

Computational
Physics

Computational Physics.FM.2pp.indd 1Computational Physics.FM.2pp.indd 1 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license
grants permission to use the contents contained herein, but does not give
you the right of ownership to any of the textual content in the book or own-
ership to any of the information or products contained in it. This license
does not permit uploading of the Work onto the Internet or on a network
(of any kind) without the written consent of the Publisher. Duplication or
dissemination of any text, code, simulations, images, etc. contained herein
is limited to and subject to licensing terms for the respective products, and
permission must be obtained from the Publisher or the owner of the con-
tent, etc., in order to reproduce or network any portion of the textual mate-
rial (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and any-
one involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”),
and any accompanying Web site or software of the Work, cannot and do
not warrant the performance or results that might be obtained by using
the contents of the Work. The author, developers, and the Publisher have
used their best efforts to insure the accuracy and functionality of the textual
material and/or programs contained in this package; we, however, make
no warranty of any kind, express or implied, regarding the performance
of these contents or programs. The Work is sold “as is” without warranty
(except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content,
and anyone involved in the composition, production, and manufacturing of
this work will not be liable for damages of any kind arising out of the use of
(or the inability to use) the algorithms, source code, computer programs,
or textual material contained in this publication. This includes, but is not
limited to, loss of revenue or profit, or other incidental, physical, or conse-
quential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book, and only at the discretion of the Publisher. The
use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

Computational Physics.FM.2pp.indd 2Computational Physics.FM.2pp.indd 2 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

Computational
Physics

Second Edition

Darren J. Walker

MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts

New Delhi

Computational Physics.FM.2pp.indd 3Computational Physics.FM.2pp.indd 3 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

Copyright ©2022 by Mercury Learning And Information LLC. All rights reserved.

Original title and copyright: Computational Physics: An Undergraduate’s Guide,
2/E. Copyright ©2021 by D.J. Walker. All rights reserved. Published by Pantaneto
Press.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

D. J. Walker. Computational Physics, Second Edition.
ISBN: 978-1-68392-832-4

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021953014

222324321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. The sole obligation of Mercury Learning and Information to the
purchaser is to replace the book or disc, based on defective materials or faulty work-
manship, but not based on the operation or functionality of the product.

Computational Physics.FM.2pp.indd 4Computational Physics.FM.2pp.indd 4 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

To Charlotte

Computational Physics.FM.2pp.indd 5Computational Physics.FM.2pp.indd 5 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

Computational Physics.FM.2pp.indd 6Computational Physics.FM.2pp.indd 6 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

Contents

Chapter 1:	 Introduction� 1
1.1	 Getting Started with Coding� 1
1.2	� Getting To Know The Linux Command Line� 3
1.3	 Bonjour Tout Le Monde� 6
1.4	 The Rest of the Book � 12

Chapter 2:	 Getting Comfortable� 15
2.1	 Computers: What You Should Know� 15

2.1.1	 Hardware� 15
2.1.2	 Software� 17
2.1.3	� Number Representation and

Precision� 19
2.2	 Some Important Mathematics� 24

2.2.1	 Taylor Series� 25
2.2.2	 Matrices: A Brief Overview� 27

Exercises� 32

Chapter 3:	 Interpolation and Data Fitting� 35
3.1	 Interpolation� 35

3.1.1	 Linear Interpolation� 35
3.1.2	 Polynomial Interpolation� 38
3.1.2	 Cubic Spline� 43

3.2	 Data Fitting� 45
3.2.1	 Regression: Illustrative Example� 45
3.2.2	 Linear Least Squares: Matrix Form� 48
3.2.3	� Realistic Example: Millikan’s

Experiment� 50
Exercises� 53

Computational Physics.FM.2pp.indd 7Computational Physics.FM.2pp.indd 7 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

viii  •  Contents

Chapter 4:	 Searching for Roots� 55
4.1	 Finding Roots� 55

4.1.1	 Bisection� 56
4.1.2	 Newton–Raphson� 58
4.1.3	 Secant� 60

4.2	 Hybrid Methods� 62
4.2.1	 Bisection–Newton–Raphson� 62
4.2.2	 Brute Force Search� 64

4.3	 What’s The Point of Root Searching?� 65
4.3.1	 The Infinite Square Well� 65
4.3.2	 The Finite Square Well� 69
4.3.3	 Programming the Root Finder� 72

Exercises� 77

Chapter 5:	 Numerical Quadrature� 81
5.1	 Simple Quadrature� 82

5.1.1	 The Mid-Ordinate Rule� 82
5.1.2	 The Trapezoidal Rule� 83
5.1.3	 Simpson’s Rule� 84

5.2.	 Advanced Quadrature� 85
5.2.1	 Euler–Maclaurin Integration� 85
5.2.2	 Adaptive Quadrature� 86
5.2.3	 Multidimensional Integration� 90

Exercises� 93

Chapter 6:	 Ordinary Differential Equations� 95
6.1	� Classification of Differential Equations� 96

6.1.1	 Types of Differential Equations� 96
6.1.2	� Types of Solution and Initial

Conditions� 98
6.2	 Solving First-Order ODEs � 99

6.2.1	 Simple Euler Method� 99
6.2.2	� Modified and Improved Euler

Methods� 102
6.2.3	 The Runge–Kutta Method� 104
6.2.4	 Adaptive Runge–Kutta� 107

6.3	 Solving Second-Ordered ODEs� 108
6.3.1	 Coupled 1st Order ODEs� 108
6.3.2	 Oscillatory Motion� 110
6.3.3	 More Than One Dimension� 116

Exercises� 117

Computational Physics.FM.2pp.indd 8Computational Physics.FM.2pp.indd 8 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

Contents  •  ix

Chapter 7:	 Fourier Analysis� 119
7.1	 The Fourier Series� 120
7.2	 Fourier Transforms� 124
7.3	 The Discrete Fourier Transform� 127
7.4	 The Fast Fourier Transform� 129

7.4.1	 Brief History and Development� 129
7.4.2	 Implementation and Sampling� 130

Exercises� 135

Chapter 8:	 Monte Carlo Methods� 137
8.1	 Monte Carlo Integration � 137

8.1.1	 Dart Throwing� 137
8.1.2	� General Integration Using

Monte Carlo� 143
8.1.3	 Importance Sampling� 146

8.2	 Monte Carlo Simulations� 148
8.2.1	 Random Walk� 148
8.2.2	 Radioactive Decay� 154

Exercises� 156

Chapter 9:	 Partial Differential Equations� 159
9.1	� Classes, Boundary Values, and

Initial Conditions� 160
9.2	 Finite Difference Methods� 164

9.2.1	 Difference Formulas� 165
9.2.2	� Application of Difference

Formulas� 168
9.3	 Richardson Extrapolation� 174
9.4	 Numerical Methods to Solve PDEs� 178

9.4.1	� The Heat Equation with Dirichlet
Boundaries� 178

9.4.2	� The Heat Equation with
Neumann Boundaries� 190

9.4.3	 The Steady-State Heat Equation� 193
9.4.4	 The Wave Equation� 196

9.5	 Pointers To The Finite Element Method� 199
Exercises� 200

Chapter 10:	 Advanced Numerical Quadrature� 203
10.1	 General Quadrature� 203
10.2	 Orthogonal Polynomials� 207
10.3	 Gauss–Legendre Quadrature� 210

Computational Physics.FM.2pp.indd 9Computational Physics.FM.2pp.indd 9 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

x  •  Contents

10.4	 Programming Gauss–Legendre � 214
10.5	 Gauss–Laguerre Quadrature� 217
Exercises� 219

Chapter 11:	� Advanced ODE Solver and
Applications� 221
11.1	 Runge–Kutta–Fehlberg� 221
11.2	 Phase Space� 225
11.3	 Van Der Pol Oscillator� 227

11.3.1	 Van der Pol in Phase Space� 227
11.3.2	 Van der Pol FFT� 228

11.4	 The “Simple” Pendulum� 230
11.4.1	 Finite Amplitude� 231
11.4.2	 Utter Chaos?� 233

11.5	 Halley’s Comet� 235
11.6	 To Infinity and Beyond� 237
11.7	 To The Infinitesimal and Below� 242
Exercises� 247

Chapter 12:	 High-Performance Computing� 251
12.1	 Indexing and Blocking� 252

12.1.1	 Heap and Stack� 252
12.1.2	 Computer Memory� 255
12.1.3	 Loopy Indexing� 257
12.1.4	 Blocking� 259
12.1.5	 Loop Unrolling� 262

12.2	 Parallel Programming� 263
12.2.1	 Many (Hello) Worlds� 264
12.2.2	 Vector Summation� 266
12.2.3	� Overheads: Amdahl versus

Gustafson � 268
Exercises� 272

Bibliography� 275

Appendix: A Crash Course in C++ Programming� 279

Index� 333

Computational Physics.FM.2pp.indd 10Computational Physics.FM.2pp.indd 10 1/4/2022 11:31:59 AM1/4/2022 11:31:59 AM

CHAPTER 1
INTRODUCTION

Computational physics sits at the juncture of arguably three of
the cornerstone subjects of modern times, physics, mathematics,
and computer science. Many see it as sitting between theoretical
physics, where there is a focus on mathematics and rigorous proof,
and experimental physics, which is based on taking observations and
quantitative measurements. The computational physicist performs
numerical experimentation within the confines of the computer
environment, applying mathematics to both simulate and examine
complex models of physical systems. Just as the theoretician needs to
master analytical mathematics, the experimentalist requires a work-
ing knowledge of laboratory apparatus, so does the computational
physicist need to know about numerical analysis and computer pro-
gramming. Any of these skills require (significant) practice to master
but it is up to the physicist to know how to use them to interpret and,
ultimately, understand the physical universe.

1.1  GETTING STARTED WITH CODING

You need two things to produce a computer program:

1.	A text editor in which to write all your code in whatever
language you choose.

2.	A compiler to convert the code you have written into
machine language (binary executable).

Computational Physics.Ch1.2pp.indd 1Computational Physics.Ch1.2pp.indd 1 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

2  •  Computational Physics, 2/E

There are two methods by which you can write computer
programs. The first method is via command-line control whereby
you explicitly type in commands to compile a source code file written
in a text editor. The second method uses what is called an Integrated
Development Environment (IDE) that is essentially a compiler
and text editor wrapped up into one neat application, for example,
Microsoft’s Visual Studio. I would suggest trying out different text
editors and IDEs to discover what suits you best. If your university
uses Unix-based operating systems and you find it easier to code on
those machines but do not want to splash out either on a Unix based
machine (though the Raspberry Pi is reasonably priced) at home or
make your Windows PC dual-booting (it can run either a Unix OS
or Windows OS on one machine) an alternative is Cygwin. Cygwin
creates a Unix type feel on a Windows PC and it’s free to download
and install. Cygwin also comes with many different optional libraries
and programs that are extremely useful to scientific programming,
including the linear algebra package (LAPACK) library and Octave,
a free alternative to MATLAB. If you can get your hands on a stu-
dent version of MATLAB, I recommend you use it as it is a power-
ful programming tool and can be used to find quick programming
solutions to problems, or as a first step towards a solution. A further
alternative is to use a Virtual Machine.

For a list of freely available text editors just use your favorite
search engine. Emacs is a popular programming text editor and is
the default editor on most Unix-based machines; Cygwin also con-
tains the GNU version of Emacs. On Windows you could use Note-
pad, however, it does not have any of the functionality of text editors
specifically designed for coding. For example, programming lan-
guages have certain keywords reserved that have special meaning,
for example, if, for, and while to name but a few. Once written these
keywords are automatically distinguished from the rest of the text in
some way, different color, different font, bolded, and so on. In Note-
pad all you will get is the same black text on a white background,
which is not useful for reading and debugging the code you have
written. Notepad++ is a good (and free) programming text editor for
Windows that supports multiple languages.

If you prefer to use IDEs, there are a number available that are
free to use. Some of these only support one language, for example,

Computational Physics.Ch1.2pp.indd 2Computational Physics.Ch1.2pp.indd 2 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  3

Dev C++, whereas others support multiple languages, for example,
NetBeans, Code::Blocks or Eclipse. Microsoft do a “Community”
version of their Visual Studio IDE which is free to use, as is the argu-
ably more powerful Visual Studio Code.

Most of the code that accompanies this book has been written
using the C++ programming language (C++ 11 onwards), using the
Eclipse IDE for C/C++ Developers. I will not review the merits of
the different programming languages here as the differences only
really come into their own once you start to consider high-perfor-
mance computing, Web applications, game programming, or other
more specific applications. The basics of programming are suffi-
ciently covered using just one language. That said, please be aware
of different programming languages and how they can be used to
produce different applications. For a challenge, you could convert
the programs in this book into another language.

The next section gives a crash course in using the Linux com-
mand line.

1.2 � GETTING TO KNOW THE LINUX
COMMAND LINE

On modern operating systems a terminal emulator is a program
that allows the use of the terminal in a graphical interface. In a Linux
system, the shell is a command-line interface that interprets the
user’s commands and passes them on to the underlying operating
system. There are several shells in current use, such as the Bourne-
Again shell (bash) or The C shell (tcsh), and each has its own set of
features and operations, but all provide a means to interact with the
machine.

When you open a new terminal emulator window the command
prompt will be at the home directory (synonymous with “Folder”
on Windows) of the current user. The information displayed in the
command prompt is customizable by the user but typically consist of
the user’s username, the host machine name, the current directory,
and is ended by the prompt symbol. For an example of what this
looks like please see Figure 1.1 that shows a macOS terminal.

Computational Physics.Ch1.2pp.indd 3Computational Physics.Ch1.2pp.indd 3 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

4  •  Computational Physics, 2/E

FIGURE 1.1:  Example of a Linux terminal emulator.

Commands can be issued after the command prompt by typing
the name of an executable file, which can be a binary program or
a script. There are many standard commands that are installed as
default with the operating system that allows for system configu-
ration, file system navigation, creation of new directories and files,
installing third party programs, among other operations.

A useful command to start off with is pwd. It displays the full
path to the current, working directory and can be useful if we ever
get lost in the directory structure. The ls command will list, on the
terminal, all the files and subdirectories of the current directory.
Commands can also take arguments and options (or flags) that can
affect their behavior. For instance, ls -l will nicely format the files
and subdirectories with additional information such as attributes,
permissions, sizes, and modification dates. The cd command is typi-
cally passed an argument of the directory to which we would like
to navigate. For example, cd foo/bar will navigate to the subdirec-
tory bar of the directory foo, assuming foo is a subdirectory of the
current directory. The command cd alone will navigate us back to
the user’s home directory. The Linux file system has two symbols
reserved to represent the current directory and the parent directory

Computational Physics.Ch1.2pp.indd 4Computational Physics.Ch1.2pp.indd 4 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  5

namely “.” and “..,” respectively. Issuing cd . does not do much but
cd .. will take us up one level into the parent directory. Using our
example if we were in the bar subdirectory and we issued cd .. our
current directory would now be foo. All these commands and more
can be found on the infamous Linux Man pages (linux.die.net/man/
or man7.org/linux/man-pages/index.html) that outline all the pos-
sible options and arguments for these commands take. The man
pages are daunting at first but once you learn how to read them
offer a particularly useful resource when discovering or reusing
various Linux commands.

The following table summarizes some of the more common
commands you will likely use:

Command Examples of use

mkdir mkdir foo
creates a directory called foo in the current directory

mkdir foo/bar
creates a directory called bar in the directory foo

cd cd
changes the current directory to the home directory

cd bar
changes the current directory to subdirectory bar

cd ..
changes the current directory to one level up

rmdir rmdir foo/bar
removes directory bar from directory foo, if bar is empty

ls ls
lists directories and files in current directory

ls foo
lists the directories and files in subdirectory foo

pwd pwd
displays current location within the tree

touch touch foo.log
if foo.log does not exist creates file “foo.log” in the current
directory, else modifies the file’s timestamps

rm rm foo.log
deletes the file “foo.log” in the current directory

Computational Physics.Ch1.2pp.indd 5Computational Physics.Ch1.2pp.indd 5 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

6  •  Computational Physics, 2/E

1.3  BONJOUR TOUT LE MONDE

This section explains the basics of C++ syntax and structure. If
you are already familiar with the C++ language, then please skip this
section. A more in-depth introduction to the C++ language can be
found in the Appendix.

The Hello World program is typically the first one that anyone
learning a programming language gets to write. It gives us the basic
syntax of a particular language and how to output something to the
terminal or console. To begin let us first create a suitable directory
structure to hold our code. Start by creating a “root” directory for
our project called CompPhys in your home directory. Change into
our newly created directory and create a subdirectory called Hello-
World. Change into that directory and create the file helloworld.cpp.
We now want to edit that file to fill it with the ground-breaking code
for our hello world program.

Open the helloworld.cpp file in your text editor (or IDE) of
choice and type the following:

// Helloworld program – displays message on stdout
#include <iostream>
int main () {
	 std::cout << “Hello World” << std::endl;
	 return 0;
}

Let us examine this line-by-line. At the very top, we have a com-
ment line. These are either started using a double forward slash for
a single-line comment or for a multiline (block) comment anything
between “/*” and “*/” is treated as a comment. Comments are impor-
tant. They should be used to explain the intention of code where this
is not obviously apparent from the code itself. I urge you to use com-
ments liberally; can you remember what you were doing yesterday,
last week, last month, last year?

The next line down is how we include header files in source
files. The hash symbol “#” is used to send instructions or directives
to the pre-processor that is run before the compiler. In this case,

Computational Physics.Ch1.2pp.indd 6Computational Physics.Ch1.2pp.indd 6 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  7

we are using the directive include to insert the contents of the file
iostream.h at this point in the source file, and that’s all it does. Note
that iostream.h is a standard library header and as such we can drop
the dot “h” extension from the filename when including it in source
code. The angled brackets tell the preprocessor to look for the file in
the standard external locations and implementation specified include
directories only. A pair of double quotes around an included file tells
the pre-processor to check the local directory of the source code first
before checking the other locations. Generally, angled brackets are
used for standard and system headers, and double quotes are used
for programmer-defined headers.

White space is typically ignored by the compiler but is useful to
humans by writing code that is easier to read. Having at least one
blank line between the header include statement(s) and the start of
the main function definition nicely separates the different parts of
the source code.

The main function is the entry point to our program. It is this
function that is called by the shell to process the code therein. As
such it must be defined as a function that returns an integer value
and the keyword int is that which represents the integer type in C
and C++. The value of the returned integer indicates the “exit sta-
tus” of the program; it is a convention that zero indicates success and
that any other value indicates failure. The empty parenthesis tells
the compiler that the main is a function declaration. Without them
main would just be an integer variable declaration. We will discuss
the different types of declarations later on.

The curly braces contain the definition of the main function and
give us our first idea of scope. All that is contained within the curly
brackets is scoped to the main function, but more on scope later. We
also call the contents between curly brackets a block; it is a block
of statements. Statements are the instructions we ask of the com-
puter in order to perform particular tasks. For example, int x = 1;
states that we wish to create an integer “x” and initialize it with the
value of one. Statements are terminated using a semicolon that tells
the compiler that we have reached the end of the current statement
and will be beginning a new statement unless we have reached the
end of the return statement. It is quite common amongst beginner

Computational Physics.Ch1.2pp.indd 7Computational Physics.Ch1.2pp.indd 7 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

8  •  Computational Physics, 2/E

C/C++ programmers to forget to use the semicolon to terminate a
statement (and for more experienced programmers for that matter).
Fortunately, most IDE’s worth their salt will highlight a syntax fault,
such as a missing semicolon, in the source code editor. If not, the
compiler will definitely “highlight” the error for sure.

The first statement in our Hello World program uses the C++
standard output stream object std::cout in conjunction with the out-
put stream operator “<<” to send to the standard output (typically
the terminal or console) the string sequence Hello World. Here I
have introduced many new concepts namely streams, objects, and
operators which we will get to in due course. All you need to know
for the present is that this is how we can output data from a C++
program. Note that output from a program is stored in a data buffer
and will only be printed on the terminal once that buffer is full, or
the output is “flushed.” A flush means that a program will produce
a line of output immediately. The std::endl is a stream “manipula-
tor” that inserts a newline character into the output sequence and
flushes the sequence.

As an aside the :: (double colon) is called the scope resolution
operator. It is used to resolve the names of code elements (classes,
functions, variables) that are contained in different namespaces. For
example, cout and endl are scoped to the namespace “std,” short
for standard. If we had omitted the namespace and scope resolu-
tion operator in the Hello World program, we would have received
a compilation error on building the binary; remove the namespace
and scope resolution operator from cout and endl to see the specific
compilation error. The point of the namespace feature in C++ is
to avoid naming clashes between various code elements, which is
especially useful when developing large projects that might involve
several third-party libraries. A more detailed discussion of the use of
namespaces can be found in the Appendix.

The return statement defines the exit point of the function.
In this case, we are returning the integer value zero to the calling
environment (the shell) to indicate the successful execution of the
program. At this point a program will flush all of its output buf-
fers meaning any remaining data will be printed to the terminal; in
our case, the buffer is already empty due to the use of the std::endl
stream manipulator.

Computational Physics.Ch1.2pp.indd 8Computational Physics.Ch1.2pp.indd 8 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  9

The code now has to be compiled into binary so that the
computer can read and execute the instructions. In order to do this,
we need a compiler. Most Linux distributions will come with Gnu’s
C++ compiler installed as standard. To check that it is installed, and
discover what version you have, type on the command line:

g++ -v

If the terminal output reads something along the lines of “g++
command not found” you will need to install the compiler; refer to
your specific OS manual. Once you have confirmed the installation
of the compiler, ensure you are in the same directory as your “hel-
loworld” source file and type the following at the prompt:

g++ helloworld.cpp -o helloworld

All being well the compiler will have translated your source code
contained within the helloworld.cpp file and produced a binary or
executable file called “helloworld.” The “-o” flag tells the compiler
to name the executable as the text you specify after the flag. If you
do not give an output name, the file gets saved as “a.out” by default.
To run this program type at the command prompt

 ./helloworld

and it will print to the command terminal the text “Hello World.”
Note that if you are doing this in Windows system, binary executa-
bles are given a “.exe” extension.

We can now edit our source code to make the program more
sophisticated, though only a little. Open the helloworld.cpp source
file and modify the code as follows:

// Helloworld program – displays message on stdout
#include <iostream>
int main (int argc, char * argv[]) {
	 if (argc < 2) {
std::cerr << “usage: ” << argv[0] << “ <name>”;
		 return -1;
}

Computational Physics.Ch1.2pp.indd 9Computational Physics.Ch1.2pp.indd 9 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

10  •  Computational Physics, 2/E

	 std::cout << “Hello ” << argv[1] << std::endl;
	 return 0;
}

Our program can now access the so-called command-line argu-
ments, the parameters that are given on the command line after the
program name when it is run. The argc variable contains the total
number of command-line arguments, and the individual values of
those arguments are available as strings accessed via the array argv.
Note that the program name is counted as a command-line argu-
ment and is accessed as the first entry in the array, argv[0]; array
indexing starts at zero for both C and C++. Compile this modified
code and have a play with the command line arguments to gain an
understanding of how it works. Note the use of a new stream object
std::cerr to print an error message for when we do not pass sufficient
arguments to the program. When a program is started by the shell
it normally gains three open file descriptors: descriptor 0 is stan-
dard input, descriptor 1 is standard output, and descriptor 2 is the
standard error. These descriptors are usually connected to the shell
terminal that started the program but can be redirected to sepa-
rate locations. As you may have guessed std::cout uses the standard
output descriptor and std::cerr uses the standard error descriptor.
The standard (input) stream object std::cin uses the standard input
descriptor and can be used as an interactive means to obtain input
from the user. Feel free to modify the Hello World program to use
std::cin in some way; I find cppreference.com a useful resource.

What you have just done is a simple development cycle. Soft-
ware development generally goes through three main phases:

1.	Edit,

2.	Compile, and

3.	Execute.

Editing means writing or modifying the program contained in a
text file using a text editor or IDE.

Compiling means translating the program to executable code, at
this phase the code is checked for syntax errors and if found these

Computational Physics.Ch1.2pp.indd 10Computational Physics.Ch1.2pp.indd 10 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  11

are flagged for additional editing. We may also get linker errors at
this stage.

Executing the program means running the code on your
machine. At this phase, we may get logical errors or errors with the
semantics (the meaning) of our code. These are known as runtime
errors, and it is the process of debugging that removes these errors
or bugs.

As you write computer programs in C++ and other languages,
you will repeatedly edit, compile, and run programs. Sometimes the
compiler will give you error messages. Often the messages can be
quite cryptic. Just as trainee doctors learn best by giving known dis-
eases to patients it is a good idea to make some deliberate errors, to
get a feel for what the errors that you will encounter in the future
might mean. This knowledge of deliberately inflicted “diseases” and
observing their “symptoms” should help you diagnose future errors
more effectively.

Errors in the semantics of your code can be quite insidious,
especially if they cause undefined behavior; it is these runtime errors
that we refer to as bugs. For instance, some piece of code complies
with no syntax errors, linker errors, or any warnings. The code also
runs with no logical errors and exits successfully. But the results you
get are garbage. This will be highly likely due to a misunderstanding
of the programmer as to how a particular feature of the language
works, or a mistake in the use of a third-party library. Whatever
the problem is, to fix the bug, you will first need to find its location
within your code. To do this we step through the code line-by-line
and observe how the data contained in the program variables change
with each instruction. It is this stepping and observing a process that
is called debugging. Most Linux distributions will come with the
GNU debugger tool installed, invoked using gdb on the command
line, and I highly recommend you familiarize yourself with its use.
Note that this is an extremely brief exposition of debugging and to
go into its details is beyond the scope of this book.

Just a quick word on nomenclature. A “program” can refer
either to the source code contained in a text file or the binary exe-
cutable file itself, they are semantically the same thing. The source
code is readable by humans, the binary is readable by machines. An

Computational Physics.Ch1.2pp.indd 11Computational Physics.Ch1.2pp.indd 11 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

12  •  Computational Physics, 2/E

instance of a running program is called a “process” such that you can
have several processes running the same program.

1.4  THE REST OF THE BOOK

Each chapter describes an individual topic within the gen-
eral subject area of computational physics. Where there is a cross
over between topics this has been explicitly referred to in the text.
Throughout the remaining chapters, there are frequent references
to C++ files that contain example programs for your study and use.
These can be found on GitHub, an online repository for all sorts
of different coding projects and applications, at the following URL:
github.com/DJWalker42/laserRacoon.

These source code files come with GNU Makefiles such that
compiling the code can be done by just typing “make” in the appro-
priate directory. These were developed on Mac OSX so contain
variables specific to that operating system. You will have to modify
some of the variables if you have a different OS. For more informa-
tion on the GNU Makefile framework go to: gnu.org/software/make/
manual/make.html.

The laserRacoon library makes use of OpenCV for a “visualiza-
tion” module. If you do not have OpenCV installed on your system
you can either use your install manager to get a copy (the library has
been tested with OpenCV3) or visit their official site, opencv.org, for
more options. If you cannot get OpenCV or would prefer not to use
the visualization module then you will have to remove the related
header and source files from the library (Visualise.h and Visualise.
cpp) and remove any use of that module from the programs pro-
vided (anything using namespace phys::visual). Note that OpenCV
is not really plotting software; OpenCV is an open-source library that
performs image processing, video analysis, object and feature detec-
tion, camera calibration, 3D reconstruction, among other functions.
At the time of writing the laserRacoon library, I needed a built-in
way of visualizing the data being produced by the C++ programs.
I had some experience of using OpenCV so challenged myself to

Computational Physics.Ch1.2pp.indd 12Computational Physics.Ch1.2pp.indd 12 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Introduction  •  13

make it able to plot data. The Viewer class does just that but know
that it is not a fully optimized class and may contain bugs that have
yet to be discovered (but that’s part of the fun of coding, right?).

Please note that the laserRacoon code has been designed by me
and, as such, it should NOT be taken as gospel. I have taken the
utmost care to make the classes, functions, and algorithms perform
correctly but they have not been rigorously tested. It certainly could
be redesigned to be optimized for performance or made more user
friendly, I am not precious about it. Use it, abuse it, change it, that
is how you learn. The code in the repository will only get updated if
major bugs are found.

The code for the Fortran version of this book can also be found
on the GitHub repository and may lend additional insight into the
topics we discuss in this book. Indeed, I have not (directly) con-
verted the Fortran code written for Chapter 9 on partial differential
equations into C++ code; this is left as a challenge for the reader
(and partly because we all have time constraints).

The chapters are arranged to provide some logical flow to the
exploration of computational physics, starting out with the basic
topics such as data fitting and root finding, and building to more
advanced techniques, such as performing Fourier transforms and
solving partial differential equations. At the end of each chapter are
some exercises for the reader to do. These are designed to test you
and to get you thinking like a physicist so do not be put off if you
find them overly difficult at first. Use the resources available to you
to find solutions, which includes fellow students, tutors, and profes-
sors, as well as that repository of all knowledge, the Internet—do not
forget the library also.

In the Bibliography, you will find a guide to more general read-
ing around each of the topics discussed, including pointers to other
introductory texts in computational physics, the C++ programming
language, and the Linux operating system. The Appendix contains a
more thorough crash course in the C++ language.

Computational Physics.Ch1.2pp.indd 13Computational Physics.Ch1.2pp.indd 13 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

Computational Physics.Ch1.2pp.indd 14Computational Physics.Ch1.2pp.indd 14 12/30/2021 9:48:24 AM12/30/2021 9:48:24 AM

CHAPTER 2
GETTING
COMFORTABLE

2.1.  COMPUTERS: WHAT YOU SHOULD KNOW

Computers are machines that help solve complex or tedious
numerical problems. To make the hardware perform such tasks it
must be programmed; in other words, told what to do. Remember
a computer program cannot think by itself and is only as clever as
the programmer who wrote the code. Understanding the underly-
ing structure of a computer can help the programmer write smart
code that takes advantage of that structure. For a comparison think
about driving a car. You do not need to know how the car works at a
component level to drive one. However, should you wish to improve
the performance of the car, for racing, or rallying, or off-roading say,
then you will have to know about the engine, the suspension, gear-
ing, different types of tires and fuels, streamlining the bodywork,
and so forth. This is no different for computers. Anyone can use a
computer, but you really need to understand the details in order to
get the most out of it.

2.1.1  Hardware
Due to the rapid advancements in computer technology, quan-

tifying statements made in this section may well be out-of-date.

Computational Physics.Ch2.3pp.indd 15Computational Physics.Ch2.3pp.indd 15 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

16  •  Computational Physics, 2/E

However, the general qualifying remarks should still hold true
(unless some paradigm-shifting technology has been invented since).

The physical elements that make up your computer is called
hardware and consists of several components. The motherboard
is the large, printed circuit board that contains all the ports, plugs,
and electronics required to make the required components talk to
each other. The central processing unit (CPU) handles most tasks
in the computer. The speed at which the CPU handles these tasks
is dependent on its clock frequency measured in Hertz. A 2 GHz
single-core processor can handle at most 2 billion operations per
second; operations may include additions, logic comparisons, and
memory calls among others. Before 2004, clock frequencies were
roughly doubling every 18 months. This followed the prediction
made by Moore in the 1960s that the transistor density on silicon
chips would double every 18 months. However, as the power con-
sumed by the CPU goes up as the clock frequency squared, and
with global concerns over energy usage, the frequency of the CPU is
now capped at or around 4 GHz. The performance of computers has
continued to increase according to Moore’s prediction using mul-
tiple core machines. At the date of writing the current commercially
available state-of-the-art is 16 cores, with most “standard” comput-
ers having 4 cores, though that is rapidly changing to 8 cores. Multi-
ple cores allow for parallel operation, whereby tasks can be handled
simultaneously rather than having to be performed serially. For an
introduction to parallel programming see Chapter 12 in this book.

For the CPU to be useful it must have a place to store informa-
tion. Generally, there are several places for this information to be
stored namely cache levels I and II (some CPUs have an additional
third level of cache), random access memory (RAM), and storage
either on a hard disk drive or in more modern systems on a solid
state drive (SSD); from here onwards we will just refer to the stor-
age device as such, or simply storage. This memory system has a
hierarchical structure whereby the caches are the fastest but small-
est memory levels and the storage is the largest but slowest memory
level. Level I cache typically has a size of several tens of kilobytes (if
not hundreds of kilobytes in modern CPUs) and can be accessed at
the full processor speed. It is split into two separate areas, one for
data and one for instructions, both required by the CPU to function.

Computational Physics.Ch2.3pp.indd 16Computational Physics.Ch2.3pp.indd 16 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

Getting Comfortable  •  17

Level II cache has a typical size of several megabytes and can also
be accessed at the full processor speed. Level II cache acts as a fast
storage area for program code or variables required by that code.
If the level II cache is filled by program code, then the overflow
is put into RAM. RAM typically has a size of several gigabytes but
is accessed at slower speeds than the caches. If the RAM is filled,
then the CPU can store information on the storage device in a place
called virtual memory. Storage devices today are immense coming in
at relatively conservative 100 GB all the way up to 1 TB and beyond.
However, the communication between CPU and virtual memory is
limited by the speed at which data can be read from and written to
the storage device. This speed of access can be a bottleneck for pro-
grams requiring large portions of memory; this is less true for mod-
ern PCIe/M.2 SSDs that can achieve around 1.5 GB/s read/write
speed. Typically, memory considerations only come into play if it is
dealt with high-definition images, video, or 3D graphics. However,
some numerical methods can produce matrices of extremely large
size that must be dealt with efficiently for a computer to produce
timely (and accurate) results. The rise of the graphics card some-
times referred to as a graphical processing unit (GPU) has allowed
for the development of some very sophisticated software without the
need to use up CPU resources.

Other parts of a computer consist of input and output devices.
Input devices are the things with which you communicate with the
computer, for example, the keyboard and mouse. Output devices
are how the computer communicates with the user, for example,
the monitor and printer. Other devices can be considered as “slaves”
being both controlled by the computer and relaying data back to the
computer on command, for instance, a thermostat used to keep the
room temperature constant.

2.1.2  Software
How do you make all that hardware do something? Computers

are controlled using programs, referred to as software. The main
program that is run on your computer is the operating system or
OS. Mostly, Microsoft Windows OS of some version is used in the
past; the latest version at the time of writing is Windows 10. Another
widely available OS is UNIX which comes in various flavors.

Computational Physics.Ch2.3pp.indd 17Computational Physics.Ch2.3pp.indd 17 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

18  •  Computational Physics, 2/E

An undergraduate will almost certainly encounter a UNIX OS called
Linux in their computer lab.

Programs are written in what is known as high-level languages,
for example, Fortran and C++, and are compiled into machine lan-
guage or binary via another program called a compiler. Note that
programs such as MATLAB and Python are interpreted languages
that are designed to run effortlessly on multiplatform machines (dif-
ferent OSs). Java is interesting in that it compiles sources into what
is called “Byte Code,” files identified with the jar extension. Byte
code can be interpreted by any machine that has the Java Runtime
Environment installed.

Before you attempt any programming, please have a look at the
following guidelines that may make your life easier:

1.	Use your universities’ or work’s resources, which includes
those sat next to you should you be in a computer lab or in
your office. Failing an actual person who can communicate
at least on some level, use the Internet. If you’ve got a
complicated problem to solve it is very likely someone else
has solved it already, and elegantly too (though never believe
they managed it in one go without scratching their head at
least once, drinking a lot of caffeine-based beverages, and
swearing on several occasions). Try not to treat their solution
as a black box that takes your inputs and gives the desired
outputs without at least trying to understand what the code is
doing. There is a practical limit to everyone’s knowledge and
if it really makes no sense to accept that it works and that, out
there, somewhere, is someone much cleverer than you and
you’re ok with that.

2.	Design your program first. Sit down, go to the old school with
a pencil and paper, and write down the problem you are going
to solve. What do you want to get as the output and what are
going to be your inputs? Draw a flow chart if it helps. Write it
out as pseudo-code; English phrases that mimic actual code
and describe the program’s intended function line-by-line.
This will, in the long run, save you time. Probably not straight
away but practice makes perfect, allegedly. Now once this
is done open your favorite text editor/IDE and start tapping
away, but be aware (or beware) …

Computational Physics.Ch2.3pp.indd 18Computational Physics.Ch2.3pp.indd 18 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

Getting Comfortable  •  19

3.	Make certain to comment on your code. As previously
described, comments not only let others know what is
intended with the code but also tell you what to be done.
Comments should be clear, concise, descriptive, and written
as understandable by the user. Do not worry if you have
more comments than code.

4.	Make names descriptive. This includes programs, classes,
functions, and variables. If the program spanning is large as
many hundreds of lines and/or several source files then it
would be grateful to have given names that mean something.
Additionally, many software companies will have their own
naming convention for the various data types, structures,
classes, and so forth that can be defined and declared in a
program.

5.	Do not be afraid to try something out. The worse thing
that can happen is that your program crashes at runtime.
Control-C starts over. Nowadays, it is very unfortunate to
crash the entire computer but just turn it off and on again.

Some suggest that before anything else you should check that
the problem you want to solve is suited to the use of a computer
to avoid wasting your time and computer resources. While this is
a helpful tip for experienced programmers (and who have several
higher degrees in mathematics and physics), and it is arguable that
only after getting into this habit, it will be comfortable to write a
computer code. Sometimes the simple problems allow to explore
writing novel and occasionally elegant or clever code that one may
have missed trying to tackle a more complex problem.

2.1.3  Number Representation and Precision
As we are scientists, we will be dealing with real numbers obtained

from measurements. During A-level physics course (or equivalent)
teachers will likely have banged on about significant figures, round-
ing off, and the difference between precision and accuracy, when
taking measurements from experiments. They would have found it
bemusing that you quoted every figure on your calculator when fig-
uring out, say, the strength of gravity at the Earth’s surface using a
free-fall technique. Using a simple stopwatch to determine the time

Computational Physics.Ch2.3pp.indd 19Computational Physics.Ch2.3pp.indd 19 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

20  •  Computational Physics, 2/E

in free-fall and distanced traveled measured with a ruler the best
you could hope to achieve is around three significant figures, lim-
ited by human reactions on the stopwatch. This precision could be
increased using more precise equipment; for example, a computer
control timing circuit measuring the distance using a laser. The point
is that the precision of the results depends on the equipment used.

Computers can only express integer values exactly and are lim-
ited to a maximum integer value that can be expressed. Numbers in
computers are stored as bits in binary format. A bit can have a logi-
cal value of 0 or 1, and strings of bits can be used to express integer
numbers. A byte generally means a string of 8 bits, and 4 bytes, that
is, composed of 32 bits is referred to as one word. Here, the binary
format is referred as a big-endian, that is with the most significant
bit written first at the left, as one would write decimal numbers. In
contrast, little-endian puts the most significant bit at the end on the
right, which is a natural format when performing binary addition,
and the bits are in arithmetic order.

Take into consideration a byte or 8 bits. Each bit represents a
power of two, starting at seven and ending with zero:

7 6 5 4 3 2 1 02 2 2 2 2 2 2 2

For example, the decimal number 6 would be represented by
0000 0110 in binary format; the equation governing this is

7

0

(2)k

k

s
=

×∑

where k represents the bit location and s represents the bit value.
Note that binary is easily read in 4-bit strings that the astute reader
may notice leads naturally to the hexadecimal format − honest. The
maximum integer can be expressed with 8 bits, that is 82 1 255− = .
Note that 82 256 = numbers can be represented, one of which is zero
hence the −1. This data type is known as an 8-bit, unsigned integer.
Note that color images tend to be saved in this format with 8-bit
unsigned integer values defining the three color channels (RGB)
leading to the statement that color images have 16 million colors
(256 × 256 × 256). A single channel image is generally referred to as
a grayscale image, zero representing black, 255 representing white.

Computational Physics.Ch2.3pp.indd 20Computational Physics.Ch2.3pp.indd 20 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

Getting Comfortable  •  21

Thus, there are 256 shades of grey but this makes less of a snappy
title for a book.

Negative integers may also be expressed using this binary for-
mat. To do this the first bit (most significant bit) is taken as the sign
bit. This now leaves us with only 7 bits to represent a number which
gives a maximum number of 7 2 1 127− = . However, negative num-
bers can now be formed by taking the two’s compliment of a positive
number. To do this you first form the one’s compliment by swapping
the ones and zeros in the number, then add one to the result. For
instance,

6 0000 0110 1111 1001 1111 1010 6 + = ↔ ↔ =− .

Zero is still represented by all zeros in the bit locations (take the
two’s compliment of zero and you should still get zero). Given this
conversion what is the largest negative number we can represent in
this format? Take the largest positive number we can represent and
take its two’s compliment:

127 0111 1111 1000 0000 1000 0001 127+ = ↔ ↔ =−

However, note that the one’s compliment of +127 is available
for use and, by definition, it is one less than the two’s compliment.
Hence the largest negative number we can represent is −128.
Note we have not lost any depth of numbers, we can still represent

82 256 = numbers; 128 negative numbers plus 127 positive numbers
plus 1 for the zero.

Larger numbers can be represented using larger bit stings.
A 32-bit word length can represent a maximum unsigned inte-
ger of 322 1 4,294,967,295− = or the signed integers in the range
[31 312 , 2 1− + −].

Computational physics would be somewhat limited if comput-
ers could only use integer numbers. We need a way of representing
floating-point decimal numbers. To do this, we take our 32-bit word
length and split it into three blocks. Figure 2.1 illustrates this repre-
sentation. The first block is one bit long and represents the sign of the
number, 0 and 1 representing positive and negative values, respec-
tively. The second block, typically 8 bits long represents the exponent,
and the third block, containing the remaining 23 bits is the mantissa.

Computational Physics.Ch2.3pp.indd 21Computational Physics.Ch2.3pp.indd 21 1/4/2022 10:26:26 AM1/4/2022 10:26:26 AM

22  •  Computational Physics, 2/E

FIGURE 2.1:  32-bit representation of a floating-point number.

The most significant bit in the mantissa is on the left and rep-
resents 12 . − The next bit represents 22 − and so forth. To calculate
the floating-point decimal from the 32-bit representation we use the
following equation

()1 2s exponent bias
floatx mantissa −= − × ×

where s is the value of the sign bit, and the mantissa and exponent
are the decimal values obtained from their respective binary format
blocks. The bias is an implicit value that is included for the following
reason. The 8-bit exponent does not contain an explicit sign bit and
so can only represent positive numbers up to the maximum of 255.
To circumvent this drastic limitation on floating-point number rep-
resentation an implicit bias of 127 is included in the floating-point
calculation. The range of exponents hence becomes [127, 128−]. The
largest positive or negative number that can be represented is then
approximately 381.7 10± × , and the smallest, not considering zero, is
approximately 467 10−± × . However, do not confuse this number as
the computer’s precision. The computer’s precision is governed by
the bit length of the mantissa; the exponent just defines the range of
representable numbers.

The machine precision is best described in terms of how the
computer performs floating-point arithmetic. Say you have the num-
ber 5 and wanted to add 710− . Both numbers can be represented
by the computer in floating-point notation, so far so good. To add
them together the computer must match their exponents meaning
that the bits in the mantissa of the smaller number get shifted to the
right. By the time, the bits have been shifted to represent 710− with
the same exponent as 5 they have all gone past the least significant
place and have been lost, in essence making 710 − equal to zero. The
result of the addition would be 5.

Computational Physics.Ch2.3pp.indd 22Computational Physics.Ch2.3pp.indd 22 1/4/2022 10:26:27 AM1/4/2022 10:26:27 AM

Getting Comfortable  •  23

The number 710 − has not just been plucked out of thin air. The
least significant bit in the mantissa has a value of 23 72 1.2 10− −= ×
(2s.f.). This value represents a kind of number resolution; it is the
smallest discernible difference between two numbers on a computer
using a 32-bit word length. Note that it is a relative value; if you
take the number 62 10 2,000,000 × = then the next discernible num-
ber as far as the computer is concerned is 2000000.1. The machine
epsilon or precision is the unit round-off error, essentially half the
number resolution. For example, numbers in the range 2000000.000
to 2000000.049 would round down to 2000000.0, whereas num-
bers in the range 2000000.050 to 2000000.099 would round up
to 2000000.1. Any result quoted from the computer should really
include this rounding error, for example, 2,000,000 0.05± . Because
of the machine epsilon you should always consider whether the pre-
cision you are using is fit for purpose. If your calculations involve
extreme differences between variable values, then unit round off
may lead to large errors.

Clearly, the precision can be improved by adding more bits to
the mantissa. This can be done by taking bits from the exponent but
at the expense of the range of representable numbers. The other
way of increasing the bit length of the mantissa is to double the word
length from 32 to 64 bits. The standard format of a double data type
is an 11-bit exponent and 52-bit mantissa plus the sign bit. What
should the machine epsilon be using a double precision data type?
To check you can write a few short lines of code to calculate the
machine epsilon for both single and double precision variables. The
pseudo-code for this task is written as follows:

Pseudo code for the calculating the machine epsilon:
Calculate the machine epsilon for both single
(32 bit) and double (64 bit) precision data types.
Divide a value by 2 in a loop and test the condition
that 1 plus the value is greater than 1. Break when
the condition is not satisfied.
Program Epsilon
!!Declare the variables you are going to use
Single	 eps_s = 1
Double 	 eps_d = 1

Computational Physics.Ch2.3pp.indd 23Computational Physics.Ch2.3pp.indd 23 1/4/2022 10:26:27 AM1/4/2022 10:26:27 AM

24  •  Computational Physics, 2/E

!!performs command while the condition is true	
While(1 + eps_s > 1)
	 eps_s = eps_s/2 !!command to execute
end While
While(1 + eps_d > 1) 	
	 eps_d = eps_d/2 !!command to execute
end While
!!print results to screen

output(“single machine epsilon = ”, eps_s)
output(“double machine epsilon = ”, eps_d)
end Epsilon

Be wary that some compilers have been written to be smart and
will try to “help” when producing the binary (executable) output.
For instance, a C++ program written using the pseudo-code above
gave a result that the single and double precision were both equal to

205.42 10−× , a precision of 64 bits. This clearly is incorrect. Changing
the optimization flags one could managed to recover the expected
result of 85.96 10−× for single precision and 161.11 10−× for double
precision. The incorrect result is probably due to the compiler
“helpfully’” converting the variables to extended precision that has a
length of 80 bits, with a 64-bit mantissa. In any case, the initial result
was clearly incorrect, and that brings us to an important point. Do
not blindly accept what the computer outputs. If the answer looks
wrong, then it most probably is wrong. When that guy in (A-level)
physics class stated boldly that the strength of Earth’s gravity is two
orders of magnitude larger than it is because that is what the calcula-
tor outputted, only to later realized that it would been using centi-
meters rather than meters.

2.2  SOME IMPORTANT MATHEMATICS

Physics describes the universe from tiniest sub-atomic particle
to the shape of the universe itself. The language of physics is math-
ematics. However, do not confuse the two; physics is not the study
of mathematics (and vice versa) but uses mathematics as a tool to

Computational Physics.Ch2.3pp.indd 24Computational Physics.Ch2.3pp.indd 24 1/4/2022 2:10:59 PM1/4/2022 2:10:59 PM

Getting Comfortable  •  25

describe and interpret the observation that we make of the universe.
Nowhere is this truer than when dealing with computers that are, at
the most basic level, efficient number crunching machines.

In this section, we will briefly review some fundamental math-
ematical concepts that are vital to any computational scientist per-
forming numerical analysis.

2.2.1  Taylor Series
Brook Taylor was an English mathematician born in 1685 who

devised an extremely useful way of approximating a function, the
Taylor series expansion. This series expansion is arguably one of the
most useful in mathematics and certainly within numerical analysis
and will play a major role in much of the subject matter contained
in this book.

The Taylor series is a mathematical technique for expressing a
(potentially) complicated function in the form of a polynomial. The
polynomial will have a similar value to the approximated function at
least in some small neighborhood of a particular point. More pre-
cisely, a Taylor series is an infinite sum of power terms that represent
a function at a single point. The summation terms are calculated
from the values of the function’s derivatives at that point. Mathe-
matically we write

() () () () ()
2()

2!
x a

f x f a x a f a f a
−

= + − ′′+′ +

	 ()
() () ()

1
1() ()

1 ! !

n n
n nx a x a

f a f
n n

x
−

−− −
+ +

− � (2.1)

where a is some point on x and we have used the notation that

	 () df
f x

dx
′ = .� (2.2)

The last term in Equation (2.1) is the remainder or the error in
the approximation where a xx≤ ≤ .

Usually, functions are approximated by using a finite number
of terms of its Taylor series. Any finite number of initial terms of
the Taylor series of a function is called a Taylor polynomial, the
order of the polynomial governed by the highest power left in the

Computational Physics.Ch2.3pp.indd 25Computational Physics.Ch2.3pp.indd 25 1/4/2022 10:26:28 AM1/4/2022 10:26:28 AM

26  •  Computational Physics, 2/E

approximation. For instance, a first ordered Taylor polynomial has
the form

	 () () () ()f x f a x a f a≈ + − ′ .� (2.3)

Note the use of the approximately equals to sign as we have not
included the remainder term here.

Please recollect the first ordered Taylor polynomial approxima-
tion as attempting to match the local neighborhood of the function
at the point x a= , using the function’s slope at that point. The second
order polynomial, then, includes the curvature of the function at the
point of interest. As more terms are added, higher ordered deriva-
tives become utilized leading to a more accurate approximation of
the function around the point of interest. Typically, the approxima-
tion is only usefully accurate over a closed interval about the point. A
function that is equal to its Taylor series in an open interval is known
as an analytic function. For instance, a straight-line function with
some non-zero gradient would be given exactly by Equation (2.3)
and is thus analytic.

The upper bound to the error in a Taylor polynomial can be
estimated by analyzing the next term in the series from where we
truncated the approximation. For example, take the Taylor series
for the sine function taken about zero and truncated so that it is a
seventh ordered polynomial approximation

	
3 5 7

sin()
3! 5! 7!
x x x

x x≈ − + − . � (2.4)

The upper bound to the error is then calculated by the next term
in the series thus

	
9

9!
xe = ± . � (2.5)

This upper bound is ignored further, higher ordered terms,
which tend to improve the accuracy of the approximation, that is, to
reduce the error.

The sine function and its seventh ordered Taylor polynomial are
plotted in Figure 2.2. Here we can see the approximation is only
reasonably (to the eye) accurate on the interval [],p p− .

Computational Physics.Ch2.3pp.indd 26Computational Physics.Ch2.3pp.indd 26 1/4/2022 10:26:28 AM1/4/2022 10:26:28 AM

Getting Comfortable  •  27

FIGURE 2.2:  Seventh ordered Taylor polynomial approximation of the sine function.

2.2.2  Matrices: A Brief Overview
Matrices are incredibly important structures within mathemat-

ics, and thus within physics also. A very brief overview of their form
and function were described in this section.

A matrix is an array of numbers. The dimensions of a matrix
specify the number of rows and the number of columns the matrix
has, in that order. Hence, when we say an n-by-m matrix we imply
it has n rows and m columns. Vectors are essentially matrices of
dimension n-by-1, for instance, a point in three-dimensional space
is represented by a 3-by-1 matrix, normally referred to as a position
vector. When n m= we have a square matrix; these occur often when
solving problems in physics.

When writing an algebra for matrices the notation is convention-
ally an uppercase letter for the entire matrix, and the correspond-
ing lowercase letter for its elements. The elements also come with
numbered subscripts to denote their position within the matrix, row
index first. For example, the element found in the first row and the
first column of matrix A would be denoted 11a , whereas element 34a is
located at the third row and fourth column of A. In general element

Computational Physics.Ch2.3pp.indd 27Computational Physics.Ch2.3pp.indd 27 1/4/2022 10:26:28 AM1/4/2022 10:26:28 AM

28  •  Computational Physics, 2/E

ija is found in the ith row and the jth column of the matrix A. Note
that the numbering starts from one.

Diagonal elements of a matrix are identified by the fact that the
row index i will equal the column index j. Sub-diagonal elements are
identified by i j> , and conversely super-diagonal elements are iden-
tified by i j< . To illustrate, a general n-by-m matrix can be written as

	

11 12 1

21 22

1

m

ii

n nm

a a a

a a

A
a

a a

 
 
 
 

=  
 
 
 
  

 



  

 

 

  

� (2.6)

where in this case n m> .

Matrix addition is a straightforward extension to addition with
real numbers. The corresponding elements are added between the
matrices as per user preference; note that the matrices are of the
same dimensions and the addition will result in a matrix also of the
same dimensions. Thus for 2-by-2 matrices

	 11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a b b a b a b
A B

a a b b a b a b

+ +     
+ = + =     + +     

� (2.7)

As this is a simple extension to addition with real numbers the
properties of addition apply to matrices. In other words, we have the

Commutative property: A B B A+ = + ;

Associative property: () () A B C A B C+ + = + + ;

Additive Identity property: A ZERO A+ = ; and the

Distributive property: () C A B CA CB+ = +

where ZERO is a matrix of the same dimensions as A but every ele-
ment is zero; in technical parlance this is the called the null matrix.
Be aware that we must be somewhat careful with the distributive
property so as to maintain the proper order of the multiplication oth-

Computational Physics.Ch2.3pp.indd 28Computational Physics.Ch2.3pp.indd 28 1/4/2022 10:26:29 AM1/4/2022 10:26:29 AM

Getting Comfortable  •  29

erwise we run into problems which will be discussed subsequently.
Subtraction follows these same rules.

Matrix multiplication is somewhat more complicated than addi-
tion. If you have the n-by-m matrix A that is multiplied with the
m-by-p matrix B, then the result will be the n-by-p matrix C. The
elements in C are then given by the equation

	
1 1 1

pn m

ij ik kj
i j k

c a b
= = =

=∑∑∑ .� (2.8)

Notice that the inner dimensions of the two matrices must
match. In other words, the number of columns of matrix A must
equal the number of rows of matrix B. The way Equation (2.8) has
been written mimics how you will have been taught to do matrix
multiplication, moving along the rows of A, and down the columns
of B. However, notice that the summation limits are not dependent
on each other meaning that their order could be swapped without
affecting the result.

As a result of Equation (2.8), matrix multiplication is not com-
mutative, that is AB BA≠ . However, it is associative such that
() () A BC AB C= . And, as we have already seen, it is distributive over

matrix addition so long as you maintain strict matrix order.

When multiplying a matrix by a scalar that scalar gets broadcast
across the entire matrix i.e., every element gets multiplied by the
scalar. As the scalar is just a number then

	 () () () ()AB A B A B ABr r r r= = = � (2.9)

where r is any scalar.

The trace of a square matrix is the sum of the main diagonal ele-
ments of that matrix. In equation form we write

	 ()
1

n

ii
i

tr A a
=

=∑ � (2.10)

where A is a n-by-n matrix. The trace of a (square) matrix has some
interesting properties not least the fact it is equivalent to the sum of
the eigenvalues of the matrix A.

Eigenvalues of a matrix are related to its eigenvectors such that

	 Ae el= � (2.11)

Computational Physics.Ch2.3pp.indd 29Computational Physics.Ch2.3pp.indd 29 1/4/2022 10:26:29 AM1/4/2022 10:26:29 AM

30  •  Computational Physics, 2/E

where e is an eigenvector of A and l is its corresponding eigenvalue.
Note that l is just a number. You have probably already performed
calculations using the characteristic polynomial to determine the
eigenvectors and related eigenvalues of some relatively simple matri-
ces. As a reminder the characteristic polynomial is calculated as

	 det() 0A Il− = , � (2.12)

which produces an n ordered polynomial in terms of the eigenvalue
l. The “det” means calculate the determinant of the matrix con-
tained within the brackets, which is relatively easy to do for 2-by-2,
and 3-by-3 matrices but not for larger dimensions of matrix. The
matrix I is the identity matrix that has ones on its diagonal elements
and zeros in the other elements.

As an aside, eigenvectors and eigenvalues are important con-
cepts with the realm of quantum physics. For instance, the time
independent Schrödinger Equation can be written in the form

	 H Ey y= � (2.13)

where the matrix H represents the Hamiltonian of the system; the
differential operators governing the potential and kinetic energies,

 y (pronounced psi) is the wavefunction of a quantum particle, for
example, an electron, and E is the (total) energy value of that wave-
function. In other words, y is the eigenvector of H, and E is the
corresponding eigenvalue. If this at present makes little sense to you
do not worry, just be aware that eigenvectors and eigenvalues are
particularly important concepts in mathematics and physics.

Matrices can be transposed which means that row i is swapped
with column i of the matrix. I tend to think of this as putting a dou-
ble-sided mirror along the diagonal of the matrix and the transpose
is that which can be seen in the reflection. For instance, if we trans-
posed the m-by-p matrix B the result would be the p-by-m matrix

TB , where the superscript T denotes the transposition. Notice that
the row and column dimensions have swapped. In terms of matrix
multiplication, we can write

	 ()T T TAB B A= . � (2.14)

Computational Physics.Ch2.3pp.indd 30Computational Physics.Ch2.3pp.indd 30 1/4/2022 10:26:29 AM1/4/2022 10:26:29 AM

Getting Comfortable  •  31

A symmetric, square matrix is one that is equivalent to its own
transpose. A positive definite matrix is a special type of symmet-
ric matrix with all positive eigenvalues. Determining if a matrix is
positive definite can be difficult but they are mentioned here as they
tend to crop up quite often in the solutions to physics problems.

If the matrices elements are complex numbers (they contain
both real and imaginary terms) then we can take what is known as
the Hermitian conjugate; take the complex conjugate of the ele-
ments, then transpose the matrix. In mathematical notation we can
write the equation

	 ()† † †AB B A= � (2.15)

where the dagger symbol (†) denotes the Hermitian conjugation.

For square matrices there is the multiplicative identity property
such that

	 AI IA A= = � (2.16)

where I is the identity matrix. When the matrix multiplication of two
matrices, say X and Y, results in the identity matrix then we can say
that Y must be the inverse matrix of X (or vice versa) by definition.

To compute the inverse of a matrix directly you find its matrix
of cofactors and divide through by its determinant. For 2-by-2 and
3-by-3 matrices this can be done with relative ease but as the order
of the matrix increases the computational effort required grows
exponentially both in calculating the matrix of cofactors and finding
the determinant. There are other methods for “inverting” a (square)
matrix such as elimination and decomposition techniques that are
much more computationally friendly. The Fortran library LAPACK
has a plethora of subroutines that employ such techniques. Gener-
ally, we are solving the linear set of equations

	 Ax b= � (2.17)

where x is the vector we wish to find, b is the vector of known val-
ues, and the matrix A represents some relevant coefficients of the
system for which we are trying to solve.

Computational Physics.Ch2.3pp.indd 31Computational Physics.Ch2.3pp.indd 31 1/4/2022 10:26:30 AM1/4/2022 10:26:30 AM

32  •  Computational Physics, 2/E

Note that if the determinant of a matrix is zero then we say the
matrix is singular and non-invertible. Where say the matrix repre-
sents the coefficients of a linear system of equations this would be
interpreted as the system as either having no solutions or many solu-
tions. When the determinant is non-zero the system of equations
will have exactly one unique solution.

The preceding discussions provide an (extremely) brief exposi-
tion of matrices and their properties and this section will provide a
quick recalling on fundamental concepts of matrices. It is recom-
mended to refer to a book dedicated to matrices and linear algebra
for further understanding.

EXERCISES

2.1.	 How is the number +5 represented by a 32-bit floating-
point notation? Use as the equation given as a guide.

2.2.	 What happens if you change the conditional statements
in the while loops to eps_s > 0 and eps_d > 0 in the
machine epsilon program? Why?

2.3.	 Add to the machine epsilon code to calculate the
machine precision in terms of the mantissa bit length
(Hint: how many times has it divided by two?)

2.4.	 Try to write pseudo-code to calculate the machine
epsilon using a recursive function (a function that calls
itself). Think about how to terminate the recursion.

2.5.	 Investigate the upper bound of error for the Taylor series
approximation for the sine function. Is it well estimated
by the next term in the series from where we truncated
the series?

Computational Physics.Ch2.3pp.indd 32Computational Physics.Ch2.3pp.indd 32 1/4/2022 10:26:30 AM1/4/2022 10:26:30 AM

Getting Comfortable  •  33

2.6.	 p is one of those fundamental numbers that just keeps
cropping up. One way to estimate p is to analyse the
perimeter of polygons inscribing a circle. For a circle of
unit diameter, we may formally write the expansion

31 2
2 3k

cc c
k k k

p p∞= + + + +

	 where k is the number of sides of the polygon, kp is the
approximation, p∞ is the actual value of pi to be deter-
mined, and the ic are coefficients also to be determined.
Given that 8 3.061467p = , 16 3.121445p = , 32 3.136548p = ,
and 64 3.140331p = compute a value for p∞. (Tip: think
about this as a set of simultaneous equations in matrix
form and look-up Gaussian Elimination.)

Computational Physics.Ch2.3pp.indd 33Computational Physics.Ch2.3pp.indd 33 1/4/2022 10:26:30 AM1/4/2022 10:26:30 AM

Computational Physics.Ch2.3pp.indd 34Computational Physics.Ch2.3pp.indd 34 1/4/2022 10:26:30 AM1/4/2022 10:26:30 AM

CHAPTER 3
INTERPOLATION AND
DATA FITTING

3.1  INTERPOLATION

3.1.1  Linear Interpolation
The principles behind interpolation and extrapolation are

something every scientist should understand. Most measurements
of a system, whether that is a physical experiment or theoretical cal-
culation, will consist of pairs of discrete values; an independent vari-
able x, which will vary, and a dependent variable y, which is measure.
To extract information from these pairs of values one would, ideally,
find an analytical function that would give y for any arbitrary x. Often
an analytical solution does not exist or is too tedious or complicated
to solve. In this case, how to find a value for y that sits between mea-
sured values in x? We can either try to fit the data to some function
(typically a polynomial) or interpolate the data. The data should be
extrapolated to find a y beyond measured range in x. The difference
between the two methods is that interpolation is constrained so that
the function used to approximate the data must pass through the
measured data points, whereas data fitting only requires that some
error function is minimized.

Computational Physics.Ch3.3pp.indd 35Computational Physics.Ch3.3pp.indd 35 1/4/2022 10:29:16 AM1/4/2022 10:29:16 AM

36  •  Computational Physics, 2/E

As the data points can be approximated by any number of functions,
we must have some guidelines that outline a reasonable approxima-
tion. As a rule, these guidelines usually rely on the consistency of
the gradients or derivatives of the approximation and as a result may
not be suitable for functions that have rapid variations, such as those
with oscillatory behavior. Sometimes, an important detail about the
behavior of a function may be missed should the measurements be too
sparsely spread. As a crude example of this, think about measuring the
displacement of a mass on a spring as a function of time. If the sample
frequency (how often you take a measurement) matches the period of
oscillation then the interpolated result would show that the mass does
not move at all, which is clearly an error.

Linear interpolation is probably the most intuitive method, and
probably one which is used to quite regularly without realizing.
Essentially, a straight line is assumed to approximate the function
between two neighboring data points, with the line passing through
both points. Indeed, this is a fundamental concept of mathematics to
find the derivative of a function; on an infinitesimally small interval,
any function is a straight line. Obviously, on a practical level, one
cannot make measurements that are infinitesimally distinct, the best
that can possibly achieve is the precision of the measurement device.

The following forms of writing the equation of a straight line is
the most familiar one

	 y mx c= + � (3.1)

where m is the gradient and c is the intercept with the y axis, or

	

1 2 1

1 2 1

y y y y
x x x x
− −

=
− −

� (3.2)

where the line passes through the points ()1 1 2 2(,), , x y x y .

In the world of academia, these equations typically take the form

	
() 0 1g x a a x= + � (3.3)

where 0 a and 1a are called the coefficients of the linear functions;
they still have the same meaning as c and m respectively in the other
equations. The reason for writing the coefficients as a single letter

Computational Physics.Ch3.3pp.indd 36Computational Physics.Ch3.3pp.indd 36 1/4/2022 10:29:16 AM1/4/2022 10:29:16 AM

Interpolation and Data Fitting  •  37

with a subscript is that it is both elegant and descriptive; the letter
immediately represents that it is a coefficient rather than a vari-
able, and the subscript describes to which power of x the coefficient
belongs. Another good reason for the subscripts is that they lend
themselves quite naturally to being stored as a vector or an array in
computer memory, but more on this later.

With any interpolation, we are approximating the unknown func-
tion f(x) with a function g(x) with the constraint that they are equal
at the measured data points which we label jx . Thus, for neighbor-
ing data points using linear interpolation:

	 () () 0 1j j j jg x f x f a a x= = = + � (3.4)

	 () ()1 1 1 0 1 1j j j jg x f x f a a x+ + + += = = + � (3.5)

Note that they share the same coefficients as the straight line
approximation is constrained to pass through both points. Solving
for the coefficients, that is, finding a in terms of f and x, the function
g(x) takes the form

	
() ()1

1

j
j j j

j j

x x
g x f f f

x x +
+

−
= + −

−
� (3.6)

valid for the range [1, j jx x +]. Take a moment to verify that this equa-
tion is a straight line and equivalent to those you are familiar with.
Equation 3.6 can be written in what is called symmetrical form as
follows

	
() 1

1
1 1

j j
j j

j j j j

x x x x
g x f f

x x x x
+

+
+ +

− −
= +

− −
� (3.7)

If you are wondering why it has been rewritten in this form, it’s
use will become apparent in the next section discussing polynomial
interpolation and Lagrange’s interpolation scheme.

The code linearInterp.cpp implements the linear interpola-
tion scheme on the function () ()f x sinc x= , using the symmetrical
form of the equation. The application source code takes advantage
of the class phys::interp::Linear defined in the header file

Computational Physics.Ch3.3pp.indd 37Computational Physics.Ch3.3pp.indd 37 1/4/2022 10:29:17 AM1/4/2022 10:29:17 AM

38  •  Computational Physics, 2/E

Interpolation.h and implemented in the source Interpolation.cpp.
The output from this code is plotted in Figure 3.1. A 10 equidistant
points were selected to represent the “measured” data on the inter-
val [0.05, 5.0]. The linear interpolation is applied to each interval
pair. From the figure, the linear interpolation does a reasonable job
at approximating the function when the second- and higher-order
derivatives are small. However, as the derivatives increase in size it
becomes much less accurate. This is to be expected; the linear inter-
polation approximation contains no higher-order terms above one
and thus cannot be expected to deal with rapidly changing functions
that have sizable higher-order derivatives. The interpolation may be
improved by taking more data points over the total range, which in
essence applies the mathematical notion of the function approach-
ing a straight line as the interval approaches zero.

FIGURE 3.1:  Linear interpolation of the sinc function using 10 equidistant “measurements”.

3.1.2  Polynomial Interpolation
Equation (3.3) is called a first-order polynomial. By adding

higher powers of x, one can modify this to higher-order polynomi-
als. For instance, if the highest power of x were two then it would

Computational Physics.Ch3.3pp.indd 38Computational Physics.Ch3.3pp.indd 38 1/4/2022 10:29:17 AM1/4/2022 10:29:17 AM

Interpolation and Data Fitting  •  39

be a second-order polynomial (also called a quadratic) and so on.
Higher-order polynomials will be better at approximating rapidly
changing functions but there is a practical limit to this, which will be
discussed in the subsequent sections.

First, we can extend Equation (3.3) so that it forms an n ordered
polynomial

	 () 2
0 1 2

n
ng x a a x a x a x= + + + + � (3.8)

Using our interpolation constraint that the approximation must
pass through the measured values gives

	 () () 2
0 1 2

n
j j j j j n jf x f g x a a x a x a x= = = + + + + � (3.9)

This is a system of n+1 linear equations (you may know them
as simultaneous equations) that we would use to solve for the coef-
ficients. Notice that to perform an n ordered interpolation you need
n+1 data points. For instance, the first-order (linear) interpolation
requires two points; a second-order interpolation requires three
points, and so forth. How a linear system of equations can be solved
explicitly using a LAPACK routine is discussed later in this chapter.
For the moment, one could formulate the coefficients using an alter-
nate method.

Consider a second-order interpolation for three given points
(,)j jx f at j, j+1, and j+2:

2
0 1 2j j jf a a x a x= + +

2
1 0 1 1 2 1j j jf a a x a x+ + += + +

	
2

2 0 1 2 2 2j j jf a a x a x+ + += + + � (3.10)

The coefficients 0a , 1a , and 2a can be found from these equations
using the methods you should have learned in an A-level mathemat-
ics course at least. Give it a go. Remember your finding the coef-
ficients in terms of f and x. Once the coefficients are found they
can be substituted into equations (3.10) and rewritten into the sym-
metrical form giving

Computational Physics.Ch3.3pp.indd 39Computational Physics.Ch3.3pp.indd 39 1/4/2022 10:29:17 AM1/4/2022 10:29:17 AM

40  •  Computational Physics, 2/E

	

()
()()
()()

()()
()()

1 2 2

1

1 2 1 1 2

j j j j

j j

j j j j j j j j

x x x x x x x x
g x f f

x x x x x x x x

+ + +

+

+ + + + +

− − − −
= +

− − − −

	
()()

()()
1

2

2 2 1

j j

j

j j j j

x x x x
f

x x x x

+

+

+ + +

− −
+

− −
� (3.11)

If you find rearranging equations fun, then feel free to have a go
at obtaining this form for yourselves but do try to get out more. If
you compare Equation (3.7) with Equation (3.11) you will hopefully
see that we can generalize the symmetrical form to an n ordered
polynomial interpolation scheme:

() ()() ()
()() ()

2 3 1
1

1 2 1 3 1 1

n

n

x x x x x x
g x f

x x x x x x
+

+

− − −
=

− − −




()() ()
()() ()

1 3 1
2

2 1 2 3 2 1

n

n

x x x x x x
f

x x x x x x
+

+

− − −
+ +

− − −






	
()() ()

()() ()
1 2

1
1 1 1 2 1

n
n

n n n n

x x x x x x
f

x x x x x x+
+ + +

− − −
+

− − −




� (3.12)

This is the infamous Lagrange formula for polynomial interpo-
lation. This form is somewhat cluttered and can be written more
elegantly as

	
() () ()

1

n

k k
k

P x x f xl
=

=∑ ,� (3.13)

where

	

()
()
()

1

1

n

ll k
k n

k ll k

x x
x

x x
l = ≠

= ≠

−
=

−
∏
∏

� (3.14)

The Π symbol is a capital pi and is the mathematical symbol
meaning product of a sequence.

The member function Lagrange::interpolate(double),
found in the source file Interpolation.cpp, implements the Lagrange
interpolation formula as expressed in Equations 3.13 and 3.14. Read
through this code to convince yourself of this statement.

Computational Physics.Ch3.3pp.indd 40Computational Physics.Ch3.3pp.indd 40 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

Interpolation and Data Fitting  •  41

An exercise for the reader to write a program to apply the
Lagrange interpolation to the function () ()f x sinc x= using approx-
imating polynomials of increasing order (use linearInterp.cpp as a
guide). Take note that the order of the approximating polynomial is
governed by the number of data points passed to the object of type
Lagrange, and an n ordered polynomial interpolation requires n+1
data points.

Figure 3.2 shows the plotted output from a program writ-
ten using the Lagrange class for the first, second, fourth, sixth,
eighth, and ninth ordered polynomial interpolations for the func-
tion () ()f x sinc x= over the interval (0.0, 5.o] using 10 equidistant
“measured” points. For the lower ordered polynomials, a sliding
window approach had to be used to cover the interval as far as pos-
sible. For n=1 the data matches that computed from the Linear
interpolator class.

From inspection of these plots, we can see that the second-
ordered polynomial interpolation is an improvement over the first
but still has a bad time coping as the function oscillates more rapidly.
The fourth- and sixth-ordered interpolations are again an improve-
ment over the second, however, there are two things to note. First,
there is a small artifact within the first interval that does not follow
the function at all well. Second both interpolations have only cov-
ered a fraction of the data points; in fact, only the first and ninth
order interpolations have covered the total number of data points.
The astute among you will have realized this is since an n ordered
polynomial interpolation requires n+1 points. If the value of n+1 is
not a factor of the total number of data points, then the scheme will
not be able to interpolate those points. Note the wild oscillations
in the eighth and ninth ordered interpolation at the beginning and
end of the interval. This is a tendency of higher-order polynomial
interpolation to introduce more vigorous oscillations than perhaps
the data points suggest. This is the practical limit of polynomial
interpolation which is referred to earlier. As a rule of thumb try
not to use higher than order five polynomials to do interpolation. If
greater accuracy is required, you could always take more measure-
ments or apply an alternative interpolation method, for example,
spline interpolation.

Computational Physics.Ch3.3pp.indd 41Computational Physics.Ch3.3pp.indd 41 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

42  •  Computational Physics, 2/E

FIGURE 3.2:  Polynomial interpolation of the function () ()=f x sinc x with polynomial
orders of 1, 2, 4,6,8, and 9.

To note, the simulated measurements are mentioned here by
taking values from the function at equidistant points. In real mea-
surements, the data points will likely not lie on the function that
describes them due to the precision of the measuring equipment;
measurements are usually plotted with their error bar. Depending
on the relative size of the error this may have a significant effect on
the interpolation. Additionally, one do not have to take measure-
ments that are equidistant and it is obvious that physics teacher
would have told to take more closely spaced data points about the
region where the measured variable (y) changes rapidly with the
independent variable (x).

Computational Physics.Ch3.3pp.indd 42Computational Physics.Ch3.3pp.indd 42 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

Interpolation and Data Fitting  •  43

3.1.2  Cubic Spline
One of the limiting factors of polynomial interpolation is due to

the discontinuities in the derivatives at the data points (see the order
2 polynomial interpolation in Figure 3.2 for a clear illustration of this
issue). To overcome this issue, we can use spline interpolation. The
term spline has its origins in the shipbuilding industry whereby thin
sheets of wood threaded through discrete points (or knots) would
form smooth curved shapes due to the minimization of strain within
the wood. In essence, the spline approximation not only matches the
function at the measured data points but also matches the deriva-
tives of the function at the data points.

The cubic spline is the most popular version of spline interpola-
tion due to its (relatively) simple form and construction, and that it
generally gives reasonably accurate results. The cubic part of the
name comes from the order of the polynomial used to approximate
the function. Cubic splines are said to have an order of four, which
means that not only are the polynomial values matched at the data
points but so are their first- and second-order derivatives. Given this
definition the linear interpolant explored earlier in this chapter is an
order two spline. What would an order one spline look like?

Cubic splines tend not to have any inherent advantage over
polynomial interpolation for smooth functions or for dense sampling
along the x-axis. However, they are particularly good at interpolating
sparse data points for smooth functions or when the data points vary
rapidly over a region of interest, for instance, in a typical spectral
measurement that contains several peaks and troughs. For a decent
exposition of how to set up a spline approximation, it is recom-
mended reading Section 2.4 of T. Pang’s book listed in the Bibliogra-
phy. It gets quite heavy on the mathematics of setting up the spline
which includes generating matrices and factorizing them using the
lower-upper (LU) decomposition method. As we are physicists, we
like to use the fruits of the mathematicians’ labors, and rather than
writing our own spline approximation let us take a shortcut.

Your Unix/Linux distribution may come with octave installed, if
not it would be able to install it via install manager. Once installed,
open a terminal and type “octave” at the prompt. All being well this

Computational Physics.Ch3.3pp.indd 43Computational Physics.Ch3.3pp.indd 43 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

44  •  Computational Physics, 2/E

will open the Octave program in your terminal. You will know that
it is working as you will see the octave prompt. Type the following
at the prompt:

xf = [0:0.05:5];
yf = sinc(xf);
xp = [0:0.5:5];
yp = sinc(xp);
lin = interp1(xp, yp, xf);
spl = interp1(xp, yp, xf, “spline”);
cub = interp1(xp, yp, xf, “cubic”);
near = interp1(xp, yp, xf, “nearest”);
plot(xf, yf, “r”, xf, lin, “g”, xf, spl, “b”, xf,
cub, ...
“c”, xf, near, “m”, xp, yp, “r*”);
legend(“function”, “linear”, “spline”, “cubic”,
“nearest”);

You should now have a neat plot of the function ()y sinc x= with
the four different types of interpolation of that function shown; the
“measured” points are the red asterisks. Describing this a line at a
time we have set up a line space for x on the interval [0,5] using 101
points, then calculated the function () y sinc x=

for that line space.
The next line sets up a line space of 11 points on the same interval
that represents our “measured” data points, and the corresponding
y is then calculated. Then we use the Octave function interp1 to
interpolate our “measured” data points using linear, cubic spline,
cubic polynomial, and nearest neighbor interpolation methods. The
1 in the function name refers to the fact we are interpolating in one
dimension. We then plot the results on the same figure with the
legend as labeled. Note that the ellipsis, …, is a continuation symbol
for Octave. Notice also that the “cubic” interpolation uses what is
called a piecewise cubic Hermite interpolating polynomial, which
preserves the shape of the function.

So, all that coding in C++ to implement the interpolation classes,
writing the application logic to use them, followed by importing the
resulting data file into an external program for plotting has been
handled in ten relatively simple lines of Octave code.

Computational Physics.Ch3.3pp.indd 44Computational Physics.Ch3.3pp.indd 44 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

Interpolation and Data Fitting  •  45

This brings us back to the point made in Chapter 1 that the
problems you will encounter are likely to have already been solved
and reduced to an elegant form. However, the idea here is not to
blindly use the programs written by someone else but at least have
a basic understanding of how they function. In the future, you may
find yourself with a problem that has yet to be tackled. In attempting
a solution, you will require the skill of implementing mathematical
equations in computer code, and be able to comment on the accu-
racy, precision, and limits of what you have written. You can only do
this if you have a solid understanding of the underlying theories and
equations that govern the problem and your attempted solution.

Other interpolation schemes that you may wish to investigate
but are beyond the scope of this book include Rational function
interpolation; B-splines; T-splines; Newton Interpolation; Neville’s
algorithm; and the Aitken Method. This list is not exhaustive.

3.2  DATA FITTING

3.2.1  Regression: Illustrative Example
Regression is a form of data fitting that allows us to mathemati-

cally determine the line (or curve) of best fit to measured data. It is
like interpolation in that we use measured data points to mathemati-
cally approximate a solution. However, it differs from interpolation
in that instead of finding a local approximation, that is, a function
value located between two data points, we are finding the global
behavior or trend of the measurements. In that respect, regression
is not constrained to pass through the data points. In technical par-
lance, regression attempts to solve an overdetermined (more equa-
tions than unknowns) set of simultaneous linear equations that likely
have no exact solution but will have a best-fit polynomial approxi-
mation. Regression methods find the coefficients of that best-fit
polynomial. One of the most well-used regression schemes is called
linear least squares where the best fit is that polynomial which mini-
mizes the sum of the squared differences between the data points
and the modeled solution.

Computational Physics.Ch3.3pp.indd 45Computational Physics.Ch3.3pp.indd 45 1/4/2022 10:29:18 AM1/4/2022 10:29:18 AM

46  •  Computational Physics, 2/E

To illustrate, let us have a look at a simple example. As a result
of an experiment, four data points were obtained as follows: (1,2),
(2,1), (3,3), (4,6) each describing an (x, y) coordinate. The experi-
menters want to find a line that provides the best global trend in
these four data points. They initially assume that the relationship
between x and y is linear and can therefore be approximated by

	 0 1y a a x= + � (3.15)

Mathematically speaking, they would like to find the numbers

0a and 1 a that approximately solve the overdetermined linear system
four equations in two unknowns in some “best” sense:

	

0 1

0 1

0 1

0 1

1 2
2 1
3 3
4 6

a a

a a

a a

a a

+ =
+ =
+ =
+ =

� (3.16)

The least-squares approach to solving this problem is to try to
minimize the sum of the squares of the differences between the right-
hand and left-hand sides of these equations. Putting this into algebra
we are attempting to make the following function as small as possible:

	 () () () () ()2 2 2 2
0 1 0 1 0 1 0 1 0 1, 2 1 2 3 3 6 4S a a a a a a a a a a= − − + − − + − − + − − 	

� (3.17)

From A-level mathematics, one should remember how to find
the minimum (or maximum) of a function with one independent
variable; you find where the first derivative of that function is zero.
For functions with multiple independent variables, the method is no
different only that we determine the partial derivative with respect
to the independent variables separately. Apart from the variable, we
are taking the derivative with respect to, all other independent vari-
ables are considered constant. Applying this to the function ()0 1, S a a
and after some rearrangement we obtain

	

0 1
0

0 1
1

8 20 24 0

20 60 74 0

S
a a

a
S

a a
a

∂
= + − =

∂
∂

= + − =
∂

� (3.18)

Computational Physics.Ch3.3pp.indd 46Computational Physics.Ch3.3pp.indd 46 1/4/2022 10:29:19 AM1/4/2022 10:29:19 AM

Interpolation and Data Fitting  •  47

We know that these must give minimums and not maximums
because () 2 2

0 1 0 1, S a a a a∝ + , which has no maximums. Equations
(3.18) are called the normal equations and when solved give 0 0.5 a = −
and 1 1.4a = .

The line that these coefficients describe is plotted in Figure
3.3(a) along with the data points, and it is the line of best fit for a
linear model. However, what if the experimenter’s initial assumption
about the relationship being linear is wrong? Perhaps we ought to
add more terms to the approximating polynomial. Adding an extra
term to our approximating polynomial gives

	
2

0 1 2y a a x a x= + + � (3.19)

that when processed via the method above gives us values for the
coefficients of best fit of 0 4.5a = , 1 3.6a = − , and 2 1.0a = .

FIGURE 3.3:  Linear least squares fit of the data using a linear model (a), and a
quadratic model(b).

Computational Physics.Ch3.3pp.indd 47Computational Physics.Ch3.3pp.indd 47 1/4/2022 10:29:19 AM1/4/2022 10:29:19 AM

48  •  Computational Physics, 2/E

This curve is plotted with the data points in Figure 3.3(b). So,
which is the curve of best fit and thus tells the experimenters the
global behavior? Naively you may think the quadratic curve is bet-
ter, it being much closer to the data points than the linear behav-
ior. However, upon inspection of our approximation, we see that
we are producing the Taylor series expansion for the function that
passes through those specific data points. Adding more terms to the
polynomial is bound to improve the accuracy of the curve passing
through the points as we are providing a better approximation to the
higher-ordered derivatives of the function. Clearly, the difficulty in
interpreting the global behavior of this simple, made-up data set is
due to the small number of measurements considered. Could the
first data point measured at x=1 be an anomaly or an actual feature?
The only way to tell in a real experiment would be to take more
measurements.

3.2.2  Linear Least Squares: Matrix Form
When it comes to solving a large system of linear equations it is

most convenient to write them in matrix form. The general matrix
formula for a system of linear equations is

	 x bΑ = � (3.20)

where A is a matrix of known coefficients (not to be confused with
the coefficients of the approximating polynomial), x is the vector
of unknown variables, and b is the vector of known right-hand
side values. To illustrate this matrix form for the normal equations
of the linear least-squares method consider Equations (3.18).
Written in matrix form they give (notice there is a common factor
of two)

0

1

8 20 24
20 60 74

a

a
    

=    
     .

We can generalize this matrix form for linear least squares to
give

Computational Physics.Ch3.3pp.indd 48Computational Physics.Ch3.3pp.indd 48 1/4/2022 10:29:19 AM1/4/2022 10:29:19 AM

Interpolation and Data Fitting  •  49

	

1 1

2 1

1 1 1

1 2

1 1 1

n n
m

i
i i

n n n
m

i i
i i i

n n n
m m m
i i i

i i i

n x x

x x x

x x x

= =

+

= = =

+

= = =

 
 
 
 
 Α =  
 
 
  
 

∑ ∑

∑ ∑ ∑

∑ ∑ ∑





   



,� (3.21)

where n is the total number of data points, and m is the order of the
approximating polynomial. Here x refers to the independent vari-
able in the measurement set, not the unknown vector x in Equation
3.20, that holds the unknown coefficients (sometimes there just
aren’t enough characters in the alphabet). We note that matrix A in
this case has the nice property that it is symmetrical.

To solve Equation (3.20), that is, find the unknown vector x (the
coefficients of the approximating polynomial), we must factorize
matrix A. If you have solved a set of simultaneous equations before
then you have factorized a matrix without realizing it, probably.
The Gaussian elimination (GE) method is used to find a multiplier
between two equations to remove a variable from their resulting
addition. In matrix format, this is equivalent to finding a multiplier
between two rows, with the resultant addition zeroing a matrix ele-
ment. With row and column exchanges the resultant matrix can be
made into either a lower or upper triangular matrix and we can solve
the entire system from the row containing the single non-zero ele-
ment on the diagonal. Note that GE is not the only factorization
method; others of note include Cholesky, LU decomposition, and
QR decomposition.

Cholesky factorization is the method of choice here to solve
Equation 3.20 for least linear squares. Andre-Louis Cholesky was a
French mathematician who developed his eponymous factorization
method (sometimes referred to as decomposition) when solving a
geographical survey problem in his home country in the first decade

Computational Physics.Ch3.3pp.indd 49Computational Physics.Ch3.3pp.indd 49 1/4/2022 10:29:19 AM1/4/2022 10:29:19 AM

50  •  Computational Physics, 2/E

of the 20th century. The factorization takes a symmetric positive
definite matrix A and writes it as

TA LL=

where L is a lower triangular matrix with positive diagonal entries.
To solve Equation (3.20) you say that

Ty L x=

Ly b=

The latter of these two equations is solvable for y, which in turn
means you can solve the former of these equations for x. Cholesky
was also a French military officer who served during the First World
War and died from battlefield wounds in August of 1918 at the age of
42. His work was published in 1924 posthumously by a fellow officer
but received little attention until the latter half of the 20th century.

I have written some of these matrix factorization methods
as classes in the C++ library found at the GitHub site. They are
defined in LinearSolvers.h and implemented in LinearSolvers.cpp.
I have also written a program to find the least linear squares fit for
an order 1 polynomial of the example data using Cholesky factoriza-
tion, source code in leastLinearSquares.cpp. As an aside, if you plan
on performing matrix factorization in any serious fashion you should
look up C/C++ wrapper libraries for LAPACK and BLAS, or for a
totally C++ approach search for the Eigen project.

3.2.3  Realistic Example: Millikan’s Experiment
The oil drop experiment, or more famously Millikan’s Experi-

ment, was an experiment performed by Robert Millikan and Harvey
Fletcher in 1909 that provided one of the first accurate measures of
the elementary electric charge (the charge of the electron).

TABLE 1:  Some of Millikan’s and Fletcher’s oil drop data

n nq C19/10− n nq C19/10−

4 6.558 12 19.68

5 8.206 13 21.32

Computational Physics.Ch3.3pp.indd 50Computational Physics.Ch3.3pp.indd 50 1/4/2022 10:29:20 AM1/4/2022 10:29:20 AM

Interpolation and Data Fitting  •  51

n nq C19/10− n nq C19/10−

6 9.880 14 22.96

7 11.50 15 24.60

8 13.14 16 26.24

9 14.82 17 27.88

10 16.40 18 29.52

11 18.04

The experiment involves balancing the gravitational force with
the drag and electric forces acting on microscopic, charged drop-
lets of oil suspended between two metal electrodes. The droplet’s
radii can be measured, and with knowledge of the oil’s density, their
weight and buoyancy can be calculated. Millikan and Fletcher could
use this information with a known electric field to determine the
charge on oil droplets in mechanical equilibrium. By repeating the
experiment for many droplets, they confirmed that the charges were
all multiples of some fundamental value and calculated it to be about

191.5924 10 −× C 0.01%± . They proposed that this was the charge of
a single electron.

FIGURE 3.4:  Plot of Millikan’s oil drop data.

Some of the data from Millikan and Fletcher’s experiment are
shown in Table 1 and plotted in Figure 3.2. At first glance, the data
seem to lie perfectly on a straight line that passes through the origin.

Computational Physics.Ch3.3pp.indd 51Computational Physics.Ch3.3pp.indd 51 1/4/2022 10:29:20 AM1/4/2022 10:29:20 AM

52  •  Computational Physics, 2/E

Can we show that mathematically that this is the case? The answer is
yes otherwise this section would be truly short!

A straight line through these data has the form

nq ne q= + ∆

where the fundamental charge e is the gradient of the line, and n is
an integer. We can determine both e and the (estimated) error in the
charge q∆ from this data by adapting the linear least-squares pro-
gram to use the data found in the file millikanData.txt located in the
resource sub-directory of the progs directory. The resulting output
determines 191.64 10e −≈ × C with an estimate for the error bounds
as 190.03 10q −∆ ≈ ± × C. This is in remarkably close agreement with
the currently accepted value of 191.602 10e −= × C (3sf). To math-
ematically test how well the data are fitted by a straight line we can
calculate what is called the residual norm. This is the square root of
the sum of the squared residuals and it should be a vanishingly small
number for the oil drop data presented. The other method we can
employ is to increase the order of the approximating polynomial to
study the relative sizes of the coefficients. For both the methods
exercises are provided at the end of chapter for practice.

As a cautionary note, the arguments above for least-squares fit-
ting assume that there is no error in the measurements of the inde-
pendent variable x and this assumption is valid in general. In fact, for
the oil drop experiment the x values are necessarily integers, being
multiples of the fundamental charge, and implicitly have no error.
However, in some cases, the error in x will be comparable to the
error in the measured value y. In this case, you would have to apply
a total least squares approach that somehow minimizes residuals in
both the x and y coordinates.

Of course, sometimes you may be faced with data that is non-
linear, for example, data from spectral measurements or resonant
phenomenon, where you will be interested in the location of a peak,
and probably its width and its height. Non-linear equations are
more complicated to deal with but can still be fitted in the least
squares sense. The mathematics to deal with non-linear equations
are beyond the scope of this book but for a decent introduction to

Computational Physics.Ch3.3pp.indd 52Computational Physics.Ch3.3pp.indd 52 1/4/2022 10:29:20 AM1/4/2022 10:29:20 AM

Interpolation and Data Fitting  •  53

non-linear least-squares approximations see Chapter 3 of Paul L.
DeVries’ book A First Course in Computational Physics.

EXERCISES

3.1.	 Write a program that uses the Lagrange interpolation
class to interpolate the function sinc(x) using polynomials
of increasing order.

3.2.	 Using a mathematics library, for example, octave, see
how well a cubic spline interpolation performs over poly-
nomial interpolations for the same functions using the
same data points. Choice of function and number of data
points is completely free. Go nuts. Test out any other
interpolation routines you may find.

3.3.	 The code provided for the Linear Least Squares approxi-
mation is less than optimal.

a.	Add user-defined input so that the order of the fitting
polynomial can be chosen by the user. Think about the
validation of that input.

b.	Modify the code so that the matrix form of the normal
equations (A) can be initialized from a general set
of data read in from a file. (Hint: How do the matrix
indices i and j relate to the power of the independent
variable x?).

c.	 Automate the calculation of the right-hand-side vec-
tor b in Equation 3.20 from a general set of data. Use
Equations 3.16-18 as a guide, and there is a hint in the
source file.

d.	Include a calculation for the residual norm

3.4.	 Test out your modified Linear Least Squares approxima-
tion program on the Millikan data for polynomial orders
greater than one. Comment on the results.

Computational Physics.Ch3.3pp.indd 53Computational Physics.Ch3.3pp.indd 53 1/4/2022 10:29:20 AM1/4/2022 10:29:20 AM

Computational Physics.Ch3.3pp.indd 54Computational Physics.Ch3.3pp.indd 54 1/4/2022 10:29:20 AM1/4/2022 10:29:20 AM

CHAPTER 4
SEARCHING FOR ROOTS

4.1  FINDING ROOTS

A root-finding algorithm is a numerical method, or algorithm,
for finding a value x such that () 0f x = , for a given function f. Such
an x is called a root of the function f. This type of problem occurs
often in physics and science in general, typically as a starting point
or intermediary process of a larger problem, though sometimes it is
the problem.

Generally, computing the root of a function cannot be done ana-
lytically and this is especially true when a function is not represented
by a low order polynomial. Closed-form solutions for the roots exist
for polynomials up to the fourth order

2 4
2

b b ac
x

a
− ± −

=

However, no such general solutions exist for order five polyno-
mials or higher. Factorization can be used in finding the roots of
a polynomial equation but tends to be viable only for well-chosen
coefficients, that is, no messy fractions to deal with. For equations
that are not polynomial, analytical solutions are few and far between.

Finding a root of () () 0f x g x− = is the same as solving the equa-
tion () ()f x g x= . Here, x is called the unknown in the equation. Any

Computational Physics.Ch4.3pp.indd 55Computational Physics.Ch4.3pp.indd 55 1/3/2022 10:41:02 AM1/3/2022 10:41:02 AM

56  •  Computational Physics, 2/E

equation can take the form () 0f x = , so equation solving, that is,
finding x, is the same thing as computing a root of a function. One of
the first techniques you should have been taught to find the root of
() () f x g x= is to plot graphs of the two functions on the same coor-

dinate system; the x value of where the two functions intersect is the
root. Clearly, this has accuracy limitations stemming from the preci-
sion of the human eye and the thickness of pencil lines. Unless one
is willing to draw a massive graph, this technique should be reserved
for providing a rough estimate of the root, which can be passed as
an initial guess to a numerical root-finding algorithm. Root-finding
methods, provided with an initial guess, use iteration to produce a
sequence of numbers that hopefully converge toward a unique value,
the root you wish to find. The methods are recursive in nature, that
is they compute subsequent values based on current and/or previous
values of x, ()f x , and derivatives of () f x where appropriate.

The behavior of root-finding algorithms is studied in numeri-
cal analysis. Algorithms perform best when they take advantage of
known characteristics of the given function, and typically you find
those specific algorithms perform better for particular functions.
To evaluate the usefulness of a particular root-finding method, we
should test its robustness in achieving reliable results, its ability to
find closely located roots, and its rate of convergence, in that order.

4.1.1  Bisection
The Bisection method is a root-finding algorithm that repeat-

edly bisects (halves) an interval and then selects a subinterval in
which a root must lie for further processing. It is a simple and robust
method, but it is also relatively slow. Because of this, it is often used
to obtain a rough approximation to a solution which is then used as
a starting point for more rapidly converging methods (e.g., the New-
ton–Raphson method discussed in the next section).

In general, we wish to solve () 0 f x = that is defined on an inter-
val [], a b , and () f a and () f b have opposite sign. So long as () f x
is continuous along with this interval then the limits of the interval
must contain, or bracket, at least one root. We then halve the interval
size and retain the bracket that must contain a root, at the limits of
the interval the value of the function has the opposite sign. This step

Computational Physics.Ch4.3pp.indd 56Computational Physics.Ch4.3pp.indd 56 1/3/2022 10:41:03 AM1/3/2022 10:41:03 AM

Searching for Roots  •  57

is repeated several times and the limits should approach the value
of the root. The first two iterations of this process are illustrated
in Figure 4.1. Typically, the method is repeated until some desired
accuracy is achieved, or we have performed a particular number of
iterations.

FIGURE 4.1:  Illustration of the Bisection method showing the initial values and two
subsequent iterations.

Explicitly, we find the midpoint between a and b

	
()

2
a b

c
+

= � (4.1)

and evaluate the function at the midpoint, (). f c If () f a and ()f c
are of opposite sign, then the method sets c as the new value for b.
Else if ()f b and ()f c are of opposite sign the method sets c as the
new value for a. In either case, the updated () f a and () f b are of
opposite sign, so the method is applicable to this smaller interval.If
() 0 f c = then c is the root and the process stops.

There is a trick to determining whether the function evaluations
at the limits of the interval are of the opposite sign without the need
to assess them individually. Taking the product of two numbers with
the same sign always gives a positive result. Conversely, the product

Computational Physics.Ch4.3pp.indd 57Computational Physics.Ch4.3pp.indd 57 1/3/2022 10:41:03 AM1/3/2022 10:41:03 AM

58  •  Computational Physics, 2/E

of two numbers with opposite signs always gives a negative result.
Hence, if the product of () f a with () f b is negative then they must
be of opposite sign, if positive they must have the same sign. We can
use this information in a logical condition expression of an if state-
ment in C++ to determine which half interval to keep and which to
discard.

The program bisection.cpp performs the Bisection root-find-
ing algorithm on the function () ()cos 0f x x x= − = . This uses the
RootSearch class to perform the Bisection search, specifically the
Bisection class. Similar approaches can be found in ref: Pang pp.
62–63, which is written in Java, and in ref: DeVries pp. 41-51 written
in Fortran, which provides a nice comparison between the different
programming languages. After compiling and running the code in
bisection.cpp you should find the value for the root to be 0.739 x =
(3sf). The precision of this value is governed by the data member
m_tolerance. This parameter sets the minimum value of relative
error that we will tolerate in the solution for the root and can be
modified via the relevant setter member function.

As an aside, although the RootSearch classes are written to be
mathematically correct they are somewhat poorly designed in terms
of their interface.

4.1.2  Newton–Raphson
The Newton–Raphson method, named after its creators Isaac

Newton and Joseph Raphson, is another method for finding succes-
sively better approximations to the roots of a function. Derivation of
the method can be done by considering the geometry of a function
in the neighborhood of the root. Consider Figure 4.2 that illustrates
this point. Using the gradient of the function at an initial guess for
the root we can arrive at a better approximation. This is done by
tracing the tangent to the function at the initial guess back to the
x-axis. Repeating this method using the new value of x we arrive at
an even better approximation for the root. By applying the method
several times the approximations should converge on the root to
some desired accuracy.

Computational Physics.Ch4.3pp.indd 58Computational Physics.Ch4.3pp.indd 58 1/3/2022 10:41:03 AM1/3/2022 10:41:03 AM

Searching for Roots  •  59

FIGURE 4.2:  Sketch of the Newton-Raphson method show the initial value and two
subsequent iterations.

Using Figure 4.2, we know that

	 () ()
()

0
0

0 1

f x
f x

x x
′ =

−
� (4.2)

where () f x′ is the gradient of the function at x. Rearranging Equa-
tion (4.2) to solve for the improved approximation to the root, 1x , we
obtain

	
()
()

0
1 0

0

f x
x x

f x
−

′
= � (4.3)

where 0 x is the initial guess. We can generalize this for the nth itera-
tion

	
()
()

1
1

1

n
n n

n

f x
x x

f x
−

−
−′

= − � (4.4)

Note that we must be able to find the first-order derivative for
this method to work. This method can also be derived from the
Taylor expansion of the function about the root.

Computational Physics.Ch4.3pp.indd 59Computational Physics.Ch4.3pp.indd 59 1/3/2022 10:41:04 AM1/3/2022 10:41:04 AM

60  •  Computational Physics, 2/E

The program newtonRaphson.cpp implements this method on
the same function we looked at with the Bisection method. You can,
of course, change the function and its derivative to any you wish to
study (so long as you can find the first derivative analytically) without
the need to change anything in the class implementation. The initial
guess will have to be modified to be close to the root of the equation
you choose.

Generally, the Newton–Raphson method is good and if it con-
verges it will converge rapidly. However, be wary that this conver-
gence is very much dependent on the choice of the initial guess. Too
far away from the root and the method will fail to converge. In some
special cases, the value will not converge at all; try () 3 2 2 f x x x= − +
with an initial guess of one and see if you can figure out what is
happening (remember CTRL-c terminates an executing program).
Another issue with convergence is its reliance on the first derivative
of the function in the neighborhood of the root. What happens if
the gradient of the function approaches zero at the root? In general,
you will likely be finding roots in functions that do not have a nice
and precise derivative, and you will have to approximate it somehow.
Next, we discuss a method of root searching that does just that.

4.1.3  Secant

FIGURE 4.3:  Sketch of the Secant method with initial values and one subsequent iteration.

Computational Physics.Ch4.3pp.indd 60Computational Physics.Ch4.3pp.indd 60 1/3/2022 10:41:04 AM1/3/2022 10:41:04 AM

Searching for Roots  •  61

The Secant method uses a series of Secant lines (a straight line
that cuts a curve in two places) to find better approximations of a
root of a function. As with the Newton–Raphson method, we can
derive the recursion formula by considering the geometry of a func-
tion around the neighborhood of the root. Figure 4.3 illustrates the
derivation of the Secant method.

Starting with two points 0x and 1 x that lie close to the root we
draw a line through the points at ()0 f x and ()1 . f x The equation
for this straight line is given by

	 () () () () ()1 0
1 1

1 0

f x f x
y x x x f x

x x

−
= − +

−
� (4.5)

We wish to find the x value at which this line intersects the x-axis,
in other words we find the x where () 0y x = . The result is

	 ()
() ()

1 0
1 1

1 0

x x
x x f x

f x f x
−

= −
−

� (4.6)

This value of x will be a better approximation of the root. We can
then use this improved approximation, which we label 2x , with 1x to
perform the same process again to obtain an even better approxima-
tion of the root. By repeating the process iteratively, we can find an
approximation that lies within some desired accuracy of the actual
root. We can generalize Equation (4.6) for the thn iteration giving the
recursion formula

	 () () ()
1 2

1 1
1 2

n n
n n n

n n

x x
x x f x

f x f x
− −

− −
− −

−
= −

− � (4.7)

Some readers may have noticed that Equation (4.7) looks like
the Newton–Raphson method, but with the first-ordered derivative
being replaced with its finite difference approximation; we look at
finite difference approximations in Chapter 6. In the limit of the
approximations converging on the root the second term in Equation
(4.7) does indeed approach the second term of the Newton–Raph-
son method. The Secant method should therefore be used when
we do not have an analytical equation for the first derivative of the
function.

Computational Physics.Ch4.3pp.indd 61Computational Physics.Ch4.3pp.indd 61 1/3/2022 10:41:04 AM1/3/2022 10:41:04 AM

62  •  Computational Physics, 2/E

Like the Newton–Raphson method, the Secant method will fail
to converge if the starting values are not sufficiently close to the
root. It should be noted that the Secant method is more rapidly con-
vergent than the Bisection method, but less so than for the New-
ton–Raphson method. Obviously, you are not just going to take my
word for it, are you? The Secant subclass can be used similarly to
the Bisection subclass such that writing a new program using the
Secant method should be straightforward.

4.2  HYBRID METHODS

4.2.1  Bisection–Newton–Raphson
From the previous section, we note that the Bisection method is

robust to initial guesses but slow to converge. Whereas the Newton–
Raphson method will converge rapidly but only if the initial guess
is relatively close to the root, and in some circumstances may fail
to converge at all. Also, the Newton–Raphson method may fail to
converge if the gradient of the function in the neighborhood of the
root approaches zero. We would therefore like to combine the reli-
ability of the Bisection method with the rapid convergence of the
Newton–Raphson method so that for any general function we can
find its roots with relative ease.

We can do this by making a hybrid method that decides whether
to take a Newton–Raphson step or a Bisection step. As computers
cannot think for themselves, we as programmers must provide some
logical criteria to determine the step to take. Crucially, if an NR step
takes the next approximation outside of our interval, then we should
discard it and apply a Bisection step instead; else we accept the NR
step. To do this, let us consider our Bisection interval [],a b with
some best approximation to the root, r, contained within that inter-
val. To accept the NR step the following inequality has to be satisfied

	
()
()

f r
a r b

f r′
≤ − ≤ .� (4.8)

Computational Physics.Ch4.3pp.indd 62Computational Physics.Ch4.3pp.indd 62 1/3/2022 10:41:04 AM1/3/2022 10:41:04 AM

Searching for Roots  •  63

Now while we could use this inequality as the conditional
expression in an if statement the coding becomes lengthy and
rather difficult to read. We can make our lives easier by rearranging
the inequality into the form

	 0y z≥ ≥ .� (4.9)

In other words, to satisfy the inequality (4.8) such that the NR
step is accepted, the left-hand expression, y, must be positive or
zero, and the right-hand expression, z, must be negative or zero. We
can therefore apply the trick of comparing the product of y and z to
zero to determine whether the inequality has been satisfied. To rear-
range inequality (4.8) into the form of (4.9) we subtract r, multiply
through by ()f r− ′ , and lastly, subtract ()f r resulting in

	 () () () () () ()0r a f r f r r b f r f r− − ≥ ≥ ′− −′ .� (4.10)

If the product of the left-hand side with the right-hand side is
negative then the NR step falls within the interval and should be
accepted; else the product is positive and a Bisection step is applied
instead. Note that a negative product will also be produced if the
RHS is positive and the LHS is negative. However, this satisfies the
reverse inequality of (4.10) that when tracked back to inequality
(4.8) requires that a b≥ , which, by definition, is false (unless they
are equal and in which case you have found the root).

The initial value for the best approximation, r, can be taken as
one of the initial interval limits, it really does not matter. In fact,
this is what we were trying to achieve; if the initial guess gives a
lousy Newton–Raphson step, then the Bisection method is used to
improve the initial guess and continues to do so until the NR step
falls within the interval. However, it is likely that if we have reason-
able guesses for the interval limits of a root, the one with the smallest
function evaluation will lie closest to the root and should be taken as
the initial best guess.

If we do not have an analytic equation for the first-order deriva-
tive then we should replace the Newton–Raphson method with the
Secant method, so that we only have function evaluations, no deriva-
tives. Provided are hybrid Bisection–Newton–Raphson and Bisec-
tion-Secant RootSearch subclasses in the library. They provide an

Computational Physics.Ch4.3pp.indd 63Computational Physics.Ch4.3pp.indd 63 1/3/2022 10:41:05 AM1/3/2022 10:41:05 AM

64  •  Computational Physics, 2/E

implementation of the inequality 4.10 and you should satisfy yourself
they provide the functionality described. Write programs using these
classes to search for roots on appropriate functions.

4.2.2  Brute Force Search
In the previous sections, we have developed solid methods to

accurately compute the roots of a function, so long as we know the
rough locations of those roots in advance. The problem then is find-
ing those rough locations. One straightforward technique is to graph
the functions either by hand or using a plotting program and obtain
those bounds by eye. This is recommended when finding the roots
of a function is the problem to solve. But what if the root-finding is
only one part of a bigger problem? It would be impractical to manu-
ally locate the rough location of roots for numerous functions in this
case.

Typically, we use an exhaustive root search across a region of
interest (ROI) for the function. That is, starting at the minimum
value of the ROI we step the value of x by some small amount and
check to see if the function has changed significantly within that
small step. If it has, we have found the bounds of at least one root, if
not we continue the search. This continues until the whole ROI has
been covered. How then do we decide on the step size? Too small
and we make our rapidly converging root-finding algorithms redun-
dant; too large and we run the risk of stepping over multiple roots
(for an even number of roots this means missing them entirely; for
an odd number, in essence, only one root is detected). Choosing the
step size is an educated guess and is very much dependent on the
function under investigation.

The program rootSearch.cpp showcases our root searching
classes on the Legendre polynomial:

	
8 6 4 2

8

6435 12012 6930 1260 35
128

x x x x
P

− + − +
= � (4.11)

In its current state, it only finds a single root of 8P in [0,1]. It is
known that 8P has four positive roots between 0 and 1. Modify this
program to find all the positive roots of this polynomial in the range

Computational Physics.Ch4.3pp.indd 64Computational Physics.Ch4.3pp.indd 64 1/3/2022 10:41:05 AM1/3/2022 10:41:05 AM

Searching for Roots  •  65

[0,1]. The RootSearch base class has a member function find_
brackets that perform a brute force search for roots of the given
function, returning true when (at least) one root is found.

4.3  WHAT’S THE POINT OF ROOT SEARCHING?

For instance, finding the roots to the Legendre polynomials is
an important step in determining the evaluation points for Gaussian
quadrature; extremely accurate methods for numerically determin-
ing the value of an integral. As a more direct example, and one we
shall discuss here, finding the roots of an equation can help us calcu-
late the energies of electrons bound in a finite square well.

4.3.1  The Infinite Square Well
This problem is sometimes referred to as the particle in a box

model. Classically the motion of the particle is governed by New-
ton’s equations, potential fields put forces on masses causing them
to accelerate or change direction. At the quantum level, Newton’s
equations are replaced by Schrödinger’s such that for a particle of
mass m moving through a (one-dimensional) potential ()V x we
have

	 () () ()
2 2

22
d

E x V x x
m dx

y y y− = −


� (4.12)

where  is Planck’s constant h over 2p, E is the total energy of the
system, and ()xy is the wavefunction of the system. Note that this
is the time-independent version of the Schrödinger equation; time-
dependent versions also exist. Like the Newtonian equations, we
solve Equation (4.12) for the unknown, in this case, ()xy . Although
there is still some considerable debate over the nature of the wave-
function, certain observable quantities do depend on its form. For
instance, the quantity () ()x xy y∗ describes its probability function,
that is, the chance of finding the quantum particle at a particular
location. More precisely the quantity () ()x x dxy y∗ is the probabil-
ity of finding the particle in the region x to x dx+ .

Computational Physics.Ch4.3pp.indd 65Computational Physics.Ch4.3pp.indd 65 1/3/2022 10:41:05 AM1/3/2022 10:41:05 AM

66  •  Computational Physics, 2/E

The simplest form of the particle in a box model considers a
one-dimensional system. Here, the particle may only move back-
ward and forward along the x-axis with impenetrable barriers at
either end. The walls of this one-dimensional box may be visualized
as regions of space with an infinitely large potential energy. Con-
versely, the interior of the box has zero potential energy everywhere.
This means that no forces act upon the particle inside the box, and
it can move freely in that region; remember that forces are propor-
tional to the negative of the gradient of the potential field that causes
them. If the particle touches the sides of the box, it experiences an
infinitely large force that pushes it back into the interior of the box;
here the gradient of the potential is infinite as we have a discontinu-
ity in the potential itself. As such the potential field is modeled by

	 ()
0, 0
,

x L
V x

otherwise

≤ ≤
= ∞

� (4.13)

where L is the length of the box and x describes the position of the
particle within the box.

We now consider the wavefunction of the system both inside
and outside the box. We know ()xy must be zero outside the box as
the particle is confined by the potential. Inside the box, the potential
is zero everywhere thus Schrödinger’s equation becomes

	 ()
2

2 2

2d m
E x

dx
y y= −



.� (4.14)

The general solution of this differential equation is

	 () sin() cos()x A kx B kxy = + , � (4.15)

where

	 2

2mE
k =



,� (4.16)

and A and B are constants to be determined. As it stands, we cur-
rently lack the information to solve this problem. However, physical
reasoning comes to our aid. We expect that the probability of finding
the particle anywhere within the one-dimensional space be a con-
tinuous function. As the probability of finding the particle outside

Computational Physics.Ch4.3pp.indd 66Computational Physics.Ch4.3pp.indd 66 1/3/2022 10:41:06 AM1/3/2022 10:41:06 AM

Searching for Roots  •  67

the box is zero then we require the wavefunction of the particle
inside the box to vanish as it approaches the walls of the box. In
other words, the physics of the problem has given us the boundary
conditions such that

	 ()0 0y = � (4.17)

and

	 () 0Ly = . � (4.18)

Imposing these boundary conditions on the general solution at
0x = we find that

	 ()0 sin(0) cos(0) 0A By = + = � (4.19)

which implies 0B = , and at x L= we find that

	 () sin() 0L A kLy = = . � (4.20)

Equation (4.20) is satisfied either if A is zero or if ()sin kL is
zero. Setting 0 A = is rather an uninteresting case as it sets the wave-
function zero everywhere, which implies that we have no particle in
our system. For () sin kL to be zero then

	 kL np= � (4.21)

where n is an integer. After substitution of Equation (4.16) and some
rearrangement, we find that

	
2 2 2

22n

n
E

mL
p

=


. � (4.22)

Hence, we have found a set of discrete energies that will sat-
isfy our physical boundary conditions and the differential equation.
These are referred to eigenvalues of the system. The corresponding
wavefunctions of these energies are known as the eigenfunctions.
Take note that not all energies are permitted; only those that satisfy
Equation (4.22) are allowed. If the particle were macroscopic (that
is, not quantum) then it could take any value of (kinetic) energy it
liked within the confines of the box.

Computational Physics.Ch4.3pp.indd 67Computational Physics.Ch4.3pp.indd 67 1/3/2022 10:41:06 AM1/3/2022 10:41:06 AM

68  •  Computational Physics, 2/E

FIGURE 4.4:  Wavefunctions and probability functions of the first four energy states of the
infinite square well.

Figure 4.4 shows the wavefunctions and probability functions
for the first four permitted energies in an infinite quantum well.
Typically, we refer to 1E as the ground state energy, and it is the low-
est permitted energy the particle can attain sometimes called the
zero-point energy. Subsequent states we call excited states such that
energy has been absorbed by the particle to jump from lower states
to higher states. Note that these states are standing or stationary
waves such that they are formed from two progressive waves travel-
ing in opposite directions. These progressive waves are reflected by
the infinite barrier and interact in such a way to produce a standing
wave.

Now that we have the energies, we could go back to our func-
tions for ()xy and find the coefficients A such that they normalize
the wavefunctions, that is,

	 () ()
0

1
L

x x dxy y∗ =∫ ,� (4.23)

which is the mathematical statement that the particle must
be somewhere within the box. Note that as we only consider real

Computational Physics.Ch4.3pp.indd 68Computational Physics.Ch4.3pp.indd 68 1/3/2022 10:41:07 AM1/3/2022 10:41:07 AM

Searching for Roots  •  69

wavefunctions the integral function reduces to 2y . In this case, it is
possible to show that 2 /A L= .

The infinite square well is only appropriate for an introduc-
tion to quantum physics. It nicely shows the discreteness of bound
energy states in the well and can be solved analytically. However, as
we have the computer at our disposal, we could solve something a
little more difficult.

4.3.2  The Finite Square Well
The finite square well is somewhat more realistic than the infi-

nite square well. We define the potential as

	 ()
0

0

,
0,

,

V x a

V x a x a

V x a

< −
= − ≤ ≤
 >

 � (4.24)

Note that in this case the well is defined symmetrically about
the origin of the x-axis, rather than having a barrier at 0x = . We
now consider the three distinct regions namely the region left of the
well, the well itself, and the region right of the well. In Figure 4.5,
we label these regions as I, II, and III, respectively, and consider the
implications of the potential field on the wavefunction in these three
regions.

FIGURE 4.5:  The finite square well potential.

Computational Physics.Ch4.3pp.indd 69Computational Physics.Ch4.3pp.indd 69 1/3/2022 10:41:07 AM1/3/2022 10:41:07 AM

70  •  Computational Physics, 2/E

First, for particles with energy greater than the height of the well
0V their wavefunctions are unbound, in other words, they can move

freely, and have any energy. Interestingly, as the particle moves over
the well it loses potential energy, which is transformed into kinetic
energy and the particle gains momentum. This shows an increase in
the wavenumber of the wavefunction as the particle travels across
the well, c.f. de Broglie (pronounced like Troy) momentum. This
can also be seen in the differential equation. For a constant potential
across x, Equation (4.12) has the form of a simple harmonic oscilla-
tor where the ()E V x− term plays the role of the spring constant.
As we go from regions I–II, the potential drops from 0V to zero thus
increasing the “spring constant” and the frequency of the oscilla-
tions of the particle. The opposite is true as we go from regions II–
III. (Strictly speaking, the wave is progressive rather than stationary
so we should use the time-dependent version of Equation (4.12) to
govern the physics of motion, though the outcome would at least be
qualitatively the same. For arguments sake, you can consider the
unbound wavefunctions are the bound states of an infinitely wide
quantum well.)

We now consider the more interesting case of particles with
energy less than 0V . Starting in region I, we can write the Schrödinger
equation as

	 () ()
2

02 2

2d m
V E x

dx
y y= −



, � (4.25)

which has the general solution

	 x x
I Ce Deb by −= + , � (4.26)

where

	
()0

2

2m V E
b

−
=



. � (4.27)

We know from experiments that the wavefunction of the particle
can penetrate the finite barrier; a place where it is forbidden to go
according to classical physics. If the barrier in region I had finite
width, then there is a probability that the particle would be found
to the left of region I; this is known as quantum tunneling. We also
know from the experiment that the probability of finding the particle

Computational Physics.Ch4.3pp.indd 70Computational Physics.Ch4.3pp.indd 70 1/3/2022 10:41:07 AM1/3/2022 10:41:07 AM

Searching for Roots  •  71

to the left of region I decrease as the width of the barrier increases
and vanishes to zero in the limit of the width of the barrier going to
infinity. For the general solution to satisfy this physical observation
D must be zero; remember we are in the negative half of the x-axis
thus, as we go deeper into region I, xe b− represents a growth func-
tion in this direction.

Moving to region II the general solution of the Schrödinger
equation is the same as we found for the infinite well case restated
here

	 � � �II A x B x� � � � � �sin cos , � (4.28)

where we have swapped k for α such that

	 � �
2

2

mE


. � (4.29)

And in region III, which is identical to region II apart from the
location on the x-axis, we find that

	 x
III Fe by −= � (4.30)

with the same reasoning for dropping the growth term. We expect
the wavefunction to be continuous across x. This is again due to phys-
ical reasoning that we do not expect a sudden jump in the probability
of the particle’s whereabouts. In addition to this, we also expect that
the derivative of the wavefunction to be continuous across x. In the
infinite well case, the discontinuity in the derivative was caused by
the infinite nature of the barrier, now we have finite barriers.

To proceed we now consider the boundary conditions of the sys-
tem. At x a= − we obtain the following relation

	 � � � � � � � �A a B a Ce asin cos� � � ,� (4.31)

for the wavefunction and

	 � � � � � �A a B a Ce acos sin()� � � � � � (4.32)

for the derivative. While at x a= we find that

	 A a B a Fe asin cos� � �� � � � � � � � (4.32)

Computational Physics.Ch4.3pp.indd 71Computational Physics.Ch4.3pp.indd 71 1/3/2022 10:41:34 AM1/3/2022 10:41:34 AM

72  •  Computational Physics, 2/E

for the wavefunction and

	 � � � � � �A a B a Fe acos sin� � � � � � � � � (4.33)

for the derivative.

Taking 0A = and 0B ≠ such that we have even parity states we
find that the following must be true:

Bcos a Ce Fea a� � �� � � �� �

	 C F∴ = ,� (4.34)

and

� � � � ��B a Ce B aasin � � � � � �� cos

	 � � � �tan� � �a .� (4.35)

For odd parity states where 0B = and 0A ≠ we find similar
relations:

� � � � � �� �A a Ce Fea asin � � �

	 C F∴ = − � (4.36)

and

� � � � ��A a Ce A aacos� � � � � � �� sin

	 � � � � �cot� � �a .� (4.37)

To find the energies and wavefunctions of the finite square well
we must find the roots of Equations (4.35) and (4.37). And it just so
happens that we have already developed the classes that can do this
job.

4.3.3  Programming the Root Finder
Before launching into the code let us just remind ourselves of

the nature of the problem we are trying to solve. While units like
Joules, kilograms, and meters are all well and good for macroscopic
objects, at the quantum level these become extremely cumbersome
for quantum objects; especially when performing calculations with a
computer. For example, the mass of the electron is roughly 319.1 10−×
kg and has a charge of about 191.6 10−× coulombs; these are hard

Computational Physics.Ch4.3pp.indd 72Computational Physics.Ch4.3pp.indd 72 1/3/2022 10:42:08 AM1/3/2022 10:42:08 AM

Searching for Roots  •  73

numbers that will lend themselves well to precise computations.
Some advocate the use of dimensionless variables such that we set a
particular coefficient to unity to remove any issues of precision. For
instance, we could “choose” units that set the value of 2 / 2 1m = ;
it does not matter what those units are only that the coefficient is
one. However, this requires converting the result from the “dimen-
sionless” units back to SI units or any units of choice which has its
advantages but can be non-intuitive and confusing for novice pro-
grammers. An alternative is to use explicit unit conversions before
computing anything and therefore have results that are immediately
identifiable in SI units. The unit conversion will be different for dif-
ferent problems, but the common goal is to make the coefficients
have an exponent of one. Typically, we can use the natural units of
the problem at hand. Case in point, if we use electron masses, Ang-
stroms, and electron volts as our units of mass, length, and energy
respectively then

	 2 27.61996386 em eV= Å .� (4.38)

To see how we arrived at this number let us start with the normal
definition of  such that

	
346.62606957 10

2 2
h

Js
p p

−×
= = � (4.39)

and perform some dimensional analysis on the units. In SI base units
the units for Planck’s constant squared become

	 [] [] []2 22 4 2J s kg m s −=       ,� (4.40)

which we can rearrange to give

[] [] [] [] [] []2 4 2 2 2 2 2kg m s kg m kg m s kg m J− −= =                  .� (4.41)

To convert to our computer-friendly units, we note the following
conversions:

311 9.10938291 10 kgem −= × ;
191 eV 1.60217657 10 J−= × ;

Computational Physics.Ch4.3pp.indd 73Computational Physics.Ch4.3pp.indd 73 1/3/2022 10:42:09 AM1/3/2022 10:42:09 AM

74  •  Computational Physics, 2/E

and
101 1 10 m−= ×Å .

Combining these to compute 2
 in Equation (4.38) we have

2 68
2

2 31 19 20

6.62606957 10
4 9.10938291 1.60217657 10 10 10p

−

− − −= ×
× × × ×



	 2 2 2 0.0761996386 10 eV em∴ = × Å . � (4.42)

By explicitly setting these unit conversions we know that when
defining the well width say we do so in units of Angstroms. Or when
defining the potential barrier height or computing the energy of the
bound electrons we are using units of electron volts.

Let us imagine we are attempting to find the energy and wave-
function of the lowest bound state, the ground state. From the
results of the infinite square well case, we would expect this state
to be of even parity. Even parity states have the characteristics that

0y ≠ and ' 0y = at the middle of the well. Odd parity states have
those characteristics reversed. For even parity states we are trying to
find the energy E which satisfies the following equation

	 f E a� � � � � � �� � �tan 0 � (4.43)

where we remind you that

	 � �
2

2

mE


,� (4.44)

and

	
()0

2

2m V E
b

−
=



.� (4.45)

Now while Equation (4.43) is perfectly acceptable as a math-
ematical object note that it contains properties that are abhorrent to
a computer. Specifically, the tangent function contains singularities
whenever ka np= , where n is an integer, due to the cosine function
being zero at these points. We can circumvent this issue by rewriting
Equation (4.43) in its component terms such that

	 f E a a� � � � � � � � �� � � �cos sin 0.� (4.46)

Computational Physics.Ch4.3pp.indd 74Computational Physics.Ch4.3pp.indd 74 1/3/2022 10:42:24 AM1/3/2022 10:42:24 AM

Searching for Roots  •  75

Here we have removed the singularities and the computer
thanks us for that.

FIGURE 4.6:  Function of energy where the roots define the energy eigenvalues for a finite
square well of width 10Å and height 10 eV.

The root-finding subroutines we have developed to date demand
that a root be bracketed; where do we start looking? We know that
our bound wavefunctions must exist (if they exist at all) within
the confines of the well. That is, they must exist only for energies
between zero and the height of the potential barrier 0V . We could
perform an exhaustive search on ()f E but let us see if we can’t do
a little better by plotting the function on which we wish to perform
the root search. Figure 4.6 shows the function ()f E for an elec-
tron bound in a well with the parameters 5 a = Å, and 0 10V = eV;
remember that the electron can only have energies that are equal
to the roots of this function. We can clearly see three roots: the first
between 0.0 and 0.5 eV, the second between 2.5 and 3.0 eV, and the
third between 7.0 and 7.5 eV. Performing the same procedure for
odd parity states we find three roots bracketed between 1.0 and 1.5
eV, 4.5 and 5.0 eV, and 9.5 and 10.0 eV.

Computational Physics.Ch4.3pp.indd 75Computational Physics.Ch4.3pp.indd 75 1/3/2022 10:42:24 AM1/3/2022 10:42:24 AM

76  •  Computational Physics, 2/E

There is a slight rub to this plotting argument; we have plotted
the function to see roughly where the roots lie and to avoid an
exhaustive search where we would have to perform many func-
tion evaluations. However, to plot the function we have had to
perform function evaluations anyway at equally spaced points and
passed that data to an external program for plotting. We have not
actually saved ourselves any effort and in fact, have added some.
In other words, we may as well perform the exhaustive search. If
so desired, we could then store the function evaluations during
the exhaustive search for plotting after the program has finished,
providing some insight into the validity of our numerical results.
As a rule of thumb, we should set the search step length no larger
than 210− of our search range to avoid skipping over roots, and
no smaller than 410− of our search range to avoid an excessive
number of function evaluations and subverting the intent of the
root searching subroutines we have developed, if you consider
ten thousand not being an excessive number! That said, the step
length for an exhaustive search will very much depend upon the
function being investigated. For instance, we can clearly see from
Figure 4.6 that a step length of one would find brackets for all
three roots.

Once we have the brackets for the roots, they are passed to a
root searching algorithm, say our Bisection-Secant hybrid method,
for further refinement up to an accuracy specified by a user-defined
tolerance. We now have the energies (in eV) of the bound states of
our finite square well. All that remains to do is substitute these val-
ues back into our equations for the original problem to determine
their corresponding wavefunctions.

The finiteSquareWell.cpp source file contains the code to imple-
ment the discussion above for a finite square well of width 10Å, and
barrier height of 10 eV. If you have OpenCV installed and have
included the visualization module in the library the program will
plot the resultant wavefunctions for an electron trapped in this spe-
cific well. If not, the program writes to file the data computed for
plotting elsewhere.

Computational Physics.Ch4.3pp.indd 76Computational Physics.Ch4.3pp.indd 76 1/3/2022 10:42:24 AM1/3/2022 10:42:24 AM

Searching for Roots  •  77

FIGURE 4.7:  The wavefunctions and probability functions for a finite square well with the
parameter defined in the text (units are Å and eV).

Figure 4.7 plots the results of this code for an electron trapped in
the well. Here we plot the normalized wavefunction from this com-
putation on the left (see Exercise 5), and the corresponding prob-
ability function on the right; the zero baselines are aligned to their
matching energy eigenvalue (the code requires additional function-
ality to obtain the probability functions). This result will come in
very handy as a check when we attempt to find the bound states for
an arbitrary potential ()V x in Chapter 11 on an advanced ordinary
differential equation solver.

EXERCISES

4.1.	 Run the Bisection, Newton–Raphson, and Secant meth-
od programs to determine the number of iterations re-
quired to find the root of the equation () ()f x cos x x= −
to an accuracy of eight significant figures. Comment on
the dependence of conversion on the choice of initial
guesses. (Tip: You may want to include a conditional exit
to avoid infinite loops).

Computational Physics.Ch4.3pp.indd 77Computational Physics.Ch4.3pp.indd 77 1/3/2022 10:42:24 AM1/3/2022 10:42:24 AM

78  •  Computational Physics, 2/E

4.2.	 Modify the hybrid method programs so that it prints to
screen when it takes a Bisection step and when it takes
an NR/Secant step. Using the various initial guess values
from the previous exercise perform the same root-finding
computation using one of the hybrid methods we have
developed. Verify that the hybrid methods are robust to
initial guess and comment on how often Bisection is used
in comparison with the other method.

4.3.	 Modify the brute force search so that instead of attempt-
ing to find a set number of roots it only searches over
a given interval of interest, reporting back the number
of roots found in that interval, as well as the bracket for
each.

4.4.	 The Lennard–Jones potential describes the approximate
interaction between a neutral pair of atoms and has the
form

12 6

4LJV
r r
s se

    = −         

	 where r is the distance between the atoms, and e and s
are properties of the potential to be determined. At what
value of r does the potential LJV equal zero? The size
and nature of the force between the atoms are given by
the magnitude and sign of the first-order derivative of
the potential with respect to r. At what value of r do the
forces balance between the atoms, and what is the value
of LJV at this point? Confirm these results using the root-
finding programs we have developed in this chapter. As a
bonus question, what is the minimum energy required to
tear the atom pair apart according to the Lennard–Jones
potential?

4.5.	 Add code to the finiteSquareWell.cpp source file to
compute the probability functions for each wavefunction
found (Tip: there is an overloaded operator that allows
you to perform elementwise multiplication of two vectors
in the code library)

Computational Physics.Ch4.3pp.indd 78Computational Physics.Ch4.3pp.indd 78 1/3/2022 10:42:24 AM1/3/2022 10:42:24 AM

Searching for Roots  •  79

4.6.	 Is a 10 eV tall, 10 Angstrom wide quantum well physically
sensible? Study the effects of varying the well width and
well height on the bound states on the bound states in
the well. Do we always get at least one state, that is, the
ground state?

Computational Physics.Ch4.3pp.indd 79Computational Physics.Ch4.3pp.indd 79 1/3/2022 10:42:25 AM1/3/2022 10:42:25 AM

Computational Physics.Ch4.3pp.indd 80Computational Physics.Ch4.3pp.indd 80 1/3/2022 10:42:25 AM1/3/2022 10:42:25 AM

CHAPTER 5
NUMERICAL
QUADRATURE

Numerical integration constitutes a broad family of algorithms
for calculating the numerical value of a definite integral. The term
is also sometimes used to describe the numerical solution of differ-
ential equations that are described in Chapter 6 of this book. This
chapter focuses on the calculation of definite integrals. The term
numerical quadrature (often abbreviated to just quadrature) is a syn-
onym for numerical integration, especially as applied to one-dimen-
sional integrals.

The basic problem considered by numerical integration is to
compute an approximate solution to a definite integral:

	 ()
b

a

f x dx∫ . � (5.1)

If ()f x is a smooth, well-behaved function and the limits of the
integration are bounded, there are several methods of approximat-
ing the integral using numerical integration to the desired precision.

The first two numerical integration schemes we discuss next
should be familiar to you and provide intuitive and illustrative exam-
ples of what all numerical integrations schemes are doing regardless
of their complexity.

Throughout this chapter, C++ programs that perform the
quadrature methods are discussed. There are Quadrature classes

Computational Physics.Ch5.3pp.indd 81Computational Physics.Ch5.3pp.indd 81 1/4/2022 10:33:57 AM1/4/2022 10:33:57 AM

82  •  Computational Physics, 2/E

found in the library that can be used to shortcut the development.
Feel free to use them but ensure you have at least looked at how
they are implemented. You will also find other quadrature rules
in the library that implement Romberg’s method and Gauss type
quadrature. We discuss these quadrature methods in Chapter 10 of
this book.

5.1  SIMPLE QUADRATURE

5.1.1  The Mid-Ordinate Rule
The mid-ordinate rule computes an approximation to a definite

integral, made by finding the area of a collection of rectangles whose
heights are determined by the values of the function at certain dis-
crete, evaluation points along the interval.

FIGURE 5.1:  Illustration of the mid-ordinate rule.

Figure 5.1 illustrates the mid-ordinate method. Specifically, the
interval [],a b over which the function is to be integrated is divided
into N equal subintervals of length () /h b a N= − . The height of the
rectangle is then determined to be the value of the function found
at the mid-point between each subinterval hence the name. The
approximation to the integral is then calculated by adding up the

Computational Physics.Ch5.3pp.indd 82Computational Physics.Ch5.3pp.indd 82 1/4/2022 10:33:57 AM1/4/2022 10:33:57 AM

	 Numerical Quadrature  •  83

areas (base multiplied by height) of the N rectangles, giving the
formula:

	 () ()
1

0

b N

n
na

f x dx h f x
−

=

≈ ∑∫ � (5.2)

where (1 / 2) .nx a n h= + + As N gets larger, this approximation gets
more accurate. As N approaches infinity, h becomes infinitesimally
small (approaches dx) and we have the definition of an integral. Why
is this impossible to do with a computer?

Write a C++ program that uses the mid-ordinate rule on a func-
tion that has an analytic solution. This is so we can confirm the accu-
racy of the method. The improvement in accuracy of the mid-ordi-
nate method should be on the order of h, written ()h . In other
words, if the subinterval width h is halved, that is, N is doubled,
then the error in the numerical approximation of the integral is also
halved.

5.1.2  The Trapezoidal Rule
One immediate, and intuitive improvement, we can make to the

mid-ordinate rule is to make our subinterval strips approximate the
function between the subinterval limits rather than just us the mid-
point value. The easiest way to do this is to approximate the function
as a straight line between the values for the function at the subinter-
val limits. In essence, we make the rectangle a trapezoid.

If we consider the entire interval as one strip, as illustrated in
Figure 5.2, satisfy yourself that

	 () () () ()
.

2

b

a

f a f b
f x dx b a

+
≈ −∫ � (5.3)

Equation (5.3) is referred to as the primitive integral. Subdivid-
ing this into N strips we obtain

	 () () () ()
1

12

b N

n
na

f a f b
f x dx h h f x

−

=

+
≈ + ∑∫ � (5.4)

where () – /h b a N= , and nx a nh= + . Equation (5.4) is referred to as
the composite (trapezoidal) integral.

Computational Physics.Ch5.3pp.indd 83Computational Physics.Ch5.3pp.indd 83 1/4/2022 10:33:57 AM1/4/2022 10:33:57 AM

84  •  Computational Physics, 2/E

The trapezoidal rule should have an error reduction that is
proportional to ()2h ; halve h and you reduce the error by a factor
of four. To confirm this, write a C++ program that performs the com-
posite trapezium rule on a function you can integrate analytically.

FIGURE 5.2:  Illustration of the primitive trapezoidal rule.

5.1.3  Simpson’s Rule
As a next step in improving the accuracy of our numerical inte-

gration scheme, we might consider approximating the integrand as
a piecewise quadratic. This is exactly what Simpson’s rule does and
is illustrated in Figure 5.3. The derivation of Simpson’s rule involves
taking a Taylor series expansion about the mid-point of the interval
and integrating that expansion. The formula for the primitive Simp-
son’s rule, that is, the whole interval taken as one strip, is

FIGURE 5.3:  Illustration of Simpson’s rule. Here the definite integral of the function is
approximated by area under the quadratic.

Computational Physics.Ch5.3pp.indd 84Computational Physics.Ch5.3pp.indd 84 1/4/2022 10:33:58 AM1/4/2022 10:33:58 AM

	 Numerical Quadrature  •  85

	 () () () () ()4
6

b

a

f a f c f b
f x dx b a

+ +
≈ −∫ � (5.5)

where c is the mid-point of the interval. We need three function
evaluations in this case because we are approximating the function
with a quadratic that requires a minimum of three points. The com-
posite Simpson’s rule has the form

	 () () () ()
()

()
/2 1/2

2 1 2
1 1

[4 2]
3

b NN

n n
n na

h
f x dx f a f b f x f x

−

−
= =

≈ + + +∑ ∑∫ � (5.6)

where () /h b a N= − and nx a nh= + . Again, write a program that
performs the composite Simpson’s rule for numerical integration
and investigate how the error behaves in terms of the strip width.
Note that the total number of strips, N, is used as an even number.

5.2.  ADVANCED QUADRATURE

5.2.1  Euler–Maclaurin Integration
We could of course keep going with the approximations to the

integrand function using higher-ordered polynomials. Indeed, using
a cubic polynomial, we are led to Simpson’s three-eighths rule, and
using a quartic polynomial yields Boole’s rule but these soon become
very cumbersome to derive and use. The integration scheme is called
the Euler–Maclaurin scheme, given by the composite formula

() () () () () ()
21

12 12

b N

n
na

f a f b h
f x dx h h f x f a f b

−

=

+ 
= + + − − 


′ ′  


∑∫

	 () ()
4

.
720
h

f a f b′′′ ′′− +  ′
 � (5.7)

Equation (5.7) can be derived by again considering the Taylor
series expansion of the function and its derivatives at the integra-
tion limits. See DeVries pp. 153–155 for a neat explanation of the
derivation. The first two terms in Equation (5.7) are simply the
trapezoid rule, and we can consider the next terms as corrections to
that numerical integration scheme. Note that should the first-order

Computational Physics.Ch5.3pp.indd 85Computational Physics.Ch5.3pp.indd 85 1/4/2022 10:33:58 AM1/4/2022 10:33:58 AM

86  •  Computational Physics, 2/E

derivatives at the integration limits be near identical, or vanishingly
small, the trapezoid rule can give surprisingly accurate results. Can
you think of a function whereby its derivatives will be identical for a
given set of integration limits?

Although the Euler–Maclaurin formula is far superior to any
other numerical integration method we have discussed so far it suf-
fers from the drawback that the integrand has to be easily differen-
tiable. If not, we would have to rely on numerical approximations
of the derivatives at the integration limits. The accuracy of those
derivative approximations should at least match the order of h to
which they belong. This quickly becomes impractical.

5.2.2  Adaptive Quadrature
In the previous discussions, it is assumed that the strip width

is uniform across the integration interval. To those experienced in
numerical integration, this is wasting considerable effort. Typically,
we want to determine the value of numerical integration to some
predetermined accuracy or tolerance. With our current numerical
integration schemes, we can only reduce the error by reducing the
size of each strip. For smooth functions this is fine; the contribution
of each strip to the total absolute error is roughly the same. How-
ever, what if the function is not smooth, or has portions that rapidly
change with x, compared to other flat regions. For instance, consider
the Lorentzian line-shape function that describes the emission of
light from the atoms of an excited gas cloud

	 () 0
2 2

01 4() /
I

I l
l l

=
+ − Γ

� (5.8)

where l is the wavelength of light emitted, 0l is the resonant wave-
length, 0 I is the peak intensity of emitted light at 0l l= , and Γ is a
measure of the width of the curve, the full width at half height.

This function is sketched in Figure 5.4; note that a small con-
stant background intensity has been included. Let’s say we are per-
forming an experiment to determine how the width of the peak is
affected by the pressure of the gas. Being good scientists, we want
to ensure that the total number of contained atoms remains con-
stant at each measured pressure level, within some predetermined

Computational Physics.Ch5.3pp.indd 86Computational Physics.Ch5.3pp.indd 86 1/4/2022 10:33:58 AM1/4/2022 10:33:58 AM

	 Numerical Quadrature  •  87

tolerance of say 0.1%. One way to do this would be to check the total
emitted power of the gas at each pressure, that is, the area under the
curve in Figure 5.4. This means integrating the line-shape over some
predetermined wavelength range. Let us assume we don’t know how
to integrate this type of function analytically and so we have to do it
numerically (it is actually a standard integral after a simple substitu-
tion). The relative error in our numerical approximation should be
at least equal to the tolerance we want for our total emitted power
measurements and ideally much less, let us say 0.001%. Much of
the error in the approximation will be introduced by those strips
representing the peak, and we require relatively narrow strips in this
region in order to keep the overall error below what we are willing
to tolerate. Using a uniform distribution of strips, we would be wast-
ing effort in the relatively flat regions away from the peak; each strip
would produce an insignificant portion to the overall error and we
could afford to use wider strips in these regions.

FIGURE 5.4:  Sketch of the Lorentzian line shape.

The first approach to this problem might be to manually segment
the integration interval into three subintervals: the two flat regions,
and the peak. The strips for each subinterval could be chosen so that

Computational Physics.Ch5.3pp.indd 87Computational Physics.Ch5.3pp.indd 87 1/4/2022 10:33:58 AM1/4/2022 10:33:58 AM

88  •  Computational Physics, 2/E

the absolute error of each was one-third that required of the total.
This approach is perfectly valid but hardly provides a general solu-
tion; where do you select the segmentations? What if there is still
significant function variation within the selected subinterval? Would
greater manual segmentation require more effort?

To provide a more general solution let us consider the behavior
of the error of the trapezoid rule. We know that if you halve the strip
width then you reduce the error by a factor of four, in other words,
the trapezoid rule has an error behavior of ()2h . If we denote the
trapezoidal approximation using 2m strips as mT , then the trapezoidal
approximation with twice the number of strips (half the strip width)
is given by 1mT + . As 1mT + has half the strip width its error is reduced
by a factor of four compared with mT . With reference to the Euler–
Maclaurin Equation (5.7), we can eliminate the leading error term
in our approximation by performing the following calculation

	 1
1

4
3

m m
m

T T
T +

+

−′ = � (5.9)

where 1mT +′ is the improved approximation for 12m+ strips. If it helps
you can think of Equation (5.9) as a weighted average between the
two approximations mT and 1mT + . As we have eliminated the leading
error term from Equation (5.7) the error in our improved approxi-
mation is now ()4h . It is worth noting here that Equation (5.9) is
equivalent to Simpson’s rule. We can now estimate the error in the

1mT +′ by subtracting 1 mT + giving

	 1
1 1 3

m m
m m

T T
T Te +

+ +

−′≈ − = .� (5.10)

Note that this is the absolute error, not a relative error. We can
now check this estimated value against the “global” error we want to
achieve in our approximation. If this condition is met, we accept the
integration, if not then we halve the total integration interval and
perform the same process on the two halves. Note that the “global”
error needs to be halved for these new subintervals to preserve the
global error when they are summed for the entire integration. This
procedure is repeated until the desired accuracy is reached upon
which we accept the integration for that subinterval, add it to the
total, and move on to the next subinterval.

Computational Physics.Ch5.3pp.indd 88Computational Physics.Ch5.3pp.indd 88 1/4/2022 10:33:59 AM1/4/2022 10:33:59 AM

	 Numerical Quadrature  •  89

Although not immediately obvious this problem is best suited
to a recursive function or subroutine whereby each successive call
halves the subinterval and the “global” error that we check against.
The recursion is terminated once the error estimate of Equation
(5.10) becomes sufficiently small. Comprehending the logic of
recursive formulas can be rather difficult, however, often the best
way to understand them is to visualize some simple output.

FIGURE 5.5:  Adaptive numerical integration of the Lorentzian line-shape function.

The program adaptiveQuadrature.cpp performs this recursive
action using the trapezoidal rule as default with the improvement
technique described above. Figure 5.5 shows the result of applying
this program to Equation (5.8) with 0l = 10, 0I = 1, Γ = 1, and with
integration limits of 6a = and 14b = . The global error was selected
to be 0.01% of the integration. Here we can see that the adaptive
quadrature has done its job; in the flat regions away from the peak
the strips are wider, whereas the strips covering the peak are much
narrower. In order to lend clarity to the figure, the impulse lines plot-
ted belong to the limits of the integration where the segmentation
of that strip was accepted; the strips used in the actual calculation of

Computational Physics.Ch5.3pp.indd 89Computational Physics.Ch5.3pp.indd 89 1/4/2022 10:33:59 AM1/4/2022 10:33:59 AM

90  •  Computational Physics, 2/E

the integration are half the size of the ones shown. To visualize the
data in such a manner the limits of the subintervals used were stored
along with their function evaluations and plotted as impulse lines on
the same figure as the function using “gnu plot”.

As alluded to earlier the fact that the Lorentzian line-shape
function can be reformed into a standard integral using a simple
substitution. That substitution is

	
()02

x
l l−

=
Γ

� (5.11)

which gives the integration of the (normalized) line-function the fol-
lowing form

	 () 2
0

1 1
2 1

b d

a c

I d dx
I x

l l Γ
=

+∫ ∫ � (5.12)

where c and d are the adjusted integral limits after the substitution
of Equation (5.11). Equation (5.12) is a standard integral that has
the following exact solution

	 � �
�

1
1 2x

dx xarctan() . � (5.13)

This analytical solution allows us to check the validity of our
numerical solution and that it satisfies the requirement that the
global error is at or less than 0.01%.

There is a fly-in-the-ointment here specifically about the func-
tion used to illustrate adaptive quadrature using the trapezoidal rule.
If you apply just the composite trapezoidal rule to the Lorentzian
line function you can achieve a similar error to the default adaptive
scheme in fewer function evaluations. The reason is to do with the
shape of the Lorentzian line function at the integration limits cho-
sen; we refer you back to Section 5.2.1 and the Euler–Maclaurin
formula.

5.2.3  Multidimensional Integration
Multidimensional integrations pop up often in physics and gen-

erally require much more effort to solve than the one-dimensional
case. Take for instance a two-dimensional integral of the form

Computational Physics.Ch5.3pp.indd 90Computational Physics.Ch5.3pp.indd 90 1/4/2022 10:34:06 AM1/4/2022 10:34:06 AM

	 Numerical Quadrature  •  91

	 (),
b d

a c

I f x y dxdy= ∫∫ � (5.14)

where (),f x y is a two-dimensional function, and x and y have their
usual Cartesian meaning. Here the integration limits a, b, c, and d
specify a region in the x-y plane. With one-dimensional integration,
we are finding the area between the function curve and the x-axis
bounded by the given limits. Similarly, two-dimensional integration
finds the volume between the function surface and the x-y plane
bounded by an area or region. In three dimensions, the integration
finds a four-dimensional space bounded by a three-dimensional sur-
face. This increase in dimensionality can continue ad infinitum (or
ad nauseam depending on your philosophical bent) in a mathemati-
cal sense but typically stops at three when considering most physical
phenomena.

FIGURE 5.6:  Square region split into strips running parallel to the x-axis. Here we do the x
integration first.

The general strategy in solving a two-dimensional integration
numerically is to split it into strips along one of the dimensions and
treat each strip as a one-dimensional integration along the other
dimension. The total volume of the integral is found by adding
together the contributions from each strip. Figure 5.6 illustrates this

Computational Physics.Ch5.3pp.indd 91Computational Physics.Ch5.3pp.indd 91 1/4/2022 10:34:06 AM1/4/2022 10:34:06 AM

92  •  Computational Physics, 2/E

point. Here we have a region in the x-y plane that is bounded by the
unit square, centered at the origin; the integration limits of Equation
(5.14) are constants. The region has been broken into strips running
parallel to the x direction. The function axis is pointing out from
the plane of the page, and the function itself will form some surface
either above, below, or cutting through the plane of the page (the
x-y plane).

Mathematically, we have split the two-dimensional integration
into two, nested, one-dimensional integrals such that

	 ()
b

a

I F y dy= ∫ � (5.15)

where

	 () (),
d

c

F y f x y dx= ∫ .� (5.16)

Of course, we can always reverse the order of the integration
so that the y variable is integrated first. This would be equivalent to
having strips running parallel to the y-direction of the square. When
it comes to writing code to perform two-dimensional integration, we
can go two ways; (1) have a function with nested loops or (2) have
two separate functions to perform the integration in each dimension.
As we already have developed classes to deal with one-dimensional
integration the second of these choices is easier.

FIGURE 5.7:  Segmentation of the (unit) circle region in polar coordinates.

Computational Physics.Ch5.3pp.indd 92Computational Physics.Ch5.3pp.indd 92 1/4/2022 10:34:07 AM1/4/2022 10:34:07 AM

	 Numerical Quadrature  •  93

In many real physical systems, the region may not be a square
but some other more complicated shape, where the limits of the
integral in one dimension are a function of the limits in the other.
Take for instance the unit circle located at the origin. This has the
equation

	 21y x= − � (5.17)

If we integrate over the upper right quadrant of the circle, we
can see that the limits in the x integration have to adjust depending
on the y value for which we are calculating. However, like many
problems in physics we can take advantage of the symmetry of the
system and a change to polar coordinates yields constant integra-
tion limits, as illustrated in Figure 5.7. The strips become concentric
rings centered on the origin. It is likely this change of coordinates
will make the integrand function more complex but why should
we be concerned? We’re performing numerical integration in the
first place because the problem was too difficult/impossible to solve
analytically.

EXERCISES

5.1.	 Compare the effort required to find a numerical approxi-
mation of the integration

() ()
1 1

0 0

1f x dx x x dx= −∫ ∫

	 to an accuracy of 5 significant figures using the various
methods, we have developed in this chapter.

5.2.	 The period of a pendulum in confined to a single plane
without damping has the following formula

0

0 0

4
2 cos cos
l d

T
g

q q
q q

=
−∫ ,

Computational Physics.Ch5.3pp.indd 93Computational Physics.Ch5.3pp.indd 93 1/4/2022 10:34:07 AM1/4/2022 10:34:07 AM

94  •  Computational Physics, 2/E

	 where l is the length of the pendulum, g is gravitational
acceleration, q is the angle between the pendulum and
the vertical, and 0q is the initial angle of release. Calcu-
late this integral numerically for various initial angles of
release and thus establish what is meant by the small-
angle approximation.

5.3.	 Write a program that performs integration over two di-
mensions using a method of your choice. The adventur-
ous among you might like to try the adaptive quadrature
in two dimensions.

5.4.	 What constant can you approximate by numerically
integrating over the unit quarter circle? Find its value to
8 significant figures.

5.5.	 Consider a unit square region, centered on the origin,
containing a uniform distribution of charge, r. The elec-
trostatic potential at a point (), m mx y outside this region is
found by integrating over the charged region such that

()
1 1

2 2
0 1 1

,
4 () ()

m m

m m

dxdy
x y

x x y y

rj
pe − −

=
− + −

∫ ∫ .

	 By taking 04r pe= and numerically assessing the integral
at different points outside the unit square attempt to plot
contour lines of isometric potentials. Do you recover
Coulomb’s law at distances far from the charged region?

5.6.	 The charge distribution in the previous question does not
have to be uniform across the region. Try out different
charge distributions with dependencies on x and y to see
how they affect the electrostatic potential surrounding
the square region.

Computational Physics.Ch5.3pp.indd 94Computational Physics.Ch5.3pp.indd 94 1/4/2022 10:34:07 AM1/4/2022 10:34:07 AM

CHAPTER 6
ORDINARY
DIFFERENTIAL
EQUATIONS

Physics is mostly concerned with phenomena that are in flux,
for instance, things that change either in time or space or both, and
many of the laws of physics are most conveniently formulated in
terms of differential equations; formulas that relate derivatives to
functions. As an example, consider Newton’s second law of motion
for a particle of mass, m, in one-dimensional motion under a force
field ()F x :

	 ()
2

2 .
d x

F x m
dt

= � (6.1)

This is a second-order differential equation as we are taking the
second derivative of the displacement, x, called the dependent vari-
able, with respect to time, t, called the independent variable. The
force field ()F x can be referred to as the derivative function.

Finding the numerical solution of differential equations is one
of the most common tasks in computational physics as many of these
equations become analytically insoluble (or at least difficult to solve)
when you include realistic physical processes.

Computational Physics.Ch6.3pp.indd 95Computational Physics.Ch6.3pp.indd 95 1/4/2022 10:35:40 AM1/4/2022 10:35:40 AM

96  •  Computational Physics, 2/E

6.1 � CLASSIFICATION OF DIFFERENTIAL
EQUATIONS

6.1.1  Types of Differential Equations
Differential equations can be categorized into two major groups,

ordinary differential equations (ODE) and partial differential equa-
tions (PDE). The difference between the two is that ODEs only
have one independent variable (they still can have any number of
dependent variables) and PDEs can have any number of indepen-
dent variables as well as any number of dependent variables. Simple
harmonic motion (SHM) in one dimension is an example of an ODE:

	
2

2

d x
m kx

dt
= − , � (6.2)

where m is the mass of the body in motion, k is the so-called spring
constant, and x represents the displacement from some equilibrium
position. Here time, t, is the only independent variable and x is the
dependent variable that is a function of the independent variable,
normally written as ()x t . Whereas, the wave equation, which con-
sists of second-order derivatives in both space and time, that is, two
independent variables, is an example of a PDE:

	
2 2

2
2 2

u u
c

t x
∂ ∂

=
∂ ∂

, � (6.3)

where c is the speed of the wave, and u represents some (scalar)
property of the wave, for example, displacement, pressure, electric
field strength, and so on; u is the dependant function, in this case,
normally written as (),u x t . Note the use of the partial derivative
symbol, ∂, rather than the usual d.

We can further subdivide the groups into their order. The order
refers to the highest derivative appearing in the equations. For
example, Equation (6.2) is of order 2, as is Equation (6.3). Order 2
ODEs and PDEs occur frequently in physics. Note that we can sep-
arate a second-order ODE into a pair of coupled, first-order ODEs
should we so wish but more on that later.

Next, we can classify a differential equation as being linear
or non-linear. In a linear ODE, the dependent variable and its

Computational Physics.Ch6.3pp.indd 96Computational Physics.Ch6.3pp.indd 96 1/4/2022 10:35:40 AM1/4/2022 10:35:40 AM

	 Ordinary Differential Equations  •  97

derivatives only appear to the first power and are not cross multi-
plied. Note that the independent variable can be to any power. For
instance

	 3f f x= − +′′ � (6.4)

is linear while

	 2 3f f x−′ = +′ � (6.5)

and

	 3f f f x= −′ +′ ′ � (6.6)

are non-linear as they contain the terms 2f and f f′′ ′ respectively.
Here I have used the notation that

	 () ()df x
f f x

dx
= ≡′ ′ ,� (6.7)

that is, a dashed derivative is one taken with respect to a spatial vari-
able, in this case, x. A dotted derivative is one taken with respect to
a temporal variable, usually the time t, thus

	 () ()df t
f f t

dt
= ≡  . � (6.8)

This is a generally accepted notation convention within physics,
mathematics, and other sciences.

A further classification can be made to distinguish between
homogeneous and nonhomogeneous differential equations. A homo-
geneous equation contains terms that include either the dependant
variable or its derivatives, but no other function of the independent
variable. The differential equation of the simple harmonic oscillator,
Equation (6.2), is an example of a homogeneous equation. Adding a
time-dependent driving force, ()F t , to this equation gives the non-
homogeneous equation

	
() () ()

2

2

d x t
m kx t F t

dt
+ = ,� (6.9)

as we now have a function of the independent variable, t, on the
right-hand side. The actual form of the driving force is unimportant
to this discussion but will be particular to the system being described
by the differential equation. Note that Equations (6.4)–(6.6) are all

Computational Physics.Ch6.3pp.indd 97Computational Physics.Ch6.3pp.indd 97 1/4/2022 10:35:41 AM1/4/2022 10:35:41 AM

98  •  Computational Physics, 2/E

nonhomogeneous due to the addition of the independent variable
term, x, on the right-hand side.

6.1.2  Types of Solution and Initial Conditions
When solving differential equations, we draw a difference

between the general solution and a particular solution. The general
solution refers to all the functions that fit the differential equation,
whereas the particular solution is defined by some initial conditions
or values. Take for instance Newton’s law of cooling (or heating) that
states that the rate of change of temperature of a body is in propor-
tion to the temperature difference between it and that of the ambi-
ent. It can be written in the form

	 y ky= − ,� (6.10)

where y is the temperature difference between the body and the
(constant) ambient, and k is some constant of proportionality (related
to the surface area of the body, the material the body is made from,
and so on). The minus sign represents the physics that hot bodies
cool and cold bodies warm. This has the general solution

	 () 0
kty t y e−= ,� (6.11)

where 0y is the initial temperature difference, that is, the tempera-
ture difference at 0t = . Given an initial temperature difference, we
could then determine a particular solution for any value of k. Note
that 0y is called an integrating constant that is a mathematical con-
cept related to some initial condition of the system, whereas k is a
constant purely related to the physics of the system; the two should
not be confused.

Equation (6.10) is an ODE of the first order and only has one
integrating constant. As such we only needed to know one initial
condition to determine a particular solution, namely the initial tem-
perature difference. In the general case, an n-ordered ODE will
produce n integrating constants and we need as many initial condi-
tions to find a particular solution. To convince yourself of this what
initial conditions are required to determine a particular solution of
the second-order ODE describing SHM?

Computational Physics.Ch6.3pp.indd 98Computational Physics.Ch6.3pp.indd 98 1/4/2022 10:35:41 AM1/4/2022 10:35:41 AM

	 Ordinary Differential Equations  •  99

These are known as initial value problems. Other integration
constants may include boundary conditions, that is, the condition
or value of the dependant function at or beyond the boundaries or
edges of your modeled system. For instance, the physical properties
of the potential barriers in a quantum well provide the boundary
conditions for solving Schrodinger’s wave equation for an electron
trapped in the well. Essentially, the wave function and its derivatives
decay to zero as it penetrates deeper into the bounding potential
barriers.

6.2  SOLVING FIRST-ORDER ODES

6.2.1  Simple Euler Method
Leonhard Euler was an 18th century, Swiss-born mathematician,

who we would describe today as a polymath. Euler worked in several
areas including optics, astronomy, ship construction, and artillery
but was most prolific in his work on mathematics. He contributed
much to the fields of number theory, algebra, and calculus, and can
be directly attributed to the modern standard usage of the symbols
e, ,p and i.

Consider again Equation (6.10) which is a linear, homogeneous
ODE of the first order. We can write a first-ordered ODE more
generally as

	 () (),y t f t y= , � (6.12)

where f is some function of the independent variable, t, and the
dependent variable, y; the form of f determines the classification of
the differential equation.

We could attempt to solve Equation (6.12) by taking the Taylor
series expansion of the dependent variable about some initial posi-
tion, 0t , such that

	 () () () () ()
2

0
0 0 0 0

()
2!

t t
y t y t t t y t y t

−
= + − + +

. � (6.13)

Since we know the form of the first-ordered derivative from
Equation (6.12) we could calculate the higher-ordered derivatives

Computational Physics.Ch6.3pp.indd 99Computational Physics.Ch6.3pp.indd 99 1/4/2022 10:35:41 AM1/4/2022 10:35:41 AM

100  •  Computational Physics, 2/E

by using the partial differentiation of f. However, this soon becomes
untenable for all but the simplest expressions for f, and in which
cases Equation (6.12) can most likely be solved analytically. We can
get rid of those troublesome higher-order derivatives by truncating
Equation (6.13) to the first two terms only, leaving

	 () () () ()0 0 0y t y t t t y t≈ + −  . � (6.14)

Note that we could have arrived at Equation (6.14) by consider-
ing an approximation to the gradient of the dependent function at
the initial position

	 () () ()0
0

0

y t y t
y t

t t

−
≈

−
 . � (6.15)

If we now say that ()0h t t= − where h is a small step, we may
now conveniently write Equation (6.14) as an equality

	 () () ()()0 0 0 0 0 0,y t h y t hf t y t y hf+ = + = + , � (6.16)

where we have substituted in the function, f, for the derivative, and
used the notation that ()0 0y y t≡ and ()0 0 0,f f t y≡ .

FIGURE 6.1:  Sketch of the simple Euler method. We only know the first value of y exactly;
the integrated values are approximations to y.

Equation (6.16) is the simple Euler method or Euler’s forward
approximation. Interpreting this method, we can see that given a

Computational Physics.Ch6.3pp.indd 100Computational Physics.Ch6.3pp.indd 100 1/4/2022 10:35:41 AM1/4/2022 10:35:41 AM

	 Ordinary Differential Equations  •  101

starting position, 0y , we can step to the next position using the deriv-
ative 0f at the start of the step. We can generalize this to the nth
step giving the recursion formula

	 1n n ny y hf+ = + , � (6.17)

where we define, 0nt t nh≡ + , ()n ny y t≡ , and (),n n nf f t y≡ , with
1,2,3n = . Note that this stepping action can be referred to as inte-

grating the solution; we are solving a differential equation and are
therefore performing an integration. Figure 6.1 illustrates the sim-
ple Euler method in action.

Although we could step ad infinitum we typically wish to find a
value for y at some predefined value for t, in other words, we have
an interval [],a b over which we wish to step from a to b. The most
straightforward way of doing this is to split the interval into N steps of
equal size, h, such that () /h b a N= − , and move the solution along
one step at a time using Equation (6.17). We can check the accuracy
of the method by repeating the integration using smaller and smaller
step sizes and seeing if we converge on a solution. Though perhaps
a more stringent test is that once we reached our desired value b we
integrate back toward a and compare our integrated approximation
to the initial value for y with which we started.

FIGURE 6.2:  Sketch of the modified Euler method. The gradient for the entire step is esti-
mated from the derivative at the mid-point. The simple Euler method is shown in grey

for comparison.

Computational Physics.Ch6.3pp.indd 101Computational Physics.Ch6.3pp.indd 101 1/4/2022 10:35:42 AM1/4/2022 10:35:42 AM

102  •  Computational Physics, 2/E

As defined in Equation (6.17) using a truncated Taylor series
expansion behavior of the error can be determined in our approxi-
mation to the solution. For a single step of the simple Euler method,
we know that the approximation given by Equation (6.14) will have
an upper bound on the “local” error of ()2h as we kept the first
two terms of the Taylor series only. To get from our initial position a
to our desired position b we must perform N such steps. Thus, the
overall upper bound on the error at b will be given by ()2N h× . As
N is inversely proportional to the step size h, we can then estimate
the “global” error in the simple Euler method as ()h . In other
words, if you halve the step size (and thus take twice as many steps)
you should halve the error in the approximation to the solution at
the destination b.

The program eulerForward.cpp performs the simple Euler
method on the differential equation

	 y xy′ = − , � (6.18)

with the initial condition that 0 1y = , and over the interval []0,2x = .
The analytical solution to Equation (6.18) with the given initial con-
dition is

	
20.5xy e−= . � (6.19)

The program uses the Euler class found in ODESolvers.h and
which inherits from the base class ODESolver. You should familiar-
ize yourself with the implementation of the Euler class in ODE-
Solvers.cpp and satisfy yourself that the solve and fullSolve
member functions perform the forward Euler method as expressed
by Equation 6.17. Notice that the state of the system, the coordinate
pairs of the independent and dependent variables, is encoded by the
state data structure defined in State.h and implemented in State.
cpp. The design of this data structure is discussed when we look at
solving ODEs of order 2 in a later section of this chapter. Compil-
ing and running this program should be observed using ()h error
behavior that is to be predicted.

6.2.2  Modified and Improved Euler Methods
Although the simple Euler method provides an instructive means

of introducing the topic of numerically solving differential equations

Computational Physics.Ch6.3pp.indd 102Computational Physics.Ch6.3pp.indd 102 1/4/2022 10:35:42 AM1/4/2022 10:35:42 AM

	 Ordinary Differential Equations  •  103

it should not be used in any serious attempt to find a solution due to
its lack of accuracy. The major issue with the simple Euler method is
that it assumes the derivative at the start of a step remains constant
over that step, see Figure 6.1. This asymmetrical treatment of the
step is bound to lead to large inaccuracies of the approximated solu-
tion. It would be better if we could use some sort of averaged value
to estimate the derivative across the whole step.

The modified Euler method approximates the solution by using
the derivative at the mid-point of the step to advance the integra-
tion. Obviously, we do not know the value of the derivative at the
mid-point, but we can approximate it using the simple Euler method
with half the step size such that

	 1
2 2mid nn

h
t t t

+
= = + � (6.20)

and

	 () 1
2 2mid mid n nn

h
y y t y y f

+
= = = + , � (6.21)

where n is our previous step for which we have values. We can now
use the value for midy to estimate the derivative at the mid-point of
the step and thus advance the solution across the whole step as fol-
lows

	 ()1 ,n n mid midy y hf t y+ = + . � (6.22)

Equation (6.22) is the modified Euler method and is illustrated
in Figure 6.2. From a cursory look at the figure, you can see that the
modified Euler method appears to do a much better job at approxi-
mating the solution than the simple Euler method. Note that the
function sketched is somewhat arbitrary, but it should be able to
show that the modified Euler method is better by writing a program.

Another way of obtaining an average value that best approxi-
mates the derivative across the step is to take a mean of the deriva-
tive at the start of the step with the derivative at the end of the step.
Again, we use the simple Euler method but this time to estimate
the value of the derivative at the end of the step. Using this estimate
with the derivative at the start of the step, which we have previously
computed, we can take the mean of these two values to advance the
integration of one whole step. Mathematically written as

Computational Physics.Ch6.3pp.indd 103Computational Physics.Ch6.3pp.indd 103 1/4/2022 10:35:43 AM1/4/2022 10:35:43 AM

104  •  Computational Physics, 2/E

	 ()1 ,
2n n n n n n

h
y y f f t h y hf+  = + + + + . � (6.23)

Equation (6.23) is the improved Euler method and is illus-
trated in Figure 6.3. A cursory study of the figure suggests that the
improved Euler method is better than the simple Euler method. But
which is better between the improved Euler method or the modi-
fied Euler method?

FIGURE 6.3:  Sketch of the improved Euler method. The simple Euler method is used to
estimate the derivative at the end of the step, which combined with the derivative at the start

of the step gives a mean for the entire step.

Use the simple Euler method program provided to write a code
for the modified, and improved Euler methods; Equations (6.22)
and (6.23), respectively. Using these programs one could determine
how the error behaves with step size for these two methods?

It was the German Mathematician Karl Heun who first devel-
oped the modified Euler and improved Euler methods, which in
part helped develop the more accurate Runge–Kutta methods that
will be discussed subsequently.

6.2.3  The Runge–Kutta Method
Carl Runge and the Polish-born Martin Kutta were both Ger-

man mathematicians and physicists who lived and worked around

Computational Physics.Ch6.3pp.indd 104Computational Physics.Ch6.3pp.indd 104 1/4/2022 10:35:43 AM1/4/2022 10:35:43 AM

	 Ordinary Differential Equations  •  105

the latter part of the 19th century and into the first half of the 20th
century. In 1901, they co-developed the Runge–Kutta method(s),
used to solve ODE numerically.

The Runge–Kutta methods are characterized by expressing the
numerical approximation in terms of the derivative function evalu-
ated at intermediary points between step values. Euler’s methods
can actually be classed as low-ordered general Runge–Kutta meth-
ods; the Euler method being a one-step Runge–Kutta method, and
the modified, and improved methods are both two-step Runge–
Kutta methods. The popularity of the Runge–Kutta methods in
numerically solving ODEs is due in part to their (relative) ease of
implementation within computer programs, and the accuracy they
achieve. Of the most popular devised is the fourth-ordered Runge–
Kutta (RK4), or simply the Runge–Kutta method, defined as

	 ()1 0 1 2 32 2
6n n

h
y y k k k k+ = + + + + , � (6.24)

where

()0 ,n nk f t y= ,

1 0,
2 2n n

h h
k f t y k = + + 

 
,

2 1,
2 2n n

h h
k f t y k = + + 

 
,

	 3 2,
2n n

h
k f t y hk = + + 

 
.� (6.25)

The derivation of Equations (6.24) and (6.25) is a little tricky but
involves considering a general form for Euler’s methods such that

	 y y h f f t h y hfn n n n n n� � � � � �� ��� ��1 � � � �, � (6.26)

and choosing the coefficients (� � � �, , ,) such that they agree with
the Taylor series expansion of the term involving b , up to 4h . Indeed,
the modified and improved Euler methods can be found in this way
by matching terms up to 2h . Feel free to have a go at deriving these
equations yourselves using this method but be warned that taking a

Computational Physics.Ch6.3pp.indd 105Computational Physics.Ch6.3pp.indd 105 1/4/2022 10:35:53 AM1/4/2022 10:35:53 AM

106  •  Computational Physics, 2/E

Taylor series expansion of a function of two variables gets somewhat
complex for anything more than the degree one terms.

A slightly easier but less general way of deriving Equations (6.24)
and (6.25) is to consider the direct integration of Equation (6.12) for
the special case that derivative function is a function of the indepen-
dent variable alone, that is, ()f t . We can then write for a single step

	 () () ()
n

n

t h

n n
t

y t h y t f t dt
+

+ = + ∫ , � (6.27)

and by solving the integration term by Simpson’s rule we obtain the
results of Equations (6.24) and (6.25).

Interpreting the RK4 approximation, Equation (6.24), we see
that the next value in the integration is calculated as the present
value plus the weighted average of four increments. The increments
are determined from estimates of the slope at intermediary points
on the step specified by the derivative function f, multiplied by the
step size h. These increments can be described as follows:

●● 0k is the estimate of the slope at the beginning of the step;

●● 1k is the estimate of the slope at the midpoint, using 0k ;

●● 2k is the estimate of the slope at the midpoint, but now using
1k ; and

●● 3k is the estimate of the slope at the end of the interval,
using 2k .

In averaging the four increments, greater weight is given to the
increments at the midpoint reflecting the fact that the function’s
slope is better approximated by the tangent to the curve at the mid-
point of the interval rather than its bounds.

The RK4 method is a fourth-order method, meaning that the
local error behaves as ()5h , while the global error behaves as
()4h . This means that halving the step size will reduce the overall

error by a factor of 16, hence why the method is so popular.

The class RK4 found in the ODESolvers module performs the
fourth-ordered Runge–Kutta method. Write a program that uses

Computational Physics.Ch6.3pp.indd 106Computational Physics.Ch6.3pp.indd 106 1/4/2022 10:35:53 AM1/4/2022 10:35:53 AM

	 Ordinary Differential Equations  •  107

this class to solve the first-ordered differential equation defined by
Equation (6.18) found earlier in this chapter.

Confirm that the Runge–Kutta method provides an accuracy of
()4h and is superior to the Euler methods we discussed earlier in

this chapter.

6.2.4  Adaptive Runge–Kutta
Generally, we wish to find the numerical solution to an ODE to

some predefined (global) error or tolerance. Using a fixed step size,
we are somewhat constrained to use one sufficiently small across the
entire interval to provide the required local accuracy at each step
of the integration. If the nature of the solution changes across that
interval, that is, becomes increasingly rapid in its variation with the
independent variable, then we would waste considerable effort over
the “flat” regions of the solution. Therefore, we would like to be able
to change the size of the steps taken in the numerical approximation
in accordance with the local nature of the solution, that is, allow
them to adapt.

By far the most straightforward way to do this is to perform a
single step of the integration with step sizes h and / 2h and com-
pare the result immediately. More precisely, we perform a single
step with step size h, then halve its size and perform two steps with
the new step size to reach the same point in the solution. We can
estimate the error in the numerical approximation by computing
the difference between our two solutions. By comparing this dif-
ference to our predefined tolerance, we can either accept the step
if the difference is smaller, otherwise, we use the halved step size to
repeat the process. However, this is not the whole picture. Here we
have only taken account of the solution starting in a flat region and
advancing into a rapidly changing one.

If we start in a rapidly changing region then we merrily halve
our step size until it produces a solution that is within the prescribed
accuracy tolerance, and we advance with that small step. If the solu-
tion now flattens then we simply maintain that small step as it will
produce a solution that is (very much) within the accuracy tolerance.
This is not what we were after; we want a step size that adapts to the
local nature of the solution, that is, can increase as well as decrease.

Computational Physics.Ch6.3pp.indd 107Computational Physics.Ch6.3pp.indd 107 1/4/2022 10:35:53 AM1/4/2022 10:35:53 AM

108  •  Computational Physics, 2/E

The answer to this issue is to assume that when we accept a step,
that is, we are within the accuracy tolerance, the step size is too small
and should be increased for the next step; maybe we should double
the step size to 2h, is there a problem with this strategy?

By using an integration method of known error order, we can
eliminate the leading error term in the integration step using the two
solutions. For example, the fourth-ordered Runge–Kutta method
reduces the error in the solution by a factor of 16 when we halve the
step size. To eliminate the leading error term for this Runge–Kutta
method we compute the integration for a particular (accepted) step
as ()2 1ˆ 16 / 15y y y= − .

This is like the method used in Chapter 5 to develop an adaptive
quadrature using the knowledge of how the error in the trapezoidal
rule behaves with strip width. Generally, this method of manipulat-
ing the solution based on error behavior is referred to as Richard-
son’s extrapolation that we explore further in the advanced section
of this book.

Using the method outlined above write a program that uses the
fourth-ordered Runge–Kutta algorithm to adaptively integrate a dif-
ferential function of your choice. My advice would be to use a simple
differential equation that can be solved analytically for comparison
to your adaptive routine. You should confirm that your routine is
adapting to the local nature of the differential.

6.3  SOLVING SECOND-ORDERED ODES

6.3.1  Coupled 1st Order ODEs
It has been noted before that second-order ODEs occur most

frequently in physics as they model many real physical systems. In
general, we write a second-order ODE as

	 (), ,f t y yy =  . � (6.27)

Note that the function f has three variables namely the indepen-
dent variable, the dependent variable, and the first derivative of the
dependent variable.

Computational Physics.Ch6.3pp.indd 108Computational Physics.Ch6.3pp.indd 108 1/4/2022 10:35:54 AM1/4/2022 10:35:54 AM

	 Ordinary Differential Equations  •  109

Although methods exist to solve higher-ordered differential
equations, for example, finite difference method, it is far simpler
to reduce the equation into a set of coupled first-order differential
equations; the term coupled will become apparent shortly. We can
do this by introducing secondary dependent functions such that

1y y= and 2y y=  and thus we can rewrite Equation (6.27) as a pair
of coupled, first-order ODEs:

1 2y y= ;

	 ()2 1 2, ,y f t y y= .� (6.28)

They are coupled because the rate of change of variable 1y is
dependent on the variable 2y , and the rate of change of variable 2y is
dependent on the variable 1y contained in the function f. However,
if we define 1 2f y≡ and ()2 1 2, ,f f t y y≡ then Equations (6.28) can
be rewritten in vector form

	
()

21 1

1 22 2, ,
yy f

f t y yy f
    

= =    
    





, � (6.29)

or

	 y f= ,� (6.30)

where y and f represent two-component vectors. Comparison

of Equation (6.30) with Equation (6.18) shows that the problem of
solving second-ordered ODEs is not primarily different from the
first-ordered ODEs for which we have been developing solutions,
only that now we have extra components.

To illustrate this point, we can write Equation (6.1), which
describes Newton’s second law of motion, as a pair of coupled first-
order differential equations by introducing momentum as a second-
ary dependent variable. The momentum of a body of mass m in one
dimension is defined as

	 () ()p t mv t mx≡ = , � (6.31)

where ()v t is the velocity of the body at time t, and x represents the
(one dimensional) displacement of the body in some coordinate sys-
tem. Thus Equation (6.1) can be rewritten in terms of the momen-
tum as follows

Computational Physics.Ch6.3pp.indd 109Computational Physics.Ch6.3pp.indd 109 1/4/2022 10:35:54 AM1/4/2022 10:35:54 AM

110  •  Computational Physics, 2/E

	 p
x

m
= , � (6.32)

	 (), , /p F t x p m= , � (6.33)

where time, position (displacement), and velocity have been included
in the force term for completeness (here we assume that mass is a con-
stant of motion). We can check these equations make sense by assess-
ing the situation when no net force acts on the body, that is, 0F = .
This implies a constant momentum that in turn implies an unchang-
ing velocity, and thus we recover Newton’s first law of motion. Just
to restate and reinforce our nomenclature, here we call time t the
independent variable, and the position x and the velocity /p m (or
just the momentum p) are the (coupled) dependent variables.

6.3.2  Oscillatory Motion
At the beginning of this chapter, we briefly discussed the second-

order differential equation describing SHM. Using Equations (6.32)
and (6.33), we can rewrite this as a pair of coupled first-order ODEs

	
p

x
m

= � (6.34)

and

	 p kx= − . � (6.35)

We can make life easier for ourselves by rewriting these equa-
tions in terms of velocity, v, instead of momentum, p, such that

	 x v= � (6.36)

and

	
k

v x
m

= − .� (6.37)

We can make this change as, in this case, the mass is assumed to
be a constant of motion and so we are not changing the physics of
the system only our notation. Note that in this form Equation (6.37)
has no multiplicative constant in front of the derivative. This is the
general strategy you should employ when solving differential equa-
tions (numerically or analytically), ensuring all physical constants
appear with the derivative function where possible.

Computational Physics.Ch6.3pp.indd 110Computational Physics.Ch6.3pp.indd 110 1/4/2022 10:35:55 AM1/4/2022 10:35:55 AM

	 Ordinary Differential Equations  •  111

In the source file, ODESolvers.cpp, one will find two member
functions of the ODESolver base class, deriv and deriv_B, that
implement Equation 6.30. In our current specific discussion of one-
dimensional SHM the deriv member function encodes Equation
6.36, and the deriv_B member function encodes Equation 6.37,
with an appropriately defined differential function. These two mem-
ber functions are used by all derived classes of the ODESolver base
class. They are written in such a way as to avoid conditional branch-
ing when using these classes to solve differential equations of a dif-
ferent order (though only order 1 or order 2 differential equations
are supported). They are linked to the design of the state data
structure, and how the dependent variable(s), and derivative(s) (for
second-ordered differentials) are represented. For a first-ordered
differential equation, the C++ vector y in the state structure rep-
resents the dependent variable for each dimension in the system.
For a second-ordered differential equation, the vector y can be
thought of containing consecutive pairs of values, the dependent
variable, and its derivative for each dimension in the problem. In
this way, the dependant variable is found at even indices in y and the
corresponding derivative is found at the corresponding odd index,
for example, y[2] is the dependent variable of the second dimen-
sion and y[3] is the corresponding derivative variable of the second
dimension (assuming the problem has at least two dimensions).

After writing a program that uses the Euler class to integrate
the differential equation for SHM (Equation 6.37), and using the
initial conditions ()0 1x = , ()0 0 v = , with / 1k m = , and 100 steps,
we obtain the result plotted in Figure 6.4 up to a time of 15t = s.

As the world’s energy demand has yet to be satisfied by a mass-
on-a-spring system what has gone wrong? Have we made a mistake
with the physics or the implementation of the simple Euler method?
To answer these questions let’s examine the analytical solution of
the ODE describing SHM. From your A-level or equivalent physics
course, you will know that the solution of the spring equation for
displacement is a sinusoidal function in time. The phase of that solu-
tion, that is, whether it is a sine function, cosine function, or some-
where in-between, is dependent on the initial conditions. In the case
above we obtain the particular solution

Computational Physics.Ch6.3pp.indd 111Computational Physics.Ch6.3pp.indd 111 1/4/2022 10:35:55 AM1/4/2022 10:35:55 AM

112  •  Computational Physics, 2/E

FIGURE 6.4:  Numerical solution of SHM using the simple Euler method.

	 cos()x tw= � (6.38)

where w is the angular frequency of the oscillations and is given by

	
k
m

w = .� (6.39)

Thus, we know that the solution is a cosine function with a (time)
period of 2p. This is encouraging as our numerical solution, despite
increasing in amplitude, has these properties, so it is a safe bet that
the physics and the implementation are sound.

From our previous discussions of the Euler method, it is obvious
that the instability of the numerical solution is down to the trunca-
tion error of the Taylor series. We could of course reduce the step
size to help with the stability of the numerical solution but that
would be wasting computational effort; we have already developed
more accurate numerical solvers. Write a program that uses the RK4
class to integrate the SHM equation. As an aside, the results plotted
in Figure 6.4 should make a strong case as to why the simple Euler
method should not be used as a serious attempt to solve ODEs

Computational Physics.Ch6.3pp.indd 112Computational Physics.Ch6.3pp.indd 112 1/4/2022 10:35:55 AM1/4/2022 10:35:55 AM

	 Ordinary Differential Equations  •  113

describing real, physical systems. Indeed, for our next discussion,
we require something with a bit more accuracy.

Once you have a program up and running you should be able to
reproduce the results plotted in Figure 6.5. Here we start with the
same initial conditions and parameters as before but have allowed
the integration to run up to time 60t = s and have changed the num-
ber of steps N to 600, that is, a step length of 0.1 s.

Notice that the solution is stable for (at least) the first nine
periods of oscillation. To stringently test the stability of the Runge–
Kutta solution, we should allow the integration to run over several
thousand periods of oscillation, maintaining the same step length,
and monitor the amplitude of the oscillations produced. Even more
stringently, we should integrate backward from the endpoint to the
start and compare the values of the displacement and velocity to the
initial conditions. However, the range of the stability shown in Fig-
ure 6.5 will be sufficient for the following discussion.

FIGURE 6.5:  Fixed step Runge–Kutta solution of SHM, encompassing nine periods
of oscillation.

In real physical systems, oscillatory motion is usually damped.
We know this because after we put say, a mass on a spring in motion
it will lose the initial amplitude it was given and eventually come to

Computational Physics.Ch6.3pp.indd 113Computational Physics.Ch6.3pp.indd 113 1/4/2022 10:35:56 AM1/4/2022 10:35:56 AM

114  •  Computational Physics, 2/E

rest. This is due to mainly resistive losses as the mass moves through
the air. We can model this damping effect by assuming the drag
force acting on the oscillating mass is proportional and opposite to
the velocity of the mass. The second-order ODE describing damped
oscillatory motion now becomes

	 mx kx Dx= − − , � (6.40)

where D is the constant of proportionality for the drag force, and we
have taken the mass term to the left-hand side for clarity. Note that
Equation (6.40) remains a linear, homogeneous ODE of the second
order. Separating Equation (6.40) into a pair of coupled first-order
ODEs is straightforward. All we must do is modify Equation (6.37)
to include the additional, drag force term such that

	 mv kx Dv= − − � (6.41)

and Equation (6.36) remains unchanged. This appears deceptively
simple and studying physics you will probably be developing a
healthy mistrust of anything that appears simple, but in this case, it
is that straightforward.

FIGURE 6.6:  Damped oscillatory motion integrated using a fixed step Runge–Kutta method.

Computational Physics.Ch6.3pp.indd 114Computational Physics.Ch6.3pp.indd 114 1/4/2022 10:35:56 AM1/4/2022 10:35:56 AM

	 Ordinary Differential Equations  •  115

After making the appropriate modification to the derivative
function in your code you should be able to reproduce the results
plotted in Figure 6.6. Here I have taken the parameters to be

/ 1k m = and / 0.1D m = . We could now modify the model of resis-
tive drag with relative ease, the numerical algorithm simply pro-
cesses the numbers.

As a last discussion to this section let us consider driven oscilla-
tory motion. At the beginning of this chapter, we identified a nonho-
mogeneous ODE as one having a function of the independent vari-
able extra to the dependent variable and its derivatives. The driven
oscillatory motion is used as an example in Equation (6.9) and it is
repeated here with an addition of the drag term

	 ()mv kx Dv F t= − − + , � (6.42)

where ()F t is the driving force. The form of the driving force will be
dependent on the physics of the system Equation (6.42) describes.
For instance, a child being pushed on a swing (pendulum system
rather than a mass-on-a-spring) will have a driving force that would
be well suited to be modeled by an impulse acting at a particular
point in the oscillation. Whereas the driving force describing a car’s
suspension system as it travels over a cobbled street, say, could be
modeled by some sort of sinusoidal function.

For the sake of this discussion and simplicity, let us assume the
driving force is a straightforward sine function, thus

	 () 0sin()F t A tw j= + , � (6.43)

where A is the amplitude or maximum force supplied by F, 0w
is the angular frequency of the driving force (the subscript distin-
guishes it from the angular frequency of the solution), and φ is a
phase shift added for generality.

Make further modifications to your derivative function to
include the driving force term as described in Equation (6.43). For
now, assume that the phase shift is zero. Keeping everything else the
same and using the parameters 0.2A = and 0 1w = you should be
able to reproduce the results plotted in Figure 6.7.

Computational Physics.Ch6.3pp.indd 115Computational Physics.Ch6.3pp.indd 115 1/4/2022 10:35:56 AM1/4/2022 10:35:56 AM

116  •  Computational Physics, 2/E

FIGURE 6.7:  Driven oscillator. There are two regions of the solution: the transient region,
and the steady-state region.

Notice that in the solution of the driven oscillator there are two
regions. First is the transient region where the nature of the solu-
tion changes with the independent variable. Then the steady-state
region where the oscillations follow the form of the driving force.
Figure 6.7 shows the case where we have a situation close to reso-
nance; though not actually at resonance—even though the driving
frequency equals the natural frequency, the damping term effects
the frequency at which the oscillator shows a maximum response to
the driving force (see Exercise 6).

6.3.3  More Than One Dimension
The code that we have developed to solve a second-ordered

ODE by transforming them into a pair of coupled first-ordered
ODEs have currently only considered motion in one-dimensional
space. To solve for the motion, we required two dependent vari-
ables, namely the displacement and the velocity (or momentum).
These methods can be extended to cover problems involving several
dependent variables that may describe motion in three-dimensional
space.

For example, if we were to describe the motion of the Earth in
orbit about the Sun, which we know is planar, we would need the

Computational Physics.Ch6.3pp.indd 116Computational Physics.Ch6.3pp.indd 116 1/4/2022 10:35:57 AM1/4/2022 10:35:57 AM

	 Ordinary Differential Equations  •  117

Earth’s x and y coordinates as well as it is velocities xv and yv , at a
particular time. That is, we require four dependent variables to fully
describe the Earth’s orbit. For motion that is not planar, we would
require six dependent variables to fully describe a bodies motion in
four-dimensional space-time.

The state data structure and ODESolver classes can deal with
any number of dimensions. To set up a multi-dimensional system
for a first-ordered differential equation you provide a C++ vector
containing the initial value of each dependent variable to the state
constructor. For a second-ordered differential equation, you provide
an additional vector containing the initial derivative values for each
dimension in the system. The implementation of the ODESolver
classes automatically handles the extra dimensions. As stated in the
opening chapter, this is my design, and you should NOT take it as
gospel. If you think you can redesign the code to make it more user
friendly or perform better, then try it out. That’s one of the beauties
of programming and open-source software.

EXERCISES

6.1.	 One stringent accuracy test of a numerical integration
scheme is to have it step backward from the value of the
final step to the starting position and see how close we
come to the initial value we supplied. Apply this test to
the methods we have developed in this chapter and com-
ment on the outcome for different step sizes.

6.2.	 Using Equation (6.18) and its solution (6.19) plot, on
an appropriate graph, the error produced by the Euler
methods and fixed step Runge–Kutta method for step
sizes in the range 0.1 h = down to 1510h −= . Comment
on what you find.

6.3.	 Consider one-dimensional projectile motion with air
resistance we can write

2mv mg Dv= −

Computational Physics.Ch6.3pp.indd 117Computational Physics.Ch6.3pp.indd 117 1/4/2022 10:35:57 AM1/4/2022 10:35:57 AM

118  •  Computational Physics, 2/E

	 where m is the mass of the projectile, v is its velocity, g is
the acceleration due to gravity, and D is the drag coef-
ficient. For a sphere of mass 110 m −= kg the drag coef-
ficient was found to be 310D −= kg/m. Using one of the
numerical solvers we have developed find the terminal
velocity of the sphere dropped close to the surface of the
Earth. Does this agree with theory?

6.4.	 Modify your Runge–Kutta program for SHM without
any damping or driving force terms to check the stabil-
ity of the method over many periods (tens of thousands).
How might you monitor the accuracy of the numerical
solution?

6.5.	 Using your Runge–Kutta program for SHM with damp-
ing only, check for critical damping and assess when
it occurs in terms of the relative values of k, m, and D.
Does this agree with the theory of critical damping?

6.6.	 Using the numerical solvers at hand, how does damping
affect the resonance phenomena (resonant frequency
and maximum response of the oscillator) of driven oscil-
lations? Does this agree with real observations?

6.7.	 Newton’s gravitational force of attraction between two
objects is given by,

3

GMm
F r

r
= −

	 where G is the universal gravitational constant, M and m
are the masses of the two bodies, and r is their separa-
tion distance. Using either the fixed step or adaptive step
Runge–Kutta method we’ve developed an attempt to
compute the mass of the Sun knowing that Earth re-
quires one year to make the orbit. The distance between
the Earth and the Sun is one astronomical unit (1 AU).
Assume Earth’s orbit is circular, that there is no influ-
ence from any other galactic body, and that the coordi-
nates of the Sun are fixed at the origin. Try to get your
answer to within four significant figures of precision and
check your result for accuracy.

Computational Physics.Ch6.3pp.indd 118Computational Physics.Ch6.3pp.indd 118 1/4/2022 10:35:57 AM1/4/2022 10:35:57 AM

CHAPTER 7
FOURIER ANALYSIS

Fourier analysis, also known as spectral analysis, is a powerful
tool for the experimental scientist. It can help to establish a clear
physical picture of an experimental system than just from the raw
data on its own. Fourier analysis can also be used to help extract
significant information from particularly noisy or complicated sig-
nal or waveform that may have otherwise been missed or lost. For
instance, Fourier analysis can be used to: reconstruct a crystal struc-
ture from its X-ray diffraction pattern; determine the mass of ions
exhibiting cyclotron motion in a magnetic field; reconstruct the 3D
image from a series of X-ray images in computerized tomography
scan; produce bandpass filters in electronic circuits; improve digital
radio reception; clean up noisy digital images; and the list goes on. In
general, all these techniques rely on finding the Fourier transform
of the measured, raw data. To do this, we must first talk about how
to represent or approximate a function using a Fourier series. As a
starting point, let us return to the Taylor series expansion of a func-
tion and discuss its limitations.

As described in Chapter 2, the Taylor series expansion is a
powerful tool when it comes to approximating functions. However,
the truncated Taylor series expansion of the sine function can only
approximate a function reasonably accurately about the (unique)
point it was taken. While this may not cause a significant limitation
to most continuous functions, periodic functions are not well suited
to Taylor series expansions; the period is simply not considered.

Computational Physics.Ch7.3pp.indd 119Computational Physics.Ch7.3pp.indd 119 1/3/2022 10:58:57 AM1/3/2022 10:58:57 AM

120  •  Computational Physics, 2/E

In addition to this limitation with periodic functions the Taylor
series expansion requires that a function and all its derivatives exist
everywhere. In other words, the Taylor series expansion cannot be
used to approximate functions with discontinuities (jumps) either in
the function or in the derivatives of the function.

7.1  THE FOURIER SERIES

Jean Baptiste Joseph Fourier was a French mathematician and
physicist born in Auxerre in 1768. He is best known for starting the
investigation of the now eponymous Fourier series, that he applied
to the then unsolved (general) problems of the propagation of heat
and vibrations. It was Fourier who first pointed out that an arbitrary
periodic function ()f t , with a period T, can be separated into a sum-
mation of simple trigonometric terms such that

	 () ()0
0 0

1

cos() sin()
2 n n

n

a
f t a n t b n tw w

∞

=

= + +∑ ,� (7.1)

where the na and nb are the so-called Fourier coefficients, and
0 2 / Tw p= is the natural frequency of the function. Note that every

periodic function has a natural frequency, but only harmonic oscilla-
tors behave as pure sinusoidal waves. Interpreting the Fourier series,
we see that the function, which may represent some audio signal
or EM radiation or whatever, is composed of the superposition of
many harmonic tones of the natural frequency. A harmonic tone is
a sinusoidal function with a period equal to an integer multiple of
the natural frequency. The coefficients na and nb thus providing a
measure of the contribution to the signal from the cosine and sine
harmonics, respectively. More precisely, the intensity or power at
each harmonic frequency is proportional to 2 2

n na b+ ; this is referred
to as the Fourier (power) spectrum.

The coefficients of the Fourier series are given by

	 () 0
0

2
cos()

T

na f t n t dt
T

w= ∫ � (7.2)

Computational Physics.Ch7.3pp.indd 120Computational Physics.Ch7.3pp.indd 120 1/3/2022 10:58:58 AM1/3/2022 10:58:58 AM

	 Fourier Analysis  •  121

and

	 () 0
0

2
sin()

T

nb f t n t dt
T

w= ∫ . � (7.3)

Equations (7.2) and (7.3) can be derived directly from the
Fourier series which is given as an exercise for the reader to per-
form. Note that we integrate over one period.

Equation (7.1) need not be restricted to periodic functions as any
general function may be described by an infinite sum of its Fourier
components (this is its Fourier transform which will be discussed in
the next section). Moreover, as this series does not require the deriv-
atives of the function to exist it can be used to describe functions that
are discontinuous or contain discontinuous derivatives. The Fourier
series will provide a “best-fit” to the function (or signal) in the least-
squares sense and it generally converges to the average behavior of
the function. At discontinuities, it converges to the mean value of
the function just on either side of the jump, and at sharp corners,
that is, where there are discontinuities in the function’s derivative(s),
it overshoots the function.

So far, this discussion has been somewhat abstract so let us go
through an illustrative example. A square wave can be thought of as
(periodic) repetition of a step function. A step function over a period
T is given by

	 ()
, 0

2

, 0
2

T
A t

f t
T

A t

− − < <= 
 < <


, � (7.4)

where A is the amplitude of the square wave. Given this definition
the square wave is an odd function, that is, () ()f t f t− = − , and all
the na must be zero; remember that the cosine is an even func-
tion, that is, () ()f t f t− = , such that the integration of Equation
(7.2) goes to zero over one period. Our job then is to find the nb
as follows

Computational Physics.Ch7.3pp.indd 121Computational Physics.Ch7.3pp.indd 121 1/3/2022 10:58:58 AM1/3/2022 10:58:58 AM

122  •  Computational Physics, 2/E

b
T

A n t dt A n t dt

A
T

n t

n
T

T

T

� � � � � � �

� � �

�

� �

�

2

4
2

0

0
0

2

0

0

2

0

sin sin

sin
/

� �

� ddt

A
n T

n t

A
n

n

n

A

o

T
� � � ��� ��

� � � �� �

�
� �

4

2
1

0 2 4 6
4

0
0

2

�
�

�
�

cos

cos

/

, , , ,

nn
n

�
, , , ,� �

�
�
�

��
1 3 5

where the fact is that the function is used as odd, and the natural
frequency is defined as 0 2 / Tw p≡ . Substituting these values into
Equation (7.1) and summing to infinity we would end up with the
square wave. In practice, we typically only retain the first few signifi-
cant terms from the Fourier series.

Figure 7.1 plots the result of performing the Fourier series for a
square wave with an amplitude 1A = and a period 4T = (seconds).
The plot shows the first three non-zero Fourier terms of the series
namely 1n = , 3, and 5. As more terms are added, we can see that the
series does an increasingly better job of approximating the function.
Where the square wave is a constant, the Fourier series oscillates
around the function value with decreasing amplitude as we increase
the number of terms in the series. As the Fourier series passes
through the discontinuity in the function it converges on the aver-
age value of the function limits either side of the jump (in this case
zero) and misses the function entirely just passed the jump. This is
the overshoot that was mentioned previously. Unlike the oscillations
about the constant function value (more generally the continuous
parts of the function), the overshoot does not improve as rapidly as
we increase the number of terms in the series.

Computational Physics.Ch7.3pp.indd 122Computational Physics.Ch7.3pp.indd 122 1/3/2022 10:59:01 AM1/3/2022 10:59:01 AM

	 Fourier Analysis  •  123

FIGURE 7.1:  Approximation of the square wave using a Fourier series, keeping the first,
second, and third non-zero terms in the series.

Most of the problems and functions that we will deal with will
involve real numbers, that is to say, not complex numbers. However,
it is sometimes convenient to express the Fourier series in terms of
complex numbers. Returning briefly to Euler who derived the fol-
lowing complex identities

	 cos() sin()ie iq q q= + � (7.5)

and

	 cos() sin()ie iq q q− = − � (7.6)

where 1i = − is the so-called imaginary number, and the Fourier
series can be rewritten as

	 () 0in t
n

n

f t c e w
∞

=−∞

= ∑ .� (7.7)

The coefficients are now represented by the nc which can be
calculated using

	 () 0

0

1 T
in t

nc f t e dt
T

w−= ∫ .� (7.8)

Computational Physics.Ch7.3pp.indd 123Computational Physics.Ch7.3pp.indd 123 1/3/2022 10:59:02 AM1/3/2022 10:59:02 AM

124  •  Computational Physics, 2/E

It could be inferred from the above discussion that some func-
tions of the Fourier series may not have a Fourier series represen-
tation. The Fourier series approximation may not converge on the
function and in fact, it may not even converge at all. The Dirichlet’s
theorem defines the sufficient mathematical conditions of a func-
tion for its Fourier series representation to converge so that you can
research them for yourselves.

7.2  FOURIER TRANSFORMS

In the preceding section, we have mentioned that any general,
that is, not necessarily periodic, function can represent as an infinite
sum of its Fourier components. To do this mathematically, the Fou-
rier series is tweaked into Fourier integrals for it to deal with a non-
periodic function. The basic idea is that a non-periodic function can
be thought of as periodic with its period extending toward infinity,
that is, the period becomes infinitely large but not actually infinity.
This means that the natural frequency reduces toward zero, that is, it
becomes infinitesimally small but not actually zero. By applying this
mental manipulation, we can write Equation (7.7) as

	 () 0in t
n

n

f t c e w
∞

∆

=−∞

= ∑ � (7.9)

where the coefficients are given by

	 () 00

2
in t

nc f t e dtww
p

∞
− ∆

−∞

∆
= ∫ ,� (7.10)

and 0w∆ is our infinitesimal natural frequency. Note the change in
the integral limits for the coefficients to reflect the idea that the
period extends toward infinity and thus can also be shifted to extend
to minus infinity. As the discrete values 0n w∆ are summed over infin-
ity, it could be mapped on to a continuous variable that, for consis-
tency, we shall simply call w. Due to this modification, the infinite
sum over n in Equation (7.9) becomes an integration over w, on the
infinite interval. Thus, the Fourier integral gives

Computational Physics.Ch7.3pp.indd 124Computational Physics.Ch7.3pp.indd 124 1/3/2022 10:59:02 AM1/3/2022 10:59:02 AM

	 Fourier Analysis  •  125

	 () ()1
2

i t i tf t f t e dt e dw w w
p

∞ ∞
−

−∞ −∞


=   

∫ ∫ � (7.11)

where the traditional symbol is used for the infinitesimal element of
the integration over w, and define some function of w as

	 () ()1
2

i tg f t e dtww
p

∞
−

−∞

= ∫ � (7.12)

then Equation (7.11) becomes

	 () ()1
2

i tf t g e dww w
p

∞

−∞

= ∫ . � (7.13)

Equations (7.13) and (7.12) define an integral transform and
its inverse, respectively. These are commonly known as the Fourier
transform and the inverse Fourier transform. The multiplicative fac-
tor in both these integrals can be chosen to be anything, so long as
their product equals 1/2p; the form shown is called symmetrical for
obvious reasons. By knowing the Fourier transform and its inverse,
it allows us to map a function (or data) from one domain to another
where perhaps a mathematical operation on the function is easier in
the transformed domain. After applying the operation, the modified
function can be transformed back (inverse transform) to the original
domain. Harmonic analysis is an example of where this kind of tech-
nique is used.

For convenience and shorthand, the Fourier transform, and its
inverse can be written as

	 () (){ }f t g w=  � (7.14)

and

	 () (){ }1g f tw −=  . � (7.15)

Note that instead we could have started with the time variable
and transformed that into the frequency variable and, in which case,
we would have to reverse our definitions (Equations (7.12) and
(7.13)). So long as we are consistent with what is the transform and

Computational Physics.Ch7.3pp.indd 125Computational Physics.Ch7.3pp.indd 125 1/3/2022 10:59:02 AM1/3/2022 10:59:02 AM

126  •  Computational Physics, 2/E

what is the inverse it does not matter what our original variable was
to begin with.

The choice of our variables, that is, time and frequency, in deriv-
ing these transforms were for instructive purposes only and Fourier
transforms need not be restricted to them. They can be applied to
other types of variables including those described by vectors (e.g.,
three-dimensional space). For instance, if we considered the vari-
able l that represents the wavelength of some quantum particle in
one or more dimensions then its Fourier transform would be the
wavenumber (or vector) k. This has important applications in solid-
state physics where the use of k -space or momentum-space is ben-
eficial in understanding several electronic and optical properties of
matter. As an aside, the reason why it is called momentum-space is
due to De’ Broglie (pronounced like Troy); hk, where h is Planck’s
constant, gives the momentum of a quantum particle.

A Fourier transform pair have several significant properties
not least among them that the operation is linear. That is to say, if
()1f t has a Fourier transform ()1g w , and similarly ()2f t has a trans-

form ()2g w , then the Fourier transform of () ()1 2f t f t+ is simply
() ()1 2g gw w+ .

Another property is the scaling relation that has an interesting
physical interpretation. It can be shown that

	 (){ } 1
f t g

wa
a a

 =  
 

 � (7.16)

where α is a scaling factor that can be positive or negative. Equation
(7.16) shows that if we squeeze the ()f t along the t axis, that is,
� � 1, then its corresponding Fourier transform broadens along

the w axis and also reduces in height by a factor of α . Conversely,
if � � 1 then we broaden ()f t and squeeze ()g w , this time
increasing its height. In other words, the more localized the func-
tion is in time, say, the more delocalized it is in frequency, and vice
versa. Remember that we are not restricted to time and frequency
variables, we could just as correctly use 3-D spatial variables and
momentum-space variables as a Fourier transform pair. In this case,
the more accurately we know the position of a particle, the less
accurately we know its momentum. If you have not come across a

Computational Physics.Ch7.3pp.indd 126Computational Physics.Ch7.3pp.indd 126 1/3/2022 10:59:07 AM1/3/2022 10:59:07 AM

	 Fourier Analysis  •  127

chapter called Heisenberg yet and his uncertainty principle, then
you soon will.

Other properties exist for shifting relations (moving the coordi-
nate system) and the symmetries (odd or even functions) and com-
plexities (real and/or imaginary functions).

7.3  THE DISCRETE FOURIER TRANSFORM

As with all numerical procedures, we first must find a way of
representing a continuous variable as a discrete set of points. Note
that in doing so we will not be computing the true Fourier transform
but we intend to find a reasonable approximation to the transform.

Let us consider ()f t as a time-dependent physical quantity
obtained from actual measurements such that we have N data points
taken at equidistant increments of t∆ . In other words, we have the
data points ()(), t f m t∆ ∆ , 0,1,2... 1m N= − . If we have sufficient data
points to adequately describe the behavior of the function over a
given length of time T, and that the function is periodic beyond this
region, we may then use the notion that

	
2 2
T N t
p pw∆ = =

∆
.� (7.17)

Under these conditions, we can write the Discrete Fourier
transform (DFT) and its inverse as

	 () ()
1

2 /

0

1 N
i mn N

n

f m t g n e
N

pw
−

=

∆ = ∆∑ � (7.18)

and

	 () ()
1

2 /

0

1 N
i mn N

m

g n f m t e
N

pw
−

−

=

∆ = ∆∑ � (7.19)

where we have kept the symmetric form; in this case, the product of
the factors must equal 1/N. For convenient notation let us now drop
the t∆ and w∆ in the function arguments and use the corresponding
integer multiple as a subscript instead, that is, () mf m t f∆ → and
() ng n w g∆ → .

Computational Physics.Ch7.3pp.indd 127Computational Physics.Ch7.3pp.indd 127 1/3/2022 10:59:08 AM1/3/2022 10:59:08 AM

128  •  Computational Physics, 2/E

To implement Equations (7.18) and (7.19) into a computer pro-
gram it is convenient (but not necessary) to separate the functions
into their real and imaginary parts. This makes the coding some-
what more intuitive and means that we only deal with real num-
bers (imaginary numbers are essentially a real number multiplied by

1i = − , which we can drop in a computer program). In separating
the real and imaginary parts we obtain the following:

)
1

0

1
Re() Re(cos() ()sin()]

N

m n n
n

f g Im g
N

q q
−

=

= −∑ ;� (7.20)

)
1

0

1
() (cos() Re()sin()]

N

m n n
n

Im f Im g g
N

q q
−

=

= +∑ ;� (7.21)

	 [)
1

0

1
Re() Re(cos() ()sin()]

N

n m m
m

g f Im f
N

q q
−

=

= +∑ ;� (7.22)

and

	 [)
1

0

1
() (cos() Re()sin()]

N

n m m
m

Im g Im f f
N

q q
−

=

= −∑ � (7.23)

where 2 /nm Nq p= .

The code contained in the file DFT_bellcurve.cpp performs the
DFT (in one dimension) on the (normal) Gaussian distribution func-
tion with the parameters specified, then performs the inverse trans-
form to check the correctness of the programming. The output is
somewhat uninteresting in the sense that we have mapped the func-
tion back on to itself but at least it shows we have coded the DFT
correctly. Note that in our implementation we have condensed the
factors 1/ N into a single factor of 1/N, which can either multiply
the transform or the inverse but not both. By comparing the imple-
mentation of the DFT function (Fourier.cpp) to Equations 7.20-7.23
satisfy yourself that the reversal of sign of the imaginary part of the
transform is required (complex conjugate).

The DFT though straightforward to program is not efficient in
terms of computational effort. Each component of the transform
requires that we sum over the N data points of the signal, and there

Computational Physics.Ch7.3pp.indd 128Computational Physics.Ch7.3pp.indd 128 1/3/2022 10:59:08 AM1/3/2022 10:59:08 AM

	 Fourier Analysis  •  129

are N such components. This leads to an operation count that is pro-
portional to 2N ; you can see this in the function code where we have
the nested for loops. This situation only gets worse as you increase
the number of dimensions in your data. How do we get around this
limitation?

7.4  THE FAST FOURIER TRANSFORM

7.4.1  Brief History and Development
The fast Fourier transform (FFT) has been independently

discovered and rediscovered by various people, the earliest ver-
sion appearing in the literature being attributed to Gauss in 1866.
It appeared as an unpublished manuscript in his collected works.
The actual date Gauss wrote this manuscript is presumed to be
around 1805, which predates Fourier’s original work by 2 years.
For whatever reasons Gauss’s idea was largely ignored by the sci-
entific community and no one connected it to the use of mod-
ern computation. In 1965, the American mathematicians James
William Cooley and John Wilder Tukey published an article that
discussed in detail the use of a machine algorithm to calculate
complex Fourier series. This is largely credited as the first formal
use of the FFT on a “modern” computer. However, more than 20
years before a pair of physicists Cornelius Lanczos and Gordon
C. Danielson gave a particularly lucid description of the FFT deri-
vation in their 1942 publication on practical Fourier analysis of
X-rays scattered from liquids.

Let us assume N is an even number. We can then write the DFT
as a summation over the even-numbered points and a summation
over the odd-numbered points. Mathematically this is written as

	
()

()
()

()
/2 1 /2 1

2 2 / 2 2 1 /
2 2 1

0 0

N N
i n m N i n m N

n m m
m m

g f e f ep p
− −

− − +
+

= =

= +∑ ∑

	 () () 2 /even odd i n N
n ng g e p−= + � (7.24)

Computational Physics.Ch7.3pp.indd 129Computational Physics.Ch7.3pp.indd 129 1/3/2022 10:59:08 AM1/3/2022 10:59:08 AM

130  •  Computational Physics, 2/E

where we define

	
()

()
()

/2 1
2 / /2

2
0

N
even i nm N

n m
m

g f e p
−

−

=

= ∑ � (7.25)

as the even-numbered points, and

	
()

()
()

/2 1
2 / /2

2 1
0

N
odd i nm N

n m
m

g f e p
−

−
+

=

= ∑ � (7.26)

as the odd-numbered points. Note that we have ignored the 1 / N
factor here, which can be easily reintroduced at a later stage. Let us
take stock of what we have just done. By splitting the DFT into even
and odd summations we have essentially produced two new DFTs,
Equations (7.25) and (7.26), with half the number of points of the
original transform. Hence the number of operations required is now
proportional to 22 (/ 2)N× , that is, half the original. The beauty of
this algorithm is that we can keep going and further split those new
DFTs into their even- and odd-numbered points, and so on until
we reach the level where there is only one component to find in
the summation. However, this requires that the number of points at
each subdivided level contained within the summation remains even.
This can easily be insured by specifying that N is an integer power of
two. For instance, let 2kN = then after k subdivisions, there will be
N DFTs to compute each with only one component to find. In other
words, instead of the operation count being proportional to 2N it is
now proportional to Nk or more generally 2logN N.

7.4.2  Implementation and Sampling
The reason why Cooley and Tukey are generally credited

with the discovery of the FFT as applied to modern computing
was their clever way of interweaving the summation pairs at the
lowest level of the algorithm. This interweaving is just an exercise
in bookkeeping which is rather tedious and can make the coding
somewhat complicated. Rather than discussing the interweaving
strategy at length, the function FFT is provided in the file Fourier.
cpp, which contains an FFT algorithm, for your use. For interested
readers, Landau’s book, A Survey of Computational Physics, 2008,
pp. 256–263 for an in-depth discussion of the interweaving strategy
is recommended.

Computational Physics.Ch7.3pp.indd 130Computational Physics.Ch7.3pp.indd 130 1/3/2022 10:59:09 AM1/3/2022 10:59:09 AM

	 Fourier Analysis  •  131

Before we continue, let’s explore briefly how to interpret the
spectrum resulting from the FFT function. It assumes that the
(time) data passed to it is periodic on the interval for which it is
defined, which in turn implies the resulting transform is also peri-
odic. Figure 7.2 illustrates this point. Here we imagine a sketch of
the frequency spectrum of some arbitrary harmonic (time) signal
with the natural frequency 0w calculated using the FFT function
(The broadening of the peak is for illustrative purposes but can be
caused by actual properties of the data and the sampling). The solid
curve on the positive frequency portion of the plot is the complete
vector output from the function. Assuming the vector produced by
the FFT has length N that is some integer power of two then we can
say the following:

●● the zero frequency is located at index zero;

●● positive frequencies correspond to indexes 1 -> N/2 - 1;

●● negative frequencies correspond to indexes N/2 + 1 -> N - 1
(most negative to least negative); and

●● and index N/2 gives the Nyquist critical frequency (either
positive or negative).

We will discuss the meaning of the Nyquist critical frequency
in due course. Therefore, the algorithm is considered as computing
normal, forward time, and time-reversed frequencies; essentially a
mathematical quirk of the FFT algorithm. The zero frequency is
countes as a positive frequency. To demonstrate we can write

	 0 0 0cos() 0.5cos() 0.5cos()t t tw w w= + − � (7.27)

as cosine is an even function. Conversely

	 0 0 0sin() 0.5sin() 0.5sin()t t tw w w= − − � (7.28)

as sine is an odd function. As the spectrum is shared between the
positive and negative frequencies its intensity (the Fourier coeffi-
cient value) is half what we would expect if we just considered the
“physically” significant positive frequencies. The upshot of all this is
that when recording the spectrum data, we could only store the first

/2N points and multiply their values by two in order to obtain the

Computational Physics.Ch7.3pp.indd 131Computational Physics.Ch7.3pp.indd 131 1/3/2022 10:59:09 AM1/3/2022 10:59:09 AM

132  •  Computational Physics, 2/E

“physically” correct power spectrum. More precisely, the intensity
(or power) of the spectrum is given by the integration of the spec-
trum over the entire range of the transformed domain.

FIGURE 7.2:  Sketch of a frequency spectrum of some harmonic oscillator with natural
frequency ω0. We have deliberately included peak broadening to clearly demonstrate the

interpretation of the spectrum.

Modify the program you have written to analyze the spectrum of
the following function

	 () cos(5)f t tp= ,� (7.29)

sampled once per second for 32 s, then twice per second for 16 s,
and so on up to 16 times a second for 2 s. Here, we keep N constant
at 32. You will need to compute the equivalent discrete frequen-
cies of the array indices; essentially the index is divided by the time
domain range, scaled by 2π to get the angular frequency. To view
the spectrum, we should plot the magnitude of the transform values
against the discrete frequencies. In other words, the spectrum can
be considered a histogram with the width of each (frequency) bin
given by w∆ and its height given by the square root of

	 2 2 2Re() ()n n ng g Im g= + . � (7.30)

Computational Physics.Ch7.3pp.indd 132Computational Physics.Ch7.3pp.indd 132 1/3/2022 10:59:10 AM1/3/2022 10:59:10 AM

	 Fourier Analysis  •  133

FIGURE 7.3:  Left - the frequency spectrums of Equation (7.29) sampled at twice, four
times, and eight times per second respectively. Right - the time sampled function with the

detected frequency harmonic shown.

The code library uses the std::complex class (using a template
argument of double) to represent complex numbers. There are sev-
eral functions that act on objects of std::complex type that perform
the expected mathematical operations such as conjugation and find-
ing the magnitude.

After performing the FFT on the given function at different
sampling rates, the results were obtained as depicted in Figure 7.3.
We know that the (angular) frequency of the function described by
Equation (7.27) must be 5 15.7w p= ≈ . Why then do we see a fre-
quency of p in the spectrum when sampling at a rate of twice a
second, and indeed a frequency of 3p when sampling at four times
a second? The answer lies in the plot of the time sampled function
overlaid on the actual function as shown in the right-hand column
of Figure 7.23. When sampling at twice per second (top) we see that
the sampled data resemble a triangular waveform with a period of 2
seconds, equivalent to a harmonic frequency of p . Similarly, when

Computational Physics.Ch7.3pp.indd 133Computational Physics.Ch7.3pp.indd 133 1/3/2022 10:59:10 AM1/3/2022 10:59:10 AM

134  •  Computational Physics, 2/E

sampling at 0.25 per second (middle) the curve () ()cosf t tp= pass
through the sampled points leading to the erroneous frequency
spectrum. This is called aliasing; the higher frequency “signal” has
been aliased by lower frequency harmonics. This happens because,
in these two cases, we are under-sampling the function; our sam-
ple rate is not sufficiently high to capture the true waveform. As a
rule, you should sample the signal at a rate at least twice the highest
frequency component contained in the signal. This is the Nyquist
critical frequency. In our example, the angular frequency of our
waveform is 5p equivalent to a frequency of 2.5 Hz. Thus, to avoid
under-sampling we should take data at time intervals at least 0.2 s
apart or less. Indeed, when we sample at intervals of 0.125 s, and we
recover the correct frequency spectrum.

What then happens when we sample at a rate of 32 times per
second for one second? The FFT spectrum appears to distort across
all the discrete frequency bins. This problem is known as leakage
and occurs when there is a lack of frequency resolution such that the
actual frequency of the data does not match one of the frequency
bins. In this case, the FFT tries to compensate by distributing the
transform across nearby frequencies, in other words, it leaks. To alle-
viate this problem, we can increase the total observation time, that
is we increase N but without changing the sampling rate. Try sam-
pling at the same rate of 32 per second but for 2 s, that is, increase
N to 64, and see if we get a better outcome.

The leakage problem can be attributed to wherein the time
domain we finish sampling. Remember that the FFT assumes the
data you pass to it is periodic on the observation interval for which it
is defined. If the sampling finishes mid-period, then the FFT “sees”
a discontinuity in the function. As we know from the Fourier series
a discontinuity is better approximated by increasing the number of
terms in the sequence. Comparatively, the FFT increases the num-
ber of frequencies detected in the spectrum to deal with the discon-
tinuity. It is therefore advantageous to use a sampling rate that is
proportionate with the period of the function.

Computational Physics.Ch7.3pp.indd 134Computational Physics.Ch7.3pp.indd 134 1/3/2022 10:59:10 AM1/3/2022 10:59:10 AM

	 Fourier Analysis  •  135

EXERCISES

7.1.	 Calculate the Fourier series for a Saw-tooth waveform.
Plot the results to get a clear picture of how the series
converges to the function.

7.2.	 Investigate the overshoot in the square waveform as the
number of terms in the Fourier series increases. Cal-
culate the error between the series approximation and
the function, and hence determine the behavior of the
overshoot as we retain more terms in the series—this is
called the Gibbs phenomenon.

7.3.	 Derive the Fourier coefficients of Equations (7.2) and
(7.3). Hint: sine and cosine functions are orthogonal.

7.4.	 Derive the scaling property for the Fourier transform;
Equation (7.16). Then derive the similar property for the
inverse transform.

7.5.	 Find a way to time the operation of a program in Fortran
then evaluates the runtimes of the DFT algorithm versus
the FFT algorithm for the same set of data. Check the
statements that the DFT algorithm operation count is
proportional to 2N and the FFT operation count is pro-
portional to 2logN N. Also, check that the output from
each algorithm is the same for the same input (within
unit round-off error precision).

7.6.	 What is the shape of the Fourier transform of the rect-
angle function? How does this relate to the diffraction of
a wave through a single slit?

7.7.	 Use the FFT subroutine to obtain the spectrum of the
function () ()sin 5f t t= . Use a sampling rate that is suf-
ficiently rapid to avoid under-sampling. Can you derive a
sampling rate that avoids the problem of leakage?

7.8.	 Consider the function
f t t t� � � �� ��� �� � �� ��� ��cos 1 2 2� �cos , for α in the range
[]0,1 . Investigate how the sampling rate and overall obser-
vation time affects the resolution of the frequency peaks.

Computational Physics.Ch7.3pp.indd 135Computational Physics.Ch7.3pp.indd 135 1/3/2022 10:59:15 AM1/3/2022 10:59:15 AM

Computational Physics.Ch7.3pp.indd 136Computational Physics.Ch7.3pp.indd 136 1/3/2022 10:59:15 AM1/3/2022 10:59:15 AM

CHAPTER 8
MONTE CARLO
METHODS

Monte Carlo methods (or Monte Carlo experiments) are a broad
class of computational algorithms that rely on repeated random sam-
pling to obtain a numerical result. They are often used in physical
and mathematical problems when it is impossible to obtain an ana-
lytical solution, and the application of a direct algorithm is infeasible.
Monte Carlo methods are mainly used in three distinct problems:
numerical integration, simulation, and optimization. The first two
in this list and how they relate to physics problems are discussed in
this chapter.

8.1  MONTE CARLO INTEGRATION

8.1.1  Dart Throwing
“Hit and miss” integration, also known as the shooting method,

is arguably the most intuitive type of Monte Carlo method to under-
stand. To demonstrate the application of this approach, let us discuss
a novel way of approximating the value for p (see Figure 8.1). It
shows the upper right quadrant of a circle of unit radius circum-
scribed by a unit square. Imagine throwing darts randomly at this
board (some of you may have had a similar experience already in
the student’s union bar). Of the total number of darts that hit within

Computational Physics.Ch8.2pp.indd 137Computational Physics.Ch8.2pp.indd 137 12/30/2021 11:36:00 AM12/30/2021 11:36:00 AM

138  •  Computational Physics, 2/E

the square, the fraction of those that land within the circle will be
approximately equal to the ratio area of the circle contained by the
square. Mathematically, we write

	 circle circle

square thrown

A N
A N

≈ .� (8.1)

Here we have the constraint that darts cannot be thrown outside
of the square and circleA is the area contained in the unit square.

FIGURE 8.1:  The Monte Carlo “dart board” used to approximate π .

Remembering your geometry basics, we can substitute and rear-
range the equation above to give an approximation formula for p,
such that

	
4 circle

thrown

N
N

p ≈ � (8.2)

In other words, the probability that a dart will hit the shaded
area is equivalent to one-quarter of the value of p. Despite the fun
you can have in trying to make the dart-throwing random, attempt-
ing to physically perform this experiment soon becomes tedious as
you need a large number of thrown darts to get a reasonably accu-
rate approximation for p. Instead, we make a computer simulate the
dart-throwing by having it generate random numbers.

Computational Physics.Ch8.2pp.indd 138Computational Physics.Ch8.2pp.indd 138 12/30/2021 11:36:01 AM12/30/2021 11:36:01 AM

	 Monte Carlo Methods  •  139

Now before anyone gets militant on my personage computers
do not generate true random numbers as they are deterministic
machines. That said, on some modern systems, there are hardware
devices that can provide true randomness via the stochastic pro-
cesses involved in their operation. Hardware aside, computers can
generate what is known as pseudorandom numbers via a recursion
formula; given a starting point, generally referred to as the random
number seed, the generator produces a sequence of “random” num-
bers by performing mathematical operations on the previous “ran-
dom” number. Rigorous statistical tests can be applied to the outputs
of these generators to check that the numbers are random in relation
to one another. As a cautionary note, a random number generator
will produce the identical random number sequence for the same
seed. Hence, for multiple trials, different seeds must be found to
produce different random number sequences. Typically, this is done
by using the system’s clock. C++ has a number of built-in classes
that perform pseudorandom number generation on different distri-
butions that will be adequate for our purposes.

For each random throw, we generate two random numbers,
x and y, that represent the displacement from the origin to where
the dart hit in the horizontal and vertical directions, respectively.
Using the Pythagorean Theorem, the distance from the origin can
be calculated and thus it could be determined whether the dart
landed within the circle. That is, if the distance is greater than one
unit it missed, less than or equal to one unit it hit. By keeping count
of the total number of darts thrown that is, the number of random
(), x y coordinates generated, and the number that hit the circle we
can approximate p using Equation (8.2).

The file piMonte.cpp contains a program to perform this experi-
ment. The code generates a pair of (uniformly distributed) random
numbers, both on the interval []0,1 , to simulate where the thrown
dart lands within the unit square. After computing the distance from
the origin, we either add one to the counter if it is a hit or do noth-
ing if it is a miss. After every 10 darts thrown, we estimate p using
Equation (8.2) and store both that value and the current number of
darts thrown for plotting after the processing loop has completed.

Computational Physics.Ch8.2pp.indd 139Computational Physics.Ch8.2pp.indd 139 12/30/2021 11:36:01 AM12/30/2021 11:36:01 AM

140  •  Computational Physics, 2/E

Notice that we save the random numbers generated to check the
randomness of the throws.

Figure 8.2 shows the results from running this program on four
separate occasions, using a total of 1000 dart throws. Here we can
see that our random number generator has done an adequate job;
the four different runs have produced four different results as we
should expect if we had physically performed the experiment on
four separate occasions.

FIGURE 8.2:  Results of estimating π from a Monte Carlo integration for four separate runs.
The black line represents π .

The black line in each of these plots represents the actual value
of p. The figure suggests that although we are not guaranteed to
converge on the actual value of the integration, the approximation
does, to some extent, stabilize as we increase the number of throws.
However, remember that the results are accumulated. Thus, as
the number of throws increases the influence of the next throw is
reduced, and the variation in the estimate from one throw to the
next necessarily diminishes. In other words, the results at the end
of the experiment are very much influenced by the outcome of the
throws at the start of the experiment.

Computational Physics.Ch8.2pp.indd 140Computational Physics.Ch8.2pp.indd 140 12/30/2021 11:36:01 AM12/30/2021 11:36:01 AM

	 Monte Carlo Methods  •  141

If you’re looking at the results plotted in Figure 8.2 and
wondering why we would bother with Monte Carlo integration at
all remember that this is an illustrative (and simple) example. If the
integration can be done easily by other means, then the Monte Carlo
method should not be used. The Monte Carlo integration comes
into its own when other numerical techniques are difficult, if not
impossible to implement.

Figure 8.3 plots histograms of performing 10,000 dart-throwing
integrations with 100 darts per integration in the top panel and 1000
darts per integration in the bottom panel. Note that both plots are
over the same range, but they have different bin widths; 0.1 for the
top plot, and 0.01 for the bottom plot, which is related to the num-
ber of darts thrown per integration.

FIGURE 8.3:  Histograms of 10,000 Monte Carlo integrations of π using 100 darts per
integration (top) and 1000 darts per integration (bottom).

Computational Physics.Ch8.2pp.indd 141Computational Physics.Ch8.2pp.indd 141 12/30/2021 11:36:01 AM12/30/2021 11:36:01 AM

142  •  Computational Physics, 2/E

The curves are being the bell shape of a normal (or Gaussian)
distribution; in fact, with an increasing number of integrations, the
distributions would become much smoother and would approach
the ideal bell shape. As can be seen from the plots as we increase the
number of darts thrown per integration the distribution of estimates
for p narrows about the true value. In other words, the mean value
of the distribution becomes a more accurate value for p.

From Figure (8.3), the width of the distribution at half height
for the 1000 darts per integration case is roughly one-third of that
for the case of 100 darts per integration. If you remember your prob-
ability theory, you should recall that the width of a normal distribu-
tion of estimates of a value is proportional to one over the square
root of the total number of points used to compute each estimate. In
other words, the factor difference between the widths of these two
distributions should be equal to 1 / 10 , which is what we find.

Moreover, the standard deviation of the mean, which is a mea-
sure of the width of the distribution, can be itself estimated from a
single integration using

	

2
21 1

1

i i

N

f f
N N

N
s

 −  
 =
−

∑ ∑
� (8.3)

where if is the estimate of the value (p in our case), after the ith
point is sampled (dart is thrown), and N is the number of points
sampled (darts thrown) in total. For large N, we can drop the
minus one in the denominator. It is of note that Equation (8.3) can
be updated after each new random point is sampled; in which case
N becomes equal to the value of i we have reached. This means we
can monitor the confidence we have in the estimate of the inte-
grated value as we increase N. Remember that the estimate lies
within sof the precise average to a 68.3% degree of confidence;
within 2 sto a 95.4% degree of confidence; within 3 s to a 99.7%
degree of confidence; and so on. To decrease s and therefore
improve the accuracy in the estimate we merely sample more ran-
dom points. The drawback to this method is that the improvement
can only go as the square root of N. This takes us back to the point

Computational Physics.Ch8.2pp.indd 142Computational Physics.Ch8.2pp.indd 142 12/30/2021 11:36:02 AM12/30/2021 11:36:02 AM

	 Monte Carlo Methods  •  143

made previously that there is a law of diminishing returns due to
the accumulation of data; when we have already sampled 1000
points, say, one more sampled point makes little difference to the
outcome, but another 1000 would.

8.1.2  General Integration Using Monte Carlo
In our dart-throwing method example above to estimate p we

have, in a round-about fashion, approximated the integral

	 () ()
1

2

0

1
4

b

a

f x dx x dx
p

= − =∫ ∫ .� (8.4)

A slightly more direct method of using the Monte Carlo integra-
tion would be to sample (uniformly distributed) random values of x
on the interval [],a b , and finding the average of the function evalu-
ations, ()f x . In general, for a one-dimensional integration, we are
using the notion that

	 () ()
b

a

f x dx b a f= −∫ � (8.5)

where f is the precise mean average of the function on the interval
[],a b . This has a very straightforward geometrical interpretation as
depicted in Figure 8.4.

FIGURE 8.4:  Geometrical interpretation of Monte Carlo integration.

Computational Physics.Ch8.2pp.indd 143Computational Physics.Ch8.2pp.indd 143 12/30/2021 11:36:02 AM12/30/2021 11:36:02 AM

144  •  Computational Physics, 2/E

The integration, which is the area under function defined on
the interval, is equal to the area of the shaded rectangle. The Monte
Carlo method is an attempt to estimate the precise function average,
f. Notice that because of this interpretation /4p must be the precise
function average of the unit, quarter circle.

Formally we write the Monte Carlo integration estimate as

	 () () ()
1

b N

i
ia

b a
f x dx f x

N =

−
≈ ∑∫ � (8.6)

where N is the total number of randomly sampled points.

In the file Monte_Carlo.cpp you will find a function that per-
forms the Monte Carlo integration according to Equation (8.6). You
can check that it works by choosing an easily analytical integral and
seeing if we obtain the same result using the Monte Carlo method;
see monte_carlo_integration.cpp for an example. We could also use
this information to check how well the estimate for the standard
deviation models the actual error in the integration.

The Monte Carlo method of integration is most effectively used
in the computation of multidimensional integrations where the appli-
cation of more direct methods is either infeasible or impossible. To
perform a multidimensional integration via the Monte Carlo method
we simply find random numbers for all the variables involved, find
the value of the function at those coordinates, then update the sum.
For instance, a two-dimensional integration can be written as

	 () ()() ()
1

, ,
d b N

i i
ic a

d c b a
f x y dxdy f x y

N =

− −
= ∑∫∫ .� (8.7)

As we add more dimensions, we generate more random numbers
for the additional dimensions and multiply by the relevant integra-
tion interval; the sum over f divided by N still provides an estimate
of the precise function average defined with the integration region.
Notice that because of this simplicity the Monte Carlo method of
integration has some inherent advantages over more direct numeri-
cal techniques.

The error in the direct methods for numerical integration (trap-
ezoidal rule, Simpson’s rule, etc.) stems from the number of terms
retained in the Taylor series approximation of the integrand function.

Computational Physics.Ch8.2pp.indd 144Computational Physics.Ch8.2pp.indd 144 12/30/2021 11:36:02 AM12/30/2021 11:36:02 AM

	 Monte Carlo Methods  •  145

For example, the trapezoidal rule approximates the integrand with a
linear polynomial, which, as we have seen, has an error that is ()2h ,
where h is the strip width across the integration interval. If we wish
to halve the error in our numerical approximation of the integra-
tion in one dimension then we decrease h by a factor of 2 ; this
is equivalent to increasing N (the number of function evaluations)
by the same factor. For a two-dimensional integration to halve the
error we must apply this modification in both dimensions such that
N increases by a factor of 2 in total. For three dimensions N must be
increased by a factor of 3/22 . In general, for a d dimensional numeri-
cal integration to halve the error in our approximation we would
have to increase N by a factor of /2d m, where m represents the order
accuracy of the numerical integration method used to compute the
approximation (for the trapezoidal rule 2m = ; Simpson’s rule 4m = ;
and so on).

The error in the Monte Carlo method is different. As we have
just discussed the error produced by a Monte Carlo computation is
probabilistic in nature; we can say that the approximation calculated
is within one standard deviation of the “true” value 68.7% of the
time. To improve the approximation, that is to reduce the standard
deviation and thus make the average value converge on the “true”
value, we increase the number of random points sampled, N. As this
is a probabilistic process, we know that the error will reduce as N .
Thus, to halve the error we increase N by a factor of 4. This is inde-
pendent of the dimensionality of the integration! To explain, we per-
form a multidimensional integration via the Monte Carlo method
by computing as many random numbers as there are dimensions,
then evaluating the function at the coordinates specified by those
random numbers and updating the sum. Note that this is a true scat-
tershot approach; none of the dimension variables are held constant,
we just keep “shooting” and evaluating a single value for the function
at those coordinates randomly generated.

To demonstrate, let us imagine a four-dimensional integration
that we can perform either by the trapezoidal rule or the Monte
Carlo method. After obtaining the approximation from both meth-
ods we would like to halve the error in each. From our discussions,
we can see that both require the number of function evaluation

Computational Physics.Ch8.2pp.indd 145Computational Physics.Ch8.2pp.indd 145 12/30/2021 11:36:02 AM12/30/2021 11:36:02 AM

146  •  Computational Physics, 2/E

points to be increased by a factor of 4. In other words, the rate of
convergence for the two methods is comparable when performed
on a four-dimensional integration. To avoid confusion, here we are
talking about the rate of convergence of an approximation to the
“true” value, not the absolute value of the error. It is likely that the
trapezoidal rule is more accurate (has a less absolute error) than the
Monte Carlo method to start with. That said, for dimensions higher
than four the Monte Carlo method will converge more rapidly than
the trapezoidal rule. Indeed, for integrals of sufficiently high dimen-
sionality, the Monte Carlo method will converge more rapidly than
any direct method that has been discussed earlier, dependent on the
method’s order of accuracy.

A secondary advantage to the Monte Carlo method is the num-
ber of function evaluations that must be performed in order to gain
an approximation to the integral. To illustrate, imagine a 10-dimen-
sional integration that we are computing via the Monte Carlo
method. Let us say we evaluate the integrand function 10 times,
that is, we generate 10 random numbers for each function evalua-
tion, that is, 100 points in total. Now we want to halve the error in
our approximation so as stated we increase N by a factor of 4, that
is, we have to generate 400 random numbers. If we evaluated the
same integration using the composite trapezoidal rule, again with
10 function evaluations per dimension, then it would have 1010 10=
billion function evaluations to perform. To halve the error, we would
have to increase N by a factor of 52 ; we would now have to perform
320 billion function evaluations. Thus, the trapezoidal rule will prob-
ably give a more accurate result than the Monte Carlo method, and
it would certainly take more time (an infeasible amount) to obtain.
Even though the Monte Carlo estimate will be crude, the method
does give a quantifiable measure of the error, and the knowledge
that we can improve this error by taking just a few more randomly
sampled points.

8.1.3  Importance Sampling
Before completing the discussion about Monte Carlo integration,

the author discusses the technique that can help improve the accu-
racy of the method called importance sampling. Importance sampling
uses information about the function to place more randomly sampled

Computational Physics.Ch8.2pp.indd 146Computational Physics.Ch8.2pp.indd 146 12/30/2021 11:36:03 AM12/30/2021 11:36:03 AM

	 Monte Carlo Methods  •  147

points where the function is largest, meaning that the approximation
is more accurate for the same number of sampling points. To do so
we find a function g(x) that approximates the integrand function f(x)
over the integration interval so that we can write

	 () ()
()

()
()

() ()
()

1

1

1

1

y bb b

a a y a

f yf x
f x dx g x dx dy

g x g y

−

−

−

−
= =∫ ∫ ∫ � (8.8)

where

	 ()
x

y g t dt= ∫ .� (8.9)

Interpreting Equation (8.8), we see that instead of integrat-
ing ()f x over x, we integrate the ratio () ()/f x g x over y. This has
the geometrical effect of flattening the integrand over the integra-
tion interval, thus making the Monte Carlo method more accurate.
Remember we are attempting to approximate the precise function
average over the integration interval. Having a “flat” function makes
this easier.

For example, consider the integral

	
/2

0

sin()I x dx
p

= ∫ .� (8.10)

This has an analytical value of 1. We can approximate sine using
the first term of its Taylor series expansion ()sin x x≈ , such that the
integral becomes

	

2/2 /8

0 0

sin(2)
sin()

2

y
x dx dy

y

p p

=∫ ∫ , � (8.11)

where

	
2

2

x x
y tdt= =∫ � (8.12)

and

	 2x y= . � (8.13)

Without importance sampling, the Monte Carlo method using
100 sampled points, produces a result with 3 0.15s ≈ . For the same
number of sampled points but with importance sampling, we obtain

Computational Physics.Ch8.2pp.indd 147Computational Physics.Ch8.2pp.indd 147 12/30/2021 11:36:03 AM12/30/2021 11:36:03 AM

148  •  Computational Physics, 2/E

a result with 3 0.04.s ≈ Note that the approximation function ()g x
should be reasonably good across the entire integration interval; oth-
erwise, the result is likely to be worse (see Exercise 1).

8.2  MONTE CARLO SIMULATIONS

One of the first uses of a Monte Carlo method was in determin-
ing the thickness of the shielding required to stop neutrons from
leaking from a nuclear reactor. Developed in the 1940s by Stani-
slaw Ulam when he worked on the Manhattan project it coincided
with the birth of modern computing. Indeed, Jon Von Neumann was
the first to successfully program a Monte Carlo method on ENIAC
(Electronic Numerical Integrator and Computer) in the late 1940s
and into the 1950s.

The process of a neutron traveling through metal is very much a
random one; the neutron collides with the metal atoms and is scat-
tered in a random direction. Any influence of the neutron’s previ-
ous motion is lost in the (random) scattering process i.e., there is
no correlation between the results of a particular collision and the
neutron’s initial motion. This kind of random process is called sto-
chastic, and they frequently occur in physics; molecular diffusion;
percolation of atoms on (growth) surfaces; and radioactive decay, to
name but a few.

8.2.1  Random Walk
Let us begin our discussion of Monte Carlo simulations with a

simple drunken walk. As some of you may have already found out, a
drunken walk can be described as a random experience. Mathemati-
cally speaking a random walk is one in which you are equally likely
to step in any direction. The question normally posed is how far you
will travel in a given number of steps.

To answer this question, we simulate the walk using random
numbers, and, of course, some assumptions and constraints. The first
assumption is that each of your strides is equal in length and that you
only walk along with the cardinal directions. In other words, you are

Computational Physics.Ch8.2pp.indd 148Computational Physics.Ch8.2pp.indd 148 12/30/2021 11:36:03 AM12/30/2021 11:36:03 AM

	 Monte Carlo Methods  •  149

on a two-dimensional unit square grid moving from point to point.
After reaching each point you have an equal probability of going
north, south, east, or west. This can be simulated by generating a ran-
dom number on the interval []0,1 , with equal intervals defining the
direction taken, for example, 0-0.25 walk north, 0.25-0.5 walk east,
and so on (the same outcome could be achieved using the integers
1-4). As the simulation runs, we keep track of the x and y distances
traveled from our starting point (origin) and calculate the distance
traveled using Pythagoras, either at the end of the run or updated
after each step. As this is a stochastic process, we do not gain much
insight from one random walk, and so we should run the simulation
many times over to obtain statistically valid results.

After writing such a program we obtain the results presented
in Figure 8.5. Here we have results for 10 N = up to 1000N = in
increments of 10 where each value plotted is the average of 1000
simulations. Although this drunken walk scenario may seem some-
what oversimplified can you think of any real physical situations to
where it might be applied? (Hint: the grid need not be a square grid
but a regular grid of some other shape that may have more possible
directions of travel.)

FIGURE 8.5:  Mean distance travelled versus number of steps taken in a drunken walk.

We can relax the constraint that we only walk along with the
cardinal directions and allow any direction on the two-dimensional
surface, maintaining a stride length of one. To do this we consider

Computational Physics.Ch8.2pp.indd 149Computational Physics.Ch8.2pp.indd 149 12/30/2021 11:36:04 AM12/30/2021 11:36:04 AM

150  •  Computational Physics, 2/E

the angle that governs the direction of our next step. In other words,
we randomly sample the angle j on the interval []0,2p and use trig-
onometry to determine the x and y distances moved per step, that is,

()cosx j= and () siny j= . Figure 8.6 shows the effect of the modifi-
cation to the results of the mean distance traveled against the num-
ber of steps taken under the same conditions as shown in Figure 8.5.

FIGURE 8.6:  Mean distance travelled versus number of steps taken for a random walk on a
2d surface where any direction is possible.

We can also remove the assumption that the stride length is a
constant by instead of randomly sampling the angle of travel, we
randomly sample two numbers per step on the interval []1,1− that
represent the x and y components of a displacement vector. Note
that we could also do this by uniformly sampling theta on []0,2p and
uniformly sampling the stride length, r, on the interval []0,1 . How-
ever, these two methods are subtly different; can you spot why, and
does this affect our results in any way?

What your results should have told you is that the qualitative
result is unaffected by the size of the strides. In other words, we have
scale invariance, and we can simply set stride length to unity. The
total mean distance traveled is then measured in units of the stride
length. In technical parlance, our stride length is what is known as
the mean free path.

Computational Physics.Ch8.2pp.indd 150Computational Physics.Ch8.2pp.indd 150 12/30/2021 11:36:04 AM12/30/2021 11:36:04 AM

	 Monte Carlo Methods  •  151

Now that we have covered a random walk over a two-dimensional
surface let us try to extend that to a random walk in a three-
dimensional volume. In this case, it is useful to think of a perfume
molecule diffusing through the air; the randomness, or stochastic
process, is introduced by the perfume molecule randomly scattering
from collisions with the molecules that make up the air. If we assume
that the perfume molecule is equally likely to scatter in any direc-
tion, then we have spherical symmetry.

Figure 8.7 shows the spherical coordinate system (), , r q j , where
r is the length of some position vector, q is the polar or inclination
angle, that is the angle between the z-axis and the position vector,
and j is the azimuth angle, that is the angle between the x axis and
the projection of the position vector on to the x-y plane. As we have
discussed, the mean free path can be set to a constant that is equal to
one, that is, 1r = . We, therefore, need to uniformly sample random
numbers on the surface of the unit sphere.

FIGURE 8.7:  Spherical coordinate system.

If we naively sampled q from []0,p and sampled j over []0,2p
both with uniform distributions, we would run into problems. The
issue stems from the fact that the surface of a sphere is curved and
can explain as follows. In our two-dimensional representation of the
problem the azimuth angle, j, can be sampled uniformly on the
interval []0,2p as this leads to a uniform distribution of points on the

Computational Physics.Ch8.2pp.indd 151Computational Physics.Ch8.2pp.indd 151 12/30/2021 11:36:04 AM12/30/2021 11:36:04 AM

152  •  Computational Physics, 2/E

circumference of the (unit) circle; see Figure 8.8(a). Now consider
Figure 8.8(b). This shows a sphere cut by the x-y plane such that a
circle can be drawn around the sphere, which defines its equator. If
we now lift the x-y plane up through the sphere, as if decreasing the
polar angle q by uniform increments, the circle defining where the
x-y plane cuts the sphere necessarily contracts. If there were a uni-
form distribution of points on the circle, then as the circle moves up
the sphere those points also contract. In other words, the distribu-
tion of points on the surface of the sphere would be not uniform and
in fact, would bunch at the poles.

FIGURE 8.8:  (a) Points on the unit circle defined by a random sampling of ϕ on the
uniform distribution []0,2π . (b) Unit sphere cut by the x- y plane; the circle defining the

intersection deminishes as the plane is pulled upwards.

The way around this problem is not to randomly sample num-
bers for q on a uniform distribution but to sample points on a ()sin q
distribution. We can see this from the figure; we need less points at
the poles where 0q = and p, and more points around the equator
where /2q p= .

More formally, we consider the solid angle element

	 sin()d d dq q fΩ = .� (8.14)

Computational Physics.Ch8.2pp.indd 152Computational Physics.Ch8.2pp.indd 152 12/30/2021 11:36:05 AM12/30/2021 11:36:05 AM

	 Monte Carlo Methods  •  153

We would like to uniformly sample on the element dΩ, which
means that we need to uniformly sample both ()sin dq q and dj. If
we let

	 sin()dg dq q= , � (8.15)

then we can write

	 () cos()g q q= . � (8.16)

We now have the means to uniformly sample the surface of the
(unit) sphere. We select j from a uniform distribution on the inter-
val []0,2p and select g from a uniform distribution on the interval
[]1,1− , where q is then calculated using

	 1cos ()gq −= . � (8.17)

Modify your program so that it can perform this three-
dimensional simulation of a molecule diffusing through the air; you
will have to calculate the x, y, and z coordinates of the displace-
ment vector using trigonometry. Again, we should be able to show a
relationship between the mean distance traveled and the number of
collisions taken, so long as these results are statistically valid. Once
you have the plot it should be the same as those we have previously
presented. How might we show that the mean distance traveled is a
power of N, and how might we discern that power?

These data suggest that we have stumbled upon a principal
property of nature, that the average distance traveled of a particle
undergoing random scattering events is proportional to the square
root of the total number of scattering events to which it has been
subjected. Mathematically, we write

	
R

N
l
≈ .	 � (8.18)

Note the use of the operative word suggest. We have not proved
anything only that we have statistically valid results. What our com-
putations have given us is a significant insight into the physics of
diffusion, and a strong suggestion that the relationship described by
Equation (8.18) probably is real.

Computational Physics.Ch8.2pp.indd 153Computational Physics.Ch8.2pp.indd 153 12/30/2021 11:36:06 AM12/30/2021 11:36:06 AM

154  •  Computational Physics, 2/E

This outlines the importance of Monte Caro simulations; they
can provide qualitatively valid results for physical systems that may
be difficult or impossible to solve using more direct methods (both
analytical and numerical).

That said there is more information we can extract from our
simulations that lends credibility to the results we obtained. By
simulating many molecular paths, we have actually modeled the
situation whereby a bottle of perfume has been opened and the
many molecules of the aroma have diffused into the air (under the
assumption that they all emerged from a point source located at
the origin). In which case, we should be able to visualize the dis-
tribution of aromatic molecules as a function of distance from the
perfume bottle after a particular number of collisions. Essentially,
this represents the density of aromatic molecules in the air as we
move away from the perfume bottle at a particular moment in time.
Before you calculate the distribution how might you expect it to
look, and how might you expect it to evolve with time (number of
collisions)?

8.2.2  Radioactive Decay
Radioactive decay occurs when an unstable atom (or parti-

cle) releases some form of radiation (alpha, beta, and or gamma)
and decays into other particles. This is also referred to a sponta-
neous decay, in that it requires no external stimulation to occur.
Each unstable atom has the same probability to decay in any given
period, but when this specifically happens is random. As the total
number of unstable atoms decreases the number that decays in a
particular period also decreases. In the limit of the period going to
zero, we can say that the rate of decay is proportional to the number
of unstable atoms that still exist. Thus, when there are many unsta-
ble atoms in a sample spontaneous decay is well modeled by an
exponential decay. Essentially, this is a continuous or large number
approximation to the actual process of the discrete decay events. As
the number of unstable atoms inevitably decreases this approxima-
tion begins to fail and the process becomes increasingly stochastic
(subject to chance).

Computational Physics.Ch8.2pp.indd 154Computational Physics.Ch8.2pp.indd 154 12/30/2021 11:36:06 AM12/30/2021 11:36:06 AM

	 Monte Carlo Methods  •  155

In the limits of N →∞ and 0t∆ → we write

	 () () ()N t dN t
N t

t dt
l

∆
→ = −

∆
, � (8.19)

where l is the so-called decay constant. This is related to the half-life
of the unstable atoms by

	 1/2

ln(2)
T

l
= , � (8.20)

and l can be described as the activity of the unstable atoms i.e., the
probability that an atom decays within a given period of t∆ .

We can use Monte Carlo simulation to model when this change
in behavior occurs. More precisely, we can determine the minimum
number of unstable atoms required for the large number approxima-
tion to hold true. To do this we increase time in discrete steps, and
for each of these steps, we count the number of decay events that
occurred during that interval. By keeping track of the number of
atoms left in our simulation we can quit once they have all decayed.
To simulate a decay event, we generate a random number, and if that
number is less than l then a decay event occurs, and we drop our
atom count by one.

Unless we are comparing our computational results to actual
experimental data, we can ignore any time scale that may be required.
For instance, if 4 10.7 10 sl −= × then we should set our time intervals
to be equal to 410 s− so that we can set 0.7l = in our program and
are able to use random numbers in the range []0,1 . Otherwise, we
keep the value of l as is and scale our random numbers accordingly;

4 10.7 10 sl −= × and the random numbers are scaled to 40,10  . In
our time scale-free program, the increments in time can be equal to
one, and l is chosen somewhere between zero and one.

The file nuclearDecay_ocv.cpp contains a program that per-
forms this simulation. The parameters in this file should be self-
explanatory. Make sure the code is understood as it is used in one of
the exercises that follow.

Computational Physics.Ch8.2pp.indd 155Computational Physics.Ch8.2pp.indd 155 12/30/2021 11:36:07 AM12/30/2021 11:36:07 AM

156  •  Computational Physics, 2/E

EXERCISES

8.1.	 Evaluate the integral

0

sin()I x dx
p

= ∫
	 using the Monte Carlo method with importance sam-

pling, where ()g x x= . Compare the results to the same
integration without this important sampling. What went
wrong? Retain an additional term from the Taylor series
expansion of sine and try again. Rather than retaining
more terms in the Taylor series is there any other way to
approximate sine over this interval?

8.2.	 The true period of a pendulum that is, with no small-
angle approximation, of length l in a gravitational field of
strength g is given by

()
0

0.5
0

0

4 cos(cos())
2
l

T d
g

q

q q q−= −∫

	 where q is the angle with the vertical, and 0q is the initial
angle of release. Using a Monte Carlo method of integra-
tion, determine for what angles the small-angle approxi-
mation is valid. (Hint: You will need to recall/research
the period for the small-angle approximation and decide
what is accepted as valid.)

8.3.	 Confirm the random walk plots presented in the “Simu-
lation” section. Can the noise in these results be re-
duced? Are there any analytical results that the mean
free path of a particle, undergoing random scattering, is
proportional to the square root of the number of scatter-
ing events?

8.4.	 Using the nuclearDecay program:

a.	For large N (> 1000) check that N is proportional to
the actual decay rate i.e., the number of decay events
per time step.

Computational Physics.Ch8.2pp.indd 156Computational Physics.Ch8.2pp.indd 156 12/30/2021 11:36:07 AM12/30/2021 11:36:07 AM

	 Monte Carlo Methods  •  157

b.	Produce a plot (hint: logarithm) that shows that
spontaneous decay looks initially exponential-like but
as N decreases look increasingly stochastic in behavior.
Approximately determine where the behavior changes.
As a check, is the slope equal to l?

c.	 Is this change in behavior independent of the initial
number of atoms, and the decay constant used?

Computational Physics.Ch8.2pp.indd 157Computational Physics.Ch8.2pp.indd 157 12/30/2021 11:36:07 AM12/30/2021 11:36:07 AM

Computational Physics.Ch8.2pp.indd 158Computational Physics.Ch8.2pp.indd 158 12/30/2021 11:36:07 AM12/30/2021 11:36:07 AM

CHAPTER 9
PARTIAL DIFFERENTIAL
EQUATIONS

Most of the interesting equations in physics are partial differential
equations (PDE). Nearly all measurable quantities in the universe
vary both in space and time; a fact that is reflected by the abun-
dance of second-order PDEs in physics that have both space and
time as independent variables. In general, we call functions whose
values vary in both space and time (or with any other independent
variable) a field. Name any topic in physics and it will likely have a
PDE describing its phenomena; examples include but are not lim-
ited to Poisson’s equation, the diffusion equation, the wave equation,
the Helmholtz equation, the continuity equation, the Navier–Stokes
equation, and the Schrödinger wave equation.

To solve PDEs analytically we must employ specific techniques
such as the separation of variables or through the application of the
Fourier Series. Where this is difficult or not even possible, the prob-
lem might be simplified, or special cases considered, whereby the
equations can be reduced to an ordinary form. However, the most
general approach to solving PDEs is by numerical methods.

This chapter refers to the Fortran code written for an ear-
lier version of this book. It can be found on GitHub at: github.
com/DJWalker42/ComputationalPhysicsFortran. The README
explains how to compile Fortran programs.

Computational Physics.Ch9.3pp.indd 159Computational Physics.Ch9.3pp.indd 159 1/4/2022 10:41:40 AM1/4/2022 10:41:40 AM

160  •  Computational Physics, 2/E

To develop these numerical methods for solving PDEs, we must
first return to ODEs and show how to write these as finite difference
equations.

9.1 � CLASSES, BOUNDARY VALUES, AND INITIAL
CONDITIONS

For second-order PDEs, these names are analogous to the conic
sections of the same name and are about the properties of their solu-
tions. Figure 9.1 illustrates the conic sections.

FIGURE 9.1:  Conic sections: Parabolic, circular, elliptical, and hyperbolic. [Image copied
from: http://www.andrews.edu/~calkins/math/webtexts/numb19.htm].

Just as an ellipse is a smooth, rounded shape, solutions to elliptic
PDEs also tend to be smooth and rounded. Elliptic PDEs generally
arise from physical problems that involve diffusion processes that
have reached some equilibrium, for example, a steady-state temper-
ature distribution. The hyperbola is the disconnected conic section.
By analogy, hyperbolic PDEs can deal with discontinuities in the
solution, for example, a shock wave or pulse, or some instantaneous
increase in temperature. Hyperbolic PDEs usually occur in relation
to mechanical oscillations, such as a vibrating string. Mathematically,
parabolic PDEs serve as a shift from the hyperbolic PDEs to the
elliptic PDEs. Physically, parabolic PDEs crop up in time-dependent

Computational Physics.Ch9.3pp.indd 160Computational Physics.Ch9.3pp.indd 160 1/4/2022 10:41:40 AM1/4/2022 10:41:40 AM

	 Partial Differential Equations  •  161

diffusion problems, such as the transient flow of heat in a conductor,
say, before it reaches a steady-state.

Consider the most general form for a second-order PDE with
two independent variables

	
2 2 2

2 22
U U U U U

A B C D E FU G
x x y y x y

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
, � (9.1)

where A through G are arbitrary functions (that can be constant)
of the variables x and y, and U is some physical field. Note that the
second term has a factor of 2 as for any partial derivative

	
2 2U U
x y y x
∂ ∂

=
∂ ∂ ∂ ∂

, � (9.2)

where the left-hand term is the second-ordered derivative taken
with respect to x first then y, and the right-hand term is the second-
ordered derivative taken with respect to y first then x. Remember
that with partial differentiation all other independent variables are
considered constant when performing the operation with respect to
a particular variable.

We can define the discriminant of Equation (9.1) as the following

	 2d B AC≡ − . � (9.3)

When 0d < the PDE is elliptic, 0d = the PDE is parabolic, and
0d > the PDE is hyperbolic.

Poisson’s equation in two dimensions is given by

	 () ()2 , 4 ,x y x yf pr∇ = − , � (9.4)

where 2∇ ≡ ∆ is the Laplace operator that has the form

	
2

2
i ix
∂

∆ =
∂∑ � (9.5)

with ix representing the spatial coordinates. Here j is a (scalar)
electrical potential field and r is a charge density. Comparing Equa-
tions (9.4) with (9.1), we see that 1A C= = and 0B = , thus the dis-
criminant is negative, and Poisson’s equation is elliptic.

Computational Physics.Ch9.3pp.indd 161Computational Physics.Ch9.3pp.indd 161 1/4/2022 10:41:41 AM1/4/2022 10:41:41 AM

162  •  Computational Physics, 2/E

The heat equation (or more generally the diffusion equation), in
one spatial dimension, is given by

	 �
� � �
�

�
� � �
�

2

2

T x t

x

T x t

t

, ,
, � (9.6)

where T is some temperature field and α is known as the diffusion
constant. In the case of heat flow � �� K C/ , where K is the thermal
conductivity, C is the specific heat, and r is the density of the mate-
rial through which the heat flows. Here A �� and 0B C= = thus the
discriminant is zero and the heat equation is parabolic.

The wave equation, in one spatial dimension, is given by

	
() ()2 2

2
2 2

, ,x t x t
c

x t

y y∂ ∂
=

∂ ∂
, � (9.7)

where y represents the displacement of the wave from some equi-
librium, say, and c is the speed of the wave. Here 2A c= , 1C = − , and

0B = making the discriminant positive and thus the wave equation
is hyperbolic.

As with ODEs we need to know some initial values in order to
determine a particular or unique solution to the PDE we are study-
ing. For example, to obtain a particular solution of the (second-order)
ODE governing simple harmonic motion we needed to know the
initial position and the initial velocity of the body. For second-order
PDEs, we still require two pieces of information, but in this case,
they are the initial state or condition of the entire system, and the
behavior of the system at its boundaries. To illustrate this concept,
imagine a metal rod that is held at a constant 0 C° at one end, and
100 C° at the other, these are the boundary values. Do we have suf-
ficient information to determine the temperature distribution of the
rod as it evolves with time? We can certainly guess the steady-state
distribution, it will be linear over the length of the rod increasing
from 0 C° to 100 C° . However, to determine the transient behavior
we need to know the initial temperature distribution of the rod that
is, its initial condition. Generally, we write the initial condition as

	 () ()0, 0i iU x t U x= = ,� (9.8)

Computational Physics.Ch9.3pp.indd 162Computational Physics.Ch9.3pp.indd 162 1/4/2022 10:41:45 AM1/4/2022 10:41:45 AM

	 Partial Differential Equations  •  163

where U is some physical quantity, ix represent spatial coordinates,
t represents time, and it follows that 0U is the initial state of the
system.

The type of boundary conditions that we have used in the exam-
ple above is known as Dirichlet conditions; the value of the func-
tion (temperature in our example) at the boundaries of the system
domain (the ends of the rod) is known. Mathematically, we write
Dirichlet conditions as

	 (),i iU x t f= Ω = ,� (9.9)

where f represents the value of the quantity U on the boundary .iΩ
There are other types of boundary conditions. Neumann boundary
conditions are when we know the normal derivative of the function
at the boundaries. In the example of heat conduction through a rod,
Neumann boundary conditions relate to the flux or heat flow across
the ends of the rod. Mathematically we write Neumann conditions
as

	
(),i

i i
i

U x t
x g

x

∂
= Ω =

∂
 , � (9.10)

where g represents the flux or flow of quantity U across some bound-
ary i ix = Ω . Note that in the most general cases f and g can be known
functions of ix and t but to keep things relatively simple we will only
consider the case where they are constants. For example, if heat
flows across one end of our metal rod, then physics tells us there
must be a temperature gradient across that boundary, that is, g is
some nominal, constant value with units of / mC° . Additionally, the
sign of g tells us whether the heat flows into or out of the rod.

Cauchy boundary conditions are when we know both the value
of the function and its normal derivative on the same boundary. For
some problems, a Cauchy boundary condition will over-specify the
PDE, and no unique solution will exist. As a rule of thumb Cauchy
conditions are typically associated with hyperbolic PDEs (like the
wave equation), whereas Dirichlet and Neumann conditions are more
appropriate for elliptic and parabolic PDEs. Note, however, that the
precise boundary conditions will depend on the physics being mod-
eled, and PDE we are solving. Sometimes this requires that we have

Computational Physics.Ch9.3pp.indd 163Computational Physics.Ch9.3pp.indd 163 1/4/2022 10:41:46 AM1/4/2022 10:41:46 AM

164  •  Computational Physics, 2/E

mixed boundary conditions; different boundary conditions are used
on different parts of the boundary of the system. For example, if our
metal rod is held at a constant temperature at one end, a Dirichlet
condition, but is insulated at the other end, a Neumann condition (g

0)= , then we have mixed conditions.

Before we leave this discussion of the generalities of PDEs it is
worth mentioning some convenient shorthand notation for express-
ing partial derivatives. We make the following adjustments

	
(),

i

i
x

i

U x t
U

x

∂
=

∂
, � (9.11)

	
(),i

t

U x t
U

t

∂
=

∂
,� (9.12)

	
()2

2

,
i i

i
x x

i

U x t
U

x

∂
=

∂
� (9.13)

and so on. Although we rarely come across the mixed, second-
ordered derivative, for completeness

	
()2 ,

i

i
x t

U x t
U

x t

∂
=

∂ ∂
� (9.14)

and remember that xt txU U= .

Thus, Equation (9.1) at the start of this section can be rewritten
as

	 2xx xy yy x yAU BU CU DU EU FU G+ + + + + = . � (9.15)

9.2  FINITE DIFFERENCE METHODS

As stated in Chapter 5, an approach to solving second-order
ODEs involved generating an auxiliary variable and separating the
ODE into a pair of, coupled first-order ODEs. While this perfectly
good method for many equations found in physics it can be difficult,
if not impossible, to apply to PDEs.

This section refers to LAPACK (Linear Algebra PACKage)
which is a library of subroutines, written in Fortran, that solve linear
algebra problems. Interfacing, C++ (or other high-level languages)
with Fortran is possible but contains many pitfalls. Alternatively,

Computational Physics.Ch9.3pp.indd 164Computational Physics.Ch9.3pp.indd 164 1/4/2022 10:41:46 AM1/4/2022 10:41:46 AM

	 Partial Differential Equations  •  165

Eigen is an entirely C++ template library for linear algebra and can
be used instead of LAPACK. Notice that the matrix factorizations
developed in the C++ code written for this book do not deal with
tridiagonal matrices and will be relatively slow at solving the prob-
lems discussed throughout this chapter.

9.2.1  Difference Formulas
Another approach to solving boundary value problems is to

approximate the differential equation with a difference equation.
For now, we will only consider differential equations with one inde-
pendent variable, that is, ODEs, and will later show how to extend
this to PDEs. We can obtain the difference equation by considering
the definition of the differential equation, which is

	
() () () ()

0
lim
h

f x f x h f x df x

x h dx→

∆ + − 
= = ∆  

. � (9.16)

Thus, an appropriate approximation to the derivative is

	 () () ()f x h f x
f x

h

+ −
′ ≈ ,� (9.17)

where h is some small but finite value.

To determine the error behavior of this approximation we could
compare it to the analytical solution of some known ODE. However,
we can do a much better job by using the mathematical tools at our
disposal. As some of you may have already guessed, we can obtain
Equation (9.17) using the Taylor series expansion of a function at
()f x h+ about ()f x , that is,

	 () () () ()
2

2!
h

f x h f x hf x f x+ = + ′ ′′+ .� (9.18)

This can be rearranged for the first-order derivative such that

	 () () () ()
21

2!
h

f x f x h f x f x
h

′  
= + − − −…′


′ 


.� (9.19)

Notice the equivalency, Equation (9.19) is not an approximation
but an exact formula for the first-ordered derivative assuming an
infinite number of terms. Comparing Equation (9.17) with Equa-
tion (9.19), we see that the approximation for the derivative is the

Computational Physics.Ch9.3pp.indd 165Computational Physics.Ch9.3pp.indd 165 1/4/2022 10:41:46 AM1/4/2022 10:41:46 AM

166  •  Computational Physics, 2/E

Taylor series expansion truncated after the second term. Therefore,
the error in the approximation is ()h (note the multiplicative factor
of 1 / h) and we can write the equivalency

	 () () () ()f x h f x
f x h

h

+ −
= +′  .� (9.20)

This is called the forward difference approximation to the deriv-
ative as we are using a point that is forward one step, ()f x h+ , to
approximate the derivative at the current position, ()f x .

A backward difference is derived similarly such that

	 () () () ()f x f x h
f x h

h

− −
= +′  , � (9.21)

where we use a step behind, ()f x h− , to approximate the deriva-
tive at the current position, ()f x . This also has ()h accuracy. For
convenient notation, let us make the following changes: if our cur-
rent position is given by () ()i if x f x f→ → , the forward position is
then given by () 1if x h f ++ → , and the backward position is given by
() 1if x h f −− → . Both the forward and backward difference approxi-

mations are two-point formulas.

An advantage of deriving these expressions from their respective
Taylor series is that we notice the leading error term in both has the
same magnitude but opposite sign. Thus, if we add Equations (9.20)
and (9.21) this leading error term will cancel, and we should obtain
a more accurate approximation.

After performing the necessary steps, we find that

	 ()21 1

2
i i

i

f f
f h

h
+ −−′= + .� (9.22)

This is called the central difference formula and is a three-point
formula as we use both the forward, 1i + , and backward, 1i − , val-
ues to approximate the derivative at our current value, i. You can
think of the formula as containing an if term but with a zero coef-
ficient. Note that this formula takes a symmetrical “picture” at the
local neighborhood of the point of interest, whereas the forward and
backward formulas only use the information to one side of the point
of interest.

Computational Physics.Ch9.3pp.indd 166Computational Physics.Ch9.3pp.indd 166 1/4/2022 10:41:47 AM1/4/2022 10:41:47 AM

	 Partial Differential Equations  •  167

We could keep improving the error behavior by taking more
points around our point of interest. For example, a five-point for-
mula can be derived in a similar manner to the three-point formula
above yielding

	 [] ()4
2 1 1 2

1
8 8

12i i i i if f f f f h
h − − + +′= − + − + .� (9.23)

Notice that we have an error behavior of ()4h . In general, an

n point central difference formula will be ()1nh − accurate. While
we could just keep increasing the number of points in the approxi-
mation for the derivative to improve its accuracy this does have a
practical limit. These approximations require that we know values
for the function both ahead and behind our current position. Unlike
the Euler or Runge–Kutta methods that are self-starting formulas,
multi-step methods require that we initiate them in some way. Typi-
cally, this involves using a Runge–Kutta method, say, to provide the
required number of points from the boundary conditions to start the
multi-step formula. As any error incurred during this initiation stage
will be propagated throughout the integration, the initiation method
needs to be at least the same order of accuracy as the multi-step for-
mula it is starting. As the values of the function and its derivative(s)
on and close to the boundaries of a real physical system are usually
important (if not crucial) to the outcome of the integration, they
must be calculated accurately.

Note that should we be approximating the derivatives of a
known function on a particular interval we can use an interpolation
method to extrapolate the derivatives at the limits (boundaries) of
the interval. For example, let us imagine we have some function,
()f x , stored in an array of size N such that we have function values

at equidistance increments, h, over x. We then approximate the first-
ordered derivative using the five-point formula, say. Necessarily, we
require two extra points both at the start and the end of the x line-
space. To obtain the missing values for the derivative we extrapolate
from those we have calculated in the main body of the array. As
we have used a five-point finite difference method we should use
an interpolation method that matches the accuracy order, for exam-
ple, a four-point (third ordered) Lagrange polynomial interpolation
scheme which has a quartic error behavior.

Computational Physics.Ch9.3pp.indd 167Computational Physics.Ch9.3pp.indd 167 1/4/2022 10:41:47 AM1/4/2022 10:41:47 AM

168  •  Computational Physics, 2/E

This is not the only method we could use. As we have computed
function values in the interior of the array, we could apply a forward
and a backward difference formula at the start and at the end of our
array, respectively, to approximate the derivative(s) at those points.
Keep in mind that these methods to deal with edge or boundary
values must match the error behavior of the method applied to the
interior values of the function.

The more practical (and obvious) way of increasing the accu-
racy of our approximation formulas is to decrease the step size h.
Of course, this requires more computational effort but as with most
things, there is always a cost-reward trade-off. And, as we shall see
shortly, knowing how the error behaves as the step size decreases
can be used to our benefit. That said what happens if we let 0h → in
a computer program that calculates finite differences?

Higher-order differential equations can also be approximated
with a difference equation. Again, they are derived using the Taylor
series expansion of various points about the point of interest. The
central difference formula for the second-ordered derivative is

	 ()21 1
2

2i i i
i

f f f
f h

h
+ −− +′′= + ,� (9.24)

which is a three-point formula. The five-point central difference for-
mula for the second-ordered derivative is given by

[] ()4
2 1 1 22

1
16 30 16 .

12i i i i i if f f f f f h
h − − + +′′= − + − + − + � (9.25)

9.2.2  Application of Difference Formulas
How do we go about applying these formulas to a particular

differential equation? To illustrate, consider the following general,
second-order ODE

	 � � � ��� �� � �f f f x,� (9.26)

where α through d are constants and is subject to the boundary con-
ditions

	 ()f a c= , ()f b d= ,� (9.27)

Computational Physics.Ch9.3pp.indd 168Computational Physics.Ch9.3pp.indd 168 1/4/2022 10:41:50 AM1/4/2022 10:41:50 AM

	 Partial Differential Equations  •  169

where [],a b defines the computational domain (integration interval),
and c and d are the values of the function at the boundaries.

The first step is to partition our computational domain into a
grid or mesh of discrete points. For simplicity, we make this grid
uniform by defining

	
1

b a
h

N
−

=
−

,� (9.28)

where N is the total number of grid points; we include both the
boundaries in our grid. We then approximate the continuous, dif-
ferential equation with a discrete, difference equation to find the
solution on the grid we have just imposed. Substituting the three-
point central difference formulas into Equation (9.26), we arrive at
the following finite difference equation for some arbitrary interior
point ix

	
� �

� �
h

f f f
h

f f f xi i i i i i i2 1 1 1 12
2� � � �� �� � � �� � � � .� (9.29)

We then solve Equation (9.29) on the 2N − interior grid points;
the boundary values are fixed, that is, () 1f a f c≡ = and () Nf b f d≡ = .
This means we have a system of 2N − linear equations that can be
solved simultaneously for the 2N − unknown interior grid points.
Note that the solution on the discrete grid will only approximate the
solution of the original, continuous problem. That, of course, is the
point; if we had access to an exact, analytical solution to the problem
we should not need to approximate the problem in the first place.

There are now two ways to proceed with the solution of Equation
(9.29). We either go for the direct method or the indirect method.
The direct method involves recasting Equation (9.29) in matrix form
and solving the system by Gaussian elimination, say. To do this, we
gather like terms such that

	 1 1i i i if f f xj q y d+ −+ + = ,� (9.30)

where

�
� �

� �
h h2 2

,

� �
�

� �
2

2h

Computational Physics.Ch9.3pp.indd 169Computational Physics.Ch9.3pp.indd 169 1/4/2022 10:42:00 AM1/4/2022 10:42:00 AM

170  •  Computational Physics, 2/E

and

�
� �

� �
h h2 2

.

Perhaps not immediately obvious but Equation (9.30) has the
matrix form of

	 Af xd= ,� (9.31)

where A is an ()2N − -by-()2N − tridiagonal matrix given by

	

0 0

0 0

0 0

A

q j
y q

q j
y q

 
 
 
 =
 
 
  



  

  

  



;� (9.32)

f is an 2N − vector representing the unknown function values at
the interior grid points, explicitly

	

2

3

2

1

N

N

f

f

f
f

f
−

−

 
 
 
 =
 
 
  



	 (9.33)

and x is an 2 N − vector representing the known, discrete grid of
points on the independent variable x, explicitly

	

2

3

2

3

N

N

x

x

x
x

x
−

−

 
 
 
 =
 
 
  

 , � (9.34)

where ()1ix a i h= + − for 2, , 1i N= … − .

Computational Physics.Ch9.3pp.indd 170Computational Physics.Ch9.3pp.indd 170 1/4/2022 10:42:01 AM1/4/2022 10:42:01 AM

	 Partial Differential Equations  •  171

Equation (9.31) can be readily solved by the LAPACK subroutine
“DGTSV,” say, which solves a general tridiagonal system of linear
equations by Gaussian elimination with partial row pivoting.

The indirect method of solution is to find an equation for if in
terms of its neighboring points and find an approximation that sat-
isfies the difference equation at the grid points using an iterative
technique. That is, we start with an initial guess for f at all grid points
and using the appropriate equation we iterate to a more accurate
approximation.

We express our iterative scheme by rewriting Equation (9.30) to
solve for if such that

	 () () ()()1 1
1 1

1n n n
i i i if f f xj y d

q
− −

+ −= − + − ,� (9.35)

where n is an index that represents the level of iteration, not to be
confused with as a power. Thus, our initial guess is given by the index

0n = and we iterate to the next level, 1n = , through the application
of Equation (9.35) at all interior grid points, remembering that the
boundaries are fixed. Note that we need to have two storage arrays;
one to store the grid point values at the current level of iteration, and
one to store the grid point values at the next level of iteration. Note
also that the scheme can be described as “red-black” in reference to
a chessboard pattern of the same colors. To explain this, take an even
value for the grid point index i. Note that the next level of iteration
depends only on the adjacent, odd values of the current iteration
level (the grid points ix remain constant throughout the iteration
scheme). This means that, for each iteration level, the computations
for even and odd grid points can be done independently. Thus, if we
think of the iteration scheme as a red and black chessboard, where
the squares represent the grid points and the columns represent the
iteration level, then red squares only influence other red squares,
and black squares only influence other black squares. This property
lends itself well to parallel computing, but more on this in a later
chapter. The iteration method we have just outlined is called the
Jacobi scheme and will converge to the exact solution.

Parallel computing aside, we can apply a little thought to the
Jacobi scheme and come up with a similar method but with quicker

Computational Physics.Ch9.3pp.indd 171Computational Physics.Ch9.3pp.indd 171 1/4/2022 10:42:01 AM1/4/2022 10:42:01 AM

172  •  Computational Physics, 2/E

convergence. Imagine we have just determined ()n
if and are ready to

compute the next grid point ()
1
n

if +
. The Jacobi scheme would have you

use the value ()1n
if

− at the previous iteration level despite the fact we
have just calculated an improved value for that grid point. Instead,
let us use that improved value. Equation (9.35) then becomes

	
() () ()()1

1 1

1n n n
i i i if f f xj y d

q
−

+ −= − + − .� (9.36)

Note that this formula represents moving through the array with
ascending i values. For descending i values the iteration index levels
on the right-hand side swap accordingly. This iteration method is
called the Gauss–Seidel scheme and it will converge to the exact
solution more quickly than the Jacobi scheme. However, note that
we have now lost the red-black property of the Jacobi scheme, mak-
ing it more of a challenge to write the Gauss–Seidel scheme in paral-
lel code.

Iterative methods are generally inferior to direct methods when
applied to ODEs. By this, we mean that direct methods can sup-
ply us with a solution with far less computational effort than that of
an iterative scheme to the same level of accuracy. Iterative meth-
ods come into their own when applied to physical problems that
involve several independent variables, in other words, PDEs. This
is in part due to the differences in the propagation of error between
the two methods. Direct methods rely on matrix factorization, typi-
cally Gaussian elimination, with the solution found by back substi-
tution. Any error in one value is passed to all values that follow it
in the substitution, leading to a non-uniform distribution of error
in the numerical solution. As we add more independent variables
this accumulation of error tends to worsen. For iterative methods,
the error tends to get smeared out across the entire computational
domain (across each independent variable) leading to a more uni-
form distribution. Additionally, the error in an iterative method can
always be improved by simply iterating further, whereas the error
in a direct method cannot be improved unless applying Richardson
extrapolation (see the next section), for example.

When writing code for an iteration scheme we must bear in mind
that all grid points must reach a specified level of accuracy before

Computational Physics.Ch9.3pp.indd 172Computational Physics.Ch9.3pp.indd 172 1/4/2022 10:42:02 AM1/4/2022 10:42:02 AM

	 Partial Differential Equations  •  173

we can say the iteration has converged. That is, we check that the
difference between the same grid points at different iteration levels
is less than some tolerance, for all the grid points in the computa-
tional domain. This is easily accomplished by using a logical variable
which is set to true (or false) at the start of each iteration, then set
to false (or true) should any of the grid points fail the accuracy test,
that is, it only takes one to fail for the convergence check to fail. If
the convergence check has failed, then we go to the next level of
iteration. The tolerance itself should be set relatively large (depends
on the problem) as the solution we obtain is only relevant to the dis-
crete, finite difference approximation we made of the continuous,
differential equation. Of course, the accuracy of our approximate
problem can be improved by making the grid finer, in which case we
could also apply Richardson extrapolation.

Though convergence is (pretty much) guaranteed it can be slow,
thus we should provide a count of the number of iterations and have
the program exit should we go beyond some maximum; this is true
of any iteration method.

The file gauss-seidel.f90 contains the program code to imple-
ment the iteration method of the same name. You may find it useful
to add some code to this program to have it print out some mea-
sure of the error between iterations should the method fail to con-
verge before reaching the maximum iteration count. This may give
you some feel for how close the method was to convergence and
allow you to adjust either the tolerance or maximum iteration count
appropriately.

Both the Jacobi and Gauss–Seidel schemes are what is known
as relaxation techniques. That is, we derive the finite difference
approximation to the differential equation, guess at a solution, and
the method relaxes that guess to the exact value. How quickly the
method relaxes the solution to the “exact” value depends upon how
good the initial guess was in the first place. However, no matter
how good or bad the initial guess the method will eventually con-
verge on a significantly accurate approximation and the relaxation
becomes what is called monotonic. When a function is monotonic it
only ever increases or decreases with its independent variable; there
are no oscillations, inflections, or stationary points. In this case, the

Computational Physics.Ch9.3pp.indd 173Computational Physics.Ch9.3pp.indd 173 1/4/2022 10:42:02 AM1/4/2022 10:42:02 AM

174  •  Computational Physics, 2/E

relaxation takes the solution closer to the true value at all grid points
after each iteration loop. This suggests that if we take a weighted
average between the iterated value we have just calculated and the
previous iterated value that we should obtain, a more accurate solu-
tion for that grid point. Mathematically, this is

	 () () () ()11n n n
i i if f fw w −= + − ,� (9.37)

where w is the weighting factor (sometimes referred to as the
extrapolation or relaxation factor) and lies on the interval []0,2 , and

()n
if is the Gauss–Seidel value. Equation (9.37) is called over-relax-

ation and as we apply it successively at each iteration level the entire
method is referred to as Successive Over-Relaxation.

For each individual differential equation, and hence derived
finite difference approximation, there will be an optimal value for
w that gives the most rapid convergence. This optimal value can be
calculated in some cases and estimated in others.

Currently, we have only developed finite difference approxima-
tions to ODEs but the extension to PDEs is not so difficult.

9.3  RICHARDSON EXTRAPOLATION

Richardson extrapolation is stated previously in the sections on
developing adaptive step numerical integration (quadrature) meth-
ods, the adaptive step ODE solvers, and most recently in the section
above. Here, we discuss the general technique and how it relates to
computations of all sorts.

Richardson extrapolation is what is known as a sequence accel-
eration method. It is named after Lewis Fry Richardson, who intro-
duced the technique in the 1920s for use in predicting the weather
via numerical techniques. In essence, the technique uses a single
formula with known error behavior, which is computed using differ-
ent step sizes, and the results are combined to eliminate the leading
error term in the sequence. To explain how it works in detail let us
first apply it to the method of numerical differentiation and then
generalize for any method where the error behavior is known.

Computational Physics.Ch9.3pp.indd 174Computational Physics.Ch9.3pp.indd 174 1/4/2022 10:42:02 AM1/4/2022 10:42:02 AM

	 Partial Differential Equations  •  175

We know from the Taylor series expansion that the first-ordered
derivative of any function can be given by

	 1

2!
i i

i i

f f h
f f

h
+ −′ ′′= − −…,� (9.38)

so that the approximation to the derivative is given by

	 () 1
0

i if f
A h

h
+ −

= ,� (9.39)

with an ()h error behavior. The subscript index on A refers to the
extrapolation level; this will be explained shortly. Here we are using
the specific example of the central difference formula. We could use
any numerical technique that we have discussed thus far so long as
we know its error behavior.

If we halve the step size, h, then the new approximation will
have a leading term error that is half that of the previous approxima-
tion. Thus, we can eliminate the leading error term by subtracting
the approximation using h from twice the approximation using / 2h .
The extrapolated approximation is then given by

	 ()1 0 0(/ 2) 2 (/ 2)A h A h A h= − ,� (9.40)

which has an ()2h error behavior as we eliminated the lead-
ing ()h error term. If we halve the step size again and calculate

()0 / 4A h then we can apply the same technique to find

	 ()1 0 0(/ 4) 2 (/ 4) / 2A h A h A h= − ,� (9.41)

with the same error behavior as before. As we know how the error
behaves in the extrapolated approximations, ()2h , and we have
two measures of that error with differing step size we can eliminate
the next leading error term by performing

	
() ()1 1

2

4 / 4 / 2
(/ 4)

3
A h A h

A h
−

= .� (9.42)

Here we have used the fact that the leading error term in
()1 / 4A h must be four times smaller than the leading error term

in ()1 / 2A h . Therefore, four times ()1 / 4A h minus ()1 / 2A h must

Computational Physics.Ch9.3pp.indd 175Computational Physics.Ch9.3pp.indd 175 1/4/2022 10:42:03 AM1/4/2022 10:42:03 AM

176  •  Computational Physics, 2/E

leave three times the exact answer plus the remaining error terms.
The error behavior in Equation (9.42) is then ()3h .

This process can continue indefinitely with a general recurrence
relation

	 () 1, ,

1, 1 1

m

m

k
m l m l

m l k

t A A
A h

t
+

+ +

−
=

−
� (9.43)

where m l≤ ,

	 , (/)m
m l lA A h t= ,� (9.44)

l is the extrapolation level, t is the factor we use to reduce the step
size h (for practical purposes this is nearly always two), and mk is an
integer related to the step size reduction level m and the nature of
the sequence we are extrapolating. For instance, the central differ-
ence formula, Equation (9.22), has only error terms involving even
power terms of h, thus 2mk m= . Conversely, if we had a method that
involved only odd power terms of h then 2 1mk m= + . In the most
general cases mk need not be an integer but we would not consider
those.

As Equation (9.43) is somewhat abstract let us apply it to an
actual example. Consider the function () ()sinf x x= with its first-
ordered derivative approximated by the three-point central differ-
ence formula, Equation (9.22). We can put the approximations into
matrix format with the step size reduction level, m, defining the
rows and the extrapolation level, l, defining the columns; note that
we start the level numbering at zero. Thus, we gain the following
approximation matrix for the first two levels of extrapolation:

	
0.52600907 0.00000000 0.00000000
0.53670749 0.54027363 0.00000000
0.53940225 0.54030051 0.54030230

A
 
 =  
  

.� (9.45)

Here we assessed the derivative at 1x = , with an initial 0.4h = ,
2t = , and we use the fact that 2mk m= . The way this matrix equa-

tion fills is row by row. In other words, we compute a new level of
extrapolation as soon as we have sufficient information to do so. For
example, we first compute 0,0A and 1,0A , then use those to calculate

Computational Physics.Ch9.3pp.indd 176Computational Physics.Ch9.3pp.indd 176 1/4/2022 10:42:04 AM1/4/2022 10:42:04 AM

	 Partial Differential Equations  •  177

1,1A , before returning to the zeroth level of extrapolation to calculate
2,0A , and the procedure continues. In this way, the bottom right-

most entry of A is the most accurate approximation to the derivative.
The matrix A is called a lower triangular matrix for obvious reasons.

The first question you should be asking yourselves is “are we
actually saving ourselves computational effort?”. If say instead of
approximating a derivative via a finite difference we were perform-
ing a numerical quadrature, such as the composite trapezoidal rule,
then yes, we do save ourselves computational effort. To explain, the
first column of A would contain the approximations from the trap-
ezoidal rule calculated at the different step sizes (slice width). If the
first approximation took N function evaluations, then to calculate the
first column of A up to the second level of step size reduction would
require 2 4 7N N N N+ + = function evaluations. Using these approx-
imations, we can obtain a more accurate value up to the second level
of extrapolation. At this level, the error behaves as ()6h ; the trap-
ezoidal rule has no odd powers of h in its error terms. Hence, the
error in the approximation at this level will be roughly a factor of

61 / 4 times smaller than the first entry. To obtain this accuracy order
by only reducing the step size would require us to use at least 1 / 64
times the original step size. In other words, 64N function evalua-
tions versus 7N function evaluations. The further we extrapolate the
bigger (and the better) the difference between these two numbers.

However, for any finite difference formula, we only ever need
to use a set number of evaluations to compute an approximation to
the derivative at a given point. For instance, the three-point cen-
tral difference formula requires two function evaluations, one at 1if +
and one at 1if − , regardless of the step size. The extrapolation would
appear to be wasting computational effort. However, if we have an
unknown function taken from some measurement, say, and we wish
to find its derivative we may not have enough points to analyze the
absolute error in our approximation using different step sizes of the
central difference formula alone. Richardson extrapolation would
(hopefully) converge more rapidly on a precise approximation and
give us means to estimate the absolute error in the numerical deriva-
tive. Secondary to this point is that as we reduce the step size the

Computational Physics.Ch9.3pp.indd 177Computational Physics.Ch9.3pp.indd 177 1/4/2022 10:42:04 AM1/4/2022 10:42:04 AM

178  •  Computational Physics, 2/E

function evaluations for the finite difference come closer together
in size. Eventually, their difference becomes comparable to the
machine precision, and we introduce round-off error. We can see
this by applying the central difference formula to a known function
and calculating the absolute error in the approximation for decreas-
ing step size. The error reduction initially behaves as predicted but
will eventually slow down and even begin to increase for sufficiently
small step sizes due to the round-off error. By using Richardson
extrapolation, we can avoid round-off error issues.

Typically, the extrapolation does not go much beyond the third
or fourth level as by then we usually have an approximation that is
within the desired tolerance level. One way to ensure the significant
figure of the accuracy of the approximation is to subtract the previ-
ous level of extrapolation from the current level (at the same step
size reduction level, i.e., the same row) and test it against the desired
tolerance. For instance, in our example above subtracting element

2,1A from 2,2A we would see that 2,2A is at least five significant figures
accurate, that is, within the tolerance that we used of 410− . In fact,
the approximation shown is 6 significant figures accurate.

The file richardsonExtrap.f90 contains the code to perform the
extrapolation using a matrix array A and a three-point central differ-
ence formula to approximate the first-ordered derivative of some
user-defined function.

9.4  NUMERICAL METHODS TO SOLVE PDEs

To begin this discussion let us start with arguably the most intui-
tive of the PDE.

9.4.1  The Heat Equation with Dirichlet Boundaries
Consider the normalized (the diffusion constant is unity) heat

equation in one dimension across a metal rod

	 t xxU U= ,� (9.46)

Computational Physics.Ch9.3pp.indd 178Computational Physics.Ch9.3pp.indd 178 1/4/2022 10:42:04 AM1/4/2022 10:42:04 AM

	 Partial Differential Equations  •  179

where U is the temperature field, x is the spatial coordinate, and t is
time. Let us impose the Dirichlet boundary conditions

	 () ()0, ,U t U L t c= = ,� (9.47)

where L is the length of the rod, and c is a constant temperature.
This is the model for a metal rod held at a steady temperature at
either end. The initial condition of the rod is given by

	 () ()0,0U x U x= .� (9.48)

One way to solve this equation numerically is to approximate all
the derivatives by finite differences. We partition the domain (the
length of the rod) in space using a grid or mesh 1 , , Mx x… (hence M
spatial grid points in total) and in time using a grid 1 , , Nt t… (hence
N time grid points in total). We assume a uniform partition both in
space and in time such that the difference between two consecutive
space points can be given by h, and between two consecutive time
points can be given by k. The points	

	 (), n
m n mu x t u= � (9.49)

represent the numerical approximation to the exact solution at the
grid point () ,m n . To avoid confusion a lower-case letter with two
indices either written n

mu or ,m nu refer to the grid points of the finite
difference approximation, the former being for one spatial variable
and a time variable, and the latter being used for two spatial vari-
ables. An uppercase letter followed by two indices without a comma,
for example, xxU , is the second-ordered partial derivative of U with
respect to the continuous variable x. Here we are using the conven-
tion that we write the discrete-time point index as a superscript; we
are not taking a power. For clarity, if we had a two-dimensional heat
conducting sheet, say, and we partitioned the sheet across x, y, and
t then the conventional notation for a grid point on the temperature
field U would be	

	 () ,, , n
l m n l mu x y t u= ,� (9.50)

Computational Physics.Ch9.3pp.indd 179Computational Physics.Ch9.3pp.indd 179 1/4/2022 10:42:05 AM1/4/2022 10:42:05 AM

180  •  Computational Physics, 2/E

where l and m are the indices for the spatial coordinate grid points,
and n is the index for the temporal grid points.

9.4.1.1  Explicit Method

Using a forward difference at time nt and a second-order central
difference for the space derivative at position mx we get the recur-
rence equation:

	 1
1 1

2

2n n n n n
m m m m mu u u u u

k h

+
+ −− − +

=
.� (9.51)

This is an explicit method for solving the one-dimensional heat
equation in that we can compute the advanced time step 1n

mu + from
the previous values such that

	 ()1
1 11 2n n n n

m m m mu r u ru ru+
− += − + + ,� (9.52)

where 2 /r k h= .

To input the boundary conditions, we must fix 0
nu c= and n

Mu c= ,
over all N time steps.

To visualize Equation (9.52), we can consider what is called
the computational or numerical stencil (or molecule) of the explicit
method. Figure 9.2 shows this stencil placed at some arbitrary inte-
rior location, that is, not near the boundaries of the domain. Here we
use the notion that known values, either computed or belonging to
the initial or boundary conditions, are represented by filled squares,
and the unknown values, those yet to be computed, are represented
by open circles. The stencil shows us that we are using three known
values, specifically 1 n

mu − , n
mu , and 1

n
mu + to compute the unknown value

1 n
mu + . As we run the computation we can think of the stencil as mov-

ing down one row at a time, calculating the unknown value at the
advance time step, until it reaches the edge of the grid (the domain
boundary), where it moves to the top of the next column and repeats
the process, finishing at the bottom of the last time step.

The explicit method is known to be numerically stable and con-
vergent when 1 / 2r ≤ . As we have taken a forward difference for the
time differential, and a central difference for the space differential
the error in the approximation can be written as () ()2 u k h∆ = +  .

Computational Physics.Ch9.3pp.indd 180Computational Physics.Ch9.3pp.indd 180 1/4/2022 10:42:06 AM1/4/2022 10:42:06 AM

	 Partial Differential Equations  •  181

FIGURE 9.2:  Explicit method stencil. Filled squares are computed points; open circles are
to be computed.

9.4.1.2  Implicit method

If we use the backward difference at time 1nt + and a second-
order central difference for the space derivative at position mx we
get the recurrence equation

	 1 1 1 1
1 1

2

2n n n n n
m m m m mu u u u u

k h

+ + + +
+ −− − +

=
.� (9.53)

This is an implicit method for solving the one-dimensional heat
equation in that to obtain the advanced time step 1 nt + we compute

1n
mu + by solving a system of linear equations. We obtain that system of

linear equations by rearranging Equation (9.53) and using the sub-
stitution 2/r k h= to give

	 () 1 1 1
1 11 2 n n n n

m m m mr u ru ru u+ + +
− ++ − − = .� (9.54)

The numerical stencil for the implicit method is shown in Fig-
ure 9.3. As we can see each equation contains one known value n

mu
and three unknown values 1

1 n
mu +
− , 1 n

mu + , and 1
1 n

mu +
+ . If there is a thought

scratching at the back of your head, then remember that we move
this stencil down one row at a time. Thus, for the grid points

3, , 2m M= … − each unknown appears in three separate equations,
hence we have sufficient information to compute the unknowns at

Computational Physics.Ch9.3pp.indd 181Computational Physics.Ch9.3pp.indd 181 1/4/2022 10:42:07 AM1/4/2022 10:42:07 AM

182  •  Computational Physics, 2/E

the advanced time step for those grid points. For instance, in Figure
9.3, we now have sufficient information to calculate grid point 1

1 n
mu +
− .

But what of grid points 2m = , and 1m M= − ? They only appear in
two separate equations, it looks as if we are missing two known val-
ues, one for each grid point. Of course, the answer lies in the bound-
ary values. If we place our implicit method stencil at 2m = , say, then
one of the “unknowns” is a boundary value, which is a known value.
The same can be said at 1m M= − . Thus, we have sufficient infor-
mation to calculate 1

2 nu + and 1
1 n

Mu +
− . We will discuss how to deal with

these boundary values in detail shortly.

FIGURE 9.3:  Implicit method stencil.

The implicit method is always numerically stable and conver-
gent but is typically more computationally intensive than the explicit
method as it requires solving a system of numerical equations at
each time step. As we have used the backward time difference and
the central space difference the (local) error in the approximation is
the same as the explicit method. Note that the global error may be
different due to the different methods of computation required to
get to the advanced time step.

Computational Physics.Ch9.3pp.indd 182Computational Physics.Ch9.3pp.indd 182 1/4/2022 10:42:07 AM1/4/2022 10:42:07 AM

	 Partial Differential Equations  •  183

9.4.1.3  Crank–Nicolson Method

Finally, if we use a central difference approximation at time
1/2nt + and a second-order central difference for the space derivative

at position mx we get the recurrence equation:

	
1 1 1 1

1 1 1 1
2 2

2 21
.

2

n n n n n n n n
m m m m m m m mu u u u u u u u

k h h

+ + + +
+ − − − − − + − +

= + 
 

�(9.55)

Remember to get the central difference formula we sum the
forward difference with the backward difference; the factor of one-
half considers that we are assessing the time halfway between grid
points.

Equation (9.55) is known as the Crank–Nicolson method. The
method was developed by two Britons namely John Crank, a math-
ematical physicist, and Phyllis Nicolson a mathematician, in the mid-
20th century. Note that this method is implicit as the approximation
to the advanced time step is dependent on itself and we can obtain

1n
mu + from solving the system of linear equations given by

() () () ()1 1 1

1 1 1 12 1 2 1 .n n n n n n
m m m m m mr u r u u r u r u u+ + +

− + − ++ − + = − + + � (9.56)

The stencil for the Crank–Nicolson method is shown in Figure
9.4. Here we use three known values and three unknown values to
generate an equation.

FIGURE 9.4:  The Crank-Nicolson stencil.

Computational Physics.Ch9.3pp.indd 183Computational Physics.Ch9.3pp.indd 183 1/4/2022 10:42:07 AM1/4/2022 10:42:07 AM

184  •  Computational Physics, 2/E

Note that this stencil is still only moved down one row at a time.
In its current position in Figure 9.4, we have enough information to
compute grid point 1

1
n
mu +
− .

The Crank–Nicolson method is always numerically stable and
convergent. However, be aware that if 1 / 2 r > this method may pro-
duce unwanted decaying oscillations in the solution. The errors for
the Crank–Nicolson method are quadratic over both the time step
k, and the space step h.

9.4.1.4  General Finite Difference Method

We can condense these three methods into one elegant formula
with a so-called weighted variable q. Using this variable, we can
rewrite the finite difference approximations above as

()
1 1 1 1

1 1 1 1
2 2

2 2
1 ,

n n n n n n n n
m m m m m m m mu u u u u u u u

k h h
q q

+ + + +
+ − + −− − + − +

= + − �(9.57)

where 0q = gives the explicit method, 1 / 2q = gives the Crank–
Nicolson method, and 1q = is the implicit method, though q could
have any value in the range []0,1 .

Rearranging Equation (9.57) into an expression for the advanced
time step we obtain

() () ()
() ()() ()

1 1 1
1 1

1 1

1 2

1 1 2 1 1

n n n
m m m

n n n
m m m

r u r u r u

r u r u r u

q q q

q q q

+ + +
+ −

+ −

− + + −

= − + − − + − .� (9.58)

Note that Equation (9.58) is for the interior nodes of the domain
grid, that is, 2, , 1m M= … − . The values of the grid nodes 1

nu and n
Mu

are given by the boundary conditions.

Although not obvious at all Equation (9.58) represents a tridi-
agonal system of linear equations, that is, it can be written in the
form of

	 

1 1nn nAu Bu+ += + Ω ,� (9.59)

where A is an ()2M − -by-()2 M − tridiagonal matrix given by

Computational Physics.Ch9.3pp.indd 184Computational Physics.Ch9.3pp.indd 184 1/4/2022 10:42:08 AM1/4/2022 10:42:08 AM

	 Partial Differential Equations  •  185

	

1 2 0 0
1 2

0 0

0 0 1 2

r r

r r r

rA
r

r r

q q
q q q

q
q

q q

+ − 
 − + − 
 −=
 − 
 − + 



 

 

   



; � (9.60)

1nu + is an 2M − sized vector of the function values at the interior
grid nodes at the advanced time step given by

	
2

1
3

2

1 1

n

M

M n

u

u u

u

u

+

−

− +

 
 
 
 
 

=  
 
 
 
 
 



,� (9.61)



n
u is an M sized vector of the function values at the current time
step, that is, the known values given by

	 
1

2

1

n

M

M n

u

u u

u

u
−

 
 
 
 
 

=  
 
 
 
 
 



,� (9.62)

B is an ()2M − -by-M tridiagonal-ish (technical term) matrix
given by

1 2 0 0 0
0 1 2

0 1 2 0
0

0 0 0 1 2

r r r

r r r

r rB
r

r r r

j j j
j j j

j j
j

j j j

− 
 − 
 −=
 
 
 − 



  

  

    



,� (9.63)

Computational Physics.Ch9.3pp.indd 185Computational Physics.Ch9.3pp.indd 185 1/4/2022 10:42:09 AM1/4/2022 10:42:09 AM

186  •  Computational Physics, 2/E

where for convenience ()1j q= − ; and Ω is a vector of size 2M − to
deal with the boundary conditions given by

	
1

1 0

0

n

M

u

r

u

q+

 
 
 
 
 

Ω =  
 
 
 
 
 



 � (9.64)

That is, there are 4M − zeros between the first and last ele-
ments, which are the values of the corresponding boundary nodes

1u and Mu .

To explain Ω, consider Equation (9.58) at grid point 2m = :

	

() () ()
() ()() ()

1 1 1
3 2 1

3 2 1

1 2

1 1 2 1 1

n n n

n n n

r u r u r u

r u r u r u

q q q

q q q

+ + +− + + −

= − + − − + − .� (9.65)

Remember that we should write these equations with the
unknown values on the left-hand side and the known values on the
right-hand side. Since the value 1

1 nu + is a boundary node it is a known
value and should be moved to the right-hand side of the equation. A
similar argument can be made for the grid point 1m M= − with the
boundary value 1n

Mu + also being moved to the right-hand side. Note
that this manipulation is particular to Dirichlet boundary conditions.
For other types of boundary conditions, different methods of deal-
ing with these boundary values must be applied. We will discuss how
to deal with a Neumann boundary condition in the next section.

If the source of these manipulations is unclear from the equa-
tions, then consider Figure 9.5(a). This shows the space-time domain
which we have discretized into a grid of points; the space axis is ver-
tical, and the time axis is horizontal. Thus, each column of points
represents the solution across the spatial dimension at each time
step we are taking. The open circles represent the unknown, inte-
rior grid points that we are attempting to calculate, that is, the left-
hand terms of our equations, whereas the filled squares represent

Computational Physics.Ch9.3pp.indd 186Computational Physics.Ch9.3pp.indd 186 1/4/2022 10:42:10 AM1/4/2022 10:42:10 AM

	 Partial Differential Equations  •  187

our known values, that is, the right-hand terms of our equations.
The first and last rows of the grid are given by the boundary condi-
tions, whereas the first column is given by the initial condition of
the function. Figure 9.5(b) shows the state of the grid at the n th
time step. Here n columns have changed from unknown values to
known values and we are ready to calculate the ()1 n + th time step.
If we apply our Crank–Nicolson stencil to the grid point 1

2
nu + , Figure

9.5(c), then we see that it contains a boundary value at the advanced
time step. Necessarily, this value must be brought to the right-hand
side of our equations; hence the value appears at the start of Ω.
Similarly, the stencil applied to grid point 1

1
n
Mu +
− also includes a

boundary value, hence the value at the end of Ω.

FIGURE 9.5:  (a) The initial state of the system; (b) The state of the system at time nt ;
(c) the general stencil applied at a boundary.

It was mentioned earlier that we would only deal with Dirich-
let conditions that are constant values, and not functions of time
(or other spatial coordinates). The reason for this becomes apparent
when we consider the addition of Ω in Equation (9.59). As 1

1 1
n nu u +=

Computational Physics.Ch9.3pp.indd 187Computational Physics.Ch9.3pp.indd 187 1/4/2022 10:42:10 AM1/4/2022 10:42:10 AM

188  •  Computational Physics, 2/E

and 1n n
M Mu u += for all n, we can incorporate Ω into matrix B such that

the first and last entries of B both simplify to r.

To solve Equation (9.46) formally would require us to compute

	 ()1
1 1n n nu A Bu−

+ += + Ω .� (9.66)

As calculating the inverse of a matrix becomes infeasible for large
values of M we must rely on other methods of solution. Fortunately,
LAPACK offers several subroutines for doing such a task. Specifi-
cally, we have a symmetrical, tridiagonal matrix and thus require the
subroutine “DPTSV” to solve our system. Be aware that this subrou-
tine performs an entire solution of the system by first factorizing the
matrix A, and using those factors to find the solution. In doing so it
overwrites A with the factorized elements.

The program file heatEqn1.f90 contains the code to perform the
numerical solution of the one-dimensional, time-dependent heat
equation for a specific set of boundary and initial conditions. As we
have used the weighting parameter q we can use this to set the finite
difference method the code uses. Figure 9.6 shows some selected
results of running the code with the ends of a 1 m length metal-
lic rod both held at 100 C° , with an initial temperature of 0 C° , and
with 0.5q = , which is the Crank–Nicolson method. Here we set h
= 0.2 and k = 0.01 making 1 / 4r = . We can see that the metallic
rod behaves (at least qualitatively) as we might expect; heat flows
into the rod from the hot ends in a smooth and symmetrical fashion,
until the entire rod reaches 100 C° after-which nothing happens that
is, it has reached a steady-state. Our numerical results suggest this
happens in around a second or less but, of course, we initially set the
diffusion constant (related to the thermal conductivity of the metal)
to one. It should not be too much of a stretch to reintroduce it back
into our program code. Figure 9.6 is somewhat of a cheat as it uses
Excels’ built-in smoothing function to guess at the values in-between
the grid points, but you surely know how it does this by now, right?
(If not, re-examine the chapter on interpolation).

The heat equation does have an analytical solution with Dirich-
let boundary conditions that can be obtained through a technique
called separations of variables. As we are treating the more general
case of non-zero, Dirichlet boundary conditions can be a little tricky.

Computational Physics.Ch9.3pp.indd 188Computational Physics.Ch9.3pp.indd 188 1/4/2022 10:42:11 AM1/4/2022 10:42:11 AM

	 Partial Differential Equations  •  189

To recap we are solving the following PDE for the distribution
of heat through a metallic rod of length L

	 t xxU kU= ,� (9.67)

FIGURE 9.6:  Numerical approximation to the transient flow of heat in a one dimensional
metal rod with Dirichlet boundary conditions.

with boundary conditions

	 () 10,U t c= ;� (9.68)

	 () 2,U L t c= � (9.69)

and with initial condition defined as

	 () ()0,0U x U x≡ .� (9.70)

The particular solution to this differential equation is given by

	 () ()

2

1

, sin
n

k t
L

E n
n

n x
U x t U x D e

L

pp  ∞ −  
 

=

 = +  
 

∑ , � (9.71)

where the coefficients are

	 () ()()0
0

2 L

n E

n x
D U x U x sin dx

L L
p = −  

 ∫ � (9.72)

Computational Physics.Ch9.3pp.indd 189Computational Physics.Ch9.3pp.indd 189 1/4/2022 10:42:12 AM1/4/2022 10:42:12 AM

190  •  Computational Physics, 2/E

and we have the steady-state or equilibrium solution

	 () 2 1
1E

c c
U x c x

L
−

= + .� (9.73)

This solution is recognized as being a Fourier series and is the
solution (give or take some notation) Fourier found to the heat
equation in the original work. We can see that this solution makes
physical sense because if t →∞ then the summation term in Equa-
tion (9.71) goes to zero and () (), EU x t U x→ . Also, if the initial con-
ditions () ()0 EU x U x= , then the coefficients are zero for all n and
we have the situation where there is no time dependence. This is of
course what our physical intuition expects; if the temperature starts
out at the steady-state solution, then it will remain at that solution
for all time; that is why it is called a steady-state solution.

We can use this analytical solution, Equation (9.71), to check the
accuracy of our numerical approximation. This is presented as an
exercise for you to modify the heatEqn1.f90 to include this analyti-
cal solution to provide a measure of the error in the approximation.
If we had no analytical solution, how might we estimate the error
in our approximation, or at least ensure a nominal significant figure
accuracy?

9.4.2  The Heat Equation with Neumann Boundaries
Consider again the metallic rod but with one end insulated,

rather than held at a constant temperature. In this case, we are solv-
ing the same system

	 t xxU kU= ,� (9.74)

but with the mixed boundary conditions of

	 ()0,U t c= ; � (9.75)

	 | 0x x LU = = � (9.76)

Again, the initial condition can be defined as

	 () ()0,0U x U x= . � (9.77)

Equation (9.76) is telling us that there is no transfer of the
physical quantity (temperature in this case) with respect to space

Computational Physics.Ch9.3pp.indd 190Computational Physics.Ch9.3pp.indd 190 1/4/2022 10:42:12 AM1/4/2022 10:42:12 AM

	 Partial Differential Equations  •  191

across the specific boundary x L= . In other words, the temperature
gradient is zero across the boundary.

As the Neumann boundary condition, Equation (9.76), is a
differential equation we need to replace it with a finite difference
approximation. Recall that to maintain an error behavior of the entire
system our treatment at the boundaries of the domain should match
that which we use on the interior of the domain. Fortunately, each of
the methods discussed (implicit, explicit, and Crank–Nicolson) have
an ()2h dependence on the space variable. Hence, any difference
formula we use with an ()2h error behavior to deal with the Neu-
mann boundary condition will also apply to our general, weighted
formula (Equation (9.57)).

One of the simplest ways of approximating Equation (9.76) with
a finite difference equation is to use an ()2h forward or backward
(depending on the location of the boundary) difference formula.
The reason why we do not use a central difference formula is that it
introduces a grid point that lies outside our computational domain,
and while there are techniques to deal with this complication, they
are beyond the scope of our discussion here.

For our Neumann boundary, we use the approximation

	 ()2 1

1
| 4 3 0

2
n n n

x x L M M MU u u u
h= − −≈ − + = , � (9.78)

for all n. This has an ()2h error behavior. Rewriting Equation
(9.78), we obtain the following expression for the boundary value
at x L=

	 1 2

4 1
3 3

n n n
M M Mu u u− −= − . � (9.79)

We now have a means of calculating the value of U at the insu-
lated boundary from the neighboring interior grid points for a par-
ticular time step. But how does this affect our tridiagonal system of
equations?

To answer that question, we substitute Equation (9.79) into
Equation (9.58) taken at the boundary x L= such that

Computational Physics.Ch9.3pp.indd 191Computational Physics.Ch9.3pp.indd 191 1/4/2022 10:42:13 AM1/4/2022 10:42:13 AM

192  •  Computational Physics, 2/E

	 () () ()1 1 1 1
1 2 1 2

4 1
1 2

3 3
n n n n
M M M Mr u u r u r uq q q+ + + +
− − − −

 − − + + − =… 
 

� (9.80)

where


 represents the right-hand side of Equation (9.58). We do
not apply the substitution on the right-hand side as we either know
the value of U at the boundary due to the initial conditions, or we
calculate it from Equation (9.79). After some rearrangement, we
find the following

	 1 1
1 2

2 2
1

3 3
n n
M Mr u r uq q+ +
− −

   + − =…   
   

.� (9.81)

Notice that we have not taken any terms over to the right-hand
side of these equations to deal with the Neumann boundary. Thus,
we make the following changes to our system of matrices and vectors.
Matrix A remains unchanged except from its final two elements that
now have the values 2, 3 2 / 3M Ma rq− − = − , and 2, 2 1 2 / 3M Ma rq− − = + .
The additional boundary vector, Ω, is modified such that its final
entry is now zero. Incorporating this change into the matrix B we
see that its final element returns to the expression ()2, 1M Mb r q− = − ;
remember that in the previous section we used the constant Dirich-
let boundary conditions to simplify the first and last entries of B both
to r. The vectors u and u need no modification.

The first thing to notice is that A is no longer symmetrical. This
means we require a different LAPACK subroutine to solve this sys-
tem of equations. The subroutine “DGTSV” solves a general tridiag-
onal system of linear equations using Gaussian elimination. As with
the previous LAPACK subroutine, the arrays representing A that
is passed to “DGTSV” are overwritten by their factors, hence they
require resetting before looping to the next time step. The second
thing to notice is that after we have solved the system at a particular
time step, we need to calculate the temperature at the Neumann
boundary using Equation (9.79).

Figure 9.7 shows some of the results of running the program
after making the necessary changes to the code found in heatEqn1.
f90. Here we maintain the values of h and k from the previous sec-
tion and the constant Dirichlet boundary is set to 100 C° .

Computational Physics.Ch9.3pp.indd 192Computational Physics.Ch9.3pp.indd 192 1/4/2022 10:42:14 AM1/4/2022 10:42:14 AM

	 Partial Differential Equations  •  193

FIGURE 9.7:  Numerical approximation to the transient flow of heat in a one-dimensional
metal rod with mixed boundary conditions.

9.4.3  The Steady-State Heat Equation
We have already established that the solution to the heat equa-

tion consists of a transient phase that evolves in time, which eventu-
ally settles on to a steady-state solution. This steady-state solution
is also referred to as the equilibrium of the system. We can write a
differential equation that expresses this steady-state as

	 ()
2 2 2

2
2 2 2, , 0xx yy zz

U U U
U x y z U U U

x y z
∂ ∂ ∂

∇ ≡ + + = + + =
∂ ∂ ∂

,� (9.82)

where we have explicitly used our notation for partial differentiation.
Here U is some physical field (temperature in this case) defined
over three spatial dimensions; notice there is no time dependence.
Equation (9.82) is called the Laplace equation and crops up often in
physics wherever a system reaches an equilibrium state.

Consider a two-dimensional metallic plate that is held at known
but different temperatures along its boundaries (Dirichlet bound-
ary conditions). We want to find the steady-state temperature of the
plate. This is like the one-dimensional metallic rod problem we dis-
cussed earlier in that we know the temperature at the boundaries of
the system. However, in this steady-state case, we are not interested

Computational Physics.Ch9.3pp.indd 193Computational Physics.Ch9.3pp.indd 193 1/4/2022 10:42:14 AM1/4/2022 10:42:14 AM

194  •  Computational Physics, 2/E

in the transient behavior of the system. As such we are not required
to know the initial state of the system to find a unique solution. In
fact, we wish to solve this problem using an iterative or relaxation
method.

To simplify the mathematics let us consider the metallic plate to
be a rectangle of dimensions a b× , with its lower-left corner situated
at the origin of our coordinate system. Thus, we can write

	 0xx yyU U+ = , � (9.83)

with the following boundary conditions proceeding clockwise from
the origin:

() 10,U y c=
;

() 2,U x b c= ;
() 3,U a y c=

;

and

	 () 4,0U x c= , � (9.84)

for x on the interval []0,a and y on the interval []0,b . For arguments
sake the ic are taken to be constants but in the general case, they
would be functions of x and y.

To solve this problem numerically we derive the finite differ-
ence approximation to the second-ordered PDE of Equation (9.83)
by defining a two-dimensional grid on our rectangular plate. Hence,
we write

, 0,1, ,ix ih i N= = … ,

	 , 0,1, ,jy jk j M= = … , � (9.85)

where /h a N= and /k b M= . The finite difference approximation
can be written as

	 () ()1, , 1, , 1 , , 12 2

1 1
2 2 0i j i j i j i j i j i ju u u u u u

h k+ − + −− + + − + = . � (9.86)

Remember that we are going to solve this problem indirectly
using a relaxation method, so we need to solve Equation (9.86) for

,i ju . In doing so we find that

Computational Physics.Ch9.3pp.indd 194Computational Physics.Ch9.3pp.indd 194 1/4/2022 10:42:15 AM1/4/2022 10:42:15 AM

	 Partial Differential Equations  •  195

	
2 2

1, 1, , 1 , 1
, 2 2 2 22 2

i j i j i j i j
i j

u u u uh k
u

h k h k
+ − + −+ + 

= + +  
. � (9.87)

We can simplify Equation (9.87) further by imposing that h k=
and in this case

	 (), 1, 1, , 1 , 1

1
4i j i j i j i j i ju u u u u+ − + −= + + + . � (9.88)

Note that this has a rather simple geometric interpretation. It
states that the solution at a particular grid node is the arithmetic
mean of its (four) nearest neighbors.

It is left as an exercise for the reader to implement code to solve
the steady-state heat equation in two dimensions. Use the file gauss-
seidel.f90 as a guide; remember that you will need to express the
array u in two dimensions, looping over both i and j, as well as initial-
izing the values on the boundary and the initial guess for the interior
grid nodes. As a comment on strategy, start out simple that is, use
a small grid and have boundary conditions for which you can guess
the solution, then add complexity once you have some working code.
How might you visualize the data?

One such complication we might add is the inclusion of a Neu-
mann boundary condition along with one of the edges of our rectan-
gular plate. For arguments let us replace the Dirichlet condition at
the left-hand edge with the Neumann condition that

	 U x y
u u

hx j x j
j j, | , ,� � � �
�

�
�

0
1 1

2
� , � (9.89)

where we have introduced α j as the partial derivative along the
boundary ()0,y for y on the interval []0,b . Remember that the
finite difference formula here is the first-ordered central difference
approximation and thus has ()2h accuracy that matches the accu-
racy of the method used for the interior grid nodes. Using Equation
(9.88), we can write the finite difference approximation for values
along the left-hand edge (0 1j M< < −) as

	 ()0, 1, 1, 0, 1 0, 1

1
4j j j j ju u u u u− + −= + + + .� (9.90)

Computational Physics.Ch9.3pp.indd 195Computational Physics.Ch9.3pp.indd 195 1/4/2022 10:42:23 AM1/4/2022 10:42:23 AM

196  •  Computational Physics, 2/E

As we can see this equation involves a term that lies outside our
physical grid. However, we can use Equation (9.89) to substitute in
for 1, ju− , which gives

	 ()0, 1, 0, 1 0, 1

1
2 2

4j j j j ju u h u ua + −= − + + . � (9.91)

In general, ja will be a function of x and y but is typically mod-
eled by a constant value. The physics of Equation (9.89) is that heat
will flow if there is a temperature gradient across a boundary, and
that it will flow from hot to cold. For instance, if a was negative then
heat flows into the plate from the environment, if a is positive that
situation is reversed. Note that this direction of heat flow depends
on the location of the boundary. For instance, if we consider the
right-hand edge of the plate then a negative temperature gradi-
ent (with respect to the x direction) implies heat flows out of the
plate into the environment, whereas a positive temperature gradient
implies the opposite.

9.4.4  The Wave Equation
The general wave equation in one spatial dimension is given by

	 () ()2, ,tt xxU x t c U x t= ,� (9.92)

where c is the speed of the wave, and U represents some physical
field, for example, the displacement of the wave in mechanical oscil-
lations. As with the heat equations to solve this equation numeri-
cally, we define a discrete grid of points over both space and time,
and then derive the finite difference approximation. Thus

	 () ()
2

1 1
1 12 2

1
2 2n n n n n n

m m m m m m

c
u u u u u u

k h
+ −

+ −− + = − + ,� (9.93)

where we have imposed the discrete, uniform grid of points

, 0,1, ,mx mh m M= = … ;

	 , 0,1, ,nt nk n N= = … , � (9.94)

with 0() /Mh x x M= − and 0() /Nk t t N= − ; we have yet to define the
space and time boundaries of the system. For convenience we usu-
ally take 0 0x = and 0 0t = .

Computational Physics.Ch9.3pp.indd 196Computational Physics.Ch9.3pp.indd 196 1/4/2022 10:42:24 AM1/4/2022 10:42:24 AM

	 Partial Differential Equations  •  197

As we are solving for a time-dependent problem then we need to
find an equation for the advanced time step in terms of values from
previous time steps. Rearranging Equation (9.93) for the advanced
time step we obtain

	 () ()1 1
1 1 2 1n n n n n

m m m m mu u u u ur r+ −
+ −= + + − − , � (9.95)

where we have introduced

	
2kc

h
r  =  

 
. � (9.96)

Interpreting Equation (9.95) we see that we can compute u for
all mx so long as we know u for all mx at the two previous time steps.
Note that this is an initial value problem in that to compute a solu-
tion we need to know the initial value of u for all x. But Equation
(9.95) is telling us we need u at two previous time steps to advance
the solution; we appear to be missing information. This dilemma is
resolved when we realize that we have both the initial function u and
can determine the first-ordered time derivative of that initial func-
tion using a finite difference approximation. Explicitly

	 ()
1 1

0, |
2

m m
t m t m

u u
U x t

k
t

−

=

−
= ≈ ,� (9.97)

where we have introduced mt for the partial derivative with respect
to time for all mx at the initial time 0.t = In order to calculate the first
time step from the initial condition we use Equation (9.97) in Equa-
tion (9.95) to obtain the following expression

	 () ()1 0 0 0
1 1 1

2m m m m mu u u u k
r r t+ −= + + − + . � (9.98)

Note that we used a finite difference approximation of t to
derive the formula for the initial time step. However, t might be
some known function of x, for instance, if the initial function (),0u x
is easily differentiable, then we need not compute the finite differ-
ence approximation and merely compute ()m mxt t= for each spatial
grid point.

The astute reader will have already noticed that these conditions
are essentially Cauchy boundary conditions; we can think of the ini-
tial time as being a boundary on the time dimension. You also may

Computational Physics.Ch9.3pp.indd 197Computational Physics.Ch9.3pp.indd 197 1/4/2022 10:42:25 AM1/4/2022 10:42:25 AM

198  •  Computational Physics, 2/E

have noticed that we have not yet imposed boundaries on the spatial
coordinate. In fact, we are not required to impose such conditions,
however, this leads to rather uninteresting and unphysical systems.
Imagine, if you will, an infinitely long, stretched spring. We send a
pulse wave down that spring by displacing it in some way; the ten-
sion in the spring provides the force to drive the pulse. Assuming
no attenuation that wave continues to travel along the spring in the
same direction for eternity. For normal, earthly, finite springs we
must fix at least one end (if not both) to stretch it and provide the
tension required to carry a wave. This imposes the boundary condi-
tions on our spatial coordinate.

It may or may not be of some surprise to you that it is in the
modeling of those spatial boundary conditions rather than the wave
equation itself that we find the most interesting physics. What are
the spatial boundary conditions for that system? What if we were
to fix both ends or leave both ends free to oscillate? Would the out-
come be as satisfying? For more serious musicians, those who play
instruments that require a little more skill than mere twanging, it is
more the interaction of the vibrating string with its support struc-
tures that is important for producing the instrument’s sound than is
the vibrating string itself. Have you ever wondered why you don’t
see any square drums, or why brass and other wind instruments have
a flared end?

Please write a program to implement the time-dependent wave
equation in one dimension, initially with fixed spatial boundaries.
Here we do not need any relaxation method or tridiagonal matrix
solver as Equation (9.95) is explicit; we simply use that expression to
advance our solution. The biggest issue here is in how one is going
to visualize the data. You could save all the data to one large, two-
dimensional array, where the columns represent the time steps and
the rows represent the spatial grid points, and then write that array
to a text file, say, for inspection with a graphics program, such as
gnuplot or Excel for example. Another way would be to have three,
one-dimensional arrays, one to hold all the mu at time 1nt − , a sec-
ond to hold all the mu at time nt , and the third to hold all mu at
the advance time step, 1nt + . The arrays are shuffled accordingly.
You could then save a snapshot of the system every “x” number of

Computational Physics.Ch9.3pp.indd 198Computational Physics.Ch9.3pp.indd 198 1/4/2022 10:42:25 AM1/4/2022 10:42:25 AM

	 Partial Differential Equations  •  199

seconds for later inspection with a graphics package. For the more
ambitious out there one may want to find a way of animating results
instantaneously on screen.

9.5  POINTERS TO THE FINITE ELEMENT METHOD

It is at this point in the discussion of PDE that most textbooks
will mention the finite element method. To describe succinctly the
method in easy-to-understand, plain English is a difficult thing to do
especially at an introductory level to computational physics. Indeed,
the previous sections on finite difference methods were difficult
enough. Take note that the finite element method is extremely use-
ful and can produce some highly accurate, and even beautiful solu-
tions to some particularly nasty, and complex problems.

First, let us expound on the difference between the finite ele-
ment method (FEM) and the finite difference method (FDM). In
FDM, we take our computational domain and partition it into dis-
crete points. The derivatives at those points are given by difference
formulas, which we then use to approximate the governing differen-
tial equation. Along with the boundary and/or initial conditions, the
resulting system of linear equations is solved. In this way, we obtain
an exact solution to an approximate problem. The FEM takes an
alternative approach in that it uses a trial function, defined by some
parameter, to estimate the solution, and the resulting equations are
solved in some best sense. In other words, it finds an approximate
solution to the exact problem.

Next comes the precise formalism of the FEM. It involves talk-
ing about piecewise linear trial functions, basis functions, weighted
residuals, and the Galerkin method.

Computational Differential Equations (1996) by K. Eriksson, D.
Estep, P. Hansbo, and C. Johnson contains several chapters on the
practical use of the FEM, as is accessible to the undergraduate stu-
dent with some background knowledge (i.e., after having read this
book) on numerical techniques.

Computational Physics.Ch9.3pp.indd 199Computational Physics.Ch9.3pp.indd 199 1/4/2022 10:42:25 AM1/4/2022 10:42:25 AM

200  •  Computational Physics, 2/E

An Introduction to the Finite Element Method (3rd ed.) by
J. N. Reddy is more geared toward engineering undergraduates but
does provide an excellent reference to the topic.

The Finite Element Method: A Practical Course (2003) by
S. S. Quek and G. R. Liu provides an in-depth look at FEM and takes
the reader through the basics of the method, providing examples and
comprehensive discussions of applications and implementations.

The Finite Element Method: Volume 1: The Basis (5th ed.) by
O. C. Zienkiewicz and R. C. Taylor provides a comprehensive and
up-to-date overview of the topic and it accessible to undergraduate
students. Volumes 2 and 3 are more complex but provide excellent
grounding for anybody studying higher-level FEM.

EXERCISES

9.1.	 How might you go about setting up an actual experiment
in the lab to test the accuracy of our numerical method
for the heat distribution in a metallic rod?

9.2.	 The temperature of one end of a metallic rod is held
at 0 C° the other is held at 100 C° . Using a finite differ-
ence method determine how the temperature of the rod
evolves in time if the initial temperature of the rod was
20 C° throughout. Ensure 4 significant figures of accu-
racy. (Hint: use the analytical, Fourier series result, and/
or Richardson extrapolation.)

9.3.	 Consider the differential equation

3 5 7y y y x′ ′+ − =′

subject to the boundary conditions

() ()0 20, 1 100y y= − =

Find a numerical solution to this equation using a direct
finite difference method. Ensure at least 4 significant fig-
ures of accuracy.

Computational Physics.Ch9.3pp.indd 200Computational Physics.Ch9.3pp.indd 200 1/4/2022 10:42:25 AM1/4/2022 10:42:25 AM

	 Partial Differential Equations  •  201

9.4.	 Solve the same differential equation in the previous
question but using a relaxation method. Ensure the same
level of accuracy. Comment on any differences between
the two methods.

9.5.	 The temperature of a unit square metal plate is subject to
the following conditions

() () () ()
210 0.50, , 0 1, ,0 ,1 100yU y e y U x U x x− −= < < = =

	 and the right-hand side boundary is insulated. Find the
steady-state temperature of the plate.

9.6.	 A string on a guitar is plucked such that the initial func-
tion of the string can be described as

() ()280 0.5

0, 0

,0 , 0 1
0, 1

x ct

x

u x e x

x

− − −

=
= < <
 =

	 In other words, the string is of unit length and held by
rigid supports at its ends. The tension in the string is
12.8N and has a mass of 2g. Here the speed of the wave
is 2 /c T m= where T is the tension and m is the mass per
unit length. Evaluate what happens to the wave as time
progresses. Did you observe phase reversal at the rigid
supports?

9.7.	 Repeat the previous exercise but with one of the sup-
ports free. That is either

0| 0 x xU = = or 1 | 0x xU = = .

	 (Hint: Use a finite difference approximation to find an
expression for 0

nu or n
Mu .)

9.8.	 A more realistic model is to assume the supports have
inertial mass, M. If the (vertical) force on the supports is
given by

0,1|x xF TU ==

Computational Physics.Ch9.3pp.indd 201Computational Physics.Ch9.3pp.indd 201 1/4/2022 10:42:26 AM1/4/2022 10:42:26 AM

202  •  Computational Physics, 2/E

	 find an expression for the boundary conditions and
modify your program appropriately to study their behav-
ior in terms of their inertial mass.

9.9.	 Assuming the supports behave like damped, simple har-
monic oscillators try to establish a more realistic model of
the guitar string.

Computational Physics.Ch9.3pp.indd 202Computational Physics.Ch9.3pp.indd 202 1/4/2022 10:42:26 AM1/4/2022 10:42:26 AM

CHAPTER 10
ADVANCED
NUMERICAL
QUADRATURE

The advanced nature that we boldly state in the chapter title is
more to with the derivation of the methods rather than the application
of the methods themselves. As with many computational algorithms
we do not need an in-depth understanding of why they work, just the
knowledge that they do work and how to apply them. However, if we
are going to use them, we should make a little concerted effort to try
to understand how they work to use them effectively.

This chapter covers the derivation and use of the Gauss–
Legendre and Gauss–Laguerre quadrature. These two schemes will
generate the most accurate numerical solutions for the least amount
of computational effort and should be used wherever possible in the
numerical solution of a physical problem that involves integrals.

10.1  GENERAL QUADRATURE

In general, any integration can be approximated by a numerical
quadrature written in the form of

	 () ()
1

b N

m m
ma

f x dx w f x
=

≈ ∑∫ , � (10.1)

Computational Physics.Ch10.2pp.indd 203Computational Physics.Ch10.2pp.indd 203 12/30/2021 10:46:39 AM12/30/2021 10:46:39 AM

204  •  Computational Physics, 2/E

where mx are the evaluation points, mw are weights given to the mth
point, and there are N evaluation points in total. For convenience,
the points are set with uniform spacing, typically denoted by h, and
we can derive the numerical quadrature methods as discussed in
Chapter 5 (trapezoidal rule, Simpson’s rule, etc.). To do this, we
begin by deriving the simplest formula from Equation (10.1) which
is to only consider the limits of the integration a and b thus

	 () ()1 1 2 2I w f x w f x≈ + � (10.2)

where 1x a= and 2x b= . In the limit of the integration interval ()b a−
going to zero, we require that Equation (10.2) be exact for any func-
tion. This sounds like a difficult task, however, if we consider any
function that has a Taylor series expansion, we note that the first two
terms of that expansion are multiples of 1 and x (note that sometimes
the multiple is zero c.f. sine). Hence, we now attempt to find the
weights, 1w and 2w , that will give

	
2

1

2 1 1 21
x

x

dx x x w w= − = +∫ � (10.3)

and

	
2

1

2 2
2 1

1 1 2 2 .
2

x

x

x x
xdx w x w x

−
= = +∫ � (10.4)

Note the equivalencies; these equations are exact. We have two
equations and two unknowns, namely the weights. Solving for the
weights we find

	 2 1
1 2 2

x x
w w

−
= = . � (10.5)

Typically, we would write 2 1h x x= − and our approximation for
the integral of any function becomes

	 () ()1 22

b

a

h
f x dx f f≈ +∫ , � (10.6)

which is the (primitive) trapezoidal rule. Note that it is from this
derivation that we can explicitly state the error behavior of a numeri-
cal quadrature using what is called the Lagrange remainder (this

Computational Physics.Ch10.2pp.indd 204Computational Physics.Ch10.2pp.indd 204 12/30/2021 10:46:40 AM12/30/2021 10:46:40 AM

	 Partial Differential Equations  •  205

is derived using the mean value theorem applied to the remainder
term in the Taylor series expansion)

	 () () ()
3

1 22 12

b

a

h h
f x dx f f f c= + −∫ , � (10.7)

where c lies somewhere in the integration interval.

Of course, we can add more evaluation points. If we now take
three points 1x a= , ()2 / 2x b a= + , and 3x b= such that () / 2h b a= −
we can write the following equivalencies,

	 3 1 1 2 3x x w w w− = + + ,� (10.8)

	
2 2
3 1

1 1 2 2 3 32
x x

w x w x w x
−

= + + � (10.9)

and

	
3 3

2 2 23 1
1 1 2 2 3 33

x x
w x w x w x

−
= + + , � (10.10)

where we have used the first three terms of the Taylor series expan-
sion. Here we have three equations and three unknowns, and solving
for the weights gives us Simpson’s rule

	 () () [] ()
3

1

5
4

1 2 34
3 90

x

x

h h
f x dx f f f f c= + + −∫ . � (10.11)

Adding another evaluation point leads to Simpson’s three-
eighths rule, five points lead to Boole’s rule, and so on. As a reminder
all these formulas require that the ()f x be expressible as a poly-
nomial, that is, they have a Taylor series expansion. Indeed, usu-
ally, these integration rules are derived by considering a polynomial
approximation to the function and integrating that approximation
exactly. For instance, the trapezoidal rule is a linear approximation,
Simpson’s rule is a quadratic approximation, and so forth.

In the treatment above we constrained the evaluation points
to be equally spaced. However, this is not a requirement, and we
can take the evaluation points to be anywhere within the integra-
tion region. In fact, by removing this constraint we can derive more
accurate numerical quadrature methods, but they are not so easy to
derive as we increase the number of evaluation points.

Computational Physics.Ch10.2pp.indd 205Computational Physics.Ch10.2pp.indd 205 12/30/2021 10:46:40 AM12/30/2021 10:46:40 AM

206  •  Computational Physics, 2/E

To demonstrate, if we consider the simplest integration formula
in which a single evaluation point can be located anywhere within
the integration interval then we now have two unknowns, namely the
weight and the evaluation point. To solve for these two unknowns,
we need two equations, and as before we obtain these equations
by requiring that the quadrature be exact for the first two lowest
ordered polynomials () 1f x = , and ()f x x= . This gives the neces-
sary equations thus

	 () 1b a w− = � (10.12)

and

	
()2 2

1 12

b a
w x

−
= .� (10.13)

Solving for both the evaluation point and the weight we find that
()1 / 2x b a= + and 1w b a= − . This is the mid-ordinate rule and is

exact for linear functions. Note that the trapezoidal rule is also exact
for linear functions, but we must take an extra function evaluation.
In fact, the mid-ordinate rule can be considered as the first-ordered
Gauss–Legendre quadrature, though normally taken on the normal-
ized integration interval []1,1− ; more on this shortly.

If we now add a second evaluation point, we now must find four
unknowns which requires four equations. Again, we require that the
quadrature be exact for the first four lowest polynomials such that

	 () 1 2b a w w− = + , � (10.14)

	 ()2 2
1 1 2 2

1
2

b a w x w x− = + , � (10.15)

	 ()3 3 2 2
1 1 2 2

1
3

b a w x w x− = + � (10.16)

and

	 ()4 4 3 3
1 1 2 2

1
4

b a w x w x− = + . � (10.17)

To solve these equations for the weights and abscissas we must
normalize the integration region such that the interval [],a b is
mapped to the interval []1,1− . After the equations have been rewrit-
ten in terms of this mapping it is a (relatively) straightforward task

Computational Physics.Ch10.2pp.indd 206Computational Physics.Ch10.2pp.indd 206 12/30/2021 10:46:41 AM12/30/2021 10:46:41 AM

	 Partial Differential Equations  •  207

of finding the weights and abscissas. After performing the necessary
steps, we find that the weights are equivalent and equal to one and,
the evaluation points, or abscissas to use their technical name, are

()1 1 / 3x = √ and ()2 1 / 3x = −√ . Note that the quadrature

	 ()
1

1

1 1
3 3

f x dx f f
−

   ≈ + −   
   ∫ � (10.18)

is now exact if ()f x is a polynomial of order three or less. Remember
the trapezium rule is only exact for linear functions (order one or
zero). This is the second-order Gauss–Legendre quadrature.

Increasing the number of abscissas to three we find that we have
six unknowns and thus require six equations. If one has spotted the
pattern then we require the quadrature to be exact for the first six
lowest ordered polynomials, that is, up to () 5f x x= . Extending this
to N points, we have 2N unknowns and therefore require 2N equa-
tions. This means an N point Gauss–Legendre quadrature is exact
for polynomials of order 2 1N − and less.

The job then is to find the weights and corresponding abscissas
for each of those N points. Rather than trying to continue to solve
sets of simultaneous equations, which would get somewhat difficult
(and tedious), let us turn to another method, orthogonal polynomi-
als. It is from these that Legendre gets his name appended to the
method.

10.2  ORTHOGONAL POLYNOMIALS

We may have heard the term orthogonal banded about the place
when discussing vectors or considering Cartesian coordinates. For
instance, to determine whether two vectors are orthogonal we take
what is known as their scalar product. This product is also known as
the dot product or the inner product. If the resulting outcome of the
inner product is zero, we know that the two vectors are orthogonal.
Essentially, orthogonal is another word for perpendicular or at right-
angles to but has a deeper meaning when applied to functions; it
means they are fundamentally different.

Computational Physics.Ch10.2pp.indd 207Computational Physics.Ch10.2pp.indd 207 12/30/2021 10:46:42 AM12/30/2021 10:46:42 AM

208  •  Computational Physics, 2/E

Orthogonal polynomials are a set of polynomials mj defined over
a finite range [],a b such that they obey an orthogonality relation
given by

	 () () ()
b

m n mn n
a

w x x x dx cf f d=∫ � (10.19)

where ()w x is a weighting  function, mnd is called the Kronecker
delta that is equal to 1 when m n= and zero otherwise, and nc is
some constant coefficient.

It would be a hopeless task to try to identify a set of orthogonal
polynomials via substitution into Equation (10.19), however, that is
not the purpose of the relation. We would do the opposite and use
the relation to construct a set of orthogonal polynomials. To illus-
trate this process, let us make life easier for ourselves and reduce the
complexity of the relationship somewhat. Let us assume that we are
on the normalized integration interval such that 1a = − and 1b = , and
let us also assume our weighting function is constant and equal to
one. By choosing the integration limits as such we are not losing any
generality as the interval can always be mapped back onto any finite
region through a change of variables. With these simplifications in
place, we can construct the first polynomial, 0j , by using

	 () ()
1

0 0 0
1

x x dx cj j
−

=∫ .� (10.20)

It is often convenient to normalize the polynomials such that all
1nc = , in which case the polynomials are referred to as orthonormal

(a contraction of orthogonal and normalized). There are many poly-
nomials that satisfy Equation (10.20) so let us choose the simplest
(non-trivial) case that is 0 0kj = , where 0k is constant. Performing the
integration, we find that 2

02 1k = , hence

	 0 1 / 2j = √ . � (10.21)

We find the next polynomial 1j in the set by requiring that

	 () ()
1

0 1
1

0x x dxj j
−

=∫ .� (10.22)

It is tempting here to just set 1j equal to x, which would sat-
isfy Equation (10.21). However, we should be more general in our

Computational Physics.Ch10.2pp.indd 208Computational Physics.Ch10.2pp.indd 208 12/30/2021 10:46:42 AM12/30/2021 10:46:42 AM

	 Partial Differential Equations  •  209

approach. Our strategy is to assume that the Nth-ordered polynomial
of the orthogonal set is given by the linear combination

	 � � � � �N N N NN N Nx k u x x x� � � � � � � � ��� � ��� ��� �1 1 0 0 ,� (10.23)

where m
mu x= , and we can use the mk to normalize mj , and the mna

are chosen to force orthogonality. We have already found the first
polynomial of the set, 0 1 / 2j = √ , hence we write

	 �
�

1 1
10

2
x k x� � � ��

�
�

�
�
� � (10.24)

and we can force the integral of Equation (10.21) to be zero by
choosing an appropriate α10. Substituting Equation (10.24) into
(10.22), we find that α10 is zero. The normalization constant, 1k , is
found by performing

	 () ()
1

2
1 1 1

1

2
1

3
x x dx kj j

−

= =∫ , � (10.25)

such that the next orthonormal polynomial in the set is

	 ()1

3
2

x xj = .� (10.26)

The next polynomial in the set is then found by the linear
combination

	 � � � � �2 2
2

21 1 20 0x k x x x� � � � � � � � �� �. � (10.27)

Now, we require that 2j is orthogonal to both 1j and 0j such that

	 () ()
1

0 2
1

0x x dxj j
−

=∫ � (10.28)

and

	 () ()
1

1 2
1

0x x dxj j
−

=∫ .� (10.29)

After performing the necessary calculations, we find that �21 0�
and �20 2 3� � / . Again, we normalize the polynomial by finding 2k
using

Computational Physics.Ch10.2pp.indd 209Computational Physics.Ch10.2pp.indd 209 12/30/2021 10:47:03 AM12/30/2021 10:47:03 AM

210  •  Computational Physics, 2/E

	 () ()
1

2 2
1

1x x dxj j
−

=∫ .� (10.30)

After some manipulation we find that

	
2

2

5 3 1
2 2

xj −
= .� (10.31)

We can continue in this fashion to find any order of polynomial
that fits in this orthonormal set. It is of consequence that Equa-
tions (10.21), (10.26), and (10.31) are the first three (normalized)
Legendre polynomials.

The Legendre polynomials are the orthogonal set specific to the
weighting function equal to one and for the integration range [−1,1].
For other weighting functions and integration limits, we would
necessarily construct a different set of orthogonal polynomials. For
instance, with () xw x e−= on the integration range []0,∞ we would
arrive at the Laguerre polynomials.

The general process of finding a set of orthogonal (orthonormal)
polynomials in this way is due to Jorgen Pedersen Gram, a Danish
Mathematician, and Erhard Schmidt, a German Mathematician who
jointly developed the eponymous Gram–Schmidt process in the late
19th century.

10.3  GAUSS–LEGENDRE QUADRATURE

To apply our newfound knowledge of orthogonal polynomials to
the Gauss quadrature we reformulate our integration such that

	 () () ()
1

b N

m m
ma

f x w x w f x
=

= ∑∫ � (10.32)

where the weighting function ()w x is what is known as positive defi-
nite, that, it is never negative, and is the same function as used with
the orthogonal polynomials. We have 2N unknowns in this equa-
tion due to the weights and abscissas. Thus, we require that integra-
tion of the polynomials of order up to and including 2 1N − are to

Computational Physics.Ch10.2pp.indd 210Computational Physics.Ch10.2pp.indd 210 12/30/2021 10:47:04 AM12/30/2021 10:47:04 AM

	 Partial Differential Equations  •  211

be given exactly by the quadrature, and we use this requirement to
define the weights and abscissas for the quadrature.

To do this, we let ()f x be some arbitrary polynomial of order
2 1N − , and we define Nj as an orthogonal polynomial of order N
that is particular to the weighting function ()w x and the region of
the integration [],a b expressed in Equation (10.32). If we now divide
()f x by Nj we obtain a quotient term, q, and a remainder term, r,

both of which will be polynomials of order 1N − . Remember this is
polynomial long division, something you should have covered in an
A-level (or equivalent) mathematics course.

The integral of Equation (10.32) can now be expressed as

() () () () () () ()1 1

b b b

N N N
a a a

f x w x q x x w x dx r x w x dxj− −= +∫ ∫ ∫ . �(10.33)

For the remainder of this argument, we can ignore the
remainder term as it is no longer required in our derivation of the
weights and abscissas for the quadrature. The quotient polynomial
can be expanded as a linear combination of a set of polynomials
ranging in order from zero to 1N − . Fortunately, we already have
a (complete) set of polynomials that we can use for this task; { }mj ,
the orthogonal set of polynomials. The curly braces indicate a set
and the mj are members of the set. Explicitly, we write

	 () ()
1

1
0

N

N m m
m

q x d xj
−

−
=

= ∑ , � (10.34)

where the md are constants. With this expansion, we can now express
the integral of the quotient term as

	
() () () () () ()

1

1
0

b bN

N N m m N
ma a

q x x w x dx d x x w x dxf f f
−

−
=

= ∑∫ ∫
	

1

0

0
N

m mN N
m

d cd
−

=

= =∑ .� (10.35)

The zero emerges as the summation only goes up to 1N − and
for the Kronecker delta to be non-zero, that is, one, m must equal N.

At the start of our argument, we required that polynomials
of order 2 1N − are given exactly by the quadrature. The product

() ()1N Nq x xj− is a polynomial of order 2 1N − therefore we can write

Computational Physics.Ch10.2pp.indd 211Computational Physics.Ch10.2pp.indd 211 12/30/2021 10:47:05 AM12/30/2021 10:47:05 AM

212  •  Computational Physics, 2/E

	 () () () () ()1 1
1

0
b N

N N m N m N m
ma

q x x w x dx w q x xj j− −
=

= =∑∫ . �(10.36)

As we have kept the argument general 1Nq − is an arbitrary poly-
nomial and as such is not necessarily zero at the abscissas. The only
way to ensure the sum is zero is to require that all the ()N mxj are
zero, ignoring the trivial case where all the weights are zero. In other
words, we find the roots of the polynomial ()N xj and select them as
our abscissas. As an N order polynomial will have N roots (ignoring
the case where the roots are complex) we have found all the abscis-
sas for our N point Gauss quadrature. Now for the weights.

As the quadrature is exact for polynomials of order 2 1N − it
must also be exact for polynomials of lesser order. Here we have
the freedom to choose any polynomial that has an order less than
2 1N − however, we should choose one that simplifies the mathe-
matics. Fortunately, others that have come before us have identi-
fied the polynomial we need. Lagrange’s interpolating polynomial,
or more specifically, the multiplication factor (Equation (3.14)) has
the properties we desire. Rewriting it here in terms of our current
parameters

	 ()
()
()

1
,

1

N

ll i
i N N

i ll i

x x
x

x x
l = ≠

= ≠

−
=

−
∏
∏

� (10.37)

where the ix and lx are the abscissas. This polynomial is of order
1N − and has the property that

	 (),

0,
1, .i N m

m i
x

m i
l

≠
=  =

� (10.38)

We are therefore able to write that

	 () () (), ,
1

b N

i N m i N m i
ma

x w x dx w x wl l
=

= =∑∫ .� (10.39)

In other words, we can find the weights of the corresponding
abscissas by performing the analytical integration on the left-hand
side of Equation (10.39).

Computational Physics.Ch10.2pp.indd 212Computational Physics.Ch10.2pp.indd 212 12/30/2021 10:47:05 AM12/30/2021 10:47:05 AM

	 Partial Differential Equations  •  213

Currently, this treatment has been general in that we have not
defined our integration limits or the weighting function. Let us do
this now. We know from our discussion on orthogonal polynomials
that by setting our integration region to []1,1− and choosing () 1w x = ,
we obtain the Legendre polynomials as our orthogonal set. Hence
the abscissas for the Gauss–Legendre quadrature are the roots of
the Legendre polynomials. Once we have found those roots, we use
Equation (10.39) with the appropriate parameters to compute the
weights.

To illustrate, consider the Gauss–Legendre quadrature with two
points. We use the (normalized) Legendre polynomial

	
2

2

5 3 1
2 2

xj −
= , � (10.40)

which has roots

	
1
3mx = ± . � (10.41)

Notice that we would obtain the same roots using the non-
normalized polynomial.

Performing the integration of Equation (10.39) with the appro-
priate parameters explicitly gives

11 1 2
2 2

1 1,2 2
1 2 1 2 1 21 1 1

21
1

2
x x xx

w dx dx x x
x x x x x x

l
− − −

 − −
= = = − = = − − − 
∫ ∫

and
11 1 2

1 1
2 2,2 1

2 1 2 1 2 11 1 1

21
1

2
x x xx

w dx dx x x
x x x x x x

l
− − −

 − −
= = = − = = − − − 
∫ ∫ .

This is the same result we got before by solving the set of (non-
linear) simultaneous equations, Equations (10.14)–(10.17). Although
getting here was tough and weights for 2N = using orthogonal poly-
nomials was easier than solving a set of non-linear simultaneous
equations. Even if you do not we now have a general method to
obtain the weights and abscissas for any number points N, which
was worth it.

Computational Physics.Ch10.2pp.indd 213Computational Physics.Ch10.2pp.indd 213 12/30/2021 10:47:06 AM12/30/2021 10:47:06 AM

214  •  Computational Physics, 2/E

In fact, you don’t have to do this work as the quadrature is so
frequently used that the weights and corresponding abscissas have
been published and tabulated, several times over, and to varying
degrees of precision. Just type “Gauss–Legendre weights and abscis-
sas” into your favorite search engine and you’ll find them.

10.4  PROGRAMMING GAUSS–LEGENDRE

There are two ways forward to programming the Gauss–
Legendre quadrature. We can either enter all the weights and abscis-
sas into a “look-up table” expression in a header file and include that
header whenever we write a program that involves the quadrature.
Or we can write a function that evaluates the weights and abscissas
for us every time we wish to perform the quadrature. Both methods
have their advantages. Storing the values is a good idea for speed as
the values need only be read from memory to be used, though they
would have to be entered with care; a typo in a list of numbers can
be very tedious to track down. In addition to this, you are limited to
the number of weights and abscissas you can be bothered to enter as
well as their precision. Whereas the function method gives you the
flexibility to decide to use, say, a 20-point Gauss–Legendre quadra-
ture if you so wished, and to whatever precision can be achieved.
However, this means these values must be computed every time
you perform an integration which may add valuable time on to your
overall computation.

The code library that accompanies this book has a header file
called GuassKnotsWeights.h that contains look-up tables for the
knots and weights for various n point Gauss–Legendre and Gauss–
Laguerre quadrature. However, we also provide a means to calculate
these values so that an N of any value can be used. The source file
Quadrature.cpp contains implementations of the classes Legendre
and Laguerre both of which can compute the weights and knots
(synonym for abscissas) in their constructors if they are not provided
for in the look-up tables. In this way, if you are concerned with per-
formance, after some manipulation you could store the weights and

Computational Physics.Ch10.2pp.indd 214Computational Physics.Ch10.2pp.indd 214 12/30/2021 10:47:06 AM12/30/2021 10:47:06 AM

	 Partial Differential Equations  •  215

abscissas computed for a particular value of n to a plain text file, say,
and then read those values from the file when required.

Legendre polynomials are defined by the following recursive
rule

	 0 1j = ,� (10.42)

	 1 xj = ,� (10.43)

	 () () () () ()1 2

1
2 1 1n n nx n x x n x

n
j j j− −= − − −  .� (10.44)

The roots of nj are not generally analytically soluble so we have
to apply a root-finding algorithm. Our Newton–Raphson algorithm
will perform the job nicely. We can use Newton–Raphson rather
than the secant method as we can determine the analytical first-
ordered derivative of the nj from Equation (10.44). Explicitly the
recursion relation for the derivatives are

	 () () ()()12 1n n n

n
x x x x

x
j j j −′ = −

− . � (10.45)

To speed up our root searches, we use the fact that the first guess
0x for the i th root of a n-order polynomial nj can be given by

	 0

1 / 4
cos

1 / 2
i

x
n

p − =  + 
. � (10.46)

As Equation (10.46) gives us a relatively decent estimate of the
root we do not need the robustness of a bisection method in our
root search. After we get the abscissas mx via the root search to some
precision, we compute the appropriate weights by

	
() () 22

2

1
m

m n m

w
x xj

=
′−   

. � (10.47)

Once the weights and abscissas are computed for a N point
quadrature, we can approximate an integral over any interval [],a b
by

	 ()
12 2 2

b N

m m
ma

b a b a a b
f x dx w f x

=

− − + ≈ + 
 

∑∫ . � (10.48)

Computational Physics.Ch10.2pp.indd 215Computational Physics.Ch10.2pp.indd 215 12/30/2021 10:47:06 AM12/30/2021 10:47:06 AM

216  •  Computational Physics, 2/E

As mentioned, the class Legendre, implemented in Quadra-
ture.cpp, is designed to perform the Gauss–Legendre quadrature
method for any given function that accepts a double type argu-
ment and returns the result as a double type. It either loads the
weights and corresponding abscissas from the look-up tables
defined in GaussKnotsWeights.h or computes them from the Leg-
endre polynomials; see the implementation of the initialise and
compute_x_w member functions. The latter of these two functions
finds the coefficients of the Nth Legendre polynomial using the
recurrence relation defined by Equation (10.44), and once we have
those coefficients we can then find its roots. As the cosine function
gives a relatively good estimate of the root, the Newton–Raphson
method will always converge to the required root of the polynomial.
It is not obvious that the code here calculates the polynomial func-
tion and its derivative for the given mx . It uses the array of coef-
ficients, 1P , to build up the function and its derivative for use with
the Newton–Raphson root search. One may find it instructive to
perform the calculations manually for small N or have the program
print out the polynomial values as a check. Once the roots are found
to the desired precision or we have performed a specified number
of iterations of the root search, we store them in a vector. The cor-
responding weights are calculated and stored to a second vector.
Those vectors are combined into the return value, which in turn are
stored to the relevant data members. As an aside, could this code be
improved?

The knots and weights are then used by the member function
integrate to integrate the function across the domain specified
using the Gauss–Legendre method.

The application code found in gauss_legendre.cpp integrates the
exponential function over the range [1,4] for an increasing number
of knots. The integration has the following analytical solution:

	
4

4 1

1

51.8798682xe dx e e= − = …∫ � (10.49)

The program prints the number of points used in the quadra-
ture, the value obtained, and the error in the solution. After you
compile and run this program you should find that the error reduces

Computational Physics.Ch10.2pp.indd 216Computational Physics.Ch10.2pp.indd 216 12/30/2021 10:47:07 AM12/30/2021 10:47:07 AM

	 Partial Differential Equations  •  217

rather rapidly as we increase the number of points used. If you were
to compare the accuracy achieved to the number of function calls
required for Gauss–Legendre quadrature to the other quadrature
methods developed in Chapter 5. Notice that because we apply the
Gauss–Legendre quadrature to a finite integrand it is possible to
build a composite rule for the quadrature.

10.5  GAUSS–LAGUERRE QUADRATURE

One limitation to the Gauss–Legendre quadrature is that it only
applies to integrals with finite limits. In physics, it often happens
that a physically significant quantity can be given by the semi-infinite
integral

	 ()
0

I g x dx
∞

= ∫ . � (10.50)

For the integral to be finite g ()x must vanish more rapidly than
the inverse of x (c.f. convergence of an infinite sum). One way to
ensure this condition is to recast where possible the integrand func-
tion as

	 () ()
0 0

xI g x dx e f x dx
∞ ∞

−= =∫ ∫ , � (10.51)

as the exponential weight vanishes more quickly than 1 / x. We now
have an integral in the form of the left-hand side of Equation (10.32).
As before, we need to find a set of orthogonal polynomials that will
satisfy these limits and the weighting function.

This work has already been done before and the set of poly-
nomials we need are the Laguerre polynomials. We can define
the Laguerre polynomials recursively, defining the first two poly-
nomials as

	 ()0 1xj = � (10.52)

and

	 ()1 1x xj = − , � (10.53)

Computational Physics.Ch10.2pp.indd 217Computational Physics.Ch10.2pp.indd 217 12/30/2021 10:47:07 AM12/30/2021 10:47:07 AM

218  •  Computational Physics, 2/E

then using the following recurrence relation for any 1n ≥ :

	 () () () ()1 1

1
2 1

1n n nx n x x n x
n

f f f+ −= + − −  +
. � (10.54)

Following the same strategy as before we find the roots of the
Laguerre polynomial. To do this we note that

	 () () ()()1n n n

n
x x x

x
j j j −′ = − . � (10.55)

Unfortunately, there is no other formula for the estimation of
the roots so you may find it useful to plot the Laguerre polynomi-
als and find estimations for the roots manually. A numerical recipes
handbook may offer more guidance here; in our library code, we use
the formula obtained from Stroud & Secrest, Gaussian Quadrature
Formulas.

Once the roots are found they are used to obtain the weights
using the relation

	
() 22

1(1)
m

m

n m

x
w

n xf +

=
+   

.� (10.56)

Note that the denominator contains a factor of the polynomial
squared evaluated at the abscissa rather than the derivative at the
abscissa as with the Legendre weights.

Of course, the weights and abscissas have been tabulated and
published elsewhere and could be implemented, for example, as
look-up tables or readable from an external file.

As the upper limit of the integral is infinity, we cannot derive a
direct composite formula for the quadrature. If higher accuracy is
needed than the Gauss–Laguerre quadrature can achieve, you can
always separate the semi-infinite region into two, using a Gauss–
Legendre quadrature (perhaps a composite version) up to some
finite limit, and then a Gauss–Laguerre quadrature from that limit
up to infinity. Though, one must remember to adjust the variables
for the change in the lower limit of the integration.

There exists several other Gaussian quadrature methods for dif-
ferent integration limits and weighting functions. Of note are the

Computational Physics.Ch10.2pp.indd 218Computational Physics.Ch10.2pp.indd 218 12/30/2021 10:47:07 AM12/30/2021 10:47:07 AM

	 Partial Differential Equations  •  219

Gauss–Hermite, Gauss–Chebyshev, and Gauss–Jacobi quadrature
methods, which you should lookup. Though different they all share
the same common algorithm—define the set of polynomials to use,
find the roots of those polynomials, use those roots to compute
the corresponding weights and abscissas, and finally compute the
quadrature for a given number of points.

EXERCISES

10.1.	 Either using the code provided or with your own
program compute

1

1

mx dx
−
∫

	 for 0,1,..., 15m = using Gauss–Legendre quadrature to
double precision. If the code is correct how accurate
should the quadrature be for the appropriate number of
points used?

10.2.	 Compare the effort required to compute

()2
221

2

x

e dx
mm s

s

m s s p

−+
−

−
∫

	 to 10 significant figures of accuracy for the trapezoidal
rule, Simpson’s rule, and Gauss–Legendre quadrature.
You may find it illustrative to plot the relative error
against the number of points used for each method.

10.3.	 Write a program to use the Gauss–Laguerre quadrature.
To test that the Laguerre class is correct, evaluate the
integral

0

xe dx
∞

−∫
	 It should equal the sum of the weights for the number of

points used.

Computational Physics.Ch10.2pp.indd 219Computational Physics.Ch10.2pp.indd 219 12/30/2021 10:47:07 AM12/30/2021 10:47:07 AM

220  •  Computational Physics, 2/E

10.4.	 In Planck’s treatment of black body radiation, the follow-
ing integral appears:

3

0 1x

x
dx

e

∞

−∫

	 Evaluate the integral ensuring 10 significant figures of
accuracy.

10.5.	 The integral

() ()2
0

2
sin(2 sin(/2))

m
f rV r kr drq q

∞

≈ − ∫


	 appears in the theory for the cross-section of a quantum
scattering event. It describes the force felt by a quan-
tum particle as it interacts with the scattering potential
V as a function of the incident angle q. If the particle is
an electron scattering from an atomic nucleus then the
scattering potential is given by

() 0

2
/

0

1
4

r rZq
V r e

rpe
−=

	 where Z is the proton number of the nucleus, q is the
proton charge and 0r is the so-called screening length.
Plot f as a function of q for an atom of your choice; use
the Bohr radius as the screening length.

Computational Physics.Ch10.2pp.indd 220Computational Physics.Ch10.2pp.indd 220 12/30/2021 10:47:08 AM12/30/2021 10:47:08 AM

CHAPTER 11
ADVANCED ODE
SOLVER AND
APPLICATIONS

In this chapter, we explore a more advanced ODE solver and
how we can apply it to solve some “difficult” physics problems from
finding chaos in a driven pendulum to sending a spaceship to the
Moon (and beyond) to the wavefunctions of electrons in an arbitrary
electrical potential. We will also show how to use the solver in com-
bination with the Fast Fourier Transform subroutine in Chapter 7 to
analyze the frequency spectrum of the Van der Pol oscillator, which
will provide the guide for you to analyze the spectrum of the chaotic
pendulum.

11.1  RUNGE–KUTTA–FEHLBERG

In Chapter 6, we explored the use of the finite difference method
to solve ODEs. During this discussion, we developed a technique to
make the step sizes adapt to the local nature of the solution by halv-
ing the step size when it was too large and generating too much local
error then doubling the step size when it was too small and wasting
computational effort. Although this method is effective there is a

Computational Physics.Ch11.3pp.indd 221Computational Physics.Ch11.3pp.indd 221 1/4/2022 11:01:29 AM1/4/2022 11:01:29 AM

222  •  Computational Physics, 2/E

better way of making the step size adaptive, rather than just halving
or doubling its length.

Erwin Fehlberg published several adaptive steps Runge–Kutta
methods in two NASA technical reports in 1968 and 1969. In Fehl-
berg’s algorithm, two Runge–Kutta methods of different order are
run simultaneously. At each step, the lower-ordered method is com-
puted first, producing an estimate of the solution, 1ny + . Next, the
second, higher-ordered method is computed with more function
evaluations producing the estimate 1ˆ ny + for the same step size. The
difference between these two methods gives an estimate of the local
error for the step size used. If this estimation of the error is within
the prescribed tolerance the step is accepted, and the solution is
advanced. If not, the step is rejected, and the process is repeated
with a reduced step size. Whenever a step is accepted the next step
size is estimated using the values obtained from y and ŷ, and we use
the more accurate value of ŷ as our initial value for the next step;
more on this shortly.

At first glance, this may not seem like we are saving much on
computational resources; although the steps will be adaptive, we
must make several extra function evaluations at each step in order
to compute the two Runge–Kutta methods. However, the beauty of
Fehlberg’s algorithms is that he found coefficients such that the two
methods share function evaluations and only a few extra evaluations
are required for the higher-ordered method. One such Fehlberg
algorithm is based on the classic fourth-ordered Runge–Kutta, with
a fifth-ordered Runge–Kutta used as the higher-ordered estimate.
The informed reader may now be guessing that this is why one of
the differential equation solvers in MATLAB/OCTAVE is named
“ode45.”

In the Runge–Kutta–Fehlberg fourth-fifth (RKF45) algorithm
each accepted step requires a total of six intermediary function eval-
uations: four for the fourth-order Runge–Kutta, and two more for
the fifth-order Runge–Kutta. Fehlberg’s equations for the RKF45
method are as follows: the intermediary function evaluations are
given by

	 ()0 0 0,k f t y= , � (11.1)

Computational Physics.Ch11.3pp.indd 222Computational Physics.Ch11.3pp.indd 222 1/4/2022 11:01:30 AM1/4/2022 11:01:30 AM

	 Advanced ODE Solver and Applications  •  223

	 1 0 0 0,
4 4
h h

k f t y k = + + 
 

, � (11.2)

	 2 0 0 0 1

3 3 9
,

8 32 32
h h h

k f t y k k = + + + 
 

,� (11.3)

	 3 0 0 0 1 2

12 1932 7200 7296
,

13 2197 2197 2197
h h h

k f t y k k k = + + − + 
 

, �(11.4)

4 0 0 0 1 2 3

439 3680 845
, 8

216 513 4104
h h h

k f t h y k hk k k = + + − + − 
 

,� (11.5)

5 0 0 0 1 2

8 3544
, 2

2 27 2565
h h h

k f t y k hk k= + − + −


	 3 4

1859 11
410

,
4 40
h h

k k + − 


� (11.6)

where f is the function defining the differential equation, h is the
step size, t is the independent variable, and y is the dependent func-
tion. The index zero refers to the values at the beginning of a given
step. Using these definitions for the intermediary function evalua-
tions the fourth-ordered Runge–Kutta is written as

	 1 0 1 3 4

25 1408 2197 1
216 2565 4104

ˆ
5n ny y h k k k k+

 = + + + − 
 

� (11.7)

and the fifth-ordered Runge–Kutta is written as

1 0 1 3 4 5

16 6656 28561 9 2
135 12825 56430

ˆ
50

ˆ
55n ny y h k k k k k+

 = + + + − + 
 

,� (11.8)

where ˆ ny is the value of the previous, successful step. As stated, we
can estimate the local error in the step by finding the difference
between Equations (11.8) and (11.7). Performing this operation and
after some rearrangement, we arrive at the following expression for
the error in the local step

1 1 0 2 3 4 5

1 128 2197 1 2
360 4275 75240 50 55

ˆ n ny y h k k k k ks + +
 ≡ − = − − + + 
 

.

� (11.9)

Computational Physics.Ch11.3pp.indd 223Computational Physics.Ch11.3pp.indd 223 1/4/2022 11:01:30 AM1/4/2022 11:01:30 AM

224  •  Computational Physics, 2/E

Note that with this expression for the estimate of the local error
we do not have to calculate the expression for 1ny + , Equation (11.7),
to compute s. Of course, 1ˆ ny + still needs computing.

Seeing as we know how the error behaves with step size (fourth-
order Runge–Kutta) we should be able to use this information to
estimate the next step size from the step we have just computed. To
do this, we note that we can write

	

4h h
h

e
s

 ′ =  
  � (11.10)

where e is the global error tolerance we want in our solution thus h e
is our desired local error tolerance, h′ is an estimate of the “ideal”
step that will produce the desired local error tolerance, and h is the
step size for which we have just calculated s. Notice that the abso-
lute value of the step size is used to take into account a reverse inte-
gration.

Rearranging Equation (11.10) for this “ideal” step size we obtain

	 � �
�

�
��

�

�
��

h h
h

�
�
�

4 , � (11.11)

where we have included a parameter a that takes values in the range
[]0,1 as a factor, we can adjust to provide a more conservative esti-
mate of the next step. Remember that Equation (11.11) is an estimate
of the “ideal” step found from considering the error behavior, not
the absolute value 4h itself. Erring on the side of caution we assume
that it produces a step size that is (slightly) larger than the “ideal”
thus warranting the inclusion of the adjustment parameter. Setting

0.9a ≈ typically gives reasonable estimates but can be adjusted if we
find the error tolerance in the results to be unsatisfactory as it does
depend on the properties of the ODE we are trying to solve.

We should also be conservative in our approach to adapting the
step size and as before we introduce maximum and minimum step
sizes to take account of any singularities, discontinuities, or asymp-
totes, that is, where the differential equation may change in nature.
In addition to these limits, we should also be conservative by how
much the step size changes from one step to the next. If we find that
the algorithm wants to increase the step size by more than a factor of

Computational Physics.Ch11.3pp.indd 224Computational Physics.Ch11.3pp.indd 224 1/4/2022 11:01:34 AM1/4/2022 11:01:34 AM

	 Advanced ODE Solver and Applications  •  225

ten, say, then we should be cautious and limit the increase to a factor
of ten or less. Similarly, if the step size is suddenly decreased by a
large factor, we should also be cautious here and set an appropriate
limit. These four limits, maximum and minimum step sizes, and the
factors of maximum increase and decrease, should be experimented
with for different, differential equations as, if you will excuse the
pun, one-size does not fit all, and it is likely we are unable to predict
the nature of the (numerical) solution to the differential equation
before-hand. One general strategy that might be applied is to make
the maximum and minimum step sizes some fraction of the integra-
tion interval.

The class RKF45, implemented in ODESolvers.cpp, is designed
to perform Fehlberg’s adaptive method as we have just discussed. As
this class is derived from the ODESolver base class it is the interface
is similar to the other ODE solvers we have used before and can
autonomously handle first and second-order ODEs. Read through
the code and make sure you understand the variables and the task
they perform. Here we have defined each of the coefficients in Equa-
tions (11.1) through (11.9) as parameters to ensure that they are not
changed by the program, and to make the code more readable. Also,
we have defined them as fractions to ensure the best possible preci-
sion. Additionally, all the conservative precautions we have taken are
given as adjustable class parameters so they can be easily changed in
the application code if necessary.

To check that the algorithms behave as expected and produce
tolerable errors in their numerical solutions write a program to com-
pute the dynamics of simple harmonic motion. Does the algorithm
adapt the step size as expected? Does the algorithm remain numeri-
cally stable, and if so for how long? Indefinitely perhaps?

11.2  PHASE SPACE

Normally, and quite intuitively, we plot the state of a dynamical
system, for example, the displacement of a pendulum as a function
of time. This will quite naturally tell us things like the amplitude of
the oscillations and their frequency. However, we can create a plot

Computational Physics.Ch11.3pp.indd 225Computational Physics.Ch11.3pp.indd 225 1/4/2022 11:01:34 AM1/4/2022 11:01:34 AM

226  •  Computational Physics, 2/E

that has no explicit dependence on time, one in which we plot the
position of the pendulum, say, against its velocity (or more generally
its momentum). This plot is known as the phase space of the dynam-
ical system. As time advances, a point in phase space representing
the current phase state of the dynamical system will shift, tracing
out a phase trajectory. When we plot several phase trajectories for
different initial conditions, say, or for different parameters, we call
that a phase portrait.

To illustrate, consider the motion of an undamped, mass-on-a-
spring undergoing simple harmonic motion. We all know that the
displacement of the mass is described by a sinusoidal function and
that this function lags that describing the velocity of the mass by
one-quarter of a cycle. In other words, if ()sinx t= then ()cosx t= .
Plotting the velocity x against the displacement x we would obtain
a circle in phase space. This circle tells us that the motion must be
oscillatory and that the energy of the system is conserved. What
would happen to the phase portrait if ()sinx tw= for 1?w ≠ What
effect does a change in the amplitude of the oscillations have on the
phase portrait? How might the phase space portrait look if we were
considering damped oscillations, for example, energy lost through
air resistance? You should by now be thinking of how you can show
your answer to those questions to be correct using the (computa-
tional) tools at your disposal.

For reasons that will have become apparent, the origin of the
phase portrait of the damped simple harmonic oscillator is called an
attractor. The phase trajectory spirals into the origin as the oscillator
loses energy. If we were to follow that trajectory in reversed time,
then we would see that the phase state of the system spirals out from
the origin. In other words, the oscillator is gaining energy and thus,
in this case, we must have a driving force.

We have already seen in Chapter 6 that when both driving and
damping forces are present an oscillatory system goes through a
transient phase before settling into a steady state. The nature of the
transient phase is dependent upon the initial conditions of the sys-
tem, whereas the steady-state is not. How does this look on a phase
space portrait, and what does limit cycle mean? How would reso-
nance be detected using phase space?

Computational Physics.Ch11.3pp.indd 226Computational Physics.Ch11.3pp.indd 226 1/4/2022 11:01:35 AM1/4/2022 11:01:35 AM

	 Advanced ODE Solver and Applications  •  227

11.3  VAN DER POL OSCILLATOR

Balthasar Van der Pol was a Dutch Physicist and electrical engi-
neer who experimented with some novel electronic circuits contain-
ing triodes (vacuum tubes) in the 1920s. One of those circuits is now
known as the Van der Pol oscillator that is described by the non-
linear differential equation

	 ()2 1y yy y m= − − − ,� (11.12)

where y is some position coordinate as a function of time, and m
is a parameter indicating the strength of the non-linear damping
term. When 0m = , we have simple harmonic motion. Equation
(11.12) describes self-sustaining oscillations in which energy is fed
into small oscillations and removed from large oscillations; to see
this from the equation consider the damping term when 1y > and
when 1y < .

11.3.1  Van der Pol in Phase Space
The Van der Pol oscillator equation is difficult to solve analyti-

cally due to the non-linear damping term but can be tackled using
perturbation theory. However, this only works when m is small, that
is, 1m  , which is hardly interesting at all. This is where our numeri-
cal integrator steps in to provide a solution.

Figure 11.1 shows the phase space portrait of the Van der Pol
oscillator for various values of the parameter m. To obtain these
plots we set the initial values of the displacement and the velocity to
2 and 0, respectively, and the tolerance was set to 510e −= . Here we
show that for 0m = , we recover simple harmonic motion; the phase
plot is a circle. Note that the initial values were chosen so that they
lie on the limit cycle for the oscillations.

Here we can see the effect of the non-linear damping term on
the phase trajectory of the oscillator. You may find it illustrative to
also plot the regular displacement–time graphs to match up corre-
sponding points from the phase portrait.

Computational Physics.Ch11.3pp.indd 227Computational Physics.Ch11.3pp.indd 227 1/4/2022 11:01:35 AM1/4/2022 11:01:35 AM

228  •  Computational Physics, 2/E

FIGURE 11.1:  Phase portrait for the Van der Pol oscillator for various values of µ.

11.3.2  Van der Pol FFT
Normally, we use Fourier transforms to gain (extra) insight into

experimental data that is some function of time, say, by converting
it into a function expressed in terms of frequency. We can also apply
this analysis to numerical data, such as that which has been synthe-
sized through computation.

We have just seen that the phase space diagram of the Van der
Pol Oscillator is an alternative and useful way to study the behavior
of the oscillator. The Fourier transform of the data will augment our
understanding of that behavior.

If you recall, the Fast Fourier Transform (FFT) subroutine
requires (time) data that is set at constant increments, but our
Runge–Kutta–Fehlberg solver is an adaptive step algorithm. Rather
than try to interpolate the data from the solver we shall instead mod-
ify the routine to store values at constant time intervals. We can then
pass this data directly to the FFT subroutine without the need to
change it in any way.

The file RKF45 class contains a data member to encode when we
want the algorithm to store data at regular intervals but still employ

Computational Physics.Ch11.3pp.indd 228Computational Physics.Ch11.3pp.indd 228 1/4/2022 11:01:35 AM1/4/2022 11:01:35 AM

	 Advanced ODE Solver and Applications  •  229

an adaptive routine. In essence, we check to see if we have reached
our target time increment, and if we have, we increment our data
counter, write the data to an array, and move the goal to the next
desired data point. If not, we continue the integration without stor-
ing any data. However, before moving on we include a check to see
if the next step will take us past our current target and adjust the
step such that it will hit the target. In this way, we should maintain
an error that is less than the desired tolerance. As these oscillations
tend to have an initial transient phase before settling into a steady-
state we should, in general, set a non-zero initial goal to ensure we
start taking data from the steady region. We run the integration until
we have filled our data array, which we can then pass to an FFT
function for analysis (conveniently we already have one written).

When sampling the data in this way we must remember that the
FFT subroutine works best when the time increments are commen-
surate with the period of oscillations. Put another way, we should
ensure that we are not aliasing our data, and we fit an (exact) integer
multiple of oscillations in our data array. We recall that our time
increment (or sample rate) is given by

	
kT

t
N

∆ = ,� (11.13)

where k is some integer, T is the time period of the oscillations, and
N is the number of data points we will use in the FFT function.

By far the easiest way to obtain T is to use the displacement–
time graph to estimate a value; take the period for several oscilla-
tions and divide through by this number. For 2m = , we found the
period of oscillations to be around 7.631 s. As we are taking 512 data
points (this number is not arbitrary; a power of two is required for
the FFT subroutine) we should sample with a time increment of,
say, 0.23846875t∆ = seconds to include 16 full oscillations in our
data array. This choice in the number of oscillations is again not arbi-
trary. By choosing a power of two we get an exact integer number of
points per oscillation (give or take some small error in the calculation
of the time period), in this case, 9 4 52 / 2 2 32= = .

You will know if your calculation of the period is accurate by
the quality of the Fourier spectrum. Figure 11.2 shows the Fourier

Computational Physics.Ch11.3pp.indd 229Computational Physics.Ch11.3pp.indd 229 1/4/2022 11:01:36 AM1/4/2022 11:01:36 AM

230  •  Computational Physics, 2/E

spectrum for the Van der Pol Oscillator with 2m = , simulated with
our RKF45 class with a tolerance of 510− . Note that the intensity axis
is logarithmic such that the decrease in intensity from one peak to
the next is not linear but exponential. Here we have computed a
decent time increment as the peaks are sharp, almost delta func-
tions, and the “background” spectrum is small (< 410−). The broaden-
ing of the peaks is most likely due to bin leakage as the period we
have calculated is close to actual but not quite exact. It may also be
caused in part by the numerical errors in simulating the oscillations.
Of course, this can easily be investigated by making changes to the
tolerance in the RKF45 algorithm, and small changes to the period.

FIGURE 11.2:  Fourier spectrum of the Van der Pol Oscillator, with damping
parameter = 2µ .

11.4  THE “SIMPLE” PENDULUM

You all probably remember the simple pendulum experiment
from your physics classes at school. It provides a practical introduc-
tion to how to deal with experimental errors (e.g., timing several

Computational Physics.Ch11.3pp.indd 230Computational Physics.Ch11.3pp.indd 230 1/4/2022 11:01:36 AM1/4/2022 11:01:36 AM

	 Advanced ODE Solver and Applications  •  231

oscillations to obtain a more accurate measure of the period) and
how to use approximation to simplify the mathematics. We can
derive the differential equation for the pendulum from the geom-
etry of the system such that

	 sin
g
l

q q= − , � (11.14)

where q is the angular position of the pendulum, g is the strength of
gravity at the Earth’s surface, and l is the length of the pendulum.
Here we assume that the oscillations are free, in that there is no
driving force (other than gravity), and there is no damping due to
frictional or resistive forces. For the rest of this section let us also
assume the pendulum is rigid. As Equation (11.14) is rather difficult
to solve analytically (if not impossible?) the usual trick is to assume
the small-angle approximation that is sinq q≈ for 1q  (in radians),
and we obtain the simple harmonic oscillator equation. However,
our numerical solver has no issues tackling this equation head-on.

11.4.1  Finite Amplitude
With our new description of phase space, we should be able to

clearly visualize the behavior of the pendulum, specifically seeing at
what angles the small-angle approximation holds. For small angles,
we should see a circular phase trajectory that will morph into some-
thing different as we increase the amplitude of the oscillations.

We have two approaches to consider in how to vary the ampli-
tudes. We can mimic what we would do given a physical pendulum.
That is, we monitor the trajectory by directly varying the initial angle
of release and setting our initial velocity to zero. Or we consider the
total energy of the pendulum, that is its potential energy plus its
kinetic energy, and work out the angular velocity of the pendulum
as a function of the total energy when the angle is zero, that is, the
angular velocity at the bottom of the swing, and use that as our ini-
tial conditions. We then vary the total energy (which will vary the
amplitude) to see what affect this has on the phase trajectory. This
second method is more practical in terms of phase space as the area
encompassed by the phase trajectory is proportional to the energy
in the system.

Computational Physics.Ch11.3pp.indd 231Computational Physics.Ch11.3pp.indd 231 1/4/2022 11:01:36 AM1/4/2022 11:01:36 AM

232  •  Computational Physics, 2/E

We recognize for any (mechanical) system the total energy is
given by

	 E T V= + , � (11.15)

where

	 2 21
2

T ml q=  � (11.16)

is the kinetic energy and

	 ()1 cosV mgl q= − � (11.17)

is the (gravitational) potential energy of a pendulum. When the pen-
dulum is at the bottom of its swing, we have 0 0q = and

	 2 2
0

1
2

E T ml q= =  ,� (11.18)

as this is where we have defined our zero-potential energy. Rear-
ranging Equation (11.18) for angular velocity yields

	
2

2E
ml

q = .� (11.19)

Using units such that g 1l= = , and 0.5m = we obtain the phase
portrait of the simple pendulum as shown in Figure 11.3. It is of
note that using these units we set our unit of time as /l g . Here
we have computed the phase trajectories for total energies of 0.25 to
1.5 in steps of 0.25. Here the units of energy are dictated by those
we chose for the other parameters. As expected with lower energy
(smaller amplitude) the pendulum behaves approximately like a
simple harmonic oscillator. As we increase the energy (larger ampli-
tude) that approximation no longer holds with the phase trajectory,
elongating along the q axis. The phase trajectory when 1E = is called
a separatrix that, as we can see from Figure 11.3, defines a funda-
mental change in behavior of the pendulum. It is where the pendu-
lum has sufficient energy such that the oscillation becomes circular
motion; the pendulum goes over the top.

Computational Physics.Ch11.3pp.indd 232Computational Physics.Ch11.3pp.indd 232 1/4/2022 11:01:37 AM1/4/2022 11:01:37 AM

	 Advanced ODE Solver and Applications  •  233

FIGURE 11.3:  Phase portrait of the simple pendulum for various energies (amplitudes).

11.4.2  Utter Chaos?
Now that we have the phase description of the simple pendulum

under our belts let us consider a more realistic system. As with the
mass-on-a-spring system, we introduce both a driving force, DF , and
a resistive, drag force, RF , into our equations. The differential equa-
tion governing the motion of the pendulum is then given by

	 sin D Rg F F
l ml ml

qq = − + + � (11.20)

where we have introduced the mass of the pendulum m into our
equation. Here we consider that the mass of the pendulum is located
at the very end of its length. To keep things simple (relatively speak-
ing) let us assume the driving force is described by a periodic func-
tion such that

	 ()0 0cosDF f tw= ,� (11.21)

where 0f is the strength of the force and 0w is its frequency, and the
resistive force can be described by

	 RF v lr r q= − = − , � (11.22)

where r is the coefficient of the drag force, and v is the tangential
velocity of the pendulum’s mass.

Computational Physics.Ch11.3pp.indd 233Computational Physics.Ch11.3pp.indd 233 1/4/2022 11:01:37 AM1/4/2022 11:01:37 AM

234  •  Computational Physics, 2/E

If we rewrite Equation (11.20) in a dimensionless form, where
we again choose g l= (not necessarily equal to one) such that the unit
of time is /l g we obtain

	 ()0sin cosq b tq q wq + + =  , � (11.23)

where /q mr= and 0 /b f ml= are adjustable parameters, along
with the driving frequency 0w .

Depending on the relative values of p, b, and 0w the motion of the
pendulum can either be periodic or chaotic as shown in Figure 11.4.
The discontinuities arise because we map the angle back into the
physically valid range. When writing a program to drive this simula-
tion we must remember that our angle q can only exist in the range
[],p p− . To provide this functionality for all of the ODE solvers we
have developed, the ODESolver base class has member functions
that can be used by any derived class to wrap the independent vari-
able to [],p p− . Note that the member function fullSolveWrapped
uses the single-step member function solve within a loop to inte-
grate over the entire domain.

FIGURE 11.4:  The angle as a function of time and the phase trajectories of the driven pendulum
showing periodic motion (top) and chaotic motion (bottom) for the parameter values shown.

Computational Physics.Ch11.3pp.indd 234Computational Physics.Ch11.3pp.indd 234 1/4/2022 11:01:38 AM1/4/2022 11:01:38 AM

	 Advanced ODE Solver and Applications  •  235

An exercise is provided for the reader to investigate the relative
values of the parameters required to bring about chaos. Note that
whole books are dedicated to the study of chaos and chaotic motion,
and it is still under much academic research. One thing to remem-
ber is that you can always analyze its Fourier spectrum.

11.5  HALLEY’S COMET

Halley’s Comet is probably the best known short-period comet
and is visible from Earth with the naked eye every 75–76 years.
Halley’s returns to the inner Solar System have been observed and
recorded by astronomers since at least 240 BC. Clear records of
the comet’s appearances were made by Chinese, Babylonian, and
medieval European chroniclers but were not recognized as reappear-
ances of the same object until much later. In 1705, English astrono-
mer Edmond Halley was the first to calculate the comet’s periodicity
and was rewarded with having it named after him. Halley’s Comet
last appeared in the inner Solar System in early 1986.

Halley’s Comet has a highly elliptical, planar orbit with large
differences in its velocities at the aphelion (furthest distance) and
the perihelion (closest distance) of its journey around the Sun. The
equation governing the comet’s trajectory, that is, the force, F, acting
on the comet, is Newton’s Law of gravitation,

	 2 3

ˆ rGMme GMmr
F

r r
= − = − , � (11.24)

where G is the universal gravitational constant, M is the solar mass,
m is the mass of the comet, ˆ / re r r= is a unit vector that points from
the center of the Sun to the center of the comet, and r is the distance
between the center of the Sun and the center of the comet. Here
we assume that the influence of other bodies in the solar system is
insignificant compared to the gravitational pull of the Sun.

We usually give the units of Equation (11.24) in SI form.
That is, distance is measured in meters, time in seconds, and
mass in kilograms. This makes the universal gravitational constant

116.67384 10 G −= × m3 kg−1 s−2, the solar mass 301.9891 10M = × kg,
and the aphelion distance is 125.28 10× m. Using the vector form

Computational Physics.Ch11.3pp.indd 235Computational Physics.Ch11.3pp.indd 235 1/4/2022 11:01:38 AM1/4/2022 11:01:38 AM

236  •  Computational Physics, 2/E

of Equation (11.24), we must calculate the distance cubed. This is
going to lead to precision problems if we use SI units and a change
of units is required. The first thing to note is that both G and M are
constants thus we can write SG GM= as the universal gravitational
constant per solar mass. We now need to choose the units for length
and time so that both the solar-comet distance r, and our gravita-
tional constant per solar mass SG have exponents that ideally reduce
to zero, and certainly no more than one. Instead of arbitrarily choos-
ing some units let us use some that are more natural. The astronomi-
cal unit, AU, defines the mean distance between the Earth and the
Sun, which has a value of 111.49597871 10× m. This makes the aph-
elion distance equal to 35.1 AU so this appears to be a good choice;
remember this is the greatest distance from the Sun.

The sidereal (pronounce si-dea-re-al) year is defined as the
orbital period of the Earth around the Sun relative to the back-
ground of “fixed” stars. The name sidereal comes from the Latin
“sidus” meaning “star.” It is used often in astronomy and contains
 365.256363 days equal to 73.1558150 10× s. If we define our com-
puter-friendly units of length, mass, and time as the astronomical
unit (AU), solar mass (M), and sidereal year (yr) respectively then

39.489 SG = AU3 M-1 yr-2. (To obtain this value you multiply G by M
in SI units, then multiply by the square of the number of seconds
per year, finally diving by the cube of the number of meters per AU.)

To solve Equation (11.24), which is a second-ordered ODE, and
thus determine the trajectory of Halley’s Comet we need to know
two pieces of (initial) information. That is, we need to know the
comet’s position and (instantaneous) velocity at a particular time,
which we take to be our origin in time. As we already know the aph-
elion distance, we can use that position to start the integration given
that the aphelion velocity is 912 ms-1. After making the appropriate
changes to the units and writing a program that uses the RKF algo-
rithm for a seconded-ordered ODE with two dependent functions
(x and y coordinate of the comet) we plot the comet’s trajectory in
Figure 11.5. Figure 11.5(a) shows the trajectory for a single orbit
where each data point is computed at an interval of one year; note
the difference in the scales of the x and y axes. Figure 11.5(b) shows
the distance from the Sun plotted as a function of time for several
orbits; again, the data points are 1 year apart.

Computational Physics.Ch11.3pp.indd 236Computational Physics.Ch11.3pp.indd 236 1/4/2022 11:01:38 AM1/4/2022 11:01:38 AM

	 Advanced ODE Solver and Applications  •  237

FIGURE 11.5:  Trajectory of Halley’s comet (a) looking down on the orbital plane, where
the Sun is located at the origin; (b) comet’s distance from the Sun as a function of time.

In both the points shown are spaced one year apart.

Note that if you tried to solve this differential equation using
a constant step length algorithm you will find that unless the step
length is small, that is, much less than a year, the solutions are
very unstable orbits with the comet shooting off somewhere as it
approaches and goes past the Sun—this clearly does not happen.

11.6  TO INFINITY AND BEYOND

Humans have long wondered what is out there among the stars.
Exploration, it seems, is in our nature. Our first goal is to get to our
nearest neighbor in the solar system; the Moon. The first obstacle

Computational Physics.Ch11.3pp.indd 237Computational Physics.Ch11.3pp.indd 237 1/4/2022 11:01:38 AM1/4/2022 11:01:38 AM

238  •  Computational Physics, 2/E

to overcome is how we get off the planet in the first place. This task
is left for the reader (see Exercise 5). Assuming we have achieved a
stable orbit about our planet, our next obstacle is to navigate to the
moon. Unlike the movies, we do not have the luxury of an endless
supply of fuel and are reliant on short burst thrusters only, meaning
that the motion of our spaceship is (mostly) dictated by Newton’s
Law of gravitation. The speeds we consider are nowhere near rela-
tivistic, neither are the gravitational forces, such that Newton’s Laws
are an adequate description of the physics. We pick our frame of ref-
erence as the Earth–Moon system; this frame of reference is in orbit
about the Sun and as such we can consider the relative motion of
the Earth, Moon, and spaceship independently from their motions
about the Sun (and the Sun’s motion about the galaxy, the galaxy’s
motion about the local cluster, and so on). With these descriptions in
place let us go to the Moon.

To start let us just consider the Earth–Moon system. Normally,
we state this as the Moon orbiting the Earth but in fact they orbit
each other about some, common center-of-mass (COM). Note that
this is true of any two-body system orbiting one another. It makes
sense, therefore, to fix our origin at this COM. In general, orbital
trajectories are elliptical with one of the foci located at the origin
of the system. However, the eccentricity of the Earth–Moon orbit
is sufficiently small that their trajectories can be assumed to be cir-
cular. In addition to this, their orbits are planar, that is they can be
sufficiently described by two spatial coordinates. If d is the center-
to-center distance between the Earth and the Moon, then the dis-
tance of the center of the Earth to the COM is

	 M
E

M E

m
r d

m m
=

+
� (11.25)

and the distance of the center of the Moon to the COM is

	 E
M

M E

m
r d

m m
=

+
,	 � (11.26)

where Em is the mass of the Earth and Mm is the mass of the Moon.
If you are wondering how we arrive at these equations, then the trick
is to consider turning moments.

Computational Physics.Ch11.3pp.indd 238Computational Physics.Ch11.3pp.indd 238 1/4/2022 11:01:39 AM1/4/2022 11:01:39 AM

	 Advanced ODE Solver and Applications  •  239

The Earth–Moon system rotates about its common COM with
a sidereal orbital period T. If the Moon lies on the positive x-axis at

0t = , then

	 M tj w= � (11.27)

and

	 E tj w p= + � (11.28)

where Mf is the angular location of the Moon, Ef is the angular loca-
tion of the Earth at time t, and w is the angular frequency of the
orbit; the angle is measured from the x-axis. To remain in a circular
motion a body must be constantly accelerated toward the center of
motion, with an acceleration of magnitude 2rw , where r is the length
of the radius of the motion. For the Earth that acceleration is pro-
vided for by the gravitational force between the Earth and the Moon
such that

	 2
2

M
E

Gm
r

d
w= . � (11.29)

After substitution of Equation (11.25) and some manipulation,
we arrive at Kepler’s third law for planetary motion

	
()2

2
2 3

4 M EG m m

T d
pw

+
= = . � (11.30)

We would arrive at the same relationship if we had first con-
sidered the acceleration of the Moon. Rigorously speaking this is
not really proof of Kepler’s third law as we have assumed circular
orbits and more generally, we should consider elliptical orbits. How-
ever, Equation (11.30) does hold for elliptical orbits but in this case,
d would be the semi-major axis of the ellipse rather than the center-
to-center distance.

Equations (11.25) through (11.30) now form a practical descrip-
tion of the relative motion of the Earth and Moon about each
other. As stated, our spaceship is currently in a stable orbit about
Earth. Let’s assume that this orbit is 500 km above the surface of the
Earth. When the spaceship reaches some angular location q in its
orbit, it fires its thrusters and accelerates to some speed v in a direc-
tion tangent to the orbit at q. Here we will assume that this thrust

Computational Physics.Ch11.3pp.indd 239Computational Physics.Ch11.3pp.indd 239 1/4/2022 11:01:39 AM1/4/2022 11:01:39 AM

240  •  Computational Physics, 2/E

acceleration is instantaneous in comparison to the total journey
time; you will see that this is a reasonable assumption once we per-
form the computations. Our spaceship is now in motion toward the
Moon. But as the spaceship travels, so do the Earth and the Moon
move about their COM, and our spacecraft is influenced by their
gravitational fields such that

()
()

()
()3 3

ME
E M

E M

mm
F ma Gm r r r r

r r r r

 
= = − − + − 

− −  
, � (11.31)

where m is the mass of the spaceship, which neatly cancels from our
equations, and r is the position vector of the spacecraft. Writing
these in component form for the x and y directions we have

	 3 3
ME

E M
E m

x xx x
G m m

d d
x

 −−
= − + 

 
 � (11.32)

and

	
3 3

E M
E M

E m

y y y y
G m m

d
y

d

 − −
= − + 

 


, � (11.33)

where the distance of the spaceship from the center of the Earth is
given by

	 () ()222
E E Ed x x y y= − + − , � (11.34)

and the distance of the spaceship from the center of the Moon is
given by

	 () ()222
M M Md x x y y= − + − . � (11.35)

The x and y components of the Earth and the Moon distances
from the COM are given by

	 cos()E E Ex r j= , sin()E E Ey r j= � (11.36)

and

	 cos()M M Mx r j= , sin()M M My r j= . � (11.37)

As a task to the reader: find out the required physical constants
you will need to compute the spacecraft’s trajectory for different q

Computational Physics.Ch11.3pp.indd 240Computational Physics.Ch11.3pp.indd 240 1/4/2022 11:01:40 AM1/4/2022 11:01:40 AM

	 Advanced ODE Solver and Applications  •  241

and v. This list consists of the mean center-to-center distance of the
Earth to the Moon (d); the mass of the Earth ()Em ; the mass of the
Moon ()Mm ; and the sidereal Earth–Moon orbital period (T). We
already know G from previous sections in this chapter. Is there any-
thing else we should know? The position vector of the spaceship
is computed as the distance from the center of the Earth and the
Moon, and these bodies are certainly not point masses.

Once we have discovered the necessary physical constants, we
are ready to compute. Or are we? Remember that we need com-
puter-friendly units such that we are not dealing with numbers that
have large variations in their exponents. The strategy to employ
here is as before with Halley’s comet; to use the physical constants
you have found as the units of measure. For instance, we would
use the Earth–Moon distance as the unit of length, the sidereal
orbital period as the unit of time, and the mass of the Earth as the
unit of mass.

Once you have a program written to find the trajectory of the
spaceship you should check there are no bugs in your code, such
as incorrect entry of a physical constant, or a mistake in the change
of units, and so on. To do this set the mass of the moon to zero and
check that you get a stable, circular orbit of the spaceship about the
Earth when you set the necessary velocity; you will have to use a
variant of Equation (11.29) to work out the velocity required. If you
get a circular orbit, then we are ready to attempt to make that trip
to the moon.

To monitor the progress of the spacecraft we should store the
distance to the center of the moon for evaluation, and perhaps ter-
minating the program once we are at or within the radius of the
Moon. Obviously, this means we have likely collided with the Moon
but landing on the moon is another problem to solve. An exercise
for you to do to find values for q and v that will get the spaceship to
the moon.

For more animated applications of ODE solvers to BIG physics,
you should have a lookout for the computer games “Universe Sand-
box,” or for a more comical bent “Kerbal Space Program.”

Computational Physics.Ch11.3pp.indd 241Computational Physics.Ch11.3pp.indd 241 1/4/2022 11:01:40 AM1/4/2022 11:01:40 AM

242  •  Computational Physics, 2/E

11.7  TO THE INFINITESIMAL AND BELOW

As discussed in Chapter 4, how to obtain the solutions of the
Schrodinger Equation as applied to the infinite square well and the
finite square well. In the infinite square well case, we found the solu-
tions analytically, whereas for the finite square well we had to rely
on root finding to provide the energy eigenvalues. With our Runge–
Kutta–Fehlberg ODE solver, we should be able to tackle any arbi-
trarily defined electrical potential function with ease.

As a starting point, we can try to emulate the results we obtained
for the finite square well using root finding with our adaptive ODE
solver. Rather than starting entirely from scratch let us use the ener-
gies found from the root search applied to the functions

	 f E a a� � � � � � � � �� � � �cos sin 0, � (11.38)

for the even parity states and

	 f E a a� � � � � � � � �� � � �cos sin 0, � (11.39)

for the odd parity states and plug those into our differential equa-
tion. Here we are assuming we do not know the form of the solution
of the wavefunction, instead, we are relying on our integrator to pro-
vide us with the answer. As such we need to provide our integrator
with a starting point. We could use the middle of the well where
we know from experience that even parity states have () 0xy ≠ and

() 0xy ′ = , and odd parity states have those relations reversed. We
would then integrate from the middle of the well to the left, and
then integrate from the middle of the well to the right to provide us
with the full solution. However, this relies on the knowledge of the
behavior of the wavefunctions in the well, which in general we do
not know, and in fact, is why we are using the solver in the first place.
We need a more general starting location.

We know that for any (arbitrary) potential the wavefunction van-
ishes to zero as we go deeper into a classically forbidden zone. Let
us choose a starting location, 0 x that is deep into the barrier, left of
the well, and integrate to the symmetrical position on the right of the
well. At the starting location, we can set

Computational Physics.Ch11.3pp.indd 242Computational Physics.Ch11.3pp.indd 242 1/4/2022 11:01:47 AM1/4/2022 11:01:47 AM

	 Advanced ODE Solver and Applications  •  243

	 ()0 0xy = . � (11.40)

It is also true that the derivatives of the wavefunction vanish
the deeper we penetrate the barrier. However, if we set ()0 0xy ′ = ,
we would obtain a solution that implied the wavefunction was zero
everywhere; we would have no particle in our system. Therefore, we
set ()0xy ′ to some small, positive value; positive because we know
that the probability of finding the particle in the barrier increases as
we approach the boundary with the well. So how do we choose the
magnitude of the starting differential? The answer is that the size
really does not matter from a qualitative point of view. All the size of
the differential at the starting point does is scale the numerical solu-
tion of the wavefunction. If we chose ()0xy d′ = and performed the
integration, then changed the value of ()0xy ′ to 5d, say, then our
wavefunction from this integration would simply be five times that
of the previous integration. The physically significant scale factor is
the one that normalizes the probability function such that

	 () () 1x x dxy y
∞

∗

−∞

=∫ � (11.41)

but as we are only interested in the qualitative results for this discus-
sion, that is another problem to solve elsewhere.

On a practical note, try not to start the integration too deep into
the barrier. You will find that if you do you then, even with values
of ()0xy ′ on the order of the machine precision, our adaptive step
integrator will not be able to cope with the change in nature of the
differential equation as we cross the boundary between the barrier
and the well. Not unless we relax the error tolerance significantly,
and this would then give us doubts about the validity of our numeri-
cal results. For a 10Å well, centered at the origin we found that a
starting point of 0 8 Åx = − was about as deep as we could go without
any difficulty (using double variables); here we set the derivative
equal to the error tolerance we used for the root search and integra-
tor, specifically 810− .

Figure 11.6(a) shows the results of the integration as discussed
above for the ground state function. We see that the regions I and II
seem to have been computed correctly showing the same qualitative

Computational Physics.Ch11.3pp.indd 243Computational Physics.Ch11.3pp.indd 243 1/4/2022 11:01:48 AM1/4/2022 11:01:48 AM

244  •  Computational Physics, 2/E

result as the root-finding function. But what is going on in region
III? We see that the wavefunction initially behaves as expected as
we enter the barrier but as we go deeper it blows up exponentially.
This anomaly can also be seen in the higher energy states. As we
are using a proven adaptive step solver with a low degree of toler-
ance (810−) then we can rule out numerical error as the cause. Also,
as the wavefunction behaved as expected in the other two regions
we can rule out programming error with some confidence (though
a check might be prudent in general). To gain further insight into
the cause of this unphysical behavior of the wavefunction let us per-
form the same integration in the reverse direction. That is, starting at

0 8 Åx = and integrating backward to 8 Åx = − . Here ()0xy ′ will now
be some small, negative value. The results of this reverse integration
are shown in Figure 11.6(b). Here we see the same problem but now
in region I, not region III. The fact that the backward integration
looks like a reflection in the vertical axis of the forward integration
lends credibility to our supposition that the programming is correct.
Clearly the direction of the integration affects the numerical solution.

FIGURE 11.6:  Results of the integrator: (a) integrating left to right; (b) integrating right to left.

Computational Physics.Ch11.3pp.indd 244Computational Physics.Ch11.3pp.indd 244 1/4/2022 11:01:48 AM1/4/2022 11:01:48 AM

	 Advanced ODE Solver and Applications  •  245

To answer that question, we look toward the general solution for
Schrodinger’s equation in the barrier regions, specifically in region
I we have

	 () x x
I x Ce Deb by −= + .� (11.42)

Thus, mathematically speaking, within the barrier the wavefunc-
tion consists of two exponential terms; one grows while the other
decays. Recall that we set D to zero using a physical argument based
on the results of observation and experiment. Thus, we assumed
the wave function had the form xCeb only. However, mathematical
equations tend to be oblivious to our physical reasoning. What does
this mean for our integration? Let us consider the first integration.
Here we progress the solution forward from a negative value of x
such that in region I the magnitude of x decreases. This means that
our desired wavefunction term xCeb is the growth term, whereas the
unwanted term xDe b− is the decay term; take your time to verify this.
Hence, we are integrating into the direction where the unwanted
term decays.

In region III of the forward integration, we start at a positive
value of x, namely the well border, and progress from there such
that the magnitude of x increases. From symmetry arguments, the
general solution to Schrodinger’s equation for region III is the same
as for region I (with a coefficient sign reversal for odd parity wave-
functions). In this case, the desired solution is the xDe b− term and
the unwanted term is the xCeb . In other words, our desired solution
decays while the unwanted term grows. Hence, we have identified
the cause of our problem. We can apply similar arguments to the
backward integration and find that while the unwanted term decays
in region III, it grows in region I. The reason why the unwanted
terms exist in the first place is because of the slight imprecision in
the calculation of the energy eigenvalue. Even though we have cal-
culated it using a root searching algorithm to a precision of at least
the order of 810− it is not an exact value, and the coefficient of the
unwanted term is not exactly zero, but some minute yet finite num-
ber. However, the exponential term grows rapidly with x; exponen-
tially in fact! Eventually, there will come a point where this small
coefficient multiplied by the exponential growth factor will become
the dominant term and cause our solution to blow up where we
would expect it to decay.

Computational Physics.Ch11.3pp.indd 245Computational Physics.Ch11.3pp.indd 245 1/4/2022 11:01:49 AM1/4/2022 11:01:49 AM

246  •  Computational Physics, 2/E

The remedy then is to always integrate from a classically for-
bidden region toward a classically allowed region. In this way, any
unwanted solution will decay, while the desired solution grows. For
any symmetrical potential, this is particularly easy as we can simply
integrate from the left of the well to the middle of the well for vari-
ous energies. We find the eigenvalue by finding the energy E that
satisfies

	 ()0, 0x Ey =′ = , � (11.43)

for even parity wavefunctions, and

	 ()0, 0x Ey = = ,� (11.44)

for odd parity wavefunctions. The rest of the wavefunction will just
be the mirror image of that calculated reflected in the vertical axis at
the middle of the well; see Figure 11.6.

A slightly better way of searching for the eigenvalue, in that it
removes the ambiguity in the choice of ()0xy ′ , is to search for the
energy that satisfies the logarithmic derivative being zero, that is

	 ()
()

0

,
0

,
x

x E

x E

y
y

=

′
= , � (11.45)

for even parity wavefunctions, and the inverse of this for odd parity
wave functions.

Be aware that although useful for instruction, symmetric poten-
tials rarely arise in real quantum mechanical systems, and as such
will not contain pure even and odd parity wavefunctions. However,
the general strategy of solution still applies; choose a matching point
in the classically allowed region, that is, the “well”; integrate up to
this point from opposite sides in the classically forbidden regions,
and compare the logarithmic derivative at the matching point. Math-
ematically, we find the energy eigenvalues that satisfy

	 ()
()

()
()

, ,
, ,

m m

L R

L Rx x x x

x E x E

x E x E

y y
y y

= =

′ ′
= , � (11.46)

where Ly is the numerical solution for the wavefunction integrated
from the left to the matching point mx , and Ry is the numerical solu-

Computational Physics.Ch11.3pp.indd 246Computational Physics.Ch11.3pp.indd 246 1/4/2022 11:01:49 AM1/4/2022 11:01:49 AM

	 Advanced ODE Solver and Applications  •  247

tion for the wavefunction integrated from the right to mx . As the
notion of pure even and odd states does not apply Equation (11.46)
holds for any energy eigenvalue. Note that it may happen that at
the matching point we choose the wavefunction tends to zero and
we end up with a singularity in the calculation of the logarithmic
derivative. Is there any location within the domain of interest where
we know a wavefunction must have some finite value, regardless of
the shape of the well?

The source file numerov_ocv.cpp contains code that attempts to
implement the general strategy we have just discussed. In this case,
we are using the Numerov class that implements the eponymous
algorithm to solve Schrodinger’s equation for any arbitrarily defined
potential. The derivation of the Numerov algorithm is left as an exer-
cise for the reader; there are many references in the literature and
online. The matching point in this program is determined from the
potential and is defined as the point where the energy of the particle
crossed the potential barrier. Know that you can swap the Numerov
class for the RKF45 class but setting the RKF45 class to produce
results at a specified target (so we hit the matching point).

So, there you have it, we have robust ODE solvers that can tackle
problems on the scale of the universe to the scale of the quantum to
a user-defined precision.

EXERCISES

11.1.	 Investigate the Van der Pol oscillator further through
variation of the damping parameter m and the initial
conditions. Can the Van der Pol oscillator ever become
chaotic?

11.2.	 Establish a relationship between the driving frequency
and the period of oscillations for a periodic, that is, not
chaotic, driven pendulum for set values of q and b. Is
there a more general relationship as we vary q and b, but
still within the non-chaotic region?

Computational Physics.Ch11.3pp.indd 247Computational Physics.Ch11.3pp.indd 247 1/4/2022 11:01:50 AM1/4/2022 11:01:50 AM

248  •  Computational Physics, 2/E

11.3.	 Duffing’s oscillator is described by the differential
equation

 x x x x t� � � � � �� � � � �3 cos

	 where α through d are constants, and w is the frequency
of the driving force. Investigate the motion of the
oscillator for different relative values of these constants.

11.4.	 Find the initial values for q and v for our spaceship to
loop the Moon and return to Earth.

11.5.	 Model the motion of a rocket that is launched from the
surface of the Earth and establishes a stable orbit at
500 km above the Earth’s surface. To produce the thrust
the rocket burns fuel and propels the gases out of its rear
end, such that the mass of the rocket changes with time.
Additionally, the density of the atmosphere is a function
of height above the Earth’s surface and this should be
considered.

11.6.	 Write a program to simulate a journey to our next planet
outward in the solar system, Mars. How precise should
we make our calculations?

11.7.	 In realistic, solid-state quantum well devices the poten-
tial walls of the well are better modeled by a graduated
slope rather than an abrupt “cliff edge.” Investigate the
effect of the steepness of the sloped walls on the bound
energy states of the well.

11.8.	 Investigate the bound states of the potential centered on
the origin, defined by

()
1

2

,
,

0,

V x b

V x V a x b

x a

>
= < ≤
 ≤

	 where 2 1 0V V> > and b a> . Comment on the states
with energy eigenvalues greater than 1V but less than 2V .
(Tip: It would be extremely useful to sketch this potential
before trying to solve it computationally).

Computational Physics.Ch11.3pp.indd 248Computational Physics.Ch11.3pp.indd 248 1/4/2022 11:01:56 AM1/4/2022 11:01:56 AM

	 Advanced ODE Solver and Applications  •  249

11.9.	 Asymmetrical anharmonic potential in one dimension
can be written as fourth-ordered polynomial such that

V x x x� � � �� �4 2.

	 Find the first four energy eigenvalues for � � 0 5. and
1.0b = to at least 6 significant figures of accuracy.

Study the effect of different values of α and b on these
energy eigenvalues. You should plot ()V x with the
wavefunctions computed, offset by the corresponding
energy eigenvalue. Investigate the effect on the
wavefunctions as we add odd powers of x to the potential.
Note that when � � 0 we have a harmonic oscillator.

Computational Physics.Ch11.3pp.indd 249Computational Physics.Ch11.3pp.indd 249 1/4/2022 11:02:01 AM1/4/2022 11:02:01 AM

Computational Physics.Ch11.3pp.indd 250Computational Physics.Ch11.3pp.indd 250 1/4/2022 11:02:01 AM1/4/2022 11:02:01 AM

CHAPTER 12
HIGH-PERFORMANCE
COMPUTING

In the other chapters of this book, we have only looked at get-
ting algorithms to work as computer code. In this chapter, we look at
getting algorithms to work quickly or efficiently—these are not nec-
essarily the same thing. To that end, this chapter explores two meth-
ods to achieve high-performance computing. Firstly, loop unrolling
and blocking that attempts to make efficient use of the computer’s
memory architecture and, secondly, parallelism that attempts to uti-
lize the total potential computing power of multiple-core processors.

This chapter will discuss some of the fundamental ideas of mem-
ory structure and memory access but is by no means exhaustive or
comprehensive. As with all things in computing, there are levels of
abstraction, the more levels you peel away the more technical (and
usually complex) the ideas get. At the core of high-performance
computing is understanding the “mechanics” of the underlying
hardware. This chapter will show examples of both the OpenMP
extension to C++ and the modern C++ API for threaded applica-
tions. You will find the code for this chapter in its own subdirectory
of the “progs” directory names “high_perf_progs.”

It is worth pointing out here that any third-party library you use,
that has been professionally developed, will highly likely have taken
the ideas discussed here on board and have developed highly opti-
mized methods for a wide variety of problems. In trying to develop
your own “high performance” methods you would very much be

Computational Physics.Ch12.2pp.indd 251Computational Physics.Ch12.2pp.indd 251 12/30/2021 12:30:39 PM12/30/2021 12:30:39 PM

252  •  Computational Physics, 2/E

reinventing the wheel, only yours would likely be cuboid in shape
and made of concrete. Still, these ideas are good to know where per-
haps third-party libraries are not available, or you are working with
an unusual environment that requires hand-crafted optimizations.

12.1  INDEXING AND BLOCKING

In this section, we will discuss in more detail the underlying
structure of your computer and how we as programmers can make
the best use of that structure. Note that the majority of what we
will discuss can be handled automatically by most modern compil-
ers. However, it is always prudent to be aware of how a computer is
put together and how it operates to ensure the best possible perfor-
mance the hardware can manage, or at least know how not to make
fundamental mistakes.

12.1.1  Heap and Stack
The memory that a program uses is typically divided into a

few different areas, called segments, that exist in RAM when the
program is executed. The code segment is where the compiled pro-
gram, or binary, sits in memory. The data segment is where explic-
itly initialized global and static variables are stored. The heap is the
memory segment where dynamically allocated variables are stored.
And the call stack, where function parameters, local variables, and
other function-related information are stored. Here, we focus on
the heap and the call stack where most of the interesting mechanics
occur during the operation of a program.

The heap segment (or the “free store”) keeps track of memory
used for dynamic memory allocation. For example, in C++, when
you use the new operator to allocate memory, this memory is allo-
cated in the process’s heap segment. Similarly, Fortran has the vari-
able attribute allocatable that will store the variable on the heap.
Regardless of the programming language, in general, you do not
have to worry about how this memory is allocated to the process.
However, it is worth knowing that sequential memory requests in
source code may not result in consecutive addresses being allocated
in computer memory. In both C++ and Fortran arrays allocated on

Computational Physics.Ch12.2pp.indd 252Computational Physics.Ch12.2pp.indd 252 12/30/2021 12:30:39 PM12/30/2021 12:30:39 PM

High-Performance Computing  •  253

the heap are stored in an unbroken (contiguous) memory. When a
dynamically allocated variable is deleted, the memory is returned
to the heap ready to be reallocated on a future request. Whenever
a process terminates, either normally or abnormally, any memory
it had allocated on the heap is cleaned up by the operating system.

The heap has advantages and disadvantages:

●● Allocating memory on the heap is slow compared with the stack.

●● Allocated memory persists until it is specifically deallocated
or the application ends (a “memory leak” is heap-allocated
memory that has not been properly deallocated during pro-
gram operation).

●● Accessing a variable that has been dynamically allocated on
the heap is generally slower than accessing a variable directly
on the stack.

●● Arbitrarily large data structures can be allocated on the heap
(up to the system limits).

●● The heap can fragment, that is pockets of free memory can
occur between allocated memory blocks as a program runs.
A program may run out of memory even though the com-
bined size of the free “fragments” could accommodate the
memory allocation request.

The call stack, or more simply the stack, is a special region of
your computer’s memory that stores temporary variables created by
each function (subroutine) call. The stack is a “LIFO” (last in, first
out) data structure, that is managed by the operating system.

Every time a function is called during the program operation,
it is “pushed” onto the stack, we refer to this as a stack frame. In C/
C++ a stack frame consists of:

●● the memory address of the instruction following the function
call referred to as the return address;

●● the function arguments;

●● the memory required to store any local variables (this is
determined at compile time).

Computational Physics.Ch12.2pp.indd 253Computational Physics.Ch12.2pp.indd 253 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

254  •  Computational Physics, 2/E

Stack frames will contain similar data for other programming
languages. Once a function exits the stack frame is “popped” off the
stack, freeing the memory used for arguments and local variables,
and the return address is used to resume execution after the func-
tion call. Thus, as a program executes the stack grows and shrinks as
functions are called then return. Typically, we picture the stack as
growing away from memory address “zero” in a downward fashion,
but in some systems, the stack is more accurately seen as growing
toward memory address “zero” in an upward fashion.

When function calls are nested, a function call contains a func-
tion call that contains another function call and so on, each new call
will allocate the required memory for a corresponding stack frame
and we say the frames are “stacked”. The execution of those func-
tions remains suspended until the very last function returns its value.
At that point, the frames will “unstack” or unwind in the correct
order. This makes it simple to keep track of the stack, as freeing a
block from the stack is nothing more than adjusting a value con-
tained in a CPU register, sometimes referred to as the stack pointer.

As the stack is a limited block of memory, you can cause a stack
overflow by calling too many nested functions, for example, many
recursive function calls, or allocating too much space for local vari-
ables. Often the memory area used for the stack is set up in such a
way that writing beyond the given extent of the stack will trigger a
trap or exception in the CPU. This exceptional condition can then
be caught by the operating system which terminates the process and
displays an error message to the user. The size of the stack is operat-
ing system dependent.

In a multi-threaded environment, each thread will have its own
independent stack, but they will typically share the heap.

To summarize the stack:

●● the stack grows and shrinks as functions are called then return

●● local variables are allocated and freed automatically

●● the stack has size limits

●● stack variables only exist while the function that created
them, is running

Computational Physics.Ch12.2pp.indd 254Computational Physics.Ch12.2pp.indd 254 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  255

Because the stack is relatively small, it is generally not a good
idea to do anything that eats up lots of stack space. This includes
passing by value or creating local variables of large arrays or other
memory-intensive structures.

12.1.2  Computer Memory
As discussed in the introductory chapter, each level of computer

memory can be thought of as a huge filing cabinet, each draw repre-
senting a memory address in which we can store one word (typically,
a word is 4 bytes, or 32 bits long). The memory can only be accessed
one draw or address at a time and the current address is referenced
by the system’s address pointer, generally referred to as the program
counter. To change from one address to another the program coun-
ter can either step from one address to the next or can be instructed
to jump. Think of it like changing the channel on your TV using
the channel + and – buttons shifting to adjacent channels or input-
ting the number directly and jumping to that channel. Computer
memory is commonly referred to as being contiguous; the address
locations share a common border.

We also discussed in Chapter 1 that computer memory is split
into a hierarchical system whereby the smallest memory, the CPU
cache, is the fastest, and the largest memory, the storage device, is
the slowest. RAM exists between CPU cache levels and storage.
When operating, the CPU will ask for the variables that require
work. If the variables are not already in cache a signal is sent to fetch
them from RAM. If the variables are not in RAM, then a signal is
sent to fetch them from the storage device. The variables are then
read and copied from storage into RAM, then read and copied in the
CPU cache levels. Once in cache the CPU performs the required
operation and writes the result and/or changes to the variables back
to RAM, which in turn writes those changes back to the storage
device. Each one of these stages requires at least one clock cycle to
complete, and accessing storage may require several hundred. Note
that those variables will now persist in RAM (the stack and heap)
and the CPU cache levels until they are flushed by the system. This
persistence allows the CPU quicker access to those variables should
they be required again soon.

Computational Physics.Ch12.2pp.indd 255Computational Physics.Ch12.2pp.indd 255 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

256  •  Computational Physics, 2/E

Typically, programs need to work on arrays and will consecutively
work on those arrays. For example, let us say we have two vectors, a,
and b of length N that require addition. Code is written as a loop that
iteratively steps through the arrays one element at a time, perform-
ing the addition. It would be inefficient if the fetch instruction only
brought up the two variables from storage that required immediate
addition; the fetch instruction would have to be issued N times, that
is, the storage device must be accessed N times. Far more efficient
would be to bring up a block of variables at a time, the length of
which we referred to as the cache line, temporally storing them to
RAM then the cache, and if N is sufficiently large, filling the cache
levels. Subsequent array variables can now be accessed quickly with
fewer calls made to storage. The number of fetch instructions sent to
access the storage device is now approximately the ratio of the array
length to the cache line. You may therefore think that the best cache
line would be the length of the array, however, it is limited by the
amount of data that can be passed via the memory buses, typically
gold alloy wires, that connect the different memory components.
Generally, the cache line is some fraction of the size of the level 1
cache and will be some integer multiple of eight. For clarification,
the cache line is measured in bytes rather than the actual number of
variables contained in the line as of course, the variables could be of
different types. For example, if the cache line were thirty-two bytes
long this would be enough to store eight, four-byte words (single
precision) or four, eight-byte words (double precision).

This idea of blocks of memory affecting the performance of your
computer is one you may have come across before if you have ever
defragmented your hard drive to make it run quicker. Programs
store variables and data on the HDD in blocks of memory that are
accessed when that program is run. During the lifetime of your
computer, those blocks become broken and jumbled up, in tech-
nical parlance fragmented. This has a detrimental effect on your
computer because the CPU must issue more fetch commands to
receive the correct pieces of memory. By defragmenting the HDD
those blocks reform into unbroken pieces of memory, which helps
improve the performance of your computer. It also has the second-
ary effect of freeing up some storage space. If you were born after
the year 2000 then you likely have no idea about defragmenting a

Computational Physics.Ch12.2pp.indd 256Computational Physics.Ch12.2pp.indd 256 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  257

hard disc drive. SSDs work differently from disc drives and do not
require defragmenting.

Of course, while the CPU is busy performing the required
operations on the variables now stored in level 1 cache the other
components do not have to be idle. Other blocks of memory can
be fetched up to fill level 2 cache, and once full, begin to fill RAM.
As the blocks of memory are finished with, they are written back
down the memory hierarchy, flushed from the cache, and fresh ones
moved into level 1 cache to be worked on. This process is known as
pipelining and is continuously working away in the background dur-
ing the operation of your computer, making it incredibly efficient
at number crunching. Normally this efficiency is implicit; the com-
puter just does its thing. However, a computer is only as clever as the
program telling it what to do. Sometimes the requests we make of
the computer are, to put it technically.

12.1.3  Loopy Indexing
Imagine we are adding two exceptionally large matrices and

storing the result in a third matrix of the same size. First, how do
the elements of a matrix get stored in computer memory? A matrix
is a two-dimensional array, computer memory is, in essence, a one-
dimensional array. We must resize the matrix into one dimension.
There are two solutions, one is to store the matrix in a column-major
format that is, the order they appear in the columns, the second is to
store the matrix in a row-major format that is, the order they appear
in the rows. In either case, an n-by-m matrix essentially becomes an
(n m×)-by-one vector in computer memory.

For arguments, let us suppose we store a two-dimensional matrix
in column-major format, and the elements are stored in an unbro-
ken block of memory (this is how Fortran stores matrices). How
then do we write code to efficiently access and sum the elements as
they are stored in computer memory? In this case, it is most efficient
to access and sum elements as they are laid out in memory, that is
keeping the column index constant as we increment the row index.
In this way we take advantage of the values fetched in the cache line
from memory and the CPU can spend most of its time doing the
useful work of summing elements and storing them to the relevant
location in the resultant matrix. Now imagine we reverse the order

Computational Physics.Ch12.2pp.indd 257Computational Physics.Ch12.2pp.indd 257 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

258  •  Computational Physics, 2/E

of loops; row index constant while the column index increments.
This change does two things. Firstly, the program counter now must
jump over the total number of rows of the matrix to find the next
elements to add. Secondly, and most detrimentally, the remaining
variables that are fetched in the current cache line are immediately
redundant; they are flushed from cache memory before becoming
useful as the matrix is larger than the cache size. In essence, we are
forcing the CPU to cache only one element at a time for each matrix
involved in the sum.

The source file loop_index_order.cpp highlights the importance
of knowing how the underlying data structure is arranged in com-
puter memory. Our representation of a two-dimensional matrix in
code is a one-dimensional array of length equal to the number of
elements in the matrix, and we have assumed a row-major format.
We create two 1000-by-1000 matrices, that is, one million elements
each, then sum them together and store the result in a third matrix
of the same size. The sum is performed using nested loops, row
index, and column index, and we show that the order of these loops
is important by timing their execution. Notice that this is somewhat
contrived as we could have simply looped over a single index (the
index computation is the same for each matrix involved) but that
would have missed the point of this section.

On a practical note, it is always a good idea to repeat timing
measurements: firstly, the system clock may not have a very high
resolution such that very fast operations may not be timed at all
accurately; secondly, the machine could have been doing something
else while you were running your test thus skewing the results; third
you can attempt to measure each individual run (bearing in mind
the first point) thus providing you with the data to compute statisti-
cal analytics (mean, standard deviation, etc.). With an eye on the
second point, it is usually a good idea to minimize the number of
other programs running on your system such that they do not inter-
fere with the timing results. Also, beware of compiler optimizations.
Usually, compiler optimizations are desired but when trying to time
programs they can be a nuisance. This is especially true when per-
forming repeat loops that, in essence, do nothing useful from the
compiler’s point-of-view, and may get removed in the executable

Computational Physics.Ch12.2pp.indd 258Computational Physics.Ch12.2pp.indd 258 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  259

code (for optimization levels greater than zero). The usual strategy
is to make the code do some sort of small modification to the data
within the repeat loop, and whose execution time is insignificant
when compared to the operation you are trying to time.

Another thing to bear in mind when producing timing results
for a test program is that not all computers are equal. Comparing
algorithms by their execution time on the same machine is okay but
to do so against a different machine is unfair. Instead, we should
quote performance as the number of floating-point operations per
second. For a single thread of execution, this can be approximated
by the execution time multiplied by the CPU frequency. This does
not account for differences in memory architecture: cache levels;
RAM; storage device(s), so we should still be cautious.

If you are building programs with high performance in mind,
then these kinds of memory structure considerations should be par-
amount. You should also consider how to keep total memory usage
to a minimum. For instance, in the matrix addition example above
do we need to keep the source matrices in memory when all we want
is the resultant addition?

12.1.4  Blocking
Matrix multiplication is a little a more involved than matrix addi-

tion. Matrix multiplication is defined elementwise by:

	
1

m

i j ik k j
k

c a b
=

=∑ � (12.1)

for each i and j, where m represents the inner dimension of the
matrix product. For example, matrix A with dimensions n-by-m,
matrix B with dimensions m-by-p, resulting in matrix C with dimen-
sions n-by-p. Note that there are three indices namely i, j and k.
Clearly, for large matrices (where the three matrices combined are
larger than half the cache size) memory access will become a bottle-
neck for matrix multiplications. It can be shown that for matrices
of the dimensions shown in Equation 12.1 the number of floating-
point operations required to multiply them is 2nmp np− . Thus, for
large matrices, the number of floating-point operations increases as

Computational Physics.Ch12.2pp.indd 259Computational Physics.Ch12.2pp.indd 259 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

260  •  Computational Physics, 2/E

()3N , where N is the largest dimension. This is for dense matrices,
that is where most of the elements are non-zero. For sparse matri-
ces where most of the elements are zero, the matrix multiplication
algorithm can be modified to remove unnecessary multiplications by
zero. Sparse matrices are beyond the scope of the discussion in this
section, but you should be aware that they occur often in numerical
analysis and require special treatment. We will continue the rest of
this discussion assuming we are dealing with dense matrices.

The first step in writing a more memory-efficient algorithm
for matrix multiplication is to realize we can separate the matrices
into sub-matrices of block rows or block columns. We then treat
the whole matrix multiplication as performing multiplications using
these strips. The strip width is the number of rows or columns con-
tained within the strip and can be set so that the total amount of
memory consumed when using the strips is equivalent to the cache
size. However, there is a flaw in our strategy here. As the size of the
matrix increases the width of our strips necessarily reduces to main-
tain a cache block size. Eventually, a matrix of sufficient size will
make the strip width equal to one and we have lost any performance
improvement our strategy might have afforded us. Therefore, we
need to generate a sub-matrix whose size is independent of the size
of the total matrix, and equivalent to or less than the cache size. Tak-
ing the lead from the strip idea, whereby we divided the matrix along
one of its dimensions, we now divide along the second dimension
thus forming blocks. The easiest way of thinking about performing
matrix multiplications with blocks is to treat the blocks as if they
were elements. The row by column process still applies. Figure 12.1
illustrates this block multiplication process. Here the multiplication
operations in the brackets can be done in any order, which is use-
ful to know for parallel programming which we will discuss shortly.
Using this process, we can bring up two blocks into cache, one each
from matrix A and B, perform a normal matrix multiplication, and
store the result in the corresponding block of matrix C. The notation
we will use for the block, sub-matrices will be Anm where n is the
block row index and m is the block column index.

Computational Physics.Ch12.2pp.indd 260Computational Physics.Ch12.2pp.indd 260 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  261

FIGURE 12.1:  Block matrix multiplication. The bracketed terms are matrix
multiplications in of themselves.

The idea with memory-efficient programs is to ensure that the
relevant variables, that is the variables we wish to work on, persist
in the higher levels of memory (cache and RAM) until they have no
further use and can be flushed. Looking more closely at the multi-
plication process we note that the first block of matrix A is only ever
involved with the first block row of matrix B. In fact, only the first
block column of A is involved with the first block row of matrix B. It
is easy to extend this to the k th block column of A and the k th block
row of B. This is a consequence of the inner product nature of matrix
multiplication. Elementwise we must have ij ik kjc a b= thus similarly
for our sub-matrix blocks, we must have ij ik kjC A B= . Here we are
using the Einstein notation that repeated indices are summed over.
Thus, we might proceed by keeping A11 in cache, while we iterate
through the first block row of B. Then move to A21 and repeat the
iteration through the first block row of B. We continue in this fashion
until we have completed the first block column of A. In this way, so
long as we have chosen the correct block size, the first block row of
B will be kept in level 2 cache while the calculations are performed.
Then we move to the second block column of A and the second
block row of B. We continue with this pattern until the whole matrix

Computational Physics.Ch12.2pp.indd 261Computational Physics.Ch12.2pp.indd 261 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

262  •  Computational Physics, 2/E

has been covered. So long as we keep the bookkeeping correct the
order of the sub-matrix multiplications is unimportant.

There are other ways to improve the speed of matrix multipli-
cations. Strassen’s algorithm is one of them. Strassen’s algorithm
partitions the matrices into sub-matrices then, with a clever bit of
manipulation, reduce the number of sub-matrix multiplications
required to get the correct result by one. The sub-matrix multiplica-
tions are swapped for matrix additions and subtractions. Applying
this idea recursively to the sub-matrices we can significantly reduce
the required number of operations for matrix multiplication (for
large matrices). This recursion can continue until the sub-matrices
degenerate into numbers, however, in practice, it continues until the
sub-matrices are of such size that the naïve matrix multiplication
algorithm becomes more efficient than continuing the recursion. We
already know that the runtime associated with the naïve approach to
matrix multiplication is proportional to ()3N , where N is the size
of the matrix (assumed square). Strassen’s algorithm provides a run-
time that is proportional to ()2.8074N . It is worth noting that Stras-
sen’s algorithm is less numerically robust than the naïve approach as
it involves the subtraction of sub-matrices to compute. If the cor-
responding elements of those sub-matrices are sufficiently close in
value, then this will lead to unit round-off errors in the result.

12.1.5  Loop Unrolling
Another way of squeezing performance out of a computer pro-

gram is to unroll incremental loops. That is instead of incrementing
the loop index by one on each iteration we increment it by a larger
integer value and adjust the contents of the loop appropriately. The
increment of the loop is referred to as the stride. For instance, if we
were summing the elements of a vector, then normally the stride is
one and we would write the loop as:

for (int i = 0; i < v.size(); ++i) {
 sum += v[i];
}

Computational Physics.Ch12.2pp.indd 262Computational Physics.Ch12.2pp.indd 262 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  263

However, if we change the stride to two then we write:

for (int i = 0; i < v.size(); i += 2) {
 sum += v[i];
 sum += v[i + 1];
}

Here we increment the array index i by two. This has the effect
of reducing the number of instructions spent controlling the loop,
such as pointer arithmetic and testing for the end of the loop. In this
way, more time is spent on the calculations we require. It has the
additional benefit of hiding inherent latencies, especially the delay
in reading variables from memory. Notice that should the size of
the vector not be multiple on the stride length then some additional
code is required to deal with the remaining elements.

Manual loop unrolling is only advised if we want to squeeze
every bit of performance out of a particular program. As you can
imagine the process becomes rapidly tedious as we try to extend the
unrolling and has diminishing returns in terms of runtime. Modern
compilers are designed to optimize the binary code produced from
your source code and can apply loop unrolling automatically.

12.2  PARALLEL PROGRAMMING

Multiple-core machines are now ubiquitous. They offer a means
of performing computations in parallel rather than in sequence. For
some problems making the computations performed in parallel is
rather straightforward, performing a direct numerical quadrature,
say, or summing the elements of an array. For other problems-
making algorithms, the parallel is not quite such a simple task, for
instance, matrix factorizations or some iterative methods such as
Successive Over Relaxation. The difficulties tend to arise from inter-
dependencies between the different subroutines used to solve the
problem or the elements of the array themselves.

No program can run faster than the longest chain of dependent
calculations, known in network theory as the critical path. As an

Computational Physics.Ch12.2pp.indd 263Computational Physics.Ch12.2pp.indd 263 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

264  •  Computational Physics, 2/E

analogy consider making a cup of tea. If you want to do this effi-
ciently that is, in the quickest time possible, then you would fill and
turn on the kettle first. Then as the water boils you would find a mug,
put a tea bag in it, fetch the milk, and probably still have time before
the water finishes boiling. Once the water has boiled you pour it over
the tea bag in the mug, allow it to brew, extract the bag, and add the
milk. Note that the critical path here is filling the kettle, waiting for
it to boil, adding the hot water, allowing it to brew, extracting the tea
bag, and adding the milk. Each of these tasks is dependent on the
last and therefore cannot be done in parallel. Strictly speaking, this
is task parallelism rather than a true analogy of multiple-core paral-
lelism; which would be several people making a single cup of tea at
the same time.

This section does not give an in-depth study of parallel com-
puting but should provide the reader with practical instruction, and
hopefully draw your interest for further study in the topic.

12.2.1  Many (Hello) Worlds
The OpenMP (OMP) directives do not constitute a new lan-

guage rather an extension to the C++ we already know. However,
just like learning a new language, we should still start with a rela-
tively basic program to get used to the syntax. The file omp_hel-
loworld.cpp contains the program code that will output to screen
the text hello world and from which processor (thread) the message
is coming from. Assuming you have a process capable of produc-
ing N logical threads then you should receive N hello-world mes-
sages. Notice that the program uses the C function “printf” to output
the messages. Instead, try using the C++ output stream “cout” to
achieve the same result. What happens and why?

If you read the Makefile for the high-performance programs
you will notice that for your program to use the OMP pre-processor
directives you must supply the option “-fopenmp.” This instructs the
compiler to parse all the “#pragma” directives as OMP instructions.
If you wish to use any actual OMP functions then you must include
the relevant header file, libomp.h, and link in the corresponding
library, omp. Where these are located is OS-specific but are gener-
ally in the usual places.

Computational Physics.Ch12.2pp.indd 264Computational Physics.Ch12.2pp.indd 264 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  265

Once you have successfully compiled and run the program you
should have received the appropriate number of hello worlds to your
screen, plus the processor identification number the message came
from. Note that the processor numbering starts from zero. If you are
unsure of the number of processors on your system the omp hello-
world program will report the maximum number of logical cores on
your system. The number of logical cores may be different from the
number of physical cores due to what is called hyper-threading tech-
nology on Intel processors. Essentially, hyper-threading allows one
physical core to perform two tasks in parallel, up to a point. Thus,
an Intel, quad core processor will have a maximum of 8 logical cores
and consequently a maximum of eight threads. However, if the oper-
ating system is unaware of the hyper-threading technology (such as
using Cygwin through Windows) then it will see the threads as indi-
vidual, physical cores. For instance, if you have an Intel i7 processor
that is quad core, you may see an eight for both the maximum num-
ber of threads available and the number of cores on your system.
For AMD processors the maximum number of available threads will
be equivalent to the number of cores your processor contains.

Returning to our parallel hello-world program let us have a look
at the new syntax we have introduced. It is rather straightforward in
that we declare a parallel section in our using the "#pragma omp
parallel" pre-processor directive, that can be scoped using the
curly brace delimiters. Note that we need an extra include to get
access to the OMP functions but in general this is not necessary.

As an aside, if you think of the computational work being done
as a line, or thread, on a piece of paper, as the code enters a paral-
lel region the thread separates, or forks, into several threads equal
to the number of processor cores on your machine (here we ignore
the hyper-threading of Intel’s processors), performing the computa-
tions simultaneously. Each separate thread is being worked on by
a separate core and cores do not swap threads (unless specifically
programmed to do so). After the parallel region, the threads are
joined and the work continues on the master thread (or core), which
is identified as thread zero.

Now that we have seen how to set up a parallel section using
OMP let us apply that to something more mathematical.

Computational Physics.Ch12.2pp.indd 265Computational Physics.Ch12.2pp.indd 265 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

266  •  Computational Physics, 2/E

12.2.2  Vector Summation
Let us start with the relatively simple task of summing the ele-

ments of a vector; this has used within statistics for finding the
mean value of a data set, say. On a single-core serial processor, we
would loop through the entire array incrementing the index by one
and updating the sum. Usually, we call this operation accumula-
tion, indeed the standard template library for C++ has function,
std::accumulate, that performs this task. For a parallel architecture,
we can split the entire vector into equally sized chunks and perform
the summation on each chunk simultaneously. To obtain the sum
for the entire vector we would then add up the contributions from
each chunk on a single thread. If we define Ts as the time taken to
perform the summation on a single core, in a serial manner, then
we might expect the time taken for the code to run in parallel to be
Ts /P, where P is the number of threads used. This is known as the
ideal case; the speedup in program runtime is directly proportional
to the number of threads used. In general, the speedup is given by
the ratio Ts /TP, where TP is the time taken to run the code in parallel
on P threads.

For the sake of rigor, the serial time TS is not the same as T1.
That is, TS is the time taken to perform the code as normally writ-
ten, whereas T1 is the time taken to perform the code where we
have spawned a parallel region using only one thread. Typically,
T1 > TS by a small amount as we have an overhead associated with
setting up the parallel region. That said sometimes the “serial” code
may be threaded by the operating system automatically meaning
that our speedup measurements might be skewed if we assume the
computations are being carried out on a single core. So long as we
are clear about which measurement of the “serial” time we are tak-
ing we should not run into problems. For the rest of this chapter, we
will take the serial time as T1. Also, note that an even more rigorous
treatment of speedup is to consider the number of floating-point
operations per second (flops) rather than runtime as the flops mea-
sure is independent of the computer architecture used. For the pur-
poses of our discussion, we will stick with the runtime as a suitable
measure of performance.

Computational Physics.Ch12.2pp.indd 266Computational Physics.Ch12.2pp.indd 266 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  267

The file accumulate_ocv.cpp contains the source code to per-
form the vector summation in parallel. In fact, the OMP parallel
section resides in phys_accumulate.h as we have declared the “accu-
mulate” function as a template function. This means we can apply
the “accumulate” function to vectors containing any type that can be
summed. Note that the function will return the type used to initial-
ize the “sum” variable. You will also find in that header file an imple-
mentation of a parallel “accumulate” function using just the C++
language. It uses several advanced C++ constructs that make the
code somewhat difficult to read and certainly less elegant than the
OMP version. In essence, the OMP version hides the details of
the parallelism in the directive and, consequently, makes it easier
to read. However, the entirely C++ version requires no additional,
external software to work.

Focusing on the OMP version, we start the directive as we did
in our hello-world parallel program, but we specify that it is the fol-
lowing for loop that we want to be done in parallel. The reduction
clause allows the variable sum to be updated as the addition of each
thread’s local value of sum on the master thread. To clarify, each
thread reads the value of sum from the (thread) shared memory,
creating a local copy on which to work. Without the reduction clause
once the work has been completed each thread writes its value of
sum back to the shared location. This means that the updated value
of sum would be whichever thread finished last. With the reduction
clause each thread, once finished, passes its local value of sum to the
master thread which then combines them as specified by the opera-
tor argument in the clause; in this case, it adds them.

Compile and run accumulate_ocv.cpp. You may want to modify
the code to display the speedup, T1 / TP, of the parallel sections rather
than the execution time. Did you obtain the speedup you expected?
Was it anywhere near the ideal case? On an AMD, quad core proces-
sor I found the speedup (TS / T4) to be around 3.7. On an Intel, quad
core processor using hyper-threading technology running the same
code, I found that the best-observed speedup (TS / T8) was around
5.1. (Remember that both these processors have four physical cores
thus hyper-threading does offer a performance benefit, but not as
much as actually having eight physical cores.)

Computational Physics.Ch12.2pp.indd 267Computational Physics.Ch12.2pp.indd 267 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

268  •  Computational Physics, 2/E

In its current, default state the OMP directive will divide the
iterations among the threads equally, and where the size of the loop
is not exactly divisible by the number of threads the remainder gets
evenly distributed. This is called static assignment. We can change
this assignment through the use of a scheduling clause. The syntax
for this clause is relatively simple and all we do is add schedule (type,
chunk) after the OMP for the directive. Here type is either static,
dynamic, guided, or auto, and chunk is an integer value that has
slightly different meanings depending on the type used.

We have already seen that static assignment allocates all the
iterations to each thread before they execute at runtime, with the
assignment being divided equally among the threads by default. We
can change this behavior by specifying a chunk size. For instance, if
we keep the static schedule type and set the chunk size to one then
each thread gets one iteration to complete before being assigned
its next iteration; the stride pattern is the number of threads. In
dynamic assignment only some of the iterations are assigned to
threads before execution of the loop; the number being set by chunk.
Once a particular thread finishes its allotted iteration(s), it requests
another chunk of iterations from those that remain. If you were to
print out which thread did which iterations, you would find that the
assignment would be (somewhat) random from execution to execu-
tion. Guided allocates a large portion of iterations to each thread
dynamically, as above, but then decreases the portion size after each
successive allocation until it reaches a minimum size specified by
chunk. Auto allows the compiler to decide the best type and chunk
to use at runtime.

The “best” scheduling strategy is to ensure none of the threads
are idle during the parallel sections and that we make the most effec-
tive use of our parallel machine. Essentially, we are ensuring a uni-
form distribution of work across all threads. Add a schedule clause
to the OMP directive for the accumulated function and play around
with the scheduling clause to see if it affects the performance of the
program by any significant amount.

12.2.3  Overheads: Amdahl Versus Gustafson
Generally, we find that the improvement in performance due

to spawning a parallel region of code is limited by overheads.

Computational Physics.Ch12.2pp.indd 268Computational Physics.Ch12.2pp.indd 268 12/30/2021 12:30:40 PM12/30/2021 12:30:40 PM

High-Performance Computing  •  269

Overheads arise from several places not least the necessarily serial
portions of the code, and the communication (or message passing)
between threads. For instance, in our vector summation (accumula-
tion) example the reduction at the end of the procedure to obtain
the total for the entire vector must be done in serial on the mas-
ter thread. For all parallel regions of code there is one unavoidable
overhead; the time it takes to fork (create) and join (destroy) parallel
threads.

The point of increasing the number of threads used in a paral-
lel region of code is to improve the performance (runtime or flops)
of that region. A typical program has regions that are both paral-
lel and serial. As we increase the number of threads, the parallel
regions compute faster but the serial portions are unaffected. Thus,
the overall performance of the program is limited by the amount of
time it takes to compute the serial regions of code. This is Amdahl’s
law. We can formulate this law into an equation that states that the
speedup in a program is given by

	 ()
() ()

1

11

S S

P
S

T T
S P

T T
PP
bb bb

≡ = =
  − +− +  

� (12.2)

where β is the portion or fraction of the code that is or can be made
parallel. We can see this formulation makes sense in that with no
serial fraction of code (β = 1) the speedup is simply given by the
number of threads used in the parallel region (ideal case). Obvi-
ous but worth pointing out that when the code is completely serial,
β = 0, then there is no speedup, S(P) = 1. Figure 12.2 plots the
consequence of Amdahl’s law on the speedup of various programs
compared to the number of processors (threads) used. Each line
represents a program with different fractions of code that can be
made parallel and shown for comparison is the ideal case (β = 1).
These results seem quite pessimistic, where even a code with only
a 10% serial portion diverges significantly from the ideal case for a
relatively low number of processors. Eventually, for any code less
than ideal adding more processors fails to further improve the per-
formance. The situation is worse as we have not considered the over-
head due to communication between processors and adding more
processors may decrease the speedup after a certain point.

Computational Physics.Ch12.2pp.indd 269Computational Physics.Ch12.2pp.indd 269 12/30/2021 12:30:41 PM12/30/2021 12:30:41 PM

270  •  Computational Physics, 2/E

FIGURE 12.2:  Amdahl’s law for the speedup of programs as a function
of the number of threads used.

We can test Amdahl’s law by changing the number of threads
we use in the parallel region of code. OMP comes with a suite of
library functions that can affect hardware parameters. For instance,
we can set the number of threads available to the program (up to the
maximum number of threads we have on our system) by specifying
that number as the argument to the function call omp_set_num_
threads. In this way, we can see how much speedup we obtain
using a different number of threads in the parallel region.

Before we throw our toys out of the pram and claim that par-
allel programming is fundamentally flawed it must be noted that
Amdahl’s law treats the problem as having a fixed amount of work to
do and measuring the time taken to do that work. Gustafson argues
that programmers tend to set the size of problems to use the avail-
able equipment to solve those problems within a practical fixed
time. Hence, if faster, that is, more parallel, machines are available,
larger problems can be solved in the same amount of time as smaller
problems on slower, less parallel, machines. In essence, we can think
of the individual processor workload as remaining fixed and as we

Computational Physics.Ch12.2pp.indd 270Computational Physics.Ch12.2pp.indd 270 12/30/2021 12:30:41 PM12/30/2021 12:30:41 PM

High-Performance Computing  •  271

add more processors, we necessarily solve a bigger problem. The
formula for Gustafson’s Law is given by

	 S P P P P� � � � �� � � �� � �1 � (12.3)

where α is the fraction of the code that cannot be made parallel
that is, the serial portion of the program and note that � �� � 1.
It should be noted that in the formulations of Amdahl’s law and
Gustafson’s law it is assumed that the parallel portions of code are
uniformly distributed among all P threads, that is the threads are
always doing useful work.

If we go back to our tea-making analogy of parallelism at the
start of this section, it is mentioned that multi-core parallelism is like
several people making one cup of tea at the same time, with only
one kettle, one teabag, one cup, and so on. This is Amdahl’s view.
In Gustafson’s view, each person makes one cup of tea where there
is enough equipment, kettles, tea bags, cups, etc., for each person.

FIGURE 12.3:  Gustafson’s law for the (scaled) speedup of programs
as a function of the number of threads used.

We can test Gustafson’s law by increasing the size of our summa-
tion vector for a fixed number of threads; this should vary α such that

Computational Physics.Ch12.2pp.indd 271Computational Physics.Ch12.2pp.indd 271 12/30/2021 12:30:47 PM12/30/2021 12:30:47 PM

272  •  Computational Physics, 2/E

we should be able to quantify its value to some degree of accuracy
for some given vector size.

In either case of Amdahl’s law or Gustafson’s law, it is clearly
beneficial to make � �� �� �1 , the strictly serial portion of the code,
as small as possible, thus making the parallel portion as large as
possible.

EXERCISES

12.1.	 Write a program to determine the size of the level 1 and
level 2 caches on your machine (and level 3 if your pro-
cessor has it).

12.2.	 Write a program to determine the cache line size on your
machine.

12.3.	 Check that the optimal index order for the naïve matrix
multiplication algorithm is (i, j, k) for Fortran. Can you
explain why that is/is not the case?

12.4.	 Apply manual loop unrolling to the outer loop of the
matrix multiplication algorithm. Does this improve the
performance of the multiplication and why/why not?

12.5.	 Write a program that performs matrix multiplication in
parallel for different numbers of threads. Determine the
value of α (or b) in your code for a given matrix size using
Amdahl’s law. What is causing this serial portion of code
and can you quantify the amount of runtime it takes?

12.6.	 Using your value of α from the previous question does
Gustafson’s law (scalable speedup) hold true?

12.7.	 Choose any numerical quadrature we have discussed in
the previous chapter and attempt to write it in parallel
code. Why is writing parallel code for an initial value,
ODE problem fundamentally flawed?

Computational Physics.Ch12.2pp.indd 272Computational Physics.Ch12.2pp.indd 272 12/30/2021 12:30:47 PM12/30/2021 12:30:47 PM

High-Performance Computing  •  273

12.8.	 The Jacobi iteration scheme to approximately solve a
general second-order ODE is given by

() () ()()1 1
1 1

1n n n
i i i if f f xj y d

q
− −

+ −= − + −

	 where q, j, and y are constants related to the coefficients
of the differential equation; i is the index of the discrete
grid approximation of the continuous space x; f is some
quantity in that space; and n is the iteration count. Write
a parallel program that exploits the “red-black” nature of
this scheme. (Tip: Use the program(s) from Chapter 9 as
a guide)

12.9.	 Attempt to repeat Exercise 8 but for the Gauss–Seidel
iteration scheme (or SOR). Encounter any difficulties?

Computational Physics.Ch12.2pp.indd 273Computational Physics.Ch12.2pp.indd 273 12/30/2021 12:30:48 PM12/30/2021 12:30:48 PM

Computational Physics.Ch12.2pp.indd 274Computational Physics.Ch12.2pp.indd 274 12/30/2021 12:30:48 PM12/30/2021 12:30:48 PM

BIBLIOGRAPHY

The following is a list of reference literature that was useful in
writing this book and developing the accompanying code. This also
provides a guide to more general reading to the topics covered in
the text.

General Physics
Longair, M. S., Theoretical Concepts in Physics, Cambridge

University Press, 1984.

Orzel, C., How to Teach Physics to Your Dog, Scribner, 2009.

Susskind, L. & Hrabovsky, G., The Theoretical Minimum: What
You Need to Know to Start Doing Physics, Allen Lane, 2013.

Computational Physics
DeVries, P. L., A First Course in Computational Physics, John

Wiley & Sons, 1994.

Klein, A. & Godunov, A., Introductory Computational Physics,
Cambridge University Press, 2006.

Koonin, S. E. & Meredith, D. C., Computational Physics: For-
tran Version, Addison-Wesley, 1990.

Landau, R. H., Páez, M. J., & Bordeianu, C. C., A Survey of
Computational Physics: Introductory Computational Science, Princ-
eton University Press, 2008.

Pang, T., An Introduction to Computational Physics, 2nd ed.,
Cambridge University Press, 2006.

Computational Physics.Ch13_Bib.2pp.indd 275Computational Physics.Ch13_Bib.2pp.indd 275 12/30/2021 12:38:03 PM12/30/2021 12:38:03 PM

276  •  Bibliography

C++ Language
Meyers, S., Effective Modern C++: 42 Specific Ways to Improve

Your Use of C++11 and C++14, O’Reilly, 2014.

Lippman, S. B., Lajoie, J., Moo, B. E., C++ Primer, Addison-
Wesley, 2012.

Alexandrescu, A., Modern C++ Design: Generic Programming
and Design Patterns Applied, Addison-Wesley, 2001.

Linux and Unix
Kerrisk, M., The Linux Programming Interface: A Linux and

Unix System Programming Handbook, No Starch Press, 2010.

Powers, S., Peek, J., O’Reilly, T., & Loukides, M., Unix Power
Tools, O’Reilly, 2002.

Classical Mechanics
Goldstein, H., Poole, C. P., & Safko, J. L., Classical Mechanics,

3rd ed., Addison Wesley, 2001.

Kleppner, D. & Kolenkov, R. J., An Introduction to Mechanics,
McGraw Hill, 1973.

McCall, M. W., Classical Mechanics, John Wiley and Sons, 2001.

Finite Element Method
Braess, D., Finite Elements, Cambridge University Press, 2001.

Johnson, C., Numerical Solution of Partial Differential Equa-
tions by the Finite Element Method, Cambridge, 1987.

Fourier Analysis
Briggs, W. L. & Henson, V. E, The DFT: An Owner’s Manual for

the Discrete Fourier Transform, SIAM 1995.

Dym, H. & McKean, H. P., Fourier Series and Integrals, Aca-
demic Press, 1972.

Folland, G. B., Fourier Analysis and Its Applications, Brooks/
Cole Publishing Co., 1992.

Körner, T. W., Fourier Analysis, Cambridge University Press, 1988.

Computational Physics.Ch13_Bib.2pp.indd 276Computational Physics.Ch13_Bib.2pp.indd 276 12/30/2021 12:38:04 PM12/30/2021 12:38:04 PM

Bibliography  •  277

Tolstov, G. P., Fourier Series, Dover, 1972.

Walker, J. S., Fourier Analysis, Oxford University Press, 1988.

High Performance/Parallel Computing
Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.

& Menon, R., Parallel Programming in OpenMP, Academic Press,
2000.

Dowd, K. & Severance C., High Performance Computing, 2nd
ed., O’Reilly, 1998.

Hager, G. & Wellein, G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, 2010.

Koelbel, C. H., The High-Performance Fortran Handbook, MIT
Press, 1994.

Williams, A., C++ Concurrency in Action: Practical Multi-
threading, Manning, 2012.

Interpolation and Approximation
Davies, P. J., Interpolation and Approximation, Blaisdell, 1963,

(reprinted by Dover, 1975).

Nürnberger, G., Approximation by Spline Functions, Springer,
1989.

Powell, M.J.D., Approximation Theory and Methods, Cam-
bridge, 1981.

Monte Carlo Method
Sobol, I. M., A Primer for the Monte Carlo Method, CRC Press,

1994.

Numerical Analysis
Demmel, J.W., Applied Numerical Linear Algebra, SIAM, 1997.

Golub, G. H. & Van Loan, C., Matrix Computations, 3rd ed.,
Johns Hopkins, 1996.

Higham, N. J., Accuracy and Stability of Numerical Algorithms,
SIAM, 1996.

Overton, M. J., Numerical Computing and the IEEE Floating
Point Standard, SIAM, 2001.

Computational Physics.Ch13_Bib.2pp.indd 277Computational Physics.Ch13_Bib.2pp.indd 277 12/30/2021 12:38:04 PM12/30/2021 12:38:04 PM

278  •  Bibliography

Ordinary Differential Equations
Hairer, E., Norsett, S. P. & Wanner, G., Solving Ordinary Dif-

ferential Equations I: Nonstiff Problems, 2nd ed., Springer, 2000.

Hairer, E. & Wanner, G., Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems, 2nd ed., Springer,
2004.

Lambert, J. D., Numerical Methods for Ordinary Differential
Equations: The Initial Value Problem, 2nd ed., John Wiley and Sons,
1991.

Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, 1994.

Partial Differential Equations
Folland, G., Introduction to Partial Differential Equations, 2nd

ed., Princeton, 1995.

John, F., Partial Differential Equations, 4th ed., Springer, 1991.

Richtmeyer, R.D. & Morton, K. W., Difference Methods for
Initial-Value Problems, 2nd ed., Krieger, 1994.

Taylor, M. E., Partial Differential equations: Basic Theory,
Springer, 1996.

Tveito, A., Winther, R., Introduction to Partial Differential
Equations: a Computational Approach, Springer, 2005 (2nd print)

Quantum Mechanics
Gasiorowicz, S., Quantum Physics, John Wiley and Sons, 1974.

Griffiths, D. J., Introduction to Quantum Mechanics, Prentice
Hall, Englewood Cliffs, 1995.

Landau, L. D. & Lifshitz, E. M., Quantum Mechanics: Non-
Relativistic Theory, 3rd ed., Pergamon Press, 1991.

Rae, A. I. M., Quantum Mechanics, 3rd ed., Institute of Physics,
London, 1998.

Computational Physics.Ch13_Bib.2pp.indd 278Computational Physics.Ch13_Bib.2pp.indd 278 12/30/2021 12:38:04 PM12/30/2021 12:38:04 PM

APPENDIX

A CRASH COURSE IN
C++ PROGRAMMING

Here we discuss the various things you need to know to get going
writing and compiling C++ programs. The font Consolas in bold
is used to highlight C++ keywords from the main text, for example,
return. First, we start by discussing how to compile C++ source
files into object files, executables, and libraries from the command
line.

Command-Line Compilation
To build object files from C++ source files on the command line

you invoke the following command:

g++ -c source.cpp -o object.o

Here we assume any included, non-standard headers are in the
same directory as the source file. The -c flag tells the complier that
it should omit the linking phase, that is, we are building object files,
not executables. The -o flag means that we can specify the name of
the object file immediately following said flag. If this is omitted the
object file name is the same as the source file name but with a .o
extension. We can also specify a directory located in the -o option as
well as naming the output.

Computational Physics.Ch14_App.3pp.indd 279Computational Physics.Ch14_App.3pp.indd 279 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

280  •  Appendix: A Crash Course in C++ Programming

To build an executable from an object file we invoke the
command:

g++ object.o -o executable

Here the object file is linked into the executable. If the -o
flag is omitted the executable gives the default name a.out. Note that
we can have multiple object files, complied from different source
files, that all link to create the executable. For this simple illustra-
tion, we can put the compiling and linking phases into one:

g++ source.cpp -o executable

This command performs the compilation then linking phases
of the build in one go and is the most sensible method for simple
single-source files. If there are multiple source files that will create
a single executable then we can just append these to the source file
list, for example:

g++ source1.cpp source2.cpp source3.cpp -o executable

Typically, source1.cpp will contain the main function of your
executable, whereas the other source files will contain function
definitions or class implementations that are used by main. As a
project grows it will accumulate an increasing number of source
files. It becomes cumbersome and inefficient to keep having to
write out awfully long compiler commands to build executables. It
would be better to compile each source file (excluding the main
source file) once into its own object file and in some way combine
all object files into a single, linkable entity. This is what we call
a library, and they come in two types, static libraries and shared
(or dynamic) libraries.

Executables that are linked to a static library have all the object
files contained in the library wrapped up with them. This means that
the executable is a self-contained program, requiring no extra soft-
ware to run, but the executable file itself can consume many bytes
of storage, depending on the size of the executable’s source code
and the library (or libraries) to which it is linked. This means all

Computational Physics.Ch14_App.3pp.indd 280Computational Physics.Ch14_App.3pp.indd 280 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  281

the functionality of the library is loaded into memory at runtime
whether it is needed or not. Executables that are linked to shared
or dynamic libraries load only the required functionality at runtime
from the external library files (.so extensions on Linux/Unix, .dll on
Windows). As a result, the executable file has a smaller storage foot-
print and generally requires less memory to run. Bearing in mind
that large, complex projects may link with several different libraries
thus a shared or dynamically linked executable should be preferred.
However, consider that if you are building a dynamically linked exe-
cutable for a different machine than your build machine, the execut-
able is dependent on the target machine having the precise version
of the shared (dynamic) libraries installed. A statically linked execut-
able does not have this concern and so might be preferred if the
project is relatively simple and only uses a small number of libraries.

Before describing how to generate these libraries we need to
mention that with large projects it is conventional to split source and
header files into their own directories. The complier can find stan-
dard headers because they are in “standard” directories, typically /
usr/include or /usr/local/include or /opt/local/include depending on
your OS, the compiler is configured with these locations when it is
installed. However, if project-specific header files are located sepa-
rately from the source files, the compiler will not be able to find
them unless we tell it where to look. To do this we add the location
to the complier’s include search path using the option -I in the g++
invocation. To illustrate, this looks like:

g++ -I/path/to/project/include source.cpp -o
executable

To create a static library file, we can use the archiver program
invoked with the following command:

ar rcs libname.a <object file list>

where the object file list is simply a list of all the required
object files, for example, object1.o object2.o …. For static library
files on Unix/Linux-like systems, the library “name” must be pre-
pended with “lib” and end with the extension “.a”. You can think of

Computational Physics.Ch14_App.3pp.indd 281Computational Physics.Ch14_App.3pp.indd 281 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

282  •  Appendix: A Crash Course in C++ Programming

the archiver as simply copying all the object files in the list into the
library file. The options rcs mean replace object files of the same
name (if the library already exists), create the archive (if it does not
already exist), and s makes the archiver also write an object-index
into the library file for faster access at runtime; this is equivalent to
running ranlib on the archive (library) file.

To create a shared (object) library we use g++ directly. First, we
use g++ to create our object files but so that they contain position-
independent code, for example:

g++ -c -fpic source1.cpp -o object1.o

To understand what the option -fpic does would require an
understanding of assembly language but essentially means the code
in the object file can be placed anywhere in memory and still work,
which is a requirement for library files. Note that the option -fpic
may now be redundant as all code generated from modern g++ ver-
sions should be position-independent.

With the object files built we invoke g++ again to create the
shared library file:

g++ -shared -o libname.so <object file list>

Here the shared library name requires the “lib” prefix, just as
a static library does, but has the “.so” extension to identify it as a
shared (object) library.

To build executables linked against these libraries we invoke the
g++ command with the -L and -l flags, for example:

g++ [-static] -L/path/to/library -o executable
main.cpp -lname

We omit the “lib” prefix and the dot extension from the library
name when invoking the complier to build the executable. If we have
both a static and a shared library with the same “name” at the specified
path, g++ will use the shared library as default. In this case, to use the
static library, we must provide the -static option. You can link with
multiple libraries if necessary, each of which might be in a different

Computational Physics.Ch14_App.3pp.indd 282Computational Physics.Ch14_App.3pp.indd 282 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  283

location. For more on building C/C++ libraries see cprogramming.
com/tutorial/shared-libraries-linux-gcc.html, note g++ can in essence
be used interchangeably with gcc.

We have not mentioned other useful options that you can pass to
g++ as they were not pertinent to the discussion. To use modern C++
language features, you will need to provide the -std=c++11 option
at least. Other standards exist including c++14, c++17, and c++20
(they are named for the year they were released), though you will
have to check if your compiler version can support these standards.
The option, -O, which is a capital “o” not zero, allows you to specify
a complier optimization level. The level can be zero, one, two, or
three; the default is zero. Zero implies no optimizations—the code
that you see is the code that you get, useful for debugging purposes,
and is typically used with the g option which generates debugging
information for use with gnu debugger, gdb, for instance. Level one
switches on some optimizations and gives a significant improvement
in performance. Level two switches on more optimizations and will
give a noticeable performance improvement over level one. Level
three is the most aggressive optimization option and is not gener-
ally recommended as it may break the semantics of your code and
typically offers only minor improvements in performance over level
two, and in some cases may make it worse. The -W option allows you
to specify warnings the complier should look out for when parsing
your code. It is recommended you always use -Wall which switches
on all the standard warnings. It is also recommended that you treat
any warnings generated during compilation as errors. If you use any
macro-defined names, for example to conditionally guard code for
platform specifics or “debug” code, you can define them using the
-D option.

Doing all of this on the command line can become tedious.
Once you have mastered the simple command-line invocations as
outlined above you should instead learn how to write and edit Make-
files such that all the above can be reduced to the deceptively simple
command:

make

or

make target

Computational Physics.Ch14_App.3pp.indd 283Computational Physics.Ch14_App.3pp.indd 283 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

284  •  Appendix: A Crash Course in C++ Programming

where target is the name of a “recipe” in the Makefile. The code
found at the GitHub repository for this book has basic Makefiles
that will build the source code into a library and executables that
link with that library. These are by no means optimized and should
only be used as a basis to learn the (GNU) Makefile framework; gnu.
org/software/make/ is a good starting point for further investigation.

Guidelines to Good Code
C++ is a free format language in that the spacing is of no impor-

tance to the complier. However, spacing is important to people, and
the readability of your code matters. There are some “best practice”
guidelines about how we should layout our code:

●● have no more than one statement per line;

●● use blank lines between functions;

●● logically group sections of code;

●● use consistent indentation;

●● use space around binary operators; and

●● do not use space between a unary operator and its operand.

Statements must be explicitly terminated by the semicolon.
However, any statements that run over a single line do not require a
continuation character to indicate overrun, with the limitation that
identifiers, keywords, and literals cannot be broken over new lines.

Identifiers are the names we give to variables, functions, classes,
and objects in C++. They must abide by the following rules to be a
valid name:

●● consist of letters and digits;

●● must start with a letter (not a digit);

●● underscore is considered a letter;

●● are case sensitive; and

●● are not keywords, for example, return, using, class, etc.

C++ is case sensitive. This means that the identifiers different
and Different are different.

Computational Physics.Ch14_App.3pp.indd 284Computational Physics.Ch14_App.3pp.indd 284 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  285

There are also a few identifier recommendations that do not
need to be adhered to but are considered to improve the style of
C++ code. First, use descriptive names that are not abbreviated,
for example message not msg. However, be sensible. A 25-character
descriptive name may make the variable easier to identify but the
whole code more difficult to read; this is where comment lines are
useful. If the identifier is made up of more than one word then you
should make that clear by either using an underscore between the
words, or capitalizing the subsequent words, for example smoothing_
factor or smoothingFactor, say. Try to avoid using identifiers that are
only subtly different as this may lead to confusion for example, dif-
ferent and Different. For data members of a class, it is convention
to identify them as such by prepending their names with a single
underscore, _, or the combination m_.

What is C++?
C++ is an abstract, high-level, complied programming language.

It essentially acts as a translator between us as humans and the com-
puters as machines. We write programs in source files (typically end-
ing in the extension .cpp or .cxx) that can be understood by humans
and these are compiled or translated into machine language files
that can be understood by the computer. These translated files are
known as object files that when linked together produce the binary
executable (otherwise known as a program) that can then be run
on the computer. This is different from scripted languages (MAT-
LAB, Python, Ruby, etc.) which are interpreted at runtime; the
machine language exists already and is unchangeable, rather than
being created from source code.

C++ supports a combination of procedural, functional, object-
orientated, generic, and (template) metaprogramming features.

C++ executes one statement at a time in the order that they
were written (ignoring parallel or threaded execution), that is it fol-
lows the procedure of the source code. A statement is one or more
expressions terminated by a semicolon. An expression can consist of
a primitive-type declaration, variable initialization, variable assign-
ment, mathematical operations, logical and comparative operations,
and control flow and looping constructs. We describe these proper-
ties next, beginning with primitive types in C++.

Computational Physics.Ch14_App.3pp.indd 285Computational Physics.Ch14_App.3pp.indd 285 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

286  •  Appendix: A Crash Course in C++ Programming

C++ Primitive Types

C++ primitive type Representation
int 32-bit integer

float 32-bit floating-point number

double 64-bit floating-point number

char 8-bit character

bool Boolean logical (true or false; 8-bit)

The table above lists the most common primitive types in C++.
The bit lengths quoted are those found on a typical off-the-shelf
machine but could vary depending on the platform and/or the oper-
ating system.

Although primitive integer type bit lengths can be modified
using the type modifiers long and short you should prefer using
the C type definitions found in the GNU C library, accessed via the
header stdint.h (or cstdint.h for C++) that can be used to declare
integers of exact size for any machine. They are declared as intN_t,
where N represents the bit length you require (8, 16, 32, or 64). To
declare unsigned versions of these integers just pre-pend the letter u
to the type, that is, uint8_t for an unsigned 8-bit integer.

In modern C++ when initializing a primitive variable, you should
prefer to use the curly brace initializer ({}) over the assignment (=)
symbol. For example:

int x{42}; //some meaningless value
double posixTime{0.0}; //1970-01-01 00:00:00

C++ Operators
Operators can be classified according to the number of operands

they take. Unary operators take a single operand, for example the
unary minus which returns the negative of the operand. Binary oper-
ators take two operands, for example the binary plus which returns
the sum of its two operands.

C++ has the usual mathematical operators: +, −, *, and / (add,
subtract, multiply, and divide). Note that the asterisk, *, has mul-
tiple meanings, depending on context; we will return to these in

Computational Physics.Ch14_App.3pp.indd 286Computational Physics.Ch14_App.3pp.indd 286 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  287

due course. The modulo operator (%) returns the remainder of
the division between its operands, for example 12 % 7 is 5. These
operators have a precedence order, and this is an important part of
the C++ language (as it is with any other language). For example,
the multiplicative operators (*, /, and %) have a higher precedence
than the additive operators. Full list of operator precedencies can be
found on the internet.

Assignment (operator=) in C++ is an expression that returns a
result as well as having a side effect on the left-hand operand; the
left-hand operand is overwritten with the value from the right-hand
operand, this is what we mean by assignment. The result (or return
value) from the assignment is what is called an lvalue (left-value). An
lvalue is a variable or object that has a memory address and may be
used as the target of assignment. To illustrate this feature, we can
write the following valid statements:

int x, y, z;
x = y = z = 0;

Here x, y, and z all receive the value zero. Operator associativ-
ity defines how the operands of binary operators will group, either
to the left or to the right. The multiple assignment statement above
has right associativity; that is z is assigned zero, the result of that
assignment is assigned to y, and finally x is assigned the result of the
assignment to y.

Relational operators relate one variable to another and are com-
monly used in conditional statements that require a Boolean result.
We can test equality between variables using the equality operator
(==), and similarly the inequality operator (!=) that is, not equal to.
A common mistake is to use a single equals sign to try to test equal-
ity. This instead will assign the value on the right-hand side to that on
the left. Additionally, as the assignment returns an lvalue it is likely
the condition will evaluate to a valid Boolean (the value is implicitly
type converted to a bool) and lead to some odd behavior during the
execution of the program. Some compilers may not pick up on this
programming mistake (it is syntactically valid code) so it is some-
thing to watch out for. Other relational operators include greater

Computational Physics.Ch14_App.3pp.indd 287Computational Physics.Ch14_App.3pp.indd 287 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

288  •  Appendix: A Crash Course in C++ Programming

than (>), less than (<), and the compound versions of these; greater
than or equal to (>=) and less than or equal to (<=). Note that the
compound symbols follow the order of the English phrase.

The logical AND and OR operators are written as && and ||,
respectively. These should not be confused with the operators &
and | that perform bitwise comparisons of their operands. The logi-
cal operators are binary operators and evaluate their operands from
left to right. They are also shortcut operators in that they will not
evaluate further than they need to. To explain, if the left-hand oper-
and of the && operator evaluates to false it does not evaluate the
right-hand operand; the overall outcome is already false. Similarly, if
the left-hand operand of the || operator evaluates to true it does not
evaluate the right-hand operand; the overall outcome is already true.
Keep this in mind when using these operators.

There is one operator that takes three operands and thus is
referred to as the ternary operator; the conditional expression that is
invoked with the question mark symbol. The operands are the condi-
tion on the left, and the two possible result expressions on the right;
result if true followed by result if false separated by a colon. A simple
example of this is finding the maximum between two values:

int max = a > b ? a : b;

This reads as “if a is greater than b then max is initialized with a,
else max is initialized with b.”

The condition expression may also be used as an lvalue. For
example, we may write

first > second ? first : second = 0;

This reads as “if first is greater than second then first is assigned
zero, else second is assigned zero.”

It is often found in programming that we must write expressions
like

total = total + subtotal;

Computational Physics.Ch14_App.3pp.indd 288Computational Physics.Ch14_App.3pp.indd 288 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  289

The compound operator provides a convenient way of writing
this sort of expression

total += subtotal;

This becomes easier to read once you are familiar with the
syntax. The expression a += b can be read as a incremented by
the value of b. For complex data types the shorthand, compound
expression can also be more efficient than the long hand version.
All the mathematical operators (+, −, *, /, and %) have a compound
operator.

The most common value by which we increment or decrement
a value is by one. C++ further refines the compound operator when
just incrementing by 1. For example

value += 1;

Can be written as

++value;

Note that this is the prefix version of the increment operator. It
adds one to the value and returns that new value. We can also write
the post-fix version

value++;

The difference between the two is subtle but can be particularly
important. The post-fix version takes a reference of the value, stores
the current value, increments the reference, and returns the stored
value. Let us illustrate this so that it is clear. Writing

result = ++pre_increment;

is equivalent to,

pre_increment += 1;
result = pre_increment;

Computational Physics.Ch14_App.3pp.indd 289Computational Physics.Ch14_App.3pp.indd 289 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

290  •  Appendix: A Crash Course in C++ Programming

Whereas writing

result = post_increment++;

is equivalent to,

result = post_increment;
post_increment += 1;

Be aware of this difference as it can very easily cause bugs in
your code that can be difficult to track down.

C++ Enumeration Types
There are some types whose purpose is to take only one of a few

named values. For example, (UK) traffic lights have a fixed set of
colors (red, amber, and green), or the size of clothes has a fixed set
of values (XS to XXXL). A command to set traffic lights to purple or
trying to buy clothes that are A4 in size would be nonsensical.

The enumeration type in modern C++ is specified by the key-
word combination enum class, sometimes referred to as the
scoped enum. They provide a mechanism for introducing a new
type with a name and a related set of constant values. Each enum
definition is a new type that is separate from other enum types, and
as such they cannot be mixed. A scoped enum value is represented
like an integer but it is not automatically converted to one. Similarly,
an integer cannot be automatically converted to an enum value, this
would undermine the point of the type system. By default, the enu-
meration values are numbered from zero upwards in steps of one.
We can specify a different numbering system by explicitly assigning
numbers to the enum values (so long as it is greater than the previ-
ous element’s number representation). To demonstrate let us write a
scoped enum type for exam grades:

enum class grade {A, B, C, D, E, F, U=99};

In this example, A is represented by zero, B by one, and so on up
to the grade F where we jump to the grade U that has been assigned
the value 99. Initializing a variable to be of some scoped enum type

Computational Physics.Ch14_App.3pp.indd 290Computational Physics.Ch14_App.3pp.indd 290 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  291

is the same as declaring any other variable; the type name followed
by the identifier with the specific initialization value contained in
curly braces (we have to use the scope resolution operator for scoped
enums):

grade yours {grade::A};

To illustrate the point about not being able to mix enum struc-
tures, we could set up an enum structure for the seasons and the
days-in-the-week:

enum class season {winter, spring, summer, autumn};
enum class day_week {mon, tues, wed, thurs, fri,
	 sat, sun};

Then declare and initialize some variables based on these enum
structures:

season now {season::summer};
day_week today {day_week::fri};

However, we cannot initialize (or assign) the variable today
with the enum value spring, say, as today is of type day_week not
season. This is obvious in our example but is something to be aware
of in larger programs.

Please refer item 10 of Scott Meyers’ book Effective Modern
C++ (see Bibliography) for a more detailed discussion of scoped
enumeration types and how to deal with them.

Control Flow
The control flow of a program can be categorized into four types:

●● Sequence: Where program flow follows a simple sequential
path executing one statement after another. The primary
sequential structure is a compound block statement that is a
series of statements inside curly braces: {}.

●● Selection: Where only one path out of several possibili-
ties is taken. Simple selection is conditional execution of a

Computational Physics.Ch14_App.3pp.indd 291Computational Physics.Ch14_App.3pp.indd 291 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

292  •  Appendix: A Crash Course in C++ Programming

statement or block of code guarded by an expression which
will have the value true if the guarded code is to be executed:
this is the if statement. An if else statement provides two
alternative paths of execution: the true or false evaluation
of a control expression determines which branch is taken.
A switch statement supports a multi-way branch based on
the value of a control expression known as the case.

●● Iteration: Where one statement or block of code is repeat-
edly executed. A simple while structure executes the same
code while a control expression has a true value (hence the
name), terminating execution when the expression evaluates
to false. C++ provides three forms of loops that are suited to
the three most common iterative styles; while, do while,
and for.

●● Transfer: Where the point of execution jumps to a dif-
ferent point in the program. Although the point where
execution jumps to is clearly defined, the use of trans-
fer of control statements usually leads to programs that
are difficult to understand. The simplest transfer struc-
ture is the goto statement which jumps to a labeled
point in the code; we discuss the appropriateness of the
simple goto statement in modern programming in the final
paragraph of this section. The structured goto statements
of break and continue jump to clearly defined points
within other flow control structures and their use is okay but
should be commented on if their intention is not immediately
apparent in the source code.

Sequence
In C++, a simple statement is any semicolon terminated expres-

sion. Declarations are ordinary statements. This is unlike other lan-
guages such as Pascal and Fortran, which require the declarations to
be specified before any executable code.

A statement can also be a compound statement; a sequence of
statements delimited by an opening and closing brace, sometimes
referred to as a block, and there is no terminating semicolon after
the closing brace. The braces define the scope of the compound

Computational Physics.Ch14_App.3pp.indd 292Computational Physics.Ch14_App.3pp.indd 292 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  293

statement and are equivalent to the begin and end keywords found
in other languages. Variables declared in blocks are in scope from
the point of their declaration until the corresponding closing brace.
C++ does not use name-matched delimiters like languages such as
Visual Basic, Ada, or Fortran where, for example, the “if” keyword is
matched with an appropriate end keyword such as “endif.”

Note that the definition of a statement and a compound state-
ment is recursive (a compound statement contains statements that
may themselves be compound statements which contain statements
that may themselves be compound statements, and so on). A com-
pound statement may also be empty.

Selection
The primary structure for decision-making is the if statement.

A control expression is used to determine which branch of the two-
way fork statement is taken. If the expression is true, the first branch
(the if body) is taken but if the expression is false then the second
branch (the else body) is taken. The if body and else body contain
statements that are either a single ordinary expression statement or a
compound statement delimited by curly braces. The else clause is
optional and if it is omitted then code continues to execute from the
closing brace of the if body should the control expression evaluate
to false.

The if control expression expects a bool type expression;
anything else is an error. For backward compatibility with previous
versions of the C++ language and the C language, an integral expres-
sion can be narrowed into a bool by the compiler. Typically, a char
or int expression may be used in place of the bool. When convert-
ing an integer to a Boolean a value of zero is false and any other
value (positive or negative) is true.

Languages that use name-matched delimiters also support a
multi-way if statement where additional branches are provided
using “else if” constructs which are like the “if” component but
occur between the “if” and “else” statements. Any number of these
branches is allowed. C++ does not provide an “elseif,” “elsif,” or
“elif” statement because the same effect can be achieved using mul-
tiple if statements. Note the else and if are separate keywords

Computational Physics.Ch14_App.3pp.indd 293Computational Physics.Ch14_App.3pp.indd 293 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

294  •  Appendix: A Crash Course in C++ Programming

so that the else clause of the first if statement can itself be
another if statement. The tests are evaluated from top to bottom
and as soon as an if or else if test evaluates to true that branch
is taken.

if (some_condition) {
 //execute if some_condition is true
} else if (other_condition){
 //execute if some_condition is false and
 //other_condition is true
} else {
 //execute if both some_condition and
 //other_condition are false
}

The switch statement jumps to a chosen case label. The
program execution continues from that point onwards until it hits
a break. The break statement branches the control flow to the
end of the switch statement. If no break is provided, control will
drop into subsequent cases. This is known as fall through and is
a valid programming design but can cause bugs in your program
if it is not what was intended. Intentional fall-throughs should be
commented as such otherwise other programmers could read it as
a mistake. It is usual to include a break statement even after the
last statement in a switch for consistency. The default label is
selected if the expression evaluation does not exactly match one of
the specified case labels. Note that a default label does not need
to be specified. If the default is not specified and the expression
evaluation does not match one of the case labels, then program exe-
cution continues from the end of the switch block.

switch (some_case) {
case 0:
 //code for case 0
 break;
case 1:
 //code for case 1
 break;

Computational Physics.Ch14_App.3pp.indd 294Computational Physics.Ch14_App.3pp.indd 294 1/4/2022 11:39:40 AM1/4/2022 11:39:40 AM

Appendix: A Crash Course in C++ Programming  •  295

default:
 //code for default case
 break;
} //break transfers control here

The break statement can also be used within a loop structure to
transfer control to the end of the loop. This use of break is discussed
at the end of this section along with the keyword continue.

It is important to remember that you can only use simple types,
like int, char, and enum (both scoped and un-scoped) as the case
for switch statements; floating-point numbers, strings, and other
complex types cannot be used.

The switch statement is generally more efficient than a
complex if statement, particularly as the number of choices
increases. If the branch requires three or more choices, consider
whether the switch statement is more appropriate than multiple if
else statements.

The case options can only be used to select exact values for
the control expression: ranges of values (such as greater than zero,
or 1 to 9) are not allowed. However multiple case labels can be
specified for the same block of code; as discussed above the code
falls through the cases until a break statement is encountered.

Iteration
The fundamental looping construct in C++ is the while loop.

In this structure, a statement (called the while body) is repeatedly
executed while a control expression evaluates to true. The repetition
ends when this condition evaluates to false. Because the condition is
checked before the loop body it is possible for the body to never be
executed, the condition is false initially.

while (count++ < total) {
 //loop body
}

A classic mistake with a while loop is to forget to update the
variable or variables used in the control expression in the loop
body. This has the effect of creating an infinite loop: one that never

Computational Physics.Ch14_App.3pp.indd 295Computational Physics.Ch14_App.3pp.indd 295 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

296  •  Appendix: A Crash Course in C++ Programming

terminates. The for loop (described later) formalizes the update
expression into its syntax so it is not as easy to make these kinds of
mistakes.

Like the if statement, an integer expression can be narrowed to
a bool where the value zero is false and any other value is true. An
infinite while loop can be created intentionally by simply providing
an argument of 1 or true in its control expression. Some programs
are required to run indefinitely such that infinite loops are required,
and we provide some sort of user exit command to terminate the
loop (escape key, or a “quit” option). When developing programs,
the key combination “ctrl-c” in an active terminal will send an inter-
rupt signal to the program running in that terminal that, in general,
will cause it to terminate.

C++ provides a generic looping construct with the for loop,
rather than a traditional counted loop as in other languages. Here
a classic while loop is formalized into a single construct. A clas-
sic for loop has an initialization clause, a continuation condition,
and an update expression; the for loop provides placeholders for
these three components separated by semicolons.

for (int i = 0; i < total; i++) {
 //loop body
} // i is destroyed once loop ends

We can in fact provide only the continuation condition leaving
the other components of the loop blank. However, this undermines
the point of the for loop; why not just use a while loop? An infinite
loop can be created by leaving all three components blank (you still
need to leave them in the separating semicolons). Note that vari-
ables declared in the initialization of the for loop are scoped to that
construct; their lifetime ends when the loop ends.

C++11 introduced the range-based for loop used to provide
a more readable equivalent to the classic for loop when operating
over a range of values, for example the elements in a container type.
The range-based for loop has a range declaration and a range expres-
sion, separated by a single colon. For example, we can loop over the
elements in vector with the following syntax:

Computational Physics.Ch14_App.3pp.indd 296Computational Physics.Ch14_App.3pp.indd 296 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  297

std::vector<int> v {1, 2, 4, 8, 16, 32};
for (auto i : v) {
 //loop body, i has type int, access by value
}

This can be read as “for each element i in vector v perform the
loop body.” Note that you can also access the elements of a con-
tainer by reference and forwarding reference the details of which
are beyond the scope of this brief discussion (see cppreference.com
for more details).

An alternative loop is provided by the do while construct where
the loop test is evaluated after the loop body has been executed. This
means that the body must be executed at least once and is ideally
suited to validating data before allowing program execution to pro-
ceed. It is far more common to use compound statements rather
than a single statement for the body of a do while construct, but it
depends on the application. Note a semicolon must follow the end
of the while condition.

bool input_bad {true};
do {
	 //loop body, validate input
} while (input_bad);

Transfer
Earlier I mentioned the break and continue keywords when

applied to loops. The break command used within a loop will
terminate the application of the loop, and any code located after
the end of the loop will continue to execute. Whereas the con-
tinue command will cease the execution of the current iteration
and move the loop to the start of the next iteration. The use of
the break and continue commands within loop constructs can
indicate poor logic that can be rewritten to remove their use,
potentially making the code more readable. Where a break or con-
tinue absolutely must be used in a loop structure a comment about
their intention is recommended.

Computational Physics.Ch14_App.3pp.indd 297Computational Physics.Ch14_App.3pp.indd 297 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

298  •  Appendix: A Crash Course in C++ Programming

One final control flow construct exists within the C++ language.
The label and goto label expression are very much a hangover
from the early days of programming. If you have ever programmed
in FORTRAN 77 or BASIC, then you will have used this construct;
it exists because early languages did not have a formal looping con-
struct so programmers would have to build ones manually using
the goto label command. In C/C++, you set up a named label
somewhere within your code by writing an identifier for the label
followed by a single colon. You can then branch control flow to
that label at any point in your code by using the goto command
followed by the label identifier. This non-continuous control flow
does not suit modern structured programs and can make code quite
unreadable to the un-trained eye, as well as frustrating to debug.

Next, we discuss exceptions in C++. Exceptions provide another
way to transfer control from one part of a program to another but
only under exceptional circumstances (typically errors).

Exceptions
An exception is something that happens that is out of the ordi-

nary during code runtime. Typically, it is an error that arises during
the execution of a program, such as an attempt to dereference a con-
tainer object beyond its range or a system out of memory. When an
error occurs, C++ will cease the normal execution of a program and
report the error by generating an error message and passing it to the
context that can handle the error. This is what is known as “throwing
an exception.”

Program errors can be split into two categories: logic errors that
are caused by programming mistakes, and runtime errors that are
beyond the control of the programmer, for example memory leaks in
external libraries, lost network connections, missing databases, and
so on. In general, the preferred way to report and handle both logic
errors and runtime errors is to use exceptions. An exception makes
a program acknowledge the occurrence of an error and gives it the
ability to handle that error. Any unhandled exceptions stop program
execution. When an exception is thrown the execution jumps to the
point in the code that can handle that exception. We will explore
classes and object shortly, but it is important to know that at the

Computational Physics.Ch14_App.3pp.indd 298Computational Physics.Ch14_App.3pp.indd 298 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  299

point of an exception being thrown all objects in scope are destroyed
via well-defined rules (object destructors)

We will also cover class inheritance in due course but it is enough
to know for now that all exceptions generated by the standard library
inherit from the std::exception class. This is an important feature in
the way exceptions are handled in C++. Many of the standard excep-
tions can be used in your code by including the header stdexcept and
you can use them as base classes for your own, custom exceptions.
The message that the standard exceptions carry can be accessed by
the member function “what” that returns a C-style character string
pointer to the message.

Exception handling in C++ consists of three keywords: try, throw,
and catch. The try statement allows you to define a block of code
to be tested for errors while it is being executed. The throw keyword
can be used when a problem is detected, and which allows us to report
a custom error. The catch statement allows you to define a block of
code to be executed if an exception is thrown in the try block; this is
what we mean by the context that handles the error. A try block must
have at least one corresponding catch block but could have several to
catch different, specific types of error.

Although it is typical to throw an exception type that has inher-
ited from std::exception, in C++ any type may be thrown and caught.

try {
		 int legal_age {21};
		 std::vector<std::string> the_list {
			 “Elvis Presley”,
			 “Kayne West”,
			 “Judy Dench”,
			 “Lucy Liu”
		 };
		 int my_age {18};
		 std:string my_name {“Joe Bloggs”};
		
		 if (my_age < legal_age) throw(my_age);
		 bool in_the_list {false};
		 for (auto name : the_list) {

Computational Physics.Ch14_App.3pp.indd 299Computational Physics.Ch14_App.3pp.indd 299 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

300  •  Appendix: A Crash Course in C++ Programming

			 in_the_list = my_name == name;
		 }
		 if (in_the_list == false) throw(my_name);
}
catch (int your_age) {
		� std::cerr << �“You must be 21 or over to

enter.\n”
		� std::cerr �<< “Your age is ” << your_age

<< std::endl;
}
catch (std::string your_name) {
	� std::cerr << �your_name << “ is not on the

list\n”
	� std::cerr �<< “you’re not coming in!”

<< std::endl;
}

Note that, unless the handling code terminates or does some
other control transfer, code execution continues from the end of the
last catch block. In the example above this means that the_list is
not checked as an exception of type int has already been thrown.
Bear this in mind when using try-catch blocks.

If an exception is thrown that does not match the type of any
of the catch handlers, the program is terminated. C++ provides
a means to catch any unspecified exceptions via the ellipsis (...)
token.

try {
 //code to be tested
}
catch (int e) {
 //handle “int” exception
}
catch (std::string e) {
 //handle “string” exception
}
catch (...) {
 //handle any other exception
}

Computational Physics.Ch14_App.3pp.indd 300Computational Physics.Ch14_App.3pp.indd 300 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  301

It is important to know those catch handlers are matched in the
order they appear, so you want the most specific types first and the
“catch all” handler should always appear last. This statement also
applies when you are throwing standard exceptions (or custom
exceptions) with class hierarchy; the order should follow the hierar-
chy from most derived (specific) class first to least derived (poten-
tially base) class at the end. As always “catch all” should be the very
last handler.

Before we move on to the next section discussing functions, we
should mention that in the simple examples above we have thrown
and caught exceptions by-value. This is okay for primitive or simple
types but in general, we should throw exceptions by-value but catch
by-reference and typically by const reference. These concepts are
discussed in the next section.

C++ Functions
Functions written in C++ will generally require a prototype,

which is usually called its declaration. You can think of the prototype
function as a blueprint; it tells the compiler what type the function
will return, what the function will be called, and what parameters it
takes as arguments. The function does not have to return a value,
in which case the return type is declared as void, and there can be
more than one parameter or none. For the latter case, we use empty
parentheses. To demonstrate, a prototype for a power function may
be written as follows:

float power(float value, int m);

This tells us that the power function raises the floating-point
value to the integer power m, returning the result as a floating-
point value. Actually, it does not. All this prototype tells us is that the
function power accepts a float type and an int type as inputs and
returns a float type as an output. The implementation of the func-
tion that is, what the function actually does, is taken care of by the
function definition which we describe shortly.

Computational Physics.Ch14_App.3pp.indd 301Computational Physics.Ch14_App.3pp.indd 301 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

302  •  Appendix: A Crash Course in C++ Programming

With this function prototype declared before the main function
we can use it in our main by assigning the return value to a float
variable, for example:

float power(float value, int m);
int main(){
 float x {2.f};
 int n {3};
 float y {power(x, n)};
}

Here we have “called” the power function and the main function
is referred to as the calling environment (or the caller). Note that
although the above example is syntactically correct it will not com-
pile as we have yet to define the power function (you will get a linker
error if you try, namely unresolved external symbol). The definition
of a function is the block of code that provides the instructions as to
what the function is to do. We can either provide the definition of
the function where we declare the function or provide the defini-
tion in a separate location. It is a good habit to acquire to separate
the declaration from the definition (something which is very much
appropriate to classes, there it is referred to as interface and imple-
mentation). Remember that main is the only function in C++ that
we must declare and define in the same place. A definition for the
power function could look like:

float power(float value, int m) {
 return m == 0 ? 1 : value * power(value, m-1);
}

The power function here is recursive, that is, it calls itself, and
you should satisfy yourself it does as advertised. As an aside, this
function definition is not fully fledged or optimized, what happens if
m is negative? Also, could this be rewritten as a loop?

The identifiers in the argument list of the declaration are merely
placeholders for the actual argument identifiers used in the definition.
In fact, the declaration does not even require you to provide identifiers
for the arguments at all, only the types. However, unless is it notice-
ably clear from the context what the arguments are you should provide
descriptive names for them in the prototype. The argument identifiers

Computational Physics.Ch14_App.3pp.indd 302Computational Physics.Ch14_App.3pp.indd 302 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  303

in the definition can be as short and as cryptic as you like but we refer
you back to the recommendations on identifiers for best practice. For
larger and more complex programs that use several different functions,
it is better to further separate declarations and definitions by placing
them in their own header and source files, respectively.

How does C++ pass variables from the calling environment to
a function? Default behavior of C++ is to pass arguments by value.
That is, the function makes its own copy of the argument to work
with and does not modify the variable in the calling environment.
Pass-by-value is fine for primitive data types as they are small in
terms of memory consumption and making a local copy of them
is cheap and quick. However, what if the argument we pass is an
object of a class that takes up a large portion of memory, a matrix
for instance? Taking a local copy of that object could be prohibitive
both in terms of memory consumption and computational effort. In
C++ we get around this restriction by passing the argument by ref-
erence rather than value. In this case, the function does not make
a local copy of the parameter but works directly on the variable in
the function definition. To signify a reference to a variable the sym-
bol & is added after the type declaration in the function parameter
list. A reference can be thought of as an alias for the corresponding
argument in the calling environment.

Astute readers will have spotted that by passing-by-reference
gives the function permission to modify the contents of the vari-
able in the calling environment. This might be desired. As a con-
trived example of this, we might want to be able to nullify matrices
(make all elements zero) and we write a function to do this. Rather
than having to copy the entire matrix into the function, modify its
elements, and return the result to the calling environment, which
would require another copy, we could just pass it by reference. The
work would be done on the matrix as if the function definition were
written directly in the calling environment.

What if we do not want the function to modify the variables
declared in the calling function, but still need to pass them by ref-
erence for efficiency? C++ includes the keyword const for this
purpose; const is a very hardworking keyword in C++ and pops
in all kinds of contexts. When const is used in conjuncture with a
variable declaration we mean that the contents of the variable are to

Computational Physics.Ch14_App.3pp.indd 303Computational Physics.Ch14_App.3pp.indd 303 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

304  •  Appendix: A Crash Course in C++ Programming

remain constant throughout the lifetime of the variable. Declaring
a reference parameter const ensures the function cannot change
the contents of the variable that is aliased by that reference. If you
try the compiler will complain. You can also declare a pass-by-value
parameter const, but this has a subtly different meaning; the local,
function variable, that is, that declared by the function parameter, is
initialized with the value of the argument variable from the calling
environment, and that local variable then cannot be changed by the
function.

Generally, you cannot return a variable from a function by refer-
ence. As soon as a function goes out-of-scope that is, it executes its
return statement, all local variables are destroyed; when returning
by value the return statement creates a temporary local variable
that is copied back to the calling environment. If we were trying to
pass a local variable back to the calling environment by reference,
we would end up with a reference to nothing of relevance, known as
a dangling reference. Return-by-reference is possible if the param-
eter was passed in by reference in the first place, an example of this
can be found in overloaded versions of the output stream operator;
we discuss overloading shortly in the next section.

Function parameters can be given a default argument in the
function declaration. If a function with default arguments is called
without passing arguments, then the default values are used. Not all
parameters have to be given a default argument but after a param-
eter is given a default argument all subsequent parameters must also
have default arguments. To illustrate this point let us look at our
example power function declaration with a default argument:

float power(float value, int m = 2);

Our power function can now be called with only one argument
and in this case, it would return the square of the value. If we were
to declare the value parameter with a default argument, then we
must also declare the m parameter with a default argument:

float power(float value = 1.0, int m); //error, won’t
	 compile
float power(float value = 1.0, int m = 2); //okay

Computational Physics.Ch14_App.3pp.indd 304Computational Physics.Ch14_App.3pp.indd 304 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  305

Default arguments should be used with care and consideration
as they can cause problems when updating and maintaining code.
This is especially true when providing function overloads, which we
will discuss next.

Function Overloads
C++ allows several functions with similar purposes to share the

same name or identifier. We say these functions are overloaded.
Function overloading is a feature that can be used effectively to
simplify the intent of code by using the same name to refer to dif-
ferent physical functions that perform a conceptually similar role.
Overloaded functions will differ by the number of parameters, or
the parameter type, or both the number and type of parameters.
Parameter order and default arguments are also considered; C++
will try to implicitly convert arguments if necessary. Overloaded
class member functions can also differ on the const qualifier as
explained later. Class constructor overloading is a good example of
function overloading: there may be more than one way to initialize
an object, again this is discussed in a later section.

The overloaded functions must have unique signatures so that
the complier can distinguish between them. Each of these over-
loaded variants requires a separate function definition. Note that a
function cannot be overloaded solely based on its return type: the
return type is not considered part of the signature. Where the func-
tion signature is unique, the return type need not be the same as
other functions of the same name. For example, it is possible to
overload a function using a template, where the return type and
argument type(s) are decided upon at compile time. We discuss
template functions in detail shortly.

Using the function name, and the types, number, and order of
the parameters the compiler can generate a unique name for each
function. This is called the name mangling and is applied to all C++
function names. Errors from the linker often show these mangled
names when reporting unresolved symbol errors which are usually
attributable to missing function definitions or typing errors.

We mentioned previously that care and consideration should be
taken when providing default arguments in function declarations

Computational Physics.Ch14_App.3pp.indd 305Computational Physics.Ch14_App.3pp.indd 305 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

306  •  Appendix: A Crash Course in C++ Programming

and here we provide a reason. If we are not careful when specifying
default arguments, overloading a function could lead to ambiguous
function calls. To demonstrate this, we return to our power function
example with the default argument:

float power(float value, int m = 2);

and provide an overloaded declaration (admittedly contrived), also
with a default argument:

float power(float value, float m = 2.0);

If we call the power function with only one argument, which
power function gets called? The function call is said to be ambiguous
and the compiler will give an error to that effect.

When the complier attempts to match an overloaded function
against a function call it will insert type conversions of the arguments
as necessary to obtain a match. The complier prefers the function
that requires the fewest argument conversions when resolving the
overloaded function to use.

Template Functions
Overloading functions is usually an attempt to allow us to use a

particular function for different types; the overloaded functions will
only differ by the type of the arguments and often, consequently, the
return type. These overloaded functions will typically share identi-
cal code in their definition apart from the type of the variable that is
being worked on. As an example, consider a function overloads that
returns the larger of two input values:

int max(int a, int b) {return a > b ? a : b;}
float max(float a, float b) {return a > b ? a : b;}
double max(double a, double b) {return a > b ? a : b;}

Instead of needlessly repeating code we can use the template
feature of C++ to write a single declaration and definition of a
generic function that can be used autonomously with any accept-
able type. Without the template feature, we would have to explicitly

Computational Physics.Ch14_App.3pp.indd 306Computational Physics.Ch14_App.3pp.indd 306 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  307

overload the max function providing a declaration and definition for
every conceivable type. However, using the template syntax we can
write a possible function declaration and definition as

template<typename T> T max(T a, T b) { return a > b ?
	 a : b;}

We can now use the max function for any type we like with
the caveat that the template type T has the greater than operator
defined, if not the code will fail to compile. Note that it is recom-
mended that a template function be declared and defined together
in the header file as explained shortly.

Here the template type T is a virtual placeholder for a concrete
type the details of which will be provided at (a future) compile time,
that is, when we produce a binary file. This essentially leaves a hole
in the definition of the function. Machine code requires that a con-
crete type be specified to fill the hole that is left missing. Therefore,
it is most convenient for the template function declaration and defi-
nition to reside together in a header file that we include to use the
function. Otherwise, the definition must reside in each source file
that calls the function; this would be clumsy programming and sub-
verts the point of using a template function.

When calling a template function in general we should provide
the complete type specification for the function. For example, to
call our max template function with floating-point types we should
invoke the function using

float max_val {max<float>(a, b)};

where a and b are of type float and have been initialized before-
hand. However, modern C++ compliers can deduce the type speci-
fication from the arguments supplied such that we do not need to
supply the type in the angled brackets:

std::string max_val {max<>(a, b)};

If a and b are std::string type, then the call instantiates the
template function with std::string as the filler. In this case, if the

Computational Physics.Ch14_App.3pp.indd 307Computational Physics.Ch14_App.3pp.indd 307 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

308  •  Appendix: A Crash Course in C++ Programming

arguments are of any other type then, unless there exists a valid,
accessible conversion of that type to a std::string, the compiler will
complain. We can also omit the angle brackets entirely:

auto max_val {max(a, b)};

This allows overload resolution to examine both the template
and normal function overloads if they exist. In C++11 the auto key-
word can be used where the type can be deduced from context; here
max_val will be initialized as the same type as a and b. Take note
that due to the way we have written the max template function you
cannot have arguments of different types.

The template parameter list delimited by the angled brackets
can contain as many items as necessary, with each item separated by
a comma. Each item can be a general class (using the typename or
class keyword), a specific instance of a class, or a fundamental data
type (or their alias). A concrete value of each template type must be
provided at compile time. Note that the template parameters may
also be given default argument types.

By the way, there is no need to write your own “max” template
function as one is already implemented in the standard library in the
algorithm header under the std namespace. Notice that it accepts
arguments by const reference. Generally, when writing template
functions, you will want the template arguments passed by const
reference as the type is any potentially definable type and as such
could be prohibitive to copy.

Note that the typename keyword in the template parameter
list can be replaced with the class keyword; they are synonyms in
this context. Using typename here rather than class is arguably
better as it more precisely describes the functionality; class implies
we can only use class names whereas we can use any defined or
definable type.

Inline Functions
C++ supports simple macro inline expansion of functions.

Any function declared as inline is not actually a function but a
description of the code to be inserted at the point of the function

Computational Physics.Ch14_App.3pp.indd 308Computational Physics.Ch14_App.3pp.indd 308 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  309

call. Inline functions are semantically the same as normal functions
and are used as an attempt to improve program speed by avoiding
the overheads of a function call and its associated stack adjustment.
Note that the keyword inline is used only where the function
is declared not where it is defined unless declaring and defining a
function in the same place.

Inline functions generate more code than a normal function call.
If an inline function itself calls another inline function that may call
another inline function and so on, one line of code can expand into
tens or even hundreds of lines of actual code. This is called bloat and
is avoided by not using inline functions or restricting their use to
simple functions, ideally ones that do not call other functions. If in
doubt do not use inline functions. If the final program does not per-
form adequately then analyze the code to uncover any bottlenecks
and redesign the program if possible. In many cases, well-chosen
algorithms and good program design are more effective at speeding
up programs than inline functions.

Note that with modern C++ the keyword inline is a suggestion
to the complier that the function is made inline. It is not guaranteed
that the function will be inline. The complier will make the final
decision based on the code length and complexity of the function,
among other considerations.

Pointers
Pointers play an essential role in the construction of any sub-

stantial C++ program. A pointer is a variable that holds the address
in memory of another variable. When we declare a variable, we give
it a memory address that uniquely identifies it within the memory
structure. When we initialize or assign a value to a variable, we place
that value at the location of the variable’s unique address. When we
use the variable, we are directly accessing the value stored at the
address of the variable.

If we declare a pointer to the address of that variable, we then
have a means of indirectly accessing the value stored at the address;
we do not have to refer to the original variable to use or modify it. As
an analogy, if you walk into a library and ask the Librarian “who was
the King of England in 1137?” and they say “Stephen” then you are

Computational Physics.Ch14_App.3pp.indd 309Computational Physics.Ch14_App.3pp.indd 309 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

310  •  Appendix: A Crash Course in C++ Programming

directly accessing that data. However, if the Librarian gives you the
location of a book about the monarchs of Great Britain then they are
pointing you to where you can find that data. The location itself does
not contain the answer you want but what is at the location does.
Pointers become more beneficial when we start to consider object-
orientated programming, but for now, we shall look at how they are
implemented at a low level.

A pointer variable is declared as a pointer to type. A pointer can
be initialized by or assigned from the address of any variable of the
declared type or from another pointer of the same type. To declare
a pointer to type we use the asterisk symbol, *, after the type name.
For example,

int * ptr_int;

declares a pointer to an integer variable.

The space around the * is unimportant to the complier but is
potentially important to the reader. Although it seems a petty, where
to place the white space around the pointer operator is a contentious
issue among programmers. Does the symbol belong to the type dec-
laration or does it belong to the variable identifier? We will opt for
treating the pointer symbol like a binary operator, whereby the type
and the identifier are the “operands.”

One pitfall to watch out for is declaring multiple pointers in a
single statement. You might think that

int * first, second;

declares two pointers to integers called first and second. However,
this is equivalent to declaring a pointer to an integer called first, and
then declaring an integer variable called second. To declare second
as a pointer to an integer on the same line as first you would need to
prefix it with the asterisk. Hence, it is recommended to declare only
a single pointer per line to avoid any confusion. Indeed, it is good
practice to declare every variable on its own line.

To manipulate pointers and their contents we have the fol-
lowing operators & and * (the asterisk has different behavior here

Computational Physics.Ch14_App.3pp.indd 310Computational Physics.Ch14_App.3pp.indd 310 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  311

to that just described above). The & operator when used in front
of a variable identifier gives the address in memory of that vari-
able, hence it is referred to as the address operator. The * opera-
tor when used in front of a pointer variable identifier returns the
contents of the address; this is known as indirection or derefer-
encing. The * operator in this context is referred to as the deref-
erence operator or the contents operator. If you compile and
run the following example program the output in both cases is
“a = 3 b = 7.”

#include <iostream>

int main()
{
	 //initialise a and b to zero
	 int a {0};
	 int b {0};

	� //initialise pointers to a and b (address operator)
	 int * ptr_a {&a};
	 int * ptr_b {&b};

	� //assign values to a and b via their pointers
	 *ptr_a = 3;
	 *ptr_b = 7;

	 std::cout << “Direct access:\n”;
	 std::cout << “ a = “ << a << “\n”;
	 std::cout << “ b = “ << b << “\n”;

	 std::cout << “Indirect access:\n”;
	 std::cout << “ a = “ << *ptr_a << “\n”;
	 std::cout << “ b = “ << *ptr_b << “\n”;

	 return 0;
}

Computational Physics.Ch14_App.3pp.indd 311Computational Physics.Ch14_App.3pp.indd 311 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

312  •  Appendix: A Crash Course in C++ Programming

Because pointers in C++ are strongly typed (that is they must
be declared as pointing to a particular type), the complier and user
can tell what type is being pointed at and hence what will be deref-
erenced. This contrasts with other languages that have un-typed or
plain pointers that could point to anything and thus require more
careful use. C/C++ does allow you to declare a pointer to void type,
which is mainly used to allow the passing of arbitrarily sized data to
functions (this is an advanced topic and can be avoided using object-
orientated methods).

In our code example, we have initialized the pointer when it was
declared. This is good programming practice as any junk value given
otherwise could be interpreted as a valid address anywhere in mem-
ory. This may lead to unforeseen consequences for your program if
an attempt were made to dereference it.

In modern C++, you can initialize a null pointer with the
nullptr type; this implies it points to nothing of relevance. How-
ever, be aware that a null pointer cannot be dereferenced, and
attempting to do so will cause undefined behavior.

As a brief aside we mention basic or built-in arrays in C/C++ as
they are relevant to the discussion on pointers. In C/C++, a closed
pair of square braces following a variable name declaration identifies
that variable as being an array of the type declared. For example,

int an_array[] = {2,4,8,16};

initializes an_array with 4 elements of the values specified. We can
dereference an_array using the array access operator, [], with the
index of the element we want to access placed in the brackets (index-
ing starts from zero).

int first_element {an_array[0]}; // == 2 in our
	 example

The variable identifier an_array is a pointer to the first ele-
ment in the array, such that the above statement is equivalent to:

int first_element {*an_array};

Computational Physics.Ch14_App.3pp.indd 312Computational Physics.Ch14_App.3pp.indd 312 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  313

It is important to know here that the elements of an array in
C/C++ are stored in contiguous memory locations, that is, in an
unbroken block of memory, such that we can access subsequent
elements using pointer arithmetic. To illustrate, both the following
statements result in the variable being initialized with the value 8:

int third_element {an_array[2]};
int third_element {*(an_array + 2)};

Hopefully, you agree that the array access operator is a more
elegant means of dereferencing an array. It is of note that when an
array argument is passed to a function, it “decays” into a pointer to
the type stored in the array.

Object-Orientated Programming (OOP)
Object-orientation bases its software model on behavioral, self-

contained constructs. Typically, these constructs have some corre-
spondence with real-world objects that often provide a logical start-
ing point to object-orientated development. Traditionally, structured
programming methods have separated the data from the functional
code that operates on it. The object-oriented approach is to group
the data and functions within a single unit called an object. The class
of an object is effectively its type: it is the description of what opera-
tions are available on objects of that type, how these methods are
implemented, and how the internal state of objects is represented.

Encapsulation, inheritance, and polymorphism are often
called the “Big Three” of object orientation. Encapsulation liter-
ally means “to put something within a capsule,” suggesting the close
binding between data and the functions that act upon it. Informa-
tion hiding, or the masking of internal representation, is another
important feature of encapsulation. It allows the representation of
a concept to be modified without affecting the interface that uses
it. Inheritance defines new classes of objects in terms of extend-
ing existing classes. It corresponds to an “is a” kind of relationship,
rather than “has a” kind of relationship. Polymorphism allows inher-
iting classes to specialize in the behavior they have inherited. These
concepts are discussed in greater detail in due course.

Computational Physics.Ch14_App.3pp.indd 313Computational Physics.Ch14_App.3pp.indd 313 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

314  •  Appendix: A Crash Course in C++ Programming

C++ as an Object-Orientated Language
C++ is an object-orientated language. But what do we mean by

object? An object is something tangible, something that can be seen
or touched or felt, or something that can be alluded to, conceptual-
ized, thought about. Objects can be

●● Physical real-world concepts such as people, ATMs, smart
phones, vehicles, etc.

●● More abstract concepts we find in the real world such as
bank accounts, dates, derivatives, laws, etc.;

●● Interactive software abstractions such as windows, buttons,
menus, etc.;

●● Programming language constructs such as strings, arrays, I/O
streams, etc.

Many objects in the world can be grouped together by their
properties and behaviors; we say they have a class. This class system
typically has a hierarchy. For example, the Samsung Galaxy and the
iPhone are both a class of smart phone. Smart phones belong to a
larger class of mobile phones, which in turn belongs to an even larger
class of communication technology. As another example, a Seat Ibiza
and a Citroen C3 are both classed as Hatchbacks. Hatchbacks are
cars, and cars are vehicles. As we go up the hierarchy the concept of
the class becomes increasingly abstract. A vehicle, in general, gets
you from A to B but the method by which it gets you there can vary
wildly depending on the vehicle’s specific class; compare cars, ships,
and planes, for example.

In C++, an object is a runtime instance of a class. There can be
many objects of a single class and many classes within a program.
But how does the language provide the class feature? The class
keyword can be used to define a new data type, providing it with
a name, a set of operations expressed as member functions, and
an internal representation expressed as member data. We call this
encapsulation. A class is typically defined in a header file that con-
stitutes a kind of contract with the user; it tells us what the class is
and how we can operate with objects of that class. As an example,
std::cout is an object of the output stream class ostream defined in

Computational Physics.Ch14_App.3pp.indd 314Computational Physics.Ch14_App.3pp.indd 314 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  315

the iostream header file. We know we can use the operator >> with
it to stream an output sequence to standard output, typically the ter-
minal, but it has many more member functions that can be used to
affect its behavior. And that is the point of using objects within soft-
ware; interacting with them is completely defined by their behavior.
The internal state representation of an object must exist but is not
a consideration when interacting with the object. In other words,
objects are what we can do with them rather than the parts that
make them. As simple examples of this in the real-world think about
pens and cars as objects. A pen has a “write” function. You as the
user simply pick up the pen and write with it with no thought about
how the pen implements putting ink on the paper. Similarly, a car
has a “travel” function that gets you from A to B. Unless you are a
car mechanic or mechanical engineer you likely have little idea of
the car’s internal workings.

We call the pen-write “function” or the car-travel “function” their
interface or how we interact with them. The details of how those
functions work are called the implementation. When writing appli-
cations, we are typically only interested in the interface of objects;
usually referred to as the Application Programming Interface (API).
However, if writing libraries for future and/or widespread use we
will be concerned with the implementation details: algorithm cor-
rectness; computational efficiency; speed; memory optimization;
storage concerns, and so on (as well as providing a clean and simple
interface for application programmers).

Simply put a class type can be split into two parts: the class defi-
nition serving as a contract to the user and the class implementation
containing its functionality.

Class Definition
The class definition is placed in a header file (.h or .hpp) and

contains the class identifier (or type name) and its members that
consist of data and function declarations, including constructors.

class SomeClass {
private:
		 //data members, internal representation

Computational Physics.Ch14_App.3pp.indd 315Computational Physics.Ch14_App.3pp.indd 315 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

316  •  Appendix: A Crash Course in C++ Programming

public:
		 //the class constructor(s), initialisation
public:
		� //member functions, class interaction or

	 interface
};

The header file name is not required to match the class defini-
tion it contains (indeed a header file may contain several, different
class definitions) but it is considered good practice to have a coher-
ent and consistent naming policy (and to have one class definition
per header where appropriate).

The private section declares the data members that make up
the internal representation of the class. Although data members can
be declared public this goes against the idea of encapsulation and an
object being responsible for its internal state. The public section(s)
declares the constructors and member functions that can be used
by client code; member functions can be declared private but are
then only accessible through other member functions of the spe-
cific class. As an aside, member functions can generally be split into
two types: query functions and modifier functions. Query functions
simply return the current internal representation of an object for
inspection. Modifier functions change the internal representation of
an object in some way.

The specifiers public and private may be repeated in the
class definition, the order in which these sections occur is unimport-
ant (unimportant to the compiler but potentially important to a per-
son). It is my preference to put the representation details (private
section) before the class user interface (public section) but this is
not set in stone. So long as it follows a logical and readable format
then the choice is yours. However, it pays to be consistent so once
you have a preferred style you should stick to it. Please note that
the default access to members of a class that is, if you do not specify
one explicitly, is private. A third access specifier exists called pro-
tected. This is typically used in conjuncture with the inheritance
feature of OOP in C++ and will be discussed shortly.

Computational Physics.Ch14_App.3pp.indd 316Computational Physics.Ch14_App.3pp.indd 316 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  317

When an object is initialized from a (poorly programmed) user-
defined class its initial state may be undefined. If the object is used
later, then it may give undefined or meaningless behavior; the class is
said to be not fully encapsulated. A constructor is a special member
function that initializes an object automatically and, if professionally
written, fully. Constructors have the same name as the class and no
return type, not even void. You can think of the constructor as the
initialization sequence for an object and we can provide different
ways to initialize an object by overloading the constructor for a class.
A constructor typically takes arguments that are used to initialize the
classes’ data members. The default constructor will either take no
arguments or have all arguments with default values, the overloaded
variants will perhaps only take certain arguments. Take note that
if you do not provide any constructors for a class the compiler will
automatically generate a set for you. More on this later but of impor-
tance here is the automatically generated destructor. The destructor
is a special member function that is called whenever an object of a
class goes out-of-scope and serves to clean up the object fully. Typi-
cally, the automatically generated destructor is fit for purpose, and
you rarely have to provide one explicitly. We will discuss destructors
in more detail in the sections on inheritance and polymorphism.

Member functions are declared in the same way as normal func-
tions but with some optional qualifiers. To illustrate let us create an
example C++ class definition for the date and time:

class DateTime {
private: //data members
	 double _posix_time;
public: //constructors
	 DateTime();
	 DateTime(double posix_time);
	 DateTime(std::string date_time);
	 DateTime(int year, int day_in_year);
public: //member functions
	 std::string dateTimeString() const noexcept;
	 void incrementTime(double amount = 1.0) noexcept;
};

Computational Physics.Ch14_App.3pp.indd 317Computational Physics.Ch14_App.3pp.indd 317 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

318  •  Appendix: A Crash Course in C++ Programming

The date and time can be represented by a single floating-point
number that tells us the number of seconds that have passed since
a well-defined point in time. POSIX time represents the number of
seconds that have passed since The (Unix) Epoch, namely midnight
on January 1, 1970. This is the internal representation of our Date-
Time class, or at least that is the intention. The interface also tells
us there are four ways to initialize a DateTime object. The default
constructor (no parameters), a constructor that accepts an argument
of double type, another that accepts an argument of std::string
type, and a final constructor that accepts two int type arguments.
How these constructors are implemented is not yet relevant to
the discussion. Finally, the interface tells us what we can do with
objects of our DateTime class, the member function declarations.
First a member function, dateTimeString, accepts no arguments
and returns a std::string object, presumably a string representation
of the _posix_time data member but this is an implementation
detail. And a second member function, incrementTime, can accept
a double type argument that presumably increases the internal rep-
resentation of the POSIX time by the value of the argument, again
an implementation detail. Notice that a class definition is a state-
ment so must be terminated by a semicolon.

The qualifying keywords const and noexcept that follow the
member function declarations in our DateTime class inform the
user (and the compiler) about the implementation of those functions
in general. First, const tells the user that the member function
does not modify the internal representation of the object, the data
members are unaffected by a call to this function. Typically, const
member functions are query functions. Objects and references to
objects declared const can only call const member functions.
This is logical. Any member function not declared const is consid-
ered a modifier function and a const object cannot be changed; its
internal representation must remain constant. An attempt to call a
non-const member function on an object or reference to an object
declared const will result in a complier error. It is more than a pro-
gramming convention as it is both useful to the complier that checks
the code and the human programmer who uses the code. Appropri-
ate use of const is a good habit to acquire. Second, noexcept is
used to tell the user that the member function is guaranteed not to

Computational Physics.Ch14_App.3pp.indd 318Computational Physics.Ch14_App.3pp.indd 318 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  319

throw an exception during its operation. The compiler can also use
this information to apply certain optimizations when a noexcept
member function is called.

A member function may be overloaded on const. That is, you
can have two member functions that have identical prototypes except
for the const qualifier. The const version will be called for objects
declared const and the other version for modifiable objects. An
example of this can be seen in the std::vector class where the array
access operator (operator[]) is overloaded on the const qualifier
to provide read and write versions of that operator.

Class Implementation
The class implementation is placed in a source file (.cpp, .cxx)

that includes the class definition file (.h, .hpp). The naming of this
source file is flexible, but it is logical to match the name of the header
file containing the class definition. The implementation file contains
the constructor definitions and member function definitions that
will be compiled into machine code. For a client to use the class
they must include the class definition header file in their code and
link in the complied implementation code.

Where the class definition provides an interface that a class user
can include and use, the class implementer plays a different role,
that of the supplier of functionality. In addition to defining the bod-
ies of the member functions declared for use on objects of a class,
the class implementer must also be aware of object identity and ini-
tialization issues.

Let us return to our DateTime example class to see how we
write these definitions in practice:

//constructors
DateTime::DateTime() : _posix_time(0.0) {}
DateTime::DateTime(double posix_time) : _posix_
	 time(posix_time) {}
DateTime::DateTime(std::string date_time) : _posix_
	 time(0.0) {
	 //code to convert date_time to _posix_time
}

Computational Physics.Ch14_App.3pp.indd 319Computational Physics.Ch14_App.3pp.indd 319 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

320  •  Appendix: A Crash Course in C++ Programming

DateTime::DateTime(int year, int day_in_year) : _
	 posix_time(0.0) {
	 //code to convert year and day_in_year to _posix_
	  time
}
//member functions
std::string DateTime::dateTimeString() const {
	 //code to convert _posix_time to string and
	 return result
}
void DateTime::incrementTime(double amount) {
	 //code to increment _posix_time by amount
}

Constructor definitions are written using the class scope opera-
tor, which is the class name followed by a double colon, followed by
the constructor “signature,” which consists of the class name and
parameter list in parentheses. The member initializer list provides
an elegant means for passing initial values to data members; the list
starts with a colon (referred to as the delegation operator) and is
a comma separated for multiple data members. The members are
initialized with the values in parentheses. For multiple data mem-
bers, regardless of the order of the members in the list, initialization
occurs in the order they were declared in the class definition. In our
default constructor for the DateTime class, the member initializa-
tion list simply initializes the data member, _posix_time, to zero.
The constructor is completed by providing the constructor body,
delimited by curly braces. Quite often the body will contain no code
because the object can be completely initialized by the member ini-
tialization list. It is important to know that an object is not actually
created until the end of the constructor body is reached. This is a
language feature and avoids partial objects from existing; either the
object is created, or it is not. It does not guarantee that a partially ini-
tialized object could exist, it is up to the person who wrote the class
implementation to completely initialize an object. When data mem-
bers cannot be directly initialized in the member initialization list,
we must use the constructor body. In this case, it is considered good
practice to initialize the data member with some “default” value in

Computational Physics.Ch14_App.3pp.indd 320Computational Physics.Ch14_App.3pp.indd 320 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  321

the initialization list. Technically, the data member is not initialized
in the constructor body but assigned some value. We generally do
not have to be concerned with this distinction, but it is something
to be aware of. For example, a member initializer must be present
for any data members that are declared const, or that cannot be
reassigned at a later point, as this is the only opportunity to initialize
them. If the code in the constructor body throws an exception or
exits abnormally in any way, the object is not created; running code
must reach the closing curly brace and return to the calling environ-
ment for an object to be created.

Member function definitions are like normal (global) function
definitions, with the addition of class scope and the ability to access
other class members. The class scope resolution operator must
be used for member function definitions otherwise the compiler
assumes the function is global (normal). If declaring a const mem-
ber function in the class definition, then the const keyword must
also be included in the function definition after the parameter list as
this forms part of the function signature. The noexcept qualifier is
not required in the function definition.

Automatically Generated Constructors and Operators
In modern C++, the compiler automatically generates the

default constructor, copy constructor, copy assignment operator,
move constructor, move assignment operator, and destructor for a
type if they have not been explicitly defined by the programmer.
These functions are known as the special member functions.

Automatic generation of special member functions is convenient
for simple classes, but complex classes often define one or more of
these functions, and this can prevent other special member func-
tions from being automatically generated. There are several rules to
bear in mind if explicitly providing definitions of the special member
functions:

●● The default constructor is auto-generated if there is no user-
declared constructor (of any kind).

●● The copy constructor is auto-generated if there is no user-
declared move constructor or move assignment operator.

Computational Physics.Ch14_App.3pp.indd 321Computational Physics.Ch14_App.3pp.indd 321 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

322  •  Appendix: A Crash Course in C++ Programming

●● The copy assignment operator is auto-generated if there
is no user-declared move constructor or move assignment
operator.

●● The destructor is auto-generated if there is no user-declared
destructor.

●● The move constructor is auto-generated if there is no user-
declared copy constructor, copy assignment operator or
destructor, and if the generated move constructor is valid.

●● The move assignment operator is auto-generated if there is
no user-declared copy constructor, copy assignment operator
or destructor, and if the generated move assignment operator
is valid.

As a rule of thumb if you explicitly declare any of these special
member functions, save perhaps the default constructor, then you
should explicitly declare the others. Note also that we emphasize
the word declare. In general, you probably will not have to define
these functions because C++11 (and upwards) specifies the use of
the keywords default and delete in conjunction with these spe-
cial member functions (and indeed any other member functions).

As ever an example of this feature is illustrative. Here we just
show you the syntax for the various functions we have not discussed.

class Demo {
private:
	 //internal representation
public:
	 ~Demo(); //destructor
	 Demo() = default; //default constructor
	 Demo(Demo&) = delete; //copy constructor
	� Demo& operator=(Demo&) = delete; //copy assignment
	 Demo(Demo&&) = default; //move constructor
	� Demo& operator=(Demo&&) = default; //move

	 assignment
public:
	 //member functions
};

Computational Physics.Ch14_App.3pp.indd 322Computational Physics.Ch14_App.3pp.indd 322 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  323

Here we imagine that the Demo class requires an explicit
destructor to be declared and defined because it requires additional
functionality that the auto-generated destructor cannot provide. In
this case, we would not get an auto-generated default constructor
because the compiler assumes that if the auto-generated destructor
is not adequate then neither is the auto-generated default construc-
tor. However, we know that in fact the auto-generated default con-
structor is fine for this class so we can reinstate it using the default
keyword. For whatever reason, we want to prevent objects of this
class from being copied. With only a destructor and default con-
structor declared we would still get the auto-generated copy spe-
cial members. We must remove them by explicitly declaring them
with the delete keyword. For yet another reason we would like
objects of this class to be moveable. As we have declared an explicit
destructor the auto-generated move functions are no longer sup-
plied. However, just like the default constructor, we are happy that
the auto-generated move functions are adequate, so we reinstate
them using the default keyword.

Using Objects
The simplest way to create an object is to declare it as a variable.

In this case, the type of the variable is the class name and the vari-
able itself is the object. Remember to include the relevant header
file that contains the class definition in your code. We say that an
object is an instance of its class.

DateTime posix_epoch; //uses default constructor
std::cout << “The Epoch: ” << posix_epoch.date
	 TimeString();

Once created an object of a class may be manipulated via its
public interface, with public member functions being accessed using
the dot operator. When an object is used indirectly via a pointer the
member access operator, operator->, must be used instead.

void someFunction(DateTime * date_time_ptr) {
	 Date_time_ptr->incrementTime(5.0);
}

Computational Physics.Ch14_App.3pp.indd 323Computational Physics.Ch14_App.3pp.indd 323 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

324  •  Appendix: A Crash Course in C++ Programming

Behavior, state, and identity are three defining aspects of an
object. The first two have been covered in our discussion of mem-
ber functions (behavior) and data members (state). The last express
the idea that one object is distinct from another. The simplest way
to handle object identity in C++ is by the (memory) address of the
object. This will be a unique number for the object and distinct from
other objects. This is how we can get a handle on the object’s iden-
tity outside of the object itself but what about inside the object?
What happens when the program is executing a member function?
To answer these questions, we note that each member function has a
pointer parameter that is implicitly present. The this pointer points
to the object on which the member function is being called. When
a member function is called on an object, the address of that object
is automatically passed to the function. This can be thought of as a
hidden or silent first argument to the member function. The this
pointer is not normally used by the programmer but can be referred
to explicitly when needed. In essence, an object is aware of its own
address in memory through the this pointer.

Inheritance
We have discussed previously that objects in the real world can

be grouped together by their properties and behaviors, and those
classification systems have a hierarchy. Typically, the class at the top
of the hierarchy is the most abstract of the system, and the class at
the bottom is the most specific. For instance, the animal kingdom
is a hierarchical class system. The term animal is the most abstract
concept. Based on certain properties and behaviors animals can be
categorized into more specific groups: mammals, fish, birds, rep-
tiles, amphibians, and insects. Those groups can be further sepa-
rated into even more specific groups, for example, dogs, cats, cows,
dolphins, bats, humans all fall under the category of mammal. And
again, we can split those into more specific types; dogs can be Ter-
riers, or Spaniels, or Retrievers, or Labradors, and the list goes on.
The point here is the hierarchy tree: A Terrier is a dog, a dog is a
mammal, and a mammal is an animal.

Somebody once said that abstraction is like selective ignorance;
you discard the specifics and focus on generalities. Abstraction is a

Computational Physics.Ch14_App.3pp.indd 324Computational Physics.Ch14_App.3pp.indd 324 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  325

good thing as it allows a look at the bigger picture without getting
bogged down in the details. The hard part is implementing abstrac-
tion while allowing lower levels to still be efficient and accessible
where necessary.

C++ attempts to reflect the ideas of class hierarchy, and abstrac-
tion, through the concepts of inheritance and polymorphism. A base
class is (typically) the highest, and therefore the most abstract class.
We derive sub-classes from base classes that fill in the specifics of
what that derived class is meant to do. Typically, we refer to this
structure as base class and derived class, but it can also be known as
super-class and sub-class. C++ supports multiple inheritances, that
is, having more than one base class per derived class, as well as mul-
tiple levels of inheritance; a derived class can be a base class, the
derived class of which can be another base class, and so on. If we go
back to our example of the animal class system and we could have
categorized animals based on their diet, carnivores only eat meat,
herbivores only eat plants, and omnivores eat anything. A Terrier for
example is a dog, which is a mammal, but it is also a carnivore.

As a demonstrative example in C++ let us think about two-
dimensional shapes. In general, a 2D shape has a width, and a
height. They also have an area and a perimeter. It has these prop-
erties regardless of the details of the shape; the shape could be a
polygon, circle, or random squiggle. Though a random squiggle can-
not be defined in terms of its width and height alone, they would
probably define the “bounding-box” of the squiggle. This gives us a
starting point to define a shape base class in C++ based on its math-
ematical properties:

//Shape2D definition – e.g. in shape_2d.h
class Shape2D {
protected:
	 double _width;
	 double _height;
	 std::string _name;
public:
	� Shape2D(double w, double h, std::string name =

	 “Rectangle”);

Computational Physics.Ch14_App.3pp.indd 325Computational Physics.Ch14_App.3pp.indd 325 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

326  •  Appendix: A Crash Course in C++ Programming

public:
	 double area() const;
	 double perimeter() const;
};
//Shape2D implementation – e.g. in shape_2d.cpp
�Shape2D::Shape2D(double width, double height,
	 std::string name):
	 _width(width), _height(height), _name(name) {}

double Shape2D::area() const {
	 return _width * _height;
}

double Shape2D::perimeter() const {
	 return 2 * (_width + _height);
}

The Shape2D class requires two double data members, one for
width, and the other for height. For convenience, we also include a
std::string data member to record the name of the shape. We also
give it two member functions, one to compute the area of the shape,
and the other to compute its perimeter. We assume the shape base
class takes the “simplest” form, that of a rectangle. Its area is then
computed by the product of its width and height, and its perimeter
by twice the sum of those values.

To declare a class as being derived from another we use a single
colon after the derived class’ identifier followed by an access quali-
fier: public; private; or protected, and the base class we wish to
use. We can declare multiple base classes using a comma-separated
list; each base class requires its own access qualifier. A derived class
will inherit any members of the base class that are not specified as
being private, that is, a derived class does not have (direct) access
to its base class private members (access could be indirect via
public or protected member functions in the base class if they
exist). When we inherit from a class via public access anything that
is public in the base class becomes public in the derived class and
anything that is protected in the base class becomes protected
in the derived class. When we inherit from a base class via private

Computational Physics.Ch14_App.3pp.indd 326Computational Physics.Ch14_App.3pp.indd 326 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

Appendix: A Crash Course in C++ Programming  •  327

access, both public and protected members of the base class
become private members of the derived class. And when deriving
a class via protected access, public and protected members
of the base class become protected in the derived class. In the
majority of use cases, public inheritance is the appropriate method
to employ.

Getting back to our example, with the Shape2D base class
defined we can then design derived classes for more specific shapes.
The square, for example, is the case where the height and width of
the base shape are equal.

//Square definition
class Square : public Shape2D {
public:
	 Square(double side);
};
//Square Implementation
�Square::Square(double s) : Shape2D(s, s, “Square”) {}

We declare the Square class as having public inheritance
from the Shape2D class. The constructor for the Square takes just
one argument that specifies the length of a side. The Square class
does not need to declare the data members that represent width
and height as it inherits these from the Shape2D base class. The
Square class also inherits the base class functions that compute the
area and perimeter of the shape. It does not need to redefine these
functions as they already compute the correct values. When we
implement the constructor for the Square class, we use the mem-
ber initialization list syntax but the first “member” that we initialize
is the base class itself. We do this by calling the base class construc-
tor with the required arguments. Professionally written C++ code
will always construct the base class first before initializing any data
members of the derived class. This reflects the philosophy (or is it
practicality) that we build a house up from the foundations, rather
than down from the roof. Note that the (default) destructor will then
“tear down” the derived class from the roof down to its foundations.
It will clean up any data members in the derived class before calling
the destructor for the base class. You could of course provide your

Computational Physics.Ch14_App.3pp.indd 327Computational Physics.Ch14_App.3pp.indd 327 1/4/2022 11:39:41 AM1/4/2022 11:39:41 AM

328  •  Appendix: A Crash Course in C++ Programming

own definition for the destructor that changes this order, but this is
not recommended.

We can also derive a circle class from the shape base class. Like
the square class, we would like a constructor that takes one argu-
ment, but in this case, the parameter specifies the radius of the cir-
cle. We must also provide new declarations and definitions for the
functions that compute the area and perimeter, as these are now
different from the base class.

//Circle definition
class Circle : public Shape2D{
public:
	 Circle(double radius);
public:
	 double area() const;
	 double perimeter() const;
};
//Circle implementation – width and height are diameter
circle::circle(double r) : shape(2*r, 2*r, “Circle”) {}

double circle::area() const {
	 return PI * _width * _width / 4.;
}

double circle::perimeter() const {
	 return PI * _width;
}

By specifying new area and perimeter functions for the Cir-
cle class we hide or shadow those inherited from the base class.
When an object of Circle type calls a member function, the com-
piler checks the most local namespace first, that is, the Circle class
name, for a match and uses the function found there. Whereas, with
the Square class the compiler will not find a match within the local
class namespace and so searches the base class Shape2D for that
member function. If a match cannot be found in the base class, this
is then flagged as an error by the compiler.

Computational Physics.Ch14_App.3pp.indd 328Computational Physics.Ch14_App.3pp.indd 328 1/4/2022 11:39:42 AM1/4/2022 11:39:42 AM

Appendix: A Crash Course in C++ Programming  •  329

A triangle seems such a simple shape. It consists of three straight
lines that connect at three vertices. But we have a problem. Our gen-
eral shape class has a width and a height that defines a rectangular
border. Even with the constraint that the triangle’s base edge runs
along the bottom border of the rectangle, there remains an infinite
number of triangles that will fit this rectangle. While this does not
affect the computation for the area of the triangle, which is always
one-half base times height, it does affect the calculation for the
perimeter. How might you go about designing a Triangle class (or
classes) using the Shape2D class as a base?

Of course, our initial design for an abstract base shape class may
not be optimal. Readers that have looked at graphical programming
(with OpenGL or DirectX, for example) will know that a shape can
be described as a collection of vertices, points in either a two- or
three-dimensional space. These vertices are implicitly connected by
straight lines and three or more vertices connect to form a loop that
describes a face of the shape. For example, a cube is a collection of
eight vertices that are connected to form six square faces. In this
way, a shape is an array of vertices or points with a corresponding
description of how these vertices are joined together to form the
shape.

As a final thought on inheritance, see it as a “is a” relationship
rather than a “has a” relationship; a derived class type is its base
class type. Also, consider whether the “is a” relationship is appropri-
ate. For example, a car is a vehicle, but it has various components,
wheels, an engine, a chassis, seats, and so on. Let us say we had a
class representing an engine, it most certainly should not be a base
class for a car class and equally not be derived from a car class. A car
is not an engine, an engine is not a car, rather a car has an engine.
While this relationship is obvious in this contrived example it might
be more subtle when designing more abstract concepts in code.

Polymorphism
It essentially means that you can change the behavior of a class

via the same pointer or reference to its base type. This allows us
to set up standard containers (vectors, lists, etc.) with pointers (or
references) to the same (base) type, but where each element may
have different behavior depending on the complete derived type to

Computational Physics.Ch14_App.3pp.indd 329Computational Physics.Ch14_App.3pp.indd 329 1/4/2022 11:39:42 AM1/4/2022 11:39:42 AM

330  •  Appendix: A Crash Course in C++ Programming

which they point. It also allows us to write general functions that
take base class pointers or references that change behavior depend-
ing on the complete derived class to which they point or refer. With-
out polymorphism, we would have to provide overloaded variants of
the same function for each derived class. With polymorphism, we
can provide a single function that takes a pointer or reference to the
base class and that works for all derived classes.

To provide polymorphism in our classes C++ uses the key-
word virtual. In our inheritance example, the base Shape2D
class provides an area and perimeter function that is inherited by
the derived classes. Typically, we shadow these base class functions
by declaring the same functions within the derived class. When we
instantiate a direct object of a derived class and use the member
functions from this object, it is those functions that are declared in
the derived class that is called. However, if we have indirect access
to an object via a pointer or reference to its base class, it is the base
class versions of the member functions that are called.

To make the Shape2D class polymorphic we should declare the
member functions in the base class virtual.

//Shape2D definition – e.g. in shape_2d.h
class Shape2D {
protected:
	 double _width;
	 double _height;
	 std::string _name;
public:
	� Shape2D(double w, double h, std::string name

	 = “Rectangle”);
public:
	 virtual double area() const;
	 virtual double perimeter() const;
};

This is all that is required to make the Shape2D base class poly-
morphic. Derived classes that provide their own definitions of the
base class member functions need to add the override attribute at
the end of the member function declaration in the class definition.

Computational Physics.Ch14_App.3pp.indd 330Computational Physics.Ch14_App.3pp.indd 330 1/4/2022 11:39:42 AM1/4/2022 11:39:42 AM

Appendix: A Crash Course in C++ Programming  •  331

//Circle definition
class Circle : public Shape2D{
public:
	 Circle(double radius);
public:
	 double area() const override;
	 double perimeter() const override;
};

The override keyword tells both the compiler and the human
programmer that the derived class is providing a different definition
for the member function, and it is this definition that should be used
when indirectly accessing an object via a pointer or reference to its
base. Note that the override keyword is not required when writing
the member function implementation.

Sometimes we may want to create a base class that should not
have any concrete objects of the base class constructed. For exam-
ple, we may want to make the shape class from our discussion above
an abstract base class because the concept of a shape is abstract.

To give another example let us say we are trying to build a role-
playing game. One part of the game is that the player character can
pick up, use, and discard items within the game world. The items
could be weapons, armor, potions, food, trinkets, or any other item
we would like. The hero should be able to store these items in a
backpack, a literal container. Clearly, we need a base class to repre-
sent the items in the game world, but the concept of an item is an
abstract one. We certainly would not want to create an item object
directly; what would that mean?

To make an abstract base class in C++ we provide the class
with what is called a pure virtual function. A pure virtual function
has no definition within the base class. The syntax to set up a pure
virtual function is

virtual return-type identifier(argument-list)
	 [attributes] = 0;

Computational Physics.Ch14_App.3pp.indd 331Computational Physics.Ch14_App.3pp.indd 331 1/4/2022 11:39:42 AM1/4/2022 11:39:42 AM

332  •  Appendix: A Crash Course in C++ Programming

The equals zero at the end of the virtual function declaration
reads that this function has no implementation in the base class, and
as such makes the base class abstract. You will not be able to make
direct instances of this class as this function has no definition; the
class is incomplete. For consistency, we should make the access qual-
ifier for the constructor(s) of an abstract base class protected. This
also has the effect of preventing direct instances of the class being
created, the compiler will complain if you try, but allows derived
classes (with public or protected inheritance) to use the base
constructor in their initialization list. We can only refer to the base
class via indirect methods, that is, pointers and references. Every
concrete derived class of an abstract base class is required to declare
and define an override for the pure virtual function as this then
completes the class definition. If the derived class is itself abstract,
either via its own pure virtual function or protected constructor it
does not need to provide an override.

As a rule of thumb, a base class with at least one pure virtual
member function should provide a virtual destructor. This ensures
entire objects, including the abstract base class, are cleaned up when
they are destroyed (go out-of-scope).

The header and source files cpp_primer.h and cpp_primer.cpp,
found at the GitHub page github.com/DJWalker42/laserRacoon,
show a practical example of how to write a class hierarchy with poly-
morphism in C++. These files also contain examples of many of the
major features of modern C++ language, some of which we have not
discussed here, including smart pointers and lambda expressions, so
we urge you to study the content within. We also urge you to edit
those files, play with the code, change it, and add it to so you have
a thorough understanding of both the code’s syntax and semantics.
The source code can be compiled with:

g++ -std=c++11 cpp_primer.cpp -o cpp_primer.

Computational Physics.Ch14_App.3pp.indd 332Computational Physics.Ch14_App.3pp.indd 332 1/4/2022 11:39:42 AM1/4/2022 11:39:42 AM

A

Adaptive quadrature
global error, 88–89
Lorentzian line-shape function,

87, 90
trapezoid rule, 88

Advanced numerical quadrature
Gauss-Laguerre quadrature,

217–219
Gauss-Legendre quadrature

Legendre polynomials, 213
positive definite, 210
programming, 214–217
quotient polynomial, 211
weights and abscissas, 210

Lagrange remainder, 204
lowest polynomials, 206–207
mid-ordinate rule, 206
orthogonal polynomials,

207–210
Simpson’s rule, 205

Advanced quadrature
adaptive quadrature, 86–90
Euler-McClaurin integration,

85–86
multidimensional integration,

90–93

Amdahl’s law, 269, 270
Application Programming Interface

(API), 315

B

Backward integration, 244, 245
Bisection-Newton-Raphson, 62–64
Boole’s rule, 85
Bourne-Again shell (bash), 3
Brute force search, 64–65

C

Center-of-mass (COM), 238
Central difference formula, 166
Central processing unit (CPU), 16,

255-259
Coding, 2
Command-line arguments, 10
Computers

hardware
CPU, 16
input and output devices, 17
RAM, 17
SSD, 16, 17

mathematics
matrices, 27–32
Taylor series, 25–27

INDEX

Computational Physics.Index.1pp.indd 333Computational Physics.Index.1pp.indd 333 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

334  •  Index

number representation and
precision

binary format, 20
integer values, 20
mantissa, 22, 23
pseudo code, 23–24

software
guidelines, 18–19
Linux, 18

C++ programming
automatically generated

constructors and
operators, 321-323

class definition, 315-319
class implementation, 319-321
coding guidelines, 284-285
command-line compilation,

279-284
description, 285
enumeration types

control flow, 291-298
exceptions, 298-301

functions, 301-305
function overloading,

305-306
inline functions, 308-309
template functions, 306-308

Object-Orientated Programming
(OOP)

encapsulation, 313
inheritance, 313, 324-329
polymorphism, 313, 329-332

objects, 314, 323-324
operators, 286-290
pointers, 309-313
primitive types, 286

Crank-Nicolson method, 183–184
C shell (tcsh), 3
Cubic spline, 43–45
Cygwin, 2

Bonjour Tout Le Monde, 6

D

Data fitting
matrix form

GE, 49
LAPACK, 50
linear least squares, 48

Millikan’s experiment, 50–53
regression, 45–48

Debugging, 11
DFT. See Discrete Fourier

transform (DFT)
Differential equations,

classification of
solution and initial conditions,

types of, 98–99
types of

homogeneous and
nonhomogeneous
equation, 97

ODEs and PDE, 96
Dirichlet’s theorem, 124
Discrete Fourier transform (DFT)

N data points, 127, 128
real and imaginary parts, 128

E

Earth-Moon system, 238
Euler-McClaurin integration,

85–86
Even parity wavefunctions, 246

F

Fast Fourier transform (FFT)
brief history and development,

129–130
implementation and sampling

aliasing, 134
frequency spectrum, 131
interweaving strategy, 130
leakage problem, 134

Computational Physics.Index.1pp.indd 334Computational Physics.Index.1pp.indd 334 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

Index  •  335

positive and negative
frequencies, 131

Van der Pol oscillator,
228–230

Finite difference methods (FDM)
difference formulas

application of, 168–174
backward difference

approximations, 166
central difference formula,

166, 168
differential equation, 165
five-point formula, 167
forward difference

approximation, 166
multi-step formula, 167
Runge-Kutta method, 167

heat equation, dirichlet
boundaries, 184–190

Finite element method (FEM),
199–200

Finite square well
regions, 69–71
Schrödinger equation, 70
wavefunction, 71, 72

Firmware. See Hardware
Fletcher’s experiment, 51
Forward integration, 244, 245
Fourier analysis

Fourier transforms (see Fourier
transforms)

series (see Fourier series)
Fourier series

coefficients of, 120
Dirichlet’s theorem, 124
harmonic tone, 120
square wave, 122

Fourier transforms
components, 124
DFT (see Discrete Fourier

transform (DFT))

FFT (see Fast Fourier transform
(FFT))

Fourier integral, 124
momentum-space, 126
non-periodic function, 124

G

Gaussian Elimination (GE), 49
Gauss-Laguerre quadrature,

217–219
Gauss-Legendre quadrature

Legendre polynomials, 213
positive definite, 210
programming, 214–217
quotient polynomial, 211
weights and abscissas, 211

Gauss-Seidel scheme, 172, 173
Graphical processing unit (GPU),

17
Ground state function, 243
Gustafson’s law, 271, 272

H

Halley’s Comet, 235–237
Hard disk drive, 255, 256
Hardware

CPU, 16
input and output devices, 17
RAM, 17
SSD, 16, 17

Heat equation
Dirichlet boundaries

Crank-Nicolson method,
183–184

explicit method, 180–181
general finite difference

method, 184–190
implicit method, 181–182

Neumann boundaries, 190–193
steady state heat equation,

193–196

Computational Physics.Index.1pp.indd 335Computational Physics.Index.1pp.indd 335 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

336  •  Index

Hello World program, 6
High performance computing

Amdahl vs. Gustafson, 268–272
blocking

block size, 261
matrix multiplication,

259, 260
Strassen’s algorithm, 262
sub-matrix multiplications,

262
computer memory

HDD, 255, 256
RAM and CPU, 255, 256, 257

heap and stack
advantages and disadvantages,

253
LIFO, 253
segments, 252
stack frame, 253, 254

loop unrolling, 262–263
loopy indexing, 257–259
parallel programming

hyper-threading technology,
265

OMP library, 264, 265
parallel regions, 265

vector summation
dynamic assignment, 268
serial code, 266
static assignment, 268

Hybrid methods
Bisection-Newton-Raphson,

62–64
brute force search, 64–65

I

Infinite square well
box model, 66
eigenfunctions, 67
Newtonian equations, 65
Schrodinger’s equation, 66

wavefunctions and probability
functions, 68

Integrated development
environment (IDE), 2, 3

Interpolation
cubic spline, 43–45
linear

straight line, 36, 37
symmetrical form, 37

polynomial
Lagrange formula, 40
n ordered polynomial

interpolation, 40, 41
symmetrical form, 39

J

Jacobi scheme, 171, 172, 173

K

Kepler’s third law, 239

L

Laplace equation, 193
Linear interpolation

straight line, 36, 37
symmetrical form, 37

Linux, 18
Lorentzian line-shape function,

87, 90

M

Mathematics
matrices

diagonal elements of, 28
Hermitian conjugate, 31
null matrix, 28
square matrix, trace of, 29

Taylor series, 25–27
Matrix form

GE, 49

Computational Physics.Index.1pp.indd 336Computational Physics.Index.1pp.indd 336 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

Index  •  337

LAPACK, 50
linear least squares, 48

Mid-ordinate rule, 82–83
Millikan’s experiment, 50–53
Monte Carlo integration

advantage, 146
dart throwing

Pythagorean theorem, 139
random number, 139
shooting method, 137
single integration, 142

geometrical interpretation of,
143

importance sampling,
146–148

multidimensional integration,
144

trapezoidal rule, 145, 146
Monte Carlo methods

numerical integration (see Monte
Carlo integration)

simulation (see Monte Carlo
simulation)

Monte Carlo simulations
radioactive decay, 154–155
random walk

mean distance, drunken walk,
149, 150

spherical coordinate system,
151

stochastic process, 149
uniform distribution, 152, 153

Multidimensional integration,
90–93

N

Namespaces, 8
Newton-Raphson method, 58–60,

215, 216
Non-linear equations, 52
Null matrix, 28

Numerical quadrature
advanced quadrature

adaptive quadrature, 86–90
Euler-McClaurin integration,

85–86
multidimensional integration,

90–93
simple quadrature

mid-ordinate rule, 82–83
Simpson’s rule, 84–85
trapezoidal rule, 83–84

O

Odd parity states, 242
Oil drop experiment, 50
OpenMP (OMP), 264
Ordinary differential equations

(ODEs)
differential equations,

classification of
solution and initial conditions,

types of, 98–99
types of, 96–98

solving 2nd ordered ODES
coupled 1st order ODEs,

108–110
one dimension, 116–117
oscillatory motion, 110–116

solving 1st order ODEs
adaptive Runge-Kutta,

107–108
modified and improved Euler

methods, 102–104
Runge-Kutta method,

104–107
simple Euler method, 99–102

Over-relaxation, 174

P

Partial differential equations
(PDEs), 96

Computational Physics.Index.1pp.indd 337Computational Physics.Index.1pp.indd 337 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

338  •  Index

boundary conditions, type of
Cauchy boundary condition,

163–164
Dirichlet conditions, 163
mixed boundary conditions,

164
Neumann conditions, 163

conic sections, 160
FDM (see Finite difference

methods (FDM))
FEM, 199–200
numerical methods

heat equation (see Heat
equation)

wave equation, 196–199
Poisson’s equation, 161
Richardson extrapolation

central difference formula,
176, 177

error behavior, 174-176
round off error issues, 178
trapezoidal rule, 177

Phase space, 225–226
Planck’s constant, 73
Polynomial interpolation

Lagrange formula, 40
n ordered polynomial

interpolation, 40, 41
symmetrical form, 39

Pythagorean theorem, 139

R

Random access memory (RAM),
17, 255, 256, 257

Region of interest (ROI), 64
Residual norm, 52
Richardson extrapolation

central difference formula,
176, 177

error behavior, 174-176
round off error issues, 178

trapezoidal rule, 177
Root-finding algorithm

bisection method, 56–58
even and odd parity states, 74
Newton-Raphson method, 58–60
Planck’s constant, 73
Secant method, 60–62
tangent function, 74
wavefunctions and probability

functions, 77
Runge-kutta-fehlberg

higher ordered method, 222
intermediary function

evaluations, 223
lower ordered method, 222

Runge-Kutta method, 104–107
Runtime errors, 11

S

Schrodinger’s equation, 66, 70, 245
Scope resolution operator, 8
Secant method, 60–62
Sequence acceleration method, 174
Shooting method, 137
Simple Euler method, 99–102
Simple harmonic motion (SHM),

96
Simple pendulum

finite amplitude, 231–233
utter chaos, 233–235

Simple quadrature
mid-ordinate rule, 82–83
Simpson’s rule, 84–85
trapezoidal rule, 83–84

Simpson rule, 84–85, 106, 205
Software

guidelines, 18–19
Linux, 18

Solving 2nd ordered ODES
coupled 1st order ODEs

component vectors, 109

Computational Physics.Index.1pp.indd 338Computational Physics.Index.1pp.indd 338 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

Index  •  339

Newton’s second law of
motion, 109

pair of, 109
one dimension, 116–117
oscillatory motion

driving force, 115, 116
numerical solution, 112
SHM, 111, 112
steady-state region, 116
transient region, 116

Solving 1st order ODEs
adaptive Runge-Kutta, 107–108
modified and improved Euler

methods, 103–105
Runge-Kutta method, 105–107
simple Euler method, 99–103

Spectral analysis. See Fourier
analysis

Spherical coordinate system, 151

Special member functions, 321
Steady state heat equation,

193–196
Strassen’s algorithm, 262
Successive Over-Relaxation (SOR),

174
Symmetrical form, 37

T

Taylor polynomial, 25
Trapezoidal rule, 83–84, 144, 146

V

Van der Pol oscillator
FFT, 228–230
non-linear differential equation,

227
phase space, 227–228

Computational Physics.Index.1pp.indd 339Computational Physics.Index.1pp.indd 339 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

Computational Physics.Index.1pp.indd 340Computational Physics.Index.1pp.indd 340 1/4/2022 5:02:31 PM1/4/2022 5:02:31 PM

	Cover
	Half-Title
	Title
	Copyright
	Dedication
	Contents
	Chapter 1: Introduction
	1.1 Getting Started with Coding
	1.2 Getting To Know The Linux Command Line
	1.3 Bonjour Tout Le Monde
	1.4 The Rest of the Book

	Chapter 2: Getting Comfortable
	2.1 Computers: What You Should Know
	2.1.1 Hardware
	2.1.2 Software
	2.1.3 Number Representation and Precision

	2.2 Some Important Mathematics
	2.2.1 Taylor Series
	2.2.2 Matrices: A Brief Overview

	Exercises

	Chapter 3: Interpolation and Data Fitting
	3.1 Interpolation
	3.1.1 Linear Interpolation
	3.1.2 Polynomial Interpolation
	3.1.2 Cubic Spline

	3.2 Data Fitting
	3.2.1 Regression: Illustrative Example
	3.2.2 Linear Least Squares: Matrix Form
	3.2.3 Realistic Example: Millikan’s Experiment

	Exercises

	Chapter 4: Searching for Roots
	4.1 Finding Roots
	4.1.1 Bisection
	4.1.2 Newton–Raphson
	4.1.3 Secant

	4.2 Hybrid Methods
	4.2.1 Bisection–Newton–Raphson
	4.2.2 Brute Force Search

	4.3 What’s The Point of Root Searching?
	4.3.1 The Infinite Square Well
	4.3.2 The Finite Square Well
	4.3.3 Programming the Root Finder

	Exercises

	Chapter 5: Numerical Quadrature
	5.1 Simple Quadrature
	5.1.1 The Mid-Ordinate Rule
	5.1.2 The Trapezoidal Rule
	5.1.3 Simpson’s Rule

	5.2. Advanced Quadrature
	5.2.1 Euler–Maclaurin Integration
	5.2.2 Adaptive Quadrature
	5.2.3 Multidimensional Integration

	Exercises

	Chapter 6: Ordinary Differential Equations
	6.1 Classification of Differential Equations
	6.1.1 Types of Differential Equations
	6.1.2 Types of Solution and Initial Conditions

	6.2 Solving First-Order ODEs
	6.2.1 Simple Euler Method
	6.2.2 Modified and Improved Euler Methods
	6.2.3 The Runge–Kutta Method
	6.2.4 Adaptive Runge–Kutta

	6.3 Solving Second-Ordered ODEs
	6.3.1 Coupled 1st Order ODEs
	6.3.2 Oscillatory Motion
	6.3.3 More Than One Dimension

	Exercises

	Chapter 7: Fourier Analysis
	7.1 The Fourier Series
	7.2 Fourier Transforms
	7.3 The Discrete Fourier Transform
	7.4 The Fast Fourier Transform
	7.4.1 Brief History and Development
	7.4.2 Implementation and Sampling

	Exercises

	Chapter 8: Monte Carlo Methods
	8.1 Monte Carlo Integration
	8.1.1 Dart Throwing
	8.1.2 General Integration Using Monte Carlo
	8.1.3 Importance Sampling

	8.2 Monte Carlo Simulations
	8.2.1 Random Walk
	8.2.2 Radioactive Decay

	Exercises

	Chapter 9: Partial Differential Equations
	9.1 Classes, Boundary Values, and Initial Conditions
	9.2 Finite Difference Methods
	9.2.1 Difference Formulas
	9.2.2 Application of Difference Formulas

	9.3 Richardson Extrapolation
	9.4 Numerical Methods to Solve PDEs
	9.4.1 The Heat Equation with Dirichlet Boundaries
	9.4.2 The Heat Equation with Neumann Boundaries
	9.4.3 The Steady-State Heat Equation
	9.4.4 The Wave Equation

	9.5 Pointers To The Finite Element Method
	Exercises

	Chapter 10: Advanced Numerical Quadrature
	10.1 General Quadrature
	10.2 Orthogonal Polynomials
	10.3 Gauss–Legendre Quadrature
	10.4 Programming Gauss–Legendre
	10.5 Gauss–Laguerre Quadrature
	Exercises

	Chapter 11: Advanced ODE Solver and Applications
	11.1 Runge–Kutta–Fehlberg
	11.2 Phase Space
	11.3 Van Der Pol Oscillator
	11.3.1 Van der Pol in Phase Space
	11.3.2 Van der Pol FFT

	11.4 The “Simple” Pendulum
	11.4.1 Finite Amplitude
	11.4.2 Utter Chaos?

	11.5 Halley’s Comet
	11.6 To Infinity and Beyond
	11.7 To The Infinitesimal and Below
	Exercises

	Chapter 12: High-Performance Computing
	12.1 Indexing and Blocking
	12.1.1 Heap and Stack
	12.1.2 Computer Memory
	12.1.3 Loopy Indexing
	12.1.4 Blocking
	12.1.5 Loop Unrolling

	12.2 Parallel Programming
	12.2.1 Many (Hello) Worlds
	12.2.2 Vector Summation
	12.2.3 Overheads: Amdahl versus Gustafson

	Exercises

	Bibliography
	Appendix: A Crash Course in C++ Programming
	Index

