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CHAPTER 1
INTRODUCTION

Computational physics sits at the juncture of arguably three of 
the cornerstone subjects of modern times, physics, mathematics, 
and computer science. Many see it as sitting between theoretical 
physics, where there is a focus on mathematics and rigorous proof, 
and experimental physics, which is based on taking observations and 
quantitative measurements. The computational physicist performs 
numerical experimentation within the confines of the computer 
environment, applying mathematics to both simulate and examine 
complex models of physical systems. Just as the theoretician needs to 
master analytical mathematics, the experimentalist requires a work-
ing knowledge of laboratory apparatus, so does the computational 
physicist need to know about numerical analysis and computer pro-
gramming. Any of these skills require (significant) practice to master 
but it is up to the physicist to know how to use them to interpret and, 
ultimately, understand the physical universe. 

1.1  GETTING STARTED WITH CODING

You need two things to produce a computer program:

1.	A text editor in which to write all your code in whatever 
language you choose.

2.	A compiler to convert the code you have written into 
machine language (binary executable).
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2  •  Computational Physics, 2/E

There are two methods by which you can write computer 
programs. The first method is via command-line control whereby 
you explicitly type in commands to compile a source code file written 
in a text editor. The second method uses what is called an Integrated 
Development Environment (IDE) that is essentially a compiler 
and text editor wrapped up into one neat application, for example, 
Microsoft’s Visual Studio. I would suggest trying out different text 
editors and IDEs to discover what suits you best. If your university 
uses Unix-based operating systems and you find it easier to code on 
those machines but do not want to splash out either on a Unix based 
machine (though the Raspberry Pi is reasonably priced) at home or 
make your Windows PC dual-booting (it can run either a Unix OS 
or Windows OS on one machine) an alternative is Cygwin. Cygwin 
creates a Unix type feel on a Windows PC and it’s free to download 
and install. Cygwin also comes with many different optional libraries 
and programs that are extremely useful to scientific programming, 
including the linear algebra package (LAPACK) library and Octave, 
a free alternative to MATLAB. If you can get your hands on a stu-
dent version of MATLAB, I recommend you use it as it is a power-
ful programming tool and can be used to find quick programming 
solutions to problems, or as a first step towards a solution. A further 
alternative is to use a Virtual Machine. 

For a list of freely available text editors just use your favorite 
search engine. Emacs is a popular programming text editor and is 
the default editor on most Unix-based machines; Cygwin also con-
tains the GNU version of Emacs. On Windows you could use Note-
pad, however, it does not have any of the functionality of text editors 
specifically designed for coding. For example, programming lan-
guages have certain keywords reserved that have special meaning, 
for example, if, for, and while to name but a few. Once written these 
keywords are automatically distinguished from the rest of the text in 
some way, different color, different font, bolded, and so on. In Note-
pad all you will get is the same black text on a white background, 
which is not useful for reading and debugging the code you have 
written. Notepad++ is a good (and free) programming text editor for 
Windows that supports multiple languages.

If you prefer to use IDEs, there are a number available that are 
free to use. Some of these only support one language, for example, 
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Dev C++, whereas others support multiple languages, for example, 
NetBeans, Code::Blocks or Eclipse. Microsoft do a “Community” 
version of their Visual Studio IDE which is free to use, as is the argu-
ably more powerful Visual Studio Code.

Most of the code that accompanies this book has been written 
using the C++ programming language (C++ 11 onwards), using the 
Eclipse IDE for C/C++ Developers. I will not review the merits of 
the different programming languages here as the differences only 
really come into their own once you start to consider high-perfor-
mance computing, Web applications, game programming, or other 
more specific applications. The basics of programming are suffi-
ciently covered using just one language. That said, please be aware 
of different programming languages and how they can be used to 
produce different applications. For a challenge, you could convert 
the programs in this book into another language.

The next section gives a crash course in using the Linux com-
mand line. 

1.2 � GETTING TO KNOW THE LINUX  
COMMAND LINE

On modern operating systems a terminal emulator is a program 
that allows the use of the terminal in a graphical interface. In a Linux 
system, the shell is a command-line interface that interprets the 
user’s commands and passes them on to the underlying operating 
system. There are several shells in current use, such as the Bourne-
Again shell (bash) or The C shell (tcsh), and each has its own set of 
features and operations, but all provide a means to interact with the 
machine.  

When you open a new terminal emulator window the command 
prompt will be at the home directory (synonymous with “Folder” 
on Windows) of the current user. The information displayed in the 
command prompt is customizable by the user but typically consist of 
the user’s username, the host machine name, the current directory, 
and is ended by the prompt symbol. For an example of what this 
looks like please see Figure 1.1 that shows a macOS terminal.  
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4  •  Computational Physics, 2/E

FIGURE 1.1:  Example of a Linux terminal emulator.

Commands can be issued after the command prompt by typing 
the name of an executable file, which can be a binary program or 
a script. There are many standard commands that are installed as 
default with the operating system that allows for system configu-
ration, file system navigation, creation of new directories and files, 
installing third party programs, among other operations.

A useful command to start off with is pwd. It displays the full 
path to the current, working directory and can be useful if we ever 
get lost in the directory structure. The ls command will list, on the 
terminal, all the files and subdirectories of the current directory. 
Commands can also take arguments and options (or flags) that can 
affect their behavior. For instance, ls -l will nicely format the files 
and subdirectories with additional information such as attributes, 
permissions, sizes, and modification dates. The cd command is typi-
cally passed an argument of the directory to which we would like 
to navigate. For example, cd foo/bar will navigate to the subdirec-
tory bar of the directory foo, assuming foo is a subdirectory of the 
current directory. The command cd alone will navigate us back to 
the user’s home directory. The Linux file system has two symbols 
reserved to represent the current directory and the parent directory 
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namely “.” and “..,” respectively. Issuing cd . does not do much but 
cd .. will take us up one level into the parent directory. Using our 
example if we were in the bar subdirectory and we issued cd .. our 
current directory would now be foo. All these commands and more 
can be found on the infamous Linux Man pages (linux.die.net/man/ 
or man7.org/linux/man-pages/index.html) that outline all the pos-
sible options and arguments for these commands take. The man 
pages are daunting at first but once you learn how to read them 
offer a particularly useful resource when discovering or reusing 
various Linux commands.

The following table summarizes some of the more common 
commands you will likely use: 

Command Examples of use

mkdir mkdir foo 
creates a directory called foo in the current directory

mkdir foo/bar 
creates a directory called bar in the directory foo

cd cd 
changes the current directory to the home directory

cd bar 
changes the current directory to subdirectory bar

cd .. 
changes the current directory to one level up

rmdir rmdir foo/bar 
removes directory bar from directory foo, if bar is empty

ls ls 
lists directories and files in current directory

ls foo
lists the directories and files in subdirectory foo

pwd pwd 
displays current location within the tree

touch touch foo.log
if foo.log does not exist creates file “foo.log” in the current 
directory, else modifies the file’s timestamps

rm rm foo.log
deletes the file “foo.log” in the current directory
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1.3  BONJOUR TOUT LE MONDE

This section explains the basics of C++ syntax and structure. If 
you are already familiar with the C++ language, then please skip this 
section. A more in-depth introduction to the C++ language can be 
found in the Appendix. 

The Hello World program is typically the first one that anyone 
learning a programming language gets to write. It gives us the basic 
syntax of a particular language and how to output something to the 
terminal or console. To begin let us first create a suitable directory 
structure to hold our code. Start by creating a “root” directory for 
our project called CompPhys in your home directory. Change into 
our newly created directory and create a subdirectory called Hello-
World. Change into that directory and create the file helloworld.cpp.  
We now want to edit that file to fill it with the ground-breaking code 
for our hello world program. 

Open the helloworld.cpp file in your text editor (or IDE) of 
choice and type the following:

// Helloworld program – displays message on stdout
#include <iostream>
int main () {
	 std::cout << “Hello World” << std::endl;
	 return 0;
}

Let us examine this line-by-line. At the very top, we have a com-
ment line. These are either started using a double forward slash for 
a single-line comment or for a multiline (block) comment anything 
between “/*” and “*/” is treated as a comment. Comments are impor-
tant. They should be used to explain the intention of code where this 
is not obviously apparent from the code itself. I urge you to use com-
ments liberally; can you remember what you were doing yesterday, 
last week, last month, last year?

The next line down is how we include header files in source 
files. The hash symbol “#” is used to send instructions or directives 
to the pre-processor that is run before the compiler. In this case, 
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Introduction  •  7

we are using the directive include to insert the contents of the file 
iostream.h at this point in the source file, and that’s all it does. Note 
that iostream.h is a standard library header and as such we can drop 
the dot “h” extension from the filename when including it in source 
code. The angled brackets tell the preprocessor to look for the file in 
the standard external locations and implementation specified include 
directories only. A pair of double quotes around an included file tells 
the pre-processor to check the local directory of the source code first 
before checking the other locations. Generally, angled brackets are 
used for standard and system headers, and double quotes are used 
for programmer-defined headers. 

White space is typically ignored by the compiler but is useful to 
humans by writing code that is easier to read. Having at least one 
blank line between the header include statement(s) and the start of 
the main function definition nicely separates the different parts of 
the source code.

The main function is the entry point to our program. It is this 
function that is called by the shell to process the code therein. As 
such it must be defined as a function that returns an integer value 
and the keyword int is that which represents the integer type in C 
and C++. The value of the returned integer indicates the “exit sta-
tus” of the program; it is a convention that zero indicates success and 
that any other value indicates failure.  The empty parenthesis tells 
the compiler that the main is a function declaration. Without them 
main would just be an integer variable declaration. We will discuss 
the different types of declarations later on. 

The curly braces contain the definition of the main function and 
give us our first idea of scope. All that is contained within the curly 
brackets is scoped to the main function, but more on scope later. We 
also call the contents between curly brackets a block; it is a block 
of statements. Statements are the instructions we ask of the com-
puter in order to perform particular tasks. For example, int x = 1; 
states that we wish to create an integer “x” and initialize it with the 
value of one. Statements are terminated using a semicolon that tells 
the compiler that we have reached the end of the current statement 
and will be beginning a new statement unless we have reached the 
end of the return statement. It is quite common amongst beginner 
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C/C++ programmers to forget to use the semicolon to terminate a 
statement (and for more experienced programmers for that matter). 
Fortunately, most IDE’s worth their salt will highlight a syntax fault, 
such as a missing semicolon, in the source code editor. If not, the 
compiler will definitely “highlight” the error for sure. 

The first statement in our Hello World program uses the C++ 
standard output stream object std::cout in conjunction with the out-
put stream operator “<<”  to send to the standard output (typically 
the terminal or console) the string sequence Hello World. Here I 
have introduced many new concepts namely streams, objects, and 
operators which we will get to in due course. All you need to know 
for the present is that this is how we can output data from a C++ 
program. Note that output from a program is stored in a data buffer 
and will only be printed on the terminal once that buffer is full, or 
the output is “flushed.” A flush means that a program will produce 
a line of output immediately. The std::endl is a stream “manipula-
tor” that inserts a newline character into the output sequence and 
flushes the sequence. 

As an aside the :: (double colon) is called the scope resolution 
operator. It is used to resolve the names of code elements (classes, 
functions, variables) that are contained in different namespaces. For 
example, cout and endl are scoped to the namespace “std,” short 
for standard. If we had omitted the namespace and scope resolu-
tion operator in the Hello World program, we would have received 
a compilation error on building the binary; remove the namespace 
and scope resolution operator from cout and endl to see the specific 
compilation error. The point of the namespace feature in C++ is 
to avoid naming clashes between various code elements, which is 
especially useful when developing large projects that might involve 
several third-party libraries. A more detailed discussion of the use of 
namespaces can be found in the Appendix.

The return statement defines the exit point of the function. 
In this case, we are returning the integer value zero to the calling 
environment (the shell) to indicate the successful execution of the 
program. At this point a program will flush all of its output buf-
fers meaning any remaining data will be printed to the terminal; in 
our case, the buffer is already empty due to the use of the std::endl 
stream manipulator. 
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The code now has to be compiled into binary so that the 
computer can read and execute the instructions. In order to do this, 
we need a compiler. Most Linux distributions will come with Gnu’s 
C++ compiler installed as standard. To check that it is installed, and 
discover what version you have, type on the command line:

g++ -v

If the terminal output reads something along the lines of “g++ 
command not found” you will need to install the compiler; refer to 
your specific OS manual. Once you have confirmed the installation 
of the compiler, ensure you are in the same directory as your “hel-
loworld” source file and type the following at the prompt:

g++ helloworld.cpp -o helloworld

All being well the compiler will have translated your source code 
contained within the helloworld.cpp file and produced a binary or 
executable file called “helloworld.” The “-o” flag tells the compiler 
to name the executable as the text you specify after the flag. If you 
do not give an output name, the file gets saved as “a.out” by default. 
To run this program type at the command prompt

 ./helloworld

and it will print to the command terminal the text “Hello World.” 
Note that if you are doing this in Windows system, binary executa-
bles are given a “.exe” extension.

We can now edit our source code to make the program more 
sophisticated, though only a little. Open the helloworld.cpp source 
file and modify the code as follows:

// Helloworld program – displays message on stdout
#include <iostream>
int main (int argc, char * argv[]) {
	 if (argc < 2) {
std::cerr << “usage: ” << argv[0] << “ <name>”;
		  return -1;
}
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10  •  Computational Physics, 2/E

	 std::cout << “Hello ” << argv[1] << std::endl;
	 return 0;
}

Our program can now access the so-called command-line argu-
ments, the parameters that are given on the command line after the 
program name when it is run. The argc variable contains the total 
number of command-line arguments, and the individual values of 
those arguments are available as strings accessed via the array argv. 
Note that the program name is counted as a command-line argu-
ment and is accessed as the first entry in the array, argv[0]; array 
indexing starts at zero for both C and C++. Compile this modified 
code and have a play with the command line arguments to gain an 
understanding of how it works. Note the use of a new stream object 
std::cerr to print an error message for when we do not pass sufficient 
arguments to the program. When a program is started by the shell 
it normally gains three open file descriptors: descriptor 0 is stan-
dard input, descriptor 1 is standard output, and descriptor 2 is the 
standard error. These descriptors are usually connected to the shell 
terminal that started the program but can be redirected to sepa-
rate locations. As you may have guessed std::cout uses the standard 
output descriptor and std::cerr uses the standard error descriptor. 
The standard (input) stream object std::cin uses the standard input 
descriptor and can be used as an interactive means to obtain input 
from the user. Feel free to modify the Hello World program to use 
std::cin in some way; I find cppreference.com a useful resource.

What you have just done is a simple development cycle. Soft-
ware development generally goes through three main phases:

1.	Edit,

2.	Compile, and

3.	Execute.

Editing means writing or modifying the program contained in a 
text file using a text editor or IDE.

Compiling means translating the program to executable code, at 
this phase the code is checked for syntax errors and if found these 
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are flagged for additional editing. We may also get linker errors at 
this stage.

Executing the program means running the code on your 
machine. At this phase, we may get logical errors or errors with the 
semantics (the meaning) of our code. These are known as runtime 
errors, and it is the process of debugging that removes these errors 
or bugs.

As you write computer programs in C++ and other languages, 
you will repeatedly edit, compile, and run programs. Sometimes the 
compiler will give you error messages. Often the messages can be 
quite cryptic. Just as trainee doctors learn best by giving known dis-
eases to patients it is a good idea to make some deliberate errors, to 
get a feel for what the errors that you will encounter in the future 
might mean. This knowledge of deliberately inflicted “diseases” and 
observing their “symptoms” should help you diagnose future errors 
more effectively.

Errors in the semantics of your code can be quite insidious, 
especially if they cause undefined behavior; it is these runtime errors 
that we refer to as bugs. For instance, some piece of code complies 
with no syntax errors, linker errors, or any warnings. The code also 
runs with no logical errors and exits successfully. But the results you 
get are garbage. This will be highly likely due to a misunderstanding 
of the programmer as to how a particular feature of the language 
works, or a mistake in the use of a third-party library. Whatever 
the problem is, to fix the bug, you will first need to find its location 
within your code. To do this we step through the code line-by-line 
and observe how the data contained in the program variables change 
with each instruction. It is this stepping and observing a process that 
is called debugging. Most Linux distributions will come with the 
GNU debugger tool installed, invoked using gdb on the command 
line, and I highly recommend you familiarize yourself with its use. 
Note that this is an extremely brief exposition of debugging and to 
go into its details is beyond the scope of this book.

Just a quick word on nomenclature. A “program” can refer 
either to the source code contained in a text file or the binary exe-
cutable file itself, they are semantically the same thing. The source 
code is readable by humans, the binary is readable by machines. An 
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instance of a running program is called a “process” such that you can 
have several processes running the same program. 

1.4  THE REST OF THE BOOK 

Each chapter describes an individual topic within the gen-
eral subject area of computational physics. Where there is a cross 
over between topics this has been explicitly referred to in the text. 
Throughout the remaining chapters, there are frequent references 
to C++ files that contain example programs for your study and use. 
These can be found on GitHub, an online repository for all sorts 
of different coding projects and applications, at the following URL: 
github.com/DJWalker42/laserRacoon.

These source code files come with GNU Makefiles such that 
compiling the code can be done by just typing “make” in the appro-
priate directory. These were developed on Mac OSX so contain 
variables specific to that operating system. You will have to modify 
some of the variables if you have a different OS. For more informa-
tion on the GNU Makefile framework go to: gnu.org/software/make/
manual/make.html.

The laserRacoon library makes use of OpenCV for a “visualiza-
tion” module. If you do not have OpenCV installed on your system 
you can either use your install manager to get a copy (the library has 
been tested with OpenCV3) or visit their official site, opencv.org, for 
more options. If you cannot get OpenCV or would prefer not to use 
the visualization module then you will have to remove the related 
header and source files from the library (Visualise.h and Visualise.
cpp) and remove any use of that module from the programs pro-
vided (anything using namespace phys::visual). Note that OpenCV 
is not really plotting software; OpenCV is an open-source library that 
performs image processing, video analysis, object and feature detec-
tion, camera calibration, 3D reconstruction, among other functions. 
At the time of writing the laserRacoon library, I needed a built-in 
way of visualizing the data being produced by the C++ programs.  
I had some experience of using OpenCV so challenged myself to 
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make it able to plot data. The Viewer class does just that but know 
that it is not a fully optimized class and may contain bugs that have 
yet to be discovered (but that’s part of the fun of coding, right?).  

Please note that the laserRacoon code has been designed by me 
and, as such, it should NOT be taken as gospel. I have taken the 
utmost care to make the classes, functions, and algorithms perform 
correctly but they have not been rigorously tested. It certainly could 
be redesigned to be optimized for performance or made more user 
friendly, I am not precious about it. Use it, abuse it, change it, that 
is how you learn. The code in the repository will only get updated if 
major bugs are found.

The code for the Fortran version of this book can also be found 
on the GitHub repository and may lend additional insight into the 
topics we discuss in this book. Indeed, I have not (directly) con-
verted the Fortran code written for Chapter 9 on partial differential 
equations into C++ code; this is left as a challenge for the reader 
(and partly because we all have time constraints).

The chapters are arranged to provide some logical flow to the 
exploration of computational physics, starting out with the basic 
topics such as data fitting and root finding, and building to more 
advanced techniques, such as performing Fourier transforms and 
solving partial differential equations. At the end of each chapter are 
some exercises for the reader to do. These are designed to test you 
and to get you thinking like a physicist so do not be put off if you 
find them overly difficult at first. Use the resources available to you 
to find solutions, which includes fellow students, tutors, and profes-
sors, as well as that repository of all knowledge, the Internet—do not 
forget the library also.  

In the Bibliography, you will find a guide to more general read-
ing around each of the topics discussed, including pointers to other 
introductory texts in computational physics, the C++ programming 
language, and the Linux operating system. The Appendix contains a 
more thorough crash course in the C++ language.
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CHAPTER 2
GETTING  
COMFORTABLE

2.1.  COMPUTERS: WHAT YOU SHOULD KNOW

Computers are machines that help solve complex or tedious 
numerical problems. To make the hardware perform such tasks it 
must be programmed; in other words, told what to do. Remember 
a computer program cannot think by itself and is only as clever as 
the programmer who wrote the code. Understanding the underly-
ing structure of a computer can help the programmer write smart 
code that takes advantage of that structure. For a comparison think 
about driving a car. You do not need to know how the car works at a 
component level to drive one. However, should you wish to improve 
the performance of the car, for racing, or rallying, or off-roading say, 
then you will have to know about the engine, the suspension, gear-
ing, different types of tires and fuels, streamlining the bodywork, 
and so forth. This is no different for computers. Anyone can use a 
computer, but you really need to understand the details in order to 
get the most out of it.

2.1.1  Hardware
Due to the rapid advancements in computer technology, quan-

tifying statements made in this section may well be out-of-date. 
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However, the general qualifying remarks should still hold true 
(unless some paradigm-shifting technology has been invented since).

The physical elements that make up your computer is called 
hardware and consists of several components. The motherboard 
is the large, printed circuit board that contains all the ports, plugs, 
and electronics required to make the required components talk to 
each other. The central processing unit (CPU) handles most tasks 
in the computer. The speed at which the CPU handles these tasks 
is dependent on its clock frequency measured in Hertz. A 2 GHz 
single-core processor can handle at most 2 billion operations per 
second; operations may include additions, logic comparisons, and 
memory calls among others. Before 2004, clock frequencies were 
roughly doubling every 18 months. This followed the prediction 
made by Moore in the 1960s that the transistor density on silicon 
chips would double every 18 months. However, as the power con-
sumed by the CPU goes up as the clock frequency squared, and 
with global concerns over energy usage, the frequency of the CPU is 
now capped at or around 4 GHz. The performance of computers has 
continued to increase according to Moore’s prediction using mul-
tiple core machines. At the date of writing the current commercially 
available state-of-the-art is 16 cores, with most “standard” comput-
ers having 4 cores, though that is rapidly changing to 8 cores. Multi-
ple cores allow for parallel operation, whereby tasks can be handled 
simultaneously rather than having to be performed serially. For an 
introduction to parallel programming see Chapter 12 in this book.

For the CPU to be useful it must have a place to store informa-
tion. Generally, there are several places for this information to be 
stored namely cache levels I and II (some CPUs have an additional 
third level of cache), random access memory (RAM), and storage 
either on a hard disk drive or in more modern systems on a solid 
state drive (SSD); from here onwards we will just refer to the stor-
age device as such, or simply storage. This memory system has a 
hierarchical structure whereby the caches are the fastest but small-
est memory levels and the storage is the largest but slowest memory 
level. Level I cache typically has a size of several tens of kilobytes (if 
not hundreds of kilobytes in modern CPUs) and can be accessed at 
the full processor speed. It is split into two separate areas, one for 
data and one for instructions, both required by the CPU to function. 
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Level II cache has a typical size of several megabytes and can also 
be accessed at the full processor speed. Level II cache acts as a fast 
storage area for program code or variables required by that code. 
If the level II cache is filled by program code, then the overflow 
is put into RAM. RAM typically has a size of several gigabytes but 
is accessed at slower speeds than the caches. If the RAM is filled, 
then the CPU can store information on the storage device in a place 
called virtual memory. Storage devices today are immense coming in 
at relatively conservative 100 GB all the way up to 1 TB and beyond. 
However, the communication between CPU and virtual memory is 
limited by the speed at which data can be read from and written to 
the storage device. This speed of access can be a bottleneck for pro-
grams requiring large portions of memory; this is less true for mod-
ern PCIe/M.2 SSDs that can achieve around 1.5 GB/s read/write 
speed. Typically, memory considerations only come into play if it is 
dealt with high-definition images, video, or 3D graphics. However, 
some numerical methods can produce matrices of extremely large 
size that must be dealt with efficiently for a computer to produce 
timely (and accurate) results. The rise of the graphics card some-
times referred to as a graphical processing unit (GPU) has allowed 
for the development of some very sophisticated software without the 
need to use up CPU resources.

Other parts of a computer consist of input and output devices. 
Input devices are the things with which you communicate with the 
computer, for example, the keyboard and mouse. Output devices 
are how the computer communicates with the user, for example, 
the monitor and printer. Other devices can be considered as “slaves” 
being both controlled by the computer and relaying data back to the 
computer on command, for instance, a thermostat used to keep the 
room temperature constant. 

2.1.2  Software
How do you make all that hardware do something? Computers 

are controlled using programs, referred to as software. The main 
program that is run on your computer is the operating system or 
OS. Mostly, Microsoft Windows OS of some version is used in the 
past; the latest version at the time of writing is Windows 10. Another 
widely available OS is UNIX which comes in various flavors. 
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An undergraduate will almost certainly encounter a UNIX OS called 
Linux in their computer lab.

Programs are written in what is known as high-level languages, 
for example, Fortran and C++, and are compiled into machine lan-
guage or binary via another program called a compiler. Note that 
programs such as MATLAB and Python are interpreted languages 
that are designed to run effortlessly on multiplatform machines (dif-
ferent OSs). Java is interesting in that it compiles sources into what 
is called “Byte Code,” files identified with the jar extension. Byte 
code can be interpreted by any machine that has the Java Runtime 
Environment installed.

Before you attempt any programming, please have a look at the 
following guidelines that may make your life easier:

1.	Use your universities’ or work’s resources, which includes 
those sat next to you should you be in a computer lab or in 
your office. Failing an actual person who can communicate 
at least on some level, use the Internet. If you’ve got a 
complicated problem to solve it is very likely someone else 
has solved it already, and elegantly too (though never believe 
they managed it in one go without scratching their head at 
least once, drinking a lot of caffeine-based beverages, and 
swearing on several occasions). Try not to treat their solution 
as a black box that takes your inputs and gives the desired 
outputs without at least trying to understand what the code is 
doing. There is a practical limit to everyone’s knowledge and 
if it really makes no sense to accept that it works and that, out 
there, somewhere, is someone much cleverer than you and 
you’re ok with that.

2.	Design your program first. Sit down, go to the old school with 
a pencil and paper, and write down the problem you are going 
to solve. What do you want to get as the output and what are 
going to be your inputs? Draw a flow chart if it helps. Write it 
out as pseudo-code; English phrases that mimic actual code 
and describe the program’s intended function line-by-line. 
This will, in the long run, save you time. Probably not straight 
away but practice makes perfect, allegedly. Now once this 
is done open your favorite text editor/IDE and start tapping 
away, but be aware (or beware) …
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3.	Make certain to comment on your code. As previously 
described, comments not only let others know what is 
intended with the code but also tell you what to be done. 
Comments should be clear, concise, descriptive, and written 
as understandable by the user. Do not worry if you have 
more comments than code. 

4.	Make names descriptive. This includes programs, classes, 
functions, and variables. If the program spanning is large as 
many hundreds of lines and/or several source files then it 
would be grateful to have given names that mean something. 
Additionally, many software companies will have their own 
naming convention for the various data types, structures, 
classes, and so forth that can be defined and declared in a 
program. 

5.	Do not be afraid to try something out. The worse thing 
that can happen is that your program crashes at runtime. 
Control-C starts over. Nowadays, it is very unfortunate to 
crash the entire computer but just turn it off and on again. 

Some suggest that before anything else you should check that 
the problem you want to solve is suited to the use of a computer 
to avoid wasting your time and computer resources. While this is 
a helpful tip for experienced programmers (and who have several 
higher degrees in mathematics and physics), and it is arguable that 
only after getting into this habit, it will be comfortable to write a 
computer code. Sometimes the simple problems allow to explore 
writing novel and occasionally elegant or clever code that one may 
have missed trying to tackle a more complex problem. 

2.1.3  Number Representation and Precision
As we are scientists, we will be dealing with real numbers obtained 

from measurements. During A-level physics course (or equivalent) 
teachers will likely have banged on about significant figures, round-
ing off, and the difference between precision and accuracy, when 
taking measurements from experiments. They would have found it 
bemusing that you quoted every figure on your calculator when fig-
uring out, say, the strength of gravity at the Earth’s surface using a 
free-fall technique. Using a simple stopwatch to determine the time 
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in free-fall and distanced traveled measured with a ruler the best 
you could hope to achieve is around three significant figures, lim-
ited by human reactions on the stopwatch. This precision could be 
increased using more precise equipment; for example, a computer 
control timing circuit measuring the distance using a laser. The point 
is that the precision of the results depends on the equipment used.

Computers can only express integer values exactly and are lim-
ited to a maximum integer value that can be expressed. Numbers in 
computers are stored as bits in binary format. A bit can have a logi-
cal value of 0 or 1, and strings of bits can be used to express integer 
numbers. A byte generally means a string of 8 bits, and 4 bytes, that 
is, composed of 32 bits is referred to as one word. Here, the binary 
format is referred as a big-endian, that is with the most significant 
bit written first at the left, as one would write decimal numbers. In 
contrast, little-endian puts the most significant bit at the end on the 
right, which is a natural format when performing binary addition, 
and the bits are in arithmetic order.

Take into consideration a byte or 8 bits. Each bit represents a 
power of two, starting at seven and ending with zero:

7 6 5 4 3 2 1 02  2  2  2  2  2  2  2

For example, the decimal number 6 would be represented by 
0000 0110 in binary format; the equation governing this is 

7

0

(2 )k

k

s
=

×∑

where k represents the bit location and s represents the bit value. 
Note that binary is easily read in 4-bit strings that the astute reader 
may notice leads naturally to the hexadecimal format − honest. The 
maximum integer can be expressed with 8 bits, that is 82 1 255− = .  
Note that 82 256 = numbers can be represented, one of which is zero 
hence the −1. This data type is known as an 8-bit, unsigned integer. 
Note that color images tend to be saved in this format with 8-bit 
unsigned integer values defining the three color channels (RGB) 
leading to the statement that color images have 16 million colors 
(256 × 256 × 256). A single channel image is generally referred to as 
a grayscale image, zero representing black, 255 representing white. 
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Thus, there are 256 shades of grey but this makes less of a snappy 
title for a book.

Negative integers may also be expressed using this binary for-
mat. To do this the first bit (most significant bit) is taken as the sign 
bit. This now leaves us with only 7 bits to represent a number which 
gives a maximum number of 7 2 1 127− = . However, negative num-
bers can now be formed by taking the two’s compliment of a positive 
number. To do this you first form the one’s compliment by swapping 
the ones and zeros in the number, then add one to the result. For 
instance,

6 0000 0110 1111 1001 1111 1010  6 + = ↔ ↔ =− .

Zero is still represented by all zeros in the bit locations (take the 
two’s compliment of zero and you should still get zero). Given this 
conversion what is the largest negative number we can represent in 
this format? Take the largest positive number we can represent and 
take its two’s compliment:

127 0111 1111 1000 0000 1000 0001  127+ = ↔ ↔ =−

However, note that the one’s compliment of +127 is available 
for use and, by definition, it is one less than the two’s compliment. 
Hence the largest negative number we can represent is −128. 
Note we have not lost any depth of numbers, we can still represent 

82 256 = numbers; 128 negative numbers plus 127 positive numbers 
plus 1 for the zero.

Larger numbers can be represented using larger bit stings. 
A 32-bit word length can represent a maximum unsigned inte-
ger of 322 1 4,294,967,295− =  or the signed integers in the range  
[ 31 312 , 2   1− + − ].

Computational physics would be somewhat limited if comput-
ers could only use integer numbers. We need a way of representing 
floating-point decimal numbers. To do this, we take our 32-bit word 
length and split it into three blocks. Figure 2.1 illustrates this repre-
sentation. The first block is one bit long and represents the sign of the 
number, 0 and 1 representing positive and negative values, respec-
tively. The second block, typically 8 bits long represents the exponent, 
and the third block, containing the remaining 23 bits is the mantissa.
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FIGURE 2.1:  32-bit representation of a floating-point number.

The most significant bit in the mantissa is on the left and rep-
resents 12 . − The next bit represents 22  − and so forth. To calculate 
the floating-point decimal from the 32-bit representation we use the 
following equation

( )1  2s exponent bias
floatx mantissa −= − × ×  

where s is the value of the sign bit, and the mantissa and exponent 
are the decimal values obtained from their respective binary format 
blocks. The bias is an implicit value that is included for the following 
reason. The 8-bit exponent does not contain an explicit sign bit and 
so can only represent positive numbers up to the maximum of 255. 
To circumvent this drastic limitation on floating-point number rep-
resentation an implicit bias of 127 is included in the floating-point 
calculation. The range of exponents hence becomes [ 127,  128− ]. The 
largest positive or negative number that can be represented is then 
approximately 381.7 10± × , and the smallest, not considering zero, is 
approximately 467 10−± × . However, do not confuse this number as 
the computer’s precision. The computer’s precision is governed by 
the bit length of the mantissa; the exponent just defines the range of 
representable numbers.

The machine precision is best described in terms of how the 
computer performs floating-point arithmetic. Say you have the num-
ber 5 and wanted to add 710− . Both numbers can be represented 
by the computer in floating-point notation, so far so good. To add 
them together the computer must match their exponents meaning 
that the bits in the mantissa of the smaller number get shifted to the 
right. By the time, the bits have been shifted to represent 710−  with 
the same exponent as 5 they have all gone past the least significant 
place and have been lost, in essence making 710  −  equal to zero. The 
result of the addition would be 5.
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The number 710  −  has not just been plucked out of thin air. The 
least significant bit in the mantissa has a value of 23 72 1.2 10− −= ×
(2s.f.). This value represents a kind of number resolution; it is the 
smallest discernible difference between two numbers on a computer 
using a 32-bit word length. Note that it is a relative value; if you 
take the number 62 10 2,000,000 × =  then the next discernible num-
ber as far as the computer is concerned is 2000000.1. The machine 
epsilon or precision is the unit round-off error, essentially half the 
number resolution. For example, numbers in the range 2000000.000 
to 2000000.049 would round down to 2000000.0, whereas num-
bers in the range 2000000.050 to 2000000.099 would round up 
to 2000000.1. Any result quoted from the computer should really 
include this rounding error, for example, 2,000,000 0.05± . Because 
of the machine epsilon you should always consider whether the pre-
cision you are using is fit for purpose. If your calculations involve 
extreme differences between variable values, then unit round off 
may lead to large errors.

Clearly, the precision can be improved by adding more bits to 
the mantissa. This can be done by taking bits from the exponent but 
at the expense of the range of representable numbers. The other 
way of increasing the bit length of the mantissa is to double the word 
length from 32 to 64 bits. The standard format of a double data type 
is an 11-bit exponent and 52-bit mantissa plus the sign bit. What 
should the machine epsilon be using a double precision data type? 
To check you can write a few short lines of code to calculate the 
machine epsilon for both single and double precision variables. The 
pseudo-code for this task is written as follows:

Pseudo code for the calculating the machine epsilon:
Calculate the machine epsilon for both single  
(32 bit) and double (64 bit) precision data types.
Divide a value by 2 in a loop and test the condition 
that 1 plus the value is greater than 1. Break when 
the condition is not satisfied.
Program Epsilon
!!Declare the variables you are going to use
Single	 eps_s = 1 
Double 	 eps_d = 1
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!!performs command while the condition is true	  
While( 1 + eps_s > 1 ) 
	 eps_s = eps_s/2 !!command to execute
end While
While( 1 + eps_d > 1 ) 	
	 eps_d = eps_d/2 !!command to execute
end While
!!print results to screen

output( “single machine epsilon = ”, eps_s)
output( “double machine epsilon = ”, eps_d) 
end Epsilon 

Be wary that some compilers have been written to be smart and 
will try to “help” when producing the binary (executable) output. 
For instance, a C++ program written using the pseudo-code above 
gave a result that the single and double precision were both equal to 

205.42 10−× , a precision of 64 bits. This clearly is incorrect. Changing 
the optimization flags one could managed to recover the expected 
result of 85.96 10−×  for single precision and 161.11 10−×  for double 
precision. The incorrect result is probably due to the compiler 
“helpfully’” converting the variables to extended precision that has a 
length of 80 bits, with a 64-bit mantissa. In any case, the initial result 
was clearly incorrect, and that brings us to an important point. Do 
not blindly accept what the computer outputs. If the answer looks 
wrong, then it most probably is wrong. When that guy in (A-level) 
physics class stated boldly that the strength of Earth’s gravity is two 
orders of magnitude larger than it is because that is what the calcula-
tor outputted, only to later realized that it would been using centi-
meters rather than meters.

2.2  SOME IMPORTANT MATHEMATICS

Physics describes the universe from tiniest sub-atomic particle 
to the shape of the universe itself. The language of physics is math-
ematics. However, do not confuse the two; physics is not the study 
of mathematics (and vice versa) but uses mathematics as a tool to 
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describe and interpret the observation that we make of the universe. 
Nowhere is this truer than when dealing with computers that are, at 
the most basic level, efficient number crunching machines. 

In this section, we will briefly review some fundamental math-
ematical concepts that are vital to any computational scientist per-
forming numerical analysis. 

2.2.1  Taylor Series
Brook Taylor was an English mathematician born in 1685 who 

devised an extremely useful way of approximating a function, the 
Taylor series expansion. This series expansion is arguably one of the 
most useful in mathematics and certainly within numerical analysis 
and will play a major role in much of the subject matter contained 
in this book.

The Taylor series is a mathematical technique for expressing a 
(potentially) complicated function in the form of a polynomial. The 
polynomial will have a similar value to the approximated function at 
least in some small neighborhood of a particular point. More pre-
cisely, a Taylor series is an infinite sum of power terms that represent 
a function at a single point. The summation terms are calculated 
from the values of the function’s derivatives at that point. Mathe-
matically we write

( ) ( ) ( ) ( ) ( )
2( )

2!
x a

f x f a x a f a f a
−

= + − ′′+′ +
 

	 ( )
( ) ( ) ( )

1
1( ) ( )

1 ! !

n n
n nx a x a

f a f
n n

x
−

−− −
+ +

− � (2.1)

where a is some point on x and we have used the notation that

	 ( ) df
f x

dx
′ = .� (2.2)

The last term in Equation (2.1) is the remainder or the error in 
the approximation where a xx≤ ≤ . 

Usually, functions are approximated by using a finite number 
of terms of its Taylor series. Any finite number of initial terms of 
the Taylor series of a function is called a Taylor polynomial, the 
order of the polynomial governed by the highest power left in the 
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approximation. For instance, a first ordered Taylor polynomial has 
the form

	 ( ) ( ) ( ) ( )f x f a x a f a≈ + − ′ .� (2.3)

Note the use of the approximately equals to sign as we have not 
included the remainder term here. 

Please recollect the first ordered Taylor polynomial approxima-
tion as attempting to match the local neighborhood of the function 
at the point x a= , using the function’s slope at that point. The second 
order polynomial, then, includes the curvature of the function at the 
point of interest. As more terms are added, higher ordered deriva-
tives become utilized leading to a more accurate approximation of 
the function around the point of interest. Typically, the approxima-
tion is only usefully accurate over a closed interval about the point. A 
function that is equal to its Taylor series in an open interval is known 
as an analytic function. For instance, a straight-line function with 
some non-zero gradient would be given exactly by Equation (2.3) 
and is thus analytic. 

The upper bound to the error in a Taylor polynomial can be 
estimated by analyzing the next term in the series from where we 
truncated the approximation. For example, take the Taylor series 
for the sine function taken about zero and truncated so that it is a 
seventh ordered polynomial approximation

	
3 5 7

sin( )
3! 5! 7!
x x x

x x≈ − + − . � (2.4)

The upper bound to the error is then calculated by the next term 
in the series thus 

	
9

9!
xe = ± . � (2.5)

This upper bound is ignored further, higher ordered terms, 
which tend to improve the accuracy of the approximation, that is, to 
reduce the error. 

The sine function and its seventh ordered Taylor polynomial are 
plotted in Figure 2.2. Here we can see the approximation is only 
reasonably (to the eye) accurate on the interval [ ],p p− . 
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FIGURE 2.2:  Seventh ordered Taylor polynomial approximation of the sine function.

2.2.2  Matrices: A Brief Overview
Matrices are incredibly important structures within mathemat-

ics, and thus within physics also. A very brief overview of their form 
and function were described in this section.

A matrix is an array of numbers. The dimensions of a matrix 
specify the number of rows and the number of columns the matrix 
has, in that order. Hence, when we say an n-by-m matrix we imply 
it has n rows and m columns. Vectors are essentially matrices of 
dimension n-by-1, for instance, a point in three-dimensional space 
is represented by a 3-by-1 matrix, normally referred to as a position 
vector. When n m=  we have a square matrix; these occur often when 
solving problems in physics.

When writing an algebra for matrices the notation is convention-
ally an uppercase letter for the entire matrix, and the correspond-
ing lowercase letter for its elements. The elements also come with 
numbered subscripts to denote their position within the matrix, row 
index first. For example, the element found in the first row and the 
first column of matrix A would be denoted 11a , whereas element 34a  is 
located at the third row and fourth column of A. In general element 
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ija  is found in the ith row and the jth column of the matrix A. Note 
that the numbering starts from one. 

Diagonal elements of a matrix are identified by the fact that the 
row index i will equal the column index j. Sub-diagonal elements are 
identified by i j> , and conversely super-diagonal elements are iden-
tified by i j< . To illustrate, a general n-by-m matrix can be written as

	

11 12 1

21 22

1

m

ii

n nm

a a a

a a

A
a

a a

 
 
 
 

=  
 
 
 
  

 



  

 

 

  

� (2.6)

where in this case n m> .

Matrix addition is a straightforward extension to addition with 
real numbers. The corresponding elements are added between the 
matrices as per user preference; note that the matrices are of the 
same dimensions and the addition will result in a matrix also of the 
same dimensions. Thus for 2-by-2 matrices

	 11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a b b a b a b
A B

a a b b a b a b

+ +     
+ = + =     + +     

� (2.7)

As this is a simple extension to addition with real numbers the 
properties of addition apply to matrices. In other words, we have the

Commutative property:       A B B A+ = + ;

Associative property: ( ) ( )          A B C A B C+ + = + + ;

Additive Identity property:     A ZERO A+ = ; and the

Distributive property: ( )      C A B CA CB+ = +

where ZERO is a matrix of the same dimensions as A but every ele-
ment is zero; in technical parlance this is the called the null matrix. 
Be aware that we must be somewhat careful with the distributive 
property so as to maintain the proper order of the multiplication oth-
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erwise we run into problems which will be discussed subsequently. 
Subtraction follows these same rules.

Matrix multiplication is somewhat more complicated than addi-
tion. If you have the n-by-m matrix A that is multiplied with the 
m-by-p matrix B, then the result will be the n-by-p matrix C. The 
elements in C are then given by the equation

	
1 1 1

pn m

ij ik kj
i j k

c a b
= = =

=∑∑∑ .� (2.8)

Notice that the inner dimensions of the two matrices must 
match. In other words, the number of columns of matrix A must 
equal the number of rows of matrix B. The way Equation (2.8) has 
been written mimics how you will have been taught to do matrix 
multiplication, moving along the rows of A, and down the columns 
of B. However, notice that the summation limits are not dependent 
on each other meaning that their order could be swapped without 
affecting the result. 

As a result of Equation (2.8), matrix multiplication is not com-
mutative, that is AB BA≠ . However, it is associative such that 
( ) ( )  A BC AB C= . And, as we have already seen, it is distributive over 

matrix addition so long as you maintain strict matrix order.

When multiplying a matrix by a scalar that scalar gets broadcast 
across the entire matrix i.e., every element gets multiplied by the 
scalar. As the scalar is just a number then

	 ( ) ( ) ( ) ( )AB A B A B ABr r r r= = = � (2.9)

where r is any scalar. 

The trace of a square matrix is the sum of the main diagonal ele-
ments of that matrix. In equation form we write

	 ( )
1

n

ii
i

tr A a
=

=∑ � (2.10)

where A is a n-by-n matrix. The trace of a (square) matrix has some 
interesting properties not least the fact it is equivalent to the sum of 
the eigenvalues of the matrix A. 

Eigenvalues of a matrix are related to its eigenvectors such that

	 Ae el= � (2.11)
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where e  is an eigenvector of A and l is its corresponding eigenvalue. 
Note that l is just a number. You have probably already performed 
calculations using the characteristic polynomial to determine the 
eigenvectors and related eigenvalues of some relatively simple matri-
ces. As a reminder the characteristic polynomial is calculated as

	 det( ) 0A Il− = , � (2.12)

which produces an n ordered polynomial in terms of the eigenvalue 
l. The “det” means calculate the determinant of the matrix con-
tained within the brackets, which is relatively easy to do for 2-by-2, 
and 3-by-3 matrices but not for larger dimensions of matrix. The 
matrix I is the identity matrix that has ones on its diagonal elements 
and zeros in the other elements.

As an aside, eigenvectors and eigenvalues are important con-
cepts with the realm of quantum physics. For instance, the time 
independent Schrödinger Equation can be written in the form

	 H Ey y= � (2.13)

where the matrix H represents the Hamiltonian of the system; the 
differential operators governing the potential and kinetic energies, 

 y (pronounced psi) is the wavefunction of a quantum particle, for 
example, an electron, and E is the (total) energy value of that wave-
function. In other words, y is the eigenvector of H, and E is the 
corresponding eigenvalue. If this at present makes little sense to you 
do not worry, just be aware that eigenvectors and eigenvalues are 
particularly important concepts in mathematics and physics. 

Matrices can be transposed which means that row i is swapped 
with column i of the matrix. I tend to think of this as putting a dou-
ble-sided mirror along the diagonal of the matrix and the transpose 
is that which can be seen in the reflection. For instance, if we trans-
posed the m-by-p matrix B the result would be the p-by-m matrix 

TB , where the superscript T denotes the transposition. Notice that 
the row and column dimensions have swapped. In terms of matrix 
multiplication, we can write 

	 ( )T T TAB B A= . � (2.14)
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A symmetric, square matrix is one that is equivalent to its own 
transpose. A positive definite matrix is a special type of symmet-
ric matrix with all positive eigenvalues. Determining if a matrix is 
positive definite can be difficult but they are mentioned here as they 
tend to crop up quite often in the solutions to physics problems.

If the matrices elements are complex numbers (they contain 
both real and imaginary terms) then we can take what is known as 
the Hermitian conjugate; take the complex conjugate of the ele-
ments, then transpose the matrix. In mathematical notation we can 
write the equation

	 ( )† † †AB B A=  � (2.15)

where the dagger symbol (†) denotes the Hermitian conjugation.

For square matrices there is the multiplicative identity property 
such that

	 AI IA A= = � (2.16)

where I is the identity matrix. When the matrix multiplication of two 
matrices, say X and Y, results in the identity matrix then we can say 
that Y must be the inverse matrix of X (or vice versa) by definition. 

To compute the inverse of a matrix directly you find its matrix 
of cofactors and divide through by its determinant. For 2-by-2 and 
3-by-3 matrices this can be done with relative ease but as the order 
of the matrix increases the computational effort required grows 
exponentially both in calculating the matrix of cofactors and finding 
the determinant. There are other methods for “inverting” a (square) 
matrix such as elimination and decomposition techniques that are 
much more computationally friendly. The Fortran library LAPACK 
has a plethora of subroutines that employ such techniques. Gener-
ally, we are solving the linear set of equations

	 Ax b=  � (2.17)

where x  is the vector we wish to find, b is the vector of known val-
ues, and the matrix A represents some relevant coefficients of the 
system for which we are trying to solve.
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Note that if the determinant of a matrix is zero then we say the 
matrix is singular and non-invertible. Where say the matrix repre-
sents the coefficients of a linear system of equations this would be 
interpreted as the system as either having no solutions or many solu-
tions. When the determinant is non-zero the system of equations 
will have exactly one unique solution. 

The preceding discussions provide an (extremely) brief exposi-
tion of matrices and their properties and this section will provide a 
quick recalling on fundamental concepts of matrices. It is recom-
mended to refer to a book dedicated to matrices and linear algebra 
for further understanding.

EXERCISES

2.1.	 How is the number +5 represented by a 32-bit floating-
point notation? Use as the equation given as a guide.

2.2.	 What happens if you change the conditional statements 
in the while loops to eps_s > 0 and eps_d > 0 in the 
machine epsilon program? Why?

2.3.	 Add to the machine epsilon code to calculate the 
machine precision in terms of the mantissa bit length 
(Hint: how many times has it divided by two?)

2.4.	 Try to write pseudo-code to calculate the machine 
epsilon using a recursive function (a function that calls 
itself). Think about how to terminate the recursion.

2.5.	 Investigate the upper bound of error for the Taylor series 
approximation for the sine function. Is it well estimated 
by the next term in the series from where we truncated 
the series?
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2.6.	 p is one of those fundamental numbers that just keeps 
cropping up. One way to estimate p is to analyse the 
perimeter of polygons inscribing a circle. For a circle of 
unit diameter, we may formally write the expansion

31 2
2 3k

cc c
k k k

p p∞= + + + +

	 where k is the number of sides of the polygon, kp  is the 
approximation, p∞ is the actual value of pi to be deter-
mined, and the ic  are coefficients also to be determined. 
Given that 8 3.061467p = , 16 3.121445p = , 32 3.136548p = ,  
and 64 3.140331p =  compute a value for p∞. (Tip: think 
about this as a set of simultaneous equations in matrix 
form and look-up Gaussian Elimination.)
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CHAPTER 3
INTERPOLATION AND 
DATA FITTING

3.1  INTERPOLATION

3.1.1  Linear Interpolation
The principles behind interpolation and extrapolation are 

something every scientist should understand. Most measurements 
of a system, whether that is a physical experiment or theoretical cal-
culation, will consist of pairs of discrete values; an independent vari-
able x, which will vary, and a dependent variable y, which is measure. 
To extract information from these pairs of values one would, ideally, 
find an analytical function that would give y for any arbitrary x. Often 
an analytical solution does not exist or is too tedious or complicated 
to solve. In this case, how to find a value for y that sits between mea-
sured values in x? We can either try to fit the data to some function 
(typically a polynomial) or interpolate the data. The data should be 
extrapolated to find a y beyond measured range in x. The difference 
between the two methods is that interpolation is constrained so that 
the function used to approximate the data must pass through the 
measured data points, whereas data fitting only requires that some 
error function is minimized.
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As the data points can be approximated by any number of functions, 
we must have some guidelines that outline a reasonable approxima-
tion. As a rule, these guidelines usually rely on the consistency of 
the gradients or derivatives of the approximation and as a result may 
not be suitable for functions that have rapid variations, such as those 
with oscillatory behavior. Sometimes, an important detail about the 
behavior of a function may be missed should the measurements be too 
sparsely spread. As a crude example of this, think about measuring the 
displacement of a mass on a spring as a function of time. If the sample 
frequency (how often you take a measurement) matches the period of 
oscillation then the interpolated result would show that the mass does 
not move at all, which is clearly an error. 

Linear interpolation is probably the most intuitive method, and 
probably one which is used to quite regularly without realizing. 
Essentially, a straight line is assumed to approximate the function 
between two neighboring data points, with the line passing through 
both points. Indeed, this is a fundamental concept of mathematics to 
find the derivative of a function; on an infinitesimally small interval, 
any function is a straight line. Obviously, on a practical level, one 
cannot make measurements that are infinitesimally distinct, the best 
that can possibly achieve is the precision of the measurement device.

The following forms of writing the equation of a straight line is 
the most familiar one

	 y mx c= + � (3.1)

where m is the gradient and c is the intercept with the y axis, or

	

1 2 1

1 2 1

y y y y
x x x x
− −

=
− −

� (3.2)

where the line passes through the points ( )1 1 2 2( , ), , x y x y .

In the world of academia, these equations typically take the form 

	
( ) 0 1g x a a x= + � (3.3)

where 0  a  and 1a  are called the coefficients of the linear functions; 
they still have the same meaning as c and m respectively in the other 
equations. The reason for writing the coefficients as a single letter 
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with a subscript is that it is both elegant and descriptive; the letter 
immediately represents that it is a coefficient rather than a vari-
able, and the subscript describes to which power of x the coefficient 
belongs. Another good reason for the subscripts is that they lend 
themselves quite naturally to being stored as a vector or an array in 
computer memory, but more on this later.

With any interpolation, we are approximating the unknown func-
tion f(x) with a function g(x) with the constraint that they are equal 
at the measured data points which we label jx . Thus, for neighbor-
ing data points using linear interpolation:

	 ( ) ( ) 0 1j j j jg x f x f a a x= = = + � (3.4)

	 ( ) ( )1 1 1 0 1 1j j j jg x f x f a a x+ + + += = = + � (3.5)

Note that they share the same coefficients as the straight line 
approximation is constrained to pass through both points. Solving 
for the coefficients, that is, finding a in terms of f and x, the function 
g(x) takes the form

	
( ) ( )1

1

j
j j j

j j

x x
g x f f f

x x +
+

−
= + −

−
� (3.6)

valid for the range [ 1, j jx x + ]. Take a moment to verify that this equa-
tion is a straight line and equivalent to those you are familiar with. 
Equation 3.6 can be written in what is called symmetrical form as 
follows

	
( ) 1

1
1 1

j j
j j

j j j j

x x x x
g x f f

x x x x
+

+
+ +

− −
= +

− −
� (3.7)

If you are wondering why it has been rewritten in this form, it’s 
use will become apparent in the next section discussing polynomial 
interpolation and Lagrange’s interpolation scheme.

The code linearInterp.cpp implements the linear interpola-
tion scheme on the function ( ) ( )f x sinc x= , using the symmetrical 
form of the equation. The application source code takes advantage 
of the class phys::interp::Linear defined in the header file 
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Interpolation.h and implemented in the source Interpolation.cpp. 
The output from this code is plotted in Figure 3.1. A 10 equidistant 
points were selected to represent the “measured” data on the inter-
val [0.05, 5.0]. The linear interpolation is applied to each interval 
pair. From the figure, the linear interpolation does a reasonable job 
at approximating the function when the second- and higher-order 
derivatives are small. However, as the derivatives increase in size it 
becomes much less accurate. This is to be expected; the linear inter-
polation approximation contains no higher-order terms above one 
and thus cannot be expected to deal with rapidly changing functions 
that have sizable higher-order derivatives. The interpolation may be 
improved by taking more data points over the total range, which in 
essence applies the mathematical notion of the function approach-
ing a straight line as the interval approaches zero.

FIGURE 3.1:  Linear interpolation of the sinc function using 10 equidistant “measurements”.

3.1.2  Polynomial Interpolation
Equation (3.3) is called a first-order polynomial. By adding 

higher powers of x, one can modify this to higher-order polynomi-
als. For instance, if the highest power of x were two then it would 
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be a second-order polynomial (also called a quadratic) and so on. 
Higher-order polynomials will be better at approximating rapidly 
changing functions but there is a practical limit to this, which will be 
discussed in the subsequent sections.

First, we can extend Equation (3.3) so that it forms an n ordered 
polynomial

	 ( ) 2
0 1 2

n
ng x a a x a x a x= + + + + � (3.8)

Using our interpolation constraint that the approximation must 
pass through the measured values gives

	 ( ) ( ) 2
0 1 2

n
j j j j j n jf x f g x a a x a x a x= = = + + + + � (3.9)

This is a system of n+1 linear equations (you may know them 
as simultaneous equations) that we would use to solve for the coef-
ficients. Notice that to perform an n ordered interpolation you need 
n+1 data points. For instance, the first-order (linear) interpolation 
requires two points; a second-order interpolation requires three 
points, and so forth. How a linear system of equations can be solved 
explicitly using a LAPACK routine is discussed later in this chapter. 
For the moment, one could formulate the coefficients using an alter-
nate method.

Consider a second-order interpolation for three given points 
( , )j jx f  at j, j+1, and j+2:

2
0 1 2j j jf a a x a x= + +

2
1 0 1 1 2 1j j jf a a x a x+ + += + +

	
2

2 0 1 2 2 2j j jf a a x a x+ + += + + � (3.10)

The coefficients 0a , 1a , and 2a  can be found from these equations 
using the methods you should have learned in an A-level mathemat-
ics course at least. Give it a go. Remember your finding the coef-
ficients in terms of f and x. Once the coefficients are found they 
can be substituted into equations (3.10) and rewritten into the sym-
metrical form giving
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( )
( )( )
( )( )

( )( )
( )( )

1 2 2
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1 2 1 1 2

j j j j

j j

j j j j j j j j

x x x x x x x x
g x f f

x x x x x x x x

+ + +

+

+ + + + +

− − − −
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− − − −
 

	
( )( )

( )( )
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2 2 1

j j

j

j j j j

x x x x
f

x x x x

+

+

+ + +

− −
+

− −
� (3.11)

If you find rearranging equations fun, then feel free to have a go 
at obtaining this form for yourselves but do try to get out more. If 
you compare Equation (3.7) with Equation (3.11) you will hopefully 
see that we can generalize the symmetrical form to an n ordered 
polynomial interpolation scheme:

( ) ( )( ) ( )
( )( ) ( )

2 3 1
1

1 2 1 3 1 1

n

n

x x x x x x
g x f

x x x x x x
+

+

− − −
=

− − −




( )( ) ( )
( )( ) ( )

1 3 1
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2 1 2 3 2 1
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n

x x x x x x
f

x x x x x x
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+

− − −
+ +

− − −





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1 2

1
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n
n

n n n n

x x x x x x
f

x x x x x x+
+ + +

− − −
+

− − −




� (3.12)

This is the infamous Lagrange formula for polynomial interpo-
lation. This form is somewhat cluttered and can be written more 
elegantly as

	
( ) ( ) ( )

1

n

k k
k

P x x f xl
=

=∑ ,� (3.13)

where

	

( )
( )
( )

1

1

n

ll k
k n

k ll k

x x
x

x x
l = ≠

= ≠

−
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The Π symbol is a capital pi and is the mathematical symbol 
meaning product of a sequence.

The member function Lagrange::interpolate(double), 
found in the source file Interpolation.cpp, implements the Lagrange 
interpolation formula as expressed in Equations 3.13 and 3.14. Read 
through this code to convince yourself of this statement. 
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An exercise for the reader to write a program to apply the 
Lagrange interpolation to the function ( ) ( )f x sinc x=  using approx-
imating polynomials of increasing order (use linearInterp.cpp as a 
guide). Take note that the order of the approximating polynomial is 
governed by the number of data points passed to the object of type 
Lagrange, and an n ordered polynomial interpolation requires n+1 
data points. 

Figure 3.2 shows the plotted output from a program writ-
ten using the Lagrange class for the first, second, fourth, sixth, 
eighth, and ninth ordered polynomial interpolations for the func-
tion ( ) ( )f x sinc x=  over the interval (0.0, 5.o] using 10 equidistant 
“measured” points. For the lower ordered polynomials, a sliding 
window approach had to be used to cover the interval as far as pos-
sible. For n=1 the data matches that computed from the Linear 
interpolator class.

From inspection of these plots, we can see that the second-
ordered polynomial interpolation is an improvement over the first 
but still has a bad time coping as the function oscillates more rapidly. 
The fourth- and sixth-ordered interpolations are again an improve-
ment over the second, however, there are two things to note. First, 
there is a small artifact within the first interval that does not follow 
the function at all well. Second both interpolations have only cov-
ered a fraction of the data points; in fact, only the first and ninth 
order interpolations have covered the total number of data points. 
The astute among you will have realized this is since an n ordered 
polynomial interpolation requires n+1 points. If the value of n+1 is 
not a factor of the total number of data points, then the scheme will 
not be able to interpolate those points. Note the wild oscillations 
in the eighth and ninth ordered interpolation at the beginning and 
end of the interval. This is a tendency of higher-order polynomial 
interpolation to introduce more vigorous oscillations than perhaps 
the data points suggest. This is the practical limit of polynomial 
interpolation which is referred to earlier. As a rule of thumb try 
not to use higher than order five polynomials to do interpolation. If 
greater accuracy is required, you could always take more measure-
ments or apply an alternative interpolation method, for example, 
spline interpolation. 

Computational Physics.Ch3.3pp.indd   41Computational Physics.Ch3.3pp.indd   41 1/4/2022   10:29:18 AM1/4/2022   10:29:18 AM



42  •  Computational Physics, 2/E

FIGURE 3.2:  Polynomial interpolation of the function ( ) ( )=f x sinc x  with polynomial 
orders of 1, 2, 4,6,8, and 9.

To note, the simulated measurements are mentioned here by 
taking values from the function at equidistant points. In real mea-
surements, the data points will likely not lie on the function that 
describes them due to the precision of the measuring equipment; 
measurements are usually plotted with their error bar. Depending 
on the relative size of the error this may have a significant effect on 
the interpolation. Additionally, one do not have to take measure-
ments that are equidistant and it is obvious that physics teacher 
would have told to take more closely spaced data points about the 
region where the measured variable (y) changes rapidly with the 
independent variable (x).
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3.1.2  Cubic Spline
One of the limiting factors of polynomial interpolation is due to 

the discontinuities in the derivatives at the data points (see the order 
2 polynomial interpolation in Figure 3.2 for a clear illustration of this 
issue). To overcome this issue, we can use spline interpolation. The 
term spline has its origins in the shipbuilding industry whereby thin 
sheets of wood threaded through discrete points (or knots) would 
form smooth curved shapes due to the minimization of strain within 
the wood. In essence, the spline approximation not only matches the 
function at the measured data points but also matches the deriva-
tives of the function at the data points.

The cubic spline is the most popular version of spline interpola-
tion due to its (relatively) simple form and construction, and that it 
generally gives reasonably accurate results. The cubic part of the 
name comes from the order of the polynomial used to approximate 
the function. Cubic splines are said to have an order of four, which 
means that not only are the polynomial values matched at the data 
points but so are their first- and second-order derivatives. Given this 
definition the linear interpolant explored earlier in this chapter is an 
order two spline. What would an order one spline look like?

Cubic splines tend not to have any inherent advantage over 
polynomial interpolation for smooth functions or for dense sampling 
along the x-axis. However, they are particularly good at interpolating 
sparse data points for smooth functions or when the data points vary 
rapidly over a region of interest, for instance, in a typical spectral 
measurement that contains several peaks and troughs. For a decent 
exposition of how to set up a spline approximation, it is recom-
mended reading Section 2.4 of T. Pang’s book listed in the Bibliogra-
phy. It gets quite heavy on the mathematics of setting up the spline 
which includes generating matrices and factorizing them using the 
lower-upper (LU) decomposition method. As we are physicists, we 
like to use the fruits of the mathematicians’ labors, and rather than 
writing our own spline approximation let us take a shortcut.

Your Unix/Linux distribution may come with octave installed, if 
not it would be able to install it via install manager. Once installed, 
open a terminal and type “octave” at the prompt. All being well this 
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will open the Octave program in your terminal. You will know that 
it is working as you will see the octave prompt. Type the following 
at the prompt:

xf = [0:0.05:5];
yf = sinc(xf);
xp = [0:0.5:5];
yp = sinc(xp);
lin = interp1(xp, yp, xf);
spl = interp1(xp, yp, xf, “spline”);
cub = interp1(xp, yp, xf, “cubic”);
near = interp1(xp, yp, xf, “nearest”);
plot(xf, yf, “r”, xf, lin, “g”, xf, spl, “b”, xf, 
cub, ...
“c”, xf, near, “m”, xp, yp, “r*”);
legend(“function”, “linear”, “spline”, “cubic”, 
“nearest”);

You should now have a neat plot of the function ( )y sinc x=  with 
the four different types of interpolation of that function shown; the 
“measured” points are the red asterisks. Describing this a line at a 
time we have set up a line space for x on the interval [0,5] using 101 
points, then calculated the function ( ) y sinc x=  

for that line space. 
The next line sets up a line space of 11 points on the same interval 
that represents our “measured” data points, and the corresponding 
y is then calculated. Then we use the Octave function interp1 to 
interpolate our “measured” data points using linear, cubic spline, 
cubic polynomial, and nearest neighbor interpolation methods. The 
1 in the function name refers to the fact we are interpolating in one 
dimension. We then plot the results on the same figure with the 
legend as labeled. Note that the ellipsis, …, is a continuation symbol 
for Octave. Notice also that the “cubic” interpolation uses what is 
called a piecewise cubic Hermite interpolating polynomial, which 
preserves the shape of the function.

So, all that coding in C++ to implement the interpolation classes, 
writing the application logic to use them, followed by importing the 
resulting data file into an external program for plotting has been 
handled in ten relatively simple lines of Octave code.
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This brings us back to the point made in Chapter 1 that the 
problems you will encounter are likely to have already been solved 
and reduced to an elegant form. However, the idea here is not to 
blindly use the programs written by someone else but at least have 
a basic understanding of how they function. In the future, you may 
find yourself with a problem that has yet to be tackled. In attempting 
a solution, you will require the skill of implementing mathematical 
equations in computer code, and be able to comment on the accu-
racy, precision, and limits of what you have written. You can only do 
this if you have a solid understanding of the underlying theories and 
equations that govern the problem and your attempted solution.

Other interpolation schemes that you may wish to investigate 
but are beyond the scope of this book include Rational function 
interpolation; B-splines; T-splines; Newton Interpolation; Neville’s 
algorithm; and the Aitken Method. This list is not exhaustive.

3.2  DATA FITTING

3.2.1  Regression: Illustrative Example
Regression is a form of data fitting that allows us to mathemati-

cally determine the line (or curve) of best fit to measured data. It is 
like interpolation in that we use measured data points to mathemati-
cally approximate a solution. However, it differs from interpolation 
in that instead of finding a local approximation, that is, a function 
value located between two data points, we are finding the global 
behavior or trend of the measurements. In that respect, regression 
is not constrained to pass through the data points. In technical par-
lance, regression attempts to solve an overdetermined (more equa-
tions than unknowns) set of simultaneous linear equations that likely 
have no exact solution but will have a best-fit polynomial approxi-
mation. Regression methods find the coefficients of that best-fit 
polynomial. One of the most well-used regression schemes is called 
linear least squares where the best fit is that polynomial which mini-
mizes the sum of the squared differences between the data points 
and the modeled solution.
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To illustrate, let us have a look at a simple example. As a result 
of an experiment, four data points were obtained as follows: (1,2), 
(2,1), (3,3), (4,6) each describing an (x, y) coordinate. The experi-
menters want to find a line that provides the best global trend in 
these four data points. They initially assume that the relationship 
between x and y is linear and can therefore be approximated by

	 0 1y a a x= + � (3.15)

Mathematically speaking, they would like to find the numbers 

0a  and 1 a  that approximately solve the overdetermined linear system 
four equations in two unknowns in some “best” sense:
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� (3.16)

The least-squares approach to solving this problem is to try to 
minimize the sum of the squares of the differences between the right-
hand and left-hand sides of these equations. Putting this into algebra 
we are attempting to make the following function as small as possible:

	 ( ) ( ) ( ) ( ) ( )2 2 2 2
0 1 0 1 0 1 0 1 0 1, 2 1 2 3 3 6 4S a a a a a a a a a a= − − + − − + − − + − − 	

� (3.17)

From A-level mathematics, one should remember how to find 
the minimum (or maximum) of a function with one independent 
variable; you find where the first derivative of that function is zero. 
For functions with multiple independent variables, the method is no 
different only that we determine the partial derivative with respect 
to the independent variables separately. Apart from the variable, we 
are taking the derivative with respect to, all other independent vari-
ables are considered constant. Applying this to the function ( )0 1,  S a a
and after some rearrangement we obtain
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� (3.18)
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We know that these must give minimums and not maximums 
because ( ) 2 2

0 1 0 1, S a a a a∝ + , which has no maximums. Equations 
(3.18) are called the normal equations and when solved give 0 0.5 a = −  
and 1 1.4a = . 

The line that these coefficients describe is plotted in Figure 
3.3(a) along with the data points, and it is the line of best fit for a 
linear model. However, what if the experimenter’s initial assumption 
about the relationship being linear is wrong? Perhaps we ought to 
add more terms to the approximating polynomial. Adding an extra 
term to our approximating polynomial gives

	
2

0 1 2y a a x a x= + + � (3.19)

that when processed via the method above gives us values for the 
coefficients of best fit of 0 4.5a = , 1 3.6a = − , and 2 1.0a = .

FIGURE 3.3:  Linear least squares fit of the data using a linear model (a), and a  
quadratic model(b).
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This curve is plotted with the data points in Figure 3.3(b). So, 
which is the curve of best fit and thus tells the experimenters the 
global behavior? Naively you may think the quadratic curve is bet-
ter, it being much closer to the data points than the linear behav-
ior. However, upon inspection of our approximation, we see that 
we are producing the Taylor series expansion for the function that 
passes through those specific data points. Adding more terms to the 
polynomial is bound to improve the accuracy of the curve passing 
through the points as we are providing a better approximation to the 
higher-ordered derivatives of the function. Clearly, the difficulty in 
interpreting the global behavior of this simple, made-up data set is 
due to the small number of measurements considered. Could the 
first data point measured at x=1 be an anomaly or an actual feature? 
The only way to tell in a real experiment would be to take more 
measurements.

3.2.2  Linear Least Squares: Matrix Form
When it comes to solving a large system of linear equations it is 

most convenient to write them in matrix form. The general matrix 
formula for a system of linear equations is

	 x bΑ = � (3.20)

where A is a matrix of known coefficients (not to be confused with 
the coefficients of the approximating polynomial),  x is the vector 
of unknown variables, and b  is the vector of known right-hand 
side values. To illustrate this matrix form for the normal equations 
of the linear least-squares method consider Equations (3.18). 
Written in matrix form they give (notice there is a common factor 
of two)

0

1

8 20 24
20 60 74

a

a
    

=    
     .

We can generalize this matrix form for linear least squares to 
give
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where n is the total number of data points, and m is the order of the 
approximating polynomial. Here x refers to the independent vari-
able in the measurement set, not the unknown vector x in Equation 
3.20, that holds the unknown coefficients (sometimes there just 
aren’t enough characters in the alphabet). We note that matrix A in 
this case has the nice property that it is symmetrical.

To solve Equation (3.20), that is, find the unknown vector x  (the 
coefficients of the approximating polynomial), we must factorize 
matrix A. If you have solved a set of simultaneous equations before 
then you have factorized a matrix without realizing it, probably. 
The Gaussian elimination (GE) method is used to find a multiplier 
between two equations to remove a variable from their resulting 
addition. In matrix format, this is equivalent to finding a multiplier 
between two rows, with the resultant addition zeroing a matrix ele-
ment. With row and column exchanges the resultant matrix can be 
made into either a lower or upper triangular matrix and we can solve 
the entire system from the row containing the single non-zero ele-
ment on the diagonal. Note that GE is not the only factorization 
method; others of note include Cholesky, LU decomposition, and 
QR decomposition. 

Cholesky factorization is the method of choice here to solve 
Equation 3.20 for least linear squares. Andre-Louis Cholesky was a 
French mathematician who developed his eponymous factorization 
method (sometimes referred to as decomposition) when solving a 
geographical survey problem in his home country in the first decade 
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of the 20th century. The factorization takes a symmetric positive 
definite matrix A and writes it as

TA LL=

where L is a lower triangular matrix with positive diagonal entries. 
To solve Equation (3.20) you say that 

Ty L x=

Ly b=

The latter of these two equations is solvable for y, which in turn 
means you can solve the former of these equations for x. Cholesky 
was also a French military officer who served during the First World 
War and died from battlefield wounds in August of 1918 at the age of 
42. His work was published in 1924 posthumously by a fellow officer 
but received little attention until the latter half of the 20th century. 

I have written some of these matrix factorization methods 
as classes in the C++ library found at the GitHub site. They are 
defined in LinearSolvers.h and implemented in LinearSolvers.cpp. 
I have also written a program to find the least linear squares fit for 
an order 1 polynomial of the example data using Cholesky factoriza-
tion, source code in leastLinearSquares.cpp. As an aside, if you plan 
on performing matrix factorization in any serious fashion you should 
look up C/C++ wrapper libraries for LAPACK and BLAS, or for a 
totally C++ approach search for the Eigen project.

3.2.3  Realistic Example: Millikan’s Experiment
The oil drop experiment, or more famously Millikan’s Experi-

ment, was an experiment performed by Robert Millikan and Harvey 
Fletcher in 1909 that provided one of the first accurate measures of 
the elementary electric charge (the charge of the electron).

TABLE 1:  Some of Millikan’s and Fletcher’s oil drop data

n nq C19/10− n nq C19/10−

4 6.558 12 19.68

5 8.206 13 21.32
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n nq C19/10− n nq C19/10−

6 9.880 14 22.96

7 11.50 15 24.60

8 13.14 16 26.24

9 14.82 17 27.88

10 16.40 18 29.52

11 18.04

The experiment involves balancing the gravitational force with 
the drag and electric forces acting on microscopic, charged drop-
lets of oil suspended between two metal electrodes. The droplet’s 
radii can be measured, and with knowledge of the oil’s density, their 
weight and buoyancy can be calculated. Millikan and Fletcher could 
use this information with a known electric field to determine the 
charge on oil droplets in mechanical equilibrium. By repeating the 
experiment for many droplets, they confirmed that the charges were 
all multiples of some fundamental value and calculated it to be about 

191.5924 10  −×  C 0.01%± . They proposed that this was the charge of 
a single electron.

FIGURE 3.4:  Plot of Millikan’s oil drop data.

Some of the data from Millikan and Fletcher’s experiment are 
shown in Table 1 and plotted in Figure 3.2. At first glance, the data 
seem to lie perfectly on a straight line that passes through the origin. 
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Can we show that mathematically that this is the case? The answer is 
yes otherwise this section would be truly short! 

A straight line through these data has the form

nq ne q= + ∆

where the fundamental charge e is the gradient of the line, and n is 
an integer. We can determine both e and the (estimated) error in the 
charge q∆  from this data by adapting the linear least-squares pro-
gram to use the data found in the file millikanData.txt located in the 
resource sub-directory of the progs directory. The resulting output 
determines 191.64 10e −≈ ×  C with an estimate for the error bounds 
as 190.03 10q −∆ ≈ ± ×  C. This is in remarkably close agreement with 
the currently accepted value of 191.602 10e −= ×  C (3sf). To math-
ematically test how well the data are fitted by a straight line we can 
calculate what is called the residual norm. This is the square root of 
the sum of the squared residuals and it should be a vanishingly small 
number for the oil drop data presented. The other method we can 
employ is to increase the order of the approximating polynomial to 
study the relative sizes of the coefficients. For both the methods 
exercises are provided at the end of chapter for practice.

As a cautionary note, the arguments above for least-squares fit-
ting assume that there is no error in the measurements of the inde-
pendent variable x and this assumption is valid in general. In fact, for 
the oil drop experiment the x values are necessarily integers, being 
multiples of the fundamental charge, and implicitly have no error. 
However, in some cases, the error in x will be comparable to the 
error in the measured value y. In this case, you would have to apply 
a total least squares approach that somehow minimizes residuals in 
both the x and y coordinates.

Of course, sometimes you may be faced with data that is non-
linear, for example, data from spectral measurements or resonant 
phenomenon, where you will be interested in the location of a peak, 
and probably its width and its height. Non-linear equations are 
more complicated to deal with but can still be fitted in the least 
squares sense. The mathematics to deal with non-linear equations 
are beyond the scope of this book but for a decent introduction to 
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non-linear least-squares approximations see Chapter 3 of Paul L. 
DeVries’ book A First Course in Computational Physics.

EXERCISES

3.1.	 Write a program that uses the Lagrange interpolation 
class to interpolate the function sinc(x) using polynomials 
of increasing order.

3.2.	 Using a mathematics library, for example, octave, see 
how well a cubic spline interpolation performs over poly-
nomial interpolations for the same functions using the 
same data points. Choice of function and number of data 
points is completely free. Go nuts. Test out any other 
interpolation routines you may find.

3.3.	 The code provided for the Linear Least Squares approxi-
mation is less than optimal.

a.	Add user-defined input so that the order of the fitting 
polynomial can be chosen by the user. Think about the 
validation of that input.

b.	Modify the code so that the matrix form of the normal 
equations (A) can be initialized from a general set 
of data read in from a file. (Hint: How do the matrix 
indices i and j relate to the power of the independent 
variable x?).

c.	 Automate the calculation of the right-hand-side vec-
tor b in Equation 3.20 from a general set of data. Use 
Equations 3.16-18 as a guide, and there is a hint in the 
source file.

d.	Include a calculation for the residual norm

3.4.	 Test out your modified Linear Least Squares approxima-
tion program on the Millikan data for polynomial orders 
greater than one. Comment on the results.
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CHAPTER 4
SEARCHING FOR ROOTS

4.1  FINDING ROOTS

A root-finding algorithm is a numerical method, or algorithm, 
for finding a value x such that ( ) 0f x = , for a given function f. Such 
an x is called a root of the function f. This type of problem occurs 
often in physics and science in general, typically as a starting point 
or intermediary process of a larger problem, though sometimes it is 
the problem.

Generally, computing the root of a function cannot be done ana-
lytically and this is especially true when a function is not represented 
by a low order polynomial. Closed-form solutions for the roots exist 
for polynomials up to the fourth order 

2 4
2

b b ac
x

a
− ± −

=

However, no such general solutions exist for order five polyno-
mials or higher. Factorization can be used in finding the roots of 
a polynomial equation but tends to be viable only for well-chosen 
coefficients, that is, no messy fractions to deal with. For equations 
that are not polynomial, analytical solutions are few and far between.

Finding a root of ( ) ( ) 0f x g x− =  is the same as solving the equa-
tion ( ) ( )f x g x= . Here, x is called the unknown in the equation. Any 
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equation can take the form ( ) 0f x = , so equation solving, that is, 
finding x, is the same thing as computing a root of a function. One of 
the first techniques you should have been taught to find the root of 
( ) ( ) f x g x=  is to plot graphs of the two functions on the same coor-

dinate system; the x value of where the two functions intersect is the 
root. Clearly, this has accuracy limitations stemming from the preci-
sion of the human eye and the thickness of pencil lines. Unless one 
is willing to draw a massive graph, this technique should be reserved 
for providing a rough estimate of the root, which can be passed as 
an initial guess to a numerical root-finding algorithm. Root-finding 
methods, provided with an initial guess, use iteration to produce a 
sequence of numbers that hopefully converge toward a unique value, 
the root you wish to find. The methods are recursive in nature, that 
is they compute subsequent values based on current and/or previous 
values of x, ( )f x , and derivatives of ( ) f x  where appropriate.

The behavior of root-finding algorithms is studied in numeri-
cal analysis. Algorithms perform best when they take advantage of 
known characteristics of the given function, and typically you find 
those specific algorithms perform better for particular functions. 
To evaluate the usefulness of a particular root-finding method, we 
should test its robustness in achieving reliable results, its ability to 
find closely located roots, and its rate of convergence, in that order.

4.1.1  Bisection
The Bisection method is a root-finding algorithm that repeat-

edly bisects (halves) an interval and then selects a subinterval in 
which a root must lie for further processing. It is a simple and robust 
method, but it is also relatively slow. Because of this, it is often used 
to obtain a rough approximation to a solution which is then used as 
a starting point for more rapidly converging methods (e.g., the New-
ton–Raphson method discussed in the next section).

In general, we wish to solve ( ) 0 f x =  that is defined on an inter-
val [ ], a b , and ( ) f a  and ( ) f b have opposite sign. So long as ( ) f x
is continuous along with this interval then the limits of the interval 
must contain, or bracket, at least one root. We then halve the interval 
size and retain the bracket that must contain a root, at the limits of 
the interval the value of the function has the opposite sign. This step 
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is repeated several times and the limits should approach the value 
of the root. The first two iterations of this process are illustrated 
in Figure 4.1. Typically, the method is repeated until some desired 
accuracy is achieved, or we have performed a particular number of 
iterations.

FIGURE 4.1:  Illustration of the Bisection method showing the initial values and two 
subsequent iterations.

Explicitly, we find the midpoint between a and b

	
( )

2
a b

c
+

= � (4.1)

and evaluate the function at the midpoint, ( ). f c If ( ) f a and ( )f c  
are of opposite sign, then the method sets c as the new value for b. 
Else if ( )f b  and ( )f c  are of opposite sign the method sets c as the 
new value for a. In either case, the updated ( ) f a and ( ) f b are of 
opposite sign, so the method is applicable to this smaller interval.If 
( ) 0 f c = then c is the root and the process stops.

There is a trick to determining whether the function evaluations 
at the limits of the interval are of the opposite sign without the need 
to assess them individually. Taking the product of two numbers with 
the same sign always gives a positive result. Conversely, the product 
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of two numbers with opposite signs always gives a negative result. 
Hence, if the product of ( ) f a with ( ) f b is negative then they must 
be of opposite sign, if positive they must have the same sign. We can 
use this information in a logical condition expression of an if state-
ment in C++ to determine which half interval to keep and which to 
discard.

The program bisection.cpp performs the Bisection root-find-
ing algorithm on the function ( ) ( )cos 0f x x x= − = . This uses the 
RootSearch class to perform the Bisection search, specifically the 
Bisection class. Similar approaches can be found in ref: Pang pp. 
62–63, which is written in Java, and in ref: DeVries pp. 41-51 written 
in Fortran, which provides a nice comparison between the different 
programming languages. After compiling and running the code in 
bisection.cpp you should find the value for the root to be 0.739 x =
(3sf). The precision of this value is governed by the data member 
m_tolerance. This parameter sets the minimum value of relative 
error that we will tolerate in the solution for the root and can be 
modified via the relevant setter member function.

As an aside, although the RootSearch classes are written to be 
mathematically correct they are somewhat poorly designed in terms 
of their interface. 

4.1.2  Newton–Raphson
The Newton–Raphson method, named after its creators Isaac 

Newton and Joseph Raphson, is another method for finding succes-
sively better approximations to the roots of a function. Derivation of 
the method can be done by considering the geometry of a function 
in the neighborhood of the root. Consider Figure 4.2 that illustrates 
this point. Using the gradient of the function at an initial guess for 
the root we can arrive at a better approximation. This is done by 
tracing the tangent to the function at the initial guess back to the 
x-axis. Repeating this method using the new value of x we arrive at 
an even better approximation for the root. By applying the method 
several times the approximations should converge on the root to 
some desired accuracy.
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FIGURE 4.2:  Sketch of the Newton-Raphson method show the initial value and two 
subsequent iterations.

Using Figure 4.2, we know that

	 ( ) ( )
( )

0
0

0 1

f x
f x

x x
′ =

−
� (4.2)

where ( ) f x′ is the gradient of the function at x. Rearranging Equa-
tion (4.2) to solve for the improved approximation to the root, 1x , we 
obtain

	
( )
( )

0
1 0

0

f x
x x

f x
−

′
= � (4.3)

where 0  x is the initial guess. We can generalize this for the nth itera-
tion

	
( )
( )

1
1

1

n
n n

n

f x
x x

f x
−

−
−′

= − � (4.4)

Note that we must be able to find the first-order derivative for 
this method to work. This method can also be derived from the 
Taylor expansion of the function about the root.
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The program newtonRaphson.cpp implements this method on 
the same function we looked at with the Bisection method. You can, 
of course, change the function and its derivative to any you wish to 
study (so long as you can find the first derivative analytically) without 
the need to change anything in the class implementation. The initial 
guess will have to be modified to be close to the root of the equation 
you choose.

Generally, the Newton–Raphson method is good and if it con-
verges it will converge rapidly. However, be wary that this conver-
gence is very much dependent on the choice of the initial guess. Too 
far away from the root and the method will fail to converge. In some 
special cases, the value will not converge at all; try ( ) 3 2 2 f x x x= − +
with an initial guess of one and see if you can figure out what is 
happening (remember CTRL-c terminates an executing program). 
Another issue with convergence is its reliance on the first derivative 
of the function in the neighborhood of the root. What happens if 
the gradient of the function approaches zero at the root? In general, 
you will likely be finding roots in functions that do not have a nice 
and precise derivative, and you will have to approximate it somehow. 
Next, we discuss a method of root searching that does just that.

4.1.3  Secant

FIGURE 4.3:  Sketch of the Secant method with initial values and one subsequent iteration.
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The Secant method uses a series of Secant lines (a straight line 
that cuts a curve in two places) to find better approximations of a 
root of a function. As with the Newton–Raphson method, we can 
derive the recursion formula by considering the geometry of a func-
tion around the neighborhood of the root. Figure 4.3 illustrates the 
derivation of the Secant method.

Starting with two points 0x  and 1  x that lie close to the root we 
draw a line through the points at ( )0  f x and ( )1 .  f x The equation 
for this straight line is given by

	 ( ) ( ) ( ) ( ) ( )1 0
1 1

1 0

f x f x
y x x x f x

x x

−
= − +

−
� (4.5)

We wish to find the x value at which this line intersects the x-axis, 
in other words we find the x where ( ) 0y x = . The result is

	 ( )
( ) ( )

1 0
1 1

1 0

x x
x x f x

f x f x
−

= −
−

� (4.6)

This value of x will be a better approximation of the root. We can 
then use this improved approximation, which we label 2x , with 1x  to 
perform the same process again to obtain an even better approxima-
tion of the root. By repeating the process iteratively, we can find an 
approximation that lies within some desired accuracy of the actual 
root. We can generalize Equation (4.6) for the thn  iteration giving the 
recursion formula

	 ( ) ( ) ( )
1 2

1 1
1 2

n n
n n n

n n

x x
x x f x

f x f x
− −

− −
− −

−
= −

− � (4.7)

Some readers may have noticed that Equation (4.7) looks like 
the Newton–Raphson method, but with the first-ordered derivative 
being replaced with its finite difference approximation; we look at 
finite difference approximations in Chapter 6. In the limit of the 
approximations converging on the root the second term in Equation 
(4.7) does indeed approach the second term of the Newton–Raph-
son method. The Secant method should therefore be used when 
we do not have an analytical equation for the first derivative of the 
function.
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Like the Newton–Raphson method, the Secant method will fail 
to converge if the starting values are not sufficiently close to the 
root. It should be noted that the Secant method is more rapidly con-
vergent than the Bisection method, but less so than for the New-
ton–Raphson method. Obviously, you are not just going to take my 
word for it, are you? The Secant subclass can be used similarly to 
the Bisection subclass such that writing a new program using the 
Secant method should be straightforward.

4.2  HYBRID METHODS

4.2.1  Bisection–Newton–Raphson
From the previous section, we note that the Bisection method is 

robust to initial guesses but slow to converge. Whereas the Newton–
Raphson method will converge rapidly but only if the initial guess 
is relatively close to the root, and in some circumstances may fail 
to converge at all. Also, the Newton–Raphson method may fail to 
converge if the gradient of the function in the neighborhood of the 
root approaches zero. We would therefore like to combine the reli-
ability of the Bisection method with the rapid convergence of the 
Newton–Raphson method so that for any general function we can 
find its roots with relative ease.

We can do this by making a hybrid method that decides whether 
to take a Newton–Raphson step or a Bisection step. As computers 
cannot think for themselves, we as programmers must provide some 
logical criteria to determine the step to take. Crucially, if an NR step 
takes the next approximation outside of our interval, then we should 
discard it and apply a Bisection step instead; else we accept the NR 
step. To do this, let us consider our Bisection interval [ ],a b  with 
some best approximation to the root, r, contained within that inter-
val. To accept the NR step the following inequality has to be satisfied

	
( )
( )

f r
a r b

f r′
≤ − ≤ .� (4.8)
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Now while we could use this inequality as the conditional 
expression in an if statement the coding becomes lengthy and 
rather difficult to read. We can make our lives easier by rearranging 
the inequality into the form

	 0y z≥ ≥ .�  (4.9)

In other words, to satisfy the inequality (4.8) such that the NR 
step is accepted, the left-hand expression, y, must be positive or 
zero, and the right-hand expression, z, must be negative or zero. We 
can therefore apply the trick of comparing the product of y and z to 
zero to determine whether the inequality has been satisfied. To rear-
range inequality (4.8) into the form of (4.9) we subtract r, multiply 
through by ( )f r− ′ , and lastly, subtract ( )f r  resulting in

	 ( ) ( ) ( ) ( ) ( ) ( )0r a f r f r r b f r f r− − ≥ ≥ ′− −′ .� (4.10)

If the product of the left-hand side with the right-hand side is 
negative then the NR step falls within the interval and should be 
accepted; else the product is positive and a Bisection step is applied 
instead. Note that a negative product will also be produced if the 
RHS is positive and the LHS is negative. However, this satisfies the 
reverse inequality of (4.10) that when tracked back to inequality 
(4.8) requires that a b≥ , which, by definition, is false (unless they 
are equal and in which case you have found the root).

The initial value for the best approximation, r, can be taken as 
one of the initial interval limits, it really does not matter. In fact, 
this is what we were trying to achieve; if the initial guess gives a 
lousy Newton–Raphson step, then the Bisection method is used to 
improve the initial guess and continues to do so until the NR step 
falls within the interval. However, it is likely that if we have reason-
able guesses for the interval limits of a root, the one with the smallest 
function evaluation will lie closest to the root and should be taken as 
the initial best guess.

If we do not have an analytic equation for the first-order deriva-
tive then we should replace the Newton–Raphson method with the 
Secant method, so that we only have function evaluations, no deriva-
tives. Provided are hybrid Bisection–Newton–Raphson and Bisec-
tion-Secant RootSearch subclasses in the library. They provide an 
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implementation of the inequality 4.10 and you should satisfy yourself 
they provide the functionality described. Write programs using these 
classes to search for roots on appropriate functions.

4.2.2  Brute Force Search
In the previous sections, we have developed solid methods to 

accurately compute the roots of a function, so long as we know the 
rough locations of those roots in advance. The problem then is find-
ing those rough locations. One straightforward technique is to graph 
the functions either by hand or using a plotting program and obtain 
those bounds by eye. This is recommended when finding the roots 
of a function is the problem to solve. But what if the root-finding is 
only one part of a bigger problem? It would be impractical to manu-
ally locate the rough location of roots for numerous functions in this 
case.

Typically, we use an exhaustive root search across a region of 
interest (ROI) for the function. That is, starting at the minimum 
value of the ROI we step the value of x by some small amount and 
check to see if the function has changed significantly within that 
small step. If it has, we have found the bounds of at least one root, if 
not we continue the search. This continues until the whole ROI has 
been covered. How then do we decide on the step size? Too small 
and we make our rapidly converging root-finding algorithms redun-
dant; too large and we run the risk of stepping over multiple roots 
(for an even number of roots this means missing them entirely; for 
an odd number, in essence, only one root is detected). Choosing the 
step size is an educated guess and is very much dependent on the 
function under investigation.

The program rootSearch.cpp showcases our root searching 
classes on the Legendre polynomial:

	
8 6 4 2

8

6435 12012 6930 1260 35
128

x x x x
P

− + − +
= � (4.11)

In its current state, it only finds a single root of 8P  in [0,1]. It is 
known that 8P  has four positive roots between 0 and 1. Modify this 
program to find all the positive roots of this polynomial in the range 
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[0,1]. The RootSearch base class has a member function find_
brackets that perform a brute force search for roots of the given 
function, returning true when (at least) one root is found.

4.3  WHAT’S THE POINT OF ROOT SEARCHING?

For instance, finding the roots to the Legendre polynomials is 
an important step in determining the evaluation points for Gaussian 
quadrature; extremely accurate methods for numerically determin-
ing the value of an integral. As a more direct example, and one we 
shall discuss here, finding the roots of an equation can help us calcu-
late the energies of electrons bound in a finite square well. 

4.3.1  The Infinite Square Well
This problem is sometimes referred to as the particle in a box 

model. Classically the motion of the particle is governed by New-
ton’s equations, potential fields put forces on masses causing them 
to accelerate or change direction. At the quantum level, Newton’s 
equations are replaced by Schrödinger’s such that for a particle of 
mass m moving through a (one-dimensional) potential ( )V x  we 
have

	 ( ) ( ) ( )
2 2

22
d

E x V x x
m dx

y y y− = −


� (4.12)

where   is Planck’s constant h over 2p, E is the total energy of the 
system, and ( )xy  is the wavefunction of the system. Note that this 
is the time-independent version of the Schrödinger equation; time-
dependent versions also exist. Like the Newtonian equations, we 
solve Equation (4.12) for the unknown, in this case, ( )xy . Although 
there is still some considerable debate over the nature of the wave-
function, certain observable quantities do depend on its form. For 
instance, the quantity ( ) ( )x xy y∗  describes its probability function, 
that is, the chance of finding the quantum particle at a particular 
location. More precisely the quantity ( ) ( )x x dxy y∗  is the probabil-
ity of finding the particle in the region x to x dx+ . 
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The simplest form of the particle in a box model considers a 
one-dimensional system. Here, the particle may only move back-
ward and forward along the x-axis with impenetrable barriers at 
either end. The walls of this one-dimensional box may be visualized 
as regions of space with an infinitely large potential energy. Con-
versely, the interior of the box has zero potential energy everywhere. 
This means that no forces act upon the particle inside the box, and 
it can move freely in that region; remember that forces are propor-
tional to the negative of the gradient of the potential field that causes 
them. If the particle touches the sides of the box, it experiences an 
infinitely large force that pushes it back into the interior of the box; 
here the gradient of the potential is infinite as we have a discontinu-
ity in the potential itself. As such the potential field is modeled by

	 ( )
0, 0
,

x L
V x

otherwise

≤ ≤
= ∞

� (4.13)

where L is the length of the box and x describes the position of the 
particle within the box.

We now consider the wavefunction of the system both inside 
and outside the box. We know ( )xy  must be zero outside the box as 
the particle is confined by the potential. Inside the box, the potential 
is zero everywhere thus Schrödinger’s equation becomes

	 ( )
2

2 2

2d m
E x

dx
y y= −



.� (4.14)

The general solution of this differential equation is

	 ( ) sin( ) cos( )x A kx B kxy = + , � (4.15)

where 

	 2

2mE
k =



,� (4.16)

and A and B are constants to be determined. As it stands, we cur-
rently lack the information to solve this problem. However, physical 
reasoning comes to our aid. We expect that the probability of finding 
the particle anywhere within the one-dimensional space be a con-
tinuous function. As the probability of finding the particle outside 
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the box is zero then we require the wavefunction of the particle 
inside the box to vanish as it approaches the walls of the box. In 
other words, the physics of the problem has given us the boundary 
conditions such that 

	 ( )0 0y = � (4.17)

and 

	 ( ) 0Ly = . � (4.18)

Imposing these boundary conditions on the general solution at 
0x =  we find that 

	 ( )0 sin(0) cos(0) 0A By = + = � (4.19)

which implies 0B = , and at x L=  we find that

	 ( ) sin( ) 0L A kLy = = . � (4.20)

Equation (4.20) is satisfied either if A is zero or if ( )sin kL  is 
zero. Setting 0 A = is rather an uninteresting case as it sets the wave-
function zero everywhere, which implies that we have no particle in 
our system. For ( ) sin kL to be zero then

	 kL np= � (4.21)

where n is an integer. After substitution of Equation (4.16) and some 
rearrangement, we find that

	
2 2 2

22n

n
E

mL
p

=


. � (4.22)

Hence, we have found a set of discrete energies that will sat-
isfy our physical boundary conditions and the differential equation. 
These are referred to eigenvalues of the system. The corresponding 
wavefunctions of these energies are known as the eigenfunctions. 
Take note that not all energies are permitted; only those that satisfy 
Equation (4.22) are allowed. If the particle were macroscopic (that 
is, not quantum) then it could take any value of (kinetic) energy it 
liked within the confines of the box. 
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FIGURE 4.4:  Wavefunctions and probability functions of the first four energy states of the 
infinite square well.

Figure 4.4 shows the wavefunctions and probability functions 
for the first four permitted energies in an infinite quantum well. 
Typically, we refer to 1E  as the ground state energy, and it is the low-
est permitted energy the particle can attain sometimes called the 
zero-point energy. Subsequent states we call excited states such that 
energy has been absorbed by the particle to jump from lower states 
to higher states. Note that these states are standing or stationary 
waves such that they are formed from two progressive waves travel-
ing in opposite directions. These progressive waves are reflected by 
the infinite barrier and interact in such a way to produce a standing 
wave. 

Now that we have the energies, we could go back to our func-
tions for ( )xy  and find the coefficients A such that they normalize 
the wavefunctions, that is,

	 ( ) ( )
0

1
L

x x dxy y∗ =∫ ,� (4.23)

which is the mathematical statement that the particle must 
be somewhere within the box. Note that as we only consider real 
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wavefunctions the integral function reduces to 2y . In this case, it is 
possible to show that 2 /A L= .

The infinite square well is only appropriate for an introduc-
tion to quantum physics. It nicely shows the discreteness of bound 
energy states in the well and can be solved analytically. However, as 
we have the computer at our disposal, we could solve something a 
little more difficult.

4.3.2  The Finite Square Well
The finite square well is somewhat more realistic than the infi-

nite square well. We define the potential as

	 ( )
0

0

,
0,

,

V x a

V x a x a

V x a

< −
= − ≤ ≤
 >

 � (4.24)

Note that in this case the well is defined symmetrically about 
the origin of the x-axis, rather than having a barrier at 0x = . We 
now consider the three distinct regions namely the region left of the 
well, the well itself, and the region right of the well. In Figure 4.5, 
we label these regions as I, II, and III, respectively, and consider the 
implications of the potential field on the wavefunction in these three 
regions. 

FIGURE 4.5:  The finite square well potential.
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First, for particles with energy greater than the height of the well 
0V  their wavefunctions are unbound, in other words, they can move 

freely, and have any energy. Interestingly, as the particle moves over 
the well it loses potential energy, which is transformed into kinetic 
energy and the particle gains momentum. This shows an increase in 
the wavenumber of the wavefunction as the particle travels across 
the well, c.f. de Broglie (pronounced like Troy) momentum. This 
can also be seen in the differential equation. For a constant potential 
across x, Equation (4.12) has the form of a simple harmonic oscilla-
tor where the ( )E V x−  term plays the role of the spring constant. 
As we go from regions I–II, the potential drops from 0V  to zero thus 
increasing the “spring constant” and the frequency of the oscilla-
tions of the particle. The opposite is true as we go from regions II–
III. (Strictly speaking, the wave is progressive rather than stationary 
so we should use the time-dependent version of Equation (4.12) to 
govern the physics of motion, though the outcome would at least be 
qualitatively the same. For arguments sake, you can consider the 
unbound wavefunctions are the bound states of an infinitely wide 
quantum well.)

We now consider the more interesting case of particles with 
energy less than 0V . Starting in region I, we can write the Schrödinger 
equation as 

	 ( ) ( )
2

02 2

2d m
V E x

dx
y y= −



, � (4.25)

which has the general solution 

	 x x
I Ce Deb by −= + , � (4.26)

where

	
( )0

2

2m V E
b

−
=



. � (4.27)

We know from experiments that the wavefunction of the particle 
can penetrate the finite barrier; a place where it is forbidden to go 
according to classical physics. If the barrier in region I had finite 
width, then there is a probability that the particle would be found 
to the left of region I; this is known as quantum tunneling. We also 
know from the experiment that the probability of finding the particle 
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to the left of region I decrease as the width of the barrier increases 
and vanishes to zero in the limit of the width of the barrier going to 
infinity. For the general solution to satisfy this physical observation 
D must be zero; remember we are in the negative half of the x-axis 
thus, as we go deeper into region I, xe b−  represents a growth func-
tion in this direction. 

Moving to region II the general solution of the Schrödinger 
equation is the same as we found for the infinite well case restated 
here

	 � � �II A x B x� � � � � �sin cos , � (4.28)

where we have swapped k for α such that

	 � �
2

2

mE


. � (4.29)

And in region III, which is identical to region II apart from the 
location on the x-axis, we find that 

	 x
III Fe by −= � (4.30)

with the same reasoning for dropping the growth term. We expect 
the wavefunction to be continuous across x. This is again due to phys-
ical reasoning that we do not expect a sudden jump in the probability 
of the particle’s whereabouts. In addition to this, we also expect that 
the derivative of the wavefunction to be continuous across x. In the 
infinite well case, the discontinuity in the derivative was caused by 
the infinite nature of the barrier, now we have finite barriers. 

To proceed we now consider the boundary conditions of the sys-
tem. At x a= −  we obtain the following relation 

	 � � � � � � � �A a B a Ce asin cos� � � ,� (4.31)

for the wavefunction and

	 � � � � � �A a B a Ce acos sin( )� � � � � � (4.32)

for the derivative. While at x a=  we find that

	 A a B a Fe asin cos� � �� � � � � � � � (4.32)
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for the wavefunction and 

	 � � � � � �A a B a Fe acos sin� � � � � � � �  � (4.33)

for the derivative.

Taking 0A =  and 0B ≠  such that we have even parity states we 
find that the following must be true:

Bcos a Ce Fea a� � �� � � �� �

	 C F∴ = ,� (4.34)

and 

� � � � ��B a Ce B aasin � � � � � �� cos

	 � � � �tan� � �a .� (4.35)

For odd parity states where 0B =  and 0A ≠  we find similar 
relations:

� � � � � �� �A a Ce Fea asin � � �

	 C F∴ = − � (4.36)

and

� � � � ��A a Ce A aacos� � � � � � �� sin  

	 � � � � �cot� � �a .� (4.37)

To find the energies and wavefunctions of the finite square well 
we must find the roots of Equations (4.35) and (4.37). And it just so 
happens that we have already developed the classes that can do this 
job.

4.3.3  Programming the Root Finder
Before launching into the code let us just remind ourselves of 

the nature of the problem we are trying to solve. While units like 
Joules, kilograms, and meters are all well and good for macroscopic 
objects, at the quantum level these become extremely cumbersome 
for quantum objects; especially when performing calculations with a 
computer. For example, the mass of the electron is roughly 319.1 10−×  
kg and has a charge of about 191.6 10−×  coulombs; these are hard 
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numbers that will lend themselves well to precise computations. 
Some advocate the use of dimensionless variables such that we set a 
particular coefficient to unity to remove any issues of precision. For 
instance, we could “choose” units that set the value of 2 / 2 1m = ;  
it does not matter what those units are only that the coefficient is 
one. However, this requires converting the result from the “dimen-
sionless” units back to SI units or any units of choice which has its 
advantages but can be non-intuitive and confusing for novice pro-
grammers. An alternative is to use explicit unit conversions before 
computing anything and therefore have results that are immediately 
identifiable in SI units. The unit conversion will be different for dif-
ferent problems, but the common goal is to make the coefficients 
have an exponent of one. Typically, we can use the natural units of 
the problem at hand. Case in point, if we use electron masses, Ang-
stroms, and electron volts as our units of mass, length, and energy 
respectively then 

	 2 27.61996386   em eV= Å .� (4.38)

To see how we arrived at this number let us start with the normal 
definition of   such that

	
346.62606957 10

 
2 2
h

Js
p p

−×
= = � (4.39)

and perform some dimensional analysis on the units. In SI base units 
the units for Planck’s constant squared become

	 [ ] [ ] [ ]2 22 4 2J s kg m s −=       ,� (4.40)

which we can rearrange to give

[ ] [ ] [ ] [ ] [ ] [ ]2 4 2 2 2 2 2kg m s kg m kg m s kg m J− −= =                  .� (4.41)

To convert to our computer-friendly units, we note the following 
conversions:

311 9.10938291 10  kgem −= × ;
191 eV 1.60217657 10  J−= × ;
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and
101 1 10  m−= ×Å .

Combining these to compute 2
  in Equation (4.38) we have

2 68
2

2 31 19 20

6.62606957 10
4 9.10938291 1.60217657 10 10 10p

−

− − −= ×
× × × ×



 

	 2 2 2 0.0761996386 10   eV em∴ = × Å . � (4.42)

By explicitly setting these unit conversions we know that when 
defining the well width say we do so in units of Angstroms. Or when 
defining the potential barrier height or computing the energy of the 
bound electrons we are using units of electron volts. 

Let us imagine we are attempting to find the energy and wave-
function of the lowest bound state, the ground state. From the 
results of the infinite square well case, we would expect this state 
to be of even parity. Even parity states have the characteristics that 

0y ≠  and ' 0y =  at the middle of the well. Odd parity states have 
those characteristics reversed. For even parity states we are trying to 
find the energy E which satisfies the following equation

	 f E a� � � � � � �� � �tan 0 � (4.43)

where we remind you that

	 � �
2

2

mE


,� (4.44)

and

	
( )0

2

2m V E
b

−
=



.� (4.45)

Now while Equation (4.43) is perfectly acceptable as a math-
ematical object note that it contains properties that are abhorrent to 
a computer. Specifically, the tangent function contains singularities 
whenever  ka np= , where n is an integer, due to the cosine function 
being zero at these points. We can circumvent this issue by rewriting 
Equation (4.43) in its component terms such that

	 f E a a� � � � � � � � �� � � �cos sin 0.� (4.46)

Computational Physics.Ch4.3pp.indd   74Computational Physics.Ch4.3pp.indd   74 1/3/2022   10:42:24 AM1/3/2022   10:42:24 AM



Searching for Roots  •  75

Here we have removed the singularities and the computer 
thanks us for that. 

FIGURE 4.6:  Function of energy where the roots define the energy eigenvalues for a finite 
square well of width 10Å and height 10 eV.

The root-finding subroutines we have developed to date demand 
that a root be bracketed; where do we start looking? We know that 
our bound wavefunctions must exist (if they exist at all) within 
the confines of the well. That is, they must exist only for energies 
between zero and the height of the potential barrier 0V . We could 
perform an exhaustive search on ( )f E  but let us see if we can’t do 
a little better by plotting the function on which we wish to perform 
the root search. Figure 4.6 shows the function ( )f E  for an elec-
tron bound in a well with the parameters  5 a = Å, and 0 10V =  eV; 
remember that the electron can only have energies that are equal 
to the roots of this function. We can clearly see three roots: the first 
between 0.0 and 0.5 eV, the second between 2.5 and 3.0 eV, and the 
third between 7.0 and 7.5 eV. Performing the same procedure for 
odd parity states we find three roots bracketed between 1.0 and 1.5 
eV, 4.5 and 5.0 eV, and 9.5 and 10.0 eV.
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There is a slight rub to this plotting argument; we have plotted 
the function to see roughly where the roots lie and to avoid an 
exhaustive search where we would have to perform many func-
tion evaluations. However, to plot the function we have had to 
perform function evaluations anyway at equally spaced points and 
passed that data to an external program for plotting. We have not 
actually saved ourselves any effort and in fact, have added some. 
In other words, we may as well perform the exhaustive search. If 
so desired, we could then store the function evaluations during 
the exhaustive search for plotting after the program has finished, 
providing some insight into the validity of our numerical results. 
As a rule of thumb, we should set the search step length no larger 
than 210−  of our search range to avoid skipping over roots, and 
no smaller than 410−  of our search range to avoid an excessive 
number of function evaluations and subverting the intent of the 
root searching subroutines we have developed, if you consider 
ten thousand not being an excessive number! That said, the step 
length for an exhaustive search will very much depend upon the 
function being investigated. For instance, we can clearly see from 
Figure 4.6 that a step length of one would find brackets for all 
three roots. 

Once we have the brackets for the roots, they are passed to a 
root searching algorithm, say our Bisection-Secant hybrid method, 
for further refinement up to an accuracy specified by a user-defined 
tolerance. We now have the energies (in eV) of the bound states of 
our finite square well. All that remains to do is substitute these val-
ues back into our equations for the original problem to determine 
their corresponding wavefunctions. 

The finiteSquareWell.cpp source file contains the code to imple-
ment the discussion above for a finite square well of width 10Å, and 
barrier height of 10 eV. If you have OpenCV installed and have 
included the visualization module in the library the program will 
plot the resultant wavefunctions for an electron trapped in this spe-
cific well. If not, the program writes to file the data computed for 
plotting elsewhere.
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FIGURE 4.7:  The wavefunctions and probability functions for a finite square well with the 
parameter defined in the text (units are Å and eV).

Figure 4.7 plots the results of this code for an electron trapped in 
the well. Here we plot the normalized wavefunction from this com-
putation on the left (see Exercise 5), and the corresponding prob-
ability function on the right; the zero baselines are aligned to their 
matching energy eigenvalue (the code requires additional function-
ality to obtain the probability functions). This result will come in 
very handy as a check when we attempt to find the bound states for 
an arbitrary potential ( )V x  in Chapter 11 on an advanced ordinary 
differential equation solver. 

EXERCISES

4.1.	 Run the Bisection, Newton–Raphson, and Secant meth-
od programs to determine the number of iterations re-
quired to find the root of the equation ( ) ( )f x cos x x= −  
to an accuracy of eight significant figures. Comment on 
the dependence of conversion on the choice of initial 
guesses. (Tip: You may want to include a conditional exit 
to avoid infinite loops).
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4.2.	 Modify the hybrid method programs so that it prints to 
screen when it takes a Bisection step and when it takes 
an NR/Secant step. Using the various initial guess values 
from the previous exercise perform the same root-finding 
computation using one of the hybrid methods we have 
developed. Verify that the hybrid methods are robust to 
initial guess and comment on how often Bisection is used 
in comparison with the other method.

4.3.	 Modify the brute force search so that instead of attempt-
ing to find a set number of roots it only searches over 
a given interval of interest, reporting back the number 
of roots found in that interval, as well as the bracket for 
each. 

4.4.	 The Lennard–Jones potential describes the approximate 
interaction between a neutral pair of atoms and has the 
form

 
12 6

4LJV
r r
s se

    = −         

	 where r is the distance between the atoms, and e  and s  
are properties of the potential to be determined. At what 
value of r does the potential  LJV equal zero? The size 
and nature of the force between the atoms are given by 
the magnitude and sign of the first-order derivative of 
the potential with respect to r. At what value of r do the 
forces balance between the atoms, and what is the value 
of LJV  at this point? Confirm these results using the root-
finding programs we have developed in this chapter. As a 
bonus question, what is the minimum energy required to 
tear the atom pair apart according to the Lennard–Jones 
potential?

4.5.	 Add code to the finiteSquareWell.cpp source file to 
compute the probability functions for each wavefunction 
found (Tip: there is an overloaded operator that allows 
you to perform elementwise multiplication of two vectors 
in the code library)
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4.6.	 Is a 10 eV tall, 10 Angstrom wide quantum well physically 
sensible? Study the effects of varying the well width and 
well height on the bound states on the bound states in 
the well. Do we always get at least one state, that is, the 
ground state? 
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CHAPTER 5
NUMERICAL  
QUADRATURE

Numerical integration constitutes a broad family of algorithms 
for calculating the numerical value of a definite integral. The term 
is also sometimes used to describe the numerical solution of differ-
ential equations that are described in Chapter 6 of this book. This 
chapter focuses on the calculation of definite integrals. The term 
numerical quadrature (often abbreviated to just quadrature) is a syn-
onym for numerical integration, especially as applied to one-dimen-
sional integrals. 

The basic problem considered by numerical integration is to 
compute an approximate solution to a definite integral:

	 ( )
b

a

f x dx∫ . � (5.1)

If ( )f x  is a smooth, well-behaved function and the limits of the 
integration are bounded, there are several methods of approximat-
ing the integral using numerical integration to the desired precision. 

The first two numerical integration schemes we discuss next 
should be familiar to you and provide intuitive and illustrative exam-
ples of what all numerical integrations schemes are doing regardless 
of their complexity.

Throughout this chapter, C++ programs that perform the 
quadrature methods are discussed. There are Quadrature classes 
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found in the library that can be used to shortcut the development. 
Feel free to use them but ensure you have at least looked at how 
they are implemented. You will also find other quadrature rules 
in the library that implement Romberg’s method and Gauss type 
quadrature. We discuss these quadrature methods in Chapter 10 of 
this book.

5.1  SIMPLE QUADRATURE

5.1.1  The Mid-Ordinate Rule
The mid-ordinate rule computes an approximation to a definite 

integral, made by finding the area of a collection of rectangles whose 
heights are determined by the values of the function at certain dis-
crete, evaluation points along the interval.

FIGURE 5.1:  Illustration of the mid-ordinate rule.

Figure 5.1 illustrates the mid-ordinate method. Specifically, the 
interval [ ],a b  over which the function is to be integrated is divided 
into N equal subintervals of length ( ) /h b a N= − . The height of the 
rectangle is then determined to be the value of the function found 
at the mid-point between each subinterval hence the name. The 
approximation to the integral is then calculated by adding up the 
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areas (base multiplied by height) of the N rectangles, giving the 
formula:

	 ( ) ( )
1

0

b N

n
na

f x dx h f x
−

=

≈ ∑∫ � (5.2)

where ( 1 / 2) .nx a n h= + +  As N gets larger, this approximation gets 
more accurate. As N approaches infinity, h becomes infinitesimally 
small (approaches dx) and we have the definition of an integral. Why 
is this impossible to do with a computer?

Write a C++ program that uses the mid-ordinate rule on a func-
tion that has an analytic solution. This is so we can confirm the accu-
racy of the method. The improvement in accuracy of the mid-ordi-
nate method should be on the order of h, written ( )h . In other 
words, if the subinterval width h is halved, that is, N is doubled, 
then the error in the numerical approximation of the integral is also 
halved.

5.1.2  The Trapezoidal Rule
One immediate, and intuitive improvement, we can make to the 

mid-ordinate rule is to make our subinterval strips approximate the 
function between the subinterval limits rather than just us the mid-
point value. The easiest way to do this is to approximate the function 
as a straight line between the values for the function at the subinter-
val limits. In essence, we make the rectangle a trapezoid. 

If we consider the entire interval as one strip, as illustrated in 
Figure 5.2, satisfy yourself that

	 ( ) ( ) ( ) ( )
.

2

b

a

f a f b
f x dx b a

+
≈ −∫ � (5.3)

Equation (5.3) is referred to as the primitive integral. Subdivid-
ing this into N strips we obtain

	 ( ) ( ) ( ) ( )
1

12

b N

n
na

f a f b
f x dx h h f x

−

=

+
≈ + ∑∫ � (5.4)

where ( )   – /h b a N= , and     nx a nh= + . Equation (5.4) is referred to as 
the composite (trapezoidal) integral. 
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The trapezoidal rule should have an error reduction that is 
proportional to ( )2h ; halve h and you reduce the error by a factor 
of four. To confirm this, write a C++ program that performs the com-
posite trapezium rule on a function you can integrate analytically.

FIGURE 5.2:  Illustration of the primitive trapezoidal rule.

5.1.3  Simpson’s Rule
As a next step in improving the accuracy of our numerical inte-

gration scheme, we might consider approximating the integrand as 
a piecewise quadratic. This is exactly what Simpson’s rule does and 
is illustrated in Figure 5.3. The derivation of Simpson’s rule involves 
taking a Taylor series expansion about the mid-point of the interval 
and integrating that expansion. The formula for the primitive Simp-
son’s rule, that is, the whole interval taken as one strip, is

FIGURE 5.3:  Illustration of Simpson’s rule. Here the definite integral of the function is 
approximated by area under the quadratic.
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	 ( ) ( ) ( ) ( ) ( )4
6

b

a

f a f c f b
f x dx b a

+ +
≈ −∫ � (5.5)

where c is the mid-point of the interval. We need three function 
evaluations in this case because we are approximating the function 
with a quadratic that requires a minimum of three points. The com-
posite Simpson’s rule has the form

	 ( ) ( ) ( ) ( )
( )

( )
/2 1/2

2 1 2
1 1

[ 4 2 ]
3

b NN

n n
n na

h
f x dx f a f b f x f x

−

−
= =

≈ + + +∑ ∑∫ � (5.6)

where ( ) /h b a N= −  and nx a nh= + . Again, write a program that 
performs the composite Simpson’s rule for numerical integration 
and investigate how the error behaves in terms of the strip width. 
Note that the total number of strips, N, is used as an even number. 

5.2.  ADVANCED QUADRATURE

5.2.1  Euler–Maclaurin Integration
We could of course keep going with the approximations to the 

integrand function using higher-ordered polynomials. Indeed, using 
a cubic polynomial, we are led to Simpson’s three-eighths rule, and 
using a quartic polynomial yields Boole’s rule but these soon become 
very cumbersome to derive and use. The integration scheme is called 
the Euler–Maclaurin scheme, given by the composite formula

( ) ( ) ( ) ( ) ( ) ( )
21

12 12

b N

n
na

f a f b h
f x dx h h f x f a f b

−

=

+ 
= + + − − 


′ ′  


∑∫

 

	 ( ) ( )
4

. 
720
h

f a f b′′′ ′′− +  ′
 � (5.7)

Equation (5.7) can be derived by again considering the Taylor 
series expansion of the function and its derivatives at the integra-
tion limits. See DeVries pp. 153–155 for a neat explanation of the 
derivation. The first two terms in Equation (5.7) are simply the 
trapezoid rule, and we can consider the next terms as corrections to 
that numerical integration scheme. Note that should the first-order 
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derivatives at the integration limits be near identical, or vanishingly 
small, the trapezoid rule can give surprisingly accurate results. Can 
you think of a function whereby its derivatives will be identical for a 
given set of integration limits? 

Although the Euler–Maclaurin formula is far superior to any 
other numerical integration method we have discussed so far it suf-
fers from the drawback that the integrand has to be easily differen-
tiable. If not, we would have to rely on numerical approximations 
of the derivatives at the integration limits. The accuracy of those 
derivative approximations should at least match the order of h to 
which they belong. This quickly becomes impractical.

5.2.2  Adaptive Quadrature
In the previous discussions, it is assumed that the strip width 

is uniform across the integration interval. To those experienced in 
numerical integration, this is wasting considerable effort. Typically, 
we want to determine the value of numerical integration to some 
predetermined accuracy or tolerance. With our current numerical 
integration schemes, we can only reduce the error by reducing the 
size of each strip. For smooth functions this is fine; the contribution 
of each strip to the total absolute error is roughly the same. How-
ever, what if the function is not smooth, or has portions that rapidly 
change with x, compared to other flat regions. For instance, consider 
the Lorentzian line-shape function that describes the emission of 
light from the atoms of an excited gas cloud

	 ( ) 0
2 2

01 4( ) /
I

I l
l l

=
+ − Γ

� (5.8)

where  l is the wavelength of light emitted, 0l is the resonant wave-
length, 0  I is the peak intensity of emitted light at 0l l= , and  Γ is a 
measure of the width of the curve, the full width at half height.

This function is sketched in Figure 5.4; note that a small con-
stant background intensity has been included. Let’s say we are per-
forming an experiment to determine how the width of the peak is 
affected by the pressure of the gas. Being good scientists, we want 
to ensure that the total number of contained atoms remains con-
stant at each measured pressure level, within some predetermined 
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tolerance of say 0.1%. One way to do this would be to check the total 
emitted power of the gas at each pressure, that is, the area under the 
curve in Figure 5.4. This means integrating the line-shape over some 
predetermined wavelength range. Let us assume we don’t know how 
to integrate this type of function analytically and so we have to do it 
numerically (it is actually a standard integral after a simple substitu-
tion). The relative error in our numerical approximation should be 
at least equal to the tolerance we want for our total emitted power 
measurements and ideally much less, let us say 0.001%. Much of 
the error in the approximation will be introduced by those strips 
representing the peak, and we require relatively narrow strips in this 
region in order to keep the overall error below what we are willing 
to tolerate. Using a uniform distribution of strips, we would be wast-
ing effort in the relatively flat regions away from the peak; each strip 
would produce an insignificant portion to the overall error and we 
could afford to use wider strips in these regions. 

FIGURE 5.4:  Sketch of the Lorentzian line shape.

The first approach to this problem might be to manually segment 
the integration interval into three subintervals: the two flat regions, 
and the peak. The strips for each subinterval could be chosen so that 
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the absolute error of each was one-third that required of the total. 
This approach is perfectly valid but hardly provides a general solu-
tion; where do you select the segmentations? What if there is still 
significant function variation within the selected subinterval? Would 
greater manual segmentation require more effort? 

To provide a more general solution let us consider the behavior 
of the error of the trapezoid rule. We know that if you halve the strip 
width then you reduce the error by a factor of four, in other words, 
the trapezoid rule has an error behavior of ( )2h . If we denote the 
trapezoidal approximation using 2m strips as mT , then the trapezoidal 
approximation with twice the number of strips (half the strip width) 
is given by 1mT + . As 1mT +  has half the strip width its error is reduced 
by a factor of four compared with mT . With reference to the Euler–
Maclaurin Equation (5.7), we can eliminate the leading error term 
in our approximation by performing the following calculation

	 1
1

4
3

m m
m

T T
T +

+

−′ = � (5.9)

where 1mT +′  is the improved approximation for 12m+  strips. If it helps 
you can think of Equation (5.9) as a weighted average between the 
two approximations  mT and 1mT + . As we have eliminated the leading 
error term from Equation (5.7) the error in our improved approxi-
mation is now ( )4h . It is worth noting here that Equation (5.9) is 
equivalent to Simpson’s rule. We can now estimate the error in the 

1mT +′  by subtracting 1 mT +  giving 

	 1
1 1 3

m m
m m

T T
T Te +

+ +

−′≈ − = .� (5.10)

Note that this is the absolute error, not a relative error. We can 
now check this estimated value against the “global” error we want to 
achieve in our approximation. If this condition is met, we accept the 
integration, if not then we halve the total integration interval and 
perform the same process on the two halves. Note that the “global” 
error needs to be halved for these new subintervals to preserve the 
global error when they are summed for the entire integration. This 
procedure is repeated until the desired accuracy is reached upon 
which we accept the integration for that subinterval, add it to the 
total, and move on to the next subinterval. 

Computational Physics.Ch5.3pp.indd   88Computational Physics.Ch5.3pp.indd   88 1/4/2022   10:33:59 AM1/4/2022   10:33:59 AM



	 Numerical Quadrature  •  89

Although not immediately obvious this problem is best suited 
to a recursive function or subroutine whereby each successive call 
halves the subinterval and the “global” error that we check against. 
The recursion is terminated once the error estimate of Equation 
(5.10) becomes sufficiently small. Comprehending the logic of 
recursive formulas can be rather difficult, however, often the best 
way to understand them is to visualize some simple output. 

FIGURE 5.5:  Adaptive numerical integration of the Lorentzian line-shape function.

The program adaptiveQuadrature.cpp performs this recursive 
action using the trapezoidal rule as default with the improvement 
technique described above. Figure 5.5 shows the result of applying 
this program to Equation (5.8) with 0l = 10, 0I = 1, Γ = 1, and with 
integration limits of 6a =  and 14b = . The global error was selected 
to be 0.01% of the integration. Here we can see that the adaptive 
quadrature has done its job; in the flat regions away from the peak 
the strips are wider, whereas the strips covering the peak are much 
narrower. In order to lend clarity to the figure, the impulse lines plot-
ted belong to the limits of the integration where the segmentation 
of that strip was accepted; the strips used in the actual calculation of 
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the integration are half the size of the ones shown. To visualize the 
data in such a manner the limits of the subintervals used were stored 
along with their function evaluations and plotted as impulse lines on 
the same figure as the function using “gnu plot”. 

As alluded to earlier the fact that the Lorentzian line-shape 
function can be reformed into a standard integral using a simple 
substitution. That substitution is 

	
( )02

x
l l−

=
Γ

� (5.11)

which gives the integration of the (normalized) line-function the fol-
lowing form

	 ( ) 2
0

1 1
2 1

b d

a c

I d dx
I x

l l Γ
=

+∫ ∫  � (5.12)

where c and d are the adjusted integral limits after the substitution 
of Equation (5.11). Equation (5.12) is a standard integral that has 
the following exact solution

	 � �
�

1
1 2x

dx xarctan( ) . � (5.13)

This analytical solution allows us to check the validity of our 
numerical solution and that it satisfies the requirement that the 
global error is at or less than 0.01%. 

There is a fly-in-the-ointment here specifically about the func-
tion used to illustrate adaptive quadrature using the trapezoidal rule. 
If you apply just the composite trapezoidal rule to the Lorentzian 
line function you can achieve a similar error to the default adaptive 
scheme in fewer function evaluations. The reason is to do with the 
shape of the Lorentzian line function at the integration limits cho-
sen; we refer you back to Section 5.2.1 and the Euler–Maclaurin 
formula. 

5.2.3  Multidimensional Integration
Multidimensional integrations pop up often in physics and gen-

erally require much more effort to solve than the one-dimensional 
case. Take for instance a two-dimensional integral of the form
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	 ( ),
b d

a c

I f x y dxdy= ∫∫  � (5.14)

where ( ),f x y  is a two-dimensional function, and x and y have their 
usual Cartesian meaning. Here the integration limits a, b, c, and d 
specify a region in the x-y plane. With one-dimensional integration, 
we are finding the area between the function curve and the x-axis 
bounded by the given limits. Similarly, two-dimensional integration 
finds the volume between the function surface and the x-y plane 
bounded by an area or region. In three dimensions, the integration 
finds a four-dimensional space bounded by a three-dimensional sur-
face. This increase in dimensionality can continue ad infinitum (or 
ad nauseam depending on your philosophical bent) in a mathemati-
cal sense but typically stops at three when considering most physical 
phenomena. 

FIGURE 5.6:  Square region split into strips running parallel to the x-axis. Here we do the x 
integration first.

The general strategy in solving a two-dimensional integration 
numerically is to split it into strips along one of the dimensions and 
treat each strip as a one-dimensional integration along the other 
dimension. The total volume of the integral is found by adding 
together the contributions from each strip. Figure 5.6 illustrates this 
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point. Here we have a region in the x-y plane that is bounded by the 
unit square, centered at the origin; the integration limits of Equation 
(5.14) are constants. The region has been broken into strips running 
parallel to the x direction. The function axis is pointing out from 
the plane of the page, and the function itself will form some surface 
either above, below, or cutting through the plane of the page (the 
x-y plane). 

Mathematically, we have split the two-dimensional integration 
into two, nested, one-dimensional integrals such that 

	 ( )
b

a

I F y dy= ∫ � (5.15)

where

	 ( ) ( ),
d

c

F y f x y dx= ∫ .� (5.16)

Of course, we can always reverse the order of the integration 
so that the y variable is integrated first. This would be equivalent to 
having strips running parallel to the y-direction of the square. When 
it comes to writing code to perform two-dimensional integration, we 
can go two ways; (1) have a function with nested loops or (2) have 
two separate functions to perform the integration in each dimension. 
As we already have developed classes to deal with one-dimensional 
integration the second of these choices is easier.

FIGURE 5.7:  Segmentation of the (unit) circle region in polar coordinates.
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In many real physical systems, the region may not be a square 
but some other more complicated shape, where the limits of the 
integral in one dimension are a function of the limits in the other. 
Take for instance the unit circle located at the origin. This has the 
equation 

	 21y x= − � (5.17)

If we integrate over the upper right quadrant of the circle, we 
can see that the limits in the x integration have to adjust depending 
on the y value for which we are calculating. However, like many 
problems in physics we can take advantage of the symmetry of the 
system and a change to polar coordinates yields constant integra-
tion limits, as illustrated in Figure 5.7. The strips become concentric 
rings centered on the origin. It is likely this change of coordinates 
will make the integrand function more complex but why should 
we be concerned? We’re performing numerical integration in the 
first place because the problem was too difficult/impossible to solve 
analytically.

EXERCISES

5.1.	 Compare the effort required to find a numerical approxi-
mation of the integration

( ) ( )
1 1

0 0

1f x dx x x dx= −∫ ∫  

	 to an accuracy of 5 significant figures using the various 
methods, we have developed in this chapter. 

5.2.	 The period of a pendulum in confined to a single plane 
without damping has the following formula

0

0 0

4
2 cos cos
l d

T
g

q q
q q

=
−∫ ,
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	 where l is the length of the pendulum, g is gravitational 
acceleration, q  is the angle between the pendulum and 
the vertical, and 0q  is the initial angle of release. Calcu-
late this integral numerically for various initial angles of 
release and thus establish what is meant by the small-
angle approximation. 

5.3.	 Write a program that performs integration over two di-
mensions using a method of your choice. The adventur-
ous among you might like to try the adaptive quadrature 
in two dimensions. 

5.4.	 What constant can you approximate by numerically 
integrating over the unit quarter circle? Find its value to 
8 significant figures.

5.5.	 Consider a unit square region, centered on the origin, 
containing a uniform distribution of charge, r. The elec-
trostatic potential at a point ( ),  m mx y outside this region is 
found by integrating over the charged region such that

( )
1 1

2 2
0 1 1

,
4 ( ) ( )

m m

m m

dxdy
x y

x x y y

rj
pe − −

=
− + −

∫ ∫ .

	 By taking 04r pe=  and numerically assessing the integral 
at different points outside the unit square attempt to plot 
contour lines of isometric potentials. Do you recover 
Coulomb’s law at distances far from the charged region? 

5.6.	 The charge distribution in the previous question does not 
have to be uniform across the region. Try out different 
charge distributions with dependencies on x and y to see 
how they affect the electrostatic potential surrounding 
the square region. 
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CHAPTER 6
ORDINARY  
DIFFERENTIAL  
EQUATIONS

Physics is mostly concerned with phenomena that are in flux, 
for instance, things that change either in time or space or both, and 
many of the laws of physics are most conveniently formulated in 
terms of differential equations; formulas that relate derivatives to 
functions. As an example, consider Newton’s second law of motion 
for a particle of mass, m, in one-dimensional motion under a force 
field ( )F x :

	 ( )
2

2 .
d x

F x m
dt

= � (6.1)

This is a second-order differential equation as we are taking the 
second derivative of the displacement, x, called the dependent vari-
able, with respect to time, t, called the independent variable. The 
force field ( )F x  can be referred to as the derivative function.

Finding the numerical solution of differential equations is one 
of the most common tasks in computational physics as many of these 
equations become analytically insoluble (or at least difficult to solve) 
when you include realistic physical processes. 
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6.1 � CLASSIFICATION OF DIFFERENTIAL 
EQUATIONS

6.1.1  Types of Differential Equations
Differential equations can be categorized into two major groups, 

ordinary differential equations (ODE) and partial differential equa-
tions (PDE). The difference between the two is that ODEs only 
have one independent variable (they still can have any number of 
dependent variables) and PDEs can have any number of indepen-
dent variables as well as any number of dependent variables. Simple 
harmonic motion (SHM) in one dimension is an example of an ODE:

	
2

2

d x
m kx

dt
= − , � (6.2)

where m is the mass of the body in motion, k is the so-called spring 
constant, and x represents the displacement from some equilibrium 
position. Here time, t, is the only independent variable and x is the 
dependent variable that is a function of the independent variable, 
normally written as ( )x t . Whereas, the wave equation, which con-
sists of second-order derivatives in both space and time, that is, two 
independent variables, is an example of a PDE:

	
2 2

2
2 2

u u
c

t x
∂ ∂

=
∂ ∂

, � (6.3)

where c is the speed of the wave, and u represents some (scalar) 
property of the wave, for example, displacement, pressure, electric 
field strength, and so on; u is the dependant function, in this case, 
normally written as ( ),u x t . Note the use of the partial derivative 
symbol, ∂, rather than the usual d.

We can further subdivide the groups into their order. The order 
refers to the highest derivative appearing in the equations. For 
example, Equation (6.2) is of order 2, as is Equation (6.3). Order 2 
ODEs and PDEs occur frequently in physics. Note that we can sep-
arate a second-order ODE into a pair of coupled, first-order ODEs 
should we so wish but more on that later.

Next, we can classify a differential equation as being linear 
or non-linear. In a linear ODE, the dependent variable and its 
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derivatives only appear to the first power and are not cross multi-
plied. Note that the independent variable can be to any power. For 
instance

	 3f f x= − +′′  � (6.4)

is linear while

	 2 3f f x−′ = +′  � (6.5)

and 

	 3f f f x= −′ +′ ′ � (6.6)

are non-linear as they contain the terms 2f  and f f′′ ′ respectively. 
Here I have used the notation that 

	 ( ) ( )df x
f f x

dx
= ≡′ ′ ,� (6.7)

that is, a dashed derivative is one taken with respect to a spatial vari-
able, in this case, x. A dotted derivative is one taken with respect to 
a temporal variable, usually the time t, thus

	 ( ) ( )df t
f f t

dt
= ≡  . � (6.8)

This is a generally accepted notation convention within physics, 
mathematics, and other sciences.

A further classification can be made to distinguish between 
homogeneous and nonhomogeneous differential equations. A homo-
geneous equation contains terms that include either the dependant 
variable or its derivatives, but no other function of the independent 
variable. The differential equation of the simple harmonic oscillator, 
Equation (6.2), is an example of a homogeneous equation. Adding a 
time-dependent driving force, ( )F t , to this equation gives the non-
homogeneous equation

	
( ) ( ) ( )

2

2

d x t
m kx t F t

dt
+ = ,� (6.9)

as we now have a function of the independent variable, t, on the 
right-hand side. The actual form of the driving force is unimportant 
to this discussion but will be particular to the system being described 
by the differential equation. Note that Equations (6.4)–(6.6) are all 
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nonhomogeneous due to the addition of the independent variable 
term, x, on the right-hand side.

6.1.2  Types of Solution and Initial Conditions
When solving differential equations, we draw a difference 

between the general solution and a particular solution. The general 
solution refers to all the functions that fit the differential equation, 
whereas the particular solution is defined by some initial conditions 
or values. Take for instance Newton’s law of cooling (or heating) that 
states that the rate of change of temperature of a body is in propor-
tion to the temperature difference between it and that of the ambi-
ent. It can be written in the form

	 y ky= − ,� (6.10)

where y is the temperature difference between the body and the 
(constant) ambient, and k is some constant of proportionality (related 
to the surface area of the body, the material the body is made from, 
and so on). The minus sign represents the physics that hot bodies 
cool and cold bodies warm. This has the general solution

	 ( ) 0
kty t y e−= ,� (6.11)

where 0y  is the initial temperature difference, that is, the tempera-
ture difference at 0t = . Given an initial temperature difference, we 
could then determine a particular solution for any value of k. Note 
that 0y  is called an integrating constant that is a mathematical con-
cept related to some initial condition of the system, whereas k is a 
constant purely related to the physics of the system; the two should 
not be confused.

Equation (6.10) is an ODE of the first order and only has one 
integrating constant. As such we only needed to know one initial 
condition to determine a particular solution, namely the initial tem-
perature difference. In the general case, an n-ordered ODE will 
produce n integrating constants and we need as many initial condi-
tions to find a particular solution. To convince yourself of this what 
initial conditions are required to determine a particular solution of 
the second-order ODE describing SHM? 
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These are known as initial value problems. Other integration 
constants may include boundary conditions, that is, the condition 
or value of the dependant function at or beyond the boundaries or 
edges of your modeled system. For instance, the physical properties 
of the potential barriers in a quantum well provide the boundary 
conditions for solving Schrodinger’s wave equation for an electron 
trapped in the well. Essentially, the wave function and its derivatives 
decay to zero as it penetrates deeper into the bounding potential 
barriers.

6.2  SOLVING FIRST-ORDER ODES 

6.2.1  Simple Euler Method
Leonhard Euler was an 18th century, Swiss-born mathematician, 

who we would describe today as a polymath. Euler worked in several 
areas including optics, astronomy, ship construction, and artillery 
but was most prolific in his work on mathematics. He contributed 
much to the fields of number theory, algebra, and calculus, and can 
be directly attributed to the modern standard usage of the symbols 
e, ,p  and i. 

Consider again Equation (6.10) which is a linear, homogeneous 
ODE of the first order. We can write a first-ordered ODE more 
generally as

	 ( ) ( ),y t f t y= , � (6.12)

where f is some function of the independent variable, t, and the 
dependent variable, y; the form of f determines the classification of 
the differential equation. 

We could attempt to solve Equation (6.12) by taking the Taylor 
series expansion of the dependent variable about some initial posi-
tion, 0t , such that

	 ( ) ( ) ( ) ( ) ( )
2

0
0 0 0 0

( )
2!

t t
y t y t t t y t y t

−
= + − + +

. � (6.13)

Since we know the form of the first-ordered derivative from 
Equation (6.12) we could calculate the higher-ordered derivatives 
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by using the partial differentiation of f. However, this soon becomes 
untenable for all but the simplest expressions for f, and in which 
cases Equation (6.12) can most likely be solved analytically. We can 
get rid of those troublesome higher-order derivatives by truncating 
Equation (6.13) to the first two terms only, leaving

	 ( ) ( ) ( ) ( )0 0 0y t y t t t y t≈ + −  . � (6.14)

Note that we could have arrived at Equation (6.14) by consider-
ing an approximation to the gradient of the dependent function at 
the initial position

	 ( ) ( ) ( )0
0

0

y t y t
y t

t t

−
≈

−
 . � (6.15)

If we now say that ( )0h t t= −  where h is a small step, we may 
now conveniently write Equation (6.14) as an equality

	 ( ) ( ) ( )( )0 0 0 0 0 0,y t h y t hf t y t y hf+ = + = + , � (6.16)

where we have substituted in the function, f, for the derivative, and 
used the notation that ( )0 0y y t≡  and ( )0 0 0,f f t y≡ .

FIGURE 6.1:  Sketch of the simple Euler method. We only know the first value of y exactly; 
the integrated values are approximations to y.

Equation (6.16) is the simple Euler method or Euler’s forward 
approximation. Interpreting this method, we can see that given a 
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starting position, 0y , we can step to the next position using the deriv-
ative 0f  at the start of the step. We can generalize this to the nth 
step giving the recursion formula

	 1n n ny y hf+ = + , � (6.17)

where we define, 0nt t nh≡ + , ( )n ny y t≡ , and ( ),n n nf f t y≡ , with 
1,2,3n = . Note that this stepping action can be referred to as inte-

grating the solution; we are solving a differential equation and are 
therefore performing an integration. Figure 6.1 illustrates the sim-
ple Euler method in action.

Although we could step ad infinitum we typically wish to find a 
value for y at some predefined value for t, in other words, we have 
an interval [ ],a b  over which we wish to step from a to b. The most 
straightforward way of doing this is to split the interval into N steps of 
equal size, h, such that ( ) /h b a N= − , and move the solution along 
one step at a time using Equation (6.17). We can check the accuracy 
of the method by repeating the integration using smaller and smaller 
step sizes and seeing if we converge on a solution. Though perhaps 
a more stringent test is that once we reached our desired value b we 
integrate back toward a and compare our integrated approximation 
to the initial value for y with which we started.

FIGURE 6.2:  Sketch of the modified Euler method. The gradient for the entire step is esti-
mated from the derivative at the mid-point. The simple Euler method is shown in grey  

for comparison.
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As defined in Equation (6.17) using a truncated Taylor series 
expansion behavior of the error can be determined in our approxi-
mation to the solution. For a single step of the simple Euler method, 
we know that the approximation given by Equation (6.14) will have 
an upper bound on the “local” error of ( )2h  as we kept the first 
two terms of the Taylor series only. To get from our initial position a 
to our desired position b we must perform N such steps. Thus, the 
overall upper bound on the error at b will be given by ( )2N h× . As 
N is inversely proportional to the step size h, we can then estimate 
the “global” error in the simple Euler method as ( )h . In other 
words, if you halve the step size (and thus take twice as many steps) 
you should halve the error in the approximation to the solution at 
the destination b.

The program eulerForward.cpp performs the simple Euler 
method on the differential equation

	 y xy′ = − , � (6.18)

with the initial condition that 0 1y = , and over the interval [ ]0,2x = . 
The analytical solution to Equation (6.18) with the given initial con-
dition is 

	
20.5xy e−= . � (6.19)

The program uses the Euler class found in ODESolvers.h and 
which inherits from the base class ODESolver. You should familiar-
ize yourself with the implementation of the Euler class in ODE-
Solvers.cpp and satisfy yourself that the solve and fullSolve 
member functions perform the forward Euler method as expressed 
by Equation 6.17. Notice that the state of the system, the coordinate 
pairs of the independent and dependent variables, is encoded by the 
state data structure defined in State.h and implemented in State.
cpp. The design of this data structure is discussed when we look at 
solving ODEs of order 2 in a later section of this chapter. Compil-
ing and running this program should be observed using ( )h  error 
behavior that is to be predicted. 

6.2.2  Modified and Improved Euler Methods
Although the simple Euler method provides an instructive means 

of introducing the topic of numerically solving differential equations 
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it should not be used in any serious attempt to find a solution due to 
its lack of accuracy. The major issue with the simple Euler method is 
that it assumes the derivative at the start of a step remains constant 
over that step, see Figure 6.1. This asymmetrical treatment of the 
step is bound to lead to large inaccuracies of the approximated solu-
tion. It would be better if we could use some sort of averaged value 
to estimate the derivative across the whole step. 

The modified Euler method approximates the solution by using 
the derivative at the mid-point of the step to advance the integra-
tion. Obviously, we do not know the value of the derivative at the 
mid-point, but we can approximate it using the simple Euler method 
with half the step size such that

	 1
2 2mid nn

h
t t t

+
= = + � (6.20)

and

	 ( ) 1
2 2mid mid n nn

h
y y t y y f

+
= = = + , � (6.21)

where n is our previous step for which we have values. We can now 
use the value for midy to estimate the derivative at the mid-point of 
the step and thus advance the solution across the whole step as fol-
lows

	 ( )1 ,n n mid midy y hf t y+ = + . � (6.22)

Equation (6.22) is the modified Euler method and is illustrated 
in Figure 6.2. From a cursory look at the figure, you can see that the 
modified Euler method appears to do a much better job at approxi-
mating the solution than the simple Euler method. Note that the 
function sketched is somewhat arbitrary, but it should be able to 
show that the modified Euler method is better by writing a program. 

Another way of obtaining an average value that best approxi-
mates the derivative across the step is to take a mean of the deriva-
tive at the start of the step with the derivative at the end of the step. 
Again, we use the simple Euler method but this time to estimate 
the value of the derivative at the end of the step. Using this estimate 
with the derivative at the start of the step, which we have previously 
computed, we can take the mean of these two values to advance the 
integration of one whole step. Mathematically written as
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	 ( )1 ,
2n n n n n n

h
y y f f t h y hf+  = + + + + . � (6.23)

Equation (6.23) is the improved Euler method and is illus-
trated in Figure 6.3. A cursory study of the figure suggests that the 
improved Euler method is better than the simple Euler method. But 
which is better between the improved Euler method or the modi-
fied Euler method?

FIGURE 6.3:  Sketch of the improved Euler method. The simple Euler method is used to 
estimate the derivative at the end of the step, which combined with the derivative at the start 

of the step gives a mean for the entire step.

Use the simple Euler method program provided to write a code 
for the modified, and improved Euler methods; Equations (6.22) 
and (6.23), respectively. Using these programs one could determine 
how the error behaves with step size for these two methods? 

It was the German Mathematician Karl Heun who first devel-
oped the modified Euler and improved Euler methods, which in 
part helped develop the more accurate Runge–Kutta methods that 
will be discussed subsequently. 

6.2.3  The Runge–Kutta Method
Carl Runge and the Polish-born Martin Kutta were both Ger-

man mathematicians and physicists who lived and worked around 
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the latter part of the 19th century and into the first half of the 20th 
century. In 1901, they co-developed the Runge–Kutta method(s), 
used to solve ODE numerically. 

The Runge–Kutta methods are characterized by expressing the 
numerical approximation in terms of the derivative function evalu-
ated at intermediary points between step values. Euler’s methods 
can actually be classed as low-ordered general Runge–Kutta meth-
ods; the Euler method being a one-step Runge–Kutta method, and 
the modified, and improved methods are both two-step Runge–
Kutta methods. The popularity of the Runge–Kutta methods in 
numerically solving ODEs is due in part to their (relative) ease of 
implementation within computer programs, and the accuracy they 
achieve. Of the most popular devised is the fourth-ordered Runge–
Kutta (RK4), or simply the Runge–Kutta method, defined as

	  ( )1 0 1 2 32 2
6n n

h
y y k k k k+ = + + + + , � (6.24)

where

( )0 ,n nk f t y= ,

1 0,
2 2n n

h h
k f t y k = + + 

 
,

2 1,
2 2n n

h h
k f t y k = + + 

 
, 

	 3 2,
2n n

h
k f t y hk = + + 

 
.� (6.25)

The derivation of Equations (6.24) and (6.25) is a little tricky but 
involves considering a general form for Euler’s methods such that 

	 y y h f f t h y hfn n n n n n� � � � � �� ��� ��1 � � � �,  � (6.26)

and choosing the coefficients (� � � �, , , ) such that they agree with 
the Taylor series expansion of the term involving b , up to 4h . Indeed, 
the modified and improved Euler methods can be found in this way 
by matching terms up to 2h . Feel free to have a go at deriving these 
equations yourselves using this method but be warned that taking a 
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Taylor series expansion of a function of two variables gets somewhat 
complex for anything more than the degree one terms.

A slightly easier but less general way of deriving Equations (6.24) 
and (6.25) is to consider the direct integration of Equation (6.12) for 
the special case that derivative function is a function of the indepen-
dent variable alone, that is, ( )f t . We can then write for a single step

	 ( ) ( ) ( )
n

n

t h

n n
t

y t h y t f t dt
+

+ = + ∫ , � (6.27)

and by solving the integration term by Simpson’s rule we obtain the 
results of Equations (6.24) and (6.25). 

Interpreting the RK4 approximation, Equation (6.24), we see 
that the next value in the integration is calculated as the present 
value plus the weighted average of four increments. The increments 
are determined from estimates of the slope at intermediary points 
on the step specified by the derivative function f, multiplied by the 
step size h. These increments can be described as follows:

●● 0k  is the estimate of the slope at the beginning of the step;

●● 1k  is the estimate of the slope at the midpoint, using 0k ;

●● 2k  is the estimate of the slope at the midpoint, but now using 
1k ; and

●● 3k  is the estimate of the slope at the end of the interval,  
using 2k .

In averaging the four increments, greater weight is given to the 
increments at the midpoint reflecting the fact that the function’s 
slope is better approximated by the tangent to the curve at the mid-
point of the interval rather than its bounds. 

The RK4 method is a fourth-order method, meaning that the 
local error behaves as ( )5h , while the global error behaves as 
( )4h . This means that halving the step size will reduce the overall 

error by a factor of 16, hence why the method is so popular.

The class RK4 found in the ODESolvers module performs the 
fourth-ordered Runge–Kutta method. Write a program that uses 
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this class to solve the first-ordered differential equation defined by 
Equation (6.18) found earlier in this chapter.

Confirm that the Runge–Kutta method provides an accuracy of 
( )4h  and is superior to the Euler methods we discussed earlier in 

this chapter. 

6.2.4  Adaptive Runge–Kutta
Generally, we wish to find the numerical solution to an ODE to 

some predefined (global) error or tolerance. Using a fixed step size, 
we are somewhat constrained to use one sufficiently small across the 
entire interval to provide the required local accuracy at each step 
of the integration. If the nature of the solution changes across that 
interval, that is, becomes increasingly rapid in its variation with the 
independent variable, then we would waste considerable effort over 
the “flat” regions of the solution. Therefore, we would like to be able 
to change the size of the steps taken in the numerical approximation 
in accordance with the local nature of the solution, that is, allow 
them to adapt.

By far the most straightforward way to do this is to perform a 
single step of the integration with step sizes h and / 2h  and com-
pare the result immediately. More precisely, we perform a single 
step with step size h, then halve its size and perform two steps with 
the new step size to reach the same point in the solution. We can 
estimate the error in the numerical approximation by computing 
the difference between our two solutions. By comparing this dif-
ference to our predefined tolerance, we can either accept the step 
if the difference is smaller, otherwise, we use the halved step size to 
repeat the process. However, this is not the whole picture. Here we 
have only taken account of the solution starting in a flat region and 
advancing into a rapidly changing one.

If we start in a rapidly changing region then we merrily halve 
our step size until it produces a solution that is within the prescribed 
accuracy tolerance, and we advance with that small step. If the solu-
tion now flattens then we simply maintain that small step as it will 
produce a solution that is (very much) within the accuracy tolerance. 
This is not what we were after; we want a step size that adapts to the 
local nature of the solution, that is, can increase as well as decrease. 
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The answer to this issue is to assume that when we accept a step, 
that is, we are within the accuracy tolerance, the step size is too small 
and should be increased for the next step; maybe we should double 
the step size to 2h, is there a problem with this strategy?

By using an integration method of known error order, we can 
eliminate the leading error term in the integration step using the two 
solutions. For example, the fourth-ordered Runge–Kutta method 
reduces the error in the solution by a factor of 16 when we halve the 
step size. To eliminate the leading error term for this Runge–Kutta 
method we compute the integration for a particular (accepted) step 
as ( )2 1ˆ 16 / 15y y y= − .

This is like the method used in Chapter 5 to develop an adaptive 
quadrature using the knowledge of how the error in the trapezoidal 
rule behaves with strip width. Generally, this method of manipulat-
ing the solution based on error behavior is referred to as Richard-
son’s extrapolation that we explore further in the advanced section 
of this book.

Using the method outlined above write a program that uses the 
fourth-ordered Runge–Kutta algorithm to adaptively integrate a dif-
ferential function of your choice. My advice would be to use a simple 
differential equation that can be solved analytically for comparison 
to your adaptive routine. You should confirm that your routine is 
adapting to the local nature of the differential.

6.3  SOLVING SECOND-ORDERED ODES

6.3.1  Coupled 1st Order ODEs
It has been noted before that second-order ODEs occur most 

frequently in physics as they model many real physical systems. In 
general, we write a second-order ODE as

	 ( ), ,f t y yy =  . � (6.27)

Note that the function f has three variables namely the indepen-
dent variable, the dependent variable, and the first derivative of the 
dependent variable.
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Although methods exist to solve higher-ordered differential 
equations, for example, finite difference method, it is far simpler 
to reduce the equation into a set of coupled first-order differential 
equations; the term coupled will become apparent shortly. We can 
do this by introducing secondary dependent functions such that 

1y y=  and 2y y=   and thus we can rewrite Equation (6.27) as a pair 
of coupled, first-order ODEs:

1 2y y= ;

	 ( )2 1 2, ,y f t y y= .� (6.28)

They are coupled because the rate of change of variable 1y  is 
dependent on the variable 2y , and the rate of change of variable 2y  is 
dependent on the variable 1y  contained in the function f. However, 
if we define 1 2f y≡ and ( )2 1 2, ,f f t y y≡  then Equations (6.28) can 
be rewritten in vector form 

	
( )

21 1

1 22 2, ,
yy f

f t y yy f
    

= =    
    





, � (6.29)

or 

	 y f= ,� (6.30)

where y  and f  represent two-component vectors. Comparison 

of Equation (6.30) with Equation (6.18) shows that the problem of 
solving second-ordered ODEs is not primarily different from the 
first-ordered ODEs for which we have been developing solutions, 
only that now we have extra components.

To illustrate this point, we can write Equation (6.1), which 
describes Newton’s second law of motion, as a pair of coupled first-
order differential equations by introducing momentum as a second-
ary dependent variable. The momentum of a body of mass m in one 
dimension is defined as

	 ( ) ( )p t mv t mx≡ = , � (6.31)

where ( )v t  is the velocity of the body at time t, and x represents the 
(one dimensional) displacement of the body in some coordinate sys-
tem. Thus Equation (6.1) can be rewritten in terms of the momen-
tum as follows
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	 p
x

m
= , � (6.32)

	 ( ), , /p F t x p m= , � (6.33)

where time, position (displacement), and velocity have been included 
in the force term for completeness (here we assume that mass is a con-
stant of motion). We can check these equations make sense by assess-
ing the situation when no net force acts on the body, that is,  0F = . 
This implies a constant momentum that in turn implies an unchang-
ing velocity, and thus we recover Newton’s first law of motion. Just 
to restate and reinforce our nomenclature, here we call time t the 
independent variable, and the position x and the velocity /p m (or 
just the momentum p) are the (coupled) dependent variables. 

6.3.2  Oscillatory Motion
At the beginning of this chapter, we briefly discussed the second-

order differential equation describing SHM. Using Equations (6.32) 
and (6.33), we can rewrite this as a pair of coupled first-order ODEs 

	
p

x
m

= � (6.34)

and

	 p kx= − . � (6.35)

We can make life easier for ourselves by rewriting these equa-
tions in terms of velocity, v, instead of momentum, p, such that

	 x v= � (6.36)

and 

	
k

v x
m

= − .� (6.37)

We can make this change as, in this case, the mass is assumed to 
be a constant of motion and so we are not changing the physics of 
the system only our notation. Note that in this form Equation (6.37) 
has no multiplicative constant in front of the derivative. This is the 
general strategy you should employ when solving differential equa-
tions (numerically or analytically), ensuring all physical constants 
appear with the derivative function where possible.
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In the source file, ODESolvers.cpp, one will find two member 
functions of the ODESolver base class, deriv and deriv_B, that 
implement Equation 6.30. In our current specific discussion of one-
dimensional SHM the deriv member function encodes Equation 
6.36, and the deriv_B member function encodes Equation 6.37, 
with an appropriately defined differential function. These two mem-
ber functions are used by all derived classes of the ODESolver base 
class. They are written in such a way as to avoid conditional branch-
ing when using these classes to solve differential equations of a dif-
ferent order (though only order 1 or order 2 differential equations 
are supported). They are linked to the design of the state data 
structure, and how the dependent variable(s), and derivative(s) (for 
second-ordered differentials) are represented. For a first-ordered 
differential equation, the C++ vector y in the state structure rep-
resents the dependent variable for each dimension in the system. 
For a second-ordered differential equation, the vector y can be 
thought of containing consecutive pairs of values, the dependent 
variable, and its derivative for each dimension in the problem. In 
this way, the dependant variable is found at even indices in y and the 
corresponding derivative is found at the corresponding odd index, 
for example, y[2] is the dependent variable of the second dimen-
sion and y[3] is the corresponding derivative variable of the second 
dimension (assuming the problem has at least two dimensions). 

After writing a program that uses the Euler class to integrate 
the differential equation for SHM (Equation 6.37), and using the 
initial conditions ( )0 1x = , ( )0 0 v = , with / 1k m = , and 100 steps, 
we obtain the result plotted in Figure 6.4 up to a time of 15t =  s. 

As the world’s energy demand has yet to be satisfied by a mass-
on-a-spring system what has gone wrong? Have we made a mistake 
with the physics or the implementation of the simple Euler method? 
To answer these questions let’s examine the analytical solution of 
the ODE describing SHM. From your A-level or equivalent physics 
course, you will know that the solution of the spring equation for 
displacement is a sinusoidal function in time. The phase of that solu-
tion, that is, whether it is a sine function, cosine function, or some-
where in-between, is dependent on the initial conditions. In the case 
above we obtain the particular solution
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FIGURE 6.4:  Numerical solution of SHM using the simple Euler method.

	 cos( )x tw= � (6.38)

where w  is the angular frequency of the oscillations and is given by

	
k
m

w = .� (6.39)

Thus, we know that the solution is a cosine function with a (time) 
period of 2p. This is encouraging as our numerical solution, despite 
increasing in amplitude, has these properties, so it is a safe bet that 
the physics and the implementation are sound. 

From our previous discussions of the Euler method, it is obvious 
that the instability of the numerical solution is down to the trunca-
tion error of the Taylor series. We could of course reduce the step 
size to help with the stability of the numerical solution but that 
would be wasting computational effort; we have already developed 
more accurate numerical solvers. Write a program that uses the RK4 
class to integrate the SHM equation. As an aside, the results plotted 
in Figure 6.4 should make a strong case as to why the simple Euler 
method should not be used as a serious attempt to solve ODEs 
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describing real, physical systems. Indeed, for our next discussion, 
we require something with a bit more accuracy. 

Once you have a program up and running you should be able to 
reproduce the results plotted in Figure 6.5. Here we start with the 
same initial conditions and parameters as before but have allowed 
the integration to run up to time 60t =  s and have changed the num-
ber of steps N to 600, that is, a step length of 0.1 s.

Notice that the solution is stable for (at least) the first nine 
periods of oscillation. To stringently test the stability of the Runge–
Kutta solution, we should allow the integration to run over several 
thousand periods of oscillation, maintaining the same step length, 
and monitor the amplitude of the oscillations produced. Even more 
stringently, we should integrate backward from the endpoint to the 
start and compare the values of the displacement and velocity to the 
initial conditions. However, the range of the stability shown in Fig-
ure 6.5 will be sufficient for the following discussion. 

FIGURE 6.5:  Fixed step Runge–Kutta solution of SHM, encompassing nine periods 
of oscillation.

In real physical systems, oscillatory motion is usually damped. 
We know this because after we put say, a mass on a spring in motion 
it will lose the initial amplitude it was given and eventually come to 
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rest. This is due to mainly resistive losses as the mass moves through 
the air. We can model this damping effect by assuming the drag 
force acting on the oscillating mass is proportional and opposite to 
the velocity of the mass. The second-order ODE describing damped 
oscillatory motion now becomes

	 mx kx Dx= − − , � (6.40)

where D is the constant of proportionality for the drag force, and we 
have taken the mass term to the left-hand side for clarity. Note that 
Equation (6.40) remains a linear, homogeneous ODE of the second 
order. Separating Equation (6.40) into a pair of coupled first-order 
ODEs is straightforward. All we must do is modify Equation (6.37) 
to include the additional, drag force term such that

	 mv kx Dv= − − � (6.41)

and Equation (6.36) remains unchanged. This appears deceptively 
simple and studying physics you will probably be developing a 
healthy mistrust of anything that appears simple, but in this case, it 
is that straightforward. 

FIGURE 6.6:  Damped oscillatory motion integrated using a fixed step Runge–Kutta method.

Computational Physics.Ch6.3pp.indd   114Computational Physics.Ch6.3pp.indd   114 1/4/2022   10:35:56 AM1/4/2022   10:35:56 AM



	 Ordinary Differential Equations  •  115

After making the appropriate modification to the derivative 
function in your code you should be able to reproduce the results 
plotted in Figure 6.6. Here I have taken the parameters to be 

/ 1k m =  and / 0.1D m = . We could now modify the model of resis-
tive drag with relative ease, the numerical algorithm simply pro-
cesses the numbers.

As a last discussion to this section let us consider driven oscilla-
tory motion. At the beginning of this chapter, we identified a nonho-
mogeneous ODE as one having a function of the independent vari-
able extra to the dependent variable and its derivatives. The driven 
oscillatory motion is used as an example in Equation (6.9) and it is 
repeated here with an addition of the drag term

	 ( )mv kx Dv F t= − − + , � (6.42)

where ( )F t  is the driving force. The form of the driving force will be 
dependent on the physics of the system Equation (6.42) describes. 
For instance, a child being pushed on a swing (pendulum system 
rather than a mass-on-a-spring) will have a driving force that would 
be well suited to be modeled by an impulse acting at a particular 
point in the oscillation. Whereas the driving force describing a car’s 
suspension system as it travels over a cobbled street, say, could be 
modeled by some sort of sinusoidal function. 

For the sake of this discussion and simplicity, let us assume the 
driving force is a straightforward sine function, thus

	 ( ) 0sin( )F t A tw j= + , � (6.43)

where A is the amplitude or maximum force supplied by F, 0w  
is the angular frequency of the driving force (the subscript distin-
guishes it from the angular frequency of the solution), and φ is a 
phase shift added for generality. 

Make further modifications to your derivative function to 
include the driving force term as described in Equation (6.43). For 
now, assume that the phase shift is zero. Keeping everything else the 
same and using the parameters 0.2A =  and 0 1w =  you should be 
able to reproduce the results plotted in Figure 6.7. 
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FIGURE 6.7:  Driven oscillator. There are two regions of the solution: the transient region, 
and the steady-state region.

Notice that in the solution of the driven oscillator there are two 
regions. First is the transient region where the nature of the solu-
tion changes with the independent variable. Then the steady-state 
region where the oscillations follow the form of the driving force. 
Figure 6.7 shows the case where we have a situation close to reso-
nance; though not actually at resonance—even though the driving 
frequency equals the natural frequency, the damping term effects 
the frequency at which the oscillator shows a maximum response to 
the driving force (see Exercise 6). 

6.3.3  More Than One Dimension
The code that we have developed to solve a second-ordered 

ODE by transforming them into a pair of coupled first-ordered 
ODEs have currently only considered motion in one-dimensional 
space. To solve for the motion, we required two dependent vari-
ables, namely the displacement and the velocity (or momentum). 
These methods can be extended to cover problems involving several 
dependent variables that may describe motion in three-dimensional 
space. 

For example, if we were to describe the motion of the Earth in 
orbit about the Sun, which we know is planar, we would need the 
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Earth’s x and y coordinates as well as it is velocities xv  and yv , at a 
particular time. That is, we require four dependent variables to fully 
describe the Earth’s orbit. For motion that is not planar, we would 
require six dependent variables to fully describe a bodies motion in 
four-dimensional space-time.

The state data structure and ODESolver classes can deal with 
any number of dimensions. To set up a multi-dimensional system 
for a first-ordered differential equation you provide a C++ vector 
containing the initial value of each dependent variable to the state 
constructor. For a second-ordered differential equation, you provide 
an additional vector containing the initial derivative values for each 
dimension in the system. The implementation of the ODESolver 
classes automatically handles the extra dimensions. As stated in the 
opening chapter, this is my design, and you should NOT take it as 
gospel. If you think you can redesign the code to make it more user 
friendly or perform better, then try it out. That’s one of the beauties 
of programming and open-source software. 

EXERCISES

6.1.	 One stringent accuracy test of a numerical integration 
scheme is to have it step backward from the value of the 
final step to the starting position and see how close we 
come to the initial value we supplied. Apply this test to 
the methods we have developed in this chapter and com-
ment on the outcome for different step sizes. 

6.2.	 Using Equation (6.18) and its solution (6.19) plot, on 
an appropriate graph, the error produced by the Euler 
methods and fixed step Runge–Kutta method for step 
sizes in the range 0.1 h =  down to 1510h −= . Comment 
on what you find. 

6.3.	 Consider one-dimensional projectile motion with air 
resistance we can write

2mv mg Dv= −
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	 where m is the mass of the projectile, v  is its velocity, g is 
the acceleration due to gravity, and D is the drag coef-
ficient. For a sphere of mass 110  m −= kg the drag coef-
ficient was found to be 310D −=  kg/m. Using one of the 
numerical solvers we have developed find the terminal 
velocity of the sphere dropped close to the surface of the 
Earth. Does this agree with theory?

6.4.	 Modify your Runge–Kutta program for SHM without 
any damping or driving force terms to check the stabil-
ity of the method over many periods (tens of thousands). 
How might you monitor the accuracy of the numerical 
solution? 

6.5.	 Using your Runge–Kutta program for SHM with damp-
ing only, check for critical damping and assess when 
it occurs in terms of the relative values of k, m, and D. 
Does this agree with the theory of critical damping?

6.6.	 Using the numerical solvers at hand, how does damping 
affect the resonance phenomena (resonant frequency 
and maximum response of the oscillator) of driven oscil-
lations? Does this agree with real observations?

6.7.	 Newton’s gravitational force of attraction between two 
objects is given by,

3

GMm
F r

r
= −

	 where G is the universal gravitational constant, M and m 
are the masses of the two bodies, and r is their separa-
tion distance. Using either the fixed step or adaptive step 
Runge–Kutta method we’ve developed an attempt to 
compute the mass of the Sun knowing that Earth re-
quires one year to make the orbit. The distance between 
the Earth and the Sun is one astronomical unit (1 AU). 
Assume Earth’s orbit is circular, that there is no influ-
ence from any other galactic body, and that the coordi-
nates of the Sun are fixed at the origin. Try to get your 
answer to within four significant figures of precision and 
check your result for accuracy. 
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CHAPTER 7
FOURIER ANALYSIS

Fourier analysis, also known as spectral analysis, is a powerful 
tool for the experimental scientist. It can help to establish a clear 
physical picture of an experimental system than just from the raw 
data on its own. Fourier analysis can also be used to help extract 
significant information from particularly noisy or complicated sig-
nal or waveform that may have otherwise been missed or lost. For 
instance, Fourier analysis can be used to: reconstruct a crystal struc-
ture from its X-ray diffraction pattern; determine the mass of ions 
exhibiting cyclotron motion in a magnetic field; reconstruct the 3D 
image from a series of X-ray images in computerized tomography 
scan; produce bandpass filters in electronic circuits; improve digital 
radio reception; clean up noisy digital images; and the list goes on. In 
general, all these techniques rely on finding the Fourier transform 
of the measured, raw data. To do this, we must first talk about how 
to represent or approximate a function using a Fourier series. As a 
starting point, let us return to the Taylor series expansion of a func-
tion and discuss its limitations.

As described in Chapter 2, the Taylor series expansion is a 
powerful tool when it comes to approximating functions. However, 
the truncated Taylor series expansion of the sine function can only 
approximate a function reasonably accurately about the (unique) 
point it was taken. While this may not cause a significant limitation 
to most continuous functions, periodic functions are not well suited 
to Taylor series expansions; the period is simply not considered. 
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In addition to this limitation with periodic functions the Taylor 
series expansion requires that a function and all its derivatives exist 
everywhere. In other words, the Taylor series expansion cannot be 
used to approximate functions with discontinuities (jumps) either in 
the function or in the derivatives of the function.

7.1  THE FOURIER SERIES

Jean Baptiste Joseph Fourier was a French mathematician and 
physicist born in Auxerre in 1768. He is best known for starting the 
investigation of the now eponymous Fourier series, that he applied 
to the then unsolved (general) problems of the propagation of heat 
and vibrations. It was Fourier who first pointed out that an arbitrary 
periodic function ( )f t , with a period T, can be separated into a sum-
mation of simple trigonometric terms such that

	 ( ) ( )0
0 0

1

cos( ) sin( )
2 n n

n

a
f t a n t b n tw w

∞

=

= + +∑ ,� (7.1)

where the na  and nb  are the so-called Fourier coefficients, and 
0 2 / Tw p=  is the natural frequency of the function. Note that every 

periodic function has a natural frequency, but only harmonic oscilla-
tors behave as pure sinusoidal waves. Interpreting the Fourier series, 
we see that the function, which may represent some audio signal 
or EM radiation or whatever, is composed of the superposition of 
many harmonic tones of the natural frequency. A harmonic tone is 
a sinusoidal function with a period equal to an integer multiple of 
the natural frequency. The coefficients na  and nb  thus providing a 
measure of the contribution to the signal from the cosine and sine 
harmonics, respectively. More precisely, the intensity or power at 
each harmonic frequency is proportional to 2 2

n na b+ ; this is referred 
to as the Fourier (power) spectrum. 

The coefficients of the Fourier series are given by

	 ( ) 0
0

2
cos( )

T

na f t n t dt
T

w= ∫ � (7.2)
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and 

	 ( ) 0
0

2
sin( )

T

nb f t n t dt
T

w= ∫ . � (7.3)

Equations (7.2) and (7.3) can be derived directly from the 
Fourier series which is given as an exercise for the reader to per-
form. Note that we integrate over one period.

Equation (7.1) need not be restricted to periodic functions as any 
general function may be described by an infinite sum of its Fourier 
components (this is its Fourier transform which will be discussed in 
the next section). Moreover, as this series does not require the deriv-
atives of the function to exist it can be used to describe functions that 
are discontinuous or contain discontinuous derivatives. The Fourier 
series will provide a “best-fit” to the function (or signal) in the least-
squares sense and it generally converges to the average behavior of 
the function. At discontinuities, it converges to the mean value of 
the function just on either side of the jump, and at sharp corners, 
that is, where there are discontinuities in the function’s derivative(s), 
it overshoots the function. 

So far, this discussion has been somewhat abstract so let us go 
through an illustrative example. A square wave can be thought of as 
(periodic) repetition of a step function. A step function over a period 
T  is given by

	 ( )
, 0

2

, 0
2

T
A t

f t
T

A t

− − < <= 
 < <


, � (7.4)

where A  is the amplitude of the square wave. Given this definition 
the square wave is an odd function, that is, ( ) ( )f t f t− = − , and all 
the na  must be zero; remember that the cosine is an even func-
tion, that is, ( ) ( )f t f t− = , such that the integration of Equation 
(7.2) goes to zero over one period. Our job then is to find the nb  
as follows
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where the fact is that the function is used as odd, and the natural 
frequency is defined as 0 2 / Tw p≡ . Substituting these values into 
Equation (7.1) and summing to infinity we would end up with the 
square wave. In practice, we typically only retain the first few signifi-
cant terms from the Fourier series.

Figure 7.1 plots the result of performing the Fourier series for a 
square wave with an amplitude 1A =  and a period 4T =  (seconds). 
The plot shows the first three non-zero Fourier terms of the series 
namely 1n = , 3, and 5. As more terms are added, we can see that the 
series does an increasingly better job of approximating the function. 
Where the square wave is a constant, the Fourier series oscillates 
around the function value with decreasing amplitude as we increase 
the number of terms in the series. As the Fourier series passes 
through the discontinuity in the function it converges on the aver-
age value of the function limits either side of the jump (in this case 
zero) and misses the function entirely just passed the jump. This is 
the overshoot that was mentioned previously. Unlike the oscillations 
about the constant function value (more generally the continuous 
parts of the function), the overshoot does not improve as rapidly as 
we increase the number of terms in the series. 
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FIGURE 7.1:  Approximation of the square wave using a Fourier series, keeping the first, 
second, and third non-zero terms in the series.

Most of the problems and functions that we will deal with will 
involve real numbers, that is to say, not complex numbers. However, 
it is sometimes convenient to express the Fourier series in terms of 
complex numbers. Returning briefly to Euler who derived the fol-
lowing complex identities 

	 cos( ) sin( )ie iq q q= +  � (7.5)

and

	 cos( ) sin( )ie iq q q− = −  � (7.6)

where 1i = −  is the so-called imaginary number, and the Fourier 
series can be rewritten as

	 ( ) 0in t
n

n

f t c e w
∞

=−∞

= ∑ .� (7.7)

The coefficients are now represented by the nc  which can be 
calculated using

	 ( ) 0

0

1 T
in t

nc f t e dt
T

w−= ∫ .� (7.8)
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It could be inferred from the above discussion that some func-
tions of the Fourier series may not have a Fourier series represen-
tation. The Fourier series approximation may not converge on the 
function and in fact, it may not even converge at all. The Dirichlet’s 
theorem defines the sufficient mathematical conditions of a func-
tion for its Fourier series representation to converge so that you can 
research them for yourselves. 

7.2  FOURIER TRANSFORMS

In the preceding section, we have mentioned that any general, 
that is, not necessarily periodic, function can represent as an infinite 
sum of its Fourier components. To do this mathematically, the Fou-
rier series is tweaked into Fourier integrals for it to deal with a non-
periodic function. The basic idea is that a non-periodic function can 
be thought of as periodic with its period extending toward infinity, 
that is, the period becomes infinitely large but not actually infinity. 
This means that the natural frequency reduces toward zero, that is, it 
becomes infinitesimally small but not actually zero. By applying this 
mental manipulation, we can write Equation (7.7) as

	 ( ) 0in t
n

n

f t c e w
∞

∆

=−∞

= ∑ � (7.9)

where the coefficients are given by

	 ( ) 00

2
in t

nc f t e dtww
p

∞
− ∆

−∞

∆
= ∫ ,� (7.10)

and 0w∆  is our infinitesimal natural frequency. Note the change in 
the integral limits for the coefficients to reflect the idea that the 
period extends toward infinity and thus can also be shifted to extend 
to minus infinity. As the discrete values 0n w∆  are summed over infin-
ity, it could be mapped on to a continuous variable that, for consis-
tency, we shall simply call w. Due to this modification, the infinite 
sum over n in Equation (7.9) becomes an integration over w, on the 
infinite interval. Thus, the Fourier integral gives
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	 ( ) ( )1
2

i t i tf t f t e dt e dw w w
p

∞ ∞
−

−∞ −∞


=   

∫ ∫  � (7.11)

where the traditional symbol is used for the infinitesimal element of 
the integration over w, and define some function of w as

	 ( ) ( )1
2

i tg f t e dtww
p

∞
−

−∞

= ∫ � (7.12)

then Equation (7.11) becomes

	 ( ) ( )1
2

i tf t g e dww w
p

∞

−∞

= ∫ . � (7.13)

Equations (7.13) and (7.12) define an integral transform and 
its inverse, respectively. These are commonly known as the Fourier 
transform and the inverse Fourier transform. The multiplicative fac-
tor in both these integrals can be chosen to be anything, so long as 
their product equals 1/2p; the form shown is called symmetrical for 
obvious reasons. By knowing the Fourier transform and its inverse, 
it allows us to map a function (or data) from one domain to another 
where perhaps a mathematical operation on the function is easier in 
the transformed domain. After applying the operation, the modified 
function can be transformed back (inverse transform) to the original 
domain. Harmonic analysis is an example of where this kind of tech-
nique is used.

For convenience and shorthand, the Fourier transform, and its 
inverse can be written as

	 ( ) ( ){ }f t g w=   � (7.14)

and

	 ( ) ( ){ }1g f tw −=  . � (7.15)

Note that instead we could have started with the time variable 
and transformed that into the frequency variable and, in which case, 
we would have to reverse our definitions (Equations (7.12) and 
(7.13)). So long as we are consistent with what is the transform and 
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what is the inverse it does not matter what our original variable was 
to begin with. 

The choice of our variables, that is, time and frequency, in deriv-
ing these transforms were for instructive purposes only and Fourier 
transforms need not be restricted to them. They can be applied to 
other types of variables including those described by vectors (e.g., 
three-dimensional space). For instance, if we considered the vari-
able l that represents the wavelength of some quantum particle in 
one or more dimensions then its Fourier transform would be the 
wavenumber (or vector) k. This has important applications in solid-
state physics where the use of k -space or momentum-space is ben-
eficial in understanding several electronic and optical properties of 
matter. As an aside, the reason why it is called momentum-space is 
due to De’ Broglie (pronounced like Troy); hk, where h is Planck’s 
constant, gives the momentum of a quantum particle. 

A Fourier transform pair have several significant properties 
not least among them that the operation is linear. That is to say, if 
( )1f t  has a Fourier transform ( )1g w , and similarly ( )2f t  has a trans-

form ( )2g w , then the Fourier transform of ( ) ( )1 2f t f t+  is simply 
( ) ( )1 2g gw w+ . 

Another property is the scaling relation that has an interesting 
physical interpretation. It can be shown that

	 ( ){ } 1
f t g

wa
a a

 =  
 

 � (7.16)

where α is a scaling factor that can be positive or negative. Equation 
(7.16) shows that if we squeeze the ( )f t  along the t  axis, that is, 
� � 1, then its corresponding Fourier transform broadens along 

the w  axis and also reduces in height by a factor of α . Conversely, 
if � � 1  then we broaden ( )f t  and squeeze ( )g w , this time 
increasing its height. In other words, the more localized the func-
tion is in time, say, the more delocalized it is in frequency, and vice 
versa. Remember that we are not restricted to time and frequency 
variables, we could just as correctly use 3-D spatial variables and 
momentum-space variables as a Fourier transform pair. In this case, 
the more accurately we know the position of a particle, the less 
accurately we know its momentum. If you have not come across a 
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chapter called Heisenberg yet and his uncertainty principle, then 
you soon will. 

Other properties exist for shifting relations (moving the coordi-
nate system) and the symmetries (odd or even functions) and com-
plexities (real and/or imaginary functions).

7.3  THE DISCRETE FOURIER TRANSFORM

As with all numerical procedures, we first must find a way of 
representing a continuous variable as a discrete set of points. Note 
that in doing so we will not be computing the true Fourier transform 
but we intend to find a reasonable approximation to the transform. 

Let us consider ( )f t  as a time-dependent physical quantity 
obtained from actual measurements such that we have N  data points 
taken at equidistant increments of t∆ . In other words, we have the 
data points ( )( ), t f m t∆ ∆ , 0,1,2... 1m N= − . If we have sufficient data 
points to adequately describe the behavior of the function over a 
given length of time T, and that the function is periodic beyond this 
region, we may then use the notion that

	
2 2
T N t
p pw∆ = =

∆
.� (7.17)

Under these conditions, we can write the Discrete Fourier 
transform (DFT) and its inverse as

	 ( ) ( )
1

2 /

0

1 N
i mn N

n

f m t g n e
N

pw
−

=

∆ = ∆∑ � (7.18)

and 

	 ( ) ( )
1

2 /

0

1 N
i mn N

m

g n f m t e
N

pw
−

−

=

∆ = ∆∑ � (7.19)

where we have kept the symmetric form; in this case, the product of 
the factors must equal 1/N. For convenient notation let us now drop 
the t∆  and w∆  in the function arguments and use the corresponding 
integer multiple as a subscript instead, that is, ( ) mf m t f∆ →  and 
( ) ng n w g∆ → . 

Computational Physics.Ch7.3pp.indd   127Computational Physics.Ch7.3pp.indd   127 1/3/2022   10:59:08 AM1/3/2022   10:59:08 AM



128  •  Computational Physics, 2/E

To implement Equations (7.18) and (7.19) into a computer pro-
gram it is convenient (but not necessary) to separate the functions 
into their real and imaginary parts. This makes the coding some-
what more intuitive and means that we only deal with real num-
bers (imaginary numbers are essentially a real number multiplied by 

1i = − , which we can drop in a computer program). In separating 
the real and imaginary parts we obtain the following:

	 )
1

0

1
Re( ) Re( cos( ) ( )sin( )]

N

m n n
n

f g Im g
N

q q
−

=

= −∑ ;� (7.20)

	 )
1

0

1
( ) ( cos( ) Re( )sin( )]

N

m n n
n

Im f Im g g
N

q q
−

=

= +∑ ;� (7.21)

	 [ )
1

0

1
Re( ) Re( cos( ) ( )sin( )]

N

n m m
m

g f Im f
N

q q
−

=

= +∑ ;� (7.22)

and

	 [ )
1

0

1
( ) ( cos( ) Re( )sin( )]

N

n m m
m

Im g Im f f
N

q q
−

=

= −∑ � (7.23)

where 2 /nm Nq p= .

The code contained in the file DFT_bellcurve.cpp performs the 
DFT (in one dimension) on the (normal) Gaussian distribution func-
tion with the parameters specified, then performs the inverse trans-
form to check the correctness of the programming. The output is 
somewhat uninteresting in the sense that we have mapped the func-
tion back on to itself but at least it shows we have coded the DFT 
correctly. Note that in our implementation we have condensed the 
factors 1/ N  into a single factor of 1/N, which can either multiply 
the transform or the inverse but not both. By comparing the imple-
mentation of the DFT function (Fourier.cpp) to Equations 7.20-7.23 
satisfy yourself that the reversal of sign of the imaginary part of the 
transform is required (complex conjugate).

The DFT though straightforward to program is not efficient in 
terms of computational effort. Each component of the transform 
requires that we sum over the N data points of the signal, and there 
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are N such components. This leads to an operation count that is pro-
portional to 2N ; you can see this in the function code where we have 
the nested for loops. This situation only gets worse as you increase 
the number of dimensions in your data. How do we get around this 
limitation? 

7.4  THE FAST FOURIER TRANSFORM

7.4.1  Brief History and Development
The fast Fourier transform (FFT) has been independently 

discovered and rediscovered by various people, the earliest ver-
sion appearing in the literature being attributed to Gauss in 1866. 
It appeared as an unpublished manuscript in his collected works. 
The actual date Gauss wrote this manuscript is presumed to be 
around 1805, which predates Fourier’s original work by 2 years. 
For whatever reasons Gauss’s idea was largely ignored by the sci-
entific community and no one connected it to the use of mod-
ern computation. In 1965, the American mathematicians James 
William Cooley and John Wilder Tukey published an article that 
discussed in detail the use of a machine algorithm to calculate 
complex Fourier series. This is largely credited as the first formal 
use of the FFT on a “modern” computer. However, more than 20 
years before a pair of physicists Cornelius Lanczos and Gordon 
C. Danielson gave a particularly lucid description of the FFT deri-
vation in their 1942 publication on practical Fourier analysis of 
X-rays scattered from liquids. 

Let us assume N is an even number. We can then write the DFT 
as a summation over the even-numbered points and a summation 
over the odd-numbered points. Mathematically this is written as

	
( )

( )
( )

( )
/2 1 /2 1

2 2 / 2 2 1 /
2 2 1

0 0

N N
i n m N i n m N

n m m
m m

g f e f ep p
− −

− − +
+

= =

= +∑ ∑

	 ( ) ( ) 2 /even odd i n N
n ng g e p−= + � (7.24)
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where we define

	
( )

( )
( )

/2 1
2 / /2

2
0

N
even i nm N

n m
m

g f e p
−

−

=

= ∑ � (7.25)

as the even-numbered points, and

	
( )

( )
( )

/2 1
2 / /2

2 1
0

N
odd i nm N

n m
m

g f e p
−

−
+

=

= ∑ � (7.26)

as the odd-numbered points. Note that we have ignored the 1 / N  
factor here, which can be easily reintroduced at a later stage. Let us 
take stock of what we have just done. By splitting the DFT into even 
and odd summations we have essentially produced two new DFTs, 
Equations (7.25) and (7.26), with half the number of points of the 
original transform. Hence the number of operations required is now 
proportional to 22 ( / 2)N× , that is, half the original. The beauty of 
this algorithm is that we can keep going and further split those new 
DFTs into their even- and odd-numbered points, and so on until 
we reach the level where there is only one component to find in 
the summation. However, this requires that the number of points at 
each subdivided level contained within the summation remains even. 
This can easily be insured by specifying that N is an integer power of 
two. For instance, let 2kN =  then after k subdivisions, there will be 
N DFTs to compute each with only one component to find. In other 
words, instead of the operation count being proportional to 2N  it is 
now proportional to Nk or more generally 2logN N. 

7.4.2  Implementation and Sampling
The reason why Cooley and Tukey are generally credited 

with the discovery of the FFT as applied to modern computing 
was their clever way of interweaving the summation pairs at the 
lowest level of the algorithm. This interweaving is just an exercise 
in bookkeeping which is rather tedious and can make the coding 
somewhat complicated. Rather than discussing the interweaving 
strategy at length, the function FFT is provided in the file Fourier.
cpp, which contains an FFT algorithm, for your use. For interested 
readers, Landau’s book, A Survey of Computational Physics, 2008, 
pp. 256–263 for an in-depth discussion of the interweaving strategy 
is recommended.
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Before we continue, let’s explore briefly how to interpret the 
spectrum resulting from the FFT function. It assumes that the 
(time) data passed to it is periodic on the interval for which it is 
defined, which in turn implies the resulting transform is also peri-
odic. Figure 7.2 illustrates this point. Here we imagine a sketch of 
the frequency spectrum of some arbitrary harmonic (time) signal 
with the natural frequency 0w  calculated using the FFT function 
(The broadening of the peak is for illustrative purposes but can be 
caused by actual properties of the data and the sampling). The solid 
curve on the positive frequency portion of the plot is the complete 
vector output from the function. Assuming the vector produced by 
the FFT has length N that is some integer power of two then we can 
say the following:

●● the zero frequency is located at index zero;

●● positive frequencies correspond to indexes 1 -> N/2 - 1;

●● negative frequencies correspond to indexes N/2 + 1 -> N - 1 
(most negative to least negative); and

●● and index N/2 gives the Nyquist critical frequency (either 
positive or negative).

We will discuss the meaning of the Nyquist critical frequency 
in due course. Therefore, the algorithm is considered as computing 
normal, forward time, and time-reversed frequencies; essentially a 
mathematical quirk of the FFT algorithm. The zero frequency is 
countes as a positive frequency. To demonstrate we can write

	 0 0 0cos( ) 0.5cos( ) 0.5cos( )t t tw w w= + − � (7.27)

as cosine is an even function. Conversely

	 0 0 0sin( ) 0.5sin( ) 0.5sin( )t t tw w w= − − � (7.28)

as sine is an odd function. As the spectrum is shared between the 
positive and negative frequencies its intensity (the Fourier coeffi-
cient value) is half what we would expect if we just considered the 
“physically” significant positive frequencies. The upshot of all this is 
that when recording the spectrum data, we could only store the first 

/2N  points and multiply their values by two in order to obtain the 
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“physically” correct power spectrum. More precisely, the intensity 
(or power) of the spectrum is given by the integration of the spec-
trum over the entire range of the transformed domain.

FIGURE 7.2:  Sketch of a frequency spectrum of some harmonic oscillator with natural 
frequency ω0. We have deliberately included peak broadening to clearly demonstrate the 

interpretation of the spectrum.

Modify the program you have written to analyze the spectrum of 
the following function

	 ( ) cos(5 )f t tp= ,� (7.29)

sampled once per second for 32 s, then twice per second for 16 s, 
and so on up to 16 times a second for 2 s. Here, we keep N constant 
at 32. You will need to compute the equivalent discrete frequen-
cies of the array indices; essentially the index is divided by the time 
domain range, scaled by 2π to get the angular frequency. To view 
the spectrum, we should plot the magnitude of the transform values 
against the discrete frequencies. In other words, the spectrum can 
be considered a histogram with the width of each (frequency) bin 
given by w∆  and its height given by the square root of

	 2 2 2Re( ) ( )n n ng g Im g= + . � (7.30)
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FIGURE 7.3:  Left - the frequency spectrums of Equation (7.29) sampled at twice, four 
times, and eight times per second respectively. Right - the time sampled function with the 

detected frequency harmonic shown.

The code library uses the std::complex class (using a template 
argument of double) to represent complex numbers. There are sev-
eral functions that act on objects of std::complex type that perform 
the expected mathematical operations such as conjugation and find-
ing the magnitude.

After performing the FFT on the given function at different 
sampling rates, the results were obtained as depicted in Figure 7.3. 
We know that the (angular) frequency of the function described by 
Equation (7.27) must be 5 15.7w p= ≈ . Why then do we see a fre-
quency of p  in the spectrum when sampling at a rate of twice a 
second, and indeed a frequency of 3p  when sampling at four times 
a second? The answer lies in the plot of the time sampled function 
overlaid on the actual function as shown in the right-hand column 
of Figure 7.23. When sampling at twice per second (top) we see that 
the sampled data resemble a triangular waveform with a period of 2 
seconds, equivalent to a harmonic frequency of p . Similarly, when 
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sampling at 0.25 per second (middle) the curve ( ) ( )cosf t tp=  pass 
through the sampled points leading to the erroneous frequency 
spectrum. This is called aliasing; the higher frequency “signal” has 
been aliased by lower frequency harmonics. This happens because, 
in these two cases, we are under-sampling the function; our sam-
ple rate is not sufficiently high to capture the true waveform. As a 
rule, you should sample the signal at a rate at least twice the highest 
frequency component contained in the signal. This is the Nyquist 
critical frequency. In our example, the angular frequency of our 
waveform is 5p  equivalent to a frequency of 2.5 Hz. Thus, to avoid 
under-sampling we should take data at time intervals at least 0.2 s 
apart or less. Indeed, when we sample at intervals of 0.125 s, and we 
recover the correct frequency spectrum. 

What then happens when we sample at a rate of 32 times per 
second for one second? The FFT spectrum appears to distort across 
all the discrete frequency bins. This problem is known as leakage 
and occurs when there is a lack of frequency resolution such that the 
actual frequency of the data does not match one of the frequency 
bins. In this case, the FFT tries to compensate by distributing the 
transform across nearby frequencies, in other words, it leaks. To alle-
viate this problem, we can increase the total observation time, that 
is we increase N  but without changing the sampling rate. Try sam-
pling at the same rate of 32 per second but for 2 s, that is, increase 
N  to 64, and see if we get a better outcome. 

The leakage problem can be attributed to wherein the time 
domain we finish sampling. Remember that the FFT assumes the 
data you pass to it is periodic on the observation interval for which it 
is defined. If the sampling finishes mid-period, then the FFT “sees” 
a discontinuity in the function. As we know from the Fourier series 
a discontinuity is better approximated by increasing the number of 
terms in the sequence. Comparatively, the FFT increases the num-
ber of frequencies detected in the spectrum to deal with the discon-
tinuity. It is therefore advantageous to use a sampling rate that is 
proportionate with the period of the function.
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EXERCISES

7.1.	 Calculate the Fourier series for a Saw-tooth waveform. 
Plot the results to get a clear picture of how the series 
converges to the function.

7.2.	 Investigate the overshoot in the square waveform as the 
number of terms in the Fourier series increases. Cal-
culate the error between the series approximation and 
the function, and hence determine the behavior of the 
overshoot as we retain more terms in the series—this is 
called the Gibbs phenomenon. 

7.3.	 Derive the Fourier coefficients of Equations (7.2) and 
(7.3). Hint: sine and cosine functions are orthogonal. 

7.4.	 Derive the scaling property for the Fourier transform; 
Equation (7.16). Then derive the similar property for the 
inverse transform.

7.5.	 Find a way to time the operation of a program in Fortran 
then evaluates the runtimes of the DFT algorithm versus 
the FFT algorithm for the same set of data. Check the 
statements that the DFT algorithm operation count is 
proportional to 2N  and the FFT operation count is pro-
portional to 2logN N. Also, check that the output from 
each algorithm is the same for the same input (within 
unit round-off error precision).

7.6.	 What is the shape of the Fourier transform of the rect-
angle function? How does this relate to the diffraction of 
a wave through a single slit?

7.7.	 Use the FFT subroutine to obtain the spectrum of the 
function ( ) ( )sin 5f t t= . Use a sampling rate that is suf-
ficiently rapid to avoid under-sampling. Can you derive a 
sampling rate that avoids the problem of leakage?

7.8.	 Consider the function 
f t t t� � � �� ��� �� � �� ��� ��cos 1 2 2� �cos , for α in the range 
[ ]0,1 . Investigate how the sampling rate and overall obser-
vation time affects the resolution of the frequency peaks. 
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CHAPTER 8
MONTE CARLO  
METHODS

Monte Carlo methods (or Monte Carlo experiments) are a broad 
class of computational algorithms that rely on repeated random sam-
pling to obtain a numerical result. They are often used in physical 
and mathematical problems when it is impossible to obtain an ana-
lytical solution, and the application of a direct algorithm is infeasible. 
Monte Carlo methods are mainly used in three distinct problems: 
numerical integration, simulation, and optimization. The first two 
in this list and how they relate to physics problems are discussed in 
this chapter.

8.1  MONTE CARLO INTEGRATION 

8.1.1  Dart Throwing
“Hit and miss” integration, also known as the shooting method, 

is arguably the most intuitive type of Monte Carlo method to under-
stand. To demonstrate the application of this approach, let us discuss 
a novel way of approximating the value for p (see Figure 8.1). It 
shows the upper right quadrant of a circle of unit radius circum-
scribed by a unit square. Imagine throwing darts randomly at this 
board (some of you may have had a similar experience already in 
the student’s union bar). Of the total number of darts that hit within 
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the square, the fraction of those that land within the circle will be 
approximately equal to the ratio area of the circle contained by the 
square. Mathematically, we write

	 circle circle

square thrown

A N
A N

≈ .� (8.1)

Here we have the constraint that darts cannot be thrown outside 
of the square and circleA  is the area contained in the unit square.

FIGURE 8.1:  The Monte Carlo “dart board” used to approximate π .

Remembering your geometry basics, we can substitute and rear-
range the equation above to give an approximation formula for p, 
such that 

	
4 circle

thrown

N
N

p ≈ � (8.2)

In other words, the probability that a dart will hit the shaded 
area is equivalent to one-quarter of the value of p. Despite the fun 
you can have in trying to make the dart-throwing random, attempt-
ing to physically perform this experiment soon becomes tedious as 
you need a large number of thrown darts to get a reasonably accu-
rate approximation for p. Instead, we make a computer simulate the 
dart-throwing by having it generate random numbers. 
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Now before anyone gets militant on my personage computers 
do not generate true random numbers as they are deterministic 
machines. That said, on some modern systems, there are hardware 
devices that can provide true randomness via the stochastic pro-
cesses involved in their operation. Hardware aside, computers can 
generate what is known as pseudorandom numbers via a recursion 
formula; given a starting point, generally referred to as the random 
number seed, the generator produces a sequence of “random” num-
bers by performing mathematical operations on the previous “ran-
dom” number. Rigorous statistical tests can be applied to the outputs 
of these generators to check that the numbers are random in relation 
to one another. As a cautionary note, a random number generator 
will produce the identical random number sequence for the same 
seed. Hence, for multiple trials, different seeds must be found to 
produce different random number sequences. Typically, this is done 
by using the system’s clock. C++ has a number of built-in classes 
that perform pseudorandom number generation on different distri-
butions that will be adequate for our purposes.

For each random throw, we generate two random numbers, 
x and y, that represent the displacement from the origin to where 
the dart hit in the horizontal and vertical directions, respectively. 
Using the Pythagorean Theorem, the distance from the origin can 
be calculated and thus it could be determined whether the dart 
landed within the circle. That is, if the distance is greater than one 
unit it missed, less than or equal to one unit it hit. By keeping count 
of the total number of darts thrown that is, the number of random 
( ), x y  coordinates generated, and the number that hit the circle we 
can approximate p  using Equation (8.2). 

The file piMonte.cpp contains a program to perform this experi-
ment. The code generates a pair of (uniformly distributed) random 
numbers, both on the interval [ ]0,1 , to simulate where the thrown 
dart lands within the unit square. After computing the distance from 
the origin, we either add one to the counter if it is a hit or do noth-
ing if it is a miss. After every 10 darts thrown, we estimate p  using 
Equation (8.2) and store both that value and the current number of 
darts thrown for plotting after the processing loop has completed. 
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Notice that we save the random numbers generated to check the 
randomness of the throws. 

Figure 8.2 shows the results from running this program on four 
separate occasions, using a total of 1000 dart throws. Here we can 
see that our random number generator has done an adequate job; 
the four different runs have produced four different results as we 
should expect if we had physically performed the experiment on 
four separate occasions.

FIGURE 8.2:  Results of estimating π  from a Monte Carlo integration for four separate runs. 
The black line represents π .

The black line in each of these plots represents the actual value 
of p. The figure suggests that although we are not guaranteed to 
converge on the actual value of the integration, the approximation 
does, to some extent, stabilize as we increase the number of throws. 
However, remember that the results are accumulated. Thus, as 
the number of throws increases the influence of the next throw is 
reduced, and the variation in the estimate from one throw to the 
next necessarily diminishes. In other words, the results at the end 
of the experiment are very much influenced by the outcome of the 
throws at the start of the experiment. 
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If you’re looking at the results plotted in Figure 8.2 and 
wondering why we would bother with Monte Carlo integration at 
all remember that this is an illustrative (and simple) example. If the 
integration can be done easily by other means, then the Monte Carlo 
method should not be used. The Monte Carlo integration comes 
into its own when other numerical techniques are difficult, if not 
impossible to implement. 

Figure 8.3 plots histograms of performing 10,000 dart-throwing 
integrations with 100 darts per integration in the top panel and 1000 
darts per integration in the bottom panel. Note that both plots are 
over the same range, but they have different bin widths; 0.1 for the 
top plot, and 0.01 for the bottom plot, which is related to the num-
ber of darts thrown per integration.

FIGURE 8.3:  Histograms of 10,000 Monte Carlo integrations of π  using 100 darts per 
integration (top) and 1000 darts per integration (bottom).
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The curves are being the bell shape of a normal (or Gaussian) 
distribution; in fact, with an increasing number of integrations, the 
distributions would become much smoother and would approach 
the ideal bell shape. As can be seen from the plots as we increase the 
number of darts thrown per integration the distribution of estimates 
for p narrows about the true value. In other words, the mean value 
of the distribution becomes a more accurate value for p. 

From Figure (8.3), the width of the distribution at half height 
for the 1000 darts per integration case is roughly one-third of that 
for the case of 100 darts per integration. If you remember your prob-
ability theory, you should recall that the width of a normal distribu-
tion of estimates of a value is proportional to one over the square 
root of the total number of points used to compute each estimate. In 
other words, the factor difference between the widths of these two 
distributions should be equal to 1 / 10 , which is what we find. 

Moreover, the standard deviation of the mean, which is a mea-
sure of the width of the distribution, can be itself estimated from a 
single integration using

	

2
21 1

1

i i

N

f f
N N

N
s

 −  
 =
−

∑ ∑
� (8.3)

where if  is the estimate of the value (p  in our case), after the ith 
point is sampled (dart is thrown), and N is the number of points 
sampled (darts thrown) in total. For large N, we can drop the 
minus one in the denominator. It is of note that Equation (8.3) can 
be updated after each new random point is sampled; in which case 
N becomes equal to the value of i we have reached. This means we 
can monitor the confidence we have in the estimate of the inte-
grated value as we increase N. Remember that the estimate lies 
within  sof the precise average to a 68.3% degree of confidence; 
within 2  sto a 95.4% degree of confidence; within 3  s to a 99.7% 
degree of confidence; and so on. To decrease s and therefore 
improve the accuracy in the estimate we merely sample more ran-
dom points. The drawback to this method is that the improvement 
can only go as the square root of N. This takes us back to the point 
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made previously that there is a law of diminishing returns due to 
the accumulation of data; when we have already sampled 1000 
points, say, one more sampled point makes little difference to the 
outcome, but another 1000 would. 

8.1.2  General Integration Using Monte Carlo
In our dart-throwing method example above to estimate p we 

have, in a round-about fashion, approximated the integral

	 ( ) ( )
1

2

0

1
4

b

a

f x dx x dx
p

= − =∫ ∫ .� (8.4)

A slightly more direct method of using the Monte Carlo integra-
tion would be to sample (uniformly distributed) random values of x 
on the interval [ ],a b , and finding the average of the function evalu-
ations, ( )f x . In general, for a one-dimensional integration, we are 
using the notion that

	 ( ) ( )
b

a

f x dx b a f= −∫  � (8.5)

where f is the precise mean average of the function on the interval 
[ ],a b . This has a very straightforward geometrical interpretation as 
depicted in Figure 8.4.

FIGURE 8.4:  Geometrical interpretation of Monte Carlo integration.
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The integration, which is the area under function defined on 
the interval, is equal to the area of the shaded rectangle. The Monte 
Carlo method is an attempt to estimate the precise function average, 
f. Notice that because of this interpretation /4p  must be the precise 
function average of the unit, quarter circle. 

Formally we write the Monte Carlo integration estimate as

	 ( ) ( ) ( )
1

b N

i
ia

b a
f x dx f x

N =

−
≈ ∑∫ � (8.6)

where N is the total number of randomly sampled points.

In the file Monte_Carlo.cpp you will find a function that per-
forms the Monte Carlo integration according to Equation (8.6). You 
can check that it works by choosing an easily analytical integral and 
seeing if we obtain the same result using the Monte Carlo method; 
see monte_carlo_integration.cpp for an example. We could also use 
this information to check how well the estimate for the standard 
deviation models the actual error in the integration.

The Monte Carlo method of integration is most effectively used 
in the computation of multidimensional integrations where the appli-
cation of more direct methods is either infeasible or impossible. To 
perform a multidimensional integration via the Monte Carlo method 
we simply find random numbers for all the variables involved, find 
the value of the function at those coordinates, then update the sum. 
For instance, a two-dimensional integration can be written as

	 ( ) ( )( ) ( )
1

, ,
d b N

i i
ic a

d c b a
f x y dxdy f x y

N =

− −
= ∑∫∫ .� (8.7)

As we add more dimensions, we generate more random numbers 
for the additional dimensions and multiply by the relevant integra-
tion interval; the sum over f divided by N still provides an estimate 
of the precise function average defined with the integration region. 
Notice that because of this simplicity the Monte Carlo method of 
integration has some inherent advantages over more direct numeri-
cal techniques.

The error in the direct methods for numerical integration (trap-
ezoidal rule, Simpson’s rule, etc.) stems from the number of terms 
retained in the Taylor series approximation of the integrand function. 
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For example, the trapezoidal rule approximates the integrand with a 
linear polynomial, which, as we have seen, has an error that is ( )2h ,  
where h is the strip width across the integration interval. If we wish 
to halve the error in our numerical approximation of the integra-
tion in one dimension then we decrease h by a factor of 2 ; this 
is equivalent to increasing N (the number of function evaluations) 
by the same factor. For a two-dimensional integration to halve the 
error we must apply this modification in both dimensions such that 
N increases by a factor of 2 in total. For three dimensions N must be 
increased by a factor of 3/22 . In general, for a d dimensional numeri-
cal integration to halve the error in our approximation we would 
have to increase N by a factor of /2d m, where m represents the order 
accuracy of the numerical integration method used to compute the 
approximation (for the trapezoidal rule 2m = ; Simpson’s rule 4m = ;  
and so on). 

The error in the Monte Carlo method is different. As we have 
just discussed the error produced by a Monte Carlo computation is 
probabilistic in nature; we can say that the approximation calculated 
is within one standard deviation of the “true” value 68.7% of the 
time. To improve the approximation, that is to reduce the standard 
deviation and thus make the average value converge on the “true” 
value, we increase the number of random points sampled, N. As this 
is a probabilistic process, we know that the error will reduce as N .  
Thus, to halve the error we increase N by a factor of 4. This is inde-
pendent of the dimensionality of the integration! To explain, we per-
form a multidimensional integration via the Monte Carlo method 
by computing as many random numbers as there are dimensions, 
then evaluating the function at the coordinates specified by those 
random numbers and updating the sum. Note that this is a true scat-
tershot approach; none of the dimension variables are held constant, 
we just keep “shooting” and evaluating a single value for the function 
at those coordinates randomly generated. 

To demonstrate, let us imagine a four-dimensional integration 
that we can perform either by the trapezoidal rule or the Monte 
Carlo method. After obtaining the approximation from both meth-
ods we would like to halve the error in each. From our discussions, 
we can see that both require the number of function evaluation 
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points to be increased by a factor of 4. In other words, the rate of 
convergence for the two methods is comparable when performed 
on a four-dimensional integration. To avoid confusion, here we are 
talking about the rate of convergence of an approximation to the 
“true” value, not the absolute value of the error. It is likely that the 
trapezoidal rule is more accurate (has a less absolute error) than the 
Monte Carlo method to start with. That said, for dimensions higher 
than four the Monte Carlo method will converge more rapidly than 
the trapezoidal rule. Indeed, for integrals of sufficiently high dimen-
sionality, the Monte Carlo method will converge more rapidly than 
any direct method that has been discussed earlier, dependent on the 
method’s order of accuracy.

A secondary advantage to the Monte Carlo method is the num-
ber of function evaluations that must be performed in order to gain 
an approximation to the integral. To illustrate, imagine a 10-dimen-
sional integration that we are computing via the Monte Carlo 
method. Let us say we evaluate the integrand function 10 times, 
that is, we generate 10 random numbers for each function evalua-
tion, that is, 100 points in total. Now we want to halve the error in 
our approximation so as stated we increase N by a factor of 4, that 
is, we have to generate 400 random numbers. If we evaluated the 
same integration using the composite trapezoidal rule, again with 
10 function evaluations per dimension, then it would have 1010 10=  
billion function evaluations to perform. To halve the error, we would 
have to increase N by a factor of 52 ; we would now have to perform 
320 billion function evaluations. Thus, the trapezoidal rule will prob-
ably give a more accurate result than the Monte Carlo method, and 
it would certainly take more time (an infeasible amount) to obtain. 
Even though the Monte Carlo estimate will be crude, the method 
does give a quantifiable measure of the error, and the knowledge 
that we can improve this error by taking just a few more randomly 
sampled points. 

8.1.3  Importance Sampling
Before completing the discussion about Monte Carlo integration, 

the author discusses the technique that can help improve the accu-
racy of the method called importance sampling. Importance sampling 
uses information about the function to place more randomly sampled 
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points where the function is largest, meaning that the approximation 
is more accurate for the same number of sampling points. To do so 
we find a function g(x) that approximates the integrand function f(x) 
over the integration interval so that we can write

	 ( ) ( )
( )

( )
( )

( ) ( )
( )

1

1

1

1

y bb b

a a y a

f yf x
f x dx g x dx dy

g x g y

−

−

−

−
= =∫ ∫ ∫ � (8.8)

where

	 ( )
x

y g t dt= ∫ .� (8.9)

Interpreting Equation (8.8), we see that instead of integrat-
ing ( )f x  over x, we integrate the ratio ( ) ( )/f x g x  over y. This has 
the geometrical effect of flattening the integrand over the integra-
tion interval, thus making the Monte Carlo method more accurate. 
Remember we are attempting to approximate the precise function 
average over the integration interval. Having a “flat” function makes 
this easier.

For example, consider the integral

	
/2

0

sin( )I x dx
p

= ∫ .� (8.10)

This has an analytical value of 1. We can approximate sine using 
the first term of its Taylor series expansion ( )sin x x≈ , such that the 
integral becomes

	

2/2 /8

0 0

sin( 2 )
sin( )

2

y
x dx dy

y

p p

=∫ ∫ , � (8.11)

where

	
2

2

x x
y tdt= =∫ � (8.12)

and

	 2x y= . � (8.13)

Without importance sampling, the Monte Carlo method using 
100 sampled points, produces a result with 3 0.15s ≈ . For the same 
number of sampled points but with importance sampling, we obtain 
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a result with 3 0.04.s ≈  Note that the approximation function ( )g x  
should be reasonably good across the entire integration interval; oth-
erwise, the result is likely to be worse (see Exercise 1). 

8.2  MONTE CARLO SIMULATIONS

One of the first uses of a Monte Carlo method was in determin-
ing the thickness of the shielding required to stop neutrons from 
leaking from a nuclear reactor. Developed in the 1940s by Stani-
slaw Ulam when he worked on the Manhattan project it coincided 
with the birth of modern computing. Indeed, Jon Von Neumann was 
the first to successfully program a Monte Carlo method on ENIAC 
(Electronic Numerical Integrator and Computer) in the late 1940s 
and into the 1950s. 

The process of a neutron traveling through metal is very much a 
random one; the neutron collides with the metal atoms and is scat-
tered in a random direction. Any influence of the neutron’s previ-
ous motion is lost in the (random) scattering process i.e., there is 
no correlation between the results of a particular collision and the 
neutron’s initial motion. This kind of random process is called sto-
chastic, and they frequently occur in physics; molecular diffusion; 
percolation of atoms on (growth) surfaces; and radioactive decay, to 
name but a few. 

8.2.1  Random Walk
Let us begin our discussion of Monte Carlo simulations with a 

simple drunken walk. As some of you may have already found out, a 
drunken walk can be described as a random experience. Mathemati-
cally speaking a random walk is one in which you are equally likely 
to step in any direction. The question normally posed is how far you 
will travel in a given number of steps.

To answer this question, we simulate the walk using random 
numbers, and, of course, some assumptions and constraints. The first 
assumption is that each of your strides is equal in length and that you 
only walk along with the cardinal directions. In other words, you are 
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on a two-dimensional unit square grid moving from point to point. 
After reaching each point you have an equal probability of going 
north, south, east, or west. This can be simulated by generating a ran-
dom number on the interval [ ]0,1 , with equal intervals defining the 
direction taken, for example, 0-0.25 walk north, 0.25-0.5 walk east, 
and so on (the same outcome could be achieved using the integers 
1-4). As the simulation runs, we keep track of the x and y distances 
traveled from our starting point (origin) and calculate the distance 
traveled using Pythagoras, either at the end of the run or updated 
after each step. As this is a stochastic process, we do not gain much 
insight from one random walk, and so we should run the simulation 
many times over to obtain statistically valid results. 

After writing such a program we obtain the results presented 
in Figure 8.5. Here we have results for 10 N = up to 1000N =  in 
increments of 10 where each value plotted is the average of 1000 
simulations. Although this drunken walk scenario may seem some-
what oversimplified can you think of any real physical situations to 
where it might be applied? (Hint: the grid need not be a square grid 
but a regular grid of some other shape that may have more possible 
directions of travel.)

FIGURE 8.5:  Mean distance travelled versus number of steps taken in a drunken walk.

We can relax the constraint that we only walk along with the 
cardinal directions and allow any direction on the two-dimensional 
surface, maintaining a stride length of one. To do this we consider 
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the angle that governs the direction of our next step. In other words, 
we randomly sample the angle j on the interval [ ]0,2p  and use trig-
onometry to determine the x and y distances moved per step, that is, 

( )cosx j=  and ( ) siny j= . Figure 8.6 shows the effect of the modifi-
cation to the results of the mean distance traveled against the num-
ber of steps taken under the same conditions as shown in Figure 8.5. 

FIGURE 8.6:  Mean distance travelled versus number of steps taken for a random walk on a 
2d surface where any direction is possible.

We can also remove the assumption that the stride length is a 
constant by instead of randomly sampling the angle of travel, we 
randomly sample two numbers per step on the interval [ ]1,1−  that 
represent the x and y components of a displacement vector. Note 
that we could also do this by uniformly sampling theta on [ ]0,2p  and 
uniformly sampling the stride length, r, on the interval [ ]0,1 . How-
ever, these two methods are subtly different; can you spot why, and 
does this affect our results in any way? 

What your results should have told you is that the qualitative 
result is unaffected by the size of the strides. In other words, we have 
scale invariance, and we can simply set stride length to unity. The 
total mean distance traveled is then measured in units of the stride 
length. In technical parlance, our stride length is what is known as 
the mean free path. 
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Now that we have covered a random walk over a two-dimensional 
surface let us try to extend that to a random walk in a three-
dimensional volume. In this case, it is useful to think of a perfume 
molecule diffusing through the air; the randomness, or stochastic 
process, is introduced by the perfume molecule randomly scattering 
from collisions with the molecules that make up the air. If we assume 
that the perfume molecule is equally likely to scatter in any direc-
tion, then we have spherical symmetry. 

Figure 8.7 shows the spherical coordinate system ( ), , r q j , where 
r is the length of some position vector, q  is the polar or inclination 
angle, that is the angle between the z-axis and the position vector, 
and j is the azimuth angle, that is the angle between the x axis and 
the projection of the position vector on to the x-y plane. As we have 
discussed, the mean free path can be set to a constant that is equal to 
one, that is, 1r = . We, therefore, need to uniformly sample random 
numbers on the surface of the unit sphere. 

FIGURE 8.7:  Spherical coordinate system.

If we naively sampled q from [ ]0,p  and sampled j over [ ]0,2p  
both with uniform distributions, we would run into problems. The 
issue stems from the fact that the surface of a sphere is curved and 
can explain as follows. In our two-dimensional representation of the 
problem the azimuth angle, j, can be sampled uniformly on the 
interval [ ]0,2p  as this leads to a uniform distribution of points on the 
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circumference of the (unit) circle; see Figure 8.8(a). Now consider 
Figure 8.8(b). This shows a sphere cut by the x-y plane such that a 
circle can be drawn around the sphere, which defines its equator. If 
we now lift the x-y plane up through the sphere, as if decreasing the 
polar angle q by uniform increments, the circle defining where the  
x-y plane cuts the sphere necessarily contracts. If there were a uni-
form distribution of points on the circle, then as the circle moves up 
the sphere those points also contract. In other words, the distribu-
tion of points on the surface of the sphere would be not uniform and 
in fact, would bunch at the poles. 

FIGURE 8.8:  (a) Points on the unit circle defined by a random sampling of ϕ  on the 
uniform distribution [ ]0,2π . (b) Unit sphere cut by the x- y plane; the circle defining the 

intersection deminishes as the plane is pulled upwards.

The way around this problem is not to randomly sample num-
bers for  q on a uniform distribution but to sample points on a ( )sin q  
distribution. We can see this from the figure; we need less points at 
the poles where 0q =  and p, and more points around the equator 
where /2q p= . 

More formally, we consider the solid angle element

	 sin( )d d dq q fΩ = .� (8.14)
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We would like to uniformly sample on the element dΩ, which 
means that we need to uniformly sample both ( )sin dq q and dj. If 
we let

	 sin( )dg dq q= , � (8.15)

then we can write 

	 ( ) cos( )g q q= . � (8.16)

We now have the means to uniformly sample the surface of the 
(unit) sphere. We select  j from a uniform distribution on the inter-
val [ ]0,2p  and select g from a uniform distribution on the interval 
[ ]1,1− , where q is then calculated using

	 1cos ( )gq −= . � (8.17)

Modify your program so that it can perform this three-
dimensional simulation of a molecule diffusing through the air; you 
will have to calculate the x, y, and z coordinates of the displace-
ment vector using trigonometry. Again, we should be able to show a 
relationship between the mean distance traveled and the number of 
collisions taken, so long as these results are statistically valid. Once 
you have the plot it should be the same as those we have previously 
presented. How might we show that the mean distance traveled is a 
power of N, and how might we discern that power?

These data suggest that we have stumbled upon a principal 
property of nature, that the average distance traveled of a particle 
undergoing random scattering events is proportional to the square 
root of the total number of scattering events to which it has been 
subjected. Mathematically, we write

	
R

N
l
≈ .	  � (8.18)

Note the use of the operative word suggest. We have not proved 
anything only that we have statistically valid results. What our com-
putations have given us is a significant insight into the physics of 
diffusion, and a strong suggestion that the relationship described by 
Equation (8.18) probably is real.
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This outlines the importance of Monte Caro simulations; they 
can provide qualitatively valid results for physical systems that may 
be difficult or impossible to solve using more direct methods (both 
analytical and numerical). 

That said there is more information we can extract from our 
simulations that lends credibility to the results we obtained. By 
simulating many molecular paths, we have actually modeled the 
situation whereby a bottle of perfume has been opened and the 
many molecules of the aroma have diffused into the air (under the 
assumption that they all emerged from a point source located at 
the origin). In which case, we should be able to visualize the dis-
tribution of aromatic molecules as a function of distance from the 
perfume bottle after a particular number of collisions. Essentially, 
this represents the density of aromatic molecules in the air as we 
move away from the perfume bottle at a particular moment in time. 
Before you calculate the distribution how might you expect it to 
look, and how might you expect it to evolve with time (number of 
collisions)? 

8.2.2  Radioactive Decay
Radioactive decay occurs when an unstable atom (or parti-

cle) releases some form of radiation (alpha, beta, and or gamma) 
and decays into other particles. This is also referred to a sponta-
neous decay, in that it requires no external stimulation to occur. 
Each unstable atom has the same probability to decay in any given 
period, but when this specifically happens is random. As the total 
number of unstable atoms decreases the number that decays in a 
particular period also decreases. In the limit of the period going to 
zero, we can say that the rate of decay is proportional to the number 
of unstable atoms that still exist. Thus, when there are many unsta-
ble atoms in a sample spontaneous decay is well modeled by an 
exponential decay. Essentially, this is a continuous or large number 
approximation to the actual process of the discrete decay events. As 
the number of unstable atoms inevitably decreases this approxima-
tion begins to fail and the process becomes increasingly stochastic 
(subject to chance). 
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In the limits of N →∞ and 0t∆ →  we write

	 ( ) ( ) ( )N t dN t
N t

t dt
l

∆
→ = −

∆
, � (8.19)

where l is the so-called decay constant. This is related to the half-life 
of the unstable atoms by

	 1/2

ln(2)
T

l
= , � (8.20)

and l can be described as the activity of the unstable atoms i.e., the 
probability that an atom decays within a given period of t∆ .

We can use Monte Carlo simulation to model when this change 
in behavior occurs. More precisely, we can determine the minimum 
number of unstable atoms required for the large number approxima-
tion to hold true. To do this we increase time in discrete steps, and 
for each of these steps, we count the number of decay events that 
occurred during that interval. By keeping track of the number of 
atoms left in our simulation we can quit once they have all decayed. 
To simulate a decay event, we generate a random number, and if that 
number is less than l then a decay event occurs, and we drop our 
atom count by one. 

Unless we are comparing our computational results to actual 
experimental data, we can ignore any time scale that may be required. 
For instance, if 4 10.7 10 sl −= ×  then we should set our time intervals 
to be equal to 410 s−  so that we can set 0.7l =  in our program and 
are able to use random numbers in the range [ ]0,1 . Otherwise, we 
keep the value of l as is and scale our random numbers accordingly; 

4 10.7 10 sl −= ×  and the random numbers are scaled to 40,10  . In 
our time scale-free program, the increments in time can be equal to 
one, and  l is chosen somewhere between zero and one.

The file nuclearDecay_ocv.cpp contains a program that per-
forms this simulation. The parameters in this file should be self-
explanatory. Make sure the code is understood as it is used in one of 
the exercises that follow. 
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EXERCISES

8.1.	 Evaluate the integral

0

sin( )I x dx
p

= ∫
	 using the Monte Carlo method with importance sam-

pling, where ( )g x x= . Compare the results to the same 
integration without this important sampling. What went 
wrong? Retain an additional term from the Taylor series 
expansion of sine and try again. Rather than retaining 
more terms in the Taylor series is there any other way to 
approximate sine over this interval? 

8.2.	 The true period of a pendulum that is, with no small-
angle approximation, of length l in a gravitational field of 
strength g is given by

( )
0

0.5
0

0

4 cos( cos( ))
2
l

T d
g

q

q q q−= −∫

	 where q is the angle with the vertical, and 0q  is the initial 
angle of release. Using a Monte Carlo method of integra-
tion, determine for what angles the small-angle approxi-
mation is valid. (Hint: You will need to recall/research 
the period for the small-angle approximation and decide 
what is accepted as valid.) 

8.3.	 Confirm the random walk plots presented in the “Simu-
lation” section. Can the noise in these results be re-
duced? Are there any analytical results that the mean 
free path of a particle, undergoing random scattering, is 
proportional to the square root of the number of scatter-
ing events? 

8.4.	 Using the nuclearDecay program:

a.	For large N (> 1000) check that N is proportional to 
the actual decay rate i.e., the number of decay events 
per time step. 

Computational Physics.Ch8.2pp.indd   156Computational Physics.Ch8.2pp.indd   156 12/30/2021   11:36:07 AM12/30/2021   11:36:07 AM



	 Monte Carlo Methods  •  157

b.	Produce a plot (hint: logarithm) that shows that 
spontaneous decay looks initially exponential-like but 
as N decreases look increasingly stochastic in behavior. 
Approximately determine where the behavior changes. 
As a check, is the slope equal to l?

c.	 Is this change in behavior independent of the initial 
number of atoms, and the decay constant used?
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CHAPTER 9
PARTIAL DIFFERENTIAL 
EQUATIONS

Most of the interesting equations in physics are partial differential 
equations (PDE). Nearly all measurable quantities in the universe 
vary both in space and time; a fact that is reflected by the abun-
dance of second-order PDEs in physics that have both space and 
time as independent variables. In general, we call functions whose 
values vary in both space and time (or with any other independent 
variable) a field. Name any topic in physics and it will likely have a 
PDE describing its phenomena; examples include but are not lim-
ited to Poisson’s equation, the diffusion equation, the wave equation, 
the Helmholtz equation, the continuity equation, the Navier–Stokes 
equation, and the Schrödinger wave equation.

To solve PDEs analytically we must employ specific techniques 
such as the separation of variables or through the application of the 
Fourier Series. Where this is difficult or not even possible, the prob-
lem might be simplified, or special cases considered, whereby the 
equations can be reduced to an ordinary form. However, the most 
general approach to solving PDEs is by numerical methods. 

This chapter refers to the Fortran code written for an ear-
lier version of this book. It can be found on GitHub at: github.
com/DJWalker42/ComputationalPhysicsFortran. The README 
explains how to compile Fortran programs.
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To develop these numerical methods for solving PDEs, we must 
first return to ODEs and show how to write these as finite difference 
equations. 

9.1 � CLASSES, BOUNDARY VALUES, AND INITIAL 
CONDITIONS

For second-order PDEs, these names are analogous to the conic 
sections of the same name and are about the properties of their solu-
tions. Figure 9.1 illustrates the conic sections. 

FIGURE 9.1:  Conic sections: Parabolic, circular, elliptical, and hyperbolic. [Image copied 
from: http://www.andrews.edu/~calkins/math/webtexts/numb19.htm].

Just as an ellipse is a smooth, rounded shape, solutions to elliptic 
PDEs also tend to be smooth and rounded. Elliptic PDEs generally 
arise from physical problems that involve diffusion processes that 
have reached some equilibrium, for example, a steady-state temper-
ature distribution. The hyperbola is the disconnected conic section. 
By analogy, hyperbolic PDEs can deal with discontinuities in the 
solution, for example, a shock wave or pulse, or some instantaneous 
increase in temperature. Hyperbolic PDEs usually occur in relation 
to mechanical oscillations, such as a vibrating string. Mathematically, 
parabolic PDEs serve as a shift from the hyperbolic PDEs to the 
elliptic PDEs. Physically, parabolic PDEs crop up in time-dependent 
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diffusion problems, such as the transient flow of heat in a conductor, 
say, before it reaches a steady-state.

Consider the most general form for a second-order PDE with 
two independent variables

	
2 2 2

2 22
U U U U U

A B C D E FU G
x x y y x y

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
, � (9.1)

where A through G are arbitrary functions (that can be constant) 
of the variables x and y, and U is some physical field. Note that the 
second term has a factor of 2 as for any partial derivative

	
2 2U U
x y y x
∂ ∂

=
∂ ∂ ∂ ∂

, � (9.2)

where the left-hand term is the second-ordered derivative taken 
with respect to x first then y, and the right-hand term is the second-
ordered derivative taken with respect to y first then x. Remember 
that with partial differentiation all other independent variables are 
considered constant when performing the operation with respect to 
a particular variable.

We can define the discriminant of Equation (9.1) as the following

	 2d B AC≡ − . � (9.3)

When 0d <  the PDE is elliptic, 0d =  the PDE is parabolic, and 
0d >  the PDE is hyperbolic. 

Poisson’s equation in two dimensions is given by

	 ( ) ( )2 , 4 ,x y x yf pr∇ = − , � (9.4)

where 2∇ ≡ ∆ is the Laplace operator that has the form

	
2

2
i ix
∂

∆ =
∂∑ � (9.5)

with ix  representing the spatial coordinates. Here j is a (scalar) 
electrical potential field and r is a charge density. Comparing Equa-
tions (9.4) with (9.1), we see that 1A C= =  and 0B = , thus the dis-
criminant is negative, and Poisson’s equation is elliptic. 
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The heat equation (or more generally the diffusion equation), in 
one spatial dimension, is given by

	 �
� � �
�

�
� � �
�

2

2

T x t

x

T x t

t

, ,
, � (9.6)

where T is some temperature field and α is known as the diffusion 
constant. In the case of heat flow � �� K C/ , where K is the thermal 
conductivity, C is the specific heat, and r is the density of the mate-
rial through which the heat flows. Here A �� and 0B C= =  thus the 
discriminant is zero and the heat equation is parabolic. 

The wave equation, in one spatial dimension, is given by

	
( ) ( )2 2

2
2 2

, ,x t x t
c

x t

y y∂ ∂
=

∂ ∂
, � (9.7)

where y represents the displacement of the wave from some equi-
librium, say, and c is the speed of the wave. Here 2A c= , 1C = − , and 

0B =  making the discriminant positive and thus the wave equation 
is hyperbolic. 

As with ODEs we need to know some initial values in order to 
determine a particular or unique solution to the PDE we are study-
ing. For example, to obtain a particular solution of the (second-order) 
ODE governing simple harmonic motion we needed to know the 
initial position and the initial velocity of the body. For second-order 
PDEs, we still require two pieces of information, but in this case, 
they are the initial state or condition of the entire system, and the 
behavior of the system at its boundaries. To illustrate this concept, 
imagine a metal rod that is held at a constant 0 C°  at one end, and 
100 C°  at the other, these are the boundary values. Do we have suf-
ficient information to determine the temperature distribution of the 
rod as it evolves with time? We can certainly guess the steady-state 
distribution, it will be linear over the length of the rod increasing 
from 0 C°  to 100 C° . However, to determine the transient behavior 
we need to know the initial temperature distribution of the rod that 
is, its initial condition. Generally, we write the initial condition as

	 ( ) ( )0, 0i iU x t U x= = ,� (9.8)
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where U is some physical quantity, ix  represent spatial coordinates, 
t represents time, and it follows that 0U  is the initial state of the 
system.

The type of boundary conditions that we have used in the exam-
ple above is known as Dirichlet conditions; the value of the func-
tion (temperature in our example) at the boundaries of the system 
domain (the ends of the rod) is known. Mathematically, we write 
Dirichlet conditions as

	 ( ),i iU x t f= Ω = ,� (9.9)

where f represents the value of the quantity U on the boundary .iΩ
There are other types of boundary conditions. Neumann boundary 
conditions are when we know the normal derivative of the function 
at the boundaries. In the example of heat conduction through a rod, 
Neumann boundary conditions relate to the flux or heat flow across 
the ends of the rod. Mathematically we write Neumann conditions 
as

	
( ),i

i i
i

U x t
x g

x

∂
= Ω =

∂
 , � (9.10)

where g represents the flux or flow of quantity U across some bound-
ary i ix = Ω . Note that in the most general cases f and g can be known 
functions of ix  and t but to keep things relatively simple we will only 
consider the case where they are constants. For example, if heat 
flows across one end of our metal rod, then physics tells us there 
must be a temperature gradient across that boundary, that is, g is 
some nominal, constant value with units of / mC° . Additionally, the 
sign of g tells us whether the heat flows into or out of the rod. 

Cauchy boundary conditions are when we know both the value 
of the function and its normal derivative on the same boundary. For 
some problems, a Cauchy boundary condition will over-specify the 
PDE, and no unique solution will exist. As a rule of thumb Cauchy 
conditions are typically associated with hyperbolic PDEs (like the 
wave equation), whereas Dirichlet and Neumann conditions are more 
appropriate for elliptic and parabolic PDEs. Note, however, that the 
precise boundary conditions will depend on the physics being mod-
eled, and PDE we are solving. Sometimes this requires that we have 
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mixed boundary conditions; different boundary conditions are used 
on different parts of the boundary of the system. For example, if our 
metal rod is held at a constant temperature at one end, a Dirichlet 
condition, but is insulated at the other end, a Neumann condition (g 

0)= , then we have mixed conditions. 

Before we leave this discussion of the generalities of PDEs it is 
worth mentioning some convenient shorthand notation for express-
ing partial derivatives. We make the following adjustments

	
( ),

i

i
x

i

U x t
U

x

∂
=

∂
, � (9.11)

	
( ),i

t

U x t
U

t

∂
=

∂
,� (9.12)

	
( )2

2

,
i i

i
x x

i

U x t
U

x

∂
=

∂
� (9.13)

and so on. Although we rarely come across the mixed, second-
ordered derivative, for completeness

	
( )2 ,

i

i
x t

U x t
U

x t

∂
=

∂ ∂
� (9.14)

and remember that xt txU U= .

Thus, Equation (9.1) at the start of this section can be rewritten 
as

	 2xx xy yy x yAU BU CU DU EU FU G+ + + + + = . � (9.15)

9.2  FINITE DIFFERENCE METHODS

As stated in Chapter 5, an approach to solving second-order 
ODEs involved generating an auxiliary variable and separating the 
ODE into a pair of, coupled first-order ODEs. While this perfectly 
good method for many equations found in physics it can be difficult, 
if not impossible, to apply to PDEs.

This section refers to LAPACK (Linear Algebra PACKage) 
which is a library of subroutines, written in Fortran, that solve linear 
algebra problems. Interfacing, C++ (or other high-level languages) 
with Fortran is possible but contains many pitfalls. Alternatively, 
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Eigen is an entirely C++ template library for linear algebra and can 
be used instead of LAPACK. Notice that the matrix factorizations 
developed in the C++ code written for this book do not deal with 
tridiagonal matrices and will be relatively slow at solving the prob-
lems discussed throughout this chapter.

9.2.1  Difference Formulas
Another approach to solving boundary value problems is to 

approximate the differential equation with a difference equation. 
For now, we will only consider differential equations with one inde-
pendent variable, that is, ODEs, and will later show how to extend 
this to PDEs. We can obtain the difference equation by considering 
the definition of the differential equation, which is

	
( ) ( ) ( ) ( )

0
lim
h

f x f x h f x df x

x h dx→

∆ + − 
= = ∆  

. � (9.16)

Thus, an appropriate approximation to the derivative is

	  ( ) ( ) ( )f x h f x
f x

h

+ −
′ ≈ ,� (9.17)

where h is some small but finite value.

To determine the error behavior of this approximation we could 
compare it to the analytical solution of some known ODE. However, 
we can do a much better job by using the mathematical tools at our 
disposal. As some of you may have already guessed, we can obtain 
Equation (9.17) using the Taylor series expansion of a function at 
( )f x h+  about ( )f x , that is,

	 ( ) ( ) ( ) ( )
2

2!
h

f x h f x hf x f x+ = + ′ ′′+ .� (9.18)

This can be rearranged for the first-order derivative such that

	 ( ) ( ) ( ) ( )
21

2!
h

f x f x h f x f x
h

′  
= + − − −…′


′ 


.� (9.19)

Notice the equivalency, Equation (9.19) is not an approximation 
but an exact formula for the first-ordered derivative assuming an 
infinite number of terms. Comparing Equation (9.17) with Equa-
tion (9.19), we see that the approximation for the derivative is the 
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Taylor series expansion truncated after the second term. Therefore, 
the error in the approximation is ( )h  (note the multiplicative factor 
of 1 / h) and we can write the equivalency

	 ( ) ( ) ( ) ( )f x h f x
f x h

h

+ −
= +′  .� (9.20)

This is called the forward difference approximation to the deriv-
ative as we are using a point that is forward one step, ( )f x h+ , to 
approximate the derivative at the current position, ( )f x .

A backward difference is derived similarly such that

	 ( ) ( ) ( ) ( )f x f x h
f x h

h

− −
= +′  , � (9.21)

where we use a step behind, ( )f x h− , to approximate the deriva-
tive at the current position, ( )f x . This also has ( )h  accuracy. For 
convenient notation, let us make the following changes: if our cur-
rent position is given by ( ) ( )i if x f x f→ → , the forward position is 
then given by ( ) 1if x h f ++ → , and the backward position is given by 
( ) 1if x h f −− → . Both the forward and backward difference approxi-

mations are two-point formulas.

An advantage of deriving these expressions from their respective 
Taylor series is that we notice the leading error term in both has the 
same magnitude but opposite sign. Thus, if we add Equations (9.20) 
and (9.21) this leading error term will cancel, and we should obtain 
a more accurate approximation. 

After performing the necessary steps, we find that

	 ( )21 1

2
i i

i

f f
f h

h
+ −−′= + .� (9.22)

This is called the central difference formula and is a three-point 
formula as we use both the forward, 1i + , and backward, 1i − , val-
ues to approximate the derivative at our current value, i. You can 
think of the formula as containing an if  term but with a zero coef-
ficient. Note that this formula takes a symmetrical “picture” at the 
local neighborhood of the point of interest, whereas the forward and 
backward formulas only use the information to one side of the point 
of interest. 
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We could keep improving the error behavior by taking more 
points around our point of interest. For example, a five-point for-
mula can be derived in a similar manner to the three-point formula 
above yielding

	 [ ] ( )4
2 1 1 2

1
8 8

12i i i i if f f f f h
h − − + +′= − + − + .� (9.23)

Notice that we have an error behavior of ( )4h . In general, an 

n point central difference formula will be ( )1nh −  accurate. While 
we could just keep increasing the number of points in the approxi-
mation for the derivative to improve its accuracy this does have a 
practical limit. These approximations require that we know values 
for the function both ahead and behind our current position. Unlike 
the Euler or Runge–Kutta methods that are self-starting formulas, 
multi-step methods require that we initiate them in some way. Typi-
cally, this involves using a Runge–Kutta method, say, to provide the 
required number of points from the boundary conditions to start the 
multi-step formula. As any error incurred during this initiation stage 
will be propagated throughout the integration, the initiation method 
needs to be at least the same order of accuracy as the multi-step for-
mula it is starting. As the values of the function and its derivative(s) 
on and close to the boundaries of a real physical system are usually 
important (if not crucial) to the outcome of the integration, they 
must be calculated accurately. 

Note that should we be approximating the derivatives of a 
known function on a particular interval we can use an interpolation 
method to extrapolate the derivatives at the limits (boundaries) of 
the interval. For example, let us imagine we have some function, 
( )f x , stored in an array of size N such that we have function values 

at equidistance increments, h, over x. We then approximate the first-
ordered derivative using the five-point formula, say. Necessarily, we 
require two extra points both at the start and the end of the x line-
space. To obtain the missing values for the derivative we extrapolate 
from those we have calculated in the main body of the array. As 
we have used a five-point finite difference method we should use 
an interpolation method that matches the accuracy order, for exam-
ple, a four-point (third ordered) Lagrange polynomial interpolation 
scheme which has a quartic error behavior. 
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This is not the only method we could use. As we have computed 
function values in the interior of the array, we could apply a forward 
and a backward difference formula at the start and at the end of our 
array, respectively, to approximate the derivative(s) at those points. 
Keep in mind that these methods to deal with edge or boundary 
values must match the error behavior of the method applied to the 
interior values of the function.

The more practical (and obvious) way of increasing the accu-
racy of our approximation formulas is to decrease the step size h. 
Of course, this requires more computational effort but as with most 
things, there is always a cost-reward trade-off. And, as we shall see 
shortly, knowing how the error behaves as the step size decreases 
can be used to our benefit. That said what happens if we let 0h →  in 
a computer program that calculates finite differences?

Higher-order differential equations can also be approximated 
with a difference equation. Again, they are derived using the Taylor 
series expansion of various points about the point of interest. The 
central difference formula for the second-ordered derivative is

	 ( )21 1
2

2i i i
i

f f f
f h

h
+ −− +′′= + ,� (9.24)

which is a three-point formula. The five-point central difference for-
mula for the second-ordered derivative is given by

[ ] ( )4
2 1 1 22

1
16 30 16 .

12i i i i i if f f f f f h
h − − + +′′= − + − + − + � (9.25)

9.2.2  Application of Difference Formulas
How do we go about applying these formulas to a particular 

differential equation? To illustrate, consider the following general, 
second-order ODE

	 � � � ��� �� � �f f f x,� (9.26)

where α through d  are constants and is subject to the boundary con-
ditions

	 ( )f a c= , ( )f b d= ,� (9.27)
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where [ ],a b  defines the computational domain (integration interval), 
and c and d are the values of the function at the boundaries. 

The first step is to partition our computational domain into a 
grid or mesh of discrete points. For simplicity, we make this grid 
uniform by defining 

	
1

b a
h

N
−

=
−

,� (9.28)

where N is the total number of grid points; we include both the 
boundaries in our grid. We then approximate the continuous, dif-
ferential equation with a discrete, difference equation to find the 
solution on the grid we have just imposed. Substituting the three-
point central difference formulas into Equation (9.26), we arrive at 
the following finite difference equation for some arbitrary interior 
point ix

	
� �

� �
h

f f f
h

f f f xi i i i i i i2 1 1 1 12
2� � � �� �� � � �� � � � .� (9.29)

We then solve Equation (9.29) on the 2N −  interior grid points; 
the boundary values are fixed, that is, ( ) 1f a f c≡ =  and ( ) Nf b f d≡ = .  
This means we have a system of 2N −  linear equations that can be 
solved simultaneously for the 2N −  unknown interior grid points. 
Note that the solution on the discrete grid will only approximate the 
solution of the original, continuous problem. That, of course, is the 
point; if we had access to an exact, analytical solution to the problem 
we should not need to approximate the problem in the first place.

There are now two ways to proceed with the solution of Equation 
(9.29). We either go for the direct method or the indirect method. 
The direct method involves recasting Equation (9.29) in matrix form 
and solving the system by Gaussian elimination, say. To do this, we 
gather like terms such that

	 1 1i i i if f f xj q y d+ −+ + = ,� (9.30)

where

�
� �

� �
h h2 2

,

� �
�

� �
2

2h
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and

�
� �

� �
h h2 2

.

Perhaps not immediately obvious but Equation (9.30) has the 
matrix form of

	 Af xd= ,� (9.31)

where A is an ( )2N − -by-( )2N −  tridiagonal matrix given by

	

0 0

0 0

0 0

A

q j
y q

q j
y q

 
 
 
 =
 
 
  



  

  

  



;� (9.32)

f  is an 2N −  vector representing the unknown function values at 
the interior grid points, explicitly

	

2

3

2

1

N

N

f

f

f
f

f
−

−

 
 
 
 =
 
 
  



	  (9.33)

and x is an 2 N −  vector representing the known, discrete grid of 
points on the independent variable x, explicitly

	

2

3

2

3

N

N

x

x

x
x

x
−

−

 
 
 
 =
 
 
  

 , � (9.34)

where ( )1ix a i h= + −  for 2, , 1i N= … − .
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Equation (9.31) can be readily solved by the LAPACK subroutine 
“DGTSV,” say, which solves a general tridiagonal system of linear 
equations by Gaussian elimination with partial row pivoting. 

The indirect method of solution is to find an equation for if  in 
terms of its neighboring points and find an approximation that sat-
isfies the difference equation at the grid points using an iterative 
technique. That is, we start with an initial guess for f at all grid points 
and using the appropriate equation we iterate to a more accurate 
approximation. 

We express our iterative scheme by rewriting Equation (9.30) to 
solve for if  such that

	 ( ) ( ) ( )( )1 1
1 1

1n n n
i i i if f f xj y d

q
− −

+ −= − + − ,� (9.35)

where n is an index that represents the level of iteration, not to be 
confused with as a power. Thus, our initial guess is given by the index 

0n =  and we iterate to the next level, 1n = , through the application 
of Equation (9.35) at all interior grid points, remembering that the 
boundaries are fixed. Note that we need to have two storage arrays; 
one to store the grid point values at the current level of iteration, and 
one to store the grid point values at the next level of iteration. Note 
also that the scheme can be described as “red-black” in reference to 
a chessboard pattern of the same colors. To explain this, take an even 
value for the grid point index i. Note that the next level of iteration 
depends only on the adjacent, odd values of the current iteration 
level (the grid points ix  remain constant throughout the iteration 
scheme). This means that, for each iteration level, the computations 
for even and odd grid points can be done independently. Thus, if we 
think of the iteration scheme as a red and black chessboard, where 
the squares represent the grid points and the columns represent the 
iteration level, then red squares only influence other red squares, 
and black squares only influence other black squares. This property 
lends itself well to parallel computing, but more on this in a later 
chapter. The iteration method we have just outlined is called the 
Jacobi scheme and will converge to the exact solution.

Parallel computing aside, we can apply a little thought to the 
Jacobi scheme and come up with a similar method but with quicker 
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convergence. Imagine we have just determined ( )n
if  and are ready to 

compute the next grid point ( )
1
n

if +
. The Jacobi scheme would have you 

use the value ( )1n
if

−  at the previous iteration level despite the fact we 
have just calculated an improved value for that grid point. Instead, 
let us use that improved value. Equation (9.35) then becomes 

	
( ) ( ) ( )( )1

1 1

1n n n
i i i if f f xj y d

q
−

+ −= − + − .� (9.36)

Note that this formula represents moving through the array with 
ascending i values. For descending i values the iteration index levels 
on the right-hand side swap accordingly. This iteration method is 
called the Gauss–Seidel scheme and it will converge to the exact 
solution more quickly than the Jacobi scheme. However, note that 
we have now lost the red-black property of the Jacobi scheme, mak-
ing it more of a challenge to write the Gauss–Seidel scheme in paral-
lel code.

Iterative methods are generally inferior to direct methods when 
applied to ODEs. By this, we mean that direct methods can sup-
ply us with a solution with far less computational effort than that of 
an iterative scheme to the same level of accuracy. Iterative meth-
ods come into their own when applied to physical problems that 
involve several independent variables, in other words, PDEs. This 
is in part due to the differences in the propagation of error between 
the two methods. Direct methods rely on matrix factorization, typi-
cally Gaussian elimination, with the solution found by back substi-
tution. Any error in one value is passed to all values that follow it 
in the substitution, leading to a non-uniform distribution of error 
in the numerical solution. As we add more independent variables 
this accumulation of error tends to worsen. For iterative methods, 
the error tends to get smeared out across the entire computational 
domain (across each independent variable) leading to a more uni-
form distribution. Additionally, the error in an iterative method can 
always be improved by simply iterating further, whereas the error 
in a direct method cannot be improved unless applying Richardson 
extrapolation (see the next section), for example. 

When writing code for an iteration scheme we must bear in mind 
that all grid points must reach a specified level of accuracy before 
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we can say the iteration has converged. That is, we check that the 
difference between the same grid points at different iteration levels 
is less than some tolerance, for all the grid points in the computa-
tional domain. This is easily accomplished by using a logical variable 
which is set to true (or false) at the start of each iteration, then set 
to false (or true) should any of the grid points fail the accuracy test, 
that is, it only takes one to fail for the convergence check to fail. If 
the convergence check has failed, then we go to the next level of 
iteration. The tolerance itself should be set relatively large (depends 
on the problem) as the solution we obtain is only relevant to the dis-
crete, finite difference approximation we made of the continuous, 
differential equation. Of course, the accuracy of our approximate 
problem can be improved by making the grid finer, in which case we 
could also apply Richardson extrapolation. 

Though convergence is (pretty much) guaranteed it can be slow, 
thus we should provide a count of the number of iterations and have 
the program exit should we go beyond some maximum; this is true 
of any iteration method. 

The file gauss-seidel.f90 contains the program code to imple-
ment the iteration method of the same name. You may find it useful 
to add some code to this program to have it print out some mea-
sure of the error between iterations should the method fail to con-
verge before reaching the maximum iteration count. This may give 
you some feel for how close the method was to convergence and 
allow you to adjust either the tolerance or maximum iteration count 
appropriately. 

Both the Jacobi and Gauss–Seidel schemes are what is known 
as relaxation techniques. That is, we derive the finite difference 
approximation to the differential equation, guess at a solution, and 
the method relaxes that guess to the exact value. How quickly the 
method relaxes the solution to the “exact” value depends upon how 
good the initial guess was in the first place. However, no matter 
how good or bad the initial guess the method will eventually con-
verge on a significantly accurate approximation and the relaxation 
becomes what is called monotonic. When a function is monotonic it 
only ever increases or decreases with its independent variable; there 
are no oscillations, inflections, or stationary points. In this case, the 
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relaxation takes the solution closer to the true value at all grid points 
after each iteration loop. This suggests that if we take a weighted 
average between the iterated value we have just calculated and the 
previous iterated value that we should obtain, a more accurate solu-
tion for that grid point. Mathematically, this is

	 ( ) ( ) ( ) ( )11n n n
i i if f fw w −= + − ,� (9.37)

where  w is the weighting factor (sometimes referred to as the 
extrapolation or relaxation factor) and lies on the interval [ ]0,2 , and 

( )n
if  is the Gauss–Seidel value. Equation (9.37) is called over-relax-

ation and as we apply it successively at each iteration level the entire 
method is referred to as Successive Over-Relaxation. 

For each individual differential equation, and hence derived 
finite difference approximation, there will be an optimal value for 
w that gives the most rapid convergence. This optimal value can be 
calculated in some cases and estimated in others. 

Currently, we have only developed finite difference approxima-
tions to ODEs but the extension to PDEs is not so difficult.

9.3  RICHARDSON EXTRAPOLATION

Richardson extrapolation is stated previously in the sections on 
developing adaptive step numerical integration (quadrature) meth-
ods, the adaptive step ODE solvers, and most recently in the section 
above. Here, we discuss the general technique and how it relates to 
computations of all sorts. 

Richardson extrapolation is what is known as a sequence accel-
eration method. It is named after Lewis Fry Richardson, who intro-
duced the technique in the 1920s for use in predicting the weather 
via numerical techniques. In essence, the technique uses a single 
formula with known error behavior, which is computed using differ-
ent step sizes, and the results are combined to eliminate the leading 
error term in the sequence. To explain how it works in detail let us 
first apply it to the method of numerical differentiation and then 
generalize for any method where the error behavior is known.
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We know from the Taylor series expansion that the first-ordered 
derivative of any function can be given by

	 1

2!
i i

i i

f f h
f f

h
+ −′ ′′= − −…,� (9.38)

so that the approximation to the derivative is given by

	 ( ) 1
0

i if f
A h

h
+ −

= ,� (9.39)

with an ( )h  error behavior. The subscript index on A refers to the 
extrapolation level; this will be explained shortly. Here we are using 
the specific example of the central difference formula. We could use 
any numerical technique that we have discussed thus far so long as 
we know its error behavior. 

If we halve the step size, h, then the new approximation will 
have a leading term error that is half that of the previous approxima-
tion. Thus, we can eliminate the leading error term by subtracting 
the approximation using h from twice the approximation using / 2h . 
The extrapolated approximation is then given by

	 ( )1 0 0( / 2) 2 ( / 2)A h A h A h= − ,� (9.40)

which has an ( )2h  error behavior as we eliminated the lead-
ing ( )h  error term. If we halve the step size again and calculate 

( )0 / 4A h  then we can apply the same technique to find

	 ( )1 0 0( / 4) 2 ( / 4) / 2A h A h A h= − ,� (9.41)

with the same error behavior as before. As we know how the error 
behaves in the extrapolated approximations, ( )2h , and we have 
two measures of that error with differing step size we can eliminate 
the next leading error term by performing

	
( ) ( )1 1

2

4 / 4 / 2
( / 4)

3
A h A h

A h
−

= .� (9.42)

Here we have used the fact that the leading error term in 
( )1 / 4A h  must be four times smaller than the leading error term 

in ( )1 / 2A h . Therefore, four times ( )1 / 4A h  minus ( )1 / 2A h  must 
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leave three times the exact answer plus the remaining error terms. 
The error behavior in Equation (9.42) is then ( )3h . 

This process can continue indefinitely with a general recurrence 
relation 

 
	 ( ) 1, ,

1, 1 1

m

m

k
m l m l

m l k

t A A
A h

t
+

+ +

−
=

−
� (9.43)

where m l≤ , 

	 , ( / )m
m l lA A h t= ,� (9.44)

l is the extrapolation level, t is the factor we use to reduce the step 
size h (for practical purposes this is nearly always two), and mk  is an 
integer related to the step size reduction level m and the nature of 
the sequence we are extrapolating. For instance, the central differ-
ence formula, Equation (9.22), has only error terms involving even 
power terms of h, thus 2mk m= . Conversely, if we had a method that 
involved only odd power terms of h then 2 1mk m= + . In the most 
general cases mk  need not be an integer but we would not consider 
those. 

As Equation (9.43) is somewhat abstract let us apply it to an 
actual example. Consider the function ( ) ( )sinf x x=  with its first-
ordered derivative approximated by the three-point central differ-
ence formula, Equation (9.22). We can put the approximations into 
matrix format with the step size reduction level, m, defining the 
rows and the extrapolation level, l, defining the columns; note that 
we start the level numbering at zero. Thus, we gain the following 
approximation matrix for the first two levels of extrapolation:

	
0.52600907 0.00000000 0.00000000
0.53670749 0.54027363 0.00000000
0.53940225 0.54030051 0.54030230

A
 
 =  
  

.� (9.45)

Here we assessed the derivative at 1x = , with an initial 0.4h = ,  
2t = , and we use the fact that 2mk m= . The way this matrix equa-

tion fills is row by row. In other words, we compute a new level of 
extrapolation as soon as we have sufficient information to do so. For 
example, we first compute 0,0A  and 1,0A , then use those to calculate 
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1,1A , before returning to the zeroth level of extrapolation to calculate 
2,0A , and the procedure continues. In this way, the bottom right-

most entry of A is the most accurate approximation to the derivative. 
The matrix A is called a lower triangular matrix for obvious reasons. 

The first question you should be asking yourselves is “are we 
actually saving ourselves computational effort?”. If say instead of 
approximating a derivative via a finite difference we were perform-
ing a numerical quadrature, such as the composite trapezoidal rule, 
then yes, we do save ourselves computational effort. To explain, the 
first column of A would contain the approximations from the trap-
ezoidal rule calculated at the different step sizes (slice width). If the 
first approximation took N function evaluations, then to calculate the 
first column of A up to the second level of step size reduction would 
require 2 4 7N N N N+ + =  function evaluations. Using these approx-
imations, we can obtain a more accurate value up to the second level 
of extrapolation. At this level, the error behaves as ( )6h ; the trap-
ezoidal rule has no odd powers of h in its error terms. Hence, the 
error in the approximation at this level will be roughly a factor of 

61 / 4  times smaller than the first entry. To obtain this accuracy order 
by only reducing the step size would require us to use at least  1 / 64 
times the original step size. In other words, 64N function evalua-
tions versus 7N function evaluations. The further we extrapolate the 
bigger (and the better) the difference between these two numbers. 

However, for any finite difference formula, we only ever need 
to use a set number of evaluations to compute an approximation to 
the derivative at a given point. For instance, the three-point cen-
tral difference formula requires two function evaluations, one at 1if +  
and one at 1if − , regardless of the step size. The extrapolation would 
appear to be wasting computational effort. However, if we have an 
unknown function taken from some measurement, say, and we wish 
to find its derivative we may not have enough points to analyze the 
absolute error in our approximation using different step sizes of the 
central difference formula alone. Richardson extrapolation would 
(hopefully) converge more rapidly on a precise approximation and 
give us means to estimate the absolute error in the numerical deriva-
tive. Secondary to this point is that as we reduce the step size the 
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function evaluations for the finite difference come closer together 
in size. Eventually, their difference becomes comparable to the 
machine precision, and we introduce round-off error. We can see 
this by applying the central difference formula to a known function 
and calculating the absolute error in the approximation for decreas-
ing step size. The error reduction initially behaves as predicted but 
will eventually slow down and even begin to increase for sufficiently 
small step sizes due to the round-off error. By using Richardson 
extrapolation, we can avoid round-off error issues. 

Typically, the extrapolation does not go much beyond the third 
or fourth level as by then we usually have an approximation that is 
within the desired tolerance level. One way to ensure the significant 
figure of the accuracy of the approximation is to subtract the previ-
ous level of extrapolation from the current level (at the same step 
size reduction level, i.e., the same row) and test it against the desired 
tolerance. For instance, in our example above subtracting element 

2,1A  from 2,2A  we would see that 2,2A  is at least five significant figures 
accurate, that is, within the tolerance that we used of 410− . In fact, 
the approximation shown is 6 significant figures accurate.

The file richardsonExtrap.f90 contains the code to perform the 
extrapolation using a matrix array A and a three-point central differ-
ence formula to approximate the first-ordered derivative of some 
user-defined function. 

9.4  NUMERICAL METHODS TO SOLVE PDEs

To begin this discussion let us start with arguably the most intui-
tive of the PDE.

9.4.1  The Heat Equation with Dirichlet Boundaries
Consider the normalized (the diffusion constant is unity) heat 

equation in one dimension across a metal rod

	  t xxU U= ,� (9.46)
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where U is the temperature field, x is the spatial coordinate, and t is 
time. Let us impose the Dirichlet boundary conditions

	  ( ) ( )0, ,U t U L t c= = ,� (9.47)

where L is the length of the rod, and c is a constant temperature. 
This is the model for a metal rod held at a steady temperature at 
either end. The initial condition of the rod is given by

	 ( ) ( )0,0U x U x= .� (9.48)

One way to solve this equation numerically is to approximate all 
the derivatives by finite differences. We partition the domain (the 
length of the rod) in space using a grid or mesh 1 , , Mx x…  (hence M 
spatial grid points in total) and in time using a grid 1 , ,  Nt t… (hence 
N time grid points in total). We assume a uniform partition both in 
space and in time such that the difference between two consecutive 
space points can be given by h, and between two consecutive time 
points can be given by k. The points	

	 ( ), n
m n mu x t u= � (9.49)

represent the numerical approximation to the exact solution at the 
grid point ( ) ,m n . To avoid confusion a lower-case letter with two 
indices either written n

mu  or ,m nu  refer to the grid points of the finite 
difference approximation, the former being for one spatial variable 
and a time variable, and the latter being used for two spatial vari-
ables. An uppercase letter followed by two indices without a comma, 
for example, xxU , is the second-ordered partial derivative of U with 
respect to the continuous variable x. Here we are using the conven-
tion that we write the discrete-time point index as a superscript; we 
are not taking a power. For clarity, if we had a two-dimensional heat 
conducting sheet, say, and we partitioned the sheet across x, y, and 
t then the conventional notation for a grid point on the temperature 
field U would be	

	 ( ) ,, , n
l m n l mu x y t u= ,� (9.50)
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where l and m are the indices for the spatial coordinate grid points, 
and n is the index for the temporal grid points.

9.4.1.1  Explicit Method 

Using a forward difference at time nt  and a second-order central 
difference for the space derivative at position mx  we get the recur-
rence equation:

	 1
1 1

2

2n n n n n
m m m m mu u u u u

k h

+
+ −− − +

=
.� (9.51)

This is an explicit method for solving the one-dimensional heat 
equation in that we can compute the advanced time step 1n

mu +  from 
the previous values such that

	 ( )1
1 11 2n n n n

m m m mu r u ru ru+
− += − + + ,� (9.52)

where 2 /r k h= .

To input the boundary conditions, we must fix 0
nu c=  and  n

Mu c= ,  
over all N time steps. 

To visualize Equation (9.52), we can consider what is called 
the computational or numerical stencil (or molecule) of the explicit 
method. Figure 9.2 shows this stencil placed at some arbitrary inte-
rior location, that is, not near the boundaries of the domain. Here we 
use the notion that known values, either computed or belonging to 
the initial or boundary conditions, are represented by filled squares, 
and the unknown values, those yet to be computed, are represented 
by open circles. The stencil shows us that we are using three known 
values, specifically 1 n

mu − , n
mu , and 1

n
mu +  to compute the unknown value 

1 n
mu + . As we run the computation we can think of the stencil as mov-

ing down one row at a time, calculating the unknown value at the 
advance time step, until it reaches the edge of the grid (the domain 
boundary), where it moves to the top of the next column and repeats 
the process, finishing at the bottom of the last time step. 

The explicit method is known to be numerically stable and con-
vergent when  1 / 2r ≤ . As we have taken a forward difference for the 
time differential, and a central difference for the space differential 
the error in the approximation can be written as ( ) ( )2  u k h∆ = +  . 
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FIGURE 9.2:  Explicit method stencil. Filled squares are computed points; open circles are 
to be computed.

9.4.1.2  Implicit method 

If we use the backward difference at time 1nt +  and a second-
order central difference for the space derivative at position mx  we 
get the recurrence equation

	  1 1 1 1
1 1

2

2n n n n n
m m m m mu u u u u

k h

+ + + +
+ −− − +

=
.� (9.53)

This is an implicit method for solving the one-dimensional heat 
equation in that to obtain the advanced time step 1 nt +  we compute 

1n
mu +  by solving a system of linear equations. We obtain that system of 

linear equations by rearranging Equation (9.53) and using the sub-
stitution 2/r k h=  to give

	 ( ) 1 1 1
1 11 2 n n n n

m m m mr u ru ru u+ + +
− ++ − − = .� (9.54)

The numerical stencil for the implicit method is shown in Fig-
ure 9.3. As we can see each equation contains one known value  n

mu
and three unknown values 1

1 n
mu +
− , 1 n

mu + , and 1
1 n

mu +
+ . If there is a thought 

scratching at the back of your head, then remember that we move 
this stencil down one row at a time. Thus, for the grid points 

3, , 2m M= … −  each unknown appears in three separate equations, 
hence we have sufficient information to compute the unknowns at 
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the advanced time step for those grid points. For instance, in Figure 
9.3, we now have sufficient information to calculate grid point 1

1 n
mu +
− .  

But what of grid points  2m = , and  1m M= − ? They only appear in 
two separate equations, it looks as if we are missing two known val-
ues, one for each grid point. Of course, the answer lies in the bound-
ary values. If we place our implicit method stencil at  2m = , say, then 
one of the “unknowns” is a boundary value, which is a known value. 
The same can be said at  1m M= − . Thus, we have sufficient infor-
mation to calculate 1

2 nu +  and 1
1 n

Mu +
− . We will discuss how to deal with 

these boundary values in detail shortly.

FIGURE 9.3:  Implicit method stencil.

The implicit method is always numerically stable and conver-
gent but is typically more computationally intensive than the explicit 
method as it requires solving a system of numerical equations at 
each time step. As we have used the backward time difference and 
the central space difference the (local) error in the approximation is 
the same as the explicit method. Note that the global error may be 
different due to the different methods of computation required to 
get to the advanced time step. 
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9.4.1.3  Crank–Nicolson Method 

Finally, if we use a central difference approximation at time 
1/2nt +  and a second-order central difference for the space derivative 

at position mx  we get the recurrence equation:

	
1 1 1 1

1 1 1 1
2 2

2 21
.

2

n n n n n n n n
m m m m m m m mu u u u u u u u

k h h

+ + + +
+ − − − − − + − +

= + 
 

�(9.55)

Remember to get the central difference formula we sum the 
forward difference with the backward difference; the factor of one-
half considers that we are assessing the time halfway between grid 
points. 

Equation (9.55) is known as the Crank–Nicolson method. The 
method was developed by two Britons namely John Crank, a math-
ematical physicist, and Phyllis Nicolson a mathematician, in the mid-
20th century. Note that this method is implicit as the approximation 
to the advanced time step is dependent on itself and we can obtain 

1n
mu +  from solving the system of linear equations given by

 
( ) ( ) ( ) ( )1 1 1

1 1 1 12 1 2 1 .n n n n n n
m m m m m mr u r u u r u r u u+ + +

− + − ++ − + = − + + � (9.56)

The stencil for the Crank–Nicolson method is shown in Figure 
9.4. Here we use three known values and three unknown values to 
generate an equation. 

FIGURE 9.4:  The Crank-Nicolson stencil.
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Note that this stencil is still only moved down one row at a time. 
In its current position in Figure 9.4, we have enough information to 
compute grid point 1

1
n
mu +
− .

The Crank–Nicolson method is always numerically stable and 
convergent. However, be aware that if  1 / 2 r >  this method may pro-
duce unwanted decaying oscillations in the solution. The errors for 
the Crank–Nicolson method are quadratic over both the time step 
k, and the space step h.

9.4.1.4  General Finite Difference Method

We can condense these three methods into one elegant formula 
with a so-called weighted variable  q. Using this variable, we can 
rewrite the finite difference approximations above as

 

( )
1 1 1 1

1 1 1 1
2 2

2 2
1 ,

n n n n n n n n
m m m m m m m mu u u u u u u u

k h h
q q

+ + + +
+ − + −− − + − +

= + −  �(9.57)

where 0q =  gives the explicit method, 1 / 2q =  gives the Crank–
Nicolson method, and 1q =  is the implicit method, though q could 
have any value in the range [ ]0,1 .

Rearranging Equation (9.57) into an expression for the advanced 
time step we obtain

( ) ( ) ( )
( ) ( )( ) ( )

1 1 1
1 1

1 1

1 2

1 1 2 1 1

n n n
m m m

n n n
m m m

r u r u r u

r u r u r u

q q q

q q q

+ + +
+ −

+ −

− + + −

= − + − − + − .� (9.58)

Note that Equation (9.58) is for the interior nodes of the domain 
grid, that is, 2, , 1m M= … − . The values of the grid nodes 1

nu  and  n
Mu  

are given by the boundary conditions.

Although not obvious at all Equation (9.58) represents a tridi-
agonal system of linear equations, that is, it can be written in the 
form of

	  

1 1nn nAu Bu+ += + Ω ,� (9.59)

where A is an ( )2M − -by-( )2  M − tridiagonal matrix given by
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1 2 0 0
1 2

0 0

0 0 1 2

r r

r r r

rA
r

r r

q q
q q q

q
q

q q

+ − 
 − + − 
 −=
 − 
 − + 



 

 

   



; � (9.60)

1nu +  is an 2M −  sized vector of the function values at the interior 
grid nodes at the advanced time step given by

	
2

1
3

2

1 1

n

M

M n

u

u u

u

u

+

−

− +

 
 
 
 
 

=  
 
 
 
 
 



,� (9.61)



n
u  is an M sized vector of the function values at the current time 
step, that is, the known values given by

	  
1

2

1

n

M

M n

u

u u

u

u
−

 
 
 
 
 

=  
 
 
 
 
 



,� (9.62)

B is an ( )2M − -by-M tridiagonal-ish (technical term) matrix 
given by

1 2 0 0 0
0 1 2

0 1 2 0
0

0 0 0 1 2

r r r

r r r

r rB
r

r r r

j j j
j j j

j j
j

j j j

− 
 − 
 −=
 
 
 − 



  

  

    



,� (9.63)
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where for convenience ( )1j q= − ; and Ω is a vector of size 2M −  to 
deal with the boundary conditions given by

	
1

1 0

0

n

M

u

r

u

q+

 
 
 
 
 

Ω =  
 
 
 
 
 



 � (9.64)

That is, there are 4M −  zeros between the first and last ele-
ments, which are the values of the corresponding boundary nodes 

1u  and Mu .

To explain Ω, consider Equation (9.58) at grid point  2m = : 

  
	

( ) ( ) ( )
( ) ( )( ) ( )

1 1 1
3 2 1

3 2 1

1 2

1 1 2 1 1

n n n

n n n

r u r u r u

r u r u r u

q q q

q q q

+ + +− + + −

= − + − − + − .� (9.65)

Remember that we should write these equations with the 
unknown values on the left-hand side and the known values on the 
right-hand side. Since the value 1

1  nu + is a boundary node it is a known 
value and should be moved to the right-hand side of the equation. A 
similar argument can be made for the grid point 1m M= −  with the 
boundary value 1n

Mu +  also being moved to the right-hand side. Note 
that this manipulation is particular to Dirichlet boundary conditions. 
For other types of boundary conditions, different methods of deal-
ing with these boundary values must be applied. We will discuss how 
to deal with a Neumann boundary condition in the next section.

If the source of these manipulations is unclear from the equa-
tions, then consider Figure 9.5(a). This shows the space-time domain 
which we have discretized into a grid of points; the space axis is ver-
tical, and the time axis is horizontal. Thus, each column of points 
represents the solution across the spatial dimension at each time 
step we are taking. The open circles represent the unknown, inte-
rior grid points that we are attempting to calculate, that is, the left-
hand terms of our equations, whereas the filled squares represent 
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our known values, that is, the right-hand terms of our equations. 
The first and last rows of the grid are given by the boundary condi-
tions, whereas the first column is given by the initial condition of 
the function. Figure 9.5(b) shows the state of the grid at the  n th
time step. Here n columns have changed from unknown values to 
known values and we are ready to calculate the ( )1  n + th time step. 
If we apply our Crank–Nicolson stencil to the grid point 1

2
nu + , Figure 

9.5(c), then we see that it contains a boundary value at the advanced 
time step. Necessarily, this value must be brought to the right-hand 
side of our equations; hence the value appears at the start of Ω.  
Similarly, the stencil applied to grid point 1

1
n
Mu +
−  also includes a  

boundary value, hence the value at the end of Ω. 

FIGURE 9.5:  (a) The initial state of the system; (b) The state of the system at time nt ;  
(c) the general stencil applied at a boundary.

It was mentioned earlier that we would only deal with Dirich-
let conditions that are constant values, and not functions of time 
(or other spatial coordinates). The reason for this becomes apparent 
when we consider the addition of Ω in Equation (9.59). As 1

1 1
n nu u +=  
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and 1n n
M Mu u +=  for all n, we can incorporate Ω into matrix B such that 

the first and last entries of B both simplify to r.

To solve Equation (9.46) formally would require us to compute 

	 ( )1
1 1n n nu A Bu−

+ += + Ω .� (9.66)

As calculating the inverse of a matrix becomes infeasible for large 
values of M we must rely on other methods of solution. Fortunately, 
LAPACK offers several subroutines for doing such a task. Specifi-
cally, we have a symmetrical, tridiagonal matrix and thus require the 
subroutine “DPTSV” to solve our system. Be aware that this subrou-
tine performs an entire solution of the system by first factorizing the 
matrix A, and using those factors to find the solution. In doing so it 
overwrites A with the factorized elements. 

The program file heatEqn1.f90 contains the code to perform the 
numerical solution of the one-dimensional, time-dependent heat 
equation for a specific set of boundary and initial conditions. As we 
have used the weighting parameter q we can use this to set the finite 
difference method the code uses. Figure 9.6 shows some selected 
results of running the code with the ends of a 1 m length metal-
lic rod both held at 100 C° , with an initial temperature of 0 C° , and 
with 0.5q = , which is the Crank–Nicolson method. Here we set h 
= 0.2 and k = 0.01 making  1 / 4r = . We can see that the metallic 
rod behaves (at least qualitatively) as we might expect; heat flows 
into the rod from the hot ends in a smooth and symmetrical fashion, 
until the entire rod reaches 100 C°  after-which nothing happens that 
is, it has reached a steady-state. Our numerical results suggest this 
happens in around a second or less but, of course, we initially set the 
diffusion constant (related to the thermal conductivity of the metal) 
to one. It should not be too much of a stretch to reintroduce it back 
into our program code. Figure 9.6 is somewhat of a cheat as it uses 
Excels’ built-in smoothing function to guess at the values in-between 
the grid points, but you surely know how it does this by now, right? 
(If not, re-examine the chapter on interpolation). 

The heat equation does have an analytical solution with Dirich-
let boundary conditions that can be obtained through a technique 
called separations of variables. As we are treating the more general 
case of non-zero, Dirichlet boundary conditions can be a little tricky. 
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To recap we are solving the following PDE for the distribution 
of heat through a metallic rod of length L

	  t xxU kU= ,� (9.67)

FIGURE 9.6:  Numerical approximation to the transient flow of heat in a one dimensional 
metal rod with Dirichlet boundary conditions.

with boundary conditions

	  ( ) 10,U t c= ;� (9.68)

	 ( ) 2,U L t c= � (9.69)

and with initial condition defined as

	 ( ) ( )0,0U x U x≡ .� (9.70)

The particular solution to this differential equation is given by

  
	 ( ) ( )

2

1

, sin
n

k t
L

E n
n

n x
U x t U x D e

L

pp  ∞ −  
 

=

 = +  
 

∑ ,  � (9.71)

where the coefficients are

	  ( ) ( )( )0
0

2 L

n E

n x
D U x U x sin dx

L L
p = −  

 ∫  � (9.72)
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and we have the steady-state or equilibrium solution

	  ( ) 2 1
1E

c c
U x c x

L
−

= + .� (9.73)

This solution is recognized as being a Fourier series and is the 
solution (give or take some notation) Fourier found to the heat 
equation in the original work. We can see that this solution makes 
physical sense because if t →∞  then the summation term in Equa-
tion (9.71) goes to zero and ( ) ( ), EU x t U x→ . Also, if the initial con-
ditions ( ) ( )0 EU x U x= , then the coefficients are zero for all n and 
we have the situation where there is no time dependence. This is of 
course what our physical intuition expects; if the temperature starts 
out at the steady-state solution, then it will remain at that solution 
for all time; that is why it is called a steady-state solution.

We can use this analytical solution, Equation (9.71), to check the 
accuracy of our numerical approximation. This is presented as an 
exercise for you to modify the heatEqn1.f90 to include this analyti-
cal solution to provide a measure of the error in the approximation. 
If we had no analytical solution, how might we estimate the error 
in our approximation, or at least ensure a nominal significant figure 
accuracy?

9.4.2  The Heat Equation with Neumann Boundaries
Consider again the metallic rod but with one end insulated, 

rather than held at a constant temperature. In this case, we are solv-
ing the same system

	 t xxU kU= ,� (9.74)

but with the mixed boundary conditions of

	 ( )0,U t c=  ; � (9.75)

	 | 0x x LU = =  � (9.76)

Again, the initial condition can be defined as

	 ( ) ( )0,0U x U x= . � (9.77)

Equation (9.76) is telling us that there is no transfer of the 
physical quantity (temperature in this case) with respect to space 
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across the specific boundary  x L= . In other words, the temperature 
gradient is zero across the boundary. 

As the Neumann boundary condition, Equation (9.76), is a 
differential equation we need to replace it with a finite difference 
approximation. Recall that to maintain an error behavior of the entire 
system our treatment at the boundaries of the domain should match 
that which we use on the interior of the domain. Fortunately, each of 
the methods discussed (implicit, explicit, and Crank–Nicolson) have 
an ( )2h  dependence on the space variable. Hence, any difference 
formula we use with an ( )2h  error behavior to deal with the Neu-
mann boundary condition will also apply to our general, weighted 
formula (Equation (9.57)). 

One of the simplest ways of approximating Equation (9.76) with 
a finite difference equation is to use an ( )2h  forward or backward 
(depending on the location of the boundary) difference formula. 
The reason why we do not use a central difference formula is that it 
introduces a grid point that lies outside our computational domain, 
and while there are techniques to deal with this complication, they 
are beyond the scope of our discussion here. 

For our Neumann boundary, we use the approximation

	 ( )2 1

1
| 4 3 0

2
n n n

x x L M M MU u u u
h= − −≈ − + = , � (9.78)

for all n. This has an ( )2h  error behavior. Rewriting Equation 
(9.78), we obtain the following expression for the boundary value 
at x L=

	 1 2

4 1
3 3

n n n
M M Mu u u− −= − . � (9.79)

We now have a means of calculating the value of U at the insu-
lated boundary from the neighboring interior grid points for a par-
ticular time step. But how does this affect our tridiagonal system of 
equations? 

To answer that question, we substitute Equation (9.79) into 
Equation (9.58) taken at the boundary x L=  such that
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	 ( ) ( ) ( )1 1 1 1
1 2 1 2

4 1
1 2

3 3
n n n n
M M M Mr u u r u r uq q q+ + + +
− − − −

 − − + + − =… 
 

� (9.80)

where 


 represents the right-hand side of Equation (9.58). We do 
not apply the substitution on the right-hand side as we either know 
the value of U at the boundary due to the initial conditions, or we 
calculate it from Equation (9.79). After some rearrangement, we 
find the following

	 1 1
1 2

2 2
1

3 3
n n
M Mr u r uq q+ +
− −

   + − =…   
   

.� (9.81)

Notice that we have not taken any terms over to the right-hand 
side of these equations to deal with the Neumann boundary. Thus, 
we make the following changes to our system of matrices and vectors. 
Matrix A remains unchanged except from its final two elements that 
now have the values 2, 3 2 / 3M Ma rq− − = − , and 2, 2 1 2 / 3M Ma rq− − = + . 
The additional boundary vector, Ω, is modified such that its final 
entry is now zero. Incorporating this change into the matrix B we 
see that its final element returns to the expression ( )2, 1M Mb r q− = − ; 
remember that in the previous section we used the constant Dirich-
let boundary conditions to simplify the first and last entries of B both 
to r. The vectors u and u  need no modification. 

The first thing to notice is that A is no longer symmetrical. This 
means we require a different LAPACK subroutine to solve this sys-
tem of equations. The subroutine “DGTSV” solves a general tridiag-
onal system of linear equations using Gaussian elimination. As with 
the previous LAPACK subroutine, the arrays representing A that 
is passed to “DGTSV” are overwritten by their factors, hence they 
require resetting before looping to the next time step. The second 
thing to notice is that after we have solved the system at a particular 
time step, we need to calculate the temperature at the Neumann 
boundary using Equation (9.79). 

Figure 9.7 shows some of the results of running the program 
after making the necessary changes to the code found in heatEqn1.
f90. Here we maintain the values of h and k from the previous sec-
tion and the constant Dirichlet boundary is set to 100 C° . 
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FIGURE 9.7:  Numerical approximation to the transient flow of heat in a one-dimensional 
metal rod with mixed boundary conditions.

9.4.3  The Steady-State Heat Equation
We have already established that the solution to the heat equa-

tion consists of a transient phase that evolves in time, which eventu-
ally settles on to a steady-state solution. This steady-state solution 
is also referred to as the equilibrium of the system. We can write a 
differential equation that expresses this steady-state as

	 ( )
2 2 2

2
2 2 2, , 0xx yy zz

U U U
U x y z U U U

x y z
∂ ∂ ∂

∇ ≡ + + = + + =
∂ ∂ ∂

,� (9.82)

where we have explicitly used our notation for partial differentiation. 
Here U is some physical field (temperature in this case) defined 
over three spatial dimensions; notice there is no time dependence. 
Equation (9.82) is called the Laplace equation and crops up often in 
physics wherever a system reaches an equilibrium state. 

Consider a two-dimensional metallic plate that is held at known 
but different temperatures along its boundaries (Dirichlet bound-
ary conditions). We want to find the steady-state temperature of the 
plate. This is like the one-dimensional metallic rod problem we dis-
cussed earlier in that we know the temperature at the boundaries of 
the system. However, in this steady-state case, we are not interested 
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in the transient behavior of the system. As such we are not required 
to know the initial state of the system to find a unique solution. In 
fact, we wish to solve this problem using an iterative or relaxation 
method. 

To simplify the mathematics let us consider the metallic plate to 
be a rectangle of dimensions a b× , with its lower-left corner situated 
at the origin of our coordinate system. Thus, we can write

	 0xx yyU U+ = , � (9.83)

with the following boundary conditions proceeding clockwise from 
the origin:

( ) 10,U y c=
;

( ) 2,U x b c= ;
( ) 3,U a y c=

;

and 

	 ( ) 4,0U x c= , � (9.84)

for x on the interval [ ]0,a and y on the interval [ ]0,b . For arguments 
sake the ic  are taken to be constants but in the general case, they 
would be functions of x and y.

To solve this problem numerically we derive the finite differ-
ence approximation to the second-ordered PDE of Equation (9.83) 
by defining a two-dimensional grid on our rectangular plate. Hence, 
we write 

,  0,1, ,ix ih i N= = …  ,

	 ,  0,1, ,jy jk j M= = … , � (9.85)

where /h a N=  and /k b M= . The finite difference approximation 
can be written as

	 ( ) ( )1, , 1, , 1 , , 12 2

1 1
2 2 0i j i j i j i j i j i ju u u u u u

h k+ − + −− + + − + = . � (9.86)

Remember that we are going to solve this problem indirectly 
using a relaxation method, so we need to solve Equation (9.86) for 

,i ju . In doing so we find that
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2 2

1, 1, , 1 , 1
, 2 2 2 22 2

i j i j i j i j
i j

u u u uh k
u

h k h k
+ − + −+ + 

= + +  
. � (9.87)

We can simplify Equation (9.87) further by imposing that h k=  
and in this case

	 ( ), 1, 1, , 1 , 1

1
4i j i j i j i j i ju u u u u+ − + −= + + + . � (9.88)

Note that this has a rather simple geometric interpretation. It 
states that the solution at a particular grid node is the arithmetic 
mean of its (four) nearest neighbors. 

It is left as an exercise for the reader to implement code to solve 
the steady-state heat equation in two dimensions. Use the file gauss-
seidel.f90 as a guide; remember that you will need to express the 
array u in two dimensions, looping over both i and j, as well as initial-
izing the values on the boundary and the initial guess for the interior 
grid nodes. As a comment on strategy, start out simple that is, use 
a small grid and have boundary conditions for which you can guess 
the solution, then add complexity once you have some working code. 
How might you visualize the data?

One such complication we might add is the inclusion of a Neu-
mann boundary condition along with one of the edges of our rectan-
gular plate. For arguments let us replace the Dirichlet condition at 
the left-hand edge with the Neumann condition that

	 U x y
u u

hx j x j
j j, | , ,� � � �
�

�
�

0
1 1

2
� , � (9.89)

where we have introduced α j as the partial derivative along the 
boundary ( )0,y  for y on the interval [ ]0,b . Remember that the 
finite difference formula here is the first-ordered central difference 
approximation and thus has ( )2h  accuracy that matches the accu-
racy of the method used for the interior grid nodes. Using Equation 
(9.88), we can write the finite difference approximation for values 
along the left-hand edge (0 1j M< < − ) as 

	 ( )0, 1, 1, 0, 1 0, 1

1
4j j j j ju u u u u− + −= + + + .� (9.90)
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As we can see this equation involves a term that lies outside our 
physical grid. However, we can use Equation (9.89) to substitute in 
for 1, ju− , which gives

	 ( )0, 1, 0, 1 0, 1

1
2 2

4j j j j ju u h u ua + −= − + + . � (9.91)

In general, ja  will be a function of x and y but is typically mod-
eled by a constant value. The physics of Equation (9.89) is that heat 
will flow if there is a temperature gradient across a boundary, and 
that it will flow from hot to cold. For instance, if a was negative then 
heat flows into the plate from the environment, if a is positive that 
situation is reversed. Note that this direction of heat flow depends 
on the location of the boundary. For instance, if we consider the 
right-hand edge of the plate then a negative temperature gradi-
ent (with respect to the x direction) implies heat flows out of the 
plate into the environment, whereas a positive temperature gradient 
implies the opposite.

9.4.4  The Wave Equation
The general wave equation in one spatial dimension is given by

	 ( ) ( )2, ,tt xxU x t c U x t= ,� (9.92)

where c is the speed of the wave, and U represents some physical 
field, for example, the displacement of the wave in mechanical oscil-
lations. As with the heat equations to solve this equation numeri-
cally, we define a discrete grid of points over both space and time, 
and then derive the finite difference approximation. Thus

	 ( ) ( )
2

1 1
1 12 2

1
2 2n n n n n n

m m m m m m

c
u u u u u u

k h
+ −

+ −− + = − + ,� (9.93)

where we have imposed the discrete, uniform grid of points

,  0,1, ,mx mh m M= = …  ;

	 ,  0,1, ,nt nk n N= = …  , � (9.94)

with 0( ) /Mh x x M= −  and 0( ) /Nk t t N= − ; we have yet to define the 
space and time boundaries of the system. For convenience we usu-
ally take 0 0x =  and 0 0t = . 
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As we are solving for a time-dependent problem then we need to 
find an equation for the advanced time step in terms of values from 
previous time steps. Rearranging Equation (9.93) for the advanced 
time step we obtain

	 ( ) ( )1 1
1 1 2 1n n n n n

m m m m mu u u u ur r+ −
+ −= + + − − , � (9.95)

where we have introduced

	
2kc

h
r  =  

 
. � (9.96)

Interpreting Equation (9.95) we see that we can compute u for 
all mx  so long as we know u for all mx  at the two previous time steps. 
Note that this is an initial value problem in that to compute a solu-
tion we need to know the initial value of u for all x. But Equation 
(9.95) is telling us we need u at two previous time steps to advance 
the solution; we appear to be missing information. This dilemma is 
resolved when we realize that we have both the initial function u and 
can determine the first-ordered time derivative of that initial func-
tion using a finite difference approximation. Explicitly

	 ( )
1 1

0, |
2

m m
t m t m

u u
U x t

k
t

−

=

−
= ≈ ,� (9.97)

where we have introduced mt  for the partial derivative with respect 
to time for all mx  at the initial time 0.t =  In order to calculate the first 
time step from the initial condition we use Equation (9.97) in Equa-
tion (9.95) to obtain the following expression

	 ( ) ( )1 0 0 0
1 1 1

2m m m m mu u u u k
r r t+ −= + + − + . � (9.98)

Note that we used a finite difference approximation of t to 
derive the formula for the initial time step. However, t might be 
some known function of x, for instance, if the initial function ( ),0u x  
is easily differentiable, then we need not compute the finite differ-
ence approximation and merely compute ( )m mxt t=  for each spatial 
grid point.

The astute reader will have already noticed that these conditions 
are essentially Cauchy boundary conditions; we can think of the ini-
tial time as being a boundary on the time dimension. You also may 
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have noticed that we have not yet imposed boundaries on the spatial 
coordinate. In fact, we are not required to impose such conditions, 
however, this leads to rather uninteresting and unphysical systems. 
Imagine, if you will, an infinitely long, stretched spring. We send a 
pulse wave down that spring by displacing it in some way; the ten-
sion in the spring provides the force to drive the pulse. Assuming 
no attenuation that wave continues to travel along the spring in the 
same direction for eternity. For normal, earthly, finite springs we 
must fix at least one end (if not both) to stretch it and provide the 
tension required to carry a wave. This imposes the boundary condi-
tions on our spatial coordinate. 

It may or may not be of some surprise to you that it is in the 
modeling of those spatial boundary conditions rather than the wave 
equation itself that we find the most interesting physics. What are 
the spatial boundary conditions for that system? What if we were 
to fix both ends or leave both ends free to oscillate? Would the out-
come be as satisfying? For more serious musicians, those who play 
instruments that require a little more skill than mere twanging, it is 
more the interaction of the vibrating string with its support struc-
tures that is important for producing the instrument’s sound than is 
the vibrating string itself. Have you ever wondered why you don’t 
see any square drums, or why brass and other wind instruments have 
a flared end?

Please write a program to implement the time-dependent wave 
equation in one dimension, initially with fixed spatial boundaries. 
Here we do not need any relaxation method or tridiagonal matrix 
solver as Equation (9.95) is explicit; we simply use that expression to 
advance our solution. The biggest issue here is in how one is going 
to visualize the data. You could save all the data to one large, two-
dimensional array, where the columns represent the time steps and 
the rows represent the spatial grid points, and then write that array 
to a text file, say, for inspection with a graphics program, such as 
gnuplot or Excel for example. Another way would be to have three, 
one-dimensional arrays, one to hold all the mu  at time 1nt − , a sec-
ond to hold all the mu  at time nt , and the third to hold all mu  at 
the advance time step, 1nt + . The arrays are shuffled accordingly. 
You could then save a snapshot of the system every “x” number of 
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seconds for later inspection with a graphics package. For the more 
ambitious out there one may want to find a way of animating results 
instantaneously on screen. 

9.5  POINTERS TO THE FINITE ELEMENT METHOD

It is at this point in the discussion of PDE that most textbooks 
will mention the finite element method. To describe succinctly the 
method in easy-to-understand, plain English is a difficult thing to do 
especially at an introductory level to computational physics. Indeed, 
the previous sections on finite difference methods were difficult 
enough. Take note that the finite element method is extremely use-
ful and can produce some highly accurate, and even beautiful solu-
tions to some particularly nasty, and complex problems. 

First, let us expound on the difference between the finite ele-
ment method (FEM) and the finite difference method (FDM). In 
FDM, we take our computational domain and partition it into dis-
crete points. The derivatives at those points are given by difference 
formulas, which we then use to approximate the governing differen-
tial equation. Along with the boundary and/or initial conditions, the 
resulting system of linear equations is solved. In this way, we obtain 
an exact solution to an approximate problem. The FEM takes an 
alternative approach in that it uses a trial function, defined by some 
parameter, to estimate the solution, and the resulting equations are 
solved in some best sense. In other words, it finds an approximate 
solution to the exact problem. 

Next comes the precise formalism of the FEM. It involves talk-
ing about piecewise linear trial functions, basis functions, weighted 
residuals, and the Galerkin method.

Computational Differential Equations (1996) by K. Eriksson, D. 
Estep, P. Hansbo, and C. Johnson contains several chapters on the 
practical use of the FEM, as is accessible to the undergraduate stu-
dent with some background knowledge (i.e., after having read this 
book) on numerical techniques. 
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An Introduction to the Finite Element Method (3rd ed.) by 
J. N. Reddy is more geared toward engineering undergraduates but 
does provide an excellent reference to the topic. 

The Finite Element Method: A Practical Course (2003) by 
S. S. Quek and G. R. Liu provides an in-depth look at FEM and takes 
the reader through the basics of the method, providing examples and 
comprehensive discussions of applications and implementations.

The Finite Element Method: Volume 1: The Basis (5th ed.) by 
O. C. Zienkiewicz and R. C. Taylor provides a comprehensive and 
up-to-date overview of the topic and it accessible to undergraduate 
students. Volumes 2 and 3 are more complex but provide excellent 
grounding for anybody studying higher-level FEM.

EXERCISES

9.1.	 How might you go about setting up an actual experiment 
in the lab to test the accuracy of our numerical method 
for the heat distribution in a metallic rod? 

9.2.	 The temperature of one end of a metallic rod is held 
at 0 C°  the other is held at 100 C° . Using a finite differ-
ence method determine how the temperature of the rod 
evolves in time if the initial temperature of the rod was 
20 C°  throughout. Ensure 4 significant figures of accu-
racy. (Hint: use the analytical, Fourier series result, and/
or Richardson extrapolation.)

9.3.	 Consider the differential equation

3 5 7y y y x′ ′+ − =′

subject to the boundary conditions

( ) ( )0 20,  1 100y y= − =

Find a numerical solution to this equation using a direct 
finite difference method. Ensure at least 4 significant fig-
ures of accuracy. 
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9.4.	 Solve the same differential equation in the previous 
question but using a relaxation method. Ensure the same 
level of accuracy. Comment on any differences between 
the two methods. 

9.5.	 The temperature of a unit square metal plate is subject to 
the following conditions

( ) ( ) ( ) ( )
210 0.50, ,  0 1,  ,0 ,1 100yU y e y U x U x x− −= < < = =  

	 and the right-hand side boundary is insulated. Find the 
steady-state temperature of the plate. 

9.6.	 A string on a guitar is plucked such that the initial func-
tion of the string can be described as

( ) ( )280 0.5

0,                                   0

,0 ,  0 1
0,                                   1

x ct

x

u x e x

x

− − −

=
= < <
 =

	 In other words, the string is of unit length and held by 
rigid supports at its ends. The tension in the string is 
12.8N and has a mass of 2g. Here the speed of the wave 
is 2 /c T m=  where T is the tension and m is the mass per 
unit length. Evaluate what happens to the wave as time 
progresses. Did you observe phase reversal at the rigid 
supports?

9.7.	 Repeat the previous exercise but with one of the sup-
ports free. That is either

0| 0 x xU = = or 1 | 0x xU = = . 

	 (Hint: Use a finite difference approximation to find an 
expression for 0

nu  or n
Mu .)

9.8.	 A more realistic model is to assume the supports have 
inertial mass, M. If the (vertical) force on the supports is 
given by

0,1|x xF TU ==
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	 find an expression for the boundary conditions and 
modify your program appropriately to study their behav-
ior in terms of their inertial mass. 

9.9.	 Assuming the supports behave like damped, simple har-
monic oscillators try to establish a more realistic model of 
the guitar string.
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CHAPTER 10
ADVANCED  
NUMERICAL  
QUADRATURE

The advanced nature that we boldly state in the chapter title is 
more to with the derivation of the methods rather than the application 
of the methods themselves. As with many computational algorithms 
we do not need an in-depth understanding of why they work, just the 
knowledge that they do work and how to apply them. However, if we 
are going to use them, we should make a little concerted effort to try 
to understand how they work to use them effectively.

This chapter covers the derivation and use of the Gauss–
Legendre and Gauss–Laguerre quadrature. These two schemes will 
generate the most accurate numerical solutions for the least amount 
of computational effort and should be used wherever possible in the 
numerical solution of a physical problem that involves integrals. 

10.1  GENERAL QUADRATURE

In general, any integration can be approximated by a numerical 
quadrature written in the form of

	 ( ) ( )
1

b N

m m
ma

f x dx w f x
=

≈ ∑∫ , � (10.1)
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where mx  are the evaluation points, mw  are weights given to the mth 
point, and there are N evaluation points in total. For convenience, 
the points are set with uniform spacing, typically denoted by h, and 
we can derive the numerical quadrature methods as discussed in 
Chapter 5 (trapezoidal rule, Simpson’s rule, etc.). To do this, we 
begin by deriving the simplest formula from Equation (10.1) which 
is to only consider the limits of the integration a and b thus

	 ( ) ( )1 1 2 2I w f x w f x≈ + � (10.2)

where 1x a=  and 2x b= . In the limit of the integration interval ( )b a−  
going to zero, we require that Equation (10.2) be exact for any func-
tion. This sounds like a difficult task, however, if we consider any 
function that has a Taylor series expansion, we note that the first two 
terms of that expansion are multiples of 1 and x (note that sometimes 
the multiple is zero c.f. sine). Hence, we now attempt to find the 
weights, 1w  and 2w , that will give

	
2

1

2 1 1 21
x

x

dx x x w w= − = +∫ � (10.3)

and 

	
2

1

2 2
2 1

1 1 2 2 .
2

x

x

x x
xdx w x w x

−
= = +∫ � (10.4)

Note the equivalencies; these equations are exact. We have two 
equations and two unknowns, namely the weights. Solving for the 
weights we find

	 2 1
1 2 2

x x
w w

−
= = . � (10.5)

Typically, we would write 2 1h x x= −  and our approximation for 
the integral of any function becomes 

	 ( ) ( )1 22

b

a

h
f x dx f f≈ +∫ , � (10.6)

which is the (primitive) trapezoidal rule. Note that it is from this 
derivation that we can explicitly state the error behavior of a numeri-
cal quadrature using what is called the Lagrange remainder (this 
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is derived using the mean value theorem applied to the remainder 
term in the Taylor series expansion)

	 ( ) ( ) ( )
3

1 22 12

b

a

h h
f x dx f f f c= + −∫ , � (10.7)

where c lies somewhere in the integration interval.

Of course, we can add more evaluation points. If we now take 
three points 1x a= , ( )2 / 2x b a= + , and 3x b=  such that ( ) / 2h b a= −  
we can write the following equivalencies, 

	 3 1 1 2 3x x w w w− = + + ,� (10.8)

	
2 2
3 1

1 1 2 2 3 32
x x

w x w x w x
−

= + +  � (10.9)

and

	
3 3

2 2 23 1
1 1 2 2 3 33

x x
w x w x w x

−
= + + , � (10.10)

where we have used the first three terms of the Taylor series expan-
sion. Here we have three equations and three unknowns, and solving 
for the weights gives us Simpson’s rule

	 ( ) ( ) [ ] ( )
3

1

5
4

1 2 34
3 90

x

x

h h
f x dx f f f f c= + + −∫ . � (10.11)

Adding another evaluation point leads to Simpson’s three-
eighths rule, five points lead to Boole’s rule, and so on. As a reminder 
all these formulas require that the ( )f x  be expressible as a poly-
nomial, that is, they have a Taylor series expansion. Indeed, usu-
ally, these integration rules are derived by considering a polynomial 
approximation to the function and integrating that approximation 
exactly. For instance, the trapezoidal rule is a linear approximation, 
Simpson’s rule is a quadratic approximation, and so forth.

In the treatment above we constrained the evaluation points 
to be equally spaced. However, this is not a requirement, and we 
can take the evaluation points to be anywhere within the integra-
tion region. In fact, by removing this constraint we can derive more 
accurate numerical quadrature methods, but they are not so easy to 
derive as we increase the number of evaluation points.
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To demonstrate, if we consider the simplest integration formula 
in which a single evaluation point can be located anywhere within 
the integration interval then we now have two unknowns, namely the 
weight and the evaluation point. To solve for these two unknowns, 
we need two equations, and as before we obtain these equations 
by requiring that the quadrature be exact for the first two lowest 
ordered polynomials ( ) 1f x = , and ( )f x x= . This gives the neces-
sary equations thus

	 ( ) 1b a w− = � (10.12)

and 

	
( )2 2

1 12

b a
w x

−
= .� (10.13)

Solving for both the evaluation point and the weight we find that 
( )1 / 2x b a= +  and 1w b a= − . This is the mid-ordinate rule and is 

exact for linear functions. Note that the trapezoidal rule is also exact 
for linear functions, but we must take an extra function evaluation. 
In fact, the mid-ordinate rule can be considered as the first-ordered 
Gauss–Legendre quadrature, though normally taken on the normal-
ized integration interval [ ]1,1− ; more on this shortly.

If we now add a second evaluation point, we now must find four 
unknowns which requires four equations. Again, we require that the 
quadrature be exact for the first four lowest polynomials such that

	 ( ) 1 2b a w w− = + , � (10.14)

	 ( )2 2
1 1 2 2

1
2

b a w x w x− = + , � (10.15)

	 ( )3 3 2 2
1 1 2 2

1
3

b a w x w x− = + � (10.16)

and 

	 ( )4 4 3 3
1 1 2 2

1
4

b a w x w x− = + . � (10.17)

To solve these equations for the weights and abscissas we must 
normalize the integration region such that the interval [ ],a b  is 
mapped to the interval [ ]1,1− . After the equations have been rewrit-
ten in terms of this mapping it is a (relatively) straightforward task 
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of finding the weights and abscissas. After performing the necessary 
steps, we find that the weights are equivalent and equal to one and, 
the evaluation points, or abscissas to use their technical name, are 

( )1 1 / 3x = √  and ( )2 1 / 3x = −√ . Note that the quadrature

	 ( )
1

1

1 1
3 3

f x dx f f
−

   ≈ + −   
   ∫  � (10.18)

is now exact if ( )f x  is a polynomial of order three or less. Remember 
the trapezium rule is only exact for linear functions (order one or 
zero). This is the second-order Gauss–Legendre quadrature. 

Increasing the number of abscissas to three we find that we have 
six unknowns and thus require six equations. If one has spotted the 
pattern then we require the quadrature to be exact for the first six 
lowest ordered polynomials, that is, up to ( ) 5f x x= . Extending this 
to N points, we have 2N unknowns and therefore require 2N equa-
tions. This means an N point Gauss–Legendre quadrature is exact 
for polynomials of order 2 1N −  and less. 

The job then is to find the weights and corresponding abscissas 
for each of those N points. Rather than trying to continue to solve 
sets of simultaneous equations, which would get somewhat difficult 
(and tedious), let us turn to another method, orthogonal polynomi-
als. It is from these that Legendre gets his name appended to the 
method. 

10.2  ORTHOGONAL POLYNOMIALS

We may have heard the term orthogonal banded about the place 
when discussing vectors or considering Cartesian coordinates. For 
instance, to determine whether two vectors are orthogonal we take 
what is known as their scalar product. This product is also known as 
the dot product or the inner product. If the resulting outcome of the 
inner product is zero, we know that the two vectors are orthogonal. 
Essentially, orthogonal is another word for perpendicular or at right-
angles to but has a deeper meaning when applied to functions; it 
means they are fundamentally different.
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Orthogonal polynomials are a set of polynomials mj  defined over 
a finite range [ ],a b  such that they obey an orthogonality relation 
given by

	 ( ) ( ) ( )
b

m n mn n
a

w x x x dx cf f d=∫ � (10.19)

where ( )w x  is a weighting  function, mnd  is called the Kronecker 
delta that is equal to 1 when m n=  and zero otherwise, and nc  is 
some constant coefficient. 

It would be a hopeless task to try to identify a set of orthogonal 
polynomials via substitution into Equation (10.19), however, that is 
not the purpose of the relation. We would do the opposite and use 
the relation to construct a set of orthogonal polynomials. To illus-
trate this process, let us make life easier for ourselves and reduce the 
complexity of the relationship somewhat. Let us assume that we are 
on the normalized integration interval such that 1a = −  and 1b = , and 
let us also assume our weighting function is constant and equal to 
one. By choosing the integration limits as such we are not losing any 
generality as the interval can always be mapped back onto any finite 
region through a change of variables. With these simplifications in 
place, we can construct the first polynomial, 0j , by using

	 ( ) ( )
1

0 0 0
1

x x dx cj j
−

=∫ .� (10.20)

It is often convenient to normalize the polynomials such that all 
1nc = , in which case the polynomials are referred to as orthonormal 

(a contraction of orthogonal and normalized). There are many poly-
nomials that satisfy Equation (10.20) so let us choose the simplest 
(non-trivial) case that is 0 0kj = , where 0k  is constant. Performing the 
integration, we find that 2

02   1k = , hence

	  0 1 / 2j = √ . � (10.21)

We find the next polynomial 1j  in the set by requiring that 

	 ( ) ( )
1

0 1
1

0x x dxj j
−

=∫ .� (10.22)

It is tempting here to just set 1j  equal to x, which would sat-
isfy Equation (10.21). However, we should be more general in our 
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approach. Our strategy is to assume that the Nth-ordered polynomial 
of the orthogonal set is given by the linear combination 

	 � � � � �N N N NN N Nx k u x x x� � � � � � � � ��� � ��� ��� �1 1 0 0 ,� (10.23)

where m
mu x= , and we can use the mk  to normalize mj , and the mna  

are chosen to force orthogonality. We have already found the first 
polynomial of the set, 0 1 / 2j = √ , hence we write

	 �
�

1 1
10

2
x k x� � � ��

�
�

�
�
� � (10.24)

and we can force the integral of Equation (10.21) to be zero by 
choosing an appropriate α10. Substituting Equation (10.24) into 
(10.22), we find that α10 is zero. The normalization constant, 1k , is 
found by performing

	 ( ) ( )
1

2
1 1 1

1

2
1

3
x x dx kj j

−

= =∫ , � (10.25)

such that the next orthonormal polynomial in the set is

	 ( )1

3
2

x xj = .� (10.26)

The next polynomial in the set is then found by the linear 
combination 

	 � � � � �2 2
2

21 1 20 0x k x x x� � � � � � � � �� �. � (10.27)

Now, we require that 2j  is orthogonal to both 1j  and 0j  such that

	 ( ) ( )
1

0 2
1

0x x dxj j
−

=∫ � (10.28)

and

	 ( ) ( )
1

1 2
1

0x x dxj j
−

=∫ .� (10.29)

After performing the necessary calculations, we find that �21 0�  
and �20 2 3� � / . Again, we normalize the polynomial by finding 2k  
using
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	 ( ) ( )
1

2 2
1

1x x dxj j
−

=∫ .� (10.30)

After some manipulation we find that 

	
2

2

5 3 1
2 2

xj −
= .� (10.31)

We can continue in this fashion to find any order of polynomial 
that fits in this orthonormal set. It is of consequence that Equa-
tions (10.21), (10.26), and (10.31) are the first three (normalized) 
Legendre polynomials. 

The Legendre polynomials are the orthogonal set specific to the 
weighting function equal to one and for the integration range [−1,1]. 
For other weighting functions and integration limits, we would 
necessarily construct a different set of orthogonal polynomials. For 
instance, with ( ) xw x e−=  on the integration range [ ]0,∞  we would 
arrive at the Laguerre polynomials. 

The general process of finding a set of orthogonal (orthonormal) 
polynomials in this way is due to Jorgen Pedersen Gram, a Danish 
Mathematician, and Erhard Schmidt, a German Mathematician who 
jointly developed the eponymous Gram–Schmidt process in the late 
19th century.

10.3  GAUSS–LEGENDRE QUADRATURE

To apply our newfound knowledge of orthogonal polynomials to 
the Gauss quadrature we reformulate our integration such that

	 ( ) ( ) ( )
1

b N

m m
ma

f x w x w f x
=

= ∑∫  � (10.32)

where the weighting function ( )w x  is what is known as positive defi-
nite, that, it is never negative, and is the same function as used with 
the orthogonal polynomials. We have 2N unknowns in this equa-
tion due to the weights and abscissas. Thus, we require that integra-
tion of the polynomials of order up to and including 2 1N −  are to 
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be given exactly by the quadrature, and we use this requirement to 
define the weights and abscissas for the quadrature. 

To do this, we let ( )f x  be some arbitrary polynomial of order 
2 1N − , and we define Nj  as an orthogonal polynomial of order N 
that is particular to the weighting function ( )w x  and the region of 
the integration [ ],a b  expressed in Equation (10.32). If we now divide 
( )f x  by Nj  we obtain a quotient term, q, and a remainder term, r, 

both of which will be polynomials of order 1N − . Remember this is 
polynomial long division, something you should have covered in an 
A-level (or equivalent) mathematics course.

The integral of Equation (10.32) can now be expressed as

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

b b b

N N N
a a a

f x w x q x x w x dx r x w x dxj− −= +∫ ∫ ∫ . �(10.33)

For the remainder of this argument, we can ignore the 
remainder term as it is no longer required in our derivation of the 
weights and abscissas for the quadrature. The quotient polynomial 
can be expanded as a linear combination of a set of polynomials 
ranging in order from zero to 1N − . Fortunately, we already have 
a (complete) set of polynomials that we can use for this task; { }mj , 
the orthogonal set of polynomials. The curly braces indicate a set 
and the mj  are members of the set. Explicitly, we write

	 ( ) ( )
1

1
0

N

N m m
m

q x d xj
−

−
=

= ∑ , � (10.34)

where the md  are constants. With this expansion, we can now express 
the integral of the quotient term as

	
( ) ( ) ( ) ( ) ( ) ( )

1

1
0

b bN

N N m m N
ma a

q x x w x dx d x x w x dxf f f
−

−
=

= ∑∫ ∫
	

1

0

0
N

m mN N
m

d cd
−

=

= =∑ .� (10.35)

The zero emerges as the summation only goes up to 1N −  and 
for the Kronecker delta to be non-zero, that is, one, m must equal N. 

At the start of our argument, we required that polynomials 
of order 2 1N −  are given exactly by the quadrature. The product 

( ) ( )1N Nq x xj−  is a polynomial of order 2 1N −  therefore we can write 
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	 ( ) ( ) ( ) ( ) ( )1 1
1

0
b N

N N m N m N m
ma

q x x w x dx w q x xj j− −
=

= =∑∫ . �(10.36)

As we have kept the argument general 1Nq −  is an arbitrary poly-
nomial and as such is not necessarily zero at the abscissas. The only 
way to ensure the sum is zero is to require that all the ( )N mxj  are 
zero, ignoring the trivial case where all the weights are zero. In other 
words, we find the roots of the polynomial ( )N xj  and select them as 
our abscissas. As an N order polynomial will have N roots (ignoring 
the case where the roots are complex) we have found all the abscis-
sas for our N point Gauss quadrature. Now for the weights.

As the quadrature is exact for polynomials of order 2 1N −  it 
must also be exact for polynomials of lesser order. Here we have 
the freedom to choose any polynomial that has an order less than 
2 1N −  however, we should choose one that simplifies the mathe-
matics. Fortunately, others that have come before us have identi-
fied the polynomial we need. Lagrange’s interpolating polynomial, 
or more specifically, the multiplication factor (Equation (3.14)) has 
the properties we desire. Rewriting it here in terms of our current 
parameters

	 ( )
( )
( )

1
,

1

N

ll i
i N N

i ll i

x x
x

x x
l = ≠

= ≠

−
=

−
∏
∏

� (10.37)

where the ix  and lx  are the abscissas. This polynomial is of order 
1N −  and has the property that

	 ( ),

0,
1, .i N m

m i
x

m i
l

≠
=  =

� (10.38)

We are therefore able to write that

	 ( ) ( ) ( ), ,
1

b N

i N m i N m i
ma

x w x dx w x wl l
=

= =∑∫ .� (10.39)

In other words, we can find the weights of the corresponding 
abscissas by performing the analytical integration on the left-hand 
side of Equation (10.39). 
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Currently, this treatment has been general in that we have not 
defined our integration limits or the weighting function. Let us do 
this now. We know from our discussion on orthogonal polynomials 
that by setting our integration region to [ ]1,1−  and choosing ( ) 1w x = ,  
we obtain the Legendre polynomials as our orthogonal set. Hence 
the abscissas for the Gauss–Legendre quadrature are the roots of 
the Legendre polynomials. Once we have found those roots, we use 
Equation (10.39) with the appropriate parameters to compute the 
weights. 

To illustrate, consider the Gauss–Legendre quadrature with two 
points. We use the (normalized) Legendre polynomial

	
2

2

5 3 1
2 2

xj −
= , � (10.40)

which has roots

	
1
3mx = ± . � (10.41)

Notice that we would obtain the same roots using the non-
normalized polynomial.

Performing the integration of Equation (10.39) with the appro-
priate parameters explicitly gives

11 1 2
2 2

1 1,2 2
1 2 1 2 1 21 1 1

21
1

2
x x xx

w dx dx x x
x x x x x x

l
− − −

 − −
= = = − = = − − − 
∫ ∫  

and 
11 1 2

1 1
2 2,2 1

2 1 2 1 2 11 1 1

21
1

2
x x xx

w dx dx x x
x x x x x x

l
− − −

 − −
= = = − = = − − − 
∫ ∫ .

This is the same result we got before by solving the set of (non-
linear) simultaneous equations, Equations (10.14)–(10.17). Although 
getting here was tough and weights for 2N =  using orthogonal poly-
nomials was easier than solving a set of non-linear simultaneous 
equations. Even if you do not we now have a general method to 
obtain the weights and abscissas for any number points N, which 
was worth it. 
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In fact, you don’t have to do this work as the quadrature is so 
frequently used that the weights and corresponding abscissas have 
been published and tabulated, several times over, and to varying 
degrees of precision. Just type “Gauss–Legendre weights and abscis-
sas” into your favorite search engine and you’ll find them.

10.4  PROGRAMMING GAUSS–LEGENDRE 

There are two ways forward to programming the Gauss–
Legendre quadrature. We can either enter all the weights and abscis-
sas into a “look-up table” expression in a header file and include that 
header whenever we write a program that involves the quadrature. 
Or we can write a function that evaluates the weights and abscissas 
for us every time we wish to perform the quadrature. Both methods 
have their advantages. Storing the values is a good idea for speed as 
the values need only be read from memory to be used, though they 
would have to be entered with care; a typo in a list of numbers can 
be very tedious to track down. In addition to this, you are limited to 
the number of weights and abscissas you can be bothered to enter as 
well as their precision. Whereas the function method gives you the 
flexibility to decide to use, say, a 20-point Gauss–Legendre quadra-
ture if you so wished, and to whatever precision can be achieved. 
However, this means these values must be computed every time 
you perform an integration which may add valuable time on to your 
overall computation. 

The code library that accompanies this book has a header file 
called GuassKnotsWeights.h that contains look-up tables for the 
knots and weights for various n point Gauss–Legendre and Gauss–
Laguerre quadrature. However, we also provide a means to calculate 
these values so that an N of any value can be used. The source file 
Quadrature.cpp contains implementations of the classes Legendre 
and Laguerre both of which can compute the weights and knots 
(synonym for abscissas) in their constructors if they are not provided 
for in the look-up tables. In this way, if you are concerned with per-
formance, after some manipulation you could store the weights and 
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abscissas computed for a particular value of n to a plain text file, say, 
and then read those values from the file when required. 

Legendre polynomials are defined by the following recursive 
rule 

	 0 1j = ,� (10.42)

	 1 xj = ,� (10.43)

	 ( ) ( ) ( ) ( ) ( )1 2

1
2 1 1n n nx n x x n x

n
j j j− −= − − −  .� (10.44)

The roots of nj  are not generally analytically soluble so we have 
to apply a root-finding algorithm. Our Newton–Raphson algorithm 
will perform the job nicely. We can use Newton–Raphson rather 
than the secant method as we can determine the analytical first-
ordered derivative of the nj  from Equation (10.44). Explicitly the 
recursion relation for the derivatives are

	 ( ) ( ) ( )( )12 1n n n

n
x x x x

x
j j j −′ = −

− . � (10.45)

To speed up our root searches, we use the fact that the first guess 
0x  for the i th root of a n-order polynomial nj  can be given by

	 0

1 / 4
cos

1 / 2
i

x
n

p − =  + 
. � (10.46)

As Equation (10.46) gives us a relatively decent estimate of the 
root we do not need the robustness of a bisection method in our 
root search. After we get the abscissas mx  via the root search to some 
precision, we compute the appropriate weights by

	
( ) ( ) 22

2

1
m

m n m

w
x xj

=
′−   

. � (10.47)

Once the weights and abscissas are computed for a N point 
quadrature, we can approximate an integral over any interval [ ],a b  
by 

	 ( )
12 2 2

b N

m m
ma

b a b a a b
f x dx w f x

=

− − + ≈ + 
 

∑∫ . � (10.48)
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As mentioned, the class Legendre, implemented in Quadra-
ture.cpp, is designed to perform the Gauss–Legendre quadrature 
method for any given function that accepts a double type argu-
ment and returns the result as a double type. It either loads the 
weights and corresponding abscissas from the look-up tables 
defined in GaussKnotsWeights.h or computes them from the Leg-
endre polynomials; see the implementation of the initialise and 
compute_x_w member functions. The latter of these two functions 
finds the coefficients of the Nth Legendre polynomial using the 
recurrence relation defined by Equation (10.44), and once we have 
those coefficients we can then find its roots. As the cosine function 
gives a relatively good estimate of the root, the Newton–Raphson 
method will always converge to the required root of the polynomial. 
It is not obvious that the code here calculates the polynomial func-
tion and its derivative for the given mx . It uses the array of coef-
ficients, 1P , to build up the function and its derivative for use with 
the Newton–Raphson root search. One may find it instructive to 
perform the calculations manually for small N or have the program 
print out the polynomial values as a check. Once the roots are found 
to the desired precision or we have performed a specified number 
of iterations of the root search, we store them in a vector. The cor-
responding weights are calculated and stored to a second vector. 
Those vectors are combined into the return value, which in turn are 
stored to the relevant data members. As an aside, could this code be 
improved?

The knots and weights are then used by the member function 
integrate to integrate the function across the domain specified 
using the Gauss–Legendre method. 

The application code found in gauss_legendre.cpp integrates the 
exponential function over the range [1,4] for an increasing number 
of knots. The integration has the following analytical solution:

	
4

4 1

1

51.8798682xe dx e e= − = …∫ � (10.49)

The program prints the number of points used in the quadra-
ture, the value obtained, and the error in the solution. After you 
compile and run this program you should find that the error reduces 
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rather rapidly as we increase the number of points used. If you were 
to compare the accuracy achieved to the number of function calls 
required for Gauss–Legendre quadrature to the other quadrature 
methods developed in Chapter 5. Notice that because we apply the 
Gauss–Legendre quadrature to a finite integrand it is possible to 
build a composite rule for the quadrature. 

10.5  GAUSS–LAGUERRE QUADRATURE

One limitation to the Gauss–Legendre quadrature is that it only 
applies to integrals with finite limits. In physics, it often happens 
that a physically significant quantity can be given by the semi-infinite 
integral

	 ( )
0

I g x dx
∞

= ∫ . � (10.50)

For the integral to be finite g ( )x  must vanish more rapidly than 
the inverse of x (c.f. convergence of an infinite sum). One way to 
ensure this condition is to recast where possible the integrand func-
tion as

	 ( ) ( )
0 0

xI g x dx e f x dx
∞ ∞

−= =∫ ∫ , � (10.51)

as the exponential weight vanishes more quickly than 1 / x. We now 
have an integral in the form of the left-hand side of Equation (10.32). 
As before, we need to find a set of orthogonal polynomials that will 
satisfy these limits and the weighting function. 

This work has already been done before and the set of poly-
nomials we need are the Laguerre polynomials. We can define 
the Laguerre polynomials recursively, defining the first two poly-
nomials as

	 ( )0 1xj = � (10.52)

and

	 ( )1 1x xj = − , � (10.53)
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then using the following recurrence relation for any 1n ≥ :

	 ( ) ( ) ( ) ( )1 1

1
2 1

1n n nx n x x n x
n

f f f+ −= + − −  +
. � (10.54)

Following the same strategy as before we find the roots of the 
Laguerre polynomial. To do this we note that

	 ( ) ( ) ( )( )1n n n

n
x x x

x
j j j −′ = − . � (10.55)

Unfortunately, there is no other formula for the estimation of 
the roots so you may find it useful to plot the Laguerre polynomi-
als and find estimations for the roots manually. A numerical recipes 
handbook may offer more guidance here; in our library code, we use 
the formula obtained from Stroud & Secrest, Gaussian Quadrature 
Formulas. 

Once the roots are found they are used to obtain the weights 
using the relation

	
( ) 22

1( 1)
m

m

n m

x
w

n xf +

=
+   

.� (10.56)

Note that the denominator contains a factor of the polynomial 
squared evaluated at the abscissa rather than the derivative at the 
abscissa as with the Legendre weights.

Of course, the weights and abscissas have been tabulated and 
published elsewhere and could be implemented, for example, as 
look-up tables or readable from an external file.

As the upper limit of the integral is infinity, we cannot derive a 
direct composite formula for the quadrature. If higher accuracy is 
needed than the Gauss–Laguerre quadrature can achieve, you can 
always separate the semi-infinite region into two, using a Gauss–
Legendre quadrature (perhaps a composite version) up to some 
finite limit, and then a Gauss–Laguerre quadrature from that limit 
up to infinity. Though, one must remember to adjust the variables 
for the change in the lower limit of the integration.

There exists several other Gaussian quadrature methods for dif-
ferent integration limits and weighting functions. Of note are the 
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Gauss–Hermite, Gauss–Chebyshev, and Gauss–Jacobi quadrature 
methods, which you should lookup. Though different they all share 
the same common algorithm—define the set of polynomials to use, 
find the roots of those polynomials, use those roots to compute 
the corresponding weights and abscissas, and finally compute the 
quadrature for a given number of points. 

EXERCISES

10.1.	 Either using the code provided or with your own 
program compute

1

1

mx dx
−
∫

	 for 0,1,..., 15m =  using Gauss–Legendre quadrature to 
double precision. If the code is correct how accurate 
should the quadrature be for the appropriate number of 
points used?

10.2.	 Compare the effort required to compute

( )2
221

2

x

e dx
mm s

s

m s s p

−+
−

−
∫

	 to 10 significant figures of accuracy for the trapezoidal 
rule, Simpson’s rule, and Gauss–Legendre quadrature. 
You may find it illustrative to plot the relative error 
against the number of points used for each method.

10.3.	 Write a program to use the Gauss–Laguerre quadrature. 
To test that the Laguerre class is correct, evaluate the 
integral 

0

xe dx
∞

−∫
	 It should equal the sum of the weights for the number of 

points used. 
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10.4.	 In Planck’s treatment of black body radiation, the follow-
ing integral appears:

3

0 1x

x
dx

e

∞

−∫

	 Evaluate the integral ensuring 10 significant figures of 
accuracy.

10.5.	 The integral

( ) ( )2
0

2
sin(2 sin( /2))

m
f rV r kr drq q

∞

≈ − ∫


	 appears in the theory for the cross-section of a quantum 
scattering event. It describes the force felt by a quan-
tum particle as it interacts with the scattering potential 
V as a function of the incident angle q. If the particle is 
an electron scattering from an atomic nucleus then the 
scattering potential is given by

( ) 0

2
/

0

1
4

r rZq
V r e

rpe
−=

	 where Z is the proton number of the nucleus, q is the 
proton charge and 0r  is the so-called screening length. 
Plot f as a function of q for an atom of your choice; use 
the Bohr radius as the screening length.
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CHAPTER 11
ADVANCED ODE  
SOLVER AND  
APPLICATIONS

In this chapter, we explore a more advanced ODE solver and 
how we can apply it to solve some “difficult” physics problems from 
finding chaos in a driven pendulum to sending a spaceship to the 
Moon (and beyond) to the wavefunctions of electrons in an arbitrary 
electrical potential. We will also show how to use the solver in com-
bination with the Fast Fourier Transform subroutine in Chapter 7 to 
analyze the frequency spectrum of the Van der Pol oscillator, which 
will provide the guide for you to analyze the spectrum of the chaotic 
pendulum. 

11.1  RUNGE–KUTTA–FEHLBERG

In Chapter 6, we explored the use of the finite difference method 
to solve ODEs. During this discussion, we developed a technique to 
make the step sizes adapt to the local nature of the solution by halv-
ing the step size when it was too large and generating too much local 
error then doubling the step size when it was too small and wasting 
computational effort. Although this method is effective there is a 
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better way of making the step size adaptive, rather than just halving 
or doubling its length. 

Erwin Fehlberg published several adaptive steps Runge–Kutta 
methods in two NASA technical reports in 1968 and 1969. In Fehl-
berg’s algorithm, two Runge–Kutta methods of different order are 
run simultaneously. At each step, the lower-ordered method is com-
puted first, producing an estimate of the solution, 1ny + . Next, the 
second, higher-ordered method is computed with more function 
evaluations producing the estimate 1ˆ ny +  for the same step size. The 
difference between these two methods gives an estimate of the local 
error for the step size used. If this estimation of the error is within 
the prescribed tolerance the step is accepted, and the solution is 
advanced. If not, the step is rejected, and the process is repeated 
with a reduced step size. Whenever a step is accepted the next step 
size is estimated using the values obtained from y and ŷ, and we use 
the more accurate value of ŷ as our initial value for the next step; 
more on this shortly. 

At first glance, this may not seem like we are saving much on 
computational resources; although the steps will be adaptive, we 
must make several extra function evaluations at each step in order 
to compute the two Runge–Kutta methods. However, the beauty of 
Fehlberg’s algorithms is that he found coefficients such that the two 
methods share function evaluations and only a few extra evaluations 
are required for the higher-ordered method. One such Fehlberg 
algorithm is based on the classic fourth-ordered Runge–Kutta, with 
a fifth-ordered Runge–Kutta used as the higher-ordered estimate. 
The informed reader may now be guessing that this is why one of 
the differential equation solvers in MATLAB/OCTAVE is named 
“ode45.” 

In the Runge–Kutta–Fehlberg fourth-fifth (RKF45) algorithm 
each accepted step requires a total of six intermediary function eval-
uations: four for the fourth-order Runge–Kutta, and two more for 
the fifth-order Runge–Kutta. Fehlberg’s equations for the RKF45 
method are as follows: the intermediary function evaluations are 
given by

	 ( )0 0 0,k f t y= , � (11.1)
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	 1 0 0 0,
4 4
h h

k f t y k = + + 
 

, � (11.2)
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8 32 32
h h h
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,� (11.3)
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where f is the function defining the differential equation, h is the 
step size, t is the independent variable, and y is the dependent func-
tion. The index zero refers to the values at the beginning of a given 
step. Using these definitions for the intermediary function evalua-
tions the fourth-ordered Runge–Kutta is written as

	 1 0 1 3 4

25 1408 2197 1
216 2565 4104

ˆ
5n ny y h k k k k+

 = + + + − 
 

� (11.7)

and the fifth-ordered Runge–Kutta is written as

1 0 1 3 4 5

16 6656 28561 9 2
135 12825 56430

ˆ
50

ˆ
55n ny y h k k k k k+

 = + + + − + 
 

,� (11.8)

where ˆ ny  is the value of the previous, successful step. As stated, we 
can estimate the local error in the step by finding the difference 
between Equations (11.8) and (11.7). Performing this operation and 
after some rearrangement, we arrive at the following expression for 
the error in the local step

1 1 0 2 3 4 5

1 128 2197 1 2
360 4275 75240 50 55

ˆ n ny y h k k k k ks + +
 ≡ − = − − + + 
 

.

� (11.9)
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Note that with this expression for the estimate of the local error 
we do not have to calculate the expression for 1ny + , Equation (11.7), 
to compute s. Of course, 1ˆ ny +  still needs computing.

Seeing as we know how the error behaves with step size (fourth-
order Runge–Kutta) we should be able to use this information to 
estimate the next step size from the step we have just computed. To 
do this, we note that we can write

	

4h h
h

e
s

 ′ =  
  � (11.10)

where e is the global error tolerance we want in our solution thus h e 
is our desired local error tolerance, h′ is an estimate of the “ideal” 
step that will produce the desired local error tolerance, and h is the 
step size for which we have just calculated s. Notice that the abso-
lute value of the step size is used to take into account a reverse inte-
gration. 

Rearranging Equation (11.10) for this “ideal” step size we obtain 

	 � �
�

�
��

�

�
��

h h
h

�
�
�

4 , � (11.11)

where we have included a parameter a that takes values in the range 
[ ]0,1  as a factor, we can adjust to provide a more conservative esti-
mate of the next step. Remember that Equation (11.11) is an estimate 
of the “ideal” step found from considering the error behavior, not 
the absolute value 4h  itself. Erring on the side of caution we assume 
that it produces a step size that is (slightly) larger than the “ideal” 
thus warranting the inclusion of the adjustment parameter. Setting 

0.9a ≈  typically gives reasonable estimates but can be adjusted if we 
find the error tolerance in the results to be unsatisfactory as it does 
depend on the properties of the ODE we are trying to solve. 

We should also be conservative in our approach to adapting the 
step size and as before we introduce maximum and minimum step 
sizes to take account of any singularities, discontinuities, or asymp-
totes, that is, where the differential equation may change in nature. 
In addition to these limits, we should also be conservative by how 
much the step size changes from one step to the next. If we find that 
the algorithm wants to increase the step size by more than a factor of 
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ten, say, then we should be cautious and limit the increase to a factor 
of ten or less. Similarly, if the step size is suddenly decreased by a 
large factor, we should also be cautious here and set an appropriate 
limit. These four limits, maximum and minimum step sizes, and the 
factors of maximum increase and decrease, should be experimented 
with for different, differential equations as, if you will excuse the 
pun, one-size does not fit all, and it is likely we are unable to predict 
the nature of the (numerical) solution to the differential equation 
before-hand. One general strategy that might be applied is to make 
the maximum and minimum step sizes some fraction of the integra-
tion interval.

The class RKF45, implemented in ODESolvers.cpp, is designed 
to perform Fehlberg’s adaptive method as we have just discussed. As 
this class is derived from the ODESolver base class it is the interface 
is similar to the other ODE solvers we have used before and can 
autonomously handle first and second-order ODEs. Read through 
the code and make sure you understand the variables and the task 
they perform. Here we have defined each of the coefficients in Equa-
tions (11.1) through (11.9) as parameters to ensure that they are not 
changed by the program, and to make the code more readable. Also, 
we have defined them as fractions to ensure the best possible preci-
sion. Additionally, all the conservative precautions we have taken are 
given as adjustable class parameters so they can be easily changed in 
the application code if necessary.

To check that the algorithms behave as expected and produce 
tolerable errors in their numerical solutions write a program to com-
pute the dynamics of simple harmonic motion. Does the algorithm 
adapt the step size as expected? Does the algorithm remain numeri-
cally stable, and if so for how long? Indefinitely perhaps? 

11.2  PHASE SPACE

Normally, and quite intuitively, we plot the state of a dynamical 
system, for example, the displacement of a pendulum as a function 
of time. This will quite naturally tell us things like the amplitude of 
the oscillations and their frequency. However, we can create a plot 

Computational Physics.Ch11.3pp.indd   225Computational Physics.Ch11.3pp.indd   225 1/4/2022   11:01:34 AM1/4/2022   11:01:34 AM



226  •  Computational Physics, 2/E

that has no explicit dependence on time, one in which we plot the 
position of the pendulum, say, against its velocity (or more generally 
its momentum). This plot is known as the phase space of the dynam-
ical system. As time advances, a point in phase space representing 
the current phase state of the dynamical system will shift, tracing 
out a phase trajectory. When we plot several phase trajectories for 
different initial conditions, say, or for different parameters, we call 
that a phase portrait.

To illustrate, consider the motion of an undamped, mass-on-a-
spring undergoing simple harmonic motion. We all know that the 
displacement of the mass is described by a sinusoidal function and 
that this function lags that describing the velocity of the mass by 
one-quarter of a cycle. In other words, if ( )sinx t=  then ( )cosx t= .  
Plotting the velocity x against the displacement x we would obtain 
a circle in phase space. This circle tells us that the motion must be 
oscillatory and that the energy of the system is conserved. What 
would happen to the phase portrait if ( )sinx tw=  for 1?w ≠  What 
effect does a change in the amplitude of the oscillations have on the 
phase portrait? How might the phase space portrait look if we were 
considering damped oscillations, for example, energy lost through 
air resistance? You should by now be thinking of how you can show 
your answer to those questions to be correct using the (computa-
tional) tools at your disposal. 

For reasons that will have become apparent, the origin of the 
phase portrait of the damped simple harmonic oscillator is called an 
attractor. The phase trajectory spirals into the origin as the oscillator 
loses energy. If we were to follow that trajectory in reversed time, 
then we would see that the phase state of the system spirals out from 
the origin. In other words, the oscillator is gaining energy and thus, 
in this case, we must have a driving force. 

We have already seen in Chapter 6 that when both driving and 
damping forces are present an oscillatory system goes through a 
transient phase before settling into a steady state. The nature of the 
transient phase is dependent upon the initial conditions of the sys-
tem, whereas the steady-state is not. How does this look on a phase 
space portrait, and what does limit cycle mean? How would reso-
nance be detected using phase space?
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11.3  VAN DER POL OSCILLATOR

Balthasar Van der Pol was a Dutch Physicist and electrical engi-
neer who experimented with some novel electronic circuits contain-
ing triodes (vacuum tubes) in the 1920s. One of those circuits is now 
known as the Van der Pol oscillator that is described by the non-
linear differential equation 

	 ( )2 1y yy y m= − − − ,� (11.12)

where y is some position coordinate as a function of time, and m 
is a parameter indicating the strength of the non-linear damping 
term. When 0m = , we have simple harmonic motion. Equation 
(11.12) describes self-sustaining oscillations in which energy is fed 
into small oscillations and removed from large oscillations; to see 
this from the equation consider the damping term when 1y >  and 
when 1y < .

11.3.1  Van der Pol in Phase Space
The Van der Pol oscillator equation is difficult to solve analyti-

cally due to the non-linear damping term but can be tackled using 
perturbation theory. However, this only works when m is small, that 
is, 1m  , which is hardly interesting at all. This is where our numeri-
cal integrator steps in to provide a solution.

Figure 11.1 shows the phase space portrait of the Van der Pol 
oscillator for various values of the parameter m. To obtain these 
plots we set the initial values of the displacement and the velocity to 
2 and 0, respectively, and the tolerance was set to 510e −= . Here we 
show that for 0m = , we recover simple harmonic motion; the phase 
plot is a circle. Note that the initial values were chosen so that they 
lie on the limit cycle for the oscillations.

Here we can see the effect of the non-linear damping term on 
the phase trajectory of the oscillator. You may find it illustrative to 
also plot the regular displacement–time graphs to match up corre-
sponding points from the phase portrait.
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FIGURE 11.1:  Phase portrait for the Van der Pol oscillator for various values of µ.

11.3.2  Van der Pol FFT
Normally, we use Fourier transforms to gain (extra) insight into 

experimental data that is some function of time, say, by converting 
it into a function expressed in terms of frequency. We can also apply 
this analysis to numerical data, such as that which has been synthe-
sized through computation. 

We have just seen that the phase space diagram of the Van der 
Pol Oscillator is an alternative and useful way to study the behavior 
of the oscillator. The Fourier transform of the data will augment our 
understanding of that behavior. 

If you recall, the Fast Fourier Transform (FFT) subroutine 
requires (time) data that is set at constant increments, but our 
Runge–Kutta–Fehlberg solver is an adaptive step algorithm. Rather 
than try to interpolate the data from the solver we shall instead mod-
ify the routine to store values at constant time intervals. We can then 
pass this data directly to the FFT subroutine without the need to 
change it in any way. 

The file RKF45 class contains a data member to encode when we 
want the algorithm to store data at regular intervals but still employ 
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an adaptive routine. In essence, we check to see if we have reached 
our target time increment, and if we have, we increment our data 
counter, write the data to an array, and move the goal to the next 
desired data point. If not, we continue the integration without stor-
ing any data. However, before moving on we include a check to see 
if the next step will take us past our current target and adjust the 
step such that it will hit the target. In this way, we should maintain 
an error that is less than the desired tolerance. As these oscillations 
tend to have an initial transient phase before settling into a steady-
state we should, in general, set a non-zero initial goal to ensure we 
start taking data from the steady region. We run the integration until 
we have filled our data array, which we can then pass to an FFT 
function for analysis (conveniently we already have one written).

When sampling the data in this way we must remember that the 
FFT subroutine works best when the time increments are commen-
surate with the period of oscillations. Put another way, we should 
ensure that we are not aliasing our data, and we fit an (exact) integer 
multiple of oscillations in our data array. We recall that our time 
increment (or sample rate) is given by

	
kT

t
N

∆ = ,� (11.13)

where k is some integer, T is the time period of the oscillations, and 
N is the number of data points we will use in the FFT function.

By far the easiest way to obtain T is to use the displacement–
time graph to estimate a value; take the period for several oscilla-
tions and divide through by this number. For 2m = , we found the 
period of oscillations to be around 7.631 s. As we are taking 512 data 
points (this number is not arbitrary; a power of two is required for 
the FFT subroutine) we should sample with a time increment of, 
say, 0.23846875t∆ =  seconds to include 16 full oscillations in our 
data array. This choice in the number of oscillations is again not arbi-
trary. By choosing a power of two we get an exact integer number of 
points per oscillation (give or take some small error in the calculation 
of the time period), in this case, 9 4 52 / 2 2 32= = .

You will know if your calculation of the period is accurate by 
the quality of the Fourier spectrum. Figure 11.2 shows the Fourier 
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spectrum for the Van der Pol Oscillator with 2m = , simulated with 
our RKF45 class with a tolerance of 510− . Note that the intensity axis 
is logarithmic such that the decrease in intensity from one peak to 
the next is not linear but exponential. Here we have computed a 
decent time increment as the peaks are sharp, almost delta func-
tions, and the “background” spectrum is small (< 410− ). The broaden-
ing of the peaks is most likely due to bin leakage as the period we 
have calculated is close to actual but not quite exact. It may also be 
caused in part by the numerical errors in simulating the oscillations. 
Of course, this can easily be investigated by making changes to the 
tolerance in the RKF45 algorithm, and small changes to the period.

FIGURE 11.2:  Fourier spectrum of the Van der Pol Oscillator, with damping  
parameter = 2µ .

11.4  THE “SIMPLE” PENDULUM

You all probably remember the simple pendulum experiment 
from your physics classes at school. It provides a practical introduc-
tion to how to deal with experimental errors (e.g., timing several 
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oscillations to obtain a more accurate measure of the period) and 
how to use approximation to simplify the mathematics. We can 
derive the differential equation for the pendulum from the geom-
etry of the system such that

	 sin
g
l

q q= − , � (11.14)

where q is the angular position of the pendulum, g is the strength of 
gravity at the Earth’s surface, and l is the length of the pendulum. 
Here we assume that the oscillations are free, in that there is no 
driving force (other than gravity), and there is no damping due to 
frictional or resistive forces. For the rest of this section let us also 
assume the pendulum is rigid. As Equation (11.14) is rather difficult 
to solve analytically (if not impossible?) the usual trick is to assume 
the small-angle approximation that is sinq q≈  for 1q   (in radians), 
and we obtain the simple harmonic oscillator equation. However, 
our numerical solver has no issues tackling this equation head-on. 

11.4.1  Finite Amplitude
With our new description of phase space, we should be able to 

clearly visualize the behavior of the pendulum, specifically seeing at 
what angles the small-angle approximation holds. For small angles, 
we should see a circular phase trajectory that will morph into some-
thing different as we increase the amplitude of the oscillations. 

We have two approaches to consider in how to vary the ampli-
tudes. We can mimic what we would do given a physical pendulum. 
That is, we monitor the trajectory by directly varying the initial angle 
of release and setting our initial velocity to zero. Or we consider the 
total energy of the pendulum, that is its potential energy plus its 
kinetic energy, and work out the angular velocity of the pendulum 
as a function of the total energy when the angle is zero, that is, the 
angular velocity at the bottom of the swing, and use that as our ini-
tial conditions. We then vary the total energy (which will vary the 
amplitude) to see what affect this has on the phase trajectory. This 
second method is more practical in terms of phase space as the area 
encompassed by the phase trajectory is proportional to the energy 
in the system. 
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We recognize for any (mechanical) system the total energy is 
given by 

	 E T V= + , � (11.15)

where 

	 2 21
2

T ml q=  � (11.16)

is the kinetic energy and

	 ( )1 cosV mgl q= − � (11.17)

is the (gravitational) potential energy of a pendulum. When the pen-
dulum is at the bottom of its swing, we have 0 0q =  and 

	 2 2
0

1
2

E T ml q= =  ,� (11.18)

as this is where we have defined our zero-potential energy. Rear-
ranging Equation (11.18) for angular velocity yields

	
2

2E
ml

q = .� (11.19)

Using units such that g  1l= = , and 0.5m =  we obtain the phase 
portrait of the simple pendulum as shown in Figure 11.3. It is of 
note that using these units we set our unit of time as /l g . Here 
we have computed the phase trajectories for total energies of 0.25 to 
1.5 in steps of 0.25. Here the units of energy are dictated by those 
we chose for the other parameters. As expected with lower energy 
(smaller amplitude) the pendulum behaves approximately like a 
simple harmonic oscillator. As we increase the energy (larger ampli-
tude) that approximation no longer holds with the phase trajectory, 
elongating along the q axis. The phase trajectory when 1E =  is called 
a separatrix that, as we can see from Figure 11.3, defines a funda-
mental change in behavior of the pendulum. It is where the pendu-
lum has sufficient energy such that the oscillation becomes circular 
motion; the pendulum goes over the top.
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FIGURE 11.3:  Phase portrait of the simple pendulum for various energies (amplitudes).

11.4.2  Utter Chaos?
Now that we have the phase description of the simple pendulum 

under our belts let us consider a more realistic system. As with the 
mass-on-a-spring system, we introduce both a driving force, DF , and 
a resistive, drag force, RF , into our equations. The differential equa-
tion governing the motion of the pendulum is then given by

	 sin D Rg F F
l ml ml

qq = − + + � (11.20)

where we have introduced the mass of the pendulum m into our 
equation. Here we consider that the mass of the pendulum is located 
at the very end of its length. To keep things simple (relatively speak-
ing) let us assume the driving force is described by a periodic func-
tion such that 

	 ( )0 0cosDF f tw=  ,� (11.21)

where 0f  is the strength of the force and 0w  is its frequency, and the 
resistive force can be described by

	 RF v lr r q= − = − , � (11.22)

where r is the coefficient of the drag force, and v is the tangential 
velocity of the pendulum’s mass. 
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If we rewrite Equation (11.20) in a dimensionless form, where 
we again choose g l=  (not necessarily equal to one) such that the unit 
of time is /l g  we obtain

	 ( )0sin cosq b tq q wq + + =  , � (11.23)

where /q mr=  and 0 /b f ml=  are adjustable parameters, along 
with the driving frequency 0w .

Depending on the relative values of p, b, and 0w  the motion of the 
pendulum can either be periodic or chaotic as shown in Figure 11.4. 
The discontinuities arise because we map the angle back into the 
physically valid range. When writing a program to drive this simula-
tion we must remember that our angle q can only exist in the range 
[ ],p p− . To provide this functionality for all of the ODE solvers we 
have developed, the ODESolver base class has member functions 
that can be used by any derived class to wrap the independent vari-
able to [ ],p p− . Note that the member function fullSolveWrapped 
uses the single-step member function solve within a loop to inte-
grate over the entire domain. 

FIGURE 11.4:  The angle as a function of time and the phase trajectories of the driven pendulum 
showing periodic motion (top) and chaotic motion (bottom) for the parameter values shown.
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An exercise is provided for the reader to investigate the relative 
values of the parameters required to bring about chaos. Note that 
whole books are dedicated to the study of chaos and chaotic motion, 
and it is still under much academic research. One thing to remem-
ber is that you can always analyze its Fourier spectrum.

11.5  HALLEY’S COMET

Halley’s Comet is probably the best known short-period comet 
and is visible from Earth with the naked eye every 75–76 years. 
Halley’s returns to the inner Solar System have been observed and 
recorded by astronomers since at least 240 BC. Clear records of 
the comet’s appearances were made by Chinese, Babylonian, and 
medieval European chroniclers but were not recognized as reappear-
ances of the same object until much later. In 1705, English astrono-
mer Edmond Halley was the first to calculate the comet’s periodicity 
and was rewarded with having it named after him. Halley’s Comet 
last appeared in the inner Solar System in early 1986. 

Halley’s Comet has a highly elliptical, planar orbit with large 
differences in its velocities at the aphelion (furthest distance) and 
the perihelion (closest distance) of its journey around the Sun. The 
equation governing the comet’s trajectory, that is, the force, F, acting 
on the comet, is Newton’s Law of gravitation, 

	 2 3

ˆ rGMme GMmr
F

r r
= − = − , � (11.24)

where G is the universal gravitational constant, M is the solar mass, 
m is the mass of the comet, ˆ /  re r r= is a unit vector that points from 
the center of the Sun to the center of the comet, and r is the distance 
between the center of the Sun and the center of the comet. Here 
we assume that the influence of other bodies in the solar system is 
insignificant compared to the gravitational pull of the Sun.

We usually give the units of Equation (11.24) in SI form. 
That is, distance is measured in meters, time in seconds, and 
mass in kilograms. This makes the universal gravitational constant 

116.67384 10  G −= × m3 kg−1 s−2, the solar mass 301.9891 10M = × kg, 
and the aphelion distance is 125.28 10×  m. Using the vector form 
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of Equation (11.24), we must calculate the distance cubed. This is 
going to lead to precision problems if we use SI units and a change 
of units is required. The first thing to note is that both G and M are 
constants thus we can write SG GM=  as the universal gravitational 
constant per solar mass. We now need to choose the units for length 
and time so that both the solar-comet distance r, and our gravita-
tional constant per solar mass  SG  have exponents that ideally reduce 
to zero, and certainly no more than one. Instead of arbitrarily choos-
ing some units let us use some that are more natural. The astronomi-
cal unit, AU, defines the mean distance between the Earth and the 
Sun, which has a value of 111.49597871 10×  m. This makes the aph-
elion distance equal to 35.1 AU so this appears to be a good choice; 
remember this is the greatest distance from the Sun. 

The sidereal (pronounce si-dea-re-al) year is defined as the 
orbital period of the Earth around the Sun relative to the back-
ground of “fixed” stars. The name sidereal comes from the Latin 
“sidus” meaning “star.” It is used often in astronomy and contains
 365.256363 days equal to 73.1558150 10×  s. If we define our com-
puter-friendly units of length, mass, and time as the astronomical 
unit (AU), solar mass (M), and sidereal year (yr) respectively then 

39.489 SG = AU3 M-1 yr-2. (To obtain this value you multiply G by M 
in SI units, then multiply by the square of the number of seconds 
per year, finally diving by the cube of the number of meters per AU.)

To solve Equation (11.24), which is a second-ordered ODE, and 
thus determine the trajectory of Halley’s Comet we need to know 
two pieces of (initial) information. That is, we need to know the 
comet’s position and (instantaneous) velocity at a particular time, 
which we take to be our origin in time. As we already know the aph-
elion distance, we can use that position to start the integration given 
that the aphelion velocity is 912 ms-1. After making the appropriate 
changes to the units and writing a program that uses the RKF algo-
rithm for a seconded-ordered ODE with two dependent functions 
(x and y coordinate of the comet) we plot the comet’s trajectory in 
Figure 11.5. Figure 11.5(a) shows the trajectory for a single orbit 
where each data point is computed at an interval of one year; note 
the difference in the scales of the x and y axes. Figure 11.5(b) shows 
the distance from the Sun plotted as a function of time for several 
orbits; again, the data points are 1 year apart. 
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FIGURE 11.5:  Trajectory of Halley’s comet (a) looking down on the orbital plane, where 
the Sun is located at the origin; (b) comet’s distance from the Sun as a function of time.  

In both the points shown are spaced one year apart.

Note that if you tried to solve this differential equation using 
a constant step length algorithm you will find that unless the step 
length is small, that is, much less than a year, the solutions are 
very unstable orbits with the comet shooting off somewhere as it 
approaches and goes past the Sun—this clearly does not happen. 

11.6  TO INFINITY AND BEYOND

Humans have long wondered what is out there among the stars. 
Exploration, it seems, is in our nature. Our first goal is to get to our 
nearest neighbor in the solar system; the Moon. The first obstacle 
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to overcome is how we get off the planet in the first place. This task 
is left for the reader (see Exercise 5). Assuming we have achieved a 
stable orbit about our planet, our next obstacle is to navigate to the 
moon. Unlike the movies, we do not have the luxury of an endless 
supply of fuel and are reliant on short burst thrusters only, meaning 
that the motion of our spaceship is (mostly) dictated by Newton’s 
Law of gravitation. The speeds we consider are nowhere near rela-
tivistic, neither are the gravitational forces, such that Newton’s Laws 
are an adequate description of the physics. We pick our frame of ref-
erence as the Earth–Moon system; this frame of reference is in orbit 
about the Sun and as such we can consider the relative motion of 
the Earth, Moon, and spaceship independently from their motions 
about the Sun (and the Sun’s motion about the galaxy, the galaxy’s 
motion about the local cluster, and so on). With these descriptions in 
place let us go to the Moon.

To start let us just consider the Earth–Moon system. Normally, 
we state this as the Moon orbiting the Earth but in fact they orbit 
each other about some, common center-of-mass (COM). Note that 
this is true of any two-body system orbiting one another. It makes 
sense, therefore, to fix our origin at this COM. In general, orbital 
trajectories are elliptical with one of the foci located at the origin 
of the system. However, the eccentricity of the Earth–Moon orbit 
is sufficiently small that their trajectories can be assumed to be cir-
cular. In addition to this, their orbits are planar, that is they can be 
sufficiently described by two spatial coordinates. If d is the center-
to-center distance between the Earth and the Moon, then the dis-
tance of the center of the Earth to the COM is

	 M
E

M E

m
r d

m m
=

+
� (11.25)

and the distance of the center of the Moon to the COM is

	 E
M

M E

m
r d

m m
=

+
,	  � (11.26)

where Em  is the mass of the Earth and Mm  is the mass of the Moon. 
If you are wondering how we arrive at these equations, then the trick 
is to consider turning moments. 
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The Earth–Moon system rotates about its common COM with 
a sidereal orbital period T. If the Moon lies on the positive x-axis at 

0t = , then

	 M tj w= � (11.27)

and

	 E tj w p= + � (11.28)

where Mf  is the angular location of the Moon, Ef  is the angular loca-
tion of the Earth at time t, and w is the angular frequency of the 
orbit; the angle is measured from the x-axis. To remain in a circular 
motion a body must be constantly accelerated toward the center of 
motion, with an acceleration of magnitude 2rw , where r is the length 
of the radius of the motion. For the Earth that acceleration is pro-
vided for by the gravitational force between the Earth and the Moon 
such that

	 2
2

M
E

Gm
r

d
w= . � (11.29)

After substitution of Equation (11.25) and some manipulation, 
we arrive at Kepler’s third law for planetary motion

	
( )2

2
2 3

4 M EG m m

T d
pw

+
= = . � (11.30)

We would arrive at the same relationship if we had first con-
sidered the acceleration of the Moon. Rigorously speaking this is 
not really proof of Kepler’s third law as we have assumed circular 
orbits and more generally, we should consider elliptical orbits. How-
ever, Equation (11.30) does hold for elliptical orbits but in this case, 
d would be the semi-major axis of the ellipse rather than the center-
to-center distance. 

Equations (11.25) through (11.30) now form a practical descrip-
tion of the relative motion of the Earth and Moon about each 
other. As stated, our spaceship is currently in a stable orbit about 
Earth. Let’s assume that this orbit is 500 km above the surface of the 
Earth. When the spaceship reaches some angular location q in its 
orbit, it fires its thrusters and accelerates to some speed v in a direc-
tion tangent to the orbit at q. Here we will assume that this thrust 
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acceleration is instantaneous in comparison to the total journey 
time; you will see that this is a reasonable assumption once we per-
form the computations. Our spaceship is now in motion toward the 
Moon. But as the spaceship travels, so do the Earth and the Moon 
move about their COM, and our spacecraft is influenced by their 
gravitational fields such that

( )
( )

( )
( )3 3

ME
E M

E M

mm
F ma Gm r r r r

r r r r

 
= = − − + − 

− −  
, � (11.31)

where m is the mass of the spaceship, which neatly cancels from our 
equations, and r  is the position vector of the spacecraft. Writing 
these in component form for the x and y directions we have

	 3 3
ME

E M
E m

x xx x
G m m

d d
x

 −−
= − + 

 
 � (11.32)

and

	
3 3

E M
E M

E m

y y y y
G m m

d
y

d

 − −
= − + 

 


, � (11.33)

where the distance of the spaceship from the center of the Earth is 
given by

	 ( ) ( )222
E E Ed x x y y= − + − , � (11.34)

and the distance of the spaceship from the center of the Moon is 
given by

	 ( ) ( )222
M M Md x x y y= − + − . � (11.35)

The x and y components of the Earth and the Moon distances 
from the COM are given by 

	 cos( )E E Ex r j= ,  sin( )E E Ey r j=  � (11.36)

and 

	 cos( )M M Mx r j= , sin( )M M My r j= . � (11.37)

As a task to the reader: find out the required physical constants 
you will need to compute the spacecraft’s trajectory for different q 
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and v. This list consists of the mean center-to-center distance of the 
Earth to the Moon (d); the mass of the Earth ( )Em ; the mass of the 
Moon ( )Mm ; and the sidereal Earth–Moon orbital period (T). We 
already know G from previous sections in this chapter. Is there any-
thing else we should know? The position vector of the spaceship 
is computed as the distance from the center of the Earth and the 
Moon, and these bodies are certainly not point masses.

Once we have discovered the necessary physical constants, we 
are ready to compute. Or are we? Remember that we need com-
puter-friendly units such that we are not dealing with numbers that 
have large variations in their exponents. The strategy to employ 
here is as before with Halley’s comet; to use the physical constants 
you have found as the units of measure. For instance, we would 
use the Earth–Moon distance as the unit of length, the sidereal 
orbital period as the unit of time, and the mass of the Earth as the 
unit of mass. 

Once you have a program written to find the trajectory of the 
spaceship you should check there are no bugs in your code, such 
as incorrect entry of a physical constant, or a mistake in the change 
of units, and so on. To do this set the mass of the moon to zero and 
check that you get a stable, circular orbit of the spaceship about the 
Earth when you set the necessary velocity; you will have to use a 
variant of Equation (11.29) to work out the velocity required. If you 
get a circular orbit, then we are ready to attempt to make that trip 
to the moon. 

To monitor the progress of the spacecraft we should store the 
distance to the center of the moon for evaluation, and perhaps ter-
minating the program once we are at or within the radius of the 
Moon. Obviously, this means we have likely collided with the Moon 
but landing on the moon is another problem to solve. An exercise 
for you to do to find values for q and v that will get the spaceship to 
the moon. 

For more animated applications of ODE solvers to BIG physics, 
you should have a lookout for the computer games “Universe Sand-
box,” or for a more comical bent “Kerbal Space Program.”
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11.7  TO THE INFINITESIMAL AND BELOW

As discussed in Chapter 4, how to obtain the solutions of the 
Schrodinger Equation as applied to the infinite square well and the 
finite square well. In the infinite square well case, we found the solu-
tions analytically, whereas for the finite square well we had to rely 
on root finding to provide the energy eigenvalues. With our Runge–
Kutta–Fehlberg ODE solver, we should be able to tackle any arbi-
trarily defined electrical potential function with ease. 

As a starting point, we can try to emulate the results we obtained 
for the finite square well using root finding with our adaptive ODE 
solver. Rather than starting entirely from scratch let us use the ener-
gies found from the root search applied to the functions

	 f E a a� � � � � � � � �� � � �cos sin 0, � (11.38)

for the even parity states and

	 f E a a� � � � � � � � �� � � �cos sin 0, � (11.39)

for the odd parity states and plug those into our differential equa-
tion. Here we are assuming we do not know the form of the solution 
of the wavefunction, instead, we are relying on our integrator to pro-
vide us with the answer. As such we need to provide our integrator 
with a starting point. We could use the middle of the well where 
we know from experience that even parity states have ( ) 0xy ≠  and

( ) 0xy ′ = , and odd parity states have those relations reversed. We 
would then integrate from the middle of the well to the left, and 
then integrate from the middle of the well to the right to provide us 
with the full solution. However, this relies on the knowledge of the 
behavior of the wavefunctions in the well, which in general we do 
not know, and in fact, is why we are using the solver in the first place. 
We need a more general starting location. 

We know that for any (arbitrary) potential the wavefunction van-
ishes to zero as we go deeper into a classically forbidden zone. Let 
us choose a starting location, 0  x that is deep into the barrier, left of 
the well, and integrate to the symmetrical position on the right of the 
well. At the starting location, we can set
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	 ( )0 0xy = . � (11.40)

It is also true that the derivatives of the wavefunction vanish 
the deeper we penetrate the barrier. However, if we set ( )0 0xy ′ = ,  
we would obtain a solution that implied the wavefunction was zero 
everywhere; we would have no particle in our system. Therefore, we 
set ( )0xy ′  to some small, positive value; positive because we know 
that the probability of finding the particle in the barrier increases as 
we approach the boundary with the well. So how do we choose the 
magnitude of the starting differential? The answer is that the size 
really does not matter from a qualitative point of view. All the size of 
the differential at the starting point does is scale the numerical solu-
tion of the wavefunction. If we chose ( )0xy d′ =  and performed the 
integration, then changed the value of ( )0xy ′  to  5d, say, then our 
wavefunction from this integration would simply be five times that 
of the previous integration. The physically significant scale factor is 
the one that normalizes the probability function such that

	 ( ) ( ) 1x x dxy y
∞

∗

−∞

=∫  � (11.41)

but as we are only interested in the qualitative results for this discus-
sion, that is another problem to solve elsewhere. 

On a practical note, try not to start the integration too deep into 
the barrier. You will find that if you do you then, even with values 
of ( )0xy ′  on the order of the machine precision, our adaptive step 
integrator will not be able to cope with the change in nature of the 
differential equation as we cross the boundary between the barrier 
and the well. Not unless we relax the error tolerance significantly, 
and this would then give us doubts about the validity of our numeri-
cal results. For a 10Å well, centered at the origin we found that a 
starting point of 0 8 Åx = −  was about as deep as we could go without 
any difficulty (using double variables); here we set the derivative 
equal to the error tolerance we used for the root search and integra-
tor, specifically 810− .

Figure 11.6(a) shows the results of the integration as discussed 
above for the ground state function. We see that the regions I and II 
seem to have been computed correctly showing the same qualitative 
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result as the root-finding function. But what is going on in region 
III? We see that the wavefunction initially behaves as expected as 
we enter the barrier but as we go deeper it blows up exponentially. 
This anomaly can also be seen in the higher energy states. As we 
are using a proven adaptive step solver with a low degree of toler-
ance ( 810− ) then we can rule out numerical error as the cause. Also, 
as the wavefunction behaved as expected in the other two regions 
we can rule out programming error with some confidence (though 
a check might be prudent in general). To gain further insight into 
the cause of this unphysical behavior of the wavefunction let us per-
form the same integration in the reverse direction. That is, starting at

0 8 Åx =  and integrating backward to  8 Åx = − . Here ( )0xy ′  will now 
be some small, negative value. The results of this reverse integration 
are shown in Figure 11.6(b). Here we see the same problem but now 
in region I, not region III. The fact that the backward integration 
looks like a reflection in the vertical axis of the forward integration 
lends credibility to our supposition that the programming is correct. 
Clearly the direction of the integration affects the numerical solution.

FIGURE 11.6:  Results of the integrator: (a) integrating left to right; (b) integrating right to left.
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To answer that question, we look toward the general solution for 
Schrodinger’s equation in the barrier regions, specifically in region 
I we have

	 ( ) x x
I x Ce Deb by −= + .� (11.42)

Thus, mathematically speaking, within the barrier the wavefunc-
tion consists of two exponential terms; one grows while the other 
decays. Recall that we set D to zero using a physical argument based 
on the results of observation and experiment. Thus, we assumed 
the wave function had the form xCeb  only. However, mathematical 
equations tend to be oblivious to our physical reasoning. What does 
this mean for our integration? Let us consider the first integration. 
Here we progress the solution forward from a negative value of x 
such that in region I the magnitude of x decreases. This means that 
our desired wavefunction term  xCeb  is the growth term, whereas the 
unwanted term xDe b−  is the decay term; take your time to verify this. 
Hence, we are integrating into the direction where the unwanted 
term decays. 

In region III of the forward integration, we start at a positive 
value of x, namely the well border, and progress from there such 
that the magnitude of x increases. From symmetry arguments, the 
general solution to Schrodinger’s equation for region III is the same 
as for region I (with a coefficient sign reversal for odd parity wave-
functions). In this case, the desired solution is the xDe b−  term and 
the unwanted term is the xCeb . In other words, our desired solution 
decays while the unwanted term grows. Hence, we have identified 
the cause of our problem. We can apply similar arguments to the 
backward integration and find that while the unwanted term decays 
in region III, it grows in region I. The reason why the unwanted 
terms exist in the first place is because of the slight imprecision in 
the calculation of the energy eigenvalue. Even though we have cal-
culated it using a root searching algorithm to a precision of at least 
the order of 810−  it is not an exact value, and the coefficient of the 
unwanted term is not exactly zero, but some minute yet finite num-
ber. However, the exponential term grows rapidly with x; exponen-
tially in fact! Eventually, there will come a point where this small 
coefficient multiplied by the exponential growth factor will become 
the dominant term and cause our solution to blow up where we 
would expect it to decay. 
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The remedy then is to always integrate from a classically for-
bidden region toward a classically allowed region. In this way, any 
unwanted solution will decay, while the desired solution grows. For 
any symmetrical potential, this is particularly easy as we can simply 
integrate from the left of the well to the middle of the well for vari-
ous energies. We find the eigenvalue by finding the energy E that 
satisfies 

	 ( )0, 0x Ey =′ = , � (11.43)

for even parity wavefunctions, and

	 ( )0, 0x Ey = = ,� (11.44)

for odd parity wavefunctions. The rest of the wavefunction will just 
be the mirror image of that calculated reflected in the vertical axis at 
the middle of the well; see Figure 11.6. 

A slightly better way of searching for the eigenvalue, in that it 
removes the ambiguity in the choice of ( )0xy ′ , is to search for the 
energy that satisfies the logarithmic derivative being zero, that is 

	 ( )
( )

0

,
0

,
x

x E

x E

y
y

=

′
= , � (11.45)

for even parity wavefunctions, and the inverse of this for odd parity 
wave functions.

Be aware that although useful for instruction, symmetric poten-
tials rarely arise in real quantum mechanical systems, and as such 
will not contain pure even and odd parity wavefunctions. However, 
the general strategy of solution still applies; choose a matching point 
in the classically allowed region, that is, the “well”; integrate up to 
this point from opposite sides in the classically forbidden regions, 
and compare the logarithmic derivative at the matching point. Math-
ematically, we find the energy eigenvalues that satisfy 

	 ( )
( )

( )
( )

, ,
, ,

m m

L R

L Rx x x x

x E x E

x E x E

y y
y y

= =

′ ′
= , � (11.46)

where Ly  is the numerical solution for the wavefunction integrated 
from the left to the matching point mx , and Ry  is the numerical solu-
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tion for the wavefunction integrated from the right to mx . As the 
notion of pure even and odd states does not apply Equation (11.46) 
holds for any energy eigenvalue. Note that it may happen that at 
the matching point we choose the wavefunction tends to zero and 
we end up with a singularity in the calculation of the logarithmic 
derivative. Is there any location within the domain of interest where 
we know a wavefunction must have some finite value, regardless of 
the shape of the well? 

The source file numerov_ocv.cpp contains code that attempts to 
implement the general strategy we have just discussed. In this case, 
we are using the Numerov class that implements the eponymous 
algorithm to solve Schrodinger’s equation for any arbitrarily defined 
potential. The derivation of the Numerov algorithm is left as an exer-
cise for the reader; there are many references in the literature and 
online. The matching point in this program is determined from the 
potential and is defined as the point where the energy of the particle 
crossed the potential barrier. Know that you can swap the Numerov 
class for the RKF45 class but setting the RKF45 class to produce 
results at a specified target (so we hit the matching point).

So, there you have it, we have robust ODE solvers that can tackle 
problems on the scale of the universe to the scale of the quantum to 
a user-defined precision. 

EXERCISES

11.1.	 Investigate the Van der Pol oscillator further through 
variation of the damping parameter m and the initial 
conditions. Can the Van der Pol oscillator ever become 
chaotic?

11.2.	 Establish a relationship between the driving frequency 
and the period of oscillations for a periodic, that is, not 
chaotic, driven pendulum for set values of q and b. Is 
there a more general relationship as we vary q and b, but 
still within the non-chaotic region? 
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11.3.	 Duffing’s oscillator is described by the differential 
equation

 x x x x t� � � � � �� � � � �3 cos

	 where α through d  are constants, and w is the frequency 
of the driving force. Investigate the motion of the 
oscillator for different relative values of these constants.

11.4.	 Find the initial values for q and v for our spaceship to 
loop the Moon and return to Earth.

11.5.	 Model the motion of a rocket that is launched from the 
surface of the Earth and establishes a stable orbit at 
500 km above the Earth’s surface. To produce the thrust 
the rocket burns fuel and propels the gases out of its rear 
end, such that the mass of the rocket changes with time. 
Additionally, the density of the atmosphere is a function 
of height above the Earth’s surface and this should be 
considered. 

11.6.	 Write a program to simulate a journey to our next planet 
outward in the solar system, Mars. How precise should 
we make our calculations?

11.7.	 In realistic, solid-state quantum well devices the poten-
tial walls of the well are better modeled by a graduated 
slope rather than an abrupt “cliff edge.” Investigate the 
effect of the steepness of the sloped walls on the bound 
energy states of the well. 

11.8.	 Investigate the bound states of the potential centered on 
the origin, defined by

( )
1

2

,
,

0,

V x b

V x V a x b

x a

>
= < ≤
 ≤

	 where 2 1 0V V> >  and b a> . Comment on the states 
with energy eigenvalues greater than 1V  but less than 2V . 
(Tip: It would be extremely useful to sketch this potential 
before trying to solve it computationally). 
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11.9.	 Asymmetrical anharmonic potential in one dimension 
can be written as fourth-ordered polynomial such that

V x x x� � � �� �4 2. 

	 Find the first four energy eigenvalues for � � 0 5.  and 
1.0b =  to at least 6 significant figures of accuracy. 

Study the effect of different values of α and b  on these 
energy eigenvalues. You should plot ( )V x  with the 
wavefunctions computed, offset by the corresponding 
energy eigenvalue. Investigate the effect on the 
wavefunctions as we add odd powers of x to the potential. 
Note that when � � 0 we have a harmonic oscillator. 
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CHAPTER 12
HIGH-PERFORMANCE 
COMPUTING

In the other chapters of this book, we have only looked at get-
ting algorithms to work as computer code. In this chapter, we look at 
getting algorithms to work quickly or efficiently—these are not nec-
essarily the same thing. To that end, this chapter explores two meth-
ods to achieve high-performance computing. Firstly, loop unrolling 
and blocking that attempts to make efficient use of the computer’s 
memory architecture and, secondly, parallelism that attempts to uti-
lize the total potential computing power of multiple-core processors. 

This chapter will discuss some of the fundamental ideas of mem-
ory structure and memory access but is by no means exhaustive or 
comprehensive. As with all things in computing, there are levels of 
abstraction, the more levels you peel away the more technical (and 
usually complex) the ideas get. At the core of high-performance 
computing is understanding the “mechanics” of the underlying 
hardware. This chapter will show examples of both the OpenMP 
extension to C++ and the modern C++ API for threaded applica-
tions. You will find the code for this chapter in its own subdirectory 
of the “progs” directory names “high_perf_progs.”

It is worth pointing out here that any third-party library you use, 
that has been professionally developed, will highly likely have taken 
the ideas discussed here on board and have developed highly opti-
mized methods for a wide variety of problems. In trying to develop 
your own “high performance” methods you would very much be 
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reinventing the wheel, only yours would likely be cuboid in shape 
and made of concrete. Still, these ideas are good to know where per-
haps third-party libraries are not available, or you are working with 
an unusual environment that requires hand-crafted optimizations. 

12.1  INDEXING AND BLOCKING

In this section, we will discuss in more detail the underlying 
structure of your computer and how we as programmers can make 
the best use of that structure. Note that the majority of what we 
will discuss can be handled automatically by most modern compil-
ers. However, it is always prudent to be aware of how a computer is 
put together and how it operates to ensure the best possible perfor-
mance the hardware can manage, or at least know how not to make 
fundamental mistakes. 

12.1.1  Heap and Stack
The memory that a program uses is typically divided into a 

few different areas, called segments, that exist in RAM when the 
program is executed. The code segment is where the compiled pro-
gram, or binary, sits in memory. The data segment is where explic-
itly initialized global and static variables are stored. The heap is the 
memory segment where dynamically allocated variables are stored. 
And the call stack, where function parameters, local variables, and 
other function-related information are stored. Here, we focus on 
the heap and the call stack where most of the interesting mechanics 
occur during the operation of a program.

The heap segment (or the “free store”) keeps track of memory 
used for dynamic memory allocation. For example, in C++, when 
you use the new operator to allocate memory, this memory is allo-
cated in the process’s heap segment. Similarly, Fortran has the vari-
able attribute allocatable that will store the variable on the heap. 
Regardless of the programming language, in general, you do not 
have to worry about how this memory is allocated to the process. 
However, it is worth knowing that sequential memory requests in 
source code may not result in consecutive addresses being allocated 
in computer memory. In both C++ and Fortran arrays allocated on 
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the heap are stored in an unbroken (contiguous) memory. When a 
dynamically allocated variable is deleted, the memory is returned 
to the heap ready to be reallocated on a future request. Whenever 
a process terminates, either normally or abnormally, any memory 
it had allocated on the heap is cleaned up by the operating system.

The heap has advantages and disadvantages:

●● Allocating memory on the heap is slow compared with the stack.

●● Allocated memory persists until it is specifically deallocated 
or the application ends (a “memory leak” is heap-allocated 
memory that has not been properly deallocated during pro-
gram operation).

●● Accessing a variable that has been dynamically allocated on 
the heap is generally slower than accessing a variable directly 
on the stack.

●● Arbitrarily large data structures can be allocated on the heap 
(up to the system limits).

●● The heap can fragment, that is pockets of free memory can 
occur between allocated memory blocks as a program runs. 
A program may run out of memory even though the com-
bined size of the free “fragments” could accommodate the 
memory allocation request.

The call stack, or more simply the stack, is a special region of 
your computer’s memory that stores temporary variables created by 
each function (subroutine) call. The stack is a “LIFO” (last in, first 
out) data structure, that is managed by the operating system.

Every time a function is called during the program operation, 
it is “pushed” onto the stack, we refer to this as a stack frame. In C/
C++ a stack frame consists of: 

●● the memory address of the instruction following the function 
call referred to as the return address;

●● the function arguments;

●● the memory required to store any local variables (this is 
determined at compile time).
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Stack frames will contain similar data for other programming 
languages. Once a function exits the stack frame is “popped” off the 
stack, freeing the memory used for arguments and local variables, 
and the return address is used to resume execution after the func-
tion call. Thus, as a program executes the stack grows and shrinks as 
functions are called then return. Typically, we picture the stack as 
growing away from memory address “zero” in a downward fashion, 
but in some systems, the stack is more accurately seen as growing 
toward memory address “zero” in an upward fashion.

When function calls are nested, a function call contains a func-
tion call that contains another function call and so on, each new call 
will allocate the required memory for a corresponding stack frame 
and we say the frames are “stacked”. The execution of those func-
tions remains suspended until the very last function returns its value. 
At that point, the frames will “unstack” or unwind in the correct 
order. This makes it simple to keep track of the stack, as freeing a 
block from the stack is nothing more than adjusting a value con-
tained in a CPU register, sometimes referred to as the stack pointer.

As the stack is a limited block of memory, you can cause a stack 
overflow by calling too many nested functions, for example, many 
recursive function calls, or allocating too much space for local vari-
ables. Often the memory area used for the stack is set up in such a 
way that writing beyond the given extent of the stack will trigger a 
trap or exception in the CPU. This exceptional condition can then 
be caught by the operating system which terminates the process and 
displays an error message to the user. The size of the stack is operat-
ing system dependent.

In a multi-threaded environment, each thread will have its own 
independent stack, but they will typically share the heap. 

To summarize the stack:

●● the stack grows and shrinks as functions are called then return

●● local variables are allocated and freed automatically

●● the stack has size limits

●● stack variables only exist while the function that created 
them, is running
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Because the stack is relatively small, it is generally not a good 
idea to do anything that eats up lots of stack space. This includes 
passing by value or creating local variables of large arrays or other 
memory-intensive structures.

12.1.2  Computer Memory
As discussed in the introductory chapter, each level of computer 

memory can be thought of as a huge filing cabinet, each draw repre-
senting a memory address in which we can store one word (typically, 
a word is 4 bytes, or 32 bits long). The memory can only be accessed 
one draw or address at a time and the current address is referenced 
by the system’s address pointer, generally referred to as the program 
counter. To change from one address to another the program coun-
ter can either step from one address to the next or can be instructed 
to jump. Think of it like changing the channel on your TV using 
the channel + and – buttons shifting to adjacent channels or input-
ting the number directly and jumping to that channel. Computer 
memory is commonly referred to as being contiguous; the address 
locations share a common border. 

We also discussed in Chapter 1 that computer memory is split 
into a hierarchical system whereby the smallest memory, the CPU 
cache, is the fastest, and the largest memory, the storage device, is 
the slowest. RAM exists between CPU cache levels and storage. 
When operating, the CPU will ask for the variables that require 
work. If the variables are not already in cache a signal is sent to fetch 
them from RAM. If the variables are not in RAM, then a signal is 
sent to fetch them from the storage device. The variables are then 
read and copied from storage into RAM, then read and copied in the 
CPU cache levels. Once in cache the CPU performs the required 
operation and writes the result and/or changes to the variables back 
to RAM, which in turn writes those changes back to the storage 
device. Each one of these stages requires at least one clock cycle to 
complete, and accessing storage may require several hundred. Note 
that those variables will now persist in RAM (the stack and heap) 
and the CPU cache levels until they are flushed by the system. This 
persistence allows the CPU quicker access to those variables should 
they be required again soon. 
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Typically, programs need to work on arrays and will consecutively 
work on those arrays. For example, let us say we have two vectors, a, 
and b of length N that require addition. Code is written as a loop that 
iteratively steps through the arrays one element at a time, perform-
ing the addition. It would be inefficient if the fetch instruction only 
brought up the two variables from storage that required immediate 
addition; the fetch instruction would have to be issued N times, that 
is, the storage device must be accessed N times. Far more efficient 
would be to bring up a block of variables at a time, the length of 
which we referred to as the cache line, temporally storing them to 
RAM then the cache, and if N is sufficiently large, filling the cache 
levels. Subsequent array variables can now be accessed quickly with 
fewer calls made to storage. The number of fetch instructions sent to 
access the storage device is now approximately the ratio of the array 
length to the cache line. You may therefore think that the best cache 
line would be the length of the array, however, it is limited by the 
amount of data that can be passed via the memory buses, typically 
gold alloy wires, that connect the different memory components. 
Generally, the cache line is some fraction of the size of the level 1 
cache and will be some integer multiple of eight. For clarification, 
the cache line is measured in bytes rather than the actual number of 
variables contained in the line as of course, the variables could be of 
different types. For example, if the cache line were thirty-two bytes 
long this would be enough to store eight, four-byte words (single 
precision) or four, eight-byte words (double precision). 

This idea of blocks of memory affecting the performance of your 
computer is one you may have come across before if you have ever 
defragmented your hard drive to make it run quicker. Programs 
store variables and data on the HDD in blocks of memory that are 
accessed when that program is run. During the lifetime of your 
computer, those blocks become broken and jumbled up, in tech-
nical parlance fragmented. This has a detrimental effect on your 
computer because the CPU must issue more fetch commands to 
receive the correct pieces of memory. By defragmenting the HDD 
those blocks reform into unbroken pieces of memory, which helps 
improve the performance of your computer. It also has the second-
ary effect of freeing up some storage space. If you were born after 
the year 2000 then you likely have no idea about defragmenting a 
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hard disc drive. SSDs work differently from disc drives and do not 
require defragmenting.

Of course, while the CPU is busy performing the required 
operations on the variables now stored in level 1 cache the other 
components do not have to be idle. Other blocks of memory can 
be fetched up to fill level 2 cache, and once full, begin to fill RAM. 
As the blocks of memory are finished with, they are written back 
down the memory hierarchy, flushed from the cache, and fresh ones 
moved into level 1 cache to be worked on. This process is known as 
pipelining and is continuously working away in the background dur-
ing the operation of your computer, making it incredibly efficient 
at number crunching. Normally this efficiency is implicit; the com-
puter just does its thing. However, a computer is only as clever as the 
program telling it what to do. Sometimes the requests we make of 
the computer are, to put it technically.

12.1.3  Loopy Indexing
Imagine we are adding two exceptionally large matrices and 

storing the result in a third matrix of the same size. First, how do 
the elements of a matrix get stored in computer memory? A matrix 
is a two-dimensional array, computer memory is, in essence, a one-
dimensional array. We must resize the matrix into one dimension. 
There are two solutions, one is to store the matrix in a column-major 
format that is, the order they appear in the columns, the second is to 
store the matrix in a row-major format that is, the order they appear 
in the rows. In either case, an n-by-m matrix essentially becomes an 
(n m× )-by-one vector in computer memory.

For arguments, let us suppose we store a two-dimensional matrix 
in column-major format, and the elements are stored in an unbro-
ken block of memory (this is how Fortran stores matrices). How 
then do we write code to efficiently access and sum the elements as 
they are stored in computer memory? In this case, it is most efficient 
to access and sum elements as they are laid out in memory, that is 
keeping the column index constant as we increment the row index. 
In this way we take advantage of the values fetched in the cache line 
from memory and the CPU can spend most of its time doing the 
useful work of summing elements and storing them to the relevant 
location in the resultant matrix. Now imagine we reverse the order 
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of loops; row index constant while the column index increments. 
This change does two things. Firstly, the program counter now must 
jump over the total number of rows of the matrix to find the next 
elements to add. Secondly, and most detrimentally, the remaining 
variables that are fetched in the current cache line are immediately 
redundant; they are flushed from cache memory before becoming 
useful as the matrix is larger than the cache size. In essence, we are 
forcing the CPU to cache only one element at a time for each matrix 
involved in the sum. 

The source file loop_index_order.cpp highlights the importance 
of knowing how the underlying data structure is arranged in com-
puter memory. Our representation of a two-dimensional matrix in 
code is a one-dimensional array of length equal to the number of 
elements in the matrix, and we have assumed a row-major format. 
We create two 1000-by-1000 matrices, that is, one million elements 
each, then sum them together and store the result in a third matrix 
of the same size. The sum is performed using nested loops, row 
index, and column index, and we show that the order of these loops 
is important by timing their execution. Notice that this is somewhat 
contrived as we could have simply looped over a single index (the 
index computation is the same for each matrix involved) but that 
would have missed the point of this section. 

On a practical note, it is always a good idea to repeat timing 
measurements: firstly, the system clock may not have a very high 
resolution such that very fast operations may not be timed at all 
accurately; secondly, the machine could have been doing something 
else while you were running your test thus skewing the results; third 
you can attempt to measure each individual run (bearing in mind 
the first point) thus providing you with the data to compute statisti-
cal analytics (mean, standard deviation, etc.). With an eye on the 
second point, it is usually a good idea to minimize the number of 
other programs running on your system such that they do not inter-
fere with the timing results. Also, beware of compiler optimizations. 
Usually, compiler optimizations are desired but when trying to time 
programs they can be a nuisance. This is especially true when per-
forming repeat loops that, in essence, do nothing useful from the 
compiler’s point-of-view, and may get removed in the executable 
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code (for optimization levels greater than zero). The usual strategy 
is to make the code do some sort of small modification to the data 
within the repeat loop, and whose execution time is insignificant 
when compared to the operation you are trying to time. 

Another thing to bear in mind when producing timing results 
for a test program is that not all computers are equal. Comparing 
algorithms by their execution time on the same machine is okay but 
to do so against a different machine is unfair. Instead, we should 
quote performance as the number of floating-point operations per 
second. For a single thread of execution, this can be approximated 
by the execution time multiplied by the CPU frequency. This does 
not account for differences in memory architecture: cache levels; 
RAM; storage device(s), so we should still be cautious. 

If you are building programs with high performance in mind, 
then these kinds of memory structure considerations should be par-
amount. You should also consider how to keep total memory usage 
to a minimum. For instance, in the matrix addition example above 
do we need to keep the source matrices in memory when all we want 
is the resultant addition? 

12.1.4  Blocking
Matrix multiplication is a little a more involved than matrix addi-

tion. Matrix multiplication is defined elementwise by:

	
1

m

i j ik k j
k

c a b
=

=∑ � (12.1)

for each i and j, where m represents the inner dimension of the 
matrix product. For example, matrix A with dimensions n-by-m, 
matrix B with dimensions m-by-p, resulting in matrix C with dimen-
sions n-by-p. Note that there are three indices namely i, j and k. 
Clearly, for large matrices (where the three matrices combined are 
larger than half the cache size) memory access will become a bottle-
neck for matrix multiplications. It can be shown that for matrices 
of the dimensions shown in Equation 12.1 the number of floating-
point operations required to multiply them is 2nmp np− . Thus, for 
large matrices, the number of floating-point operations increases as 
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( )3N , where N is the largest dimension. This is for dense matrices, 
that is where most of the elements are non-zero. For sparse matri-
ces where most of the elements are zero, the matrix multiplication 
algorithm can be modified to remove unnecessary multiplications by 
zero. Sparse matrices are beyond the scope of the discussion in this 
section, but you should be aware that they occur often in numerical 
analysis and require special treatment. We will continue the rest of 
this discussion assuming we are dealing with dense matrices.

The first step in writing a more memory-efficient algorithm 
for matrix multiplication is to realize we can separate the matrices 
into sub-matrices of block rows or block columns. We then treat 
the whole matrix multiplication as performing multiplications using 
these strips. The strip width is the number of rows or columns con-
tained within the strip and can be set so that the total amount of 
memory consumed when using the strips is equivalent to the cache 
size. However, there is a flaw in our strategy here. As the size of the 
matrix increases the width of our strips necessarily reduces to main-
tain a cache block size. Eventually, a matrix of sufficient size will 
make the strip width equal to one and we have lost any performance 
improvement our strategy might have afforded us. Therefore, we 
need to generate a sub-matrix whose size is independent of the size 
of the total matrix, and equivalent to or less than the cache size. Tak-
ing the lead from the strip idea, whereby we divided the matrix along 
one of its dimensions, we now divide along the second dimension 
thus forming blocks. The easiest way of thinking about performing 
matrix multiplications with blocks is to treat the blocks as if they 
were elements. The row by column process still applies. Figure 12.1 
illustrates this block multiplication process. Here the multiplication 
operations in the brackets can be done in any order, which is use-
ful to know for parallel programming which we will discuss shortly. 
Using this process, we can bring up two blocks into cache, one each 
from matrix A and B, perform a normal matrix multiplication, and 
store the result in the corresponding block of matrix C. The notation 
we will use for the block, sub-matrices will be Anm where n is the 
block row index and m is the block column index. 
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FIGURE 12.1:  Block matrix multiplication. The bracketed terms are matrix  
multiplications in of themselves.

The idea with memory-efficient programs is to ensure that the 
relevant variables, that is the variables we wish to work on, persist 
in the higher levels of memory (cache and RAM) until they have no 
further use and can be flushed. Looking more closely at the multi-
plication process we note that the first block of matrix A is only ever 
involved with the first block row of matrix B. In fact, only the first 
block column of A is involved with the first block row of matrix B. It 
is easy to extend this to the k th block column of A and the k th block 
row of B. This is a consequence of the inner product nature of matrix 
multiplication. Elementwise we must have ij ik kjc a b=  thus similarly 
for our sub-matrix blocks, we must have ij ik kjC A B= . Here we are 
using the Einstein notation that repeated indices are summed over. 
Thus, we might proceed by keeping A11 in cache, while we iterate 
through the first block row of B. Then move to A21 and repeat the 
iteration through the first block row of B. We continue in this fashion 
until we have completed the first block column of A. In this way, so 
long as we have chosen the correct block size, the first block row of 
B will be kept in level 2 cache while the calculations are performed. 
Then we move to the second block column of A and the second 
block row of B. We continue with this pattern until the whole matrix 
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has been covered. So long as we keep the bookkeeping correct the 
order of the sub-matrix multiplications is unimportant.

There are other ways to improve the speed of matrix multipli-
cations. Strassen’s algorithm is one of them. Strassen’s algorithm 
partitions the matrices into sub-matrices then, with a clever bit of 
manipulation, reduce the number of sub-matrix multiplications 
required to get the correct result by one. The sub-matrix multiplica-
tions are swapped for matrix additions and subtractions. Applying 
this idea recursively to the sub-matrices we can significantly reduce 
the required number of operations for matrix multiplication (for 
large matrices). This recursion can continue until the sub-matrices 
degenerate into numbers, however, in practice, it continues until the 
sub-matrices are of such size that the naïve matrix multiplication 
algorithm becomes more efficient than continuing the recursion. We 
already know that the runtime associated with the naïve approach to 
matrix multiplication is proportional to ( )3N , where N is the size 
of the matrix (assumed square). Strassen’s algorithm provides a run-
time that is proportional to ( )2.8074N . It is worth noting that Stras-
sen’s algorithm is less numerically robust than the naïve approach as 
it involves the subtraction of sub-matrices to compute. If the cor-
responding elements of those sub-matrices are sufficiently close in 
value, then this will lead to unit round-off errors in the result.

12.1.5  Loop Unrolling
Another way of squeezing performance out of a computer pro-

gram is to unroll incremental loops. That is instead of incrementing 
the loop index by one on each iteration we increment it by a larger 
integer value and adjust the contents of the loop appropriately. The 
increment of the loop is referred to as the stride. For instance, if we 
were summing the elements of a vector, then normally the stride is 
one and we would write the loop as: 

for (int i = 0; i < v.size(); ++i) {
       sum += v[i];
}
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However, if we change the stride to two then we write:

for (int i = 0; i < v.size(); i += 2) {
       sum += v[i];
       sum += v[i + 1];
}

Here we increment the array index i by two. This has the effect 
of reducing the number of instructions spent controlling the loop, 
such as pointer arithmetic and testing for the end of the loop. In this 
way, more time is spent on the calculations we require. It has the 
additional benefit of hiding inherent latencies, especially the delay 
in reading variables from memory. Notice that should the size of 
the vector not be multiple on the stride length then some additional 
code is required to deal with the remaining elements.

Manual loop unrolling is only advised if we want to squeeze 
every bit of performance out of a particular program. As you can 
imagine the process becomes rapidly tedious as we try to extend the 
unrolling and has diminishing returns in terms of runtime. Modern 
compilers are designed to optimize the binary code produced from 
your source code and can apply loop unrolling automatically. 

12.2  PARALLEL PROGRAMMING

Multiple-core machines are now ubiquitous. They offer a means 
of performing computations in parallel rather than in sequence. For 
some problems making the computations performed in parallel is 
rather straightforward, performing a direct numerical quadrature, 
say, or summing the elements of an array. For other problems-
making algorithms, the parallel is not quite such a simple task, for 
instance, matrix factorizations or some iterative methods such as 
Successive Over Relaxation. The difficulties tend to arise from inter-
dependencies between the different subroutines used to solve the 
problem or the elements of the array themselves. 

No program can run faster than the longest chain of dependent 
calculations, known in network theory as the critical path. As an 

Computational Physics.Ch12.2pp.indd   263Computational Physics.Ch12.2pp.indd   263 12/30/2021   12:30:40 PM12/30/2021   12:30:40 PM



264  •  Computational Physics, 2/E

analogy consider making a cup of tea. If you want to do this effi-
ciently that is, in the quickest time possible, then you would fill and 
turn on the kettle first. Then as the water boils you would find a mug, 
put a tea bag in it, fetch the milk, and probably still have time before 
the water finishes boiling. Once the water has boiled you pour it over 
the tea bag in the mug, allow it to brew, extract the bag, and add the 
milk. Note that the critical path here is filling the kettle, waiting for 
it to boil, adding the hot water, allowing it to brew, extracting the tea 
bag, and adding the milk. Each of these tasks is dependent on the 
last and therefore cannot be done in parallel. Strictly speaking, this 
is task parallelism rather than a true analogy of multiple-core paral-
lelism; which would be several people making a single cup of tea at 
the same time.

This section does not give an in-depth study of parallel com-
puting but should provide the reader with practical instruction, and 
hopefully draw your interest for further study in the topic.

12.2.1  Many (Hello) Worlds
The OpenMP (OMP) directives do not constitute a new lan-

guage rather an extension to the C++ we already know. However, 
just like learning a new language, we should still start with a rela-
tively basic program to get used to the syntax. The file omp_hel-
loworld.cpp contains the program code that will output to screen 
the text hello world and from which processor (thread) the message 
is coming from. Assuming you have a process capable of produc-
ing N logical threads then you should receive N hello-world mes-
sages. Notice that the program uses the C function “printf” to output 
the messages. Instead, try using the C++ output stream “cout” to 
achieve the same result. What happens and why?

If you read the Makefile for the high-performance programs 
you will notice that for your program to use the OMP pre-processor 
directives you must supply the option “-fopenmp.” This instructs the 
compiler to parse all the “#pragma” directives as OMP instructions. 
If you wish to use any actual OMP functions then you must include 
the relevant header file, libomp.h, and link in the corresponding 
library, omp. Where these are located is OS-specific but are gener-
ally in the usual places.
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Once you have successfully compiled and run the program you 
should have received the appropriate number of hello worlds to your 
screen, plus the processor identification number the message came 
from. Note that the processor numbering starts from zero. If you are 
unsure of the number of processors on your system the omp hello-
world program will report the maximum number of logical cores on 
your system. The number of logical cores may be different from the 
number of physical cores due to what is called hyper-threading tech-
nology on Intel processors. Essentially, hyper-threading allows one 
physical core to perform two tasks in parallel, up to a point. Thus, 
an Intel, quad core processor will have a maximum of 8 logical cores 
and consequently a maximum of eight threads. However, if the oper-
ating system is unaware of the hyper-threading technology (such as 
using Cygwin through Windows) then it will see the threads as indi-
vidual, physical cores. For instance, if you have an Intel i7 processor 
that is quad core, you may see an eight for both the maximum num-
ber of threads available and the number of cores on your system. 
For AMD processors the maximum number of available threads will 
be equivalent to the number of cores your processor contains.

Returning to our parallel hello-world program let us have a look 
at the new syntax we have introduced. It is rather straightforward in 
that we declare a parallel section in our using the "#pragma omp 
parallel" pre-processor directive, that can be scoped using the 
curly brace delimiters. Note that we need an extra include to get 
access to the OMP functions but in general this is not necessary.

As an aside, if you think of the computational work being done 
as a line, or thread, on a piece of paper, as the code enters a paral-
lel region the thread separates, or forks, into several threads equal 
to the number of processor cores on your machine (here we ignore 
the hyper-threading of Intel’s processors), performing the computa-
tions simultaneously. Each separate thread is being worked on by 
a separate core and cores do not swap threads (unless specifically 
programmed to do so). After the parallel region, the threads are 
joined and the work continues on the master thread (or core), which 
is identified as thread zero.

Now that we have seen how to set up a parallel section using 
OMP let us apply that to something more mathematical. 
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12.2.2  Vector Summation
Let us start with the relatively simple task of summing the ele-

ments of a vector; this has used within statistics for finding the 
mean value of a data set, say. On a single-core serial processor, we 
would loop through the entire array incrementing the index by one 
and updating the sum. Usually, we call this operation accumula-
tion, indeed the standard template library for C++ has function, 
std::accumulate, that performs this task. For a parallel architecture, 
we can split the entire vector into equally sized chunks and perform 
the summation on each chunk simultaneously. To obtain the sum 
for the entire vector we would then add up the contributions from 
each chunk on a single thread. If we define Ts as the time taken to 
perform the summation on a single core, in a serial manner, then 
we might expect the time taken for the code to run in parallel to be 
Ts /P, where P is the number of threads used. This is known as the 
ideal case; the speedup in program runtime is directly proportional 
to the number of threads used. In general, the speedup is given by 
the ratio Ts /TP, where TP is the time taken to run the code in parallel 
on P threads. 

For the sake of rigor, the serial time TS is not the same as T1. 
That is, TS is the time taken to perform the code as normally writ-
ten, whereas T1 is the time taken to perform the code where we 
have spawned a parallel region using only one thread. Typically,  
T1 > TS by a small amount as we have an overhead associated with 
setting up the parallel region. That said sometimes the “serial” code 
may be threaded by the operating system automatically meaning 
that our speedup measurements might be skewed if we assume the 
computations are being carried out on a single core. So long as we 
are clear about which measurement of the “serial” time we are tak-
ing we should not run into problems. For the rest of this chapter, we 
will take the serial time as T1. Also, note that an even more rigorous 
treatment of speedup is to consider the number of floating-point 
operations per second (flops) rather than runtime as the flops mea-
sure is independent of the computer architecture used. For the pur-
poses of our discussion, we will stick with the runtime as a suitable 
measure of performance. 
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The file accumulate_ocv.cpp contains the source code to per-
form the vector summation in parallel. In fact, the OMP parallel 
section resides in phys_accumulate.h as we have declared the “accu-
mulate” function as a template function. This means we can apply 
the “accumulate” function to vectors containing any type that can be 
summed. Note that the function will return the type used to initial-
ize the “sum” variable. You will also find in that header file an imple-
mentation of a parallel “accumulate” function using just the C++ 
language. It uses several advanced C++ constructs that make the 
code somewhat difficult to read and certainly less elegant than the 
OMP version. In essence, the OMP version hides the details of 
the parallelism in the directive and, consequently, makes it easier 
to read. However, the entirely C++ version requires no additional, 
external software to work. 

Focusing on the OMP version, we start the directive as we did 
in our hello-world parallel program, but we specify that it is the fol-
lowing for loop that we want to be done in parallel. The reduction 
clause allows the variable sum to be updated as the addition of each 
thread’s local value of sum on the master thread. To clarify, each 
thread reads the value of sum from the (thread) shared memory, 
creating a local copy on which to work. Without the reduction clause 
once the work has been completed each thread writes its value of 
sum back to the shared location. This means that the updated value 
of sum would be whichever thread finished last. With the reduction 
clause each thread, once finished, passes its local value of sum to the 
master thread which then combines them as specified by the opera-
tor argument in the clause; in this case, it adds them. 

Compile and run accumulate_ocv.cpp. You may want to modify 
the code to display the speedup, T1 / TP, of the parallel sections rather 
than the execution time. Did you obtain the speedup you expected? 
Was it anywhere near the ideal case? On an AMD, quad core proces-
sor I found the speedup (TS / T4) to be around 3.7. On an Intel, quad 
core processor using hyper-threading technology running the same 
code, I found that the best-observed speedup (TS / T8) was around 
5.1. (Remember that both these processors have four physical cores 
thus hyper-threading does offer a performance benefit, but not as 
much as actually having eight physical cores.)
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In its current, default state the OMP directive will divide the 
iterations among the threads equally, and where the size of the loop 
is not exactly divisible by the number of threads the remainder gets 
evenly distributed. This is called static assignment. We can change 
this assignment through the use of a scheduling clause. The syntax 
for this clause is relatively simple and all we do is add schedule (type, 
chunk) after the OMP for the directive. Here type is either static, 
dynamic, guided, or auto, and chunk is an integer value that has 
slightly different meanings depending on the type used. 

We have already seen that static assignment allocates all the 
iterations to each thread before they execute at runtime, with the 
assignment being divided equally among the threads by default. We 
can change this behavior by specifying a chunk size. For instance, if 
we keep the static schedule type and set the chunk size to one then 
each thread gets one iteration to complete before being assigned 
its next iteration; the stride pattern is the number of threads. In 
dynamic assignment only some of the iterations are assigned to 
threads before execution of the loop; the number being set by chunk. 
Once a particular thread finishes its allotted iteration(s), it requests 
another chunk of iterations from those that remain. If you were to 
print out which thread did which iterations, you would find that the 
assignment would be (somewhat) random from execution to execu-
tion. Guided allocates a large portion of iterations to each thread 
dynamically, as above, but then decreases the portion size after each 
successive allocation until it reaches a minimum size specified by 
chunk. Auto allows the compiler to decide the best type and chunk 
to use at runtime. 

The “best” scheduling strategy is to ensure none of the threads 
are idle during the parallel sections and that we make the most effec-
tive use of our parallel machine. Essentially, we are ensuring a uni-
form distribution of work across all threads. Add a schedule clause 
to the OMP directive for the accumulated function and play around 
with the scheduling clause to see if it affects the performance of the 
program by any significant amount. 

12.2.3  Overheads: Amdahl Versus Gustafson 
Generally, we find that the improvement in performance due 

to spawning a parallel region of code is limited by overheads. 
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Overheads arise from several places not least the necessarily serial 
portions of the code, and the communication (or message passing) 
between threads. For instance, in our vector summation (accumula-
tion) example the reduction at the end of the procedure to obtain 
the total for the entire vector must be done in serial on the mas-
ter thread. For all parallel regions of code there is one unavoidable 
overhead; the time it takes to fork (create) and join (destroy) parallel 
threads. 

The point of increasing the number of threads used in a paral-
lel region of code is to improve the performance (runtime or flops) 
of that region. A typical program has regions that are both paral-
lel and serial. As we increase the number of threads, the parallel 
regions compute faster but the serial portions are unaffected. Thus, 
the overall performance of the program is limited by the amount of 
time it takes to compute the serial regions of code. This is Amdahl’s 
law. We can formulate this law into an equation that states that the 
speedup in a program is given by

	 ( )
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where β is the portion or fraction of the code that is or can be made 
parallel. We can see this formulation makes sense in that with no 
serial fraction of code (β = 1) the speedup is simply given by the 
number of threads used in the parallel region (ideal case). Obvi-
ous but worth pointing out that when the code is completely serial, 
β = 0, then there is no speedup, S(P) = 1. Figure 12.2 plots the 
consequence of Amdahl’s law on the speedup of various programs 
compared to the number of processors (threads) used. Each line 
represents a program with different fractions of code that can be 
made parallel and shown for comparison is the ideal case (β = 1). 
These results seem quite pessimistic, where even a code with only 
a 10% serial portion diverges significantly from the ideal case for a 
relatively low number of processors. Eventually, for any code less 
than ideal adding more processors fails to further improve the per-
formance. The situation is worse as we have not considered the over-
head due to communication between processors and adding more 
processors may decrease the speedup after a certain point. 
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FIGURE 12.2:  Amdahl’s law for the speedup of programs as a function  
of the number of threads used.

We can test Amdahl’s law by changing the number of threads 
we use in the parallel region of code. OMP comes with a suite of 
library functions that can affect hardware parameters. For instance, 
we can set the number of threads available to the program (up to the 
maximum number of threads we have on our system) by specifying 
that number as the argument to the function call omp_set_num_
threads. In this way, we can see how much speedup we obtain 
using a different number of threads in the parallel region. 

Before we throw our toys out of the pram and claim that par-
allel programming is fundamentally flawed it must be noted that 
Amdahl’s law treats the problem as having a fixed amount of work to 
do and measuring the time taken to do that work. Gustafson argues 
that programmers tend to set the size of problems to use the avail-
able equipment to solve those problems within a practical fixed 
time. Hence, if faster, that is, more parallel, machines are available, 
larger problems can be solved in the same amount of time as smaller 
problems on slower, less parallel, machines. In essence, we can think 
of the individual processor workload as remaining fixed and as we 
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add more processors, we necessarily solve a bigger problem. The 
formula for Gustafson’s Law is given by

	 S P P P P� � � � �� � � �� � �1 � (12.3)

where α is the fraction of the code that cannot be made parallel 
that is, the serial portion of the program and note that � �� � 1.  
It should be noted that in the formulations of Amdahl’s law and 
Gustafson’s law it is assumed that the parallel portions of code are 
uniformly distributed among all P threads, that is the threads are 
always doing useful work.

If we go back to our tea-making analogy of parallelism at the 
start of this section, it is mentioned that multi-core parallelism is like 
several people making one cup of tea at the same time, with only 
one kettle, one teabag, one cup, and so on. This is Amdahl’s view. 
In Gustafson’s view, each person makes one cup of tea where there 
is enough equipment, kettles, tea bags, cups, etc., for each person. 

FIGURE 12.3:  Gustafson’s law for the (scaled) speedup of programs  
as a function of the number of threads used.

We can test Gustafson’s law by increasing the size of our summa-
tion vector for a fixed number of threads; this should vary α such that 
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we should be able to quantify its value to some degree of accuracy 
for some given vector size. 

In either case of Amdahl’s law or Gustafson’s law, it is clearly 
beneficial to make � �� �� �1 , the strictly serial portion of the code, 
as small as possible, thus making the parallel portion as large as 
possible.

EXERCISES

12.1.	 Write a program to determine the size of the level 1 and 
level 2 caches on your machine (and level 3 if your pro-
cessor has it). 

12.2.	 Write a program to determine the cache line size on your 
machine. 

12.3.	 Check that the optimal index order for the naïve matrix 
multiplication algorithm is (i, j, k) for Fortran. Can you 
explain why that is/is not the case? 

12.4.	 Apply manual loop unrolling to the outer loop of the 
matrix multiplication algorithm. Does this improve the 
performance of the multiplication and why/why not? 

12.5.	 Write a program that performs matrix multiplication in 
parallel for different numbers of threads. Determine the 
value of α (or b) in your code for a given matrix size using 
Amdahl’s law. What is causing this serial portion of code 
and can you quantify the amount of runtime it takes? 

12.6.	 Using your value of α from the previous question does 
Gustafson’s law (scalable speedup) hold true?

12.7.	 Choose any numerical quadrature we have discussed in 
the previous chapter and attempt to write it in parallel 
code. Why is writing parallel code for an initial value, 
ODE problem fundamentally flawed? 
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12.8.	 The Jacobi iteration scheme to approximately solve a 
general second-order ODE is given by

( ) ( ) ( )( )1 1
1 1

1n n n
i i i if f f xj y d

q
− −

+ −= − + −

	 where q, j, and y are constants related to the coefficients 
of the differential equation; i is the index of the discrete 
grid approximation of the continuous space x; f is some 
quantity in that space; and n is the iteration count. Write 
a parallel program that exploits the “red-black” nature of 
this scheme. (Tip: Use the program(s) from Chapter 9 as 
a guide)

12.9.	 Attempt to repeat Exercise 8 but for the Gauss–Seidel 
iteration scheme (or SOR). Encounter any difficulties?
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APPENDIX

A CRASH COURSE IN 
C++ PROGRAMMING

Here we discuss the various things you need to know to get going 
writing and compiling C++ programs. The font Consolas in bold 
is used to highlight C++ keywords from the main text, for example, 
return. First, we start by discussing how to compile C++ source 
files into object files, executables, and libraries from the command 
line.

Command-Line Compilation
To build object files from C++ source files on the command line 

you invoke the following command:

g++ -c source.cpp -o object.o

Here we assume any included, non-standard headers are in the 
same directory as the source file. The -c flag tells the complier that 
it should omit the linking phase, that is, we are building object files, 
not executables. The -o flag means that we can specify the name of 
the object file immediately following said flag. If this is omitted the 
object file name is the same as the source file name but with a .o 
extension. We can also specify a directory located in the -o option as 
well as naming the output.
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To build an executable from an object file we invoke the 
command:

g++ object.o -o executable

Here the object file is linked into the executable. If the -o 
flag is omitted the executable gives the default name a.out. Note that 
we can have multiple object files, complied from different source 
files, that all link to create the executable. For this simple illustra-
tion, we can put the compiling and linking phases into one:

g++ source.cpp -o executable

This command performs the compilation then  linking phases 
of the build in one go and is the most sensible method for simple 
single-source files. If there are multiple source files that will create 
a single executable then we can just append these to the source file 
list, for example:

g++ source1.cpp source2.cpp source3.cpp -o executable

Typically, source1.cpp will contain the main function of your 
executable, whereas the other source files will contain function 
definitions or class implementations that are used by main. As a 
project grows it will accumulate an increasing number of source 
files. It becomes cumbersome and inefficient to keep having to 
write out awfully long compiler commands to build executables. It 
would be better to compile each source file (excluding the main 
source file) once into its own object file and in some way combine 
all object files into a single, linkable entity. This is what we call 
a library, and they come in two types, static libraries and shared 
(or dynamic) libraries.

Executables that are linked to a static library have all the object 
files contained in the library wrapped up with them. This means that 
the executable is a self-contained program, requiring no extra soft-
ware to run, but the executable file itself can consume many bytes 
of storage, depending on the size of the executable’s source code 
and the library (or libraries) to which it is linked. This means all 
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the functionality of the library is loaded into memory at runtime 
whether it is needed or not. Executables that are linked to shared 
or dynamic libraries load only the required functionality at runtime 
from the external library files (.so extensions on Linux/Unix, .dll on 
Windows). As a result, the executable file has a smaller storage foot-
print and generally requires less memory to run. Bearing in mind 
that large, complex projects may link with several different libraries 
thus a shared or dynamically linked executable should be preferred. 
However, consider that if you are building a dynamically linked exe-
cutable for a different machine than your build machine, the execut-
able is dependent on the target machine having the precise version 
of the shared (dynamic) libraries installed. A statically linked execut-
able does not have this concern and so might be preferred if the 
project is relatively simple and only uses a small number of libraries.

Before describing how to generate these libraries we need to 
mention that with large projects it is conventional to split source and 
header files into their own directories. The complier can find stan-
dard headers because they are in “standard” directories, typically /
usr/include or /usr/local/include or /opt/local/include depending on 
your OS, the compiler is configured with these locations when it is 
installed. However, if project-specific header files are located sepa-
rately from the source files, the compiler will not be able to find 
them unless we tell it where to look. To do this we add the location 
to the complier’s include search path using the option -I in the g++ 
invocation. To illustrate, this looks like:

g++ -I/path/to/project/include source.cpp -o 
executable

To create a static library file, we can use the archiver program 
invoked with the following command:

ar rcs libname.a <object file list>

where the object file list is simply a list of all the required 
object files, for example, object1.o object2.o …. For static library 
files on Unix/Linux-like systems, the library “name” must be pre-
pended with “lib” and end with the extension “.a”. You can think of 
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the archiver as simply copying all the object files in the list into the 
library file. The options rcs mean replace object files of the same 
name (if the library already exists), create the archive (if it does not 
already exist), and s makes the archiver also write an object-index 
into the library file for faster access at runtime; this is equivalent to 
running ranlib on the archive (library) file.

To create a shared (object) library we use g++ directly. First, we 
use g++ to create our object files but so that they contain position-
independent code, for example:

g++ -c -fpic source1.cpp -o object1.o 

To understand what the option -fpic does would require an 
understanding of assembly language but essentially means the code 
in the object file can be placed anywhere in memory and still work, 
which is a requirement for library files. Note that the option -fpic 
may now be redundant as all code generated from modern g++ ver-
sions should be position-independent.

With the object files built we invoke g++ again to create the 
shared library file: 

g++ -shared -o libname.so <object file list>

Here the shared library name requires the “lib” prefix, just as 
a static library does, but has the “.so” extension to identify it as a 
shared (object) library.

To build executables linked against these libraries we invoke the 
g++ command with the -L and -l flags, for example:

g++ [-static] -L/path/to/library -o executable 
main.cpp -lname

We omit the “lib” prefix and the dot extension from the library 
name when invoking the complier to build the executable. If we have 
both a static and a shared library with the same “name” at the specified 
path, g++ will use the shared library as default. In this case, to use the 
static library, we must provide the -static option. You can link with 
multiple libraries if necessary, each of which might be in a different 
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location. For more on building C/C++ libraries see cprogramming.
com/tutorial/shared-libraries-linux-gcc.html, note g++ can in essence 
be used interchangeably with gcc.

We have not mentioned other useful options that you can pass to 
g++ as they were not pertinent to the discussion. To use modern C++ 
language features, you will need to provide the -std=c++11 option 
at least. Other standards exist including c++14, c++17, and c++20 
(they are named for the year they were released), though you will 
have to check if your compiler version can support these standards. 
The option, -O, which is a capital “o” not zero, allows you to specify 
a complier optimization level. The level can be zero, one, two, or 
three; the default is zero. Zero implies no optimizations—the code 
that you see is the code that you get, useful for debugging purposes, 
and is typically used with the g option which generates debugging 
information for use with gnu debugger, gdb, for instance. Level one 
switches on some optimizations and gives a significant improvement 
in performance. Level two switches on more optimizations and will 
give a noticeable performance improvement over level one. Level 
three is the most aggressive optimization option and is not gener-
ally recommended as it may break the semantics of your code and 
typically offers only minor improvements in performance over level 
two, and in some cases may make it worse. The -W option allows you 
to specify warnings the complier should look out for when parsing 
your code. It is recommended you always use -Wall which switches 
on all the standard warnings. It is also recommended that you treat 
any warnings generated during compilation as errors. If you use any 
macro-defined names, for example to conditionally guard code for 
platform specifics or “debug” code, you can define them using the 
-D option.

Doing all of this on the command line can become tedious. 
Once you have mastered the simple command-line invocations as 
outlined above you should instead learn how to write and edit Make-
files such that all the above can be reduced to the deceptively simple 
command:

make

or

make target
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where target is the name of a “recipe” in the Makefile. The code 
found at the GitHub repository for this book has basic Makefiles 
that will build the source code into a library and executables that 
link with that library. These are by no means optimized and should 
only be used as a basis to learn the (GNU) Makefile framework; gnu.
org/software/make/ is a good starting point for further investigation.

Guidelines to Good Code
C++ is a free format language in that the spacing is of no impor-

tance to the complier. However, spacing is important to people, and 
the readability of your code matters. There are some “best practice” 
guidelines about how we should layout our code:

●● have no more than one statement per line;

●● use blank lines between functions;

●● logically group sections of code;

●● use consistent indentation;

●● use space around binary operators; and

●● do not use space between a unary operator and its operand.

Statements must be explicitly terminated by the semicolon. 
However, any statements that run over a single line do not require a 
continuation character to indicate overrun, with the limitation that 
identifiers, keywords, and literals cannot be broken over new lines.

Identifiers are the names we give to variables, functions, classes, 
and objects in C++. They must abide by the following rules to be a 
valid name:

●● consist of letters and digits;

●● must start with a letter (not a digit);

●● underscore is considered a letter;

●● are case sensitive; and

●● are not keywords, for example, return, using, class, etc.

C++ is case sensitive. This means that the identifiers different 
and Different are different. 
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There are also a few identifier recommendations that do not 
need to be adhered to but are considered to improve the style of 
C++ code. First, use descriptive names that are not abbreviated, 
for example message not msg. However, be sensible. A 25-character 
descriptive name may make the variable easier to identify but the 
whole code more difficult to read; this is where comment lines are 
useful. If the identifier is made up of more than one word then you 
should make that clear by either using an underscore between the 
words, or capitalizing the subsequent words, for example smoothing_
factor or smoothingFactor, say. Try to avoid using identifiers that are 
only subtly different as this may lead to confusion for example, dif-
ferent and Different. For data members of a class, it is convention 
to identify them as such by prepending their names with a single 
underscore, _, or the combination m_.  

What is C++?
C++ is an abstract, high-level, complied programming language. 

It essentially acts as a translator between us as humans and the com-
puters as machines. We write programs in source files (typically end-
ing in the extension .cpp or .cxx) that can be understood by humans 
and these are compiled or translated into machine language files 
that can be understood by the computer. These translated files are 
known as object files that when linked together produce the binary 
executable (otherwise known as a program) that can then be run 
on the computer. This is different from scripted languages (MAT-
LAB,  Python,  Ruby, etc.) which are  interpreted  at runtime; the 
machine language exists already and is unchangeable, rather than 
being created from source code.

C++ supports a combination of procedural, functional, object-
orientated, generic, and (template) metaprogramming features. 

C++ executes one statement at a time in the order that they 
were written (ignoring parallel or threaded execution), that is it fol-
lows the procedure of the source code. A statement is one or more 
expressions terminated by a semicolon. An expression can consist of 
a primitive-type declaration, variable initialization, variable assign-
ment, mathematical operations, logical and comparative operations, 
and control flow and looping constructs. We describe these proper-
ties next, beginning with primitive types in C++.
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C++ Primitive Types

C++ primitive type Representation
int 32-bit integer

float 32-bit floating-point number

double 64-bit floating-point number

char 8-bit character

bool Boolean logical (true or false; 8-bit)

The table above lists the most common primitive types in C++. 
The bit lengths quoted are those found on a typical off-the-shelf 
machine but could vary depending on the platform and/or the oper-
ating system.

Although primitive integer type bit lengths can be modified 
using the type modifiers long and short you should prefer using 
the C type definitions found in the GNU C library, accessed via the 
header stdint.h (or cstdint.h for C++) that can be used to declare 
integers of exact size for any machine. They are declared as intN_t, 
where N represents the bit length you require (8, 16, 32, or 64). To 
declare unsigned versions of these integers just pre-pend the letter u 
to the type, that is, uint8_t for an unsigned 8-bit integer.

In modern C++ when initializing a primitive variable, you should 
prefer to use the curly brace initializer ({}) over the assignment (=) 
symbol. For example:

int x{42}; //some meaningless value
double posixTime{0.0}; //1970-01-01 00:00:00

C++ Operators
Operators can be classified according to the number of operands 

they take. Unary operators take a single operand, for example the 
unary minus which returns the negative of the operand. Binary oper-
ators take two operands, for example the binary plus which returns 
the sum of its two operands.

C++ has the usual mathematical operators: +, −, *, and / (add, 
subtract, multiply, and divide). Note that the asterisk, *, has mul-
tiple meanings, depending on context; we will return to these in 
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due course. The modulo operator (%) returns the  remainder  of 
the division between its operands, for example 12 % 7 is 5. These 
operators have a precedence order, and this is an important part of 
the C++ language (as it is with any other language). For example, 
the multiplicative operators (*, /, and %) have a higher precedence 
than the additive operators. Full list of operator precedencies can be 
found on the internet.

Assignment (operator=) in C++ is an expression that returns a 
result as well as having a side effect on the left-hand operand; the 
left-hand operand is overwritten with the value from the right-hand 
operand, this is what we mean by assignment. The result (or return 
value) from the assignment is what is called an lvalue (left-value). An 
lvalue is a variable or object that has a memory address and may be 
used as the target of assignment. To illustrate this feature, we can 
write the following valid statements:

int x, y, z;
x = y = z = 0;

Here x, y, and z all receive the value zero. Operator associativ-
ity defines how the operands of binary operators will group, either 
to the left or to the right. The multiple assignment statement above 
has right associativity; that is z is assigned zero, the result of that 
assignment is assigned to y, and finally x is assigned the result of the 
assignment to y.

Relational operators relate one variable to another and are com-
monly used in conditional statements that require a Boolean result. 
We can test equality between variables using the equality operator 
(==), and similarly the inequality operator (!=) that is, not equal to. 
A common mistake is to use a single equals sign to try to test equal-
ity. This instead will assign the value on the right-hand side to that on 
the left. Additionally, as the assignment returns an lvalue it is likely 
the condition will evaluate to a valid Boolean (the value is implicitly 
type converted to a bool) and lead to some odd behavior during the 
execution of the program. Some compilers may not pick up on this 
programming mistake (it is syntactically valid code) so it is some-
thing to watch out for. Other relational operators include greater 
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than (>), less than (<), and the compound versions of these; greater 
than or equal to (>=) and less than or equal to (<=). Note that the 
compound symbols follow the order of the English phrase.

The logical AND and OR operators are written as && and ||, 
respectively. These should not be confused with the operators & 
and | that perform bitwise comparisons of their operands. The logi-
cal operators are binary operators and evaluate their operands from 
left to right. They are also shortcut operators in that they will not 
evaluate further than they need to. To explain, if the left-hand oper-
and of the && operator evaluates to false it does not evaluate the 
right-hand operand; the overall outcome is already false. Similarly, if 
the left-hand operand of the || operator evaluates to true it does not 
evaluate the right-hand operand; the overall outcome is already true. 
Keep this in mind when using these operators.

There is one operator that takes three operands and thus is 
referred to as the ternary operator; the conditional expression that is 
invoked with the question mark symbol. The operands are the condi-
tion on the left, and the two possible result expressions on the right; 
result if true followed by result if false separated by a colon. A simple 
example of this is finding the maximum between two values:

int max = a > b ? a : b;

This reads as “if a is greater than b then max is initialized with a, 
else max is initialized with b.”

The condition expression may also be used as an lvalue. For 
example, we may write

first > second ? first : second = 0;

This reads as “if first is greater than second then first is assigned 
zero, else second is assigned zero.”

It is often found in programming that we must write expressions 
like

total = total + subtotal;
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The compound operator provides a convenient way of writing 
this sort of expression

total += subtotal;

This becomes easier to read once you are familiar with the 
syntax. The expression a += b can be read as a incremented by 
the value of b. For complex data types the shorthand, compound 
expression can also be more efficient than the long hand version. 
All the mathematical operators (+, −, *, /, and %) have a compound 
operator.

The most common value by which we increment or decrement 
a value is by one. C++ further refines the compound operator when 
just incrementing by 1. For example

value += 1;

Can be written as

++value;

Note that this is the prefix version of the increment operator. It 
adds one to the value and returns that new value. We can also write 
the post-fix version

value++;

The difference between the two is subtle but can be particularly 
important. The post-fix version takes a reference of the value, stores 
the current value, increments the reference, and returns the stored 
value. Let us illustrate this so that it is clear. Writing

result = ++pre_increment;

is equivalent to,

pre_increment += 1;
result = pre_increment;
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Whereas writing

result = post_increment++;

is equivalent to,

result = post_increment;
post_increment += 1;

Be aware of this difference as it can very easily cause bugs in 
your code that can be difficult to track down.

C++ Enumeration Types
There are some types whose purpose is to take only one of a few 

named values. For example, (UK) traffic lights have a fixed set of 
colors (red, amber, and green), or the size of clothes has a fixed set 
of values (XS to XXXL). A command to set traffic lights to purple or 
trying to buy clothes that are A4 in size would be nonsensical.

The enumeration type in modern C++ is specified by the key-
word  combination enum class, sometimes referred to as the 
scoped enum. They provide a mechanism for introducing a new 
type with a name and a related set of constant values. Each enum 
definition is a new type that is separate from other enum types, and 
as such they cannot be mixed. A scoped enum value is represented 
like an integer but it is not automatically converted to one. Similarly, 
an integer cannot be automatically converted to an enum value, this 
would undermine the point of the type system. By default, the enu-
meration values are numbered from zero upwards in steps of one. 
We can specify a different numbering system by explicitly assigning 
numbers to the enum values (so long as it is greater than the previ-
ous element’s number representation). To demonstrate let us write a 
scoped enum type for exam grades:

enum class grade {A, B, C, D, E, F, U=99};

In this example, A is represented by zero, B by one, and so on up 
to the grade F where we jump to the grade U that has been assigned 
the value 99. Initializing a variable to be of some scoped enum type 
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is the same as declaring any other variable; the type name followed 
by the identifier with the specific initialization value contained in 
curly braces (we have to use the scope resolution operator for scoped 
enums):

grade yours {grade::A};

To illustrate the point about not being able to mix enum struc-
tures, we could set up an enum structure for the seasons and the 
days-in-the-week:

enum class season {winter, spring, summer, autumn};
enum class day_week {mon, tues, wed, thurs, fri,  
	 sat, sun};

Then declare and initialize some variables based on these enum 
structures:

season now {season::summer};
day_week today {day_week::fri};

However, we cannot initialize (or assign) the variable today 
with the enum value spring, say, as today is of type day_week not 
season. This is obvious in our example but is something to be aware 
of in larger programs.

Please refer item 10 of Scott Meyers’ book Effective Modern 
C++ (see Bibliography) for a more detailed discussion of scoped 
enumeration types and how to deal with them. 

Control Flow
The control flow of a program can be categorized into four types:

●● Sequence: Where program flow follows a simple sequential 
path executing one statement after another. The primary 
sequential structure is a compound block statement that is a 
series of statements inside curly braces: {}.

●● Selection: Where only one path out of several possibili-
ties is taken. Simple selection is conditional execution of a 
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statement or block of code guarded by an expression which 
will have the value true if the guarded code is to be executed: 
this is the if statement. An if else statement provides two 
alternative paths of execution: the true or false evaluation 
of a control expression determines which branch is taken. 
A switch statement supports a multi-way branch based on 
the value of a control expression known as the case.

●● Iteration: Where one statement or block of code is repeat-
edly executed. A simple while structure executes the same 
code while a control expression has a true value (hence the 
name), terminating execution when the expression evaluates 
to false. C++ provides three forms of loops that are suited to 
the three most common iterative styles; while, do while, 
and for.

●● Transfer: Where the point of execution jumps to a dif-
ferent point in the program. Although the point where 
execution jumps to is clearly defined, the use of trans-
fer of control statements usually leads to programs that 
are difficult to understand. The simplest transfer struc-
ture is the goto statement which jumps to a labeled 
point in the code; we discuss the appropriateness of the 
simple goto statement in modern programming in the final 
paragraph of this section. The structured goto statements 
of break and continue jump to clearly defined points 
within other flow control structures and their use is okay but 
should be commented on if their intention is not immediately 
apparent in the source code.

Sequence
In C++, a simple statement is any semicolon terminated expres-

sion. Declarations are ordinary statements. This is unlike other lan-
guages such as Pascal and Fortran, which require the declarations to 
be specified before any executable code. 

A statement can also be a compound statement; a sequence of 
statements delimited by an opening and closing brace, sometimes 
referred to as a block, and there is no terminating semicolon after 
the closing brace. The braces define the scope of the compound 

Computational Physics.Ch14_App.3pp.indd   292Computational Physics.Ch14_App.3pp.indd   292 1/4/2022   11:39:40 AM1/4/2022   11:39:40 AM



Appendix: A Crash Course in C++ Programming  •  293

statement and are equivalent to the begin and end keywords found 
in other languages. Variables declared in blocks are in scope from 
the point of their declaration until the corresponding closing brace. 
C++ does not use name-matched delimiters like languages such as 
Visual Basic, Ada, or Fortran where, for example, the “if” keyword is 
matched with an appropriate end keyword such as “endif.”

Note that the definition of a statement and a compound state-
ment is recursive (a compound statement contains statements that 
may themselves be compound statements which contain statements 
that may themselves be compound statements, and so on). A com-
pound statement may also be empty.

Selection
The primary structure for decision-making is the if statement. 

A control expression is used to determine which branch of the two-
way fork statement is taken. If the expression is true, the first branch 
(the if body) is taken but if the expression is false then the second 
branch (the else body) is taken. The if body and else body contain 
statements that are either a single ordinary expression statement or a 
compound statement delimited by curly braces. The else clause is 
optional and if it is omitted then code continues to execute from the 
closing brace of the if body should the control expression evaluate 
to false.

The  if  control expression expects a bool type expression; 
anything else is an error. For backward compatibility with previous 
versions of the C++ language and the C language, an integral expres-
sion can be narrowed into a bool by the compiler. Typically, a char 
or int expression may be used in place of the bool. When convert-
ing an integer to a Boolean a value of zero is false and any other 
value (positive or negative) is true.

Languages that use name-matched delimiters also support a 
multi-way if statement where additional branches are provided 
using “else if” constructs which are like the “if” component but 
occur between the “if” and “else” statements. Any number of these 
branches is allowed.  C++ does not provide an “elseif,” “elsif,” or 
“elif” statement because the same effect can be achieved using mul-
tiple if statements. Note the else  and if  are separate keywords 
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so that the  else  clause of the first  if  statement can itself be 
another if statement. The tests are evaluated from top to bottom 
and as soon as an if or else if test evaluates to true that branch 
is taken.

if (some_condition) {
      //execute if some_condition is true
} else if (other_condition){
     //execute if some_condition is false and
     //other_condition is true
} else {
     //execute if both some_condition and
     //other_condition are false
}

The  switch  statement jumps to a chosen  case  label. The 
program execution continues from that point onwards until it hits 
a break. The break statement branches the control flow to the 
end of the switch statement. If no break is provided, control will 
drop into subsequent cases. This is known as fall through and is 
a valid programming design but can cause bugs in your program 
if it is not what was intended. Intentional fall-throughs should be 
commented as such otherwise other programmers could read it as 
a mistake. It is usual to include a break  statement even after the 
last statement in a switch  for consistency. The default  label is 
selected if the expression evaluation does not exactly match one of 
the specified case labels. Note that a default label does not need 
to be specified. If the default is not specified and the expression 
evaluation does not match one of the case labels, then program exe-
cution continues from the end of the switch block.

switch (some_case) {
case 0:
       //code for case 0
       break;
case 1:
       //code for case 1
       break;
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default:
       //code for default case
       break;
} //break transfers control here

The break statement can also be used within a loop structure to 
transfer control to the end of the loop. This use of break is discussed 
at the end of this section along with the keyword continue.

It is important to remember that you can only use simple types, 
like int, char, and enum (both scoped and un-scoped) as the case 
for switch  statements; floating-point numbers, strings, and other 
complex types cannot be used.

The  switch  statement is generally more efficient than a 
complex  if  statement, particularly as the number of choices 
increases. If the branch requires three or more choices, consider 
whether the switch statement is more appropriate than multiple if 
else statements.

The case  options can only be used to select exact values for 
the control expression: ranges of values (such as greater than zero, 
or 1  to 9) are not allowed. However multiple case  labels can be 
specified for the same block of code; as discussed above the code 
falls through the cases until a break statement is encountered. 

Iteration
The fundamental looping construct in C++ is the while  loop. 

In this structure, a statement (called the while body) is repeatedly 
executed while a control expression evaluates to true. The repetition 
ends when this condition evaluates to false. Because the condition is 
checked before the loop body it is possible for the body to never be 
executed, the condition is false initially.

while (count++ < total) {
       //loop body
}

A classic mistake with a while  loop is to forget to update the 
variable or variables used in the control expression in the loop 
body. This has the effect of creating an infinite loop: one that never 
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terminates. The for  loop (described later) formalizes the update 
expression into its syntax so it is not as easy to make these kinds of 
mistakes.

Like the if statement, an integer expression can be narrowed to 
a bool where the value zero is false and any other value is true. An 
infinite while loop can be created intentionally by simply providing 
an argument of 1 or true in its control expression. Some programs 
are required to run indefinitely such that infinite loops are required, 
and we provide some sort of user exit command to terminate the 
loop (escape key, or a “quit” option). When developing programs, 
the key combination “ctrl-c” in an active terminal will send an inter-
rupt signal to the program running in that terminal that, in general, 
will cause it to terminate. 

C++ provides a generic looping construct with the for  loop, 
rather than a traditional counted loop as in other languages. Here 
a classic while  loop is formalized into a single construct. A clas-
sic for  loop has an initialization clause, a continuation condition, 
and an update expression; the  for  loop provides placeholders for 
these three components separated by semicolons. 

for (int i = 0; i < total; i++) {
       //loop body
} // i is destroyed once loop ends

We can in fact provide only the continuation condition leaving 
the other components of the loop blank. However, this undermines 
the point of the for loop; why not just use a while loop? An infinite 
loop can be created by leaving all three components blank (you still 
need to leave them in the separating semicolons). Note that vari-
ables declared in the initialization of the for loop are scoped to that 
construct; their lifetime ends when the loop ends.

C++11 introduced the range-based for loop used to provide 
a more readable equivalent to the classic for loop when operating 
over a range of values, for example the elements in a container type. 
The range-based for loop has a range declaration and a range expres-
sion, separated by a single colon. For example, we can loop over the 
elements in vector with the following syntax:
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std::vector<int> v {1, 2, 4, 8, 16, 32};
for (auto i : v) {
     //loop body, i has type int, access by value
}

This can be read as “for each element i in vector v perform the 
loop body.” Note that you can also access the elements of a con-
tainer by reference and forwarding reference the details of which 
are beyond the scope of this brief discussion (see cppreference.com 
for more details). 

An alternative loop is provided by the do while construct where 
the loop test is evaluated after the loop body has been executed. This 
means that the body must be executed at least once and is ideally 
suited to validating data before allowing program execution to pro-
ceed. It is far more common to use compound statements rather 
than a single statement for the body of a do while construct, but it 
depends on the application. Note a semicolon must follow the end 
of the while condition.

bool input_bad {true};
do {
	 //loop body, validate input
} while (input_bad);

Transfer
Earlier I mentioned the break and continue keywords when 

applied to loops. The  break  command used within a loop will 
terminate the application of the loop, and any code located after 
the end of the loop will continue to execute. Whereas the con-
tinue  command will cease the execution of the current iteration 
and move the loop to the start of the next iteration. The use of 
the  break  and  continue  commands within loop constructs can 
indicate poor logic that can be rewritten to remove their use, 
potentially making the code more readable. Where a break or con-
tinue absolutely must be used in a loop structure a comment about 
their intention is recommended.
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One final control flow construct exists within the C++ language. 
The label and goto label expression are very much a hangover 
from the early days of programming. If you have ever programmed 
in FORTRAN 77 or BASIC, then you will have used this construct; 
it exists because early languages did not have a formal looping con-
struct so programmers would have to build ones manually using 
the goto label command. In C/C++, you set up a named label 
somewhere within your code by writing an identifier for the label 
followed by a single colon. You can then branch control flow to 
that label at any point in your code by using the goto command 
followed by the label identifier. This non-continuous control flow 
does not suit modern structured programs and can make code quite 
unreadable to the un-trained eye, as well as frustrating to debug. 

Next, we discuss exceptions in C++. Exceptions provide another 
way to transfer control from one part of a program to another but 
only under exceptional circumstances (typically errors).

Exceptions
An exception is something that happens that is out of the ordi-

nary during code runtime. Typically, it is an error that arises during 
the execution of a program, such as an attempt to dereference a con-
tainer object beyond its range or a system out of memory. When an 
error occurs, C++ will cease the normal execution of a program and 
report the error by generating an error message and passing it to the 
context that can handle the error. This is what is known as “throwing 
an exception.”

Program errors can be split into two categories: logic errors that 
are caused by programming mistakes, and runtime errors that are 
beyond the control of the programmer, for example memory leaks in 
external libraries, lost network connections, missing databases, and 
so on. In general, the preferred way to report and handle both logic 
errors and runtime errors is to use exceptions. An exception makes 
a program acknowledge the occurrence of an error and gives it the 
ability to handle that error. Any unhandled exceptions stop program 
execution. When an exception is thrown the execution jumps to the 
point in the code that can handle that exception. We will explore 
classes and object shortly, but it is important to know that at the 
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point of an exception being thrown all objects in scope are destroyed 
via well-defined rules (object destructors)

We will also cover class inheritance in due course but it is enough 
to know for now that all exceptions generated by the standard library 
inherit from the std::exception class. This is an important feature in 
the way exceptions are handled in C++. Many of the standard excep-
tions can be used in your code by including the header stdexcept and 
you can use them as base classes for your own, custom exceptions. 
The message that the standard exceptions carry can be accessed by 
the member function “what” that returns a C-style character string 
pointer to the message.

Exception handling in C++ consists of three keywords: try, throw, 
and catch. The try statement allows you to define a block of code 
to be tested for errors while it is being executed. The throw keyword 
can be used when a problem is detected, and which allows us to report 
a custom error. The catch statement allows you to define a block of 
code to be executed if an exception is thrown in the try block; this is 
what we mean by the context that handles the error. A try block must 
have at least one corresponding catch block but could have several to 
catch different, specific types of error.

Although it is typical to throw an exception type that has inher-
ited from std::exception, in C++ any type may be thrown and caught. 

try {
		  int legal_age {21};
		  std::vector<std::string> the_list {
			   “Elvis Presley”, 
			   “Kayne West”, 
			   “Judy Dench”,
			   “Lucy Liu”
		  };
		  int my_age {18};
		  std:string my_name {“Joe Bloggs”};
		
		  if (my_age < legal_age) throw(my_age);
		  bool in_the_list {false};
		  for (auto name : the_list) {
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			   in_the_list = my_name == name;
		  }
		  if (in_the_list == false) throw(my_name); 
} 
catch (int your_age) {
		�  std::cerr << �“You must be 21 or over to 

enter.\n”
		�  std::cerr �<< “Your age is ” << your_age  

<< std::endl;
}
catch (std::string your_name) {
	� std::cerr << �your_name << “ is not on the 

list\n”
	� std::cerr �<< “you’re not coming in!”  

<< std::endl;
}

Note that, unless the handling code terminates or does some 
other control transfer, code execution continues from the end of the 
last catch block. In the example above this means that the_list is 
not checked as an exception of type int has already been thrown. 
Bear this in mind when using try-catch blocks. 

If an exception is thrown that does not match the type of any 
of the catch handlers, the program is terminated. C++ provides 
a means to catch any unspecified exceptions via the ellipsis (...) 
token. 

try {
       //code to be tested
} 
catch (int e) {
       //handle “int” exception
}
catch (std::string e) {
       //handle “string” exception
}
catch (...) {
       //handle any other exception
}
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It is important to know those catch handlers are matched in the 
order they appear, so you want the most specific types first and the 
“catch all” handler should always appear last. This statement also 
applies when you are throwing standard exceptions (or custom 
exceptions) with class hierarchy; the order should follow the hierar-
chy from most derived (specific) class first to least derived (poten-
tially base) class at the end. As always “catch all” should be the very 
last handler. 

Before we move on to the next section discussing functions, we 
should mention that in the simple examples above we have thrown 
and caught exceptions by-value. This is okay for primitive or simple 
types but in general, we should throw exceptions by-value but catch 
by-reference and typically by const reference. These concepts are 
discussed in the next section.

C++ Functions
Functions written in C++ will generally require a prototype, 

which is usually called its declaration. You can think of the prototype 
function as a blueprint; it tells the compiler what type the function 
will return, what the function will be called, and what parameters it 
takes as arguments. The function does not have to return a value, 
in which case the return type is declared as void, and there can be 
more than one parameter or none. For the latter case, we use empty 
parentheses. To demonstrate, a prototype for a power function may 
be written as follows:

float power(float value, int m);

This tells us that the power function raises the floating-point 
value to the integer power m, returning the result as a floating-
point value. Actually, it does not. All this prototype tells us is that the 
function power accepts a float type and an int type as inputs and 
returns a float type as an output. The implementation of the func-
tion that is, what the function actually does, is taken care of by the 
function definition which we describe shortly.
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With this function prototype declared before the main function 
we can use it in our main by assigning the return value to a float 
variable, for example:

float power(float value, int m);
int main(){
      float x {2.f};
      int n {3};
      float y {power(x, n)}; 
}

Here we have “called” the power function and the main function 
is referred to as the calling environment (or the caller). Note that 
although the above example is syntactically correct it will not com-
pile as we have yet to define the power function (you will get a linker 
error if you try, namely unresolved external symbol). The definition 
of a function is the block of code that provides the instructions as to 
what the function is to do. We can either provide the definition of 
the function where we declare the function or provide the defini-
tion in a separate location. It is a good habit to acquire to separate 
the declaration from the definition (something which is very much 
appropriate to classes, there it is referred to as interface and imple-
mentation). Remember that main is the only function in C++ that 
we must declare and define in the same place. A definition for the 
power function could look like:

float power(float value, int m) {
     return m == 0 ? 1 : value * power(value, m-1);
}

The power function here is recursive, that is, it calls itself, and 
you should satisfy yourself it does as advertised. As an aside, this 
function definition is not fully fledged or optimized, what happens if 
m is negative? Also, could this be rewritten as a loop?

The identifiers in the argument list of the declaration are merely 
placeholders for the actual argument identifiers used in the definition. 
In fact, the declaration does not even require you to provide identifiers 
for the arguments at all, only the types. However, unless is it notice-
ably clear from the context what the arguments are you should provide 
descriptive names for them in the prototype. The argument identifiers 
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in the definition can be as short and as cryptic as you like but we refer 
you back to the recommendations on identifiers for best practice. For 
larger and more complex programs that use several different functions, 
it is better to further separate declarations and definitions by placing 
them in their own header and source files, respectively. 

How does C++ pass variables from the calling environment to 
a function? Default behavior of C++ is to pass arguments by value. 
That is, the function makes its own copy of the argument to work 
with and does not modify the variable in the calling environment. 
Pass-by-value is fine for primitive data types as they are small in 
terms of memory consumption and making a local copy of them 
is cheap and quick. However, what if the argument we pass is an 
object of a class that takes up a large portion of memory, a matrix 
for instance? Taking a local copy of that object could be prohibitive 
both in terms of memory consumption and computational effort. In 
C++ we get around this restriction by passing the argument by ref-
erence rather than value. In this case, the function does not make 
a local copy of the parameter but works directly on the variable in 
the function definition. To signify a reference to a variable the sym-
bol & is added after the type declaration in the function parameter 
list. A reference can be thought of as an alias for the corresponding 
argument in the calling environment. 

Astute readers will have spotted that by passing-by-reference 
gives the function permission to modify the contents of the vari-
able in the calling environment. This might be desired. As a con-
trived example of this, we might want to be able to nullify matrices 
(make all elements zero) and we write a function to do this. Rather 
than having to copy the entire matrix into the function, modify its 
elements, and return the result to the calling environment, which 
would require another copy, we could just pass it by reference. The 
work would be done on the matrix as if the function definition were 
written directly in the calling environment. 

What if we do not want the function to modify the variables 
declared in the calling function, but still need to pass them by ref-
erence for efficiency? C++ includes the keyword  const  for this 
purpose; const is a very hardworking keyword in C++ and pops 
in all kinds of contexts. When const is used in conjuncture with a 
variable declaration we mean that the contents of the variable are to 
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remain constant throughout the lifetime of the variable. Declaring 
a reference parameter const ensures the function cannot change 
the contents of the variable that is aliased by that reference. If you 
try the compiler will complain. You can also declare a pass-by-value 
parameter const, but this has a subtly different meaning; the local, 
function variable, that is, that declared by the function parameter, is 
initialized with the value of the argument variable from the calling 
environment, and that local variable then cannot be changed by the 
function.

Generally, you cannot return a variable from a function by refer-
ence. As soon as a function goes out-of-scope that is, it executes its 
return statement, all local variables are destroyed; when returning 
by value the return statement creates a temporary local variable 
that is copied back to the calling environment. If we were trying to 
pass a local variable back to the calling environment by reference, 
we would end up with a reference to nothing of relevance, known as 
a dangling reference. Return-by-reference is possible if the param-
eter was passed in by reference in the first place, an example of this 
can be found in overloaded versions of the output stream operator; 
we discuss overloading shortly in the next section.

Function parameters can be given a default argument in the 
function declaration. If a function with default arguments is called 
without passing arguments, then the default values are used. Not all 
parameters have to be given a default argument but after a param-
eter is given a default argument all subsequent parameters must also 
have default arguments. To illustrate this point let us look at our 
example power function declaration with a default argument:

float power(float value, int m = 2); 

Our power function can now be called with only one argument 
and in this case, it would return the square of the value. If we were 
to declare the value parameter with a default argument, then we 
must also declare the m parameter with a default argument:

float power(float value = 1.0, int m); //error, won’t  
	 compile
float power(float value = 1.0, int m = 2); //okay
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Default arguments should be used with care and consideration 
as they can cause problems when updating and maintaining code. 
This is especially true when providing function overloads, which we 
will discuss next.

Function Overloads
C++ allows several functions with similar purposes to share the 

same name or identifier. We say these functions are overloaded. 
Function overloading is a feature that can be used effectively to 
simplify the intent of code by using the same name to refer to dif-
ferent physical functions that perform a conceptually similar role. 
Overloaded functions will differ by the number of parameters, or 
the parameter type, or both the number and type of parameters. 
Parameter order and default arguments are also considered; C++ 
will try to implicitly convert arguments if necessary. Overloaded 
class member functions can also differ on the const qualifier as 
explained later. Class constructor overloading is a good example of 
function overloading: there may be more than one way to initialize 
an object, again this is discussed in a later section. 

The overloaded functions must have unique signatures so that 
the complier can distinguish between them. Each of these over-
loaded variants requires a separate function definition. Note that a 
function cannot be overloaded solely based on its return type: the 
return type is not considered part of the signature. Where the func-
tion signature is unique, the return type need not be the same as 
other functions of the same name. For example, it is possible to 
overload a function using a template, where the return type and 
argument type(s) are decided upon at compile time. We discuss 
template functions in detail shortly.

Using the function name, and the types, number, and order of 
the parameters the compiler can generate a unique name for each 
function. This is called the name mangling and is applied to all C++ 
function names. Errors from the linker often show these mangled 
names when reporting unresolved symbol errors which are usually 
attributable to missing function definitions or typing errors.

We mentioned previously that care and consideration should be 
taken when providing default arguments in function declarations 
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and here we provide a reason. If we are not careful when specifying 
default arguments, overloading a function could lead to ambiguous 
function calls. To demonstrate this, we return to our power function 
example with the default argument:

float power(float value, int m = 2);

and provide an overloaded declaration (admittedly contrived), also 
with a default argument:

float power(float value, float m = 2.0);

If we call the power function with only one argument, which 
power function gets called? The function call is said to be ambiguous 
and the compiler will give an error to that effect.

When the complier attempts to match an overloaded function 
against a function call it will insert type conversions of the arguments 
as necessary to obtain a match. The complier prefers the function 
that requires the fewest argument conversions when resolving the 
overloaded function to use. 

Template Functions
Overloading functions is usually an attempt to allow us to use a 

particular function for different types; the overloaded functions will 
only differ by the type of the arguments and often, consequently, the 
return type. These overloaded functions will typically share identi-
cal code in their definition apart from the type of the variable that is 
being worked on. As an example, consider a function overloads that 
returns the larger of two input values:

int max(int a, int b) {return a > b ? a : b;}
float max(float a, float b) {return a > b ? a : b;}
double max(double a, double b) {return a > b ? a : b;}

Instead of needlessly repeating code we can use the template 
feature of C++ to write a single declaration and definition of a 
generic function that can be used autonomously with any accept-
able type. Without the template feature, we would have to explicitly 
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overload the max function providing a declaration and definition for 
every conceivable type. However, using the template syntax we can 
write a possible function declaration and definition as

template<typename T> T max(T a, T b) { return a > b ?  
	 a : b;}

We can now use the max function for any type we like with 
the caveat that the template type T has the greater than operator 
defined, if not the code will fail to compile. Note that it is recom-
mended that a template function be declared and defined together 
in the header file as explained shortly. 

Here the template type T is a virtual placeholder for a concrete 
type the details of which will be provided at (a future) compile time, 
that is, when we produce a binary file. This essentially leaves a hole 
in the definition of the function. Machine code requires that a con-
crete type be specified to fill the hole that is left missing. Therefore, 
it is most convenient for the template function declaration and defi-
nition to reside together in a header file that we include to use the 
function. Otherwise, the definition must reside in each source file 
that calls the function; this would be clumsy programming and sub-
verts the point of using a template function.

When calling a template function in general we should provide 
the complete type specification for the function. For example, to 
call our max template function with floating-point types we should 
invoke the function using

float max_val {max<float>(a, b)};

where a and b are of type float and have been initialized before-
hand. However, modern C++ compliers can deduce the type speci-
fication from the arguments supplied such that we do not need to 
supply the type in the angled brackets:

std::string max_val {max<>(a, b)};

If a and b are std::string type, then the call instantiates the 
template function with std::string as the filler. In this case, if the 
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arguments are of any other type then, unless there exists a valid, 
accessible conversion of that type to a std::string, the compiler will 
complain. We can also omit the angle brackets entirely:

auto max_val {max(a, b)};

This allows overload resolution to examine both the template 
and normal function overloads if they exist. In C++11 the auto key-
word can be used where the type can be deduced from context; here 
max_val will be initialized as the same type as a and b. Take note 
that due to the way we have written the max template function you 
cannot have arguments of different types. 

The template parameter list delimited by the angled brackets 
can contain as many items as necessary, with each item separated by 
a comma. Each item can be a general class (using the typename or 
class keyword), a specific instance of a class, or a fundamental data 
type (or their alias). A concrete value of each template type must be 
provided at compile time. Note that the template parameters may 
also be given default argument types. 

By the way, there is no need to write your own “max” template 
function as one is already implemented in the standard library in the 
algorithm header under the std namespace. Notice that it accepts 
arguments by const reference. Generally, when writing template 
functions, you will want the template arguments passed by const 
reference as the type is any potentially definable type and as such 
could be prohibitive to copy.

Note that the typename  keyword in the template parameter 
list can be replaced with the class keyword; they are synonyms in 
this context. Using typename here rather than class is arguably 
better as it more precisely describes the functionality; class implies 
we can only use class names whereas we can use any defined or 
definable type.

Inline Functions
C++ supports simple macro  inline  expansion of functions. 

Any function  declared  as inline  is not actually a function but a 
description of the code to be inserted at the point of the function 
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call. Inline functions are semantically the same as normal functions 
and are used as an attempt to improve program speed by avoiding 
the overheads of a function call and its associated stack adjustment. 
Note that the keyword  inline  is used only where the function 
is declared not where it is defined unless declaring and defining a 
function in the same place.

Inline functions generate more code than a normal function call. 
If an inline function itself calls another inline function that may call 
another inline function and so on, one line of code can expand into 
tens or even hundreds of lines of actual code. This is called bloat and 
is avoided by not using inline functions or restricting their use to 
simple functions, ideally ones that do not call other functions. If in 
doubt do not use inline functions. If the final program does not per-
form adequately then analyze the code to uncover any bottlenecks 
and redesign the program if possible.  In many cases, well-chosen 
algorithms and good program design are more effective at speeding 
up programs than inline functions.

Note that with modern C++ the keyword inline is a suggestion 
to the complier that the function is made inline. It is not guaranteed 
that the function will be inline. The complier will make the final 
decision based on the code length and complexity of the function, 
among other considerations.

Pointers
Pointers play an essential role in the construction of any sub-

stantial C++ program. A pointer is a variable that holds the address 
in memory of another variable. When we declare a variable, we give 
it a memory address that uniquely identifies it within the memory 
structure. When we initialize or assign a value to a variable, we place 
that value at the location of the variable’s unique address. When we 
use the variable, we are directly accessing the value stored at the 
address of the variable.

If we declare a pointer to the address of that variable, we then 
have a means of indirectly accessing the value stored at the address; 
we do not have to refer to the original variable to use or modify it. As 
an analogy, if you walk into a library and ask the Librarian “who was 
the King of England in 1137?” and they say “Stephen” then you are 
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directly accessing that data. However, if the Librarian gives you the 
location of a book about the monarchs of Great Britain then they are 
pointing you to where you can find that data. The location itself does 
not contain the answer you want but what is at the location does. 
Pointers become more beneficial when we start to consider object-
orientated programming, but for now, we shall look at how they are 
implemented at a low level.

A pointer variable is declared as a pointer to type. A pointer can 
be initialized by or assigned from the address of any variable of the 
declared type or from another pointer of the same type. To declare 
a pointer to type we use the asterisk symbol, *, after the type name. 
For example,

int * ptr_int;

declares a pointer to an integer variable.

The space around the * is unimportant to the complier but is 
potentially important to the reader. Although it seems a petty, where 
to place the white space around the pointer operator is a contentious 
issue among programmers. Does the symbol belong to the type dec-
laration or does it belong to the variable identifier? We will opt for 
treating the pointer symbol like a binary operator, whereby the type 
and the identifier are the “operands.” 

One pitfall to watch out for is declaring multiple pointers in a 
single statement. You might think that

int * first, second;

declares two pointers to integers called first and second. However, 
this is equivalent to declaring a pointer to an integer called first, and 
then declaring an integer variable called second. To declare second 
as a pointer to an integer on the same line as first you would need to 
prefix it with the asterisk. Hence, it is recommended to declare only 
a single pointer per line to avoid any confusion. Indeed, it is good 
practice to declare every variable on its own line. 

To manipulate pointers and their contents we have the fol-
lowing operators & and * (the asterisk has different behavior here 
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to that just described above). The & operator when used in front 
of a variable identifier gives the address in memory of that vari-
able, hence it is referred to as the address operator. The * opera-
tor when used in front of a pointer variable identifier returns the 
contents of the address; this is known as indirection or derefer-
encing. The * operator in this context is referred to as the deref-
erence operator or the contents operator. If you compile and 
run the following example program the output in both cases is 
“a = 3 b = 7.”

#include <iostream>

int main()
{
	 //initialise a and b to zero
	 int a {0}; 
	 int b {0};

	� //initialise pointers to a and b (address operator)
	 int * ptr_a {&a};
	 int * ptr_b {&b};

	� //assign values to a and b via their pointers
	 *ptr_a = 3; 
	 *ptr_b = 7;

	 std::cout << “Direct access:\n”;
	 std::cout << “ a = “ << a << “\n”;
	 std::cout << “ b = “ << b << “\n”;

	 std::cout << “Indirect access:\n”;
	 std::cout << “ a = “ << *ptr_a << “\n”;
	 std::cout << “ b = “ << *ptr_b << “\n”;

	 return 0;
}
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Because pointers in C++ are strongly typed (that is they must 
be declared as pointing to a particular type), the complier and user 
can tell what type is being pointed at and hence what will be deref-
erenced. This contrasts with other languages that have un-typed or 
plain pointers that could point to anything and thus require more 
careful use. C/C++ does allow you to declare a pointer to void type, 
which is mainly used to allow the passing of arbitrarily sized data to 
functions (this is an advanced topic and can be avoided using object-
orientated methods).

In our code example, we have initialized the pointer when it was 
declared. This is good programming practice as any junk value given 
otherwise could be interpreted as a valid address anywhere in mem-
ory. This may lead to unforeseen consequences for your program if 
an attempt were made to dereference it.

In modern C++, you can initialize a null pointer with the 
nullptr type; this implies it points to nothing of relevance. How-
ever, be aware that a null pointer cannot be dereferenced, and 
attempting to do so will cause undefined behavior.

As a brief aside we mention basic or built-in arrays in C/C++ as 
they are relevant to the discussion on pointers. In C/C++, a closed 
pair of square braces following a variable name declaration identifies 
that variable as being an array of the type declared. For example,

int an_array[] = {2,4,8,16};

initializes an_array with 4 elements of the values specified. We can 
dereference an_array using the array access operator, [], with the 
index of the element we want to access placed in the brackets (index-
ing starts from zero). 

int first_element {an_array[0]}; // == 2 in our  
	 example

The variable identifier an_array is a pointer to the first ele-
ment in the array, such that the above statement is equivalent to:

int first_element {*an_array};
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It is important to know here that the elements of an array in  
C/C++ are stored in contiguous memory locations, that is, in an 
unbroken block of memory, such that we can access subsequent 
elements using pointer arithmetic. To illustrate, both the following 
statements result in the variable being initialized with the value 8:

int third_element {an_array[2]};
int third_element {*(an_array + 2)};

Hopefully, you agree that the array access operator is a more 
elegant means of dereferencing an array. It is of note that when an 
array argument is passed to a function, it “decays” into a pointer to 
the type stored in the array. 

Object-Orientated Programming (OOP)
Object-orientation bases its software model on behavioral, self-

contained constructs. Typically, these constructs have some corre-
spondence with real-world objects that often provide a logical start-
ing point to object-orientated development. Traditionally, structured 
programming methods have separated the data from the functional 
code that operates on it. The object-oriented approach is to group 
the data and functions within a single unit called an object. The class 
of an object is effectively its type: it is the description of what opera-
tions are available on objects of that type, how these methods are 
implemented, and how the internal state of objects is represented.

Encapsulation,  inheritance,  and  polymorphism  are often 
called the “Big Three” of object orientation. Encapsulation liter-
ally means “to put something within a capsule,” suggesting the close 
binding between data and the functions that act upon it. Informa-
tion hiding, or the masking of internal representation, is another 
important feature of encapsulation. It allows the representation of 
a concept to be modified without affecting the interface that uses 
it. Inheritance defines new classes of objects in terms of extend-
ing existing classes. It corresponds to an “is a” kind of relationship, 
rather than “has a” kind of relationship. Polymorphism allows inher-
iting classes to specialize in the behavior they have inherited. These 
concepts are discussed in greater detail in due course.
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C++ as an Object-Orientated Language
C++ is an object-orientated language. But what do we mean by 

object? An object is something tangible, something that can be seen 
or touched or felt, or something that can be alluded to, conceptual-
ized, thought about. Objects can be

●● Physical real-world concepts such as people, ATMs, smart 
phones, vehicles, etc.

●● More abstract concepts we find in the real world such as 
bank accounts, dates, derivatives, laws, etc.;

●● Interactive software abstractions such as windows, buttons, 
menus, etc.;

●● Programming language constructs such as strings, arrays, I/O 
streams, etc.

Many objects in the world can be grouped together by their 
properties and behaviors; we say they have a class. This class system 
typically has a hierarchy. For example, the Samsung Galaxy and the 
iPhone are both a class of smart phone. Smart phones belong to a 
larger class of mobile phones, which in turn belongs to an even larger 
class of communication technology. As another example, a Seat Ibiza 
and a Citroen C3 are both classed as Hatchbacks. Hatchbacks are 
cars, and cars are vehicles. As we go up the hierarchy the concept of 
the class becomes increasingly abstract. A vehicle, in general, gets 
you from A to B but the method by which it gets you there can vary 
wildly depending on the vehicle’s specific class; compare cars, ships, 
and planes, for example.

In C++, an object is a runtime instance of a class. There can be 
many objects of a single class and many classes within a program. 
But how does the language provide the class feature? The class 
keyword can be used to define a new data type, providing it with 
a name, a set of operations expressed as member functions, and 
an internal representation expressed as member data. We call this 
encapsulation. A class is typically defined in a header file that con-
stitutes a kind of contract with the user; it tells us what the class is 
and how we can operate with objects of that class. As an example, 
std::cout is an object of the output stream class ostream defined in 
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the iostream header file. We know we can use the operator >> with 
it to stream an output sequence to standard output, typically the ter-
minal, but it has many more member functions that can be used to 
affect its behavior. And that is the point of using objects within soft-
ware; interacting with them is completely defined by their behavior. 
The internal state representation of an object must exist but is not 
a consideration when interacting with the object. In other words, 
objects are what we can do with them rather than the parts that 
make them. As simple examples of this in the real-world think about 
pens and cars as objects. A pen has a “write” function. You as the 
user simply pick up the pen and write with it with no thought about 
how the pen implements putting ink on the paper. Similarly, a car 
has a “travel” function that gets you from A to B. Unless you are a 
car mechanic or mechanical engineer you likely have little idea of 
the car’s internal workings. 

We call the pen-write “function” or the car-travel “function” their 
interface or how we interact with them. The details of how those 
functions work are called the implementation. When writing appli-
cations, we are typically only interested in the interface of objects; 
usually referred to as the Application Programming Interface (API). 
However, if writing libraries for future and/or widespread use we 
will be concerned with the implementation details: algorithm cor-
rectness; computational efficiency; speed; memory optimization; 
storage concerns, and so on (as well as providing a clean and simple 
interface for application programmers). 

Simply put a class type can be split into two parts: the class defi-
nition serving as a contract to the user and the class implementation 
containing its functionality.

Class Definition 
The class definition is placed in a header file (.h or .hpp) and 

contains the class identifier (or type name) and its members that 
consist of data and function declarations, including constructors.

class SomeClass {
private:
		  //data members, internal representation
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public:
		  //the class constructor(s), initialisation
public:
		�  //member functions, class interaction or  

	 interface
};

The header file name is not required to match the class defini-
tion it contains (indeed a header file may contain several, different 
class definitions) but it is considered good practice to have a coher-
ent and consistent naming policy (and to have one class definition 
per header where appropriate).

The private section declares the data members that make up 
the internal representation of the class. Although data members can 
be declared public this goes against the idea of encapsulation and an 
object being responsible for its internal state. The public section(s) 
declares the constructors and member functions that can be used 
by client code; member functions can be declared private but are 
then only accessible through other member functions of the spe-
cific class. As an aside, member functions can generally be split into 
two types: query functions and modifier functions. Query functions 
simply return the current internal representation of an object for 
inspection. Modifier functions change the internal representation of 
an object in some way. 

The specifiers public and private may be repeated in the 
class definition, the order in which these sections occur is unimport-
ant (unimportant to the compiler but potentially important to a per-
son). It is my preference to put the representation details (private 
section) before the class user interface (public section) but this is 
not set in stone. So long as it follows a logical and readable format 
then the choice is yours. However, it pays to be consistent so once 
you have a preferred style you should stick to it. Please note that 
the default access to members of a class that is, if you do not specify 
one explicitly, is private. A third access specifier exists called pro-
tected. This is typically used in conjuncture with the inheritance 
feature of OOP in C++ and will be discussed shortly.
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When an object is initialized from a (poorly programmed) user-
defined class its initial state may be undefined. If the object is used 
later, then it may give undefined or meaningless behavior; the class is 
said to be not fully encapsulated. A constructor is a special member 
function that initializes an object automatically and, if professionally 
written, fully. Constructors have the same name as the class and no 
return type, not even void. You can think of the constructor as the 
initialization sequence for an object and we can provide different 
ways to initialize an object by overloading the constructor for a class. 
A constructor typically takes arguments that are used to initialize the 
classes’ data members. The default constructor will either take no 
arguments or have all arguments with default values, the overloaded 
variants will perhaps only take certain arguments. Take note that 
if you do not provide any constructors for a class the compiler will 
automatically generate a set for you. More on this later but of impor-
tance here is the automatically generated destructor. The destructor 
is a special member function that is called whenever an object of a 
class goes out-of-scope and serves to clean up the object fully. Typi-
cally, the automatically generated destructor is fit for purpose, and 
you rarely have to provide one explicitly. We will discuss destructors 
in more detail in the sections on inheritance and polymorphism.  

Member functions are declared in the same way as normal func-
tions but with some optional qualifiers. To illustrate let us create an 
example C++ class definition for the date and time:

class DateTime {
private: //data members
	 double _posix_time;
public: //constructors
	 DateTime();
	 DateTime(double posix_time);
	 DateTime(std::string date_time);
	 DateTime(int year, int day_in_year);
public: //member functions
	 std::string dateTimeString() const noexcept;
	 void incrementTime(double amount = 1.0) noexcept;
};
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The date and time can be represented by a single floating-point 
number that tells us the number of seconds that have passed since 
a well-defined point in time. POSIX time represents the number of 
seconds that have passed since The (Unix) Epoch, namely midnight 
on January 1, 1970. This is the internal representation of our Date-
Time class, or at least that is the intention. The interface also tells 
us there are four ways to initialize a DateTime object. The default 
constructor (no parameters), a constructor that accepts an argument 
of double type, another that accepts an argument of std::string 
type, and a final constructor that accepts two int type arguments. 
How these constructors are implemented is not yet relevant to 
the discussion. Finally, the interface tells us what we can do with 
objects of our DateTime class, the member function declarations. 
First a member function, dateTimeString, accepts no arguments 
and returns a std::string object, presumably a string representation 
of the _posix_time data member but this is an implementation 
detail. And a second member function, incrementTime, can accept 
a double type argument that presumably increases the internal rep-
resentation of the POSIX time by the value of the argument, again 
an implementation detail. Notice that a class definition is a state-
ment so must be terminated by a semicolon.

The qualifying keywords const and noexcept that follow the 
member function declarations in our DateTime class inform the 
user (and the compiler) about the implementation of those functions 
in general. First, const tells the user that the member function 
does not modify the internal representation of the object, the data 
members are unaffected by a call to this function. Typically, const 
member functions are query functions. Objects and references to 
objects declared const can only call const member functions. 
This is logical. Any member function not declared const is consid-
ered a modifier function and a const object cannot be changed; its 
internal representation must remain constant. An attempt to call a 
non-const member function on an object or reference to an object 
declared const will result in a complier error. It is more than a pro-
gramming convention as it is both useful to the complier that checks 
the code and the human programmer who uses the code. Appropri-
ate use of const is a good habit to acquire. Second, noexcept is 
used to tell the user that the member function is guaranteed not to 
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throw an exception during its operation. The compiler can also use 
this information to apply certain optimizations when a noexcept 
member function is called.

A member function may be overloaded on const. That is, you 
can have two member functions that have identical prototypes except 
for the const qualifier. The const version will be called for objects 
declared const and the other version for modifiable objects. An 
example of this can be seen in the std::vector class where the array 
access operator (operator[]) is overloaded on the const qualifier 
to provide read and write versions of that operator. 

Class Implementation
The class implementation is placed in a source file (.cpp, .cxx) 

that includes the class definition file (.h, .hpp). The naming of this 
source file is flexible, but it is logical to match the name of the header 
file containing the class definition. The implementation file contains 
the constructor definitions and member  function definitions that 
will be compiled into machine code. For a client to use the class 
they must include the class definition header file in their code and 
link in the complied implementation code. 

Where the class definition provides an interface that a class user 
can include and use, the class implementer plays a different role, 
that of the supplier of functionality. In addition to defining the bod-
ies of the member functions declared for use on objects of a class, 
the class implementer must also be aware of object identity and ini-
tialization issues.

Let us return to our DateTime example class to see how we 
write these definitions in practice:

//constructors
DateTime::DateTime() : _posix_time(0.0) {}
DateTime::DateTime(double posix_time) : _posix_ 
	 time(posix_time) {}
DateTime::DateTime(std::string date_time) : _posix_ 
	 time(0.0) {
	 //code to convert date_time to _posix_time
}
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DateTime::DateTime(int year, int day_in_year) : _ 
	 posix_time(0.0) {
	 //code to convert year and day_in_year to _posix_ 
	    time
}
//member functions
std::string DateTime::dateTimeString() const {
	 //code to convert _posix_time to string and  
	   return result
}
void DateTime::incrementTime(double amount) {
	 //code to increment _posix_time by amount
}

Constructor definitions are written using the class scope opera-
tor, which is the class name followed by a double colon, followed by 
the constructor “signature,” which consists of the class name and 
parameter list in parentheses. The member initializer list provides 
an elegant means for passing initial values to data members; the list 
starts with a colon (referred to as the delegation operator) and is 
a comma separated for multiple data members. The members are 
initialized with the values in parentheses. For multiple data mem-
bers, regardless of the order of the members in the list, initialization 
occurs in the order they were declared in the class definition. In our 
default constructor for the DateTime class, the member initializa-
tion list simply initializes the data member, _posix_time, to zero. 
The constructor is completed by providing the constructor body, 
delimited by curly braces. Quite often the body will contain no code 
because the object can be completely initialized by the member ini-
tialization list. It is important to know that an object is not actually 
created until the end of the constructor body is reached. This is a 
language feature and avoids partial objects from existing; either the 
object is created, or it is not. It does not guarantee that a partially ini-
tialized object could exist, it is up to the person who wrote the class 
implementation to completely initialize an object. When data mem-
bers cannot be directly initialized in the member initialization list, 
we must use the constructor body. In this case, it is considered good 
practice to initialize the data member with some “default” value in 
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the initialization list. Technically, the data member is not initialized 
in the constructor body but assigned some value. We generally do 
not have to be concerned with this distinction, but it is something 
to be aware of. For example, a member initializer must be present 
for any data members that are declared const, or that cannot be 
reassigned at a later point, as this is the only opportunity to initialize 
them. If the code in the constructor body throws an exception or 
exits abnormally in any way, the object is not created; running code 
must reach the closing curly brace and return to the calling environ-
ment for an object to be created.

Member function definitions are like normal (global) function 
definitions, with the addition of class scope and the ability to access 
other class members. The class scope resolution operator must 
be used for member function definitions otherwise the compiler 
assumes the function is global (normal). If declaring a const mem-
ber function in the class definition, then the const keyword must 
also be included in the function definition after the parameter list as 
this forms part of the function signature. The noexcept qualifier is 
not required in the function definition.

Automatically Generated Constructors and Operators
In modern C++, the compiler automatically generates the 

default constructor, copy constructor, copy assignment operator, 
move constructor, move assignment operator, and destructor for a 
type if they have not been explicitly defined by the programmer. 
These functions are known as the special member functions. 

Automatic generation of special member functions is convenient 
for simple classes, but complex classes often define one or more of 
these functions, and this can prevent other special member func-
tions from being automatically generated. There are several rules to 
bear in mind if explicitly providing definitions of the special member 
functions:

●● The default constructor is auto-generated if there is no user-
declared constructor (of any kind).

●● The copy constructor is auto-generated if there is no user-
declared move constructor or move assignment operator.
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●● The copy assignment operator is auto-generated if there 
is no user-declared move constructor or move assignment 
operator.

●● The destructor is auto-generated if there is no user-declared 
destructor.

●● The move constructor is auto-generated if there is no user-
declared copy constructor, copy assignment operator or 
destructor, and if the generated move constructor is valid.

●● The move assignment operator is auto-generated if there is 
no user-declared copy constructor, copy assignment operator 
or destructor, and if the generated move assignment operator 
is valid.

As a rule of thumb if you explicitly declare any of these special 
member functions, save perhaps the default constructor, then you 
should explicitly declare the others. Note also that we emphasize 
the word declare. In general, you probably will not have to define 
these functions because C++11 (and upwards) specifies the use of 
the keywords default and delete in conjunction with these spe-
cial member functions (and indeed any other member functions).

As ever an example of this feature is illustrative. Here we just 
show you the syntax for the various functions we have not discussed. 

class Demo {
private:
	 //internal representation
public:
	 ~Demo(); //destructor
	 Demo() = default; //default constructor
	 Demo(Demo&) = delete; //copy constructor
	� Demo& operator=(Demo&) = delete; //copy assignment
	 Demo(Demo&&) = default; //move constructor
	� Demo& operator=(Demo&&) = default; //move  

	 assignment
public:
	 //member functions
};
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Here we imagine that the Demo class requires an explicit 
destructor to be declared and defined because it requires additional 
functionality that the auto-generated destructor cannot provide. In 
this case, we would not get an auto-generated default constructor 
because the compiler assumes that if the auto-generated destructor 
is not adequate then neither is the auto-generated default construc-
tor. However, we know that in fact the auto-generated default con-
structor is fine for this class so we can reinstate it using the default 
keyword. For whatever reason, we want to prevent objects of this 
class from being copied. With only a destructor and default con-
structor declared we would still get the auto-generated copy spe-
cial members. We must remove them by explicitly declaring them 
with the delete keyword. For yet another reason we would like 
objects of this class to be moveable. As we have declared an explicit 
destructor the auto-generated move functions are no longer sup-
plied. However, just like the default constructor, we are happy that 
the auto-generated move functions are adequate, so we reinstate 
them using the default keyword.

Using Objects
The simplest way to create an object is to declare it as a variable. 

In this case, the type of the variable is the class name and the vari-
able itself is the object. Remember to include the relevant header 
file that contains the class definition in your code. We say that an 
object is an instance of its class.

DateTime posix_epoch; //uses default constructor
std::cout << “The Epoch: ” << posix_epoch.date 
	 TimeString();

Once created an object of a class may be manipulated via its 
public interface, with public member functions being accessed using 
the dot operator. When an object is used indirectly via a pointer the 
member access operator, operator->, must be used instead. 

void someFunction(DateTime * date_time_ptr) {
	 Date_time_ptr->incrementTime(5.0);
}
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Behavior, state, and identity are three defining aspects of an 
object. The first two have been covered in our discussion of mem-
ber functions (behavior) and data members (state). The last express 
the idea that one object is distinct from another. The simplest way 
to handle object identity in C++ is by the (memory) address of the 
object. This will be a unique number for the object and distinct from 
other objects. This is how we can get a handle on the object’s iden-
tity outside of the object itself but what about inside the object? 
What happens when the program is executing a member function? 
To answer these questions, we note that each member function has a 
pointer parameter that is implicitly present. The this pointer points 
to the object on which the member function is being called. When 
a member function is called on an object, the address of that object 
is automatically passed to the function. This can be thought of as a 
hidden or silent first argument to the member function. The this 
pointer is not normally used by the programmer but can be referred 
to explicitly when needed. In essence, an object is aware of its own 
address in memory through the this pointer.

Inheritance
We have discussed previously that objects in the real world can 

be grouped together by their properties and behaviors, and those 
classification systems have a hierarchy. Typically, the class at the top 
of the hierarchy is the most abstract of the system, and the class at 
the bottom is the most specific. For instance, the animal kingdom 
is a hierarchical class system. The term animal is the most abstract 
concept. Based on certain properties and behaviors animals can be 
categorized into more specific groups: mammals, fish, birds, rep-
tiles, amphibians, and insects. Those groups can be further sepa-
rated into even more specific groups, for example, dogs, cats, cows, 
dolphins, bats, humans all fall under the category of mammal. And 
again, we can split those into more specific types; dogs can be Ter-
riers, or Spaniels, or Retrievers, or Labradors, and the list goes on. 
The point here is the hierarchy tree: A Terrier is a dog, a dog is a 
mammal, and a mammal is an animal. 

Somebody once said that abstraction is like selective ignorance; 
you discard the specifics and focus on generalities. Abstraction is a 
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good thing as it allows a look at the bigger picture without getting 
bogged down in the details. The hard part is implementing abstrac-
tion while allowing lower levels to still be efficient and accessible 
where necessary.

C++ attempts to reflect the ideas of class hierarchy, and abstrac-
tion, through the concepts of inheritance and polymorphism. A base 
class is (typically) the highest, and therefore the most abstract class. 
We derive sub-classes from base classes that fill in the specifics of 
what that derived class is meant to do. Typically, we refer to this 
structure as base class and derived class, but it can also be known as 
super-class and sub-class. C++ supports multiple inheritances, that 
is, having more than one base class per derived class, as well as mul-
tiple levels of inheritance; a derived class can be a base class, the 
derived class of which can be another base class, and so on. If we go 
back to our example of the animal class system and we could have 
categorized animals based on their diet, carnivores only eat meat, 
herbivores only eat plants, and omnivores eat anything. A Terrier for 
example is a dog, which is a mammal, but it is also a carnivore.

As a demonstrative example in C++ let us think about two-
dimensional shapes. In general, a 2D shape has a width, and a 
height. They also have an area and a perimeter. It has these prop-
erties regardless of the details of the shape; the shape could be a 
polygon, circle, or random squiggle. Though a random squiggle can-
not be defined in terms of its width and height alone, they would 
probably define the “bounding-box” of the squiggle. This gives us a 
starting point to define a shape base class in C++ based on its math-
ematical properties:

//Shape2D definition – e.g. in shape_2d.h
class Shape2D {
protected:
	 double _width;
	 double _height;
	 std::string _name;
public:
	� Shape2D(double w, double h, std::string name =  

	 “Rectangle”);
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public: 
	 double area() const;
	 double perimeter() const;
};
//Shape2D implementation – e.g. in shape_2d.cpp
�Shape2D::Shape2D(double width, double height,  
	 std::string name): 
	 _width(width), _height(height), _name(name) {} 

double Shape2D::area() const {
	 return _width * _height;
}

double Shape2D::perimeter() const {
	 return 2 * (_width + _height); 
}

The Shape2D class requires two double data members, one for 
width, and the other for height. For convenience, we also include a 
std::string data member to record the name of the shape. We also 
give it two member functions, one to compute the area of the shape, 
and the other to compute its perimeter. We assume the shape base 
class takes the “simplest” form, that of a rectangle. Its area is then 
computed by the product of its width and height, and its perimeter 
by twice the sum of those values. 

To declare a class as being derived from another we use a single 
colon after the derived class’ identifier followed by an access quali-
fier: public; private; or protected, and the base class we wish to 
use. We can declare multiple base classes using a comma-separated 
list; each base class requires its own access qualifier. A derived class 
will inherit any members of the base class that are not specified as 
being private, that is, a derived class does not have (direct) access 
to its base class private members (access could be indirect via 
public or protected member functions in the base class if they 
exist). When we inherit from a class via public access anything that 
is public in the base class becomes public in the derived class and 
anything that is protected in the base class becomes protected 
in the derived class. When we inherit from a base class via private 
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access, both public and protected members of the base class 
become private members of the derived class. And when deriving 
a class via protected access, public and protected members 
of the base class become protected in the derived class. In the 
majority of use cases, public inheritance is the appropriate method 
to employ.

Getting back to our example, with the Shape2D base class 
defined we can then design derived classes for more specific shapes. 
The square, for example, is the case where the height and width of 
the base shape are equal.

//Square definition 
class Square : public Shape2D {
public:
	 Square(double side);
};
//Square Implementation
�Square::Square(double s) : Shape2D(s, s, “Square”) {}

We declare the Square class as having public inheritance 
from the Shape2D class. The constructor for the Square takes just 
one argument that specifies the length of a side. The Square class 
does not need to declare the data members that represent width 
and height as it inherits these from the Shape2D base class. The 
Square class also inherits the base class functions that compute the 
area and perimeter of the shape. It does not need to redefine these 
functions as they already compute the correct values. When we 
implement the constructor for the Square class, we use the mem-
ber initialization list syntax but the first “member” that we initialize 
is the base class itself. We do this by calling the base class construc-
tor with the required arguments. Professionally written C++ code 
will always construct the base class first before initializing any data 
members of the derived class. This reflects the philosophy (or is it 
practicality) that we build a house up from the foundations, rather 
than down from the roof. Note that the (default) destructor will then 
“tear down” the derived class from the roof down to its foundations. 
It will clean up any data members in the derived class before calling 
the destructor for the base class. You could of course provide your 
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own definition for the destructor that changes this order, but this is 
not recommended.

We can also derive a circle class from the shape base class. Like 
the square class, we would like a constructor that takes one argu-
ment, but in this case, the parameter specifies the radius of the cir-
cle. We must also provide new declarations and definitions for the 
functions that compute the area and perimeter, as these are now 
different from the base class. 

//Circle definition
class Circle : public Shape2D{
public:
	 Circle(double radius);
public:
	 double area() const;
	 double perimeter() const;
};
//Circle implementation – width and height are diameter
circle::circle( double r ) : shape(2*r, 2*r, “Circle”) {}

double circle::area() const {
	 return PI * _width * _width / 4.; 
}

double circle::perimeter() const {
	 return PI * _width;
}

By specifying new area and perimeter functions for the Cir-
cle class we hide or shadow those inherited from the base class. 
When an object of Circle type calls a member function, the com-
piler checks the most local namespace first, that is, the Circle class 
name, for a match and uses the function found there. Whereas, with 
the Square class the compiler will not find a match within the local 
class namespace and so searches the base class Shape2D for that 
member function. If a match cannot be found in the base class, this 
is then flagged as an error by the compiler.
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A triangle seems such a simple shape. It consists of three straight 
lines that connect at three vertices. But we have a problem. Our gen-
eral shape class has a width and a height that defines a rectangular 
border. Even with the constraint that the triangle’s base edge runs 
along the bottom border of the rectangle, there remains an infinite 
number of triangles that will fit this rectangle. While this does not 
affect the computation for the area of the triangle, which is always 
one-half base times height, it does affect the calculation for the 
perimeter. How might you go about designing a Triangle class (or 
classes) using the Shape2D class as a base?

Of course, our initial design for an abstract base shape class may 
not be optimal. Readers that have looked at graphical programming 
(with OpenGL or DirectX, for example) will know that a shape can 
be described as a collection of vertices, points in either a two- or 
three-dimensional space. These vertices are implicitly connected by 
straight lines and three or more vertices connect to form a loop that 
describes a face of the shape. For example, a cube is a collection of 
eight vertices that are connected to form six square faces. In this 
way, a shape is an array of vertices or points with a corresponding 
description of how these vertices are joined together to form the 
shape.

As a final thought on inheritance, see it as a “is a” relationship 
rather than a “has a” relationship; a derived class type is its base 
class type. Also, consider whether the “is a” relationship is appropri-
ate. For example, a car is a vehicle, but it has various components, 
wheels, an engine, a chassis, seats, and so on. Let us say we had a 
class representing an engine, it most certainly should not be a base 
class for a car class and equally not be derived from a car class. A car 
is not an engine, an engine is not a car, rather a car has an engine. 
While this relationship is obvious in this contrived example it might 
be more subtle when designing more abstract concepts in code. 

Polymorphism
It essentially means that you can change the behavior of a class 

via the same pointer or reference to its base type. This allows us 
to set up standard containers (vectors, lists, etc.) with pointers (or 
references) to the same (base) type, but where each element may 
have different behavior depending on the complete derived type to 
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which they point. It also allows us to write general functions that 
take base class pointers or references that change behavior depend-
ing on the complete derived class to which they point or refer. With-
out polymorphism, we would have to provide overloaded variants of 
the same function for each derived class. With polymorphism, we 
can provide a single function that takes a pointer or reference to the 
base class and that works for all derived classes.

To provide polymorphism in our classes C++ uses the key-
word  virtual. In our inheritance example, the base Shape2D 
class provides an area and perimeter function that is inherited by 
the derived classes. Typically, we shadow these base class functions 
by declaring the same functions within the derived class. When we 
instantiate a direct object of a derived class and use the member 
functions from this object, it is those functions that are declared in 
the derived class that is called. However, if we have indirect access 
to an object via a pointer or reference to its base class, it is the base 
class versions of the member functions that are called.

To make the Shape2D class polymorphic we should declare the 
member functions in the base class virtual. 

//Shape2D definition – e.g. in shape_2d.h
class Shape2D {
protected:
	 double _width;
	 double _height;
	 std::string _name;
public:
	� Shape2D(double w, double h, std::string name  

	 = “Rectangle”);
public: 
	 virtual double area() const;
	 virtual double perimeter() const;
};

This is all that is required to make the Shape2D base class poly-
morphic. Derived classes that provide their own definitions of the 
base class member functions need to add the override attribute at 
the end of the member function declaration in the class definition.
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//Circle definition
class Circle : public Shape2D{
public:
	 Circle(double radius);
public:
	 double area() const override;
	 double perimeter() const override;
};

The override keyword tells both the compiler and the human 
programmer that the derived class is providing a different definition 
for the member function, and it is this definition that should be used 
when indirectly accessing an object via a pointer or reference to its 
base. Note that the override keyword is not required when writing 
the member function implementation.

Sometimes we may want to create a base class that should not 
have any concrete objects of the base class constructed. For exam-
ple, we may want to make the shape class from our discussion above 
an abstract base class because the concept of a shape is abstract.

To give another example let us say we are trying to build a role-
playing game. One part of the game is that the player character can 
pick up, use, and discard items within the game world. The items 
could be weapons, armor, potions, food, trinkets, or any other item 
we would like. The hero should be able to store these items in a 
backpack, a literal container. Clearly, we need a base class to repre-
sent the items in the game world, but the concept of an item is an 
abstract one. We certainly would not want to create an item object 
directly; what would that mean?

To make an abstract base class in C++ we provide the class 
with what is called a pure virtual function. A pure virtual function 
has no definition within the base class. The syntax to set up a pure 
virtual function is

virtual return-type identifier(argument-list)  
	 [attributes] = 0;
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The equals zero at the end of the virtual function declaration 
reads that this function has no implementation in the base class, and 
as such makes the base class abstract. You will not be able to make 
direct instances of this class as this function has no definition; the 
class is incomplete.  For consistency, we should make the access qual-
ifier for the constructor(s) of an abstract base class protected. This 
also has the effect of preventing direct instances of the class being 
created, the compiler will complain if you try, but allows derived 
classes (with public or protected inheritance) to use the base 
constructor in their initialization list. We can only refer to the base 
class via indirect methods, that is, pointers and references. Every 
concrete derived class of an abstract base class is required to declare 
and define an override for the pure virtual function as this then 
completes the class definition. If the derived class is itself abstract, 
either via its own pure virtual function or protected constructor it 
does not need to provide an override. 

As a rule of thumb, a base class with at least one pure virtual 
member function should provide a virtual destructor. This ensures 
entire objects, including the abstract base class, are cleaned up when 
they are destroyed (go out-of-scope).

The header and source files cpp_primer.h and cpp_primer.cpp, 
found at the GitHub page github.com/DJWalker42/laserRacoon, 
show a practical example of how to write a class hierarchy with poly-
morphism in C++. These files also contain examples of many of the 
major features of modern C++ language, some of which we have not 
discussed here, including smart pointers and lambda expressions, so 
we urge you to study the content within. We also urge you to edit 
those files, play with the code, change it, and add it to so you have 
a thorough understanding of both the code’s syntax and semantics. 
The source code can be compiled with:

g++ -std=c++11 cpp_primer.cpp -o cpp_primer.
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number representation and 
precision

binary format, 20
integer values, 20
mantissa, 22, 23
pseudo code, 23–24

software
guidelines, 18–19
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automatically generated 
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class implementation, 319-321
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command-line compilation,  

279-284
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function overloading,  

305-306
inline functions, 308-309
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encapsulation, 313
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primitive types, 286

Crank-Nicolson method, 183–184
C shell (tcsh), 3
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Millikan’s experiment, 50–53
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positive and negative 
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Van der Pol oscillator,  
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Finite difference methods (FDM)
difference formulas

application of, 168–174
backward difference 

approximations, 166
central difference formula, 

166, 168
differential equation, 165
five-point formula, 167
forward difference 

approximation, 166
multi-step formula, 167
Runge-Kutta method, 167
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199–200

Finite square well
regions, 69–71
Schrödinger equation, 70
wavefunction, 71, 72

Firmware. See Hardware
Fletcher’s experiment, 51
Forward integration, 244, 245
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Fourier series

coefficients of, 120
Dirichlet’s theorem, 124
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Fourier transforms
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Fourier integral, 124
momentum-space, 126
non-periodic function, 124
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Gaussian Elimination (GE), 49
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217–219
Gauss-Legendre quadrature

Legendre polynomials, 213
positive definite, 210
programming, 214–217
quotient polynomial, 211
weights and abscissas, 211

Gauss-Seidel scheme, 172, 173
Graphical processing unit (GPU), 
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Gustafson’s law, 271, 272
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Halley’s Comet, 235–237
Hard disk drive, 255, 256
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CPU, 16
input and output devices, 17
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Heat equation
Dirichlet boundaries
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explicit method, 180–181
general finite difference 

method, 184–190
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Neumann boundaries, 190–193
steady state heat equation, 
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Schrodinger’s equation, 66
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n ordered polynomial 
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Jacobi scheme, 171, 172, 173
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Kepler’s third law, 239
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LAPACK, 50
linear least squares, 48

Mid-ordinate rule, 82–83
Millikan’s experiment, 50–53
Monte Carlo integration

advantage, 146
dart throwing

Pythagorean theorem, 139
random number, 139
shooting method, 137
single integration, 142
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143
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146–148

multidimensional integration, 
144
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Monte Carlo simulations
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uniform distribution, 152, 153

Multidimensional integration, 
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Namespaces, 8
Newton-Raphson method, 58–60, 

215, 216
Non-linear equations, 52
Null matrix, 28
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85–86
multidimensional integration, 

90–93
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Simpson’s rule, 84–85
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Oil drop experiment, 50
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solving 1st order ODEs
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Partial differential equations 
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boundary conditions, type of
Cauchy boundary condition, 

163–164
Dirichlet conditions, 163
mixed boundary conditions, 

164
Neumann conditions, 163
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FDM (see Finite difference 

methods (FDM))
FEM, 199–200
numerical methods

heat equation (see Heat 
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wave equation, 196–199
Poisson’s equation, 161
Richardson extrapolation

central difference formula, 
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error behavior, 174-176
round off error issues, 178
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Polynomial interpolation
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n ordered polynomial 

interpolation, 40, 41
symmetrical form, 39

Pythagorean theorem, 139
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Random access memory (RAM), 
17, 255, 256, 257

Region of interest (ROI), 64
Residual norm, 52
Richardson extrapolation

central difference formula,  
176, 177

error behavior, 174-176
round off error issues, 178

trapezoidal rule, 177
Root-finding algorithm

bisection method, 56–58
even and odd parity states, 74
Newton-Raphson method, 58–60
Planck’s constant, 73
Secant method, 60–62
tangent function, 74
wavefunctions and probability 
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Runge-kutta-fehlberg

higher ordered method, 222
intermediary function 

evaluations, 223
lower ordered method, 222

Runge-Kutta method, 104–107
Runtime errors, 11
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Schrodinger’s equation, 66, 70, 245
Scope resolution operator, 8
Secant method, 60–62
Sequence acceleration method, 174
Shooting method, 137
Simple Euler method, 99–102
Simple harmonic motion (SHM), 

96
Simple pendulum

finite amplitude, 231–233
utter chaos, 233–235

Simple quadrature
mid-ordinate rule, 82–83
Simpson’s rule, 84–85
trapezoidal rule, 83–84

Simpson rule, 84–85, 106, 205
Software

guidelines, 18–19
Linux, 18

Solving 2nd ordered ODES
coupled 1st order ODEs

component vectors, 109
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Newton’s second law of 
motion, 109

pair of, 109
one dimension, 116–117
oscillatory motion

driving force, 115, 116
numerical solution, 112
SHM, 111, 112
steady-state region, 116
transient region, 116

Solving 1st order ODEs
adaptive Runge-Kutta, 107–108
modified and improved Euler 

methods, 103–105
Runge-Kutta method, 105–107
simple Euler method, 99–103

Spectral analysis. See Fourier 
analysis

Spherical coordinate system, 151

Special member functions, 321
Steady state heat equation,  

193–196
Strassen’s algorithm, 262
Successive Over-Relaxation (SOR), 

174
Symmetrical form, 37

T

Taylor polynomial, 25
Trapezoidal rule, 83–84, 144, 146

V

Van der Pol oscillator
FFT, 228–230
non-linear differential equation, 

227
phase space, 227–228
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