbor.
 foreach(NeighborCell neighbor in Neighbours)
 {
 GridCell curCell= map.GetCell(firstCell, neighbor);

 if(!IsActiveAndFree(map,curCell)
 {
 continue;
 }

 cluster.Add(curCell);
 mAssignedCells.Add(curCell);

 SearchNeighbors(curCell,map,cluster);
 }
}

11.8.2.3 Cluster Tracking and Thresholding
Just as with regions, we have events when the summed value of our clus-
tered cells crosses a tunable threshold value. Unlike static regions, clusters
change shape and location over time, so to see if a cluster was considered
the same from one update to the next, we calculate the centroid of the
cluster. If a cluster centroid on one frame is within a small distance from
a cluster centroid on a previous frame, we assume it’s an evolution of the
previous cluster, not a brand new one. We used an event triggered when a
cluster crossed a tunable age threshold to trigger combat_start and used
the cluster centroid and summed value to select the appropriate dialog line
for position and size of the attacking force.

11.9 CONCLUSION
IMs are a feature from the game AI world, and it’s not immediately
obvious that they will be useful in a game audio context. However, by
connecting an AI feature to audio, we are able to implement features
that would not otherwise have been possible. Hopefully this gives you
some ways to think about implementing features you may not have con-
sidered—it’s always worth looking at techniques in use in other areas
of programming and thinking about how they can be applied to audio
features.

180 ◾ Game Audio Programming 3

REFERENCES
Lewis, Mike. “Escaping the Grid: Infinite-Resolution Influence Mapping.” Game

AI Pro 2, edited by Steve Rabin. CRC Press, 2015, pp. 327–342. http://www.
gameaipro.com/GameAIPro2/GameAIPro2_Chapter29_Escaping_the_
Grid_Infinite-Resolution_Influence_Mapping.pdf.

Mitchell, Jon. “Techniques for Improving Data Drivability of Gameplay Audio
Code.” Game Audio Programming Principles and Practices Volume 2, edited
by Guy Somberg. CRC Press, 2019, pp. 227–236.

http://www.gameaipro.com
http://www.gameaipro.com
http://www.gameaipro.com

181

C h a p t e r 12

An Importance-Based
Mixing System

Guy Somberg
Echtra Games

CONTENTS
12.1 Managing the Chaos 182
12.2 The Importance of Context 182
12.3 Importance System Algorithm 183

12.3.1 Assign Each Object an Importance Score 184
12.3.2 Sort All Objects by Score 185
12.3.3 Place Sorted Objects into Importance Buckets 185
12.3.4 Apply Effects to Sounds by Bucket 187
12.3.5 Importance Changes over Time 188

12.4 Example Implementation 188
12.4.1 Calculating Importance Scores 188
12.4.2 Data Setup 189
12.4.3 Importance Bucket Assignment 189
12.4.4 Querying the Importance Bucket 192
12.4.5 Importance State 193
12.4.6 Applying Filters Based on Importance 197
12.4.7 Assigning Importance Buckets 199
12.4.8 Debug Display 200

12.5 Conclusion 202
References 203

182 ◾ Game Audio Programming 3

12.1 MANAGING THE CHAOS
In any game with more than a trivial degree of complexity, it is inevitable
that the mix will get muddy if you don’t do anything to prevent it. In fact,
much of our job as audio programmers involves implementing tools and
techniques to manage complex mixes and make them understandable. We
have many tools at our disposal right out of the box: mixer snapshots used
to be exotic but are now commonplace and come with most audio middle-
ware systems, culling systems prevent less important sounds from playing
in the first place, and we can use techniques like HDR audio to tag each
sound with a dB range.

All of these techniques are valuable and useful tools in our fight to pro-
vide a coherent aural experience. However, they are all missing one fun-
damental concept: context. That is, they all presume that we can decide
offline, at authoring time, which sounds should be heard over others.
However, in the context of a game’s actual play session, any offline mix-
ing decision that we make will be upended. If we have decided that this
sound should be louder than or have a higher priority than that sound,
then we can always come up with a situation in which that decision should
be reversed.

We were struggling with this very problem during the development of
Torchlight 3, so we reached out to our friends at Blizzard Entertainment
on the Overwatch team, Tomas Neumann and Paul Lackey. They told us
about the Importance system that they implemented in Overwatch, which
we were able to adapt for use in Torchlight 3 [1]. Our implementation in the
game (and therefore this chapter!) would not have been possible without
their help, so I want to give a huge thank you to both of them for taking
the time to explain the system to us so thoroughly.

12.2 T HE IMPORTANCE OF CONTEXT
Let us examine the situation from Torchlight 3 shown in Figure 12.1. In
this screenshot, we see a scene in the forest with several goblin warriors,
a couple of goblin brutes, a goblin chanter, two players each with their
own train and pet, and any number of environmental sounds. Common
sense says that the brutes and the shamans are more important than the
warriors. But is that always the case? If there is a goblin brute attacking
another player, isn’t it less important than a goblin warrior that is attack-
ing me? What about the other player? Even if they are the same character
class as my player character, are their skills as important as my player’s
skills?

An Importance-Based Mixing System ◾ 183

The answer to all of these questions very much depends upon the con-
text of what’s going on in the game. A goblin brute attacking another
player is probably less important than the goblin warrior that is attacking
my player because of who it is targeting. The other player’s skills are prob-
ably less important than my player’s skills, but if it’s a buff that is targeting
my player, perhaps it is equally important.

Every game will have a different set of rules for what properties of the
context will make a sound more or less important than another. The first
step in creating an Importance system, therefore, is to determine what
makes a particular game entity more or less important in your game’s
context.

12.3 IMPORTANCE SYSTEM ALGORITHM
The basic algorithm for the Importance system is very simple, bordering
on trivial:

• Assign each object an importance score.

• Sort all of the objects in the game by importance score.

FIGURE 12.1 Gameplay from Torchlight 3.

184 ◾ Game Audio Programming 3

• Place the sorted objects into buckets.

• Apply the appropriate effect to the sounds in each bucket.

Let’s dive deeper into the details of this algorithm.

12.3.1 Assign Each Object an Importance Score

The first task in the algorithm is to assign every object in the game an
importance score. But we cannot (or should not) actually do this, because
there will usually be far too many objects in the game world, and most of
them are not relevant to the importance system. The ground plane, for
example, probably does not need an importance score. Instead, tag the
objects that can make sound with a component or other marker that indi-
cates that they are relevant to the Importance system. Doing this offline
will catch most of the situations, but often scripts or other runtime sys-
tems can trigger sounds on objects that aren’t tagged, so make sure that
the system is capable of tagging objects after they have already been cre-
ated. In Torchlight 3, for example, where we are building on top of the
Unreal Engine, we have an Audio Importance Component that we can
add dynamically to any actor in the game.

The next issue is how frequently to run this scoring. The more fre-
quently we run it, the faster our game can respond to changes. However,
iterating over these lists too frequently can get expensive, which can be a
limiting factor. We need to iterate over the entire list of objects every time,
so measure the performance, and be cognizant of the potential cost of the
iteration.

Now that we have our list of objects to score and a frequency of scoring
them, the time has come to actually assign the score. Each game will have
its own inputs into what makes a particular entity more or less important
at any given moment in time. Here are some ideas for inputs:

• Proximity to the player.

• Identity (monster, friendly player, enemy player, etc.).

• Class (healer, tank, etc.).

• Is currently targeting player.

• Is performing an “important” skill (like an ultimate ability).

An Importance-Based Mixing System ◾ 185

• Size of player on the other person’s screen.

• “Drama” score relative to other nearby entities.

• Distance to nearest enemy unit.

A first-person shooter is going to have very different requirements than
an action RPG. Discuss with your sound designers and come up with a
set of criteria. The only requirements are that each criterion should be
measurable efficiently and that it should be expressible as a floating-point
number. Be wary of selecting too many inputs to the system. Four or five
inputs are usually enough to describe a very complex system.

The last piece of the puzzle in assigning an importance score is to allow
your sound designers to place a relative weight on each score. Perhaps
identity is more important than drama score. In that case, identity can get
a scaling factor of 1.0, and the drama score can get a scaling factor of 0.5.
(Or, alternatively, identity can be 2.0 and drama can be 1.0.)

Once we have assigned a value to each individual criterion and weight,
then the total identity score is the sum of each score times its relative
weight:

 I s=∑ c cw
c

12.3.2 S ort All Objects by Score

This procedure is as simple as it sounds. Use your standard library’s built-
in sorting routines to sort the list by score, descending. Let us go back to
the situation from Torchlight 3 from Figure 12.1. We assign each entity on
the screen a score, which are shown in Figure 12.2 and Table 12.1.

12.3.3 Place Sorted Objects into Importance Buckets

The next piece of the puzzle that we will need to do is to dole out the
entities into importance buckets. An importance bucket is a collection
of entities that all have the same effects applied, and we assign them out
from top to bottom. The number of available buckets and the number of
sounds that can be in each bucket are determined by the game, although a
reasonable number is four or five buckets. Any less than that and we won’t
have fine granularity in our mix, and any more than that will not provide
meaningful differentiation among the different importance levels.

186 ◾ Game Audio Programming 3

FIGURE 12.2 Gameplay from Torchlight 3 with importance scores assigned for
relevant entities.

TABLE 12.1 Sorted List of Entities with Their Matching Importance Scores

Entity Importance

Player
Goblin Brute

3.0
2.27

Goblin Brute 2.13
Goblin Shaman 1.99
Goblin Warrior 1.72
Player Pet Eagle
Player Train Caboose Car
Player Train Middle Car
Goblin Warrior

1.70
1.63
1.58
1.55

Goblin Warrior 1.54
Player Train Lead Car
Other Player
Torch

1.53
0.88
0.84

Hammer 0.71
Minecart 0.65
Other Player Pet Cat 0.64

An Importance-Based Mixing System ◾ 187

In our example situation, we will have four importance buckets,
which we can use to assign buckets to each of the entities in our example
(Tables 12.2 and 12.3).

12.3.4 Apply Effects to Sounds by Bucket

Now that we know which entities are in which buckets, we can assign
effects to each bucket. Whenever a sound is played that is associated with
an entity in a particular bucket, we modify its playback by attaching some
effects. The effects to use are game-specific, but in general, they should be
selected such that sounds at higher importance buckets are highlighted
and sounds at lower importance buckets are dampened. In Torchlight 3,
we used the effects described in Table 12.4, but each game is different and
will have different needs, so coordinate with your sound designers.

TABLE 12.2 Objects per Bucket

Bucket Count

1 2
2 4
3 5
4 Unlimited

TABLE 12.3 Game Objects with Their Importance Scores
and Assigned Buckets

Entity Importance Bucket

Player
Goblin Brute

3.0
2.27

1
1

Goblin Brute 2.13 2
Goblin Shaman 1.99 2
Goblin Warrior 1.72 2
Player Pet Eagle
Player Train Caboose Car
Player Train Middle Car
Goblin Warrior

1.70
1.63
1.58
1.54

2
3
3
3

Player Train Lead Car
Goblin Warrior

1.53
1.50

3
3

Other Player
Torch

0.88
0.84

4
4

Hammer 0.71 4
Minecart 0.65 4
Other Player Pet Cat 0.64 4

188 ◾ Game Audio Programming 3

12.3.5 Importance Changes Over Time

As our game plays and the situation around the player character changes,
the entities in our game are very likely to switch their importance bucket
over time. Once we have defeated the monster that is standing next to us,
another monster that is further away that may have been less important
will now increase in importance. In order to handle these changes, we
need to implement the importance bucket effects in such a way that we
can quickly fade them to a new value. We’ll see how that’s done in the next
section.

12.4 EXAMPLE IMPLEMENTATION
This example implementation will use FMOD Studio as a back end. We
will hook into the playback of Events and attach some DSPs and then
manipulate the DSPs as the Event changes importance over time. Other
audio middleware may have different mechanisms describing this data,
but the principles are the same.

In this example code, we will be presuming a straw-man entity compo-
nent system containing Actors and Components, with reasonable acces-
sors, iterators, and weak pointers to them. This system does not actually
exist in this form and would need to be adapted to whatever game systems
you have. Furthermore, we will be using C++ standard library compo-
nents and algorithms.

12.4.1 Calculating Importance Scores

We will not be exploring the code that calculates importance scores
because it is so game-specific. Any code that we could show would not
be meaningful for most games. Each AudioImportanceComponent should
be able to query the game state and make a decision about its own score.
Whether this is on a Tick() function on the AudioImportanceComponent
or part of the AudioEngine update is up to you.

TABLE 12.4 Bucket Effects Used in Torchlight 3

Bucket Effects

1 Peaking filter
2 No change (sound plays unmodified)
3 Volume reduction
4 Volume reduction, high-shelf filter

An Importance-Based Mixing System ◾ 189

12.4.2 Data Setup

First, we need somewhere in static configuration the number of impor-
tance buckets, their max counts, and their respective audio parameters.
This might look something like this:

struct AudioImportanceBucketParameters
{
 // How many sounds are allowed in this bucket
 int MaxCount;
 // When displaying on-screen debug information, what color to use
 Color DebugDisplayColor;

 // In this example, we are applying a volume change, as well
 // as using a multiband EQ effect to implement a peaking filter
 // and a high-shelf filter.

 // The volume to set for this audio importance bucket.
 // Note: can be greater than 0 to increase gain
 float VolumeDecibels;

 // Settings for the peaking filter
 float PeakingFilterGainDecibels;
 float PeakingFilterFrequencyHz;
 float PeakingFilterQ;

 // Settings for the high-shelf filter
 float HighShelfFilterGainDecibels;
 float HighShelfFilterFrequencyHz;
};

// Straw-man settings structure
struct GameSettings
{
 static GameSettings& Get();
 vector<AudioImportanceBucketParameters> ImportanceBuckets;
};

12.4.3 I mportance Bucket Assignment

Now that we have our configuration set up, we need our run-time descrip-
tion of the importance buckets:

class AudioEngine
{
public:
 //...

190 ◾ Game Audio Programming 3

private:
 // other stuff...

 void CalculateImportance();
 int GetImportanceBucket(const Actor& Actor);

 // Each bucket is a vector, and the contents of the bucket
 // are a vector of actors.
 vector<vector<weak_ptr<Actor>>> ImportanceBuckets;
};

Let’s see how the importance algorithm looks:

void AudioEngine::CalculateImportance()
{
 auto& Settings = GameSettings::Get();
 if (Settings.ImportanceBuckets.empty())
 return;

 // Collect all of the importance contexts.
 vector<AudioImportanceComponent*> ImportanceComponents;
 for (auto& ImportanceComponent : AllImportanceComponents)
 {
 // Dead monsters, for example, do not contribute to
 // importance, even though they have an importance
 // component
 if (!ImportanceComponent.ContributesToImportance())
 continue;

 ImportanceComponents.push_back(&ImportanceComponent);
 }

 // Sort by importance descending so that the most important
 // entries are at the beginning of the list
 // Note that we are not updating the actual importance scores
 // here, just sorting by the cached score.
 sort(begin(ImportanceComponents), end(ImportanceComponents),
 [](const AudioImportanceComponent* Left,
 const AudioImportanceComponent* Right)
 {
 return Left->GetImportance() > Right->GetImportance();
 });

 ImportanceBuckets.clear();
 ImportanceBuckets.resize(Settings.ImportanceBuckets.Num());

 // Helper lambda to get the max number of entries in the given
 // bucket.

An Importance-Based Mixing System ◾ 191

 auto GetMaxCountInBucket = [&Settings](int Bucket)
 {
 auto MaxCount = Settings.ImportanceBuckets[Bucket].MaxCount;
 if (MaxCount <= 0)
 return numeric_limits<int>::max();

 return MaxCount;
 };

 // Fill in each importance bucket until it is full and then
 // move on to the next importance bucket.
 size_t CurrentBucket = 0;
 int NumberLeftInBucket = GetMaxCountInBucket(CurrentBucket);
 size_t ComponentIndex = 0;
 while (ComponentIndex < ImportanceComponent.size())
 {
 // Grab the owner of this component
 auto Owner = ImportanceComponents[ComponentIndex]->GetOwner();
 ++ComponentIndex;

 // If the owner is already gone, then there’s no need to
 // do anything.
 if (Owner.expired())
 continue;

 // Add the owner to the current bucket and decrement the
 // count of available entries left in the bucket.
 ImportanceBuckets[CurrentBucket].push_back(Owner);
 --NumberLeftInBucket;

 // Our bucket is empty; move on to the next bucket.
 if (NumberLeftInBucket <= 0)
 {
 ++CurrentBucket;

 // If the current bucket is valid, then we get the size
 // of the bucket.
 if (CurrentBucket < ImportanceBuckets.size())
 {
 NumberLeftInBucket = GetMaxCountInBucket(CurrentBucket);
 }
 else
 {
 // In general, your buckets should be configured such
 // that the last bucket has an unlimited size.
 // However, if there is some user error in setting
 // the buckets up, then this code makes it such that
 // the remainder of the entries all end up in the last
 // bucket.

192 ◾ Game Audio Programming 3

 // In a properly configured system, this code will
 // never execute. It is reasonable to declare that
 // it is an error for this to happen and to remove
 // this code entirely.
 CurrentBucket = ImportanceBuckets.size() – 1;
 NumberLeftInBucket = number_limits<int>::max();
 }
 }
 }
}

One important item to note (which is not reflected in the above code)
is that sometimes actors can have relationships that would affect their
importance. For example, if one actor is attached to another actor, then
the attached actor should probably be getting its importance score from
the actor that it is attached to.

12.4.4 Querying the Importance Bucket

Now that we’ve got our importance buckets assigned, we need to be able
to query which bucket an actor is in. We’ll do a linear search to find our
actor:

int AudioEngine::GetImportanceBucket(const Actor& Actor)
{
 auto FoundBucket =
 find(begin(ImportanceBuckets), end(ImportanceBuckets),
 [&](const vector<weak_ptr<Actor>>& ActorsInBucket)
 {
 auto FoundActor =
 find(begin(ActorsInBucket), end(ActorsInBucket),
 [&](const weak_ptr<Actor>& WeakActor)
 { return WeakActor.lock().get() == &Actor });
 return FoundActor != end(ActorsInBucket);
 });
 if (FoundBucket == end(ImportanceBuckets))
 return INVALID_BUCKET;

 return distance(begin(ImportanceBuckets), FoundBucket);
}

If this algorithm needs to be optimized, then there are plenty of
 techniques such as storing the data in an unordered_set or some other
easily searchable data structure, performing a binary search (which would
require sorting the vector after calculating its contents), caching the
results of the .lock().get() operation for the duration of a frame, caching

An Importance-Based Mixing System ◾ 193

the results of GetImportanceBucket() so that it’s only called a maximum
of once per frame per actor, etc. As with all optimizations, the advice is
to measure first whether this lookup is expensive and perform a targeted
optimization if it is.

12.4.5 Importance State

As we are tracking the lifetime of our playing sound in a state machine [2],
we can store the state of which importance bucket this particular sound
is in, as well as any parameters useful for fading. Note that in this code,
we are using an Initialize()/Shutdown() pattern so that we can include
the object directly into the memory of our playing sound, but that could
be replaced with a constructor/destructor pair if we’re willing to place the
tracking information into the heap or use some other mechanism for late
initialization such as std::optional.

struct ImportanceDSPFader
{
 // The actual DSPs that we will be attaching to the DSP graph
 FMOD::DSP* MultiBandEQ = nullptr;
 FMOD::DSP* Fader = nullptr;

 // Bucket fading parameters
 AudioImportanceBucketParameters From;
 AudioImportanceBucketParameters To;
 AudioImportanceBucketParameters Current;
 float RemainingFadeTimeSeconds;

 int CurrentBucket = INVALID_BUCKET;

 // We are using init/shutdown rather than constructors
 // and destructors because we need to delay initialization
 // of the DSPs until the Event is ready.
 bool Initialize(FMOD::System* FMODSystem);
 void Shutdown();
 void Tick(float DeltaTimeSeconds);

 // Whenever the sound is initially played or when the
 // buckets are updated, we should call this to effect a
 // fading of the parameters to the new bucket if necessary
 void SetImportanceBucket(int NewBucket);

private:
 void SetDSPParameters();
 void UpdateImportanceBucket(int NewBucket);
};

194 ◾ Game Audio Programming 3

Now we just need one of those for each playing Event. The implementa-
tion of the various functions of this structure is fairly straightforward, so
let’s start with initialization and shutdown, where we will be creating and
destroying the DSPs:

bool ImportanceDSPFader::Initialize(FMOD::System* FMODSystem)
{
 if (FMODSystem == nullptr)
 return false;

 // Create the multiband EQ and Fader DSP effects
 FMODSystem->createDSPByType(
 FMOD_DSP_TYPE_MULTIBAND_EQ, &MultiBandEQ);
 if (MultiBandEQ == nullptr)
 return false;

 FMODSystem->createDSPByType(FMOD_DSP_TYPE_FADER, &Fader);
 if (Fader == nullptr)
 return false;

 // Initialize the multiband EQ to implement a peaking filter
 // and a high-shelf filter
 MultiBandEQ->setParameterInt(
 FMOD_DSP_MULTIBAND_EQ_A_FILTER,
 FMOD_DSP_MULTIBAND_EQ_FILTER_PEAKING);
 MultiBandEQ->setParameterInt(
 FMOD_DSP_MULTIBAND_EQ_B_FILTER,
 FMOD_DSP_MULTIBAND_EQ_FILTER_HIGHSHELF);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_A_GAIN, 0.0f);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_B_GAIN, 0.0f);

 // Initialize the parameters based on the current bucket
 UpdateImportanceBucket(CurrentBucket);
 RemainingFadeTimeSeconds = 0.0f;
 Current = To;

 // Initialize the DSPs with the initial settings
 SetDSPParameters();
 return true;
}

void ImportanceDSPFader::Shutdown()
{
 if (MultiBandEQ != nullptr)
 {
 MultiBandEQ->release();

An Importance-Based Mixing System ◾ 195

 MultiBandEQ = nullptr;
 }
 if (Fader != nullptr)
 {
 Fader->release();
 Fader = nullptr;
 }
 RemainingFadeTimeSeconds = 0.0f;
}

During the tick or update function, we will need to fade across buckets.
In this example, we will be fading parameters by hand, but middleware or
game engine libraries may provide either an automated way to perform
these fades or a different metaphor for implementing the effects.

void ImportanceDSPFader::Tick(float DeltaTime)
{
 // Nothing to do if we’re not changing buckets
 if (RemainingFadeTimeSeconds <= 0.0f)
 return;

 // Figure out how far through our Lerp these parameters are
 RemainingFadeTimeSeconds -= DeltaTime;
 RemainingFadeTimeSeconds = max(RemainingFadeTimeSeconds, 0.0f);

 auto& Settings = GameSettings::Get();
 auto FadeTime = Settings.GetImportanceFadeTimeSeconds();

 float LerpAmount = 1.0f - (RemainingFadeTimeSeconds / FadeTime);
 LerpAmount = clamp(LerpAmount, 0.0f, 1.0f);

 // Perform a Lerp of all the parameters. If we care to, we
 // can perform a more complex interpolation here instead for
 // one or more of these parameters.
 Current.VolumeDecibels =
 Lerp(From.VolumeDecibels, To.VolumeDecibels, LerpAmount);
 Current.PeakingFilterGainDecibels =
 Lerp(From.PeakingFilterGainDecibels,
 To.PeakingFilterGainDecibels,
 LerpAmount);
 Current.PeakingFilterFrequencyHz =
 Lerp(From.PeakingFilterFrequencyHz,
 To.PeakingFilterFrequencyHz,
 LerpAmount);
 Current.PeakingFilterQ =
 Lerp(From.PeakingFilterQ, To.PeakingFilterQ, LerpAmount);
 Current.HighShelfFilterGainDecibels =
 Lerp(From.HighShelfFilterGainDecibels,

196 ◾ Game Audio Programming 3

 To.HighShelfFilterGainDecibels,
 LerpAmount);
 Current.HighShelfFilterFrequencyHz =
 Lerp(From.HighShelfFilterFrequencyHz,
 To.HighShelfFilterFrequencyHz,
 LerpAmount);

 // Apply the updated values to the DSPs
 SetDSPParameters();
}

The above functions make use of the SetDSPParameters() and
UpdateImportanceBucket() helper functions, which are relatively simple
but included here for exposition:

void ImportanceDSPFader::SetDSPParameters()
{
 if (Fader == nullptr || MultiBandEQ == nullptr)
 return;

 // Set all of the individual DSP parameters according to
 // the current settings
 Fader->setParameterFloat(
 FMOD_DSP_FADER_GAIN, Current.VolumeDecibels);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_A_GAIN,
 Current.PeakingFilterGainDecibels);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_A_FREQUENCY,
 Current.PeakingFilterFrequencyHz);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_A_Q, Current.PeakingFilterQ);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_B_GAIN,
 Current.HighShelfFilterGainDecibels);
 MultiBandEQ->setParameterFloat(
 FMOD_DSP_MULTIBAND_EQ_B_FREQUENCY,
 Current.HighShelfFilterFrequencyHz);
}

void ImportanceDSPFader::UpdateImportanceBucket(int NewBucket)
{
 // Set the current bucket
 CurrentBucket = NewBucket;

 auto& Settings = GameSettings::Get();
 if (NewBucket != INVALID_BUCKET)

An Importance-Based Mixing System ◾ 197

 {
 // If we have a valid bucket, then start a fade to
 // the destination bucket
 To = Settings.ImportanceBuckets[NewBucket];
 }
 else
 {
 // We have an invalid bucket, which likely means that this
 // is a sound that is attached to an actor that is not
 // participating in the importance system, or that this
 // sound was played before the importance score and bucket
 // were calculated for the attached actor.

 // We will set the default values for these controls
 // according to the FMOD documentation, which will cause
 // them to play unmodified.
 To.VolumeDecibels = 0.0f;
 To.PeakingFilterGainDecibels = 0.0f;
 To.PeakingFilterFrequencyHz = 8000.0f;
 To.PeakingFilterQ = 0.707f;
 To.HighShelfFilterGainDecibels = 0.0f;
 To.HighShelfFilterFrequencyHz = 8000.0f;
 }

 From = Current;
 RemainingFadeTimeSeconds =
 Settings.GetImportanceFadeTimeSeconds();
}

Finally, the only part of the public interface that isn’t related to lifetime or
update is a function to assign the current importance bucket:

void ImportanceDSPFader::SetImportanceBucket(int NewBucket)
{
 // Do nothing if there is no change in bucket
 if (CurrentBucket == NewBucket)
 return;

 // Trigger a fade to the new bucket
 UpdateImportanceBucket(NewBucket);
}

12.4.6 Applying Filters Based on Importance

Now that we have our structure for managing the importance DSPs, we
must hook it up to the playing Event. In order to make sure that we only
create the DSPs when they’re actually needed and that they stick around

198 ◾ Game Audio Programming 3

for as long as the event is playing, we need to hook into the Event’s call-
backs that trigger when the event has actually started and stopped playing:

FMOD_RESULT F_CALLBACK PlayingEvent::EventCallback(
 FMOD_STUDIO_EVENT_CALLBACK_TYPE type,
 FMOD_STUDIO_EVENTINSTANCE *event,
 void *parameters)
{
 // In order to make callbacks work in both C and C++, FMOD
 // passes in a C structure which must be casted to its C++
 // counterpart when using the C++ API.
 auto* EventInstance =
 reinterpret_cast<FMOD::Studio::EventInstance*>(event);
 if (EventInstance == nullptr)
 return FMOD_ERR_INVALID_PARAM;

 void* UserData = nullptr;
 EventInstance->getUserData(&UserData);

 // Insert whatever mechanism you have for mapping the userdata
 // to the structure managing the playing event here.
 auto PlayingEvent = GetEventById(UserData);
 if (!PlayingEvent.IsValid())
 return FMOD_OK;

 switch (type)
 {
 case FMOD_STUDIO_EVENT_CALLBACK_STARTED:
 {
 // Helper lambda for initializing the fader context
 // and attaching the effects to the DSP chain. We use
 // a helper lambda in order to keep the tabs under control.
 auto CreateDSPEffects = [&]()
 {
 // Get the master channel group for the event. We will be
 // attaching our DSPs to its head
 FMOD::ChannelGroup* EventInstanceChannelGroup = nullptr;
 EventInstance->getChannelGroup(&EventInstanceChannelGroup);
 if (EventInstanceChannelGroup == nullptr)
 return;

 // Initialize the ImportanceFader structure
 FMOD::System* FMODSystem = nullptr;
 EventInstanceChannelGroup->getSystemObject(&FMODSystem);
 bool bInitSuccess =
 PlayingEvent->ImportanceFader.Initialize(FMODSystem);
 if (!bInitSuccess)
 return;

An Importance-Based Mixing System ◾ 199

 // Attach the DSPs to the effect chain
 EventInstanceChannelGroup->addDSP(
 FMOD_CHANNELCONTROL_DSP_HEAD,
 PlayingEvent->ImportanceFader.ImportanceFader);
 EventInstanceChannelGroup->addDSP(
 FMOD_CHANNELCONTROL_DSP_HEAD,
 PlayingEvent->ImportanceFader.ImportanceEQ);
 };

 // Call our helper lambda. You can avoid giving this lambda
 // a name and calling it by using an immediately invoked
 // expression: [](){}(). For clarity, this code prefers to
 // give it a name and call it.
 CreateDSPEffects();

 // In order to ensure that we don’t get a pop by starting to
 // play audio data before we’re ready, we set the EventInstance
 // to be paused before starting it, and then we can unpause it
 // here.
 EventInstance->setPaused(PlayingEvent->bPaused);
 }
 break;
 case FMOD_STUDIO_EVENT_CALLBACK_STOPPED:
 {
 PlayingEvent->ImportanceFader.Shutdown();
 }
 break;
 }

 return FMOD_OK;
}

12.4.7 A ssigning Importance Buckets

Our setup is nearly complete. We still have to initialize the bucket when
the sound is first played or devirtualized, and we have to update the bucket
for looped sounds only during playback. Let’s start with the initialization,
which we will do in the ToPlay/Devirtualize state of our state machine.
We just have to initialize the bucket:

ImportanceFader.CurrentBucket =
 AudioEngine.GetImportanceBucket(Instigator);

Next, during the Playing, Virtualizing, and Stopping states (that is, all of
the states where the sound is playing), we need to update the sound’s bucket
but only for looped sounds. One-shot sounds will be finishing soon anyway,
so there is no need to update their importance bucket as they are playing.

200 ◾ Game Audio Programming 3

bool IsOneShot = false;
EventDescription->isOneshot(&IsOneShot);
if (!IsOneShot)
{
 FMOD_STUDIO_PLAYBACK_STATE PlaybackState =
 FMOD_STUDIO_PLAYBACK_STARTING;
 EventInstance->getPlaybackState(&PlaybackState);

 // To avoid threading issues, we must wait for the playback
 // state to change from STARTING. STARTING means that it’s
 // waiting for the audio data to load, so it has not created
 // the DSPs. All of the other states (PLAYING, SUSTAINING,
 // STOPPING, STOPPED) are safe, because either the event has
 // started and we are not in danger of reading the DSPs while
 // they’re being written (because the DSPs have already been
 // written) or they are already null (either because they
 // were never written or because they have already been
 // cleared).
 if (PlaybackState != FMOD_STUDIO_PLAYBACK_STARTING)
 {
 auto NewBucket =
 AudioEngine.GetImportanceBucket(Instigator);
 ImportanceFader.UpdateImportanceBucket(NewBucket);
 }

 ImportanceFader.Tick(DeltaTime);
}

12.4.8 Debug Display

With this system in place, it is important for the sound designers to be
able to visualize which sounds are important and why. There are three
 variations that are useful for this debug display:

 1. A listing of actors grouped into their buckets, with each group
assigned a color. Figure 12.3 shows an example of this type of debug
display. This display is very noisy and coarse, so while it is impor-
tant, it is likely not going to be the primary debug display chosen by
the sound designers.

 2. A tag on each actor that participates in the importance system, col-
ored to match the importance bucket, and with the importance score
displayed. Figure 12.4 shows this type of debug display. This is likely
to be the primary debugging tool used by the sound designers.

An Importance-Based Mixing System ◾ 201

FIGURE 12.3 Categorized actor list debug display.

202 ◾ Game Audio Programming 3

• A detailed tag on each actor that shows the component scores that
add up to the final score, as shown in Figure 12.5. This debug dis-
play will be useful in helping the sound designers figure out why a
particular actor is more or less important than they were expecting.

12.5 CONCLUSION
With a little bit of data management, DSP wrangling, and a very simple
algorithm, an importance system can revolutionize how your mix works.
Importance is so fundamental, in fact, that it is now a part of my own

FIGURE 12.4 Per-actor overlay debug display showing the actor name and its
importance score.

FIGURE 12.5 Per-actor overlay debug display showing the actor name, its impor-
tance score, and the individual score contributions.

An Importance-Based Mixing System ◾ 203

 personal “starter kit” that I will implement when starting a new audio
engine project.

The concept of what is most important to hear at any given point in
time is different for each game and each moment. Start by sitting down
with your sound designers for an afternoon and figuring out a set of
rules for your game. Once you have those rules in place, hooking up an
 importance system is a quick and easy mechanism for making your game’s
audio shine.

REFERENCES

 1. Neumann, Tomas. “Realtime Audio Mixing.” Game Audio Programming
Principles and Practices Volume 2, edited by Guy Somberg. CRC Press, 2019,
pp. 247–259.

 2. Somberg, Guy. “Sound Engine State Machine.” Game Audio Programming
Principles and Practices, edited by Guy Somberg. CRC Press, 2017, pp.
13–30.

https://taylorandfrancis.com

205

C h a p t e r 13

Voxel-Based Emitters
Approximating the Position
of Ambient Sounds

Nic Taylor

13.1 INTRODUCTION
In Game Audio Programming Principles and Practices Volume 2, Chapter 12,
“Approximate Position of Ambient Sounds of Multiple Sources” [1], I
 discussed how ambient sounds are designed to represent an area or vol-
ume as opposed to a point emitter. For example, a loop of a riverbed does
not represent a single point in space but a volume or area representing the
cumulative sounds of a section of river. From there, this chapter covered
different approaches to approximate the position for an ambient sound

CONTENTS
13.1 Introduction 205
13.2 Preliminary 206
13.3 Voxel Emitter Implementation 209
13.4 The Iterator 211
13.5 Attenuation Range and Voxel Size 213
13.6 Close to Zero 214
13.7 Near Field and Spread 216
13.8 Debugging 219
13.9 Weight Functions 220
13.10 Support Beyond Stereo: Z Axis 222
13.11 Support Beyond Stereo: 5.1 and More 225
13.12 Final Notes 232
References 233

206 ◾ Game Audio Programming 3

using a point emitter that would move in real-time relative to the listener’s
position. In particular, the focus was on methods that computed the emit-
ter’s properties of direction, magnitude, and spread separately.

The method in Section 12.15—verbosely titled “Average Direction and
Spread Using a Uniform Grid or Set of Points”—has two useful applications:
approximating the position of ambient beds as the listener approaches and
visual effects with area such as a beam weapon or a wall of fire. But this
chapter left several implementation details for the reader to work out on
their own. This chapter will revisit the implementation in more detail, add
advice on debugging, explain edge cases, and discuss some extensions to
the basic algorithm.

The encapsulation of the position, spread, and algorithm will be more
succinctly called a “voxel emitter” or “grid emitter” for 2D.

13.2 PRELIMINARY
Before getting to the revised implementation, here is a quick review of
the theory used by the algorithm. The voxel emitter takes the listener
(or receiver) position r̂ and a collection of points, the voxel centers, and
returns a direction and spread value to approximate the position relative
to receiver.1

The direction is the sum of each voxel relative to the receiver scaled by
a weight function. Voxels farther from the receiver have less influence on
the final emitter position and behave as if each voxel were its own emitter
where the distance attenuates the volume or gain. The sum of all voxel
directions is called the total attenuated direction or σ̂ .

Let total attenuated direction be defined as

W v()ˆ
 σ̂ = v̂ i

i

i V
∑ (13.1)
 ∈

v̂i

where V is the set of voxel center positions relative to the receiver position
r̂, v̂i is each voxel center position in V, v̂i is the magnitude or Euclidean
distance from the receiver position to v̂i, and W is the weight function.
Figure 13.1 shows the voxel emitter components for an example V.

The weight function should be zero outside of the attenuation range
of the sound. Inside the attenuation range, the weight function can be a

1 The hat symbol ̂⋅ is used to differentiate vector variables from scalar variables.

Voxel-Based Emitters ◾ 207

number of continuous or piecewise functions, but a reasonable start would
be a linear ramp from one to zero based on the attenuation α:

 v̂ 1 − < i , if v̂
W v() α

î = α i (13.2)
 0, if v̂i ≥α

The magnitude m for the approximated emitter position is separate from
the magnitude of the total attenuated direction. For the magnitude, the
distance to the closest voxel center is used and can be defined as

 m = =mini V ∈ ∈()v Wî imin V i()()v̂ (13.3)

FIGURE 13.1 Voxel emitter V represented by (a) the attenuation range α from
the receiver r̂ , (b) the closest voxel used to compute the magnitude m, (c) the
position p̂ along total attenuated direction σ̂ , and (d) an arc showing the spread
amount µ which is about 0.25 in this example.

208 ◾ Game Audio Programming 3

The approximated emitter position is the direction σ̂ normalized to the
length of the closest voxel center, m, added to the position of the receiver:

 σ̂mp̂ = + r̂ (13.4)
σ̂

Notice the closest distance is not the closest voxel boundary but the closest
voxel center. This was a somewhat arbitrary simplification. Section 13.7
(“Near Field and Spread”) below will cover handling positions close to the
voxel boundary.

Spread is the diffusion of the sound across speakers. Zero spread means
no diffusion and occurs when all of the voxels are in one direction rela-
tive to the receiver. Max spread, mapped to the value 1.0, represents full
diffusion and occurs when the receiver position is either surrounded
by or inside a voxel. Max spread also occurs if voxels are symmetrically
spaced around the receiver which will be discussed more in Section 13.6.
To compute spread, let the total weight be

 w W= ∑ ()v̂i (13.5)
i V ∈

and spread

σ̂

µ = −1 1µθ = − (13.6)
w

Spread, µθ , is based on the cosine of the angle between each position v̂i and
the total attenuated direction σ̂ scaled by the weight function and nor-
malized by the total weight w. A larger angle formed from a voxel center
and σ̂ results in larger spread.2

The purpose of spread is to hide discontinuous jumps. As the receiver
moves around the voxel emitter, spread and magnitude should update
continuously relative to the movement. The total direction σ̂ can flip/
invert directions or change rapidly when σ̂ approaches zero. These dis-
continuities should not be audible if spread is at the maximum value.

2 Refer to Taylor [1] to see how the sum of weighted cosines reduces to σ̂ .

Voxel-Based Emitters ◾ 209

13.3 VOXEL EMITTER IMPLEMENTATION
Below is an example implementation of the voxel emitter which takes the
following as inputs:

• voxels—A data structure which can retrieve voxel centers in an
iterator fashion.

• receiver—The sphere to intersect with the voxel data represent-
ing the listener position and the attenuation range of the sound to
approximate:

struct Sphere {
 Vector center;
 float radius;
};

• voxel extent—The half dimension of the voxel (or grid cell) size.

The output is the position p̂ from Equation 13.4 and spread µ as well as
additional state information such as true/false if the sound was audible
and optional debugging information. The closest voxel center which
is used to compute the distance m from Equation 13.3 is tracked for
debugging.

struct AttenuatedPosition {
 bool audible;
 Vector position;
 float spread;
 int voxels_processed; // for debugging
 Vector closest_voxel_center; // for debugging
};

To complete the code before getting into the algorithm,
PointInsideVoxel() is a small helper function that returns true if a
vector relative to a voxel center is inside:

// Input is the direction to any voxel center.
bool PointInsideVoxel(const Vector& direction,
 const float cell_extent) {
 return fabsf(direction.x) < cell_extent &&
 fabsf(direction.y) < cell_extent &&
 fabsf(direction.z) < cell_extent;
}

210 ◾ Game Audio Programming 3

The main function is VoxelsToAttenuatedPosition() which aggre-
gates the total attenuated direction and the total weight used to compute
spread. The loop will early out if the receiver position is inside a voxel.

template<typename VoxelContainer>
AttenuatedPosition VoxelsToAttenuatedPosition(
 const VoxelContainer& voxels,
 const Sphere& receiver, const float voxel_extent) {

 const float attenuation_range = receiver.radius;

 float total_weight = 0.f;
 Vector total_direction = { 0.f, 0.f, 0.f };
 float closest_distance = attenuation_range;
 Vector closest_voxel_direction, closest_voxel_center =
 { 0.f, 0.f, 0.f };

 int voxels_processed = 0;
 for (const Vector voxel_center : voxels) {
 const Vector direction = voxel_center - receiver.center;
 // Early out if receiver is inside a voxel.
 if (PointInsideVoxel(direction, voxel_extent)) {
 total_direction = { 0.f, 0.f, 0.f };
 closest_distance = 0.f;
 closest_voxel_center = voxel_center;
 ++voxels_processed;
 break;
 }
 const float distance = Length(direction);
 if (distance < attenuation_range) {
 if (distance < closest_distance) {
 closest_distance = distance;
 closest_voxel_direction = direction;
 closest_voxel_center = voxel_center;
 }
 const float weight = attenuation_range - distance;
 total_direction += (weight / distance) * direction;
 total_weight += weight;
 ++voxels_processed;
 }
 }

 Vector emitter_position = receiver.center;
 float spread = 0.f;
 const float total_dir_length = Length(total_direction);
 if (total_dir_length <= FLT_EPSILON) {
 // Either inside or equally surrounded by voxel(s).
 spread = 1.f;
 emitter_position += closest_voxel_center;

Voxel-Based Emitters ◾ 211

 } else if (total_weight > FLT_EPSILON) {
 spread = 1.f - total_dir_length / total_weight;
 const float near_field_lerp =
 GetNearFieldInterpolation(closest_voxel_direction,
 voxel_extent);
 if (near_field_lerp > 0.f) {
 spread += (1.f - spread) * near_field_lerp;
 }
 emitter_position +=
 closest_distance * total_direction / total_dir_length;
 }
 AttenuatedPosition result;
 result.audible = closest_distance < attenuation_range;
 result.position = emitter_position;
 result.spread = spread;
 result.closest_voxel_center = closest_voxel_center;
 return result;
}

The next sections will cover details and alternate approaches to
VoxelsToAttenuatedPosition().

13.4 THE ITERATOR
In the example implementation, a container is used as the input and
expected to provide the voxels with the capabilities of a forward iterator:

for (const Vector voxel_center : voxels) {...}

If the voxel emitter is being used to approximate a spell or beam weapon
with a few voxels, the container might just be a vector of pre-computed
positions. But more likely the iterator is a simplification hiding the imple-
mentation details of the container which depends on the context and spe-
cifics of the game.

For approximating large ambient beds, the iterator could be the
most complicated and computationally expensive part of the algorithm.
For example, imagine your open world game is saved in chunks as in
Figure 13.2.

The iterator would require some pre-computation using the sphere to
find the set of all overlapping chunks. Then assume the voxel data is stored
in a 2D grid in the world chunk data. For each world chunk, iterate x and
y positions3 in the grid to test if there is an active voxel. Since the grid is

3 I am using a coordinate system where x, y, and z correspond to left, forward, and up.

212 ◾ Game Audio Programming 3

2D and the game is 3D, the z axis position might need to be computed in
real-time.4

Pseudocode for the iterator might be something like:

for (chunk in overlapping world chunks) {
 translate sphere to chunk coordinates
 find min and max overlap between sphere and chunk
 for (x in overlapping range) {
 for (y in overlapping range) {
 lookup voxel data from x and y
 if (voxel is active) {
 convert x and y to world coordinates
 find z position
 save iterator state
 return voxel center {x, y, z}
 }
 }
 }
}

This is just one example of how the iterator might work. Another option
is to use a flood fill algorithm starting from the receiver position. Other

4 Trade-offs between doing the voxel look-up in real-time and baking the data into a custom data
representation stored with the world data requires experimenting. For example, the aforemen-
tioned 2D grid might store per voxel 1 bit for active/inactive state and use a few bits to specify a
discrete value to approximate the z axis offset. If your world is large, the storage size for a single
voxel emitter can become non-trivial in this uncompressed format.

FIGURE 13.2 Game world broken into chunks c c1 , , n with overlapping attenu-
ation range for a receiver r̂ .

Voxel-Based Emitters ◾ 213

data structures for space partitioning can also improve performance and
size requirements. A full discussion of all of these options depends on
the context of the game and goes beyond the scope of this chapter. But
I can describe the approach I use to make algorithm decisions for voxel
emitters.

When evaluating a voxel emitter in context, I start with the simple
implementation, which is a nested loop like the above pseudocode, com-
puting positions in real-time. Storage in the world or game data is also
handled naively. This allows for rapid iteration on tuning variables such
as voxel size and attenuation with the sound designer.

Once the sound designer and others agree, the voxel emitter sounds
decent; then the storage requirements can be estimated from the tuned
variables. By making a worst-case example in the test world, CPU usage
can be estimated deterministically and used to find the specific code that
is expensive via profiling.5 With an understanding of the memory and
CPU, decisions about the effort and complexity of optimizations can be
made objectively.

13.5 ATTENUATION RANGE AND VOXEL SIZE
The input sphere’s radius or attenuation range is used to set the voxel emit-
ter’s audible and inaudible state. It seems natural to use the same attenu-
ation range as specified by the authored sound. In other words, make the
attenuation range data driven from the sound designer’s authoring tool.
But unlike a typical emitter, small increases in the attenuation range can
have a significant performance impact. For example, if the voxel search is
iterating over a grid, the growth will scale quadratically.

If the attenuation range is specified by the engineer or by some other
data driven number, two issues can come up. First if the authored sound
has a much larger attenuation, then audio may stop abruptly as the receiver
moves beyond the range. To solve this, the stop command of the sound
could have a moderately long fade-out time.

If the authored attenuation range is smaller than the voxel emitter’s
configuration, there will be a ring between the authored range and the
algorithm’s range where unnecessary computation is done. If the game

5 Changes to the algorithm can change the worst-case scenario setup. For example, switching from
a row by column search at the attenuation boundary to a f lood fill from the receiver’s position
would early out on the first voxel if the receiver is inside.

214 ◾ Game Audio Programming 3

engine assumes the sound should be active in this ring, every other frame
will attempt to turn the sound on.6

One solution for both cases is to attempt to use the authored attenu-
ation range clamped to some maximum range. Then communicate this
with the sound designer or have a notification as part of the data pipeline
if the sound designer commits an attenuation range that is larger.

The voxel size also has a major impact on performance. Smaller voxel
sizes give better granularity, but at a certain size, the difference is not
audible (especially if the sound designer added their own spread). Small
voxel sizes require more memory and CPU both for the running game
and serialized data. Voxels which are too large cause the emitter direc-
tion to not be as precise at closer distances. Larger voxels are suitable if
the listener cannot get close to the source. A balance can be found by fac-
toring in the sound’s attenuation range and how close the receiver can
get. What I found is 1.0–1.5 meters seems to work well (or a voxel extent
between 0.5 and 0.75) for voxel emitters where the receiver can approach
such as an ocean or a river.

13.6 C LOSE TO ZERO
There are voxel arrangements relative to the receiver position where the
total attenuated direction, σ̂ , aggregates to the zero vector7 as seen in
Figure 13.3.

This scenario is handled by the following condition in the algorithm:

if (total_dir_length <= FLT_EPSILON) {
 // Either inside or equally surrounded by voxel(s).
 spread = 1.f;
 emitter_position += closest_voxel_center;
}

Spread, which was defined as 1 − total dir_length/total_weight in
Equation 13.6, approaches one as the magnitude of σ̂ approaches zero.
Because spread is at the maximum value, large changes of the direction
from frame to frame should not be audible. When the total direction vec-
tor σ̂ is exactly zero or too small to assign a direction, using the closest
voxel center is a natural fallback for the direction to attenuated position p̂.

6 If the game engine expects the voxel emitter sound to be active and the sound is not active in the
audio engine, it might be worth logging a warning and stopping the voxel emitter calculation.

7 To get the magnitude of total direction to sum to a value less than FLT_EPSILON in game is quite
rare, but I have caught it happening naturally a couple of times.

Voxel-Based Emitters ◾ 215

(a)

(b)

FIGURE 13.3 A voxel configuration that is symmetric relative to the receiver.
(a) The magnitude of the total attenuated direction σ̂ approaches zero.
(b) Spread, represented by darker regions, approaches one in areas where σ̂
approaches zero.

216 ◾ Game Audio Programming 3

A similar situation that can occur is that one or two axes cancel and
the third but most minor axis becomes dominant as the direction of p̂.
For example, if Figure 13.3 represents a 3D world looking at the x and y
axes and the two voxels were slightly above or below the receiver’s z axis
position, σ̂ will be greater than zero. The resulting vector will be length m
from the closest voxel but pointing above or below the receiver. In debug-
ging, this looks odd, even like a bug. As long as there are no other posi-
tional or ambisonic effects, this result is fine as spread will still be close to
the max value. Section 13.11 will propose two hypothetical solutions if the
z axis must be constrained in some way.

13.7 NEAR FIELD AND SPREAD
Notice that when the receiver position enters a voxel, the total attenuated
distance and the closest distance will be set to zero:

if (PointInsideVoxel(direction, kVoxelExtent)) {
 total_direction = { 0.0, 0.0, 0.0 };
 closest_distance = 0.f;
 closest_voxel_center = voxel_center;
 break;
}

When the receiver is inside a voxel, the effect should be that the listener is
“surrounded” by the sound. Spread will be at the maximum value of one.8
Because the algorithm aggregates distance using the voxel centers, and
ignoring that the voxels have volume, this causes a discrete jump of spread
at the voxel boundary as seen in Figure 13.4a.

One could use the corners of each voxel instead of the centers, but this
increases the amount of computation per voxel and can still lead to bound-
aries where spread changes rapidly. Another approach is to smooth the
transition with a linear interpolation starting some distance away from
the voxel boundary.

// Use the distance to the axis-aligned voxel to interpolate from
// 0 to 1.
float GetNearFieldInterpolation(const Vector& direction,

8 Note that closest voxel center is set to the voxel center which will still have some distance. Using
closest voxel center keeps debugging consistent. Ideally the authored sound’s attenuation does
not change within this distance. Otherwise a small vector in the forward direction of the receiver
would also work. Using a forward vector has the advantage that in stereo configurations, the
sound should be guaranteed to be spread to both speakers due to the audio engine’s pan rules.

Voxel-Based Emitters ◾ 217

 const float voxel_extent) {
 const float near_field_range = 1.5f;
 const Vector point_on_voxel = {
 Max(0.f, fabsf(direction.x) - voxel_extent),
 Max(0.f, fabsf(direction.y) - voxel_extent),
 Max(0.f, fabsf(direction.z) - voxel_extent)
 };
 const float dist_to_voxel = Length(point_on_voxel);
 if (dist_to_voxel >= near_field_range) {
 return 0.f;
 }
 return (near_field_range - dist_to_voxel) / near_field_range;
}

This near field9 value ranges from zero to one and is used to interpolate
the remaining spread available after removing the computed spread, µ
(Equation 13.6), from the total available spread value:

const float near_field_lerp =
 GetNearFieldInterpolation(closest_voxel_direction, voxel_extent);
if (near_field_lerp > 0.f) {
 spread += (1.f - spread) * near_field_lerp;
}

The discussion so far has assumed that spread is the entire range from
zero to one. It is more likely that the sound designer will want to control

9 I call this the near-field range after the volume of area in a sound field close to the emitter where
the relationship between distance and sound level does not observe the inverse square law.

FIGURE 13.4 (a) The spread of a group of 1 m voxels. (b) The spread of a group
of voxels using a 1.5 m near field.

218 ◾ Game Audio Programming 3

spread from the authoring tool too. The priority of spreads is shown in
Figure 13.5. In the same way, the near-field interpolation amount is scaled
by the remaining spread after subtracting the attenuated position spread;
this sum is scaled by the remaining spread after subtracting the authored
spread. Let the attenuated position spread be µp , near-field spread be µn,
and the authored spread be µa:10

 final s 1pread µ= +a a()− +µ µ()p p()1 − µ µn (13.7)

10 In my case, the game object data was guaranteed to never move in memory for the lifetime of the
sound, so I wrapped the spread value as an atomic.

Wwise implementation: At the time of writing this, still using Wwise
2017, the spread for a game object could be modified in Wwise from
registering the AK_SpeakerVolumeMatrix during PostEvent(). The
callback uses AkSpeakerVolumeMatrixCallbackInfo and an interface
IAkMixerPluginContext pContext to access spread via GetSpread().
The spread is updated with the function Compute3DPositioning().
Two additional details to note:

1. Spread in Wwise ranges from 0 to 100, so µ needs to be multi-
plied by 100.

2. Since this callback will occur on a thread different from that on
which the spread is computed, some thread safety is needed.10

FIGURE 13.5 Representation of the spread priorities in the range zero to one for
the authored µa, attenuated position µp , and near-field µn spread values.

Voxel-Based Emitters ◾ 219

13.8 DEBUGGING
Various components of the voxel emitter are helpful to visualize with
debugging both to identify bugs and for making the system transparent to
the sound designer. The voxel emitter can be broken into these debugging
components: the set of voxels, the attenuated position used as the emitter
for the audio engine, and the spread.

The set of voxels can be visualized in the game world by rendering a
circle or dot at the center of each voxel.11 It is useful to see both voxels
actively contributing to a playing sound and the inactive voxels. Also use-
ful is knowing which voxel is being used as the closest voxel center. The
voxel state can be visualized by color coding. For example, gray, yellow,
and green for inactive, active, and closest.

When there are multiple active voxel emitters, it is not easy to differ-
entiate which debug circles in game correspond to which voxel emitter.
But it is also likely whoever is debugging is interested in one voxel emitter
sound at a time. Instead of connecting the in-game voxel debug to the
global in-game audio debug or a single toggle, it is recommended to create
a separate toggle per voxel emitter instance.

The AttenuatedPosition of the voxel emitter is a single emitter posi-
tion to be passed into the audio engine. The corresponding sound event
should work with existing debugging both in-game and in the sound
debug window (or list). The sound debug window, which typically includes
the sound event name, distance to sound, and maybe virtual/active state,
can be customized for the voxel emitter sound. The spread and number of
voxels processed, voxels_processed, are useful for debugging.12

Seeing the numeric value of spread may not be meaningful enough on
its own. It can be difficult to distinguish from headphone listening how
“spread” the sound is and if the spread value is changing rapidly. If your
debug UI supports plots, capturing the history of spread can help catch
hard-to-identify value changes or verify if spread is increasing as expected
near voxel boundaries.

Lastly the debug images rendered for this book chapter, such as
Figure 13.4b or Figure 13.6, provide detailed offline debugging. Given a posi-
tion in the world, in a brute force fashion, x and y coordinates are iterated

11 I found that drawing the voxels in-game using other options such as drawing lines or projecting a
transparent overlay became too visually noisy.

12 Using a UI toolkit like Dear ImGui, the sound debug window can be modified to hide the extra
metrics of the voxel emitter in a collapsed dropdown. This is also where I added buttons to toggle
on/off the in-game voxel debug.

220 ◾ Game Audio Programming 3

over computing the attenuated position result and writing the spread or
estimated loudness to a png file. Estimated loudness can be computed by

Max(0.f, (attenuation_range - closest_distance) / attenuation_range).

Rendering an image is helpful as anyone can file a bug with the world
position and you can visually inspect the situation first without having to
guess or try and listen for a possibly difficult-to-reproduce scenario.

13.9 WEIGHT FUNCTIONS
The attenuated position algorithm was developed for distance or large
ambient bed-type sounds. The weight function defined in Equation 13.2
which is linear seemed like a natural fit.13

The attenuated position algorithm can also be used with smaller voxel-
ized close-ranged emitting sources like energy beams, fire effects, or DoTs
that create several emitting positions. Because the number of emitters is
small or rapidly changing, the direction using a linear weight function
might be too influenced by voxels farther away as in Figure 13.7a.

13 Actually, the voxel emitter was the discretized version of an earlier algorithm to compute the
attenuated position along a spline. Because the spline version was based on integrals, the choices
in weight function were limited to analytical solutions. See Taylor [1] for more details.

FIGURE 13.6 Sparse voxel emitter using a “distant only” weight function.
(a) Estimated loudness at each point where white regions are louder. (b) Spread at
each point where dark regions are higher spread.

Voxel-Based Emitters ◾ 221

(a)

(b)

FIGURE 13.7 Voxel emitter with one close active voxel and four more distant
voxels. (a) The direction of attenuated position is pointing away from the closest
voxel using a linear weight. (b) The direction of attenuated position is pointing
more in the direction of the closest voxel using a squared weight (and the spread
has slightly increased).

222 ◾ Game Audio Programming 3

The strength of the closest voxel can be controlled by raising the
weight to some power. In Figure 13.7b, the weight is squared. That is
W v′ ()ˆ ˆ=W v()2 or as code:

float weight = attenuation_range - distance;
weight *= weight;

Another type of weight function can model a voxel emitter that only rep-
resents the distant layer of the sound, and the “close” sound is triggered by
a separate point emitter. Each voxel would represent an independent point
emitter with a short attenuation range, and the set of all voxels represents
the distant sound with a much larger attenuation range as a voxel emitter.
As the receiver approaches a single voxel, the close sound would activate,
but the distant sound should move away.

This “distant only” weight function can be implemented by introduc-
ing an inner attenuation range. As the receiver enters the inner range,
the weight function will decrease for the corresponding voxel instead of
increasing. Outside the inner range, the weight function behaves as nor-
mal. One way to integrate this into VoxelsToAttenuatedPosition() is to
change the distance to the voxel prior to testing closest distance and com-
puting the weight:

...
float distance = Length(direction);
// Assign a distance farther away inside inner_attenuation_range.
if (distance < inner_attenuation_range) {
 distance = Max(distance, attenuation_range *
 (1 - distance / inner_attenuation_range));
}
if (distance < attenuation_range) {
...

Because the receiver cannot get close to a voxel, both PointInsideVoxel()
and GetNearFieldInterpolation() should be excluded.

13.10 SUPPORT BEYOND STEREO: Z AXIS
We now return to the scenario mentioned earlier when the receiver is
between symmetric voxels cancelling the x and y axes to handle con-
straining the attenuated position along the z axis as in Figure 13.3. The
result is most of the magnitude being applied in the z axis coordinate of
p̂ creating an unnatural-looking position if most of the voxels are in the
same x–y plane.

Voxel-Based Emitters ◾ 223

If the z axis is unimportant for auralization, a simple change would be
to track the closest voxel center as 3D for m but treat total weight and total
direction as 2D. The z axis coordinate of the attenuated position would
be assigned the same value as the receiver’s z axis coordinate. However,
if the z axis should be preserved to work with other auralization such as
ambisonics or just to make the emitter behave more naturally for debug-
ging, then one technique to try is projecting the vector p̂ onto some plane
perpendicular to the z axis. This will keep the z axis coordinate within a
range that is closer to the voxels contributing to the attenuated position.
When the voxels are above or below the receiver, the p̂ should only change
minimally. When the voxels have z axis coordinates similar to those of the
receiver, then p̂ may change significantly in direction.

To make sure the plane perpendicular to the z axis changes continu-
ously as the receiver position changes, the new z axis coordinate can be
set to the average weighted z coordinate observed from each active voxel.
Equation 13.1 for total direction, σ̂ , already resembles the equation of a
weighted average. The equation can be rewritten to apply to only the z
coordinate vi z, where i is the ith voxel.

 σ ∑ W v()î
z = =vi z, 0v w, 0z z, ,+ +v w

v̂ 1, 1 ,+ v wN z N (13.8)
ii V ∈

where wi is the weight divided by magnitude of the voxel center v̂i. The
weighted average z axis coordinate, σ z , is then normalized so that the set
of all weights Ω is equal to one:

σσ z =
∑

z (13.9)
wi

i∈Ω

Thus, VoxelsToAttenuatedPosition() requires one additional tracking
variable to accumulate Ω:

float total_weight_dir_ratio = 0.f;
Vector total_direction = { 0.f, 0.f, 0.f };
...
const float weight_dir_ratio = weight / distance;
// Accumulate the weight to distance factors.
total_weight_dir_ratio += weight_dir_ratio;
total_direction += weight_dir_ratio * direction;
...

224 ◾ Game Audio Programming 3

The next step is to project the attenuated position p̂ onto the plane at σ z .
Let ẑ = { }0,0,σ z be a vector from the receiver and p̂′ be the new projected
position. That is p̂′ = { }p px y′ ′, , σ z for some new px′ and py′.

The magnitude of p̂′ is the same as the magnitude of p̂ which is m.
Let p̂′′ be the 2D vector going in the x, y direction of p̂. This is will be
in the same x, y direction as p̂′. As shown in Figure 13.8, p̂′′ can be used
to connect a right triangle. Then we can find projected position p̂′ by
 normalizing p̂′′ and adding ẑ:

p mˆ ′′ ()2 2 −σ z
p̂′ = + ẑ (13.10)

p̂′′

Because the projected vector has the same magnitude as the original vector,
spread will be the same as if the attenuated position were unaltered. The
difference is that the original vector’s position would update smoothly,
but p̂′ has the potential to make large discontinuous jumps. We can use
a method from earlier where we add one more level of spread. Let this
fourth spread interpolation be µz. The interpolation can be the ratio of
the original z component pz to the new z magnitude σ z . Therefore, when
there is minimal projection or pz zσ , the interpolation will be close to
zero. The spread projected is

p − σ
µz = z z (13.11)

pz

FIGURE 13.8 Side view of the projection of the attenuated position p̂ to the plane
of the average z coordinate σ z to form p̂′. The magnitude of p̂ is equal to p̂′.

Voxel-Based Emitters ◾ 225

13.11 SUPPORT BEYOND STEREO: 5.1 AND MORE
The average attenuated position outputs a single emitter for the audio
engine, and because the audio engine handles the speaker configurations,
the voxel emitter is already compatible for speaker configurations beyond
just stereo. However, I was asked to explore how an approach that could work
for 5.1 when sound might map to opposite speakers such as in Figure 13.9.

In this configuration, using the attenuated position with a single emit-
ter, the voxels in the rear left increase the spread but not by enough to have
much sound output from the rear-left speaker (or left surround speaker)
in a 5.1 arrangement.14

14 It is my opinion that the example in Figure 13-9 is somewhat contrived, and for a listener to notice
a difference between the single emitter solution and the more complex algorithm below may be
unlikely. However, there could be cases that I did not think of and the solution does have some
interesting properties.

(a)

FIGURE 13.9 Voxel emitter in which voxels are on either side of the receiver.
(a) Using the attenuated position algorithm with a single emitter.

226 ◾ Game Audio Programming 3

Instead of handling a special case per speaker configuration, the
approach below will start with a set of equally spaced virtual speak-
ers. When it is time to update the corresponding sound’s speaker gains
in the audio engine, these virtual speakers can be mapped to the actual
speaker configuration including stereo. In this example I use eight vir-
tual speakers. For 7.1 it might require more. The higher the number of
virtual speakers, the better the resolution mapping to various speaker
arrangements but at the trade-off of more computation. To keep things
simple, the following assumes 2D spatialization, but the code can be
expanded to work with spherical coordinates.

Another quality of the equally spaced virtual speakers is that their
angles relative to the receiver’s forward direction stay constant. If the
receiver rotates, changing the “center” direction of the speaker arrange-
ment, the virtual speakers’ positions remain constant, whereas the angles
for the speaker arrangement (stereo, 5.1, etc.) have to be translated. Each
virtual speaker is represented with a SpeakerData as an angle in the x, y
plane and the total weight aggregated in the direction of the speaker.

(b)

FIGURE 13.9 (b) Virtual speakers with aggregated weights.

Voxel-Based Emitters ◾ 227

constexpr int kNumVirtualSpeakers = 8;

struct VirtualSpeakerSet {
 struct SpeakerData {
 float angle = 0;
 float total_weight;
 };
 std::array<SpeakerData, kNumVirtualSpeakers> speakers;
 Vector closest_voxel_center = { 0.f, 0.f, 0.f };

 VirtualSpeakerSet() {
 const float angle_dist = 2 * (float)M_PI / kNumVirtualSpeakers;
 int speaker_id = 0;
 // Initialize speaker angles evenly around a circle.
 for (auto& speaker : speakers) {
 speaker.angle = angle_dist * speaker_id++;
 speaker.total_weight = 0.f;
 }
 }
};

(c)

FIGURE 13.9 (c) Typical 5.1 arrangement mapped from virtual speakers.

228 ◾ Game Audio Programming 3

The VirtualSpeakerSet is initialized such that the speakers are uni-
formly spaced on a unit circle starting at 0° or the positive x-axis in this
chapter’s coordinate system. (Note this initialization could be done once
in static data.)

Similar to VoxelsToAttenuatedPosition(), VoxelsToVirtual Speakers()
iterates over the voxels accumulating weights and tracking the closest voxel
center. Instead of returning position and spread, the set of virtual speakers’
angles and weights are returned. A voxel’s weight is applied only to the two
virtual speakers that are on either side of the ray in the voxel’s direction from
the receiver.

template<typename VoxelContainer>
VirtualSpeakerSet VoxelsToVirtualSpeakers(
 const VoxelContainer& voxels, const Sphere& receiver,
 const float voxel_extent) {

 const float attenuation_range = receiver.radius;
 VirtualSpeakerSet speaker_set;
 auto& speakers = speaker_set.speakers;
 float closest_distance = attenuation_range;
 Vector& closest_voxel_center = speaker_set.closest_voxel_center;

 for (const Vector voxel_center : voxels) {
 const Vector direction = voxel_center - receiver.center;
 if (PointInsideVoxel(direction, voxel_extent)) {
 closest_distance = 0.f;
 closest_voxel_center = voxel_center;
 // Evenly distribute the weight across all speakers for
 // full spread.
 for (auto& speaker : speakers) {
 speaker.total_weight = 1.f / kNumVirtualSpeakers;
 }
 break;
 }
 const float distance = Length(direction);
 if (distance >= attenuation_range) {
 continue;
 }
 if (distance < closest_distance) {
 closest_distance = distance;
 closest_voxel_center = voxel_center;
 }
 const float weight = attenuation_range - distance;
 float angle = atan2f(direction.y, direction.x);

Voxel-Based Emitters ◾ 229

 // Correct angle such that it is rotated positively.
 if (angle < 0.f) {
 angle += 2.f * (float)M_PI;
 }
 auto it_rhs = upper_bound(speakers.begin(), speakers.end(),
 angle,
 [](const float _angle, const SpeakerData& lhs) {
 return _angle < lhs.angle;
 });
 auto it_lhs = it_rhs - 1;
 // Handle wrapping around the circle.
 if (it_rhs == speakers.end()) {
 it_rhs = speakers.begin();
 }
 float rhs_angle = it_rhs->angle;
 if (rhs_angle < it_lhs->angle) {
 rhs_angle += 2.f * (float)M_PI;
 }
 const float angle_lerp = (angle - it_lhs->angle) /
 (rhs_angle - it_lhs->angle);
 // Apply weight to speakers left and right of the ray
 // to the voxel linearly interpolated by angle.
 it_lhs->total_weight += weight * (1.f - angle_lerp);
 it_rhs->total_weight += weight * angle_lerp;
 }
 return speaker_set;
}

On either the game engine side or the audio engine mixer, the vir-
tual speakers need to be mapped to the current speaker configuration
of the game. VirtualSpeakerSetToSpeakerArrangement() is similar
to VoxelsToAttenuatedPosition() with a couple of changes. First the
speaker arrangement is unlikely to have a speaker directly at 0°, and so a bit
of extra care is required to
wrap around the circle. The Wwise implementation: To trigger
speaker angles are assumed playback and get information about the
to have already been trans- authored sound’s gain, the closest voxel
lated to match the receiv- center can be used as the emitter’s posi-
er’s forward d irection. tion sent to the audio engine. Registering
Secondly after the weights the callback AK_SpeakerVolumeMatrix
are accumulated, they can be used to alter the per-speaker
must be normalized to the gain values.
desired gain values.

230 ◾ Game Audio Programming 3

template<int N>
std::array<float, N> VirtualSpeakerSetToSpeakerArrangement(
 const VirtualSpeakerSet& speaker_set,
 const std::array<float, N>& speaker_angles,
 const float gain_rms) {

 std::array<float, N> speaker_gains{};
 float total_weight = 0.f;
 for (const auto& virtual_speaker : speaker_set.speakers) {
 const float weight = virtual_speaker.total_weight;
 if (weight <= FLT_EPSILON) {
 continue;
 }
 float virtual_angle = virtual_speaker.angle;
 // Handle wrapping around 0 degrees.
 auto it_rhs = upper_bound(speaker_angles.begin(),
 speaker_angles.end(), virtual_angle);
 auto it_lhs = (it_rhs != speaker_angles.begin() ?
 it_rhs : speaker_angles.end()) - 1;
 if (it_rhs == speaker_angles.end()) {
 it_rhs = speaker_angles.begin();
 }
 float rhs_angle = *it_rhs;
 if (rhs_angle < *it_lhs) {
 rhs_angle += 2.f * (float)M_PI;
 if (virtual_angle < *it_lhs) {
 virtual_angle += 2.f * (float)M_PI;
 }
 }
 const float angle_lerp = (virtual_angle - *it_lhs)
 / (rhs_angle - *it_lhs);
 // Apply weight to speakers left and right of the ray
 // to the virtual speaker linearly interpolated
 // by angle.
 speaker_gains[it_lhs - speaker_angles.begin()] +=
 weight * (1.f - angle_lerp);
 speaker_gains[it_rhs - speaker_angles.begin()] +=
 weight * angle_lerp;
 total_weight += weight;
 }
 // Normalize speaker_gains.
 if (total_weight > FLT_EPSILON) {
 for (float& gain : speaker_gains) {
 gain = gain_rms * sqrtf(gain / total_weight);
 }
 }
 return speaker_gains;
}

Voxel-Based Emitters ◾ 231

To normalize the speaker set, VirtualSpeakerSetToSpeakerArrange-
ment() is given the target gain value: gain_rms. Regardless of the receiv-
er’s forward direction, the gain for the voxels across the speakers should
remain constant. Therefore, the output is normalized such that the RMS
(or root mean square) of the speakers is equal to the target gain. Here I
have used the following definition for RMS for multiple channels with
each speaker weighted equally:

 c c2
1 + +2 2

+ RMS = 2 cn (13.12)
n

where cn are the gain values per channel and n is the number of channels.
In this case for 5.1, n = 5.

The speaker angles in the example were based on the ITU-R BS.775-3
reference loudspeaker arrangement as shown in Table 13.1. This repre-
sentation may differ depending on the sound engine. Figure 13.10 shows
the per-speaker gain from the example used in Figure 13.9. For simplic-
ity, near field has been left out as well as the sound’s authored spread
which would also need to be applied to the normalized weights. This
combination of managing the attenuation and the speaker arrangements
may heavily overlap with the audio engine’s functionality. Some care
should be taken to not end up rewriting entire systems from the audio
engine.

One improvement over the single emitter approach used in
VoxelsToAttenuatedPosition() is that each virtual speaker could have
its own occlusion value (or entirely separate DSP/signal processing chain
for that matter). This extra control could model a setup like a river bend
that goes behind a wall but only on the right-hand side relative to the
receiver.

TABLE 13.1 Speaker Angles for a 5.1 Setup Based on the ITU-R
BS.775-3 Reference Loudspeaker Arrangement

Channel Degrees from Center Coordinate

Left 30 π/3
Center 0 π/2
Right 30 2π/3
Right Surround 120 7π/6
Left Surround 120 11π/6

232 ◾ Game Audio Programming 3

13.12 FINAL NOTES
This chapter extended the idea of using a grid or set of voxels to approxi-
mate the position of a sound that represents an area or volume of space.
Integration of these approaches can involve a large commitment on devel-
opment time as well as CPU and memory resources. As the feature’s

FIGURE 13.10 Gain plots of the five 5.1 speakers. The brighter areas are louder.
(Notice there is no near field applied.)

Wwise implementation: In addition to SetPosition(), the
Wwise API also includes SetMultiplePositions() and
SetMultipleObstructionAndOcclusion() which take an
array of positions and obstruction/occlusion pairs. The mode
MultiPositionType_MultiDirections will treat the set of posi-
tions as a single sound. Like using a single position voxel emitter
approach, using SetMultiplePositions() would depend on the
audio engine to handle the details of specific speaker configura-
tions. Before committing to the complexity of an algorithm like
VirtualSpeakerSetToSpeakerArrangement(), it would be worth
exploring if SetMultiplePositions() can be leveraged [2].

Voxel-Based Emitters ◾ 233

complexity grows, it may start to overlap functionality handled by the
audio engine.

Yet in my mind, this chapter has hardly touched on the many number
of ways to optimize with alternate algorithms or how to integrate with or
modify the existing audio engine to avoid reverse engineering or dupli-
cating code. Areas like spatial partitioning algorithms or approximation
algorithms and even predictive models are spaces for inspiration to build
on a functioning voxel emitter prototype.

REFERENCES

 1. Taylor, Nic. “Approximate Position of Ambient Sounds of Multiple Sources.”
Game Audio Programming Principles and Practices Volume 2, edited by Guy
Somberg. CRC Press, 2019, pp. 197–226.

 2. Audiokinetic, “Integration Details - 3D Positions.” Wwise Documentation,
https://www.audiokinetic.com/library/edge/?source=SDK&id=soundengine
_3dpositions.html.

https://www.audiokinetic.com
https://www.audiokinetic.com

https://taylorandfrancis.com

235

C h a p t e r 14

Improvisational Music

Charlie Huguenard
derelict.computer

14.1 A LL THAT JAZZ
We tend to think of music in terms of composers. Composers are
 everywhere—in pop music, classical music, game music, electronic dance
music, and more. Composers create a piece of music for a set of musicians
(or machines) and then usually record a performance. When we hear a
piece of music, it’s usually the same every time, unless someone else is
performing it, remixing it, or rearranging it. This works fine with the way
we typically consume music, which is in a linear manner—listening to a
record, dancing in a club, or attending a performance.

CONTENTS
14.1 All That Jazz 235
14.2 Music System Foundations, Lightning Round 236

14.2.1 Sound Generator 236
14.2.2 Clock 237
14.2.3 Sequencers 238

14.3 Musician Recipes 239
14.3.1 Designing the Conductor 239
14.3.2 Musician Design Considerations 240
14.3.3 Funky Drummer 241
14.3.4 All About That Bass 243
14.3.5 Spacey Chimes 245
14.3.6 The Soloist 246

14.4 Wrapping Up 248
References 249

236 ◾ Game Audio Programming 3

Video games and other interactive experiences are non-linear. Although
many interactive experiences utilize cutscenes and “baked” animation to
great effect, the player certainly notices when the game is not responding
to them. Providing nothing but pre-composed music in an experience is
akin to providing nothing but cutscenes. We probably need to look else-
where for inspiration for our interactive music systems.

Thankfully we have many forms of non-linear music in our music his-
tory corpus. Baroque keyboardists such as Bach were well known for their
ability to improvise and embellish while performing, and even written
counterpoint is thought to be heavily influenced by on-the-spot music
generation [1]. Hip hop artists—MCs, DJs, and dancers alike—have used
improvisation to great effect throughout the music’s history [2]. Perhaps
the most well-known modern example of a music which emphasizes
improvisation is jazz music, which itself is influenced by West African
improvisation techniques [3]. Jazz composers typically write a static piece
of music—a “head”—and then expect the musicians performing to impro-
vise the rest.

Music improvisation is the embellishment of musical ideas. Those ideas
can come from a composer, other musicians, or several musical “games”
used to generate the basis for the improvisation. You can hear many exam-
ples of this embellishment by searching for a famous jazz piece and listen-
ing to each musician’s version. Try “Autumn Leaves” by Joseph Kosma for
total overload.

14.2 MUSIC SYSTEM FOUNDATIONS, LIGHTNING ROUND
Music improvisation is not possible without some foundational systems.
Creating all these supporting systems could be its own chapter [4]. We
will briefly cover some of them in this section. Each example is provided
as pseudocode in hopes of easing the process of applying it to a given envi-
ronment. An implementation using Unity3d is provided in the supple-
mental materials at https://www.routledge.com/9780367348045.

14.2.1 Sound Generator

In order to make music, you’ll have to make some sound. We use all kinds
of sound generators—horns, bells, drums, synthesizers, and a huge variety
of software instruments.

There are many kinds of samplers with myriad settings. To demon-
strate this system, all you need is what I like to call the “one-shot” sampler.

https://www.routledge.com

Improvisational Music ◾ 237

A one-shot sampler takes a single audio file and plays the file at different
speeds based on incoming musical notes.

Let’s assume we always create tonal audio files at middle C (261.626 Hz,
MIDI note 60). If we wanted our sampler to play the file one octave above
middle C (523.251 Hz, MIDI note 72), we would tell it to play the file two
times as fast. Similarly, if we wanted to play one octave below middle C
(130.813 Hz, MIDI note 48), we would tell the sampler to play the file half
as fast. The formula for determining the playback speed based on a MIDI
note is

 speed = 2()midiNote−60 /12

Every interactive audio engine you’ll encounter provides a way to play a
sound file at some pitch. In fact, most interactive audio engines are essen-
tially very complex samplers. To make a sampler instrument, you need
only to set up the existing audio file playback to respond to notes and scale
the speed like this:

Sampler:
 SoundFile file
 FilePlayer player

 function Play(int noteNumber, float scheduledTime):
 player.pitch = pow(2, (noteNumber – 60) / 12)
 player.play(file, scheduledTime)

14.2.2 Clock

Most interactive music systems require something to tell time or to send
a signal when a musical interval is encountered. We generally call this a
clock or metronome (timer tends to imply something that’s not precise
enough for audio or musical timing). These musical clocks can be either
discrete or continuous—a decision which affects the design of the music
system.

For example, a traditional DAW timeline is typically continuous.
This requires plugins such as beat-synced effects to poll the timeline to
determine when beats are going to happen. Effects are required to detect
“edges” to demarcate musical events like a quarter note.

A pulse-based clock like one you might see in a modular synthesizer is
an example of a discrete musical clock. It sends out a “pulse” periodically,

238 ◾ Game Audio Programming 3

and pieces of the system use that pulse to trigger or otherwise manipulate
sound. Many times, using a discrete clock is a subtractive process. If the
initial pulse is at 16th note intervals, a clock divider in the chain might
take every fourth pulse, creating a quarter note pattern. An additional
clock divider could take every other quarter note, playing just the first
and third quarter notes in a measure or shifting to the second and fourth.
By chaining clock dividers and other logical modules, you can create all
kinds of musical patterns. Even with a discrete clock, though, you are by
no means limited to dividing the initial pulse (look up “clock multipliers”
for examples of this).

For this example, we’ll use a continuous clock, which looks something
like this:

Clock:
 float tempo // in quarter notes per minute
 float startTime // in seconds using the audio engine clock
 bool playing

 function Play():
 startTime = currentEngineTime
 playing = true

 function Stop():
 playing = false

 // get the current time of the clock in bars (fractional)
 function GetTimeBars():
 if (!playing):
 return 0

 float now = currentEngineTime - startTime_
 float timeQuarters = (tempo / 60) * timeSeconds
 // stick to 4/4 time for this example
 return timeQuarters / 4

 // we’ll need this later for scheduling sampler plays
 function BarsToEngineTime(float timeBars):
 float quarters = bars * 4
 float seconds = quarters / (tempo / 60)
 return startTime_ + seconds

14.2.3 Sequencers

“Sequencer” is an overloaded term, even when you narrow it down to
musical uses. We could be talking about a MIDI sequencer tool like those

Improvisational Music ◾ 239

found in a DAW or a groove box step sequencer. And there are several
smaller kinds of sequencers that transform pitches, select pulses, and rese-
quence breakbeat samples. The general definition I like to use is that a
sequencer is something that processes control signals in a musical system,
much like how an effect processes an audio signal. A control signal could
be a pulse, a MIDI note, a knob, a chord, a sensor, or anything else that
could eventually manipulate a sound.

14.3 MUSICIAN RECIPES
Now that we have a concept of the underlying systems that enable real-
time composition, let’s think about how to build the whole thing. I like to
think of real-time music systems in terms of three layers:

• The Conductor determines the overall shape of the music and gen-
erates control signals.

• The Musicians process the control signals from the conductor.

• The Instruments turn the control signals from the musicians into
sound.

Matching these layers up to the previous definitions, the Conductor would
be a clock and some logic for controlling the overall composition, the
Musicians would be sequencers, and an Instrument would be a sampler.

14.3.1 Designing the Conductor

We’ve taken care of the sampler instrument, and we’ll get to the musi-
cians shortly. Let’s briefly look at what our conductor will do. We know
that we’ll need timing info from the clock. We’ll also want to know what
notes to play for any tonal instruments, for which we can provide some
information about the key or chord changes in the music. Two pieces of
information we can use are the note number (or pitch) itself, as well as
how likely it should be to play. We could go with a direct probability value
for notes, but we’ll get a little more context if we introduce a concept of
“strength.” In music, there are notes in a chord or scale that can be played
very often. Those are typically the root note and some of the other chord
tones (such as the fifth). And then there are notes that belong in the scale
but will sound dissonant if played often or on strong beats such as the
downbeat of a measure. We can assign a strength value to notes and then

240 ◾ Game Audio Programming 3

use that in our musician logic for selecting notes to play. If we describe a
note like so:

Note:
 int noteNumber // MIDI note number
 float strength // 0-1, how “comfortable” or “strong” is this note?

And then describe a chord as a collection of notes with a position in bars:

Chord:
 float posBars
 Note[] chordNotes
 Note[] scaleNotes

Using this information, we can have the conductor cycle through chord
changes and notify the musicians:

Conductor:
 Clock clock
 Chord[] chords // chords, sorted by position
 float chordLengthBars // at what point do we loop?
 Musician[] musicians // we’ll get to this in a minute

 function Update():
 if (!clock.playing):
 return

 float timeBars = clock.GetTimeBars()

 // get the current chord
 float chordTimeBars = mod(timeBars, chordLengthBars)
 Chord currentChord
 for each chord in chords:
 if (chord.posBars > chordTimeBars):
 break
 currentChord = chord

 // update the musicians
 for each musician in musicians:
 musician.SetChord(currentChord)
 musician.UpdateNotes(timeBars)

14.3.2 Musician Design Considerations

So, what do these musicians do? What kind of logic do they contain?
Remember that a sequencer can be any kind of control processor. Following
that logic, we can combine any number of existing musical techniques to

Improvisational Music ◾ 241

create a complete, “intelligent” sequencer for each type of musician we
would like to emulate. How you put those together depends on your proj-
ect’s requirements. If you’re making a one-off music system for a game,
it might be more efficient to hand-code each musician. If you’re making
a tool for sound creatives, you could create a system of sequencer mod-
ules and let your users patch them together to design musicians. In this
section, we will talk about the former: programming bespoke musician
logic. After learning how to assemble musical logic in this way, it should
be straightforward to port these techniques to a modular system, but that
will be left as an exercise for the reader.

Our musician interface, as referenced by the conductor above, looks
like this:

Musician:
 Clock clock // hang on to a reference so we can do conversions
 Chord currentChord
 float lastTimeBars
 float intensity // 0.0-1.0, the amount of musical movement

 function UpdateNotes(float posBars):
 // to be implemented in each musician to follow

 function SetChord(Chord chord):
 currentChord = chord

We’ll build on this for each of the individual musicians, and some addi-
tional “homework” for extending each musician will be found at the end
of each section.

14.3.3 Funky Drummer

Many interactive compositions call for a rhythm section, so let’s make a
drumbeat generator. This “drummer” will output a beat based on a couple
of inputs—tempo and intensity. For the purposes of this example, we will
assume 4/4 timing.

A drumbeat can be conceptually broken down into the following:

• The drums in a drum kit and their roles in constructing a beat.

• Strong and weak beats and their effect on the “feel” when hit (or not
hit).

• Embellishment, such as fills or shifted hits.

242 ◾ Game Audio Programming 3

A very simple drum kit might include a kick drum, snare drum, and hi-
hat. The kick anchors the beat, so its most prominent hits usually end
up on strong beats, such as the downbeat of every measure. The snare
 compliments the kick by providing a “back beat,” typically landing on the
weak beats of the measure (beats 2 and 4 in 4/4 time). The hi-hat fills
in space and, depending on the feel, can land pretty much anywhere in
the measure. Figure 14.1 shows one example of a regular-time drum beat
in 4/4.

We could just play this beat back over and over, but that wouldn’t be
very interesting. One way to vary a beat is to add and remove notes to
make it feel more or less “intense” or “busy,” as shown in Figure 14.2.

As the intensity input changes, we add or remove these embellishments.
Building on the musician interface above, a drummer that plays an embel-
lished beat could look like this:

Drummer:
 Sampler kick, snare, hat
 Note[] kickNotes, snareNotes, hatNotes

 function UpdateNotes(float posBars):
 // find out the positions in 16th notes
 int last16th = floor(lastTimeBars * 16) % 16
 int this16th = floor(timeBars * 16) % 16

FIGURE 14.1 A regular-time drum beat in 4/4.

FIGURE 14.2 A drum beat in 4/4 with notes added.

Improvisational Music ◾ 243

 // update the position
 lastTimeBars = timeBars
 // skip if we haven't advanced
 if (last16th == this16th):
 return

 // find the hit time (in audio engine time)
 int wholeBar = floor(timeBars)
 float barFraction = this16th / 16
 float hitTime = clock.BarsToEngineTime(wholeBar + barFraction)

 // find the notes that are in this index
 // and play them if they're at the right level
 float minStrength = 1.0f - intensity
 Note tmpNote = kickNotes[this16th]
 if (tmpNote.strength >= minStrength):
 kick.Play(tmpNote.noteNumber, hitTime)
 tmpNote = snareNotes[this16th]
 if (tmpNote.strength >= minStrength):
 snare.Play(tmpNote.noteNumber, hitTime)
 tmpNote = hatNotes[this16th]
 if (tmpNote.strength >= minStrength):
 hat.Play(tmpNote.noteNumber, hitTime)

Homework

• Add more instruments.

• Add fills that could play every few bars.

• Omit or add embellishments using randomness to add variation.

• Switch between half, normal, and double time feels based on intensity.

14.3.4 All About That Bass

It’s helpful to have a musician to anchor the key of the music and to pro-
vide a basis for the listener to recognize the improvisation of the other
tonal instruments. In modern Western music, a bass line typically serves
that purpose.

For each of the tonal instruments, let’s add some helpers in a subclass
of the existing musician:

TonalMusician:
 Sampler sampler // we just need one for these

 function GetNote(Note[] notes, float minStrength):
 Note[] tmpNotes

244 ◾ Game Audio Programming 3

 for each note in notes:
 if (note.strength >= minStrength):
 add note to tmpNotes

 int idx = randomInt(0, tmpNotes.size)
 return tmpNotes[i]

 function GetChordNote(float minStrength):
 return GetNote(currentChord.chordNotes, minStrength)

 function GetScaleNote(float minStrength):
 return GetNote(currentChord.scaleNotes, minStrength)

 function PlayNote(int noteNumber, float timeBars):
 float engineTime = clock.BarsToEngineTime(timeBars)
 sampler.Play(noteNumber, engineTime)

Real bassists play around in the key quite a bit. But for the purpose of this
example, let’s assume the bass line should stick within the chord tones and
primarily the root note of the chord. The bass musician might look like this:

Bass:
 function UpdateNotes(float timeBars):
 // find out the positions in 16th notes
 int last16th = floor(lastTimeBars * 16) % 16
 int this16th = floor(timeBars * 16) % 16
 lastTimeBars = timeBars

 // skip if we haven’t advanced
 if (last16th == this16th):
 return

 // find the note time (in bars)
 int wholeBar = floor(timeBars)
 float barFraction = this16th / 16.0f
 float noteTime = wholeBar + barFraction

 // play roots on the downbeat
 if (this16th == 0):
 PlayNote(GetChordNote(1.0f), noteTime)
 return

 // usually play strong tones on the other quarters
 if (this16th % 4 == 0):
 if (random0to1() < intensity):
 PlayNote(GetChordNote(0.5f), noteTime)
 return

Improvisational Music ◾ 245

 // sometimes play on the 8ths
 if (this16th % 2 == 0):
 if (random0to1() < intensity - 0.25f):
 PlayNote(GetChordNote(0.25f), noteTime)
 return

 // sometimes play on the 16ths
 if (random0to1() < intensity - 0.5f):
 PlayNote(GetChordNote(0), noteTime)

Homework

• Use scale tones for embellishments, instead of just chord tones.

• Add “memory” to provide a sense of repetition.

14.3.5 Spacey Chimes

Texture provides harmonic context and movement. While many times
you’ll hear a guitar or piano play full chords, another approach to add tex-
ture is to arpeggiate the chords. Simply put, an arpeggio is a sequence of
notes that move around in a chord. If you spent any time in music lessons,
you probably practiced running scales and arpeggios. If not, the typical
arpeggio goes up, then down a scale, skipping every other note, as shown
in the figure below.

So, let’s look at how to make an arpeggiator. Much of the logic from the
bass generator can be reused to create a chord arpeggiator like so:

Chimes:
 Mode mode // Up, Down, Random
 int sequenceIdx = 0

 function UpdateNotes(float timeBars):
 // set the step size based on intensity
 int stepSize
 if (intensity < 0.4f):
 stepSize = 4
 else if (intensity < 0.7f):

246 ◾ Game Audio Programming 3

 stepSize = 8
 else:
 stepSize = 16

 // find out the positions based on the step size
 int lastStep = floor(lastTimeBars * stepSize) % stepSize
 int thisStep = floor(timeBars * stepSize) % stepSize
 lastTimeBars = timeBars

 // skip if we haven’t advanced
 if (lastStep == thisStep):
 return

 // find the note time (in bars)
 int wholeBar = floor(timeBars)
 float barFraction = thisStep / stepSize
 float noteTime = wholeBar + barFraction

 // get the index within the sequence
 int numChordNotes = currentChord.chordNotes.length
 int chordNoteIdx
 switch (mode):
 case Mode.Up:
 sequenceIdx = (sequenceIdx + 1) % numChordNotes
 chordNoteIdx = sequenceIdx
 break
 case Mode.Down:
 sequenceIdx = (sequenceIdx + 1) % numChordNotes
 chordNoteIdx = numChordNotes - (sequenceIdx + 1)
 break
 case Mode.Random:
 chordNoteIdx = randomInt(0, numChordNotes)
 break

 int note = currentChord.chordNotes[chordNoteIdx].noteNumber
 PlayNote(note, noteTime);

Homework

• Add more arpeggio modes, such as an up/down mode.

• Add optional scale runs in addition to chord arpeggios.

• Tie the mode to the intensity.

14.3.6 The Soloist

Now that we have a rhythmic and harmonic base, a melody will complete
our “band.” In jazz music, there are often pre-composed melodies in the

Improvisational Music ◾ 247

head provided to the musician. As the performance progresses, solo musi-
cians take turns reinterpreting these melodies or creating their own com-
pletely. The same strong and weak concepts regarding tones and rhythmic
intervals apply here. Playing a weak tone on a strong beat can create ten-
sion, whereas sticking to strong tones can ground the melody. Too much
tension, and the music can become challenging to listen to. Conversely,
too little tension can make the music feel bland and uninteresting.

Another consideration is repetition. You may have noticed that the bass
and chime instruments can meander and sometimes sound a bit too ran-
dom. This is often acceptable for those types of instruments, but with a
melody, too much wandering can leave the piece feeling without basis.
One way to solve this is by introducing some “memory” to the musician
logic. For example, in the first four bars, we could use similar stochas-
tic methods as the bass musician to generate a melody. After that melody
has been generated, we could store it and reuse it for another four bars to
 create a repeating eight-bar phrase.

The solo instrument might then look like this:

Solo:
 int recordBars = 4 // the length of the recording
 int repeats = 1 // how many times we want to repeat the recording
 int[] recordedMelody
 float repeatStartBar

 function UpdateNotes(float timeBars):
 // find out the positions in 16th notes
 int last16th = floor(lastTimeBars * 16) % 16
 int this16th = floor(timeBars * 16) % 16
 lastTimeBars = timeBars;

 // skip if we haven't advanced
 if (last16th == this16th):
 return

 // find the note time (in bars)
 int wholeBar = floor(timeBars)
 float barFraction = this16th / 16
 float noteTime = wholeBar + barFraction

 // get the index within the recording
 int recordingIdx = this16th + (wholeBar % recordBars) * 16

 // repeat the recording until the next time
 // we should generate a melody

248 ◾ Game Audio Programming 3

 float repeatEndBars = repeatStartBar_ + repeats * recordBars
 if (timeBars < repeatEndBars):
 int note = recordedMelody_[recordingIdx];
 if (note != InvalidNoteNumber):
 PlayNote(note, noteTime)

 // if we’re recording, generate the melody
 else:
 if (recordingIdx == 0):
 init recordedMelody with 16 * recordBars notes

 int note = InvalidNoteNumber

 // always play a strong note on the downbeat
 if (this16th == 0):
 note = GetScaleNote(1.0f)
 // usually play a note on the quarters
 else if (this16th % 4 == 0):
 if (random0to1() < intensity):
 note = GetScaleNote(0.5f)
 // sometimes play a note on the eighths
 else if (this16th % 2 == 0):
 if (random0to1() < intensity - 0.25f):
 note = GetScaleNote(0.25f)
 // sometimes play a note on the 16ths
 else if (random0to1() < intensity - 0.5f):
 note = GetScaleNote(0.0f)

 // record and play the note
 recordedMelody_[recordingIdx] = note
 if (note != InvalidNoteNumber):
 PlayNote(note, noteTime)

 // if we’re done recording, start repeating
 int lastRecordingIdx = recordBars * 16 - 1
 if (recordingIdx >= lastRecordingIdx):
 repeatStartBar_ = Mathf.Ceil(timeBars)

Homework

• Modify the sampler and the solo musician to play sustained notes.

• Keep track of two recorded melodies to play an AABA sequence.

14.4 WRAPPING UP
There are so many ways to design interactive music that it can become
overwhelming, but the process becomes a little simpler by looking at how

Improvisational Music ◾ 249

humans make music on the spot. Jazz music provides a useful framework
for autonomous music, thanks to its focus on improvisation and well-
defined theory. Leaning on the composer, musician, instrument meta-
phor further grounds the concept such that we can visualize how the code
 components come together. Hopefully, these concepts and examples help
you decide how to make your own improvised music systems.

REFERENCES

 1. Massimiliano Guido. Studies in Historical Improvisation: From Cantare
Super Librum to Partimenti. Routledge, Abington, New York, 2017.

 2. David Nicholls. The Cambridge History of American Music. Cambridge
University Press, New York, Cambridge, 1998. https://catalog.loc.gov/
vwebv/search?searchCode=LCCN&searchArg=98003814&searchType=1&
permalink=y

 3. Don Michael Randel. The Harvard Dictionary of Music. Harvard University
Press, Cambridge, MA, 2003. https://catalog.loc.gov/vwebv/holdingsInfo?s
earchId=28796&recCount=25&recPointer=0&bibId=13266550

 4. Huguenard, Charlie. “Note-Based Music Systems.” Game Audio
Programming Principles and Practices Volume 2, edited by Guy Somberg.
CRC Press, 2019, pp. 321–344

https://catalog.loc.gov
https://catalog.loc.gov
https://catalog.loc.gov
https://catalog.loc.gov

https://taylorandfrancis.com

251

Index

A

Absorption coefficient, 53, 55, 60, 65
Abstractions

applications, 116–117
C++ audio, 95
first-pass, 95–97
patch cable, 97–98

Acoustics Wikibook, 54
Action RPGs (ARPGs), 145–146
Air temperature, 52
Ambience, 4, 5, 10, 136
Approximation algorithms, 233
Argand diagram, 21, 35
Arpeggio, 245
ARPGs, see Action RPGs (ARPGs)
Asset, 2, 6–8, 135, 141
Atmospheres, 2, 4, 53, 64
Atmospheric absorption

attenuation settings, 52
cutoff frequency, 52–54
extreme ranges, 53–54
frequency response, 54–58
integration, 63–64
linear equation, 64
low-pass filter, 54–58
maths and code

API, 60
extra vocabulary, 58
helper functions, 61–62
implementation, 62–63
math, 59–60

motivations, 52
review, 53
speed of sound, 64
temperature and humidity, 55

Atmospheric pressure, 52

Attenuated position algorithm,
220, 225

Attenuation position, 144
Audio engines; see also Split screen

considerations, 130–131
counterintuition

clipping and phasing, 128–129
extra CPU costs, 129
multiple triggering, 128

drawbacks and edge cases
boundary flipping, 129
competitive multiplayer, 130
CPU costs, 130
singleton systems, 129–130

dual output, 131
frame of reference, listeners as,

126–127
listener geometry, 125–126
multiple listeners, 127–128

Audio rendering, 116
Audio signal processing, 98
Authoritative server, 82
Automation, 75–76

B

Bantin, R., 15–28, 29–50
Bespoke polynomial fit, 44
Big three, 3–4

C

Chamberlin, H., 30, 42
Circular buffer, 99–102
Client workflow, 85–86
Clip space, 147

252 ◾ Index

Clock
audio/musical timing, 237
beat-synced effects, 237
continuous, 238
discrete, 238
pulse-based, 237

Cluster analysis, 178–179
Cluster thresholding, 179
Cluster tracking, 179
Complex conjugate, 22
Complex numbers

DSP programmers, 26–27
geometric growth, 23–24
incremental phase, 16–23
incremental phase vs. geometric

growth, 25–26
properties, 15
real and imaginary component, 15, 28
spiral graph, 15, 16, 26

Composers, 235
Continuous integration, 72, 75

D

Data structure
MPMC, 114
SPMC, 114

DAW, see Digital audio workstation
(DAW)

Debug display
categorized actor list, 200, 201
per-actor overlay, 202
variations, 200–202

Debugging, 219–220
Debug rendering algorithm, 158–160
Deployment, 78
Dialog/dialogue, 82
Digital audio workstation (DAW), 72
Digital integrator (DI)

band-pass and notch filters, 46
cascade magnitude plot vs. analog

cascade, 43
high-pass filter, 45
low-pass filter, 45
schematic of, 42

Disaster recovery/revision control, 76–77
Discrete Fourier transform, 27

Discrete-time algorithm, 33
Distance-based rules, 139–140
Dynamic analog-style filters

bi-quadratic/bi-quad, 30
DI (see Digital integrator (DI))
IIR (see Infinite impulse response

(IIR))
natural and structure’s ability, 30
resistor capacitor (RC) network,

41–45
resonance, 46–49

E

Environment, 4–5
Error handling, 78–80
Euler’s formula, 27, 28
Euler’s theorem, 35

F

Feedback
experience, 10–11
interface, 10
menu, 10

Filion, M., 71–80
FilterCutoffSolver, 60
Finite impulse response filter, 38
Flood fill algorithm, 212
FMOD Studio spatializer, 149, 150
Foley, 7
Frames of reference, 121–123, 125–127
Fully zoomed-out view, 151–152
Füsslin, F., 1–12

G

GA, see Geometric attenuation (GA)
Game voice over (VO), 82
GAR, see Grid activity report (GAR)
Gay, R., 133–142
Geller, E., 93–118
Geometric attenuation (GA), 53
Geometric growth, 23–24
Grid activity report (GAR)

feature design, 175–177
feature implementation

Index ◾ 253

cluster analysis, 178–179
cluster tracking and

thresholding, 179
region thresholds, 177–178

sectors and clustered IM values.,
175, 176

Grid emitter, see Voxel emitters

H

Higher-order IIR vs. bi-quadratic cascade,
38, 39

Houvilainen, A., 48
Huguenard, C., 235–249
Humidity, 52

I

IIR, see Infinite impulse response (IIR)
Importance-based mixing system

algorithm (see Importance system
algorithm)

context, 182–183
example implementation

applying filters, 197–199
assigning importance buckets,

199–200
bucket assignment, 189–192
calculating importance scores, 188
data setup, 189
debug display, 200–202
importance state, 193–197
querying the importance bucket,

192–193
managing the chaos, 182

Importance system algorithm
apply effects to sounds by bucket,

187–188
assign each object an importance

score, 184–185
importance changes over time, 188
place sorted objects into importance

buckets, 185–187
sort all objects by score, 185

IMs, see Influence maps (IMs)
Incremental phase

circle graph, 16, 17, 21

resistance is real, reaction is imaginary,
18–19

time plot of real axis, 16, 17
voltage after the load, 21–23
voltage before the load, 19–21
voltage generator, 18

Incremental phase vs. geometric growth,
25–26

Infinite impulse response (IIR)
bi-quadratic filter, 38–39
digital silence, 30
direct form-I, 31
inverse-Z transform, 33–34
notch filter, two poles and two zeros,

34–38
pole-zero map, 32–34
Robert Bristow-Johnson’s cookbook,

39–41
unit circle, 33
Z-plane design method, 31, 32

Influence maps (IMs)
balance of power, 168
building the

adding points, 172
adding points across cell

boundaries, 172
adding radii, 172–173
GPU accelerated, 173

combat level, 168
creating and using, stages of, 169, 170
debugging and visualizing, 175
enemy threat level, 168
gameplay code, 169
GAR (see Grid activity report (GAR))
querying, 175
RTS games, 168
storing

grid, 169, 171
infinite, 171
representations, 172
sparse grids, 171

updating
continuous, 174
event-based, 173–174
static, 174

Integrating third-party tools, 77
Integration, 63–64

254 ◾ Index

Interactions
player and control inputs, 8
steps

attempt, 8
condition, 8
execution, 8
reaction, 9
result, 9

Interactive media, 2
Inverse-Z transform, 33–34, 37
ITU-R BS.775-3 reference loudspeaker

arrangement, 231

J

Jazz music, 235–236, 249

K

Kosma, J., 236

L

Lackey, P., 182
Line, 72
Line selection, 86
Listeners

frame of reference, 126–127
geometry, 125–126
multiple, 127–128

Localization, 82, 88
Local-player-only audio, 131
Local space transform, 123

M

McLeran, A., 119–132
Metronome, 237
Mitchell, J., 167–179
Molar concentration of water, 58
Monolithic designs, 80
Moog ladder filter

coding, 48–49
constant Q, 47
digital recreation, 47
discrete sample rate, 47
feedback delay fix, 48
schematic, 47

Movement
clothing sounds, 7
footsteps, 8

Multi-locale client connections, 88–89
Multiverse, 83–84
Music, 130–131
Musician recipes

bass, 243–245
design considerations, 240–241
designing the conductor, 239–240
drummer, 241–243
layers, 239
the soloist, 246–248
spacey chimes, 245–246

Music improvisation
foundations, lightning round

clock, 237–238
sequencers, 238–239
sound generator, 236–237

jazz, 235–236, 249
musician recipes, 239–248

N

Network considerations
prediction and client-only VO, 87
reliability, 87–88

Network reliability, 87–88
Neumann, T., 81–89, 182
Newton, I., 122
Newton’s method, 66–67
Non-linear music, 236
Nyquist limit, 33

O

Object space transform, 123
Object transform, 123
One-shot sampler, 236
On-screen debug visualization

circular min and max, 160, 161
debug rendering algorithm, 158–160
rectangular min and max, 160, 161, 162
shape

circular, 156, 157
rectangular, 156, 158

unreal engine, 160–164
Ownership semantics, 105

Index ◾ 255

P

Panning position, 144
Particle effects, 5–6
Patch cable

abstraction (see Abstractions)
amplified/resonating, 94
C++ audio abstractions, 95
complicit, 94
first-pass abstractions, 95–97
inputs and outputs, 99–108
mixer, 108–111
mixer splitter, 114–116
sandboxes, 94
splitter, 111–114

Patch input, 105–108
Patch output, 102–105
Physics, 6–7
Pipeline, 72
Pole-zero map, 32–35
Predictive models, 233
Pythagoras theorem, 23

R

RC network, see Resistor capacitor (RC)
network

Realization, 137–138, 140–141
Real voice, 135
Real voice pools, 135–136
Rectangular distances, 154–156
Region thresholds, 177–178
Relaxation frequency, 58
Resistor capacitor (RC) network

coding, 43–44
DI, 42, 43
fast ex implementation, 44–45
low-pass into analog buffer, 42

Resonance
concept, 46
Moog ladder filter, 47–49

Robert Bristow-Johnson’s cookbook
digital Butterworth filters, 40
inverse-Z transform, 40
low-pass magnitude plot vs. analog

cascade, 41
parametric equalizer band, 41
Q-factor, 40

Root finding
Newton’s method, 66–67
trigonometric solver, 67

S

Sandboxes, 94
Saturation vapor pressure, 58
Screen-space coordinate system, 147–149,

151
Screen-space distance algorithm

pixels, 148–149
range, 149–151
using wrong camera, 151–153

Screen-space distance attenuation
action RPGs, 145–146
algorithm, 148–153
challenges, 144
converting to, 147–148
meaning of, 146–147
on-screen debug visualization,

156–164
rectangular distances, 154–156
review, 144–145
sound designer’s intention, 146
steps, 153–154
third-person camera setup, 144, 145

Self-interpolating lookup table, 45
Sequencers, 238–239
Server-based voice system, 84
Server workflow, 84–85
Signal processing, 27
Single emitter approach, 231
Singleton systems, 129–130
Smith, J., 48
Software development, 80
Somberg, G., 143–165, 181–203
Sonification, 134–135
Sound bed, 4
Sound effect categories

audio designers and
programmers, 2

big three, 3–4
characters

interactions, 8–9
movement, 7–8

feedback, 9–11
interactive media, 2

256 ◾ Index

Sound effect categories (cont.)
the world

environment, 4–5
particle effects, 5–6
physics, 6–7
weather, 5

wrap-up, 11–12
Sound generator, 236–237
Spatial partitioning algorithms, 233
Split screen

arrangements, 120
and audio engines (see Audio engines)
CPU and GPU resource point, 120
frustum/distance-based culling, 120
game engine, 120
graphical quality, 120
3D geometry, 121–125

Spread, 208, 216–218
Stilson, T., 48
Stimulus, 82, 84–85
Stimulus-driven server authoritative voice

system
anti-cheat efforts, 89
client workflow, 85–86
line selection, 86
multiplayer game, 89
network considerations, 86–88
purpose of, 83–84
server workflow, 84–85
single-player offline game, 82
terminology, 82
voice line triggered gameplay and

multi-locale client connections,
88–89

T

Taylor, N., 51–67, 205–233
Taylor series, 44
Threads, 99
3D geometry

frames of reference, 121–123
frames of reference using

transforms, 125
math of transforms, 123
reversibility, 123–125

Tight vs. wide notch, 37
Time-based rules, 139

Torchlight 3, 182, 183, 185–188
Total attenuated direction, 206
Transformations

inverse, 125
linear, 123
rotation, 123, 124
scalar, 124
translation, 123, 124

Transform matrix, 123
Trigonometric solver, 67
Triple point temperature, 58

U

Unique-sounding element, 7
Unit circle, 33
User interface audio, 131

V

VFX compositing pipelines, 116
Video gaming, 120
Virtualization; see also Voice management

reviving the dead, 137
rule building, 138–139
virtual forest, real trees in, 137–138
virtual pool rules, 139–141

Virtual pool rules
distance-based rules, 139–140
evaluation, stages of, 139
realization, 140–141
time-based rules, 139
voice stealing, 140
volume-based rules, 140

Virtual speakers, 225–227
Virtual voice, 135
Virtual voice pools, 136–137
Voice line triggered gameplay, 88–89
Voice management; see also Virtualization

dynamic pool allocation, 142
need for, 133–134
real voice pools, 135–136
runtime asset caching, 141–142
single cap trap, 135
sonification, 134–135
virtual voice pools, 136–137

Voice pipelines
definitions, 72

Index ◾ 257

design
automation, 75–76
disaster recovery/revision control,

76–77
expecting the unexpected, 74
integrating third-party tools, 77
platform agnostic, 75

implementation
deployment, 78
error handling, non-technical

people, 78–80
permanent vs. temporary fix, 80

requirements, 73–74
voice in-game, 71–72

Voices, 72, 82, 136–137
game voice over, 82
management, 133–136, 141–142
pipelines, 72, 75–80
real voice, 135–136
server-based voice system, 84
stealing, 140
stimulus-driven server authoritative

system, 82, 85–89
Voice stealing, 140
Volume-based rules, 140
Voxel emitters

applications, 2106
5.1 arrangement, 225–232

attenuation range and voxel size,
213–214

close to zero, 214–216
components, 206, 207
configuration, 214, 215
debugging, 219–220
distant only weight function, 219,

220, 222
implementation, 209–211
the iterator, 211–213
near field and spread, 216–218
preliminary, 206–208
properties, 206
weight functions, 220–222
z axis, 222–224

W

Weather, 5
Weight functions, 220–222
Wind gusts, 4
World space transform, 122, 123, 126
World transform, 122

Z

Z-plane design method, 31, 32

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Acknowledgments
	Editor
	Contributors
	Chapter 1 Sound Effect Categories
	1.1 Preamble
	1.1.1 Interactive Media
	1.1.2 The Big Three

	1.2 The World
	1.2.1 Environment
	1.2.2 Weather
	1.2.3 Particle Effects
	1.2.4 Physics

	1.3 Characters
	1.3.1 Movement
	1.3.2 Interactions

	1.4 Feedback
	1.4.1 Menu
	1.4.2 Interface
	1.4.3 Experience

	1.5 Wrap-Up
	1.5.1 Sound Effects Category Check List

	1.6 Conclusion

	Section I: DSP
	Chapter 2 Complex Numbers: A Primer for DSP Programming
	2.1 Introduction
	2.2 Implementing Incremental Phase
	2.2.1 Resistance Is Real; Reaction is Imaginary
	2.2.2 The Voltage Before the Load
	2.2.3 The Voltage After the Load

	2.3 Implementing Geometric Growth
	2.4 Combining Incremental Phase with Geometric Growth
	2.5 Notation Used by DSP Programmers
	2.6 Conclusion

	Chapter 3 Building Dynamic Analog-Style Filters: Bi-Quadratic Cascades vs Digital Integrator Cascades
	3.1 Introduction
	3.2 The Infinite Impulse Response (IIR) Filter
	3.2.1 Pole-Zero Maps, the Z-Plane, the Unit Circle, and the Inverse-Z Transform
	3.2.2 Example: Math to Create a Notch Filter from Two Poles and Two Zeros
	3.2.3 Going Beyond a Bi-Quadratic Filter
	3.2.4 Robert Bristow-Johnson’s Cookbook
	3.2.4.1 Digital Butterworth Low-Pass Bi-Quadratic Coefficients Derived from Analog Butterworth Control Parameters

	3.3 Digital Implementation of a Resistor-Capacitor (RC) Network
	3.3.1 The Digital Integrator (DI) Filter
	3.3.2 Example Code
	3.3.3 A Fast e[sup(x)] Implementation

	3.4 Building Standard Butterworth Filter Shapes with DI Networks
	3.4.1 Butterworth Low-Pass Filter
	3.4.2 Butterworth High-Pass Filter
	3.4.3 Butterworth Band-Pass and Notch Filters

	3.5 Dealing with Resonance
	3.5.1 The Concept
	3.5.2 The Moog Ladder Filter Example
	3.5.2.1 Why the First Thing People Try Doesn’t Work Quite Right
	3.5.2.2 The Feedback Delay Fix
	3.5.2.3 Example Code

	3.6 Conclusions
	References

	Chapter 4 Modeling Atmospheric Absorption with a Low-Pass Filter
	4.1 Introduction
	4.2 Motivations
	4.3 Review
	4.4 Extreme Ranges
	4.5 A Look at the Low-Pass Filter
	4.6 Maths and Code
	4.6.1 Extra Vocabulary
	4.6.2 Math
	4.6.3 API
	4.6.4 Helper Functions
	4.6.5 Implementation

	4.7 Integration
	4.8 Future Work
	Appendix A: Absorption Coefficient
	Appendix B: Root Finding
	4.B.1 Newton’s Method
	4.B.2 Trigonometric Solver

	References

	Section II: Voice
	Chapter 5 Software Engineering Principles of Voice Pipelines
	5.1 Introduction
	5.2 Definitions
	5.3 Defining Requirements
	5.4 Design
	5.4.1 Expecting the Unexpected
	5.4.2 Platform Agnostic
	5.4.3 Automation
	5.4.4 Disaster Recovery/Revision Control
	5.4.5 Integrating Third-Party Tools

	5.5 Implementation
	5.5.1 Deployment
	5.5.2 Error Handling for Non-technical People
	5.5.3 Nothing More Permanent than a Temporary Fix

	5.6 Conclusion

	Chapter 6 A Stimulus-Driven Server Authoritative Voice System
	6.1 Introduction
	6.2 Clarifying Terminology
	6.3 The Purpose of a Server Authoritative Voice System
	6.3.1 Playing in a Multiverse

	6.4 Server Workflow
	6.4.1 Collecting and Rating Stimuli

	6.5 Client Workflow
	6.6 Line Selection
	6.7 Network Considerations
	6.7.1 Prediction and Client-Only VO
	6.7.2 Network Reliability

	6.8 Voice Line Triggered Gameplay and Multi-Locale Client Connections
	6.9 Conclusion

	Section III: Audio Engines
	Chapter 7 Building the Patch Cable
	7.1 On Patch Cables
	7.2 C++ Audio Abstractions
	7.3 First-Pass Abstractions
	7.4 The Patch Cable Abstraction
	7.5 Patch Inputs and Outputs
	7.5.1 Circular Buffer
	7.5.2 Patch Output
	7.5.3 Ownership Semantics
	7.5.4 Patch Input

	7.6 Patch Cable Mixer
	7.7 Patch Splitter
	7.8 Patch Mixer Splitter
	7.9 Patch Cable Abstraction Applications
	7.10 Conclusion
	References

	Chapter 8 Split Screen and Audio Engines
	8.1 Introduction
	8.2 3D Geometry
	8.2.1 Frames of Reference
	8.2.2 The Math of Transforms
	8.2.3 Reversibility
	8.2.4 Changing Frames of Reference Using Transforms

	8.3 Listener Geometry
	8.4 Listeners as a Frame of Reference
	8.5 Multiple Listeners
	8.6 Counterintuition: Playing Once
	8.6.1 Multiple Triggering
	8.6.2 Clipping and Phasing
	8.6.3 Significantly Extra CPU Costs

	8.7 Drawbacks and Edge Cases
	8.7.1 Boundary Flipping
	8.7.2 Singleton Systems
	8.7.3 CPU Costs
	8.7.4 Competitive Multiplayer

	8.8 Additional Audio Considerations
	8.8.1 Music
	8.8.2 Local-Player-Only Audio
	8.8.3 User Interface Audio

	8.9 Rendering Twice: Dual Output
	8.10 Conclusion
	References

	Chapter 9 Voice Management and Virtualization
	9.1 The Need for Voice Management
	9.2 Sonifying a Forest
	9.3 The Single Cap Trap
	9.4 Real Voice Pools
	9.5 Virtual Voice Pools
	9.6 Reviving the Dead
	9.7 Real Trees in a Virtual Forest
	9.8 Rule Building
	9.9 Virtual Pool Rules
	9.9.1 Time-Based Rules
	9.9.2 Distance-Based Rules
	9.9.3 Volume-Based Rules
	9.9.4 Voice Stealing
	9.9.5 Realization

	9.10 Runtime Asset Caching
	9.11 Dynamic Pool Allocation
	9.12 Conclusion

	Chapter 10 Screen-Space Distance Attenuation
	10.1 Introduction
	10.2 Distance Attenuation Review
	10.3 The Problem with Action RPGs
	10.4 The Meaning of Distance
	10.5 Converting to Screen-Space
	10.6 Screen-Space Distance Algorithm
	10.6.1 Pixels Are Not Meaningful
	10.6.2 The Range Is Too Small
	10.6.3 Using the Wrong Camera

	10.7 Next Steps
	10.8 Rectangular Distances
	10.9 On-Screen Debug Visualization
	10.9.1 Describing the Shape
	10.9.1.1 Circular Shape
	10.9.1.2 Rectangular Shape

	10.9.2 Debug Rendering Algorithm
	10.9.3 Example Code for Unreal Engine

	10.10 Conclusion
	References

	Chapter 11 Under the Influence: Using Influence Maps for Audio
	11.1 Introduction
	11.2 How Are IMs Useful for Audio?
	11.3 Storing Influence Maps
	11.3.1 Grid
	11.3.2 Sparse Grids
	11.3.3 “Infinite” Influence Maps
	11.3.4 Combining Different Representations

	11.4 Building the Maps
	11.4.1 Adding Points
	11.4.2 Adding Points across Cell Boundaries
	11.4.3 Adding Radii
	11.4.4 GPU Accelerated IMs

	11.5 Updating
	11.5.1 Event-Based
	11.5.2 Continuous
	11.5.3 Static

	11.6 Querying
	11.7 Debugging and Visualizing
	11.8 Feature Case Study: Grid Activity Report (GAR)
	11.8.1 Feature Design
	11.8.2 Feature Implementation
	11.8.2.1 Region Thresholds
	11.8.2.2 Cluster Analysis
	11.8.2.3 Cluster Tracking and Thresholding

	11.9 Conclusion
	References

	Chapter 12 An Importance-Based Mixing System
	12.1 Managing the Chaos
	12.2 The Importance of Context
	12.3 Importance System Algorithm
	12.3.1 Assign Each Object an Importance Score
	12.3.2 Sort All Objects by Score
	12.3.3 Place Sorted Objects into Importance Buckets
	12.3.4 Apply Effects to Sounds by Bucket
	12.3.5 Importance Changes over Time

	12.4 Example Implementation
	12.4.1 Calculating Importance Scores
	12.4.2 Data Setup
	12.4.3 Importance Bucket Assignment
	12.4.4 Querying the Importance Bucket
	12.4.5 Importance State
	12.4.6 Applying Filters Based on Importance
	12.4.7 Assigning Importance Buckets
	12.4.8 Debug Display

	12.5 Conclusion
	References

	Chapter 13 Voxel-Based Emitters: Approximating the Position of Ambient Sounds
	13.1 Introduction
	13.2 Preliminary
	13.3 Voxel Emitter Implementation
	13.4 The Iterator
	13.5 Attenuation Range and Voxel Size
	13.6 Close to Zero
	13.7 Near Field and Spread
	13.8 Debugging
	13.9 Weight Functions
	13.10 Support Beyond Stereo: Z Axis
	13.11 Support Beyond Stereo: 5.1 and More
	13.12 Final Notes
	References

	Chapter 14 Improvisational Music
	14.1 All That Jazz
	14.2 Music System Foundations, Lightning Round
	14.2.1 Sound Generator
	14.2.2 Clock
	14.2.3 Sequencers

	14.3 Musician Recipes
	14.3.1 Designing the Conductor
	14.3.2 Musician Design Considerations
	14.3.3 Funky Drummer
	14.3.4 All About That Bass
	14.3.5 Spacey Chimes
	14.3.6 The Soloist

	14.4 Wrapping Up
	References

	Index

